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Abstract
From the dynamical point of view, most cognitive phenomena are hierarchical, transient and sequential. Such cognitive

spatio-temporal processes can be represented by a set of sequential metastable dynamical states together with their

associated transitions: The state is quasi-stationary close to one metastable state before a rapid transition to another state.

Hence, we postulate that metastable states are the central players in cognitive information processing. Based on the analogy

of quasiparticles as elementary units in physics, we introduce here the quantum of cognitive information dynamics, which

we term ‘‘cognon’’. A cognon, or dynamical unit of thought, is represented by a robust finite chain of metastable neural

states. Cognons can be organized at multiple hierarchical levels and coordinate complex cognitive information repre-

sentations. Since a cognon is an abstract conceptualization, we link this abstraction to brain sequential dynamics that can be

measured using common modalities and argue that cognons and brain rhythms form binding spatiotemporal complexes to

keep simultaneous dynamical information which relate the ‘what’, ‘where’ and ‘when’.

Keywords Cognitive dynamics � Heteroclinic neural dynamics � Metastable neural states � Brain rhythms �
Cognitive binding

Introduction: the cognon concept

Experiments have shown that cognitive activity can be seen

as a transient sequential switching across different

metastable states, e.g. see the reviews (Tozzi et al. 2017;

He 2018; Michel and Koenig 2018; Rabinovich et al.

2020). These states arise on three levels of the brain hier-

archy: neuronal, micro-network, and large-scale functional

networks. Cognitive dynamics involve many different

neural processes and resources including perception,

memory, decision making, attention and emotion. In spite

of the enormous variety of these processes, which involve

multiple brain regions and coordination mechanisms

(Tognoli et al. 2021), they demonstrate an amazing uni-

versality from the dynamical point of view (Rabinovich

et al. 2012b): Within a wide range of measurement

modalities and spatiotemporal scales, one observes

sequential dynamics between transient metastable states.

Cognitive dynamics can therefore be interpreted as

robust sequential switching described by associated

metastable sets on different levels of their winnerless

competition spatio-temporal activity (see Box 1). The

dynamics of these processes can also be described by basic

universal models from this viewpoint. In this paper, we

introduce the concept of cognon as the unit of thought,

which is represented by a robust finite chain of

metastable states. Many mathematical models naturally

provide the existence of not only metastable states, but also

the associated hierarchy of their chains, which serve to

describe cognon dynamics. Below we will illustrate this

with generalized Lotka–Volterra and Ginsburg–Landau

models.
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BOX 1. Cognon hierarchy: phase portraits

Panel A: Landscape metaphor for a heteroclinic chain consisting of two

metastable states located at the simultaneous local minima and

maxima of the landscape where the little balls are depicted. A cognon

is represented by a robust finite chain of metastable states. A

convenient basic model to understand this concept is the Lotka–

Volterra model, see Box 4.

Panel B: Time series of binding dynamics showing the heteroclinic

modulation of four modalities. This dynamics naturally emerges in

Lotka–Volterra models (Rabinovich et al. 2014).

Panel C: Cartoon of the phase-portrait of a three-level hierarchy

heteroclinic dynamics. As their dynamical robustness is kept in

multiple spatio-temporal scales, an arbitrary number of cognons can

scale up in information complexity to shape complex cognitive

processes.

Panel E: Schematic phase portrait of a three-modality binding. Each rib

of the corridor corresponds to different processing modalities, which

are integrated by the heteroclinic interaction (Rabinovich et al. 2010;

Afraimovich et al. 2015).

Robust transient cognition can be described as the result of sequential heteroclinic switching determined by a winnerless competitive (WLC)

interaction of functional participants (Rabinovich et al. 2008b, 2012b; Afraimovich et al. 2012). WLC is a general dynamical phenomenon that

robustly generates sequential switching of prevalence among participants. A simple intuitive example is the game ‘‘rock–paper–scissors’’.

Cognitive Neurodynamics

123



Neural dynamics of memory and binding

Episodic memory (EM)—as an example of a cognitive

process—contains various details of an event, such as the

objects or people involved (‘‘what’’), the spatial setting

(‘‘where’’) and the temporal sequence (‘‘when’’) in which

the event unfolded. To create an EM representation, the

spatiotemporal information must be remembered as a

coherently bounded sequence of episodes. For example, the

art of music involves balance between surprise and pre-

dictability. It is possible to consider music generation as a

three dynamic modality process: melody, harmony and

rhythm.

Episodic memory is consciously recollected in spatio-

temporal neural activity patterns related to personally

experienced groups of events, i.e., episodes (e.g. see

Bergström et al. 2013; Ekstrom and Ranganath 2018).

Episodic memory retrieval is a dynamic process that draws

upon the sequential ability to reconstruct past experiences

from corresponding cues. The neural substrates of these

abilities are engrams, which are sets of basic units of

memory in the form of mini-networks of neuronal clusters

(Kitamura et al. 2017).

Binding is a key dynamical mechanism for the imple-

mentation of autobiographic episodic memory (Gilbert

et al. 2014; McGatlin et al. 2019); see also Box 2. Binding

is the process by which frequently repeated segments of

temporal inputs are concatenated into single conceptual

units that are easy to process (Gobet et al. 2001). Such

processing of information is fundamental to time-series

analysis in biological and artificial neural computation

systems. The brain efficiently acquires integrated infor-

mation from various modality streams in an unsupervised

manner.

BOX 2. Chain of cognons, binding,
and the internal train of thoughts

The internal train of thoughts, i.e., the language of thoughts

(Fodor 1975), is the result of a cooperation between auto-

biographical information provided by the default mode

network and a frontal–parietal network (Martinon et al.

2019). Episodic and semantic memory are key ingredients

for the train and the source of the language of thoughts

(Mahr 2020). Episodic memory strategically organizes

information in chunks as a function of shared visual, spa-

tial, or temporal characteristics (Gilchrist 2015). In 1956,

Miller hypothesized that working memory capacity is not

fixed but depends on the strategy, in particular, binding

expands the memory capacity (Sala and Gobet 2019). In

the language of cognons, the train of thoughts can be

considered as a sequence of cognitive informational units.

Thus, a dynamical approach to the analyses of the

robustness of information integration with other modalities

is a natural way to assess these problems. The analysis of

the interaction between different modalities of thinking

(i.e., episodes from autobiographic memory and self-gen-

eration of new thoughts) requires modeling attentional

control (Rabinovich et al. 2015). This can be achieved by

mathematically describing cognon competition and bind-

ing. Such processes are critically important for effective

decision making and for increasing the capacity of working

memory.

In the global cognitive phase space, sequential memory

is represented as trajectories along a chain of

metastable states and cognons (at each level of the hier-

archy with increasing dimension). In a modeling work

(Fonollosa et al. 2015), the authors have shown the learn-

ing of such representation of sequences and their robust

recall. During learning, the dynamics binds a set of modes

to each information-carrying item in the sequence and

encodes their relative order. In the recall process, hierar-

chical WLC guarantees the robustness of the sequence

order when the sequence is not too long. Reduced top-

down control of cognon interactions could also benefit

creative processes. Recently, frontal oscillatory activity in

the theta range (4–7 Hz) has been associated with a broad

range of top-down control processes. For instance, in the

memory domain mid-frontal theta rhythms have been

proposed as an inhibitory mechanism modulating the

competition between representations during memory

retrieval (Hsieh and Ranganath 2014). In Hahn et al.

(2019), authors suggest that slow (e.g., alpha-band and

theta-band) oscillations and fast (gamma-band) oscillations

can serve as an important control mechanism that allows or

prevents signals to be routed between specific networks.

Slow oscillations can modulate the time required to

establish network resonance or entrainment and, thus,

regulate the communication between large scale cognitive

networks (Siebenhühner et al. 2016).

The functionality of episodic memory, as part of a

content and temporal hierarchy in human memory, is not

stable across situations; it varies dynamically with the

demands of the retrieval context (Fingelkurts et al. 2003a).

The hippocampus plays a fundamental role in episodic

memory formation. The hippocampal-cortical connections

reconfigure during episodic retrieval, and these dynamic

interactions might flexibly support the multimodal nature

of remembered events (Cooper and Ritchey 2019). One of

the important functions of subcortical-cortical connectivity

is to continuously update retrieved long-term memory

during reconsolidation, creating a constantly evolving

emergent engram (Devan et al. 2018).
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To remember an event, it is necessary to integrate dif-

ferent modalities (multisensory events) into a coherent

representation during the initial encoding, which can be

implemented through a heteroclinic binding process

(Rabinovich et al. 2010). Episodes unfold across time and

contain multiple events. The binding of excited multisen-

sory elements is most likely mediated by fast-acting long-

term potentiation (LTP), which relies on the precise timing

of neural activity (Markram et al. 1997). In Berens and

Horner (2017), authors showed that the hippocampus

controls such timing and human episodic memory forma-

tion depends on phase synchrony between different sensory

networks in the theta frequency band. Synchronization also

supports the neural process of constantly encoding new

information and integrating it into the existing episodic

memory representations (Köster et al. 2019), see also

Hanslmayr et al. (2016) and Box 3.

BOX 3. Metastable oscillatory states
and transient synchronization in the brain

Metastable states are the basic dynamical elements that

participate in the formation of transient cognitive activities

(Rabinovich et al. 2012a; Deco et al. 2017; Roberts et al.

2019; Alderson et al. 2020). Brain waves, i.e., rhythms,

including metastable EEG microstates that are observed

also in resting state networks, participate in the generation

of different cognitive functions like episodic memory,

visuospatial attention, decision making and learning (Kelso

1995; Bressler and Kelso 2001; Fingelkurts and Fingelkurts

2004; Michel and Koenig 2018). The mechanisms for the

dynamical interaction between different oscillatory

metastable brain modes depend on their spatiotemporal

scales (Moyal and Edelman 2019). Here we emphasize as

an example the role of the alpha rhythm, which dominates

in EEG. By intracranial recordings authors in Halgren et al.

(2019) showed that the alpha wave propagates from higher-

order to lower-order areas. These results suggest how alpha

can coordinate cognitive dynamics throughout the brain;

see also Zhang et al. (2018). Episodic memories and pre-

dictive coding are related to the processing of distinct time

scales and multimodality information and its binding into a

coherent, memorable representation (Alamia and VanRul-

len 2019). These processes are possibly supported by

neocortical alpha/beta desynchronization and hippocampal

theta/gamma synchronization helping the creation of epi-

sodic memories. Some authors have hypothesized that this

coupling reflects the flow of information from the neo-

cortex to the hippocampus during memory formation, and

the hippocampal pattern completion inducing information

reinstatement in the neocortex during memory retrieval

(Alamia and VanRullen 2019). Transient synchronization

and entrainment are the main dynamical phenomena

responsible for the realization of cognitive functions. In

particular, alpha/beta desynchronization and hippocampal

theta/gamma synchronization represent two separable

processes in episodic memory—remembering and recall

(Griffiths et al. 2019). Entrainment usually entails phase

alignment of brain oscillations (phase entrainment), but can

also be present as the alignment of generated events or

bursts. In this scenario, the oscillating bursts may result

from cross-frequency interactions through which the phase

of lower frequency oscillations modulates the amplitude of

higher frequency oscillations—phase-amplitude coupling

of neuronal oscillations (Bergmann and Born 2018;

Fagerholm et al. 2020).

In the context of connectivity and cross-frequency

coupling studies, we can hypothesize that brain rhythms

influence cognon dynamics by controlling the elements

involved in the inhibition. This mechanism can regulate the

encoding and retrieval of a series of events inside the

cognon, and also in the cognon sequence, i.e., the episodic

memory (Zarghami and Friston 2020). A similar mecha-

nism is responsible for the robustness of the multimodality

cognitive processes, and it is named heteroclinic binding

(Varona and Rabinovich 2016), which is a hierarchical

process in transient activity that integrates different sensory

or cognitive modalities. Its mathematical image in the

cognitive space can take, for example, the form of a

heteroclinic cylinder with one or several ribs corresponding

to the different modalities.

Cognon and brain rhythms

Cognitive brain activities can be represented by the

dynamics of two qualitatively different components: (1) the

specific activity of cognitive networks, and (2) the overall

dynamics of continuous oscillatory fields, i.e., brain

rhythms. These components process cognitive information

in different ways and are often considered independently.

However, their mutual interaction through synchronization

and desynchronization creates a universal processor with a

unique ability to operate with different forms of cognitive

mechanisms (see Box 4). The study of such interactions

can also help to the assessment of mental disorders

(Rabinovich and Varona 2017; Fingelkurts and Fingelkurts

2019). Their associated metrics and parameters that control

their relationship can be convenient biomarkers and con-

tribute to novel rehabilitation protocols (Latorre et al.

2019).

To our best knowledge, a consistent mathematical

model based on the mutual interaction of both these com-

ponents does not exist yet. We suggest here for the first

time a model of ‘‘cognon-field’’ information dynamics,
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which we describe by linking a formulation of heteroclinic

dynamics—saddle invariant sets in the cognitive phase

space connected by heteroclinic orbits—for competitive

cognitive interactions and complex Ginzburg–Landau

fields (see Box 4).

To build a nonlinear theory of, for example, autobio-

graphic memory dynamics, it is necessary to create a uni-

versal scale-free model—a canonical model—of cognitive

dynamical processes. We suppose that the canonical model

has to satisfy the following conditions: (a) The equations

have to be written for variables that can represent the

evolution of brain oscillatory clusters in their temporal

coherence and have to have solutions that correspond to

metastable patterns in the brain; (b) the model is based on

winnerless competitive dynamics—a nonlinear process of

interaction of many agents that guarantees the sequential

switching between metastable states and the robustness of

transients, (c) the model is an open dissipative system

where inhibition is balanced by excitation, (d) the model’s

dynamics have to be sensitive to the incoming information,

and (e) be able to describe closed heteroclinic chain

dynamics. The mathematical image of the cognon is a

Stable Heteroclinic channel (SHC) that consists of a

sequence of metastable states (see Box 1).

The reduction of high-dimensional brain data to a low-

dimensional cognitive space can be motivated by empirical

observation. There are a number of experiments that have

illustrated the low-dimensionality of cognitive dynamics

when it is governed by sensory stimuli (Shine et al. 2019).

Formally, this means that large amounts of data can be

represented by the dynamics of a reduced number of spa-

tiotemporal patterns—or modes—e.g., using spatiotempo-

ral decomposition techniques, see Banerjee et al. (2012),

Pinotsis et al. (2014) and Glomb et al. (2017).

In terms of EM, the formation and retrieval of event

memories are implemented by collaborative dynamics

between the neocortex and the hippocampus, as can be

observed by the analysis of neocortical alpha/beta fre-

quency desynchronization and hippocampal theta/gamma

frequency synchronization (Griffiths et al. 2019). In this

task, the neocortex processes event-related information and

the hippocampus binds this information. Such brain rhythm

analyses indicate that a bidirectional information exchange

between the neocortex and the hippocampus is funda-

mental for the formation and retrieval of episodic

memories.

The learning dynamics—forcing of sequential events by

the environment—activates the chain of engrams in time.

On the retrieval stage, this chain of engrams replays

robustly through the sequential competitions between

individual engrams in time (Rashid et al. 2016; Rao-Ruiz

et al. 2019; Takamiya et al. 2020) and thereby reconstructs

the original sequence of events.

As an example, let us consider creative cognition or goal

directed self-generated creative thought (Beaty et al. 2016).

First, it necessary to consider the dynamic interaction of

large-scale brain networks and their constituting processes

that participate in creative tasks. These dynamical pro-

cesses are: (1) creativity, idea generation, and elaboration,

(2) sequential working memory, (3) attention, and cogni-

tive correlation and control. Creative idea generation is

based on interactions including frontal-central as well as

frontal–temporal networks (Rominger et al. 2020). Vari-

ables, i.e., amplitudes and phases that describe the different

modes of this network form the cognitive phase space

where there exists a heteroclinic structure based on

metastable states (Rabinovich et al. 2008b), the mathe-

matical image of cognons. The complexity of the func-

tional connection matrix (see Eq. (2) in Box 4)—depends

on personality and the stage of the creativity process (Fink

and Benedek 2014). At the same time, the creativity

dynamics, including its constituting functional compo-

nents, like working memory (de Vries et al. 2020), are

controlled by brain rhythms in the alpha frequency range.

Alpha power helps estimating the creativity level of ideas,

and is responsible for the functional correlation of large

scale brain activity (Benedek and Fink 2019). Alpha

oscillations also play an important role in the organization

of divergent thinking and the performance on the alterna-

tive uses task (Agnoli et al. 2020), and serial order effect

(Kraus et al. 2019). In our model, the power of brain

oscillations can control the elements of the connection

topology (matrix 1ij in (2)), which determine the existence

of cognons. At the same time, the cognon influences the

generation of alpha oscillations making the basic model

with such feedback self-consistent.

BOX 4. Cognon: simplest mathematical
models

Complex patterns of cognitive activity as measured in

electrophysiological and imaging experiments can be

described in terms of sequential metastable states using the

concept of cognon as the dynamical unit of cognitive

information. This description allows the characterization of

highly coordinated cooperative dynamics in neuronal

media and global discrete networks. To implement the

dynamics illustrated in Box 1, a sequence of cognons can

be mathematically represented in a model as a vector Cj

with M ordered sequence components (j = 1,2,…,M) in the

form:

Cjðr~; t; sÞ ¼ ajðtÞeiðXjtþujÞ þ a�j ðtÞe�iðXj tþujÞ
� �

Pjðr~; sÞ ð1Þ
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where aj (t) is the level of excitation of the j-th component,

Xj is the frequency of synchronized neural clusters-modes

on the j-th component, uj is its phase, Pjðr~; sÞ represents

the spatial structure of the cognon Cj, r~ is the space coor-

dinates, and s is the characteristic time of the dynamics.

Complex generalized Lotka–Volterra equations

As argued above, cognitive dynamics can be described as a

kinetic process in the form of a sequence of competitive

cognons—finite heteroclinic chains. A convenient model

for the description of such type of kinetic process is a

complex Lotka–Volterra equation (Varona and Rabinovich

2016). In this model, the joint evolution of amplitude and

phase in (1) can be written as

sj
daj
dt

¼ �aj � m� c Sð Þ aj
�� ��2þ

XM
i¼1

1ji Sð Þ aia�i

" #
ð2Þ

where sj is the time scale of aj, m and c(S) represent the

level of inhibition and excitation (which depends on the

stimulus S), respectively, and 1ij(S) is an inhibitory con-

nection matrix that guarantees winnerless competition

dynamics (Rabinovich et al. 2008a). Model (2) describes a

sequence of metastable states as a typical characteristic of

transient brain activity, which can be identified with sev-

eral techniques such as EEG and fMRI (Roberts et al.

2019).

Complex Ginzburg–Landau equations

The complex Ginzburg–Landau equation (CGLE) (Aran-

son and Kramer 2002) describes metastable dynamics of

localized elements of complex mean fields that can be

related to brain rhythms. If we suppose that uðr~; sjÞ is the

complex spatiotemporal amplitude of brain oscillations,

their dynamics can be described as:

ou

ot
¼ Q� ð1 þ ibÞ uj j2

� �
uþ ð1 þ iaÞDu ð3Þ

Here Du ¼ o2u
oz2

1

þ o2u
oz2

2

, z1,2 are space coordinates, Q, a and

b are parameters that characterize subcriticality, dispersion

and nonlinearity, respectively. Because a collection of

brain waves is typically characterized by several different

bifurcation frequencies, it is necessary to generalize the

model from its classical formulation.

Coupled cognon dynamics

GGLVE and CGLE models can be combined for a joint

description of cognon heteroclinic dynamics and brain

rhythms interaction as a finite perturbation for each of them

which does not destroy their basic architecture according to

sj
daj
dt

¼ r.h.s.ð2Þ þ vu ð4Þ

ouj
ot

¼ r.h.s.ð3Þ þ raðtÞ ð5Þ

where r.h.s.(x) is the right-hand side of equation (x) and v
and r are coupling parameters between different compo-

nents of the (2) CGLVE and (3) CGLE models. For sim-

plicity, we consider here a linear coupling. This joint model

is able to represent cognon dynamics and their interaction

with brain rhythms to describe and predict robust sequen-

tial information processes involved in cognitive functions

such as autobiographic memory, attention, decision-mak-

ing, emotion and behavior. In multimodality cognitive

processes, including creative or perceptual tasks, cognons

form binding spatiotemporal complexes that keep simul-

taneous dynamical information that relate the what, the

where and the when.

Conclusions

The concept of a cognon captures the sequential nature of

essential cognitive processes, which can also be seen

within the framework of a generative model linking con-

tinuous and discrete time descriptions of neural activity and

its associated behavior (Rabinovich and Varona 2018; Parr

et al. 2023). The hierarchical multilevel timing architecture

of basic cognon models is a convenient way for analyzing

sequential binding phenomena of cognitive dynamics. It

can be a sequence of events in the episode or a group of

symbols (words) forming a thought. In contrast, with the

chunking process of one modality, the process of binding

of different perception features—or modalities—requires

temporal coordination of parallel transient modalities

(Fingelkurts et al. 2003b). For such description, the number

of different layers in the model has to coincide with the

number of modalities.

The multilayer dynamics of (4) and (5) is also adequate

to model decision-making (DM) processes in the case when

DM is viewed as a choice between different binding

modalities modulated by the environment. This binding

occurs in many decision-making tasks related to behavior.

Different physiological signals, as recorded by in vitro,

in vivo electrophysiological experiments, fMRI and EEG,

capture the same brain activity from different time and

spatial scales, and their dynamical interaction (Van De

Ville et al. 2010; Bassett and Sporns 2017; Avena-

Koenigsberger et al. 2017). Interlaced robust sequential

informational processes are observed in subcellular, cel-

lular, small network and large network interactions,

including systems interaction. A basic dynamical model

has to describe the simultaneous temporal evolution of
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these signals and their mutual interaction depending on the

specific cognitive goal and environment condition. Build-

ing sequences of sequences with such dynamical objects

naturally gives rise to coordinated hierarchical neural

phenomena at multiple description levels, from micro-

scopic to macroscopic information flows, from sensory

encoding to cognitive decision making.

The cognon approach described by the above discussed

model consists of two groups of equations, i.e., equations

for continuous spatio-temporal fields, and equations of

cognon dynamics. They interact by mutual modulation of

the control parameters including mutual excitation and

inhibition. Of course, hypotheses about the robustness and

reproducibility of solutions of (4) have to be proved in the

future. However, available experimental data about the

existence and reproducibility of metastable informational

patterns in active brains (Tognoli and Kelso 2014; He

2018; Roberts et al. 2019) support this hypothesis and can

guide new experiments, including those related to patho-

logical states (Rabinovich and Varona 2017). The concept

of cognon, as the basic unit of cognitive information can

help to bridge the gap between theoretical formalisms of

cognitive dynamics, physiological measurements and

information programming of behavior. Additional impact

of this concept can include the realm of artificial intelli-

gence and, in particular, quantum inspired artificial agents

(Huber-Liebl et al. 2022).
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