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The theoretical study of many-body effects in the context of near-field radiative heat transfer (NFRHT) has
already led to the prediction of a plethora of thermal radiation phenomena. Special attention has been paid to
nonreciprocal systems in which the lack of the Lorentz reciprocity has been shown to give rise to unique physical
effects. However, most of the theoretical work in this regard has been carried out with the help of approaches that
consider either pointlike particles or highly symmetric bodies (such as spheres), which are not easy to realize
and explore experimentally. In this work we develop a many-body approach based on the thermal discrete dipole
approximation (TDDA) that is able to describe the NFRHT between nonreciprocal objects of arbitrary size and
shape. We illustrate the potential and the relevance of this approach with the analysis of two related phenomena,
namely the existence of persistent thermal currents and the photon thermal Hall effect, in a system with several
magneto-optical bodies. Our many-body TDDA approach paves the way for closing the gap between experiment
and theory that is hindering the progress of the topic of NFRHT in many-body systems.
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I. INTRODUCTION

It is known that the Stefan-Boltzmann law sets an upper
limit for the far field radiative thermal exchange between two
bodies at different temperatures, which is valid for separa-
tions above the thermal wavelength (λth ∼ 9.6 μm at room
temperature). However, if the bodies are brought in closer
proximity (below λth), the near-field radiative heat transfer
(NFRHT) contribution arising from the evanescent field of
electromagnetic waves at the material surfaces may lead to
largely overcoming the blackbody limit. This near-field en-
hancement was first predicted by Polder and Van Hove back in
1971 [1] within the framework of the fluctuational electrody-
namics (FE) [2], and in recent years it has been experimentally
studied in a great variety of systems and using different types
of materials [3–27]. These experiments, in turn, have been
crucial to firmly establishing the basic NFRHT mechanisms
in two-body systems; for recent reviews see Refs. [28,29].

In this context, part of the attention of the thermal radia-
tion community has shifted to the investigation of many-body
effects, a topic that is thus far largely dominated by the
theory [30]. The NFRHT in many-body systems offers new
exciting possibilities such as the development of functional
devices, which are often the thermal radiation counterparts of
electronic devices (diodes, transistors, etc.) [30,31]. On the
other hand, many-body systems have also turned out to be
ideal to unveil new physical phenomena that are absent in the
standard two-body configuration. This is especially clear in
the case of many-body systems involving nonreciprocal bod-
ies, which are often based on magneto-optical (MO) objects
whose near-field radiation properties can be largely tuned with

external magnetic fields [32–37]. Thus, for instance, in 2016
Ben-Abdallah predicted the possibility of having a near-field
thermal analog of the Hall effect in an arrangement of four
MO particles placed in a constant magnetic field [38]. Also in
2016, Zhou and Fan showed that a many-body system com-
prising MO nanoparticles can support a persistent directional
heat current, without violating the second law of thermody-
namics [39]. In fact, it has been shown that in certain systems
these two striking phenomena are very much related and they
should appear together [40].

The theoretical description of the NFRHT in nonreciprocal
many-body systems has been restricted so far to either point-
like particles [38,41] or highly symmetric bodies [39,40,42].
Thus it would be desirable to extend the existing theoretical
methods to describe the NFRHT in this type of system with
bodies of arbitrary size and shape. This is exactly the goal
of this work. To be precise, we present here an approach to
deal with the NFRHT in nonreciprocal many-body systems
made of objects of arbitrary size and shape which is based
on an extension of the thermal discrete dipole approximation
(TDDA) method that has been successful in describing the
NFRHT of two-body systems [43,44], including those based
on MO objects [34,45]. The TDDA approach, which is very
much related to existing approaches to describe the radiative
heat transfer in many-body systems of point dipoles [46,47], is
based on a natural extension of the discrete dipole approxima-
tion (DDA) that is widely used for describing the scattering
and absorption of light by small particles [48–51]. We shall
illustrate here the power of our many-body TDDA method by
analyzing both the photon Hall effect and the existence of a
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FIG. 1. Schematic representation of a generic many-body system
consisting of N anisotropic bodies, each one at a temperature Tb and
with a total volume Vb, described by a collection of Nb electrical point
dipoles, pi,b, with a volume Vi,b and dielectric permittivity tensor ε̂i,b.

persistent heat current in a system of MO particles beyond
the standard point-dipole approximation. In particular, in the
case of the photon Hall effect, our theory shows the need to
amend the results of the original work of Ref. [38], as already
pointed out in Ref. [35], and we show that the appearance of
this effect in particles of finite size does not require extremely
high magnetic fields.

The remainder of this paper is organized as follows. In
Sec. II we present the many-body formalism based on the
TDDA approach that enables us to describe the NFRHT
between nonreciprocal bodies of arbitrary size and shape.
Section III is devoted to the application of this formalism
to the description of the photon thermal Hall effect and the
appearance of a persistent heat current in a system comprised
of four MO spherical particles. Finally, we summarize our
main results in Sec. IV and discuss possible future research
lines.

II. RADIATIVE HEAT EXCHANGE IN A SYSTEM
WITH ARBITRARY ANISOTROPIC BODIES

The goal of this paper is to extend the TDDA approach
to describe the near-field radiative heat transfer in many-body
systems containing optically anisotropic bodies of arbitrary
size and shape. We start by considering a system of N
anisotropic bodies, as depicted in Fig. 1, each one having
its own temperature Tb (the same throughout the body) and
volume Vb. To describe this system we make use of the DDA
[52], in which each body b is discretized in terms of a col-
lection of Nb electrical point dipoles of volume Vi,b, dielectric
permittivity tensor ε̂i,b, and polarizability

α̂i,b =
[

1

Vi,b
(L̂i,b + [ε̂i,b − 1̂]−1) − i

k3
0

6π
1̂

]−1

, (1)

where L̂ j is the so-called depolarization tensor [53,54], which
for cubic volume elements is diagonal and equal to (1/3)1̂.
The computation of the radiative heat transfer between the N
bodies starts with the calculation of the statistical average of

the power dissipated in a particular body b due to the emission
of the N − 1 remaining bodies [45], that is

Pb =
∫

Vb

〈J̄b(t ) · Ēb(t )〉dr =
〈

dP̄b(t )

dt
· Ēb(t )

〉
, (2)

where P̄b = (p1, p2, . . . , pNb )T is a column supervector of
dimension 3Nb × 1, whose components are the Nb electrical
point dipolar moments in body b, the 3Nb × 1 supervec-
tor Ēb = (E1, E2, . . . , ENb )T contains all the internal electric
fields in each of the elementary volumes, and J̄b(t ) contains
all the local current densities related to the each electrical
point dipole. For time harmonic fields, the absorbed power
of Eq. (2) can be written as

Pb = 2
∫ ∞

0

dω

2π
ω

∫ ∞

0

dω′

2π
Im Tr{〈Ē†

b(ω′)P̄b(ω)〉e−i(ω−ω′ )t },
(3)

where, for mathematical convenience, we use
Tr{Ē†

b(ω′)P̄b(ω)} instead of P̄b(ω) · Ē∗
b(ω′). Each internal

dipolar field contained in the vector Ēb appearing in Eq. (3)
has contributions from all dipolar moments in the system.
Within the DDA approach, the self-consistent volume integral
equations relating the internal fields and the dipolar moments
for all the N objects adopt the following matrix form [45,52]:

¯̄E = k2
0

ε0

¯̄G ¯̄P, (4)

where ¯̄E = (Ē1, Ē2, . . . , ĒN )T and ¯̄P = (P̄1, P̄2, . . . , P̄N )T.
Notice that ¯̄E and ¯̄P are (

∑N
b=1 3Nb) × 1 supervectors con-

taining, respectively, the internal electric fields and the dipolar
moments of all the electric point dipoles in the N -body sys-
tem. In the matrix system of Eq. (4), k0 = ω/c and ε0 are,
respectively, the vacuum wave vector and electric permittivity.
Moreover, the quantity ¯̄G denotes the dyadic Green’s function
matrix whose elements, connecting the ith dipolar moment
inside the body b with the jth dipolar moment of body b′ (see
Fig. 1) and its elements, are given by

[ ¯̄Gb,b′ ]i j =
{

− L̂i,b

Vi,bk2
0

+ ik0
6π

1̂, if i = j and b = b′,
[Ĝb,b′ ]i j, otherwise,

(5)

where

[Ĝb,b′ ]i j = eik0R

4πR

[(
1 + ik0R − 1

(k0R)2

)
1̂

+
(

3 − 3ik0R − (k0R)2

(k0R)2

)
R ⊗ R

R2

]
, (6)

and R = ri,b − r j,b′ . In problems like ours, where we are in-
terested in the radiative heat exchange, the electrical dipoles
have two basic contributions—one is a fluctuating one related
to the thermal emission and the second one is an induced part
related to the interactions between dipoles. Therefore, the total
dipole moments can be written as [46]

¯̄P = ¯̄P(ind) + ¯̄P(fl). (7)

Thus, in order to compute the thermal average of
Tr{Ē†

b(ω′)P̄b(ω)} in Eq. (3), our task now is to express the

quantities ¯̄Eb and ¯̄Pb in terms of the fluctuating parts of
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the dipolar moments, whose properties are known (via the
fluctuation-dissipation theorem). For this purpose, let us start
by pointing out that the induced part of the local dipole mo-
ment is caused by all the local fields but its own, that is,

¯̄P(ind) = ε0 ¯̄α ¯̄Eexc, (8)

where ¯̄α = diag(ᾱ1, ᾱ2, . . . , ᾱN ) is a block-diagonal ma-
trix with dimensions (

∑N
b=1 3Nb) × (

∑N
b=1 3Nb), whose el-

ements are the 3Nb × 3Nb block diagonal matrices ᾱb =
diag(α̂1,b, α̂2,b, . . . , α̂Nb,b) and α̂i,b are the electrical polariz-
abilities given by Eq. (1). The exciting field, ¯̄Eexc, can be
obtained after the subtraction of the self-interaction terms
from the total internal field ¯̄E as follows:

¯̄Eexc = k2
0

ε0
� ¯̄G ¯̄P, (9)

where � ¯̄G = ¯̄G − diag( ¯̄G). Insertion of this exciting field into
Eq. (8) leads to the following expression for the induced
dipolar moment:

¯̄P(ind) = k2
0

¯̄α� ¯̄G ¯̄P, (10)

from which, with the aid of Eq. (7), one obtains

¯̄P = ¯̄T −1 ¯̄P(fl), (11)

where ¯̄T = 1̂ − k2
0

¯̄α� ¯̄G. From this, one arrives at the desired
relation between the dipolar moments in the body b and the
fluctuating part of all the dipoles of the N -body system

P̄b =
∑

b′
[ ¯̄T −1]bb′ P̄(fl)

b′ . (12)

At this point, we still have to calculate the internal fields
in the body b, Ēb, in terms of the fluctuating part of all the
dipoles in the N -body system. In what follows, we present
two different, but equivalent ways in which this calculation
can be done.

A. Method 1

As a first approach, we follow a line of reasoning similar to
that used by Messina et al. in Ref. [46] for pointlike particles.
In this case, we start by inserting the relation of Eq. (11) in
Eq. (4) to obtain

¯̄E = 1

ε0

¯̄C P̄(fl), (13)

from which

Ē†
b = 1

ε0

∑
b′

p̄(fl)†
b′ [ ¯̄C†]b′b, (14)

with ¯̄C = k2
0

¯̄G ¯̄T −1. The previous relation, together with
Eq. (12), allows us to write the net power in Eq. (3) as

Pb = 2

ε0

∑
b′,b′′

∫ ∞

0

dω

2π
ω

∫ ∞

0

dω′

2π
Im Tr

{
[ ¯̄C†]b′b[ ¯̄T −1]bb′′

× 〈
p̄(fl)

b′′ (ω′)p̄(fl)†
b′ (ω)

〉
e−i(ω−ω′ )t}. (15)

The statistical average appearing in the preceding equation is
given by the fluctuation dissipation theorem [55–57]〈

p̄(fl)
b′′ (ω′)p̄(fl)†

b′ (ω)
〉 = 4π h̄ε0δb′′b′δ(ω − ω′)nB(ω, Tb′ )χ̄b′ ,

(16)

where nB(ω, Tb′ ) = 1/(eh̄ω/kBTb′ − 1) is the Bose function,
χ̄b′ = diag(χ̂1,b′ , χ̂2,b′ , . . . , χ̂Nb′ ,b′ ), and

χ̂ j,b = 1

2i
(α̂ j,b − α̂

†
j,b) − k3

0

6π
α̂

†
j,bα̂ j,b (17)

is the susceptibility of the jth dipole inside the body b. Intro-
ducing Eq. (16) into Eq. (15) we can simplify the expression
for the net power received by the body b as follows:

Pb = 4
∑

b′

∫ ∞

0

dω

2π
h̄ωnB(ω, Tb′ )Im Tr{[ ¯̄C†]b′b[ ¯̄T −1]bb′ χ̄b′ }.

(18)

In thermal equilibrium, when Tb = T for all b, Pb must
vanish, which implies that the following relation must hold:

Im Tr{[ ¯̄C†]bb[ ¯̄T −1]bbχ̄b} = −
∑
b′ 	=b

Im Tr{[ ¯̄C†]b′b[ ¯̄T −1]bb′ χ̄b′ },

(19)

which allows us to write the net power in Eq. (18) as

Pb =
∑
b′ 	=b

Pbb′

=
∑
b′ 	=b

∫ ∞

0

dω

2π
[
(ω, Tb′ ) − 
(ω, Tb)]τbb′ , (20)

where 
(ω, Tb) = h̄ωnB(ω, Tb) and τbb′ is the transmission
probability between bodies b and b′, which is given by

τbb′ = 4 Im Tr{[ ¯̄C†]b′b[ ¯̄T −1]bb′ χ̄b′ }. (21)

Notice that transmission probability of Eq. (21) is differ-
ent from that reported in Ref. [38], which depends upon
the imaginary part of the susceptibility instead of on the
full susceptibility function. As we will illustrate in Sec. III,
this difference leads to notable differences in the numerical
results.

B. Method 2

Let us detail now an alternative way to compute the heat
exchanges between the different bodies. In this case we use,
instead of Eq. (4), the following relation between all the
electric internal fields and the dipolar moments inside the
body b:

Ēb = β̄bP̄b, (22)

with

β̄b = 1

ε0
diag

(
1

V1,b
[ε̂1,b − 1̂]−1, . . . ,

1

VNb,b
[ε̂Nb,b − 1̂]−1

)
.

(23)

This relation, together with Eq. (12) for the fluctuating part of
the dipolar moment, allows us to write the dissipated power in
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body b, see Eq. (3), as

Pb = 2
∑
b′b′′

∫ ∞

0

dω

2π
ω

∫ ∞

0

dω′

2π
Im Tr

{
[ ¯̄T −1]†

b′bβ̄
†
b [ ¯̄T −1]bb′′

× 〈
P̄(fl)

b′′ (ω′)P̄(fl)†
b′ (ω)

〉
e−i(ω−ω′ )t}. (24)

Using again the fluctuation dissipation theorem, see Eq. (16),
we can write the previous relation as

Pb = 4ε0

∑
b′

∫ ∞

0

dω

2π

(ω, Tb′ )Im Tr{[ ¯̄T −1]†

b′bβ̄
†
b

× [ ¯̄T −1]bb′ χ̄b′ },

= 4
∑

b′

∫ ∞

0

dω

2π

(ω, Tb′ )Tr

{
[ ¯̄T −1]†

b′b
ε0

2i
(β̄†

b − β̄b)

× [ ¯̄T −1]bb′ χ̄b′

}
. (25)

Additionally, it is straightforward to show that ε0
2i (β̄†

b − β̄b) =
(ᾱ†

b )−1χ̄bᾱ
−1
b , and therefore the net power absorbed by the

body b can be written as in Eq. (20), but with the following
expression for the transmission probability:

τbb′ = 4 Tr
{
ᾱ−1

b [ ¯̄T −1]bb′ χ̄b′[ ¯̄T −1]†
b′b(ᾱ†

b )−1χ̄b
}
. (26)

As will be shown in the next section, the numerical results
obtained with this relation are identical to those obtained with
Eq. (21). Furthermore, we would like to point out that, for a
system consisting of only two arbitrary optically anisotropic
bodies, the previous relation reduces to

τbb′ = 4k4
0Tr{C̄21χ̄1C̄

†
21χ̄2}, (27)

with

C̄21 = D̄22�Ḡ21
[
1̂ − k2

0 ᾱ1�
¯̄G11

]−1
, (28)

D̄22 = [
1̂ − k2

0�
¯̄G22ᾱ2

− k4
0�

¯̄G21ᾱ1
[
1 − k2

0�
¯̄G11ᾱ1

]−1
� ¯̄G12ᾱ2

]−1
, (29)

¯̄D = (1̂ − k2
0�

¯̄G ¯̄α)−1, and Ḡbb′ defined in Eq. (6). This expres-
sion agrees with the result of Eq. (57) reported in Ref. [45]
for the two-body case. Let us stress that there is no doubt that
Eqs. (26) and (21) must be identical and that one should be
able to transform one into the other by simple algebraic ma-
nipulations. We have failed, though, to show this analytically,
but we have numerically tested the equivalence of those two
expressions in multiple situations, as we illustrate in Sec. III.

III. APPLICATION TO THE ANALYSIS OF THE PHOTON
THERMAL HALL EFFECT AND THE

PERSISTENT HEAT CURRENT

In this section we illustrate the use of the TDDA approach
described in Sec. II with the analysis of two related many-
body phenomena that occur with MO objects, namely the
photon Hall effect and the possibility of having a persis-
tent heat current. For this purpose, and following Ref. [38],
we consider the system depicted in Fig. 2(a) that comprises
four identical and spherical particles made of the n-doped
semiconductor indium antimonide (InSb). These particles are

FIG. 2. (a) Schematic representation of the system under study,
consisting of four magneto-optical spheres of radius r, placed in the
vertices of a square in the xy plane, and under the action of a static
magnetic field H along the positive z direction. (b) Discretization
of each sphere as a collection of Nb of cubic point dipoles used to
employ the approach of Sec. II.

eventually under the action of an external magnetic field along
the positive z direction, which makes these particles nonre-
ciprocal (see below). In the remainder of this paper, we shall
assume these particles to be placed at the vertices of a square
with a separation d = 20 nm and assume that they have a
radius of r = 100 nm. As demonstrated in Ref. [38], if one
creates a temperature difference �T = T1 − T2 between par-
ticles 1 and 2, see Fig. 2, the presence of an external magnetic
field will cause particles 3 and 4, whose temperatures are left
free, to be different (T3 	= T4), which is the near-field thermal
analog of the electronic Hall effect. The magnitude of this Hall
effect can be evaluated using the relative Hall temperature
difference

R = T3 − T4

T1 − T2
. (30)

In the linear response regime, in which �T is infinitesimally
small, it can be shown that R can be expressed as [38,58]

R = g13 − g31

g13 + g31 + 2g34
, (31)

where gbb′ is the linear conductance between bodies b and b′
at an equilibrium temperature T given by

gbb′ = ∂Pbb′

∂T
=

∫ ∞

0

dω

2π

∂
(ω, T )

∂T
τbb′ (ω). (32)

In the previous expression, we identify

gbb′ (ω) = 1

2π

∂
(ω, T )

∂T
τbb′ (ω) (33)

as the thermal conductance per frequency interval or spectral
thermal conductance. It is worth mentioning that the differ-
ence g13 − g31 is proportional to the heat persistent current,
which in turn is linked to the thermal Hall effect in nonrecip-
rocal systems as well as in reciprocal ones with broken-mirror
symmetry [40].

To compute the relative Hall thermal temperature differ-
ence we need to describe the optical properties of these
MO particles in the presence of a magnetic field. Following
Ref. [59], we assume that the InSb particles become nonre-
ciprocal and their field-dependent dielectric tensor is given by

ε̂ =
⎛
⎝ ε1 −iε2 0

iε2 ε1 0
0 0 ε3

⎞
⎠, (34)
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FIG. 3. (a) Zero-field spectral conductance as a function of the
energy for spheres of a radius r = 100 nm and separated by a vacuum
gap of d = 20 nm, for different values of the number of dipoles (see
Fig. 2). (b) Spectral conductance for the same geometrical parame-
ters in panel (a), with a fixed number of point dipoles (Nb = 389).
Continuous lines correspond to transmission probability calculated
with Eq. (21), whereas the circles correspond to the results obtained
with Eq. (26). Room temperature (300 K) was assumed for all calcu-
lations in this work.

where

ε1(H ) = ε∞

(
1 + ω2

L − ω2
T

ω2
T − ω2 − i�ω

+ ω2
p(ω + iγ )

ω
[
ω2

c − (ω + iγ )2
]
)

,

ε2(H ) = ε∞ω2
pωc

ω
[
(ω + iγ )2 − ω2

c

] ,

ε3 = ε∞

(
1 + ω2

L − ω2
T

ω2
T − ω2 − i�ω

− ω2
p

ω(ω + iγ )

)
. (35)

Here, ε∞ is the high-frequency dielectric constant, ωL (ωT )
is the longitudinal (transverse) optical phonon frequency,
ω2

p = n e2/(m∗ε0ε∞) is the plasma frequency of free car-
riers of density n and effective mass m∗, � (γ ) is the
phonon (free-carrier) damping constant, and ωc = eH/m∗
is the cyclotron frequency, which depends on the inten-
sity of the external magnetic field. For the moment, we
assume the following room-temperature parameter values
taken from Ref. [59]: ε∞ = 15.7, ωL = 3.62 × 1013 rad/s,
ωT = 3.39 × 1013 rad/s, � = 5.65 × 1011 rad/s, γ = 3.39 ×
1012 rad/s, n = 1.07 × 1017 cm−3, m∗/m = 0.022, and ωp =
3.14 × 1013 rad/s.

We start the analysis of our results by exploring the conver-
gence of our method. In Fig. 3(a), we show the spectral heat
conductance g12(ω) from body 1 to 2, see Fig. 2, calculated
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/e
V
K
)

H = 1 T

Energy (eV)

R

H (T)

-0.4

-0.3

-0.2

-0.1

0.0

g 1
3
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31
(p
W
/K
)

FIG. 4. (a) Spectral conductance g13(ω) from the spheres 1 to 3
(solid lines), and from 3 to 1, g31(ω) (dashed lines), as a function of
the photon energy, for two different values of applied magnetic field.
(b) Hall coefficient, Eq. (31), and persistent heat current g13 − g31,
Eq. (32), as a function of the applied magnetic field.

with the transmission probability of Eq. (21). In this case there
is no external magnetic field and the different curves corre-
spond to different numbers of point dipoles used to model
each spherical particle. Notice the fast convergence of our
method, which requires only 389 electrical point dipoles to
reach convergence (within a relative error of 1%). The same
convergence was obtained using Eq. (26) of method 2 (not
shown here). It is worth mentioning that the method presented
in this work is much more efficient than that of Ref. [45] for
the two-body problem. To give a concrete example, in that
work the authors reported that they required 4913 dipoles to
converge the spectral conductance for two InSb cubes with
sides of 1 μm and separated by a gap of 500 nm. For this
same system, we only needed 343 dipoles to achieve a similar
convergence with the methods presented here. Such a differ-
ence is due to the fact that in the current method [see Eqs. (21)
and (26)] one does not do as many nested matrix operations as
in Eqs. (27) and (28) (same equations reported in Ref. [45]),
which avoids error propagation.

Once the convergence with the number of the point dipoles
has been tested, we fix such a number to 389 and proceed to
compare the results of the spectral heat transfer obtained with
both transmission probabilities; see Eqs. (21) and (26). The
results displayed in Fig. 3(b) show that, within the numerical
accuracy, both methods give the same result for different
values of the magnetic field. It is worth stressing that we
have found this level of agreement for all the configurations
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FIG. 5. Same as in Fig. 4, but for a vacuum gap of d = 120 nm,
a plasma frequency ωp = 1.86 × 1014 rad/s, which corresponds to
a higher doping level, n = 1.36 × 1019 cm−3, and to an effective
mass m∗ = 0.08me of the InSb. The inset in panel (b) shows the gap
dependence of the Hall coefficient for an applied magnetic field of
1 T.

investigated and, therefore, we conclude that these two meth-
ods are equivalent. With this in mind, all the results shown
in what follows were obtained with transmission probability
given by Eq. (21).

Now we can proceed to discuss the results of the pho-
ton thermal Hall effect that we obtain with our method. In
Fig. 4(a) we present the spectral thermal conductance, in both
directions, between bodies 1 and 3 at thermal equilibrium (see
Fig. 2). These results show that the magnetic field induces
a directional spectral conductance as a result of the effect
of the induced optical anisotropy under the collective modes
of the system. This effect, explained in Ref. [39] with the
use of coupled mode theory, leads to both the existence of
a heat persistent current at thermal equilibrium, characterized
by the difference g13 − g31, and the appearance of the photon
thermal Hall effect, as is shown Fig. 4(b). As we pointed
out in the preceding section, the difference between our an-
alytical expression of Eq. (21) and that reported in Ref. [38]
for pointlike particles leads to very different results for the
Hall coefficient [see Fig. 4(b)]. This was already indicated in
Ref. [35] making use of a theory for pointlike particles. In
particular, we find that the occurrence of the photon thermal
Hall signal requires more moderated intensities of the applied
magnetic field than those reported in the original work, also
in agreement with Ref. [35]. However, these field intensities
are still relatively high due to the fact that the plasmonic

10-3
10-2
10-1
100
101
102
103

0.006 0.012 0.018 0.024 0.030 0.036
10-4

10-3

10-2

10-1

100

101
(b)

(a)

g 1
2(
ω
)(
pW
/e
V
K
)

H = 0
H = 2 T
H = 4 T

g 1
2(
ω
)(
pW
/e
V
K
)

Energy (eV)

FIG. 6. Comparison between the arbitrary body approach
Eq. (21) with Nd = 389 dipoles (continuous lines) and the result
corresponding to a single point dipole (dashed lines), for different
values of the static magnetic field. In both panels, spherical particles
are assumed with a radius of 100 nm. Panels (a) and (b) correspond
to gap values d = 20 nm and d = 120 nm, respectively.

resonances of the particles, which are required for the direc-
tional collective modes in the system, are located in the region
of the electromagnetic spectra where the InSb polaritonic
band [ωT , ωL] is located. In order to enhance the sensitivity
of the plasmonic resonances to the applied magnetic field,
one can increase the carrier concentration in the InSb, and
therefore the plasma frequency, as was done in Ref. [40].
Using a new plasma frequency of ωp = 1.86 × 1014 rad/s,
one obtains a higher sensitivity of the spectral conductance
between bodies 1 and 3 separated by a vacuum gap of d = 120
nm, as can be seen in Fig. 5(a), and, consequently, the per-
sistent current and the photon thermal Hall effect occur for
more moderate values of the magnetic field as evidenced in
Fig. 5(b). Furthermore, in the inset of that panel, one can
see that this effect is still appreciable for gap values up to
300 nm, for a magnetic field of 1 T. In addition, a comparison
between Figs. 4(b) and 5(b) shows that by increasing the
plasma frequency the direction of the persistent current can
be reversed by the applied magnetic field. This is similar to
what occurs for intrinsic nonreciprocal Weyl semimetals [58],
for which the persistent current can flow either clockwise or
counterclockwise depending on the strength of the nondiago-
nal elements of the dielectric tensor.

235430-6



THERMAL DISCRETE DIPOLE APPROXIMATION FOR … PHYSICAL REVIEW B 106, 235430 (2022)

Finally, we use our method to test the validity of the
pointlike approximation frequently used to analyze these
many-body effects. For this purpose, in Fig. 6 we compare the
results for the spectral thermal conductance between spheres
1 and 2 of Fig. 2 obtained with the approach developed in
this work (solid lines) and those obtained assuming that the
particles are pointlike (dashed lines) whose polarizability was
calculated with the volume of the spheres. In this example
all particles have the same radius of r = 100 nm and the
vacuum gap is equal to d = 20 nm for panel (a) and d =
120 nm for panel (b). As expected, when d < r as in panel
(a), the pointlike approximation completely fails to reproduce
the full numerical results and it only becomes an acceptable
approximation when d > r (and the size of the particle is
much smaller than the thermal wavelength). However, in such
a limit, effects such as the persistent current or the photon
thermal Hall effect turn out to have very small amplitudes and
they would be hard to measure in practice. This discussion
illustrates the importance of using a method like the one
presented in this work.

IV. CONCLUSIONS

Motivated by the recent interest in the NFRHT in many-
body systems featuring nonreciprocal objects, in this work we
have extended the TDDA approach to deal with any number
of optically anisotropic bodies of arbitrary size and shape. We
have illustrated this approach with the analysis of the photon
thermal Hall effect and the appearance of a persistent current
in a system comprising four MO spherical particles beyond
the standard point-dipole approximation. In the case of the

photon thermal Hall effect we have shown that the original
analysis put forward in Ref. [38] has to be amended even in the
limit of pointlike particles, as already explained in Ref. [35].
Moreover, our analysis shows that the Hall effect survives
when finite particles are used and that it does not require
magnetic fields as high as originally reported. On the other
hand, as already discussed in Ref. [40], we have shown that
the existence of the photon thermal Hall effect in our many-
body system is naturally accompanied by the appearance of
a persistent directional heat current that does not violate the
second law of thermodynamics.

Our TDDA-based approach can be used for a great variety
of problems and it can also be straightforwardly extended
to deal with many different situations and phenomena. For
instance, it is simple to adapt it to explore the nonadditivity
of the thermal emission of many-body systems or to study
the possibility of controlling such an emission with external
magnetic fields (in the case of MO objects). On the other hand,
since the TDDA is a volume-integral-equation method, our
approach is also well suited to deal with more complex situa-
tions in which there are nontrivial temperature profiles across
the objects or when those objects are made of a combination
of materials (giving rise to space-dependent permittivities).
For all those reasons, we think that the theoretical approach
developed in this work is very valuable for the community of
thermal radiation and photonics in general.
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