
Received: 18 August 2022 | Revised: 19 April 2023 | Accepted: 1 May 2023

DOI: 10.1002/cae.22642

RE S EARCH ART I C L E

Automatic assessment of object oriented programming
assignments with unit testing in Python and a real case
assignment

Laura Climent | Alejandro Arbelaez

Departamento de Ingeniería Informática,
Universidad Autónoma de Madrid
(UAM), Madrid, Spain

Correspondence
Laura Climent, Departamento de
Ingeniería Informática, Universidad
Autónoma de Madrid (UAM), Madrid,
Spain.
Email: laura.climent@uam.com

Abstract

In this paper, we focus on developing automatic assessment (AA) for a

topic that has some difficulties in its practical assessment: object oriented

programming (OOP). For evaluating that the OOP principles have been

correctly applied to a real application, we use unit testing. In this paper,

we focus on prioritizing that the students understand and apply correctly

complex OOP principles and that they design properly the classes

(including their relationships). In addition, we focus on the Python

programming language rather than the typical previous works' focus in

this area. Thus, we present a real case study of a practical assignment, in

which the students have to implement characters for a video game. This

assignment has the particularities and advantages that it is incremental

and that it applies all four OOP principles within a single assignment. We

also present its solution with the UML class diagram description.

Furthermore, we provide unit testing for this case study and give general

advice for generalizing the unit tests to other real case scenarios. Finally,

we corroborate the effectiveness of our approach with positive student

evaluations.

KEYWORD S

automatic assessment, object oriented programming, python programming language, unit
testing

1 | INTRODUCTION

In this section first, we describe the background
of the paper, then we explain the literature review
and finally, we describe the learning outcomes
related to the object oriented programming (OOP)
principles.

1.1 | Background

In recent years, teaching has been oriented toward
continuous evaluation. For engineering degree pro-
grams, having several programming assignments is
essential for the learning effect since the concepts
acquired in the lectures can be applied to real

Comput Appl Eng Educ. 2023;1–18. wileyonlinelibrary.com/journal/cae | 1

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2023 The Authors. Computer Applications in Engineering Education published by Wiley Periodicals LLC.

http://orcid.org/0000-0001-9453-5150
https://orcid.org/0000-0003-1622-5645
mailto:laura.climent@uam.com
https://wileyonlinelibrary.com/journal/cae
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcae.22642&domain=pdf&date_stamp=2023-05-23

scenarios and the students will get feedback on the
correctness of their code.

The teachers can evaluate the programming assess-
ments either manually or (semi‐) automatically. Provid-
ing several assessments manually during the whole
course is a very demanding and time‐consuming task,
especially when the number of students is large. Lately,
the number of students in engineering degree programs
has tended to grow. In addition, there is another growing
tendency for the high demand for Massive Open Online
Courses (MOOCs). In these scenarios, grading manually
several continuous assessments are infeasible or
inadvisable given the operational scale. For these
reasons, there is an increasing tendency for automatic
assessments (AA).

Furthermore, AA has other advantages, such as the
instant feedback that can be provided to the students,
similar to one‐to‐one tutoring (which as motivated above,
is infeasible for large‐scale groups). AA can be oriented
toward the learning outcomes of the course, allowing
then, feedback to the teacher and external observers to
check that the students have met the learning goals.
Another beneficial aspect of AA is the lack of biased
assessments. The assessment is a delicate task in teaching
because involves a certain grade of subjectivity. Further-
more, this level of subjectiveness can give rise to possible
informal/formal complaints from the students.

The literature review of AA of introductory program-
ming modules/topics is extensive. However, when the
teaching of programming is intermediate/advanced,
there are more difficulties in the design and implemen-
tation of AA. In this paper, we focus on the AA of OOP.
The difficulty of teaching OOP was mentioned, among
others, in [1], [2], and [3]. In addition, the authors of [4]
mention that deciding how to assess each student's OOP
programming skill is one of the biggest challenges for
educators who teach such programming courses. This is
supported by a survey done among educators. Evaluating
free answers provided by the students to theoretical
questions does not fulfill all the learning outcomes of
OOP. Then, it is not useful for assessing how to apply
such theoretical concepts to real programming problems.

The above‐mentioned reasons have motivated the
work developed in this paper by going one step further
and presenting an AA approach for OOP with unit testing
that focuses on assessing the correct understating and
application of (complex) OOP principles to real coding
problems. In addition, we present a real case scenario,
which is “the implementation of characters for a video
game” and it has the particularities and advantages that it
is incremental and that it applies all four OOP principles
to solve a single scenario (these particularities are
desirable, as we will mention in Section 2).

We use the Python programming language for both,
the AA approach (with the unittest library) and the case
study. As mentioned in [5], python is being credited as
the fastest‐growing programming language in recent
times. This includes its use in the object‐oriented
programming paradigm. However, many previous works
on unit testing for OOP are developed in Java language.
While there are previous works of unit testing for OOP in
the industry with Python, we are not aware of their
existence for AA in teaching. This gives an extra novelty
value to our work presented in this paper.

There are only two previous works on AA with unit
testing for OOP oriented in teaching (but developed with
Java): [6] and [7] (described in detail in Section 1.2).
While they AA some of the OOP principles, we also
include the AA of more complex OOP principles and the
class design (including their relationship). Overall, the
main contributions of the paper over the two previous
works are:

1. AA of the inheritance between the classes provided in
the assignment (including a case study with three
levels of inheritance).

2. AA of the creation of the parent classes (including a
method that works for whatever name that the
students assign to the classes).

3. AA of aggregation between classes.
4. AA of the overriding of specialized methods.
5. Incremental assignment in which the software

requirements evolve in two stages, in the same way
as the AA feedback does.

6. AA of overload of operators.
7. AA of the generalization of methods that contain

minor variations for child classes (therefore, the
students have to check the type of instances).

8. AA of the Python __str__ method (special method
from Python that is used for displaying the informa-
tion of an object).

9. AA of error handling in Python. Including the wrong
manipulation of protected attributes.

Furthermore, we present the solution of the real‐case
assignment as a detailed description of the UML class
diagram. As mentioned, we provide unit testing in
Python for this case study and give general advice for
generalizing the unit tests for other real case scenarios.

We apply the approach presented in this paper to a
course called Intermediate Programming, where more
than half of the content is about OOP. This course is
mandatory for all second‐year BSc. in Computer Science
and BSc. in Data Science and Analytics students at the
University College Cork (located in Ireland). Further-
more, the content presented in this paper can be applied

2 | CLIMENT and ARBELAEZ

to similar courses of other BSc. engineering degree
programs, such as BSc. in Telecommunications, BSc. in
Electronics, and so on.

A comparison of the results that are achieved by the
AA approach presented with the evaluation done by
visual inspection of the student's code confirms the
effectiveness of the designed approach. In addition, we
also received positive student evaluations about this
automatic assessment and the specific case study
proposed.

1.2 | Literature review: Unit testing for
OOP in learning

In this section, we leave three subareas out of the
literature review: (i) AA of programming assignments
(without unit testing and not for OOP), (ii) unit testing in
learning (not for OOP), and (iii) unit testing for OOP in
the industry. Regarding these three subareas, we would
like to mention that [8] presents a detailed review of
works in subarea (i). About (ii), there are many works of
unit testing for learning introductory programming
courses (e.g., [9], [10], and [11]). Regarding (iii), among
others, some authors apply ML to OOP (e.g., [12]), while
other works focus on automatically generating test cases
for unit testing (e.g., [13], [14] and [15]).

We are only aware of two similar previous works on
AA with unit testing for OOP in teaching (but in Java):
[6] and [7] (the same author has coauthored both
papers). In both works, the students are provided with
wrapper classes in Java language with the definitions of
all the functions that the assignment requires, for
example, getPerson(), and exceptions, for example,
ErrorNonexistingPerson. Furthermore, the authors pro-
vide unit tests in JUnit format for checking that every
function from the wrapper class has been correctly
implemented by the students.

The main disadvantage of the two previous works,
concerning the OOP principles, is that the students
cannot be asked to design a class diagram. Then, they do
not evaluate complex OOP principles, such as inheri-
tance, overriding of specialized methods, generalization
of methods, overload of operators, and aggregation/
composition. This is because the students have been
provided with the class wrappers and with the definitions
of the functions. However, as mentioned in Section 1.1,
in this paper, we present an AA approach and case study
that are more complete and evaluate all these above‐
mentioned complex OOP principles.

The other important difference between the work
presented in this paper in comparison with the other two
previous works is that we develop both, the real case

assignment and the AA tool in Python. Instead, the
previous works typically use Java language. This repre-
sents a contribution to the education sector, specifically
in the OOP modules. In addition, we present an
incremental case study assignment (while the other two
previous works just present a single assignment). This
incremental assignment has the advantage of providing
AA feedback to the students incrementally, which
improves the learning process.

We would like to highlight that assessing all these
above‐mentioned complex concepts, entail more complex
methods rather than providing the students with the
wrapper classes. This represents a challenge and an
important contribution to this paper. The rest of the
paper provides details about how this has been achieved.

1.3 | OOP principles and learning
outcomes (LOs)

In this section, we describe how the LOs of an OOP
module (such as the course evaluated in this paper) are
related to the OOP principles. Following, we enumerate
the OOP principles.

1. Encapsulation consists of the bundling of related data
and methods into a single entity (the class). Encapsu-
lation also allows the code to be loosely bound.
Designing correctly the classes especially, in a project
that grows over time (in the same way as occurs in
Section 3.2) is a LO. Encapsulation allows the
modification of the data only via the methods, which
makes the code more robust. Then, another LO is to
properly control how and when the attributes are
changed and catch erroneous uses before it has a
serious impact.

2. Abstraction allows the hiding of members, methods,
and implementation inside the class. There are three
keywords associated with how hidden are the class
members:
– If the class member is declared as public then it can

be accessed everywhere.
– If the class member is declared as protected then it

can be accessed only within the class itself and by
inheriting child classes.

– If the class member is declared as private then it
may only be accessed by the class that defines the
member.

The ability to categorize properly the class members is
a LO.
3. Inheritance is a very useful principle of OOP that

builds relationships between classes. This allows them
to share class members and methods. Inheritance

CLIMENT and ARBELAEZ | 3

captures an “is‐a” relationship between classes. It
allows one to take an existing class and specialize it
and/or extend it. Identifying these inheritance rela-
tionships, which entail reusing the code is a LO. There
is also a similar concept called aggregation/composi-
tion, which captures a “has‐a” relationship between
classes. Then several subclasses can compose another
class and the subclasses might be reused later in
different parts of the implementation. The main
difference between aggregation and composition is
that composition implies a strong dependence
between the classes. That is, the contained class will
be obliterated when the container is destroyed. While,
with aggregation, the contained class will remain even
when the container is dissolved. A LO is to correctly
differentiate between all these relationships and apply
them correctly.

4. Polymorphism means that a method can cope with
different types of inputs. Then, the same code can be
applied to multiple data types. There are two types of
polymorphism: overloading and overriding.
– Overloading allows a class to have multiple methods

with the same name but a different set of parame-
ters and implementation. A LO is to code the
overloading of operators. For instance, a very
popular one is the + operator (e.g., for concatenat-
ing two strings).

– Overriding occurs when replacing an inherited
method with another having the same signature.
Customizing the behavior of subclasses by using this
mechanism is a LO.

OOP design involves the use and application of the
above‐mentioned OOP principles for the design of a
solution for coding problems. One of the most popular
modeling approaches is the Unified Modeling Language
(UML) class diagram, which offers a view of the classes,
their attributes and methods, and the relationships
between them. The UML diagram offers a visual
representation that is independent of the implementa-
tion, coding language, and so on. An example of a UML
class diagram of a case study is represented in Figure 1
(in Section 3). Designing properly the UML diagram is a
LO of many OOP courses (such as the course evaluated
in this paper).

2 | OOP TEACHING AND
ASSESSMENT

In this section, we discuss typical methods of OOP
teaching and assessment, highlighting their advantages
and disadvantages.

When teaching OOP, the visualization of the different
components plays an important role. For this reason,
typically UML class diagrams are used. Students typically
do not find it difficult to learn the theory behind these
OOP concepts and principles. However, when it comes to
applying such a theory to solving real‐world problems,
the students struggle. Traditional approaches to the
assessment of OOP consist in assigning numerical scores
to theoretical questions or specific coding questions.

These approaches do not reveal to the students how
they can apply their knowledge of the OOP principles to
solving real programming problems. Therefore, there is a
motivation for creating other ways of assessing and
providing feedback to the students that allow them to
apply OOP effectively to real applications. In [16], the
authors mention the need/aim of making a course design
where the students learn a systematic programming
process, conceptual models as a structuring mechanism,
and coding, all together.

There are other types of approaches for the assess-
ment of OOP that involve coding exercises. Some of them
use a single coding exercise for the demonstration of the
application of a single principle. Typically, students can
solve these short problems without difficulty. Never-
theless, in this assessment scenario, there is still a lack of
connection between the four OOP principles (encapsula-
tion, abstraction, inheritance, and polymorphism) and
how to apply them to a more complex real‐life
application. This represents a typical struggle for
students. However, this type of assessment is more
similar to the real OOP applications that students would
develop in the industry. For this reason, in the next
section, we present a real OOP application case
study—“the implementation of characters for a video
game”—that applies all four OOP principles to solve this
single scenario.

The last aspect to consider is the fact that it is
acknowledged that learning programming skills are a
step‐by‐step procedure. Feedback during the solving
process provides a substantial improvement in the
programming solution. This incremental solving process
implies that students get AA feedback about the errors
and consequently, they can discover better approaches to
deal with the following parts of the assignment. For this
reason, authors of papers, such as [17], state that if the
running example takes several weeks to cover in class,
the students should be given more than one assignment
to grow the program in this period. This has been one of
the motivations for creating a case study divided into two
parts (Sections 3.1 and 3.2). Where the feedback about
the first part helps students not only to learn about their
mistakes but also to develop the second part of the
assessment.

4 | CLIMENT and ARBELAEZ

3 | REAL CODING CASE STUDY

In this section, we present a case study scenario that
considers all four OOP principles (Section 1.3) in the
same unique coding problem. Other coding problems of
different domains can be used. However, to fulfill all the
learning outcomes, they should include all the OOP
principles. In Section 4 we show the solution of the
assignment with a UML diagram. In addition, in
Section 5 we show how to automatically assess such

principles with unit tests. The authors of [2] also present
a unique problem that focuses on combining the OOP
principles. However, unlike our case study, it does not
consider the overloading of operators and error handling
for data manipulation.

We present a real coding case study that is oriented
toward the topic of video games. Other authors, such as
in [1] presented an assignment combined with a video
game and they justify that there is a pedagogical reason
behind this choice. First, nearly all the students enjoy

FIGURE 1 UML class diagram.

CLIMENT and ARBELAEZ | 5

computer games and therefore it is funnier for them to
work on them than with more conventional types of
projects. Second, computer games are composed of a
certain number of interacting complex objects that can be
modeled with OOP design.

The case study scenario and the unit tests that we
present in this paper are implemented in Python. The
motivation for the selection of this language can be found
in Section 1.1. The assignment consists of developing a
library application that allows the creation of several
characters of a battle video game. The characters have
certain types of characteristics and functionalities, such as
fighting between them.

The case study coding problem presented to the
students is divided into two stages and presented to the
students in an incremental way. First, a small subpart,
and later, once this subpart has been completed, the
whole problem is released. One of the reasons behind
this decision is that the students can get familiar with the
real problems in the industry, for which the require-
ments of the software to be developed change over time
due to changes in the needs of the clients. (Who typically
do not know software development and therefore
struggle to have a clear and specific definition of what
they want). In these situations, thanks to the right use of
OOP principles, the code is loosely bounded (see the
OOP principle encapsulation in Section 1.3) and it can be
reused and adapted easily. As previously mentioned, the
other reason behind this choice is that the students can
get feedback about the progress of their assignment in
several stages.

3.1 | First part of the assignment:
A single class

The first part of the assignment consists of creating the
class Orc, which is defined by the following attributes:

1. The orc's name (e.g., “Ogrorg”)
2. The orc's strength score in the domain [0‐5]
3. Does the orc have a weapon? within the domain [True,

False]

The methods associated to the class are:

1. A constructor for initializing instances (e.g., orc1 =
Orc("Ogrorg”, 4.3, True)). In Python, the constructor
is a special method called __init__.

2. The properties for accessing and modifying the values
of all the attributes (e.g., orc1.name = “Grunghi”).

3. The __str__ method, which is a special method from
Python that is used for displaying the information of

an object in a nicely formatted string representation. It
should return the string representation of the in-
stances in this format: name strength weapon (e.g.,
Ogrorg 4.3 True).

4. The overload of the > operator determines if an orc is
greater than another in terms of fighting. If an orc
owns a weapon and the other one does not own it,
then the orc with a weapon is greater than the other
one. If both orcs are in the same situation of
ownership of weapons, then an orc is greater than
another one only if its strength is greater (e.g.,
orc1 orc2).

5. The orc has a functionality, which is the fight method
with another orc. If an orc is than another orc, then it
wins, and its strength increases by 1 point. Besides,
the instance of the winner orc is printed on the screen.
Otherwise (there does not exist a> orc), they both lose
0.5 points.

Furthermore, the students are asked to implement
types and values errors handling for the attributes of the
class. They must check that the values' setting by external
users of the software is correct and within the domain of
the attributes. The assignment specifies that for numeric
values if the user introduces a greater value than allowed,
it will be truncated to its max. value (e.g., the max.
strength value is 5). If the value is lower than allowed,
then it will be truncated to the min. value (e.g., the min.
strength value is 0). For errors related to the type of the
attributes (e.g., trying to assign strength equal to
“Ogrorg”), the assignment will not be completed and
the error message “type ERROR” will be printed on the
screen.

In addition, the students have to implement a test
module for checking all the functionalities of the Orc
class. They have to import the module Orc and test each
of the above‐described functionalities.

3.2 | Second part of the assignment:
Combining several classes

In the second part of the assignment, the students are
told that the clients of the video games company for
which they work (hypothetically) tell them that they
realized later on that more characters have to be
implemented. Then, they have to use advantageously
the OOP principles (Section 1.3) for coding reuse. The
new characters are humans: archers and knights.

The classes Archer and Knight have both the
attributes (1) name and (2) strength (such as Orcs, see
their description in Section 3.2). Besides, they have some
extra attributes:

6 | CLIMENT and ARBELAEZ

3. Their kingdom (e.g., “Gondor”).
4. Only the knights have an extra attribute: archer_list, a

list of objects of type Archer. This list represents the
archers that are led by the knight. There is no limit to
the number of archers that a knight can lead.
However, they all must belong to the same kingdom
as the leader Knight. If the list contains archer/s that
belong to another kingdom, they will be removed
from the list and only the other archers who satisfy
such constraint will be assigned to the knight. The
error message “archers list ERROR” will be printed
on the screen.

The archers and knights have the same methods as
the orcs. However, there are some differences:

1. All the characters (archers, orcs, and knights) must be
able to use the > operator with any other type of
character. Note that archers and knights do not have
the attribute weapon.

2. Archers and knights can only fight with orcs. The
error message “fight ERROR” will be printed on the
screen if they try to fight against each other. Apart
from this, the functionality fight works in the same
way as the orcs.

3. The __str__ method returns the string representation
of the instances in this format: name strength
kingdom (e.g., Aragorn 3.3 Gondor). Besides, only
for the knights, the list of archers that leads will be
shown right after within square brackets (e.g.,
Aragorn 3.3 Gondor [archer1 2.1 Gondor, archer2
4.2 Gondor]).

The students have to extend the implementation of
the types and values errors handling for the attributes of
the new classes (in the same way as described in
Section 3.1. Furthermore, they have to add new errors
handling mentioned above for the archers and knights.
The students also have to extend the test module from
the previous section, so that it is not only checking the
functionalities of the orcs but also the functionalities of
the archers and knights.

4 | SOLUTION AND UML CLASS
DIAGRAM

The first task that the students have to do after the
release of the statement of the second part of the
assignment, is the design of the UML class diagram.
Then, once it is completed, they can continue with the
implementation. The students are reminded that they
have to use the OOP principles (Section 1.3) and that

marks depend on the right use of such principles.
Therefore, they must reuse the code by using the
inheritance OOP principle rather than copying and
pasting code. The first step for the UML class diagram
design is to analyze the description of the application and
decide on the candidate classes and their relationship to
draw the overall class diagram. As mentioned in [2], in
this process the students will apply all four OOP
principles to come up with a good and clean class
diagram, that is, tightly encapsulated, loosely bounded,
and highly cohesive.

4.1 | Encapsulation and inheritance

In this case study, the classes candidates that can be
easily seen are Orc, Archer, and Knight. In fact, we
provide the names of these classes to the students,
specifying that they must keep the right spelling. This is
very important for the future use of the unit tests. In
addition, it is easy to observe one common property
(kingdom) and common specialized methods (> and
fight) among the classes Archer and Knight. For this
reason, by applying the OOP principle of inheritance, the
students should be able to realize that there is a
superclass for both classes (in this paper, we call it
Human). The other inheritance is, perhaps, not as easy to
realize. All the classes have two common properties
(name and strength) and three common methods
(>, fight, and __str__) (even if there are specializations).
Then, there should be a superclass of all the classes (in
this paper, we call it Character). Figure 1 shows these
two inheritance relationships between the five classes
mentioned. We would like to mention, that as we will
explain in more detail in Section 5, one of the advantages
of our AA approach is that we do not need to specify to
the students how many parent classes there are for the
characters, neither their names nor their distribution.
This represents the main advantage since the students
have to think about how to design the inheritance to
maximize code reuse. In addition, the lecturer can
automatically assess if the inheritance has been applied
properly.

4.2 | Composition/Aggregation

To take advantage of the OOP principles, students should
go one step further by realizing a has‐to relationship
between a knight and a set of archers. A knight leads a
set of archers that belong to the same kingdom. Here, it is
important noticing that the knights do not have a strong
dependence on the archers. A knight instance can exist

CLIMENT and ARBELAEZ | 7

even when its archers are deleted. For this reason, the
relationship between these classes is an aggregation
rather than a composition. Recall that the aggregation is
represented as a white diamond. In addition, the UML
diagram (Figure 1) should include the numbers 1.* (the
asterisk means more than 1) archers led by 1 knight.

4.3 | Abstraction

The UML of Figure 1 should also reflect the abstraction
principle. For this reason, the attributes of the classes
(name, strength, weapon, and kingdom) are preceded by
the # symbol. We define them as protected rather than
private because we want that they can be accessed not
only within the class itself but also by inheriting child
classes. To access attributes, we use properties. A property
provides a flexible mechanism to read or write the value of
a private/protected field. The syntax for reading and
writing of properties is the same as the fields (e.g., for the
field weapon, the property is called weapon). But
properties are typically translated to “getters” and
“setters” method calls. This allows the data validation
and error handling associated with the fields. We define
the properties as public (symbol +) and the getters and
setters as private (symbol −), therefore, the fields must be
accessed by using the properties. The rest of the methods
(constructor, fight, the > operator, and __str__) are
declared as public (symbol +) so that they can be accessed
outside the class. That is to say, by external software
modules that include the classes of this assignment.

4.4 | Polymorphism

This assignment also considers the two types of
polymorphism: overloading and overriding. It includes
the overloading of the > operator and the overriding of
specialized methods that have been inherited.

4.4.1 | Overloading

In this assignment, the students have to overload the >
operator, which is specified in Python with the special
method __gt__. The definition of the > operator involves
the use of the attribute weapon for the characters that
have this attribute. Note that only orcs have it, while
humans do not. For this reason, this method, which
belongs to the class Character (because is common to all
the characters) has to differentiate if the instances are
orcs or humans. This can be achieved by using a method
that checks the type of the instance (e.g., type(self)!=

Orc). Then, different characters can interact with this
operator, for example, Aragorn > Ogrorg would return
true or false according to the definition of the operator.

4.4.2 | Overriding

To display the information of a character in an adequate
format, the Character class has the special method
__str__ that prints its two attributes (e.g., Ogrorg 4.3).
Then, this method is specialized in both classes Orc and
Human. For reusing the code, in both classes, the
method should call to the same method of the parent
class (i.e., super().__str__()). Therefore, the specific
method of Orc prints the value of the weapon (e.g.,
True) and the specific method of Human prints the
kingdom (e.g., Gondor). In addition, the specific method
of Knight prints the list of archers (e.g., [archer1 2.1
Gondor, archer2 4.2 Gondor]). Note that the Archer class
does not have a __str__ method, since it does not have
any new attribute with respect Human. Therefore, when
there is a call to this method for an archer, the method of
the parent class (i.e., Human) will be executed.

At first sight, it could seem that the method fight has
to be overridden for orcs and humans. However, the
method fight has the same characteristics for both
classes, with the exception that humans can not fight
with humans. This check can be done in the same way as
we did with the > operator, by checking the type of the
instance. If none of the two instances of the fight are
orcs, this implies an error (i.e., type(self)!= Orc and type
(other) != Orc). Therefore, as shown in Figure 1, fight is a
common method for all the characters.

4.4.3 | Error handling

As previously mentioned, the encapsulation and abstrac-
tion principles from OOP allow making the code more
robust because the software developer can code the error
catching of erroneous uses of the attributes before they
have a serious impact on the software usage. The error
handling can be introduced in the part of code that
controls the modification of the attributes. That is to say,
in the setters associated with the attributes. Note that
when the user uses the properties of the attributes, the
properties call to the getters/setters and therefore the
error handling also takes place. Specifically, for the case
study presented, for each attribute (i.e., name, strength,
kingdom and archers_list), in its setter function, the
students must check that the type of the input parameter
is correct (e.g., type(name) = = str) and that its value is
within the range (e.g., 5>= strength>= 0). Furthermore,

8 | CLIMENT and ARBELAEZ

the functionalities of the classes can produce errors if
applied in the wrong way. For this case study, there is
only one error in the method associated to the function
fight (as mentioned in Section 4.4.2) the fight of two
humans is not allowed.

We would like to mention that error handling can be
treated in several ways according to the knowledge of the
students about it. The ideal situation would be to through
and catch exceptions. Since this is not in the scope of this
paper and in some OOP courses the students still do not
have this knowledge, we did not include it. Therefore,
the students are only asked to print on the screen an
error message in a specific format (e.g., “archers list
ERROR”). This can be modified by the lecturer when
using our case study. For all the possible errors of the
case study assignment and their associated error message
on the screen, see Section 3.

5 | AA APPROACH WITH UNIT
TESTING

In this section, we present the AA testing for the students'
code for the case study assignment presented in Section 3.
The main objective of unit testing is to ensure the
correctness of a given unit of code by checking its correct
functioning. As mentioned in [13], compared to numeric
test data, test programs optimized for object‐oriented unit
testing are more complex. For this reason, method call
sequences that realize interesting test scenarios must be
evolved. During the execution of the testing, all the objects
participating in the assignment should be created and put
into particular states by calling several instance methods
for these objects. Typically, each test case focuses on one
particular method. To perform complete unit testing, all
the methods within the class have to be checked.

As previously mentioned, without loss of generality,
we have adopted Python as the coding language of the
case study and the AA approach presented in this paper.
Python offers a library for unit testing called unittest that
we import into our test file. In addition, we import the
code of every student and we name it mod. We also
include the typical basic libraries, such as io and sys. Then,

after importing such libraries, we can create a new class
(we call it CharactersTest) that inherits from unittest and
includes all the tests. Following, the code associated.

import io

import sys

import unittest

import code_student as mod

classCharactersTest(unittest.TestCase):

...

Each unit test case consists of one method call sequence
and one or more assertion statements [13]. The assert
statement checks that the condition that follows is valid. If
all the assert statements of a test are valid, the result of the
unit testing for the test will be ok. Otherwise, it will be fail.
Below there are two examples of the output of two unit
tests, where the first one fails and the second is correct.

test_values_range_constr_orc

(__main__.CharactersTest) ... FAIL

test__str__Archer

(__main__.CharactersTest) ... ok

For calculating the marks of the assignment, every
unit test can have a portion of marks associated.
Therefore, the correction of the assignments can be done
automatically by just running the unit tests presented in
this section. In addition, we can change the verbosity of
the unit tests, by including the following line of code in
the main function.

unittest.main(verbosity=2)

Then, when a unit test fails, it will show details about
the failing. For example, in Figure 2, the strength of the
orc2 should be zero but it is not. For this reason, the unit
test failed.

In addition to the unit tests, we define an external
function that is in charge of catching the standard output
of the student's code. We need this function to check if
the student's code is handling errors in the way specified

FIGURE 2 Unit test failing message.

CLIMENT and ARBELAEZ | 9

by the assignment (with message errors printed on the
screen, such as “type ERROR”). Once the standard
output is caught and stored as a string, we can compare it
with the correct error message. The function is called
capt_out() and its definition and its associated imports
are described in Appendix A.

Thereafter, we describe each type of unit test. To
avoid repetition of similar code, we do not include all the
unit tests for the three types of characters. Instead, we
describe each type of unit test and then we include the
rest of the code in Appendix A. For clarifying purposes,
we also highlight in bold the important values under
testing within each unit test.

5.1 | Constructors

In this section, we present the type of unit test associated
with the attributes' update within the constructors: the
types of values and the range of the values.

Regarding the range of values checking, the characters'
strength can not exceed the limits of the allowed values [0,5].
In the code below we show such testing for orcs. We create
an orc with strength 5.3. Then, we assert that the strength
attribute has been truncated to the max. value (5). The same
should happen with a lower strength than the min. allowed
(0). Similar unit tests must be done for checking the archers
and knights' strength values (see Appendix A.2).

def test_values_range_constr_orc (self):

orc1 = mod.Orc("Ogrorg", 5.3, True)

assert orc1.strength == 5

orc2 = mod.Orc("Grunch", -100.0, False)

assert orc2.strength == 0

Regarding the types of values checking, we have to
ensure that when we create new characters with wrong
types for their attributes, a “type ERROR” message appears
on the screen. For example, the orcs' attributes are name,
strength and weapon. For this reason, in the code below,
we create three orcs, each with a wrong type for each
attribute. Similar unit tests must be done for archers and
knights (including checking their kingdom). Furthermore,
for the knights, we have to check that their list of archers is
composed of archers of their same kingdom. These unit
tests for humans can be found in Appendix A.2.

def test_values_types_constr_orc(self):

with capt_out() as (out, e):

mod.Orc(1, 4.3, False)

assert (out.getValue().strip() ==

"type ERROR")

with capt_out() as (out, e):

mod.Orc("Grunch", "Grunch", False)

assert (out.getValue().strip() ==

"type ERROR")

with capt_out() as (out, e):

mod.Orc("Ogrorg", 4.3, "Ogrorg")

assert (out.getValue().strip() ==

"type ERROR")

5.2 | Properties

In this section, we present the type of unit test
associated with the attributes' update within the
properties. As within the constructor, we must check
the types of values and the range of the values. Then,
we have to ensure that after creating each of the
characters, the retrieval and update of information on
their attributes is correct.

For example, below we show the unit test that asserts
that the kingdom of a knight coincides with the kingdom
of the archers that he/she leads. First, we create two
archers and one knight (with an empty list of archers).
Then, we assert that indeed it is empty by using the
property for getting the archers_list attribute.

Subsequently, we update this attribute to a list that
contains these two archers previously created, by
using its property. Since only the first archer belongs
to the same kingdom as the knight, it should be the
only one assigned (we include a second assert
statement that ensures this). The last assert sentence
checks that the values types of the archers_list
attribute are correct. Otherwise (the list contains
something different than archers, for example, in the
code below appears an integer value), the “archers list
ERROR” message is shown on the screen.

Similar unit tests must be done for checking the
properties of the attributes of the characters: name,
strength weapon and kingdom (see Appendix A.3).

def test_property_knight_archers_list

(self):

a1 = mod.Archer("a1", 3.3, "Gondor")

a2 = mod.Archer("a2", 2.3, Rohan")

k1=mod.Knight("k1", 4.0, "Gondor", [])

assert k1.archers_list == []

k1.archers_list = [a1, a2]

assert k1.archers_list == [a1]

with capt_out() as (out, e):

k1.archers_list=[a1, 3]

output = out.getValue().strip()

assert (output=="archers list ERROR")

10 | CLIMENT and ARBELAEZ

5.3 | __str__ method

A unit test for the __str__ method has to be performed
for every character. Here, we show the associated unit
test for the archers, while the rest of the unit tests can
be found in Appendix A.4. For this type of unit test,
we have to ensure with an assert statement that when
a character is printed on the screen, the correct data is
displayed. Then, we just have to create a character
with certain initial parameters and print it on the
screen.

def test__str__archer(self):

a1 = mod.Archer("a1", 3.3, "Gondor")

with capt_out() as (out, e):

print(a1)

output = out.getValue().strip()

assert(output=="Archer1 3.3 Gondor")

5.4 | > operator

The next unit test is for checking that the overload of
the > operator has been properly implemented. This
operator can be applied to any of the characters. Here
we present a unit test that combines its use between all
the characters. First, we create an archer and a knight,
where the knight is stronger. Then, we assert that the
archer is not > than the knight. Subsequently, we create
an orc that has a very low strength and we assert that he
is not > than the knight or the archer. In Appendix A,
specifically in Appendix A.5, we also show another unit
test for the > operator with different orcs that have/do
not have weapons.

def test_greater_archer_knight_orc

(self):

a2 = mod.Archer("a2", 2.3, "Rohan")

k1=mod.Knight("k1", 4.0, "Gondor", [])

assert not (a2 > k1)

orc2 = mod.Orc("Grunch", 1.9, False)

assert not (orc2 > k1)

assert not (orc2 > a2)

5.5 | Fight method

The last functionality of the characters is fight. In
addition, this method uses the previous overload of the
> operator. Again, we create one character of each type
and we make them fight between them, ensuring the
correct functionality of such a method. Archers and

knights can not fight between them, therefore, the first
two asserts statements check that the fight error
messages are shown on the screen if these situations
happen. We also create an orc with a weapon and make
the humans fight against him. When the orc fights with
the archer, the result is that the orc wins. For this
reason, his strength is increased in one unit (his current
strength is 5), while the strength of the archer remains
the same. Subsequently, there is another fight between
the orc and the knight. In this case, both have the same
strength (5), therefore there is a match and both lose 0.5
points of their strength.

def test_fight_archer_knight_orc(self):

a2 = mod.Archer("a2", 2.3, "Rohan")

k1 = mod.Knight("k1", 5.0, "Gondor", [])

with capt_out() as (out, e):

a2.fight(k1)

output = out.getValue().strip()

assert (output == "fight ERROR")

with capt_out() as (out, e):

k1.fight (a2)

output = out.getValue().strip()

assert (output == "fight ERROR")

orc1 = mod.Orc("Ogrorg", 4.0, True)

a2.fight(orc1)

assert (orc1.strength == 5 and

a2.strength == 2.3)

k1.fight(orc1)

assert (orc1.strength == 4.5 and

k1.strength == 4.5)

In Appendix A, specifically in Appendix A.6, we present
an extra unit test that checks that the limits of the strength of
the characters are correctly truncated after fighting.

5.6 | Inheritance between classes and
overriding of methods

The AA checking of the right use of the inheritance
between classes is quite difficult and it is a key
point of the contributions of this paper. In the
description of the assignment, we do not specify
how the inheritance between classes should be
(because figuring out such relationships is, itself, part
of the assignment). We only mention that at least
three classes must be created: Orc, Knight, and
Archer. The classes Human and Character are the
names that we used for the solution of the assignment
presented. However, the students could have written
different names for such superclasses or they could

CLIMENT and ARBELAEZ | 11

not realize the existence of the classes (which implies
a marks discount).

For this reason, we have to obtain the names of the
superclasses for each student's assignment. For achieving
this, we use the bases__ __ property of a class, which
contains a list of all the base classes that the given class
inherits.

In the unit test below, first, we define variables with
the superclasses of each class. Then, we assert that
Knight and Archer's superclasses are the same. In
addition, their superclass has to be the same as the
superclass of Orcs. Furthermore, we also assert that the
superclass of Orc differs from the superclass of Archer
and Knight. This is useful for scenarios in which the
student's code only contains one inheritance, where all
the characters inherit from the same superclass. Rather
than the correct solution, which has another intermedi-
ate super class only for Archer and Knight.

def test_inheritance(self):

super_Archer = mod.Archer.__bases__

super_Knight = mod.Knight.__bases__

super_orc= mod.Orc.__bases__

super_Human =super_Archer[0].__

bases__

assert super_Archer == super_Knight

assert super_Human == super_orc

assert super_Archer != super_orc

assert super_Knight != super_orc

In addition, we can use an object's attribute
doc__ __ , which provides a documentation of the

object. Specifically, it shows a message that says that
a class has been defined as a subclass of another. For
example, the message for Archer would be “Define
Archer to be a subclass of Human.” For checking the
superclasses of the three classes, we just have to add
the following code to the main function:

print (mod.Archer.__doc__)

print (mod.Knight.__doc__)

print (mod.Orc.__doc__)

Furthermore, we have to check that the overriding of
the methods is correct. For instance, if the student uses
inheritance but overrides all the methods from the
superclass, the inheritance would be useless since there
would not be code reuse. For achieving this, we use the
attribute qualname__ __ , which means qualified name in
Python. It gives you a dotted path to the name of the
target object. When the attribute is applied to a method,
it shows us in which class the method was defined. Then,

we can check if the method has been defined in the right
class. We recall that Figure 1 shows the right methods
definition by their generalization in superclasses. Since
the qualname__ __ attribute is not applicable to the
properties, we use the method dir (). This method returns
the list of the attributes and methods of any object. Then,
we can check that the getters and setters of the general
attributes are defined in the corresponding superclasses.
Below, the unit test associated:

def test_characters_overriding(self):

assert mod.Orc.fight.__qualname__ !=

"Orc.fight"

assert mod.Orc.__gt__.__qualname__ !=

"Orc.__gt__"

assertmod.Archer.__str__.__

qualname__! = "Archer.__str__"

for i in [

"__getName", "__setName",

"__getStrenght", "__setStrenght",

"__getKingdom", "__setKingdom"

]:

assert "_Knight" + i not in

dir(mod.Knight)

assert "_orc"+ i not in dir(mod.Orc)

assert "_Archer" + i not in

dir(mod.Archer)

In this unit test, the first two asserts test that the
methods fight and gt__ __ have been inherited from
the superclass of Orc. We ensure it by checking that
they have not been defined in the class Orc. The third
assert checks that the method str__ __ has not been
defined in the Archer class. Instead, it should have
been defined in the superclass. The loop tests that the
private getters and setters that are common are
not defined in the specific classes (Archer, Knight,
and Orc).

6 | EMPIRICAL EVALUATION

The approach presented in this paper has been evaluated
in a second‐year programming university course, called
Intermediate Programming, held at the University
College Cork (UCC). This course mostly focuses on
OOP (even if there are other contents as well). The
assignment is done individually by each student. We do
not mention the specific rubrics of the marks' distribu-
tion because, as mentioned, this course is composed of
more content, as is often the case in university courses
that teach OOP.

12 | CLIMENT and ARBELAEZ

For evaluating the effectiveness of the AA approach,
we selected two different groups, enrolled in the
Intermediate Programming course. The first one was
held in 2019 and the second one in 2020. All the students:
(i) had no previous experience in OOP, (ii) were able to
understand an object‐oriented and (iii) were willing to
answer a survey.

The students of 2019 completed the typical
individual and nonincremental assignment in which
wrapper classes are provided with the definitions of
all the functions that the assignment requires (such as
in the previous works [6] and [7]). It had a single
submission (and consequently a single feedback) that
was corrected manually. Whereas the students of 2020
completed the assignment presented in this paper (see
Section 3) as a case study, which, as previously
mentioned, is incremental and provides feedback
twice with the AA.

Before doing this assignment, we observed that most
of our students, even with good theoretical knowledge,
still found it difficult and challenging the design and
implementation of a solution for a real‐world problem by
using and applying the OOP principles. This changed for
most of the students of 2020 (after developing the real
case scenario assignment presented in this paper and
getting its associated automatic feedback) while it was
not the case for most of the students of 2019.

We would like to mention that, as previously
mentioned, the assignment of the students of 2020 is
presented in two parts. Then, the automatic feedback of
the first part of the assignment should be provided as
soon as possible, so that it can be used for the second part
of the assignment. For the class evaluated in 2020, the
students obtained on average more marks in the second
part than in the first part of the assignment, which
corroborates that the incremental particularity of the
assignment (including its incremental feedback) worked
well. This was not the case for the class of 2019.

Another point to consider is that it is also possible to
combine both automated and manual assessments. Com-
bining manual and automatic feedback means that both,
automated and manual assessment can exist at the same
time and support each other. For instance, if the design of
the UML class diagram is a learning outcome of the course,
it could be included as a part of the assignment and
therefore the lecturer should manually mark it by compar-
ing it with the one presented in this paper (see Figure 1).

Something that should be considered as well is that to
clarify how the AA will be, some unit tests can be
provided to the students. In this way, they can figure it
out with more clarity the evaluation process. Especially,
students not familiar with AA (and who might not trust
AA yet). In addition, they will understand the impor-
tance in following exactly the assignment specifications.
Furthermore, another advantage of this is that the
students can learn better how unit testing works.
Specifically, for the evaluation done for the 2020 class,
a few samples of unit tests were provided to the students.

Another point to consider is how many re‐
submissions are allowed. Practice is important in
learning programming and there should be room for
mistakes and learning from them. AA can help as it can
give feedback despite the limited human resources.
However, to prevent mindless trial‐and‐error problemsol-
ving, the number of resubmissions should be controlled
[19]. In the evaluation of 2020, we asked the students to
submit the first part of the assignment (Section 3.1), and
then they get AA feedback. After a couple of weeks, they
resubmit this part and the additional one (Section 3.2).
However, the students of 2019 were only allowed to
resubmit once (due to the lack of AA).

Following we present the results of the survey done to
both classes about the assignment. Figure 3 shows the
opinions of the students of 2019 (without the AA tool).
We recall that this was a single nonincremental
assignment. Fourty‐two students answered the survey.

FIGURE 3 Results of the survey to the students of 2019 (without the AA tool).

CLIMENT and ARBELAEZ | 13

It can be observed that 10 students (23.81%) had negative
or strongly negative opinions about the content and
almost the same (12 students, 28.57%) disagree/strongly
disagree about the students' possibility of participation.
Then, 10 students (23.81%) were neutral. Overall, this
shows that around 50% of the class did not have a
positive opinion.

The next year, in 2020, the new students experienced
the AA tool and the real case assignment. After asking the
class to complete a survey, 36 students answered. Figure 4
shows the results. The first change that can be observed
with the surveys of the previous year (Figure 3) is that there
are no students that have a strongly negative opinion. Only
2(5.56%)/3(8.33%) students had a negative opinion and the
neutral opinions were reduced to 4(11.11%)/2 (5.56%)
students. This year students had much more positive/
strongly positive opinions (29/32 students, which is 80.56%/
88.89%). It is even more noticeable the increase in the
strongly agreed opinions since the previous year was
14.29% and the next year increased to one‐third of the class.
Therefore, the students valued the content and the
possibility of participation with the new AA tool and
incremental real case assignment.

Furthermore, the students who experienced the AA tool
and real case assignment presented in this paper also wrote
the following opinions when they were asked what aspects
of this course were most useful or valuable: “using the
concepts of OOP to slowly build on our knowledge of
programming,” “the two assignments were very good for
becoming proficient in object‐oriented,” “the code examples
and the two assignments helped me to learn the concepts
taught in class,” “course content was interesting, assign-
ments were a good way to learn and develop skills,” and so
on (the survey contains more similar comments to these).

We believe that the positive scores and comments
above‐mentioned are due to several reasons. The
students learn how to apply the OOP principles by

coding them. Because the students have almost complete
freedom for designing the structure of the classes, rather
than doing a monotonous assignment in which the
students have to “refill” some given wrapper classes. In
addition, the assignment is incremental, which motivates
the students because they receive feedback from the first
part before the start of the second part, allowing them to
learn from their mistakes.

We would like to highlight that the case study and the
AA presented in this paper allow the students' attainment
of the difficult to asses LOs mentioned in Section 1.3.
Specifically: (i) designing correctly the classes especially, in
a project that grows over time, (ii) identifying the
inheritance, aggregation, and composition relationships;
and (iii) customizing the behavior of subclasses by
overriding. Note that, as previously mentioned, these LOs
can not be attained by the typical assignments, such as the
assignment of the class 2019, the assignments of the
previous works [6] and [7], and so on. Specifically, for the
evaluation done for the 2020 class, a few samples of unit
tests were provided to the students.

Furthermore, in terms of the correctness of the AA
tool, a comparison of the results that are achieved by the
AA approach presented, with the evaluation done by
visual inspection of the student's code confirms the
effectiveness of our designed approach.

7 | CONCLUSIONS AND
FUTURE WORK

In this paper, we present an AA approach for OOP
teaching and assessment (which, as mentioned in
Section 1.1, it presents certain particularities and
difficulties). Then, in this paper, we contribute to the
literature by presenting an AA tool in Python that
assesses complex OOP concepts (including class design)

FIGURE 4 Results of the survey to the students of 2020 (with the AA tool).

14 | CLIMENT and ARBELAEZ

such as inheritance, aggregation, overloading of opera-
tors, overriding, generalization/specification, error hand-
ling for protected attributes, and so on. In addition, it
assesses the correctness of their implementation details.
Furthermore, the unit testing approach presented in this
paper also contributes to the students' incremental
feedback; and the students learn unit testing and how
to apply it to OOP programming problems.

Furthermore, we present a real case scenario of an
assignment, for whom, the unit tests ensure that the code
submitted by the students fulfills the specifications of
such an assignment. The real case scenario assignment
and the corresponding unit tests that we present, have
the particularities and advantages that include all the
OOP principles (Section 1.3) and incorporate them into a
single incremental assignment divided into two stages.

In summary, the work presented in this paper is
especially helpful for the students, since as previously
mentioned, they typically struggle to apply the OOP
principles, especially, if they have to apply all of them in
a single and extensive programming assignment. The
evaluation of our approach in a second‐year course at a
university, together with the feedback provided by the
students, confirms the effectiveness of our approach.
Therefore, positive experience has been gained in
teaching OOP laboratory using the AA and the real‐
case scenario assignment presented in this paper.

The approach presented in this paper addresses the
issues in teaching OOP Laboratory (some of them are
present in other courses as well): (1) keeping the students
motivated; (2) teach and asses not only the theoretical OOP
(complex) principles but also how to practically apply them
(in python); (3) incremental assignments and automatic
feedback; and (4) the AA allows that a considerable low
time is spent on corrections even for large groups. It is found
that the current design of the OOP Laboratory presented in
this paper adequately addresses all these issues.

As future work, we consider that the real case
scenario could be extended (depending on the difficulty
of the module, lab hours, etc.). Currently, there are three
functionalities associated with the characters: the __str__
method, the > operator, and the fight method. We could
also add some new functionality. For example, some
specific functionality to the Archer class. We also would
like to develop different real case scenarios with the same
particularities and advantages as the one presented in
this paper, which is that it is incremental (the software
requirements evolve with time) and combines all the
OOP principles into a single assignment.

As future work, we also consider the creation of a tool
that automatically creates the unit tests with automatic
grading and learning feedback. There is previous work
on this matter for OOP in the industry. But as far as we

are aware, there is no such tool for OOP for teaching. For
example, evolutionary testing (ET) has been shown to be
successful in automatically generating relevant unit test
cases for procedural software [20].

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous
reviewers for their comments and suggestions that
helped to improve the paper.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no data sets
were generated or analyzed during the current study.

ORCID
Laura Climent http://orcid.org/0000-0001-9453-5150
Alejandro Arbelaez https://orcid.org/0000-0003-
1622-5645

REFERENCES
1. W. K. Chen and Y. C. Cheng, Teaching object‐oriented

programming laboratory with computer game programming,
IEEE Trans. Educ. 50 (2007), no. 3, 197–203.

2. D. Dang, Teach all OOP principles in a single solution and
expanding to solve similar problems, CITRENZ conference. 2007.

3. M. Kölling, The problem of teaching object‐oriented program-
ming, part 1: languages, J. Object‐oriented Prog. 11 (1999),
no. 8, 8–15.

4. N. Khamis and S. Idris, Investigating current object oriented
programming assessment method in Malaysia's universities,
Proceeding of ICEEI. 2007.

5. K. Srinath, Python‐the fastest growing programming language,
Int. Res. J. Eng. Technoly. 4 (2017), no. 12, 354–357.

6. M. Torchiano and M. Morisio, A fully automatic approach to
the assessment of programming assignments, Int. J. Eng. Educ.
25 (2009), no. 4, 814–829.

7. M. Torchiano and G. Bruno, Integrating software engineering
key practices into an oop massive in‐classroom course: an
experience report, Proceedings of the 2nd international work-
shop on software engineering education for millennials. 2018,
pp. 64–71.

8. P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, Review of
recent systems for automatic assessment of programming assign-
ments, Proceedings of the 10th Koli calling international
conference on computing education research. 2010, pp. 86–93.

9. E. G. Barriocanal, M. Á. S. Urbán, I. A. Cuevas, and
P. D. Pérez, An experience in integrating automated unit
testing practices in an introductory programming course, ACM
SIGCSE Bull. 34 (2002), no. 4, 125–128.

10. J. L. Whalley and A. Philpott, A unit testing approach to
building novice programmers' skills and confidence, Proceed-
ings of the thirteenth Australasian computing education
conference, vol. 114, 2011, pp. 113–118.

CLIMENT and ARBELAEZ | 15

http://orcid.org/0000-0001-9453-5150
https://orcid.org/0000-0003-1622-5645
https://orcid.org/0000-0003-1622-5645

11. S. Combéfis and A. Paques, Pythia reloaded: An intelligent unit
testing‐based code grader for education, Proceedings of the 1st
international workshop on code hunt workshop on educa-
tional software engineering. 2015, pp. 5–8.

12. F. Touré and M. Badri, Prioritizing unit testing effort using
software metrics and machine learning classifiers (S), CITRENZ
conference. 2018, pp. 653–652.

13. S. Wappler and J. Wegener, Evolutionary unit testing of object‐
oriented software using strongly‐typed genetic programming,
Proceedings of the 8th annual conference on Genetic and
evolutionary computation. 2006, pp. 1925–1932.

14. J. C. B. Ribeiro, M. A. Zenha‐Rela, and F. F. de Vega, Test case
evaluation and input domain reduction strategies for the
evolutionary testing of object‐oriented software, Inform.
Software Technol. 51 (2009), no. 11, 1534–1548.

15. I. H. Hsiao, S. Sosnovsky, P. Brusilovsky, Adaptive navigation
support for parameterized questions in object‐oriented program-
ming, European conference on technology enhanced learning.
2009, pp. 88–98.

16. K. M. Rajashekharaiah, M. S. Patil, and G. Joshi, Impact of
classification of lab assignments and problem solving
approach in object oriented programming lab course: a
case study, 2014 IEEE international conference on MOOC,
innovation and technology in education (MITE) IEEE.
2014, pp. 205–209.

17. Y. C. Cheng, Applying how to solve it in teaching object‐
oriented programming and engineering practices, Aisan-
PLoP. 2014.

18. C. Boudia, A. Bengueddach, H. Haffaf, Collaborative strategy for
teaching and learning object‐oriented programming course: a case
study at mostafa stambouli mascara university, Algeria. Inform. 43
(2019), no. 1. https://doi.org/10.31449/inf.v43i1.2335

19. L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, Experiences
on automatically assessed algorithm simulation exercises with
different resubmission policies, J. Educ. Resourc. Comput. 5
(2005), no. 3, 7–es.

20. P. McMinn, Search‐based software test data generation: a
survey, Softw. Test. Verif. Reliab. 14 (2004), no. 2, 105–156.

How to cite this article: L. Climent and A.
Arbelaez, Automatic assessment of object oriented
programming assignments with unit testing in
Python and a real case assignment, Comput. Appl.
Eng. Educ. (2023), 1–18.
https://doi.org/10.1002/cae.22642

APPENDIX A: ADDITIONAL CODE
Here we present the additional code mentioned in
Section 5. Specifically, the function that captures the output
(capt_out()), its imports and the rest of the unit tests.

A.1. Function for capturing the output
First, we specify the imports associated with the

function for capturing the output and subsequently we
define the function.

from contextlib import contextmanager

try: # Python 2

from StringIO import StringIO

except ImportError: # Python 3

from io import StringIO

@contextmanager

def capt_out():

new_o, new_e = StringIO(), StringIO()

old_o, old_e=sys.stdout, sys.stderr

try:

sys.stdout, sys.stderr= new_o, new_e

yield sys.stdout, sys.stderr

finally:

sys.stdout = old_o

sys.stderr = old_e

A.2. Constructors
Below we present two extra unit tests for checking the

types of values and the range of the values for archers
and knights.

def test_values_types_constr_archer

(self):

with capt_out() as (out, err):

mod.Archer("archer1", 8)

output = out.getvalue().strip()

assert (output == "type ERROR")

def test_values_types_constr_knight

(self):

with capt_out() as (out, err):

mod.Knight("k1", 3.0,

"Gondor", ["AAB"])

output = out.getvalue().strip()

assert (output=="archers list ERROR")

a1 = mod.Archer("a1", 3.3, Atla")

a2 = mod.Archer("a2", 2.3, "Mordor")

k2 = mod.Knight("k2", 4.0, Atla",

[a1,a2])

assert k2.archers_list == [a1]

A.3. Properties
Here we include unit tests for checking the access

and update of the properties of the orcs, including the
incorrect uses of the properties.

def test_properties_access_orc(self):

orc = mod.Orc("Ogrorg", 4.1, True)

assert orc.name == "Ogrorg"

assert orc.strength == 4.1

assert orc.weapon

16 | CLIMENT and ARBELAEZ

https://doi.org/10.31449/inf.v43i1.2335
https://doi.org/10.1002/cae.22642

orc.name = "Grunch"

assert orc.name == "Grunch"

orc.strength = 3.2

assert orc.strength == 3.2

orc.weapon = False

assert not orc.weapon

def test_properties_values_errors_orc

(self):

orc = mod.Orc("Ogrorg", 4.1, True)

with capt_out() as (out, err):

orc.name = 1.2

output = out.getvalue().strip()

assert (output == "type ERROR")

with capt_out() as (out, err):

orc.strength = "Grunch"

output = out.getvalue().strip()

assert output == "type ERROR"

with capt_out() as (out, err):

orc.weapon = 6.8

output = out.getvalue().strip()

assert (output == "type ERROR")

orc.strength = 10.0

assert orc.strength == 5.0

orc.strength = −10.0

assert orc.strength == 0.0

A.4. __str__ method
Below, we present the two unit tests of the __str__

method for orcs and knights.

def test__str__orc(self):

orc = mod.Orc("Ogrorg", 3.3, True)

with capt_out() as (out, err):

print(orc)

output = out.getvalue().strip()

assert (output == "Ogrorg 3.3 True")

def test__str__knight(self):

a1 = mod.Archer("a1", 3.3, "Atl")

k1 =mod.Knight("k1", 4.0, "Atl", [a1])

with capt_out() as (out, err):

print(k1)

output = out.getvalue().strip()

assert (output == "k1 4.0 Atl

[a1 3.3 Atl]")

A.5. > operator
We present an extra unit test for the > operator used by

different orcs with and without a weapon.

def test_greater_orc(self):

orc1 = mod.Orc("o1", 3.3, True)

orc2 = mod.Orc("o2", 4.9, False)

assert orc1>orc2

orc3 = mod.Orc("o3", 3.3, False)

assert not orc3>orc2

A.6. Fight method
The last extra unit test checks that the limits of the

strength of the characters are correctly truncated after
fighting.

def test_fight_truncation_orc(self):

orc1 = mod.Orc("Ogrorg", 3.3, True)

orc2 = mod.Orc("Grunch", 4.9, False)

orc1.fight(orc2)

assert (orc2.strength == 4.9 and

orc1.strength == 4.3)

orc1 = mod.Orc("Ogrorg", 3.3, False)

orc1.fight(orc2)

assert (orc2.strength == 5.0 and

orc1.strength == 3.3)

orc1=mod.Orc("Ogrorg", 0.1, False)

orc2=mod.Orc("Grunch", 0.1, False)

orc1.fight(orc2)

assert (orc1.strength == 0 and

orc2.strength == 0)

AUTHOR BIOGRAPHIES

Laura Climent's obtained her PhD in
Computer Science from the Universitat
Politècnica de València (UPV). The
research of her thesis is within the area
of Combinatorial Optimisation. After
finishing her PhD, she worked as a post‐

doctoral researcher at the University College Cork,
UCC (2013–2016). She was also a lecturer in the School
of Computing and Information Technology at UCC.
Currently, she is a lecturer in the Computer Science
Department in the Universidad Autonóma de Madrid
(UAM). Dr. Climent has participated in several
Spanish and Irish research projects. As a result, she
has authored more than 30 peer‐reviewed publications
in conferences and journals: 7 journals ranked in JCR
and SCOPUS and more than 20 conference papers.
Among the journals, it can be highlighted the
publication in the Journal of Artificial Intelligence
Research (JAIR), a well‐known and prestigious journal
in the Artificial Intelligence field. In addition, she has

CLIMENT and ARBELAEZ | 17

been a reviewer of several international conferences
and journals. She also served as a program chair of the
doctoral program of the prestigious CP conference and
she supervised a PhD student in UCC.

Alejandro Arbelaez received his PhD
in computer science from University of
Paris XI for his work on applying
learning‐based techniques to solve com-
binatorial problems. After finishing his
PhD, he worked as a postdoctoral

researcher at the University of Tokyo (2011–2013)
and University College Cork, UCC (2013–2016). He
was also a lecturer in the School of Computing and
Information Technology at UCC. Currently, he is a
lecturer in the Computer Science Department in the
Universidad Autonóma de Madrid (UAM). Dr.
Arbelaez is the author of more than 40 research
papers in prestigious conferences, journals, interna-
tional workshops, and two chapters in prestigious
books of the Artificial Intelligence field.

18 | CLIMENT and ARBELAEZ

	Automatic assessment of object oriented programming assignments with unit testing in Python and a real case assignment
	1 INTRODUCTION
	1.1 Background
	1.2 Literature review: Unit testing for OOP in learning
	1.3 OOP principles and learning outcomes (LOs)

	2 OOP TEACHING AND ASSESSMENT
	3 REAL CODING CASE STUDY
	3.1 First part of the assignment: A single class
	3.2 Second part of the assignment: Combining several classes

	4 SOLUTION AND UML CLASS DIAGRAM
	4.1 Encapsulation and inheritance
	4.2 Composition/Aggregation
	4.3 Abstraction
	4.4 Polymorphism
	4.4.1 Overloading
	4.4.2 Overriding
	4.4.3 Error handling

	5 AA APPROACH WITH UNIT TESTING
	5.1 Constructors
	5.2 Properties
	5.3 __str__ method
	5.4 > operator
	5.5 Fight method
	5.6 Inheritance between classes and overriding of methods

	6 EMPIRICAL EVALUATION
	7 CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	APPENDIX
	ADDITIONAL CODE

