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A B S T R A C T

We undertake a systematic comparison of existing models measuring and decomposing the economic efficiency
of organizations. For this purpose we introduce the package BenchmarkingEconomicEfficiency.jl for the
open-source Julia language including a set of functions to be used by scholars and professionals working
in the fields of economics, management science, engineering, and operations research. Using mathematical
programming methods known as Data Envelopment Analysis, the software develops code to decompose
economic efficiency considering alternative definitions: profit, profitability, cost and revenue. Economic
efficiency can be decomposed, multiplicative or additively, into a technical (productive) efficiency term and
a residual term representing allocative (or price) efficiency. We include traditional decompositions like the
radial efficiency measures associated with the input (cost) and output (revenue) approaches, as well as
new ones corresponding to the Russell measures, the directional distance function, DDF (including novel
extensions like the reverse DDF, modified DDF, or generalizations based on Hölder norms), the generalized
distance function, and additive measures like the slack based measure, their weighted variants, etc. Moreover,
regardless the underlying economic efficiency model, many of these technical inefficiency measures are
available for calculation in a computer software for the first time. This article details the theoretical methods
and the empirical implementation of the functions, comparing the obtained results using a common dataset
on Taiwanese Banks.
1. Introduction

The measurement and decomposition of the economic performance
of organizations (firms, branches, departments, etc.), is receiving in-
creasing attention from theoretical and applied scholars interested in
identifying the technical and allocative causes underlying suboptimal
market behavior, i.e., why organizations fail to achieve an economic
goal. For the individual firm, and given market prices for inputs and
outputs, economic efficiency analysis compares its observed profit,
profitability, cost or revenue, with the optimal benchmark within the
industry or corporation, e.g., maximum profit. Efficiency analysis, pi-
oneered by Farrell [1], is a helpful analytical tool. It represents a
systematic method of comparing your performance to that of your
rivals, and so contributes with meaningful quantity and price indi-
cators that can supplement common financial measurements such as,
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for example, return-on-assets (ROA). It may also be used to create
awareness of internal and external processes as monitoring tool. Inter-
nally, it provides objective information on the relative performance of
individual units that allow a better allocation of incentives (e.g., among
individual retail locations within a chain store, specific branches of a
bank, etc.). Externally, it assists in identifying areas where businesses
fall behind their rivals, contributing to the decision-making process
aimed at improving their position in the marketplace (e.g., failure to
introduce new processes, favor more lucrative products markets, etc.).

Profit is defined as observed revenue minus observed cost, whereas
profit inefficiency is defined as the gap between maximal profit and ob-
served profit. Alternatively, one can define multiplicatively the concept
of profitability as revenue divided by cost. Then, the ratio of observed
vailable online 28 June 2023
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profitability to maximum profitability is defined as profitability effi-
ciency. One can also analyze economic performance from the partial
cost and revenue perspectives. In this respect, cost efficiency can be
multiplicatively defined as the ratio of minimum cost to observed cost,
or additively defined as observed cost less minimum cost. Similarly,
revenue efficiency can be expressed as a ratio of observed to maximum
revenue, or as maximum revenue minus observed revenue. Considering
these economic definitions, it follows that economic efficiency mea-
sures find their maximum at one, while additive economic inefficiency
measures find their minimum at zero. At these upper and lower values
the firm is economically efficient. In the multiplicative case, the larger
the efficiency score, the greater the efficiency level. Contrarily, in the
additive approach, the larger the score the greater the inefficiency, thus
the difference in name.

Economic theory shows that, based on the duality between a sup-
porting economic function like maximum profit, and the production
technology, represented by a technical inefficiency measure, 𝑇 𝐼 , profit
efficiency is additively decomposed into the efficiency score plus a
(residual) factor capturing allocative inefficiency, 𝐴𝐼 ; i.e. 𝐸𝐼 = 𝑇 𝐼+𝐴𝐼 .

echnical inefficiency measures the profit loss that the organization
xperiences by not using the production technology at its full potential,
hereby failing to reach the production frontier. Once the organiza-
ion solves its technical inefficiency, any extra profit loss is due to
uboptimal outputs’ supply or inputs’ demand at their market prices,
orresponding to allocative efficiency definition—[2,3]. Alternatively,
or a multiplicative definition of economic inefficiency, such as prof-
tability efficiency, it can be consistently disaggregated into technical
nefficiency times a (once again) residual factor capturing allocative
nefficiency: 𝐸𝐸 = 𝑇𝐸 × 𝐴𝐸, as shown by Zofío and Prieto [4].

hile it is only possible to decompose profit inefficiency additively and
rofitability efficiency multiplicatively, cost and revenue (in)efficiency
ay be decomposed both ways. BenchmarkingEconomicEfficiency.jl

olves all these models, additive or multiplicative, recalling the most
opular measures of technical (in)efficiency.

Given data on a set of observed firms, it is possible to measure
nd decompose economic efficiency empirically by resorting to mathe-
atical programming techniques known as Data Envelopment Analysis

DEA). DEA approximates the technology by identifying the supporting
yperplanes (or facets) that make the best-practice frontier. On the
ne hand, this allows calculating a wide range of efficiency measures;
.e., the first component of the economic efficiency decomposition. On
he other hand, we can also identify the reference economic bench-
arks maximizing profit, profitability or revenue, and minimizing cost,
hich are necessary to calculate the different measures of economic
fficiency. Because DEA identifies economical and technological refer-
nce benchmarks for each firm, it offers managers real-world peers that
erve as role models to improve performance.

As we show in this article, the observational orientation and non-
arametric nature of DEA have facilitated its application in many
tudies of economic efficiency across different sectors—for an author-
tative introduction including a review of applications see [5]. The
ncreasing use of DEA has resulted in numerous monographs intro-
ucing distinct approaches to economic efficiency analysis; among
thers [6–8], and [3].

DEA methods to measure economic efficiency can be found in stan-
ard software packages like Stata, [9]—which includes user-written
ommands by Lee [10], and LIMDEP, [11]. There are also dedi-
ated commercial software by Emrouznejad and Cabanda [12]; non-
ommercial software accompanying academic handbooks—[13,14];
tand-alone packages such as [15,16] (programmed in R, [17], and
ATLAB, [18], respectively)1; free-ware programs—[19]; and tutorials

1 Although the functions written by Álvarez et al. [16] are for MATLAB,
they can be easily adapted for the open source language Octave, whose syntax
is largely compatible.
2

for spreadsheets: [20,21]. Recently, several web-based applications
have been created using the Shiny package of R, where users can upload
their data and solve DEA models interactively: [22,23]. Finally [24]
carry out an extensive survey of the existing software, while [25]
present and compare eleven relevant packages, each designed with a
different purpose, and discuss their pros and cons.

A general drawback of the previous contributions is that they just
implement the classical models related to the basic decomposition of
cost and revenue efficiency using the multiplicative approach à la
Farrell, i.e., using the radial input and output measures introduced
by Charnes et al. [26]. When calculating profit inefficiency, only the
approach based on the directional distance function is available, while
newest proposals like those decomposing profitability inefficiency have
never been included in any of the above software. Therefore, while
these software include the basic DEA economic efficiency analysis, a
comprehensive package that implements the most recent and state-of-
the-art models is missing.

Moreover, none of the previous proposals have been made available
in the open-source Julia language [27]. Julia is a high-level program-
ming language, with features well suited for numerical analysis and
computational science. To solve the DEA mathematical problems, our
toolbox makes use of the JuMP.jl package for linear and nonlinear
optimization [28]. JuMP.jl can be combined with numerous solvers
(open-source and commercial) like Ipopt, GLPK, Gurobi, CPLEX, among
others.

BenchmarkingEconomicEfficiency.jl implements the measurement
of economic efficiency from all perspectives: profit, profitability, cost
and revenue. All these measures of economic efficiency can be solved
relying on a large set of technical efficiency models. Following the
literature, we start with the classic multiplicative decompositions of
cost and revenue efficiency following [1,29]. For the additive approach
we consider: (i) the Russell measures–[30], (ii) the weighted additive
measure [31], (iii) the slack based measure [32]—equivalent to the
enhanced Russell graph measure previously proposed by Pastor et al.
[33], (iv) the directional distance function, DDF, [34], along with
derivatives like the modified DDF [35], the reverse DDF [36], or the
generalization represented by the efficiency measures corresponding
to Hölder norms [37], and, finally, (v) the new generalized direct
approach that does not rely on duality theory, see [38]. Regarding the
decomposition of profit inefficiency we consider all these possibilities,
while we rely on the generalized distance function to decompose
profitability efficiency [4].

BenchmarkingEconomicEfficiency.jl presents a comprehensive col-
lection of baseline functions that cover all models described in the
literature for measuring and decomposing economic efficiency. It is
freely accessible under the MIT License and may be downloaded via
the Julia package management. All supplemental information (source
code, data and examples) for replicating all the results is available
at https://benchmarkingeconomicefficiency.com, including a series of
Jupyter notebooks that ease the implementation of the models and
learning process.

As for the structure of this article, we present in the following
section how the quantity and price data is organized in Julia and
provide a brief description of the empirical data used to illustrate the
package. We then present in Section 3 the additive decomposition
of profit inefficiency considering the previous technical inefficiency
measures. Section 4 is devoted to profitability efficiency, which is
decomposed multiplicatively. Afterwards, because measuring and de-
composing cost and revenue inefficiencies represent particular cases
of the profit analysis when considering either the input (cost) or
output (revenue) dimensions, we briefly sketch in Section 5 their
multiplicative and additive decomposition. In all sections we illustrate
the different models using a common dataset of Taiwanese banks, while
providing a summary of the empirical results in Section 6. Conclusions

are drawn in Section 7.

https://benchmarkingeconomicefficiency.com


Socio-Economic Planning Sciences 89 (2023) 101656J. Barbero and J.L. Zofío

t

a

t
e
t

j
j
j
j
j

3

i
r
o
T

2. Data structures

To measure the economic performance of organizations relying on
data envelopment analysis we require information on a set of 𝑗 =
1,… , 𝐽 firms as well as on input and output market prices. A firm
produces the vector of 𝑛 = 1,… , 𝑁 output quantities 𝐲𝑗 ∈ R𝑁

++ using
he vector of 𝑚 = 1,… ,𝑀 input quantities 𝐱𝑗 ∈ R𝑀

++ according to
the following technology characterized by variable returns to scale:
𝑇 = {(𝐱, 𝐲) |𝐱 ≥ 𝑋𝝀, 𝐲 ⩽ 𝑌 𝝀, 𝐞𝝀 = 1 𝝀 ≥ 𝟎}. Here 𝑋 ∈ R𝑁×𝐽 and 𝑌 ∈
R𝑀×𝐽 are the observed matrices of input and output quantities for all
firms, 𝜆 =

(

𝜆1,… , 𝜆𝐽
)⊤ is a semipositive vector, and 𝐞 = (1,… , 1)𝑇

is a row vector of dimension 𝐽 with all elements equal to one. The
characterization of the production technology under constant returns
to scale, denoted by 𝑇CRS, drops the condition that 𝐞𝝀 =

∑𝐽
𝑗=1 𝜆𝑗 = 1,

see [39]. Bringing together quantities and prices results in the following
data structure: (𝒙𝑗 ,𝒘, 𝒚𝑗 ,𝒑).

2.1. Installing the package

BenchmarkingEconomicEfficiency.jl is available through the Ju-
lia package manager and can be installed using these commands:

julia> using Pkg
julia> Pkg.add("BenchmarkingEconomicEfficiency")

Additional packages that will be used in the examples —
DataFrames.jl and CSV.jl — can be installed following the same
procedure:

julia> Pkg.add("DataFrames")
julia> Pkg.add("CSV")

Then, we can load the three packages with:

julia> using BenchmarkingEconomicEfficiency
julia> using DataFrames
julia> using CSV

2.2. Dataset and statistical sources

We illustrate the economic efficiency models using data of 31
Taiwanese banks constructed by Juo et al. [40].2 These authors study
profit change and decompose it through the so-called Profit-Luenberger
indicator. Balk [41] qualifies their methodology by showing that their
Profit-Luenberger indicator is equivalent to a Bennet quantity indicator,
while [42] propose an improved (‘complete’) decomposition of profit
change that does not include residual price terms as in [40] model.
A discussion of the technology, the statistical sources and variables
specification can be found in their article. The characterization of
the production technology corresponds to the so-called intermediation
approach, see [43].3 According with this approach, banks use labor
and capital to collect deposits from savers and produce loans and
other earning assets for borrowers. There are three inputs: financial
funds (𝑥1), labor (𝑥2), and physical capital (𝑥3). Outputs are financial
investments (𝑦1) and loans (𝑦2). Table 1 reports the main statistics for
quantities and prices. The same data set has been used by Balk and
Zofío [45] to illustrate symmetric decompositions of cost variation and
by Balk [46] to decompose total factor productivity growth.

2 We thank the authors for providing the data.
3 See [44] for a recent study modeling the intermediation approach through
multi-stage production process focused on non-performing loans.
3

2.3. Importing the data in julia

Example data is provided in the accompanying file
DataBanks.csv. The CSV file can be imported in Julia into a data
frame with the following code:

julia> df = DataFrame(CSV.File("DataBanks.csv"))

Let us explore the contents of the data frame:

julia> describe(df)

11x7 DataFrame
Row | variable mean min median max nmissing eltype

| Symbol Union... Any Union... Any Int64 DataType
-----|-------------------------------------------------------------------------------

1 | Name Bank SinoPac Union Bank 0 String31
2 | X1 7.95536e5 25019 428995.0 3171493 0 Int64
3 | X2 3826.19 201.999 3146.0 9537.98 0 Float64
4 | X3 13393.2 505 8721.0 76576 0 Int64
5 | W1 0.00639582 0.00249864 0.0061253 0.0185859 0 Float64
6 | W2 1.25863 0.716977 1.21676 2.2963 0 Float64
7 | W3 0.317114 0.0729602 0.301688 0.762522 0 Float64
8 | Y1 1.96808e5 1681 157870.0 904580 0 Int64
9 | Y2 6.09489e5 66947 328574.0 2091100 0 Int64

10 | P1 0.0349242 0.00589346 0.0146744 0.304364 0 Float64
11 | P2 0.021117 0.0125006 0.0189938 0.0686822 0 Float64

By rows, the first variable, Name, contains the name of the banks,
whereas the rest of the variables contain data for inputs, outputs, and
prices.

Data are handled as regular Julia vectors and matrices, representing
he inputs of the different functions that we described below. We can
xtract the data from the data frame to regular Julia matrices running
he following code:

ulia> X = [df.X1 df.X2 df.X3];
ulia> W = [df.W1 df.W2 df.W3];
ulia> Y = [df.Y1 df.Y2];
ulia> P = [df.P1 df.P2];
ulia> banks = df.Name;

. Measuring and decomposing profit inefficiency

Profit inefficiency aims at analyzing if firms are capable of maximiz-
ng profit. Consequently, when firms maximize the difference between
evenue and cost by supplying and demanding the optimal quantities
f outputs and inputs at their market prices, they are profit efficient.
he profit function is given by 𝛱 (𝐰,𝐩) = max

𝐱,𝐲

{

𝐩 ⋅𝐲−𝐰 ⋅𝐱 | 𝐱 ≥ 𝑋𝝀, 𝐲 ⩽

𝑌 𝝀, 𝐞𝝀 = 1, 𝜆 ≥ 𝟎
}

,𝐰 ∈ R𝑀
++, 𝐩 ∈ R𝑁

++. The DEA program calculating
maximum profit and the optimal quantities of outputs and inputs is:

𝛱 (𝐰,𝐩) = max
𝐱,𝐲,𝜆𝜆𝜆

𝑁
∑

𝑛=1
𝑝𝑛𝑦𝑛 −

𝑀
∑

𝑚=1
𝑤𝑚𝑥𝑚

s.t.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑗𝑚 ≤ 𝑥𝑚, 𝑚 = 1,… ,𝑀 ,

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑗𝑛 ≥ 𝑦𝑛, 𝑛 = 1,… , 𝑁 ,

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝐽 .

(1)

Denoting the firm being evaluated by
(

𝐱𝑜, 𝐲𝑜
)

∈ R𝑀+𝑁
+ , 𝐱𝑜 ≠ 0𝑀 , 𝐲𝑜 ≠

0𝑁 , Profit inefficiency is defined as maximum profit minus observed
profit; i.e., 𝛱𝐼(𝐱𝑜, 𝐲𝑜,𝐰,𝐩) = 𝛱 (𝐰,𝐩) − 𝛱𝑜 = 𝛱 (𝐰,𝐩) − (𝐩 ⋅ 𝐲𝑜 −
𝐰 ⋅ 𝐱𝑜) = 𝛱 (𝐰,𝐩) −

(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

≥ 0. The standard
approach decomposing profit inefficiency into a technical inefficiency

measure, generally denoted by 𝑇 𝐼𝐸𝑀(𝐺)(𝐱𝑜, 𝐲𝑜)—where the subscript
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Table 1
Descriptive statistics, Taiwanese Banks, 2010.

Inputs Outputs

𝑥1 𝑥2 𝑥3 𝑤1 𝑤2 𝑤3 𝑦1 𝑦2 𝑝1 𝑝2
Average 795,536 3826 13,393 0.0064 1.25866 0.3171 196,8086 609,489 0.0349 0.0211
Median 428,995 3146 8721 0.0061 1.2168 0.3017 157,870 328,574 0.0147 0.0190
Max. 3,171,493 9538 76,576 0.0186 2.2963 0.7625 904,580 2,091,100 0.3044 0.0687
Min. 25,019 202 505 0.0025 0.7170 0.0730 1681 66,947 0.0059 0.0125
St.Dev. 768,008 2729 15,185 0.0026 0.3963 0.1697 215,063 582,854 0.0668 0.0095
𝐸𝑀(𝐺) represents a specific measure, and an allocative term, follows
he same methodology common to all technical measures.

Technical inefficiency measures the distance between the produc-
ion frontier and the firm. If a firm is technically efficient, its value
s null, i.e, 𝑇 𝐼𝐸𝑀(𝐺)(𝐱𝑜, 𝐲𝑜) = 0. Otherwise, the firm is technically
nefficient: 𝑇 𝐼𝐸𝑀(𝐺)(𝐱𝑜, 𝐲𝑜) > 0. After calculating technical inefficiency,
nd relying on the duality between the profit function and each
echnical inefficiency measure, we can establish a Fenchel-Mahler
nequality by which normalized profit inefficiency: 𝑁𝛱𝐼(𝐱𝑜, 𝐲𝑜, �̃�, �̃�) =
𝐼(𝐱𝑜, 𝐲𝑜,𝐰,𝐩)∕𝑁𝐹𝐸𝑀(𝐺), is larger or equal to technical efficiency,

.e. 𝛱𝐼(𝐱𝑜, 𝐲𝑜,𝐰,𝐩)∕𝑁𝐹𝐸𝑀(𝐺) ≥ 𝑇 𝐼𝐸𝑀(𝐺)(𝐱𝑜, 𝐲𝑜), where the divisor
𝐹𝐸𝑀(𝐺) is a normalizing scalar derived from the duality relationship.4
Afterwards, by closing the inequality, we can recover a scalar

epresenting normalized allocative inefficiency as a residual. Allocative
nefficiency measures the profit loss due to the fact that the projected
enchmark of the firm on the frontier – through the technical in-
fficiency measure – does not supply the optimal output and input
uantities that jointly maximize profit.

This implies that normalized profit inefficiency can be decomposed
s follows:

𝛱 (𝐰,𝐩) −
(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

𝑁𝐹𝐸𝑀(𝐺)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Norm. Profit Inefficiency

= (2)

= 𝑇 𝐼𝐸𝑀(𝐺)(𝐱𝑜, 𝐲𝑜)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Graph Technical Inefficiency

+ 𝐴𝐼𝐸𝑀(𝐺)
(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Allocative Inefficiency

≥ 0.

We now present different decompositions of profit inefficiency con-
idering the most relevant technical inefficiency measures found in the
iterature. Besides the common property of commensurability, each of
hese measures results in a particular decomposition whose strengths
nd weaknesses in terms of a set of desirable of properties are inherited
rom those of the underlying inefficiency measure: 𝑇 𝐼𝐸𝑀(𝐺)(𝐱𝑜, 𝐲𝑜)—as
iscussed in [3, Chap.14]. For each of these measures we comment
n whether they satisfy the two most relevant properties discussed in
he literature: (1) the indication property, implying that the measure is
onsistent with the definition of Pareto-Koopmans efficiency, and (2)
he essential property, by which allocative inefficiency vanishes when
he evaluated firm is projected to a benchmark maximizing profit. We
riefly present both properties.

As for the indication property concerning the technical efficiency
easure 𝐸𝐺(𝑀) in (2), it is satisfied if 𝐸𝐺(𝑀) ensures that the evalu-

ted firm is projected to a benchmark belonging to the strongly efficient
ubset of the technology. This subset is defined as:

𝑆 (𝑇 ) = {(𝐱, 𝐲) ∈ 𝑇 ∶ (𝐱 ́,−𝐲 ́) ≤ (𝐱,−𝐲) , (𝐱 ́, 𝐲 ́) ≠ (𝐱, 𝐲) ⇒ (𝐱 ́, 𝐲 ́) ∉ 𝑇 } .

(3)

4 The tilde ‘∼’ over prices denotes the normalization of profit efficiency
and its accompanying allocative term. Normalizing profit inefficiency makes
it satisfy the desirable property of commensurability, i.e., it is units’ invariant.
Note that the normalizing factor in the denominator, 𝑁𝐹𝐸𝑀(𝐺), can act as
ivisor of the prices. Thus, (�̃�, �̃�) = (𝐰∕𝑁𝐹 ,𝐩∕𝑁𝐹 ).
4

𝐸𝑀(𝐺) 𝐸𝑀(𝐺)
Intuitively, this subset includes all feasible production plans that are
not dominated. This implies that a firm (or projection) belonging to
𝜕𝑆 (𝑇 ) is efficient in the sense of Pareto-Koopmans: An observed firm
is efficient if increasing one of its outputs implies decreasing at least
one other output or increasing the use of at least one input. Likewise,
if decreasing the use of any input entails increasing at least the use
of another input or decreasing at least one output. As a result, an
inefficient producer might generate the same outputs with fewer inputs
or use the same inputs to generate more of at least one product.

Several efficiency measures like, for example, the directional dis-
tance function DDF or the multiplicative generalized (hyperbolic) dis-
tance function GDF, fail to satisfy this property because the projected
benchmarks belong to the weakly efficient subset, implying that individ-
ual output increases and input reductions might be possible. The weakly
efficient subset is defined as follows:

𝜕𝑊 (𝑇 ) = {(𝐱, 𝐲) ∈ 𝑇 ∶ (𝐱 ́,−𝐲 ́) < (𝐱,−𝐲) ⇒ (𝐱 ́, 𝐲 ́) ∉ 𝑇 } . (4)

When choosing a weakly efficient measure to assess technical ef-
ficiency it is recommended to use of a two-stage strategy. After cal-
culating the technical efficiency measure in the first stage, a second
additive model looking for individual slacks is solved, [47]. Bench-
markingEconomicEfficiency.jl solves both stages and reports if these
slacks exist.

The essential property is related to the value and meaning of al-
locative efficiency when decomposing profit inefficiency (2), see [48].
The property states that the allocative efficiency of an observation
that is projected to a benchmark that maximizes profit, denoted by
(

�̂�𝑜𝐸𝑀(𝐺), �̂�𝑜𝐸𝑀(𝐺)
)

, should be zero; that is, 𝐴𝐼𝐸𝑀(𝐺)
(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

=
𝐴𝐼𝐸𝑀(𝐺)

(

�̂�𝑜𝐸𝑀(𝐺), �̂�𝑜𝐸𝑀(𝐺), �̃�, �̃�
)

= 0. The intuition behind this property
is self-evident, since the projection maximizes profit, no allocative
inefficiency may exist. These authors refined this property by consider-
ing that firms’ allocative inefficiency must be equal to the allocative
efficiency of its projection, regardless of whether this projection is
a profit maximizing benchmark or not, i.e., 𝐴𝐼𝐸𝑀(𝐺)

(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

=
𝐴𝐼𝐸𝑀(𝐺)

(

�̂�𝑜𝐸𝑀(𝐺), �̂�𝑜𝐸𝑀(𝐺), �̃�, �̃�
)

. Unfortunately, many additive mea-
sures fail to comply with the essential property or its extension, and
we identify this drawback when commenting on each EM(G).

3.1. The Russell inefficiency measure

Taking the Russell measure proposed by Färe and Lovell [30] as
reference, Aparicio et al. [49] introduced the Fenchel-Mahler inequality
for oriented Russell measures. The existence of a dual correspondence
between the profit function and the Russell graph measure of technical
inefficiency was introduced in [50]. A motivation for defining the
Russell graph measure is that it projects the firm to 𝜕𝑆 (𝑇 ), thereby
complying with the indication property. Unfortunately, it does not
satisfy the essential property [48, p. 120], and therefore a trade off exist
between both properties. The Russell graph measure quantifying the

technical inefficiency of a firm can be calculated through the following
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program:

𝑇𝐸𝑅𝑀(𝐺)
(

𝐱𝑜, 𝐲𝑜
)

= min
𝜃𝜃𝜃,𝜙𝜙𝜙,𝜆𝜆𝜆

1
𝑀+𝑁

( 𝑀
∑

𝑚=1
𝜃𝑚 +

𝑁
∑

𝑛=1

1
𝜙𝑛

)

𝑠.𝑡.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑗𝑚 = 𝜃𝑚𝑥𝑜𝑚, 𝑚 = 1,… ,𝑀

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑗𝑛 = 𝜙𝑛𝑦𝑜𝑛, 𝑛 = 1,… , 𝑁

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜃𝑚 ≤ 1, 𝑚 = 1,… ,𝑀
𝜙𝑛 ≥ 1, 𝑛 = 1,… , 𝑁
𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝐽

(5)

The optimal solutions of (5), 𝜃∗𝑚 and 𝜙∗
𝑚, calculate any possible

roportional decrease in input usage, and proportional expansion of
utput production, respectively. The above program takes the average
f these contraction and expansion rates. DEA finds the supporting
yperplane that is used as benchmark for (𝐱𝑜, 𝐲𝑜). This hyperplane is

constructed as the linear combination of the firms whose 𝜆𝑗 multipliers
are not null, thereby defining the enveloping surface. As model (5) is
non-linear, several authors have proposed different transformations to
obtain approximate values. Halická and Trnovská [50] showed how to
reformulate (5) as a semidefinite programming (SDP) model, including
its dual program.

Departing from 𝑇𝐸𝑅𝑀(𝐺)(𝐱𝑜, 𝐲𝑜) we can define its technical ineffi-
ciency counterpart as 𝑇 𝐼𝑅𝑀(𝐺)(𝐱𝑜, 𝐲𝑜) = 1 − 𝑇𝐸𝑅𝑀(𝐺)(𝐱𝑜, 𝐲𝑜). Afterwards
one can split normalized profit inefficiency into its corresponding tech-
nical and allocative terms: 𝑁𝛱𝐼𝑅𝑀(𝐺)

(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

= 𝑇 𝐼𝑅𝑀(𝐺)
(

𝐱𝑜, 𝐲𝑜
)

+
𝐼𝑅𝑀(𝐺)

(

𝐱𝑜, 𝐲𝑜,𝐰,𝐩
)

; i.e.,

𝛱 (𝐰,𝐩) −
(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

(𝑀 +𝑁)min
{

𝑤1𝑥𝑜1,… , 𝑤𝑀𝑥𝑜𝑀 , 𝑝1𝑦𝑜1,… , 𝑝𝑁𝑦𝑜𝑁
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Profit Inefficiency

=

[

1 − 1
𝑀 +𝑁

( 𝑀
∑

𝑚=1
𝜃∗𝑚 +

𝑁
∑

𝑛=1

1
𝜙∗
𝑛

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Graph Technical Inefficiency

+ 𝐴𝐼𝑅𝑀(𝐺)
(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Allocative Inefficiency

≥ 0.

(6)

enchmarkingEconomicEfficiency.jl decomposes profit inefficiency
ased on the Russell graph measure (5) by using the JuMP.jl soft-
are written by Dunning et al. [28], in conjunction with the ‘Ipopt’

olver, [51]. The code is:

ulia> deaprofitrussell(X, Y, W, P, names = banks)

ussell Profit DEA Model
MUs = 31; Inputs = 3; Outputs = 2
rientation = Graph; Returns to Scale = VRS
----------------------------------------------------------------

Profit Technical Allocative
----------------------------------------------------------------
xport-Import Bank 3.03911e-5 4.81347e-6 2.55776e-5
ank of Taiwan 0.179835 2.71764e-9 0.179835
aipei Fubon Bank 0.220019 2.34592e-7 0.220019
ank of Kaohsiung 4.95721 0.319545 4.63766
and Bank 1.3703e-7 5.04573e-8 8.65722e-8
..
watai Bank 136.01 0.54445 135.466
ota Bank 43.6129 0.528602 43.0843
ndustrial Bank of Taiwan 1.56449 1.7079e-5 1.56447
ank SinoPac 0.422128 0.125224 0.296904
hin Kong Bank 9.67215 0.435376 9.23677
----------------------------------------------------------------
5

Then, we can recover the information about the inefficiency mea-
ure using the following syntax:

ulia> dearussell(X, Y, orient = :Graph, rts = :VRS,
ames = banks)

We illustrate the model by commenting on the profit inefficiency of
he ten banks reported in the previous table. The first and fifth banks,
xport-Import Bank and Land Bank, maximize profit, implying that
hey are both technical an allocative efficient. Hence, the numerical
alues of these components, reported in scientific notation, are effec-
ively equal to zero. Subsequently we observe that the second bank
Bank of Taiwan) and the third bank (Taipei Fubon Bank) are profit
nefficient. Since both banks are technically efficient, i.e. the values of
he technical component are zero once again, we learn that they define
he production frontier and, therefore, their profit inefficiency is only
llocative, implying that, given their market prices, they demand and
upply suboptimal quantities of inputs and outputs, respectively. The
ourth bank (Bank of Kaohsiung) is both technical and allocative inef-
icient, because both components are greater than zero: 0.32 and 4.64,
espectively. Summing both values we obtain the magnitude of total
rofit inefficiency: 4.96. The performance of the last five banks in the
ample regarding their inefficiencies may be categorized in the same
ay and therefore we do not comment the results further. Moreover,

he discussion of the results of the following models is equivalent to this
ne, only differing in the numerical values of the inefficiencies, but not
n the categorization of the bank as efficient or inefficient, whose status
emain the same. Therefore we do not discuss the results of the different
odels individually. However, in the results Section 6 we compare all

f them through box-plots and determine the compatibility of their
istribution by calculation their ranking correlation.

.2. The weighted additive inefficiency measure

The weighted additive technical inefficiency measure introduced
y Cooper et al. [31] can be also used to decompose of profit ineffi-
iency. This technical inefficiency measure considers individual input
nd output slacks, denoted by: 𝐬−∈ R𝑀 and 𝐬+∈ R𝑁 . These slacks

measure the quantity gaps to the projected benchmark on the frontier:
i.e., 𝑠−𝑚 = 𝑥𝑜𝑚 − �̂�𝑜𝑚, 𝑠−𝑚 ≥ 0, 𝑚 = 1,… ,𝑀 , and 𝑠+𝑛 = �̂�𝑜𝑛 − 𝑦𝑜𝑛, 𝑠+𝑛 ≥ 0,
= 1,… , 𝑁 . The DEA graph model for measuring technical inefficiency

s:

𝑇 𝐼𝑊𝐴𝐷𝐹 (𝐺)
(

𝐱𝑜, 𝐲𝑜, 𝜌−, 𝜌+
)

= max
𝐬− ,𝐬+ ,𝜆𝜆𝜆

𝑀
∑

𝑚=1
𝜌−𝑚𝑠

−
𝑚 +

𝑁
∑

𝑛=1
𝜌+𝑛 𝑠

+
𝑛

𝑠.𝑡.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑗𝑚 + 𝑠−𝑚 ≤ 𝑥𝑜𝑚, 𝑚 = 1,… ,𝑀

−
𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑗𝑟 + 𝑠+𝑛 ≤ −𝑦𝑜𝑛, 𝑛 = 1,… , 𝑁

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝑠−𝑚 ≥ 0, 𝑚 = 1,… ,𝑀

𝑠+𝑛 ≥ 0, 𝑛 = 1,… , 𝑁

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝐽

(7)

here the input and output weights: 𝜌𝜌𝜌− = (𝜌−1 ,… , 𝜌−𝑀 ) ∈ 𝑅𝑀
++ and

− = (𝜌+1 ,… , 𝜌+𝑁 ) ∈ 𝑅𝑁
++ indicate their relative importance when

easuring technical inefficiency—hence the name of the measure. As-
igning unit values program (7) results in the standard additive model
roposed by Charnes et al. [47]. However, by choosing alternative
eights the WA inefficiency measure nests a range of DEA models
nown as general efficiency measures (GEMs). As we show below,
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Benchmarking Economic Efficiency.jl allows to choose among a wide
range of models.

Given the evaluated firm (𝐱𝑜, 𝐲𝑜), program (7) looks for the max-
imum possible input reduction and output expansion consistent with
the technology. A firm is technically efficient if the optimal slacks are
zero: 𝐬−∗ = 𝐬+∗ = 0, so 𝑇 𝐼𝑊𝐴(𝐺)

(

𝐱𝑜, 𝐲𝑜, 𝜌−, 𝜌+
)

= 0. If any of the
slacks is greater than zero, then individual input reductions or output
expansions are possible. Consequently, the larger the slacks, the greater
the inefficiency. Program (7) ensures that the projected benchmark
on the production frontier

(

�̂�𝑜, �̂�𝑜
)

, defined as �̂�𝑜𝑚 =
∑𝐽

𝑗=1 𝜆
∗
𝑗𝑥𝑗𝑚, 𝑚 =

1,… ,𝑀 , and �̂�𝑜𝑛 =
∑𝐽

𝑗=1 𝜆
∗
𝑗 𝑦𝑗𝑛, 𝑛 = 1,… , 𝑁 , is strongly efficient. This

implies that the WA model satisfies the indication property, although
it does not comply with the essential property [48, p. 120].

Following [31,52] split normalized profit inefficiency into tech-
nical and allocative inefficiencies: 𝑁𝛱𝐼𝑊𝐴(𝐺)

(

𝐱𝑜, 𝐲𝑜, 𝜌−, 𝜌+, �̃�, �̃�
)

=
𝑇 𝐼𝑊𝐴(𝐺)

(

𝐱𝑜, 𝐲𝑜
)

+ 𝐴𝐼𝑊𝐴(𝐺)
(

𝐱𝑜, 𝐲𝑜, 𝜌−, 𝜌+, �̃�, �̃�
)

:

𝛱 (𝐰,𝐩) −
(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

min
{

𝑤1
𝜌−1

,… , 𝑤𝑀
𝜌−𝑀

, 𝑝1
𝜌+1

,… , 𝑝𝑁
𝜌+𝑁

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Profit Inefficiency

=

=
𝑀
∑

𝑚=1
𝜌−𝑚𝑠

−∗
𝑚 +

𝑁
∑

𝑛=1
𝜌+𝑛 𝑠

+∗
𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Graph Technical Inefficiency

+ 𝐴𝐼𝑊𝐴(𝐺)
(

𝐱𝑜, 𝐲𝑜, 𝜌−, 𝜌+, �̃�, �̃�
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Allocative Inefficiency

≥ 0,

(8)

Calculating profit inefficiency according to (8) requires researchers
o choose the weights for the inputs and the outputs. When running the
orresponding function in Julia, it is possible to directly choose among
he following programmed options:

• :Ones. The weights of inputs and outputs are equal to one,
(

𝜌𝜌𝜌−, 𝜌𝜌𝜌+
)

= (𝟏, 𝟏), thereby solving the standard additive model
proposed by Charnes et al. [47];

• :MIP. Uses the so-called Measure of Inefficiency Proportions
(MIP) measure, [53]. The weights are:

(

𝜌𝜌𝜌−, 𝜌𝜌𝜌+
)

=
(

1∕𝐱𝑜, 1∕𝐲𝑜
)

,
where 1∕𝐱𝑜 =

(

1∕𝑥1𝑜,… , 1∕𝑥𝑀𝑜
)

and 1∕𝐲𝑜 =
(

1∕𝑦1𝑜,… , 1∕𝑦𝑁𝑜
)

;
• :RAM. Uses the Range Adjusted Measure of Inefficiency (RAM)

(see [53]). The weights are:
(

𝜌𝜌𝜌−, 𝜌𝜌𝜌+
)

= (1∕ (𝑀 +𝑁)𝐑−,
1∕(𝑀 +𝑁)𝐑+ )

, where 𝐑− =
(

𝑅−
1 ,… , 𝑅−

𝑀
)

with 𝑅−
𝑚 =

max
1≤𝑗≤𝐽

{

𝑥𝑗𝑚
}

− min
1≤𝑗≤𝐽

{

𝑥𝑗𝑚
}

, and 𝐑+ =
(

𝑅+
1 ,… , 𝑅+

𝑁
)

with 𝑅+
𝑛 =

max
1≤𝑗≤𝐽

{

𝑦𝑗𝑛
}

− min
1≤𝑗≤𝐽

{

𝑦𝑗𝑛
}

;

• :BAM. Uses the Bounded Adjusted Measure (BAM) [54]. The
weights are: 𝜌𝜌𝜌− = 1∕

[

(𝑀 +𝑁)
(

𝑥𝑜 − 𝑥
−

)]

, where 𝐱
−
=
(

𝑥1
−
,… , 𝑥𝑀

−

)

with 𝑥𝑚
−

= min
1≤𝑗≤𝐽

{

𝑥𝑗𝑚
}

, 𝑚 = 1,… ,𝑀 , and

𝜌𝜌𝜌+ = 1∕
[

(𝑀 +𝑁)
(

�̄� − 𝑦𝑜
)]

, where �̄� =
(

�̄�1,… , �̄�𝑁
)

with �̄�𝑛 =
max
1≤𝑗≤𝐽

{

𝑦𝑗𝑛
}

, 𝑛 = 1,… , 𝑁 ; and, finally,

• :Normalized. Uses the normalized weighted additive model
that considers the standard deviations of inputs 𝜎− =

(

𝜎−1 ,… , 𝜎−𝑀
)

and outputs 𝜎+ =
(

𝜎+1 ,… , 𝜎+𝑁
)

to make it units’ invariant, [55].
In this case the weights are:

(

𝜌−, 𝜌+
)

=
(

1∕𝜎−, 1∕𝜎+
)

.

Researchers may also pass their own weights using the option
:Custom and supplying a vector or matrix of weights for inputs and
outputs using rhoX and rhoY. The default weights are :Ones when
none of the above possibilities is chosen.

To illustrate the weighted additive profit inefficiency model we
choose the :MIP option:
6

julia> deaprofitadd(X, Y, W, P, :MIP, names = banks) a
Profit Additive DEA Model
DMUs = 31; Inputs = 3; Outputs = 2
Weights = MIP; Returns to Scale = VRS
---------------------------------------------------------------------

Profit Technical Allocative
---------------------------------------------------------------------
Export-Import Bank 0.0 -1.78195e-16 1.78195e-16
Bank of Taiwan 0.899175 -2.52669e-16 0.899175
Taipei Fubon Bank 1.1001 0.0 1.1001
Bank of Kaohsiung 24.786 7.07646 17.7096
Land Bank 1.59211e-14 0.0 1.59211e-14
...
Hwatai Bank 680.052 41.9682 638.084
Cota Bank 218.064 24.8209 193.243
Industrial Bank of Taiwan 7.82245 0.0 7.82245
Bank SinoPac 2.11064 0.652049 1.45859
Shin Kong Bank 48.3607 15.488 32.8728
---------------------------------------------------------------------

Then, we can recover the information about the quantity slacks
comprising the inefficiency measure by running the code:

julia> deaadd(X, Y, :MIP, names = banks)

3.3. The enhanced Russell graph (or slack-based) inefficiency measure

The enhanced Russell graph measure ERG was proposed by Pastor
et al. [33], with the objective of overcoming the non-linear nature
of the Russell Graph Measure presented in (5).5 [33] introduced a
non-radial model that accounts for both inputs and outputs (graph
or non-oriented) as the Russell proposal, but that is easier to com-
pute through linear programming—as opposed to the standard Russell
model. Consequently, they specified the new measure resorting to the
same variables as the Russell Graph Measure, including the vector of
the ‘lambdas’ (𝜆’s) defining the benchmark hyperplanes, the ‘thetas’
(𝜃’s) measuring individual inputs reductions, and the ‘phys’ (𝜙’s) mea-
suring the proportional output increments. The technical efficiency
model is given by:

𝑇𝐸𝐸𝑅𝐺(𝑆𝐵𝑀)(𝐺)
(

𝑥𝑜, 𝑦𝑜
)

= min
𝜃𝜃𝜃,𝜙𝜙𝜙,𝜆𝜆𝜆

1
𝑀

𝑀
∑

𝑚=1
𝜃𝑚

1
𝑁

𝑁
∑

𝑛=1
𝜙𝑛

𝑠.𝑡.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑚𝑗 = 𝜃𝑚𝑥𝑜𝑚, 𝑚 = 1,… ,𝑀

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑛𝑗 = 𝜙𝑛𝑦𝑜𝑛, 𝑛 = 1,… , 𝑁

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜃𝑚 ≤ 1, 𝑚 = 1,… ,𝑀
𝜙𝑛 ≥ 1, 𝑛 = 1,… , 𝑁
𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝐽

(9)

Comparing model (9) with program (5) defining the Russell graph
easure in the previous section, we note that the only difference

s the objective function, which was formulated as 1
𝑀+𝑁

(

∑𝑀
𝑚=1 𝜃𝑚

+
∑𝑁

𝑛=1
1
𝜙𝑛

)

. This change is critical however for the resolution of the
model since the new objective function in (9) is now fractional; specif-
ically, it is a fraction of two linear expressions, which makes it simpler
to transform and solve.

After several transformations and algebraic steps we obtain the
final linear program calculating the ERG(SMB) measure of technical

5 Two years later [32] proposed the exact same measure, which he termed
he ‘slack-based measure’, SBM—hence we denote the enhanced Russell graph
s ‘ERG(SBM)’
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efficiency:

𝑇𝐸𝐸𝑅𝐺(𝑆𝐵𝑀)(𝐺)
(

𝐱𝑜, 𝐲𝑜
)

= min
𝐭− ,𝐭+ ,𝜇𝜇𝜇,𝛽𝛽𝛽

𝛽 − 1
𝑀

𝑀
∑

𝑚=1

𝑡−𝑚
𝑥𝑜𝑚

𝑠.𝑡.

𝛽 + 1
𝑁

𝑁
∑

𝑛=1

𝑡+𝑛
𝑦𝑜𝑛

= 1

𝐽
∑

𝑗=1
𝜇𝑗𝑥𝑗𝑚 = 𝛽𝑥𝑜𝑚 − 𝑡−𝑚, 𝑚 = 1,… ,𝑀

𝐽
∑

𝑗=1
𝜇𝑗𝑦𝑗𝑛 = 𝛽𝑦𝑜𝑛 + 𝑡+𝑛 , 𝑛 = 1,… , 𝑁

𝐽
∑

𝑗=1
𝜇𝑗 = 𝛽,

𝛽 ≥ 0,
𝑡−𝑚 ≥ 0, 𝑡+𝑛 ≥ 0, ∀𝑚, 𝑛,
𝜇𝑗 ≥ 0, 𝑗 = 1,… , 𝐽 ,

(10)

where

𝛽 =

(

1 + 1
𝑁

𝑁
∑

𝑛=1

𝑠+𝑛
𝑦𝑜𝑛

)−1

,

𝑡−𝑚 = 𝛽𝑠−𝑚, 𝑚 = 1,… ,𝑀,

𝑡+𝑛 = 𝛽𝑠+𝑛 , 𝑛 = 1,… , 𝑁,

𝑗 = 𝛽𝜆𝑗 , 𝑗 = 1,… , 𝐽 . (11)

From the solution to (10) we can recover the following measure of
echnical inefficiency,

𝐼𝐸𝑅𝐺(𝑆𝐵𝑀)(𝐺)
(

𝐱𝑜, 𝐲𝑜
)

= 1 − 𝑇𝐸𝐸𝑅𝐺(𝑆𝐵𝑀)(𝐺)
(

𝐱𝑜, 𝐲𝑜
)

= (12)

1 −
1 − 1

𝑀
∑𝑀

𝑚=1
𝑠−∗𝑚
𝑥𝑜𝑚

1 + 1
𝑁

∑𝑁
𝑛=1

𝑠+∗𝑛
𝑦𝑜𝑛

=

1
𝑁

∑𝑁
𝑛=1

𝑠+∗𝑛
𝑦𝑜𝑛

+ 1
𝑀

∑𝑀
𝑚=1

𝑠−∗𝑚
𝑥𝑜𝑚

1 + 1
𝑁

∑𝑁
𝑛=1

𝑠+∗𝑛
𝑦𝑛𝑜

.

Resorting to the duality between this expression and the profit
unction presented in [56], we can establish the corresponding decom-
osition of profit inefficiency: 𝑁𝛱𝐼𝐸𝑅𝐺(𝑆𝐵𝑀)(𝐺)

(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

𝑇 𝐼𝐸𝑅𝐺(𝑆𝐵𝑀)(𝐺)
(

𝐱𝑜, 𝐲𝑜
)

+ 𝐴𝐼𝐸𝑅𝐺(𝑆𝐵𝑀)(𝐺)
(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

, i.e.,

𝛱 (𝐰,𝐩) −
(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

𝛿(𝐱𝑜 ,𝐲𝑜 ,𝐩,𝐰)
(

1 + 1
𝑁

∑𝑁
𝑛=1

𝑠+∗𝑛
𝑦𝑜𝑛

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Profit Inefficency

=

=

⎛

⎜

⎜

⎜

⎝

1
𝑁

∑𝑁
𝑛=1

𝑠+∗𝑛
𝑦𝑜𝑛

+ 1
𝑀

∑𝑀
𝑚=1

𝑠−∗𝑚
𝑥𝑜𝑚

(

1 + 1
𝑁

∑𝑁
𝑛=1

𝑠+∗𝑛
𝑦𝑜𝑛

)

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Graph Techncial Inefficency

+𝐴𝐼𝐸𝑅𝐺=𝑆𝐵𝑀(𝐺)
(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Allocative Inefficency

≥ 0,

(13)

here 𝛿(𝐱𝑜 ,𝐲𝑜 ,𝐩,𝐰) = min
{

𝑁𝑝𝑛𝑦𝑜𝑛, 𝑛 = 1,… , 𝑁,𝑀𝑤𝑚𝑥𝑜𝑚, 𝑚 = 1,… ,𝑀
}

in
he normalization factor of the ERG(SBM). As most additive measures,
he ERG=SBM satisfies the indication property, but fails to meet the
ssential property [48, p.120]. BenchmarkingEconomicEfficiency.jl
llows calculation and decomposition of profit inefficiency using the
RG(SBM) technical measure by typing this code:

ulia> deaprofiterg(X, Y, W, P, names = banks)

nhanced Russell Graph Slack Based Measure Profit DEA Model
MUs = 31; Inputs = 3; Outputs = 2
eturns to Scale = VRS
------------------------------------------------------------------

Profit Technical Allocative
------------------------------------------------------------------
xport-Import Bank 0.0 0.0 0.0
7

ank of Taiwan 0.299725 1.11022e-16 0.299725
Taipei Fubon Bank 0.550048 2.22045e-16 0.550048
Bank of Kaohsiung 2.75099 0.78295 1.96804
Land Bank 7.96057e-15 -2.22045e-16 8.18261e-15
...
Hwatai Bank 15.7188 0.958676 14.7601
Cota Bank 8.36232 0.942322 7.42
Industrial Bank of Taiwan 3.91122 -3.10862e-15 3.91122
Bank SinoPac 0.763301 0.226657 0.536644
Shin Kong Bank 2.86958 0.906448 1.96313
-------------------------------------------------------------------

Regarding the information about the underlying technical ineffi-
ciency: 𝑇𝐸𝐸𝑅𝐺=𝑆𝐵𝑀(𝐺)

(

𝐱𝑜, 𝐲𝑜
)

, it can be recovered by running:

ulia> deaerg(X, Y, rts = :VRS, names = banks)

.4. The directional distance function

Chambers et al. [57] proposed the so-called directional distance
unction, DDF, projecting observation

(

𝐱𝑜, 𝐲𝑜
)

to the production frontier
n the direction given by the nonnegative vector 𝐠 =

(

𝐠−𝑜 , 𝐠
+
𝑜
)

≠ 𝟎𝑀+𝑁 ,
−
𝑜 ∈ R𝑀 and 𝐠+𝑜 ∈ R𝑁 . Inputs and outputs are reduced and increased
ccording to the scalar 𝛽, identifying as reference projection (�̂�𝑜, �̂�𝑜) =
𝐲𝑜+𝛽∗𝐠+𝑜 , 𝐱𝑜−𝛽∗𝐠−𝑜 ). Because this projection may belong to the weakly
fficient frontier of the technology, 𝜕𝑊 (𝑇 ), the DDF does not comply
ith the indication property, while it meets the essential property, see
roposition 1 in [48].

The DDF technical inefficiency measure is defined as follows:

𝐼𝐷𝐷𝐹 (𝐺)
(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜

)

= max
{

𝛽 ∶
(

𝐱𝑜 − 𝛽𝐠−𝑜 , 𝐲𝑜 + 𝛽𝐠+𝑜
)

∈ 𝜕𝑊 (𝑇 ) , 𝛽 ≥ 0
}

.

(14)

Its associated DEA linear program is:

𝐼𝐷𝐷𝐹 (𝐺)
(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜
)

= max
𝛽,𝜆

𝛽

𝑠.𝑡.
∑

𝑗∈𝐽
𝜆𝑗𝑥𝑗𝑚 ≤ 𝑥𝑜𝑚 − 𝛽𝑔−𝑜𝑚, 𝑚 = 1,… ,𝑀 (15)

∑

𝑗∈𝐽
𝜆𝑗𝑦𝑗𝑛 ≥ 𝑦𝑜𝑛 + 𝛽𝑔+𝑜𝑛, 𝑛 = 1,… , 𝑁

∑

𝑗∈𝐽
𝜆𝑗 = 1

𝜆𝑗 ≥ 0, 𝑗 ∈ 𝐽 .

If the optimal solution is null, 𝛽∗ = 0, then the firm is techni-
ally efficient. Conversely, if 𝛽∗ > 0, the firm is inefficient, with the
rojection (�̂�𝑜, �̂�𝑜) dominating

(

𝐱𝑜, 𝐲𝑜
)

. Inspecting the usual input and
utput inequalities in program (15), it may be possible that further
nput excesses and output shortfalls exist in the form of slacks: 𝐬− > 0
nd 𝐬+ > 0, respectively. In this model, the inputs slacks are equal to
− = 𝐱𝑜 − 𝛽𝐠−𝑜 − 𝑋𝜆, while the output slacks are 𝐬+ = 𝑌 𝜆 − 𝐲𝑜 + 𝛽𝐠+𝑜 .
onsequently, after calculating the DDF, BenchmarkingEconomicEf-
iciency.jl performs a second stage to determine if these slacks exist.
esearchers should consider that the decomposition of profit ineffi-
iency into technical and allocative terms maybe misrepresented due
o the existence of slacks.

The decomposition of the normalized (so-called Nerlovian) profit
nefficiency based on the directional distance function was proposed
y Chambers et al. [34]: 𝑁𝛱𝐼𝐷𝐷𝐹 (𝐺)

(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜 , �̃�, �̃�

)

=
𝐼𝐷𝐷𝐹 (𝐺)

(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜
)

+ 𝐴𝐼𝐷𝐷𝐹 (𝐺)
(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜 , �̃�, �̃�

)

.
his corresponds to:

𝛱 (𝐰,𝐩) −
(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

∑𝑀
𝑚=1 𝑤𝑚𝑔−𝑜𝑚 +

∑𝑁
𝑛=1 𝑝𝑛𝑔

+
𝑜𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Profit Inefficiency

= (16)

= 𝛽∗𝐷𝐷𝐹 (𝐺)
⏟⏞⏟⏞⏟

+ 𝐴𝐼𝐷𝐷𝐹 (𝐺)
(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜 , �̃�, �̃�

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥ 0.
Graph Technical Inefficiency Norm. Allocative Inefficiency
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The directional vector 𝐠 is exogenoulsy chosen, although the major-
ty of empirical studies use the observed amounts of inputs and outputs;
.e., 𝐠 =

(

𝐠−𝑜 , 𝐠
+
𝑜
)

=
(

𝐱𝑜, 𝐲𝑜
)

. In this case the normalization factor in (16)
equals the sum of observed cost and revenue: 𝛱(𝐰,𝐩)−𝛱𝑜

𝐶𝑜+𝑅𝑜
.

The observed input and output matrices can be passed as directional
ectors by adding Gx = X, Gy = Y to the syntax of the function.
evertheless this is not the only possibility. BenchmarkingEconomic-
fficiency.jl includes a set of options for choosing a directional vector.
he following options are available:

• :Observed. Gx = :Observed, Gy = :Observed. Considers
as directional vector the observed input and output quantities of
the firm: 𝐠 =

(

𝐠−𝑜 , 𝐠
+
𝑜
)

=
(

𝐱𝑜, 𝐲𝑜
)

;
• :Ones. Gx = :Ones, Gy = :Ones. Sets the directional vectors

to one: 𝐠 =
(

𝐠−𝑜 , 𝐠
+
𝑜
)

=
(

𝟏𝑀 , 𝟏𝑁
)

;
• :Mean. Gx = :Mean, Gy = :Mean. Sets the directional vector to
𝐠 =

(

�̄�𝑀 , �̄�𝑁
)

, using the mean of each different input and output:
�̄�𝑚 =

∑𝐽
𝑗=1 𝑥𝑚𝑗∕𝐽 and �̄�𝑛 =

∑𝐽
𝑗=1 𝑦𝑛𝑗∕𝐽 , respectively;

• :Zeros. Either Gx = :Zeros or Gy = :Zeros. This allows to
set either the input or output direction to zero. This is useful when
calculating: (1) input oriented DDFs, for example 𝐠 =

(

𝐱𝑜, 𝟎𝑁
)

,
𝐠 =

(

𝟏𝑀 , 𝟎𝑁
)

or 𝐠 =
(

�̄�𝑀 , 𝟎𝑁
)

, or (2) output oriented DDFs, for
instance 𝐠 =

(

𝟎𝑀 , 𝐲𝑜
)

, 𝐠 =
(

𝟎𝑀 , 𝟏𝑁
)

, or 𝐠 =
(

𝟎𝑀 , �̄�𝑁
)

. These
partially oriented DDFs are used to decompose cost and revenue
inefficiency in forthcoming Section 5.2. Finally,

• :Monetary. Gx = :Monetary, Gy = :Monetary. This option
ensures that profit inefficiency, as well as its technical and alloca-
tive components are valued in monetary units. To achieve this
results the normalizing factor in (16) must satisfy the following
constraint: ∑𝑀

𝑚=1 𝑤𝑚𝑔
−
𝑜𝑚 +

∑𝑁
𝑛=1 𝑝𝑛𝑦

+
𝑜𝑛 = 1, see [58].

We note that the adoption of a common direction for all firms—
therefore excluding the observed quantities—ensures that the decompo-
sition complies with the extended essential property, see Proposition 5
in [48]. We now present the decomposition of profit inefficiency using
the average of the input and output quantities as directional vector.
The code in the package BenchmarkingEconomicEfficiency.jl is the
following:

julia> deaprofit(X, Y, W, P, Gx = :Mean, Gy = :Mean,
names = banks)

Profit DEA Model
DMUs = 31; Inputs = 3; Outputs = 2
Returns to Scale = VRS
Gx = Mean; Gy = Mean
-------------------------------------------------------------------

Profit Technical Allocative
-------------------------------------------------------------------
Export-Import Bank 0.0 0.0 0.0
Bank of Taiwan 0.210065 -7.08067e-17 0.210065
Taipei Fubon Bank 0.201694 0.0 0.201694
Bank of Kaohsiung 0.36845 0.0418304 0.32662
Land Bank 1.93201e-15 0.0 1.93201e-15
...
Hwatai Bank 0.670465 0.0476872 0.622777
Cota Bank 0.754719 0.0287997 0.725919
Industrial Bank of Taiwan 0.0930958 0.0 0.0930958
Bank SinoPac 0.258314 0.060563 0.197751
Shin Kong Bank 1.49562 0.0863343 1.40929
-------------------------------------------------------------------

Then, we can recover the information about the DDF and any
possible slacks by running the code:

julia> deaddf(X, Y, rts = :VRS, Gx = :Mean, Gy = :Mean,
names = banks)

3.5. The Hölder distance function

Another relevant option to decompose profit inefficiency is the
8

use of different Hölder norms when defining distance functions as u
proposed by Briec [37], Briec and Lemaire [59], and Briec and Lesourd
[60]. As opposed to previous measures of technical inefficiency, the
Hölder distance functions conform with the principle of least action by
searching for the nearest or ‘least distance’ to the production frontier.
This is in contrast to some of the previous models, particularly, those
based on slacks such as the weighted additive measures in Section 3.2,
that maximize the distance to the production frontier.

The Hölder norms 𝓁ℎ (ℎ ∈ [1,∞]) are defined over a 𝑔-dimensional
real normed space:

‖ . ‖ℎ ∶ 𝑧 → ‖𝑧‖ℎ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

( 𝑔
∑

𝑗=1

|

|

|

𝑧𝑗
|

|

|

ℎ
)1∕ℎ

if ℎ ∈ [1,∞[

max
𝑗=1,…,𝑔

{

|

|

|

𝑧𝑗
|

|

|

}

if ℎ = ∞
(17)

here 𝑧 =
(

𝑧1,… , 𝑧𝑔
)

∈ 𝑅𝑔 . When determining the technical ineffi-
iency of firms, Briec [37] considered the weakly efficient reference
et (4), i.e,

𝐼𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺)
(

𝐱𝑜, 𝐲𝑜, ℎ
)

= inf
𝐮,𝐯

{

‖

‖

‖

(

𝐱𝑜, 𝐲𝑜
)

− (𝐮, 𝐯)‖‖
‖ℎ

∶ (𝐮, 𝐯) ∈ 𝜕𝑊 (𝑇 )
}

.

(18)

This optimization model finds the minimum distance between the
irm

(

𝐱𝑜, 𝐲𝑜
)

and the weakly efficient subset of the technology.
The choice of a meaningful norm ℎ corresponds to the researcher.

enchmarkingEconomicEfficiency.jl implements the Hölder function
nder the following norms: unit (ℎ = 1), infinitum (ℎ = ∞), and ℎ = 2,
orresponding to the Euclidean distance. Computationally, the Hölder
istance functions require solving non-linear formulations. However,
or ℎ = 1 and ℎ = ∞ it is possible to resort to linear DEA models because
heir topological geometries correspond to polyhedral sets. For these
wo norms it can be shown that their corresponding Hölder distance
unctions are equivalent to the directional distance function DDF pre-
iously presented with a concrete specification of the directional vector.
or ℎ = 1, 𝑇 𝐼𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺)

(

𝐱𝑜, 𝐲𝑜, 1
)

is computed by finding the min-
mum of the 𝑀 + 𝑁 values 𝑇 𝐼𝐷𝐷𝐹 (𝐼)

(

𝐱𝑜, 𝐲𝑜,
(

0,… , 1(𝑚′),… , 0
)

, 𝟎𝑁
)

,
′ = 1,… ,𝑀—an input oriented DDF, and 𝑇 𝐼𝐷𝐷𝐹 (𝑂)

(

𝑥𝑜, 𝑦𝑜, 𝟎𝑀 ,
(

0,… , 1(𝑛′),… , 0
))

, 𝑛′ = 1,… , 𝑁—an output oriented DDF. In the case
f ℎ = ∞, 𝑇 𝐼𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺)

(

𝑥𝑜, 𝑦𝑜,∞
)

is equivalent to the DDF model (15),
ixing the directional vector at 𝐠 =

(

𝐠−𝐨 , 𝐠
+
𝐨
)

=
(

𝟏𝑀 , 𝟏𝑁
)

.
As for Euclidean norm ℎ = 2, determining its value is more complex

ecause calculating the shortest distance involves the minimization
f a convex function considering the complement of a convex set.
his distance can be calculated by solving a quadratic optimization
roblem coupled with Special Ordered Sets (SOS). This constitutes
particular mathematical approach to account for complementarity

onditions. Pastor et al. [3, Chap. 8] propose a bi-level linear model
o find the Euclidean distance from the firm

(

𝐱𝑜, 𝐲𝑜
)

to the weakly
fficient frontier (See Box I). There are alternative ways to solve
i-level mathematical programs. One possibility is to use the KKT
Karush–Kuhn–Tucker) conditions of the linear model embedded in
19), corresponding to max

𝛽,𝛾𝛾𝛾
𝛽 and its associated constraints.

The package BenchmarkingEconomicEfficiency.jl solves model
19) with quadratic second order sets (SOS) constraints resorting to
urobi, [61]. This commercial optimizer, which is also available under
free license for academic use only, can be easily added to Julia.6

Following Briec and Lesourd (1999) it is possible to resort to duality
heory to decompose profit inefficiency: 𝑁𝛱𝐼𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺)

(

𝐱𝑜, 𝐲𝑜, ℎ, �̃�, �̃�
)

6 Gurobi can be downloaded from https://www.gurobi.com. Upon registra-
ion, one can install the package Gurobi.jl in Julia using the following syntax:
sing Pkg, Pkg.add("Gurobi") and Pkg.build("Gurobi").

https://www.gurobi.com
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=

i

𝑇 𝐼𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺)
(

𝐱𝑜, 𝐲𝑜, 2
)

= min
𝐱,𝐲,𝜆𝜆𝜆,𝛽,𝛾𝛾𝛾

√

∑𝑀
𝑚=1

(

𝑥𝑜𝑚 − 𝑥𝑚
)2 +

∑𝑁
𝑛=1

(

𝑦𝑛 − 𝑦𝑜𝑛
)2

𝑠.𝑡.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑗𝑚 ≤ 𝑥𝑚, 𝑚 = 1,… ,𝑀

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑗𝑛 ≥ 𝑦𝑛, 𝑛 = 1,… , 𝑁

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝛽 = 0,
max
𝛽,𝛾𝛾𝛾

𝛽

𝑠.𝑡.
𝐽
∑

𝑗=1
𝛾𝑗𝑥𝑗𝑚 ≤ 𝑥𝑚 − 𝛽, 𝑚 = 1,… ,𝑀

𝐽
∑

𝑗=1
𝛾𝑗𝑦𝑗𝑛 ≥ 𝑦𝑛 + 𝛽, 𝑛 = 1,… , 𝑁

𝐽
∑

𝑗=1
𝛾𝑗 = 1,

𝜆𝑗 , 𝛾𝑗 ≥ 0, 𝑗 = 1,… , 𝐽
𝑥𝑚 ≥ 0, 𝑚 = 1,… ,𝑀
𝑦𝑛 ≥ 0, 𝑛 = 1,… , 𝑁

(19)

Box I.
𝑇 𝐼𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺)
(

𝐱𝑜, 𝐲𝑜, ℎ
)

+ 𝐴𝐼𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺)
(

𝐱𝑜, 𝐲𝑜, ℎ, �̃�, �̃�
)

. For the Eu-
clidean norm ℎ = 2, this yields the following expression:

𝛱 (𝐰,𝐩) −
(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

‖(𝑤, 𝑝)‖𝑞
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Norm. Profit Inefficiency

=

√

√

√

√

𝑀
∑

𝑚=1

(

𝑥𝑜𝑚 − 𝑥∗𝑚
)2 +

𝑁
∑

𝑛=1

(

𝑦∗𝑛 − 𝑦𝑜𝑛
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Graph Technnical Inefficiency

+𝐴𝐼𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺)
(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�, ℎ
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Profit Inefficiency

≥ 0,

(20)

where 𝑥∗𝑚 and 𝑦∗𝑛 are the solution to problem (19). For the remaining
norms: ℎ = 1 and ℎ = ∞, the decompositions are equal to the DDF (16),
with directional vectors set to the values previously mentioned.

As for the properties satisfied by these decompositions, one draw-
back of using Hölder distance functions is that they are not units
invariant; i.e. their value would change if the units of measurement of
inputs and outputs are transformed. Aware of this limitation, Briec [37,
p. 125] proposed to weight the Hölder distance function. This results
into a weighted weakly (WW) efficiency measure based on Hölder
norms:

𝑇 𝐼𝑊𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺)
(

𝐱𝑜, 𝐲𝑜, ℎ
)

=

nf
𝐮,𝐯

{

‖

‖

‖

‖

‖

(

𝑥𝑜1 − 𝑣1
𝑥𝑜1

,… ,
𝑥𝑜𝑀 − 𝑣𝑀

𝑥𝑜𝑀
,
𝑦𝑜1 − 𝑢1

𝑦𝑜1
,… ,

𝑦𝑜𝑁 − 𝑢𝑁
𝑦𝑜𝑁

)

‖

‖

‖

‖

‖ℎ

∶ (𝐯,𝐮) ∈ 𝜕𝑤 (𝑇 )

}

.

(21)

Based on this distance function, one decomposes profit inefficiency
into technical and allocative terms that are units’ invariant:

(

̃ ̃
) ( )
9

𝑁𝛱𝐼𝑊𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺) 𝐱𝑜, 𝐲𝑜, ℎ,𝐰,𝐩 = 𝑇 𝐼𝑊𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺) 𝐱𝑜, 𝐲𝑜, ℎ +
𝐴𝐼𝑊𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺)
(

𝐱𝑜, 𝐲𝑜, ℎ, �̃�, �̃�
)

:

𝛱 (𝐰,𝐩) −
(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

‖

‖

‖

(

𝑤1𝑥𝑜1,… , 𝑤𝑀𝑥𝑜𝑀 , 𝑝1𝑦𝑜1,… , 𝑝𝑁𝑦𝑜𝑁
)

‖

‖

‖𝑞
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Norm. Profit Inefficiency

=

√

√

√

√

𝑀
∑

𝑚=1

(𝑥𝑜𝑚 − 𝑥∗𝑚
𝑥𝑜𝑚

)2

+
𝑁
∑

𝑛=1

( 𝑦∗𝑚 − 𝑦𝑜
𝑦𝑜𝑚

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Graph Technnical Inefficiency

+𝐴𝐼𝑊𝑊𝐻�̈�𝑙𝑑𝑒𝑟(𝐺)
(

𝐱𝑜, 𝐲𝑜, ℎ, �̃�, �̃�
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Profit Inefficiency

≥ 0.

(22)

The syntax used in BenchmarkingEconomicEfficiency.jl includes
the possibility of decomposing profit inefficiency under the previous
norms: 𝓁1, 𝓁∞, and 𝓁2, considering the unweighted model, (20), or its
weighted version, (22). Table 2 summarizes the models available to the
researcher.

We illustrate the weighted Hölder profit inefficiency model using
the 𝓁∞ norm. This requires the use of next syntax:

julia> deaprofitholder(X, Y, W, P, l = Inf, weight =
true, names = banks)
Profit Holder LInf DEA Model
DMUs = 31; Inputs = 3; Outputs = 2
Returns to Scale = VRS
Weighted (weakly) Holder distance function
-------------------------------------------------------------------

Profit Technical Allocative
-------------------------------------------------------------------
Export-Import Bank 0.0 -9.77224e-17 9.77224e-17
Bank of Taiwan 0.0609693 -2.04769e-17 0.0609693
Taipei Fubon Bank 0.146089 0.0 0.146089
Bank of Kaohsiung 1.72965 0.178596 1.55106
Land Bank 9.00745e-16 0.0 9.00745e-16
...
Hwatai Bank 4.69325 0.354964 4.33829
Cota Bank 6.1504 0.284206 5.8662
Industrial Bank of Taiwan 0.870515 0.0 0.870515
Bank SinoPac 0.235837 0.0544932 0.181344
Shin Kong Bank 3.69483 0.160121 3.53471
-------------------------------------------------------------------
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Table 2
Directional vectors and weights corresponding to Hölder norms.

NormUnweighteda Weighted: ‘weight=true’

𝓁1 g−𝑜 =
(

0,… , 1(𝑚′ ) ,…0
)

, 𝑚′ = 1,… ,𝑀
g+𝑜 =

(

0,… , 1(𝑛′ ) ,…0
)

, 𝑛′ = 1,… , 𝑁
g−𝑜 =

(

0,… , 𝑥(𝑚′𝑜) ,…0
)

, 𝑚′ = 1,… ,𝑀
g+𝑜 =

(

0,… , 𝑦(𝑛′𝑜) ,…0
)

, 𝑛′ = 1,… , 𝑁

𝓁∞ g =
(

g−𝑜 , g+𝑜
)

=
(

1𝑀 ,1𝑁
)

g =
(

𝐠−𝑜 , g+𝑜
)

=
(

x𝑜𝑀 ,y𝑜𝑁
)

𝓁2
(

1𝑀 ,1𝑁
)

(

(

1∕x𝑜𝑀
)2 ,

(

1∕y𝑜𝑁
)2
)

aUnweighted results are obtained by default when omitting ‘weight = true’ from the syntax.
(

f
c
f
‘

B
c

j
:

P
D
R
G
-

-
E
B
T
B
L
.
H
C
I
B
S
-

t

j
:

3

c
o
t
i

Then, we can recover the information about the Hölder distance
unction along with any possible slacks by running the code:

ulia> deaholder(X, Y, l = Inf, weight = true, orient =
Graph, rts = :VRS, names = banks)

.6. The modified directional distance function

Profit inefficiency can be decomposed using the modified direc-
ional distance function MDDF. The MDDF was proposed by Aparicio
t al. [35] and presents two distinctive advantages over the standard
DF discussed in Section 3.4. First, as previously remarked, under

he customary directional vector 𝐠 =
(

𝐠−𝑜 , 𝐠
+
𝑜
)

=
(

𝐱𝑜, 𝐲𝑜
)

, the nor-
alization factor in the decomposition of profit inefficiency (16) is
𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚 +

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 = 𝐶𝑜 + 𝑅𝑜. This expression has no apparent

economic interpretation because it corresponds to the monetary sum
of the firm’s cost and revenue (dollars spent and dollars earned). In
turn, the duality of the MDDF with the profit function results in a nor-

alization factor that is either cost or revenue, but not the sum of the
wo, which results in a meaningful interpretation of profit inefficiency
s ‘lost profit on outlay’ (cost) or ‘lost profit on earnings’ (revenue).
econd, while the DDF aims at reducing inputs and increasing outputs
n the same proportion 𝛽—see (14), the MDDF adds flexibility to the

evaluation process by permitting different variations in inputs and
outputs when attaining technical efficiency.

The MDDF technical inefficiency measure is defined as follows:

𝑇 𝐼𝑀𝐷𝐷𝐹 (𝐺)
(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜
)

= max
{

𝛽𝐱 + 𝛽𝐲 ∶
(

𝐱𝑜 − 𝛽𝑜𝐠−𝑜 , 𝐲𝑜 + 𝛽𝐲𝐠+𝑜
)

∈ 𝜕𝑊 (𝑇 ) , 𝛽𝐱 , 𝛽𝐲 ≥ 0
}

. (23)

where, once again as in (14), the nonnegative vector 𝐠 =
(

𝐠−𝑜 , 𝐠
+
𝑜
)

≠
𝑀+𝑁 , 𝐠−𝐨 ∈ R𝑀 and 𝐠+𝐨 ∈ R𝑁 , which is specified by the researcher,
ets the direction towards the production frontier. The MDDF function
s calculated through DEA methods with the next model:

𝑇 𝐼𝑀𝐷𝐷𝐹 (𝐺)
(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜

)

= max
𝛽𝐱 ,𝛽𝐲 ,𝜆𝜆𝜆

𝛽𝐱 + 𝛽𝐲

𝑠.𝑡.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑗𝑚 ≤ 𝑥𝑜𝑚 − 𝛽𝐱𝑔𝑜𝑚, 𝑚 = 1,… ,𝑀

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑗𝑛 ≥ 𝑦𝑜𝑛 + 𝛽𝐲𝑔𝑜𝑛, 𝑛 = 1,… , 𝑁

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝐽
𝛽𝑥, 𝛽𝑦 ≥ 0

(24)

Aparicio et al. [35] show that if the researcher chooses as directional
ector the observed input and output quantities: 𝐠 =

(

𝐠−𝑜 , 𝐠
+
𝑜
)

=
𝐱𝑜, 𝐲𝑜

)

, and observed profit is non negative: 𝛱𝑜 ≥ 0, then the nor-
alization factor relating profit and the MDDF through duality, is

qual to observed cost. Therefore we obtain the following decompo-
itions of economic inefficiency into the MDDF and allocative ineffi-

(

̃ ̃
) ( )
10

iency: 𝑁𝛱𝐼𝑀𝐷𝐷𝐹 (𝐺) 𝐱𝑜, 𝐲𝑜,𝐰,𝐩 = 𝑇 𝐼𝑀𝐷𝐷𝐹 (𝐺) 𝐱𝑜, 𝐲𝑜 + 𝐴𝐼𝑀𝐷𝐷𝐹 (𝐺) c
𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

. That is,

𝛱 (𝐰,𝐩) −
(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

𝐶𝑜
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Norm. Profit Inefficiency

=

= 𝛽∗𝐱 + 𝛽∗𝐲
⏟⏟⏟

Technical Inefficiency

+ 𝐴𝐼𝐷𝐷𝐹 (𝐺)
(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜 , �̃�, �̃�

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Allocative Inefficiency

≥ 0. (25)

where 𝛽∗𝐱 + 𝛽∗𝐲 are the solutions to model (24). In case the observed
irms incurs in economic losses presenting a negative profit, 𝛱𝑜 < 0, the
orresponding duality can be established in terms of a normalization
actor equivalent to observed revenue. Consequently, a measure of
profit loss to earnings’ can be defined and decomposed:

𝛱 (𝐰,𝐩) −
(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

𝑅𝑜
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Norm. Profit Inefficiency

=

= 𝛽∗𝐱 + 𝛽∗𝐲
⏟⏟⏟

Graph Technical Inefficiency

+ 𝐴𝐼 ′𝐷𝐷𝐹 (𝐺)
(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜 , �̃�, �̃�

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Allocative Inefficiency

≥ 0. (26)

enchmarkingEconomicEfficiency.jl allows calculating profit ineffi-
iency using the MDDF through the following syntax:

ulia> deaprofitmddf(X, Y, W, P, Gx = :Observed, Gy =
Observed, names = banks)

rofit Modified DDF DEA Model
MUs = 31; Inputs = 3; Outputs = 2
eturns to Scale = VRS
x = Observed; Gy = Observed
--------------------------------------------------------------------

Profit Technical Allocative
--------------------------------------------------------------------
xport-Import Bank 0.0 0.0 0.0
ank of Taiwan 0.596709 3.42411e-18 0.596709
aipei Fubon Bank 1.1001 0.0 1.1001
ank of Kaohsiung 9.75109 0.361837 9.38925
and Bank 4.15667e-15 0.0 4.15667e-15
..
watai Bank 27.9857 0.731325 27.2544
ota Bank 36.7423 0.638023 36.1043
ndustrial Bank of Taiwan 7.82245 0.0 7.82245
ank SinoPac 1.62129 0.11124 1.51005
hin Kong Bank 25.8171 0.346674 25.4705
--------------------------------------------------------------------

The underlying inefficiency information can be obtained through
he corresponding function.

ulia> deamddf(X, Y, rts = :VRS, Gx = :Observed, Gy=
Observed, names = banks)

.7. The reverse directional distance function

Another option found in the literature to decompose profit ineffi-
iency uses the reverse directional distance function RDDF as measure
f technical inefficiency. The advantage of the RDDF, proposed by Pas-
or et al. [36], is that it relates existing additive measures of technical
nefficiency to the popular directional distance function. The RDDF is

apable of transforming any measure of graph technical inefficiency,
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=
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EM(G), such as the enhanced Russell measure or the weighted addi-
tive WA measure previously presented, into a single scalar measure
corresponding to a standard DDF. Therefore, given the set of 𝐽 firms
under study, 𝐹𝐽 , and their projections on the frontier, denoted by 𝐹𝐽 ,
the RDDF assigns a new DDF score 𝛽 to the original EM(G), compatible
with the projections 𝐹𝐽 .

To calculate the 𝑅𝐷𝐷𝐹
(

𝐸𝑀 (𝐺) , 𝐹𝐽 , 𝐹𝐽
)

for firm
(

𝐱𝑜, 𝐲𝑜
)

we need
o determine the direction 𝐠 = (𝐠−𝑜 , 𝐠

+
𝑜 ) linking the observation to its

rojection under EM(G),
(

�̂�𝑜, �̂�𝑜
)

∈ 𝐹𝐽 . This directional vector can be
btained by subtracting the coordinates of the firm under evaluation
rom its projected benchmark. Afterwards the value of the RDDF is
alculated.

We now present the decomposition of profit inefficiency based
n the RDDF, which is equivalent to that presented in Section 3.4:
𝛱𝐼𝑅𝐷𝐷𝐹

(

𝐸𝑀(𝐺),𝐹𝐽 ,𝐹𝐽
)

(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜 , �̃�, �̃�

)

= 𝑇 𝐼𝑅𝐷𝐷𝐹
(

𝐸𝑀(𝐺),𝐹𝐽 ,𝐹𝐽
)

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜
)

+ 𝐴𝐼𝑅𝐷𝐷𝐹
(

𝐸𝑀(𝐺),𝐹𝐽 ,𝐹𝐽
)

(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜 , �̃�, �̃�

)

, i.e.,

𝛱 (𝐰,𝐩) −
(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

∑𝑀
𝑚=1 𝑤𝑚𝑔−𝑜𝑚 +

∑𝑁
𝑛=1 𝑝𝑛𝑔+𝑜𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Profit Inefficiency

=

= 𝛽∗
𝑅𝐷𝐷𝐹 (𝐸𝑀(𝐺),𝐹𝐽 ,𝐹𝐽 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Graph Technical Inefficiency

+ 𝐴𝐼𝑅𝐷𝐷𝐹 (𝐸𝑀(𝐺),𝐹𝐽 ,𝐹𝐽 )
(

𝐱𝑜, 𝐲𝑜, 𝐠−𝑜 , 𝐠
+
𝑜 , �̃�, �̃�

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Allocative Inefficiency

≥ 0.

(27)

where the efficiency score 𝛽∗
𝑅𝐷𝐷𝐹

(

𝐸𝑀(𝐺),𝐹𝐽 ,𝐹𝐽
) for observations that are

technically inefficient is calculated by solving the DDF model (14) with
he associated directional vectors. We note that the whether the RDDF
onsiders projections belonging to the strongly or weakly efficient
ubset of the technology is inherited from the technical inefficiency
easure EM(G) of choice. Regarding the essential property, it complies
ith it as the DDF on which it is based. However, it cannot comply with

he extended version of the essential property because the directional
ectors, obtained from the difference between projected and observed
nput and output quantities, differ among observations [48, p. 123].

We now show the implementation of the profit inefficiency decom-
osition considering the enhanced Russell measure presented in Sec-
ion 3.3 as the technical inefficiency measure of choice; i.e.,
𝑀𝐺(𝑆𝐵𝑀)(𝐺). The syntax for the normalized decomposition is as

ollows:

ulia> deaprofitrddf(X, Y, W, P, :ERG, names = banks)

rofit Reverse DDF DEA Model
MUs = 31; Inputs = 3; Outputs = 2
eturns to Scale = VRS
ssociated efficiency measure = ERG
------------------------------------------------------------------

Profit Technical Allocative
------------------------------------------------------------------
xport-Import Bank 0.0 0.0 0.0
ank of Taiwan 0.299725 -4.82974e-13 0.299725
aipei Fubon Bank 0.550048 0.0 0.550048
ank of Kaohsiung 2.72869 0.78295 1.94574
and Bank 7.96057e-15 0.0 7.96057e-15
..
watai Bank 13.5607 0.958676 12.602
ota Bank 7.01996 0.942322 6.07764
ndustrial Bank of Taiwan 3.91122 0.0 3.91122
ank SinoPac 0.536348 0.226657 0.30969
hin Kong Bank 2.71129 0.906448 1.80485
------------------------------------------------------------------

We can recover the information about the underlying efficiency
easures through the following code:

ulia> dearddf(X, Y, :ERG, rts = :VRS, names = banks)

.8. The general direct approach

The most recent model to decompose profit inefficiency has been
11

roposed by Pastor et al. [38]. In contrast to the standard approach that
relies on duality theory to obtain a suitable Fenchel-Mahler inequality
that allows recovering allocative efficiency as a residual—see (2), the
so-called Generalized Direct Approach, GDA offers a new framework
that, based on equalities, simplifies the process of decomposing profit
efficiency. The new approach is general because it can be developed for
any of the technical efficiency measure, EM(G), previously discussed.
Also, it is also easier to develop, because one does not need to solve
for Fenchel-Mahler inequalities through duality methods. Finally the
results are exact, because being based on equalities, the allocative
inefficiency values cannot be overestimated as happens with the stan-
dard approaches when failing to comply with the essential property,
see [38].

To implement the new approach, ones needs two elements: the
value of the technical inefficiency of the firm under evaluation using
the preferred efficiency measure: 𝑇 𝐼𝐸𝑀(𝐺)

(

𝐱𝑜, 𝐲𝑜
)

, and the benchmark
nput and output values on the frontier:

(

�̂�𝑜𝐸𝑀(𝐺), �̂�𝑜𝐸𝑀(𝐺)
)

. Then, profit
nefficiency of firm

(

𝐱𝑜, 𝐲𝑜
)

is decomposed into the sum of two terms.
he first term corresponds to the scalar product of the optimal slack
ector,

(

𝐬−∗𝑜𝐸𝑀(𝐺), 𝐬
+∗
𝑜𝐸𝑀(𝐺)

)

=
(

𝐱𝑜 − �̂�𝑜𝐸𝑀(𝐺), �̂�𝑜𝐸𝑀(𝐺) − 𝐲𝑜
)

—i.e., the 𝐿1-
ath between the observation and its benchmark, and the vector of
arket prices (𝐰,𝐩). This measures the profit loss due to technical

nefficiency: 𝐩 ⋅ 𝐬+∗𝑜𝐸𝑀(𝐺) + 𝐰 ⋅ 𝐬−∗𝑜𝐸𝑀(𝐺). The second term of the decom-
osition is the remaining profit inefficiency, which is the profit loss of
he projection on the production frontier:

(

�̂�𝑜𝐸𝑀(𝐺), �̂�𝑜𝐸𝑀(𝐺)
)

. We see
hat the these two terms are expressed in monetary values and comply
ith the notions of technical and allocative inefficiency, respectively.

Therefore, relating the profit technological gap,
(

𝐩 ⋅ 𝐬+∗𝑜𝐸𝑀(𝐺)+

𝐰 ⋅ 𝐬−∗𝑜𝐸𝑀(𝐺)

)

, with the technical inefficiency measure 𝑇 𝐼𝐸𝑀(𝐺)
(

𝐱𝑜, 𝐲𝑜
)

,
e can obtain the following decomposition:

𝐼
(

𝐱𝑜, 𝐲𝑜,𝐰,𝐩
)

=

= 𝑇 𝐼𝐸𝑀(𝐺)
(

𝐱𝑜, 𝐲𝑜
)

×

(

𝐩 ⋅ 𝐬+∗𝑜𝐸𝑀 + 𝐰 ⋅ 𝐬−∗𝑜𝐸𝑀

𝑇 𝐼𝐸𝑀(𝐺)
(

𝐱𝑜, 𝐲𝑜
)

)

+𝛱𝐼
(

�̂�𝑜𝐸𝑀(𝐺), �̂�𝑜𝐸𝑀(𝐺),𝐰,𝐩
)

.

(28)

Here, the profit loss associated with the technological gap corre-
sponds to the technical inefficiency of the firm itself, 𝑇 𝐼𝐸𝑀(𝐺)

(

𝐱𝑜, 𝐲𝑜
)

,
times a normalizing factor 𝑁𝐹𝐸𝑀(𝐺)

(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

, which measures the
rofit loss per unit of technical inefficiency. This correspond to the
echnical profit inefficiency of the firm and, consequently, the remain-
ng profit inefficiency captured in the last term, effectively corresponds
o the allocative inefficiency of

(

𝐱𝑜, 𝐲𝑜
)

. As already shown, this last
nefficiency is the profit inefficiency of the firm’s benchmark projection
�̂�𝑜𝐸𝑀(𝐺), �̂�𝑜𝐸𝑀(𝐺)

)

.

The use of the normalizing factor, 𝑁𝐹𝐸𝑀(𝐺)
(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

in the
bove decomposition of profit inefficiency ensures that it is units’
nvariant. Note that the three terms of the equality are divided by this
actor. When defining the normalization factor we consider whether
he observation is technically inefficient: 𝑇 𝐼𝐸𝑀(𝐺)

(

𝐱𝑜, 𝐲𝑜
)

> 0, with
𝐱𝑜, 𝐲𝑜

)

≠
(

�̂�𝑜𝐸𝑀(𝐺), �̂�𝑜𝐸𝑀(𝐺)

)

, or technically efficient: 𝑇 𝐼𝐸𝑀(𝐺)
(

𝐱𝑜, 𝐲𝑜
)

0, with
(

𝐱𝑜, 𝐲𝑜
)

=
(

�̂�𝑜𝐸𝑀(𝐺), �̂�𝑜𝐸𝑀(𝐺)

)

. Hence,

𝐹𝐺𝐷𝐴
𝐸𝑀(𝐺)

(

𝐱𝑜, 𝐲𝑜,𝐰,𝐩
)

=

=

⎧

⎪

⎨

⎪

⎩

(

𝐩⋅𝐬+∗𝐸𝑀(𝐺)+𝐰⋅𝐬
−∗
𝐸𝑀

)

𝑇 𝐼𝐸𝑀(𝐺)(𝐱𝑜 ,𝐲𝑜)
,
(

𝐱𝑜, 𝐲𝑜
)

≠
(

�̂�𝑜𝐸𝑀(𝐺), �̂�𝑜𝐸𝑀(𝐺)

)

,

𝑘𝑜$ , 𝑘𝑜 > 0 ,
(

𝐱𝑜, 𝐲𝑜
)

=
(

�̂�𝑜𝐸𝑀(𝐺), �̂�𝑜𝐸𝑀(𝐺)

)

.

⎫

⎪

⎬

⎪

⎭

(29)

where 𝑘𝑜$ is a scalar, also expressed in monetary units, that simply
translates the null technical efficiency score into the same currency
values. With this qualification in mind we introduce the normalized
expression of the GDA: 𝑁𝛱𝐼

(

𝐱 , 𝐲 , �̃�, �̃�
)

= 𝑇 𝐼
(

𝐱 , 𝐲
)

+
𝐺𝐷𝐴(𝐺) 𝑜 𝑜 𝐺𝐷𝐴(𝐺) 𝑜 𝑜
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𝐴𝐼𝐺𝐷𝐴(𝐺)
(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

. Specifically,

𝛱 (𝐰,𝐩) −
(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

𝑁𝐹𝐺𝐷𝐴
𝐸𝑀(𝐺)

(

𝐱𝑜, 𝐲𝑜,𝐰,𝐩
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Profit Inefficiency

=

= 𝑇 𝐼𝐸𝑀(𝐺)
(

𝐱𝑜, 𝐲𝑜
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Graph Technical Inefficiency

+ 𝐴𝐼𝐺𝐷𝐴(𝐺)
(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Allocative Inefficiency

≥ 0. (30)

here normalized allocative inefficiency corresponds to:
𝐼𝐺𝐷𝐴(𝐺)

(

𝐱𝑜, 𝐲𝑜, �̃�, �̃�
)

= 𝐴𝐼𝐺𝐷𝐴(𝐺)
(

𝐱𝑜, 𝐲𝑜,𝐰,𝐩
)

∕𝑁𝐹𝐺𝐷𝐴
𝐸𝑀(𝐺)

(

𝐱𝑜, 𝐲𝑜,𝐰,𝐩
)

.

BenchmarkingEconomicEfficiency.jl implements the profit ineffi-
ciency decomposition associated with the GDA relying on the enhanced
Russell graph measure. This decomposition can be calculated both in
normalized terms, (30), and monetary terms, (28). The syntax for the
normalized (units’ invariant) decompositions is the following:

julia> deaprofitgda(X, Y, W, P, :ERG, names = banks)

General Direct Approach Profit DEA Model
DMUs = 31; Inputs = 3; Outputs = 2
Returns to Scale = VRS
Associated efficiency measure = ERG
-------------------------------------------------------------------

Profit Technical Allocative
-------------------------------------------------------------------
Export-Import Bank 0.0 0.0 0.0
Bank of Taiwan 0.299725 1.11022e-16 0.299725
Taipei Fubon Bank 0.550048 2.22045e-16 0.550048
Bank of Kaohsiung 2.72869 0.78295 1.94574
Land Bank 7.96057e-15 -2.22045e-16 7.96057e-15
...
Hwatai Bank 13.5607 0.958676 12.602
Cota Bank 7.01996 0.942322 6.07764
Industrial Bank of Taiwan 3.91122 -3.10862e-15 3.91122
Bank SinoPac 0.536348 0.226657 0.30969
Shin Kong Bank 2.71129 0.906448 1.80485
-------------------------------------------------------------------

while the monetary decomposition can be obtained by including mon-
etary = true in the above functions.

Finally, we can recover the information about the inefficiency mea-
sures by running the code:

julia> deaerg(X, Y, rts = :VRS, names = banks)

4. Measuring and decomposing profitability efficiency

The performance of firms from an economic perspective can be
assessed through their Profitability inefficiency, considering as economic
goal the maximization of revenue to cost. The profitability function
is defined as the maximum observed value of that ratio considering
the technology and the prices of inputs and outputs, i.e., 𝛤 (𝐰,𝐩) =
max
𝐱,𝐲

{

𝐩 ⋅ 𝐲∕𝐰 ⋅ 𝐱 | 𝐱 ≥ 𝑋𝝀, 𝐲 ⩽ 𝑌 𝝀, 𝜆 ≥ 𝟎
}

,𝐰 ∈ R𝑀
++, 𝐩 ∈ R𝑁

++—see [3,
Chap.4] for a discussion of its properties considering minimal regularity
conditions.

A relevant technological characteristic of the profitability function
is the existence of constant returns to scale at the maximizing bench-
mark, [4]. Georgescu-Roegen [62] argued in favor of the profitability
function as ‘‘... an economic criterion on which to base the choice
between two linear processes..’’., which ‘‘must be independent of the scale
of production, whereas 𝐩 ⋅𝐲,𝐰 ⋅𝐱, and 𝐩 ⋅𝐲−𝐰 ⋅𝐱 are not’’—his italics and
our notation. Note that having a measure of economic performance that
is independent of returns to scale is also desirable when relating the
generalized distance function to productivity indexes, since they should
comply with the so-called proportionality property, which is verified
when the technology satisfies constant returns to scale, [46].

Maximum profitability can be computed through the following
12

program:
𝛤 (𝐰,𝐩) = max
𝐱,𝐲,𝜆𝜆𝜆

𝑁
∑

𝑛=1
𝑝𝑛𝑦𝑛∕

𝑀
∑

𝑚=1
𝑤𝑚𝑥𝑚

s.t.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑗𝑚 ≤ 𝑥𝑚, 𝑚 = 1,… ,𝑀 ,

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑗𝑛 ≥ 𝑦𝑛, 𝑛 = 1,… , 𝑁 ,

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝐽 .

(31)

Note that this program is defined under the assumption of variable
returns to scale, while at the optimal solution, represented by 𝐱∗, 𝐲∗, 𝜆𝜆𝜆∗,
the technology is characterized by constant returns. For firm

(

𝐱𝑜, 𝐲𝑜
)

∈
R𝑀+𝑁
+ , 𝐱𝑜 ≠ 0𝑀 , 𝐲𝑜 ≠ 0𝑁 , profitability inefficiency is the ratio of the

firms’ observed profitability divided by maximum profitability; i.e.,

𝛤𝐸
(

𝐱𝑜, 𝐲𝑜,𝐰,𝐩
)

=
𝛤𝑜

𝛤 (𝐩,𝐰)
=

𝐩 ⋅ 𝐲𝑜∕𝐰 ⋅ 𝐱𝑜
𝛤 (𝐩,𝐰)

=

=
∑𝑁

𝑛=1 𝑝𝑛𝑦𝑜𝑛∕
∑𝑀

𝑚=1 𝑤𝑚𝑥𝑜𝑚
𝛤 (𝐩,𝐰)

≤ 1. (32)

Based on duality, profitability efficiency can be decomposed
through graph multiplicative measures that simultaneously contract
inputs and expand outputs. The hyperbolic measure introduced by Färe
et al. [63, Chap. 5] evaluates firms’ efficiency considering those
changes. Later on, this measure was generalized by Chavas and Cox
[64] who called it generalized distance function GDF. The GDF, whose
properties are discussed by Pastor et al. [3, Chap.4], is defined as
follows:

𝑇𝐸crs
gdf (𝐱, 𝐲, 𝛼)

= min
{

𝛿crs > 0 ∶
(

(𝛿crs)1-𝛼𝐱, (𝛿crs)−𝛼𝐲
)

∈ 𝜕𝑊
(

𝑇 crs
)

, 𝛼 ∈ [0, 1]
}

,

(33)

here the parameter 𝛼 sets the direction to the frontier. It is immedi-
tely clear that the GDF generalizes existing measures. When 𝛼 = 0
ne obtains the input distance function, while if 𝛼 = 1 one obtains
he output distance function. Both distance functions are considered in
he next section when presenting the multiplicative decomposition of
ost and revenue efficiency. Finally, the GDF also nests the hyperbolic
easure when 𝛼 = 0.5

One can resort to Data Envelopment Analysis to calculate the effi-
iency of firm

(

𝐱𝑜, 𝐲𝑜
)

in terms of the GDF. This requires solving next
rogram:

𝐸crs
gdf

(

𝐱𝑜, 𝐲𝑜, 𝛼
)

= min
𝛿 ,𝜆𝜆𝜆

𝛿crs

.t.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑗𝑚 ≤

(

𝛿crs
)1−𝛼𝑥𝑜𝑚, 𝑚 = 1,… ,𝑀 ,

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑗𝑛 ≥ 𝑦𝑜𝑛∕

(

𝛿crs
)𝛼 , 𝑛 = 1,… , 𝑁 ,

𝜆𝑗 ≥ 0.

(34)

The fact that the reference benchmark should produce under con-
stant returns to scale implies that any firm producing under decreasing
or increasing returns to scale incurs scale inefficiencies. Scale ineffi-
ciency is then another source of profitability that must be considered
in the model. Consequently, the sources of productive inefficiency can
be technical, i.e., the firm lays inside the technology set, or related to a
suboptimal scale. This implies that technical efficiency under constant
returns to scale can be decomposed into the usual technical efficiency
under variables returns to scale times a factor representing scale ineffi-
ciency; i.e. 𝑇𝐸crs

gdf (𝐱, 𝐲, 𝛼) = 𝑇𝐸gdf (𝐱, 𝐲, 𝛼) ×𝑆𝐸gdf (𝐱, 𝐲, 𝛼) = 𝛿 × (𝛿crs∕𝛿) ≤
1. In this expression, 𝑇𝐸gdf (𝐱, 𝐲, 𝛼) = 𝛿 is the generalized distance

function under the variable returns to scale technology 𝑇 , rather than
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its constant returns specification in (33). Its calculation requires solving
program (34) with the additional constraint: ∑𝐽

𝑗=1 𝜆𝑗 = 1. Since both
programs calculating maximum profitability and the generalized dis-
tance function are non-linear, BenchmarkingEconomicEfficiency.jl
uses the JuMP.jl environment, coupled with the ‘Ipopt’ solver.

Once both technical efficiency measures have been calculated, we
rely on the duality theory relating the profitability function and the
GDF, [4]. These authors establish the Fenchel-Mahler inequality by
which profitability efficiency (32), is greater or equal in value to
the technical efficiency measure under CRS, i.e., 𝛤𝐸(𝐱𝑜, 𝐲𝑜,𝐰,𝐩) ≥
𝑇𝐸crs

gdf
(

𝐱𝑜, 𝐲𝑜, 𝛼
)

. Considering the decomposition of 𝑇𝐸crs
gdf

(

𝐱𝑜, 𝐲𝑜, 𝛼
)

into
variables returns efficiency and scale efficiency, and closing the in-
equality with the addition of a residual term capturing allocative
inefficiency, yields:
∑𝑁

𝑛=1 𝑝𝑛𝑦𝑜𝑛∕
∑𝑀

𝑚=1 𝑤𝑚𝑥𝑜𝑚
𝛤 (𝐩,𝐰)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Profitability Efficiency

= 𝑇𝐸crs
gdf

(

𝐱𝑜, 𝐲𝑜, 𝛼
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Graph Technical Efficiency𝐶𝑅𝑆

×𝐴𝐸gdf
(

𝐱𝑜, 𝐲𝑜,𝐰,𝐩
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Allocative Efficiency

=

𝑇𝐸gdf
(

𝐱𝑜, 𝐲𝑜, 𝛼
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Graph Technical Efficiency𝑉 𝑅𝑆

×𝑆𝐸gdf
(

𝐱𝑜, 𝐲𝑜, 𝛼
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Scale Efficiency

×𝐴𝐸gdf
(

𝐱𝑜, 𝐲𝑜,𝐰,𝐩
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Allocative Efficiency

≥ 0. (35)

As for the relevant properties of the profitability decomposition
using the GDF, it fails to comply with the indication property by project-
ing the observation to the weakly efficient set of the technology. This
implies that, when calculating 𝑇𝐸𝐺𝐷𝐹

(

𝐱𝑜, 𝐲𝑜, 𝛼
)

, there may exist further
individual reductions of inputs or expansion of outputs—both under
CRS or VRS. Consequently, BenchmarkingEconomicEfficiency.jl per-
forms a subsequent additive model to determine if these slacks exist.
Finally, it is relevant to note that since the profit efficiency measure
is multiplicative, the decomposition of profitability efficiency satisfies
both the essential property and its extension, see Propositions 1 and 4
in [48].

We now show how to implement the decomposition of profitabil-
ity efficiency and its decomposition into technical efficiency, scale
efficiency and allocative efficiency. The syntax is as follows:

julia> deaprofitability(X, Y, W, P, alpha = 0.5, names
= banks)

Profitability DEA Model
DMUs = 31; Inputs = 3; Outputs = 2
alpha = 0.5; Returns to Scale = VRS
----------------------------------------------------------------------------------

Profitability CRS VRS Scale Allocative
----------------------------------------------------------------------------------
Export-Import Bank 0.999999 0.999997 0.999999 0.999998 1.0
Bank of Taiwan 0.393451 1.0 1.0 1.0 0.393451
Taipei Fubon Bank 0.444591 0.614278 1.0 0.614278 0.723762
Bank of Kaohsiung 0.400458 0.48107 0.700667 0.686588 0.832432
Land Bank 0.501915 0.830479 1.0 0.830479 0.604368
...
Hwatai Bank 0.272076 0.328527 0.496978 0.661049 0.828168
Cota Bank 0.26831 0.475605 0.565756 0.840654 0.564144
Industrial Bank of Taiwan 0.448944 0.947522 0.999997 0.947525 0.473809
Bank SinoPac 0.461054 0.647851 0.896737 0.722453 0.711667
Shin Kong Bank 0.15606 0.287427 0.725546 0.396153 0.542955
----------------------------------------------------------------------------------

We can learn about the technical efficiency measures under constant
and variable returns by calling the corresponding functions, which
include the calculation of the input and output slacks in a second stage:

julia> deagdf(X, Y, alpha = 0.5, rts = :CRS, names =
banks)

julia> deagdf(X, Y, alpha = 0.5, rts = :VRS, names =
banks)

5. Measuring and decomposing cost and revenue efficiency

Here we summarize how to decompose economic efficiency from
the partial perspectives represented by firms’ cost and revenue. Under
these two alternative dimensions it is assumed that firms either aim at
minimizing the cost of producing a vector of outputs, or maximize the
13
revenue they can obtain from using a given level of inputs. Economic
efficiency from a revenue or cost perspective can be measured and de-
composed multiplicatively or additively. The functional form depends
on the chosen (in)efficiency measure. The multiplicative approach is
most well-known as it corresponds to Farrell’s original proposal. For
this reason we initiate the presentation of these models with this
approach and then follow with the many additive decompositions that
have been proposed in the literature, based on the different inefficiency
measures EM(G) already presented when decomposing profit ineffi-
ciency, but with a partial input our output orientation, i.e., EM(I) or
EM(O).

As before, measuring economic efficiency requires the definition of
the optimal economic goal to be achieved by the firms. In this case,
minimizing the cost of producing output 𝐲𝑜, represented by the input
set 𝐿(𝐲𝑜), or the maximizing the revenue obtainable from input 𝐱𝑜,
represented by the output set 𝑃 (𝐱𝑜). These functions are expressed as
ollows: 𝐶(𝐲,𝐰) = min

𝐱

{

𝐰 ⋅ 𝐱 | 𝐱 ≥ 𝑋𝝀, 𝐲𝑜 ⩽ 𝑌 𝝀, 𝐞𝝀 = 1, 𝜆 ≥ 𝟎
}

, 𝐰 ∈
𝑀
++, 𝐲𝑜 ≥ 0𝑁 , and 𝑅(𝐱,𝐩) = max

𝐲

{

𝐩 ⋅ 𝐲 | 𝐱𝑜 ≥ 𝑌 𝝀, 𝐞𝝀 = 1, 𝜆 ≥ 𝟎
}

, 𝐩 ∈
𝑁
++, 𝐱𝑜 ≥ 0𝑁 , whose properties under minimal regularity conditions
re discussed in [3, Chap.2].

Minimum cost along with the optimal input quantities can be cal-
ulated through DEA by solving the following model

(

𝐲𝑜,𝐰
)

= min
𝐱,𝜆𝜆𝜆

𝑀
∑

𝑚=1
𝑤𝑚𝑥𝑚

.t.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑗𝑚 ≤ 𝑥𝑚, 𝑚 = 1,… ,𝑀 ,

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑗𝑛 ≥ 𝑦𝑜𝑛, 𝑛 = 1,… , 𝑁 ,

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆 ≥ 0,

(36)

hile the program determining maximum revenue and its associated
ptimal output quantities is:

(

𝐱𝑜,𝐩
)

= max
𝐲,𝜆𝜆𝜆

𝑁
∑

𝑛=1
𝑝𝑛𝑦𝑛

s.t.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑗𝑚 ≤ 𝑥𝑜𝑚, 𝑚 = 1,… ,𝑀 ,

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑗𝑛 ≥ 𝑦𝑛, 𝑛 = 1,… , 𝑁 ,

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆 ≥ 0.

(37)

5.1. Multiplicative models based on the radial input-and output-oriented
measures

It is now possible to define cost efficiency and revenue efficiency
multiplicatively as follows. For firm

(

𝐱𝑜, 𝐲𝑜
)

cost efficiency corresponds
to minimum cost over observed cost, i.e., 𝐶𝐸(𝐱𝑜, 𝐲𝑜,𝐰)
= 𝐶

(

𝐲𝑜,𝐰
)

∕𝐶𝑜 = 𝐶
(

𝐲𝑜,𝐰
)

∕𝐰 ⋅ 𝐱𝑜 = 𝐶
(

𝐲𝑜,𝐰
)

∕
∑𝑀

𝑚=1 𝑤𝑚𝑥𝑜𝑚 ≤ 1.
Alternatively, revenue efficiency corresponds to observed revenue to
maximum revenue: 𝑅𝐸(𝐱𝑜, 𝐲𝑜,𝐩) = 𝑅𝑜∕𝑅

(

𝐱𝑜,𝐩
)

= 𝐩 ⋅ 𝐲𝑜∕𝑅
(

𝐱𝑜,𝐩
)

=
∑𝑁

𝑛=1 𝑝𝑛𝑦𝑜𝑛∕𝑅
(

𝐱𝑜,𝐩
)

≤ 1.

5.1.1. Cost efficiency
Färe and Primont [2] present the duality results that allow to

relate numerically the value of cost efficiency with that of Farrell’s
radial input measure 𝑅(𝐼). This last measure represents the maximum
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equiproportional reduction in the observed input vector necessary to
reach the production frontier. For the firm under evaluation (𝐱𝑜, 𝐲𝑜),
his can be computed through the following DEA model:7

𝐸𝑅(𝐼)(𝐱𝑜, 𝐲𝑜) = min
𝜃,𝜆𝜆𝜆

𝜃

.t.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑗𝑚 ≤ 𝜃𝑥𝑜𝑚, 𝑚 = 1,… ,𝑀 ,

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑗𝑛 ≥ 𝑦𝑛, 𝑛 = 1,… , 𝑁 ,

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆 ≥ 0.

(38)

Given the optimal value 𝜃∗, the set of constraints ensure that the
rojection

(

𝜃∗𝐱𝑜, 𝐲𝑜
)

belongs to the technology 𝐿(𝐲𝑜). The program
earches for the value of 𝜃 that projects 𝐱𝑜 radially to its frontier
enchmark represented by �̂�𝑜 = 𝜃∗𝐱𝑜. A value of 𝜃∗ = 1 indicates
hat the firm is technically efficient, while if 𝜃∗ < 1, then the firm
s inefficient and its benchmark projection on the frontier, given by
𝜆𝜆𝜆𝑋,𝜆𝜆𝜆𝑌 ), dominates

(

𝐱𝑜, 𝐲𝑜
)

.
We now show the duality result relating cost efficiency and Farrell’s

adial input efficiency measure 𝑅(𝐼), allowing the decomposition of
cost efficiency: 𝐶𝐸𝑅(𝐼)

(

𝐱𝑜, 𝐲𝑜,𝐰
)

= 𝑇𝐸𝑅(𝐼)
(

𝐱𝑜, 𝐲𝑜
)

× 𝐴𝐸𝑅(𝐼)
(

𝐱𝑜, 𝐲𝑜,𝐰
)

,
i.e.,

𝐶(𝐲𝑜,𝐰)
∑𝑀

𝑚=1 𝑤𝑚𝑥𝑜𝑚
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Cost Efficiency

= 𝜃∗
⏟⏟⏟

Technical Efficiency

×𝐴𝐸𝑅(𝐼)
(

𝐱𝑜, 𝐲𝑜,𝐰
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Allocative Efficiency

≤ 1.
(39)

Cost efficiency may be calculated through the following syntax:

julia> deacost(X, Y, W, names = banks)

while the input efficiency measure can be recalled through the
following function:

julia> dea(X, Y, orient = :Input, rts = :VRS, names =
banks)

One drawback of the multiplicative decomposition of cost efficiency
using Farrell’s radial input measure is its inability to comply with
the property of indication, implying that the benchmark projection
�̂�𝑜 = 𝜃∗𝐱𝑜 may not be Pareto-Koopmans efficient, and therefore there
may exist input and output slacks. Accordingly, decomposition (39)
overestimates the value of technical efficiency and, correspondingly,
underestimates that of allocative efficiency. One the other hand, the
multiplicative decompositions of cost and revenue efficiencies satisfy
the essential property and its extension, see Propositions 1 and 4
in [48], so allocative efficiency is measured correctly. As before, Bench-
markingEconomicEfficiency.jl performs a two-stage analysis to check
if these slacks exist. The results are automatically obtained when
running the function calculating the input technical efficiency measure
above.

5.1.2. Revenue efficiency
Regarding the multiplicative decomposition of revenue efficiency,

the standard duality results relate the revenue function with Farrell’s
radial output measure 𝑅(𝑂). This measure represents the maximum
equiproportional expansion in the observed output vector necessary to

7 This program represents the ‘envelopment form’ introduced by Charnes
t al. [26] under constant returns to scale. Dual programs corresponding
o the ‘multipliers form’ are presented in [13]. Also, as in the previous
rograms identifying minimum cost and maximum revenue, the technology
s characterized by variables returns to scale, with the sum of the lambdas

∑𝐽
14

qual to one: 𝑗=1 𝜆𝑗 = 1, see [39]. p
reach the production frontier. For the firm under evaluation (𝐱𝑜, 𝐲𝑜), the
following DEA program allows its measurement:

𝑇𝐸𝑅(𝑂)(𝐱𝑜, 𝐲𝑜) = max
𝜉,𝜆𝜆𝜆

𝜉

.t.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑗𝑚 ≤ 𝑥𝑜𝑚, 𝑚 = 1,… ,𝑀 ,

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑗𝑛 ≥ 𝜉𝑦𝑜𝑛, 𝑛 = 1,… , 𝑁 ,

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆 ≥ 0.

(40)

where 𝜉∗ denotes now the optimal solution. Again, the constraints
ensure that the firm

(

𝐱𝑜, 𝜉∗𝐲𝑜
)

belong to the technology 𝑇 . The program
searches for the maximum value of 𝜉 that projects radially the output
vector 𝐲𝑜 to its frontier benchmark represented by �̂�𝑜 = 𝜉∗𝐲𝑜. When
𝜉∗ = 1 the firm is technically technically efficient, while if 1∕𝜉∗ < 1 the
firm is technically inefficient. In this case, its benchmark projection on
the frontier, given by (𝜆𝜆𝜆𝑋,𝜆𝜆𝜆𝑌 ) dominates

(

𝐱𝑜, 𝐲𝑜
)

.
We now present the duality result describing the relationship be-

tween the revenue function and Farrell’s radial output efficiency mea-
sure. This allows decomposing revenue efficiency into technical and
allocative terms: 𝑅𝐸𝑅(𝑂)

(

𝐱𝑜, 𝐲𝑜,𝐩
)

= 𝑇𝐸𝑅(𝑂)
(

𝐱𝑜, 𝐲𝑜
)

×𝐴𝐸𝑅(𝑂)
(

𝐱𝑜, 𝐲𝑜,𝐩
)

,
i.e.,
∑𝑁

𝑛=1 𝑝𝑛𝑦𝑜𝑛
𝑅(𝐱𝑜,𝐩)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Revenue Efficiency

= 1∕𝜉∗
⏟⏟⏟

Technical Efficiency

×𝐴𝐸𝑅(𝑂)
(

𝐱𝑜, 𝐲𝑜,𝐩
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Allocative Efficiency

≤ 1
(41)

Revenue efficiency can be calculated through the following syntax:

julia> dearevenue(X, Y, P, names = banks)

while Farrell’s output technical efficiency measure, along with any
slacks, can be recalled though the following function:

julia> dea(X, Y, orient = :Output, rts = :VRS, names =
banks)

Again, the Farrell’s output radial measure fails to satisfy the indi-
cation property, implying that the benchmark projection �̂�𝑜 = 𝜉∗𝐲𝑜

ay not be Pareto-Koopmans efficient. Consequently there may exist
nput and output slacks. Accordingly, decomposition (41) overestimates
he level of technical efficiency and underestimates that of allocative
fficiency. Again, let us define the corresponding vectors of inputs and
utputs slacks: 𝐬−∈ R𝑀 and 𝐬+∈ R𝑁 . Then 𝐬− = 𝐱𝑜 − 𝐗𝜆 ≥ 0, and 𝐬+ =
𝜆 − 𝜉∗𝐲𝑜 ≥ 0 for the optimal values (𝜉,𝜆𝜆𝜆). Running the Julia function
bove performs a two-stage analysis that includes the calculation of the
lacks, which are reported along with the output technical efficiency
easure.

.2. Additive models based on inefficiency measures

Cost inefficiency can be defined also additively by subtracting min-
mum cost from observed cost: 𝐶𝐼(𝐱𝑜, 𝐲𝑜,𝐰) = 𝐶𝑜 − 𝐶

(

𝐲𝑜,𝐰
)

= 𝐰 ⋅

𝑜 − 𝐶
(

𝐲𝑜,𝐰
)

=
∑𝑀

𝑚=1 𝑤𝑚𝑥𝑜𝑚 − 𝐶
(

𝐲𝑜,𝐰
)

≥ 0. Alternatively, revenue
nefficiency is defined as the difference between maximum revenue and
bserved revenue: 𝑅𝐼(𝐱𝑜, 𝐲𝑜,𝐩) = 𝑅

(

𝐱𝑜,𝐩
)

− 𝑅𝑜 = 𝑅
(

𝐱𝑜,𝐩
)

− 𝐩 ⋅ 𝐲𝑜 =
(

𝐱𝑜,𝐩
)

−
∑𝑁

𝑛=1 𝑝𝑛𝑦𝑜𝑛 ≥ 0. Therefore if 𝐶𝐼(𝐱𝑜, 𝐲𝑜,𝐰) = 0 the firm
inimizes cost, and the greater the cost inefficiency value, the greater

he excess in cost of the firm with respect to the economic benchmark.
n the same vein, if 𝑅𝐼(𝐱𝑜, 𝐲𝑜,𝐩) = 0 the firm maximizes revenue, so the
reater the revenue inefficiency value, the greater the revenue loss.

Cost and revenue inefficiency can be decomposed using the different
echnical inefficiency measures already presented when decomposing

rofit efficiency, but defined either on the input or output production
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possibility sets, 𝐿(𝐲𝑜) or 𝑃 (𝐱𝑜), respectively. Regarding cost inefficiency,
it is decomposed into an input oriented inefficiency measure, generally
denoted by 𝑇 𝐼𝐸𝑀(𝐼)(𝐱𝑜, 𝐲𝑜)—where the subscript 𝐸𝑀(𝐼) represents a
specific measure, plus the allocative term. Analogously, revenue inef-
ficiency is decomposed into an output oriented inefficiency measure,
denoted by 𝑇 𝐼𝐸𝑀(𝑂)(𝐱𝑜, 𝐲𝑜), plus the corresponding allocative term.
Regarding efficiency measurement, firms with null efficiency scores,
𝐸𝑀(𝐼) = 𝐸𝑀(𝑂) = 0, are technically efficient. On the contrary, the
firm is technically inefficient when the inefficiency scores are positive.
After calculating input and output technical inefficiencies, and relying
on their duality with the cost and revenue functions, we can establish
two Fenchel-Mahler inequalities by which:

• Normalized cost inefficiency: 𝑁𝐶𝐼(𝐱𝑜, 𝐲𝑜, �̃�) = 𝐶𝐼(𝐱𝑜, 𝐲𝑜,𝐰)
∕𝑁𝐹𝐸𝑀(𝐼), is greater or equal in value to the input-oriented
technical inefficiency measure, i.e., 𝑁𝐶𝐼(𝐱𝑜, 𝐲𝑜,𝐰)∕𝑁𝐹𝐸𝑀(𝐼) ≥
𝑇 𝐼𝐸𝑀(𝐼)(𝐱𝑜, 𝐲𝑜), 𝐶𝐼(𝐱𝑜, 𝐲𝑜, �̃�) and, correspondingly,

• Normalized revenue inefficiency 𝑁𝑅𝐼(𝐱𝑜, 𝐲𝑜, �̃�) = 𝑅𝐼(𝐱𝑜, 𝐲𝑜,𝐩)
∕𝑁𝐹𝐸𝑀(𝑂), is greater or equal in value to the output-oriented
technical inefficiency measure, i.e., 𝑁𝑅𝐼(𝐱𝑜, 𝐲𝑜,𝐩)∕𝑁𝐹𝐸𝑀(𝑂) ≥
𝑇 𝐼𝐸𝑀(𝑂)(𝐱𝑜, 𝐲𝑜).

In both cases the divisors 𝑁𝐹𝐸𝑀(𝐼) and 𝑁𝐹𝐸𝑀(𝑂) are normalizing
factors derived from the duality relationship. Afterwards, a residual
representing normalized allocative inefficiency is obtained by closing
the inequalities. Cost allocative inefficiency is the costs excess incurred
by the firm (or its projection) by not demanding the optimal quantities
of inputs quantities. Revenue allocative inefficiency is the revenue loss
incurred by the firm (or its projection) by not supplying the optimal
output quantities.

Then, normalized cost and revenue inefficiencies can be decom-
posed as follows:
∑𝑀

𝑚=1 𝑤𝑚𝑥𝑜𝑚 − 𝐶
(

𝐲𝑜,𝐰
)

𝑁𝐹𝐸𝑀(𝐼)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Norm. Cost Inefficiency

= 𝑇 𝐼𝐸𝑀(𝐼)(𝐱𝑜, 𝐲𝑜)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Input Technical Inefficiency

+ 𝐴𝐼𝐸𝑀(𝐼)
(

𝐱𝑜, 𝐲𝑜, �̃�
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Allocative Inefficiency

≥ 0, (42)

𝑅
(

𝐱𝑜,𝐩
)

−
∑𝑁

𝑛=1 𝑝𝑛𝑦𝑜𝑛
𝑁𝐹𝐸𝑀(𝑂)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Revenue Inefficiency

= 𝑇 𝐼𝐸𝑀(𝑂)(𝐱𝑜, 𝐲𝑜)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Output Technical Inefficiency

+ 𝐴𝐼𝐸𝑀(𝑂)
(

𝐱𝑜, 𝐲𝑜, �̃�
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Norm. Allocative Inefficiency

≥ 0. (43)

As with profit inefficiency, the additive decomposition of cost and
revenue inefficiency can be done using the previous eight technical
inefficiency models included in BenchmarkingEconomicEfficiency.jl:
Russell, weighted additive (WA), enhanced Russell graph (ERG=SBM),
directional distance function (DDF), Hölder distance function (HDF),
modified directional distance fucntion (MDDF), reverse directional dis-
tance fucntion (RDDF) and the general direct approach (GDA). Again,
since all decompositions are normalized they satisfy the property of
commensurability (or units’ invariance), and therefore do not depend
on the measurement units of quantities and prices. Additionally, their
strengths and weaknesses regarding the indication and essential prop-
erties are equivalent to their profit inefficiency counterparts already
discussed. Due to space limitations and since these additive decompo-
sitions of cost and revenue inefficiency are particular cases of the profit
model already presented, we do not report the syntax or numerical
results for the Taiwanese banks. This exercise is left to the readers, who
can run the associated Jupyter notebooks accompanying this paper on
its dedicated webpage: https://benchmarkingeconomicefficiency.com/
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notebooks/. r
6. Empirical results: Profit inefficiency of Taiwanese banks

We now illustrate the empirical applications of economic efficiency
using a real-life dataset of financial institutions. Earlier studies resorted
to the radial multiplicative model presented by Farrell to decompose
cost efficiency, while most recent analyses of profit inefficiency rely
on the directional distance function model. One appealing feature
of this study is that all previous decompositions are applied to the
same dataset of Taiwanese banks. Hence, we can determine to what
extent the various profit, technical and allocative inefficiency mea-
sures are empirically different. Here we focus on the decomposition
of profit inefficiency and leave to the reader the comparison of eco-
nomic performance considering the profitability, or the cost or revenue
models.

While the value of profit inefficiency in monetary units is the
same for all decompositions—i.e., the numerator in the left hand side
of (2): 𝛱 (𝐰,𝐩) −

(

∑𝑁
𝑛=1 𝑝𝑛𝑦𝑜𝑛 −

∑𝑀
𝑚=1 𝑤𝑚𝑥𝑜𝑚

)

, its normalized values
𝑁𝛱𝐼(𝐱𝑜, 𝐲𝑜,𝐰,𝐩) differ because each decomposition has its own nor-
malization factor, 𝑁𝐹𝐸𝑀(𝐺), i.e., the denominator in the left hand side
of (2). This implies that there is a trade-off between the commensura-
bility property (units’ invariance) of the profit inefficiency measures,
and their numerical comparability. Therefore, the profit, technical,
and allocative inefficiency values are not directly comparable vis-à-vis
etween models.

Fig. 1 depicts box-plots of the values of the normalized profit inef-
iciencies and their technical and allocative components for the eight
lternative models reported in previous sections: Russell, weighted
dditive (WA), enhanced Russell graph (ERG=SBM), directional dis-
ance function (DDF), Hölder distance function (HDF), Modified DDF
MDDF), Reverse DDF (RDDF) and generalized direct approach (GDA).
ach box depicts the distance between the 1st and 3rd quartiles of the
rofit inefficiency distribution, while the horizontal lines correspond
o the medians. The variability of the distributions within these in-
erquartile ranges appears to be rather small for most of the models,
xcept for the WA (considering the measure of inefficiency proportions,
IP, as weights) and the MDDF. Finally, the distance between the

pper and lower whiskers represent one and half times the interquartile
ange, while the dots identify outliers laying beyond those values. In
ll cases, three banks (Export-Import Bank, Land bank and Mega Bank)
aximize profit, thereby being profit, technical and allocative efficient.
he rest of the sample banks are profit inefficient. Nevertheless, ten out
f these banks are technically efficient thereby defining the frontier,
hich implies that the only source of profit inefficiency is allocative.
he remaining banks are both technical and allocative inefficient.

Since the numerical values of normalized profit inefficiency cannot
e directly compared across models, we determine whether the differ-
nt rankings based on the inefficiency scores are compatible or not.
able 3 displays Kendall’s 𝜏 rank correlation coefficients. The results for
ll bilateral comparisons show positive and significant correlations. The
ower correlations are found between the directional distance function
DDF)—a weak efficiency measure that may project observations to
acets of the frontier that are dominated (i.e., slacks may exist), and
trong efficiency measures like the Russell, weighted additive (WA)
nd enhanced Russell graph (ERG). Finally, some correlations between
easures are the same, showing that some profit inefficiency measures

ield the exact same ranking. This is the case of the DDF with the
ölder and modified DDF (MDDF), 0.66, or the DDF with the reverse
DF and general direct approach (GDA), 0.76. This is an expected result

ince these pairs of measures are related. For example, the measures
btained under the RDDF and the GDA approaches consider the ERG
s the initial efficiency measure projecting the observations to the
rontier, which are subsequently used to calculate and decompose profit
nefficiency. That is why the rank correlation between the RDDF and
he GDA is one. In general, it is reassuring that the ranking of banks

emains stable given the range of models proposed in the literature.

https://benchmarkingeconomicefficiency.com/notebooks/
https://benchmarkingeconomicefficiency.com/notebooks/
https://benchmarkingeconomicefficiency.com/notebooks/
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Fig. 1. Box-plots of profit inefficiency.
Table 3
Kendall’s 𝜏 rank correlation coefficients of inefficiency scores.

Russell WA ERG DDF Holder MDDF RDDF GDA

Russell 1
WA 0.9957* 1
ERG 0.9140* 0.9183* 1
DDF 0.6387* 0.6430* 0.5613* 1
Holder 0.8839* 0.8882* 0.8151* 0.6602* 1
MDDF 0.8409* 0.8452* 0.7978* 0.6602* 0.9312* 1
RDDF 0.8280* 0.8323* 0.8968* 0.5011* 0.7892* 0.7634* 1
GDA 0.8280* 0.8323* 0.8968* 0.5011* 0.7892* 0.7634* 1.0000* 1

*Denotes significance at the 0.01 level.
7. Conclusions

BenchmarkingEconomicEfficiency.jl is a Julia package that of-
fers, for the first time, a complete set of functions to calculate and
decompose the most relevant measures of economic efficiency us-
ing data envelopment analysis. The package unifies the presentation
of the different methods proposed in the literature in the last two
decades within an integrated framework that uses a standardized no-
tation. The package covers profit inefficiency, profitability efficiency,
cost (in)efficiency and revenue (in)efficiency. The models implemented
include the classical multiplicative approaches decomposing cost ef-
ficiency and revenue efficiency using Farrell’s radial measures, and
the popular approach to decompose profit inefficiency considering
the directional distance function. The latest developments regarding
economic efficiency measurement are also incorporated by considering
the multiplicative decomposition of profitability efficiency using the
generalized distance function, and several options for the additive
decomposition of profit inefficiency. In this last case we consider the
Russell measures, the weighted additive measures, the enhanced Rus-
sell measures (or slack-based measures), the Hölder distance functions,
and the newest proposals based on the modified and reverse directional
distance functions, as well as the generalized direct approach.

Each decomposition is characterized by a set of features. The desir-
able properties that the economic efficiency measures should satisfy,
along with those of their technical and allocative components, are
16
discussed by [3, Chap. 14]. They conclude that there is a trade-off
between the alternative models in terms of the indication and es-
sentiality properties discussed here. Each technical efficiency measure
has its pros and cons that are passed to the decomposition of eco-
nomic efficiency. Therefore they conclude that there is not a superior
approach per se. Nevertheless, they explore the set of properties for
each measure and, based on their interpretability, comparability and
consistency regarding the measurement of allocative efficiency (the
so-called essential properties), conclude that the radial approach for
multiplicative decompositions and the directional distance functions
for additive decompositions (including its variations) would be pre-
ferred. In this regard, choosing a specific technical efficiency measure
ultimately depends on the preferences of the researcher and the char-
acteristics of the benchmarking exercise. Finally, we have shown the
relationship between the alternative measures of economic efficiency,
the characteristics of the technology, and how they can be decomposed
into technical and allocative terms. For this purpose we exemplify all
the models considering a common dataset of banks.

Our goal is that the package can be used as a guide for those
involved in economic efficiency measurement, by highlighting its po-
tential applicability. We also show how to structure the data, the syntax
required to run the different functions and how to interpret the results.
This makes the new package a relevant self-contained software for
these benchmarking techniques programmed in the Julia language.
An advantage of open software is that users can delve into how the
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different DEA models are programmed. Moreover, they can modify the
code so as to suit their needs. This will allow the scientific community
to revise it and contribute to its improvement. We thank our readers in
advance for providing such valuable input and enhancing the options
available to benchmark economic efficiency.
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