
Parallel mutation testing for large scale systems

Pablo C. Cañizares1 • Alberto Núñez2 • Rosa Filgueira3 • Juan de Lara1

Received: 5 November 2022 / Revised: 1 June 2023 / Accepted: 2 June 2023
� The Author(s) 2023

Abstract
Mutation testing is a valuable technique for measuring the quality of test suites in terms of detecting faults. However, one

of its main drawbacks is its high computational cost. For this purpose, several approaches have been recently proposed to

speed-up the mutation testing process by exploiting computational resources in distributed systems. However, bottlenecks

have been detected when those techniques are applied in large-scale systems. This work improves the performance of

mutation testing using large-scale systems by proposing a new load distribution algorithm, and parallelising different steps

of the process. To demonstrate the benefits of our approach, we report on a thorough empirical evaluation, which analyses

and compares our proposal with existing solutions executed in large-scale systems. The results show that our proposal

outperforms the state-of-the-art distribution algorithms up to 35% in three different scenarios, reaching a reduction of the

execution time of—at best—up to 99.66%.

Keywords Mutation testing � Parallel mutation testing � Large scale systems � High performance computing �
Distributed systems � Testing

1 Introduction

Testing is one of the most widely extended techniques for

analysing the correctness and improving the robustness of

software systems [1]. During the last decades, testing has

been incorporated into various software quality standards,

such as, just to name a few, DO-178/ED-12 for safety-

critical avionic software [2], IEC 62304 for medical devi-

ces [3] and ISO 26262 for road vehicles [4]. Among the

strengths of testing, it is worth to mention its scalability

and versatility, since it can be used to analyse the cor-

rectness of a broad spectrum of systems [5-8].

However, selecting a suitable test suite for properly

checking the correctness of systems is complex. Usually,

these systems consist of thousands of lines of code, which

entails the construction of large test suites to achieve a high

percentage of coverage. The size of the test suite has a

large impact on the performance of the testing process, so it

is therefore required to create effective test suites that can

be executed in a reasonable time [9].

Fortunately, there exist techniques to evaluate the

strength of test suites for finding errors. Mutation Testing

(in short, MuT) is a testing technique that measures the

effectiveness of test suites in terms of its ability to detect

errors [10-12]. The main idea is to generate syntactically

valid variations of a program, each containing a single

fault. These faulty programs, called mutants, are executed

using the test suite under study in order to determine its

effectiveness in finding errors. The MuT process consists

of the following stages: (i) generating a test suite; (ii)

executing the test cases over the application under study;

(iii) generating mutants; (iv) compiling the mutants;

(v) detecting equivalent mutants; (vi) executing the test

cases over the mutants and comparing the obtained results

& Pablo C. Cañizares

pablo.cerro@uam.es

Alberto Núñez

alberto.nunez@pdi.ucm.es

Rosa Filgueira

rf208@st-andrews.ac.uk

Juan de Lara

juan.delara@uam.es

1 Computer Science Department, Autonomous University of

Madrid, Madrid, Spain

2 Software Systems and Computation Department,

Complutense University of Madrid, Madrid, Spain

3 School of Computer Science, University of St. Andrews,

St. Andrews, UK

123

Cluster Computing
https://doi.org/10.1007/s10586-023-04074-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-023-04074-y&domain=pdf
https://doi.org/10.1007/s10586-023-04074-y

with the ones obtained in stage (ii) and check if the test

cases can detect the mutants.

The adoption of MuT by the industry is limited, mainly,

due to the high computational cost associated to this

technique and, in a secondary way, by the generation of

equivalent mutants and the lack of tool integration [13-15].

We illustrate the computational power needed to perform

MuT over a real-world application called iText (v 5.0.6).1

According to the study carried out by Just et al. [13], this

application consists of 76,229 lines of code, the number of

generated mutants is 126,781, and the test suite consists of

75 test cases, requiring an average execution time of 8.4 s

per test. Considering this data, the total time needed to

completely conduct the MuT process—in the worst-case

scenario—is 126,781 (mutants)*75 (test cases)*8.4 (sec-

onds per test) = 79,872,030 s = 22186,67 h = 924,44 days =

2.53 years, which is clearly unfeasible.

A recent survey that collects the latest advances and

trends of MuT reports that leveraging on parallel process-

ing for MuT is an alternative to speed-up the testing pro-

cess [16]. Hence, it is required to apply computing

paradigms that allow exploiting the available computa-

tional resources of distributed systems to improve the

overall performance. High Performance Computing (in

short, HPC) is considered as one of the most suitable so-

lutions to reduce long execution times while providing a

good balance between price and performance. The rele-

vance of this paradigm can be shown at the TOP-500 list,

where the 500 most powerful commercially available

computer systems are clusters [17, 18].

Referring to the previous example, where the execution

of the complete MuT process takes 2.53 years, the total

execution time could be reduced to 72–96 h—considering

that the same process is executed in a cluster with 500

processors—which heavily depends on the distribution

algorithm applied and the mutation environment analysed.

The use of parallel MuT techniques is therefore desirable to

reduce the computational cost of the MuT process without

losing effectiveness.

Several techniques have been proposed for improving

the performance of the MuT process [19]. However, the

parallelisation of this process has been recognised as an old

idea that has not been investigated much [16]. To the best

of our knowledge, the available studies found in the liter-

ature only focus on small-size clusters, conducting the

experiments by deploying, as maximum, 80 processes [20-

22]. The reduced size of these environments does not allow

analysing potential drawbacks and bottlenecks, which may

hamper the scalability and, consequently, the performance

of the MuT process. In previous work [20, 23], we pre-

sented several techniques for improving the performance of

MuT that were analysed and compared with other works

found in the current literature. The experimental setup used

in these works included different distribution algorithms.

These proposals mitigated several problems that were

identified when the MuT process is executed in parallel,

like the sequential execution of the test suite over the

program under test, and the low computational efficiency

achieved by the existing algorithms in the literature. The

distribution algorithm and the described techniques were

appropriate for small scale environments, providing

promising results. However, we identified several bottle-

necks that arise when these approaches are applied in large-

scale systems to carry out the MuT process.

In this paper, we present an approach to mitigate these

potential issues and to improve the performance of MuT in

large-scale systems. The idea is to reduce inter-process

communications by using a dynamic and adaptive distri-

bution algorithm that minimises the number of inter-

changed messages while maintaining a high level of

resource usage. Additionally, we propose two different

techniques to speed-up several stages of the MuT process,

the compilation stage and the detection of equivalent

mutants. Hence, this work makes the following

contributions:

• Designing a load distribution algorithm that orches-

trates the execution of the test cases over the generated

mutants. The idea is to maximise the exploitation of the

computational resources of the target system, while

reducing the inter-process communications, for improv-

ing the overall performance.

• Providing a technique for parallelising the compilation

phase of the MuT process. Applying MuT on complex

applications can lead to a massive generation of

mutants that requires the compilation of a high number

of programs. This fact causes a bottleneck on the CPU

of the system, since all the mutants are required to be

compiled at the same time. Hence, it may hamper the

feasibility of applying this testing technique. In order to

alleviate this issue, we provide an improvement for

compiling the mutant set in parallel using the available

resources in the system.

• Designing a technique to improve the detection of

equivalent mutants, which is currently considered as

one of the main limitations for adopting this technique

due to the computational waste caused by these class of

mutants [14]. Equivalent mutants have the same

behaviour as the original program and, hence, their

execution does not provide useful information in the

analysis of the test suite. This improvement is per-

formed by parallelising the well-known technique

called Trivial Compiler Analysis [24].

1 https://itextpdf.com/.

Cluster Computing

123

https://itextpdf.com/

• Developing a framework for automatically carrying out

the MuT process using the approach presented in this

paper. This fact alleviates the problem of lack of tool

integrations reported by the industry [15]. For this, we

have designed and implemented a tool-supported frame-

work that includes all the proposed optimisations—the

load distribution algorithm and the two techniques to

speed-up the MuT process—and allows to easily deploy

and execute the MuT process over large scale systems.

Let us remark that this proposal is not focused on a

specific MuT engine and, thus, existing MuT tools, such

as MuJava [25] and Milu [26], can be easily adapted to

be used in this framework. Additionally, this method is

automatic in the sense that the intervention of the user is

not required to carry out the testing process.

• Conducting a thorough experimental study to evaluate

the effectiveness of the proposed approach in large-

scale systems for testing different applications. To the

best of our knowledge, the largest experiment to date

for improving the MuT process uses 80 processes at

most [53]. In contrast, our study executes the MuT

process using 1024 processes deployed in a cluster

consisting of 280 physical machines. For the sake of

understanding the scale of the experimental study

presented in this article, let us mention that it is up to

7 times larger—if we consider the size of the largest

program—12 times larger with respect to the maximum

number of nodes, and 153 times larger if we take into

account the sequential execution.

• Achieving promising results in the field of cost

execution reduction in MuT. The optimisation tech-

niques presented in this work reduce the execution

time—in the best case scenario—from up to 10 days to

51 min, which represents a time saving of the 99,66%.

The rest of the paper is structured as follows. Section 2

presents an overview of large-scale systems for testing and

introduces the main concepts of MuT. Section 3 analyses

the state of the art. Section 4 presents a detailed description

of the proposed strategies to improve the MuT process.

Section 5 describes a thorough experimental study using

the improvements presented in the previous section. The

threats to the validity of the experiment are discussed in

Sect. 6. Finally, the conclusions and prospects for future

work are presented in Sect. 7.

2 Background

This section provides a brief introduction to the main

concepts used in this work. Section 2.1 introduces pre-

liminary concepts of parallel execution environments,

while Sect. 2.2 provides basic notions of the MuT process.

2.1 Large scale systems

During the last decades, large-scale systems have been

continuously evolving, being initially a part of the exper-

imental equipment in laboratories and becoming a day-to-

day tool in the life of computational scientists.

The rapid growth of large-scale systems performance

can be seen in the TOP 500 ,2 which is a well-known

ranking list of large-scale systems all over the world. Since

1993, the rank list is updated and released twice a year. It

creates a solid statistical foundation of research on super-

computing power on Earth. This evolution has been stim-

ulated by several factors, including the physical limits of a

single processor generated by heat dissipation and the good

price/performance ratio of the computational resources.

These factors have facilitated the emergence of com-

modity clusters, which are reliable computing infrastruc-

ture that consists of commodity computers interconnected

through a communication network. Commodity clusters

represent more than 80% of all the systems on the Top 500

list and a larger part of commercial scalable systems. In

general, these systems are used to reduce the computational

time required to execute a program, leveraging the avail-

able computational resources of the cluster running the

application in parallel. Cirrus, which has been selected for

running our experiments, is an example of this kind of

clusters (see details in Sect. 5).

The Message-Passing Interface (MPI) [27, 28] is the

predominant programming model for multi-node commu-

nication in scientific computing [29]. Since its conception

in 1994, nine versions of the MPI Standard have been

released and more than a dozen implementations of MPI

exist between open-source and vendor implementations.

MPI has three major goals: portability, scalability, and high

performance. MPI is able to run on almost every distributed

architecture, whether large or small, and each operation is

optimized for the specific hardware on which it runs,

yielding the greatest speed available. All of this combined,

it is easy to see why MPI is the most convenient commu-

nication protocol used in commodity clusters.

The message-passing model fits well on separate pro-

cessors—interconnected through a communication net-

work—to exchange data. MPI is extensively used in the

major part of parallel supercomputers and commodity

clusters [27, 28, 30]. The most compelling reason that

justifies that MPI is an important part of the parallel

computing environments is the performance. Hence, it has

been shown that MPI is faster than other similar commu-

nication mechanisms existing in the literature, such as

Java-RMI, RPC and PVM [31, 32].

2 https://www.top500.org/lists/top500/2021/06/.

Cluster Computing

123

https://www.top500.org/lists/top500/2021/06/

2.2 Mutation testing

MuT is a fault-based testing technique, whose primary goal

is to measure the effectiveness of a test suite in terms of its

ability to detect faults. For this purpose, it provides a

testing coverage criterion called the mutation adequacy

score. Hence, MuT is a feasible alternative to other con-

ventional testing coverage techniques, like statement/

branch coverage [33], for evaluating test suites aimed at

testing complex systems.

The faults are injected into the code using mutation

operators, which correspond to rules for transforming the

syntax of the language. The idea is to create copies of the

original program, where each copy presents some syntactic

modification. The objective is to determine the number of

program variations, called mutants, which behave differ-

ently from the original program with respect to a test suite.

When a mutant behaves differently from the original pro-

gram, for some test t, it is said that t kills the mutant,

otherwise, it is said that the mutant is alive.

Let us consider the example of Table 1, where the

original program is mutated in such a way that the condi-

tion a[0 ^ b[0 is replaced by a[0 _ b[0. This

modification generates a mutant. In order to kill this

mutant, it is necessary to create a test that causes a different

result in the execution of the mutant with respect to the

original program. If we apply the test a ¼ � 3; b ¼ 5, we

obtain different results from the original program and,

therefore, the mutant is killed. However, the test a ¼
3; b ¼ 5 does not detect the failure because we obtain the

same result in both the original program and the mutant.

Hence, the mutants allow evaluating how good the tests

are, that is, the more mutants killed by the selected set of

tests, the higher the quality of the tests.

Some mutants, called equivalent mutants, present the

same behaviour than the original program for any input

and, consequently, cannot be killed by any test. The

detection of equivalent mutants is an undecidable problem,

so they must be detected manually, which means a high

cost in the application of this technique [34]. In order to

mitigate this problem, there exist several techniques, such

as those proposed in the work of Offutt and Craft [35],

where algorithms are detailed to determine different classes

of equivalent mutants. These algorithms are based on data

flow analysis and compiler optimisation techniques. In

another relevant work in this field, Robert Hierons and

Mark Harman present the use of slicing programming

techniques applied to the detection of equivalent mutants,

which allow reducing their generation cost [36]. In the

same line, Papadakis et al. proposed the Trivial Compiler

Analysis (TCE), a technique for detecting equivalent

mutants analysing the binary files resulting of the compi-

lation of the source codes [24].

Figure 1 presents the general operation scheme of MuT.

Given a set of mutants, generated from applying a set of

mutation operators over a program, and a test suite, the

adequacy of the test suite is calculated by analysing its

ability to detect failures. First, the test suite must be applied

to the original program to ensure its correct behaviour �1 .

If the results are incorrect, the original program must be

corrected �2a . Otherwise, the mutation operators are

applied to the original program for the generation of all

possible mutants �2b . Each mutant will be executed using

the provided test suite �3 . At the end of this process, the

mutation score is calculated, indicating the percentage of

non-equivalent mutants that have been killed by the test

suite. The goal is to achieve a mutation score of 100%, i.e.

all non-equivalent mutants have been killed. Alive mutants

indicate a lack of adequacy of the test suite to detect

potential failures in the program. Therefore, taking the

example of Table 1, for a test where a ¼ 8; b ¼ 7 both p

and p0 would have the same result. Hence, p0 would be

considered as an alive mutant. In this case, the user must

analyse whether there exist equivalent mutants and discard

them. Then, if after discarding the equivalent mutants,

alive mutants still remain, the initial test suite should be

increased with additional tests. These tests are directed to

kill the mutants that remain alive �4a and should be

checked on the original program, too. This process is

repeated until the user is satisfied with the mutation score

obtained �4b .

3 State of the art

Mutation testing is recognised as a computationally

expensive technique [15, 16]. Hence, it is necessary to

design mechanisms for reducing its cost, and during the last

few years the scientific community has proposed different

strategies to alleviate this issue. Jia and Offut [19] cate-

gorised these proposals in two main groups: mutant

reduction and execution reduction techniques. We review

them next.

3.1 Mutant reduction

These techniques are focused on reducing the total number

of generated mutants. Hence, in this category, we can find

techniques such as mutant sampling [10, 37], mutant

clustering [38, 39], selective mutation [40], and high order

mutation [41], which reduce the total execution time by

decreasing the number of mutants generated during the

MuT process.

Cluster Computing

123

Mutant sampling randomly selects a small number of

mutants from the original set. This technique was proposed

by Acree and Budd [10], where they suggested to select a

fixed percentage of mutants from the original set. More

recent studies show that these techniques start to be

effective by selecting, at least, a 10% of the mutants [37].

The total number of mutants can be also reduced by

selecting a subset of mutation operators. This technique is

known as selective mutation, and several studies have been

conducted by omitting different number of mutation

operators, like 2-selective, 4-selective and 6-selective [42].

The main idea is to select a reduced set of mutation

operators which, in some languages, is able to achieve a

high percentage of mutation score, and at the same time

reducing the total execution time. For instance, in the C

language, a subset of 28 operators (out of 108) is able to

properly predict the quality of the test suites, with very low

effectiveness reduction. Finally, one of the most important

techniques to reduce mutants is High Order Mutation

(HOM). The technique initially presented by Jia and Har-

man [43] consists of seeding multiple faults in a single

mutant. In this line, Polo et al. [41] focused their efforts on

analysing the second-order mutants (mutants with two

seeded faults), and the empirical results concluded that

execution times were decreased up to 50%, with a reduced

loss of test effectiveness.

Although these techniques reduce the total execution

time by avoiding the execution of mutants, they generally

reduce the effectiveness of MuT. In fact, several studies

emphasize the need for careful use of these techniques,

which—in some cases—has been considered harmful [44].

For instance, Gopinath et al. sentence that we caution

practising testers against applying mutation reduction

strategies without adequate justification.

3.2 Execution reduction

The computational cost of MuT can be reduced not only by

decreasing the total number of generated mutants but

optimizing the execution process. These techniques can be

categorised into three main groups: mutation type, runtime

optimization techniques and advanced platform support for

mutation testing.

3.2.1 Mutation type

Some cost reduction strategies exploit the mutation type.

Weak mutation approaches do not require executing the

whole mutant, but the execution stops immediately after

the mutated statement is processed. In this way, the exe-

cution costs are reduced in comparison with the traditional

mutation—known as strong mutation—where the complete

mutant is executed.

The experimental study conducted by Chekam

et al. [45] showed that the propagation—not present in

weak mutation—is responsible for finding 36% of the

failures that can be detected by strong mutation. For this

reason, there is a potential risk of significant information

loss during the testing process.

Table 1 Example of mutated code

Program p Program p0

. .

if(a[0 and b[0) if(a[0 or b[0)

return 1 return 1

else else

return 2 return 2

. .

INPUT
original
program P

test cases T

P correct?
1. run T on P

muta�on
operators

false

2b. createmutants P'

true

2a. fix P

Analyse
P'

3. run T on each
live P'

muta�on
score

analyse
equivalent mutants

addi�onal
test cases

alive

killed

Is T
suitable? false

true

4b. quit

4a. new test data

Fig. 1 General scheme of the

MuT process

Cluster Computing

123

3.2.2 Run-time optimization techniques

One of the first optimisations oriented to reducing cost in

mutation tools is the interpreted-based technique [46].

This technique interprets the mutant output directly from

the source code, rather than executing it. However, the

approach does not scale well due to the high cost of

interpretation.

Mutant schemata aims at reducing compilation

costs [47, 48]. Instead of creating a file for each mutant,

this technique allows creating a metaprogram that contains

all the faults seeded by the mutation operators. In this way,

in the compilation phase, only a single file must be com-

piled, which saves a high percentage of compilation time.

However, some mutation operators produce mutants that

cannot be combined into a mutant schema (like AMC,

IOD, and IPC [49]), and in addition, a configuration phase

is necessary to execute this technique. This phase can be

complex, and some environments must be manually mod-

ified for the sake of the proper functioning of the technique.

Finally, since Mutant Schemata only generates a single

binary file, some valuable techniques for detecting equiv-

alent mutants, like TCE, can not be applied. It is worth

mentioning that TCE can discard on average between 7 and

21% of all the mutants as being equivalent [24]. Previ-

ously, it was necessary to choose between reducing the

compilation time by using Mutant Schemata or detecting

equivalents through TCE. However, using the techniques

proposed in this article it is possible to perform both

optimisations at the same time.

3.2.3 Advanced platforms support for mutation testing

In order to improve the speedup, our main idea is to dis-

tribute mutants to processes in such a way that each process

completes a similar amount of execution. One of the main

issues of this technique is to predict the number of test

cases required to kill a mutant. Therefore, considering the

complexity of predicting the total number of executions

needed to complete the MuT process, developing a tech-

nique without knowing these details is challenging.

During the last years, several distribution algorithms

have been proposed to alleviate this issue. These distribu-

tion algorithms can be categorised into two main groups:

static and dynamic distribution algorithms. We review

them next.

The static distribution algorithms assign—approxi-

mately—the same number of mutants to each process. The

particularity of this kind of algorithms lies in the fact that

the division of the workload, that is, the test cases that must

be executed over the mutants, is carried out before starting

the MuT process. Among the best-known approaches is the

Distribute Mutants Between Operators (in short, DMBO)

algorithm [50]. This was proposed by Offut et al., and

categorises the mutants by MuT operator, assigning equally

to each process different mutants from each group. Hence,

each process receives roughly the same quantity of live

mutants and the MuT operators are as evenly distributed as

possible. Distribute Test Cases (in short, DTC) [51] is a

static algorithm similar to DMBO. Nevertheless, in this

case, the test suite execution is divided into the available

processes. In this way, each process executes the same test

cases over all the mutants. This fact causes that several

mutants could be killed multiple times by different test

cases, leading to a waste of computational resources.

Taking into account that the distribution of the workload is

carried out only once, the static algorithms reduce the

network communications. However, in heterogeneous

environments, these algorithms hamper the achievement of

the optimal distribution, since faster CPUs are more likely

to finish before the slower ones, unbalancing the distribu-

tion process.

The dynamic distribution algorithms focus on optimis-

ing the distribution of the workload among the available

processes while reducing the execution time. In such way,

the workload is divided into portions, which are dynami-

cally delivered to the available processes until all the

workload is entirely processed. Give Mutants On Demand

(in short, GMOD) [52] is a dynamic algorithm that divides

the executions into parts, where each part contains one

mutant and all the test cases. This algorithm increases the

network communications, because the process in charge of

coordinating the execution of the testing process should

deliver the parts of the workload to the processes until all

the workload is processed. The Give Test Cases On

Demand (in short, GTCOD) is a dynamic algorithm that

splits the workload into parts, where each one consists of

one test case with all the mutants. Similarly to DTC, this

algorithm may cause that several mutants are killed mul-

tiple times. The Parallel Execution with Dynamic Ranking

and Ordering (in short, PEDRO) [53] is a dynamic algo-

rithm based on the ideas of the Factoring Self-Scheduling

algorithm [54], but redesigned to be applicable on MuT.

PEDRO divides the workload into parts, where each part

contains a set of mutants and all the test cases. EMbar-

rassINgly parallEl mutatioN Testing (in short, EMI-

NENT) [23] is a dynamic algorithm where the workload is

divided into different parts, each one consisting of a single

test case, in contrast to the PEDRO algorithm, where the

parts consist of the complete test suite. This algorithm is

considered as more adaptable to heterogeneous environ-

ments and allows to maximise the resource usage and, thus,

the overall time of the testing process is reduced. Opti-

mizing the mUtation Testing pRocess In Distributed

EnviRonments (in short, OUTRIDER) [20] maximises the

resource usage using EMINENT as a basis. For this, the

Cluster Computing

123

authors propose an enhanced distribution algorithm and

three techniques for improving the performance: paral-

lelising the test suite, sorting the test suite and detecting

equivalent mutants.

During the last years, these distribution algorithms have

been included in several solutions proposed by researchers

to alleviate the high computational cost associated with the

testing process. BacterioP [21] is a MuT framework for

multi-class Java systems, which supports strong mutation,

BB-Weak/1, BB-Weak/N, functional qualification and

flexible weak mutation and uses the PEDRO algorithm to

distribute the workload. BacterioP uses Java-RMI [55] to

communicate processes through the network. The perfor-

mance and the scalability achieved in this contribution are

better than previous studies, dated from mid-1990s, which

are based on shared-memory approaches. However the

communication mechanism used in this approach acts as a

system bottleneck and, consequently, causes a limitation on

the overall system performance [31].

HadoopMutator is a cloud-based MuT framework, pro-

posed by Saleh and Nagi, which relies on Map-Reduce

ideas to parallelise the MuT process [56]. HadoopMutator

is based on the Hadoop engine and Pitest, and uses a static

distribution algorithm to distribute the workload. There-

fore, since the inclusion of dynamic distribution schemas in

this proposal is not considered, it is not suitable to be used

in heterogeneous and dynamic environments.

OUTRIDER-tool [20, 23] is a framework for improving

the performance of MuT in HPC systems. The main goal of

this solution is to exploit the resource usage in HPC sys-

tems by using MPI to communicate the processes. The

main disadvantage of this proposal concerns the high

quantity of messages exchanged between processes, which

may cause, in some cases, a bottleneck in the communi-

cation network.

DiMuTesTas is a solution for improving the perfor-

mance of the MuT process using a cloud infrastruc-

ture [22]. In this proposal, the master and the worker

processes are encapsulated into Docker containers [57],

using RabbitMQ [58] for orchestrating the communication

between them. This approach uses a dynamic distribution

where the workload is divided in parts, which consist of the

complete test suite applied over a single mutant. Although

DiMuTesTas has been designed to minimise both the idle-

time of the nodes and the network load, there is some point

that needs further discussion. The authors sentence that

DiMuTesTas copies the build dependencies from the file

server to the own local storage in each worker. This is done

to prevent the network connection from becoming a bot-

tleneck, as otherwise each worker has to download the

build dependencies separately.. This fact might lead to

different drawbacks. Firstly, the MuT environments usually

consist of thousands of files, that require a large amount of

storage. Secondly, there exist several HPC systems whose

local storage systems is virtual or non-existent and, there-

fore, this fact hampers the usage of the proposed schema on

a certain type of system.

4 Large scale mutation testing

In this section, we explain our approach to parallelise the

MuT process. First, we present an overview in Sect. 4.1.

Then, we describe the three main elements in the method: a

distribution algorithm to improve the execution of the MuT

process (Sect. 4.2), an optimisation based on parallel

compilation (Sect. 4.3) and the parallelisation of the

detection of equivalent mutants (Sect. 4.4). Finally,

Sect. 4.5 details tool support.

4.1 Overview of our approach

The main efforts conducted by the research community in

the MuT field have targeted reducing the computational

cost of the process [59, 60]. However, while the paralleli-

sation of MuT to increase the speed-up has obtained good

results, it has not been investigated much, according to

Papadakis and collaborators in a recent survey [16].

The MuT process involves several stages, such as gen-

erating tests cases and mutants, compiling mutants,

detecting equivalent mutants, executing the test cases and

comparing the obtained results. Parallelising this process

requires deploying processes among the CPU cores of the

target system and executing each stage by efficiently

exploiting the shared resources of the system, like CPUs,

network, and storage systems. In particular, compiling

mutants, detecting equivalent ones and executing the test

cases are considered the most CPU-expensive stages of the

MuT process [16, 19], and hence our method focuses on

these three phases.

The parallelisation of the execution stage can be

achieved by distributing the execution of the test suite over

the mutants among the processes involved in the MuT

process, in such a way that the test cases are executed in

parallel. The key aspect to achieve a good performance lies

in optimising the number of operations assigned to each

process. Hence, we define the grain size as the maximum

number of test cases that must be executed by a CPU

process before checking if the MuT is completed. Estab-

lishing a proper grain size involves a trade-off between

maximizing the exploitation of computational resources

and reducing inter-process communication.

Depending on the load distribution algorithm used, the

grain size can vary. Among the best-known execution

grains are the mutant-level grain [53] and the test-level

Cluster Computing

123

grain [22, 61]. The former assigns the execution of the

entire test suite—over a set of mutants—to a single pro-

cess. In contrast, the latter assigns the execution of one test

case—over a mutant—to a single process. In Sect. 4.2 we

will present a dynamic and adaptive technique that com-

bines these two strategies in order to maximize CPU usage.

Reducing the cost associated with the compilation phase

requires parallelising the compilation of the mutant set

among the available CPU cores of the system. Section 4.3

explains our approach for this parallelisation. Similarly, in

order to speed-up the detection of equivalents, it is nec-

essary to parallelise the equivalence detection technique

used by maximizing the exploitation of computing

resources. In our case, we use the Trivial Compiler

Equivalence (TCE, in short), and its parallelisation will be

described in Sect. 4.4.

4.2 Dynamic and adaptive load distribution
algorithm

One of the key aspects to improve the overall performance

of MuT lies in the distribution of the test cases, which must

be executed among the available CPU cores of the target

system. For this, the grain size is a trade-off between

wasting computational resources—when a large grain size

is established and, at the end of the MuT process, some

CPUs are idle—and saturating the network—when the

grain size is small and a large number of messages must be

sent between processes.

This way, the distribution algorithm, which allocates

tests on mutants to the processes, has a substantial influ-

ence on the overall execution time of the process. A wrong

selection of the distribution strategy may lead to bottle-

necks or cause a low usage of the available computational

resources. The former case occurs when there is a massive

exchange of messages caused by a small grain size. It

should be noted that the smaller the grain size, the higher

the number of messages exchanged. Hence, selecting a

small grain size increases the network traffic and can lead

to network bottlenecks. The latter case occurs when some

computational processes finish their associated tasks—be-

coming idle—while other computational processes con-

tinue processing tasks. Therefore, we propose several

improvements to alleviate these issues.

On the one hand, in the mutant-level grain, each pro-

cessor executes the whole test suite over several mutants.

On the other, in the test-level grain each processor executes

a single test case over a single mutant. Although both

execution grains have led to performance improve-

ments [20, 23, 53] they also present some limitations: the

mutant-level grain is not efficient in the final stage of the

process, and the test-level grain increases the communi-

cation traffic.

To reduce the network communications—in a dynamic

approach—the most suitable grain is the mutant-level. This

is because it divides the workload in larger portions (where

each portion consists of a test suite), and so it reduces the

number of grains that must be sent to each processor,

reducing the number of messages exchanged between

processes. However, when the number of mutants

remaining is less than the number of available processes,

the percentage of idle processes increases, wasting com-

putational resources. This fact is especially challenging

when the program under study has associated a large test

suite, and the total time required to execute each test case is

high.

To maximise the number of active CPUs during the

process, the test-level grain works better. In this case,

regardless of the remaining workload to be processed, it

minimises the time during which the computational cores

are idle. Since each process only executes one test over a

mutant, the number of portions that must be distributed to

the available processes increases with respect to the

mutant-level grain. Unfortunately, this strategy generates

high network traffic. Dividing the workload in smaller

portions increases the number of grains that must be sent to

each processor, and consequently, the number of messages

exchanged between processes is increased.

Therefore, our proposal combines the benefits of both

execution grains, minimising the exchange of messages

between the master and the worker processes, while max-

imising the exploitation of the available resources by

reducing the time during with the CPUs are idle. For this

purpose, we have designed an algorithm that combines the

mutant-level and test-level execution grains. This proposal

is novel since the most relevant works related to the par-

allel MuT field do not explore the combination of execu-

tion grains [52, 53, 62]. In the literature, we can find

several works that using a single execution grain obtain

suitable results in terms of scalability during the experi-

mentation phase [20, 23, 53]. Since none of them target

large-scale systems, the drawbacks detected in these pro-

posals do not lead to performance degradation due to the

small size of the execution environment used in the

experiments. However, their application at a larger scale

would be problematic.

Algorithm 1 presents the main steps of the adaptive

distribution algorithm proposed in this paper. In this

approach, two different processes are involved: master and

workers. The master coordinates the workers, that is,

assigns the tasks that must be achieved by the workers

(lines 3–8 and 17–26), while the worker processes execute

the tasks provided by the master (lines 10–15). The master

calculates the total number of mutants and tests (lines 5 and

6), and performs the load distribution. This step is con-

ducted in two phases, the initial phase where all workers

Cluster Computing

123

are served with an execution block (lines 5–6). In the

second phase, once all the worker processes have received

an initial load, the master process waits for the workers to

finish processing their execution block, for assigning a new

one, until all the remaining blocks of the workload have

been processed (lines 7–8). This fact maximises the usage

of the computing environment, especially in the case of

heterogeneous processes. In order to maximise the distri-

bution process, the master process must select the execu-

tion grain to be used (lines 17–26). For this, it analyses

whether the number of processes is less than the number of

remaining mutants (line 18). In that case, it selects the

mutant-level grain (line 19). Otherwise, when the number

of mutants to be processed is less than the number of

worker processes, the master process selects the test-level

grain, providing a single test case to execute on a mutant,

until the process is completed (lines 21–25). This grain size

seeks to maximise the number of active processors of the

environment, since in the case of further using the mutant-

level grain when the number of remaining mutants is less

than the available processors, those processors that finish

the execution of its associated tasks become idle.

Algorithm 1 Adaptive distribution algorithm
Data: testSuite, mutantSet

1 Function distributionAlgorithm:
2 numProcs = MPI Comm size() myId =

MPI Comm rank() // Master process
3 if myId == MASTER then
4 mutantSize = getMutantSize(mutantSet) testSuite-

Size = getTestSuiteSize(testSuite) // Initial
distribution

5 while i<numProcs and currentMutant < mutant-
Size do

6 execBlock = selectGrain(currentTest, current-
Mutant) MPI Send (execBlock, i) i = i+1

// Distribute and process the remaining mutants
7 while remainingBlocks(currentTest,

currentMutant)> 0 do
8 result = MPI Recv (ANY, status) execBlock

= selectGrain(currentTest, currentMutant)
MPI Send (execBlock, status.MPI SENDER)

9 else
// Worker processes

10 continueProcessing = true while continueProcessing
do

11 MPI Recv (execBlock, MASTER)
12 if execBlock.continueProcessing then
13 result ← execute (execBlock) MPI send

(MASTER, result)
14 else
15 continueProcessing = false

16 return 1

17 Function selectGrain(currentTest, currentMutant):
18 if if numProcs < getRemainingMutants (currentMutant,

mutantSize) then
// Selects the mutant-level grain

19 execBlock = buildExecBlock (currentMutant, 0, test-
SuiteSize) currentMutant = currentMutant +1

20 else
// Selects the test-level grain

21 execBlock = buildExecBlock (currentMutant, cur-
rentTest, currentTest+1)

22 if currentTest+1 < testSuiteSize then
23 currentTest = currentTest +1
24 else
25 currentTest = 0 currentMutant = currentMutant

+ 1

26 return execBlock

Cluster Computing

123

Figure 2 shows the differences between using distribu-

tions that apply the test-level, mutant-level and the adap-

tive grain we propose. Each distribution is analysed by

using 4 worker processes for testing six different mutants,

which are analysed with a test suite consisting of three tests

cases. The mutants 2 and 6 pass all the test cases in 3 units

of time (tc1 = 1, tc2 = 1, tc3 = 1), mutants 1, 4 and 5 fail the

second test in 1 unit of time and mutant 3 fails the third test

case (see Fig. 2a). We denote by mX.Y the execution of

the test case Y over the mutant X, and MX is the execution

of the whole test suite over the mutant X. In this scenario,

the test cases corresponding with the executions m1.2,

m3.3, m4.2, and m5.2 fail, and consequently all of them

kill the processed mutant.

The distribution that uses adaptive grain (see Fig. 2b)

starts using the mutant-level grain. The first process exe-

cutes M1 (all the test cases executed over mutant 1) and in

parallel, the processes 1 and 2 execute M2 and M3,

respectively. At this point, the number of remaining

mutants to be processed is less than the processes and,

therefore, the grain size is adapted to test-level. The pro-

cess 3 executes m4.1 and m4.2. Then, when no more tests

are available to execute over mutants 1 and 4, the processes

0 and 3 execute m5.1 and m6.1, respectively. Finally,

processes 0, 1 and 2 execute m5.2 and m6.2 and m6.3,

respectively. The total time required to process the whole

test suite over the mutants is 4, and the total number of

exchanged messages is 10.

With respect to the approach that applies the mutant-

level grain in the distribution (see Fig. 2c) the processes 0,

1, 2 and 3 execute, in parallel, M1, M2, M3 and M4,

respectively. Once all test cases have been applied over M1

and M4, the processes 0 and 3 execute M5 and M6,

respectively. The total time elapsed is 5 time units, and the

total number of messages exchanged between the processes

is 6.

The distribution involving the test-level grain is based

on the idea that the computational efficiency may decrease

if the number of remaining mutants is lesser than the

available CPUs. In this way, all the test cases are executed

in parallel in different processes, as depicted in Fig. 2d.

However, several test case executions could have been

saved. In such way that, for example, the mutant 1 (m1.1

m1.2 and m1.3), mutant 4 (m4.1, m4.2, m4.3) and mutant 5

(m5.1, m5.2, m5.3) are executed in parallel at the same unit

of time. Therefore, it was not detected until the next unit of

time that the mutants 1, 4 and 5 had been killed in the tests

m1.2, m4.2 and m5.2, so that the execution of the tests

m1.3, m4.3 and m5.3 was indeed not necessary. The total

time required to process the whole test suite over the

mutants is 5, and the total number of exchanged messages

is 18.

In this particular example, it can be observed that, in

terms of time, the adaptive grain saves a 20% of the time

compared to using the mutant-level and test-level grains.

With respect to the total quantity of messages exchanged

between processes, the mutant-level grain saves 66% and

200% of messages compared with adaptive and test-level

grain, respectively. It is worth mentioning that, for the sake

of simplicity, the overhead generated by inter-process

communications has been omitted. Hence, the total time

required to execute the test-level distribution algorithm in a

real environment would be increased in comparison to the

adaptive and mutant-level grains. In summary, the adaptive

grain achieves a good compromise between the percentage

of computational resources usage and the number of mes-

sages interchanged during the MuT process.

4.3 Parallel compilation

Since generating a high number of mutants is necessary for

achieving a high level of reliability, MuT is considered a

computationally expensive testing technique. In addition to

the time required to execute the test suite over the mutant

set, the time required to compile all the mutants must also

be taken into consideration. Hence, it has been recognized

that the compilation phase has an adverse effect on the

speedup [52]. Let us remark that the compilation is

Fig. 2 Workload distribution using the adaptive, mutant-level and

test-level distributions

Cluster Computing

123

performed at runtime, as part of the MuT process and

therefore, it contributes to the total execution time of the

MuT process.

For illustration, consider again the iText application

mentioned in the introduction. The entire mutant set con-

sists of 126,781 mutants and the compilation of each

mutant takes an average of 2.1 s. In this case, the time

required to complete the compilation phase, using a single

processor, exceeds 73.95 h.

In order to mitigate this issue, we propose to use all the

available processes in the compilation phase. In this way,

since the processes do not need to send back data to the

process that coordinates the compilation, the overall time is

reduced—approximately—as many times as processes are

available.

Figure 3 illustrates the parallel compilation. Initially, the

master process compiles the original program � and cal-

culates the number of mutants that must be compiled by

each worker process `. The main idea is to provide to each

worker the same quantity of mutants to compile. Therefore,

this quantity is calculated as the ratio between the number

of mutants and the total number of worker processes. Then,

the master process sends the range of mutants to the

workers ´. At this point, the workers sequentially compile

the mutants that correspond to the provided range ˆ.

Finally, the master process waits, until all the worker

processes have finished the compilation task, to continue

the MuT process.

4.4 Parallel detection of equivalent
and duplicated mutants

Discerning whether two programs are equivalent is an

undecidable problem [34]. Hence, within the scheme of

MuT, this implies an additional human effort to detect

equivalent mutants. It is worth mentioning that testing this

kind of mutants requires a high quantity of computational

resources. This is because their behaviour is identical to the

original program, and so, in order to test these mutants the

complete test suite needs to be executed. Moreover, these

executions do not provide additional information to the

MuT process, since this kind of mutants cannot be killed.

In fact, some studies show that—depending on the program

and the selected mutation operators—the percentage of

equivalent mutants generated in a MuT process can range

from 17 to 48% [63], which can be considered a high waste

of time and computational resources.

For these reasons, this problem is considered as one of

the main drawbacks for the adoption of MuT by the

industry [13]. During the last years, several heuristics have

been proposed to alleviate this problem. One of the most

relevant—due to its simplicity and effectiveness—is

TCE [24], which is a simple but powerful technique for

detecting both equivalent and duplicated mutants. This

technique consists in comparing the compilation binaries of

the original program and the mutant. Its rationale is that

compiler optimisations may result in the same compiled

binaries for several syntactically different programs that

perform the same function. However, the application of

these heuristics requires a long execution time, usually due

to I/O bottlenecks, which limits the overall performance of

MuT.

The complexity of applying detection heuristics is

shown in the iText application, where applying the TCE

technique over the 126,781 mutants could take an overall

time of 7 min (around 0.0033 s per mutant). In order to

face this challenge, we focus on speeding-up the MuT

process by avoiding the total time needed to test the

detected equivalent mutants, while reducing the time

required to apply the equivalent detection techniques.

Thus, we propose to adapt the scheme of the TCE for

analysing the mutant set to be executed over large-scale

systems.

Figure 4 illustrates the main scheme of the proposal.

Initially, the master process calculates the checksum of the

original program �. Then, the master splits the mutant set

in parts `, dividing the set equally between the number of

worker processes, and distributes the parts among the

workers ´. At this point, each worker receives a subset of

mutants and sequentially applies the TCE technique to all

the mutants assigned ˆ. Once the TCE has been com-

pletely applied, the workers send a list of checksums cor-

responding to each assigned mutant ˜. Finally, once the

master process receives all the checksum lists ¯, it per-

forms two analyses: the comparison between the checksum

Fig. 3 Scheme of the parallel compilation

Fig. 4 Scheme of the parallel TCE

Cluster Computing

123

of the original program and the checksum of all the

mutants, and the comparison between checksum of all the

mutants between them. The former targets detecting

equivalent mutants, and the latter detects duplicated

mutants, that is, mutants that are equivalent between them.

4.5 Tool support

We have developed a tool, called Parallel manager, which

realizes the framework proposed in this work to automat-

ically conduct parallel MuT. Figure 5 shows the basic

architecture of Parallel manager. The left part depicts how

the master and worker processes are deployed among the

available computing nodes of the cluster. These nodes must

contain a shared folder that is allocated in the different

storage nodes of the cluster. Let us remind that the access

to the data heavily depends on how the file system of the

cluster is configured. Thus, parallel and distributed file

systems should significantly improve the overall system

performance. In essence, the shared folder stores the Par-

allel manager tool and the MuT tool to create the mutants

and the test suite, which are also stored in the same folder.

The main phases of the MuT process are managed by

this tool and are depicted at the right of the figure, namely,

executing the test cases over the application under study,

generating mutants, compiling the mutants, analysing

equivalent mutants, executing the test cases over the

mutants and comparing the obtained results with the ones

obtained in stage to determine whether the test cases can

detect the mutants.

In addition to the improvements proposed in this paper,

Parallel manager includes some of the most important

techniques and distribution algorithms existing in the cur-

rent literature. With respect to the distribution algorithms,

the tool includes both static and dynamic strategies, an

adapted version of DMBO [52], DTC [51], PEDRO [53],

EMINENT [23], and the Dynamic adaptive algorithm (la-

belled as A1, A2, A3, A4 and A5, respectively). Regarding

the improvement techniques, the tool includes distributing

the test suite among the available processes (T1), sorting

the test suite before executing test cases (T2), scatter

improvement (T3), clustering equivalent mutants (T4) [20],

parallel compilation (T5) and parallel checksum (T6).

It is important to remark that Parallel manager is

independent from the mutation engine used to generate

both mutants and test suites, such as MuJava [25] and

Milu [26], which can be easily included in this framework.

The unique requirement that the MuT tool must fulfil is

command line support. In this way, Parallel manager

invokes the MuT engine via command line for carrying out

different operations, such as creating the mutants set and

executing the test suite over the mutants. The execution of

the test cases can also be conducted in standalone mode,

that is, the test cases—once created—are executed directly

by Parallel manager without using an additional MuT tool.

Fig. 5 Tool support for the parallel MuT for large scale systems

Cluster Computing

123

Parallel manager has been designed to be used in large

HPC environments. For this purpose, the tool uses MPI to

interchange data between processes. The logical process

schema is shown at the bottom-left of Fig. 5, and is based

on a master/worker pattern. In this way, the master process

orchestrates the MuT process and distributes the workload

among the workers, following one of the distribution

algorithms supported by the tool (A1, A2, A3, A4 or A5).

Finally, the tool also supports sequential MuT execution—

not based on a master/worker pattern, but on a single

process—which can be used to calculate the speed-up

obtained in the parallel execution.

5 Experiments

This section presents a thorough empirical study to show

the efficiency of our approach for improving the perfor-

mance of the MuT process in large-scale systems. Firstly,

in Sect. 5.1, we formulate the research questions we aim to

answer. Next, Sect. 5.2 describes the experimental setting

and procedure of the study. The results obtained are pre-

sented in Sect. 5.3. Finally, we discuss the results and

answer the research questions in Sect. 5.4.

5.1 Research questions

Our empirical study seeks to answer the following research

questions (RQs):

RQ1 How suitable are the current distribution algo-

rithms to parallelise the MuT process? Evaluating

large test suites for testing real-world applications

requires vast amounts of computational power.

Currently, there exist several distribution algo-

rithms that exploit the parallelism of multi-core

systems—and small clusters—to reduce the time

required to complete this task. However, we think

that these algorithms do not consider the potential

drawbacks that may appear when the MuT process

is executed over a distributed system using a large

number of processes (see Sect. 3). Hence, we for-

mulate the hypothesis that the current distribution

algorithms are not suitable to be applied in large-

scale system and, thus, we investigate how suit-

able are them for parallelizing the testing process.

RQ2 How effective is our proposed distribution algo-

rithm to improve the overall performance of the

MuT process in large-scale systems? The proposed

distribution algorithm has been designed to max-

imise the exploitation of the shared computational

resources—of the target system—and to minimise

the inter-process communications, avoiding system

bottlenecks and speeding-up the execution of the

MuT process. We are interested in studying the

scalability and efficiency of this algorithm when it

is executed among the available CPU-cores of a

large-scale system. To answer this question, we

have designed a wide spectrum of experiments

where both an existing algorithm, and our

approach, are deployed and executed in a large-

scale system using different configurations.

RQ3 What techniques are appropriate to improve the

performance of the MuT process in large-scale

systems? In essence, the MuT process includes

different tasks, like generating the test cases and

the mutants, compiling the mutants, and executing

the test cases over the mutants. Different tech-

niques can be applied to speed-up the execution of

these tasks, hence improving the overall perfor-

mance of the MuT process. However, some of

these tasks can be significantly improved when the

MuT process is executed in large-scale systems.

Since we differentiate the critical stages of the

testing process to locate potential bottlenecks, that

is, compiling the mutants and executing the test

cases, we are interested in investigating how our

two proposed techniques, focusing on improving

the compilation of mutants and detecting equiva-

lent mutants, impact on the overall performance of

the MuT process when it is executed in a large-

scale system. Additionally, we study how the cur-

rent techniques improve the overall performance in

large-scale systems.

5.2 Experimental setting and procedure

In order to check the scalability and performance of our

approach, we have carried out a thorough performance

study, for evaluating test suites, aimed at testing three

different real-world applications written in C. These

applications have been chosen to cover some of the most

representative computational paradigms (data-intensive

and CPU-intensive) [64-66]. The MuT process has been

conducted by using the core of MuTomVo [5], a frame-

work for mutating C applications, which has been adapted

to run as a standalone application in cluster environments.

Cluster Computing

123

Table 2 summarizes some features of the three appli-

cations used in this study, where the first three columns

show the name, size of the executable file, and the number

of lines of code (LOC), respectively. The next three col-

umns refer to the test suite environment, where Env. Size

represents the size of the testing environment, which

involves the input files required to execute the tests and the

executable files of the mutants, Seq. Time is the time to

completely execute the MuT process sequentially, that is,

one process—using the framework proposed in this work—

executes the test suite over the mutants using one CPU-

core, and TS Size is the number of test cases in the test

suite. The last four columns report the MuT process results,

where Mutants is the number of mutants generated to

evaluate the test suite, Killed is the number of mutants that

have been detected with the test suite, Equiv is the number

of equivalent mutants in the test suite, and MS is the

mutation score used to measure the effectiveness of a test

suite in terms of its ability to detect faults.

The first application (Filter) is a basic image filtering

program that transforms greyscale images into black and

white images. This filter is applied over BMP images [67].

In essence, this application reads the input image, applies

the filter to transform each input—greyscale—pixel into an

output—black or white—pixel, and writes the filtered

image to disk. This application consists of 500 LOC and its

executable is 17 kBytes. In order to apply the test cases, we

have generated a collection of 800 different BMP greyscale

images. The total size of these images is 1.7 GBytes. The

second application is the Bzip2 compressor,3 which uses

the Burrows–Wheeler block sorting text compression

algorithm and Huffman coding to perform the compression

process [68]. This application has 7000 LOC and, once

compiled, its executable size is 212 kBytes. Basically, this

application loads a file stored in disk and compresses it

contents. The compressed data is stored in memory and,

therefore, new files are not created in the file system.

Similar to the previous application, we have generated a

collection of 800 input test files that requires 1.7 GBytes of

disk space. The executable files of the 13,000 mutants

require 1.5 GBytes of disk space. The third application

(FFT) is an open source library that calculates the Fast

Fourier Transform (in short, FFT) .4 This application

consists of 13,500 LOC and its executable is 354 kBytes.

This application does not require input files for executing

the test cases, but input parameters are passed through the

execution script. The total size required to store the exe-

cutable files of the 75,000 mutants is 48 GBytes.

To evaluate the test suites for testing these applications,

we have generated one mutant set for each application (see

column Mutants in Table 2). These mutants have been

created by seeding faults in the original code of these

applications using the MuToMVo framework [5]. The idea

is to execute the test cases over the original applications,

and over the mutants, analysing the obtained outputs, and

checking if the test cases can detect the mutants, or not. It

is worth mentioning that the results shown in Table 2 have

been obtained without any improvement applied.

These experiments have been performed in Cirrus,

which is a state-of-the art SGI ICE XA system with 280

compute nodes, and Lustre as the file system. Cirrus runs

the CentOS Linux distribution, and has a range of software,

libraries and tools available.5 Cirrus standard compute

nodes contain two 2.1 GHz, 18-core Intel Xeon E5-2695

(Broadwell) series processors. Each core supports two

hardware threads (Hyperthreads), which are enabled by

default. The standard compute nodes on Cirrus have 256

GB of memory shared between both processors.

Since we are interested in investigating how suitable is

our approach to speed-up the MuT process, we first need to

calculate the time required to evaluate a test suite using a

sequential execution. This value—measured in seconds—is

shown in the column labelled as Seq. Time of Table 2.

In this study we use two load distribution algorithms for

executing the MuT process. The first algorithm assigns

tasks—to each process—consisting in executing one test

case over a single mutant. Since the test cases are assigned

to each process individually, this algorithm requires to send

and receive a high number of messages between processes.

Table 2 Summary of the applications and environments used to carry out the MuT process

Application data Test suite data MuT process results

Name Execut. size (kb) LOC Env. size (Gb) Seq. time (s) TS size Mutants Killed Equiv MS (%)

Filter 12 500 1.7 3570 1000 250 152 16 65

Bzip2 212 7000 3.2 320,740 800 13,000 4060 5000 51.6

FFT 354 13,500 48 919,825 975 75,000 31,723 28,896 68.8

3 Available at: https://sourceforge.net/projects/bzip2/.

4 Available at: https://www.kurims.kyoto-u.ac.jp/*ooura/fft.html.
5 https://www.cirrus.ac.uk/about/.

Cluster Computing

123

https://sourceforge.net/projects/bzip2/
https://www.kurims.kyoto-u.ac.jp/%7eooura/fft.html
https://www.cirrus.ac.uk/about/

From now on, we refer to this algorithm as Test-level

slicing algorithm. The second algorithm used in this study

is the one we propose in this paper, which we call the

Dynamic adaptive algorithm. Basically, this algorithm has

been designed to maximise the exploitation of the com-

putational resources of the target system while reducing the

inter-process communications.

In order to check the scalability these algorithms, the

MuT process has been executed using a different number

of processes over Cirrus. It is important to mention that the

processes are executed in a dedicated CPU-core and, thus,

there is no competition for obtaining the CPU. Addition-

ally, we are interested in investigating the suitability of the

existent techniques—focused on improving the different

stages of the MuT process—to speed-up the execution of

the MuT process in large-scale systems. Table 3 sum-

marises the techniques investigated in this study, where the

first column represents the source of the strategy, the sec-

ond column represents the strategy ID, and the third col-

umn shows a description of the technique. The first row

(T0) is the baseline strategy, where no improvements are

applied, that is, the test cases are assigned to each process

using a load distribution algorithm and no additional

techniques are applied during the MuT process. The next

four rows (T1–T4) represent strategies that have been

analysed in the past [20]. T1 parallelises the execution of

the test suite over the original application, T2 sorts the test

suite by using the execution time of each test case as

sorting criteria, T3 is the technique that enhances the test

case distribution maximising the number of mutants that

are being analysed at the same time, that is, with this

improvement each single process executes single test case

over a different mutant. T4 implements the TCE technique

to detect equivalent mutants.

The next two rows represent our proposed techniques,

namely T5 and T6, which focus on parallelising the com-

pilation of mutants and detecting equivalent mutants,

respectively. These strategies were described in detail in

Sects. 4.3 and 4.4, respectively. T5 compiles the mutant set

in parallel and T6 parallelises the detection of equivalent

mutants.

Overall, the procedure used in this empirical study is the

following:

(i) First, we choose an application to apply the testing

process. In this case we use the applications shown

in Table 2.

(ii) For each application, we create a test suite and a

set of mutants.

(iii) The test suite is executed over the application

under test.

(iv) The test cases are sequentially executed over each

mutant. Once finished, the mutation score is

calculated. The time required for this task

(Seq. Time) is taken as the baseline to measure

the speed-up when the testing process is executed

in a distributed environment.

(v) The MuT process is executed—for each applica-

tion—in a distributed system using a different

number of processes, ranging from 32 to 1024.

Additionally, different techniques (those in

Table 3) are applied in different stages of the

MuT process to analyse its suitability for improv-

ing the overall performance in large-scale systems.

(vi) Finally, the results are analysed and discussed in

detail.

5.3 Measuring the quality of test suites
by applying mutation testing over large-
scale systems

Next, we present the MuT evaluation results on each

application of Table 2. In particular, the MuT results for

Filter are described in Sect. 5.3.1, those for Bzip2 are

shown in Sect. 5.3.2, and the ones for FFT in Sect. 5.3.3.

Table 3 Summary of the techniques applied to improve the different stages of the MuT process

Source ID Stage Description

N/A T0 N/A No improvement is applied

Existing techniques T1 Test execution Distributing the test suite among the available processes

T2 Test execution Sorting the test suite before executing test cases

T3 Test execution Scatter distribution

T4 Detection of equivalent mutants Clustering equivalent mutants

New proposed techniques T5 Compilation Parallel compilation

T6 Detection of equivalent mutants Parallel checksum

Cluster Computing

123

5.3.1 Testing the Filter application

In the first place, we perform the testing process over the

Filter application. In this case, we execute a test suite

consisting of 1000—randomly created—test cases over the

original source code of this application. The total time

required to execute the test suite is 57 s, and the time

required to completely execute the MuT process is 3570 s.

Figure 6a shows the execution time of each test case over

the original program, where the x-axis represents the test

case ID—ranging from 0 to 999—and the y-axis shows the

execution time measured in milliseconds. The majority of

the test cases requires few milliseconds (30–40) to be

executed. However, we noticed that the test cases with IDs

1–8, 401–408 and 801–818, require a significantly greater

amount of time—between 250 and 1100 milliseconds—for

being executed. In these particular cases, the filter is

applied to large images, which require more CPU power to

be processed.

Figure 6b shows the time required to compile the

mutants for testing the Filter application. The speed-up

obtained grows linearly when the number of processes used

for this task is below 256. However, since the total number

of mutants to be compiled is 250, and one mutant can only

be compiled by one process, using a greater number of

processes keeps some CPU cores idle, hence limiting the

overall performance. In the best case scenario, the speed-up

obtained for this task reaches 158 when 256 processes are

used.

Next, we study the obtained performance when the two

distribution algorithms are used to check the test suite for

testing the Filter application. In this case, 1000 test cases

are executed over 250 mutants. Additionally, we use the

current existing techniques (T1, T2, T3 and T4) to analyse its

suitability to improve the performance of the MuT process

in large-scale systems. Let us remind that T0 means that no

improvement is applied during the MuT process. Figure 7

depicts the results of this experiment, where Fig. 7a shows

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

Ex
ec

ut
io

n
tim

e
(i

n
m

s)

Test case

(a) Execution time of the test suite

 20

 40

 60

 80

 100

 120

 140

 160

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes

(b) Compilation time of the mutants set

Fig. 6 Execution of the test suite over the original Filter application (left) and compilation of the mutants (right)

 5

 10

 15

 20

 25

 30

 35

 40

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes
T0
T1

T2
T3

T4

(a) Test-level slicing algorithm

 5

 10

 15

 20

 25

 30

 35

 40

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes
T0
T1

T2
T3

T4

(b) Dynamic adaptive algorithm

Fig. 7 Speed-up of the test execution stage when techniques T0–T4 are applied to test the Filter application

Cluster Computing

123

the speed-up when the Test-level slicing algorithm is used,

and Fig. 7b shows the speed-up when Dynamic adaptive

algorithm is used. The x-axis depicts the number of pro-

cesses involved in the MuT process, while y-axis shows the

speed-up obtained.

Broadly speaking, both algorithms provide similar

results. Using load distribution algorithms without apply-

ing additional techniques (see the series for T0) provides a

speed-up of 17 in the best case scenario, that is, using the

Dynamic adaptive algorithm and 1024 processes. The

speed-up obtained for the techniques T1, T2 and T4 follows

a similar tendency for both algorithms. However, it is

noticeable that T1 is slightly better than T2 and T4. In this

case, sorting the test suite (T2) before executing the test

cases is not suitable to boost the execution of the MuT

process. This figure shows that the technique that provides

the best results is T3, which avoids the execution of the

same test case over the same mutant in different processes.

Thus, combining T3 with both algorithms significantly

improves the overall performance, reaching a speed-up of

38 and 36 when the Test-level slicing algorithm and

Dynamic adaptive algorithm are used, respectively. We

notice that the speed-up is not improved when more than

256 processes are used to execute the MuT process. This

situation occurs because the I/O system is saturated and

acts as a system bottleneck. Since each test reads an image

from disk and, once filtered, writes the resulting image to

disk, the I/O operations performed during the execution of

a test case are significantly more time consuming than the

computational operations executed to carry out the filtering

process. Consequently, a high number of processes con-

currently reading and writing images from/to the file sys-

tem saturates the storage systems, causing a system

bottleneck, hence limiting the speed-up obtained by the

exploitation of the computational resources.

The following experiments aim at studying how the new

proposed techniques (T5 and T6), focused on the stages of

compiling mutants and detecting equivalent mutants,

respectively, improve the overall performance of the MuT

process. For this, both distribution algorithms are used in

two different scenarios. First, we analyse the results

obtained when no technique for improving the detection of

equivalent mutants is applied, that is, only T1 and T3 are

used. Secondly, we combine the techniques T1, T3, T4 and

T6 to execute the MuT process. These results are shown in

Fig. 8. For the sake of clarity, the results obtained when T5

is applied are shown in Table 4, where the time required to

execute the different stages of the MuT process are

presented.

The results of this experiment clearly show that the

Dynamic adaptive algorithm outperforms Test-level slicing

algorithm, reaching a speed-up of 72 when 1024 processes

are used. However, it is interesting to note that the current

techniques, that is, T1 and T3, provide better results than the

ones obtained when the new technique T6 is used. Since

testing the Filter application requires reading and writing a

high number of images from/to the storage system, hence

collapsing the storage system, the improvement obtained

when the computational part of the testing process is par-

allelised, remains hidden. Thus, the major part of the test

execution stage is spent in I/O operations, which clearly

saturates the system. Nevertheless, these techniques pro-

vide better results when the Dynamic adaptive algorithm is

used to distribute the test cases.

5.3.2 Testing the Bzip2 application

Next, we report on the MuT process results for the Bzip2

application. Figure 9a shows the time required to execute

each test case over the original program, while Fig. 9b

 10

 20

 30

 40

 50

 60

 70

 80

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes
T1,T 3

T1,T 3,T 4,T 6

(a) Test-level slicing algorithm

 10

 20

 30

 40

 50

 60

 70

 80

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes
T1,T 3

T1,T 3,T 4,T 6

(b) Dynamic adaptive algorithm

Fig. 8 Speed-up of the test execution stage when techniques T1, T3, T4 and T6 are applied to test the Filter application

Cluster Computing

123

Table 4 Summary of the results obtained in the empirical study

Application Algorithm # Proc. Techniques Gen. Mut. Comp. Det. Equiv. Exec. Total

Filter Test-level slicing 512 T1,T3 0.32 39.44 – 54 93.76

T1,T3,T5 0.32 0.27 – 54 54.59

T1,T3,T4 0.32 39.44 0.5 95.9 136.1

T1,T3,T4,T6 0.32 39.44 0.074 95.9 142.18

T1,T3,T4,T5,T6 0.32 0.27 0.074 95.9 96.59

1024 T1,T3 0.32 39.44 – 52 91.76

T1,T3,T5 0.32 0.24 – 52 52.56

T1,T3,T4 0.32 39.44 0.5 93.9 134.18

T1,T3,T4,T6 0.32 39.44 0.074 93.9 133.76

T1,T3,T4,T5,T6 0.32 0.24 0.074 93.9 94.56

Dynamic adaptive 512 T1,T3 0.32 39.44 – 49 88.76

T1,T3,T5 0.32 0.27 – 49 49.59

T1,T3,T4 0.32 39.44 0.5 68.9 109.18

T1,T3,T4,T6 0.32 39.44 0.074 68.9 108.76

T1,T3,T4,T5,T6 0.32 0.27 0.074 68.9 69.59

1024 T1,T3 0.32 39.44 – 48 87.76

T1,T3,T5 0.32 0.24 – 48 48.56

T1,T3,T4 0.32 39.44 0.5 67.9 108.18

T1,T3,T4,T6 0.32 39.44 0.074 67.9 107.76

T1,T3,T4,T5,T6 0.32 0.24 0.074 67.9 68.56

Bzip2 Test-level slicing 512 T1,T3 10.5 28,555 – 2883 31,448.5

T1,T3,T5 10.5 82 – 2883 2975.5

T1,T3,T4 10.5 28,555 19.5 2216.55 30,801.55

T1,T3,T4,T6 10.5 28,555 0.45 2216.55 30,782.5

T1,T3,T4,T5,T6 10.5 82 0.45 2216.55 2309.5

1024 T1,T3 10.5 28,555 – 2700 31,265.5

T1,T3,T5 10.5 62 – 2700 2772.5

T1,T3,T4 10.5 28,555 19.5 2037.75 30,622.75

T1,T3,T4,T6 10.5 28,555 0.25 2037.75 30,603.5

T1,T3,T4,T5,T6 10.5 62 0.25 2037.75 2110.5

Dynamic adaptive 512 T1,T3 10.5 28,555 – 2650 31,215.5

T1,T3,T5 10.5 82 – 2650 2742.5

T1,T3,T4 10.5 28,555 19.5 2037.55 30,622.55

T1,T3,T4,T6 10.5 28,555 0.45 2037.55 30,603.5

T1,T3,T4,T5,T6 10.5 82 0.45 2037.55 2130.5

1024 T1,T3 10.5 28,555 – 2500 31,065.5

T1,T3,T5 10.5 62 – 2500 2572.5

T1,T3,T4 10.5 28,555 19.5 1922.75 30,507.75

T1,T3,T4,T6 10.5 28,555 0.25 1922.75 30,488.5

T1,T3,T4,T5,T6 10.5 62 0.25 1922.75 1995.5

FFT Test-level slicing 512 T1,T3 150.4 405,584 – 4934 410,128.4

T1,T3,T5 150.4 1233 – 4934 5777.4

T1,T3,T4 150.4 405,584 90 3299.5 416,522.5

T1,T3,T4,T6 150.4 405,584 0.5 3299.5 409,034.4

T1,T3,T4,T5,T6 150.4 1233 0.5 3299.5 4683.4

1024 T1,T3 150.4 405,584 – 3950 409,684.4

T1,T3,T5 150.4 698 – 3950 4798.4

T1,T3,T4 150.4 405,584 90 2999.7 416,232.5

Cluster Computing

123

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800

Ex
ec

ut
io

n
tim

e
(i

n
m

s)

Test case

(a) Execution time of the test suite

 0

 100

 200

 300

 400

 500

 600

 700

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes

(b) Compilation time of the mutants set

Fig. 9 Execution of the test suite over the original Bzip2 application (left) and compilation of the mutants (right)

 20

 40

 60

 80

 100

 120

 140

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes
T0
T1

T2
T3

T4

(a) Test-level slicing algorithm

 0

 20

 40

 60

 80

 100

 120

 140

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes
T0
T1

T2
T3

T4

(b) Dynamic adaptive algorithm

Fig. 10 Speed-up of the test execution stage when techniques T0–T4 are applied to test the Bzip2 application

Table 4 (continued)

Application Algorithm # Proc. Techniques Gen. Mut. Comp. Det. Equiv. Exec. Total

T1,T3,T4,T6 150.4 405,584 0.3 2999.7 408,734.4

T1,T3,T4,T5,T6 150.4 698 0.3 2999.7 3848.4

Dynamic adaptive 512 T1,T3 150.4 405,584 – 3575 409,309.4

T1,T3,T5 150.4 1233 – 3575 4958.4

T1,T3,T4 150.4 405,584 90 2689.5 415,912.5

T1,T3,T4,T6 150.4 405,584 0.5 2689.5 408,424.4

T1,T3,T4,T5,T6 150.4 1233 0.5 2689.5 4073.4

1024 T1,T3 150.4 405,584 – 3150 408,884.4

T1,T3,T5 150.4 698 – 3150 3998.4

T1,T3,T4 150.4 405,584 90 2236.7 408,061.18

T1,T3,T4,T6 150.4 405,584 0.3 2236.7 407,971.4

T1,T3,T4,T5,T6 150.4 698 0.3 2236.7 3085.4

Cluster Computing

123

depicts the speed-up obtained when compiling all the

generated mutants over a range of 32–1024 processes. In

this case, we notice that the major part of the test cases

requires less than 100 milliseconds to be executed. Some

peaks appear in this chart, which represent the execution of

some test cases that compress large files and, consequently,

require more computational operations to be completed.

Regarding the compilation of the mutants, the performance

obtained to accomplish this task linearly grows with the

total number of processes used. In this particular case

13,000 mutants are compiled and the technique T5 effi-

ciently exploits the parallelization of the computational

resources, reaching a speed-up of 600.

Figure 10 shows the results obtained from testing the

Bzip2 application using the current techniques to improve

the performance of the MuT process. In contrast to the

previous experiment, where the Filter application was

tested, each test case reads a file to be compressed and the

generated data is allocated in memory, and not stored in

disk. Consequently, the storage system is less saturated

than in the previous experiment and the bottleneck in the

storage system is alleviated, hence allowing to increase the

overall system performance. In this particular case, we

notice that the applied techniques provide similar results. It

is worth mentioning that T3 shows a slightly better per-

formance than the rest of the techniques. Regarding the

load distribution algorithm, we notice that the Dynamic

adaptive algorithm provides better results than the Test-

level slicing algorithm, especially when a high number of

processed are used, reaching in the best case scenario a

speed-up of 120.

Figure 11 depicts the results obtained when different

techniques are combined to improve the MuT process. In

contrast to the previous application, combining T1, T3, T4

and T6 with the Dynamic adaptive algorithm provides the

best results, reaching in the best case scenario a speed-up

of 126 (using 1024 processes). In general, the Dynamic

adaptive algorithm provides slightly better results than the

ones obtained when the Test-level slicing algorithm is used.

Both algorithms show a similar scalability when the

number of processes is increased.

5.3.3 Testing the FFT application

The last application to be tested is FFT. The chart in

Fig. 12a shows the execution time over the original pro-

gram of each test case. Although the average execution

time of these test cases is approximately 50 milliseconds,

there is a significant number of test cases that require more

than 100 milliseconds to be executed. Figure 12b shows

the time required to compile the 75,000 mutants involved

in the MuT process. The number of mutants is significantly

greater than the number of processes and, therefore, this

stage can be parallelised to exploit the parallelism of the

computational resources provided by the target system. Let

us remark that 1024 CPU-cores are used for this task,

reaching a speed-up of approximately 600 in this case.

Figure 13 shows the results obtained to carry out the

MuT process over FFT when the Test-level slicing algo-

rithm (see Fig. 13a) and Dynamic adaptive algorithm (see

Fig. 13b) are used. As with the previous application, in this

case techniques T0, T1, T2 and T4 provide similar results.

On the contrary, when T3 is applied, a noticeable increment

in the overall performance is shown in these charts. Since

this application performs computing operations massively,

the techniques focused on optimizing the execution of the

test cases have a clear positive impact on the overall per-

formance. This scenario occurs for both algorithms.

However, the Dynamic adaptive algorithm clearly

 20

 40

 60

 80

 100

 120

 140

 160

 180

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes
T1,T 3

T1,T 3,T 4,T 6

(a) Test-level slicing algorithm

 20

 40

 60

 80

 100

 120

 140

 160

 180

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes
T1,T 3

T1,T 3,T 4,T 6

(b) Dynamic adaptive algorithm

Fig. 11 Speed-up of the test execution stage when T1, T3, T4 and T6 are applied to test the Bzip2 application

Cluster Computing

123

outperforms Test-level slicing algorithm, obtaining a

speed-up of 200 when 1024 processes are involved in the

MuT process.

The results obtained when different techniques are

applied to both distribution algorithms, for testing the FFT

application, are depicted in the Fig. 14a and b. In this case,

the Dynamic adaptive algorithm clearly provides the best

results, reaching in the best case scenario a speed-up of

400. On the contrary, using the Test-level slicing algorithm

provides—in the best case scenario—a speed-up of 300.

The main reason for this difference lies in the nature of the

application being tested, which massively executes CPU

operations. Let us remind that this application does not

perform I/O operations. Hence, the Dynamic adaptive al-

gorithm, when combined with T6, efficiently exploits the

CPUs of the system, which provides promising results

outperforming the rest of the techniques when combined

with the Test-level slicing algorithm.

5.4 Discussion of the results and answers
to the research questions

This section discusses the results of the empirical study,

and answers the research questions formulated in Sect. 5.1.

5.4.1 Discussion of the experiment results

Table 4 presents a summary of the results of the experi-

ments. For the sake of clarity, only the most representative

stages of the MuT process are shown. In essence, these

results show the time required to execute each stage of the

MuT process using a different number of processes, two

different load distribution algorithms and six techniques to

speed-up its execution (see Table 3). The first three col-

umns show the application being tested, the load distribu-

tion algorithm, and the number of processes involved in the

MuT process (# Proc.). The column labelled as Techniques

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 100 200 300 400 500 600 700 800 900

Ex
ec

ut
io

n
tim

e
(i

n
m

s)

Test case

(a) Execution time of the test suite

 0

 100

 200

 300

 400

 500

 600

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes

(b) Compilation time of the mutants set

Fig. 12 Execution of the test suite over the original FFT application (left) and compilation of the mutants (right)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes
T0
T1

T2
T3

T4

(a) Test-level slicing algorithm

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes
T0
T1

T2
T3

T4

(b) Dynamic adaptive algorithm

Fig. 13 Speed-up of the test execution stage when techniques T0–T4 are applied to test the FFT application

Cluster Computing

123

lists the techniques applied during the MuT process. The

next four columns represent the time (in seconds) required

to execute each stage of the MuT process, that is, gener-

ating mutants (Gen. Mut.), compiling mutants (Compila-

tion), detecting equivalent mutants (Det. Equiv.) and

executing test cases over the mutants (Exec.). The last

column, labelled as Total, shows the total time required to

completely execute the MuT process, measured in seconds.

In this study, generating the mutants seems to be a task

that requires low computational resources. Approximately,

this stage requires between 0.6%—in the Filter applica-

tion—and 5%—in the FFT application—of the total exe-

cution time.

On the contrary, the compilation stage is critical in the

MuT process. Here, a large number of mutants need to be

compiled, which requires high computational resources.

When technique T5 is not applied, this stage requires—

approximately—39, 28,000 and 405,000 s to compile the

mutants for testing the Filter, Bzip2 and FFT applications,

respectively. However, when the T5 is applied, the time

required to accomplish this task is reduced to 0.27, 82 and

1233 s, respectively. It is important to remark that this

technique significantly improves the overall performance

of the MuT process. For the sake of clarity, the experiments

using T5 are highlighted with a grey background in

Table 4.

Detecting equivalent mutants is another stage—like

generating mutants—that requires few computational

resources. In the column labelled as Det. Equiv., a ‘-’

symbol indicates that no equivalent mutants were detected.

In this study, the time required to accomplish this task for

testing the Filter, Bzip2 and FFT applications is reduced

from 0.5 to 0.074 s, from 19.5 to 0.25 s, and from 90 to

0.3 s, respectively, when T6 is applied. In general, this

technique provides a slight improvement in the total

execution time, which is more noticeable when a high

number of processes are used.

Another critical stage of the MuT process is the exe-

cution of the test cases over the mutants. This stage is the

most expensive one, in terms of computational resources,

to be completed. In this study, it requires between 70 and

99% of the total execution time, when T5 and T6 are

applied.

The empirical study has been designed to analyse the

scalability of different load distribution algorithms to

execute the MuT process in large-scale system and,

therefore, after a careful analysis of the results, we can

conclude that the Dynamic adaptive algorithm provides

better performance than the Test-level slicing algorithm.

Our proposed algorithm has been designed to maximise the

exploitation of computational resources while reducing the

inter-process communications. Table 4 shows in bold text

the best MuT process times over each tested application.

For the three applications, these results are obtained when

the Dynamic adaptive algorithm is executed using 1024

processes. In addition, the scalability of the algorithm is

reflected in the obtained results, where the execution time

is reduced when the number of processes increases.

In conclusion, the proposed techniques clearly improve

the overall performance of the MuT process. To check the

effectiveness of these techniques, different programs with

500, 7000, and 13,500 LoC have been selected, with a

sequential execution time of 3570, 320,740, and 919,825 s,

that is, 60 min, 72 h, and 10 days, respectively. All this is

translated in a reduction of the execution time from up to

10 days to 51 min, representing a time reduction of

99.66%.

 50

 100

 150

 200

 250

 300

 350

 400

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes
T1,T 3

T1,T 3,T 4,T 6

(a) Test-level slicing algorithm

 50

 100

 150

 200

 250

 300

 350

 400

32 64 128 256 512 1024

S
pe

ed
-u

p

of processes
T1,T 3

T1,T 3,T 4,T 6

(b) Dynamic adaptive algorithm

Fig. 14 Speed-up of the test execution stage when techniques T1, T3, T4 and T6 are applied to test the FFT application

Cluster Computing

123

5.4.2 Answer to the research questions

Next, we proceed to answer the formulated research

questions.

RQ1 How suitable are the current distribution algo-

rithms to parallelise the MuT process?

Regarding the Test-level slicing algorithm in terms of

performance, we obtain—in the best-case scenario—a

speed-up of 68, 156 and 303 for testing the Filter, Bzip2

and FFT applications, respectively, when 1024 are used to

execute the MuT process in parallel. These results show

that this algorithm provides an acceptable scalability,

increasing the speed-up of the MuT process when a high

number of processes are deployed in a large system.

We notice that the speed-up obtained heavily depends

on the nature of the application being tested. Thus, the

applications that require a massive utilization of the storage

system, like the Filter application, generate a system bot-

tleneck, which limits the overall performance. This bot-

tleneck is alleviated when the MuT process is applied over

the Bzip2 application which is clearly reflected in the

obtained results. In the case where the storage system

doesn’t act as a system bottleneck, that is, when FFT is the

application under test, the speed-up reaches 300.

Thus, the answer to this question is that the Test-level

slicing algorithm can be used in large-scale system, pro-

viding acceptable results.

RQ2 How effective is our proposed distribution algo-

rithm to improve the overall performance of the MuT

process in large-scale systems?

The empirical study provides detailed results that show a

clear improvement in the overall system performance when

the Dynamic adaptive algorithm is applied to carry out the

MuT process. In particular, our proposed algorithm out-

performs the Test-level slicing algorithm by increasing the

speed-up obtained by 7.3%, 4.4% and 36.9% when the

applications Filter, Bzip2 and FFT, respectively, are tested.

It is interesting to remark that the applications that

massively perform computing operations, like FFT, pro-

vide the best results. In addition, in those cases where a

subsystem—like the storage system—acts as a system

bottleneck, our proposed algorithm efficiently exploits the

shared resources, hence increasing the speed-up and, con-

sequently, the overall performance.

After a careful analysis of the results presented in

Table 4 we state that our proposed algorithm efficiently

exploits the shared resources of the system, clearly out-

performing other algorithms, like the Test-level slicing

algorithm, even in those cases where there is a bottleneck

in the system.

RQ3 What techniques are appropriate to improve the

performance of the MuT process in large-scale systems?

As Table 4 shows, some stages of the MuT process are

critical in the overall performance, like compiling the

mutants and executing the test cases. In order to boost the

execution of these stages, we have proposed techniques T5

and T6, which clearly show a significant improvement in

the speed-up obtained when the MuT process is executed in

a large-scale system. Let us remark that the results pro-

vided when technique T5 is applied are shown with a grey

background. Similarly, the rest of the techniques, which

were studied in previous works [20, 23], have also been

designed to improve the performance of the MuT process.

The answer to this question is that T5 and T6 signifi-

cantly improve the overall system performance when the

MuT process is applied over the three applications. Simi-

larly, technique T3 also improves the overall performance,

especially when it is applied to testing the Filter and FFT

applications. Nevertheless, these techniques provide the

best results when the Dynamic adaptive algorithm is used

to distribute the test cases.

6 Threats to validity

In this section, we discuss the threats to validity of our

empirical study.

6.1 Internal threats

Internal validity concerns whether our findings, which are

based on the obtained results from the empirical study,

truly represent a cause-and-effect relationship. Thus, the

internal validity of our study relies in the implementation

of our experiments.

The techniques proposed in this paper might not reflect

the expected behaviour due to implementation failures. In

order to mitigate this possible threat, we have implemented

different techniques found in the current literature, whose

results have been compared with the ones shown in the

original articles, and also compared with the results

obtained in this paper to check their suitability. In addition,

parallel executions of MuT must provide the same muta-

tion score as the sequential version. This fact is important

since the same MuT environment—consisting of the pro-

gram under test, the test suite, and the mutants—executed

both sequentially and in parallel, might provide different

mutation scores due to misconfigured parameters, like

timeouts. When parallel approaches provide a higher

mutation score than the one provided by the sequential

execution, it means that not all the test cases that have been

sequentially executed are also executed in the parallel

approach and, therefore, the overall execution time should

be considerably reduced. For instance, if a mutant becomes

mistakenly killed by the first test case, the rest of the test

Cluster Computing

123

cases are not executed and, consequently, the total execu-

tion time is reduced, hence providing a misinterpreted

improved performance.

The framework developed to conduct the experimental

phase has been tested by using unit tests, in addition to its

incremental testing during the development phase.

6.2 External threats

External validity concerns the extent to which the results of

a study can be generalised.

In our case, we have selected three different applica-

tions, which we consider representative of typical program

behaviours (CPU-intensive, disk-intensive). However, fur-

ther experiments with a wider variety of applications would

be required, since there is no guarantee that the obtained

results may be the same for other scenarios. In addition, we

have used Cirrus to conduct our experiment, going up to

1024 processes. We believe this number of processes is

enough to discover possible bottlenecks and issues in the

distribution algorithms.

It is worth remarking that the mutant-level distribution

has not been included in the comparison presented in

Sect. 5, since we obtain better results using the test-level

distribution, as it is shown in previous work [23]. Thus, we

focus on exploring different combinations of strategies to

analyse different scenarios using the test-level distribution

and adaptive grains. To that end, the selected applications

were tested by using a different number of processes—

ranging from 2 to 1024—seven different techniques, and

five combinations of two distribution algorithms. For this, a

total of 200,000 h of computing time in the Cirrus super-

computer were required to execute the experiments.

Finally, our experiments have targeted applications

written in the C language. However, we believe the results

would be applicable to other programming languages as

well. However, in our case, mutation has been performed at

the source-code level, and hence each mutant requires

recompilation. Programming languages like Java are

compiled into a bytecode representation, and executed by a

virtual machine. This way, there are MuT approaches for

Java that perform mutation at the bytecode level [69],

without the need to recompile. For this reason, the pro-

posed compiling optimisation not applies to byte-code

approaches. However, we believe that our Dynamic

adaptive algorithm would have substantial beneficial

effects in bytecode-level approaches to MuT.

6.3 Construct threats

Construct validity concerns whether the used measures are

representative or not.

The performance of the proposed approach is measured

using the speed-up obtained, which is a widely used mea-

sure in the community. The experiments were repeated

several times to alleviate the experimental variability

caused by the computational environment, that is, network

overload, operating system noise, and applications exe-

cuted by other users in the cluster, among others. In

addition, we measure the quality of the test suite finding

faults by using mutation score, a metric that is currently

considered a standard.

7 Conclusions and future work

In this paper, we have presented an HPC-based optimiza-

tion for the MuT process over large-scale systems. This

optimization consists of a set of strategies aimed at

improving the performance of the MuT process, such as

parallel compilation and parallel equivalent detection, and

a dynamic adaptive algorithm that adjust and distributes the

testing workload to the different worker processes.

Our proposal has been validated by a thorough experi-

mental study to evaluate its effectiveness and scalability. In

essence, the improvements proposed in this work have

been applied for testing three different applications in

several computational environments, which consist of a

different number of processes ranging from 2 to 1024.

After a comprehensive analysis, we have detected that the

speed-up of the MuT process depends on the nature of the

application under study. That is, if the application performs

a high number of storage operations, it may lead to a

system bottleneck and, consequently, the overall perfor-

mance is reduced. However, in those cases where the

application under test mainly performs computational

operations, the resources of the cluster are efficiently

exploited, hence providing a significant improvement in the

overall system performance. After a careful analysis of the

obtained results, we can conclude that the proposed

approaches are suitable to improve the MuT process in

large scale system. In fact, the proposed techniques sig-

nificantly reduce the total time required to conduct the

MuT process. In addition, it is worth to remark that the

Dynamic adaptive algorithm outperforms Test-level slicing

algorithm increasing the speed-up of the MuT process up

to 36.9%.

As future work, we plan to study and design compres-

sion techniques for reducing the size of the data exchanged

between processes, hence reducing the network traffic. We

are also interested in testing applications written in dif-

ferent programming languages, such as Java and Python.

To that end, we will design more experiments with dif-

ferent well-known MuT frameworks, like MuJava [25],

PiTest [69] and MutPy [70]. Finally, we plan to compare

Cluster Computing

123

the performance of the proposed techniques with other

existing HPC architectures, such as Spark and Cloud

computing.

Acknowledgements This work was supported by the Spanish

MINECO/FEDER project under Grants PID2021-122270OB-I00,

TED2021-129381B-C21 and PID2019-108528RB-C22, the Comu-

nidad de Madrid project FORTE-CM under Grant S2018/TCS-4314,

Project S2018/TCS-4339 (BLOQUES-CM) co-funded by EIE Funds

of the European Union and Comunidad de Madrid and the Project

HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the

EC Research Innovation Action under the H2020 Programme; in

particular, the author gratefully acknowledges the support of David

Henty of EPCC at University of Edinburgh and the computer

resources and technical support provided by EPCC.

Author contributions The first draft of the manuscript was written by

PCC and AN, and all authors commented and improved the previous

versions of the manuscript. All authors read and approved the final

manuscript. The study conception and design was conducted by PCC

and AN. Material preparation, data collection and analysis were

performed by PCC and AN.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature. This work was supported by the

Spanish MINECO/FEDER project under Grants PID2021-

122270OB-I00, TED2021-129381B-C21 and PID2019-108528RB-

C22, the Comunidad de Madrid project FORTE-CM under Grant

S2018/TCS-4314, Project S2018/TCS-4339 (BLOQUES-CM) co-

funded by EIE Funds of the European Union and Comunidad de

Madrid and the Project HPC-EUROPA3 (INFRAIA-2016-1-730897),

with the support of the EC Research Innovation Action under the

H2020 Programme.

Data availability The datasets generated during and/or analysed dur-

ing the current study are available from the corresponding author on

reasonable request.

Declarations

Conflict of interest The authors have no relevant financial or non-

financial interests to disclose.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Hierons, R.M., Merayo, M.G., Núñez, M.: Controllability through

nondeterminism in distributed testing. In: ICTSS, pp. 89–105

(2016). https://doi.org/10.1007/978-3-319-47443-4_6

2. EUROCAE (Agency). WG-12, RTCA (Firm). SC 167: Software

considerations in airborne systems and equipment certification.

Eurocae (1985). https://books.google.es/books?id=3CbxxwEA

CAAJ

3. Jordan, P.: Standard IEC 62304-medical device software–soft-

ware lifecycle processes (2006)

4. Palin, R., Ward, D., Habli, I., Rivett, R.: ISO 26262 safety cases:

compliance and assurance (2011)

5. Cañizares, P.C., Núñez, A., Merayo, M.G.: Mutomvo: mutation

testing framework for simulated cloud and HPC environments.

J. Syst. Softw. 143, 187–207 (2018). https://doi.org/10.1016/j.jss.

2018.05.010

6. Ali, M.M., Huda, S., Abawajy, J., Alyahya, S., Al-Dossari, H.,

Yearwood, J.: A parallel framework for software defect detection

and metric selection on cloud computing. Clust. Comput. 20(3),

2267–2281 (2017). https://doi.org/10.1007/s10586-017-0892-6

7. Rauf, A., Ramzan, M.: Parallel testing and coverage analysis for

context-free applications. Clust. Comput. 21(1), 729–739 (2018).

https://doi.org/10.1007/s10586-017-1000-7

8. Braiek, H.B., Khomh, F.: On testing machine learning programs.

J. Syst. Softw. 164, 110542 (2020). https://doi.org/10.1016/j.jss.

2020.110542

9. Fraser, G., Wotawa, F.: Redundancy based test-suite reduction.

In: International Conference on Fundamental Approaches to

Software Engineering, pp. 291–305. Springer (2007). https://doi.

org/10.1007/978-3-540-71289-3_23

10. Budd, T.: Mutation analysis of program test data. PhD Thesis,

Yale University (1980)

11. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data

selection: help for the practicing programmer. Computer 11(4),

34–41 (1978). https://doi.org/10.1109/C-M.1978.218136

12. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE

Trans. Softw. Eng. 3(4), 279–290 (1977). https://doi.org/10.1109/

TSE.1977.231145

13. Just, R., Kapfhammer, G.M., Schweiggert, F.: Using non-redun-

dant mutation operators and test suite prioritization to achieve

efficient and scalable mutation analysis. In: 23rd International

Symposium on Software Reliability Engineering, pp. 11–20.

IEEE (2012). https://doi.org/10.1109/ISSRE.2012.31

14. Klischies, D., Fögen, K.: An analysis of current mutation testing

techniques applied to real world examples. Full-scale Softw.

Eng./Curr. Trends Release Eng. 13, 52 (2016)

15. Možucha, J., Rossi, B.: Is mutation testing ready to be adopted

industry-wide? In: International Conference on Product-Focused

Software Process Improvement, pp. 217–232. Springer (2016).

https://doi.org/10.1007/978-3-319-49094-6_14

16. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Har-

man, M.: Mutation testing advances: an analysis and survey. In:

Advances in Computers, vol. 112, pp. 275–378. Elsevier, Ams-

terdam (2019). https://doi.org/10.1016/bs.adcom.2018.03.015

17. Dongarra, J.J., Meuer, H.W., Strohmaier, E., et al.: TOP500

supercomputer sites. Supercomputer 13, 89–111 (1997)

18. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: TOP 500 list.

Web page at http://www.top500.org (2020). Accessed 8 June

2020

19. Jia, Y., Harman, M.: An analysis and survey of the development

of mutation testing. IEEE Trans. Softw. Eng. 37(5), 649–678

(2011). https://doi.org/10.1109/TSE.2010.62

20. Cañizares, P.C., Núñez, A., de Lara, J.: OUTRIDER: optimizing

the mutation testing process in distributed environments. In: 17th

International Conference on Computational Science. ICCS’17,

pp. 505–514, Zurich (2017). https://doi.org/10.1016/j.procs.2017.

05.095

21. Reales, P., Polo, M.: Bacterio: Java mutation testing tool: a

framework to evaluate quality of tests cases. In: 28th Interna-

tional Conference on Software Maintenance. ICSME’12,

Cluster Computing

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-47443-4_6
https://books.google.es/books?id=3CbxxwEACAAJ
https://books.google.es/books?id=3CbxxwEACAAJ
https://doi.org/10.1016/j.jss.2018.05.010
https://doi.org/10.1016/j.jss.2018.05.010
https://doi.org/10.1007/s10586-017-0892-6
https://doi.org/10.1007/s10586-017-1000-7
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1016/j.jss.2020.110542
https://doi.org/10.1007/978-3-540-71289-3_23
https://doi.org/10.1007/978-3-540-71289-3_23
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1007/978-3-319-49094-6_14
https://doi.org/10.1016/bs.adcom.2018.03.015
http://www.top500.org
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1016/j.procs.2017.05.095
https://doi.org/10.1016/j.procs.2017.05.095

pp. 646–649. IEEE (2012). https://doi.org/10.1109/ICSM.2012.

6405344

22. Vercammen, S., Demeyer, S., Borg, M., Eldh, S.: Speeding up

mutation testing via the cloud: lessons learned for further opti-

misations. In: Proceedings of the 12th ACM/IEEE International

Symposium on Empirical Software Engineering and Measure-

ment, pp. 1–9 (2018). https://doi.org/10.1145/3239235.3240506

23. Cañizares, P.C., Merayo, M.G., Núñez, A.: EMINENT: embar-

rassingly parallel mutation testing. In: 16th International Con-

ference on Computational Science. ICCS’16, pp. 63–73 (2016).

https://doi.org/10.1016/j.procs.2016.05.298

24. Papadakis, M., Jia, Y., Harman, M., Traon, Y.L.: Trivial compiler

equivalence: a large scale empirical study of a simple, fast and

effective equivalent mutant detection technique. In: 7th Interna-

tional Conference on Software Engineering. ICSE ’15,

pp. 936–946. IEEE Press (2015). https://doi.org/10.1109/ICSE.

2015.103

25. Ma, Y., Offutt, A.J., Kwon, Y.R.: MuJava: an automated class

mutation system: research articles. Softw. Test. Verif. Reliab.

15(2), 97–133 (2005). https://doi.org/10.1002/stvr.308

26. Jia, Y., Harman, M.: MILU: a customizable, runtime-optimized

higher order mutation testing tool for the full C language. In:

Testing: Academic & Industrial Conference—Practice and

Research Techniques. TAIC’08, pp. 94–98. IEEE (2008). https://

doi.org/10.1109/TAIC-PART.2008.18

27. Gropp, W., Thakur, R., Lusk, E.: Using MPI-2: Advanced Fea-

tures of the Message Passing Interface. MIT Press, Cambridge

(1999)

28. Losada, N., González, P., Martı́n, M.J., Bosilca, G., Bouteiller,

A., Teranishi, K.: Fault tolerance of MPI applications in exascale

systems: the ULFM solution. Future Gener. Comput. Syst. 106,

467–481 (2020). https://doi.org/10.1016/j.future.2020.01.026

29. Laguna, I., Marshall, R., Mohror, K., Ruefenacht, M., Skjellum,

A., Sultana, N.: A large-scale study of MPI usage in open-source

HPC applications. In: Proceedings of the International Confer-

ence for High Performance Computing, Networking, Storage and

Analysis. SC ’19. Association for Computing Machinery, New

York (2019). https://doi.org/10.1145/3295500.3356176

30. Thakur, R., Balaji, P., Buntinas, D., Goodell, D., Gropp, W.,

Hoefler, T., Kumar, S., Lusk, E., Träff, J.L.: MPI at exascale.

Proc. SciDAC 2, 14–35 (2010)

31. Qureshi, K., Rashid, H.: A performance evaluation of RPC,

JAVA RMI, MPI and PVM. Malays. J. Comput. Sci. 18(2),

38–44 (2005)

32. Khan, R.Z., Ali, M.F.: A comparative study on parallel pro-

gramming tools in parallel distributed computing system: MPI

and PVM. In: Proceedings of the 5th National Conference (2011)

33. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appro-

priate tool for testing experiments? In: 27th International Con-

ference on Software Engineering. ICSE’05, pp. 402–411 (2005).

ACM. https://doi.org/10.1145/1062455.1062530

34. Budd, T.A., Angluin, D.: Two notions of correctness and their

relation to testing. Acta Inform. 18(1), 31–45 (1982)

35. Offutt, A.J., Craft, W.M.: Using compiler optimization tech-

niques to detect equivalent mutants. Softw. Test. Verif. Reliab.

4(3), 131–154 (1994). https://doi.org/10.1002/stvr.4370040303

36. Hierons, R.M., Harman, M., Danicic, S.: Using program slicing to

assist in the detection of equivalent mutants. Softw. Test. Verif.

Reliab. 9(4), 233–262 (1999)

37. King, K.N., Offutt, A.J.: A Fortran language system for mutation-

based software testing. Softw. Pract. Exp. 21(7), 685–718 (1991)

38. Hussain, S.: Mutation clustering. Masters Thesis, Kings College

London, Strand, London (2008)

39. Ji, C., Chen, Z., Xu, B., Zhao, Z.: A novel method of mutation

clustering based on domain analysis. In: SEKE, vol. 9,

pp. 422–425. CiteSeer (2009)

40. Mresa, E.S., Bottaci, L.: Efficiency of mutation operators and

selective mutation strategies: an empirical study. Softw. Test.

Verif. Reliab. 9(4), 205–232 (1999)

41. Polo, M., Piattini, M., Garcı́a-Rodrı́guez, I.: Decreasing the cost

of mutation testing with second-order mutants. Softw. Test. Verif.

Reliab. 19(2), 111–131 (2009)

42. Offutt, A.J., Rothermel, G., Zapf, C.: An experimental evaluation

of selective mutation. In: Proceedings of 1993 15th International

Conference on Software Engineering, pp. 100–107. IEEE (1993)

43. Jia, Y., Harman, M.: Constructing subtle faults using higher order

mutation testing. In: 2008 Eighth IEEE International Working

Conference on Source Code Analysis and Manipulation,

pp. 249–258. IEEE (2008)

44. Gopinath, R., Ahmed, I., Alipour, M.A., Jensen, C., Groce, A.:

Mutation reduction strategies considered harmful. IEEE Trans.

Reliab. 66(3), 854–874 (2017)

45. Chekam, T.T., Papadakis, M., Traon, Y.L., Harman, M.: An

empirical study on mutation, statement and branch coverage fault

revelation that avoids the unreliable clean program assumption.

In: 39th International Conference on Software Engineering

(ICSE’17), pp. 597–608 (2017)

46. Offutt, A.J., King, K.N.: A Fortran 77 interpreter for mutation

analysis. In: Papers of the Symposium on Interpreters and

Interpretive Techniques, pp. 177–188 (1987)

47. Baruch, O., Katz, S.: Partially interpreted schemas for CSP pro-

gramming. Sci. Comput. Program. 10(1), 1–18 (1988)

48. Untch, R.H., Offutt, A.J., Harrold, M.J.: Mutation analysis using

mutant schemata. In: Proceedings of the 1993 ACM SIGSOFT

International Symposium on Software Testing and Analysis,

pp. 139–148 (1993)

49. Ma, Y.-S., Kwon, Y.-R., Offutt, J.: Inter-class mutation operators

for Java. In: 13th International Symposium on Software Relia-

bility Engineering, 2002. Proceedings, pp. 352–363. IEEE (2002)

50. Offutt, A.J., Pargas, R.P., Fichter, S.V., Khambekar, P.K.:

Mutation testing of software using a MIMD computer. In: 21st

International Conference on Parallel Processing. ICPP’92,

pp. 255–266 (1992)

51. Kapfhammer, G.M.: Automatically and transparently distributing

the execution of regression test suites. In: Proceedings of the 18th

International Conference on Testing Computer Software, vol. 18

(2001)

52. Byoungju, C., Mathur, A.P.: High-performance mutation testing.

J. Syst. Softw. 20(2), 135–152 (1993)

53. Reales, P., Polo, M.: Parallel mutation testing. Softw. Test. Verif.

Reliab. 23(4), 315–350 (2013). https://doi.org/10.1002/stvr.1471

54. Hummel, S.F., Schonberg, E., Flynn, L.E.: Factoring: a method

for scheduling parallel loops. Commun. ACM 35(8), 90–101

(1992)

55. Grosso, W.: Java RMI, 1st edn. O’Reilly & Associates Inc.,

Sebastopol (2001). https://doi.org/10.5555/560800

56. Saleh, I., Nagi, K.: HadoopMutator: a cloud-based mutation

testing framework. In: Software Reuse for Dynamic Systems in

the Cloud and Beyond, pp. 172–187. Springer International

Publishing Switzerland (2014). https://doi.org/10.1007/978-3-

319-14130-5_13

57. Bernstein, D.: Containers and cloud: from LXC to Docker to

Kubernetes. IEEE Cloud Comput. 1(3), 81–84 (2014). https://doi.

org/10.1109/MCC.2014.51

58. Dossot, D.: RabbitMQ Essentials. Packt Publishing Ltd, Birm-

ingham (2014)

59. Usaola, M.P., Mateo, P.R.: Mutation testing cost reduction

techniques: a survey. IEEE Softw. 27(3), 80–86 (2010). https://

doi.org/10.1109/MS.2010.79

60. Ma, Y., Kim, S.: Mutation testing cost reduction by clustering

overlapped mutants. J. Syst. Softw. 115, 18–30 (2016). https://

doi.org/10.1016/j.jss.2016.01.007

Cluster Computing

123

https://doi.org/10.1109/ICSM.2012.6405344
https://doi.org/10.1109/ICSM.2012.6405344
https://doi.org/10.1145/3239235.3240506
https://doi.org/10.1016/j.procs.2016.05.298
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1002/stvr.308
https://doi.org/10.1109/TAIC-PART.2008.18
https://doi.org/10.1109/TAIC-PART.2008.18
https://doi.org/10.1016/j.future.2020.01.026
https://doi.org/10.1145/3295500.3356176
https://doi.org/10.1145/1062455.1062530
https://doi.org/10.1002/stvr.4370040303
https://doi.org/10.1002/stvr.1471
https://doi.org/10.5555/560800
https://doi.org/10.1007/978-3-319-14130-5_13
https://doi.org/10.1007/978-3-319-14130-5_13
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MS.2010.79
https://doi.org/10.1109/MS.2010.79
https://doi.org/10.1016/j.jss.2016.01.007
https://doi.org/10.1016/j.jss.2016.01.007

61. Delamaro, M.E., Andrade, S.A., de Souza, S.R., de Souza, P.S.:

Parallel execution of programs as a support for mutation testing: a

replication study. Int. J. Softw. Eng. Knowl. Eng. 31(03),

337–380 (2021). https://doi.org/10.1142/S0218194021500121

62. Krauser, E.W., Mathur, A.P., Rego, V.J.: High performance

software testing on SIMD machines. IEEE Trans. Softw. Eng.

17(5), 403–423 (1991). https://doi.org/10.1109/32.90444

63. Yao, X., Harman, M., Jia, Y.: A study of equivalent and stubborn

mutation operators using human analysis of equivalence. In:

Proceedings of the 36th International Conference on Software

Engineering, pp. 919–930 (2014). https://doi.org/10.1145/

2568225.2568265

64. Szalay, A.: Extreme data-intensive scientific computing. Comput.

Sci. Eng. 13(6), 34–41 (2011). https://doi.org/10.1109/MCSE.

2011.74

65. Chen, C.L.P., Zhang, C.-Y.: Data-intensive applications, chal-

lenges, techniques and technologies: a survey on Big Data. Inf.

Sci. 275, 314–347 (2014). https://doi.org/10.1016/j.ins.2014.01.

015

66. Peng, J., Dai, Y., Rao, Y., Zhi, X., Qiu, M.: Modeling for CPU-

intensive applications in cloud computing. In: 17th International

Conference on High Performance Computing and Communica-

tions, 7th International Symposium on Cyberspace Safety and

Security, and 12th International Conference on Embedded Soft-

ware and Systems, pp. 20–25. IEEE (2015). https://doi.org/10.

1109/HPCC-CSS-ICESS.2015.128

67. Miano, J.: Compressed Image File Formats: JPEG, PNG, GIF,

XBM, BMP. Addison-Wesley Professional, Boston (1999)

68. Seward, J.: Bzip2 and libbzip2. Web page at http://www.bzip.org

(1996). Accessed 10 Apr 2021

69. Coles, H., Laurent, T., Henard, C., Papadakis, M., Ventresque,

A.: PIT: a practical mutation testing tool for Java (demo). In:

International Symposium on Software Testing and Analysis

(ISSTA), pp. 449–452. ACM (2016). https://doi.org/10.1145/

2931037.2948707

70. Derezińska, A., Hałas, K.: Analysis of mutation operators for the

python language. In: Proceedings of the Ninth International

Conference on Dependability and Complex Systems DepCoS-

RELCOMEX. June 30–July 4, 2014, Brunów, Poland,

pp. 155–164. Springer (2014). https://doi.org/10.1007/978-3-319-

07013-1_15

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Pablo C. Cañizares is Assistant

Professor at the Universidad

Autónoma of Madrid. He was

honoured in 2020 with the

Extraordinary PhD Award from

Universidad Complutense of

Madrid and the Best PhD Thesis

Award from the Spanish Society

of Software Engineering and

Software Development Tech-

nologies. He has published 25

papers in refereed journals and

international venues. His

research interests include mod-

elling and testing distributed

systems, specifically the use of metamorphic testing and model-driven

engineering to model and check the correctness of complex systems.

Alberto Núñez received the

M.Sc. degree in computer sci-

ence from Carlos III University

of Madrid, Spain, in 2005 and

the Ph.D. degree in computer

science from the same univer-

sity, in 2011. He is currently an

Associate Professor with the

Software Systems and Compu-

tation Department, Complutense

University of Madrid, Spain. He

has published more than 40

research papers in journals, and

national and international con-

ferences. He regularly serves in

the Program Committee of conferences such as SAC and MET. His

research interests include formal testing, performance analysis and

modeling of cloud systems, especially on how to perform models and

simulations. Dr. Núñez won the IBM Ph.D. Fellowship award in

2009.

Rosa Filgueira has recently

joined the School of Computer

Science of the St. Andrews

University as Associate Profes-

sor. Her research expertise is on

improving the HPC applica-

tions’ scalability and perfor-

mance having contributed to

several European and national

projects in hazard forecasting

and parallel processing. During

the VERCE project she con-

tributed to the design and opti-

mization of dispel4py and

pioneered several dispel4py

applications. Currently, she is leading requirements capture for the

ENVRIplus project (funded by EU Horizon2020) delivering common

data functionality for 22 pan-European Research Infrastructures.

Juan de Lara is Full Professor at

the Universidad Autónoma of

Madrid, where he works in

model-driven engineering. He

has published more than 200

papers in international journals

and conferences and has been

the PC co-Chair of MOD-

ELS20, SLE20, ICMT12,

FASE12, and ICGT17. He is

associate editor of the Journal

on Software and Systems

Modeling (Springer) and the

Journal of Object Technology.

Cluster Computing

123

https://doi.org/10.1142/S0218194021500121
https://doi.org/10.1109/32.90444
https://doi.org/10.1145/2568225.2568265
https://doi.org/10.1145/2568225.2568265
https://doi.org/10.1109/MCSE.2011.74
https://doi.org/10.1109/MCSE.2011.74
https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.128
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.128
http://www.bzip.org
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1007/978-3-319-07013-1_15
https://doi.org/10.1007/978-3-319-07013-1_15

	Parallel mutation testing for large scale systems
	Abstract
	Introduction
	Background
	Large scale systems
	Mutation testing

	State of the art
	Mutant reduction
	Execution reduction
	Mutation type
	Run-time optimization techniques
	Advanced platforms support for mutation testing

	Large scale mutation testing
	Overview of our approach
	Dynamic and adaptive load distribution algorithm
	Parallel compilation
	Parallel detection of equivalent and duplicated mutants
	Tool support

	Experiments
	Research questions
	Experimental setting and procedure
	Measuring the quality of test suites by applying mutation testing over large-scale systems
	Testing the Filter application
	Testing the Bzip2 application
	Testing the FFT application

	Discussion of the results and answers to the research questions
	Discussion of the experiment results
	Answer to the research questions

	Threats to validity
	Internal threats
	External threats
	Construct threats

	Conclusions and future work
	Author contributions
	Data availability
	References

