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Abstract: Several important topological indices studied in mathematical chemistry are expressed in
the following way

∑
uv∈E(G) F(du, dv), where F is a two variable function that satisfies the condition

F(x, y) = F(y, x), uv denotes an edge of the graph G and du is the degree of the vertex u. Among
them, the variable inverse sum deg index ISDa, with F(du, dv) = 1/(da

u + da
v ), was found to have several

applications. In this paper, we solve some problems posed by Vukičević [1], and we characterize
graphs with maximum and minimum values of the ISDa index, for a < 0, in the following sets of
graphs with n vertices: graphs with fixed minimum degree, connected graphs with fixed minimum
degree, graphs with fixed maximum degree, and connected graphs with fixed maximum degree. Also,
we performed a QSPR analysis to test the predictive power of this index for some physicochemical
properties of polyaromatic hydrocarbons.

Keywords: variable inverse sum deg index; inverse sum indeg index; optimization on graphs;
degree-based topological index

1. Introduction

Topological indices have become an important research topic associated with the study of their
mathematical and computational properties and, fundamentally, for their multiple applications to var-
ious areas of knowledge (see, e.g., [2–9]). Within the study of mathematical properties, we will con-
tribute to the study of the optimization problems involved with topological indices (see, e.g., [10–18]).

In [19, 20] several degree-based topological indices, called adriatic indices, were presented; one of
them is the inverse sum indeg index ISI. It is important to note that this index was selected as one of
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the most predictive, in particular associated with the total surface area of the isomers of octane.

Let G be a graph and E(G) the set of all edges in G, denote by uv the edge of the graph G with
vertices u, v and dz is the degree of the vertex z. the IS I index is defined by

ISI(G) =
∑

uv∈E(G)

1
1
du

+ 1
dv

=
∑

uv∈E(G)

du dv

du + dv
.

Nowadays, this index has become one of the most studied from the mathematical point of view
(see, e.g., [21–27]). We study, here, the mathematical properties of the variable inverse sum deg index
defined, for each a ∈ R, as

ISDa(G) =
∑

uv∈E(G)

1
da

u + da
v
.

Note that ISD−1 is the inverse sum indeg index IS I.
This research is motivated, in general, by the theoretical-mathematical importance of the topolog-

ical indices and by their applicability in different areas of knowledge (see [28–30]). Additionally, in
particular, by the work developed by Vukičević entitled ”Bond Additive Modeling 5. Mathematical
Properties of the Variable Sum Exdeg Index” (see [1]), where several open problems on the topologi-
cal index ISDa were proposed. The novelty of this work is given in two main directions. The first one
is associated with the solution of some of the problems posed in [1]. The second one is associated with
the development of new optimization techniques and procedures related to the monotony and differ-
entiation of symmetric functions, which allowed us to solve extremal problems and to present bounds
for ISDa. Although, these techniques can be extended or applied in a natural way to obtain new rela-
tions and properties of other topological indices, it should be noted that their applicability requires the
monotony of the function that determines the index to be studied.

In Section 2, we find optimal bounds and solve extremal problems associated with the topological
index ISDa, with a < 0, for several families of graphs. In Proposition 4, we solve the extremal problems
for connected graphs with a given number of vertices. Theorem 6 and Remark 1 solve these problems
for graphs with a given number of vertices and minimum degree; similarly, Theorems 8 and 9 present
solutions to extremal problems in connected graphs with a given number of vertices and maximum
degree. In this direction, in Theorem 5, Proposition 7 and Theorem 10, we present optimal bounds for
the studied index.

In Section 3 of this research, a QSPR study related to the ISDa index in polyaromatic hydrocarbons
is performed using experimental data. First, we determine the value of a that maximizes the Pearson’s
correlation coefficient between this index, and each of the studied physico-chemical properties. Finally,
models for these properties are constructed using the simple linear regression method. A discussion of
the results obtained is presented in Section 4, and some open problems for future research on this topic
are raised.

In this research, G = (V(G), E(G)) denotes an undirected finite simple graph without isolated ver-
tices. By n, m, ∆ and δ, we denote the cardinality of the set of vertices of G, the cardinality of the set of
edges of G, its maximum degree and its minimum degree, respectively. Thus, we have 1 ≤ δ ≤ ∆ < n.
We denote by N(u) the set of neighbors of the vertex u ∈ V(G).
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2. Extremal problems

Suppose δ < ∆, we say that a graph G is (δ,∆)-quasi-regular if it contains a vertex w, such that
δ = dw and ∆ = dz for every z ∈ V(G) \ {w}; G is (δ,∆)-pseudo-regular if it contains a vertex w, such
that ∆ = dw and δ = dz for every z ∈ V(G) \ {w}.

In [31] appears the following result.

Lemma 1. Let k be an integer, such that 2 ≤ k < n.
(1) If nk is even, then there exists a k-regular graph that is connected and has n vertices.
(2) If nk is odd, then there exist a (k, k − 1)-quasi-regular and a connected (k + 1, k)-pseudo-regular

graphs, which are connected and have n vertices.

The following result is basic to the development of this work.

Lemma 2. For each a < 0, the function f : R+ × R+ → R+ given by

f (x, y) =
1

xa + ya

is strictly increasing in each variable.

Proof. Since a < 0, we have
∂ f
∂x

(x, y) =
−axa−1

(xa + ya)2 > 0.

Then, f is a strictly increasing function in x, and since f is symmetric, it is also strictly decreasing in
y.

Using Lemma 2, we obtain the following result.

Proposition 3. If G is a graph, u, v ∈ V(G) with uv < E(G), and a < 0, then ISDa(G∪{uv}) > ISDa(G).

Given an integer number n ≥ 2, let G(n) (respectively, Gc(n)) be the set of graphs (respectively,
connected graphs) with n vertices.

Next, given integer numbers 1 ≤ δ ≤ ∆ < n, we are going to define the following classes of
graphs: let H(n, δ) (respectively, Hc(n, δ)) be the graphs (respectively, connected graphs) with n ver-
tices and minimum degree δ, and let I(n,∆) (respectively, Ic(n,∆)) be the graphs (respectively, con-
nected graphs) with maximum degree ∆ and n vertices.

First, let us state an optimization result for the ISDa index on Gc(n) and G(n) (see [32]).

Proposition 4. Consider a < 0 and an integer n ≥ 2.
(1) The graph that maximizes the ISDa index on Gc(n) or G(n) is unique and given by the complete

graph Kn.
(2) If a graph minimizes the ISDa index on Gc(n), then it is a tree.
(3) If n is even, then the graph that minimizes the ISDa index on G(n) is unique and given by the

union of n/2 paths P2. If n is odd, then the graph that minimizes the ISDa index on G(n) is unique and
given by the union of (n − 3)/2 paths P2 with a path P3.
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Proof. Let G be a graph with n vertices, m edges and minimum degree δ.
Items (1) and (2) follow directly from Proposition 3.
For the proof of item (3), we first assume that n is even. For any graph G ∈ G(n) Lemma 2 gives

ISDα(G) =
∑

uv∈E(G)

1
da

u + da
v
≥
∑

uv∈E(G)

1
1a + 1a =

m
2
,

and the equality is attained if, and only if, {du, dv} = {1} for each uv ∈ E(G), i.e., G is the union of n/2
path graphs P2.
Now, we assume that n is odd. If du = 1 for each u ∈ V(G), handshaking lemma gives 2m = n, a
contradiction. So, there exists w ∈ V(G), such that dw ≥ 2. Let N(w) be the set of neighbors of the
vertex w, from Lemma 2, we obtain

ISDα(G) =
∑

uv∈E(G),u,v,w

1
da

u + da
v

+
∑

u∈N(w)

1
da

u + da
w

≥
∑

uv∈E(G),u,v,w

1
1a + 1a +

∑
u∈N(w)

1
1a + 2a

≥
m − 2

2
+

2
1 + 2a ,

and the equality is attained if, and only if, du = 1 for each u ∈ V(G) \ w and dw = 2. Hence, G is the
union of (n − 3)/2 path graphs P2 and a path graph P3.

Proposition 4 allows to obtain the following inequalities.

Theorem 5. Consider a graph G with n vertices and a negative constant a.
(1) Then,

ISDa(G) ≤
1
4

n(n − 1)1−a,

and equality holds if, and only if, G is the complete graph Kn.
(2) If n is even, then

ISDa(G) ≥
1
4

n,

and equality holds if, and only if, G is the union of n/2 path graphs P2.
(3) If n is odd, then

ISDa(G) ≥
1
4

(n − 3) +
2

1 + 2a ,

and equality holds if, and only if, G is the union of a path graph P3 and (n − 3)/2 path graphs P2.

Proof. Proposition 4 gives

ISDa(G) ≤ ISDa(Kn) =
∑

uv∈E(Kn)

1
da

u + da
v

=
n(n − 1)

2
1

2(n − 1)a =
1
4

n(n − 1)1−a.

This argument gives that the bound is attained if, and only if, G is the complete graph Kn. Hence, item
(1) holds.
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Suppose G has minimum degree δ. If n is even, handshaking lemma gives 2m ≥ nδ ≥ n, using this
and the proof of Proposition 4, we have

ISDa(G) ≥
m
2
≥

n
4
,

and equality holds if, and only if, G is the union of n/2 path graphs P2. This gives item (2).
If n is odd, handshaking lemma gives 2m ≥ (n−1)δ+ 2 ≥ n + 1, using this and the proof of Proposition
4, we have

ISDa(G) ≥
m − 2

2
+

2
1 + 2a ≥

n+1
2 − 2

2
+

2
1 + 2a =

n − 3
4

+
2

1 + 2a ,

and equality holds if, and only if, G is the union of a path graph P3 and (n − 3)/2 path graphs P2. This
gives item (3).

Fix positive integers 1 ≤ δ < n. Let Kδ
n be the n-vertex graph with minimum and maximum degrees

δ and n− 1, respectively, obtained from Kn−1 (the complete graph with n− 1 vertices) and an additional
vertex w, as follows: If we fix δ vertices v1, . . . , vδ ∈ V(Kn−1), then the vertices of Kδ

n are w and the
vertices of Kn−1, and the edges of Kδ

n are {v1w, . . . , vδw} and the edges of Kn−1.

We consider now the optimization problem for the ISDa index onHc(n, δ) andH(n, δ).

Theorem 6. Consider a < 0 and integers 1 ≤ δ < n.
(1) Then, the graph inHc(n, δ) that maximizes the ISDa index is unique and given by Kδ

n.
(2) If δ ≥ 2 and nδ is even, then all the graphs in Hc(n, δ) that minimize ISDa are the connected

δ-regular graphs.
(3) If δ ≥ 2 and nδ is odd, then all the graphs in Hc(n, δ) that minimize ISDa are the connected

(δ + 1, δ)-pseudo-regular graphs.

Proof. Given a graph G ∈ Hc(n, δ) \ {Kδ
n}, fix any vertex u ∈ V(G) with du = δ. Since

G , G ∪ {vw : v,w ∈ V(G) \ {u} and vw < E(G)} = Kδ
n,

Proposition 3 gives ISDa(Kδ
n) > ISDa(G). This proves item (1).

Handshaking lemma gives 2m ≥ nδ.
Since du ≥ δ for every u ∈ V(G), Lemma 2 gives

ISDa(G) =
∑

uv∈E(G)

1
da

u + da
v
≥
∑

uv∈E(G)

1
2δa =

m
2δa ≥

nδ/2
2δa =

1
4

nδ1−a,

and the bound is attained if, and only if, δ = du for all u ∈ V(G).
If δn is even, then Lemma 1 gives that there is a connected δ-regular graph with n vertices. Hence,

the unique graphs inHc(n, δ) that minimize the ISDa index are the connected δ-regular graphs.
If δn is odd, then handshaking lemma gives that there is no regular graph. Hence, there exists

a vertex w with dw ≥ δ + 1. Since du ≥ δ for every u ∈ V(G), handshaking lemma gives 2m ≥
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(n − 1)δ + δ + 1 = nδ + 1. Lemma 2 gives

ISDa(G) =
∑

u∈N(w)

1
da

u + da
w

+
∑

uv∈E(G),u,v,w

1
da

u + da
v

≥
∑

u∈N(w)

1
δa + (δ + 1)a +

∑
uv∈E(G),u,v,w

1
2δa

≥
δ + 1

δa + (δ + 1)a +
m − δ − 1

2δa

≥
δ + 1

δa + (δ + 1)a +
(nδ + 1)/2 − δ − 1

2δa ,

and the bound is attained if, and only if, du = δ for all u ∈ V(G) \ {w}, and dw = δ + 1. Lemma 1 gives
that there is a connected (δ + 1, δ)-pseudo-regular graph with n vertices. Therefore, the unique graphs
inHc(n, δ) that minimize the ISDa index are the connected (δ + 1, δ)-pseudo-regular graphs.

Remark 1. If we replace Hc(n, δ) with H(n, δ) everywhere in the statement of Theorem 6, then the
argument in its proof gives that the same conclusions hold if we remove everywhere the word “con-
nected”.

Theorem 6 and Remark 1 have the following consequence.

Proposition 7. Consider a graph G with minimum degree δ and n vertices, and a negative constant a.
(1) Then,

ISDa(G) ≤
(n − δ − 1)(n − δ − 2)

4(n − 2)a +
δ

δa + (n − 1)a +
δ(δ − 1)
4(n − 1)a +

δ(n − δ − 1)
(n − 2)a + (n − 1)a ,

and the bound is attained if, and only if, G is isomorphic to Kδ
n.

(2) If δ ≥ 2 and δn is even, then

ISDa(G) ≥
1
4

nδ1−a,

and the bound is attained if, and only if, G is δ-regular.
(3) If δ ≥ 2 and nδ is odd, then

ISDa(G) ≥
δ(n − 2) − 1

4δa +
δ + 1

δa + (δ + 1)a ,

and the bound is attained if, and only if, G is (δ + 1, δ)-pseudo-regular.

Let us deal with the optimization problem for the ISDa index on Ic(n,∆).

Theorem 8. Consider a < 0 and integers 2 ≤ ∆ < n.
(1) If n∆ is even, then all the graphs that maximize ISDa on Ic(n,∆) are the connected ∆-regular

graphs.
(2) If n∆ is odd, then all the graphs that maximize ISDa on Ic(n,∆) are the connected (∆,∆ − 1)-

quasi-regular graphs.
(3) If a graph minimizes ISDa on Ic(n,∆), then it is a tree.
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Proof. Handshaking lemma gives 2m ≤ n∆. Since du ≤ ∆ for every u ∈ V(G), Lemma 2 gives

ISDa(G) =
∑

uv∈E(G)

1
da

u + da
v
≤
∑

uv∈E(G)

1
2∆a =

m
2∆a ≤

n∆/2
2∆a =

1
4

n∆1−a,

and the bound is attained if, and only if, ∆ = du for all u ∈ V(G).
If n∆ is even, then Lemma 1 gives that there is a connected ∆-regular graph with n vertices. Hence,

the unique graphs in Ic(n,∆) that maximize the ISDa index are the connected ∆-regular graphs.
If n∆ is odd, then handshaking lemma gives that there is no regular graph in Ic(n,∆). Let G ∈

Ic(n,∆). Hence, there exists a vertex w with dw ≤ ∆ − 1. Then, 2m ≤ ∆(n − 1) + ∆ − 1 = ∆n − 1.
Lemma 2 gives

ISDa(G) =
∑

u∈N(w)

1
da

u + da
w

+
∑

uv∈E(G),u,v,w

1
da

u + da
v

≤
∑

u∈N(w)

1
∆a + (∆ − 1)a +

∑
uv∈E(G),u,v,w

1
2∆a

≤
∆ − 1

∆a + (∆ − 1)a +
m − ∆ + 1

2∆a

≤
∆ − 1

∆a + (∆ − 1)a +
(∆n − 1)/2 − ∆ + 1

2∆a ,

and the bound is attained if, and only if, du = ∆ for all u ∈ V(G) \ {w}, and dw = ∆ − 1. Lemma 1 gives
that there is a connected (∆,∆ − 1)-quasi-regular graph with n vertices. Therefore, the unique graphs
in Ic(n, δ) that maximize the ISDa index are the connected (∆,∆ − 1)-quasi-regular graphs.

Given any graph G ∈ Ic(n,∆) which is not a tree, fix any vertex u ∈ V(G) with du = ∆. Since G
is not a tree, there exists a cycle C in G. Since C has at least three edges, there exists vw ∈ E(G) ∩ C,
such that u < {v,w}. Since vw is contained in a cycle of G, then G \ {vw} is a connected graph. Thus,
G \ {vw} ∈ Ic(n,∆) and Proposition 3 gives ISDa(G) > ISDa(G \ {vw}). By iterating this argument, we
obtain that if a graph minimizes the ISDa index on Ic(n,∆), then it is a tree.

The following result deals with the optimization problem for the ISDa index on I(n,∆).

Theorem 9. Consider a < 0 and integers 2 ≤ ∆ < n.
(1) If n∆ is even, then all the graphs that maximize the ISDa index on I(n,∆) are the ∆-regular

graphs.
(2) If n∆ is odd, then all the graphs that maximize the ISDa index on I(n,∆) are the (∆,∆ − 1)-

quasi-regular graphs.
(3) If n − ∆ is odd, then the graph that minimizes the ISDa index on I(n,∆) is unique and given by

the union of the star graph S ∆+1 and (n − ∆ − 1)/2 path graphs P2.
(4) If n = ∆ + 2, then the graph that minimizes the ISDa index on I(n,∆) is unique and given by the

star graph S ∆+1 with an additional edge attached to a vertex of degree 1 in S ∆+1.
(5) If n ≥ ∆ + 4 and n−∆ is even, then the graph that minimizes the ISDa index on I(n,∆) is unique

and given by the union of the star graph S ∆+1, (n − ∆ − 4)/2 path graphs P2 and a path graph P3.

Proof. The argument in Theorem 8 gives directly items (1) and (2).
Let G ∈ I(n,∆) and w ∈ V(G) a vertex with dw = ∆.
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Assume first that n − ∆ is odd. Handshaking lemma gives 2m ≥ n − 1 + ∆. Note that n − 1 + ∆ =

n − ∆ + 2∆ − 1 is even. Lemma 2 gives

ISDa(G) =
∑

u∈N(w)

1
da

u + da
w

+
∑

uv∈E(G),u,v,w

1
da

u + da
v

≥
∑

u∈N(w)

1
1a + ∆a +

∑
uv∈E(G),u,v,w

1
1a + 1a

=
∆

1 + ∆a +
m − ∆

2

≥
∆

1 + ∆a +
(n − 1 + ∆)/2 − ∆

2

=
∆

1 + ∆a +
n − ∆ − 1

4
,

and the bound is attained if, and only if, 1 = du for all u ∈ V(G) \ {w}, i.e., G is the union of the star
graph S ∆+1 and (n − ∆ − 1)/2 path graphs P2.

Assume now that n = ∆ + 2. Let z ∈ V(G) \ N(w) be the vertex with V(G) = {w, z} ∪ N(w).
Choose p ∈ N(z); since z < N(w), we have p ∈ N(w) and so, dp ≥ 2. Handshaking lemma gives
2m ≥ (n − 2) + ∆ + 2 = n + ∆. Lemma 2 gives

ISDa(G) =
∑

u∈N(w)

1
da

u + da
w

+
∑

uv∈E(G),u,v,w

1
da

u + da
v

≥
∆ − 1
1 + ∆a +

1
2a + ∆a +

1
1 + 2a ,

and the bound is attained if, and only if, 1 = du for all u ∈ V(G) \ {w, p} and dp = 2, i.e., G is the star
graph S ∆+1 with an additional edge attached to a vertex of degree 1 in S ∆+1.

Assume that n ≥ ∆ + 4 and n − ∆ is even. If du = 1 for every u ∈ V(G) \ {w}, then handshaking
lemma gives 2m = n− 1 + ∆, a contradiction since n− 1 + ∆ = n−∆ + 2∆− 1 is odd. Thus, there exists
a vertex p ∈ V(G) \ {w} with dp ≥ 2. Handshaking lemma gives 2m ≥ (n − 2) + 2 + ∆ = n + ∆.

If p < N(w), then Lemma 2 gives

ISDa(G) =
∑

u∈N(w)

1
da

u + da
w

+
∑

u∈N(p)

1
da

u + da
p

+
∑

uv∈E(G),u,v<{w,p}

1
da

u + da
v

≥
∑

u∈N(w)

1
1a + ∆a +

∑
u∈N(p)

1
1a + 2a +

∑
uv∈E(G),u,v<{w,p}

1
1a + 1a

≥
∆

1 + ∆a +
2

1 + 2a +
m − ∆ − 2

2

≥
∆

1 + ∆a +
2

1 + 2a +
(n + ∆)/2 − ∆ − 2

2

=
∆

1 + ∆a +
2

1 + 2a +
n − ∆ − 4

4
,

and the bound is attained if, and only if, du = 1 for all u ∈ V(G) \ {w, p}, and dp = 2, i.e., G is the union
of the star graph S ∆+1, (n − ∆ − 4)/2 path graphs P2 and a path graph P3.
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If p ∈ N(w), then

ISDa(G) =
∑

u∈N(w)\{p}

1
da

u + da
w

+
∑

u∈N(p)\{w}

1
da

u + da
p

+
1

da
p + da

w
+

∑
uv∈E(G),u,v<{w,p}

1
da

u + da
v

≥
∑

u∈N(w)\{p}

1
1a + ∆a +

∑
u∈N(p)\{w}

1
1a + da

p
+

1
da

p + ∆a +
∑

uv∈E(G),u,v<{w,p}

1
1a + 1a

≥
∆ − 1
1 + ∆a +

1
1 + 2a +

1
2a + ∆a +

m − ∆ − 1
2

≥
∆ − 1
1 + ∆a +

1
1 + 2a +

1
2a + ∆a +

(n + ∆)/2 − ∆ − 1
2

=
∆ − 1
1 + ∆a +

1
1 + 2a +

1
2a + ∆a +

n − ∆ − 2
4

.

Hence, in order to finish the proof of item (5), it suffices to show that

∆ − 1
1 + ∆a +

1
1 + 2a +

1
2a + ∆a +

n − ∆ − 2
4

>
∆

1 + ∆a +
2

1 + 2a +
n − ∆ − 4

4
.

We have
(1 − 2a)(1 − ∆a) > 0,

1 + 2a∆a > 2a + ∆a,

2a∆a + ∆a + 2a + 1 > 2(2a + ∆a),
(∆a + 1)(1 + 2a)(2 + 2a + ∆a) > 2(2a + ∆a)(2a + ∆a + 2),

1
2a + ∆a +

1
2
>

1
1 + ∆a +

1
1 + 2a ,

∆ − 1
1 + ∆a +

1
1 + 2a +

1
2a + ∆a +

n − ∆ − 2
4

>
∆

1 + ∆a +
2

1 + 2a +
n − ∆ − 4

4
,

and so, (5) holds.

Remark 2. Note that the case ∆ = 1 in Theorem 9 is trivial: if ∆ = 1, then G is a union of isolated
edges.

Also, we can state the following inequalities.

Theorem 10. Consider a graph G with maximum degree ∆ and n vertices, and a negative constant a.
(1) If n∆ is even, then

ISDa(G) ≤
1
4

n∆1−a,

and the bound is attained if, and only if, G is a regular graph.
(2) If n∆ is odd, then

ISDa(G) ≤
∆ − 1

∆a + (∆ − 1)a +
∆(n − 2) + 1

4∆a ,

and the bound is attained if, and only if, G is a (∆,∆ − 1)-quasi-regular graph.
(3) If n − ∆ is odd, then

ISDa(G) ≥
∆

1 + ∆a +
n − ∆ − 1

4
,
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and the bound is attained if, and only if, G is the union of the star graph S ∆+1 and (n − ∆ − 1)/2 path
graphs P2.

(4) If n = ∆ + 2, then

ISDa(G) ≥
∆ − 1
1 + ∆a +

1
2a + ∆a +

1
1 + 2a ,

and the bound is attained if, and only if, G is the star graph S ∆+1 with an additional edge attached to
a vertex of degree 1 in S ∆+1.

(5) If n ≥ ∆ + 4 and n − ∆ is even, then

ISDa(G) ≥
∆

1 + ∆a +
2

1 + 2a +
n − ∆ − 4

4
,

and the bound is attained if, and only if, G is the union of the star graph S ∆+1, (n−∆−4)/2 path graphs
P2 and a path graph P3.

Proof. The argument in the proof of Theorem 8 gives items (1) and (2), since the variable inverse sum
deg index of a regular graph is

1
4

n∆1−a,

and the ISDa index of a (∆,∆ − 1)-quasi-regular graph is

∆ − 1
∆a + (∆ − 1)a +

∆(n − 2) + 1
4∆a .

The argument in the proof of Theorem 9 gives directly items (3)–(5).

3. QSPR study of ISDa on polyaromatic hydrocarbons

The variable inverse sum deg index ISD−1.950 was selected in [33] as a significant predictor of
standard enthalpy of formation for octane isomers. In this section, we will test the predictive power
of the ISDa index using experimental data on three physicochemical properties of 82 polyaromatic
hydrocarbons (PAH). The properties studied are the melting point (MP), boiling point (BP) and octanol-
water partition coefficient (LogP) (the experimental data were obtained from [34]). In order to obtain
the values of the ISDa index, we constructed the hydrogen-suppressed graph of each molecule, then
we use a program of our own elaboration to compute the index for each value of a analyzed.

We calculated the Pearson’s correlation coefficient r between the three analyzed properties and the
ISDa index, for values of a in the interval [−5, 5] with a spacing of 0.01; the results are shown in Figure
1. The dashed red line indicates the value of a that maximizes r.

Figure 2 shows the ISDa index (for values of a that maximize r) vs. the studied properties of PAH.
In addition, in Figure 2, we test the following linear regression models (red lines)

MP = 31.54 ISD0.15 − 121.15
BP = 58.94 ISD0.39 − 13.35

LogP = 0.68 ISD0.63 + 1.55.

Table 1 summarizes the statistical and regression parameters of these models.
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Figure 1. Pearson’s correlation coefficient r between the ISDa index and the following prop-
erties of polyaromatic hydrocarbons (a) melting point (MP), (b) boiling point (BP), and (c)
octanol-water partition coefficient (LogP). Red dashed vertical line indicates the value of a
for which r is maximized.

Figure 2. Properties of polyaromatic hydrocarbons vs. ISDa index for the values of a that
maximize the correlation coefficient r: (a) a = 0.15, (b) a = 0.39, and (c) a = 0.63. Red lines
are the regression models obtained.

Table 1. Parameters of the linear QSPR models. Here, r, c, m, S E, F, and S F are the
correlation coefficient, intercept, slope, standard error, F-test, and statistical significance,
respectively.

Property a r c m S E F S F

MP 0.15 0.856 −122.15 31.54 54.61 214.47 4.31 × 10−24

BP 0.39 0.989 −13.35 58.94 12.42 2272.86 5.69 × 10−44

LogP 0.63 0.943 1.55 0.68 0.34 282.04 2.53 × 10−18

4. Conclusions

Motivated by a paper of Vukičević [1], and based on the practical applications found for the variable
inverse sum deg index ISDa, we focus our research on the study of optimal graphs associated with ISDa,
when a < 0. In this direction, it is wise to study the extremal properties of ISDa, when a < 0 in general
graphs. Specifically, in this paper, we characterize the graphs with extremal values in the following
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significant classes of graphs with a fixed number of vertices:

• graphs with a fixed minimum degree;
• connected graphs with a fixed minimum degree;
• graphs with a fixed maximum degree;
• connected graphs with a fixed maximum degree.

From the QSPR study performed on polyaromatic hydrocarbons, it can be concluded that the ISDa

index presents a strong correlation with the boiling point and octanol-water partition coefficient prop-
erties, with maximum values of r higher than 0.98 and 0.94, respectively. Further, the melting point
property presents some correlation with the ISDa index with maximum value of r close to 0.85.

For future research, we suggests:

• To study the extreme problems for the ISDa index for values of a > 0.
• To consider the problem of finding which tree/trees with n vertices (with a fixed maximum degree

or not) minimize the index ISDa (a < 0).
• To analyze the behavior of the ISDa index in other important families of graphs, such as graph

products and graph operators.
• To explore the mathematical properties and possible applications of the exponential extension of

the ISDa index.
• To study the predictive power of this index on other physicochemical properties of PAH, and on

other classes of molecules.
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