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Probing and harnessing photonic Fermi arc surface
states using light-matter interactions
Iñaki García-Elcano1*, Jaime Merino1, Jorge Bravo-Abad1, Alejandro González-Tudela2

Fermi arcs, i.e., surface states connecting topologically distinct Weyl points, represent a paradigmatic manifes-
tation of the topological aspects of Weyl physics. We investigate a light-matter interface based on the photonic
counterpart of these states and prove that it can lead to phenomena with no analog in other setups. First, we
show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the
system’s border. Second, we demonstrate that, exploiting the negative refraction of these modes, the Fermi arc
surface states can act as a robust quantum link, enabling, e.g., the occurrence of perfect quantum state transfer
between the considered emitters or the formation of highly entangled states. In addition to their fundamental
interest, our findings evidence the potential offered by the photonic Fermi arc light-matter interfaces for the
design of more robust quantum technologies.
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INTRODUCTION
The introduction of topology to explain the observation of quan-
tized electron transport (1) has led to a revolution in Physics, per-
meating in fields beyond condensed-matter, such as photonics (2)
or acoustics (3). On the fundamental side, it has brought the discov-
ery that certain phases of matter can only be characterized by global
order parameters (4), escaping thus to the Ginzburg-Landau para-
digm. From a more applied standpoint, such topological phases are
accompanied by the appearance of topological boundary states.
Owing to their topological origin, these boundary states are
immune to disorder and thus can be used to engineer robust
devices. Initially, the field focused on topological phases and their
boundary states in one and two dimensions, such as two-dimen-
sional (2D) Chern (ℤ2) insulators and their chiral (helical) (5)
edge modes (6). However, the observation in 2008 of the first 3D
topological insulator (7) and in 2015 of Weyl semimetals in elec-
tronic (8, 9) and photonic (10) setups has driven the attention to
the 3D case (11, 12).
Weyl systems, in particular, stand as one of themost paradigmat-

ic examples of a 3D topological phase. They are characterized by the
presence of several single-point linear degeneracies in their bulk
spectrum, known asWeyl points, which have associated a quantized
Berry curvature. Such quantization triggers the appearance of topo-
logical surface states with an energy dispersion connecting two to-
pologically inequivalent Weyl points: the Fermi arcs (13). These
unconventional surface modes are responsible for exotic phenom-
ena in electronic systems such as bulk-mediated quantum oscilla-
tions (14), as well as unusual classical wave propagation in
bosonic settings such as photonics or acoustics (15–19). However,
an important practical difference between the two scenarios is that
whereas the electronic ground state fills up until the Fermi level and
thus naturally probes Fermi arc energies, bosonic excitations accu-
mulate in the lowest energy state because of their statistics. Thus, the
phenomena and detection schemes introduced in the electronic

context cannot be, in general, directly extrapolated to the
bosonic ones.
In photonics, this limitation, which is commonplace for all topo-

logical models, is motivating interfacing such structures with emit-
ters (20–23). The reason is that emitters can probe the photonic
system at topologically nontrivial frequency regions, making them
active. As an added value, emitters are strongly interacting systems
that can induce photonic interactions through light-matter cou-
plings. These recent experimental developments are driving many
theoretical studies, which, so far, have focused on understanding the
photon-mediated interactions when emitters couple to topological
bulk modes (22, 24–31). Recent studies with 1D (32) and 2D topo-
logical photonic systems (33) have discovered how the interaction of
emitters with the topological boundary modes can also lead to ex-
citing regimes in cavity and waveguide quantum electrodynamics
(QED). The interaction of topological surface states with emitters
has not yet been studied, and thus, their potential applications
still remain an open question.
In this work, we undertake this endeavor by characterizing a

Fermi arc light-matter interface, consisting of a set of emitters
coupled to the edges of a Weyl system, and find several unexpected
phenomena. First, we demonstrate that one can directly image the
Fermi arcs by monitoring the free-space spontaneous emission of
the emitters. Second, we prove that the surface modes can act as a
robust quantum link connecting the emitters in two different ways.
In the infinite size limit, we show how to engineer the negative re-
fraction (NR) occurring at the hinges of the system to obtain a
perfect, dissipative, chiral channel (34), and characterize its perfor-
mance by studying the spontaneous formation of entanglement.We
demonstrate that the studied channel can reach the maximum en-
tangling capacity of a perfect chiral waveguide (35), which opens up
its use for quantum state transfer (36) or to obtain driven-dissipa-
tive maximally entangled states (37–39). For small systems, meaning
that revivals of the emitters occur, the multiple NRs taking place at
the corners of the structure facilitate the formation of a closed pho-
tonic path that induces an effective cavity mode. Such cavity leads to
perfect coherent exchanges between the emitters, which can be used
to maximally entangle them in a time-dependent fashion.
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RESULTS
Fermi arc light-matter interfaces
In this section, we provide all the details about the Fermi arc light-
matter interface that we will consider in this manuscript. First, we
briefly describe the light-matter Hamiltonian that is used. Then, we
make an extensive description of the considered photonic Weyl en-
vironment, explaining its bulk and boundary properties.
Light-matter coupling scheme
A schematic overview of the system under study is depicted in
Fig. 1A.We consider one or more emitters coupled to the boundary
of a photonicWeyl environment, which wemodel as a discrete pho-
tonic lattice. The interplay among the modes spanning such topo-
logical reservoir is captured by a tight-binding Hamiltonian of the
form (taking ℏ = 1 hereafter)

HB ¼
X

rr0
Jrr0ayrar0 ð1Þ

where arðayrÞ annihilates (creates) a bosonic excitation at position r
and Jrr′ is, in the most general case, a complex hopping matrix
element. The band structure resulting from the diagonalization of
HB harbours an even number of Weyl points. These are point-like

degeneracies in reciprocal space around which, assuming that we
limit ourselves to the study of the so-called type I Weyl semimetals
with no tilting velocity terms (12, 40), the dispersion can be expand-
ed as follows

E+ðk ≏ kiWÞ � ωW +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

αα0¼x;y;z
Mi
αα0 qiαqiα0

s

ð2Þ

wherewe define ωW as theWeyl frequency, qi ¼ k � kiW denotes the
distance between an arbitrary point in the Brillouin zone k and the
position of the i-th Weyl node kiW , and Mi is a positive defi-
nite matrix.
For the emitters, we use the simplest description, that is, consid-

ering them as two-level systems with resonant frequency ωj. The
emitters’ operators will be denoted by σjνν0 ¼ νjν0j (ν, ν′ = g, e),
where ej and gj stand for the excited and ground state of the j-th
emitter, respectively. Then, provided that the emitters are locally
coupled to specific sites of the photonic bath rj, the Hamiltonian

Fig. 1. Photonic Weyl environment realized in a 3D lattice of localized bosonic modes. (A) Schematic view of the investigated system. (B) Hopping amplitudes
associated with the intralayer (top) and interlayer (bottom) interactions in the discrete lattice model. Black and white shallow cylinders represent the localized
bosonic modes belonging to the A and B sublattices, respectively. (C) Slab model for the considered cut. Left: The z = 0 plane of the photonic lattice, where the shadowed
gray area represents the unit cell associated with the cut system. Right: 3D view of the slab. As seen, we choose both the ð010Þ and (010) facets to be composed by sites
belonging to the A sublattice. (D) Phase diagram of the Weyl photonic environment setting ϕ = 0 (see the definition in Eq. 5), as a function of the on-site energy offset
between sublattices m and the next-nearest-neighbor hoppings J′. The inset shows the band structure corresponding to the (II) configuration, where the red surface
represents the edge band. (E toG) Fermi arcs associated with three different configurations marked by red crosses in the phase diagram displayed in (D). Solid and dotted

lines differentiate between states associated with the ð010Þ and the (010) facets, respectively. Magenta points denote the projection of the Weyl singularities over the
surface Brillouin zone. The color map indicates the Berry curvature calculated for the edge bandΩeb(k), in each of the considered cases. For the calculation, a slab of width
w=a ¼ 16

ffiffiffi
2
p

(i.e., 33 non-equivalent sites per unit cell) is used. Therefore, the edge band is identified as the n = 17 band. Hot lines alongwhich the surface Berry curvature
displays a nontrivial behavior are present in (F) and (G).
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of the full system reads as (see Fig. 1A)

H ¼ HB þ
XN

j¼1
ðωjσjee þ

X

r
grrj a

y
rσ

j
ge þH:c:Þ ð3Þ

where N is the total number of emitters and grrj = g δrrj, with g rep-
resenting the light-matter coupling strength. This type of light-
matter coupling Hamiltonians can describe both the situation
where natural or artificial atoms couple to real photonic crystal en-
vironments (10) and others where superconducting qubits couple
to microwave resonator arrays (22, 41–43). Besides, it is noteworthy
that similar light-matter interaction Hamiltonians can be emulated
with purely atomic setups by replacing the role of photons bymatter
waves (44, 45). The latter is a particularly promising platform to test
our predictions given that both the first implementation of such
simulated light-matter interfaces (46) and Weyl points (47) have
been recently achieved.
Tailoring the Weyl environment
The discrete lattice model that embodies the photonic Weyl envi-
ronment is given, for definiteness, by a generalization of the propos-
al described in (48), which we design to break inversion and time-
reversal symmetries. However, we expect that the conclusions that
we derive from this model can be extended to any tight-binding
scheme featuring similar dispersive properties, particularly to
those hosting a prototypical type I semimetallic phase (49–51). Fur-
thermore, even if some tilting of the Weyl cones is assumed, the
local character of the light-matter coupling might preclude the pho-
tonic excitation from leaking into the bulk modes, thereby enabling
the generalization of the obtained results to this class of systems too.
A real space representation of the considered model is outlined

in Fig. 1B. It is useful to present it as a set of bidimensional layers,
consisting of square lattices, stacked along the z axis. The sites
within each layer are connected through nearest- and next-
nearest-neighbor interactions (with amplitude J and J′, respective-
ly), whereas interlayer couplings occur solely between vertically
aligned sites (with amplitude Jz = J ). To obtain the Weyl phase,
we impose a nontrivial phase pattern that involves the definition
of a two-site unit cell. The latter introduces a sublattice degree of
freedom that acts as a “pseudospin.” In Fig. 1 (B and C), the sites
of what we define as the A and B sublattices are represented by
black and white shallow cylinders, respectively. Last, we include a
staggered mass term m, which creates an onsite energy offset
between the modes belonging to the two different sublattices. As-
suming periodic boundary conditions, the Hamiltonian matrix
can be written in reciprocal space as follows (see details in the Sup-
plementary Materials)

HBðkÞ ¼ ωW1þ dðkÞσ ð4Þ

where σ = (σx, σy, σz), with σx,y,z representing the Pauli matrices, and
d(k) is a k-dependent vector whose components are given by

dxðkÞ ¼ � J½cosðkxaþ φÞ þ sinðkxaÞ þ 2cosðkyaÞ�;
dyðkÞ ¼ þJ½sinðkxaþ φÞ þ cosðkxaÞ�;
dzðkÞ ¼ � m � 2JcosðkzaÞ þ 4J0sinðkxaÞsinðkyaÞ:

8
<

:
ð5Þ

Here, a denotes the distance between nearest neighbors, and we
define φ as the complex phase picked up by the excitation when it
jumps from a B site to an A site in the negative x direction. In the

following, to center the discussion, we fix φ = 0 unless explicitly
specified.
Phase diagram. The positions of the Weyl points in the Brillouin

zone are obtained by solving ∣d(k)∣ = 0. To delineate the different
regions that comprehend the phase diagram shown in Fig. 1D, we
study the moving and merging of these Weyl nodes as we sweep the
parameter’s space spanned by m and J′. The green shadowed area
occupying the lower left corner of the phase diagram corresponds to
a Weyl semimetallic phase featuring two pairs of Weyl points
(WSM2). This phase can evolve into a different type of Weyl semi-
metal, which is characterized by the presence of a single pair of band
touching points (WSM1). The WSM1 phase emerges in between a
normal insulator (BI) and a quantum (anomalous) Hall insulator
(QHI), as expected (52). The topological characterization of these
gapped phases can be done using a dimensional reduction strategy
(49, 53). The latter consists in calculating the Chern number of an
effective 2Dmodel stemming from treating kz as a free parameter in
the matrix Hamiltonian defined by Eq. 4. We have found that the
topological invariant of the QHI phase is C = ± 1 for all values of kz,
whereas the Chern number in the BI phase is always zero (see details
in the Supplementary Materials).
Emergence of the Fermi arcs. As a natural consequence of the bulk-

edge correspondence, when the photonic environment is prepared
in the Weyl semimetallic phase, we expect topologically protected
edge states to show up. To characterize the surface modes of our
model, a slab-like geometry is investigated. To implement that, we
impose open boundary conditions along some specific spatial direc-
tion while preserving the discrete translation symmetry within the
remaining ones. For the sake of conciseness, we consider a slab fea-
turing an infinite size along the z and x + y directions but a finite
width along the x-y direction, as shown in Fig. 1C. The boundaries
of such slab correspond to two planes, which we choose to be com-
posed by sites belonging to the A sublattice and we refer to as the
(010) and the ð010Þ facets. Note that, for convenience, we have in-
troduced a coordinate system rotated π/4 around the z axis. In this
transformed basis, the lattice vectors are a1 ¼

ffiffiffi
2
p

a êk, a2 ¼
ffiffiffi
2
p

a ê?,
and a3 ¼ a êz , where êk=? ¼ 1ffiffi

2
p ðêx + êyÞ and êα denotes a unit

vector in the α direction.
The periodicity of the lattice along the z and ∥ directions can be

exploited to exactly diagonalize the bath Hamiltonian with the se-
lected boundary conditions. To do so, we consider an extended unit
cell [see the gray shadowed area in Fig. 1C (left)] and define the
surface lattice vectors as as1 ; a1 and as2 ; a3. Equipped with
these two elements, one can invoke the Bloch theorem to bring
HB to its diagonal form. The k-space’s primitive cell of this quasi-
2D model is precisely the surface Brillouin zone. There, the Fermi
arcs appear as the En(k) = ωW equifrequency contours of the calcu-
lated band structure [see inset of Fig. 1D], where En(k) denotes the
n-th band.
The Fermi arcs associated with the ð010Þ and (010) facets are

shown in Fig. 1 (E to G) for three different points of the phase
diagram (gray solid and dotted lines, respectively). As seen, they
stand as open curves that connect the projections over the surface
Brillouin zone of Weyl points with different chirality. The displayed
color maps depict the surface Berry curvature associated with the
edge band Ωeb(k), which corresponds to the red colored band in
the inset of Fig. 1D. These maps show that, for the (II) and (III)
configurations, there are some regions along which the surface
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Berry curvature exhibits a divergent behavior (54). These “hot lines”
are associated to areas in reciprocal space where the localization of
the wave function changes drastically (see details in the Supplemen-
tary Materials).

Probing Fermi arc surface states via spontaneous emission
As mentioned in the Introduction, the absence of a Fermi energy in
the photonic setting makes the detection of the Fermi arcs impos-
sible to be directly extrapolated from the electronic context. The first
measurements used angle-resolved transmission to detect the Fermi
arcs in photonic systems (10, 55), whereasmore refined experiments
using classical local probes and near-field scanning measurements
(56–59) have been able to provide better visualization of these
modes. In this section, we show that Fermi arc light-matter interfac-
es represent an outstanding alternative way of probing and imaging
the Fermi arcs by monitoring the emitters’ spontaneous emission.
For that, we first show that a single emitter locally coupled to the
edge of a Weyl system naturally excites surface modes into the
bath. Then, we show that if one couples, not to one but to many
emitters, and monitor their spontaneous emission far from the
surface, one can have a visualization of the Fermi arcs of the bath
they are coupled to.
Launching Fermi arc surface modes with a single emitter
Let us start by considering a single emitter, prepared in its excited
state and locally coupled to one of the sites in the lattice’s boundary.
The photonic excitation is injected in the system via spontaneous
emission, and its propagation through the reservoir can be
studied using an exact treatment. The latter implies solving the
Schrödinger equation for large finite baths (30). For that, we intro-
duce an overall–wave function ansatz of the form (setting the
number of emitters N = 1)

jΨðtÞi ¼
XN

j¼1
CjðtÞσjeg þ

X

r
CrðtÞayr

" #

jΨvaci ð6Þ

where ∣Cj(t)∣2 and ∣Cr(t)∣2 yield the population of the j-th emitter
and of the bosonic mode localized at position r, respectively, and
∣Ψvac⟩ ≡ ∣g1⋯gN; vac⟩, with ∣vac⟩ the electromagnetic vacuum.
Since our calculations are performed in a finite system, a specifica-
tion of the photonic lattice’s shape is needed. We consider the one

shown in Fig. 2A, which resembles (modulo its finite size) the slab
described in the previous section. Then, the emitter, which we
locate in the center of the ð010Þ surface, is tuned to the Weyl
frequency.
Under free evolution, the emitter relaxes to its ground state and

the photonic excitation is transferred to theWeyl environment. The
latter spreads out, mostly, among the sites comprising the boundary
wherein the emitter is placed. This demonstrates a preferential cou-
pling to the surface modes of the bath. Despite being extended over
the 2D facet of the system, the photonic excitation propagates
mostly in the forward directions, ultimately related to the fact that
the considered lattice breaks time-reversal symmetry. Since this re-
sembles what happens in 1D chiral quantum optical settings (34),
we will refer to these excitations as chiral surface modes. In Fig. 2A,
we show the photonic population at each lattice site for the temporal
frame tJ = 10, withHB prepared in the configuration marked by (II)
on the phase diagram of Fig. 1C and assuming that g/J = 0.5. There,
the presence of two channels of highly collimated emission oriented
in the upward and downward directions reflects the mirror symme-
try displayed by theWeyl bath along the z = 0 plane. This condition,
together with the chiral behavior experienced by the photonic exci-
tation, yield a V-shaped emission profile with no analog in locally
coupled light-matter interfaces (60), nor in 2D photonic crystals ex-
hibiting supercollimation (61), because, there, the chiral nature of
the photonic environment is absent. The yellow line in the inset
of Fig. 2A shows the probability of finding the excitation at a
given angle α within a circle of radius R/a ≈ 20, centered at the
emitter’s position, after a measuring time of tJ = 60. This calculation
is repeated for configurations (I) and (III), yielding the blue and
orange plots, respectively, showing how one can control the emis-
sion patterns through the bath parameters.
If we restrict the study of the system’s dynamics to time values

such that tv < L, where v ∼ Ja is the average velocity at which the
excitation propagates through the bath and L accounts for the
linear extent of the surface wherein the emitter is placed, reflection
effects at the facet’s borders can be neglected. In that case, the results
stemming from solving the Schrödinger equation in the finite-sized
lattice do not differ from those that one would have obtained if an
infinite slab had been considered. Thus, it is legitimate to introduce
an alternative representation in which the evolution of the photonic

Fig. 2. Probing the surface modes of the Weyl system via local light-matter coupling with a single emitter. (A) Photonic component of the overall-system wave
function at tJ = 10 for the configuration marked by (II) in the phase diagram of Fig. 1D. The system is prepared with the emitter in its excited state and coupled to the
central site of the ð010Þsurface. The inset shows the probability of finding the photonic excitation at r =R( cos α, sin α), withR/a≈ 20, after ameasuring time of tJ = 60, for
each of the three cases considered in the phase diagram of Fig. 1D. (B toD) Distribution of the Blochmodes’ population at tJ = 10 for the three considered cases. In all the
calculations, the light-matter coupling strength is g/J = 0.5. A finite slab of width w=a ¼ 16

ffiffiffi
2
p

is used. The dimensions of the ð010Þ facet in the ∥ and z directions are
Lk=a ¼ 63

ffiffiffi
2
p

and Lz/a = 63, respectively. To compute the inset of (A), the slab is enlarged in the vertical direction (Lz/a = 255) to avoid reflection effects with the top and
bottom edges of the facet.
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component is described by the time-evolving population of the en-
semble of Bloch modes that diagonalize HB when the slab-like
boundary conditions are imposed (see the Supplementary Materi-
als). The time-dependent population of each Blochmode can be cal-
culated as follows

jCnkðtÞ j2 ¼ jhψnk jΨðtÞi j
2

ð7Þ

where ∣ψnk⟩ is the Bloch state associated to the n-th band and the
quasi-momentum k = (k∥, kz). Pretty much in the sameway as in the
electronic context, one can build some intuition upon the excita-
tion’s dynamics by adopting a semiclassical description (62).
Within this picture, one can relate the speed and direction of the

propagating excitation to the group velocities of the Bloch modes
that couple to the emitter.
The population of Blochmodes arising from the photonic profile

presented in Fig. 2A is shown in Fig. 2C. Together with that, we plot
the projections of the Weyl points over the surface Brillouin zone
(magenta dots). We observe that the excited modes outline the
shape of the Fermi arcs corresponding to the surface in which the
emitter is placed (see the straight gray lines highlighted in the main
panel). The inset displays a cut of the band structure for kza = π/2,
where the colored points reveal the energy distribution of the
excited modes. Similar treatment is performed for the configura-
tions (I) and (III), obtaining equivalent mappings as demonstrated
in Fig. 2 (B and D, respectively). To understand why this imaging
occurs, we first note that, as long as we remain in the regime where
g/J < 1, the modes playing the most relevant role in the dynamical
process are those in resonance with the emitter’s frequency. In our
case, as we are considering a type I Weyl semimetal and tuning the
emitter to theWeyl frequency, we can ensure that the dynamics will
be dominated by the Bloch states comprising the Fermi arcs,
namely, because they are the ones whose associated energy coin-
cides with ωW. Besides, the fact that the emitter acts as a local
probe in real space translates into a strong nonlocal character of
the coupling in k-space, which means that all the modes comprising
the Fermi arcs are, in principle, homogeneously excited. Nonethe-
less, we must take into account that, because leakage of the photonic
population to the bulk is strongly suppressed whenever the emitter
is in resonance with the Weyl frequency, only the Fermi arcs corre-
sponding to the specific boundary where the emitter is embedded
can be actually probed.
Transforming from real to reciprocal space representation using

time-of-flight pictures. The dynamical behavior illustrated in
Fig. 2A shows that the emitter is acting as a local probe launching
surface modes over the photonic structure (15, 55, 56, 59). A natural
question to ask is whether there is a way of recovering the “Fermi arc
picture” once the excitations are transferred into the bath degrees of
freedom. Here, we want to illustrate that, for the case of the emulat-
ed light-matter interfaces using ultracold atoms (44–46, 63), in
which the photons are nothing more thanmatter waves propagating
through an optical lattice, there is a straightforward way of recover-
ing them. The idea consists in, once the excitation has been
launched, removing the optical traps so that the matter waves are
released. This is the method known as time-of-flight imaging
(64), and it is used routinely in cold atom experiments (65). After
switching off the trap, the density distribution of the propagating
atomic cloud can be shown to be related to the following momen-
tum distribution (see the Supplementary Materials):

nðkÞ ¼
X

j;j0
eikðrj � rj0 ÞhΨðtÞ jayrj arj0 jΨðtÞi ð8Þ

which can be measured through resonant absorption imaging after
releasing the matter waves. In Fig. 3 (left), we plot the 3D momen-
tum distribution n(k) associated with the photonic population fea-
tured by the Weyl environment, prepared in the configuration
marked by (II) in Fig. 1C, for several de-excitation times in the dif-
ferent rows, whereas in the right column, we plot the corresponding
column-integrated momentum distribution along the ⊥ direction:
n⊥(k∥, kz) = ∫ dk⊥ n(k). In these panels, we observe that, as the
emitter excitation decays completely into the environment, the

Fig. 3. Fermi arcs visualization via time-of-flight imaging of theWeyl photonic
environment coupled to an initially excited emitter.We consider a finite lattice
constituted by 31 sites in the ∥ and ⊥ directions and 61 sites in the z direction (see
Fig. 1C), prepared in the configuration marked by (II) in the phase diagram of
Fig. 1D, and harboring an initially excited emitter coupled to the center of the ð0

10Þ facet, with g/J = 0.5. (A, C, and E) 3D momentum distribution n(k) of the pho-
tonic modes excited by the emitter for released times of tJ = 2, 4, and 6, respec-
tively. (B,D, and F) Projection of the momentum distribution obtained in (A, C, and
E) along the k⊥ direction.
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Fermi arc shape found using the formal mapping defined in the pre-
vious section emerges [compare Fig. 3F with Fig. 2C].
Fermi arc imaging through many emitters’ spontaneous
emission
A final question regarding the imaging of Fermi arcs is whether
there is a method that does not rely on the matter wave nature of
the photonic excitation. In this section, we provide a positive
answer by showing that, by monitoring the free-space spontaneous
emission of a set of emitters attached to the border of the Weyl en-
vironment, one can image the Fermi arcs in reciprocal space. To il-
lustrate that, we consider an array of emitters coupled to the ð010Þ
surface (one emitter per lattice site in the facet), as shown in Fig. 4A.
Then, we assume that the central emitter is excited, while the rest are
in their ground state. One can show that as the central emitter
decays into the bath as surface modes, it will also excite the rest of
the atoms, which will eventually decay into the bath as well. If one
considers that the emitters not only decay into the bath but also
radiate into free-space modes, then one can monitor the formation
of the Fermi arcs in real space. In particular, if we assume that the
emitters radiate as electric dipoles, the intensity of the light being
emitted at position R ¼jR j R̂ is given by ⟨Ψ(t)∣E−(R)E+(R)∣Ψ(t)⟩.

Here, E+(R) stands for the positive frequency component of the
electric field that, in the Markovian approximation, reads (66)

EþðRÞ ¼ μ0ω20
XN

j¼1
G
$

0ðR; rj;ω0Þ‘σjge ð9Þ

where we assume that all emitter dipoles are equally oriented, with
dipole moment ‘ ¼j‘ j ‘̂ and resonant frequency ω0. Furthermore,
provided that the Green’s tensor is solely given by the far-field con-
tribution of the free-space one

G
$

0ðR; rj;ω0Þ ¼
eik0ðjRj� R̂rjÞ

4π jR j
I
$
�
R� R
jR j2

" #

ð10Þ

where k0 = 2π/λ0, with λ0 being thewavelength of the emitters’ tran-
sition, it can be shown that

hΨðtÞ jE� ðRÞEþðRÞ jΨðtÞi ¼
μ0ω20 j‘ j
4π jR j

� �2

f ðR̂; ‘̂Þ ð11Þ

Here, we have used the overall–wave function ansatz given by Eq.
6. The temporal dependence is hidden in the form factor f ðR̂; ‘̂Þ
through the emitter populations Cj(t)

f ðR̂; ‘̂Þ ¼ ½ðR̂� ‘̂Þ � R̂�2
XN

j;j0¼1

C�j ðtÞCj0 ðtÞ eik0R̂ rjj0 ð12Þ

with R̂ ¼ cosθcosϕ ê? þ cosθsinϕ êk þ sinθ êz and rjj′ = rj − rj′. In
Fig. 4B, we plot precisely this form factor for different times provid-
ed that the photonic Weyl environment is prepared in the same
phase as in Figs. 3 and 2B, showing again the emergence of the
Fermi arc signatures in reciprocal space.
To conclude, let us emphasize that the presented approaches

provide a suitable theoretical framework to develop protocols in
which the nonlinear behavior of the emitters can play a more fun-
damental role, e.g., emitting correlated light with which one can
perform spectroscopy and measure properties inaccessible by clas-
sical probes with the same intensities (67).

Photonic Fermi arc surface states as robust quantum links
After having shown in the previous section that emitters at the edges
couple efficiently to the topological surface modes associated with
the Fermi arcs, here, we illustrate how to harness them to induce
robust quantum links between the emitters. For that, we exploit
one of the most notable features of such surface modes, that is,
that they can lead to NR at the hinge that separates two different
facets of the Weyl system (15). Such effect, predicted originally by
Veselago (68) between materials with different “rightnesses,” is trig-
gering a lot of theoretical and experimental activity (15, 69–78)
because of its potential uses, for example, to obtain perfect
lensing (79). However, most of the applications so far have
focused on the (semi)-classical regime. Here, we show how to
exploit such phenomena to obtain a robust quantum link between
emitters that can be harnessed for both perfect quantum state trans-
fer (36) and to induce maximal entanglement between the emitters
in several ways. To show that, we divide this section into three parts:
1) We determine the system’s parameters to enable NR in the

Weyl system and optimize the bath configuration to maximize the
coupling between emitters coupled to its edges.

Fig. 4. Radiation emanating from an emitter array coupled to the boundary of
theWeyl environment. (A) Sketch of the considered situation: The radiation stem-
ming from an array of emitters, locally coupled to the sites forming the ð010Þ facet
of the Weyl lattice, is collected in the far-field as a function of the angular variables
θ and ϕ. The light-matter coupling strength g, polarization direction ‘̂, and transi-
tion’s wavelength λ0 are assumed to be the same for all the considered emitters. At
the initial time, only the emitter placed in the center of the face is in its excited
state, with no photonic excitations in the bath. (B) Angular dependence of the ra-
diation pattern obtained for three different time frames provided that the Weyl
bath is prepared in the configuration marked by (II) in the phase diagram of
Fig. 1D and that g/J = 0.2, ‘̂ ¼ ẑ, and λ0/a = 1.
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2) We consider the collective dynamics of two emitters placed at
consecutive facets of a large-enough system so that revival effects in
the initially excited emitter do not occur. In that case, we demon-
strate that, under certain conditions, the chiral propagation of the
surface modes together with its NR at the hinge make the photonic
excitations behave as a perfect 1D, chiral channel (34).
3) We consider the opposite limit where multiple refractions

occur at the system’s hinges. There, we show how, engineering the
system properly, the light emitted from an emitter can arrive at the
same point, forming effective 1D cavity modes. We demonstrate
that such effective cavity modes induce perfect coherent exchanges
between the emitters that can maximally entangle them.
Optimizing the Weyl system for NR
In the discussion accompanying Fig. 2, we already report on how an
emitter tuned to the Weyl frequency preferentially excites the
surface modes associated with the Fermi arc dispersions. Within a
single facet, because of the mirror symmetry of the bath, an emitter
always launches its excitations on two channels with opposite ver-
tical component of the group velocity (see Fig. 2A). This chiral,
multichannel emission could be used, e.g., for multiplexing
quantum information in different directions (17, 18), thereby en-
abling the design of quantum link architectures that cannot be ob-
tained with pure 1D setups. In this section, however, we are
interested in the possibility of refocusing these channels onto a

second emitter at the contiguous edge (see Fig. 5D). For that, we
exploit the NR occurring at the system’s hinges (15, 69–73).
A schematic view of the refraction process in the interface

formed between two adjacent facets of the Weyl bath is depicted
in Fig. 5A, where we represent an incoming Bloch state approaching
from the right to one of the lattice’s hinges. The group velocity of the
targeted mode is given by a black arrow. At the interface, frequency
and momentum parallel to the intersection are conserved (15),
which implies that NR occurs if the tangential component of the
group velocity changes its sign. Within this framework, we can
also identify the conditions to inhibit reflection, which entail the
absence of resonant back-propagating modes in the first surface
(compare the middle and bottom panels in Fig. 5A). A preliminary
examination of the direction of growth of equifrequency contours
associated with the ð010Þ and the ð100Þ surfaces unveils that NR can
be achieved between these two facets provided that the first one is
composed by sites belonging to theA sublattice, whereas the second
one is composed of sites belonging to the B sublattice, as shown
in Fig. 5B.
On top of that, to maximize the focusing onto a single spot, one

must account for the fact that the group velocities characterizing the
Bloch states of a given Fermi arc do generally feature slightly differ-
ent propagation directions. This causes each mode in the Fermi arc
to undergo a distinct refraction angle, hindering the focalization of

Fig. 5. Utilization of the surface Weyl states as an ideal quantum link by exploiting the NR of the photonic excitation at the system’s hinges. (A) Single mode
picture of the NR process occurring on the surface of a Weyl system. Middle and bottom: The equifrequency contours associated with a system without and with back-
propagation, respectively. (B) Boundary conditions required to produce NR in the hinge formed between the ð010Þ and the ð100Þ facets. (C) Phase diagram of the lattice

model for ϕ = π/2 (see definition in Eq. 5). The inset shows the Fermi arcs corresponding to the ð100Þ and ð010Þ faces provided that the bath is prepared in the confi-
guration marked in the phase diagram with a red cross. Black arrows represent the group velocities associated with a set of selected k-points belonging to the Fermi arcs
in arbitrary units. (D) Investigated scenario in which two quantum emitters coupled to adjacent facets of the Weyl bath and separated some distance d from the corner
formed between the two considered facets. (E) Population dynamics and concurrence for different values of the light-matter coupling strength and distance between the
emitters. (F) Maximum concurrence achieved as a function of the distance between emitters and the light-matter coupling strength.
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the photonic component on the second surface. To circumvent this
problem, we explore the configurations’ space ofHB, examining dif-
ferent values of the parameter φ defined in Eq. 5. We find that the
optimal situation is obtained by choosing φ = π/2, instead of the φ =
0 value used for Figs. 1 to 3. The phase diagram as a function of m
and J′ for this value of φ = π/2 is displayed in Fig. 5C. The Fermi arcs
of the ð010Þand the ð100Þ facets for the casem/J = 0 and J′/J = 0.4 are
plotted in the inset. The calculation of the group velocities associ-
ated with the k-points that span these curves evidences a homoge-
neous distribution of the direction of propagation of the
corresponding Bloch modes. To illustrate that, we plot the group
velocities of some selected points in the Fermi arcs using black
arrows. In what follows, we fixed this parameters’ configuration
and describe the emergence of the two working regimes explained
in the introduction of this section. It must be noticed however that,
owing to the all-angles NR supported by the Fermi arc light-matter
interface (74), even in the nonideal cases, the coupling between
emitters connected through the surface modes of the Weyl system
is notable (see the Supplementary Materials).
To investigate the aforementioned regimes, we will use the setup

depicted in Fig. 5D, that is, considering two emitters separated at a
distance d from the intersection formed between the two studied
facets. Besides, we will assume that the emitter at the ð010Þ
surface is excited, while the other one, in the ð100Þ surface, is ini-
tially in its ground state. After that, we let the system evolve freely
and track the populations of both the initially excited and the ini-
tially de-excited emitters, which are given by ∣C1(t)∣2 and ∣C2(t)∣2,
respectively. We also study the concurrence C (t) as a measure of
the two-qubit entanglement (80), which for these initial conditions
can be shown to be given by (35, 81)

CðtÞ ¼ 2 jC1ðtÞC�2ðtÞ j ð13Þ

There will be two relevant magnitudes that will distinguish the
dynamical regimes that we will discuss in the next two sections. One
is the expected decay time of the emitters that, within a Markovian
regime, will be of the order τ ∼ O(J/g2). The other one is the time
that an excitation will take to make a round trip within the system,
which will be of the order TR ≏ ‘

Ja, with ‘ being the path length fol-
lowed by the excitations, which will increase linearly with system
size, and Ja being the typical group velocity that can be obtained
in this system. As we will show below, the behavior will be very dif-
ferent when τ ≫ (≪)TR.
Fermi arc surface states as perfect 1D, chiral channels
Let us first consider the limit of very large systems, that is, τ ≪ TR.
This means that the photons will decay from the emitters complete-
ly before any re-excitation can occur. This leads to an effective non-
unitary dynamics in the emitters because all the population is
eventually lost into the bath. We simulate that regime numerically
by including local losses as imaginary energies in the (010) and
(100) facets, which attenuates any photonic excitation that arrives
to them.
Despite the nonunitary nature of the dynamics, the refocusing of

the two channels due to the NR at the hinge (see Fig. 5D) ensures
that the excitations leaked by the first emitter can be absorbed by the
second. This is clearer in Fig. 5E where we plot the population dy-
namics of the first (second) emitter in solid (dotted) brown lines,
together with the associated concurrence C(t) in dashed black, for
several parameters. There, we observe how the refocusing of the

surface modes can induce a transient entangled state between the
emitters. This is the effect known as spontaneous generation of en-
tanglement, which has been recently studied in different contexts
(82–87), including 1D chiral waveguides (35). In the latter work,
it was shown that, for a perfect Markovian chiral quantum optical
channel, the maximum transient entanglement that can be achieved
is 2/e ≈ 0.736. This is the value that we mark with the horizontal,
dotted, gray line in Fig. 5E showing howwe can reach the maximum
in the situations where the emission is chiral and quasi-1D. For the
smallest distance shown (see the bottom panel), the concurrence
can go even beyond the ideal limit. This is attributed to the fact
that, in that case, the emission does not have space to feature a
quasi-1D nature, yielding values slightly above it. Last, to complete
the characterization, in Fig. 5F, we make a contour plot of the
maximum transient value of concurrence for different corner-to-
emitter distances d and g/J ratios, observing how one can approach
the ideal limit for a wide range of configurations.
Beyond the intrinsic interest of such spontaneous generation of

entanglement, the most important value of the results illustrated by
Fig. 5 (D to F) is that they prove that Fermi arc surface modes can
behave as a perfect 1D channel. This opens up the use of all the ma-
chinery developed for such systems (34). For example, one can in-
crease the value of entanglement by coherently driving the emitters
with staggered frequencies (37–39). In those works, it was shown
how the combination of staggered drivings plus chiral quantum
optical channels can lead to the formation of many-emitters entan-
gled steady states, where the concurrence can approach its
maximum value, i.e., C (t → ∞) = 1. Beyond two-level emitters, it
is also well known that, by using Λ-transitions controlled by
Raman lasers, chiral quantum channels can be used to obtain deter-
ministic quantum state transfer (36).
Coherent exchanges induced by effective cavity modes
In the small system’s size limit, that is, when TR ≪ τ, the occurrence
of revivals due to the re-excitation of the emitters cannot be avoided.
Rather than being a hindrance, we will show now how NR can turn
these revivals into a resource. The key point is that, if one designs the
system appropriately, as depicted in Fig. 6A, the photonic excita-
tions circulate around the system arriving, eventually, at the posi-
tion of the emitter from where they were launched. Again, this is
possible because of the NR taking place at the system’s hinges,
which guides the propagating ray through a confined, braid-
shaped path. An example of that emission pattern is shown in
Fig. 6B where we plot a snapshot of the bath population in the
facets for a particular time, showing the traces of the focusing and
refocusing of light.
This light behavior leads to a radically different dynamics of the

emitters. An example of that is shown in Fig. 6C, where we plot the
excited state population of the initially excited (de-excited) emitter
in solid (dotted) brown. We observe that, differently from the pre-
vious situation, the emitters feature perfect coherent exchanges at a
distinct frequency that we denote as J12. We also observe small am-
plitude oscillations, which are zoomed in the right inset panel,
whose frequency can be directly linked to the time it takes for the
photonic excitations to perform a complete round trip. The perfect
coherent oscillations at frequency J12 allow the emitter to reach the
maximal entanglement of C (t) ≈ 1 in the transient regime (see
dashed black line), overcoming the limitations of the chiral dissipa-
tive channels (35).
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The intuition on why these coherent oscillations appear is that,
thanks to the NR, the photonic excitation undergoes a closed loop,
creating an effective 1D cavity that is able to transfer excitations off-
resonantly between the emitters (88). To confirm this intuition and
obtain further insight, we plot, in Fig. 6D, the frequency of the os-
cillations J12 as a function of the corner-to-emitter distance for
several system sizes. There, we observe that, disregarding the
finite size effects that appear when the emitters are located close
to the system’s hinges, J12 tends to be constant with the distance.
This is clearer in the plateau obtained for J12 for the larger system
size (in red triangles). Note that this is what is expected for off-

resonant cavity couplings because they typically mediate infinite-
range interactions (88). Apart from that, in Fig. 6E, we plot the op-
posite situation, that is, we fix several distances between emitters
and study the dependence with system size. There, we observe
how J12 also tends to the same constant value for large system
sizes. This can also be explained in terms of this effective cavity
picture. Typically, off-resonant cavity couplings scale as J12 ≏ g2e=
Δe, with ge being the coupling of the emitter to the effective cavity
mode and Δe being its detuning. In these setups, the coupling
strength always scales with the size of the cavity as ge / 1=

ffiffiffiffi
‘c
p

.
Besides, because the emitter’s energy is fixed, the only dependence
with system size in the detuning is that of the energy of the cavity
modes, which are spaced by ωn = nvg/‘c (88, 89). Thus, the depen-
dence with system size in J12 vanishes, which is why all lines of J12
tend to a constant value in Fig. 6E.
We have thus shown that the emergence of this effective cavity

enables the occurrence of maximum entanglement between distant
emitters in the transient regime. Moreover, the versatility offered by
the studied system greatly exceeds the one that could be obtained,
e.g., by harnessing the 1D chiral channels featured by 2D topolog-
ical systems. This is because the possibility of obtaining V-shaped
emission and quasi-perfect 1D channels within the system’s surface
facilitates the coupling between non-collinear emitters, thereby
opening exciting avenues toward the design of more complicated
quantum emitter architectures. To explicitly show the potential of
the Fermi arc light-matter interfaces, we design a three-emitter pro-
tocol that cannot be implemented with purely 2D setups. In partic-
ular, we show that perfect entanglement between two initially de-
excited emitters can be obtained thanks to the V-shaped emission
pattern appearing on the surface of the Weyl system. For that, we
place the emitters on the system’s boundary, forming a triangular
configuration, as displayed in Fig. 7A. The initially excited emitter
is located in one of the corners of the lattice and tuned to the Weyl
frequency. The photonic excitation is launched following the afore-
mentioned V-shape. Then, we place two additional emitters at the
contiguous lattice’s corner. Their positions are chosen so that they
couple to different branches of the light beam. The latter corre-
sponds to two perfectly equivalent channels, each of which carries
half of the initial excitation. This condition yields an almost perfect
state exchange between the initially excited emitter and the initially
de-excited ones, which are symmetrically populated as shown in
Fig. 7B. The calculation of the concurrence for the initially de-
excited emitters confirms the emergence of an almost perfect tran-
sient entanglement regime between them. This result demonstrates
that the spatial separation of the photonic excitation in the 2D
surface of theWeyl system can be harnessed to devise more compli-
cated emitter connectivities while maintaining the desirable prop-
erties of simpler systems, e.g., the formation of 1D chiral channels.

DISCUSSION
Summing up, we have characterized the behavior of Fermi arc light-
matter interfaces, discovering several remarkable phenomena. First,
we have demonstrated that the studied platforms can be used to
image the Fermi arcs in unconventional ways, by monitoring the
free-space spontaneous emission of the considered emitters. We
have shown how to engineer the coupling to the surface modes so
that they behave as a robust quantum channel in both a dissipative

Fig. 6. Emergence of an effective off-resonant cavity in the small system’s size
limit. (A) Top view of the finite lattice model used to generate the effective cavity.
Adjacent facets are composed of sites belonging to different sublattices (A and B).
By imposing equally sized faces, we ensure the efficient revival of the considered
emitters. (B) Photonic population of the bosonic modes belonging to the four
different facets in the lattice model for some selected de-excitation time. (C) Tem-
poral evolution of the initially excited (solid brown) and initially de-excited (dotted
brown) emitters. The dashed black line denotes the calculated concurrence. The
inset shows a detailed view of the small oscillations observed at short times, which
are related to the time that the excitation spends to perform a complete round trip.
(D) Frequency of the large oscillations J12 as a function of the corner-to-emitter
distance d, for three different system’s sizes L=

ffiffiffi
2
p

a ¼ 11, 21, and 31 (black dots,
blue squares, and red triangles). (E) Oscillation frequency J12 as a function of the
system’s size L, for three different corner-to-emitter distances d=

ffiffiffi
2
p

a ¼ 5, 10, and
15 (black dots, blue squares, and red triangles).
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and coherent regime. Although we illustrate this behavior by study-
ing the spontaneous formation of two-qubit entanglement between
a pair of emitters, our results immediately open up their use for de-
signing quantum state transfer protocols (36) and for obtaining
nontrivial entangled steady states (37–39), among other applica-
tions. The latter evidence the great potential of the Fermi arc
surface states to be harnessed for quantum technological applica-
tions. Furthermore, we provide an alternative framework for the ex-
ploration of these topological states through their interaction with
optically active emitters, uncovering phenomena with no analog in
fermionic systems, which can be extended to study other topological
surface states (90–92).

MATERIALS AND METHODS
All real space simulations follow from the resolution of the Schrö-
dinger equation for the Hamiltonian given in Eq. 3 within the single
excitation subspace. For that, we calculate the action of the exponen-
tial of the Hamiltonian matrix over the initial state of the system
(30). The latter is assumed to be the one in which a single emitter
is in its excited state and there are no excitations present in the pho-
tonic bath.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S4
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