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Abstract 

Model-Driven Engineering (MDE) uses models as the main element of the development 
to raise the level of abstraction at which developers work. Therefore, model design is 
crucial for obtaining quality software. Hence, the collaboration between domain experts 
and modellers to guarantee a good model design is desirable. However, usually domain 
experts have a low technical background and do not have knowledge of modelling tools 
or modelling notations. 

Social networks are intensively used nowadays for both leisure and work. They have 
become a natural communication mechanism which helps users in coordinating and 
collaborating in their daily life activities. Moreover, along with social networks, the 
use of chatbots is increasing to offer services to users by means of Natural Language 
(NL) conversation (e.g., booking trips, sending reminders or customer support). 

The first part of this thesis aims at taking advantage of social networks and chatbots 
to enable the collaboration in modelling tasks by groups of users. It proposes three 
approaches to create conceptual models, and create and query domain-specific models, 
using chatbots. The first approach is prototyped in a modelling chatbot called Socio, 
which is able to interpret the users’ inputs in NL to incrementally build a (meta-)model. 
It has been evaluated with students, in an educational setting, obtaining encouraging 
results. The second and third approaches are prototyped in two different web tools, 
which automate the generation of chatbots to create and query domain-specific models 
(respectively) using their meta-models. A case study illustrates their usefulness building 
and deploying streaming data applications using a conversational interface. 

The second part of this thesis targets chatbot construction. Specifically, many 
frameworks and platforms have recently emerged for chatbot development. Identifying 
the most appropriate one for building a particular chatbot requires a high investment 
of time. Moreover, some of them are closed - resulting in customer lock-in - or require 
deep technical knowledge. To tackle these issues, the second part of this thesis proposes 
a model-driven approach to chatbot development. It comprises a neutral meta-model 
and a domain-specific language for chatbot description; code generators, parsers and 
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validators for several chatbot platforms; and a platform recommender. The approach 
supports forward and reverse engineering, and model-based analysis. We demonstrate 
its feasibility presenting a prototype tool called Conga and an evaluation over chatbots 
developed by third parties. 

Keywords: Chatbots, Model-Driven Engineering, Collaborative Modelling, Domain-
Specific Language, Migration, Social Network, Natural Language Processing 



Resumen 

La Ingeniería Dirigida por Modelos (MDE de sus siglas en inglés) usa los modelos como 
elemento principal para elevar el nivel de abstracción al que trabajan los ingenieros. 
Por ello, el diseño de los modelos es crucial para obtener software de calidad. De 
ahí que sea deseable la colaboración entre expertos de dominio y de modelado para 
garantizar un buen diseño de los modelos. Sin embargo, normalmente los expertos de 
dominio tienen poca formación técnica y carecen de conocimiento en las herramientas 
de modelado o de las notaciones de modelado. 

Las redes sociales se usan mucho hoy en día tanto para el ocio como para el 
trabajo. Integran nativamente mecanismos de comunicación que permiten a los usuarios 
coordinarse y colaborar en sus actividades cotidianas. Además, junto con las redes 
sociales, el uso de chatbots se ha visto incrementado para ofrecer servicios a los usuarios 
en lenguaje natural (por ejemplo, organizar viajes, enviar recordatorios o soporte al 
cliente). 

La primera parte de esta tesis propone beneficiarse de las redes sociales y los chatbots 
para facilitar la colaboración en tareas de modelado por un grupo de usuarios. Propone 
tres enfoques para crear modelos conceptuales, y para crear y consultar modelos de 
dominio específico, usando chatbots. El primer enfoque ha sido prototipado en un 
chatbot de modelado llamado Socio, capaz de interpretar los mensajes del usuario en 
lenguaje natural para incrementalmente construir un (meta-)modelo. Se ha evaluado 
en el ámbito educativo con estudiantes, con prometedores resultados. El segundo y 
tercer enfoque se han prototipados en dos aplicaciones web diferentes, que automatizan 
la generación de chatbots para la creación y consulta de modelos (respectivamente). 
Un caso de estudio demuestra su utilidad construyendo y desplegando aplicaciones de 
transmisión de datos usando una interfaz conversacional. 

La segunda parte de la tesis se centra en la construcción de chatbots. En particular, 
recientemente han surgido muchos entornos y plataformas para el desarrollo de chatbots. 
Identificar la herramienta más apropiada para construir un chatbot en concreto requiere 
una gran inversión de tiempo. Mas aún, algunas de las herramientas son privadas – lo 
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que se traduce en una dependencia del proveedor – o requieren de un alto conocimiento 
técnico. Para abordar estos problemas, la segunda parte de la tesis propone usar la 
ingeniería dirigida por modelos para desarrollar chatbots. El enfoque se compone de 
un meta-modelo y un lenguaje de dominio especifico neutro para describir los chatbots; 
generadores de código, parsers y validadores para diferentes herramientas de chatbots; 
y un recomendador de herramientas. El enfoque soporta ingeniería directa e inversa, y 
análisis basado en modelos. Se ha demostrado su viabilidad con un prototipo llamado 
Conga y una evaluación sobre chatbots creados por terceras personas. 

Palabras clave: Chatbots, Ingeniería Dirigida por Modelos, Modelado Colabora
tivo, Lenguajes de Dominio Especifico, Migración, Redes Sociales, Procesamiento de 
Lenguaje Natural 
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Chapter 1 

Introduction 

The aim of this chapter is to provide a general overview of the thesis. Section 1.1 
presents the motivation of this work and the main goals. Next, Section 1.2 summarizes 
the publications and technical contribution derived from this work. Section 1.3 contains 
a short description of the rest of the chapters. 

1.1 Motivation 

Model-Driven Engineering (MDE) is a software engineering paradigm that raises the 
abstraction level with regard to programming languages. Hence, models are used to 
automate many activities, like code generation, system simulation or testing. Moreover, 
models are used in all stages of the software development life cycle [16] 

Models in MDE are built using modelling languages, frequently domain-specific 
ones. Domain-Specific Languages (DSLs) are languages tailored to a specific area, like 
logistics, urban planning or game development. Their concrete syntax is normally 
textual (similar to a programming language) or graphical (typically graph-like). 

In MDE, a great part of the development time is spent on model creation and 
development since models are crucial in MDE to produce high-quality software. Indeed, 
to ensure a correct domain model, the collaboration between domain and modelling 
experts is common. Collaborative modelling is a challenge by itself, since it involves 
tools to synchronize the model, communication channels, and consensus methods. 
Moreover, collaborative modelling with domain experts represents a major challenge. 
Domain experts typically lack a strong technological background and are unfamiliar 
with developer or modeller tools and concepts. Determining strategies that make the 
collaborative process easier is crucial. 



2 Introduction 

Our daily digital lives are increasingly based on social networks, which we use to 
communicate with friends and plan leisure activities. Additionally, improvements in 
NL processing have facilitated the emergence of chatbots, which operate on social 
networks and provide services with NL, imitating human conversation. 

Given the widespread use of social networks and the expansion of chatbots, the 
goal of this thesis is to exploit them for collaborative modelling. For this purpose, we 
propose collaborative modelling through social networks assisted by modelling bots 
that interpret the messages of users in order to construct a model or meta-model or 
even to query them. 

The main motivation for this approach is being able to benefit from the collaborative 
and ubiquitous nature of social networks – applications that people use on a daily basis 
– to perform assisted lightweight modelling. To this aim, the dissertation propose social 
networks as front-ends for the modelling activity, where dedicated chatbots interpret 
certain user messages to assist in modelling tasks. This way, the assisted modelling 
process seamlessly integrates with the normal use of social networks for discussion. 

This approach enhances flexibility in modelling because it can be used in mobility 
and does not require installing new applications, but users can rely on apps they are 
already familiar with. When working on mobile devices, interacting via short messages 
can be easier and faster than using a diagramming tool, and can serve to quickly 
prototype models. Moreover, people with little or no background in computer science 
or modelling may be able to actively participate in modelling sessions. This may foster 
the collaboration of domain experts with teams of engineers. By recording the messages 
processed by the chatbot, the approach can trace information of the design decisions 
(who made what), so that every decision can be justified or rolled back. 

On the other hand, the success of chatbots has led to the emergence of a plethora 
of technologies for their creation. Not only big software companies have made available 
chatbot creation tools, like Google’s Dialogflow [31], IBM’s Watson Assistant [102], 
Microsoft’s bot framework [55] or Amazon’s Lex [47], but many other proposals exist, 
like Rasa [82], FlowXO [35] and Pandorabots [66]. Among them, we find a variety of 
approaches. For example, Dialogflow and Watson offer low-code cloud development 
platforms that support the creation and deployment of bots, while Rasa is a framework 
that requires Python programming for bot development. 

Overall, these chatbot creation tools are indisputably powerful (e.g., some provide 
NL processing, speech recognition, etc.). However, since there are so many options, 
choosing the most appropriate one to develop a chatbot with certain features is not 
easy. There may also be operational factors to consider in the decision, as for example, 
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some options may imply vendor lock-in, and migrating chatbots between tools is not 
generally supported. Last but not least, some approaches have a steep learning curve 
and require expert knowledge. 

To overcome these problems, this work proposes a MDE approach to chatbot 
development. This relies on a meta-model with core primitives for chatbot design, 
and a DSL to define bots independently of the implementation technology. Chatbots 
defined with the DSL can be analysed for defects, and a ranked list of appropriate bot 
creation tools is recommended based on the chatbot definition and other requirements. 
The DSL can be used for forward engineering, to produce the chatbot implementation 
from its specification; and for reverse engineering, to produce a model out of a 
chatbot implementation, which can then be analysed, re-factored and migrated to 
other platforms. Currently, the approach provides code generators and parsers from/to 
Dialogflow and Rasa, but the proposed architecture is extensible. 

1.2 Contributions 

This section contains the contributions of the dissertation. Section 1.2.1 presents the 
publications resulting from this work. Section 1.2.2 describes the technical contribution 
of the thesis. 

1.2.1 Publications 

This thesis is a compendium of the following publications. These publications have 
been organized into four groups: journals, conferences, workshops and journals in 
progress and under review. 

1.2.1.1 Journals 

4.	 Ranci Ren, Sara Pérez-Soler, John W. Castro, Oscar Dieste, Silvia T. Acuña. 
Using the SOCIO Chatbot for UML Modeling: A Second Family of Experiments 
on Usability in Academic Settings. IEEE Access, 10:130542–130562, 2022, doi: 
10.1109/ACCESS.2022.3228772, ISSN: 2169-3536 (JCR impact factor in 2021: 
3.476, Q2 Computer Science, Information Systems). Related with Chapter 
3. 

3.	 Sara Pérez-Soler, Sandra Juárez-Puerta, Esther Guerra, and Juan de Lara. 
Choosing a chatbot development tool. IEEE Software, 38(4):94–103, 2021, 
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doi: 10.1109/MS.2020.3030198, ISSN: 0740-7459 (JCR impact factor in 2021: 
3.000, Q2 Software Engineering). Related with Chapter 2. 

2.	 Sara Pérez-Soler, Mario González-Jiménez, Esther Guerra, and Juan de Lara. 
Towards conversational syntax for domain-specific languages using chatbots. Jour
nal of Object Technology, 18(2):5:1–21, July 2019, doi: 10.5381/jot.2019.18.2.a5, 
ISSN: 1660-1769. Related with Chapter 3. 

1.	 Sara Pérez-Soler, Esther Guerra, and Juan de Lara. Collaborative modeling 
and group decision making using chatbots in social networks. IEEE Software, 
35(6):48–54, November 2018, doi: 10.1109/MS.2018.290101511, ISSN: 0740-7459 
(JCR impact factor in 2018: 2.945, Q1 Software Engineering). Related with 
Chapter 3. 

1.2.1.2 Conferences 

9.	 José María López-Morales, Pablo C. Cañizares, Sara Pérez-Soler, Esther Guerra, 
and Juan de Lara. Asymob: a platform for measuring and clustering chat
bots. In IEEE/ACM 43rd International Conference on Software Engineer
ing: Tool demos (ICSE-DEMOS), 2022, pages 16-20, 2022, doi: 10.1109/ICSE
Companion55297.2022.9793784 (Conference Core A* in 2021). Related with 
Chapter 4. 

8.	 Pablo C. Cañizares, Sara Pérez-Soler, Esther Guerra, and Juan de Lara. Automat
ing the measurement of heterogeneous chatbot designs. In 37th ACM Symposium 
on Applied Computing, 2022, pages 1491-1498, 2022, doi: 10.1145/3477314.3507255 
(Conference Core B in 2021). Related with Chapter 4. 

7.	 Lissette Almonte, Sara Pérez-Soler, Esther Guerra, Iván Cantador, and Juan de 
Lara. Automating the synthesis of recommender systems for modelling languages. 
In ACM SIGPLAN International Conference on Software Language Engineering 
(SLE), pages 22-35, 2021, doi: 10.1145/3486608.3486905 (Conference Core B 
in 2021). Related with Chapter 3. 

6.	 Sara Pérez-Soler, Esther Guerra, and Juan de Lara. Creating and migrating 
chatbots with conga. In IEEE/ACM 43rd International Conference on Soft
ware Engineering: Tool demos (ICSE-DEMOS), 2021, pages 37–40, 2021, doi: 
10.1109/ICSE-Companion52605.2021.00030 (Conference Core A* in 2021). 
Related with Chapter 4. 
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5.	 Sara Pérez-Soler, Gwendal Daniel, Jordi Cabot, Esther Guerra, and Juan de Lara. 
Towards automating the synthesis of chatbots for conversational model query. In 
EMMSAD’2020 (CAISE), LNBIP 387, pages 257–265, 2020, doi: 10.1007/978
3-030-49418-6_17 (Conference Core C in 2020). Related with Chapter 
3. 

4.	 Sara Pérez-Soler, Esther Guerra, and Juan de Lara. Model driven chatbot devel
opment. In 39th International Conference on Conceptual Modelling (ER’2020), 
Springer, pages 207–222, 2020, doi: 10.1007/978-3-030-62522-1_15 (Conference 
Core A in 2020). Related with Chapter 3. 

3.	 Ranci Ren, John Wilmar Castro, Adrian Santos, Silvia Teresita Acuña, 
Sara Pérez-Soler, and Juan de Lara. Collaborative modelling: chatbots or on-line 
tools? an experimental study. In EASE’2019, pages 260–269. ACM, 2020, 
doi: 10.1145/3383219.3383246 (Conference Core A in 2020). Related with 
Chapter 3. 

2.	 Sara Pérez-Soler, Esther Guerra, and Juan de Lara. Assisted modelling over social 
networks with SOCIO. In Proceedings of MODELS 2017 Satellite Event co-located 
with ACM/IEEE 20th International Conference on Model Driven Engineering 
Languages and Systems (MODELS 2017), Austin, TX, USA, September, 17, 2017, 
pages 561–565, 2017, (Conference Core B in 2017). Related with Chapter 
3. 

1.	 Sara Pérez-Soler, Esther Guerra, Juan de Lara, and Francisco Jurado. The rise 
of the (modelling) bots: towards assisted modelling via social networks. In 
Proceedings of the 32nd IEEE/ACM International Conference on Automated 
Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 
2017, pages 723–728, 2017, doi: 10.1109/ASE.2017.8115683 (Conference Core 
A in 2017, acceptance rate 22%). Related with Chapter 3. 

1.2.1.3 Workshops 

1.	 Sara Pérez-Soler, Esther Guerra, and Juan de Lara. Flexible modelling us
ing conversational agents. In 5th Flexible MDE Workshop (satellite event of 
ACM/IEEE MODELS’19), pages 478-482. IEEE Computer Society, 2019, doi: 
10.1109/MODELS-C.2019.00076. Related with Chapter 3. 
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1.2.1.4 Journals in progress and under review 

2.	 Sara Pérez-Soler, Esther Guerra, and Juan de Lara. Conga: A model-based 
solution for automated chatbot (re-)engineering. 2022. In progress. Related with 
Chapter 4. 

1.	 Pablo C. Cañizares, José María López-Morales, Sara Pérez-Soler, Esther Guerra, 
and Juan de Lara. Measuring and clustering heterogeneous chatbot designs. 
IEEE Transactions on Software Engineering, pages 1–21, 2022, (JCR impact 
factor in 2021: 9.322, Q1 Software Engineering). Under review (2nd round). 
Related with Chapter 4. 

1.2.2 Technical contributions 

In addition to the mentioned publications, this thesis also makes the following technical 
contributions: 

1.	 The development of a chatbot called SOCIO to create conceptual models (meta
models) in NL over social networks. SOCIO has an extensible architecture that 
allows adding support for its deployment in new social networks. The source 
code is available in https://saraperezsoler.github.io/SOCIO/ 

2.	 The development of a web tool to generate chatbots to create domain-specific 
models conformant to a given meta-model. The source code is available in 
https://saraperezsoler.github.io/SOCIO/ 

3.	 The development of a web tool to generate chatbots to query domain-specific 
models conformant to a given meta-model. The source code is available in 
https://github.com/SaraPerezSoler/QueryBot 

4.	 The development of a web tool called Conga that integrates a DSL to define 
chatbots independently of the chatbot construction tool; code generators, parsers 
and validators for specific chatbot construction tools; and a recommender of 
chatbot construction tools, based on the chatbot definition and a questionnaire 
about the technical requirement of the chatbot. The source code is available in 
https://saraperezsoler.github.io/CONGA/ 

5.	 Collaboration on the development of Asymob, a framework to analyse and assess 
conversational agents or chatbots built in different tools (https://github.com/ 
ASYM0B/tool). 

https://saraperezsoler.github.io/SOCIO/
https://saraperezsoler.github.io/SOCIO/
https://github.com/SaraPerezSoler/QueryBot
https://saraperezsoler.github.io/CONGA/
https://github.com/ASYM0B/tool
https://github.com/ASYM0B/tool
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Figure 1.1 Scheme of the thesis organization. 

1.3 Organization 

The following is a brief summary of what each of the 4 chapters of this thesis describes. 
Figure 1.1 displays the organization of the contributions of this thesis. 

•	 Chapter 2 presents the context and background of the dissertation. It explains 
an overview of chatbots and their creation tools and an introduction of MDE 
concepts. 

•	 Chapter 3 details the proposed three approaches to use chatbots as a front-end 
for MDE activities. The first approach is for creating conceptual models (meta
models, Section 3.2) using chatbots. Next, Section 3.3 explains the contributed 
approaches to automate the generation of chatbots to create (Section 3.3.1) and 
to query (Section 3.3.2) domain-specific models from its meta-model. 

•	 Chapter 4 describes the proposed MDE solution to create chatbots. This 
solution includes a textual DSL (Section 4.3) to define chatbots; code generators, 
parsers and validators (Section 4.4) for specific chatbot creation tools; and a 
recommender (Section 4.5) that suggests the most suitable chatbot tool. 

•	 Chapter 5 concludes the thesis and proposes some future work. 



Chapter 2 

Background 

This chapter describes the background elements behind this work. On one hand, Sec
tion 2.1 explains the chatbots, a general overview about their operation (Section 2.1.1) 
and the properties of fourteen chatbot creation tools (Section 2.1.2). This section is 
based on the paper [78]. 

On the other hand, Section 2.2 provides a general perspective on MDE and its 
concepts, such as model, meta-model, DSL, modelling language and code generator. 

Finally Section 2.3 contains a summary and conclusions of the background. 

2.1 Chatbots 

A chatbot is a program with conversational user interface that is usually accessible 
through the web, social networks or intelligent speakers like Google Home or Alexa. 
They can be classified into open-domain, if they can converse on any topic with users, 
or task-specific, if they assist in a concrete task (e.g., bookings flights or shopping). 
Our work targets the latter kind of bots. 

In the following sections, we will explain how chatbots work (section 2.1.1) and 
review the features of the most prominent tools for their construction (section 2.1.2) 

2.1.1 Chatbot Concepts 

Chatbots are software programs that interact with users via Natural Language (NL) 
conversation. As an example, assume that a vet clinic has an information system with 
a database storing information about veterinarians and appointments, and decides to 
bring its services closer to customers by means of a chatbot to which customers can 
ask about opening hours and make appointments. This chatbot would allow the clinic 
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Vet clinic
Hi! How can I help you?

John
I’d like an appointment for
tomorrow at 3 pm

Vet clinic
What’s wrong with your dog?

John
He’s not eating well…

Vet clinic
Our doctor will examine your
dog tomorrow January 16th at 3 
pm. Please let me know if you
need to cancel the appointment. 
See you tomorrow John.

Vet clinic
What kind of pet do you have?

John
A dog

John
Hello!

User

NL 
utterance

intent1

intentn

Chatbot

match 
intent

…

intenti
…

response

2

6

extract
utterance

params

3

perform
actions

1

5
external
service

fo
llo

w
-u

p

4

(a) Example of user interaction taken (b) General working scheme of a chatbot 
from [78]. taken from [76]. 

Figure 2.1 A chatbot conversation (a) and chatbot working scheme (b) 

to offer 24/7 service, reduce costs (e.g., decreasing customer telephone calls) and widen 
the potential customers. 

Figure 2.1a shows an example of a user interacting with the envisioned chatbot. 
Usually, the users start the interaction with the chatbot, and the chatbot asks questions 
to guide the conversation. In our example, the user starts the conversation greeting, 
and the chatbot responds to the greeting. Then the user requests an appointment with 
a date for his pet. As the chatbot does not know the kind of pet, it asks it, together 
with the pet problem. Finally, the chatbot confirms the appointment as scheduled. 

Figure 2.1b shows the typical working scheme of task-specific chatbots. They are 
designed around a set of intents that represent possible users’ intentions and permit 
accessing the offered services. These intents typically reflect the use cases of the 
chatbot. As an example, the chatbot for the clinic would define two intents: one to 
inform about opening hours, and another for making appointments. Given a user 
utterance (e.g., “I’d like an appointment for tomorrow at 3 pm”, label 1 in the figure), 
the chatbot tries to identify the corresponding intent (label 2). There are two different 
approaches to this. First, defining patterns or regular expressions upon which the 
utterance is matched. The second approach is based on Natural Language Processing 
(NLP) techniques using machine learning, which requires declaring training phrases 
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for each intent and training models. If the chatbot does not find any matching intent, 
some approaches allow having a default fallback intent. 

After matching an intent, the chatbot extracts the parameters of interest from the 
utterance (e.g., date and time of the appointment, label 3). Parameters may be typed 
by entities, which can be either predefined (e.g., date, number) or specific to a chatbot 
(e.g., pet type). If the utterance lacks some expected parameters (e.g., pet type), the 
chatbot can be configured to ask for them. 

Besides intents, the conversation flow can be structured into expected sequences of 
intents (relation follow-up in the figure) to accomplish a task. For example, after the 
user requests an appointment in Figure 2.1a, the chatbot asks the pet problem, and 
only then the appointment is fixed. For this purpose, the chatbot needs to store the 
dialogue state to carry the information of previous input phrases through the stages of 
the conversation. 

As a last step, the chatbot can perform different actions depending on the intent, 
such as calling an external service (e.g., the clinic database if the intent is setting an 
appointment, label 5) or replying to the user (label 6). The simplest response format 
is text, but some chatbot deployment platforms (e.g., Telegram, Twitter) also support 
images, URLs, videos or buttons. 

2.1.2 Chatbot Creation Tools 

The growing popularity of chatbots has caused the emergence of many tools for their 
construction. Table 2.1 compares the main available software options for chatbot 
construction. It includes proposals of both large companies (Dialogflow by Google [31], 
Watson by IBM [102], Lex by Amazon [47], Bot Framework [55] and LUIS [51] by 
Microsoft) and younger chatbot specialized companies (FlowXO [35], Landbot.io [45], 
Chatfuel [25], Rasa [82], SmartLoop [92], Xenioo [104], Botkit [15] which has been 
recently acquired by Microsoft, ChatterBot [26] and Pandorabots [66]). All are domain
independent but Chatfuel, which targets marketing applications. 

The features analysed in the table stem from a thorough analysis of each tool. 
We distinguish between technical features (e.g., input processing) and managerial 
features (e.g., pricing model). The first row in the table indicates whether the software 
is a library, a framework, a platform or a service. While platforms and frameworks 
offer support for the whole bot creation life-cycle, services and libraries support only 
some steps, typically related to NLP. Frameworks provide sets of classes that need 
to be complemented with custom code for each created chatbot, and hence chatbots 
are built via programming. Most platforms are cloud-based, low-code development 

http:Landbot.io
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Table 2.1 Comparison of chatbot libraries, frameworks, platforms and services taken 
from [78]. 
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environments to define chatbots graphically or via forms, and frequently support 
hosting the deployed chatbot logic for a channel. In addition, some platforms and 
frameworks (e.g., Dialogflow, Bot Framework, Rasa) also support the use of their NLP 
modules via services. Rows 2–26 in the table analyse decisive technical dimensions 
when selecting a chatbot development tool. These comprise aspects related to the 
processing of the user input text (rows 2–7), the dialogue support (rows 8–13), the 
chatbot deployment (rows 14–15), the integration with other systems (rows 16–17), 
testing and development support (rows 18–22), execution support (rows 23–25) and 
security aspects (row 26). In addition to technical factors, some managerial factors 
may influence the selection of a development tool. Rows 27–34 in Table 2.1 classify 
those factors among organizational (rows 27–28), related to development (rows 29–32), 
or operational (rows 33–34). 

Input processing. Some approaches allow defining the expected input phrases 
using regular expressions or patterns (row 2), while others permit specifying intents via 
training phrases and then apply NLP (row 3). In addition, platforms like Landbot.io 
also support user inputs by means of buttons and widgets. Most approaches based on 
NLP can identify parameters in the input phrases, with the exception of Chatfuel and 
ChatterBot (row 4). Another important aspect in NLP is the language support (row 
5). All approaches consider some of the most spoken languages (English, Spanish), 
and some platforms excel for their wide language support (e.g., Dialogflow includes 22). 
Interestingly, Rasa can use pre-trained language models (e.g., fastText word vectors 
are available for hundreds of languages [39]) but developers can train their own. Only 
a few approaches – the NLP service LUIS, Watson, Lex, Bot Framework, and the 
Enterprise non-free edition of Dialogflow – provide sentence sentiment analysis (row 6), 
which can be useful in specific domains such as marketing. Finally, in addition to text, 
several approaches natively support voice-based interaction (row 7). This interaction 
kind could be added by hand to approaches based on programming languages (e.g., 
Botkit) or which are open source. 

Dialogue. This dimension looks at the capabilities to organize the conversation 
flow. All platforms and most frameworks automatically store the parameter values 
extracted from user phrases to allow their reuse in the future, while libraries require 
programming this facility (row 8). This storage can be volatile (active only during the 
current user interaction) or persistent. Intents and entities (rows 9 and 10) are common 
primitives of platforms like Dialogflow, Watson and Lex. Approaches supporting NLP 
define intents by sets of training phrases. These phrases may be examples of expected 
user utterances, or to improve the user experience, they may be obtained from existing 

http:Landbot.io
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conversation logs (e.g., when migrating a traditional customer support system into 
a chatbot). Regarding the dialogue structure (row 11), we find two main definition 
styles: explicitly by means of a conversation tree where nodes correspond to dialogue 
steps, or implicitly via dependent contexts and follow-up intents which are activated 
upon matching their parent intent (e.g., an intent for making appointments which 
declares a follow-up intent to inform the kind of pet). More differently, Pandorabots 
uses the Artificial Intelligence Markup Language (AIML [4]), an XML format from the 
‘90s aimed to be a scripting standard for chatbots. Being based on templates, it is in 
stark contraposition to modern approaches based on NLP. Some platforms also permit 
defining utterances that the chatbot can use to reengage unresponsive users (row 12). 
Finally, all approaches but LUIS and Botkit permit specifying the chatbot answers 
(row 13). 

Deployment. While some approaches allow deploying chatbots in many social 
networks, others target specific ones (row 14). For example, Chatfuel chatbots are 
specific for Facebook messenger, Landbot.io chatbots can be deployed just on WhatsApp 
Business and websites, while Dialogflow has 15 channel integrations including websites, 
services like Skype, intelligent speakers and social networks like Slack, Viber, Twitter 
and Telegram. Libraries and services lack deployment options, since this is out of 
their scope. In addition, Dialogflow, Bot Framework, Xenioo and Pandorabots permit 
including custom interaction mechanisms for the selected channel, like buttons in 
Telegram (row 15). 

System integration. Several approaches enable calling services from the chatbots 
(row 16). In some cases, like Dialogflow, this is done by associating the URL of the 
service to an intent, so that matching the intent triggers a POST message to the 
service. In other cases, it is possible to define programs with custom code. For this 
purpose, Dialogflow supports Cloud Functions for Firebase, and Lex supports AWS 
lambdas. Conversely, some approaches offer an API that permits integrating parts of 
the chatbots with existing applications (row 17). For example, Dialogflow chatbots can 
be used programmatically to check the most probable matching intent given a user 
phrase. 

Development and testing. Some tools offer pre-built components that can be 
added into new chatbots (row 18). These include generic chatbot templates (e.g., for 
a coffee shop or a hotel booking system), predefined intents, predefined small talks 
(answers to simple phrases and questions), or services (e.g., to build a QA chatbot 
from a knowledge base). Regarding version control (row 19), all frameworks and 
libraries rely on code and can be used with any generic version control system, while 

http:Landbot.io
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only some platforms (Dialogflow, Watson and Lex) give native support for versioning 
though this is simpler than state-of-the-art versioning systems like GitHub. As for 
testing, most approaches provide a web chat console to test the chatbots manually 
(row 20). For debugging (row 21), frameworks and libraries can rely on the support 
of the programming language, while only one platform (Dialogflow) offers debugging 
facilities to inspect the matched intent and related information. In addition, Dialogflow 
incorporates checks of the chatbot quality, such as detecting intents with similar 
training phrases (row 22). 

Execution. Once a chatbot is defined, all platforms and most frameworks support 
its execution on their clouds (row 23). This solution can be optimal for many companies, 
especially if they already use the cloud services of the platform vendor (e.g., Google, 
Azure or AWS); however, this may not be always suitable. In some cases, like Watson, 
there is a special pricing plan to deploy the chatbot on third-party clouds. Finally, some 
approaches permit obtaining analytics about the chatbot usage (row 24) or persisting 
the user phrases (row 25). Developers might find the latter feature useful to adjust the 
accuracy of the intent recognition and improve the user experience [40]. Approaches 
like Watson automate this task, while others like Dialogflow require uploading the 
conversation logs and retraining. 

Security. Chatbots may need to incorporate security aspects, especially if they 
work with private user data. While in general, implementing any security capability is 
the developers’ responsibility, some tools can provide a security layer atop the cloud 
where the chatbot is deployed (row 26). Hence, approaches without deployment services 
do not offer this possibility natively. Instead, Dialogflow, Watson, Lex and Azure 
(Microsoft cloud for the Bot Framework and LUIS) provide a layer with features like 
firewalls; authentication and authorization when used via API; and secure connections 
(e.g., SSL or HTTPS/TLS). In addition, social networks like Whatsapp or Telegram 
support message encryption and user authentication. 

Organizational factors. A critical selection factor is the pricing model of the 
approach (row 27). Most offer a free version suitable for small businesses or for 
experimentation (e.g., Dialogflow provides five free assistants and Watson supports 
10,000 API calls). In addition, they provide other pricing models, typically collecting 
small fees for every interaction with the chatbot (the pay-as-you-go option of Dialogflow), 
limiting the number of interactions or active chatbots (the different plans of FlowXO), 
or supplying advanced features (e.g., webhooks in Landbot.io are not free). The 
expertise of the development team on chatbot-related technology is also important (row 
28). Development platforms allow creating simple chatbots with no need for coding 

http:Landbot.io
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and require less expertise than approaches based on programming, though these latter 
are less constrained. 

Development related factors. Like any kind of software, chatbot construction 
should follow proper engineering processes. In this respect, using a platform may 
be problematic if the chatbot development has to be harmonized with the company 
development culture and processes. For example, platforms host the chatbot specifica
tions on their clouds, while the backend needs to reside in a different place; instead, 
chatbots developed with libraries, frameworks and services can run on-premises (row 
29). Likewise, some code facilities such as versioning or debugging are standard for 
frameworks and libraries but may be unavailable for some platforms. The same applies 
to group work (row 30): platforms currently do not support synchronous collaborative 
development, so working on different parts of a chatbot cannot be parallelised among 
developers. Depending on the domain or the company strategy, the need to support 
several languages (i8n) can be necessary (row 31). Rather than developing a chatbot 
for each language, platforms like Dialogflow offer multi-language support by enabling 
the specification of different training phrases for each language over the same intent. 
Interestingly, among the reviewed approaches, only the community edition of Rasa, 
Botkit and ChatterBot are open source (row 32). No platform is open source, which 
may result in vendor lock-in, but it is possible to make public the chatbot specifications 
built with any platform. 

Operational factors. Once a chatbot is in operation, the need to deploy it in 
novel channels or new versions of existing ones may arise (row 33). If the chatbot 
was developed using a platform, the available deployment options might be limited 
(e.g., Watson does not provide out-of-the-box deployment in Telegram). Libraries and 
(extensible) frameworks like Rasa, Botkit, LUIS and ChatterBot are more flexible, as 
they allow the manual implementation of the required deployment. Finally, platform
based approaches imply vendor lock-in as there are currently no migration tools 
using neutral exchange formats between platforms (row 34); however, an advantage 
of platforms is the ability to use the services of the provider (IBM, Google). Instead, 
libraries and frameworks require coding the chatbot logic in a programming language 
(like Python in case of Rasa), which brings more independence and safety with respect 
to possible policy changes of the platform owner company. This independence is 
stronger in open-source systems (row 32) since they could even be personalized to the 
developer needs. 

Overall, this variety of chatbots creation tools makes it difficult to ascertain which 
tool is suitable to build a specific chatbot. Moreover, the conceptual model of the 
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chatbot might be difficult to attain, as the chatbot definition frequently includes 
tool-specific accidental details. As a consequence, reasoning, understanding, validating 
and testing chatbots independently from the implementation technology becomes 
challenging. 

2.2 Model-Driven Engineering 

Model-Driven Engineering (MDE) is a software engineering paradigm that uses models 
as the main elements in the software development process. Its goal is to raise the 
abstraction level, reducing the distance between the way developers think of solutions 
and the way they have to express them. Moreover, it increases the automation to obtain 
better products reducing the cost. In traditional development paradigms, models are 
only used in the design stage of a product, to guide in the implementation, and to 
document aspects of a software system. On the contrary, in MDE models become a 
development artefact and developers use them in all stages of the software development 
life cycle. They are created at the beginning and can be used to specify, design, test 
and generate code for final applications [16]. 

MDE models are abstract system representations, with the necessary information to 
describe the whole system. Abstraction, in this case, means compacting the information, 
erasing accidental details and focusing on essential aspects. This way the essence of the 
system is more comprehensible and better known. Also, as the models are parts of the 
software, their definitions should be formal. To formalize them, modelling languages are 
required [94]. There are two types of modelling languages: General-Purpose Language 
(GPL, e.g., UML) and Domain-Specific Language (DSL, e.g., BPMN). 

Modelling languages are defined by an abstract syntax, a concrete syntax and 
semantics. The abstract syntax specifies the language’s structure. It is defined by 
a meta-model, typically a class diagram, which specifies the domain elements and 
their features and relations [43]. Figure 2.2 shows an example of a meta-model of a 
Pre-doctoral System. The Pre-doctoral System contains a list of people. A Person has 
a name and a birth date and can be Student or Professor. Professor also contains a 
department. Besides People, the system contains a list of Theses. A Thesis has a title, 
a status, one or zero defense date, a Student author, one or two Professor supervisors 
and three to five Professor committee members. 

Models should conform to their meta-model, and preserve the structure and rules 
defined in it. Figure 2.3 displays a model conforming to the meta-model of Figure 2.2. 
The Pre-doctoral System contains five Professors (Daniel, Raquel, Sofía, Esther and 
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Figure 2.2 A meta-model example of a Pre-Doctoral System.  
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Figure 2.3 A model example instance of a Pre-Doctoral System (Figure 2.2).  
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Juan) with birth dates. Two of them of the "Machine Learning" department, and the 
rest of them of the "Computer Science" department. It also contains two Students 
(Alejandro and Sara) and two Theses. As an example, the first Thesis title is "Searching 
the way to improve", its status is Defended, the defense date is on 20/04/2021, the 
author is Alejandro, the supervisor is Daniel and the committee members are Raquel, 
Sofía and Esther. 

Sometimes, class diagrams alone are not expressive enough to specify detailed 
aspects of a system. The Pre-doctoral System meta-model, for example, does not 
capture the following constraints: in a Thesis, a committee member can not be a 
supervisor, and if the Thesis status is Defended, it should contain a defense date. The 
Object Constraint Language (OCL) complements meta-models for this purpose. It is a 
formal language used to describe expressions in models. These expressions typically 
specify conditions (invariants) that must hold for the model to be considered valid [64]. 
Listing 1 shows the two previous constraints in OCL (between lines 1 and 3 the first one, 
and between lines 5 and 7 the second one). The OCL restrictions have a context (after 
the keyword context, both of them are Thesis), and a name defined after the keyword 
inv (supervisorsDifferentToCommittee and defenseDateInformed). The keyword self 
references the object of the context, and after a dot, the features of the object can be 
accessed (e.g., supervisors, committee, status or defenseDate). After an arrow, there 
are some OCL functions. The function excludesAll can be used with collections or 
lists, like supervisors and committee. It ensures that elements between the parenthesis 
are not in the collection. The function oclIsUndefined returns true if the value of the 
element is undefined. OCL expressions can also include relational (e.g., =, >, <, <>) 
and logical (e.g., and, or, not, implies) operators. 

1 context Thesis 
2 inv supervisorsDifferentToCommittee: 
3 self.committee−>excludesAll(self.supervisors) 
4 
5 context Thesis 
6 inv defenseDateInformed: 
7 self.status = Status.DEFENDED implies not self.defenseDate−>oclIsUndefined() 

Listing 1 OCL constraints for Pre-doctoral meta-model. 

The concrete syntax defines how models are represented. It can be graphical (e.g., 
a UML diagram) or textual. Listing 2 shows the model of Figure 2.3 with a textual 
concrete syntax. The keyword System represents the Pre-doctoral System object. The 
People keyword references the people list, that contains Professors (with their name, 
birth date and department) and Students (with their name and birth date). The 
keyword Theses references the theses list. Each thesis is declared with a hyphen, 
followed by the title, author, supervisors, committee, status and defense date where 
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applicable. Here we have a textual notation but an abstract syntax can be expressed 
with several notations (e.g., a graphical and a textual syntax). 

1 System: 
2 People: 
3 Professor Daniel (15/12/1978, "Computer Science") 
4 Professor Raquel (26/02/1980, "Machine Learning") 
5 Professor Sofía (09/11/1983, "Machine Learning") 
6 Professor Esther (16/03/1983, "Computer Science") 
7 Professor Juan (24/06/1980, "Computer Science") 
8  
9  Student Alejandro (06/05/1993) 

10 Student Sara (12/01/1990) 
11 
12 Theses: 
13 − "Searching the way to improve" 
14 author: Alejandro 
15 supervisors: Daniel 
16 committee: Raquel, Sofía, Esther 
17 status: Defended 
18 defense date: 20/04/2021 
19 
20 − "Chatbots for Modelling, Modelling of Chatbots" 
21 author: Sara 
22 supervisors: Esther, Juan 
23 committee: Daniel, Raquel, Sofía 
24 status: Fourth Year 

Listing 2 An example of the textual concrete syntax for the Pre-doctoral system model
of the Figure 2.3. 

Finally, the meaning of models is defined by their semantics, typically, determined 
by transformations of the models into another domain. There are three main types 
of transformations: model-to-model (M2M), model-to-text (M2T) and text-to-model 
(T2M). Given a model a M2M transformation creates another model, which can be 
conformant to the same or different meta-model. This transformation specifies the 
mapping between elements in the source meta-model and the target meta-model. M2T 
transformations transform the model elements into text, typically, source code in a 
programming language, documentation or configuration files. When a M2T transforma
tion generates source code, it is also called a code generator. T2M transformations are 
usually used to do reverse engineering, and transform source code into a model [97]. 

Figure 2.4 shows the 4-layer infrastructure proposed by the OMG [65], which 
comprises the description of languages to represent meta-models, down to the real 
system. Since a meta-model is also a model, a modelling language in needed to describe 
it, which is called a meta-meta-model (layer 3). The Meta Object Facility (MOF [59]) 
is the meta-meta-model proposed by the OMG [94]. There is no level above the MOF 
because it defines itself. The layer number two corresponds to the meta-models created 
with the MOF. This layer includes DSL meta-models and GPL meta-models. Layer 
one is where we can find the models that are instances of the meta-models. Finally, 
the Real System or the application data is an instance of the model (layer 0). 
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Figure 2.4 OMG 4-layer architecture. 

As models are essential in MDE to create quality software, a great part of the 
development effort goes into model design and development. Indeed, to ensure a correct 
domain model, the collaboration between domain and modelling experts is common. 
If collaborative modelling is a challenge by itself because it requires communication 
channels, tools to synchronise the model and consensus mechanisms, collaborative 
modelling with domain experts represents a major challenge. Usually, domain experts 
have a low technological background, and they are not familiarized with developer 
or modeller tools and concepts. Therefore, is important to define approaches that 
facilitate the collaboration task. 

There are different tools to give support to MDE, but the most widespread environ
ment is Eclipse Modelling Framework (EMF) [95]. EMF uses Ecore as the language to 
describe meta-models, which is very similar to the MOF proposed by the OMG, and 
XMI format for the model and meta-model persistence. 

Xtext [13] is the main framework to create textual syntaxes in EMF. Finally, 
Acceleo [3] and Xtend [13] are languages for code generation based on templates 
integrated in EMF. 
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2.3 Summary and Conclusion 

Chatbots are programs that interact with users using NL conversations. They have 
a great potential for reducing costs (they replace customer telephone calls) and for 
improving the customer experience (they offer the service 24/7 in NL). Using NLP, 
they can match the user interaction with a predefined intent, extract information from 
the interaction and, depending on the intent and information, perform actions such as 
sending messages or requests to an information system. 

Because of the increasing popularity of chatbots, many tools for their creation have 
emerged. These tools have different characteristics and properties, which we have 
analysed in Section 2.1.2 

This variety of chatbot tools makes it difficult to choose the most appropriate 
one to develop a chatbot with certain features. Moreover, the chatbot definition 
frequently includes tool-specific accidental details. Designing chatbots independently 
of the particular tool to enable early reasoning and analysis, before the implementation, 
may be challenging. Last but not least, with a few exceptions, most chatbot tools 
are closed, proprietary software with no support for migration between tools, e.g., to 
benefit from the pricing plans of a competitor. This leads to vendor lock-in. This 
Thesis will address this problem in Chapter 4. 

On the other hand, MDE is a software engineering paradigm that uses models in 
all stages of the software development life cycle. It increases automation, reducing the 
cost of development. Such models are the main element of software development, their 
design and creation are an important part of the process. Usually, domain model design 
involves domain and modelling experts. Collaborative modelling requires conversation 
channels, tools to synchronise the model and consensus mechanisms. Furthermore, 
domain experts usually are not familiarized with modelling tools or concepts, so the 
collaboration may represent a challenge. This Thesis will address this problem in 
Chapter 3. 



Chapter 3 

Chatbots for Modelling 

This chapter will explore the use of chatbots and Social Networks in collaborative 
modelling tasks. On one hand, social networks are very popular in society, and people 
are familiar with them. Also, they have proven their effectiveness as a coordination and 
communication mechanism. On the other hand, chatbots have proliferated in recent 
years as front-end for all sorts of services. Therefore, this work aims at profiting from 
the benefits and potential of social networks and chatbots to promote the collaboration 
between modelling and domain (usually with low technical knowledge) experts. 

Section 3.1 explains the motivation behind this work. Then, Section 3.2 describes 
the approach and tool support for a chatbot for conceptual modelling. After that, 
Section 3.3 details the approach for chatbots for domain-specific modelling (creation 
and query). Section 3.4 reports on evaluations of our approaches. Finally, Sections 3.5 
and 3.6 compare with the related work and conclude the chapter respectively. 

This chapter is based on publications [5, 83, 70–75] 

3.1 Introduction and Motivation 

Many software development activities are not individual but require collaboration among 
teams of stakeholders. Modelling is no exception to this rule since the initial stages of 
development generally involve heterogeneous partners with diverse backgrounds and 
likely distributed. Among them, the participation of domain experts is essential for 
building successful domain models. Usually, domain experts have a low technological 
background, and they are not familiarized with developer or modeller tools and 
concepts. However, one of the limiting factors in MDE today is poor tool support for 
collaboration [85]. 
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Franzago et al. [36] have identified the main aspects that a collaborative modelling 
environment should contain: 

•	 Model management as a distributed model environment for managing the 
life cycle of the models, with a repository to manage models persistence and 
a modelling tool where stakeholders can edit models. The authors suggest 
multi-device access to models, which facilitates collaborations in mobility. 

•	 Communication mechanisms to allow involved stakeholders to be aware of 
the other stakeholders and exchange messages and information to coordinate 
themselves as a team. This mechanism must guarantee traceability between the 
designed decision debated and the modelling artifact. 

•	 Collaborative mechanisms to allow involved stakeholders to participate in 
the modelling task in collaboration. 

In addition, social networks are becoming an important part of our daily digital 
lives, where we use them to keep in touch with friends and organize leisure activities. 
Not only general-purpose networks like Twitter [100], Facebook [33], Whatsapp [103] 
or Telegram [98] have boosted, but specialized work-team nets like Slack [91], Microsoft 
Teams [57] or Yammer [106] have spread in enterprises. The reason of this success 
is their agility, simplicity of use, and the possibility to use them everywhere and in 
mobility, covering the need to stay connected while being familiar to people. The use 
of social media has also disrupted how software engineers work, changing the way 
developers communicate with colleagues e.g., supporting the formation of ecosystems 
around particular concepts and technologies; participating in online development 
communities; and disseminating technologies and crowdsource content [96]. 

Moreover, advances in NL processing have enabled the proliferation of chatbots 
which run on social networks and offer services to users upon NL requests, thereby 
mimicking human responses. Developers use bots, e.g., to automate deployment tasks, 
schedule tasks like sending reminders, integrate communication channels, or customer 
support [48]. They have also been proposed to access API documentation [99] and 
analyse software projects [12]. This approach to interact with software services has 
the advantage of avoiding the need to install new apps or swapping between the 
social network and an app to access the service. Moreover, chatbots are accessible by 
potentially large user communities, and in collaboration. 

Given the widespread use of social networks and the expansion of chatbots, the 
goal of this chapter is to exploit them for collaborative modelling. Hence, the concept 
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modelling bot is introduced, able to interpret natural language (NL), assist users in 
creating models, and which integrates with minimum disruption into the natural 
communication mechanism that micro-blogging based social networks – like Twitter or 
Telegram – offer. This approach enhances flexibility in modelling because it can be used 
in mobility and does not require installing new applications, but users can rely on apps 
they are already familiar with. When working on mobile devices, interacting via short 
messages can be easier and faster than using a diagramming tool, and can serve to 
quickly prototype models. Moreover, people with little or no background in computer 
science or modelling may be able to actively participate in modelling sessions. This 
may foster the collaboration of domain experts with teams of engineers. By recording 
the messages processed by the bot, the approach can trace information of the design 
decisions (who made what), so that every decision can be justified or rolled back. 

This approach can be useful in several scenarios. First, to allow engineers quickly 
prototyping models when and where needed (e.g., in working meetings, but also when 
travelling home). Second, to assist teams of engineers collaborating with domain 
experts (who may lack a computer science background) to create domain models or 
meta-models. Third, in the educational domain, to enable groups of students the 
collaborative resolution of modelling exercises. In this scenario, bots could be configured 
for gamification activities or blended learning. Finally, being based on social networks, 
the modelling process can involve a large number of people, enabling, for example, 
crowdsourcing modelling decisions. 

In order to give support to these scenarios, modelling chatbots must achieve the 
following requirements in the envisioned approach: 

•	 Interaction through NL (to permit use by domain experts) and commands (more 
suitable for modelling experts). Anyhow, commands should have a flexible and 
natural syntax to minimize mistakes and user frustration. 

•	 Traceability mechanisms able to justify design decisions and find their provenance. 

•	 Integration of multiple social networks, so that users can use their preferred one. 

•	 Support for both modelling (domain-specific modelling) and meta-modelling 
(conceptual modelling). 

•	 Customizable collaboration protocols, e.g., supporting voting or user roles. 

•	 Interoperability with accepted modelling frameworks, like the Eclipse Modelling 
Framework (EMF) [95]. 
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The next sections detail the steps towards realizing this vision. 

3.2 Chatbots for Conceptual Modelling 

The goal of this approach is to provide meta-modelling assistance integrated within 
social networks. For that purpose, Section 3.2.1 presents a chatbot with support for 
modelling in NL. It also contains collaboration mechanisms (Section 3.2.2) such as 
voting. Section 3.2.3 realizes these ideas in a prototype tool called Socio (from assisted 
modelling through social networks,). 

3.2.1 Conceptual Modelling in NL 

Figure 3.1 sketches the proposed approach to modelling via social networks. Users 
can interact within the network of choice by sending messages directed either to the 
other partners or to the modelling bot. The former messages permit discussing and 
coordinating, and they are handled by the network normally (i.e., they are regular text 
messages). 

Messages directed to the bot are received by the users of the social network, just 
like any other message, but in addition, they are processed by the bot. There are three 
kinds of such messages: management commands, reading requests and model update 
messages. The former allow performing project management tasks, like creating or 
deleting a model. The bot processes such messages and sends the result as a text to 
the social network. Reading requests allows obtaining information of the model, like 
recovering the history of changes performed in a model, validating or downloading 
a model, and obtaining statistics. Finally, model update messages can be either 
commands or descriptions. The former are imperative actions to directly manipulate a 
model, e.g., to add a class or feature, change its type, or delete an element. The latter 
are descriptive statements of the domain concepts, like “houses have windows”. 

Both commands and descriptions are expressed in NL. Figure 3.2 shows a scheme 
of the processing of NL messages for model update. When the bot receives an update 
message,it uses a NL parser to process it and produce a parse tree of the sentences in 
the message. Supporting commands in NL provides flexibility because there is no need 
to adhere to a strict syntax. The system has an extensible library of NL processing 
rules, able to handle different kinds of NL phrases. From the current model state and 
the information inferred from the message, the chatbot synthesizes a number of model 
update actions. As the approach is incremental, sometimes it is necessary to refer to 
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existing model elements. In order to provide flexibility and avoid redundancies, the 
chatbot allows for synonyms which are sought using WordNet [58], a lexical database 
for the English language. The NL processing approach is described in Section 3.2.1.1, 
and the extraction of model update actions in Section 3.2.1.2. 

The extracted actions are applied to the current version of the model to make it 
evolve. Moreover, the system maintains a traceability model to keep track of why 
the model was updated, and by who. Section 3.2.1.3 will explain model building and 
traceability. Finally, the bot emits a feedback message, which is received through the 
social network. The feedback in response to model update messages consists of an 
image of the updated model where the impacted elements are highlighted in a different 
colour. Section 3.2.1.4 will illustrate some steps in a model construction session, and 
the feedback obtained. 

3.2.1.1 Natural Language Processing 

The modelling chatbot uses the Stanford NL parser [53] to process model update 
messages, both commands and descriptions. The parser creates a parse tree with 
the grammatical relations of the words in the message. This tree identifies the noun 
phrases (NP) that may provide information about the model, and the syntactical role 
of each part of the phrase. For example, for message “houses have windows”, “houses” 
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and “windows” are tagged as common plural nouns (NNS), while “have” is tagged as a 
verb in present tense which is non-3rd person singular (VBP). The complete list of 
tags is available in [67]. 

The parsed messages are interpreted according to a number of rules, which are 
based on the work of Arora and collaborators [6]. Each rule specifies the combination 
of word classes that activate the rule, usually based on the presence of certain verbs, as 
well as the model update actions that should be performed when the rule is matched. 
The following rules are considered: 

•	 Verb to be: When the main verb of the phrase is “to be”, it can indicate either 
an inheritance relation between two classes (e.g., “Kitchen is a room”, “Service 
may be premium service or normal service”), the type of a feature (e.g., “Name 
is string”, “The bank of the customer is BLUX”) or the abstractness of a class 
(e.g., “course is abstract”). If the phrase contains an expression of the form “A of 
B” or a genitive “B’s A”, then the rule infers that A is an attribute or reference 
of B. 

•	 Verb to have: When the main verb is “to have”, or synonyms of it like 
“characterized by” and “identified by”, this rule infers the subject of the sentence 
is a class, which has a feature. Deciding whether the feature is a reference or 
an attribute depends on the information there is in the meta-model about the 
feature. If there is not enough information, the feature is assigned an “open” 
type which may be refined by subsequent messages. As an example, the message 
“Bulky packages are characterized by their width, length and height” triggers the 
creation of features width, length and height with open type in class BulkyPackage. 

•	 Contain: Verbs like “contain”, “be made of”, “include” and “be composed of” 
imply a composition relation between two classes. For example, the phrase “A 
delivery is made of packages” creates a composition relation between the classes 
Delivery and Package, and also creates the classes if they do not exist yet. 

•	 Transitive verb: This rule handles all verbs with a subject and a direct object. 
It creates classes for the subject and direct object, and a reference whose name 
is the verb. For example, the phrase “The simulator shall send log messages” 
triggers the creation of classes Simulator and LogMessage, and the reference send 
from the former to the latter. 

•	 Add: This rule handles imperative sentences (with implicit subject) whose verb 
is “add”, “create”, “make”, etc. These are interpreted as commands with a 
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flexible syntax, resulting in the creation of classes, attributes or references. For 
example, “add house” will create the class House, while “create room in house” 
adds a feature room to class House. 

•	 Remove: This rule is similar to the previous one but for deletion. It considers 
imperative verbs synonyms of “remove”, like “delete” and “erase”. 

Model update messages can include several sentences and more than one verb, like 
in “Add house and remove windows”. Moreover, the processing of one message may 
trigger several NL rules, in which case, the chatbot applies the rule with higher priority. 
In particular, rules seeking for specific verbs have higher priority than the more general 
rule seeking transitive verbs. 

3.2.1.2 Model Update Actions 

As previously mentioned, each NL rule specifies the model update actions to be applied 
when the rule is selected. The possible actions are the following: 

•	 Add class: This action is issued when the rule finds a common name that should 
be a class. The class is not created if one exists with the same or synonym name. 
Supporting synonyms provides flexibility and avoids redundancy. The chatbot 
applies accepted modelling styles for class names (i.e., singular, camel case). 

•	 Make class abstract/concrete: Classes can be set to abstract or concrete 
using their name or a synonym. If the class does not exist, then an add class 
action is issued as well. 

•	 Set parent class: This action sets an inheritance relation between two classes, 
creating the classes if they do not exist. 

•	 Remove parent: This action removes an inheritance relation. If the class does 
not exist, the action will make no changes. 

•	 Add attribute: This action is issued by the “verb to have" rule (e.g., “packages 
have weight”) and in case of genitive cases (e.g., “package’s name”). The attribute 
is added to the given class or to a synonymous one, creating a new class if it does 
not exist. If the class already owns a reference with same name, it is replaced by 
an attribute. The attribute’s upper cardinality is set to 1 if the attribute name 
is singular, or to * if it is plural. At this point, the attribute type is left open, so 
that it can be refined later. 
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•	 Add reference: This action is issued by the “transitive verb” and “contain” 
rules, and it works similarly to the previous action. If the owner class already 
defines an attribute with the same name, it is replaced by a reference. 

•	 Modify feature type: The chatbot supports primitive data types like int, float, 
String, boolean and Date for attributes, while the type of references must be a 
class. The feature is created if it does not exist. 

•	 Remove class: It removes a class and its features. 

•	 Remove feature: It removes one or several features. 

Any action can be undone and redone through commands. 

3.2.1.3 Model Update, Recommendation and Traceability 

The actions derived from the messages are applied to the current model version. In 
some cases, these actions may lack some information. For instance, the action that 
adds an attribute may miss the specific type of the attribute, in which case, its type 
is left “open” so that it can be refined later. Similarly, as removing a class would let 
the references pointing to the class dangling, the chatbot adds a provisional “ghost” 
class as target of these references. The modelling bot is extended with a recommender 
system specified with Droid [5] to recommend new elements to the model and also 
allow fixing incomplete elements. 

Droid [5] is a tool to automate the generation of recommender systems for modelling 
languages. It has a DSL to configure every aspect of a recommender system. The gen
erated system can be deployed as a service. This way, Socio integrates a recommender 
system created for class diagrams. When the user requests a recommendation, she 
must specify the class subject of the recommendation. The recommender system will 
recommend attributes with their types, and also superclasses for that class. When the 
user selects the item of interest, the modelling bot adds it automatically to the class. 

Socio also maintains traceability information of each message sent to the bot, 
including the sender and the model update actions it triggers. It uses a model-based 
approach to record the traceability data, building a traceability model conformant to 
the meta-model in Figure 3.3 for each model being constructed. Class User keeps track 
of the participant users and the social network (channel) they employed to send the 
messages. The system stores all messages directed to the chatbot, and distinguishes the 
message used to create the model. Actions point to the model elements affected by the 
action using reference element, whose type is EObject as this is the base class in EMF, 
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the implementation technology used. To keep track of the removed elements that are 
no longer in the model, the system stores them in an auxiliary model. Finally, Update 
actions point to the old and new versions of the updated element in the auxiliary 
model, and to the current version of the element in the model. 

An image of the updated model diagram is sent to the collaborator users. The 
modified model elements are marked in the diagram. This information is read from 
the traceability model. The trace can also be queried using a reading request, which 
sends a text with the traceability information to the users. 

3.2.1.4 Example 

Figure 3.4 illustrates a typical modelling session. The rectangles labelled 1–4 contain 
NL messages that a user sends, while the diagrams are the feedback provided by the 
modelling bot. 

The first message is handled by the “transitive verb” rule. This creates classes 
for “good transport company” and “delivery”, and a reference for “handle”. The 
cardinality of the reference is many as “deliveries” is in plural. The created classes have 
singular, camel case names. The newly created elements are shown in green. For space 
constraints, the figure omits the explanation of changes which the bot also produces as 
notes in the diagram. 

The second message is handled by the “verb to have” rule, which adds an integer 
attribute to class Delivery. The bot assigns an upper cardinality of 1, as there is no 
plural. 



32 Chatbots for Modelling 

“a goods
transport
company
handles
deliveries”

“a 
delivery
has a 
numeric
identifier”

“a delivery
is made of 
packages. 
Packets can 
be bulky, 
heavy or
fragile”

“bulky
packages are 
characterized
by their
width, length
and height”

1 2

3 4

Figure 3.4 Some steps in a model construction session  



3.2 Chatbots for Conceptual Modelling 33 

The third message contains two phrases. The first one is handled by the “contain” 
rule, which creates class Package and reference package. The second one is handled by 
the “verb to be” rule, which creates the inheritance hierarchy. This phrase makes use 
of the word “packet”, which is as a synonym of “package”, and hence, no new class is 
added for it. 

The fourth message, processed by the “verb to have” rule, creates three features in 
class Bulky. At this point, there is no information on whether they should be attributes 
or references, and hence, this is left open (shown with “??”). 

3.2.2	 Collaboration Support: Soft Consensus for Group Decision-
Making 

The participants in a collaborative session may require exploring several solutions 
to a modelling problem, and eventually, they will have to opt for one of them. If 
collaboration is distributed or involves many participants, assistance to facilitate 
consensus is essential for agile coordination. 

Let us assume that, after a modelling session for Marketing Campaigns, the 
modelling team obtains the model in Figure 3.5a. A Campaign Planner contains 
several Employees (with their names) and Marketing Campaigns (with their names). 
Marketing Campaign contains a list of Tasks assigned to an employee, which can be 
Report, Communication or Survey. Marketing Campaign, also, has a director Employee 
and a work team of employees. 

The participants in the example have expressed the need for a communication 
channel between the team members of a marketing campaign. The following options 
are being considered: 

• A message box per employee, not necessarily working in the same campaign. This 
would be like an e-mail or peer-to-peer messaging system. 

• A special type of work task for discussion, where any employee can post comments 
and reply to other comments. 

• A forum associated to each marketing campaign, where work-team members can 
contribute news organized into threads, like in bulletin boards. 

To study different possibilities, the approach supports creating branches to explore 
alternative modelling solutions. These collect the alternatives and discussions to model 
an aspect of a system as different branches of the current model. In this example, this 
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Figure 3.5 A model example of a Campaign Planner (a) and three branches: a peer-to
peer messaging system (b), a work task for discussion system (c) and a forum associated 
to each marketing campaign (d). 

facility is used to create three branches, one for each considered solution: p2pMessages 
(Figure 3.5b), DiscussionTasks (Figure 3.5c), and BulletinBoard (Figure 3.5d). 

After outlining the alternative solutions in branches, the participants need to agree 
on the most suitable one. For this, the modelling chatbot incorporates a soft consensus 
mechanism for multi-person decision-making [41] that assists in choosing the option 
that is acceptable to all participants. Participants can express their favourite solution in 
several ways, like ordering the alternatives from better to worse, or giving a score to each 
option (e.g., from 1 to 10). Then, an iterative consensus process identifies the preferred 
alternative based on the expressed preferences. The chatbot uses “soft” consensus 
because unanimous agreement can be difficult to achieve, especially in numerous 
groups or with experts with dissimilar backgrounds. Soft consensus models [41] permit 
measuring the degree of consensus in a group, provide feedback to each participant on 
the current consensus, and iterate to improve the consensus and converge towards a 
shared consensus threshold. 



35 3.2 Chatbots for Conceptual Modelling 

When all voters have indicated their preferences or when a predefined deadline 
is reached, the system aggregates all answers into a collective preference vector, and 
computes a global ranking for the alternatives, and a consensus measure ranging from 
0 to 1. If the consensus is below a threshold (0.75 by default), another iteration is 
performed. When the consensus reaches the threshold the most preferred branch is 
integrated with the main model trunk, and the other branches closed. The branches 
and voting results can be consulted in the project history. 

3.2.3 Tool Support 

The presented approach has been realized in a chatbot called Socio. It works on 
Telegram [98] and Twitter [100], though it is designed to be extensible with further 
social networks and NL rules. The bot stores meta-models in Ecore format, and the 
traceability data as EMF [95] models. The pictures of meta-models are generated 
with PlantUML [80]. A video showcasing its use and some examples are available at 
https://saraperezsoler.github.io/SOCIO/. 

Socio has an extensible architecture based on web services. This architecture 
allows the extension to different social networks without changes in the source code or 
stopping the main service. Also, it allows the use of different programming languages for 
each social network. The main part of Socio is a REST service, which is implemented 
in Java using the Jersey framework [42]. Chatbots for the different social networks 
communicate with the main service using HTTP requests. In addition to Telegram 
and Twitter, four final degree projects directed by myself [63, 34, 86, 19] have extended 
Socio to other social networks like Skype [90] or Slack [91]. 

Figure 3.6 shows some screenshots in the interaction with Socio to build and 
validate a meta-model for e-learning systems. In the first place (not shown), a Telegram 
group that includes the participants and the bot needs to be created. In Figure 3.6a, 
the bot shows all available commands, and then, one participant creates a modelling 
project using the /newproject command. 

In Figure 3.6b, a participant sends a NL message to the chatbot using the command 
/talk. The chatbot interprets the message to deduce domain requirements, updates the 
current meta-model version accordingly, and returns a picture of the updated meta
model with the created and updated elements highlighted in green. Figure 3.6c shows 
a similar interaction using Twitter. In this case, the bot username (@ModellingBot) 
and the project name (learningplatform) need to be mentioned. The created attribute 
(code) is shown in green. When models are too large to be seen comfortably in an 
image, Socio instead of the picture of the complete meta-model, returns a picture of 

https://saraperezsoler.github.io/SOCIO/
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the updated elements and its context. After some interactions, one participant validates 
the model (Figure 3.6d), and the bot reports an error because the type of attribute 
PaidCourse.price is missing. At any moment, the meta-model can be downloaded in 
Ecore format using command /get (Figure 3.7a). The downloaded meta-model can 
then be used within Eclipse (Figure 3.7b). 

The interaction with Socio is recorded in a traceability model. This can be used to 
understand the rationale of every decision and analyse user contributions. In particular, 
Socio offers the following statistics: messages sent by one or all users, meta-model 
update actions done by one or all users, and percentage of meta-model authorship. 
They are available through the /history command (see Figure 3.8a). As an example, 
Figure 3.8b shows the number of messages directed to the bot from all users along 
time, while Figure 3.8c shows the percentage of authorship. In addition, it is also 
possible to obtain a more detailed history of the messages sent by each user and their 
consequences. 

Figure 3.9a shows the usage of the /recommender command in Telegram. The 
modelling session is about a School that contains a list of Students and Teachers. 
Teachers have a name and surname. When a user types the command (label 1), Socio 
displays the current model and prompts the user to select a class (label 2). Once the 
user selects a class (label 3), Socio asks the kind of items to be recommended (label 
4). The user can choose the recommendation of attributes and superclasses. 

Figure 3.9b illustrates the recommendations provided by Droid. It shows the 
recommended superclasses (label 1) and attributes (label 2) for the class Teacher. 
When the user presses the button with the recommendation Person, Socio creates a 
new class because it does not exist, and adds it as a superclass of Teacher. When the 
user presses the button with the recommendation name, Socio detects that Teacher 
already defines this attribute and only updates its type. This way, recommendations 
not only add new elements to the model, but sometimes also allow fixing incomplete 
elements 

3.3 Chatbots for Domain-Specific Modelling 

This section explores the use of chatbots in domain-specific tasks. More specifically, 
it proposes two approaches: the use of chatbots for domain-specific modelling tasks 
(Section 3.3.1) and the use of chatbots for querying models (Section 3.3.2). 
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(a) Creating a new project (b) Talking to the bot  

(c) Interaction through Twitter (d) Meta-model validation 

Figure 3.6 Interaction with Socio 
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(a) Downloading Ecore meta-model (b) Ecore meta-model in Eclipse 

Figure 3.7 Obtaining the final meta-model 

(a) Selecting statistics	 (b) Messages sent by users (c) Percentage of author
ship 

Figure 3.8 Some process statistics 
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Figure 3.9 Obtaining recommendations in Socio with Droid 
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Figure 3.10 Running example: A domain meta-model to describe project plans. 

3.3.1 Domain-Specific Modelling in NL 

The objective of the work presented in this section is threefold. First, to complement 
traditional modelling tools based on graphical or textual editors (e.g., within Eclipse) 
with another interaction paradigm. The use of NL requires less expertise from users 
than typical desktop-based modelling tools, while collaboration facilities and use in 
mobility are additional benefits. Second, the more ambitious goal of making available 
complete MDE solutions to end-users via conversation within social networks, realizing 
the vision of “conversation as a platform” (CaaP) 1. Finally, this approach can be used 
to automate the generation of chatbot interfaces for existing information systems. 

The previous section proposed a chatbot called Socio to assist in the creation of 
meta-models (i.e., class diagrams) via conversation. This section proposes a method
ology and prototype tool support to create NL concrete syntaxes for arbitrary meta
models (i.e., not limited to class diagrams). 

As a running example, the section will illustrate how to build a chatbot to define 
project plans conformant to the meta-model shown in Figure 3.10. Projects have 
a name and optionally a goal. They comprise a number of TaskUnits that can be 
organised in sequences through reference next, and have an id. There are three kinds of 
task units: Tasks, which may have a start date and end after a number days; Milestones, 
which may have a start date but no duration, and are related to exactly one task; and 
CompositeTasks to group one or more task units. Tasks may have assigned Resources, 
both Human and Technical. The information of the former kind of resources is retrieved 
on-demand from an external database, i.e., class Human is a proxy to access the real 
data. 

1A term coined by Satya Nadella, CEO of Microsoft. 
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We may decide designing a concrete syntax that is based on NL to instantiate 
the meta-model, so that project managers can create their project plans using the 
terminology they are used to. For instance, projects may be configured using sentences 
like the following: “the project has two task units starting the 1st of April and the 1st 
of May”, “task t1 follows task t2”, “Peter Parker will participate in the first task”, or 
“the task t1 requires 2 personal computers”. 

To help in the creation of project plans, there will be a dedicated chatbot that aids 
managers in completing any missing data and refining the meaning of ambiguous user 
sentences. For example, in the first sentence (“the project has two task units...”), the 
chatbot would need to ask the user about the kind of task units to create. Since the 
sentence includes dates, candidate classes are Milestone and Task as both define a 
date, but not CompositeTask which has none. In addition, the chatbot would ask the 
user the id of the created task units, as it is a mandatory feature in the meta-model. 
This way, models of project plans would be iteratively built by means of a conversation 
between the user and the chatbot. 

The aim of this thesis is automating the creation of this kind of modelling chatbots. 
As we will see in the following sections, this requires specifying and customizing several 
aspects of the NL-based concrete syntax such as the identifier to be used to refer to 
objects (e.g., name and surname for human resources, or id for task units); the level of 
conformance required from models, which in the stricter case would make the chatbot 
request the user a value for any mandatory field of new objects; synonyms for the class 
and field names (e.g., using the verb to follow as an alternative to reference next); or 
whether the objects of a certain type should not be retrieved from the model being 
constructed but from an external resource (like human resources in the example). 

3.3.1.1 Conversational Syntax for DSLs 

To simplify the creation of modelling chatbots, Figure 3.11 shows an automated process. 
As usual in MDE, a domain meta-model is used to describe the abstract syntax 

of the DSL. With regards to its concrete syntax, the conversational syntax is defined 
based on a meta-model, similarly to when it is graphical or textual. To facilitate this 
definition, first, a default configuration of the NL syntax is derived from the domain 
meta-model. This configuration declares how to refer to objects and features of the 
instantiable classes. Next, in a second step, the language designer may refine the 
default NL concrete syntax description, e.g., to include synonyms for the name of 
classes and features, or to declare that some classes are non-instantiable. 
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Figure 3.11 Steps for creating a modelling chatbot with our approach. 

Once the conversational syntax is ready, a framework synthesizes a chatbot descrip
tion from it, and generates source files for some chatbot tool (e.g., Dialogflow, Rasa or 
Pandorabots). Currently, the chatbot generates files for Dialogflow, but the approach 
can be adapted to work with other chatbot frameworks that provide similar concepts. 
As Section 3.3.1.5 will show, the deployed chatbot interacts with a modelling service, 
created to handle the model modifications at the abstract syntax level (e.g., object 
creation and deletion). 

In the following, Section 3.3.1.2 presents the meta-model to describe the NL 
concrete syntax, Section 3.3.1.3 shows the generations of the chatbot description, and 
Section 3.3.1.4 presents a flexible modelling approach which allows saving incomplete 
or incorrect information in a model, waiting for its later refinement. 

3.3.1.2 Configuring the NL Concrete Syntax 

Figure 3.12 shows the meta-model to configure the conversational NL syntax of DSLs. 
Some of its classes contain references to the domain meta-model elements they define 
the syntax for. Since EMF [95] is used as meta-modelling technology, the classes in 
the NL syntax configuration meta-model refer to the EPackages, EClasses, EAttributes 
and EReferences in the domain meta-model. 

NLModel is the root class. It contains one NLClass for each domain meta-model 
class, to configure its concrete syntax. The configuration includes a description of the 
class, a list of synonyms (usually nouns) of the class name, flags to indicate whether 
the class is root or instantiable, and one or more Identifiers that will be used to refer to 
the objects of the class. An object identifier may consist of one or more attributes of its 
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Figure 3.12 The meta-model for configuring the NL syntax. 

class, or be a DefaultId which takes values from a counter. Two additional flags provide 
flexibility in the way objects of a class are to be created: container permits customising 
whether users should always indicate a container object for the new instances of a class 
(otherwise, the objects would be added to a virtual temporary container); and create, 
to indicate whether any object mentioned by the user should be automatically created 
in case the object does not exist (otherwise, the chatbot would just inform the user 
that the object does not exist). 

NLClasses contain one NLFeature for each feature of the associated domain meta
model class. NLFeatures have a flag ask to make the bot to ask for the feature 
value when a new instance of the class is created. By default, this attribute is true 
for mandatory features, and false for optional ones, though this can be modified. 
NLFeatures have a description and a list of synonyms, usually nouns for attributes and 
verbs for references. In addition, references can define additional synonyms to refer to 
their source end, which in the running example would permit using the sentences “task 
t1 is next to task t2” and “task t2 is previous to task t1” interchangeably. 

Finally, in addition to the creation of objects using NL sentences, the retrieval 
of external objects through WebServices are also supported . For this purpose, it is 
necessary to specify the protocol, domain, port, method and paths of the web service; 
and to configure the Moments in which these requests are made: either when the model 
is created, or before/after the creation/update/deletion of certain model elements. 

Given the domain meta-model of a DSL, a default NL configuration model is 
automatically produced. This contains one NLClass for each domain class, and one 
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Figure 3.13 Excerpt of default NL concrete syntax model for the running example. 

NLAttribute or NLReference for each attribute and reference of the classes. The 
NLClass corresponding to the domain class that can reach more classes directly or 
indirectly through containment relations, is marked as root. All classes are marked as 
instantiable. By default, the NL is configured to require a container for each new object 
(NLClass.container = true), alluding to non-existing objects implies their automated 
creation (NLClass.create = true), and the chatbot will ask a value for any feature 
with cardinality greater than zero (NLFeature.ask = true). If a domain class has an 
attribute called “name”, “id” or “identifier”, this is assigned as the class identifier; 
otherwise, the class is assigned a default counter-based identifier. 

Figure 3.13 shows on the left an excerpt of the NL syntax model generated by 
default for the running example. Its elements refer to elements of the domain meta
model, which is shown on the right. Object model with type NLModel represents the 
model, and points to the EPackage containing the domain meta-model. Object project 
configures the syntax of class Project, which is the root class as it contains all other 
domain classes. The two NLAttribute objects specify the syntax of the attributes of 
Project. Attribute name is identified as the class id. The bot will ask a value for name 
as it is a mandatory attribute, but not for goal as it is non-mandatory. 

The language engineer can refine the generated NL concrete syntax model, e.g., 
to change the default root class, to set a concrete class to non-instantiable (abstract 
classes must remain non-instantiable), to change the default identifiers assigned to 
classes, or to define a list of synonyms for class and feature names if so desired. We 
assign a generic description to elements (like “Project information for Planning models” 
in object project), which typically needs to be refined as well. Finally, it is possible to 
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configure an update interface using a web service, together with its application policy 
(i.e., when to obtain the information from the service). 

In the running example, the language designer would set class Human as non
instantiable, as human resources are to be gathered from a resource database (an 
external service). The model will be populated with Human objects upon creating 
the model (Start). The designer also needs to refine the identifiers of classes (e.g., the 
identifier of Humans is made of both attributes name and surname), and set synonyms 
to refer to some classes (e.g., Activity and Job for Task), references (e.g., follow and 
subsequent for next) and source end of references (e.g., precede for next). 

3.3.1.3 Generation of Chatbot Definition 

Starting from the refined NL syntax configuration model, a chatbot description model 
for Dialogflow is generated. 

Next, the intents for a generated chatbot are explained. The chatbots rely on an 
external modelling service to perform the model modifications at the abstract syntax 
level. 

Welcome intent. Each chatbot contains a welcome intent that is trained with typical 
greeting phrases (e.g., “hello”, “hi”, “hey”, “hi there”...). The chatbot responds to this 
intent by introducing itself and the actions it can do. This information is extracted 
from the element descriptions in the NL syntax model. Then, the chatbot asks for 
the name of the model the users are going to work with. The answer is collected by 
a followup intent called modelName. This intent has a parameter with entity type 
text, meaning that it can receive anything, and it invokes the REST web service in 
order to check if the model exists. If it does, it is not necessary to configure anything 
else; otherwise, a new model is created, and the chatbot uses a followup intent called 
rootClass to ask the value of all the NLFeatures with attribute ask=true of the root 
class. 

Object creation intents. The chatbot has several intents to recognise model editing 
actions, which become available only after the welcome and modelName intents have 
been triggered. 

Specifically, two intents for each instantiable class are created, one to create instances 
of the class and the other to remove them. The training phrases for the intents are 
automatically generated according to regular expression templates that combine the 
element names and synonyms specified in the NL syntax model. 
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Listing 3 shows the template used to synthesize training phrases for creating objects 
of a class and initialize their features. In the template, ⟨create⟩ represents the set of 
words or expressions that indicate the intention to create something. These include 
“there is/are”, “I want to create”, “add”, “create”, “the model has”, etc. Using one of 
these creation keywords is optional. ⟨natural-number⟩ can be optionally used to 
indicate the number of objects to create. ⟨class-name⟩ stands for the class name and 
its synonyms specified in the NLClass. Next, it comes the optional assignment of values 
to the object’s features. This way, ⟨feature-name⟩ corresponds to the feature name 
and synonyms specified in the NLFeatures of the NLClass, including the ids of the class; 
and ⟨feature-value⟩ defines samples of possible feature values (nouns for attributes 
with type String, integer numbers for attributes with type Integer, and so on). The 
meta-model integrity constraints are not taken into account for generating these sample 
values, as they are not required to train the NL processor. Instead, correctness of 
values is checked at runtime at the abstract syntax level by the modelling service. 

1 <create>? <natural-number>? <class-name> 
2 ( with <feature-name> <feature-value>+ ( (, | and) <feature-name> <feature-value>+ )∗ )? 

Listing 3 Template to synthesize training NL phrases for creating objects. 
Some training phrases of the creation intent derived from the NLClass Task are: 

“I want to create one task”, and “add two tasks with id t1 and id t2”. 
Object creation intents have one parameter for each NLFeature in the NLClass, 

and one additional parameter accounts for the object container. The parameter names 
are equal to the feature names, and the chatbot will ask for the feature value if the NL 
syntax model defines so. In the case of NLAttributes, the type of the parameter depends 
on the attribute’s type, while in the case of NLReferences, it is the identifier of the 
reference target class. String is the predefined entity for text (sys.any in Dialogflow), 
Integer/Long and Double/Float is the predefined entity for numbers (sys.number-integer 
and sys.number in Dialogflow), and Date is the predefined entity for date (sys.date-time 
in Dialogflow). In addition, a custom-made entity is created to represent booleans. 
This defines two entries: true and false. The former entry has affirmations as synonyms 
(“yes”, “that’s right”, “okay”, “sure”...), and the latter negations (“not”, “nah”, “don’t”, 
“not really”...). This is because, when asking a value for boolean parameters, the answers 
typically have this form. 

The object creation intents send all data collected to the external modelling service 
to create the object. 
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Similar to object creation intents, other intents are created to delete objects, modify 
features (attributes and references) and for the creation of non-instantiable classes 
with instantiable children. They are explained in detail in [73]. 

Some training phrases for the deletion of instances of the NLClass Task are: “delete 
t1”, “remove task t1”, and “erase the task with id t2”. In feature modification intents, 
there are training phrases like: “the units of technical pcs are 4”, “Peter’s surname 
is Parker”, “set date of t2 to May 24th”, “Peter participates in task t2”, and “task t2 
follows task t1”. 

The method proposed generates 35 intents, 108 parameters and 2600 training 
phrases for the running example (in average, 74 training phrases and 3 parameters per 
intent). Without this method, this information would need to be created manually. 

3.3.1.4 Flexible Modelling 

When using NL, people normally do not provide all the required information in their 
phrases. Moreover, it is natural to let users express their ideas in a more free way, 
which can be refined later. For this reason, a flexible modelling approach was devised 
to enhance the conversation-based modelling presented in the previous section. This 
approach allows saving incomplete or incorrect information in a model, which can be 
refined later. 

Figure 3.14a shows a meta-model and the configuration provided by the designer 
of the chatbot. This example is a meta-model of a University. The root class is 
University and all classes are marked as instatiable and create. The other elements 
of the configuration are represented with stereotypes, that is, they are between the 
symbols « and ». The University class has a code, which is an identifier (indicated with 
the stereotype «id»), a name and one or more addresses. The University has also a list 
of professors and students. Both Professor and Student inherit from Person, which is 
abstract. Student has the attribute id as identifier, while Professor and Person have 
name and surname. Student has one or two tutors with type Professor, and Professors 
have a department. Finally, while objects that have a University type do not need to 
be contained in any other object (stereotype «without container»), objects of type 
Person, Professor and Student must have a container (stereotype «with container»). 

Using the meta-model of the University in the process of creating a chatbot, we 
obtain an agent able to interpret sentences and generate University models, as explained 
in the previous section. 

When the agent processes the phrase “Sofía García was born on May 19, 1989” 
(Figure 3.14b), it infers that there is an object of type Person with name “Sofía”, 
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tutors 
* 

students 

(a) University meta-model.  

UAM :University

name: Universidad Autónoma 

de Madrid

Sofía García :Person

birthdate: 19/05/1989

Sofía García was born 
on May 19, 1989

UAM :University

name: Universidad Autónoma 

de Madrid

(b) Phrase that can not be handled due to 
the rigidity of the meta-model. 

Figure 3.14 An example of a configured meta-model (a) and a phrase that can not be 
handled for the generated chatbot (b) 

surname “García” and date of birth “05/19/1989”. However, class Person is abstract, 
and so there is no way to save this partial information that the user gave to the agent. 

To allow the agent to save partial or incorrect information in the model, the meta
model with which the user will work is relaxed. This relaxation takes place in the 
modelling service. 

Figure 3.15 displays the steps followed to make modelling with chatbots more 
flexible. The first step is to relax the meta-model. To do this, the tool changes the 
domain meta-model and the NL configuration as follows: 

•	 Cardinality: It sets the cardinality of the features that are not identifiers to 
[0..*]. The identifiers can not change their cardinality because they can not be 
ambiguous, as users need them to refer to the objects. 

•	 Abstract classes: The abstract classes become concrete. 

•	 With container class: All classes are allowed to be outside of a container. 

Then, users can build models according to the relaxed meta-model (step 2), so 
that they can instantiate abstract classes, or assign more values than permitted by 
the cardinality in a feature. At any moment, the user can validate the model to check 
its conformance to the original meta-model. The tool notifies all errors found in the 
model to the users. This way, users can fix the inconsistencies. The ways to resolve 
the inconsistencies are: 

•	 Cardinality: If a feature has less values than the lower cardinality, it is necessary 
to add at least as many values as indicated by the lower cardinality. If the feature 
has more values than the upper cardinality, it is necessary to remove values until 
the size is equal or less than the upper cardinality. 
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Meta-model
Relaxed 

Meta-model

ModelModel

Relaxer
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(M2M transformation)
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Conforms

• Cardinality
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• Objects with container

Model
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Fix
• Add, remove features
• Change abstract class type
• Add container

User

1

2

3

Figure 3.15 Steps in flexible modelling. (1) Meta-model relaxation (2) User interaction 
to create a valid model. (3) Model constrainer 

•	 Abstract classes: There are several ways to retype an object with an abstract 
type into a concrete type: 

– The user specifies the type directly (e.g., “The Person Sofía García is a 
Student”). 

– The user sets a feature that only belongs to one of the subclasses of the 
abstract class (e.g. “Sofía García belongs to the Computer Science Depart
ment”). 

– The user adds the object to a reference whose type is a subclass of the 
abstract class (e.g. “Sofía García is a UAM professor”). 

•	 With container class: The objects must be added in a container reference. 

The last step is a model-to-model transformation. This transformation is necessary 
due to the limitation of the EMF [95], the technology used to modelling. EMF treats 
features with cardinality greater than one and features with cardinality one in a different 
way when serializing models. This way, to permit opening the model created with the 
meta-model provided by the user, it is necessary to perform the transformation. 

Figure 3.16a shows the relaxed meta-model from Figure 3.14a with the changes 
made shaded. The Person abstract class has been transformed into a concrete class, the 
classes configured with «with container» are configured with «without container» and 
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professors 

<<without container>> 

University 
code: String[1] <<id>> 

name: String[*] 
address: String[*] 

<<without container>> 

Person 
name: String[1] <<id>> 

surname: String[1] <<id>> 

birthdate: Date[*] 

* <<without container>> 

Student 

id: int[1] <<id>> 

name: String[*] {override} 

surname: String[*] {override} 

<<without container>> 

Professor 
department: String[*] 

tutors 
* 

UAM :University

name: [Universidad Autónoma 

de Madrid]

Sofía García :Person

birthdate: [19/05/1989]

Sofía García was born 
on May 19, 1989UAM :University

name: [Universidad Autónoma 

de Madrid]

(a) Meta-model relaxation example. (b) Example of model creation in NL. 

Figure 3.16 An example of meta-model relaxation (a) and model creation with the 
relaxation (b) 

all properties that are not class identifiers are set cardinality [0..*]. The Student 
features name and surname must be overriden to increase the cardinality, because in 
Person and in Professor their cardinality must be [1..1], since they are identifiers. 

Figure 3.16b shows an example of a message in NL and how it is interpreted to 
generate the model according to the meta-model of Figure 3.16a. From the message 
“Sofía García was born on May 19, 1989” the agent can infer that there is a Person 
with name Sofía, her surname is García and her date of birth is May 19, 1989, but it 
does not have information to classify her as a Professor or as a Student. With the 
proposed flexible modelling approach the agent creates a Person object to save all the 
information provided by the user, and waits for the rest. 

Figure 3.17 displays several ways to make the object type concrete. The most direct 
one is that the user says the type explicitly (Figure 3.17b) with the phrase “Sofía García 
is a Professor”. This results in an object retyping, which preserves existing attributes 
and links. However, there are other ways to concretize the type. For example, when 
the object is assigned to the reference professors with type Professor (Figure 3.17a), 
when the user sets feature department, which belongs to Professor (Figure 3.17c) or 
tutors, which belongs to Student (Figure 3.17d). Moreover, the phrase “Sofía García’s 
supervisor is Daniel Pérez” creates Daniel Pérez as Professor because only professors 
can be supervisors of students. 

3.3.1.5 Tool Support 

The previous approach has been implemented in a tool that automates the creation of 
modelling chatbots. The solution includes an EMF implementation of the meta-model 
in Figure 3.12 for configuring the NL syntax, an Eclipse plugin that instantiates this 
meta-model for a given domain meta-model, and a transformer into Dialogflow. 
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Sofía García :Professor

birthdate: [19/05/1989]
department: [”Computer 

Science”]

UAM :University

name: [Universidad Autónoma 

de Madrid]

a) Sofía García teaches at Universidad 
Autónoma de Madrid

c) Sofía García belongs to Computer 
Science Department

b) Sofía García is a Professor

professors

UAM :University

name: [Universidad Autónoma 

de Madrid]

Sofía García :Professor

birthdate: [19/05/1989]

UAM :University

name: [Universidad Autónoma 

de Madrid]

Sofía García :Professor

birthdate: [19/05/1989]

d) Sofía García’s supervisor is 
Daniel Pérez

UAM :University

name: [Universidad Autónoma 

de Madrid]

Daniel Pérez :Professor

1 :Student

birthdate: [19/05/1989]
name: [Sofía]
surname: [García] 

tutors

Figure 3.17 Four examples to type a Person object 

Figure 3.18a shows the runtime architecture of the generated modelling chatbots. 
They can be deployed on social networks, like Telegram in the figure. This enables 
collaborative modelling as discussions among the language users and model update 
indications integrate seamlessly, because both happen within the chat. Moreover, since 
social networks typically provide different clients (e.g., for mobile devices, desktop 
computers or web browsers) we obtain multi-platform modelling for free. 

When the chatbot matches an intent with the webhook enabled, it sends a request 
to a modelling service that we have developed. The request contains a JSON with 
the user text message, the social network, and the content of the intent (name, 
context, parameters, etc.). The service processes the request and makes the necessary 
modifications in the abstract syntax of the model. Next, the service sends back to the 
social network an image of the updated model created with PlantUML [80]. The image 
highlights the elements that have been modified in green. The /validate command 
shows possible inconsistencies in the model, which then the users can correct. 

Figure 3.18b illustrates the interaction with the chatbot for creating project plans. 
The user first inputs the sentence “Peter Parker works in t1”. Since we have configured 
the NL syntax to accept work to refer to the source end of reference resources, the 
chatbot creates a link with this type between the Human object with identifier Peter 
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(a) Run-time architecture. (b) Interaction in Telegram. 

Figure 3.18 Modelling chatbots. 
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TimeInterval
init: DateTime
end: DateTime

BottleneckClosed
Accident

injuries: intRoadWork

Incident
description: String

TrafficIntensity
value: float
/serviceLevel: {moving, heavy, jam, closed}

Transitable
hasCyclistPath: boolean

Section
fromNumber: int
toNumber: int
maxVelocity: int

Street
name: String
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name: String
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* 

0..1 
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* 
sections

* 
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Figure 3.19 A meta-model for real-time traffic information. 

Parker (name and surname) and the Task object with identifier t1 (id). Then, 
the user inputs the sentence “t1 follows t”, which triggers the creation of a link 
with type next as follows is a synonym for the source reference end. Moreover, the 
chatbot creates a new task with identifier t2 as the source of the link because it 
does not exist in the model. A video illustrating these interactions is available at 
https://saraperezsoler.github.io/SOCIO/. 

3.3.2 Chatbots for Querying Models 

The present section extends the use of chatbots for domain modelling (Section 3.3.1), 
to support NL conversational queries over the models. This is a more accessible and 
user-friendly way to query models than the use of technical languages like OCL [64]. 
Moreover, we avoid the manual programming of the model query chatbots by their 
automatic synthesis. For this purpose, the solution devised is based on (i) the availability 
of a meta-model describing the structure of the models, (ii) its configuration with 
NL information (class name synonyms, names for reverse associations, etc.), and (iii) 
the automatic generation of a chatbot supporting queries over instances of the given 
meta-model. This approach is implemented on top of the Xatkit model-based chatbot 
development platform [30], which interprets the generated chatbot model and interacts 
with an EMF [95] backend. 

As a motivating example, assume a city hall would like to provide open access to 
its real-time traffic information system. Given the growth of the open data movement, 
this is a common scenario in many cities, like Barcelona [10] or Madrid [52]. 

The data provided includes a static part made of the different districts and their 
streets, with information on the speed limits. In addition, a dynamic part updated 
in real-time decorates the streets and their segments with traffic intensity values and 
incidents (road works, street closings, accidents or bottlenecks). Figure 3.19 shows a 
meta-model capturing the structure of the provided information. 

https://saraperezsoler.github.io/SOCIO/
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Figure 3.20 Scheme of the proposed approach to generate chatbots for querying models. 

In this scenario, citizens would benefit from user-friendly ways to query those traffic 
models. However, instead of relying on the construction of dedicated front-ends with 
fixed queries, or on the use of complex model query languages like OCL, the thesis 
proposes the use of conversational queries based on NL via chatbots. Chatbots can 
be used from widely used social networks, like Telegram or Twitter, facilitating their 
use by citizens. Hence, citizens would be able to issue simple queries like “give me 
all accidents with more than one injury”; and also conversational queries like “what 
are the incidents in Castellana Street now?”, and upon the chatbot reply, focus on 
a subset of the results with “select those that are accidents”. Finally, for the case of 
dynamic models, reactive queries like “ping me when Castellana Street closes” would 
be possible. 

The proposal generates a dedicated query chatbot given the domain meta-model. 
Figure 3.20 shows its scheme. First, the chatbot designer needs to provide a domain 
meta-model (like the one in Figure 3.19) defining the structure of the models to be 
queried, and complemented with NL hints on how to refer to its classes and features 
(synonyms). From this information, an executable chatbot model that can be used to 
query model instances is generated. The next subsections explain these two steps. 

3.3.2.1 Chatbot Generation: Intents and Entities Model 

The chatbot designer has to provide a domain meta-model and optionally, a NL 
configuration model. The latter is used to optionally annotate classes, attributes 
and features with synonyms, and the source of references with a name to refer to 
its backward navigation. From this information, the chatbot intents and entities are 
generated. 
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name description training phrases provided context required context 

loadModel loads working model from the 
backend 

load the model {MODEL} 

open model {MODEL}… 

MODEL type text 
- 

allInstances returns all instances of a given class give me all the {CLASSNAME} 

show me the {CLASSNAME}… 

CLASSNAME type Class 
MODEL 

filtered 

AllInstances 

returns all instances of a given class 
and satisfying a condition 

select the {CLASSNAME} with {FILTER1}  

display the {CLASSNAME} with {FILTER1} 

{CONJ} {FILTER2}… 

CLASSNAME type Class 

FILTER1 and FILTER2 type Condition 

CONJ type Conjunction 

MODEL 

entries synonyms 

city metropolis, town 

… … 

bottleneck traffic jam, congestion 

entries synonyms 

name title, designation 

description summary 

entries synonyms 

starts with begins with 

ends with finishes with, end is 

equals is same as 

contains has 

entries synonyms 

from number from, starts 

to number to, ends 

max velocity velocity limit 

value amount of traffic  

injuries harm 

entries synonyms 

greater than bigger, more than  

smaller than less than 

equals is same as 

entries 

and 

or 

type entries 

StringCondition 
StringAttribute + StringOperator  + text 

StringAttribute + StringOperator  + StringAttribute 

NumericCondition 
NumericAttribute + NumericOperator  + number 

NumericAttribute + NumericOperator  + NumericAttribute 

a) Intents 

b) Class entity c) StringAttribute entity d) NumericAttribute entity 

h) StringOperator entity 

e) NumericOperator entity 

f) Condition composite entity 

g) Conjunction entity 

Figure 3.21 Intents and entities generated for the running example chatbot. 

Table(a) of Figure 3.21 captures the generation of intents. An intent is created 
per query type, plus an additional intent called loadModel to select the model to be 
queried. The second row of the table shows the intent allInstances, which returns all 
objects of a given class. The intent is populated with training phrases that contain the 
class name as parameter. The possible class names are defined via an entity Class (see 
Table(b)). This intent would be selected on user utterances such as “give me all cities” 
or “show every incident”. The intent requires having a loaded model, which the table 
indicates as the intent requiring a model as context. 

In the same table, intent filteredAllInstances returns all instances that satisfy a 
given condition. The intent is populated with training phrases that combine a class 
name and a condition made of one or more filters joined via logical connectives. An 
entity Condition for the filters is provided, as explained below. This intent would be 
selected upon receiving phrases like “give me all accidents with more than one injury” 
(please note the singular variation w.r.t. the attribute name injuries). 

In addition to intents, several entities are created based on the domain meta-model 
and the NL configuration. Specifically, an entity named Class (Table(b)) is created 
with an entry for each meta-model class name. These entries may have synonyms, 
as provided by the NL configuration, to refer to the classes in a more flexible way. 
Likewise, an entity is created for each attribute name attending to their type: String 
(Table(c)), Numeric (Table(d)), Boolean and Date (omitted for brevity). For example, 
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the StringAttribute entity (Table(c)) has an entry for all String attributes called name. 
Just like classes, these entries may have synonyms if provided in the NL configuration. 

The Condition entity (Table(f)) is a composite one, i.e., its entries are made of 
one or more entities. This entity permits defining filter conditions in queries, such as 
“name starts with Ma” or “injuries greater than one”. 

Regarding the complexity of the chatbot, the number of intents is fixed, and it de
pends on the primitives of the underlying query language that the chatbot exposes. Fig
ure 3.21 exposes two primitives of OCL: allInstances, and allInstances()→select(cond). 
Other query types can be added similarly, which would require defining further intents. 
The number of generated entities is also fixed, while the number of entries in each entity 
depends on the meta-model size and the synonyms defined in the NL configuration. 

3.3.2.2 Chatbot Generation: Execution Model 

The generated chatbot also contains actions, required to perform the query on a 
modelling backend, which we call the execution model. This execution model contains 
a set of execution rules that bind user intentions to response actions as part of the 
chatbot behaviour definition. For each intent in the Intent model, the corresponding 
execution rule in the execution model is generated using an event-based language 
that receives as input the recognized intent together with the set of parameter values 
matched by the NL engine during the analysis and classification of the user utterance. 

All the execution rules follow the same process: the matched intent and the 
parameters are used to build an OCL-like query to collect the set of objects the user 
wants to retrieve. The intent determines the type of query to perform (e.g., allInstances, 
select, etc.), while the parameters identify the query parameters, predicates, and their 
composition. The query computation is delegated to the underlying modelling platform 
(see next section), and the returned model elements are processed to build a human
readable message that is finally posted to the user by the bot engine. 

3.3.2.3 Proof of Concept 

As a proof of concept, a prototype was created that produces Xatkit-based chatbots [30], 
following the two phases depicted in Figure 3.20. Xatkit is a model-driven solution 
to define and execute chatbots, which offers DSLs to define the bot intents, entities 
and actions. The execution of such chatbots relies on the Xatkit runtime engine. At 
its core, the engine is a Java library that implements all the execution logic available 
in the chatbot DSLs. Besides, a connector with Google’s Dialogflow engine [31] takes 
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Figure 3.22 (a) Web application to configure the chatbot. (b) A query in the generated 
chatbot. 

care of matching the user utterances, and a number of platform components enable 
the communication between Xatkit and other external services. 

For this thesis, a web application was developed, where domain meta-models (in 
.ecore format) can be uploaded, and then (optionally) configured with synonyms. Once 
the configuration is finished, the application synthesizes a Xatkit chatbot model, which 
then can be executed using the Xatkit runtime engine. 

Figure 3.22(a) shows the web application on the left, where the running example 
meta-model (cf. Figure 3.19) is being configured. Figure 3.22(b) shows a moment in 
the execution of the generated Xatkit chatbot, and the result returned by the bot when 
processing the example utterance “show all accidents with more than one injury”. 

3.4 Evaluation 

This section reports on two user studies performed over Socio’s modelling capabilities 
(Sections 3.4.1 and 3.4.2, details in [71] and [83]), another one over Socio’s soft 
consensus mechanisms (Section 3.4.1, full details in [72]) and one use case evaluating 
the approach of chatbots for domain-specific modelling over a pre-existing information 
system (Section 3.4.3, details in [73]). 
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3.4.1 Preliminary User Studies of Socio 

To assess the suitability of the proposed a modelling chatbot, we conducted a preliminary 
evaluation with 10 participants organized in 4 Telegram groups: 2 groups of 2 people, 
and 2 groups of 3 people. All participants had a computer science background 
(postgraduate or last year degree students) and were non-native English speakers. 
They were asked to create a meta-model for ecommerce in 15 minutes but with no 
other restriction, and then complete a questionnaire with 3 parts: two with Likertscale 
questions, and a last one with free text questions. More details can be found in [71]. 

The first part of the questionnaire consisted of the 10 questions of the System 
Usability Scale (SUS) [17], a de-facto standard to measure system usability. Socio 
obtained 74% which indicates good usability. The second part of the questionnaire 
comprised 8 questions evaluating four aspects: (1) suitability of NL to build models 
w.r.t. using an editor, (2) precision of the bot to interpret NL, (3) enough functionality 
in the command set, and (4) whether participants liked embedding a modelling tool 
in a social network, or they would prefer a separate collaborative tool. Aspects 1 
and 4 obtained around 75%, indicating that participants considered NL as a suitable 
interaction mechanism, and they appreciated the idea of collaborating through social 
networks, while aspects 2 and 3 were rated with 62,5% and 60%, which is reasonable 
but improvable. 

The study is preliminary, with several threats, like the low number of participants, 
the limited group size, the similar participant background, the fact that participants 
were non-native English speakers, and the lack of a precise modelling goal, which 
permitted evaluating the produced artefacts. However, the positive results encouraged 
further research on this approach. 

To ease decision-making by a potentially large heterogeneous group, a soft-consensus 
mechanism was incorporated to measure the degree of agreement based on the group 
preferences, and avoid the bias that a human moderator may introduce [41] (Sec
tion 3.2.2). To assess this hypothesis, a small-scale evaluation was performed with 8 
participants recruited from the Master and Doctoral programs of the Department of 
Computer Science of the Universidad Autónoma de Madrid [72]. 6 participants were 
computer scientists, 1 engineer in telecommunication, and 1 physicist. After attending 
a 10-minutes tutorial about Socio, they used it to select the best solution among three 
possibilities for two different projects, first without consensus mechanism, and then 
using it. Interestingly, without the consensus mechanism, they ended up organizing 
a public poll within Telegram, but discrepancies among participants remained until 
the end of the experiment. They also answered a five-point Likert scale survey on the 
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consensus mechanism, which was considered especially useful for large groups (average 
4.7/5), and with an outcome that reflected the opinion of the majority (4.8/5) and 
was deemed objective because of the private voting (4.3/5). More details are available 
in [71, 72]. 

3.4.2 User Study and Comparison of Socio and Creately 

After the preliminary study described in Section 3.4.1 to assess the suitability of 
modelling bots, we conducted a major experimental study [83] with 54 participants, 
to evaluate the usability of Socio, comparing it with the on-line modelling tool 
Creately [28], which uses a traditional GUI, accessible through a web browser. The 
experiment was structured as 2 sequences and 2 periods within-subjects cross-over 
design. 

The 54 participants were split into two groups of 27 participants each. The 
participants in each group were further divided into 9 teams. The teams were randomly 
created. A total of 18 teams participated in the experiment (9 per group). Each group 
applies the treatments in a different order (AB/BA). The treatments are two tools for 
creating class diagrams: the chatbot Socio and the web application Creately. Group 
1 first applies Socio and then Creately. Conversely, group 2 first applies Creately and 
then Socio. Both groups implement the tasks in the same order (task 1 and task 2). 
Each task consists of the creation of a class diagram. 

All the participants first received a brief tutorial about the tool they had to use. 
Then, they were required to perform the first task with the tool in a maximum of 
30 minutes. At the end of the experimental session the subjects filled in a modified 
and validated satisfaction questionnaire SUS [17] associated with the tool. Once the 
questionnaire was completed, participants received a tutorial of the second tool. Then, 
they performed the second task with the tool in a maximum of 30 minutes. At the 
end of the allowed time the participants filled in another modified SUS satisfaction 
questionnaire, with questions about the tool. In this last questionnaire, the participants 
were asked if they preferred Socio or Creately. 

Usability was determined by attributes of efficiency, effectiveness, satisfaction 
and quality of the results. The study reports that Socio saved time and reduced 
communication effort over Creately. Socio satisfied users to a greater extent than 
Creately, while in effectiveness results were similar. With respect to diagram quality, 
Socio outperformed Creately in terms of precision, while solutions with Creately had 
better recall and perceived success. However, in terms of accuracy and error scores, 
both tools were similar. More details can be found at [83]. 
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After this user study, Socio was improved to provide more help when it does not 
understand users (Socio V1), and the help page was changed to provide more help 
to users. We conducted a family of three experiments to compare the usability of 
Socio V1 and Creately with 87 students. Students appeared to be more satisfied with 
Socio V1, and Socio V1 scored better on completeness. There were no significant 
differences between the two tools regarding efficiency and quality. More details are 
available in [84]. 

3.4.3 Use Case: Datalyzer 

To ascertain the feasibility of chatbots for domain-specific modelling, the approach 
to develop a conversational front-end [73] was used for the pre-existing system Dat
alyzer [38]. Datalyzer is an open web platform that generates and executes data 
streaming applications in a simple and intuitive way using MDE techniques. The data 
applications can be connected to several heterogeneous data sources. They generate a 
data output stream which can be connected with external services and be visualized 
on a dashboard as charts, tables or other interactive elements in real time. Datalyzer 
can be used in two ways: to build services that transform data on the cloud, or to 
build complete data monitoring applications using the dashboard. The applications 
are modelled using a graphical DSL developed in Javascript. The goal of this case 
study is to answer the following research questions: 

RQ1 Is it feasible to create a NL front-end for an existing DSL-based information 
system? 

RQ1.1 What are the steps that require manual programming? 
RQ2 What is the added value – in terms of functionality – that a modelling chatbot 

brings? 
We would like to complement Datalyzer with a chatbot that enables the collaborative 

construction of data application models using conversation on social networks. This is 
a challenging, realistic case study for our approach for two reasons. First, the chatbot 
would become a NL front-end for an existing information system, and therefore, needs 
to integrate not only with Datalyzer’s DSL, but also with commands like saving a 
project or running the application. Second, data sources (e.g., Twitter, Bitcoin market 
values, or Madrid traffic data) in the application models are non-instantiable but should 
be retrieved from a database. 

The approach (Section 3.3.1) was used to automatically generate a default NL 
concrete syntax model from the Datalyzer meta-model. Next, the NL model was 
manually refined to add synonyms and modified some configuration features (e.g., to 
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change the data source class to non-instantiable). Starting from the modified concrete 
syntax model, a Dialogflow chatbot was produced. 

Datalyzer can be used as a web service via a REST API. This way, external systems 
can receive data from applications running on Datalyzer and perform some actions 
such as executing or stopping a project. However, this API did not support creating 
Datalyzer models, but this was only possible on a web browser. Hence, a middleware 
was created to provide model management support (e.g., uploading Datalyzer models) 
and to support all commands available in the browser. The middleware is connected 
to the chatbot as a REST API, and implements model transformations, to transform 
the chatbots models in EMF to JSON models compatible with Datalyzer, and back. 
Also, the chatbot sends requests to the middleware to obtain the data source types, 
as this is a non-instantiable class. The middleware retrieves the data source types by 
sending a request to the Datalyzer REST API. 

Next, we answer the research questions. 
RQ1: Feasibility. This question can be answered positively: using our approach, 

a NL interface was easily added to an existing information system through Telegram. 
RQ1.1: Automation. Configuring the NL syntax was easy as it is highly 

automated. From the meta-model of Datalyzer, the approach automatically generated 
40 intents and 2500 training phrases that otherwise should have been defined manually. 
However, the middleware was implemented to connects Datalyzer and the chatbot to 
bridge their different modelling technologies (JSON and EMF). 

RQ2: Added value. Social networks are common in our lives, and we are familiar 
with their interaction style. Hence, some users may find modelling using NL and 
a conversational assistant easier or more appealing than learning to use a graphical 
or textual DSL and its editing environment. Moreover, “chatbot-izing” Datalyzer 
expanded its capabilities as follows: 

(i) As the chatbot is integrated into Telegram, it is possible to use the collaborative 
capabilities of this social network, e.g., to build Datalyzer models collaboratively, 
intertwine discussion messages and editing actions in real time and trace them back in 
the chat history, organize private or public on-line meetings, invite collaborators to 
existing projects, etc. These features were not initially available in Datalyzer. 

(ii) Telegram can be installed on smartphones, tablets and computers, and there is a 
web version as well. Hence, we can use the Datalyzer chatbot from any device regardless 
of the OS, and from many devices at the same time as they remain synchronized by 
a personal account. This makes Datalyzer portable and permits using it in mobility. 
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Although Datalyzer is a web platform, its interface is not as well adapted to phones 
and tablets as Telegram. 

More details of this case study are available in [73]. 

3.5 Related Work 

This section revises related works on the usage of NL processing techniques within 
MDE, generation of chatbots, and collaborative modelling. 

NL processing in MDE. This thesis proposes using NL to conceptual and 
domain-specific model creations and model query. NL processing techniques have been 
used within Software Engineering to derive UML diagrams/conceptual models from 
text [6, 46]. Our contribution in this context is to use an interactive, incremental 
approach, and the use of social networks to embed assistance. 

The ModelByVoice [49] modelling tool supports voice recognition and speech 
synthesis for editing models. The tool assumes a diagrammatic concrete syntax for 
models, and editing actions are generic commands. For instance, creating any kind 
of object is done through the command “create node”, after which the tool prompts 
the user about the node type and its attributes. The tool VoiceToModel [93] is 
similar but for goal-oriented models, object models and feature models. Compared to 
ModelByVoice, it supports a smaller set of modelling languages, but their commands 
are less generic (e.g., there is a create command for each object type) though still rigid. 
In contrast, we use a more flexible NLP approach to create conceptual models, which 
not only support commands but descriptive sentences of the system are allowed and 
support synonyms. Moreover, the domain-specific modelling approaches generate a 
flexible NL syntax adapted to the DSL, also supports synonyms, the conversation flow 
is configurable, and does not assume a diagrammatic model. Lastly, none of those two 
approaches support queries. 

In the vision paper [18], the authors propose cognifying MDE to promote its adoption. 
Cognification is the application of knowledge extracted from existing information, to 
boost a given process. Among other applications, the paper mentions the possibility of 
having modelling bots that suggest missing model properties based on the analysis of 
previous models in the same domain. Droid recommenders can be integrated within 
Socio, as an external service, for that purpose, as we saw in Section 3.2.1.3. 

Finally, DoMoBOT [87] is also a modelling chatbot that creates domain models 
from their descriptions in NL. It was published after Socio in 2022. 
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Generation of chatbots. Generating chatbots from domain models is largely 
unexplored. Almost no chatbot platform supports automatic chatbot generation from 
external data sources. A relevant exception is Microsoft QnA Maker [56], which 
generates bots for the Azure platform from FAQs and other well-structured textual 
information. 

In [81], the authors define a feature model with the commonalities and variations of 
chatbot features. Variability can come from the platform (e.g., Telegram or Slack), the 
way to access external services (e.g., via REST web service calls), the chatbot application 
core, the chatbot personality processing, and the dialog services. This feature model 
can be used as a reference framework to guide chatbot creation. While this work 
complements ours by focusing on the technical aspects of chatbot implementations, 
this research is more concerned with the usage of NL as front-end of models, modelling 
services and information systems, and it provides tools support. 

Castaldo and collaborators [21] propose generating chatbots for data exploration in 
relational databases, but requiring an annotated schema as starting point, while in 
our case providing synonyms is an optional step. Similarly, [89] integrates chatbots to 
service systems by annotating and linking the chatbot definition to the service models. 
In both cases, annotations and links must be manually created by the chatbot designer 
to generate the conversational elements. In contrast, domain-specific approaches 
generates automatically the configuration. In [101], chatbots are generated from 
OpenAPI specifications but the goal of such chatbots is helping the user in identifying 
the right API Endpoint. 

Altogether, to our knowledge, there are no automatic approaches to the generation 
of flexible chatbots with model creation and query capabilities. Therefore, applying 
classical concepts from CRUD-like generators to the chatbot domain is a highly novel 
solution to add a conversational interface to any modelling language. 

Collaborative modelling. Collaborative modelling has been used for model 
construction [37] and collaborative creation of DSLs [20]. However, these works do 
not use social networks or NL processing, but they rely on collaborative graphical 
model editors [37] or ad-hoc tools [20] without assistant support. Instead, our approach 
integrates a modelling bot within a social network, so that users do not need to switch 
between discussion, coordination and modelling tools. 

Altogether, from the analysis of the state of the art, it can be concluded that the 
usage of NL and chatbots as front-end for modelling services, as proposed in this thesis, 
is highly novel. 



64 Chatbots for Modelling 

3.6 Summary and Conclusions 

This chapter explored the use of chatbots as front-ends for modelling services. First, 
Section 3.2 proposed an approach to collaborative conceptual modelling via social 
networks, with assistant chatbots able to process NL messages. Using NL as modelling 
interface has the advantage of lowering the entry barrier to modelling, and does not 
interrupt the group discussion flow because messages for discussion and modelling are 
intertwined. Moreover, any element included in the model is immediately justified by 
the NL message used for its creation, hence documenting its provenance. To enrich 
traceability and rationale of modelling decisions, we also produce a history model 
tracking user contributions to model elements. To ease decision-making by a potentially 
large heterogeneous group, we incorporate a soft-consensus mechanism to measure 
the degree of agreement based on the group preferences, and avoid the bias that a 
human moderator may introduce. Section 3.2.3 showed prototype tool support called 
Socio. We performed an initial evaluation of Socio concerning modelling in NL and 
collaboration based on soft-consensus mechanism (Section 3.4.1) with encouraging 
results. Then we performed a study with 54 participants (Section 3.4.2) to evaluate 
the usability of Socio with positive results. 

Section 3.3 proposed approaches for domain-specific modelling in social networks 
using NL. On one hand, Section 3.3.1 presented an approach to define a conversational 
syntax for DSLs based on NL processing and chatbots. The approach is based on 
annotating domain meta-models with configuration information for the NL syntax, 
and translating these data into a chatbot creation framework (DialogFlow in our case). 
The chatbots can be deployed on platforms like Telegram, and use a modelling service 
to create the model abstract syntax at run-time. We have demonstrated the feasibility 
of our solution by means of a case study where we have created a modelling chatbot 
atop an existing cloud system to define and run streaming data applications. A case 
study (Section 3.4.3) illustrated the functionality added by the chatbot, which includes 
support for collaboration in NL, multi-platform, mobility, and traceability. On the 
other hand, Section 3.3.2 proposed the automatic synthesis of chatbots able to query 
the instances of a domain meta-model. 

Once we have presented the approach to use chatbots for modelling, the next 
chapter details the proposal for modelling of chatbots. 



Chapter 4 

Modelling of Chatbots 

This chapter will explore the use of MDE techniques to help in the chatbot development 
process. The proliferation of chatbot has made emerge many tools for their construction 
with different features and possibilities. However, since there are so many options, 
choosing the most appropriate one to develop a chatbot with certain features is not 
easy. There may also be operational factors to consider in the decision, as for example, 
some options may imply vendor lock-in, and migrating chatbots between tools is not 
generally supported. Last but not least, some approaches have a steep learning curve 
and require expert knowledge. 

To overcome these problems, Section 4.2 proposes a MDE approach to chatbot 
development. This relies on a meta-model with core primitives for chatbot design 
(Section 4.3.1), and a DSL to define bots independently of the implementation technol
ogy (Section 4.3.2). Section 4.4 presents DSL validators, which analyse the model for 
defects, generators for forward engineering, to produce the chatbot implementation 
from its specification, and parsers for reverse engineering, to produce a model out 
of a chatbot implementation, which can then be analysed, refactored and migrated 
to other platforms. Section 4.5 explains a creation tools recommender based on the 
chatbot definition and other requirements. A prototype tool has been implemented 
for the approach (Section 4.6). Section 4.7 reports on evaluations of the approach. 
Finally, Sections 4.9 and 4.10 compare with the related work and conclude the chapter 
respectively. 

This chapter is based on publications [77, 76, 23, 22, 50] 
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4.1 Introduction and Motivation 

The growing interest in developing chatbots has triggered the emergence of many 
platforms, tools and libraries for their construction [78]. Several of them were explained 
in Section 2.1.2. This rich plethora of tools brings chatbot developers a wide range of 
possibilities, but also complicates the decision of which would be the best option for a 
given scenario. 

The proliferation of tools and approaches may cause the underlying conceptual 
design of a chatbot to become difficult to grasp, as it may get obscured by the accidental 
complexity imposed by the platform of choice (e.g., in the different configuration files 
and Python code in a Rasa chatbot; or in the different forms and scripts in Dialogflow). 
This fact may also hinder comparison of chatbots across tools. Finally, closed chatbot 
development tools may lead to vendor lock-in, and hence the developed chatbots may 
become difficult to migrate to other platforms. While current research and practice has 
focussed on creating chatbot development tools, there is scarce support for automating 
the migration across tools, or proposals for representing chatbot designs in a neutral 
way. 

In order to attack these issues, this chapter presents a model-driven solution [16] for 
chatbot design and re-engineering. Our solution is based on a neutral chatbot design 
language called Conga. We developed this DSL based on the analysis of the concepts 
supported by fourteen chatbot development approaches (Section 2.1.2). Our solution 
does not involve a chatbot execution engine. Instead, a recommender system helps the 
user to select the most suitable implementation tool for the chatbot design, and code 
generators are able to synthesize the chatbot implementation for the tool of choice. To 
support migration, our solution also includes parsers from specific chatbot development 
tools into Conga. This way, the chatbot design can be reverse engineered from the 
implementation, improved if needed, and then migrated to a different tool using the 
code generators. 

4.2 Overview of the Approach 

This chapter proposes modelling chatbots independently of the chatbot development 
tool, and then enable forward and backward engineering of chatbot code from the 
designed chatbot models. This enables reasoning and validation of chatbot models 
prior to their implementation, keeping the chatbot design independent of a specific 
technology. Moreover, it facilitates coping with a variety of scenarios, including forward 
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Figure 4.1 Schema of Conga tool approach. 

engineering of chatbots, chatbot evolution, chatbot maintenance, and chatbot migration 
between different technologies and between different versions of a same technology. 

Figure 4.1 shows a scheme of our proposal. The main component is a web platform 
where chatbot developers can design chatbots using a technology-agnostic DSL called 
Conga (ChatbOt modelliNg lanGuAge). The DSL is built based on a neutral meta
model resulting from an analysis of fourteen of the most prominent chatbot development 
tools used nowadays [78]. The DSL permits defining chatbot models independently of 
any development platform, and will be described in Section 4.3. 

The DSL is complemented with code generators that synthesize code from the 
chatbot models into specific development tools (e.g., JSON files in the case of Dialogflow, 
or Python, markdown and YAML files in the case of Rasa). The generated chatbots 
can be deployed in a variety of channels (e.g., Telegram, Slack or Twitter) to make 
them available to chatbot users. The DSL also facilitates chatbot migration by the 
provision of parsers from several development tools into the DSL. In addition, chatbot 
models can be validated, checking general chatbot quality criteria and well-formedness 
rules. The architecture enables also to incorporate specific validations for particular 
platforms. Section 4.4 explains the parsing, generation and validation services, detailing 
the algorithms to generate, validate and parse code for Dialogflow and Rasa 

To facilitate the task of selecting a development tool for implementing a given 
chatbot model, the Conga platform incorporates an extensible recommender that 
analyses the chatbot model and other technical requirements to provide a ranked list 



68 Modelling of Chatbots 

of suitable tools. Section 4.5 explains the recommender system and its extensible 
architecture. 

Finally, the Conga platform incorporates a management module, by which chatbot 
developers can extend the platform with new code generators and parsers from/to 
other chatbot development tools, or new versions of tools already supported. Likewise, 
the platform permits registering new model analysers to perform validations specific to 
a development tool. Section 4.6 will explain the architectural decisions to enable this 
extensibility. 

4.3 The Conga DSL 

This section first introduces the abstract syntax of Conga by explaining its meta-model 
(Section 4.3.1) and then describes its textual concrete syntax through an example 
(Section 4.3.2). 

4.3.1 Abstract Syntax 

Section 2.1 analysed fourteen chatbot tools and proposed an initial neutral meta
model to define chatbots. The main elements are Intents or the user intention in the 
communication, Entities which correspond with the domain elements, Actions that the 
chatbot can perform to answer the user, and the conversation Flows. Figure 4.2 shows 
the meta-model [76], divided into four different packages. 

The intents package contains the intents definition. A Chatbot has a name, a list 
of supported languages (which allows defining multi-language chatbots), and a list of 
intents. Intents have a name, can be fallback and may define a set of TrainingPhrases 
per each supported language. Training phrases are examples of how a user can express 
an intention. For example, to express the intention to order a pizza, a training phrase 
could be “I want a medium thin crust pizza”. Intents may also contain Parameters, 
pieces of information that the chatbot needs to extract and store. In the previous 
example, the chatbot needs to save medium as the pizza size and thin crust as the 
dough type to allow the pizza store to manage the order. Parameters have a name, a 
type, can be multivalued (a list), can be required and may define a list of prompts to 
ask for a value when the parameter is required but the user utterance does not include 
its value. Parameter types can be predefined (enumeration PredefEntity with values 
text, date, number, float and time) or domain-specific ones using Entities. 
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Entities are defined in the entities package. They have a name and a set of Entries 
per each language. Entries can be Simple, consisting of a word and its synonyms, 
Composite, made of other entities and text, or Regular Expression. For example, in our 
pizza store chatbot, we may define simple entities for pizza size (small, medium, large) 
and the kind of pizza (Veggie, Cheese, Pepperoni...), a composite entity for products 
(⟨pizzaSize⟩ ⟨pizzaKind⟩ pizza) and a regular expression for the zip code in the delivery 
address. 

The actions package defines six types of actions that the chatbot can perform. 
Sending a Text response, which may refer to parameters (e.g., “Small cheese pizza 
order confirmed”). Sending an Image using its URL. Sending a text with Buttons 
(e.g., to present each pizza ingredient as a button, facilitating the client’s selection). 
Performing HttpRequest to a given URL and sending to the user an HttpResponse for a 
previous http request (e.g., to place an order to the pizza store and send a confirmation 
message). The last action type, Empty, is a wildcard for other platform-specific actions. 

Finally, the flows package supports the definition of the conversation structure. The 
conversation alternates between the user and the chatbot turn (classes UserInteraction 
and BotInteraction). The user turns reference an intent, and the chatbot turns refer to 
a list of actions that the chatbot has to perform. In addition, we have provided support 
for loops. This way, UserInteraction and BotInteraction objects may have a label. In 
the DSL, these are useful to identify the target step of a loop. From a BotInteraction 
it is possible to go back to previous UserInteractions. Also, it is possible to go back to 
a BotInteraction from a UserInteraction, using the class BackToBot, which may have a 
list of actions to perform before going back. 

4.3.2 Concrete Syntax 

The Conga DSL has a textual concrete syntax based on the meta-model described 
in the previous section. Listing 4 shows an example of a Pizza Store chatbot defined in 
Conga. The definition starts with the name of the chatbot and the list of supported 
languages, in this case english (line 1). 

The keyword intents (line 2) begins the intent definition. Every intent starts with a 
name and defines a number of training phrases. In case of multilanguage chatbots, each 
intent should provide training phrases for each language considered by the chatbot. The 
listing defines four intents: StartOrder in line 3 (to start ordering a pizza), Toppings in 
line 11 (to add a topping), EndOrder in line 18 (to finish an order) and ToppingsInfo 
in line 23 (to obtain the available toppings). 
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Chatbot ‘‘Pizza Store’’ language: en 
intents: 

StartOrder:{ 
‘‘I want to order a pizza’’, 
(‘‘Big’’)[size] ‘‘pizza’’, 
‘‘One’’ (‘‘small’’)[size] ‘‘pizza, please’’  

} 
parameters:  

size: entity PizzaSize, required, prompts [‘‘What size of pizza do you want?’’];  
address: entity text, required, prompts [‘‘What is your address?’’];  

Toppings:{ 
‘‘extra’’ (‘‘cheese’’)[toppings], 
‘‘with’’ (‘‘ham’’)[toppings], 
(‘‘bacon’’)[toppings] 

}  
parameters:  

toppings: entity Ingredients, required, prompts [‘‘What topping do you want?’’];  
EndOrder:{ 

‘‘That’s all’’, 
‘‘Nothing else’’, 
‘‘No more toppings, thank you’’  

}
ToppingsInfo: { 

‘‘What toppings do you have?’’, 
‘‘Which are the toppings?’’, 
‘‘What toppings can I choose?’’  

}
entities: 

Simple entity PizzaSize:{ 
small synonyms tiny, little  
medium synonyms regular, intermediate  
big synonyms huge, large  

}
Simple entity Ingredients:{

cheese ham pepperoni bacon mushrooms pepper olives corn chicken 
}

actions: 
Button response askingForToppings: {  

text: ‘‘What toppings do you want?’’ 
buttons:  
− value: ‘‘cheese’’ − value: ‘‘ham’’  
− value: ‘‘pepperoni’’ − value: ‘‘bacon’’  
− value: ‘‘mushrooms’’ − value: ‘‘pepper’’  
− value: ‘‘olives’’ − value: ‘‘corn’’  
− value: ‘‘chicken’’ − value: ‘‘That’s all’’  

}
Request post orderPizza:  

URL: ‘‘https://mypizzaStore.com’’;  
data: ‘‘size’’ : [‘‘StartOrder.size’’], 

‘‘address’’ : [‘‘StartOrder.address’’]; 
dataType: JSON;  

Request post noteTopping:  
URL: ‘‘https://mypizzaStore.com’’;  
data: ‘‘address’’ : [‘‘StartOrder.address’’], 

‘‘toppings’’: [‘‘Toppings.toppings’’];
dataType: JSON; 

Text response info:{
‘‘We have cheese, ham, pepperoni, bacon, mushrooms, pepper, olives, corn, onion and chicken’’ 

}
flows: 

− user ToppingsInfo => chatbot info;
− user StartOrder => ask: chatbot askingForToppings{ 

=> user Toppings => chatbot noteTopping back to ask;  
=> user EndOrder => chatbot orderPizza;  

};  

Listing 4 Defining a chatbot for a pizzeria with Conga.  

http:https://mypizzaStore.com
http:https://mypizzaStore.com
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Intents may also contain parameters, for example, address or size for intent Star
tOrder (lines from 8 to 10) and toppings in intent Toppings (line 17). Parameter 
definitions start with the parameter name, followed by the entity type. This can be 
a predefined entity like text for address, or user-defined entities, like PizzaSize for 
size and Ingredients for the parameter toppings. Optionally, we can indicate if the 
parameter is required, or a list, and prompts that the chatbot asks the user in case 
of missing values. Training phrases can allude to parameters of the same intent. For 
example, the sentence “One small pizza, please” in intent StartOrder references the 
parameter size with the word small. 

The entities keyword opens the entity declaration (line 28). In our example, there 
are two simple entities: PizzaSize (line 29) and Ingredients (line 34). Similar to intents, 
entities should provide inputs for every language considered by the chatbot. The 
PizzaSize entity has three entries: small, medium and big (lines 30–32), each of them 
with two synonyms. The Ingredients entity has nine entries with no synonyms. 

The actions keyword (line 37) declares the possible chatbot actions. Our chatbot 
has four actions: a Button response called askingForToppings (line 38), two HTTP 
Requests named orderPizza (line 47) and noteToppings (line 52) and a text response 
info (line 57). Button and text responses should also declare inputs for all languages 
considered by the chatbot, providing an answer text (lines 39 and 58). In addition, 
button responses should define a list of values, which are the button options (line 41 
to 45). Request actions need the URL of the endpoint (lines 48 and 53), may have 
data (lines 49 and 54) to send in the request, and may specify the type of data being 
sent (lines 51 and 56). 

Finally, the keyword flows (line 60) marks the section for defining the conversation 
flows. The example contains two. The first one (line 61) is a simple flow with one user 
interaction, the intent ToppingsInfo, followed by the chatbot textual answer with the 
information. Overall, this conversation flow enables a user to obtain information on 
available pizza toppings. The second flow (from line 62 to 64) starts with the user 
intention StartOrder, then, the chatbot asks for the pizza toppings by means of buttons, 
each containing a possible ingredient. At this point, the flow bifurcates, so that the 
user may choose an ingredient (intent Toppings), or declare that no more toppings are 
required (intent EndOrder). If a topping is selected the chatbot sends the noteTopping 
request and goes back to ask for more toppings (label ask). This mechanism defines a 
loop of asking and storing the pizza ingredients, which ends when the user triggers the 
EndOrder intent. At that point, the chatbot sends an orderPizza request and ends the 
conversation. 
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4.4 Generating, Parsing and Validating Chatbots 

In this section, we describe three of the chatbot services that Conga supports: 
generators and parser to/from specific chatbot platforms in Section 4.4.1, and chatbot 
validation services in Section 4.4.2. Platform recommendation services will be explained 
in Section 4.5. 

4.4.1 Chatbot Generators and Parsers 

Conga models are not executable, but they can be compiled into code for a particular 
development tool. For this purpose, our approach is extensible with chatbot compilers – 
generating the necessary artefacts from Conga models to specific chatbots tools – and 
parsers – generating Conga models out of chatbot platform artefacts. This approach 
makes it possible the migration of chatbots defined in a specific tool to another one, 
by using Conga as an intermediate representation. 

There is a wide variety of tools to build and execute chatbots, as we discussed 
in Section 2.1.2, each one of them offering different features. To facilitate the imple
mentation and integration of generators and parsers, Conga provides an extension 
mechanism based on web services, enabling the external addition of generators and 
parsers. 

Figure 4.3 shows the meta-model our extension mechanism relies on. The Conga 
platform contains a list of Users, with a name and a password. Users can define Services 
for a particular chatbot Tool (identified by a name and version). Web Services are 
a kind of Service that can be used to provide Generators, Parsers and Validators. 
Such services are defined by a URL, have a status (ON, OFF or Error) and a date of 
last access. Technically, they also may contain a list of key-value headers and a basic 
authentication. 

Generator web services receive a Conga model and return a zip file with the 
different artefacts required by the tool. Conversely, parser web services receive a zip of 
the tool files and return a Conga model. 

Currently, there are compilers and parsers targeting Dialogflow and Rasa. Table 4.1 
shows a mapping between Dialogflow and Rasa files into Conga elements. They are 
detailed in [23]. 
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Table 4.1 Mapping between Dialogflow and Rasa with Conga. 
Dialogflow Conga Rasa 

Agent.json file contains the configuration informa
tion and the language definition 

Chatbot Config.yml file contains the configuration informa
tion and the language definition 

There is one JSON file per intent with configura
tions 

Intent Domain.yml contains a list with all the intents 

There is a JSON file per language and intent, the 
language is defined in the name 

Language In
tent 

Only supports one language, the language defined 
in the config file 

Language intent file contains the training phrases, 
one JSON object per phrase 

Training 
Phrase 

nlu.md file contains a list of training phrases per 
intent in markdown 

Intent configuration file contains the list of param
eters in a JSON array 

Parameter Parameters can be inferred from training phrases 

There is one JSON file per Entity with configura
tion information, like if it is composite or regular 
expression 

Entity nlu.md may contain a list of options, synonyms of 
words and regular expression for parameters 

There is a JSON file per language and entity, the 
language is defined in the name 

Language En
tity 

Only supports one language, the language defined 
in the config file 

The language entity file contains one JSON object 
per entry 

Entry -

The intent configuration file contains the intent 
responses like text, images or buttons responses 

Text, Image 
and Button 
Action 

File Domain.yml contains the intent responses like 
text, images or buttons responses 

Agent.json defines the weebhook information, with 
the URL, headers and basic authentication 

HTTP Request 
Action 

The HTTP request could be defined in the ac
tion.py file in Python or in the endpoint.yml file 

The intent configuration file contains inputs and 
outputs contexts, which define the conversation 
flow 

Flow File stories.md defines in markdown conversations 
flows 
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Table 4.2 Current validation rules in Conga (BP=Best Practice, EF=Emulated 
Feature, H=Heuristic, ME=Missing Element, MF=Malformed element, NS=Not Sup
ported Feature, UE=Unused Element). 

Id Validation rule Severity Conga element 
General 

G1 Names of intents, actions, entities, and parameters should be 
unique 

error Intent, Action, En
tity, Parameter 

G2 The language of the element (intent, action, entity) must be 
among the chatbot languages 

error LanguageInput 

G3 There can not be two LanguageInputs with the same language 
in the same element (intent, action, entity, ...) 

error LanguageInput 

G4 Different flow paths cannot start with same intent error Flow 
G5 There should be a referencing HTTPRequest before the 

HTTPResponse 
error Flow 

G6 Reference “back to” must point to an element on the same path, 
at a previous position 

error Flow 

G7 Parameters in the training phrase must be defined in the same 
intent 

error Parameter 

G8 All entries of the entity should be of the same type error Entity 
G9 There should be one LanguageInput per chatbot language warning (ME) LanguageInput 
G10 Regex syntax must be well-formed warning (MF) RegularExpression 
G11 The loop has no terminating branch warning (H) Flow 
G12 Defined entities should be used in some parameter warning (UE) Entity 
G13 Intents should be used in some flow warning (UE) Intent 
G14 Mandatory parameters should be used in some training phrase warning (UE) Parameter 
G15 The language intent must contain at least three training phrases warning (BP) LanguageIntent 
G16 Two training phrases should not be equals in different intent warning (BP) TrainingPhrase 
G17 Two training phrases should not be equals in the same intent warning (BP) TrainingPhrase 
G18 If the phrase has a text parameter, it should have more content warning (BP) TrainingPhrase 
G19 The chatbot should have a fallback intent warning (BP) Chatbot 
G20 Mandatory parameters should have prompts warning (BP) Parameter 

Dialogflow 
D1 The data of an HttpRequest will be ignored, Dialogflow sends 

its JSON format with all the information 
warning (NS) HttpRequest 

D2 Dialogflow does not support two HttpRequests in same action, 
only the first is taken into account 

warning (NS) HttpRequest 

Rasa 
R1 Rasa does not support multi-language chatbots, the generator 

creates one chatbot per language 
warning (EF) Chatbot 

R2 Rasa generator does not create a loop, only five repetitions of 
the conversation 

warning (EF) Flow 

4.4.2 Chatbot Validation Services 

The Conga language includes model validation rules, which every Conga model 
should satisfy. In addition, validation services can be added, to check specific well
formedness constraints for particular platforms (cf. Figure 4.3). These validations 
are typically checked before code is synthesized for the platform, to ensure a proper 
generation is achieved. 

Table 4.2 summarizes the validation rules currently supported by Conga. We 
distinguish two kinds of rules. The first ones are general model invariants, and are 
included in the general section of the table. These rules ensure well-formedness of 
chatbot models, and we have further divided them into errors and warnings. 
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Errors may be caused by equally named elements (e.g., two Actions with the same 
name), which is checked by G1; problems with the declared languages of the element 
(e.g., an intent provides phrases in a language not supported by the chatbot), which 
is checked by G2 and G3; problematic conversation flows (G4–G6); parameters (G7) 
and entities (G8). Flow problems include issues like having two flows starting with the 
same intent, which would make the chatbot unable to distinguish which flow should be 
followed (checked by G4); HTTP responses that are not preceded by an HTTP request 
(G5); and malformed loops (G6). 

Warnings can be classified according to whether they check syntactical issues 
(missing, malformed or unused elements, expected heuristics), and best practices that 
ensure a proper chatbot definition. Within the first kind, we can find elements (e.g., 
an intent) that miss phrases in a language defined by the chatbot (G9); malformed 
regular expressions (G10); loops that are not terminating (G11); and unused elements 
like entities (G12); intents (G13); and parameters (G14). 

Regarding best practices, the validations perform a static analysis of the chatbot 
definition to assess whether it adheres to best practices for chatbot design. In particular, 
G15 checks that each intent that is not fallback is defined by a bare minimum number 
of 3 phrases (otherwise it results in an imprecise intent); G16 checks that the same 
training phrase does not belong to two intents (since this would potentially confuse 
the chatbot); G17 checks that text parameters are not the only parameter of a phrase 
(since otherwise the parameter would take the whole phrase as its value); G18 checks 
that the bot has a fallback intent (to inform the user if no other intent is recognized); 
G19 checks that mandatory parameters have prompt phrases (so that the chatbot can 
asks the users if no value is given); and G20 checks that the buttons’ text are actually 
phrases accepted by some intent (otherwise the chatbot would not understand the 
button interaction). 

In addition, our approach supports specific validation rules for particular chatbot 
generators. For Dialogflow, we inform of two features that are not fully supported 
by the platform. Hence, if HttpRequests are used in the chatbot, D1 reports that the 
data will be ignored; and D2 notifies about multiple HttpRequests in the same action. 
Rasa does not support multi-language chatbots, but Conga supports them. This 
way, R1 produces a warning explaining that one chatbot per language will be created. 
Finally, R2 checks if a chatbot has loops. In that case, it informs that the current Rasa 
generator emulates loops by unrolling them a maximum of 5 times. 
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Requirement
name: String
text: String
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Analysis
evaluate(Chatbot): Option[*]
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Figure 4.4 Recommender meta-model. 

4.5 Recommending a Chatbot Creation Tool 
Due to the large amount of tools and approaches for chatbot creation, selecting the 
best option to build a particular chatbot becomes complex. To assist in this task, 
we provide a recommender that receives a chatbot model specified with Conga and 
the answers to a questionnaire relative to other aspects of the chatbot not captured 
by the model (e.g., technical, organizational or managerial requirements), and from 
this information, it recommends an appropriate tool to implement the chatbot. The 
recommender builds on a model-based extensible architecture that enables the addition 
of new chatbot creation tools and the customization of the questions and model features 
the recommendation builds on. 

Figure 4.4 shows the meta-model our Recommender relies on. To make a recom
mendation, it considers a list of chatbot Requirements, whose value can be retrieved 
either by means of a Question to the developer, or automatically via an Analysis of the 
chatbot model. Both kinds of requirements have a name, a text, a list of admissible 
Options, and can be multi-response or not. In addition, Analysis requirements define an 
evaluate method, which analyses the chatbot model and returns a list of Options . This 
latter class must extend the built-in abstract class Evaluator and implement its abstract 
method evaluate, which receives a chatbot model and returns the Options that this 
model fulfils. The recommendation consists of a list of Tools (cf. Figure 4.3). For each 
tool, the recommender stores the requirement options that are available, unavailable, 
unknown or are ultimately possible (i.e., not natively supported but achievable using a 
workaround). 
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The recommender currently follows the criteria described in Section 2.1.2, which 
is summarized in Table 4.3, but new ones can be added if needed. The table also 
shows the coverage of these requirements by two chatbot creation tools: Dialogflow 
and Rasa. Regarding analysis requirements, we check whether the chatbot model 
is multi-language (like in Listing 4), the targeted languages1, and whether it uses 
predefined or chatbot-specific entities, calls to external services, parameters, training 
phrases or regular expressions. Rasa does not support multi-language bots, but a 
workaround is generating one bot per language, hence the value possible in the table. 

Questions are chatbot requirements explicitly asked to the developer as they cannot 
be inferred from the chatbot model. The first seven questions in Table 4.3 deal with 
technical aspects. Specifically, we ask for the following issues: the social network 
the chatbot is to be deployed in (Dialogflow supports 16, and Rasa 8); the hosting 
server of the chatbot, since some platforms (e.g., Dialogflow) can host the chatbot 
themselves, but others (e.g., Rasa) require an external server; the level of support for 
version control, which is built-in in platforms like Dialogflow, while programming-based 
approaches like Rasa need to use an external version control system like github; the 
need to monitor the chatbot performance (e.g., Dialogflow provides some chatbot 
analytics); the persistence of utterances for their subsequent analysis; and the need to 
support speech recognition or sentiment analysis. 

The last three questions in Table 4.3 tackle organizational and managerial aspects 
concerned with open-source and price model requirements, and the level of expertise of 
the development team. For example, the expertise for using Rasa is higher than for 
Dialogflow, since the former requires programming. 

Since some requirements may be more important than others depending on the 
project, we assign an importance level to each requirement, which the developer can 
customize. The supported levels are: irrelevant, relevant, double relevant and critical. 
Irrelevant requirements are not considered for the recommendation, and critical ones 
are breaking factors (i.e., tools that do not comply with the requirement will not 
be recommended). For each tool, the recommender computes a score based on the 
supported requirements and their importance level. Available requirements add 1 to 
the score of a tool, unavailable ones add 0, unknown ones add 0.5, and possible ones add 
0.75. In all cases, double relevant requirements score double. Then, the recommender 
sorts the tools according to their score, and produces a report with the ranking of tools 
and how each requirement contributes to this ranking. 

1For brevity, Table 4.3 shows the number of languages supported, not the list of them. 
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Table 4.3 Requirements that the recommender currently takes into consideration.  

Text Multi
response 

Options Dialogflow Rasa 

Analyses 

Is the chatbot multi-language? false Yes avail. possib. 
No avail. avail. 

Which are the chatbot languages? true - 21 all 

Does the chatbot use new or predefined 
entities? true 

Predefined avail. avail. 
New entities avail. avail. 

None avail. avail. 

Does the chatbot call to external services? false 
One avail. avail. 

Multiple unavail. avail. 
None avail. avail. 

Does the chatbot use phrase parameters? false Yes avail. avail. 
No avail. avail. 

Does the chatbot need persistent or volatile 
parameter storage? true 

Persistent avail. avail. 
Volatile avail. avail. 

None avail. avail. 
Does your chatbot need natural language 
processing or pattern matching? true NLP avail. avail. 

Pattern avail. avail. 

Has the chatbot conversation loops? true Yes avail. possib. 
No avail. avail. 

Questions 
Which social networks do you want to deploy 
the chatbot in? true - 16 8 

Do you want to deploy the chatbot on your 
own host? false Tool host avail. unavail. 

Own host unavail. avail. 
Do you want to use a built-in version control 
system? false Yes avail. avail. 

No avail. avail. 
Do you require native support for chatbot 
analytics? false Yes avail. unavail. 

No avail. avail. 
Do you require native support for utterance 
persistence? false Yes avail. avail. 

No avail. avail. 
Do you require the chatbot to support speech 
recognition? false Yes avail. unavail. 

No avail. avail. 
Do you require the chatbot to support 
sentiment analysis? false Yes avail. unavail. 

No avail. avail. 

Do you require to use an open-source tool? false Yes unavail. avail. 
No avail. avail. 

Which price model do you plan to use? true 

Free avail. avail. 
Pay as you go avail. unavail. 

Quota unavail. unavail. 
Pay advanced feats. unavail. avail. 

What’s the level of expertise of the 
development team? false Low avail. unavail. 

High avail. avail. 
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Incorporating a new chatbot creation tool (e.g., Watson) into our framework requires: 
(i) informing the tool options for every requirement in the recommender; (ii) providing 
a code generator from Conga to the tool; (iii) optionally, providing a parser if reverse 
engineering is required. The Conga framework prevents the code generation for a 
tool whenever the chatbot requirements are unavailable in that tool. There may be 
some possible requirements though, meaning that their support is not native in the 
tool but they can be implemented. For instance, Rasa does not support multi-language 
chatbots, but this can be emulated by generating one chatbot per language. As another 
example, Dialogflow only supports one external service call per intent, and so, the 
generator only considers the first call and warns the developer. 

4.6 Architecture and Tool Support 

The Conga approach has been realized in a web application. It is designed to be 
extensible with further services like generators, validators, parsers and recommenders 
for different chatbot creation tools. The application back-end was mainly developed in 
Java. The Conga DSL was developed using EMF [95] and Xtext [13] and generators 
using Xtend [13]. The external services (generators, validators and parsers) are defined 
as REST APIs developed using Jersey framework [42]. PlantUML [80] is used to 
visualize the conversation flow as a graph. A video showcasing its use and some 
examples are available at https://saraperezsoler.github.io/CONGA/. 

Section 4.6.1 will describe the architecture of Conga and Section 4.6.2 the tool 
support. 

4.6.1 Architecture 

Conga is available to chatbot developers as a web application. Figure 4.5 shows its 
architecture. The front-end includes project, service and recommender managers. The 
project manager creates and deletes projects, the service manager allows new external 
service definitions to validate the model, generate code or transform chatbots into 
a Conga model, and the recommender manager handles the creation of a new tool 
description for a code generator. It also contains a DSL editor, a graphical renderer 
of conversation flow models, a questionnaire for the tool recommender, a visualizer of 
tool recommendations and importers, exporters and validators for some chatbot tools. 

The back-end handles the requests of the front-end. Managers store and read the 
information in a store model (explained below). Chatbot models created in the DSL 

https://saraperezsoler.github.io/CONGA/
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Figure 4.5 Conga’s architecture. 

editor are stored in Conga files. It also contains chatbot model general validation, 
recommendation computation and a service caller, which handles the external service 
calls to specific validators, code generators and parsers. Code generators and validators 
receive the chabot model serialized in an XMI format and return a zip file with the 
tool-specific files and a JSON with the errors respectively, and parsers receive a zip file 
with all the files of the chatbot and return the chatbot model in XMI format. 

The storage model of Conga conforms to the meta-model of Figure 4.6. The 
Chatbot definitions are stored in Projects. Each project has a User owner. Users may 
own several projects. Projects may also contain the developer’s RecomAnswers, made 
of a list of Question Answers. Question Answer has a reference to the question, the 
selected options for that question and the relevance level assigned to the question 
(irrelevant, relevant, double relevant, critical or critical all (to mark as critical each 
of the selected options in multi-response questions). RecomAnswer also stores the 
calculated ranking list of the recommender with the Tool Description and a score. 

4.6.2 Tool Support 

Figure 4.7 shows the main interface of Conga. The header (label 1) includes a link to 
the Conga documentation (hosted in Github), the menus of the project and service 
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Figure 4.6 Conga storage meta-model. 

managers, the name of the logged user, and a sign out button. The button panel (label 
2) contains buttons to save the file with the chatbot model, creating a new project, 
formatting the displayed file, validate the chatbot with a specific validator (Dialogflow 
or Rasa at the moment), selecting a development tool to generate code for (Dialogflow 
or Rasa at the moment), filling in the tool recommender questionnaire, and displaying 
the recommendation results. New projects can be created empty, or be populated 
from a specific model parsed from an existing chatbot implementation (currently from 
Dialogflow and Rasa). 

The DSL editor (label 3) contains the previous example of the chatbot to order a 
pizza. The editor is a text area with line numbers. It has syntax highlighting, content 
assistance and error reporting. In the figure, the editor shows several warnings. Error 
messages contain their source within brackets. The messages displayed in the figure 
come from the Dialogflow validator, and warn about the fact that Dialogflow does not 
allow more than one HttpAction (Validation rule D1 of Table 4.2) and its data will 
be ignored by the tool (Validation rule D2 of Table 4.2). Technically, the editor is 
implemented in Xtext, using its web deployment options for the CodeMirror JavaScript 
library [105]. 
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Figure 4.7 Conga’s main interface.  
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Figure 4.8 Conga recommender support. Requirements questionnaire (left side). 
Resulting ranking of tools (right side). 

Below the editor (label 4) a Problem Console displays the list of errors grouped by 
their source, with a colour code (green for a successful validation, yellow for warnings 
and red for errors), the error line and the error message. 

The flow diagram to the right (label 5) depicts the conversation flow defined by the 
chatbot model graphically. The diagram represents the user interactions as transitions 
and the chatbot interactions as states with the actions that the chatbot performs inside. 
This view was built atop PlantUML, and is updated whenever the chatbot file is saved. 

Figure 4.8 shows the recommender assistant. On the left side, there is an excerpt of 
the questionnaire that developers must answer to obtain tool recommendations. The 
questionnaire is created on-the-fly, dynamically according to the modelled requirements 
(cf. Figure 4.4). Each question has a list of options and a selector of relevance. The 
right part displays the ranking of tools ordered by decreasing scores. By clicking on 
the button to the right of a tool, the corresponding code generator is invoked and the 
developer can download the resulting artefacts. 

Figure 4.9 shows the service manager, which contains a list of declared services. 
It contains the service type (recommender, generator, validator or converted), the 
tool name, the service version, the location (the recommender does not have location 
because it is stored and calculated in the Conga tool), the last access to the location, 
the status (on, off, or error in case the service does not work correctly) and buttons to 
turn on/off, edit and remove the service. 
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Figure 4.9 Conga service manager. 

4.7 Evaluation 

This section reports on two evaluations performed over Conga. The first one was 
performed over Conga’s migrations capabilities (Sections 4.7.1). The details can 
be found in [76] and [77]. The second one was performed over Conga validation 
capabilities (Section 4.7.2). 

4.7.1 Evaluation of Migration Capabilities 

This section reports on an evaluation of Conga on a migration scenario that involves 
both backward and forward engineering. The goal is to answer two research questions 
(RQs): RQ1: Is Conga expressive enough to capture the details of existing chatbots? 
RQ2: Can the migration process be fully automated? For this purpose, we have 
migrated eight Dialogflow agents developed by third parties (seven from Github, one 
built by Google) into Rasa. Table 4.4 summarizes the experiment results. 

Game2 is a conversational agent for a numeric guessing game. Its Dialogflow 
specification is made of 30 JSON files, has one http request, and supports English and 
French. From this specification, the parser creates a model with 541 objects and 268 
lines of Conga code. Since Rasa does not support multi-language chatbots, two Rasa 
chatbots are generated from the Conga model, one for each language. These have 378 

2https://github.com/actions-on-google/dialogflow-number-genie-nodejs 

https://github.com/actions-on-google/dialogflow-number-genie-nodejs
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Table 4.4 Assessment metrics.  

Dialogflow Conga Rasa 
Back-end #Files Lang. #Obj. LOC #Chatbots Python LOC Markd. LOC YAML LOC 

Game yes 30 en/fr 541 268 2 378 242 362 
Room reservation no 17 en 717 196 1 253 166 137 
Coffee shop no 60 en 931 393 1 657 394 269 
Nutrition no 23 en 833 610 1 802 81 99 
Bike Shop yes 13 en 104 80 1 185 61 187 
Mystery Animal yes 199 en 7915 7042 1 9494 13722 879 
Smalltalk no 58 en 2776 1515 1 284 1421 281 
IoT: Turn lights yes 6 en 66 53 1 125 23 168 

lines of Python code (to define parameters and actions), 242 lines of Markdown code 
(to define intents and flows) and 362 lines of YAML code (to configure the chatbot). 

Room reservation3 is a chatbot to book hotel rooms. It has 17 files, and works in 
English. The migration produces a Rasa chatbot with 253 lines of Python code. 

Coffee shop is a Dialogflow pre-built agent to order food to a coffee shop. Its 
specification has 60 JSON files. These are parsed into a Conga model with 931 
objects. 

Nutrition4 is a chatbot to query the nutritional value of meals. Although it is a 
small chatbot with 23 files, it generates many lines of Python code because the entities 
have many entries 

Bike Shop5 is an agent to schedule appointments for a shop. It has 13 Dialogflow 
files and generates 185 lines of Python code, 61 lines of Markdown code and 187 lines 
of YAML code. 

Mystery Animal6 is a guessing game via QA. It is the largest chatbot of the set 
with 199 Dialogflow files and generates 13722 lines of Markdown code. 

Smalltalk7 is a chitchatting agent with 58 files and generates 284 lines of Python 
code, 1421 lines of Markdown code and 281 lines of YAML code. 

IoT8 turns the lights on/off via NL. It is the smallest chatbot of the set with 6 
Dialogflow files. 

Conga was able to automatically migrate all chatbot logic from Dialogflow to 
its model, which confirms the expressiveness of Conga (RQ1). However, an aspect 
required manual intervention. Some Dialogflow agents had back-ends developed using 

3https://github.com/dialogflow/dialogflow-java-client-v2/tree/master/samples/ 
resources 

4https://github.com/Viber/apiai-nutrition-sample 
5https://github.com/dialogflow/fulfillment-bike-shop-nodejs 
6https://github.com/googlecreativelab/mystery-animal 
7https://github.com/Janis-ai/Dialogflow 
8https://github.com/google/voice-iot-maker-demo 

https://github.com/dialogflow/dialogflow-java-client-v2/tree/master/samples/resources
https://github.com/dialogflow/dialogflow-java-client-v2/tree/master/samples/resources
https://github.com/Viber/apiai-nutrition-sample
https://github.com/dialogflow/fulfillment-bike-shop-nodejs
https://github.com/googlecreativelab/mystery-animal
https://github.com/Janis-ai/Dialogflow
https://github.com/google/voice-iot-maker-demo
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Google libraries tightly integrated with Dialogflow. Those cases required configuring 
the Google services manually and, in one case, implementing a middleware. Generally, 
the chatbot/back-end connection cannot be migrated fully automatically since it may 
rely on native technologies of the chatbot platform (e.g., Google’s cloud, AWS services). 
Except for back-end connection, migration was fully automatic (RQ2). These results 
are very promising, but more case studies are needed to strengthen the confidence in 
the capabilities of Conga. Moreover, we manually checked that the produced Rasa 
chatbots preserved the original Dialogflow behaviour, but we plan to automate this 
check in future work (e.g., using tools like Botium [14]). 

More details of the evaluations can be found in [76] and [77]. 

4.7.2 Evaluation of Validation Capabilities 

This evaluation reports on the Conga validation capabilities and aims at answering 
the following research question: Can Conga help in the quality assurance of existing 
chatbots?. 

To perform the evaluation we collected 291 chatbots (140 Dialogflow, 151 Rasa) 
developed by third parties. We used four different sources: Github to collect open 
source chatbots, the Dialogflow platform (which includes pre-defined template agents), 
the Kommunicate website9 (which includes example agents in Dialogflow), and the 
Rasa framework website, to obtain Rasa chatbots examples. 

To answer this question, we converted the chatbots into Conga and executed 
the general validators. Table 4.5 shows a report with the results. The validators 
found issues in both cases. They are usually warnings, but there are three errors in a 
Dialogflow chatbot. The chatbot HR-Bot contains three LanguageInputs which have 
languages that are not defined in the chatbot languages. However, the total amount 
of problems in Rasa is fifty times bigger than in Dialogflow. The highest value in 
the total of problems in Rasa is the warning G17 (two training phrases should not be 
equal in the same intent), but the highest value in the number of chatbots is G19 (the 
chatbot should have a fallback intent). The G19 warning is one of the lowest values 
in Dialogflow because, usually, the fallback intent is defined by default, but in Rasa, 
it should be defined in the configuration file, which is less intuitive. In Dialogflow, 
the most common issue, in both cases, is G9 (there should be one LanguageInput per 
chatbot language). 

9https://docs.kommunicate.io/docs/bot-samples 
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Table 4.5 Report of the general validators  

Dialogflow Rasa 
Rule id #Bots %Bots #Total #Bots %Bots #Total 

Errors 

G1 0 0,00% 0 0 0,0% 0 
G2 1 0,71% 3 0 0,0% 0 
G3 0 0,00% 0 0 0,0% 0 
G4 0 0,00% 0 0 0,0% 0 
G5 0 0,00% 0 0 0,0% 0 
G6 0 0,00% 0 0 0,0% 0 
G7 0 0,00% 0 0 0,0% 0 
G8 0 0,00% 0 0 0,0% 0 

Warnings 

G9 71 50,71% 756 49 32,5% 260 
G10 0 0,00% 0 5 3,3% 5 
G11 4 2,86% 10 0 0,0% 0 
G12 32 22,86% 58 16 10,6% 34 
G13 8 5,71% 45 84 55,6% 443 
G14 13 9,29% 45 0 0,0% 0 
G15 66 47,14% 250 40 26,5% 103 
G16 8 5,71% 110 17 11,3% 160 
G17 35 25,00% 347 65 43,0% 24414 
G18 30 21,43% 88 75 49,7% 3206 
G19 7 5,00% 7 122 80,8% 122 
G20 22 15,71% 165 0 0,0% 0 
TOTAL - - 1884 - - 28747 
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Figure 4.10 Percentage of chatbots per amount of problem types. 

Figure 4.10 shows a graphic with the percentage of chatbots per amount of problem 
type. Only 10,7% in Dialogflow and 2% in Rasa of the chatbots lack problems (15 and 
3 respectively). In both cases, the maximum number of problem types in a chatbot is 
7 (2,9% of the chatbots in Dialogflow and 1% of the chatbots in Rasa). Most of the 
chatbots have between 1 and 2 problem types in Dialogflow and between 2 and 4 in 
Rasa. 

Figure 4.11 displays the relation between the percentage of chatbots and the total 
amount of problems. As we can see, in both cases, most of the chatbots have between 
0 and 9 errors and the number of chatbots with more problems decreases. Finally, the 
maximum amount of problems in a Dialogflow chatbot is 464, and in Rasa 11628. 

As we see, the Conga validator is able to find, both, errors and warning in real 
chatbots. 

4.8 Using Conga for Measuring Chatbot Designs 

Conga can be used for measuring and comparing heterogeneous chatbots. In this 
respect, Asymob [22, 50] is a web platform that enables the measurement of chatbots 
using a suite of 20 metrics. The metrics are defined on Conga as a neutral chatbot 
design language, becoming independent of the implementation platform. Using Conga 
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parsers, Asymob supports the translation of chatbots defined in several platforms into 
a Conga model to perform the measurements. Asymob’s metrics help in detecting 
quality issues and serve to compare chatbots across and within technologies. The 
tool also helps in classifying chatbots along conversation topics or design features by 
means of two clustering methods: based on the chatbot metrics or on the phrases 
expected and produced by the chatbot. A video showcasing the tool is available at 
https://www.youtube.com/watch?v=8lpETkILpv8. 

4.9 Related Work 

The popularity of chatbots has triggered the proposal of many tools for their construc
tion. Section 2.1.2 has a classification of features of these tools, and this section revises 
works that simplify the forward engineering of chatbots, their reverse engineering and 
migration, or provide suggestions or guidelines for chatbot development. 

Automated development of chatbots. Given the effort and expertise required 
to build chatbots, some authors have proposed automating their development. The 
most typical approach consists in automatically generating chatbots from well-defined 
sources, domains or tasks. This approach is used in [21] to generate chatbots for data 
exploration starting from data models; in [101] to generate chatbots from OpenAPI 
specifications to help identifying the right API; in [32] to produce Xatkit chatbots out 

https://www.youtube.com/watch?v=8lpETkILpv8
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of open data APIs; in [8] to create Dialogflow chatbots for video game development; in 
previous sections (Section 3.3.2) to synthesize Dialogflow chatbots from meta-models 
to support conversational queries; and in Section 3.3.1 to generate Dialogflow chatbots 
to instantiate meta-models using NL syntax. All these works take as input structured 
artefacts and apply predefined patterns to generate chatbots for a particular technology 
and purpose (e.g., data query or data exploration). Instead, Conga enables the 
generation of chatbots for different technologies, and chatbots may target arbitrary 
domains, tasks and conversation flows. Actually, Conga could serve as a good target 
for chatbot generation approaches, since then chatbots for specific platforms could be 
synthesized. 

An alternative way to automate chatbot development is to reuse fragments of 
existing chatbots. The idea of creating personal chatbots by applying a mashup-based 
approach was initially proposed in [29]. In [44], the authors discuss how automation, 
pre-configuration, and templates can aid newcomers to develop FAQ chatbots. Similarly, 
a template-based chatbot construction approach is proposed in [7], where the templates 
are common SPARQL queries for Enterprise Knowledge Graphs. As in the case of 
chatbot generation, all these approaches are not general-purpose, but they produce 
chatbots for a specific task. Moreover, Conga enables complementary ways of reuse: 
reusing the knowledge about which chatbot technology to target, and reusing the same 
design to implement a chatbot for several technologies. 

More similar to our proposal, Xatkit [30] is a model-driven solution for developing 
chatbots that relies on a textual DSL. However, differently from us, Xatkit has its own 
bot execution engine that builds on Dialogflow to identify the user intent using NLP, and 
does not generate code for existing chatbot development tools. Moreover, even though 
Xatkit is model-based, it does not address the recommendation of suitable chatbot 
platforms, nor reduces the risk of vendor lock-in by supporting chatbot migration. 

Baudat et al. [11], facilitate the construction of chatbots for the Watson platform 
via an OCaml library. The approach synthesizes JSON configuration files, and uses 
ReactiveML to orchestrate the conversation. This approach is generative, it is limited 
to Watson and does not support reverse engineering. 

Reverse engineering and migration of chatbots. Even if many chatbot devel
opment platforms use similar concepts, their realisation varies between platforms [78]. 
This is problematic as most of the existing solutions are closed, and their use implies 
vendor lock-in since they typically lack migration capabilities. Given the plethora of 
available tools and the early stage of many of them, we expect that migration across 
technologies will be a common need; however, there is currently hardly any support 
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for migration. Just a few solutions like Rasa and early versions of Xatkit are open 
source. Nonetheless, both demand high technical expertise because they are frameworks 
where chatbots are developed using general-purpose programming languages (Python 
in Rasa, and Java in Xatkit). Moreover, only Rasa provides support for migration 
from Dialogflow, though this support is limited and requires manual data conversion 
and manual intervention in most migration steps. 

Regarding academic works, in [9], the authors envision a reverse engineering process 
called botification to produce a conversational interface for existing web sites. In 
a similar vein, Chittò et al. [27] translate websites into chatbots based on HTML 
annotations and a mediator service. The latter chatbots can be used to improve web 
browsing accessibility [79]. Instead, our system supports migration between chatbot 
platforms. 

Matic et al. [54] propose a microservice architecture for chatbots, which is in
dependent on the NLU component used. This is achieved by the use of a neutral 
meta-model with NLU concepts (like intents and entities), as well as platform-specific 
meta-models for Dialogflow and Rasa. This architecture permits selecting the desired 
NLU component for the chatbot. In our case, Conga includes not only concepts of 
NLU but also of the bot conversation flow, bot actions, and considers recommendations 
to specific platforms. Moreover, Conga does not rely on a chatbot execution engine, 
but on code generators to synthesize code for the target platform. 

Overall, there are proposals to botify non-conversational interfaces, but – to the 
best of our knowledge – not to reengineer existing chatbots. This also implies that 
there are no general proposals for chatbot migration. 

Recommender systems and guidelines for chatbot development. The 
popularity of chatbots has raised concerns on proper conversational design. For example, 
IBM’s Natural Conversation Framework [61] proposes conversation patterns [62] and 
conversation design principles [60, 88]. The latter include guidelines like recipient 
design (i.e., allow multiple conversation paths for different user types), minimization 
(i.e., use concise chatbot answers), and repair (i.e., provide support for clarifications). 
In this line, Chatbottest [24] defines guidelines for identifying chatbot design issues in 
categories like answering, error management, intelligence, navigation, personality and 
understanding. However, the burden is on the developer to manually test whether the 
chatbot fulfils the guidelines. 

In [1], the authors discuss the challenges in chatbot development by analysing 
posts in StackOverflow. Most posts are about chatbot development, integration, and 
Natural Language Understanding (NLU). Developers consider the posts of building 
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and integrating chatbots topics more helpful compared to other topics. In [2], the 
authors compare four NLU components (Dialogflow, LUIS, Watson and Rasa) for their 
use in software engineering chatbots. They conclude providing five recommendations 
for fine-tuning the NLUs when developing chatbots. Since Conga is a neutral design 
notation, we have included validations encoding both platform-specific checkings and 
general best practices (cf. Table 4.2). Actually, our rule G15 is also mentioned in [2] 
(“Train NLUs with multiple queries per intent”). 

Some researchers have identified important aspects to consider in chatbot design, 
like functional, integration, analytics and quality assurance [68]. Section 2.1.2 pro
posed additional technical and managerial factors which could be used for selecting 
chatbot development tools. Conga uses these latter factors as a basis for their tool 
recommendation. 

Overall, our contribution in this area is two-fold. On the one hand, extensible 
validators able to detect – at the design level – errors, potential problems and lack of 
adjustement to best practices. On the other, an extensible recommender that suggests 
the most suitable target platform given a chatbot design and other factors. 

4.10 Summary and Conclusions 

This chapter has presented a model-driven solution for chatbot development, reengi
neering and migration. The approach is funded on a neutral chatbot design language, 
a textual DSL called Conga, explained in Section 4.3. It includes an extensible 
mechanism to define validators, parsers and code generators for specific chatbot con
struction technologies (Section 4.4). The approach does not involve execution, but a 
recommender suggests the most suitable chatbot tool given a chatbot model and further 
requirements (Section 4.5). Section 4.6 presented the architecture and tool support 
for the approach. Section 4.7.1 evaluated Conga’s migration capabilities migrating 
8 chatbots from Dialogflow to Rasa with encouraging results. Then, Section 4.7.2 
evaluated Conga’s validator, also with positive results. 



Chapter 5 

Conclusions and Future work 

This thesis explored the use of chatbots to help in modelling tasks (Chapter 3) and 
the use of MDE techniques to help in the chatbot definition and selection of the most 
suitable chatbot creation tool (Chapter 4). 

Chapter 3 studied the uses of chatbots as front-ends for modelling services. On 
one hand, it suggested use a modelling chatbot to create conceptual models (meta
models) in social networks (Section 3.2). The chatbot interprets messages in NL and 
creates the model accordingly. Using NL as modelling interface has the advantage 
of lowering the entry barrier to modelling, and any element included in the model 
is immediately justified by the NL message used for its creation. Moreover, as the 
chatbot is integrated within social networks, which are widely used in our daily lives, 
users do not need to install new applications or learn new interfaces. To enrich the 
traceability and rationale of modelling decisions, the chatbot produces a history model 
tracking user contributions to model elements. To ease decision-making by a potentially 
large heterogeneous group, it incorporates a soft-consensus mechanism to measure 
the degree of agreement based on the group preferences, and avoid the bias that a 
human moderator may introduce. This approach was prototyped in a tool called 
Socio. Socio’s modelling skill and collaborative mechanisms were evaluated with 
a preliminary user study with encouraging results (Section 3.4.1). Then, a complete 
user study was performed with 54 participants to evaluate the usability of Socio with 
positive results (Section 3.4.2). 

On the other hand, complementing the previous approach, Section 3.3 introduces 
two approaches to create (Section 3.3.1) and query (Section 3.3.2) domain-specific 
models in social networks using NL. These approaches are based on annotating domain 
meta-models with configuration information for the NL syntax, and translating these 
data into a chatbot for creation or query models. The chatbots can be deployed on 
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platforms like Telegram.The feasibility of this solution has been demonstrated by means 
of a case study where targeting the creation of a modelling chatbot atop an existing 
cloud system to define and run streaming data applications. 

As future work, we plan to improve the NL processing of Socio adding more 
rules, for example to modify the cardinality of an existing feature. We will incorporate 
customizable collaboration protocols for different styles of decision making, e.g., based 
on votings, or roles. We will integrate further services into our modelling chatbots, like 
code generators and model transformation engines deployed in the cloud, in order to 
provide a complete MDE solution interfaced by NL. We plan to perform a usability 
study with users for the last two approaches, as well as to apply existing quality 
frameworks for chatbots like [68, 69]. 

Chapter 4 proposed an MDE approach to chatbot development. It includes a 
textual chatbot design DSL explained in Section 4.3; extensible mechanisms to define 
validators, parsers and code generators for specific chatbot construction technologies 
(Section 4.4) and a platform recommender (Section 4.5). The approach supports both 
forward and reverse chatbot engineering. Section 4.6 presented the architecture and a 
tool called Conga. Section 4.7.1 evaluated Conga’s migration capabilities migrating 
8 chatbots from Dialogflow to Rasa with encouraging results. Then, Section 4.7.2 
evaluated Conga’s validator, also with positive results. 

In the future, we plan to extend Conga framework to support more chatbot creation 
tools, facilities for model-based testing, and quick-fixes for violations of chatbot best
practices. We plan to perform a user study with developers to assess the advantages of 
our approach, as well as an evaluation of whether migration fully preserves the chatbot 
behaviour, automated with Botium [14]. 



Chapter 6 

Conclusiones y Trabajo Futuro 

En esta tesis se ha explorado el uso de chatbots para ayudar en las tareas de modelado 
(Capítulo 3) y el uso de técnicas de MDE para ayudar en el desarrollo de chatbots y 
en la selección de la mejor herramienta de desarrollo de chatbots (Capítulo 4). 

El capítulo 3 ha estudiado el uso de chatbots como interfaz de entrada a servicios 
de modelado. Por un lado, se ha sugerido el uso de chatbots de modelado para crear 
modelos conceptuales (meta-modelos) en redes sociales (Sección 3.2). El chatbot 
interpreta mensajes en NL para inferir la creación del modelo. Usar lenguaje natural 
como interfaz de modelado tiene la ventaja de reducir la barrera de entrada al modelado, 
y cualquier elemento incluido en el modelo queda inmediatamente justificado por el 
mensaje en lenguaje natural usado para su creación. Mas aún, como el chatbot está 
integrado con redes sociales, que usamos comunmente en nuestro día a día, los usuarios 
no tienen que instalar nuevas aplicaciones o aprender nuevas interfaces. Para enriquecer 
la trazabilidad y la lógica tras las decisiones de modelado, el chatbot crea un modelo 
para el historial que guarda las contribuciones de los usuarios a los elementos del modelo. 
Para facilitar la toma de decisiones por parte de un grupo heterogéneo potencialmente 
grande, el chatbot incorpora un mecanismo de consenso para medir el grado de acuerdo 
basado en las preferencias del grupo y así evitar el sesgo que puede introducir un 
moderador. Se ha creado un prototipo llamado Socio. Se ha evaluado la capacidad 
de Socio para asistir en las tareas de modelado, así como el mecanismo de consenso, 
con unos estudios de usuario preliminares con resultados alentadores (Sección 3.4.1). 
Posteriormente se ha realizado un estudio completo con 54 participantes para evaluar 
la usabilidad de Socio, también con resultados positivos (Sección 3.4.2). 

Por otro lado, complementariamente al enfoque anterior, la Sección 3.3 introduce 
dos enfoques para crear (Sección 3.3.1) y consultar (Sección 3.3.2) modelos de dominio 
en redes sociales usando lenguaje natural. Los enfoques están basados en anotaciones 
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de meta-modelos de dominio con información de configuración para la sintaxis en 
lenguaje natural, y transformar estos datos en chatbots para la creación o consulta 
de modelos. Los chatbots se pueden desplegar en plataformas como Telegram. La 
viabilidad de esta solución se ha demostrado con un caso de estudio donde se ha creado 
un chatbot de modelado desde un sistema en la nube para definir y ejecutar aplicaciones 
de trasmisión de datos. 

Como trabajo futuro se planea mejorar el procesamiento de lenguaje natural 
de Socio añadiendo nuevas reglas, por ejemplo para modificar la cardinalidad de 
propiedades ya existentes. Se incorporarán protocolos de colaboración personalizables 
para distintos estilos de toma de decisión, por ejemplo, basado en votaciones o roles 
de usuario. Se integrarán nuevos servicios en nuestros chatbots de modelado, como 
generadores de código y motores de transformaciones de modelos desplegados en la 
nube, para facilitar una solución MDE completa a través de lenguaje natural. Se planea 
realizar un estudio de usabilidad con usuarios para los dos últimos enfoques, además 
de aplicar marcos de calidad existentes para chatbots como [68, 69]. 

El Capítulo 4 ha propuesto un enfoque MDE para el desarrollo de chatbots. 
Incluye un DSL textual para el diseño de chatbots, explicado en la Sección 4.3; un 
mecanismo extensible para definir validadores, parsers y generadores de código para 
tecnologías concretas de construcción de chatbots (Sección 4.4); y un recomendador de 
plataformas (Sección 4.5). El enfoque soporta ingeniería de chatbots directa e inversa. 
La Sección 4.6 ha presentado una arquitectura y una herramienta de soporte llamada 
Conga. La Sección 4.7.1 describe una evaluación de la capacidad de Conga para la 
migración, migrando 8 chatbots desde Dialogflow a Rasa con resultados prometedores. 
Posteriormente, la Sección 4.7.2 ha evaluado el validador de Conga también con 
resultados positivos. 

En el futuro se planea extender el entorno de Conga con soporte para más 
herramientas de creación de chatbots, infraestructura para pruebas basadas en modelos, 
así como quick-fixes para arreglar problemas en el chabot. Se planea realizar un estudio 
de usuario con desarrolladores para comprobar los beneficios de nuestro enfoque. 
Además, se pretende llevar a cabo una evaluación que muestre si la migración mediante 
Conga preserva el comportamiento del chatbot, de forma automatizada usando 
Botium [14]. 
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1. Introduction 
Many software development activities are not individual but require collaboration among 
teams of stakeholders. Modelling is no exception to this rule since the initial stages of 
development generally involve heterogeneous partners with diverse background and 
likely distributed. Among them, the participation of domain experts is essential for 
building successful domain models. However, the use of highly technical and unwieldy 
modelling tools may hinder their engagement. 

As any group activity, collaborative modelling needs mechanisms for decision-
making and consensus building. This includes support for the proposal, discussion and 
selection of modelling alternatives. Given that large-scale collaboration is often the norm 
in software projects, modelling tools should provide handy and scalable means for 
discussion and collaboration3. 

Nowadays, social networks and messaging systems are pervasive to discuss among 
peers, keep contact with friends and organize all sorts of activities. Not only general-



purpose networks like Twitter1, Facebook2, Whatsapp3 or Telegram4 have boosted, but 
specialized work-team nets like Slack5, Workplace6 or Yammer7 have spread in 
enterprises. The reason of this success is their agility, simplicity of use, and the 
possibility to use them everywhere and in mobility, covering the need to stay connected 
while being familiar to people. 

The use of social media has also disrupted how software engineers work9, changing 
the way developers communicate with colleagues and participate in open communities. 
Advances in natural language (NL) processing have enabled the proliferation of chatbots 
which run on social networks and offer services to users upon NL requests, thereby 
mimicking human responses.  Developers use bots, e.g., to automate deployment tasks, 
schedule tasks like sending reminders, integrate communication channels, or customer 
support6. They have also been proposed to access API documentation11 and analyse 
software projects1. 

Previously8, we have used social networks for collaborative modelling to leverage 
on their ubiquity, extended use, scalability and discussion support. Since interaction 
within social networks is performed through NL, we presented a chatbot called SOCIO 
that creates domain models out of requirements expressed in NL. This promotes the 
participation of non-modelling experts in the modelling task. Here, we extend SOCIO to 
ease decision-making by combining facilities for creating model branches, with soft 
consensus mechanisms5 that assist the team in selecting among alternatives. 

 
2. Collaborative modelling in social networks using chatbots 
Collaborative modelling can occur offline or online2. The former yields asynchronous 
interactions where users check out models from a version control system, perform local 
changes, and commit them back to the server. Online collaboration is synchronous, with 
users meeting in collaborative sessions likely from remote places. This collaboration 
mode is more appropriate in our context as it supports early discussions and knowledge 
building, but it demands advanced tooling in terms of context awareness (i.e., knowing 
who is doing what), discussion (e.g., chats) and coordination (e.g., collaboration 
protocols). 

Existing tools for online collaborative modelling are either diagramming web 
applications (e.g., GenMyModel8, Lucidchart9, AToMPM10, the online MONDO 
collaboration framework2) or dedicated modelling tools (e.g., MetaEdit+10, SPACE-
DESIGN4). In all cases, building models requires the direct manipulation of diagrams, 
which is laborious and may hinder the active involvement of domain experts with low 
technical profile. Although some of them provide discussion channels, they are ad-hoc 
and must be learned. 

Our work radically departs from these approaches and looks at modelling as an add-
on to a truly discussion environment. In particular, we rely on the discussion and 
interaction mechanisms offered by social networks based on micro-blogging – like 

                                                      
1 https://twitter.com/  
2 https://facebook.com/  
3 https://www.whatsapp.com/  
4 https://telegram.org/  
5 https://slack.com  
6 https://www.facebook.com/workplace/  
7 https://www.yammer.com/  
8 https://www.genmymodel.com/  
9 https://www.lucidchart.com/  
10 http://www.metacase.com/  



Twitter or Telegram – as they are familiar to many people and do not require installing or 
learning new applications. Thereby, a collaborative session occurs within a social 
network, and may involve any number of stakeholders with both technical and non-
technical expertise, who can discuss and coordinate via regular short messages. 

To assist in the modelling task, a chatbot called SOCIO can be added as a participant 
to the session. The bot interprets domain requirements in NL and creates a domain model 
out of them. NL lowers the entry barrier of modelling to domain experts, who may not 
necessarily know about modelling and may find modelling tools intimidating. Moreover, 
text interfaces are lightweight and simple to use compared to diagrammatic editors, 
where one may need to take care of the model layout.  

Interacting with SOCIO depends on the social network; in Telegram, the bot is 
addressed through commands starting by /. For example, /talk permits describing a 
domain requirement to the bot. Upon receiving this command, the bot parses the 
requirement using the Stanford NL parser7, and applies a set of extensible NL processing 
rules that trigger update actions on the model. Then, it sends a picture of the resulting 
model back to the users, highlighting the modified elements. SOCIO also provides other 
modelling facilities, like direct model manipulation using NL, model validation, 
exporters to Ecore/EMF (the backend technology used for diagrams), and statistics of 
user contributions. More information about SOCIO8 is available at  
https://saraperezsoler.github.io/ModellingBot/. 

Each domain model is developed within a modelling project. The project creator is 
its owner and specifies its access policy, which can be public (anyone can read and 
modify), protected (anyone can read, but only the owner can modify), or private (only the 
specified users can read and modify). After configuring the project, the modelling session 
can start. 

Figure 1 illustrates a collaborative modelling session in Telegram, where SOCIO 
assists a modelling expert (ME) and a domain expert (DE) to build a model for marketing 
campaigns. The DE is the leader of a marketing department and wants an application to 
manage campaigns and their resources. The session occurs within a Telegram group to 
which all belong. The figure has two columns to be read top-down, left-to-right. First, the 
ME sends a message to initiate the discussion, and the DE describes a domain 
requirement to the bot using the /talk command. These messages are received by all 
group members. As a response to the /talk command, the bot first echoes the command, 
and then adds three classes in the domain model that represent the subject and direct 
objects of the sentence, and two relationships for the verb. The relationships are 
compositions because the verb is to contain (or a synonym), and are unbounded because 
the direct objects (e.g., employees) are in plural. The figure shows further interactions, 
which seamlessly mix discussions among human participants and commands addressing 
the bot. The last interactions show how to validate and download the model.  

 
3. Soft consensus for group decision-making  
The participants in a collaborative session may require exploring several solutions to a 
modelling problem, and eventually, they will have to opt for one of them. If collaboration 
is distributed or involves many participants, tool assistance to facilitate consensus is 
essential for agile coordination. 

The DEs in our example have expressed the need for a communication channel 
between the team members of a marketing campaign. The following options are being 
considered: 



 
 
Figure 1. Collaborative modelling session in Telegram with SOCIO 

• A message box per employee, not necessarily working in the same campaign. This 
would be like an e-mail or peer-to-peer messaging system. 

• A special type of work task for discussion, where any employee can post comments 
and reply to other comments. 

• A forum associated to each marketing campaign, where work-team members can 
contribute news organized into threads, like in bulletin boards. 

To study different possibilities, SOCIO supports branch groups. These collect the 
alternatives and discussions to model an aspect of a system as different branches of the 



current model. In our example, we use this facility to create a group called 
communication with three branches, one for each considered solution: p2pMessages, 
DiscussionTasks, and BulletinBoard. Anyone with editing access can create a branch 
group, and the branch creator configures its participants. In each branch, the domain 
model evolves separately from the other branches, according to the bot-directed messages 
sent within the branch. SOCIO distinguishes the elements created in a branch from the 
trunk elements using different colours and the <Old> stereotype (see models in Figure 
2(a)). 

After outlining the alternative solutions in branches, the participants need to agree 
on the most suitable one. For this, SOCIO incorporates a soft consensus mechanism for 
multi-person decision-making5 that assists in choosing the option that is acceptable to all 
group members. Figure 2(c) shows its working scheme. Participants can express their 
favourite solution in several ways, like ordering the alternatives from better to worse, or 
giving a score to each option (e.g., from 1 to 10). Then, an iterative consensus process 
identifies the preferred alternative based on the expressed preferences. We use “soft” 
consensus because unanimous agreement can be difficult to achieve, especially in 
numerous groups or with experts with dissimilar backgrounds. Soft consensus models5 
permit measuring the degree of consensus in a group, provide feedback to each 
participant on the current consensus, and iterate to improve the consensus and converge 
towards a shared consensus threshold. 

Figure 2(a, b) illustrates the use of SOCIO to select by consensus one solution in the 
communication branch group. Part (a) displays the project owner starting the polling and 
picking the voters, as well as one voter (Antonio) expressing his preferences through 
private vote. During the polling, SOCIO will only show the new elements added in each 
solution and their context, to highlight the variations.  

Figure 2(b) shows how consensus is measured. When all voters have indicated their 
preferences or when a predefined deadline is reached, the system aggregates all answers 
into a collective preference vector, and computes a global ranking for the alternatives, 
and a consensus measure ranging from 0 to 1. If the consensus is below a threshold (0.75 
by default), another iteration is performed. In the figure, the consensus is 0.57 after the 
first iteration, which is below the threshold. Hence, voters are ranked according to how 
far their preference is to the collective preference, and the farthest ones (according to a 
threshold) are invited to change their choice, while the rest remain unchanged. This 
process promotes the convergence to an acceptable group consensus5. When the 
consensus reaches the threshold or when the project owner decides so, the most preferred 
branch is integrated with the main model trunk, and the other branches closed. The 
branches and voting results can be consulted in the project history. 
 
4. Discussion and outlook  
In this paper, we have stressed the collaborative nature of modelling and have argued that 
this collaboration can take place within social networks and mediated by chatbots which 
are interfaced by NL and, under the hood, perform modelling tasks. Using NL as 
modelling interface has the advantage of lowering the entry barrier to modelling, and 
does not interrupt the group discussion flow because messages for discussion and 
modelling are intertwined. Moreover, any element included in the model is immediately 
justified by the NL message used for its creation, hence documenting its provenance. To 
enrich traceability and rationale of modelling decisions, we also produce a history model 
tracking user contributions to model elements8. 
 



 
Figure 2. Consensus decision-making with SOCIO (a, b). Consensus process scheme (c)  

 
To ease decision-making by a potentially large heterogeneous group, we incorporate 

a soft-consensus mechanism to measure the degree of agreement based on the group 
preferences, and avoid the bias that a human moderator may introduce5. To assess this 
hypothesis, we performed a small-scale evaluation with 8 participants recruited from the 
Master and Doctoral programs of the Department of Computer Science of our university. 
6 participants were computer scientists, 1 engineer in telecommunication, and 1 physicist. 
After attending a 10-minutes tutorial about SOCIO, they used it to select the best solution 



among three possibilities for two different projects, first without consensus mechanism, 
and then using it. Interestingly, without the consensus mechanism, they ended up 
organizing a public polling within Telegram, but discrepancies among participants 
remained until the end of the experiment. They also answered a five-point Likert scale 
survey on the consensus mechanism, which was considered especially useful for large 
groups (average 4.7/5), and with an outcome that reflected the opinion of the majority 
(4.8/5) and was deemed objective because of the private voting (4.3/5). 

The practical usability of modelling chatbots depends on their ability to interpret 
NL. A preliminary assessment of a previous version of SOCIO revealed that modelling 
using NL was liked more than using graphical editors (75%), while its NL processing 
was reasonable but improvable (participants gave an average of 62.5% for accuracy)8. To 
mitigate possible mistakes of the NL processor, SOCIO permits manipulating models 
directly through NL (i.e., using sentences like “remove employee” which are parsed and 
interpreted) and undoing actions. While messages in micro-blogging systems are short, 
which facilitates NL processing, they foster the use of slang and abbreviations, which we 
will consider in future work. We also plan to extend SOCIO with the ability to answer NL 
questions about a model, to assist domain experts in subsequent decisions.  

Enabling social networks for collaborative modelling brings exciting possibilities, 
like involving large groups of people (i.e., crowdsourced modelling), or its use in 
Software Engineering education. We also foresee chatbots for other modelling tasks, like 
model quality monitoring and refactoring suggestions, and for other diagram types. 
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Abstract Traditionally, users have interacted with computers through
graphical or command line interfaces. However, these may still be too
technical for certain users, or cumbersome to use in some scenarios (e.g.,
in mobility). To tackle this issue, recent advances in natural language (NL)
processing have boosted the proliferation of chatbots: programs whose user
interface is NL and are frequently integrated within social networks.

In this paper, we explore the usage of NL as concrete syntax for domain-
specific modelling languages, and propose an approach to automate the
creation of modelling chatbots that converse with users to assist them
in building domain-specific models. As chatbots are deployed on social
networks, modelling becomes collaborative. We provide an implementation
of our approach on top of Google’s DialogFlow, and illustrate its usefulness
on the basis of a case study to build and deploy streaming data applications
using a conversational interface.

Keywords Model-Driven Engineering; Domain-Specific Languages; Chat-
bots; Natural Language Processing; DialogFlow.

1 INTRODUCTION
Traditionally, humans have interacted with computers through graphical or command
line user interfaces [Jac12]. While these interaction mechanisms are well-known and
widely accepted, some users may lack the technical skills required to use them, or may
be inappropriate in certain scenarios, e.g., involving mobility.

Recent advances in natural language (NL) processing have boosted the proliferation
of so-called chatbots. These are programs whose user interface is based on NL conver-
sation, and are integrated within social networks like Telegram1, Facebook messenger2

1https://telegram.org/
2https://www.messenger.com/
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or Slack3. This approach to interact with software services has the advantage of
avoiding the need to install new apps or swapping between the social network and an
app to access the service. Moreover, chatbots are accessible by potentially large user
communities, and in collaboration. According to a recent Gartner report [Moo18],
25% of worldwide customer service operations are expected to use chatbots by 2020.

Model-driven engineering (MDE) [Sch06] uses models to automate all phases in
software development. Models in MDE are built using modelling languages, frequently
domain-specific ones. Domain-specific languages (DSLs) [KT08] are languages tai-
lored to a specific area, like logistics, urban planning or game development. Their
concrete syntax is normally textual (similar to a programming language) or graphical
(typically graph-like). Modelling using DSLs is an activity not only performed by
developers, but there are proposals targeted to end-users, e.g., to define touristic
routes [VPGdL17], build mobile apps [DP14], control molding machines [PP09], or
create IoT applications [MNPP17].

Following that philosophy, this paper explores the usage of NL as concrete syntax
for modelling languages. Hence, we propose an approach where models are built
by dialoguing with a supporting chatbot in NL. As chatbots are deployed on social
networks, modelling becomes collaborative and more amenable to be used in mobility
than desktop applications. This approach would be particularly useful for DSLs
oriented to end-user collaborative tasks, like organizing meetings or planning trips.
These activities would be performed within the social network in NL and mediated by
a bot, which reflects the user conversations in a domain-specific model. Then, this
model could be executed, e.g., calling external APIs to book the meeting rooms or the
trip hotels.

The increasing popularity of chatbots has raised numerous frameworks for their
creation, like DialogFlow [Goo19], the IBM Watson Assistant [IBM19], the Microsoft
Bot Framework [Mic19], or FlowXO [Flo19]. These frameworks offer cloud-based
environments to describe the different aspects of the chatbot. However, creating
a chatbot to instantiate a meta-model is time-consuming, repetitive and requires
programming modelling services to take care of creating the models. Hence, we
propose a novel approach to automate the generation of modelling chatbots for DSLs,
show an implementation atop Google’s DialogFlow, and illustrate its usefulness on a
case study to create, deploy and execute streaming data applications using a modelling
chatbot.

The objective of our work is threefold. First, to complement traditional modelling
tools based on graphical or textual editors (e.g., within Eclipse) with another interaction
paradigm. The use of NL requires less expertise from users than typical desktop-
based modelling tools, while collaboration facilities and use in mobility are additional
benefits. Second, we pursue the more ambitious goal of making available complete
MDE solutions to end-users via conversation within social networks, realizing the
vision of “conversation as a platform” (CaaP)4. Finally, we can use our approach to
automate the generation of chatbot interfaces for existing information systems.

This paper follows our previous work [PGdLJ17, PGdL18], where we proposed a
chatbot called Socio to assist in the creation of meta-models (i.e., class diagrams) via
conversation. In this paper, we propose a methodology and prototype tool support
to create NL concrete syntaxes for arbitrary meta-models (i.e., not limited to class
diagrams), and demonstrate its practical value with a non-trivial case study.

3https://slack.com/
4A term coined by Satya Nadella, CEO of Microsoft.
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The rest of this paper is organized as follows. Section 2 motivates our proposal using
a running example. Section 3 overviews the basic concepts behind chatbots, focusing
on DialogFlow. Section 4 presents our approach to create NL concrete syntaxes, and
Section 5 tool support. Section 6 reports on a case study where we create a chatbot
to build streaming data applications over a tool called Datalyzer [GdL18a]. Section 7
compares our approach with related research, and Section 8 concludes.

2 MOTIVATION AND RUNNING EXAMPLE
As a running example, we build a chatbot to define project plans conformant to the
meta-model shown in Figure 1. Projects have a name and optionally a goal. They
comprise a number of TaskUnits that can be organised in sequences through reference
next, and have an id. There are three kinds of task units: Tasks, which may have
a start date and end after a number of days; Milestones, which may have a start
date but no duration, and are related to exactly one task; and CompositeTasks to
group one or more task units. Tasks may have assigned Resources, both Human and
Technical. The information of the former kind of resources is retrieved on-demand
from an external database, i.e., class Human is a proxy to access the real data.

Project

tasks

name: String[1]
goal: String[0..1]

TaskUnit

id: String[1]
description: String[1]

Resource

* resources *

next
*

Task

date: Date[0..1]
days: Int[0..1]

resources

*

Milestone

date: Date[0..1]

from

1
CompositeTask

subtasks

1..*

Human

name: String[1]
surname: String[1]
available: Boolean[1] = true
expertise: String[0..1]

Technical

description: String[1]
units: Int[1] = 0

Figure 1 – Running example: A domain meta-model to describe project plans.
We may decide designing a concrete syntax that is based on NL to instantiate

the meta-model, so that project managers can create their project plans using the
terminology they are used to. For instance, projects may be configured using sentences
like the following: “the project has two task units starting the 1st of April and the 1st
of May”, “task t1 follows task t2”, “Peter Parker will participate in the first task”, or
“the task t1 requires 2 personal computers”.

To help in the creation of project plans, there will be a dedicated chatbot that aids
managers in completing any missing data and refining the meaning of ambiguous user
sentences. For example, in the first sentence (“the project has two task units...”), the
chatbot would need to ask the user about the kind of task units to create. Since the
sentence includes dates, candidate classes are Milestone and Task as both define a
date, but not CompositeTask which has none. In addition, the chatbot would ask the
user the id of the created task units, as it is a mandatory feature in the meta-model.
This way, models of project plans would be iteratively built by means of a conversation
between the user and the chatbot.

Our aim is automating the creation of this kind of modelling chatbots. As we will
see in the following sections, this requires specifying and customizing several aspects of
the NL-based concrete syntax such as the identifier to be used to refer to objects (e.g.,
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name and surname for human resources, or id for task units); the level of conformance
required from models, which in the stricter case would make the chatbot request the
user a value for any mandatory field of new objects; synonyms for the class and field
names (e.g., using the verb to follow as an alternative to reference next); or whether
the objects of a certain type should not be retrieved from the model being constructed
but from an external resource, like a data base or an external API. In our example,
available human resources are stored in a company database, and hence they need to
be retrieved and the model populated with them when the model is created.

In the next section, we describe the building blocks of chatbot specifications, to
which we will map the different elements of domain meta-models.

3 DEVELOPING CHATBOTS WITH DIALOGFLOW
Chatbots are software programs with a NL user interface. They are typically accessible
through social networks (e.g., Slack, Telegram, Facebook messenger) and can be used in
mobility without the need to install new apps. Chatbots emulate the interaction with
a human assistant, and are becoming very popular for customer support, marketing,
or access to services like bookings, food delivery and gamification-based learning.

Many dedicated frameworks to create chatbots are emerging, like DialogFlow,
the IBM Watson Assistant, or the Microsoft Bot Framework. As a representative,
this section describes the main concepts of DialogFlow. This provides a cloud-based
development environment to describe chatbots with voice and text-based conversational
interfaces, and it offers support for NL processing in more than 20 languages. Our
choice is motivated by its automated support for deploying the bot in many different
social networks, its flexibility to link external services (which do not need to be
deployed on specific clouds, like Azure, hence avoiding vendor lock-in), and the
possibility to define the chatbot using a JSON specification (in addition to using the
cloud development environment) which facilitates chatbot synthesis.

User

NL input

Intent1

Intentn

Agent
match intent

…

Intenti
…

response Fulfillment
Service

1 2

34

Figure 2 – Agent working scheme.

Figure 2 shows the simplified working
scheme of DialogFlow’s chatbots. These are
called agents and define behaviour by means
of intents. Each intent represents some user’s
aim (e.g., booking a ticket). The agent waits
for user inputs in the form of NL sentences
(label 1 in the figure). Then, it tries to match
the user input with some available intent (la-
bel 2), optionally calling an external service
(also called fulfillment, label 3). Finally, the agent produces a response, typically a NL
sentence among a predefined set (label 4).

Figure 3 shows a meta-model we have created for DialogFlow. As it can be seen,
agents define intents, which are configured with a set of phrases that are used to train
a NL processor. An intent also declares a set of responses that the agent answers when
the user inputs a NL sentence that matches the intent. In addition, a fallback intent is
usually available for the case when no other intent is matched, with a predefined set
of responses which typically show the user the available alternatives.

Intents may have zero or more followup intents that can only be activated right
after the parent intent has been activated. Intents can also define contexts. These
represent the current state of a user’s request and allow the agent to carry information
from one intent to another (i.e., a followup intent). Input and output contexts, together
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Agent 

intents 

name : String 
timeZone : TimeZone 

* 

languages «enumeration» 
Language 

Spanish 
English 
… 

* 

Intent 

name  : String 
isFallBack  : boolean=false 
isEnd  : boolean=false 
webhookCall  : boolean=true 

Phrase 

text : String 

trainingPhrases 

* 
Event 

events 

* 

Context 

outputContext * * 

EntityType 

name : String 
allowExpansion : boolean 

entities 

* 

entries 
Entry 

value : String 
synonyms : String [*] 

* 

Fulfillment 

fullfillment 1 

name : String 
lifespan : integer 

IntentParameter 

required  : boolean 
isList : boolean 
prompts  : String [*] 

responses 
* Action 

name : String 

actions 

* 

Parameter 

name : String 
value : String parameters 

* 

inputContext 

* 

* 

1 

parameters 

entity 

parameters 

url: URL 

followUps 
* 

Figure 3 – A meta-model for DialogFlow.

with the followup relations, are used to control the conversational path the user takes
through the dialogue with the agent.

Entities are the mechanism to identify and extract data from the users’ NL inputs.
For this purpose, an agent can define entity types (e.g., vegetables) which provide a list
of entries of admissible values (e.g., scallion) and their synonyms (e.g., green onion).

Intents save these data in parameters that refer to an entity type and can take one
of its entries as their value. The values are obtained from the user input according
to the NL patterns extracted during the training phase, and the agent can use these
values in its responses. If a parameter is required but the user input does not include
a value for it, then the agent prompts the user for a specific value. For instance, in the
running example, we may define an intent to create TaskUnits; however, if the user
does not state the specific type of TaskUnit (Milestone, Task or CompositeTask),
or does not specify a value for some of its mandatory attributes (e.g., id), the chatbot
will prompt the user, asking the required information.

Besides responding to users, agents can send the information gathered by an intent
to an external service by enabling a webhook. This allows the chatbot to do complex
tasks, like booking a ticket. The configuration of external services is defined by a
fulfillment. If an intent declares actions, these will be sent to the service declared in
the fulfillment. In our approach, we will use the chatbot as a conversational frontend
for the model concrete syntax, while the model abstract syntax will be created and
modified in an external service.

Finally, intents can also be triggered by events, which depend on the particular
deployment platform. For example, a chatbot in Telegram can display buttons, and so
it is possible to activate an intent upon clicking on these buttons.

4 CONVERSATIONAL SYNTAX FOR DSLs
To simplify the creation of modelling chatbots, we propose an automated process,
depicted in Figure 4.
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domain 
MM 

1. generate 
default NL 

syntax 

2. refine 
default 

NL syntax 

default NL 
configuration 

NL syntax  
configuration MM 

NL 
configuration 

3. transform 
to chatbot 
framework 

4. deploy 
into 

platform 

chatbot 
description 

«annotates» 

«conforms to» 

«annotates» 

Telegram Slack Twitter 

… 

«conforms to» 

automated by our framework 

automated by chatbot framework 

manual  LEGEND 

Figure 4 – Steps for creating a modelling chatbot with our approach.

As usual in MDE, we rely on a domain meta-model to describe the abstract syntax
of the DSL. With regards to its concrete syntax, we rely on a meta-model to define
the conversational syntax, similarly to when it is graphical or textual. To facilitate
this definition, first, we automatically derive a default configuration of the NL syntax
from the domain meta-model. This configuration declares how to refer to objects and
features of the instantiable classes, and the level of tolerable inconsistency allowed
during the modelling process. The latter is useful to enable more flexible modelling
by relaxing the need for models to be fully compliant with their meta-model at all
times, as this may interfere with the modelling/conversation flow [RdLP17, GdL18b].
Next, in a second step, the language designer may refine the default NL concrete
syntax description, e.g., to include synonyms for the name of classes and features, or
to declare that some classes are non-instantiable.

Once the conversational syntax is ready, our framework synthesizes a chatbot
description from it, and subsequently, deploys the chatbot into a platform (e.g.,
Telegram, Slack or Twitter). Currently, the chatbot description follows the DialogFlow
structure presented in the previous section, and the deployment platforms are those
supported by DialogFlow. Our approach can be adapted to work with other chatbot
frameworks that provide similar concepts. As we will see in Section 5, the deployed
chatbot interacts with a modelling service we have created to handle the model
modifications at the abstract syntax level (e.g., object creation and deletion).

In the following, Section 4.1 presents our meta-model to describe the NL concrete
syntax, and Section 4.2 shows the mapping of NL syntax models into DialogFlow’s
chatbot descriptions.

4.1 Configuring the NL concrete syntax
Figure 5 shows our meta-model to configure the conversational NL syntax of DSLs.
Some of its classes contain references to the domain meta-model elements they define
the syntax for. Since we assume the Eclipse Modeling Framework (EMF) [SBPM09]
as meta-modelling technology, the classes in our NL syntax configuration meta-model
refer to the EPackages, EClasses, EAttributes and EReferences in the domain meta-
model. However, our approach is easily adaptable to other meta-modelling frameworks.

NLModel is the root class. It contains one NLClass for each domain meta-model

Journal of Object Technology, vol. 18, no. 2, 2019
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NLModel

name : String
model : EPackage

NLClass

class : EClass
root : boolean=false
instantiable : boolean=true
container : boolean=true
create : boolean=true

classes

*

NLElement

description : String
synonyms : String [*]

NLFeature

ask : boolean

Identifier
id

NLReference

reference : EReference
srcSynonyms : String [*]

NLAttribute

attribute : EAttribute

*

features

DefaultId

id : integer

UpdateInterface

WebService

protocol : String
method : String
domain : String
port : integer
paths : String [*]

0..1

modelUpdate

Moment
moments

Start Frequency

time : Time
action : Action

*

<<enumeration>>

Time

BEFORE
AFTER

<<enumeration>>

Action

CREATE
UPDATE
DELETE

*

elements

*

Figure 5 – The meta-model for configuring the NL syntax.

class, to configure its concrete syntax. The configuration includes a description of the
class, a list of synonyms (usually nouns) of the class name, flags to indicate whether the
class is root or instantiable, and one or more Identifiers that will be used to refer
to the objects of the class. An object identifier may consist of one or more attributes
of its class, or be a DefaultId which takes values from a counter. Two additional
flags provide flexibility in the way objects of a class are to be created: container
permits customising whether users should always indicate a container object for the
new instances of a class (otherwise, the objects would be added to a virtual temporary
container); and create, to indicate whether any object mentioned by the user should
be automatically created in case the object does not exist (otherwise, the chatbot
would just inform the user that the object does not exist).

NLClasses contain one NLFeature for each feature of the associated domain meta-
model class. NLFeatures have a flag ask to make the bot ask for the feature value when
a new instance of the class is created. By default, this attribute is true for mandatory
features, and false for optional ones, though this can be modified. NLFeatures have a
description and a list of synonyms, usually nouns for attributes and verbs for references.
In addition, references can define additional synonyms to refer to their source end,
which in the running example would permit using the sentences “task t1 is next to
task t2” and “task t2 is previous to task t1” interchangeably.

Finally, in addition to the creation of objects using NL sentences, we also support
the retrieval of external objects through WebServices. For this purpose, it is necessary
to specify the protocol, method, domain, port and paths of the web service; and to
configure the Moments in which these requests are made: either when the model is
created, or before/after the creation/update/deletion of certain model elements.

Given the domain meta-model of a DSL, we automatically produce a default
NL configuration model. This contains one NLClass for each domain class, and one
NLAttribute or NLReference for each attribute and reference of the classes. The
NLClass corresponding to the domain class that can reach more classes directly or
indirectly through containment relations, is marked as root. Abstract classes are
marked as non-instantiable, and concrete classes as instantiable. By default, the NL is
configured to require a container for each new object (NLClass.container = true),
alluding to non-existing objects implies their automated creation (NLClass.create =
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true), and the chatbot will ask a value for any feature with cardinality greater than
zero (NLFeature.ask = true). If a domain class has an attribute called “name”, “id”
or “identifier”, this is assigned as the class identifier; otherwise, the class is assigned a
default counter-based identifier.

Example. Figure 6 shows on the left an excerpt of the NL syntax model generated
by default for the running example. Its elements refer to elements of the domain
meta-model, which is shown on the right. The object model with type NLModel
represents the model, and points to the EPackage containing the domain meta-model.
The object project configures the syntax of class Project, which is the root class
as it contains all other domain classes. The two NLAttribute objects specify the
syntax of the attributes of Project. Attribute name is identified as the class id. The
bot will ask a value for name as it is a mandatory attribute, but not for goal as it is
non-mandatory.

Project

tasks

name: String[1]
goal: String[0..1]

TaskUnit

id: String[1]
description: String[1]

*

next

*

model :NLModel
name = “Planning”

Planning

…

project :NLClass

description= “Project information
for Planning models”
root = true

model

class

name :NLAttribute

description= “name of Project”
ask = true

:classes

:features
:id

goal :NLAttribute

description= “goal of Project”
ask = false

NL concrete syntax model for Planning,
generated by default

…

Domain meta-model for
Planning (abstract syntax)

:features

Figure 6 – Excerpt of default NL concrete syntax model for the running example.
The language engineer can refine the generated NL concrete syntax model, e.g.,

to change the default root class, to set a concrete class to non-instantiable (abstract
classes must remain non-instantiable), to change the default identifiers assigned to
classes, or to define a list of synonyms for class and feature names if so desired. We
assign a generic description to elements (like “Project information for Planning models”
in object project), which typically need to be refined as well. Finally, it is possible to
configure an update interface using a web service, together with its application policy
(i.e., when to obtain the information from the service).

Example. In our running example, the language designer would set class Human as
non-instantiable, as human resources are to be gathered from a resource database (an
external service). The model will be populated with Human objects upon creating the
model (Start). The designer also needs to refine the identifiers of classes (e.g., the
identifier of Humans is made of both attributes name and surname), and set synonyms
to refer to some classes (e.g., Activity and Job for Task), references (e.g., follow and
subsequent for next) and source end of references (e.g., precede for next).

4.2 Mapping NL syntax models into a chatbot framework
Starting from the refined NL syntax configuration model, we generate a chatbot
description model conformant to the DialogFlow meta-model in Figure 3.
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Figure 7 shows a high-level scheme of the generated chatbots, omitting the def-
inition of parameters for simplicity. The chatbots rely on an external service (the
modellingBot Fulfillment) to perform the model modifications at the abstract
syntax level.

planningBot: Agent 

name  = “modelName bot” 
timeZone = CET 
languages = [English] 

modellingBot: Fulfillment 
:fulfillment 

1 
url=“https://dimo1.ii...” 

welcome: Intent 

name       = “welcome” 
webhookCall = false 

modelName: Intent 

name  = “modelName” 

:intents 

:followUps 

rootClass: Intent 

name  = “rootClass” 

:followUps 

classiAdd: Intent 

name = “<classi> add” 

classiRemove: Intent 

name= “<classi> remove” 

:intents :intents 

modName:  
Context 

name = “modelName” :o
u

tp
u

tC
o

n
te

xt
 

:inputContext 
:inputContext 

[for each instantiable class] 

attributeiUpdate: Intent 

name= “<attributei> update” 

[for each attribute] 

referenceiUpdate: Intent 

name= “<referencei> update” 

[for each reference] 

:inputContext 

:inputContext 

:intents 

:intents 

classiAdd: Intent 

name = “<classi> add” 
webhookCall = false 

classiRemove: Intent 

name= “<classi> remove” :intents :intents 

[for each non-instantiable class] 

:inputContext :inputContext 

Figure 7 – Scheme of the generated DialogFlow chatbots.

Welcome intent. Each chatbot contains a welcome intent that is trained with
typical greeting phrases (e.g., “hello”, “hi”, “hey”, “hi there”...). Welcome events
of certain social networks (e.g., the /start command in Telegram) can trigger the
welcome intent as well. The chatbot responds to this intent by introducing itself and
the actions it can do. This information is extracted from the element descriptions in
the NL syntax model. Then, the chatbot asks for the name of the model the users are
going to work with. The answer is collected by a followup intent called modelName.
This intent has a parameter with entity type any, meaning that it can receive anything,
and it has the webhook enabled to invoke the REST web service indicated in the
fulfillment URL in order to check if the model exists. If it does, it is not necessary
to configure anything else; otherwise, a new model is created, and the chatbot uses
the followup intent rootClass to ask the value of all the NLFeatures with attribute
ask=true of the root class.

Object creation intents. The chatbot has several intents to recognise model editing
actions, which become available only after the welcome and modelName intents have
been triggered. The model update intents have the output context of the modelName
intent as their input context, as Figure 7 shows.

Specifically, we create two intents for each instantiable class, one to create instances
of the class and the other to remove them. The training phrases for the intents are
automatically generated according to regular expression templates that combine the
element names and synonyms specified in the NL syntax model.

Listing 1 shows the template used to synthesize training phrases for creating objects
of a class and initializing their features. In the template, 〈create〉 represents the set
of words or expressions that indicate the intention to create something. These include
“there is/are”, “I want to create”, “add”, “create”, “the model has”, etc. Using one of
these creation expressions is optional. 〈natural-number〉 can be optionally used to
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indicate the number of objects to create. 〈class-name〉 stands for the class name and
its synonyms specified in the NLClass. Next, the user can optionally assign values to
the object’s features. This way, 〈feature-name〉 corresponds to the feature name and
synonyms specified in the NLFeatures of the NLClass, including the ids of the class;
and 〈feature-value〉 defines samples of possible feature values (nouns for attributes
with type String, integer numbers for attributes with type Integer, and so on). We
do not take into account the meta-model integrity constraints for generating these
sample values, as it is not required to train the NL processor. Instead, correctness of
values is checked at runtime at the abstract syntax level by the modelling service.

1 <create>? <natural-number>? <class-name>
2 ( with <feature-name> <feature-value>+ ( (, | and) <feature-name> <feature-value>+ )∗ )?

Listing 1 – Template to synthesize training NL phrases for creating objects.

Example. Some training phrases of the creation intent derived from the NLClass
Task are: “I want to create one task”, and “add two tasks with id t1 and id t2”.

Object creation intents have one parameter for each NLFeature in the NLClass,
and one additional parameter accounts for the object container. The parameter names
are equal to the feature names, and the chatbot will ask for the feature value if the
NL syntax model defines so. In the case of NLAttributes, the type of the parameter
depends on the attribute’s type, while in the case of NLReferences, it is the identifier
of the reference target class. Table 1 shows the mapping between attribute primitive

Primitive type Entity type
String sys.any
Integer/Long sys.number-integer
Double/Float sys.number
Date sys.date-time
Boolean boolean

Table 1 – Mapping primitive types into
DialogFlow entity types.

types and DialogFlow entity types. In addi-
tion, we create a custom-made EntityType
to represent booleans. This defines two
Entries: true and false. The former entry
has affirmations as synonyms (“yes”, “that’s
right”, “okay”, “sure”...), and the latter nega-
tions (“not”, “nah”, “don’t”, “not really”...).
We do so because, when asking a value for
boolean parameters, the answers typically have this form.

The object creation intents have the webhook enabled. Hence, when all data is
collected, the information is sent to the external modelling service to create the object.

Object deletion intents. We use the template in Listing 2 to synthesize training
phrases for the intents that take care of deleting objects of the instantiable classes.
〈remove〉 represents the set of words or expressions indicating the intention to delete
something (e.g., “delete”, “remove, “erase...); 〈class-name〉 is the name of its class
or a synonym; and 〈id-value〉 represents the value of the object’s identifier. These
intents define one required parameter for the value of the object identifier, and its type
is given by the mapping in Table 1. They also have the webhook enabled to trigger
the object deletion by means of the modelling service.

1 <remove> ( <class-name> (with (id | <id-name>))? )? <id-value>

Listing 2 – Template to synthesize training NL phrases for removing objects.

Example. Some training phrases for the deletion of instances of the NLClass Task
are: “delete t1”, “remove task t1”, and “erase the task with id t2”.
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Feature modification intents. Starting from each NLFeature, we create an intent
to modify its value. We handle attributes and references in a different way. Listing 3
shows three of the templates we use to generate training phrases for attribute modifica-
tion intents. In these templates, 〈att-name〉 corresponds to the name and synonyms
of the attribute to be updated; 〈att-value〉 is its new value; 〈update〉 represents
the words to express the intent to modify something (e.g., “update”, “modify, “set”,
“change”...); 〈id-name〉 is the name and synonyms used to refer to the identifier of
a class; and the rest of the elements have the same meaning as before. The intent
has three parameters: the new attribute value (〈att-value〉), the identifier of the
attribute’s owner object (〈id-value〉), and the class of the attribute’s owner object
(〈class-name〉 with entity type sys.any). The first two parameters are mandatory,
while the third one is required only if there is more than one attribute with that name
in the model. These intents have the webhook enabled and trigger the update of the
attribute value.

1 <att-name> of <class-name>? <id-value> (is | are) <att-value>
2 <id-value>(’s)? <att-name> is <att-value>
3 <update> <att-name> of (<class-name> (with <id-name>)?)? <id-value> to <att-value>

Listing 3 – Templates to synthesize training NL phrases for updating attribute values.

Example. Some phrases that fit in the attribute modification intent are: “the units
of technical pcs are 4”, “Peter’s surname is Parker”, and “set date of t2 to May 24th”.

Regarding references, if their name is a noun, then we generate the training phrases
using the templates for attribute modification in Listing 3. However, when their name
is a verb, we use the two templates in Listing 4. In these templates, 〈ref-name〉 is
the name and synonyms of the reference to be updated; 〈class-name〉 is the owner
class of the reference; 〈ref-value〉 is the id of the object to be set in the reference;
〈ref-class-name〉 is the target class of the reference; and 〈ref-src〉 is the set of names
used to refer to the source end of the reference. These intents have four parameters:
the names of the reference source and target classes (with entity type sys.any, not
needed if the reference name is unique in the model), and the identifiers of the source
and target objects (mandatory). The webhook of the intents is enabled.

1 <class-name>? <id-value> <ref-name> <natural-number>? <ref-class-name>? <ref-value>
2 <ref-class-name>? <ref-value> <ref-src> <class-name>? <id-value>

Listing 4 – Templates to synthesize training NL phrases for updating reference values.

Example. Some examples for this intent are: “Peter participates in task t2”, and
“task t2 follows task t1”.

Non-instantiable classes. Finally, we create two intents for each non-instantiable
class with instantiable children, one for object creation and another for object deletion.
The former is trained with sentences obtained from the object creation template
in Listing 1, but in this case, the intent has no parameters, and the webhook is
disabled. Instead, the chatbot asks the user to select one instantiable children of the
non-instantiable class, and redirects the flow to the intent to create the selected class.
The intents for deleting objects of non-instantiable classes work the same as the ones
for instantiable ones, though in case there are several children with the same identifier,
then the chatbot asks to select one of them to disambiguate.
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Figure 8 – Modelling chatbots.

Example. Our method generates 35 intents, 108 parameters and 2600 training
phrases for the running example (in average, 74 training phrases and 3 parameters per
intent). Without our method, this information would need to be created manually.

5 TOOL SUPPORT
We have developed prototype tool support for automating the creation of modelling
chatbots. Our solution includes an EMF implementation of the meta-model in Figure 5
for configuring the NL syntax, an Eclipse plugin that instantiates this meta-model for
a given domain meta-model, and a transformer into DialogFlow.

Figure 8(a) shows the runtime architecture of our generated chatbots. They can
be deployed on social networks, like Telegram in the figure. This enables collaborative
modelling as discussions among the language users and model update indications
integrate seamlessly, because both happen within the chat. Moreover, since social
networks typically provide different clients (e.g., for mobile devices, desktop computers
or web browsers) we obtain multi-platform modelling for free.
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When the chatbot matches an intent with the webhook enabled, it sends a request
to a modelling service that we have developed. The request contains a JSON with
the user text message, the social network, and the content of the intent (name,
context, parameters, etc.). The service processes the request and makes the necessary
modifications in the abstract syntax of the model. Next, the service sends back to
the social network an image of the updated model created with PlantUML [Pla19].
The image highlights the elements that have been modified in green. The validate
command shows possible inconsistencies in the model, which then can be corrected by
the users.

Example. Figure 8(b) illustrates the interaction with the chatbot for creating project
plans. The user first inputs the sentence “Peter Parker works in t1”. Since we have
configured the NL syntax to accept work to refer to the source end of reference
resources, the chatbot creates a link with this type between the Human object with
identifier Peter Parker (name and surname) and the Task object with identifier t1 (id).
Then, the user inputs the sentence “t1 follows t2”, which triggers the creation of a
link with type next as follows is a synonym for the source reference end. Moreover,
the chatbot creates a new task with identifier t2 as the source of the link because
it does not exist in the model. A video illustrating these interactions is available at
https://saraperezsoler.github.io/ModellingBot/.

6 CASE STUDY
In this section, we use our approach to develop a conversational front-end for Dat-
alyzer [GdL18a]. Datalyzer is a cloud system, based on a graphical DSL, to develop
streaming data applications and execute them on the cloud. The goal of this case
study is to answer the following research questions:

RQ1 Is it feasible to create a NL front-end for an existing DSL-based information
system?

RQ1.1 What are the steps that require manual programming?

RQ2 What is the added value – in terms of functionality – that a modelling chatbot
brings?

In the following, Section 6.1 introduces Datalyzer; then, Section 6.2 describes its
abstract syntax, and Section 6.3 its new conversational syntax; Section 6.4 details the
integration of Datalyzer and the chatbot; and Section 6.5 discusses the benefits of the
approach.

6.1 Datalyzer
Datalyzer [GdL18a] is an open web platform that generates and executes data streaming
applications in a simple and intuitive way using MDE techniques. The data applications
can be connected to several heterogeneous data sources. They generate a data output
stream which can be connected with external services and be visualized on a dashboard
as charts, tables or other interactive elements in real time.

Datalyzer can be used in two ways: to build services that transform data on the
cloud, or to build complete data monitoring applications using the dashboard. The
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applications are modelled using a graphical DSL developed in Javascript. The left of
Figure 9 shows the DSL editor of Datalyzer with a simple application model that we
will use as an example. The model collects streaming data from Twitter, filters the
tweets by a set of keywords (“London” in the figure), puts the data into a pipeline,
and displays the tweets in a table on the dashboard. The right of Figure 9 shows the
generated dashboard for the example.

Figure 9 – Example designed using Datalyzer’s DSL (left). Generated dashboard (right).
We would like to complement Datalyzer with a chatbot that enables the collabora-

tive construction of data application models using conversation on social networks.
This is a challenging, realistic case study for our approach for two reasons. First,
the chatbot would become a NL front-end for an existing information system, and
therefore, needs to integrate not only modelling with Datalyzer’s DSL, but also with
commands like saving a project or running the application. Second, data sources (e.g.,
Twitter, Bitcoin market values, or Madrid traffic data) in the application models are
non-instantiable but should be retrieved from a database.

6.2 Domain meta-model
Figure 10 shows the meta-model to describe Datalyzer applications by instantiating and
connecting different types of primitives. DataSourceInstance represents an instance
of a DataSourceType. Data source types are created and maintained in an external
database, and include descriptions of services like openWeather, the Twitter API, open
data APIs (e.g., the Madrid traffic data), or connections using sockets (e.g., to sensor
data streams). Data source instances may provide values to required configuration
parameters, as well as to a selection of the fields to be received (omitted in the figure
for simplicity). For example, a data source instance for Twitter requires specifying
filtering keywords (e.g., hashtags), an optional location and an authentication. For
reception, we may be interested in the user name and the tweet text.

Data source instances are connected to at least one DataPipeline. There are two
types of pipelines: a Basic one and a Join pipeline that merges data from multiple
sources. Pipelines can be connected to other pipelines or to DataProcessors. The lat-
ter define data processing operations like filters and transformers. IntermediateNodes
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Figure 10 – Datalyzer meta-model excerpt.

(i.e., pipelines and data processors) can be connected to TerminalNodes which imple-
ment features such as storing data or displaying data in charts.

As mentioned above, DataSourceTypes are not explicitly created by the user, but
read from an external database. Hence, we need to prepare a special NL syntax
configuration for the chatbot, as the next section explains.

6.3 Configuration of the NL concrete syntax
We used our approach to automatically generate a default NL concrete syntax
model from the Datalyzer meta-model. In this model, the NLClass pointing to
DatalyzerProgram was correctly identified as root, and all non-abstract domain
classes were set to instantiable.

Next, we manually refined the NL model to add synonyms. For instance, we
added the synonyms “basic pipeline” and “basic pipe” for class Basic, and “data
source” and “instance” for class DataSourceInstance. In addition, we modified the
NLClass pointing to DataSourceType to make it non-instantiable because its objects
are stored in an external library, and created a WebService that reads those objects
upon creating or loading a Datalyzer model (Start). The web service describes a
REST API with http method, the url as domain, and port 8080.

Starting from the modified concrete syntax model, we produced a DialogFlow
chatbot that is able to process sentences like “create data source Twitter with keyword
London”, or “connect the pipeline to table1”. Figure 11(a) shows the interaction with
the chatbot. The first two messages correspond to a discussion between two users
about the application they are modelling. Then, one user addresses the chatbot to
“create a table”, the chatbot asks for its identifier as it is mandatory, the user answers
“table1”, and a new table is created.

6.4 Integration of Datalyzer and the chatbot
Datalyzer can be used as a web service via a REST API. This way, external systems
can receive data from applications running on Datalyzer and perform some actions
such as executing or stopping a project. However, this API did not support creating
Datalyzer models, but this was only possible on a web browser. Hence, we created a
middleware providing model management support (e.g., uploading Datalyzer models)
and supporting all commands available in the browser. Figure 11(b) shows the resulting
architecture that connects Datalyzer and the chatbot. The middleware is connected
to the chatbot as a REST API, and implements the following functionalities:

Journal of Object Technology, vol. 18, no. 2, 2019



16 · S. Pérez, M. González, E. Guerra, and J. de Lara

(a) Interaction in Telegram

Te
le

g
ra

m
 

M
o

d
el

lin
g

 s
er

vi
ce

 

Fulfill.  API 

EMF2JSON 

D
a

ta
ly

ze
r Data sources 

REST API 

JSON2EMF 

M
id

d
le

w
a

re
 

Dashboard 

EMF EMF .xmi 

EMF EMF .ecore 

DSL 

REST API 

(b) Integration of Dat-
alyzer and chatbot

Figure 11 – Modelling chatbot for Datalyzer streaming data applications.

• Model transformation. Datalyzer is a cloud application. For this reason, it
does not use EMF models but non-standard JSON models that can be processed
in Javascript. To make JSON models compatible with the chatbot’s modelling
service, we have developed two transformers, from EMF to JSON and back.

• Model updates. The chatbot sends requests to the middleware to obtain the
data source types, as these are instances of a non-instantiable class. In its turn, the
middleware retrieves the data source types by sending a request to the Datalyzer
REST API, and invokes the transformer to convert the JSON data into EMF
models that the modelling service can process.

• Service encapsulation. The chatbot performs some actions implicitly. When
the middleware receives a petition requesting the data source types, it means
that a new model is being created in the chatbot. This triggers the creation of
a Datalyzer project associated to a generic and public user. A similar process
is done when the chatbot sends the application model to the middleware: the
model is saved in the database, the application is generated and executed, and the
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middleware sends the link of the dashboard to the chatbot.

6.5 Discussion
Next, we answer the research questions, and discuss limitations.

RQ1: Feasibility. This question can be answered positively: using our approach,
we easily added a NL interface to an existing information system through Telegram.

RQ1.1: Automation. Configuring the NL syntax was easy as it is highly automated.
From the meta-model of Datalyzer, the approach automatically generated 40 intents
and 2500 training phrases that otherwise should have been defined manually. However,
we had to implement the middleware that connects Datalyzer and the chatbot to
bridge their different modelling technologies (JSON and EMF).

RQ2: Added value. Social networks are common in our lives, and we are familiar
with their interaction style. Hence, some users may find modelling using NL and a
conversational assistant easier or more appealing than learning to use a graphical or
textual DSL and its editing environment. Moreover, “chatbot-izing” Datalyzer has
expanded its capabilities as follows:

(i) As the chatbot is integrated into Telegram, it is possible to use the collaborative
capabilities of this social network, e.g., to build Datalyzer models collaboratively,
intertwine discussion messages and editing actions in real time and trace them back in
the chat history, organize private or public on-line meetings, invite collaborators to
existing projects, etc. These features were not initially available in Datalyzer.

(ii) Telegram can be installed on smartphones, tablets and computers, and there is a
web version as well. Hence, we can use the Datalyzer chatbot from any device regardless
of the OS, and from many devices at the same time as they remain synchronized by
a personal account. This makes Datalyzer portable and permits using it in mobility.
Although Datalyzer is a web platform, its interface is not as well adapted to phones
and tablets as Telegram.

Limitations. While we produce fully-functional chatbots trained with sensible NL
phrases, evaluating the completeness of these phrases or the efficacy of the generated
conversational flow is something that we plan to assess in the near future. Also, the
chatbot uses a default concrete syntax (object diagrams) in the images, instead of the
concrete syntax for the DSL supported by Datalyzer. We plan to improve this support
in future work.

7 RELATED WORK
In this section, we revise related works on chatbot creation frameworks, the usage of
bots or NL processing techniques within MDE, and collaborative modelling.

Chatbot frameworks. In this paper, we synthesize chatbots using the DialogFlow
chatbot creation framework. Our decision is motivated by its popularity, high degree
of customizability, support for NL processing, and the possibility to integrate the
chatbot with external services (a modelling service in our case) via a REST API. In
addition to a cloud-based chatbot editor, DialogFlow also supports uploading chatbot
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descriptions in JSON. However, we may have used other frameworks (see [LSZ18] for
a survey). In the following, we revise some of the most popular ones.

The IBM Watson Assistant [IBM19] allows building conversational interfaces. As
in DialogFlow, intents and entities can be used to train a machine learning model that
will understand similar NL requests from users. Hence, adapting our approach to this
framework would be easy. It provides an SDK to build applications around chatbots,
but integrating the chatbots into social networks is less direct than in DialogFlow.

The Microsoft Bot Framework [Mic19] permits building and deploying chatbots
in websites and social networks. Its main components are the channel connectors,
to connect chatbots to messaging channels, and the BotBuilder SDK, to implement
the business logic and integrate NL understanding services. It offers some advanced
cognitive services like image-processing algorithms and recommending services.

Amazon Lex [Ama19] is a service to create conversational interfaces, with support
for NL processing (i.e., it extracts a NL model from training sentences). FlowXo [Flo19]
permits creating conversational flows by connecting triggers to actions. The framework
provides over 100 integrations, most of which can trigger a flow or be the output action
of a flow. These include utility modules (e.g., webhooks or email) and integration with
third-party services (e.g., Github or Google Sheets). Unlike DialogFlow, it does not
provide support for NL processing.

Chatbots are created in Landbot.io [Lan19] by visually linking blocks and messages.
Extra functionality can be coded using a built-in development tool, or integrating
external services using a REST API (like in DialogFlow). It does not integrate artificial
intelligence intentionally, as it advocates simplicity as its main feature.

Bots and NL processing in MDE. Our work proposes using NL as a particular
kind of concrete syntax for DSLs. NL processing techniques have been used within Soft-
ware Engineering to derive UML diagrams/domain models from text [ASBZ16, LKT14].
In this context, our contribution is to use an interactive incremental approach to
building models, the use of social networks to embed assistance, and the generalization
from UML models to arbitrary DSLs.

The ModelByVoice [LCA18] modelling tool supports voice recognition and speech
synthesis for editing models. The tool assumes a diagrammatic concrete syntax for
models, and editing actions are generic commands. For instance, creating any kind
of object is done through the command “create node”, after which the tool prompts
the user about the node type and its attributes. The tool VoiceToModel [SAW15] is
similar but for goal-oriented models, object models and feature models. Compared to
ModelByVoice, it supports a smaller set of modelling languages, but their commands
are less generic (e.g., there is a create command for each object type) though still rigid.
In contrast, we generate a flexible NL syntax adapted to the DSL, support synonyms,
the conversation flow is configurable, and do not assume a diagrammatic model.

In [PNFL17], the authors define a feature model with the commonalities and
variations of chatbot features. Variability can come from the platform (e.g., Telegram
or Slack), the way to access external services (e.g., via REST web service calls), the
chatbot application core, the chatbot personality processing, and the dialog services.
This feature model can be used as a reference framework to guide chatbot creation.
While this work complements ours by focusing on the technical aspects of chatbot
implementations, we are more concerned with the usage of NL as frontend of domain
models, modelling services and information systems, and we provide tool support.

In the vision paper [CCBG18], the authors propose cognifying MDE to promote
its adoption. Cognification is the application of knowledge extracted from existing
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information, to boost a given process. Among other applications, the paper mentions
the possibility of having modelling bots that suggest missing model properties based
on the analysis of previous models in the same domain. Such facilities might be added
to our bots as external services complementing our modelling service.

Collaborative modelling. Collaborative modelling has been used for model con-
struction [GBR12] and collaborative creation of DSLs [IC16]. However, these works
do not use social networks or NL processing, but they rely on collaborative graphical
model editors [GBR12] or ad-hoc tools [IC16] without assistant support.

More recently, in [PGdL18], we embedded meta-modelling chatbots within social
networks, to enable the collaborative creation of meta-models by domain and meta-
modelling experts. The present paper follows this line of research, extending the use
of chatbots for modelling using arbitrary DSLs, and not just for building meta-models.
Moreover, we automate the creation of such domain-specific modelling chatbots.

Altogether, from the analysis of the state of the art, we conclude that the usage of
NL as concrete syntax for domain-specific modelling languages, assisted by modelling
chatbots that help in constructing models using a configurable conversational style,
and being the frontend for modelling services, is highly novel.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a novel approach to define a conversational syntax for
DSLs based on NL processing and chatbots. The approach is based on annotating
domain meta-models with configuration information for the NL syntax, and translating
these data into a chatbot creation framework (DialogFlow in our case). The chatbots
can be deployed on platforms like Telegram, and use a modelling service to create
the model abstract syntax at run-time. We have demonstrated the feasibility of our
solution by means of a case study where we have created a modelling chatbot atop
an existing cloud system to define and run streaming data applications. The case
study illustrates the functionality added by the chatbot, which includes support for
collaboration in NL, multi-platform, mobility, and traceability.

While our prototype tool demonstrates the feasibility of our proposal, evaluating the
quality and usability of our generated chatbots still remains future work. Hence, in the
near future, we plan to perform a usability study with users, as well as to apply existing
quality frameworks for chatbots like [PD18a, PD18b]. We are currently extending our
tooling with a full-fledged environment to edit the NL concrete syntax models. We
are also currently working on integrating further services into our modelling chatbots,
like code generators and model transformation engines deployed in the cloud, in order
to provide a complete MDE solution interfaced by NL.
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1. Introduction 

Chatbots are programs with a 
conversational user interface. Their 
popularity is rising because they enable 
accessing all sorts of services (e.g., 
booking flights, checking weather 
conditions) from web applications or social 
networks like Telegram, Twitter, Skype or 
Slack. This way, users can access those 
services without installing new apps and 
interacting with the service is simplified by 
the use of natural language (NL) [5]. 

Many companies are developing 
chatbots to automate customer support and 
provide ubiquitous access to the company 
services. At the same time, plenty of 
platforms and frameworks have emerged 
to ease chatbot construction. Large 
software companies like Google, 
Microsoft, IBM or Amazon have created 
chatbot development platforms, but many 
other alternatives exist. These platforms 
provide diverse functionality regarding 
natural language processing (NLP), the 
structure of the conversation flow, the 
ability to connect the chatbot to existing 
information systems, or the support for 
testing and deployment. 

Choosing the best chatbot 
development tool for a particular need is 
difficult. Making an incorrect tool decision 
may lead to non-compliance with chatbot 
technical requirements or with software 
development company policies. Some 
websites and informal blogs compare some 
available options to build chatbots [1, 2, 3, 
4], and researchers have identified aspects 
to consider in chatbot design (functional, 
integration, analytics and quality 
assurance) [8]. Instead, we analyse 
technical and managerial factors of the 
most representative chatbot creation tools, 
to help developers and managers in making 
informed choices on the optimal tools for 
their interest. This analysis can be used as 
a reading grid to select a tool based on 
technical criteria (e.g., “we need a chatbot 
to access our current information system 
by text and voice, in both English and 
Spanish,”) and managerial constraints 
(e.g., “my developers lack experience in 
developing chatbots, we do not have the 
capacity to deploy on-premises, and we 
are already using Amazon cloud”). 



 
Figure 1: (a) Example of user interaction. (b) Working scheme of a chatbot. 

 
2. What’s in a chatbot? 

A chatbot is a program supporting 
user interaction via conversation in NL, 
and normally accessible through the web 
or social networks. As an example, assume 
that a vet clinic has an information system 
with a database storing information about 
veterinarians and appointments, and 
decides to bring its services closer to 
customers by means of a chatbot to which 
customers can ask about opening hours and 
make appointments. This chatbot would 
allow the clinic to offer 24/7 service, 
reduce costs (e.g., decreasing customer 
telephone calls) and widen the potential 
customers. Figure 1(a) shows an example 
of a user interacting with the envisioned 
chatbot. 

As Figure 1(b) shows, a chatbot is 
organized around intents that represent 
possible user’s intentions and permit 
accessing the offered services. These 
intents typically reflect use cases of the 
chatbot. As an example, the chatbot for the 
clinic would define two intents: one to 
inform about opening hours, and another 
for making appointments. Upon receiving 
a user input in NL (label 1 in the figure), 
the chatbot identifies the matching intent 
(label 2). Depending on the intent, the 
chatbot may need to access external 
services, like the clinic database if the 

intent is setting an appointment (label 3). 
Finally, the chatbot replies to the user, e.g., 
confirming the appointment (label 4). 

Figure 2(a) shows a process diagram 
with the main activities that designing a 
chatbot entails. The development process 
is not necessarily linear, but often requires 
iteration. Moreover, activities like 
validation and testing are needed 
throughout the process. Figure 2(b) 
contains a structural diagram (a UML class 
diagram) with the constituent elements of a 
chatbot. The numbers in this diagram 
identify the process step where the 
elements are defined.   

First, developers must identify the 
intents that the chatbot will handle. While 
traditional applications typically offer their 
functionality via graphical interfaces, 
chatbots expose it through conversation. 
To match the intent corresponding to a 
user input phrase, developers can resort to 
NLP libraries – like the Stanford Parser 
[6] or the Natural Language Toolkit 
(NLTK) [7] – as they permit analysing the 
phrase structure and provide facilities for 
tokenizing and part-of-speech tagging, 
among others. This gives unlimited 
flexibility regarding the NL structure, but 
the implementation is costly. Hence, for 
narrow domains (like our clinic), it is 
simpler to train the chatbot with training 
phrases (i.e., examples of expected  



 
Figure 2: (a) Process diagram for chatbot design. (b) Structural diagram of chatbot 

concepts. 

 phrases) characterizing each intent. We can 
find libraries and services that apply 
machine learning for this purpose, like 
Microsoft’s LUIS (https://luis.ai) or Rasa 
NLU (https://rasa.com). These libraries 
also support extracting parameters from 
phrases. A parameter is a piece of relevant 
information that needs to be extracted from 
a phrase, such as the date of an 
appointment. Parameters are conformant to 
a given entity type. Most chatbot 
development tools provide predefined 
entities (e.g., dates, numbers) and 
developers can define new ones (e.g., pet 
types). In addition, chatbots may define 
fall-back intents, used when the chatbot 
does not recognize the user utterance. 

Besides intents, developers need to 
define the dialogue structure to 
accomplish a task. For example, after the 
user requests an appointment in Figure 
1(a), the chatbot asks the kind of pet and 
problem, and only then the appointment is 
fixed. For this purpose, the chatbot needs 
to store the dialogue state – often in so-
called contexts – to carry the information 
of previous input phrases through the 
stages of the conversation. 

Moreover, developers need to identify 
the actions that each intent triggers. These 
may comprise invocations to external 
services, and include the chatbot response 

either in NL or using rich messages or 
mechanisms specific to the deployment 
platform. In our example, the chatbot 
needs to access the clinic information 
system to check for available slots and set 
appointments, and replies with the 
appointed date and time. 

Finally, developers must deploy the 
chatbot in some channel. Typical channels 
are social networks, websites, or smart 
speakers like Amazon Echo or Google 
Home. In addition to NL, each channel 
may support specific interaction 
possibilities that can be exploited to obtain 
effective chatbots. For instance, to prompt 
the user to select among a small set of 
options (e.g., the available appointment 
slots within one day), presenting each 
option as a button can be less error-prone. 
However, different channels may support 
distinct interaction mechanisms. For 
example, Telegram supports buttons, but 
Twitter and intelligent speakers do not. 

3. Choosing a tool based on 
technical factors 

The growing popularity of chatbots 
has caused the emergence of many tools 
for their construction. These range from 
low-level NLP services helping in the 
encoding of intents and their training 
phrases, to comprehensive low-code 



development platforms covering most 
steps in the chatbot creation process. 

Table 1 compares the main available 
software options for chatbot construction. 
It includes proposals of both large 
companies (Dialogflow by Google, Watson 
by IBM, Lex by Amazon, Bot Framework 
and LUIS by Microsoft) and younger 
chatbot specialized companies (FlowXO, 
Landbot.io, Chatfuel, Rasa, SmartLoop, 
Xenioo, Botkit which has been recently 
acquired by Microsoft, ChatterBot and 
Pandorabots). All are domain-independent 
but Chatfuel, which targets marketing 
applications. 

The features analysed in the table 
stem from a thorough analysis of each tool. 
We distinguish between technical features 
(e.g., input processing) which are 
discussed in this section, and managerial 
features (e.g., pricing model) presented in 
the next section. 

The first row in the table indicates 
whether the software is a library, a 
framework, a platform or a service. While 
platforms and frameworks offer support 
for the whole bot creation life-
cycle, services and libraries support only 
some steps, typically related to NLP. 
Frameworks provide sets of classes that 
need to be complemented with custom 
code for each created chatbot, and hence 
chatbots are built via programming. Most 
platforms are cloud-based, low-code 
development environments to define 
chatbots graphically or via forms, and 
frequently support hosting the deployed 
chatbot logic for a channel. In addition, 
some platforms and frameworks (e.g., 
Dialogflow, Bot Framework, Rasa) also 
support the use of their NLP modules via 
services.  

Rows 2–26 in the table analyse 
decisive technical dimensions when 
selecting a chatbot development tool. 
These comprise aspects related to the 
processing of the user input text (rows 2–
7), the dialogue support (rows 8–13), the 
chatbot deployment (rows 14–15), the 

integration with other systems (rows 16–
17), testing and development support (rows 
18–22), execution support (rows 23–25) 
and security aspects (row 26). 
Input processing. Some approaches allow 
defining the expected input phrases using 
regular expressions or patterns (row #2), 
while others permit specifying intents via 
training phrases and then apply NLP (row 
#3). In addition, platforms like Landbot.io 
also support user inputs by means of 
buttons and widgets. Most approaches 
based on NLP can identify parameters in 
the input phrases, with the exception of 
Chatfuel and ChatterBot (row #4). Another 
important aspect in NLP is the language 
support (row #5). All approaches consider 
some of the most spoken languages 
(English, Spanish), and some platforms 
excel for their wide language support (e.g., 
Dialogflow includes 22). Interestingly, 
Rasa can use pre-trained language models 
(e.g., fastText word vectors are available 
for hundreds of languages [9]) but 
developers can train their own. Only a few 
approaches – the NLP service LUIS, 
Watson, Lex, Bot Framework, and the 
Enterprise non-free edition of Dialogflow – 
provide sentence sentiment analysis, which 
can be useful in specific domains such as 
marketing. Finally, in addition to text, 
several approaches natively support voice-
based interaction (row #7). This interaction 
kind could be added by hand to approaches 
based on programming languages (e.g., 
Botkit) or which are open source. 
Dialogue. This dimension looks at the 
capabilities to organize the conversation 
flow. All platforms and most frameworks 
automatically store the parameter values 
extracted from user phrases to allow their 
reuse in the future, while libraries require 
programming this facility (row #8). This 
storage can be volatile (active only during 
the current user interaction) or persistent. 
Intents and entities (rows #9 and #10) are 
common primitives of platforms like 
Dialogflow, Watson and Lex. Approaches 



Table 1: Comparison of chatbot libraries, frameworks, platforms and services. 

 
supporting NLP define intents by sets of 
training phrases. These phrases may be 
examples of expected user utterances, or to 
improve the user experience, they may be 
obtained from existing conversation logs 
(e.g., when migrating a traditional 

customer support system into a chatbot). 
Regarding the dialogue structure (row 
#11), we find two main definition styles: 
explicitly by means of a conversation tree 
where nodes correspond to dialogue steps, 
or implicitly via dependent contexts and 

D
ia

lo
gf

lo
w

 (G
oo

gl
e)

 [v
2]

W
at

so
n 

(IB
M

) [
v2

]

Le
x 

(A
m

az
on

) [
07

/0
6/

20
20

]

B
ot

 F
ra

m
ew

or
k 

+ 
LU

IS
 (M

ic
ro

so
ft)

 [v
4]

Fl
ow

X
O

 [0
7/

06
/2

02
0]

La
nd

bo
t.i

o 
[0

7/
06

/2
02

0]

C
ha

tfu
el

 [0
7/

06
/2

02
0]

R
as

a 
[1

0.
1.

2]

Sm
ar

tL
oo

p 
[0

7/
06

/2
02

0]

X
en

io
o 

[0
7/

06
/2

02
0]

 

B
ot

ki
t (

pa
rt 

of
 B

ot
 F

ra
m

ew
or

k)
 [4

.9
.0

]

LU
IS

 [0
5/

19
/2

02
0]

C
ha

tte
rB

ot
 [1

.0
.5

]

Pa
nd

or
ab

ot
s [

07
/0

6/
20

20
]

1. Kind (Library, Framework, Platform, Service) P P P F P P P F P P F S L P
2. Regular expressions/patterns             

3. NLP for phrase match          

4. Text processing to obtain phrase parameters         

5. Number of languages: very high (≥50), high (≥10), some 
(<10), 1 (represented with flag) h h h h h v s h v

6. Sentiment analysis     

7. Speech recognition      

8. Storage of phrase parameters: volatile, persistent, both b b b b b v v b v v v v
9. Support for intents         

10. Support for entities: predefined, user-def, both b b b b p p b b b b
11. Dialogue structure: tree, followup intents, dsl f f f f t t t t f t f d
12. Utterances to reengage users    

13. Specification of chatbot answers            

14. Integration with social networks/websites: high (≥10), 
some (<10), 1 (represented with logo) h s s h s h s s s s

15. Interaction support for specific social networks    

16. Call to services from chatbot         

17. Chatbot usage via API       

18. Pre-built components: chatbot templates, intents, small 
talks, services cts c i cs c c c t

19. Version control: native, code-based n n n c c c c
20. Chat console for testing           

21. Debug mechanisms     

22. Validation support 

23. Hosted deployment           

24. Support for analytics       

25. User message persistence        

Se
c

26. Cloud security     

27. Pricing model: free, pay-as-you-go, quota, advanced feats fp fp fp fpa fq fa fa fa fa fq f fq f fqa
28. Developer expertise: low, high l l l h l l l h l l h h h l
29. Code hosting: external, on-premises e e e o e e e o e e o o o e
30. Group work     

31. i8n 

32. Open source   

33. New channels    

34. No vendor lock-in    

In
pu

t p
ro

ce
ss

in
g

D
ia

lo
gu

e
D

ep
lo

ym
e

nt

M
an

ag
er

ia
l F

ac
to

rs
T

ec
hn

ic
al

 F
ac

to
rs

O
rg

an
i

za
tio

n
D

ev
el

op
m

en
t

O
pe

ra
tio

na
l

Sy
s. 

in
te

g.
D

ev
el

op
m

en
t a

nd
 

te
st

in
g 

Ex
ec

ut
io

n 



follow-up intents which are activated upon 
matching their parent intent (e.g., an intent 
for making appointments which declares a 
follow-up intent to inform the kind of pet). 
More differently, Pandorabots uses the 
Artificial Intelligence Markup Language 
(AIML, http://www.aiml.foundation/), an 
XML format from the ‘90s aimed to be a 
scripting standard for chatbots. Being 
based on templates, it is in stark 
contraposition to modern approaches based 
on NLP. Some platforms also permit 
defining utterances that the chatbot can use 
to reengage unresponsive users (row #12). 
Finally, all approaches but LUIS and Botkit 
permit specifying the chatbot answers (row 
#13). 
Deployment. While some approaches 
allow deploying chatbots in many social 
networks, others target specific ones (row 
#14). For example, Chatfuel chatbots are 
specific for Facebook messenger, 
Landbot.io chatbots can be deployed just 
on WhatsApp Business and websites, while 
Dialogflow has 15 channel integrations 
including websites, services like Skype, 
intelligent speakers and social networks 
like Slack, Viber, Twitter and Telegram. 
Libraries and services lack deployment 
options, since this is out of their scope. In 
addition, Dialogflow, Bot Framework, 
Xenioo and Pandorabots permit including 
custom interaction mechanisms for the 
selected channel, like buttons in Telegram 
(row #15). 
System integration. Several approaches 
enable calling services from the chatbots 
(row #16). In some cases, like Dialogflow, 
this is done by associating the URL of the 
service to an intent, so that matching the 
intent triggers a POST message to the 
service. In other cases, it is possible to 
define programs with custom code. For 
this purpose, Dialogflow supports Cloud 
Functions for Firebase, and Lex supports 
AWS lambdas. 

Conversely, some approaches offer an 
API that permits integrating parts of the 
chatbots with existing applications (row 
#17). For example, Dialogflow chatbots 

can be used programmatically to check the 
most probable matching intent given a user 
phrase. 
Development and testing. Some tools 
offer pre-built components that can be 
added into new chatbots (row #18). These 
include generic chatbot templates (e.g., for 
a coffee shop or a hotel booking system), 
predefined intents, predefined small talks 
(answers to simple phrases and questions), 
or services (e.g., to build a Q&A chatbot 
from a knowledge base). Regarding 
version control (row #19), all frameworks 
and libraries rely on code and can be used 
with any generic version control system, 
while only some platforms (Dialogflow, 
Watson and Lex) give native support for 
versioning though this is simpler than 
state-of-the-art versioning systems like 
GitHub. 

As for testing, most approaches 
provide a web chat console to test the 
chatbots manually (row #20). For 
debugging (row #21), frameworks and 
libraries can rely on the support of the 
programming language, while only one 
platform (Dialogflow) offers debugging 
facilities to inspect the matched intent and 
related information. In addition, 
Dialogflow incorporates checks of the 
chatbot quality, such as detecting intents 
with similar training phrases (row #22). 
Execution. Once a chatbot is defined, all 
platforms and most frameworks support its 
execution on their clouds (row #23). This 
solution can be optimal for many 
companies, especially if they already use 
the cloud services of the platform vendor 
(e.g., Google, Azure or AWS); however, 
this may not be always suitable. In some 
cases, like Watson, there is a special 
pricing plan to deploy the chatbot on third-
party clouds. Finally, some approaches 
permit obtaining analytics about the 
chatbot usage (row #24) or persisting the 
user phrases (row #25). Developers might 
find the latter feature useful to adjust the 
accuracy of the intent recognition and 
improve the user experience [10]. 
Approaches like Watson automate this 



task, while others like Dialogflow require 
uploading the conversation logs and 
retraining. 
Security. Chatbots may need to 
incorporate security aspects, especially if 
they work with private user data. While in 
general, implementing any security 
capability is the developers’ responsibility, 
some tools can provide a security layer 
atop the cloud where the chatbot is 
deployed (row #26). Hence, approaches 
without deployment services do not offer 
this possibility natively. Instead, 
Dialogflow, Watson, Lex and Azure 
(Microsoft cloud for the Bot Framework 
and LUIS) provide a layer with features 
like firewalls; authentication and 
authorization when used via API; and 
secure connections (e.g., SSL or 
HTTPS/TLS). In addition, social networks 
like Whatsapp or Telegram support 
message encryption and user 
authentication. 

4. Adding managerial factors 
to the equation 

In addition to technical factors, some 
managerial factors may influence the 
selection of a development tool. Rows 27–
34 in Table 1 classify those factors among 
organizational, related to development, or 
operational. We elicited those factors by a 
thorough analysis of the tools’ features, 
and classified them using as a basis typical 
concerns in software projects. 
Organizational factors. A critical 
selection factor is the pricing model of the 
approach (row #27). Most offer a free 
version suitable for small businesses or for 
experimentation (e.g., Dialogflow provides 
five free assistants and Watson supports 
10,000 API calls). In addition, they 
provide other pricing models, typically 
collecting small fees for every interaction 
with the chatbot (the pay-as-you-go option 
of Dialogflow), limiting the number of 
interactions or active chatbots (the 
different plans of FlowXO), or supplying 

advanced features (e.g., webhooks in 
Landbot.io are not free). 

The expertise of the development 
team on chatbot-related technology is also 
important (row #28). Development 
platforms allow creating simple chatbots 
with no need for coding and require less 
expertise than approaches based on 
programming, though these latter are less 
constrained. 
Development related factors. Like any 
kind of software, chatbot construction 
should follow proper engineering 
processes. In this respect, using a platform 
may be problematic if the chatbot 
development has to be harmonized with 
the company development culture and 
processes. For example, platforms host the 
chatbot specifications on their clouds, 
while the backend needs to reside in a 
different place; instead, chatbots developed 
with libraries, frameworks and services can 
run on-premises (row #29). Likewise, 
some code facilities such as versioning or 
debugging are standard for frameworks 
and libraries but may be unavailable for 
some platforms. The same applies to group 
work (row #30): platforms currently do not 
support synchronous collaborative 
development, so working on different parts 
of a chatbot cannot be parallelised among 
developers. 

Depending on the domain or the 
company strategy, the need to support 
several languages (i8n) can be necessary 
(row #31). Rather than developing a 
chatbot for each language, platforms like 
Dialogflow offer multi-language support 
by enabling the specification of different 
training phrases for each language over the 
same intent. 

Interestingly, among the reviewed 
approaches, only the community edition of 
Rasa, Botkit and ChatterBot are open 
source (row #32). No platform is open 
source, which may result in vendor lock-in, 
but it is possible to make public the chatbot 
specifications built with any platform. 
Operational factors. Once a chatbot is in 
operation, the need to deploy it in novel 



channels or new versions of existing ones 
may arise (row #33). If the chatbot was 
developed using a platform, the available 
deployment options might be limited (e.g., 
Watson does not provide out-of-the-box 
deployment in Telegram). Libraries and 
(extensible) frameworks like Rasa, Botkit, 
LUIS and ChatterBot are more flexible, as 
they allow the manual implementation of 
the required deployment. 

Finally, platform-based approaches 
imply vendor lock-in as there are currently 
no migration tools using neutral exchange 
formats between platforms (row #34); 
however, an advantage of platforms is the 
ability to use the services of the provider 
(IBM, Google). Instead, libraries and 
frameworks require coding the chatbot 
logic in a programming language (like 
Python in case of Rasa), which brings 
more independence and safety with respect 
to possible policy changes of the platform 
owner company. This independence is 
stronger in open-source systems (row #32) 
since they could even be personalized to 
the developer needs. 

5. Building a chatbot in 
practice 

Practitioners can exploit the 
information in Table 1 to select the best 
tool depending on the scenario. While this 
analysis can be hand-crafted, we envision a 
recommender system that automatically 
identifies the optimal tools from the 
chatbot requirements. 

As an illustration, let’s assume two 
scenarios for our vet clinic chatbot. In the 
first one, the clinic wants to reach as many 
potential clients as possible, so it asks for a 
chatbot that is multi-language and works 
on different social networks and intelligent 
speakers. Moreover, the software company 
that will develop the chatbot lacks the 
infrastructure to host the bot. Given these 
requirements, the only suitable chatbot 
creation tool is Dialogflow.  

In the second scenario, the clinic is in 
a process of expansion so the chatbot may 
be likely extended in the future. Hence, the 

software company is thinking of using 
either Rasa or Botkit to avoid vendor lock-
in. Since the company has an expert team 
of Python developers, and wants to have 
support for debugging and testing, it opts 
for Rasa. 

We have built prototypical chatbots 
using the tools selected in the scenarios: 
Dialogflow and Rasa. The chatbots 
communicate with a backend that holds a 
database written in Java and PostgreSQL. 
The chatbots for Telegram, including their 
specification, are available at 
https://github.com/SaraPerezSoler/VetClinic. 

The chatbot specification in 
Dialogflow has four intents: a welcome 
intent, a fall-back intent, an intent to query 
the opening hours, and another to set 
appointments. The welcome and fall-back 
intents were predefined in Dialogflow and 
reused in our chatbot without modification. 
To make the chatbot multi-language, each 
intent has to be trained with phrases in 
every targeted language. The appointment 
intent has a follow-up asking for the type 
of pet. This control flow is specified via a 
context. We defined an entity to recognise 
pet types, and reused the date and time 
system entities. The backend is 
accessed by a webhook that calls the 
database service via a POST request; 
alternatively, the behaviour could be 
implemented with a JavaScript in-line 
editor available in the platform. The 
deployment in Telegram was 
straightforward using Dialogflow’s 
integration options, and there are 
integrations for intelligent speakers as 
well. 

Differently from Dialogflow, creating 
a chatbot in Rasa is not done via a 
graphical interface, but requires 
programming in Python and defining 
configuration files (YAML and 
markdown) storing the entities, intents, 
conversation flow, training phrases, bot 
responses, actions, forms, NLP 
configuration and credentials to access 
external services. The Rasa chatbot has 
one fall-back action and three intents: 



greeting, time and make_appointment. To 
define the parameters of the last intent, we 
subclassed a specific Rasa class to store 
the name and type of the parameters, 
validation methods, and other details. The 
chatbot actions (e.g., querying the 
database, calling external services) were 
programmed in Python as well. The 
chatbot behaviour can be debugged and 
tested using standard Python tooling. 
Unlike Dialogflow, the developer must 
perform the chatbot deployment as Rasa 
does not host bots. 

6. Open Challenges 
Overall, the existing tools cover a 

wide spectrum of possibilities to ease 
chatbot creation in different scenarios. 
However, designing, developing and 
testing chatbots still pose some challenges. 
First, most platforms offer general, 
informal guidelines for chatbot design, but 
design patterns and quality metrics for 
chatbots are missing. With regards to 
development, most tools rely on training 
phrases to specify intents; while this is 
suitable in closed domains, supporting less 
constrained conversations would require 
the tools to incorporate more sophisticated 
NLP mechanisms [13, 14] and better 
support to expand the training set using 
techniques such as reinforcement learning 
(e.g., via trial-and-error conversations with 
real or simulated users). Also related to 
quality, existing tools give poor support for 
testing chatbots in a systematic and 
automated manner; at best, they provide a 
console for manual testing, and basic 
debugging mechanisms (rows 20–21 in 
Table 1). Some dedicated testing tools are 
emerging, like https://www.botium.at/.  

Ultimately, the success of a chatbot 
depends on its usability and the user 
experience. Some technical factors in 
Table 1 may help to improve this usability: 
NLP enables more natural conversations, 
phrase parameters avoid users to provide a 
different sentence per piece of information, 
sentiment analysis can contribute to better 
grasp the meaning of a phrase and act 

accordingly, speech recognition supports 
spoken conversation, rich dialog 
structuring mechanisms allow more 
sophisticated conversation flows, and 
message persistence can be exploited to 
improve chatbot accuracy by the analysis 
of real conversations. To complement this, 
chatbot development tools should invest in 
embedding guidelines and heuristics 
targeted to chatbot usability [11, 12].  

Chatbot development tools are 
rapidly expanding, but we believe that 
after diversification comes unification. The 
analysed technologies use their own 
proprietary formats to define chatbots, and 
automated migration tools are missing. To 
unify the different approaches, the W3C is 
developing a standard for conversational 
agents (https://www.w3.org/community/conv/), 
and some open-source initiatives aim to 
integrate the best of every chatbot 
platform, helping to solve the vendor lock-
in problem [15]. 
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ABSTRACT After improving the SOCIO chatbot prototype model, we wanted to know how/if its usability 
has changed. An evidence-based empirical evaluation of the usability of SOCIO V1 (updated version) 
requires an extensive verification of the experimental results. A family of experiments is a method of 
verification whereby we can check if the experimental results are reproducible. Through comparison with the 
updated control tool Creately, we aimed to gain a better understanding of the usability of the collaborative 
modeling chatbot and how it could be improved based on experimental evidence of changes in terms of 
efficiency, effectiveness, satisfaction, and quality. A total of 87 students from three countries were recruited. 
We conducted a family of three experiments to compare the usability of SOCIO V1 and updated Creately in 
academic settings. Students appeared to be more satisfied with SOCIO V1, and SOCIO V1 scored better on 
completeness. There were no significant differences between the two tools regarding efficiency and quality. 
This study provides evidence on how to employ a family of experiments to improve chatbot usability and 
enrich knowledge on chatbot usability experimentation. 

INDEX TERMS Chatbot, usability, family of experiments. 

I. INTRODUCTION 
Collaborative modeling is an approach that deals with 
methods, processes, and tools for enhancing collaboration, 
communication, and coordination (3C) in teamwork [1]. 
Synchronization is used pervasively in software engineering 
(SE) collaborative modeling, providing for simple and 
efficient design changes in the collaboration environment. 
Many real-time collaboration modeling tools have been 
developed for target groups, e.g., Lucidchart, Creately, and 
Cacoo. Social networks like Telegram and Twitter have 
gained popularity and recognition [2]. With a view to 
integrating collaborative modeling tools into social 
networks, our colleague de Lara and his research group 
developed SOCIO chatbot (nick @ModellingBot), a 
collaborative modeling chatbot integrated into Telegram and 
Twitter [3]. SOCIO chatbot is an alternative collaborative 
modeling option to help stakeholders from different 
backgrounds perform lightweight tasks [3]. 

Usability deals with all sorts of activities related to software 
that is under development or has already been developed. 
Usability is defined in ISO/IEC50 25010:2011 [4] as a subset 
of quality in use, characterized explicitly by efficiency, 
effectiveness, and satisfaction. Experimentation is critical for 
evaluating usability in SE research [5]. Experimentation is a 
valuable tool for all software engineers involved in evaluation 
[6]. Back in 1998, Tichy reported his perspective on 
experimentation in software engineering (ESE) [7] as follows: 
“Experimentation can help build a reliable base of knowledge 
and thus reduce uncertainty about which theories, methods, 
and tools are adequate.” Nowadays, however, ESE is still a 
young and immature field where there is much debate on the 
appropriate research typology and evaluation criteria. 
Additionally, experiment replication types are not 
standardized at either the intra or interdisciplinary level [5]. 
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A single experiment is unlikely to output reliable empirical 
results [5]. The outcomes of the experiment should be 
validated by replication. Lykken claimed in 1968 that “the 
majority of theories should be evaluated through multiple 
corroborations and the majority of empirical generalizations 
through constructive replication” [8]. Empirical evaluation has 
evolved considerably since its early beginnings, and the need 
for replication has been widely acknowledged in various 
scientific disciplines, including social science, business, and 
philosophy [5]. Replications of experiments have proven the 
need to be careful about accepting evidence that has not been 
subjected to strict corroborations [5]. To increase the 
robustness of the gathered experimental evidence, SE 
experiment replication is an indispensable part of ESE 
research [9]. The general purpose of replication is to check a 
previously observed finding. If the same results are 
reproduced in different replications, we can infer that these 
results are regularities existing in the portion of reality under 
study [10]. 

Quantitative analysis is widely used in experimental 
analysis and usability evaluation. Quantitative analysis 
interprets hard data collection [11]. However, qualitative 
analysis is a valuable paradigm for investigations where the 
data cannot be expressed numerically due to the complexity of 
the subjective characteristics and opinions involved. Thematic 
analysis is one of the most common forms of qualitative 
analysis. Thematic analysis is widely used across a range of 
epistemologies and research questions [12]. Thematic analysis 
has a number of advantages for evaluating the feedback from 
participants [12], [13], [14]: (i) researchers can apply a highly 
flexible approach that can be adapted to the needs of thematic 
analysis, (ii) it is an effective strategy for comparing and 
contrasting the perspectives of various research participants, 
revealing similarities as well as differences, and (iii) it is 
advantageous for summarizing significant characteristics of an 
extensive data set, as it helps to create a concise and ordered 
report. 

This paper investigates a modified version of SOCIO with 
improved usability characteristics (SOCIO V1), based on the 
findings of a previous family of experiments. This second 
family of experiments tests whether or not SOCIO V1 
consolidates the implemented usability characteristics. This 
article reports one of a number of families of experiments. In 
our case, the experimentation is performed in an academic 
setting, because the Unified Modeling Language (UML) 
modeling task is performed by senior computer engineering 
and mathematics students.  

Our family of experiments aims to answer the following 
research question (RQ): How can chatbot usability be 
improved based on evidence from a family of experiments in 
academic settings? 

In response to the research question, we designed an 
identical experiment for each experiment. We quantitatively 
analyzed the data using violin plots, descriptive statistics, and 
meta-analysis combined with linear mixed models (LMM) for 

each metric of each variable. Then we complemented the 
quantitative analysis by means of thematic analysis. The main 
contributions of the paper are: (1) the provision of evidence to 
enrich the body of knowledge to improve chatbot usability 
through the family of experiments, (2) demonstration of how 
chatbot usability can be improved by means of the family of 
experiments; and (3) provision of a summary and suggestions 
based on user feedback on how to improve software modeling.  

The remainder of the paper is structured as follows. Section 
2 describes the experiment background, indicating our 
improvement based on previous work. Section 3 reviews 
related work. Section 4 describes the design of our family of 
experiments. Section 5 reports the experimental result and 
quantitative and qualitative analysis. Section 6 describes the 
threats to validity. Section 7 discusses the experimental 
results. Section 8 outlines the conclusions and future work. 

II. BACKGROUND 
The first family of experiments comparing the usability of the 
basic version of SOCIO and Creately [15] was conducted in 
2019. In this family of experiments, we adopted Creately 
(creately.com) as the control tool for comparison with the 
SOCIO chatbot, as Creately is one of the most commonly used 
modeling tools [16]. Creately is a web-based real-time 
collaboration tool for creating more than 50 types of diagrams, 
including UML diagrams. 

SOCIO chatbot is a collaboration tool for creating class 
diagrams. By communicating with SOCIO in natural language 
(English), the team could create a class diagram in a group chat 
on Telegram or Twitter. From our first family of three 
experiments implementing a basic version of the SOCIO 
chatbot, we observed quantitative and qualitative feedback 
from this study, involving 132 participants. Quantitative data 
results provide: (1) proof of unsatisfactory chatbot usability, 
and (2) insights on how to improve chatbots. The conclusion 
and future work of the previous publication [15] lists the 
usability improvements for SOCIO as follows: 

• Provide more help. As some participants complained 
that they did not know where they went wrong when 
the chatbot did not understand their commands, they 
suggested the need for better help. Other participants 
said they were using the chatbot for the first time and 
therefore needed more help from the help page and 
during the interaction with the chatbot. 

• Delete any element that the user wants to delete, 
regardless of whether it was created by themselves or 
another team member. In fact, some participants in the 
first experiments of the family suggested that the /undo 
command should be modified to enable a participant to 
undo his/her own action instead of the last action 
performed by the team. 

• Beautify the user interface. Regarding the interface, 
some participants claimed that the look of the class 
diagram generated by the chatbot is old-fashioned and 
unchangeable. 
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After discussing with HCI experts and the entire SOCIO 
chatbot developer team, we prioritized the aspects on the list 
according to the evidence that we gathered from the results of 
the data aggregation. We decided to develop three updated 
versions with different advances. The changes that we made 
to versions 2 and 3 are outlined in Appendix A. 

Common Change: Change the guidance and help page. To 
provide more help to users, the following changes were made 
to all three updated versions: 

1. Show the attribute types accepted by the chatbot as tips 
(int, double, float, date, string). 

2. Update the guidance page in both English and Spanish 
(the native language of our subjects). 

3. Provide examples on the help page to better explain the 
commands to help build the class diagram. For 
instance, we specify that point 3.5.6 would help relate 
entities and point 1.2 is helpful for directly making a 
command. 

Updated Version 1 (SOCIO V1): Alternative context-
sensitive help. Apart from modifying the help page, we 
decided that, with a view to providing users with more help, 
the chatbot should have more than one optional response when 
it does not understand the user's command. Note that the 
improvement of context-sensitive help messages only affects 
SOCIO V1 for Task 1 and Task 2 and does not affect Creately. 

1. When the user's command is properly formatted but is 
not understood by the chatbot, the SOCIO V1 chatbot 
sends an unchanged the project diagram. In the light of 
this, we modified the response to be an autoreply, 
alerting the user that the chatbot does not understand 
the command and providing some sample sentences 
that the chatbot can understand (see Figs. 1 and 2). 

FIGURE 1.  Before the first modification of Version 1. 

FIGURE 2.  After the first modification of Version 1. 

2. When a user's command is not in the correct format, 
we provide suggestions on how to organize the 
command correctly. For instance, we change the 
autoreply from “I don't understand this command” to 
“I don't understand this command. You can use all 
these commands: + command list” to remind users of 
the commands they can use (see Figs. 3 and 4). 

FIGURE 3.  Before the second modification of Version 1. 

FIGURE 4.  After the second modification of Version 1. 
 
In this article, we adopt the updated version 1 to conduct the 

second family of experiments with the aim of improving 
SOCIO chatbot's usability. Because Creately is a commercial 
product, it has undergone significant improvements. For 
example, the development team has upgraded the user 
interface, which no longer relies on Adobe Flash. We 
approached the Creately support team to request access to the 
version of Creately (used in the first family of experiments). 
However, they could not provide this version since Creately 
Classic was built on Adobe Flash, which is no longer 
supported by Adobe. Consequently, we used the updated 
Creately in the second family of experiments. 

III. RELATED WORK 
Ren et al. conducted a secondary study on chatbot usability 
experimentation [17]. They found that more and more 
chatbots had been evaluated with respect to various aspects, 
ranging from usability to practicability (or quality of 
outcome). We found that many chatbots had been evaluated 
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through experimentation. However, most of the findings were 
based on observations from isolated experiments, and results 
have seldom been evaluated over again, irrespective of 
whether or not the chatbots were updated and improved. The 
second study reported that only one out of the 28 retrieved 
chatbot experiments [18] measured an improved version of the 
chatbot compared to the original version. The researchers 
designed a voice-activated chatbot that requires wake-up 
words. To get early feedback on the usability and the nature of 
any potential flaws, they conducted the first experiment with 
the first bot prototype that employed a simple heuristic to 
assess whether the user was addressing the bot. Following the 
enhancements to the early version of the bot, they conducted 
a second experiment with eight novices. These findings 
provide fair confidence that the second (improved) prototype 
bot is more useable. However, the researchers conducted 
experiments with different designs. In other words, to the best 
of our knowledge, most experiments on chatbot usability 
either have not been reproduced or have been reproduced 
according to the lesson they learned from the previous 
experiment. 

It is pretty challenging to verify whether the results of 
independent experiments arise by chance, whether they are 
artificial, or whether the results conform to the regularities of 
the portion of reality under examination [5]. An effective 
validation method is to replicate the experiment to check that 
the results are reproducible [5]—this elucidated importance of 
replication in ESE. 

A group of at least three replications could form a family of 
experiments to provide reliable validation [10]. Basili et al. [9] 
used the term family of experiments in 1999 to refer to a group 
of experiments pursuing the same goals whose results can be 
combined. Santos et al. further distinguishes the family of 
experiments through collections of experiments, either 
systematic literature reviews or replications of experiments 
[10]. Compared to individual experiments, Basili et al. [9] and 
Santos et al. [10] pointed out that a successful family of 
experiments has the advantage of increasing the validity and 
reliability of the outcomes of a single experiment.  

However, we have not found any family or replication of 
experiments on chatbots following improvements. We regard 
this as being necessary in ESE in order to explore how to 
improve the usability of chatbots based on evidence. 
Therefore, we conducted a second family of experiments, 
reported in this article, with the improved version of the 
chatbot to explore how the usability of the chatbot was 
improved based on evidence. 

IV. FAMILY DESIGN 
This section describes the design of our family of experiments. 

A. OBJECTIVES, HYPOTHESES AND VARIABLES 
Based on findings from the previous study [15], we set out to 
investigate through replication within this family of 

experiments how to improve the usability of a chatbot by 
including usability characteristics in the application. 

Note that our aim was to identify the application of usability 
characteristics in chatbot development rather than to help 
teams build a better UML diagram in academic settings. The 
null hypotheses that govern this research question are as 
follows: 

H.1.0 There is no significant difference in efficiency using 
SOCIO V1 or improved Creately when building the class 
diagram. 

H.2.0 There is no significant difference in effectiveness 
using SOCIO V1 or improved Creately when building the 
class diagram. 

H.3.0 There is no significant difference in satisfaction using 
SOCIO V1 or improved Creately when building the class 
diagram. 

H.4.0 There is no significant difference in the quality of the 
class diagram built using SOCIO V1 or improved Creately. 

As mentioned above, we developed an updated version of 
the chatbot SOCIO called SOCIO V1 with context-sensitive 
help, and the control tool Creately was equipped with a better 
interface that did not rely on Adobe Flash. SOCIO V1 and the 
improved Creately were used to perform the family of 
experiments. 

For each experiment run, the independent variable was the 
modeling tool, and the chatbot SOCIO V1 and the improved 
online application Creately were treatments. According to the 
above experimental setting [15], the response variables 
(dependent variables) within this family were three usability 
characteristics (i.e., efficiency, effectiveness, and satisfaction) 
and the quality of the outcome. 

Based on definitions from ISO/IEC 25010:2011 [4], ISO 
9241-11 [19], ISO/IEC/IEEE 29148 [20] and Hornbæk’s 
guidelines [21], efficiency, effectiveness, and satisfaction are 
commonly measured characteristics for evaluating software 
usability. Precisely, we measure usability as follows: 

Efficiency. Efficiency is measured in terms of time to 
complete a task and fluency. 

Time. Once we completed the tutorial for the tool, 
participants were sent the task, and time was counted as of 
when the task was received. We manually recorded how many 
minutes each team took to complete each task. We recorded 
the start and stop times for remote experiments via Telegram 
chat. For offline, face-to-face experiments, we recorded when 
we asked participants to start on-site and when each team 
finished. Each team was given a maximum of 30 minutes to 
complete a task. If a team finished the task early, the time at 
which they finally submitted the outcome was recorded as the 
task completion time. 

Fluency. Fluency was measured by the number of 
discussion messages generated by teammates. We counted the 
number of discussion messages manually. Discussion 
messages are generally about task performance, tool use, and 
team management topics. Any irrelevant communication or 
discussion messages were not counted, e.g., emotional 
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expressions and questions put to the experimenter. Of the 
discussion messages, SOCIO V1 and Creately both share a 
common type of discussion message: messages regarding how 
to use the tool. To gain a better understanding of user opinions, 
we also analyzed this type of message in the experimental 
results of the discussion messages afterwards. 

We measured effectiveness as completeness, based on the 
perceived success of each class diagram compared with the 
ideal class diagram (see lab package) that we (i.e., the 
experimenters) built to measure the solutions produced by 
teams [21], [22]. 

To calculate the completeness score, we counted how many 
elements were included compared to the ideal class diagram. 
We counted each class, relationship and attribute as one 
element. For instance, the ideal class diagram for Task 1 
contains 32 elements. We counted the number of elements 
included by the teams and divided this number by the ideal 
number of elements (32) to calculate the completeness score 
for each team completing each task. Thus, the highest score 
for each team is 1. Note that when counting the included 
elements, the name and characteristic of the element does not 
necessarily have to be absolutely correct. At this point, we are 
measuring whether the participant managed to create the 
element, e.g., both "college" and " university" are counted as 
being correct. 

We tailored the System Usability Scale (SUS) questionnaire 
to our experiments to assess satisfaction quantitatively and 
qualitatively. Each questionnaire included 10 five-point Likert 
scale SUS questions (1 for “Strongly Disagree” and 5 for 
“Strongly Agree”) and three to four open-ended questions 
about positive comments, negative comments, and tool 
suggestions. At the end of the second experimental session, we 
asked about participants' preferences for either of the two 
tools. 

To calculate the numerical value of each participant's 
satisfaction score, we used Brooke's equation [23] below to 
calculate the quantitative SUS result. The team score was 
calculated using the median of the scores of the three team 
members for each question: 
 

 
We also measured the quality of the outcome as the quality 

of the class diagrams generated by the teams used as a measure 
of effectiveness [21]. 

To gauge the quality of each team's class diagram, we used 
an ideal class diagram as a benchmark. However, a class 
diagram can have more than one solution, all of which are 
“correct.” Software engineering experts designed the ideal 
class diagram before the experiment was carried out. To assess 
quality, we employed the following metrics [24]: 

Precision = TP / (TP + FP)        (2) 
Recall = TP / (TP + FN)         (3) 
Accuracy = (TP + TN) / (TP + TN + FP + FN)      (4) 
Error = (FP + FN) / (TP+ TN + FP + FN)       (5) 
Success = TP / (#Number of ideal class diagram elements) (6) 

By comparing the ideal class diagram with the true positives 
(TP), false positives (FP), false negatives (FN), and true 
negatives (TN) for each class diagram, the following formulas 
were computed: 

TP (true positive): Number of elements found in the ideal 
and team class diagrams. 

FN (false negative): Number of elements found in the ideal 
class diagram but not in the team class diagram. 

FP (false positive): Number of elements found in the team 
class diagram but not in the ideal class diagram. 

TN (true negative): There are no true negatives in the model 
comparison; hence, the value is always 0. 

B. DESIGN OF THE EXPERIMENTS 
A baseline experiment (EXP1) and two replications (EXP2 
and EXP3) form the family of experiments in academic 
settings. Considering the relatively small sample size of the 
baseline experiment (i.e., 15 subjects) and the resulting 
potential for inaccurate and/or biased results [25], we followed 
the theoretical guidelines set out by Juristo and Gómez [5], 
employing an identical experimental design for all three 
experiments. Note that the experimental process of this second 
family is identical to the first family [15] in order to compare 
SOCIO and SOCIO V1 vertically. Each of the three 
experiments was structured as a two-sequence and two-period 
within-subject crossover design (see Table I). 
 

TABLE I 
EXPERIMENTAL DESIGN 

Group Task 1 
Period 1 

Task 2 
Period 2 

Group1 SOCIO V1 Creately 
Group2 Creately SOCIO V1 

 
The two replications adhere to the baseline experiment with 

few variations. To assure that the replications are similar, and 
the results are comparable, researchers reuse the same 
experimental protocol and experimental material employed in 
the baseline experiment, and the replications are jointly run 
with the experimenter that conducted the baseline experiment. 

Three experiments were run at three different sites. The 
baseline experiment (EXP1) took place at the Universidad de 
las Fuerzas Armadas ESPE Extensión Latacunga (ESPE-
Latacunga) in Ecuador (UNIV-1), the first replication (EXP2) 
was conducted at the Universidad Autónoma de Yucatán 
(UADY) in Mexico (UNIV-2), and the second replication was 
run at the Escuela Politécnica Superior of the Universidad 
Autónoma de Madrid (EPS-UAM) in Spain (UNIV-3). 

Due to COVID-19 lockdown in Mexico, Ecuador and 
Spain, test sessions for EXP1 and EXP2 were organized 
remotely via desktop sharing and video conferencing 
software. EXP3 was conducted in a face-to-face manner. 

As both tools are collaborative, the experiments took place 
in a groupwork setting. The experiments were conducted 
using three-member teams, and each team was construed as an 
experimental subject. In each experiment, participants were 
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randomly assigned to one of two groups (Group 1 or Group 2) 
and then grouped into three-member teams. Accordingly, each 
group applied the treatments differently (SOCIO V1-
Creately/Creately-SOCIO V1). The experimental design is 
blocked by the period (i.e., the task). 

At the beginning of the experiment, each participant was 
asked to complete a familiarity questionnaire and a consent 
form. After a 10-minute introduction to the tool that the 
participants would be using before each period, they were 
given a maximum of 30 minutes to complete the task using the 
tool. Group 1 carried out Task 1 with SOCIO V1 in the first 
period and Task 2 with Creately in the second (i.e., SOCIO 
V1-Creately sequence). On the other hand, Group 2 completed 
Task 1 in the first period using Creately and then completed 
Task 2 using SOCIO V1 in the second period (i.e., Creately-
SOCIO V1 sequence). All participants were asked to complete 
a modified and validated SUS questionnaire connected with 
the tool they had just used following the completion of each 
experimental task (i.e., all participants had to fill in the 
modified SUS questionnaire twice with respect to two 
modeling tools). Additionally, participants were asked in the 
second SUS questionnaire whether they preferred SOCIO V1 
or Creately. 

Two distinct experimental tasks were designed (each 
assigned to a different experimental period). The first task was 
to create a class diagram for an online store that includes 
product and customer management. The second task was to 
create a class diagram for a college in order to facilitate the 
organization of courses and pupils. The complexity of the 
class diagrams was adapted to the duration of the experimental 
periods. Throughout the experiment, participants of the same 
team were only permitted to communicate via Telegram 
groups. This was done to ensure that all experimental data was 
captured. From the first family of experiments, we observed 
that most participants tended to run out of time. This may have 
affected their task completeness. Considering that (1) subject 
availability was limited and subject fatigue needed to be 
avoided and (2) we would not be able to measure the 
effectiveness variable if all the participants had had the option 
of completing each task, we did not extend the time limit in 
the following experimental series. 

C. SAMPLE 
The participants in our family of experiments were students 
recruited using the convenience sampling method at UNIV-1, 
UNIV-2, and UNIV-3. The sample in the family was 
composed of 96 participants: 45 students at UNIV-1, 27 
students at UNIV-2, and 24 students at UNIV-3. All the 
participants were students completing a BSc in Computer 
Science degree or Joint BSc in Computer Science and 
Mathematics. Because SOCIO is a modeling chatbot, users 
had to be acquainted with UML in order to build the model 
(class diagram). In view of this, we recruited only students 
with a background in computer science or related fields to 
ensure that the participants would be able to complete the 

modeling tasks. To guarantee that all interactions between 
team members were conducted via Telegram, we made sure 
that the students' professors were present to oversee the 
process. In addition, each teammate was seated separately to 
make sure that there was no whispering. 

For technical and methodological reasons (e.g., system 
failure, incomplete questionnaires, experiment withdrawals), 
teams 8 and 14 from EXP1 and 6 from EXP2 did not complete 
the experiment. The study was, therefore, limited to only 87 
participants (see Table II). The sample included 14 women 
and 73 men who ranged in age from 20-27 (mean 22.54, SD 
1.29). 

 
TABLE II 

OVERVIEW OF SUBJECTS 
EXP Time Affiliation #Participants Teams 
EXP1 Jan 2021 UNIV-1 45 15 
EXP2 Jan 2021 UNIV-2 27 9 
EXP3 Nov 2021 UNIV-3 24 8 

 
A postal survey was carried out with 87 participants. Table 

III summarizes the analysis performed on aggregated 
familiarity results.  

 
TABLE III 

FAMILIARITY RESULT 
Have you ever used Telegram? 

Yes  93% 
No  7% 

Have you ever used a chatbot? 
Yes  66% 
No  34% 

Which social networks do you use regularly? 
(Multiple choice) 

WhatsApp  98% 
Telegram  66% 
Twitter  52% 
Facebook Messenger  59% 
Instagram  78% 

Rate your English level 
5  15% 
4  24% 
3  49% 
2  11% 
1  0% 

Rate your knowledge of class diagrams 
5  5% 
4  46% 
3  38% 
2  7% 
1  0% 

Rate your knowledge of chatbots 
5  5% 
4  10% 
3  36% 
2  18% 
1  26% 

 
Considering that 93% of participants had experience with 

Telegram and 66% used Telegram regularly, we believe that 
the use of social networking platforms does not affect chatbot 
usability. However, 34% of participants had no experience 
with chatbots, and 26% had little knowledge of chatbots, 
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which could detract from the sensitivity and credibility of the 
experimental results. In addition, we also asked about the level 
of English: 88% of the participants believed that they had at 
least an intermediate level of English. Because the task did not 
require complex English communication, we believe that their 
English proficiency was good enough to get the job done. 

V. RESULTS AND AGGREGATION OF DATA 
To answer the research questions, we provide a quantitative 
and qualitative description of the nature of this study for data 
synthesis and analysis. 

For quantitative analysis, we performed a global analysis of 
the whole family of experiments and illustrated the individual 
experiments. The descriptive statistics and violin plots were 
used to provide readers or other researchers with a better 
understanding of the normality of each experimental data item. 
We analyzed the quantitative family result following Santos et 
al.’s guidelines [26]. The individual participant data (IPD) 
meta-analysis approach combined with a three-factor LMM 
was used to study the effect on the outcomes of multiple 
factors (e.g., period, treatment, and sequence) [10], [27]. We 
added a parameter to the LMM to account for differences in 
outcomes across experiments (i.e., Experiment). We then used 
the corresponding ANOVA table of the LMM to illustrate the 
statistical significance of the results. 

Finally, we adopted the thematic analysis method [28] to 
gain further insight into user responses and analyze the 
qualitative data of the three open-ended questions. 

A. QUANTITATIVE ANALYSIS 
The following section analyzes each response variable (i.e., 
efficiency, effectiveness, satisfaction, and quality). We 
concentrate on their respective metrics (i.e., time and 
discussion messages for efficiency; completeness for 
effectiveness; satisfaction for satisfaction; and precision, 
recall, accuracy, error, and perceived success for quality). 

For each metric, we provide: (i) descriptive statistics and 
violin plots divided by treatment (i.e., SOCIO V1, Creately) 
and by experiment (i.e., EXP1, EXP2, and EXP3), and (ii) the 
results of all the experiments pooled using a one-stage IPD 
meta-analysis and the contrast between treatments across the 
experiments [29]. 
1) FIRST VALIDATION FOR H.1.0: EFFICIENCY 
Efficiency was measured in terms of time and fluency. Time 
is the amount of time taken to accomplish the tasks. Fluency 
refers to the number of discussion messages exchanged 
between teammates during class diagram development. Figs. 
5 and 6 illustrate the violin plot for time and fluency across the 
experiments. The respective summaries of descriptive 
statistics are shown in Tables IV and VII, grouped by 
experiment and treatment. 

Time. As shown in Fig. 5, the aggregate task completion 
time with SOCIO V1 appears to be similar to Creately in 
EXP1 and slightly less than Creately in EXP2 and EXP3. As 
the descriptive statistics (Table IV) show, time spent on task 

performance appears to be similar for both Creately and 
SOCIO V1. Besides, as shown in the ANOVA table (Table V) 
and the pairwise contrast between the treatments (Table VI), a 
negligible –and statistically non-significant– difference in the 
time was observed between Creately and SOCIO V1 (0.43 
minutes). In sum, Creately and SOCIO V1 appear to perform 
similarly in terms of time. 

 
 
 
 
 
 
 
 
 
 
 

FIGURE 5.  Violin plot for time spent on tasks (jitter added to the 
points). 
 

TABLE IV 
DESCRIPTIVE STATISTICS FOR TIME SPENT ON TASKS 

EXP Treatment Team Mean Std. Dev. Median 
EXP1 Creately 13 29.54 1.20 30.0 
EXP1 SOCIO V1 13 29.39 1.39 30.0 
EXP2 Creately 8 29.75 0.46 30.0 
EXP2 SOCIO V1 8 29.00 2.07 30.0 
EXP3 Creately 8 27.00 2.78 27.5 
EXP3 SOCIO V1 8 26.38 4.60 28.0 

 
TABLE V 

ANOVA TABLE FOR TIME 
Measure numDF denDF F-value p-value 

(Intercept) 1 27 7110.427 <.0001 
Sequence 1 25 3.650 0.0676 
Treatment 1 27 0.972 0.3329 
Period 1 27 1.219 0.2792 
Experiment 2 25 6.349 0.0059 

 
TABLE VI 

CONTRAST BETWEEN TREATMENTS FOR TIME 
Contrast Estimate SE df t-radio p-value 
CR-SC 0.431 0.455 27 0.947 0.3519 

 
Interestingly, we identified a trend where most teams in 

EXP1 and EXP2 spent as long as possible on completing 
and/or improving their class diagrams. Accordingly, we 
observed relatively lower task completeness than for EXP3. 
Based on these observations, a possible conclusion is that 
these participants needed more time to accomplish the task. 

Discussion Messages. Bear in mind that people have 
different messaging styles: some prefer to send a variety of 
short messages in succession, and others prefer to send long 
messages. As mentioned in [15], we counted each sentence 
containing the complete subject, predicate, and object as one 
discussion message. 

As the violin plot (Fig. 6) and descriptive statistics (Table 
VII) show, the participants appear to send more messages with 
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Creately than with SOCIO V1 in two out of our three 
experiments (EXP1 and EXP3). The opposite holds for EXP2. 
As ANOVA (Table VIII) and the contrast table (Table IX) 
show, a negligible –and statistically non-significant– 
difference in the discussion message was observed between 
SOCIO V1 and Creately (5.64). This suggests that SOCIO V1 
and Creately appear to perform similarly in terms of 
discussion messages. 

 
 
 
 
 
 
 
 
 
 
 

FIGURE 6.  Violin plot for discussion messages (jitter added to the 
points). 
 

TABLE VII 
DESCRIPTIVE STATISTICS FOR DISCUSSION MESSAGES 

EXP Treatment Team Mean Std. Dev. Median 
EXP1 Creately 13 27.46 15.53 24.0 
EXP1 SOCIO V1 13 15.46 11.33 11.0 
EXP2 Creately 8 69.25 28.84 62.0 
EXP2 SOCIO V1 8 74.38 55.66 60.5 
EXP3 Creately 8 47.25 14.43 50.0 
EXP3 SOCIO V1 8 42.75 29.32 28.5 

 
TABLE VIII 

ANOVA TABLE FOR DISCUSSION MESSAGES 
Measure numDF denDF F-value p-value 

(Intercept) 1 27 86.05308 <.0001 
Sequence 1 25 0.54658 0.4666 
Treatment 1 27 1.43370 0.2416 
Period 1 27 8.35061 0.0075 
Experiment 2 25 10.85980 0.0004 

 
TABLE IX 

CONTRAST BETWEEN TREATMENTS FOR DISCUSSION MESSAGES 
Contrast Estimate SE df t-radio p-value 
CR-SC 5.64 4.35 27 1.296 0.2058 

 
2) SECOND VALIDATION FOR H.1.0: EFFICIENCY-TOOL 
USAGE MESSAGES 
In the knowledge that there was a wide range of discussion 
messages, they were classified into the following types: task 
performance (e.g., how to divide labor), tool use, and 
discussions about UML knowledge. However, as we were 
researching chatbot usability, we were interested in 
discussions on tool usage, that is, how to use the tools 
properly. Therefore, we extracted discussion messages of this 
type and then performed an additional analysis. 

As the plot (Fig. 7) and the descriptive statistics (Table X) 
show, the participants are more likely to send more messages 

on proper tool use with Creately than with SOCIO V1. 
Besides, as shown in the ANOVA table (Table XI), the 
difference between the number of tool usage messages is 
statistically significant (p-value <0.05). According to the 
pairwise contrast between the treatments in Table XII, the 
participants using Creately sent up to 6.38 more tool usage 
messages than SOCIO V1 users. 

In sum, we cannot reject the null hypothesis H.1.0. SOCIO 
V1 and Creately appear to perform similarly regarding time 
and discussion messages. However, SOCIO V1 has the 
advantage of reducing the communication effort on tool usage 
for the participants with respect to the first experiment [15]. 

 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 7.  Violin plot for tool usage messages (jitter added to the 
points). 
 

TABLE X 
DESCRIPTIVE STATISTICS FOR TOOL USAGE MESSAGES 

EXP Treatment Team Mean Std. Dev. Median 
EXP1 Creately 13 10.08 8.48 7.0 
EXP1 SOCIO V1 13 2.62 1.94 3.0 
EXP2 Creately 8 19.88 7.94 16.5 
EXP2 SOCIO V1 8 4.75 1.83 4.0 
EXP3 Creately 8 9.13 3.04 10.0 
EXP3 SOCIO V1 8 13.25 9.77 8.5 

 
TABLE XI 

ANOVA TABLE FOR TOOL USAGE MESSAGES 
Measure numDF denDF F-value p-value 

(Intercept) 1 27 91.89526 <.0001 
Sequence 1 25 0.03364 0.8560 
Treatment 1 27 10.74951 0.0029 
Period 1 27 0.00359 0.9527 
Experiment 2 25 3.93138 0.0328 

 
TABLE XII 

CONTRAST BETWEEN TREATMENTS FOR TOOL USAGE MESSAGES 
Contrast Estimate SE df t-radio p-value 
CR-SC 6.38 1.95 27 3.279 0.0029 

 
The results of the first family [15] show that SOCIO is 

significantly more efficient than Creately. We acknowledge 
that this is mainly due to the fact that the previous version of 
Creately relied on Adobe Flash, which caused the software to 
be unstable and resulted in many participants having to quit 
and re-enter (this was also confirmed by the qualitative 
analysis, with many participants complaining about this). We 
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noticed that the current version of Creately is no longer 
dependent on Adobe Flash, and we believe that, based on the 
experimental data, this has effectively improved Creately's 
efficiency. 
3) VALIDATION FOR H.2.0: EFFECTIVENESS 
Completeness. We measured effectiveness by the degree of 
task completeness.  

As the violin plot (Fig. 8), descriptive statistics table (Table 
XIII), and contrast table (Table XV) show, SOCIO V1 has a 
slight (0.0752) edge over Creately in terms of completeness. 
As we can see in the ANOVA table (Table XIV), the treatment 
has a statistically significant impact on completeness. In sum, 
SOCIO V1 outperforms Creately with respect to 
effectiveness. 

 
 
 
 
 
 
 
 
 
 
 

FIGURE 8.  Violin plot for completeness (jitter added to the points). 
 

TABLE XIII 
DESCRIPTIVE STATISTICS FOR COMPLETENESS 

EXP Treatment Team Mean Std. Dev. Median 
EXP1 Creately 13 0.72 0.18 0.75 
EXP1 SOCIO V1 13 0.81 0.08 0.82 
EXP2 Creately 8 0.72 0.23 0.82 
EXP2 SOCIO V1 8 0.80 0.07 0.81 
EXP3 Creately 8 0.91 0.064 0.94 
EXP3 SOCIO V1 8 0.96 0.06 0.99 

 
TABLE XIV 

ANOVA TABLE FOR COMPLETENESS 
Measure numDF denDF F-value p-value 

(Intercept) 1 27 2028.5640 <.0001 
Sequence 1 25 0.0000 0.9970 
Treatment 1 27 4.4784 0.0437 
Period 1 27 0.1387 0.7125 
Experiment 2 25 9.3814 0.0009 

 
TABLE XV 

CONTRAST BETWEEN TREATMENTS FOR COMPLETENESS 
Contrast Estimate SE df t-radio p-value 
CR-SC -0.0752 0.0353 27 -2.128 0.0426 

 
In sum, we reject the null hypothesis H.2.0. Compared with 

the results of the first family [15], completeness has improved 
by 7.52%, and this improvement is relevant for chatbot 
usability. After adding context-sensitive help to SOCIO, we 
observed that SOCIO V1 outperformed Creately on 
completeness. 

 

4) VALIDATION FOR H.3.0: SATISFACTION 
We adopted a modified SUS questionnaire to assess user 
satisfaction with SOCIO V1 and Creately. Each questionnaire 
consists of 10 SUS questions and three to four open-ended 
questions. In this section, we report a quantitative analysis of 
the responses to the SUS questions. The analysis of the 
responses to the open-ended questions will be reported in the 
qualitative analysis section. 

Satisfaction Score. Fig. 9 shows the violin plot for the mean 
SUS scores across experiments. The respective summary of 
descriptive statistics is shown in Table XVI, grouped by 
experiment and treatment.  

As the violin plot (Fig. 9) and descriptive statistics table 
(Table XVI) show, the satisfaction scores for SOCIO V1 are 
typically higher than for Creately. Besides, as the ANOVA 
table (Table XVII) shows, the difference between the 
satisfaction scores is statistically significant. In sum, SOCIO 
V1 appeared to consistently satisfy participants more than 
Creately in the second family and widened the gap in 
satisfaction from 6.16 to 8.9 (see Table XVIII). In sum, we 
rejected the null hypothesis H.3.0. Compared to the first 
family, an improvement of 8.9 in the second family indicates 
that satisfaction has improved by 8.9%, and this improvement 
is worthwhile from the point of view of chatbot usability. 
Additionally, the satisfaction score of the second family is 
statistically significant. 

 
 
 
 
 
 
 
 
 
 
 

FIGURE 9.  Violin plot for satisfaction (jitter added to the points). 
 

TABLE XVI 
DESCRIPTIVE STATISTICS FOR SATISFACTION 

EXP Treatment Team Mean Std. Dev. Median 
EXP1 Creately 13 55.29 13.98 55.00 
EXP1 SOCIO V1 13 65.00 13.58 65.00 
EXP2 Creately 8 61.56 20.48 63.75 
EXP2 SOCIO V1 8 76.88 11.78 75.00 
EXP3 Creately 8 52.50 14.14 52.50 
EXP3 SOCIO V1 8 54.06 24.24 53.75 

 
TABLE XVII 

ANOVA TABLE FOR SATISFACTION 
Measure numDF denDF F-value p-value 

(Intercept) 1 27 802.2736 <.0001 
Sequence 1 25 1.3088 0.2634 
Treatment 1 27 4.4109 0.0452 
Period 1 27 0.4925 0.4888 
Experiment 2 25 3.8526 0.0348 
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TABLE XVIII 
CONTRAST BETWEEN TREATMENTS FOR SATISFACTION 

Contrast Estimate SE df t-radio p-value 
CR-SC -8.9 4.29 27 -2.075 0.0477 

 
5) VALIDATION FOR H.4.0: QUALITY 
We analyzed the quality of the class diagrams using five 
metrics (cf. equations (2) - (6)): precision, recall, accuracy, 
error, and perceived success. 

The violin plots for these metrics are shown in Figs. 10, 11, 
12, 13, and 14, respectively. The respective summary of 
descriptive statistics is shown in Table XIX, grouped by 
metric, experiment, and treatment. The summaries of the 
ANOVA test and contrast between treatments are shown in 
Tables XX and XXI, respectively. 

 
 
 
 
 
 
 
 
 
 
 

FIGURE 10.  Violin plot for precision (jitter added to the points). 
 

 
 
 
 
 
 
 
 
 
 

FIGURE 11.  Violin plot for recall (jitter added to the points). 
 

 
 
 
 
 
 
 
 
 

FIGURE 12.  Violin plot for error (jitter added to the points). 
 

 
 
 
 
 
 
 
 
 
 

FIGURE 13.  Violin plot for accuracy (jitter added to the points). 
 

 
 
 
 
 
 
 
 
 
 
 

FIGURE 14.  Violin plot for perceived success (jitter added to the 
points). 
 

TABLE XIX 
DESCRIPTIVE STATISTICS FOR QUALITY 

Variable EXP Treatment Team Mean Std. 
Dev. Median 

Precision EXP1 Creately 13 0.60 0.15 0.61 
 EXP1 SOCIO V1 13 0.77 0.21 0.85 
 EXP2 Creately 8 0.75 0.09 0.77 
 EXP2 SOCIO V1 8 0.65 0.20 0.68 
 EXP3 Creately 8 0.76 0.11 0.79 
 EXP3 SOCIO V1 8 0.81 0.13 0.85 
Recall EXP1 Creately 13 0.72 0.19 0.74 
 EXP1 SOCIO V1 13 0.59 0.23 0.59 
 EXP2 Creately 8 0.76 0.15 0.81 
 EXP2 SOCIO V1 8 0.83 0.13 0.87 
 EXP3 Creately 8 0.91 0.07 0.93 
 EXP3 SOCIO V1 8 0.89 0.12 0.91 
Accuracy EXP1 Creately 13 0.50 0.16 0.52 
 EXP1 SOCIO V1 13 0.52 0.24 0.49 
 EXP2 Creately 8 0.80 0.10 0.83 
 EXP2 SOCIO V1 8 0.69 0.22 0.78 
 EXP3 Creately 8 0.71 0.13 0.74 
 EXP3 SOCIO V1 8 0.74 0.16 0.77 
Error EXP1 Creately 13 0.50 0.16 0.48 
 EXP1 SOCIO V1 13 0.48 0.24 0.51 
 EXP2 Creately 8 0.64 0.15 0.63 
 EXP2 SOCIO V1 8 0.61 0.21 0.67 
 EXP3 Creately 8 0.29 0.13 0.26 
 EXP3 SOCIO V1 8 0.26 0.16 0.23 
Perceived 
Success 

EXP1 Creately 13 0.65 0.17 0.64 
EXP1 SOCIO V1 13 0.56 0.22 0.55 

 EXP2 Creately 8 0.36 0.15 0.37 
 EXP2 SOCIO V1 8 0.39 0.21 0.33 
 EXP3 Creately 8 0.81 0.06 0.82 
 EXP3 SOCIO V1 8 0.82 0.11 0.83 
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TABLE XX 
ANOVA TABLE FOR QUALITY 

Variable Measure numDF denDF F-value p-value 
Precision (Intercept) 1 27 1333.4514 <.0001 
 Sequence 1 25 0.3530 0.5578 
 Treatment 1 27 0.4316 0.1306 
 Period 1 27 14.6171 0.0007 
 Experiment 2 25 2.1285 0.1401 
Recall (Intercept) 1 27 1546.8766 <.0001 
 Sequence 1 25 0.0675 0.7972 
 Treatment 1 27 1.3758 0.2511 
 Period 1 27 19.5103 0.0001 
 Experiment 2 25 14.6336 0.0001 
Accuracy (Intercept) 1 27 907.8200 <.0001 
 Sequence 1 25 0.0727 0.7897 
 Treatment 1 27 0.1277 0.7236 
 Period 1 27 15.7263 0.0005 
 Experiment 2 25 14.2395 0.0001 
Error (Intercept) 1 27 468.7157 <.0001 
 Sequence 1 25 0.0006 0.9813 
 Treatment 1 27 0.3846 0.5403 
 Period 1 27 12.3023 0.0016 
 Experiment 2 25 1807748 <.0001 
Perceived 
Success 

(Intercept) 1 27 814.8571 <.0001 
Sequence 1 25 0.0814 0.7778 

 Treatment 1 27 0.5399 0.4688 
 Period 1 27 8.5950 0.0068 
 Experiment 2 25 30.7001 <.0001 

 
TABLE XXI 

CONTRAST BETWEEN TREATMENTS FOR QUALITY 
Variable Contrast Estimate SE df t-radio p-

value 
Precision CR-SC -0.056 0.0393 27 -1.427 0.1652 
Recall CR-SC 0.0512 0.0387 27 1.325 0.1964 
Accuracy CR-SC 0.0207 0.042 27 0.494 0.6254 
Error CR-SC 0.0215 0.0432 27 0.499 0.6219 
Perceived 
Success CR-SC 0.0352 0.0421 27 0.835 0.4108 

 
Precision and Perceived Success. Regarding Precision and 

Perceived Success, the violin plots (Figs. 10 and 14) and 
descriptive statistics table (Table XX) show that SOCIO V1 
slightly outperforms Creately in two out of three experiments. 

Recall and Accuracy. Regarding Recall and Accuracy, the 
violin plots (Fig. 11, 13) and descriptive statistics table (Table 
XIX) show that Creately slightly outperforms SOCIO V1 in 
two out of three experiments. 

Error. Regarding Error, the violin plots (Fig. 12) and 
descriptive statistics table (Table XIX) show that SOCIO V1 
slightly outperforms Creately across all three experiments. 

However, based on the analysis of these five quality 
metrics, we did not observe any statistically significant 
treatment. Summing up the above analysis, as the plots, 
descriptive statistics, ANOVA, and contrast table show, 
Creately and SOCIO V1 both tend to return class 
diagrams of similar quality. 

In sum, we do not reject the null hypothesis H.4.0. In 
contrast to the result for the first family, which showed 
that Creately outperformed SOCIO in terms of recall and 
perceived success and SOCIO outperformed Creately on 
precision, we did not observe a statistically significant 

difference in the second family after both tools had been 
improved. 
6) DISCUSSION OF ANALYSIS 
From the aggregation of this family of experiments result, we 
observed that participants seemed to have higher task 
completeness with SOCIO V1 compared to Creately, and they 
appeared to be more satisfied with SOCIO V1 than Creately. 
However, the two tools perform similarly in terms of 
efficiency and quality of class diagrams. 

B. QUALITATIVE ANALYSIS – THEMATIC ANALYSIS 
We enacted the thematic analysis process as follows. After 
each experiment session, the participants were asked to 
complete a modified SUS questionnaire containing three or 
four open-ended questions regarding (i) three positive aspects, 
(ii) three negative aspects, (iii) three suggestions concerning 
the tool they had just used, and (iv) their preference for either 
tool (response required only after the second session). The 
response to open-ended questions was transcribed into 
English. Due to the need to identify recurring themes to 
identify interesting aspects, we coded features that were 
mentioned more than three times in the qualitative dataset.  

As shown in Figs. 15 and 16, we identified six features 
based on satisfaction measures for SOCIO V1 and Creately 
[21]: content, task, collaboration, communication, user 
experience, and interface. We expected these results to 
contribute to the development of future real-time collaboration 
tools, particularly chatbots, and improve user-perceived 
usability. Figs. 17 and 18 are bar graphs that illustrate thematic 
analysis sub-themes, providing a more simplified and readable 
analysis. The orange bars represent user suggestions for the 
tool, the gray bars indicate negative comments, and the blue 
bars are positive comments. 

In general, both tools received a similar number of reviews 
for each of the three open-ended questions. For example, 
SOCIO V1 received 245 positive comments, and Creately 
received 244. SOCIO V1 received 198 negative comments 
and Creately received 177. SOCIO V1 received 72 
suggestions and Creately received 63. 
1) CONTENTS 
SOCIO V1 outperforms Creately in terms of contents, 
given that it receives more positive comments (26 vs. 16), 
fewer criticisms (7 vs. 23), and no suggestions for 
improvement, whereas Creately receives 3. 

Users consider both SOCIO V1 and Creately to be 
helpful for integrated content and design implementation 
purposes (e.g., “useful for creating class diagrams”, “useful 
tool for UML”). Moreover, this feature is more prominent in 
SOCIO V1, as it is mentioned by almost twice as many users 
than for Creately (11 vs. 6). 

Content errors appear to be the most commonly 
reported faults with respect to content. Twice as many 
Creately users as SOCIO V1 users report errors (13 vs. 7), 
although they do not suggest respective improvements. 
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FIGURE 15.  Thematic analysis for Creately. 
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FIGURE 16.  Thematic analysis for SOCIO. 
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FIGURE 17. Bar graph of Creately's thematic analysis. 

 
These bugs are mainly related to server and page response 

errors in both cases. 
Apart from usefulness and errors, the remaining aspects 

described as positive and negative differ for the two tools. 
SOCIO V1 appears to be positively rated on innovation (15), 
as the experimental subjects regard a chatbot for building class 
diagrams as innovative and surprising (e.g., “innovation in 

creating UML”). By contrast, Creately's content design for 
commercial purposes caused controversy. On versatility (5), 
which provides additional content for UML diagram creation 
and is free of charge (5), it stands out slightly compared to 
other tools with similar features that offer paid services. In 
contrast, other users also consider these features to be a 
weakness.  
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FIGURE 18. Bar graph of SOCIO's thematic analysis. 
 
On the one hand, seven people indicate that it offers too 

many options that are not used for elaborating UML diagrams, 
and three participants even suggest reducing these options. On 
the other hand, three participants were also dissatisfied with 

the fact that, although the main functionality is free, it includes 
some paid features (3). 
2) TASK 
SOCIO V1 receives conflicting feedback on task completion, 
with 24 favorable and 23 negative comments, respectively. By 
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contrast, Creately earns more negative comments (37) than 
positive ones (20). Compared to Creately, SOCIO V1 receives 
more positive feedback on task completion. 

Regarding task completion, participants are most concerned 
with the tool’s functionality and efficiency since they were 
mentioned most often. In terms of time efficiency, SOCIO V1 
outperforms Creately, with 11 participants stating that the 
development of UML diagrams does not take very long (e.g., 
“Creating the diagram is extremely fast,” “It works fast”), 
compared to only four comments for Creately. 

However, when it came to evaluating the completeness of 
the tool functionality for task performance, both tools were 
found to have functional flaws in terms of missing class 
diagram elements and missing actions that need to be 
performed. Participants have mixed feelings about both tools; 
some believed the functionality was complete, while others 
reported flaws and suggested adding new functions. 

Missing functionality was noteworthy in SOCIO V1. 
Whereas eight participants praised its comprehensive 
functionality, and five participants liked the fact that SOCIO 
V1 automatically and simply generates the relationships in the 
UML diagram (“Establishing relationships is easy,” 
“Automatically creates links between classes”), 19 
participants indicated that they missed functionality, and 20 
suggested that new functionalities should be added. They 
mentioned, for instance, that (i) it is hard to edit class diagram 
elements (e.g., “You cannot modify class names,” “Little 
modification of the diagram”), (ii) it is not possible to operate 
many diagram pieces at once (e.g., “I believe you cannot 
create several things at the same time,” “It does not place the 
attributes in a group way, it places them one by one”), and (iii) 
data types are missing (e.g., “Limited attribute types,” “No 
Singleton option”). Opinions vary widely with respect to 
functionality completeness in Creately, with 16 participants 
praising its functionality and 21 participants expressing 
dissatisfaction with missing functionality. For example, the 
participants were dissatisfied with missing relationships to 
link classes (e.g., “UML connector types,” “Not all UML 
associations”). Also, 13 Creately users had trouble signing up, 
logging in, and creating the document, especially when 
sharing the project (8). 
3) COLLABORATION 
The collaboration feature refers to real-time collaboration, and 
both tools garnered more positive than negative feedback 
overall. Surprisingly, on the one hand, Creately’s cooperation 
performance was complimented by more users (32) than 
SOCIO V1’s (20). On the other hand, Creately earned more 
negative feedback in terms of collaborative capacity (24 vs. 
14). 

Both tools received a similar number of positive 
assessments for supporting real-time collaboration. However, 
Creately received 12 more positive reviews than SOCIO V1. 
We can conclude that SOCIO V1 outperforms Creately in 
terms of collaboration. Both tools have garnered criticism for 
being difficult to work with. Creately received 11 complaints 

(e.g., “It’s challenging to cooperate”, “It’s confusing to work 
with numerous individuals”), whereas SOCIO V1 received 13 
(e.g., “(It’s) tough to utilize in teams,” “It’s confusing to work 
in groups”). Furthermore, we observed that Creately had a 
specific synchronization flaw, as 13 participants found it 
difficult to keep up with modifications made by their 
teammates (e.g., “Sometimes it takes a while to synchronize,” 
“There is a little delay when collaborating”). Based on the 
above, Creately received 14 suggestions on how to improve 
cooperation, such as integrating chat. 
4) COMMUNICATION 
The interaction between users and tools is referred to as 
communication. SOCIO V1 receives significantly more 
positive and negative feedback, and suggestions, than Creately 
on communication. 

Participants provide feedback on three themes common to 
both tools: response time, accessibility, and interaction. 
SOCIO V1 outperforms Creately on each of these aspects. 
Roughly three times as many users praise SOCIO V1 for quick 
reaction time than Creately (26 vs. 10). Furthermore, only six 
participants consider SOCIO V1 to have a slow response time 
as opposed to 16 for Creately. SOCIO V1 is more accessible 
than Creately as it benefits from being a social media-based 
tool. SOCIO V1 also outperforms Creately in terms of 
interaction. Although both tools receive positive feedback, 
Creately receives four positive comments while SOCIO V1 
receives 23. 

Of these 23 opinions, six participants appreciated the fact 
that SOCIO V1 returns the updated diagram after each action 
(e.g., “Shows the diagram after each command”), while eight 
highlighted SOCIO V1’s help system in response to user 
errors (e.g., “If you make a mistake in a command, it corrects 
you instantly,” “Provides good feedback”). 

In addition, the experimental participants expressed positive 
and negative thoughts on specific chatbot aspects. Seventeen 
participants positively rated communication with SOCIO V1 
through natural language. However, it also received a 
disproportionately large amount of negative feedback on 
natural language comprehension:  

• 29 participants stated that the chatbot does not 
understand sentences entered to build the diagram (e.g., 
“the chatbot sometimes does not understand what I 
enter,” “Limited language”).  

• 16 participants complained that the chatbot only 
understands English sentences.  

• Eight participants stated that communication with the 
chatbot is inconsistent because it sometimes responds 
differently to the same message.  

These limitations are highlighted in the improvement 
suggestions: increase comprehension (9) and provide multi-
language support. 
5) USER EXPERIENCE 
User experience refers to the user attitudes towards the 
interface and user interface experience. We observed that both 
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tools received a lot of both positive and negative feedback in 
this regard. 

The common sub-themes for both tools are ease of use and 
intuitiveness. Since it earned more positive and fewer negative 
comments in this respect, Creately is easier to use and more 
intuitive than SOCIO V1. On the other hand, SOCIO V1 was 
rated as more fun to use than Creately by 12 experimental 
participants, while Creately was rated as cumbersome or 
unmanageable by nine. 

Both tools were praised for their wide-ranging capabilities 
(86 for Creately and 63 for SOCIO V1). Several people who 
claimed Creately is easy to use also mentioned that it is 
standard (6) and easy to understand (11). SOCIO V1 scores 
high for being fun to use (12), reliable (5), and easy to learn 
(8). 

As already mentioned, both tools received a lot of negative 
feedback as well. Regarding SOCIO V1: 

• Users were primarily disappointed because they found 
the chatbot confusing to use (12) and that it required a 
lot of learning (16). Since they were unfamiliar with 
SOCIO V1, they needed to learn how the chatbot 
worked (how to interact through commands and 
natural language sentences). Some users (8) found this 
taxing (“They must know the commands,” “You need 
to learn every function of every command”). 

Regarding Creately:  
• Some users (27) found the interface control and 

element management in the window frustrating (“I 
cannot change the position of the boxes,” “The control 
of the application with the mouse is not easy”).  

• 16 subjects specifically stated that it is hard to control 
the elements adding relationships to link classes 
(“When joining or associating frames the task becomes 
a bit complicated,” “The arrows chose paths 
overlapping with other elements”). 

When we asked participants for suggestions on how to 
improve the user experience for these tools, only eight and 
four people, respectively, suggested improving the ease of use 
of Creately and SOCIO V1. 
6) INTERFACE 
In general, Creately outperforms SOCIO V1 as it received 
more positive and less negative feedback. In particular, 
Creately was praised for being more visually appealing than 
SOCIO V1. Regarding interface design, 39 subjects found 
Creately’s interface appealing, emphasizing that it is 
“minimalist” and “simple.” Six of them specifically positively 
rated the visual attractiveness of the diagrams, and six 
emphasized the color range used. For SOCIO V1, however, 
only three people referred to the diagram’s design in a positive 
light. 

The interface of both tools is suitable for developing UML 
diagrams since SOCIO V1 received 16 favorable comments 
and Creately received 21. SOCIO V1 was credited for its 
command usage and automatic organization of diagram 
elements (e.g., “I like that all class diagram modification 

actions are done under the same command ((\talk),” “sort 
everything automatically”). Participants praised Creately in 
particular for the method of using a line to directly relate 
classes (8) and the ease with which diagrams can be exported 
using a button (7) (e.g., “It can be easily exported”). Despite 
the above, some people identified issues that detract from their 
usefulness (12 for SOCIO V1 and 7 for Creately). For SOCIO 
V1, for example, they mentioned (i) the continuous use of the 
\talk command in Telegram or (ii) the existence of too many 
commands. Task performance is entirely manual in Creately, 
which detracts from its practicality (e.g., “Classes and arrows 
are not reorganized to make it nice,” “Everything is written 
letter by letter”). 

The number of suggestions for both tools for this issue (30 
for SOCIO V1 and 24 for Creately) was greater than for the 
other five features. Participants suggested that SOCIO V1’s 
assistance and documentation system might be improved and 
that Creately should incorporate help. SOCIO V1 features a 
help page and different responses to user input errors, which 
10 participants liked, while 17 thought that the documentation 
was not complete enough (e.g., “A more complete manual is 
missing”). There were also 20 suggestions for improvement, 
seven of which refer to the addition of further instances (e.g., 
“More documentation,” “Add more examples of use”). 
Furthermore, five users recommended introducing predictive 
support into SOCIO V1 to improve the help system by 
providing feedback for user input errors (e.g., “Error messages 
could be improved by including a hint of where the error might 
be in the message not understood”). On the other hand, 
Creately does not include any assistance or documentation, 
and some participants (8) requested that help be included (e.g., 
“Give a tutorial or walkthrough of any tool”). 

Because chatbot SOCIO V1 and web-based Creately 
interface interaction is different, both tools received feedback 
and suggestions for improving specific aspects of the 
interfaces. SOCIO V1 uses commands and natural-language 
statements, whereas Creately adopts drag and drop. With 
regard to the use of the \undo command in SOCIO, five people 
recommended that the user be allowed to specify which 
message to undo. Although 11 people praised Creately for its 
templates and the ease of diagram customization (e.g., 
“Several templates available,” “Flexible”), 13 people 
complained about how hard it is to identify elements in 
Creately (e.g., “The components are not easy to find”). 
Similarly, 10 participants suggested making it easier to 
manage the interface elements to overcome the control 
challenge, and six participants suggested including a 
description of the relationships as only the name is displayed 
when they are added. 

VI. THREATS TO VALIDITY 
Although we considered the question of validity during the 
experimental design phase to assure the validity of the 
experiment results, we acknowledge that several threats to 
validity need to be discussed. In this section, we address the 
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main threats to the validity of our family of experiments 
according to Cooke and Campbell’s guidelines [30]. 

A. CONCLUSION VALIDITY 
The first threat to conclusion validity is the limited sample size 
(29), which may lead to low statistical power. Although we 
could not recruit a large enough sample size, we did our best 
to recruit a sample of diverse participants from different 
countries and regions with different cultural backgrounds, 
which contributed to the validity of the results. Random 
subject heterogeneity rules out risk. 

To ensure the transparency of the experimental result and 
encourage the external replication of the experiments, we 
uploaded the original data and additional analysis in the 
supplementary material. In the spirit of open science, we 
uploaded the experimental data and all the material used in this 
family of experiments to https://dx.doi.org/10.21227/qzdr-
nj48. 

B. INTERNAL VALIDITY 
On the one hand, we acknowledge that students with similar 
backgrounds to our family from UNIV-1 and UNIV-3 were 
also recruited in the first family of experiments. In order to 
avoid learning effects as well as to alleviate threats to the 
internal validity, we made sure that the same participant only 
participated once in either the first or second family of 
experiments. 

On the other hand, recognizing that subjects may react 
differently as time passes, we limited the duration of each 
session to 30 minutes. We set a 10-minute break between 
sessions to prevent subject and experimenter fatigue or 
boredom. 

C. CONTRUCT VALIDITY 
The first limitation that we observed is English language 
proficiency. Through the familiarity questionnaire, 
participants self-assessed their English language level with 
mean scores of 2.64, 3.11, and 3.98 for EXP1, EXP2, and 
EXP3, respectively. We observed that they did not express 
much confidence in their English level, and when they 
communicated with the chatbot in English, they also used 
some Spanish words (Spanish is their native language). 
However, the SOCIO V1 chatbot only supports natural 
language communication in English; participants had to use 
English to perform the task. On the other hand, Creately does 
not require a lot of English communication as it is a visual tool. 
This may threaten the quality of communication and the 
experiment results. To reduce this threat, we updated the help 
pages in Spanish (the native language of the subjects) and 
translated our materials and questionnaires into Spanish to 
reduce the communication effort. 

The second limitation to construct validity was social 
threats. As mentioned before, we were forced to conduct two 
out of the three experiments remotely (i.e., EXP1 and EXP2) 
due to the COVID-19 pandemic. The remote experiment may 

prevent experimenters from solving misunderstandings 
timely. For example, two members of team 14 in EXP1 
experienced network problems at the beginning of the second 
session of the experiment. They joined the experiment 11 
minutes late. This meant that only one team member was 
working on task performance for the first 11 minutes. This 
invalidated the participation of this team, as this incident 
affected the experiment results. 

D. EXTERNAL VALIDITY 
Threats to external validity may materialize due to the use of 
students as experimental subjects and the adoption of toy 
tasks. As is common in SE experiments [6], we employed toy 
tasks and student subjects to measure the performance of two 
treatments. In addition, due to the characteristics of chatbots 
(using UML language), our participants had to be students of 
computer science or related fields. Although most of the 
subjects participating in the experiment were final-year 
computer science students and could be considered 
representative of novices in industry, the results of the study 
are applicable to an academic setting and may not be 
generalizable to industry.  

VII. DISCUSSION OF RESULTS 
Regarding the results on effectiveness and efficiency, it 
appears that 62.0% of the subjects tended to take as long as 
possible to complete and/or improve their class diagrams, 
while 38.0% of the subjects completed their class diagrams in 
as short a time as possible, i.e., they completed the task before 
the 30-minute time limit was up.  

Of the abovementioned subjects, 62.0% completed the class 
diagram for the task that they were set close to the 30-minute 
time limit. If they had been given longer, they would have used 
up the allotted time. In this case, the average time taken would 
have been longer. However, we decided to set a time limit to 
be able to measure other variables, such as task completion 
rate. 

As both tools were upgraded to varying degrees, neither of 
the treatments are the same as in the first family [15]. Although 
comparisons in data terms are meaningless, some differences 
should be pointed out. Creately's impressive improvements in 
terms of efficiency and precision referred to quality are due to 
a significant change: the operating environment upgrade, 
which no longer relies on Adobe Flash, has resulted in faster 
page refresh times, more efficient teamwork, and a resulting 
increase in the effectiveness of class diagram drawings. The 
changes to SOCIO mainly helped our users to create diagrams, 
which resulted in the improvement of satisfaction and 
completeness. 

VIII. CONCLUSION AND FUTURE WORK 
On the one hand, based on experimental results from previous 
work [15], (1) we updated the help page for SOCIO by 
providing more than one language and more examples, (2) we 
provided alternative context-sensitive help when SOCIO had 
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difficulties understanding the command that the user sent. On 
the other hand, the control tool Creately was also upgraded 
replacing Adobe Flash and including an improved interface. 

To understand how to improve the usability of chatbots 
based on evidence, we conducted a family of three 
experiments with a within-subject crossover experimental 
design. A total of 87 participants were recruited and divided 
into 29 teams. Finally, we reported pooled results, as well as 
quantitative and qualitative analyses. 

In conclusion, we reject the null hypotheses H.2.0 and 
H.3.0, but not the null hypotheses H.1.0 and H.4.0. 

The main results of the analysis of the data gathered in the 
family of experiments reveal that: 

1. With the observed quantitative results: SOCIO V1 has 
better scores for effectiveness and satisfaction than 
updated Creately. Regarding the efficiency and quality 
of the class diagram, the difference between the two 
treatments at family level was not statistically 
significant. 

2. With the summary of the qualitative results: SOCIO V1 
appears to receive more positive comments and fewer 
criticisms than Creately regarding contents and 
interface. Regarding collaboration and 
communication, both treatments garner more positive 
than negative feedback. Both treatments receive 
conflicting feedback on task completion and user 
experience, with similar numbers of favorable and 
unfavorable comments. 

This family of experiments consolidates the body of 
knowledge about chatbot usability improvement built on the 
results of the experiments. We hope our work will provide 
insights and different perspectives on usability evaluation for 
SOCIO chatbot and Creately developers. 

In this research, we have found that some improvements to 
be implemented would be: (1) make it easier to remove/edit 
the elements, and (2) improve the natural language ability. 

In the future, we will develop a second and third updated 
version (see background) to better understand how the 
usability of chatbots can be improved based on evidence. 
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APPENDIX A 
Apart from common changes, we created three different 
versions of the updated the SOCIO chatbot. Here we provide 
details of the changes that we made to versions 2 and 3. 

Updated Version 2 (SOCIO V2): With added 
functionalities requested by users. 

1. Add a /remove command. In response to the first 
suggestion on modifying the /undo command to be able 
to undo a participant's action, we developed a new 
command /remove. After sending the command, users 
can choose the type of elements (classes, attributes, or 
relations) that they want to remove. The full list of 
elements appears, and the user can select the exact 
element to be removed. For instance, if a user opts to 
remove a relationship, the chatbot lists all the 
relationships in the diagram, the user selects a 
relationship, and the relationship is automatically 
deleted. 

2. Add two commands /undo+ and /redo+. The user can 
choose how many steps to cancel or redo instead of 
deleting or redoing one by one. Technically, there is no 
need to implement anything new inside SOCIO, we 
merely have to add commands to Telegram with a loop 
that performs undo or redo as many times as requested 
by the user. For instance, if a novice user realizes that 
there is something wrong with the elements he just 
created, instead of deleting them one by one and 
creating a new project, he merely has to use the /undo+ 
command to delete as many steps as he wants. 

Updated Version 3 (SOCIO V3): Interface preference. In 
order to better understand if the change of appearance affects 
SOCIO chatbot usability, we changed the appearance of 
generated class diagram using a smaller font; for example, we 
set the monochrome font on a black background to six. 
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Abstract—We are witnessing a rising role of mobile computing
and social networks to perform all sorts of tasks. This way, social
networks like Twitter or Telegram are used for leisure, and they
frequently serve as a discussion media for work-related activities.

In this paper, we propose taking advantage of social networks
to enable the collaborative creation of models by groups of users.
The process is assisted by modelling bots that orchestrate the
collaboration and interpret the users’ inputs (in natural language)
to incrementally build a (meta-)model. The advantages of this
modelling approach include ubiquity of use, automation, assis-
tance, natural user interaction, traceability of design decisions,
possibility to incorporate coordination protocols, and seamless
integration with the user’s normal daily usage of social networks.

We present a prototype implementation called SOCIO, able to
work over several social networks like Twitter and Telegram, and
a preliminary evaluation showing promising results.

Index Terms—Collaborative modelling; meta-modelling; social
networks; natural language processing

I. INTRODUCTION

According to recent studies [1], 70% of American citizens
are users of social networks. People exploit social networks
like Twitter, Telegram or Facebook, often on a daily basis,
to be in contact with friends, share media, organize leisure
activities, or discuss work-related issues in an agile manner.

The use of social networks for Software Engineering has
been recognised as having high potential impact in practices
and tools [2], [3]. One of the reasons is that they enable agile
and lightweight means for coordination and information shar-
ing. However, some identified open challenges include their
use to increase community and end-user involvement, enhance
project coordination, and improve development activities [3].

In this work, our goal is to profit from the benefits and
potential of social networks to assist in a particular Software
Engineering task: modelling and meta-modelling. For this pur-
pose, we propose the collaborative modelling through social
networks assisted by modelling bots that interpret the messages
of users in order to construct a model or meta-model. User
messages can be expressed either in natural language (NL),
or they can be commands for model evolution. In the first
case, the bot interprets the messages using NL processing
techniques [4], [5] and derives update actions over the current
model version. The approach is inherently collaborative, and
integrates seamlessly with the normal usage of social networks
to which users are familiar with. Moreover, it naturally leads to
an accurate documentation of the traceability and provenance
of the different design decisions incorporated into the model.

This paper motivates and presents usage scenarios for mod-
elling bots, and presents a working prototype called SOCIO

that is able to orchestrate model construction across both
Twitter and Telegram. We have performed an initial user
evaluation with promising results that encourage pursuing
further research in this direction.

The rest of this paper is organized as follows. Section II
motivates our approach, identifies envisioned scenarios, and
elicits a set of requirements. Section III details the components
of our proposal. Section IV describes architecture and tool
support. Section V shows the results of our preliminary
evaluation. Section VI compares with related work, and finally,
Section VII ends with the conclusions and future work.

II. MOTIVATION AND USAGE SCENARIOS

The main motivation for this work is being able to benefit
from the collaborative and ubiquitous nature of social networks
– applications that people use on a daily basis – to perform
assisted lightweight modelling. To this aim, we propose repur-
posing social networks based on micro-blogging (like Twitter
or Telegram) as front-ends for the modelling activity, where
dedicated bots interpret certain user messages to assist in the
model construction. This way, the assisted modelling process
seamlessly integrates with the normal use of social networks
for discussion.

This approach enhances flexibility in modelling because it
can be used in mobility and does not require installing new ap-
plications, but users can rely on apps they are already familiar
with. When working on mobile devices, interacting via short
messages can be easier and faster than using a diagramming
tool, and can serve to quickly prototype models. Moreover,
people with little or no background in computer science or
modelling may be able to actively participate in modelling
sessions. This may foster the collaboration of domain experts
with teams of engineers. By recording the messages processed
by the bot, the approach can trace information of the design
decisions (who made what), so that every decision can be
justified or rolled back.

This approach can be useful in several scenarios. First, to
allow engineers quickly prototyping models when and where
needed (e.g., in working meetings, but also when travelling
home). Second, to assist teams of engineers collaborating
with domain experts (who may lack a computer science
background) to create domain models or meta-models. Third,
in the educational domain, to enable groups of students
the collaborative resolution of modelling exercises. In this
scenario, bots could be configured for gamification activities
or blended learning. Finally, being based on social networks,
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Fig. 1. Overview of our approach to assisted modelling via social networks

the modelling process can involve a large number of people.
Hence, we foresee its use to crowdsource modelling decisions.

In order to give support to these scenarios, we identify the
following requirements for our envisioned approach:

• Interaction through NL (to permit use by domain experts)
and commands (more suitable for modelling experts).
Anyhow, commands should have a flexible and natural
syntax to minimize mistakes and user frustration.

• Traceability mechanisms able to justify design decisions
and find their provenance.

• Integration of multiple social networks, so that users can
use their preferred one.

• Support for both modelling and meta-modelling.
• Customizable collaboration protocols, e.g., supporting

user roles and voting.
• Interoperability with accepted modelling frameworks, like

the Eclipse Modelling Framework (EMF) [6].

Next, we detail our first steps towards realizing this vision.

III. APPROACH

Fig. 1 sketches our approach to modelling via social
networks. Users can interact within the network of choice
by sending messages directed either to the other partners
(label 1c) or to the modelling bot (labels 1a-1b). The former
messages permit discussing and coordinating, and they are
handled by the network normally (i.e., they are regular text
messages). Instead, messages directed to the bot are used for
building models, and their format may depend on the particular
social network. For instance, to send a message to the bot in
Twitter, the message must mention the username of the bot
(@modellingBot), while in Telegram, the message should start
by /. The way of organising the collaboration also depends on
the particularities of the social network. In Twitter, users of
our system will normally be followers of the bot supervising
the modelling process, so that every message sent to the bot
will be received by its followers. In Telegram, users would
create a group with the users interested in the modelling task,

including the bot. In this way, every sent message will be
received by all members of the group.

Messages directed to the bot are received by the users of the
social network, just like any other message, but in addition,
they are processed by the bot. We distinguish two kinds of
such messages: management commands (label 1b) and model
update messages (label 1a). The former allow performing
project management tasks, like querying the existing mod-
elling projects, creating a new model, or recovering the history
of changes performed in a model. The bot processes such
messages (label 7) and sends the result to the social network
as a diagram embedded in an image file. The figure shows an
example, where the set of available projects is returned as a
package diagram (output of activity labelled 7). On their side,
model update messages (label 1a) can be either commands
or descriptions. The former are imperative actions to directly
manipulate a model, e.g., to add a class or feature, change its
type, or delete an element. The latter are descriptive statements
of the domain concepts, like “houses have windows”.

Both commands and descriptions are expressed in NL.
Hence, they are processed by a NL parser (label 2) which
produces a parse tree of the sentences in the message. Support-
ing commands in NL provides flexibility because there is no
need to adhere to a strict syntax. The system has an extensible
library of NL processing rules, able to handle different kinds
of NL phrases (label 3); currently, we support rules targeted
to meta-model construction. From the current model state and
the information inferred from the message, we synthesize a
number of model update actions (label 4). As our approach
is incremental, sometimes it is necessary to refer to existing
model elements. In order to provide flexibility and avoid
redundancies, we allow for synonyms which are sought using
WordNet [7], a lexical database for the English language. We
will describe our NL processing approach in Section III-A,
and the extraction of model update actions in Section III-B.

The extracted actions are applied to the current version of
the model to make it evolve. Moreover, the system maintains a
traceability model to keep track of why the model was updated,



and by who (label 5). We will explain model building and
traceability in Section III-C. Finally, the bot emits a feedback
message (label 6), which is received through the social net-
work. The feedback to model update messages consists of an
image of the updated model, with annotations indicating the
last modifications. Section III-D will illustrate some steps in
a model construction session, and the feedback obtained.

A. Natural Language Processing

We use the Stanford NL parser [5] to process model update
messages, both commands and descriptions. The parser creates
a parse tree with the grammatical relations of the words in the
message, as Fig. 1 shows for message “houses have windows”
(see output of activity labelled 2). This tree identifies the noun
phrases (NP) that may provide information about the model,
and the syntactical role of each part of the phrase. For example,
in the tree of Fig. 1, “houses” and “windows” are tagged as
common plural nouns (NNS), while “have” is tagged as a verb
in present tense which is non-3rd person singular (VBP).

The parsed messages are interpreted according to a number
of rules, which we currently base on the work of Arora and
collaborators [4]. Each rule specifies the combination of word
classes that activate the rule, usually based on the presence
of certain verbs, as well as the model update actions that
should be performed when the rule is matched. Our rules
currently handle the construction of meta-models only, but
since our approach is extensible, we plan to expand the set
of rules to tackle the construction of models, likely instances
of previously defined meta-models using this same approach.
We consider the following rules:

Verb to be: When the main verb of the phrase is “to be”,
it can indicate either an inheritance relation between two
classes (e.g., “Kitchen is a room”, “Service may be premium
service or normal service”), or the type of a feature (e.g.,
“Name is string”, “The bank of the customer is BLUX”). If
the phrase contains an expression of the form “A of B” or
a genitive “B’s A”, then the rule infers that A is an attribute
or reference of B.

Verb to have: When the main verb is “to have”, or synonyms
of it like “characterized by” and “identified by”, this rule
infers the subject of the sentence is a class, which has a
feature. Deciding whether the feature is a reference or an
attribute depends on the information there is in the meta-
model about the feature. If there is not enough information,
the feature is assigned an “open” type which may be re-
fined by subsequent messages. As an example, the message
“Bulky packages are characterized by their width, length
and height” triggers the creation of features width, length and
height with open type in class BulkyPackage.

Transitive verb: This rule handles all verbs with a subject
and a direct object. It creates classes for the subject and
direct object, and a reference whose name is the verb. For
example, the phrase “The simulator shall send log messages”
triggers the creation of classes Simulator and LogMessage, and
the reference send from the former to the latter.

Contain: Verbs like “contain”, “be made of”, “include” and
“be composed of” imply a composition relation between
two classes. For example, the phrase “A delivery is made of
packages” creates a composition relation between the classes
Delivery and Package, and also creates the classes if they do
not exist yet.

Add: This rule handles imperative sentences (with implicit
subject) whose verb is “add”, “create”, “make”, etc. These
are interpreted as commands with a flexible syntax, resulting
in the creation of classes, attributes or references. For
example, “add house” will create the class House, while
“create room in house” adds a feature room to class House.

Remove: This rule is similar to the previous one but for dele-
tion. It considers imperative verbs synonyms of “remove”,
like “delete” and “erase”.
Model update messages can include several sentences and

more than one verb, like in “Add house and remove windows”.
Moreover, the processing of one message may trigger several
NL rules, in which case, we apply the rule with higher priority.
In particular, rules seeking for specific verbs have higher
priority than the more general rule seeking transitive verbs.

B. Model Update Actions

As abovementioned, each NL rule specifies the model
update actions to be applied when the rule is selected. The
possible actions are the following:
Add class: This action is issued when the rule finds a com-

mon name that should be a class. The class is not created
if one exists with the same or synonym name. Supporting
synonyms provides flexibility and avoids redundancy. We
apply accepted modelling styles for class names (i.e., sin-
gular, camel case).

Make class abstract/concrete: Classes can be set to abstract
or concrete using their name or a synonym. If the class does
not exist, then an add class action is issued as well.

Set parent class: This action sets an inheritance relation be-
tween two classes, creating the classes if they do not exist.

Remove parent: This action removes an inheritance relation.
If the class does not exist, the action will make no changes.

Add attribute: This action is issued by the “verb to have”
rule (e.g., “packages have weight”) and in case of genitive
cases (e.g., “package’s name”). The attribute is added to the
given class or to a synonymous one, creating a new class if
it does not exist. If the class already owns a reference with
same name, it is replaced by an attribute. The attribute’s
upper cardinality is set to 1 if the attribute name is singular,
or to * if it is plural. At this point, the attribute type is left
open, so that it can be refined later.

Add reference: This action is issued by the “transitive verb”
and “contain” rules, and it works similarly to the previous
action. If the owner class already defines an attribute with
the same name, it is replaced by a reference.

Modify feature type: We support primitive data types like
int, float, String, boolean and Date for attributes, while the
type of references must be a class. The feature is created if
it does not exist.
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Fig. 2. Traceability meta-model

Remove class: It removes a class and its features.
Remove feature: It removes one or several features.

Any action can be undone and redone through commands.

C. Model Update and Traceability

The actions derived from the messages are applied to the
current model version. In some cases, these actions may
lack some information. For instance, the action that adds
an attribute may miss the specific type of the attribute, in
which case, its type is left “open” so that it can be refined
later. Similarly, as removing a class would let the references
pointing to the class dangling, we add a provisional “ghost”
class as target of these references. We foresee an automated
mechanism that completes all these “open” design decisions
with sensible defaults in a final stage.

We also maintain traceability information of each message
sent to the bot, including the sender and the model update
actions it triggers. We use a model-based approach to record
the traceability data, building a traceability model conformant
to the meta-model in Fig. 2 for each model being constructed.
Class User keeps track of the participant users and the social
network (channel) they employed to send the messages. We
store all messages directed to the bot, and distinguish the
message used to create the model. Actions point to the model
elements affected by the action using reference element, whose
type is EObject as this is the base class in EMF, the imple-
mentation technology we use. To keep track of the removed
elements which are no longer in the model, we store them in
an auxiliary model. Finally, Update actions point to the old and
new versions of the updated element in the auxiliary model,
and to the current version of the element in the model.

An image of the updated model diagram is sent to the
collaborator users. The modified model elements are marked in
the diagram, and a note explains the performed changes. This
information is read from the traceability model. The trace can
also be queried using the management command history, which
sends a diagram with the traceability information to the users.

D. Example

Fig. 3 illustrates a typical modelling session. The rectangles
labelled 1–4 contain NL messages that a user sends, while the
diagrams are the feedback provided by the modelling bot.

The first message is handled by the “transitive verb” rule.
This creates classes for “good transport company” and “de-
livery”, and a reference for “handle”. The cardinality of the
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Fig. 3. Some steps in a model construction session

reference is many as “deliveries” is in plural. The created
classes have singular, camel case names. The newly created
elements are shown in green. For space constraints, the figure
omits the explanation of changes which the bot also produces
as notes in the diagram.

The second message is handled by the “verb to have” rule,
which adds an integer attribute to class Delivery. The bot assigns
an upper cardinality of 1, as there is no plural.

The third message contains two phrases. The first one is
handled by the “contain” rule, which creates class Package and
reference package. The second one is handled by the “verb to
be” rule, which creates the inheritance hierarchy. This phrase
makes use of the word “packet”, which is as a synonym of
“package”, and hence, no new class is added for it.

The fourth message, processed by the “verb to have” rule,
creates three features in class Bulky. At this point, there is no
information on whether they should be attributes or references,
and hence, this is left open (shown with “??”).

IV. TOOL SUPPORT

We have developed a prototype tool for our approach called
SOCIO (from assisted modelling through social networks).
Fig. 4 shows its architecture. The tool supports Twitter and
Telegram, though it can be extended with further social
networks by implementing an interface. This means that users
of different social networks can interact with each other.

Independently of their provenance, all bot-processable mes-
sages are enqueued and processed one-by-one. NL processing
is performed using the Stanford parser and WordNet. The cre-
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Fig. 5. Some steps in a modelling session via Telegram (a-c) and Twitter (d)

ated models are stored using EMF [6], the de-facto modelling
standard nowadays. SOCIO currently supports the collaborative
construction of meta-models, but we plan to give support to the
creation of instance models in the future. Due to the message
length limit of widespread social networks, the feedback is
frequently given as a diagram image that may include the
current model state, its history, or the set of available projects.
These images are generated using PlantUML [8].

To illustrate the tool’s capabilities, Fig. 5 shows a sample
modelling session over Telegram and Twitter. It reflects the
discussion of a set of engineers and the bot for building a
meta-model for a transport delivery company.

Steps (a-c) correspond to the interaction in a Telegram group
to which the engineers and the bot belong. The bot is started
in step (a), and it replies with all available commands. This

is a normal message that is received by all members of the
group. Step (b) shows one discussion message between the
engineers, which is interchanged using the social network
normally. It also shows a message directed to the bot, asking
the creation of a new model project. In step (c), a NL message
describing requirements for the meta-model is directed to the
bot. This is performed using the \talk command, after which
the bot prompts the user to talk, and the user replies with a NL
sentence. The bot processes the sentence, updates the meta-
model, and returns an image of it. The image can be enlarged
and shared with other Telegram groups and users via email or
external services like Dropbox. Step (d) shows the interaction
with the bot using Twitter. This requires mentioning the bot
account and the model project. Interestingly, in addition to
the traceability provided by Socio using the meta-model of
Fig. 2, the organization of messages in a life-line which can
be browsed at convenience, as provided by Telegram, is also
an excellent means to track down design decisions.

V. EVALUATION

To assess the suitability of our proposal, we have conducted
a preliminary evaluation with 10 participants organized in
4 Telegram groups: 2 groups of 2 people, and 2 groups of
3 people. They were asked to create a meta-model for e-
commerce in 15 minutes but with no other restriction, and
then complete a questionnaire with 3 parts: two with Likert-
scale questions, and a last one with free text questions.

All participants had a computer science background (post-
graduate or last year degree students) and were non-native
English speakers. The average declared modelling expertise
was 62,5% (out of a maximum of 100%), and the level of
English was 72,5%. Six conducted the task using the mobile,
2 the web browser, and 2 the desktop Telegram application.

The first part of the questionnaire consisted of the 10
questions of the System Usability Scale (SUS) [9], a de-facto
standard to measure system usability. SOCIO obtained 74%,
which indicates good usability. Interestingly, the users that
gave the lowest SUS scores were those with less modelling
expertise or level of English (the bot must be addressed in
English). In particular, the Pearson correlation coefficient was
0,660 with a significance level 0,038.

The second part of the questionnaire comprised 8 questions
evaluating four aspects: (1) suitability of NL to build models
w.r.t. using an editor, (2) precision of the bot to interpret NL,
(3) enough functionality in the command set, and (4) whether
they liked embedding a modelling tool in a social network, or
they would prefer a separate collaborative tool. We obtained
around 75% for aspects 1 and 4, indicating that participants
considered NL as a suitable interaction mechanism, and they
appreciated the idea of collaborating through social networks.
Aspect 3 was rated 60%, which is acceptable but leaves
room for enriching the command set. Regarding aspect 2, the
statement “bot-generated models agree with the provided NL
phrases” was scored 62,5%. However, all participants observed
some mismatch between the NL phrases and the obtained
models, which suggests the need to improve the precision of



the bot to interpret NL. Again, the users assigning a low score
were those with less modelling or English expertise.

In the free-text questions, several participants identified
as positive the possibility to use the tool on the phone,
and being fun, easy-to-use and quicker than other modelling
tools. They also suggested some improvements, like the need
for coordination mechanisms, and commands to change the
reference cardinalities. We will tackle this in future work.

Regarding interaction, participants used more often de-
scriptive NL to interact with the bot (80%) than imperative,
command-like messages (20%). This suggests that NL was
found useful to complete the task. Overall, 50% were discus-
sion messages and 50% were bot-directed messages. Talking
to the bot was balanced in all groups, but in one group where
a participant took the role of coordinator and basically sent
messages to the other participants. This need for discussion
justifies the inclusion of the modelling tool in a social network.

The study is preliminary, with several threats, like the low
number of participants, the limited group size, the similar
participant background, the fact that participants were non-
native speakers, and the lack of a precise modelling goal which
permitted evaluating the produced artefacts. However, the
positive results encourage further research on this approach.

VI. RELATED WORK

The impact and potential of collaborative and participa-
tory modelling has been recognised by several disciplines –
like water resources management and sustainable develop-
ment [10], or smart product design [11] – to enhance their
modelling and decision-making processes. However, typically
these works do not propose a concrete method or tool.

In the context of Software Engineering, collaborative mod-
elling has been used for model construction [12] and collab-
orative creation of domain-specific languages [13]. However,
these approaches do not use social networks or NL processing.
Instead, they rely on collaborative graphical model editors [12]
or ad-hoc tools [13], with no assistant support.

Nowadays, people are used to social networks, and this
fact has made organizations to adapt and introduce a social
network perspective within their development processes [14],
[15]. In this sense, an interesting example of a distributed
problem-solving model that combines human and machine
computation is crowdsourced software engineering [16]. Many
commercial platforms like TopCoder (www.topcoder.com),
Bountify (bountify.co) or uTest (www.utest.com) permit re-
cruiting online labour to work on specific tasks, like coding
and testing. However, as far as we know, there is no proposal
on assisted collaborative modelling over social networks.

Our work proposes using NL to both human collaboration
and bot interaction. NL processing techniques have been used
within Software Engineering to derive UML diagrams/domain
models from text [4], [17]. Our contribution in this context
is to use an interactive, incremental approach, and the use of
social networks to embed both assistance and collaboration.

Altogether, the use of social networks for collaborative mod-
elling based on NL processing is a novel research direction.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel approach to
collaborative modelling via social networks, with assistant bots
able to process NL messages. We have created prototype tool
support working over Telegram and Twitter, and performed an
initial evaluation obtaining encouraging results.

In the future, we will incorporate customizable collaboration
protocols for different styles of decision making, e.g., based
on votings, or roles. We will develop support for building
instances of meta-models, and for querying the model elements
provenance. We will consider other types of bots, e.g., a
quality assurance bot which monitors the current model state
to suggest improvements, or gamification bots. We plan to use
WordNet’s super-subordinate relations to propose inheritance
relations, as well as investigate the use of speech recogni-
tion for modelling. Finally, we foresee developing scalability
mechanisms, e.g., by pruning the bot feedback to return only
the modified model elements and their context.
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I. INTRODUCTION

Social networks are becoming an important part of our daily
digital lives, where we use them to keep in touch with friends
and organize leisure activities. They are also gaining relevance
as a mechanism to disseminate information and to cooperate
and coordinate in work tasks. In particular, social media is
increasingly used in software engineering, e.g., to support the
formation of ecosystems around particular concepts and tech-
nologies; to participate in online development communities;
and to disseminate technologies and crowdsource content [1],
[2].

Given the widespread use of social networks, our goal is to
exploit them for collaborative modelling. Hence, we introduce
the concept of modelling bot, able to interpret natural language
(NL), assist users in creating models, and which integrates
with minimum disruption into the natural communication
mechanism that micro-blogging based social networks – like
Twitter or Telegram – offer. Our approach is lightweight, as
it can be used in mobility and it does not require installing
any dedicated modelling tool, but users can employ the social
network client they are familiar with. It can be used by teams
of engineers, likely distributed, to create models and enhance
their global coordination. It fosters collaboration with domain
experts, who might be unfamiliar with modelling tools, by
interpreting domain requirements expressed in NL. Finally,
it has the potential to facilitate the crowdsourcing of design
decisions. While bots are starting to be used to help in software
engineering activities like documentation or user support [3],
to our knowledge, ours is the first proposal for a modelling
assistant bot.

In this tool demo paper, we describe our modelling bot
SOCIO [4] which works across several social networks like
Twitter and Telegram. The tool interprets messages from
the social network using the Stanford NL parser [5], the
WordNet [6] lexical database to identify synonyms, and an
extensible set of domain requirements extraction rules [7] that
are responsible for growing the model to reflect the messages
information. The bot keeps track of all model changes and
their provenance, and provides statistics of the participation
of each user and their percentage of model authorship. The
constructed models can be validated, and exported to the
EMF format. While SOCIO has been designed to help in both
modelling and meta-modelling, the current version of the tool
only supports the creation of meta-models.

The remaining of this paper is organized as follows. First,
Section II describes our approach to NL processing, and Sec-
tion III presents the architecture and main features of SOCIO.
Next, Section IV compares with related research. Finally,
Section V concludes with prospects for future work.

II. APPROACH

The goal of our tool is to provide modelling assistance
integrated within widely used discussion and collaboration
mechanisms such as social networks. For this purpose, our
modelling bot integrates seamlessly in the social network as
another participant, and the interaction with the bot is based
on NL to keep a “sense of flow” as there is no need to
switch tools for discussing and modelling. Figure 1 shows
a scheme of our approach. At any moment, users can send
messages directed to the bot. The way to address the bot varies
slightly depending on the particularities of the social network:
in Twitter, the message needs to mention the username of
the bot (@ModellingBot), while in Telegram, the bot must
belong to the modelling group and a command starting by
“/” needs to be issued. The bot offers a suite of commands
for model management (create a new model, show all existing
models, update a model, validate a model, download a model)
and to obtain statistics. We will explain these commands in
Section III, while in the remainder of this section we will
focus on the handling of NL messages expressing domain
requirements. Messages not directed to the bot are just regular



Parse message Derive actions Modify model 

Store traceability 

Find rule 

Produce feedback 

NL rules 

users 
Meta-model applicable  

rule 
parse 
tree required 

updates 

cross  
references 

trace 
model 

Fig. 1: Processing a NL message for model update

messages used for discussion and coordination within the
modelling session.

When the bot receives a message, it uses the Stanford parser
to produce a parse tree. Each word in this tree is tagged
with its role in the sentence, like noun (singular or plural) or
verb (past, gerund, past participle, 3rd person singular present,
non-3rd person singular present). We have created a set of
extraction rules that detect certain phrase structures of interest
in the tree and deduce domain requirements that trigger model
updates. The extraction rules are based on the work by Arora
and colleagues [7], adapted to our context. The rule set is
extensible, and we currently consider the following ones:

• Verb to be. These phrases may indicate a subclassing re-
lation (e.g., “users can be students or teachers”), the type
of a feature (e.g., “price is double”) or the abstractness
of a class (e.g., “course is abstract”).

• Verb to have (and synonyms). These phrases identify
features (attributes or references) of a class. We also
consider the Saxon genitive.

• Transitive verbs. When a phrase with a verb, subject and
direct object is identified, this rule triggers the creation
of classes for the subject and direct object (if they do not
exist yet), and a reference for the verb.

• Contain (and synonyms). These phrases signal the need
for a composition relation between two classes (e.g., “an
e-learning platform is made of courses”).

• Add (and synonyms). Imperative phrases using “add”
or a synonym verb result in the creation of classes or
features (e.g., “add name to user”).

• Remove (and synonyms). Similar to the previous rule,
but for removing elements.

Each rule has a priority, equal to its position in the previous
list. In this way, if several rules are applicable, only the one
with the highest priority is selected. Then, the selected rule
checks the state of the meta-model and produces the necessary
meta-model update actions. In this step, rules make use of
WordNet to detect synonyms, and take into account gram-
matical number to allow flexibility when referring to existing
classes (e.g., an existing class “Teacher” can be referred later
as “Instructors”). The actions are generated explicitly so that

their effects can be undone and redone. Supported actions
include creating and removing classes, making them abstract
or concrete, adding and deleting features, and changing the
type of a feature. After processing a message, the updated
meta-model may lack some information, like the type of an
attribute, or whether a feature is an attribute or a reference.
These design decisions remain open and need to be resolved
before the model is deemed valid.

The message, the user issuing the message and the per-
formed actions are stored in a traceability model. This allows
keeping accurate record of the provenance and rationale of
every meta-model element, as well as generating different
statistics. Once the meta-model and the trace model have been
updated, the bot sends a picture of the meta-model to all users,
where the impacted elements are highlighted in a different
colour.
1) Example.: Figure 2 illustrates the processing of several

NL messages used to build a meta-model for e-learning
systems. The first sentence triggers the rule for the verb “to
be”, and results in the creation of two subclasses of Course. In
the second sentence, the user uses a transitive verb (“courses
are evaluated with a test”), which yields the creation of a
new class Test and a reference evaluatedWith. The bot follows
accepted naming conventions: upper camel case for classes
and lower camel case for features. Moreover, it also checks
the grammatical number of the words to assign an appropriate
cardinality to features (e.g., [0..1] in reference evaluatedWith).

III. TOOL SUPPORT

We have built a modelling bot called SOCIO to support the
presented approach. It works on Telegram and Twitter, though
it is designed to be extensible with further social networks and
NL rules. The bot stores meta-models in Ecore format, and the
traceability data as EMF models. The pictures of meta-models
are generated with PlantUML. A video showcasing its use and
some examples are available at https://saraperezsoler.github.io/
ModellingBot/.

Figure 3 shows some screenshots in the interaction with
SOCIO to build and validate a meta-model for e-learning
systems. In the first place (not shown), a Telegram group that
includes the participants and the bot needs to be created. In



“courses are 
evaluated 
with a test”

“courses 
can be 
free or 

paid courses”

Fig. 2: NL interaction sequence, and corresponding meta-model updates

Figure 3a, the bot shows all available commands, and then,
one participant creates a modelling project using the /newproject
command.

In Figure 3b, a participant sends a NL message to the bot
using the command /talk. The bot interprets the message to
deduce domain requirements, updates the current meta-model
version accordingly, and returns a picture of the updated meta-
model with the created and updated elements highlighted in
green. Figure 3c shows a similar interaction using Twitter. In
this case, the bot username (@ModellingBot) and the project
name (#learningplatform) need to be mentioned. The created
attribute (code) is shown in green. After some interactions,
one participant validates the model (Figure 3d), and the bot
reports there is an error because the type of attribute Paid-
Course.price is missing. At any moment, the meta-model can be
downloaded in Ecore format using command /get (Figure 4a).
The downloaded meta-model can then be used within Eclipse
(Figure 4b).

The interaction with SOCIO is recorded in a traceability
model. This can be used to understand the rationale of every
decision and analyse user contributions. In particular, SOCIO

offers the following statistics: messages sent by one or all
users, meta-model update actions done by one or all users,
and percentage of meta-model authorship. They are available
through the /history command (see Figure 5a). As an example,
Figure 5b shows the number of messages directed to the
bot from all users along time, while Figure 5c shows the
percentage of authorship. In addition, it is also possible to
obtain a more detailed history of the messages sent by each
user and their consequences.

IV. RELATED WORK

There are several approaches for collaborative modelling
or meta-modelling [8]. Some recent examples include Col-
laboro [9] and SPACEclipse [10]. However, these works do
not consider modelling assistants or NL as an interaction
mechanism, and they do not rely on social networks but

on platforms like Eclipse, which requires technical expertise.
Instead, our approach integrates a modelling bot within a
social network, so that users do not need to switch between
discussion, coordination and modelling tools.

Social networks have been recognised to have a high-impact
research potential in software engineering [1], [11]. In fact,
we are witnessing an increasing use of bots to automate
certain software engineering tasks, like DevOps activities or
user support bots [3]. The general goal of their use is to
improve efficiency (do things faster) and effectiveness (com-
plete tasks towards meaningful goals). SOCIO targets improving
effectiveness of meta-model creation, lowering the barrier of
participation to non-technical people.

Several researchers have proposed different models of
crowdsourcing for software design activities. For example,
in [12], the authors use microtask crowdsourcing for parallelis-
ing the construction of morphological charts, a design tech-
nique to represent decision points and alternative solutions.
Their experiments show the feasibility of using crowdsourcing
to generate a wide range of design solutions, though of varying
quality. More generally, Hoang et al. [13] provide a set of
recommendations on when to crowdsource decision-making,
namely, when tasks can be performed through the internet, do
not require a significant level of communication, and can be
partitioned into smaller tasks. Moreover, to avoid low quality
outcomes, crowdsourced tasks should be easy to evaluate;
in our case, live quality checks can be performed by both
modelling and domain experts. Finally, platform availability is
also key in crowdsourced tasks; our proposal based on social
networks completely fulfils this requirement.

Altogether, to the best of our knowledge, our proposal is
novel as modelling assistant bots have not been proposed up
to now.

V. CONCLUSIONS AND FUTURE WORK

This paper has described SOCIO, a bot for assisted modelling
over social networks. It works over Twitter and Telegram,



(a) Creating a new project (b) Talking to the bot

(c) Interaction through Twitter (d) Meta-model validation

Fig. 3: Interaction with SOCIO

interpreting NL sentences from different users to create a
meta-model in a collaborative way. The assistant seamlessly
integrates within the social network and keeps track of the
model history and user contributions.

We are currently improving some aspects of SOCIO, e.g.,
enhancing NL processing for more accurate deduction of
cardinalities, enabling meta-model instantiation, and defining
user roles with support for collaboration protocols. We also
plan to integrate other social networks and communication
mechanisms, like speech recognition using Skype bots.
Acknowledgements. Work funded by the Spanish MINECO
(TIN2014-52129-R) and the R&D programme of Madrid
(S2013/ICE-3006).
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ABSTRACT 
Modelling is a fundamental activity in software engineering, which 
is often performed in collaboration. For this purpose, on-line tools 
running on the cloud are frequently used. However, recent 
advances in Natural Language Processing have fostered the 
emergence of chatbots, which are increasingly used for all sorts of 
software engineering tasks, including modelling. To evaluate to 
what extent chatbots are suitable for collaborative modelling, we 
conducted an experimental study with 54 participants, to evaluate 
the usability of a modelling chatbot called SOCIO, comparing it 
with the on-line tool Creately. We employed a within-subjects 
cross-over design of 2 sequences and 2 periods. Usability was 
determined by attributes of efficiency, effectiveness, satisfaction 
and quality of the results. We found that SOCIO saved time and 
reduced communication effort over Creately. SOCIO satisfied 
users to a greater extent than Creately, while in effectiveness results 
were similar. With respect to diagram quality, SOCIO 
outperformed Creately in terms of precision, while solutions with 
Creately had better recall and perceived success. However, in terms 
of accuracy and error scores, both tools were similar.  
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1 Introduction 
Modelling is an integral part of all engineering disciplines, like 
mechanical, electrical or software engineering. Often, modelling 
becomes a collaborative activity, requiring the participation of 
stakeholders with different backgrounds and technical expertise 
[7]. In software engineering, both asynchronous (i.e., based on 
version control) and synchronous (e.g., based on on-line tools) 
modelling mechanisms are typically used. For the latter purpose, a 
plethora of cloud-based platforms have recently emerged, 
supporting real-time collaboration. These include tools like 
GenMyModel (https://www.genmymodel.com/), LucidChart 
(https://www.lucidchart.com/), Gliffy (https://www.gliffy.com/), 
and Creately (https://creately.com/) among many others. 

The advance in Natural Language Processing (NLP) techniques 
has favoured the emergence of chatbots [17]. These are software 
programs whose user interface is NL – either in text or speech 
forms – which are frequently embedded within social networks. 
Almost every industry is proposing chatbots to provide a more 
flexible access to their services – such as booking flights, perform 
bank operations, or checking traffic conditions – without the need 
to install dedicated apps [26]. The boost of chatbots is also partially 
due to the facilities offered by social networks – like Telegram, 
Twitter, or Slack – for their integration. Hence, any company can 
ride the wave of, e.g., Facebook Messenger’s success and its huge 
audience to deploy a bot to engage with the customer. Tens of 
thousands of chatbots have been created for Facebook Messenger 
alone. According to forecasts and statistics from Gartner, the 
chatbot market is quickly growing, since 85% of customer 
relationships will be supported by artificial intelligence by 2020 
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[9]. Not only for leisure, but chatbots are increasingly being used 
to automate software engineering tasks as well. For example, 
developers use bots to automate deployment tasks, assign software 
bugs and issues, repair build failures, schedule tasks like sending 
reminders, integrate communication channels, or for customer 
support [17]. Recently, chatbots have been proposed for 
collaborative modelling. For example, in [20][21] a chatbot called 
SOCIO (saraperezsoler.github.io/ModellingBot/) was proposed. 
The chatbot is integrated within social networks, and interprets the 
NL phrases of groups of users to create a domain model. This 
approach lowers the entry barrier to modelling of non-technical 
experts, promoting a more active role of all the involved 
stakeholders in a project. In addition, the social network provides 
natural collaboration support via short messages. 

Given the prominent position that chatbots are expected to take 
in software engineering, our objective is to assess to what extent a 
chatbot-based approach is suitable for collaborative modelling. For 
this purpose, we evaluate two alternative tools for collaborative 
modelling: Creately and SOCIO. The former is taken as 
representative of on-line tools, providing a baseline for comparison. 
The evaluation is based on a user study with 54 participants, and 
the assessment is made in terms of usability, efficiency, 
effectiveness, satisfaction and quality of the results. Overall, we 
found that SOCIO saved time and reduced communication effort 
over Creately. SOCIO satisfied users to a greater extent than 
Creately, while in effectiveness the results were similar. With 
respect to diagram quality, SOCIO outperformed Creately in terms 
of precision, while solutions with Creately had better recall and 
perceived success. However, in terms of accuracy and error scores, 
both tools performed similarly. On the one hand, the experiment 
findings validate an approach based on chatbots for collaborative 
modelling. This fact is relevant for builders of future modelling 
tools. On the other, the experiment advances our general 
understanding of usability of chatbots and provides directions for 
how to evaluate the usability of chatbots. As noted in [27], the 
construction of chatbots frequently neglects usability concerns. 
Hence, techniques for measuring their usability need to be 
investigated, to help improving the user experience. While 
experimentation is key in software engineering, there are still few 
experiments specifically targeting chatbot usability [23]. Our 
experiment can serve as a guide for the evaluation of chatbots in 
software engineering. 

Paper organization. Section 2 analyses related work, while 
Section 3 introduces SOCIO and Creately. Section 4 describes the 
research method of the experiment, and Section 5 presents the 
results and their analysis. Section 6 discusses the results and the 
threats to validity. Finally, Section 7 concludes the paper. 

2 Related Work 
Next, we review collaborative modelling approaches, with 
emphasis on user studies; and on evaluations of chatbots’ usability. 

Collaborative modelling. Software engineering is a team 
activity, involving multiple engineers and stakeholders [30]. In the 

analysis and design phase of a project, collaboration involves 
sharing and working on a set of models. Our focus is on 
synchronous modelling. As mentioned in the introduction, a 
plethora of cloud-based tools have emerged, and traditional desktop 
based platforms, like Eclipse are targeting the web as well (see e.g. 
EMF.Cloud www.eclipse.org/emfcloud/, or the Graphical 
Language Server Protocol, www.eclipse.org/glsp/). Usability is 
one of the limiting factors of collaborative tools, as reported in [7]. 
Usability can be evaluated via experiments, and we now review 
some representative ones.  

Some collaborative modelling tools can be used from within 
mobile devices. This is the case of NetSketcher, a tool to build 
process models [2]. The tool was evaluated informally on a task 
performed by 6 undergraduates. Also in the area of process 
modelling, the Cheetah Experimental Platform (CEP) is a 
collaborative, desktop-based tool with support for collaboration [6]. 
The tool was evaluated informally, with two engineers creating a 
simple model. The experiment analysed the collaboration process 
itself, e.g., observing change of roles of the users (active vs passive) 
during the collaboration. In [8], Eclipse GMF editors were 
incorporated collaboration capabilities. The tool was evaluated by 
14 students, which defined both a modelling tool (using MDE 
techniques), and then evaluated the generated tool. Evaluation was 
performed using questionnaires. Hence, these are small-scale 
experiments, while the field would benefit from larger ones. 

Usability of chatbots. In [23] a Systematic Mapping Study 
(SMS) is presented, analyzing the HCI mechanisms used to 
evaluate the usability of chatbots in different fields. In the health 
care domain, chatbots helped to self-control diseases such as 
diabetes [4][25], or offered therapy for patients suffering from post-
traumatic stress disorders [28]. Other bots were designed to 
facilitate travel planning [19], help in e-commerce like buying 
shoes [13], search for information [22] or being the personal 
assistants, such as Apple Siri and Amazon Alexa [5][18]. The SMS 
selected 15 papers as primary studies, where 10 described 
experimental studies of chatbot usability. In most cases, the studies 
compared the chatbot with another application or system with same 
functionality or similar key characteristics [4][13][19][22][25]. For 
example, in [19], a website application and a chatbot are compared 
to investigate the differences in the levels of satisfaction. In most 
experiments, simple tasks are proposed, like using Siri to find an 
inexpensive hotel in Osaka [5] or search a flight ticket and hotel 
room via the chatbot [19]. A within-subject design was used in 
three experiments [13][19][22], in which subjects must apply all 
the treatments to be evaluated. However, each treatment was only 
used in a particular order. All experiments used questionnaires to 
collect data about user experience and satisfaction. These were 
typically provided at the end of the experiment, although in some 
cases, they were also filled after each task and/or at the beginning 
of the experiment to better understand basic information about the 
users [13][22]. 

With respect to chatbots for collaborative modelling, in [20][21] 
two small-scale evaluation experiments for SOCIO (with 19 and 8 
participants) were presented. In [21] the suitability of this chatbot 
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was assessed, while in [20], they evaluated a consensus mechanism 
for choosing different modelling alternatives. The tasks in both 
experiments were carried out in groups. All 10 participants in [21] 
performed the proposed task via Telegram, and were divided in 4 
groups (of 2 and 3 people). In [20], all participants formed a single 
Telegram group. The research method used in both experiments 
was based on survey questionnaires, filled after finishing the tasks. 
In [21], the questionnaire was based on the System Usability Scale 
(SUS) [3], with a part to evaluate user satisfaction, the use of NL, 
the integration in social networks, and open questions. Questions in 
[20] focused on evaluating the consensus mechanism. The tasks 
proposed were relatively simple. In [21], the task was creating a 
class diagram for an electronic commerce system in 15 minutes. In 
[20], to select among modelling alternatives to measure the degree 
of agreement based on the group preferences. Participants chose the 
best of three options for two projects, the first without consensus 
mechanism and the second with it. The results in [21] were positive 
in terms of satisfaction, the suitability of using NL and the idea of 
collaborating in social networks. Even though the accuracy of 
interpreting NL was relatively good, results suggested the need to 
improve in this line. The consensus mechanism was considered 
useful for large groups and with an outcome that reflects the 
opinion of the majority [20]. 

However, those experiments focused on evaluating SOCIO in 
isolation (i.e., no comparison to a baseline), while the number of 
participants was small. Therefore, here we report on an experiment 
with larger number of users and compare with an alternative 
collaborative modelling approach, based on a traditional GUI. 

3 A brief overview of SOCIO and Creately 
SOCIO is a chatbot that interprets NL (in English) to create class 

diagrams [21]. The chatbot is accessible from Twitter or Telegram 
(with nick @ModellingBot). Upon interpreting a NL phrase uttered 
by the user, it sends back an image with the current model state, 
with colors highlighting the changed parts. SOCIO supports 
commands to create new models, see user contributions, the 
percentage of authorship on the created models, among others. 

SOCIO offers two types of interaction. The first one is similar 
to a casual task, based on descriptive phrases like “the house 
contains rooms” (cf. Figure 1). SOCIO identifies the relevant parts 
of a phrase (nouns, verbs, adjectives), to decide which actions to 
perform (creating or updating a class, an attribute, a relation). In the 
example of the Figure, it identifies two nouns (house, rooms), for 
which two classes are created. The “contains” verb is mapped to a 
containment reference, while the plural form of “rooms” suggests 
a many cardinality.  

It can be noted that, in Telegram, the bot cannot directly listen 
to messages of the users in a group, which need to address the bot 
using the “/talk” command. 

 
1 according to modeling-languages.com/web-based-modeling-tools-uml-er-bpmn/ 

The second way to address the bot is more similar to using 
commands, like “add class X’’, or “set attribute size to int’’. Still, 
these commands have a flexible syntax, as illustrated in Figure 2 
(where again the class names are added in singular). 

 

Figure 1: Processing descriptive NL messages 

 

Figure 2: Processing command-like imperative messages 

In contrast to SOCIO, Creately uses a traditional GUI, 
accessible through a web browser. The tool supports over 50 types 
of diagrams – including class diagrams – and real-time 
collaboration. In addition, the tool supports working offline, and re-
synchronization when connectivity is available.  

Figure 3 shows a screenshot of the tool. Creately is built on 
Adobe’s Flex/Flash technologies and provides a visual 
communication platform for virtual teams. While SOCIO embeds 
modelling within a social network, Creately lacks an embedded 
chat. Hence, external ones, like Telegram should be used instead. 

Since Creately is one of the most used online collaborative 
modelling tools1 with friendly interface and learnability, we chose 
it as the control tool for comparing with SOCIO. 

Anonymous

Anonymous

Anonymous

Anonymous
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Figure 3: Creately being used for class diagram modelling 

4 Research Method 
The objective of the research is to evaluate the usability of the 
chatbot SOCIO by comparing it to the web tool Creately with 
respect to effectiveness, efficiency and satisfaction, from the point 
of view of users, and the quality of the class diagrams obtained. In 
particular, we make the following research question:  

RQ: Compared to Creately, does the use of SOCIO positively 
affect the efficiency, effectiveness and satisfaction of the users 
when making class diagrams, and the quality of class diagrams? 

The research hypotheses are: 

H.1.0 There is no difference in efficiency between SOCIO and 
Creately when making a class diagram. 

H.2.0 There is no difference in effectiveness between SOCIO 
and Creately when making a class diagram.  

H.3.0 There is no difference in satisfaction between SOCIO and 
Creately when making a class diagram.  

H.4.0 There is no difference in the quality of the class diagram 
made with SOCIO or Creately. 

4.1 Experimental setting 
The experiment was structured as a 2 sequences and 2 periods 
within-subjects cross-over design (see Table 1). Cross-over 
designs have the advantage of reducing variability – as subjects act 
as their own baseline – and require a smaller number of subjects 
than between-subjects designs – as subjects have as many 
measurements as periods [29]. 

The participants were grouped in teams of 3 members. The 
teams were randomly assigned to one out of two groups (Group 1 
or Group 2, onwards), so each group applies the treatments in a 
different order (AB/BA). The treatments are two tools for creating 
class diagrams: the chatbot SOCIO and the web application 
Creately. Group 1 first applies SOCIO and then Creately (i.e., 
SOCIO-Creately sequence, SC-CR). Conversely, group 2 first 
applies Creately and then SOCIO (i.e., Creately-SOCIO sequence, 
CR-SC). Both groups implement the tasks in the same order (task 

1 and task 2). Each task consists of a class diagram that needs 
implementing.  

Table 1: Experimental Design 

Tool Task Period 
Sequence 

Task 1 
Period 1 

Task 2 
Period 2 

SC CR SC CR 
Group 1:    SC-CR X __ __ X 
Group 2:   CR-SC __ X X __ 

 

Finally, participants in the same team are only allowed to 
communicate with each other in Telegram groups – so as to ensure 
that we record all the experimental data. 

4.2 Participants 
A total of 54 participants took part in the experiment. They all had 
a degree in Computer Science or a related degree from the 
Universidad de las Fuerzas Armadas ESPE Extensión Latacunga 
in Ecuador. All participants had studied or were studying a course 
on Software Analysis and Design. Thus, they had the necessary 
knowledge to make a class diagram. 

4.3 Procedure 
The 54 participants were split into two groups of 27 participants 
each. The participants in each group were further divided into 9 
teams. The teams were randomly created. A total of 18 teams 
participated in the experiment (9 per group). To fit within the 
participants’ timetable, the experiment was run in four sessions 
over two days, with each participant attending one session.  

The subjects did not undergo any preparatory or practice session 
before the experiment took place. All the subjects signed an 
informed consent form indicating that they granted us permission 
to record their data via Telegram. Then, subjects completed a 
familiarity questionnaire designed to help us collect their basic 
information (i.e., age, gender, level of English, preconceived ideas 
regarding their use of social media, and level of knowledge on class 
diagrams). 

All the participants first received a brief tutorial about the tool 
they had to use. Then, they were required to perform the first task 
with the tool in a maximum of 30 minutes. We found such length 
appropriate so as not to fatigue the participants. We adapted the 
complexity of the class diagram to the experimental session length. 
In particular, it was a class diagram representing a store, including 
management of products and customers. At the end of the 
experimental session the subjects filled in a modified and validated 
satisfaction questionnaire System Usability Scale (SUS) associated 
with the tool [3].  

Once the questionnaire was completed, participants received a 
tutorial of the second tool. Then, they performed the second task 
with the tool in a maximum of 30 minutes. The task consisted in 
designing the class diagram of a school supporting courses and 
students. At the end of the allowed time the participants filled in 
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another modified SUS satisfaction questionnaire, with questions 
about the tool. In this last questionnaire, the participants were asked 
if they preferred SOCIO or Creately. Figure 4 shows the detail of 
each session. The experimental data and materials can be 
downloaded from: https://bit.ly/2vfYZNB.  

 

Figure 4: Experimental Procedure 

4.4 Measure 
The ISO/IEC 25010 [12] defines efficiency, effectiveness, 
satisfaction, and quality in use as common attributes for evaluating 
product usability. The response variables that we used and their 
respective metrics are outlined below. 

We used the following metrics to measure efficiency: 

• Speed: Time, measured in minutes, taken by a team to 
complete the task (with a maximum of 30 minutes). 

• Fluency: Number of discussion messages generated by a 
team during the completion of the task via a Telegram 
group. 

The metric we used to measure effectiveness was completeness, 
based on the perceived success in carrying out the task. Satisfaction 
was measured by the modified SUS questionnaire, including SUS 
questions, and three or four open-ended questions. The SUS 
questions are ordinal questions on a 5-point Likert scale – with a 
rating of 1 to 5, 1 representing “strongly disagree”, and 5 
representing “strongly agree”. We select the median of the scores 
given by the three members of each team – to each question – as 
the score of the team. Finally, we calculate the average of the SUS 
scores of each team as their satisfaction score. We adopted Brook’s 
equations [15][24] to derive the numerical value of each user’s 
individual tool session score. The corresponding equations are 
shown below: 

For questions 1, 3, 5, 7, 9: 

Sum1 = score value - 1                                    (1) 

For questions 2, 4, 6, 8, 10:  

Sum2 = 5 - score value                                    (2) 

SUS score = 2.5 * (sum1 + sum2)                   (3) 

Based on the values derived from this equation, we compared 
these two tools in matters of satisfaction. This calculation provided 
us with a way of quantifying satisfaction. We took an ideal class 
diagram as a reference to measure the quality of the teams’ class 
diagrams. Such class diagram was designed by Software 
Engineering experts before the experiment took place. We used the 
following metrics to measure quality [10]: 

Precision = TP / (TP + FP) (4) 

Recall = TP / (TP + FN) (5) 

Accuracy = (TN + TP) / (TP + FP + FN + TN) (6) 

Error = (FP + FN) / (TP + FP + FN + TN) (7) 

Success = TP / (#predicted diagram elements) (8) 

The previous formulas can be computed by comparing the ideal 
class diagram with the class diagrams’ true positives (TP), false 
positives (FP), false negatives (FN) and true negatives (TN): 

• TP (true positive): Number of elements that are found in 
both the ideal class diagram and the team’ class diagram. 

• FN (false negative): Number of elements that are found in 
the ideal class diagram, but not in the team’ class diagram. 

• FP (false positive): Number of elements that are found in 
the team class diagram, but not in the ideal class diagram. 

• TN (true negative): In the comparison of models there are 
no true negatives, and hence the value is always 0. 

This way, precision gives the percentage of correct classes in 
the solution of each team, based on the elements of the ideal 
diagram. Recall is a completeness metric, giving the percentage of 
classes of the ideal diagram present in the solution. Accuracy 
combines both metrics, and error reflects how many elements are 
redundant or missing in each solution. The perceived success refers 
to success rate of each team, compared with the ideal class diagram 
directly. 

5 Data Analysis and Results 
We analysed each of the four response variables (i.e., efficiency, 
effectiveness, satisfaction and quality) with a Linear Mixed Model 
following the advice of Vegas et al. [29]. In particular, we fitted a 
linear mixed model with the following factors: (1) sequence (either 
Creately-SOCIO or SOCIO-Creately), accounting for the 
assignment of teams to a combination of task and treatment; (2) 
period (either Session 1 or Session 2), confounded with task, 
accounting for the task that the teams had to implement; and (3) 
treatment (either Creately or SOCIO), accounting for the tool 
applied by the teams to implement the tasks.  

We complement the results of the statistical analysis with 
Cohen’s d for the treatments (d, hereinafter) and their standard 
errors (SEs). For this, we follow the formulae provided in the 
Cochrane Handbook for cross-over designs [11]. In the next 
subsections, we go over the data analysis. 

5.1 Descriptive Data 
According to the data gathered in the familiarity questionnaire, the 
participants have the following characteristics:  

• From a total of 54 subjects, 44 are men and 10 are women.  

• Subjects have a mean age of 22 and a standard deviation of 
1.74. The highest concentration of participants is in the 
range 21-23 years.  

• 66.7% of subjects use social media frequently. WhatsApp, 
Facebook, Instagram and Telegram are the most used 
social media applications.  

Informed consent
Familiarity test

Tutorial
Task1

Questionnaire SUS

Tutorial
Task2

Questionnaire SUS
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• All the participants believe they are knowledgeable about 
class diagrams, and 90% of them relatively familiar with 
class diagrams.  

• 87.1% of the participants have used or use Telegram 
frequently. 12.9% have no experience using Telegram.  

• In relation to chatbots, all participants consider they 
understand them – at least at the conceptual level. 
Regarding their usage habits, 29.6 % have never used a 
chatbot, while 70.4% have some experience (55.6% have 
used chatbots at times and 14.8% are regular users). The 
fact of having subjects lacking previous experience with 
chatbots contributes to the greater sensitivity to the 
usability of the tool and the validity of the results. 

• Although no subject is a native English speaker, all of them 
considered having a fluent level of English. 

5.2 Efficiency 
We measured efficiency in terms of speed and fluency. Speed 
corresponds to the time taken to complete the tasks. Fluency 
corresponds to the number of discussion messages exchanged 
between the team members during the tasks’ implementation. 
Figures 5 and 6 show the box-plots corresponding to speed and 
fluency, respectively. Table 2 and 3 show the results of the linear 
mixed model fitted to analyse the data.  

5.2.1 Speed. As we can see in Figure 5, time spent seems to be less 
on SOCIO than in Creately. 

 

Figure 5: Time spent on completing the task  

As we can see in Table 2, only the treatment has a statistically 
significant impact on time. In particular, the time spent with 
Creately is on average 1.78 minutes longer than that in SOCIO. 
Finally, d=0.80, SE(d)=0.41, suggesting that a large effect size –
according to rules of thumb [1] – materialized for the treatment. 
This large effect size could be because: (i) Creately is built on 
Adobe Flash which caused errors, and at times users needed to re-
enter the application during the experiment, and (ii) the delay in the 
collaborative process with Creately was noticeable, and sometimes 
users could not perform any operations while teammates were 
operating or (iii) Creately requires users to take care of layouting 
the diagram, which is not necessary in SOCIO. 

Table 2: Linear Mixed Model for Time 

 Estimate Std. Error p-value 
(Intercept) 27.89 0.73 0.00 
Seq 1.11 0.73 0.15 
Treatment -1.78 0.73 0.03 
Period 0.78 0.73 0.30 

 

5.2.2. Fluency. As we can see in Figure 6, the number of discussion 
messages seem smaller for SOCIO than for Creately. 

 

Figure 6: Number of Discussion Messages  

As we can see in Table 3, only the treatment has a statistically 
significant impact on the number of discussion messages. 
Compared with SOCIO, the users sent 10 more messages with 
Creately. With d=0.70, SE(d)=0.22, a relatively large effect size 
materialized [1]. 

Table 3: Linear Mixed Model for Number of Discussion 
Messages 

 Estimate Std. Error p-value 
(Intercept) 22.72 4.78 0.0002 
Seq -3.17 6.10 0.61 
Treatment -9.94 2.92 0.0036 
Period -3.17 2.92 0.29 
 
In sum, SOCIO saved more time in terms of communication 

effort than Creately. In both aspects, SOCIO seems more 
efficient. 

5.3 Effectiveness  
We used the degree of completeness of the tasks to measure 
effectiveness. 

5.3.1 Completeness. Figure 7 shows a box-plot corresponding to 
the completeness scores of the teams per treatment. As we can see 
in Figure 7, the results for completeness seem similar – albeit more 
spread for Creately. 
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Figure 7: Completeness Scores  

Table 4 shows the results of the linear mixed model fitted. As 
we can see in Table 4, none of the factors has a statistically 
significant impact on completeness. Finally, d=-0.21, SE(d)=0.34 
suggesting a small effect size [1]. 

Table 4: Linear Mixed Model for Completeness 

 Estimate Std. Error p-value 
(Intercept) 0.985 0.00515 0.00 
Seq 0.005 0.00518 0.34 
Treatment 0.003 0.00512 0.52 
Period 0.0083 0.00512 0.12 

 

Thus, SOCIO and Creately performed similar in terms of 
effectiveness. 

5.4 Satisfaction  
We used a questionnaire to evaluate users’ satisfaction towards 
SOCIO and Creately. Each questionnaire included the ten questions 
of the SUS and four open questions at the end.  

5.4.1 Open-ended Questions. Both tools were reliable according to 
the participants. However, compared to Creately, SOCIO received 
more positive responses. Next, we analyse each question: 

Q1: Please indicate three positive aspects that you want to 
highlight about the tool. 

Both tools satisfied the participants because of their 
responsiveness, ease of use and collaboration capabilities. Besides, 
Creately was praised for its friendly interface. Some participants 
claimed that the chatbot was user-friendly and that it allowed them 
to have a more entertaining interaction. In other words, SOCIO was 
better suited to entertain the users.  

Q2: Please indicate three negative aspects of the tool 

Some participants complained that SOCIO’s documentation on 
its website were not sufficient. Additional answers mentioned that 
commands for SOCIO were not easy to learn, and some commands 

were lacking. Some of the participants expressed that SOCIO 
requires prior knowledge. 

The biggest problems with Creately were related to real time 
collaboration, which produced some errors when loading on some 
of the user’s computers. Some participants were not satisfied with 
the interface as it was too simple. Besides, some users claim that 
Creately’s functions were not comprehensive enough.  

Q3: Do you have any suggestions for improvement? 

For SOCIO, a number of participants suggested an 
improvement in its support for NLP. For Creately, participants 
suggested to improve its real time collaboration, and improve its 
user interface, which some participants considered too simple.  

Q4: Which tool do you prefer?  

Participants showed relatively positive emotions towards both 
tools, especially in the aspect of anticipation. Besides, they 
expressed more trust and joy for SOCIO than for Creately. Overall, 
30 of the participants preferred SOCIO, while 24 expressed their 
preference towards Creately.  

5.4.2 Questions of the SUS. We used the SUS score given by the 
participants to both tools and compared them side-by-side. Figure 
8 shows the box-plot for the SUS scores. 

 

Figure 8: Satisfaction Scores  

As Figure 8 shows, the satisfaction scores are typically higher 
for SOCIO than for Creately. As we can see in Table 5, the 
treatment has an almost statistically significant effect on 
satisfaction (p=0.1). In particular, d=0.58, SE(d)=0.35, thus, 
suggesting a medium effect size [1]. This indicates that SOCIO 
satisfies users to a greater extent than Creately. 

Table 5: Linear Mixed Model for Satisfaction 

 Estimate Std. Error p-value 
(Intercept) 64.51 3.88 0 
Seq 1.69 3.97 0.69 
Treatment 6.60 3.79 0.10 
Period -1.18 3.79 0.75 
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5.5 Quality  
We analysed the quality of the class diagrams in various aspects: 
precision, recall, accuracy, error and perceived success (cf. 
equations 4-8). The box-plots for such metrics are shown in Figure 
9-13, while the linear mixed models fitted are shown in Tables 6-
10.  

 

Figure 9: Precision Scores  

Table 6: Linear Mixed Model for Precision 

 Estimate Std. Error p-value 
(Intercept) 0.731 0.055 0 
Seq 0.008 0.066 0.911 
Treatment 0.108 0.041 0.018 
Period -0.141 0.041 0.003 

 

 

Figure 10: Recall Scores 

Table 7: Linear Mixed Model for Recall 

 Estimate Std. Error p-value 
(Intercept) 0.729 0.051 0 
Seq -0.026 0.061 0.677 
Treatment -0.145 0.038 0.001 
Period -0.006 0.038 0.885 
    

 

Figure 11: Accuracy Scores 

Table 8: Linear Mixed Model for Accuracy 

 Estimate Std. Error p-value 
(Intercept) 0.546 0.048 0 
Seq 0.015 0.067 0.81 
Treatment -0.048 0.031 0.13 
Period -0.069 0.031 0.04 

 

 

Figure 12: Error Scores 

Table 9: Linear Mixed Model for Error 

 Estimate Std. Error p-value 
(Intercept) 0.453 0.048 0 
Seq -0.015 0.061 0.812 
Treatment 0.048 0.031 0.135 
Period 0.069 0.031 0.039 
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Figure 13: Perceived Success 

Table 10: Linear Mixed Model for Perceived Success 

 Estimate Std. Error p-value 
(Intercept) 0.642 0.049 0 
Seq 0.066 0.058 0.270 
Treatment -0.147 0.038 0.001 
Period -0.049 0.038 0.218 

 
As shown above, the treatment has a significant impact on 

precision (where d=0.619, SE(d)=0.324, SOCIO outperforming 
Creately); recall (d=0.976, SE(d)=0.232, Creately outperforming 
SOCIO); and perceived success (d=0.996, SE(d)= 0.307, Creately 
outperforming SOCIO). However, in terms of accuracy and error 
scores both tools seem to perform similarly as indicated by the non-
significance of the treatment factor, and the smallest effect sizes in 
such cases (d=0.334, SE(d)=0.240 for accuracy; d=-0.334, 
SE(d)=0.240 for error scores). 

Summarizing, SOCIO outperforms Creately in terms of 
precision, while Creately outperforms SOCIO in terms of recall 
and perceived success. 

6 Discussion and Threats to Validity 
Overall, SOCIO seems superior to Creately in terms of efficiency 
and satisfaction, while in effectiveness they are similar. This 
suggests that SOCIO saved time and communication effort to the 
users. Also, that SOCIO’s look and feel met the users’ expectations 
to a greater extent than Creately. In addition, users created more 
precise class diagrams with SOCIO than with Creately. This means 
that a larger percentage of the classes created with SOCIO were 
also included in the ideal solution. This, and the observation that 
Creately was superior to SOCIO in terms of recall and perceived 
success, suggests that users made fewer classes with SOCIO than 
with Creately – albeit the diagrams were more complete with 
Creately. In plain words, users seemed to create more classes from 
the ideal solution with Creately than with SOCIO – despite it took 
longer to the users creating such classes with Creately, and 
Creately’s interface seems not as appealing as SOCIO’s.  

Our take away from these results is that despite its greater 
precision, SOCIO’s class diagrams may be lacking completeness 

due to the low training of the participants with the tool, and its 
English interface (as none of the participants was a native English 
speaker). In fact, participants highlighted the need of SOCIO to 
support more languages (namely, Spanish), social media platforms 
(e.g., Facebook Messenger rather than Telegram), and the need of 
more detailed examples in the manual. Also, they wished SOCIO 
helped auto-correcting spelling mistakes. Despite this, the 
satisfaction of the participants with SOCIO is relatively high. 
Notice that SOCIO scores better than Creately in some respects, but 
since it is not known or validated how good Creately is, this cannot 
be used as a basis for a comprehensive evaluation for SOCIO. 
However, the fact that Creately is one of the most used tools 
suggests that it is at least one of the best ones, and supports the 
conclusion that SOCIO is a good modelling tool. 

Next we analyse threats to validity. Internal validity pertains 
to confounding factors that could influence our results. In the 
experiment, participants had to create two class diagrams. Although 
they already had the necessary knowledge for this task, the first task 
may have refreshed this knowledge. Therefore, the second 
treatment applied may provide better results. This can be mitigated 
by comparing the results in the two periods (two tasks), and 
studying any improvement observed. Although the sessions did not 
have an excessively long duration (an hour and a half) there could 
be a threat of tiredness or boredom. The subjects participated 
voluntarily, and their collaboration did not imply any impact on the 
grades of the course, so they might have suffered from a lack of 
motivation. An additional threat to the internal validity is related to 
the fact that participants were not English native speakers. Hence, 
the user experience and time spent may be affected by their English 
fluency. 

Regarding external validity (generalizability of the results), our 
participants are university students with knowledge in computer 
science and class diagram design. Hence, the results are not 
generalizable to the industrial field, but can only remain in the 
academic realm. In addition, the evaluation has used SOCIO and 
Creately, therefore the results cannot be directly generalized to 
other modelling chatbots, or on-line modelling tools. 

Besides, there is a threat to conclusion validity because we have 
performed many statistical tests, and hence, this has increased the 
risk of a statistical error for type I (saying there is an effect, when 
there is not). We decided not to apply any correction for multiple 
tests, like Bonferroni, due to the relatively small sample size of the 
experiment. However, we have complemented the statistical results 
with the effect sizes, to facilitate the interpretation of the practical 
relevance of the findings. All in all, we consider these results 
preliminary and proper sized experiments are still required to draw 
definite conclusions on the performance of SOCIO and Creately. 

Finally, there is another threat to conclusion validity regarding 
the experimental tasks-because they may have impacted the 
experiment’s results. To tackle this shortcoming, we plan to run 
more experiments assessing the performance of SOCIO and 
Creately with a different set of tasks. 
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7 Conclusion 
Modelling is a team activity that is often performed in 
collaboration. Traditionally, collaborative modelling has been 
performed asynchronously in offline environments, or using online 
collaboration, sometimes in cloud-based tools. However, we have 
recently witnessed the emergence of chatbots, which are being used 
for all types of activities, including software engineering tasks like 
modelling. As usability of chatbots – in particular for modelling – 
is largely unexplored, in this paper we have reported on an 
evaluation comparing the SOCIO chatbot with the Creately on-line 
tool. Our aim was to answer the following research question: 

RQ: Compared to Creately, does the use of SOCIO positively 
affect the efficiency, effectiveness and satisfaction of the users 
when making class diagrams, and the quality of class diagrams? 

We evaluated the usability of SOCIO from four aspects: 
efficiency, effectiveness, satisfaction and quality. Regarding 
efficiency, teams using SOCIO finished earlier than those using 
Creately. For collaboration, those using SOCIO showed high 
fluency, with an interaction-cost advantage over those using 
Creately. For effectiveness, SOCIO and Creately performed 
similarly in terms of completeness. For satisfaction, SOCIO 
satisfies users to a greater extent than Creately with respect to the 
results of the SUS score. More users expressed they preferred 
SOCIO rather than Creately. For quality SOCIO outperformed 
Creately in terms of precision, while solutions with Creately had 
better recall and perceived success. In sum, usability of SOCIO has 
a positive effect on most aspects, when taking Creately as a 
baseline.  

In the future, we plan to conduct a second round of evaluations 
engaging more users to interact with the chatbot SOCIO, especially 
we will aim at English native speakers. Finally, we would like to 
enhance SOCIO with speech recognition, to enable design 
workshops using conversation, in the style of [14][16]. 
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technical users. While there are many emerging platforms for building chatbots, their
construction remains a highly technical, challenging task.

In this paper, we propose the use of chatbots to facilitate querying domain-specific
models. This way, instead of relying on technical query languages (e.g., OCL), models are
queried using NL as this can be more suitable for non-technical users. To avoid manual
programming, our solution is based on the automatic synthesis of the model query chatbots
from a domain meta-model. These chatbots communicate with an EMF-based modelling
backend using the Xatkit framework.
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Abstract. Conversational interfaces (also called chatbots) are being increasingly
adopted in various domains such as e-commerce or customer service, as a direct
communication channel between companies and end-users. Their advantage is
that they can be embedded within social networks, and provide a natural lan-
guage (NL) interface that enables their use by non-technical users. While there
are many emerging platforms for building chatbots, their construction remains a
highly technical, challenging task.
In this paper, we propose the use of chatbots to facilitate querying domain-specific
models. This way, instead of relying on technical query languages (e.g., OCL),
models are queried using NL as this can be more suitable for non-technical users.
To avoid manual programming, our solution is based on the automatic synthesis
of the model query chatbots from a domain meta-model. These chatbots commu-
nicate with an EMF-based modelling backend using the Xatkit framework.
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1 Introduction

Instant messaging platforms have been widely adopted as one of the main technologies
to communicate and exchange information. Most of them provide built-in support for
integrating chatbot applications, which are automated conversational agents capable of
interacting with users of the platform [10]. Chatbots have proven useful in various con-
texts to automate tasks and improve the user experience, such as automated customer
services [23], education [9] and e-commerce [21]. However, despite many platforms
have recently emerged for creating chatbots (e.g., DialogFlow [6], IBM Watson [7],
Amazon Lex [1]), their construction and deployment remains a highly technical task.

Chatbots are also increasingly used to facilitate software engineering activities [5,12]
like automating deployment tasks, assigning software bugs and issues, repairing build
failures, scheduling tasks like sending reminders, integrating communication channels,
or for customer support. In this context, we explored the use of chatbots for domain



modelling in previous work [16,17]. Modelling chatbots can be embedded within so-
cial networks to support collaboration between different stakeholders in a natural way,
and enable the active participation of non-technical stakeholders in model creation.

In the present work, we extend the previous ideas to support natural language (NL)
conversational queries over the models. This is a more accessible and user-friendly way
to query models than the use of technical languages like OCL (Object Constraint Lan-
guage [15]). Moreover, we avoid the manual programming of the model query chatbots
by their automatic synthesis. For this purpose, our solution is based on (i) the availabil-
ity of a meta-model describing the structure of the models, (ii) its configuration with
NL information (class name synonyms, names for reverse associations, etc.), and (iii)
the automatic generation of a chatbot supporting queries over instances of the given
meta-model. This approach is implemented on top of the Xatkit model-based chatbot
development platform [4], which interprets the generated chatbot model and interacts
with an EMF (Eclipse Modeling Framework) backend.

The rest of the paper is structured as follows. First, Section 2 provides motivation
using a running example, and introduces background about chatbot design. Then, Sec-
tion 3 explains our approach, and Section 4 describes the prototype tool support. Finally,
Section 5 compares with related works, and Section 6 concludes.

2 Motivation and Background

In this section, we first provide a motivating example, and then introduce the main
concepts behind chatbots.

2.1 Motivation

As a motivating example, assume a city hall would like to provide open access to its
real-time traffic information system. Given the growth of the open data movement, this
is a common scenario in many cities, like Barcelona4 or Madrid5.

We assume that the data provided includes a static part made of the different dis-
tricts and their streets, with information on the speed limits. In addition, a dynamic part
updated in real-time decorates the streets and their segments with traffic intensity val-
ues and incidents (road works, street closings, accidents or bottlenecks). Fig. 1 shows a
meta-model capturing the structure of the provided information.

In this scenario, citizens would benefit from user-friendly ways to query those traffic
models. However, instead of relying on the construction of dedicated front-ends with
fixed queries, or on the use of complex model query languages like OCL, our proposal is
the use of conversational queries based on NL via chatbots. Chatbots can be used from
widely used social networks, like Telegram or Twitter, facilitating their use by citizens.
Hence, citizens would be able to issue simple queries like “give me all accidents with
more than one injury”; and also conversational queries like “what are the incidents in
Castellana Street now?”, and upon the chatbot reply, focus on a subset of the results

4 https://opendata-ajuntament.barcelona.cat/
5 https://datos.madrid.es
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Fig. 1. A meta-model for real-time traffic information.

with “select those that are accidents”. Finally, for the case of dynamic models, reactive
queries like “ping me when Castellana Street closes” would be possible.

Our proposal consists in the generation of a dedicated query chatbot given the do-
main meta-model. But, before introducing our approach, the next subsection explains
the main concepts involved in chatbot design.

2.2 Designing a chatbot

The widespread interest and demand for chatbot applications has emphasized the need
to quickly build complex chatbots supporting NL processing (NLP) [8], custom knowl-
edge base definition [18], and complex action responses including external service com-
position. However, the development of chatbots is challenging as it requires expertise
in several technical domains, ranging from NLP to a deep understanding of the API
of the targeted instant messaging platforms and third-party services to be integrated.
To alleviate this situation, many chatbot creation frameworks have emerged, like Di-
alogFlow [6], IBM Watson [7] or Amazon Lex [1].
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Fig. 2. Chatbot working scheme.

Fig. 2 shows a simplification of the typical
working scheme of chatbots. Chatbots are often
designed on the basis of intents, where each in-
tent represents some user’s aim (e.g., booking
a ticket). The chatbot waits for NL inputs from
the user (label 1 in the figure); then, it tries to
match the phrase with some intent (label 2), op-
tionally calling an external service (label 3) for
intent recognition or additional data collection;
finally, it produces a response, which is often a
NL sentence among a predefined set (label 4).

Intents are defined via training phrases. These phrases may include parameters of a
certain type (e.g., numbers, days of the week, countries). The parameter types are called
entities. Most platforms come with predefined sets of entities and permit defining new
ones. Some platforms permit structuring the conversation as an expected flow of intents.
For this purpose, a common mechanism is providing intents with a context that stores
information gathered from phrase parameters, and whose values are required to trigger
the intent. In addition, there is normally the possibility to have a fallback intent, to be
used when the bot does not understand the user input.
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Fig. 3. Scheme of our approach.

Fig. 3 shows the scheme
of our approach. First, the
chatbot designer needs to
provide a domain meta-
model (like the one in
Fig. 1) defining the struc-
ture of the models to be
queried, and complemented
with NL hints on how to re-
fer to its classes and fea-
tures (synonyms). From this information, an executable chatbot model that can be used
to query model instances is generated. The next subsections explain these two steps.

3.1 Chatbot generation: Intents and entities model

The chatbot designer has to provide a domain meta-model and optionally, a NL config-
uration model. The latter is used to optionally annotate classes, attributes and features
with synonyms, and the source of references with a name to refer to its backward navi-
gation. From this information, we generate the chatbot intents and entities.

Table(a) of Fig. 4 captures the generation of intents. We create an intent per query
type, plus an additional intent called loadModel to select the model to be queried. The
second row of the table shows the intent allInstances, which returns all objects of a
given class. The intent is populated with training phrases that contain the class name as
parameter. The possible class names are defined via an entity Class (see Table(b)). This
intent would be selected on user utterances such as “give me all cities” or “show every
incident”. The intent requires having a loaded model, which the table indicates as the
intent requiring a model as context.

In the same table, intent filteredAllInstances returns all instances that satisfy a given
condition. The intent is populated with training phrases that combine a class name and
a condition made of one or more filters joined via logical connectives. We provide an
entity Condition for the filters, explained below. This intent would be selected upon
receiving phrases like “give me all accidents with more than one injury” (please note
the singular variation w.r.t. the attribute name injuries).

In addition to intents, we create several entities based on the domain meta-model
and the NL configuration. Specifically, we create an entity named Class (Table(b)) with
an entry for each meta-model class name. These entries may have synonyms, as pro-
vided by the NL configuration, to refer to the classes in a more flexible way. Likewise,
we create an entity for each attribute name attending to their type: String (Table(c)),
Numeric (Table(d)), Boolean and Date (omitted for space constraints). For example, the
StringAttribute entity (Table(c)) has an entry for all String attributes called name. Just
like classes, these entries may have synonyms if provided in the NL configuration.

The Condition entity (Table(f)) is a composite one, i.e., its entries are made of one
or more entities. This entity permits defining filter conditions in queries, such as “name
starts with Ma” or “injuries greater than one”.
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Fig. 4. Intents and entities generated for the running example chatbot.

Regarding the complexity of the chatbot, the number of intents is fixed, and it de-
pends on the primitives of the underlying query language that the chatbot exposes.
Fig. 4 exposes two primitives of OCL: allInstances, and allInstances()→select(cond).
Other query types can be added similarly, which would require defining further intents.
The number of generated entities is also fixed, while the number of entries in each entity
depends on the meta-model size and the synonyms defined in the NL configuration.

3.2 Chatbot generation: Execution model

The generated chatbot also contains actions, required to perform the query on a mod-
elling backend, which we call the execution model. This execution model contains a set
of execution rules that bind user intentions to response actions as part of the chatbot be-
haviour definition (cf. label 4 in Fig. 2). For each intent in the Intent model, we generate
the corresponding execution rule in the execution model using an event-based language
that receives as input the recognized intent together with the set of parameter values
matched by the NL engine during the analysis and classification of the user utterance.

All the execution rules follow the same process: the matched intent and the param-
eters are used to build an OCL-like query to collect the set of objects the user wants to
retrieve. The intent determines the type of query to perform (e.g., allInstances, select,
etc.), while the parameters identify the query parameters, predicates, and their compo-
sition. The query computation is delegated to the underlying modelling platform (see
next section), and the returned model elements are processed to build a human-readable
message that is finally posted to the user by the bot engine.

As an example, Listing 1 shows the execution rule that handles an allInstances op-
eration. The class to obtain the instances of is retrieved from the context variable (avail-
able in every execution rule) and passed to our EMF Platform, which performs the query.
Next, the instances variable holding the results is processed to produce a readable string
(in this case a list of names), and the Chat Platform is called to reply to the user.



1 on intent GetAllInstances do
2 val Map<String, Object> collectionContext = context.get(”collection”)
3 val instances = EMFPlatform.GetAllInstances( collectionContext.get(”class”) as String )
4 val resultString = instances.map[name].join(”, ”)
5 ChatPlatform.Reply(”I found the following results” + resultString)

Listing 1. Execution rule example

4 Proof of Concept

As a proof of concept, we have created a prototype that produces Xatkit-based chat-
bots [4], following the two phases depicted in Fig. 3. Xatkit is a model-driven solution
to define and execute chatbots, which offers DSLs to define the bot intents, entities
and actions. The execution of such chatbots relies on the Xatkit runtime engine. At
its core, the engine is a Java library that implements all the execution logic available
in the chatbot DSLs. Besides, a connector with Google’s DialogFlow engine [6] takes
care of matching the user utterances, and a number of platform components enable the
communication between Xatkit and other external services.

In the context of this paper, we have developed a new EMF Platform that allows
Xatkit to query EMF models in response to matched intents. The first version of our
prototype platform6 provides actions to retrieve all the instances of a given class, and
filter them based on a composition of boolean predicates on the object’s attributes or ref-
erences. These predicates are retrieved from the context parameter defined in the intents
(see Section 3.1), and mapped to Java operations (e.g., the StringComparison “contains”
is translated into ((String)value).contains(otherValue). The query result is returned as a
list of EObjects, which is processed using the bot expression language to produce the
response message. Listing 1 showed an example of the use of this EMF Platform.

We have also developed a web application, where domain meta-models (in .ecore
format) can be uploaded, and then (optionally) configured with synonyms. Once the
configuration is finished, the application synthesizes a Xatkit chatbot model, which
then can be executed using the Xatkit runtime engine.

Fig. 5(a) shows the web application on the left, where the running example meta-
model (cf. Fig. 2) is being configured. Fig. 5(b) shows a moment in the execution of
the generated Xatkit chatbot, and the result returned by the bot when processing the
example utterance “show all accidents with more than one injury”.

5 Related Work

Next, we review approaches to the synthesis of chatbots for modelling or data query.
Our work relies on NL as a kind of concrete syntax for DSLs [17]. NLP has been

used within Software Engineering to derive UML diagrams/domain models from text [2,11].
However, the opposite direction (i.e., generating chatbots from domain models) is largely
unexplored. Almost no chatbot platform supports automatic chatbot generation from ex-
ternal data sources. A relevant exception is Microsoft QnA Maker [14], which generates
bots for the Azure platform from FAQs and other well-structured textual information.

6 https://github.com/xatkit-bot-platform/xatkit-emf-platform
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Fig. 5. (a) Web application to configure the chatbot. (b) A query in the generated chatbot.

Closest approaches to ours are tools like ModelByVoice [13] and VoiceToModel [20],
which offer some predefined commands to create model elements for specific types of
models. In contrast, our framework targets model queries and not model creation, which
was pursued in our previous work [17]. None of those two approaches support queries.
Castaldo and collaborators [3] propose generating chatbots for data exploration in rela-
tional databases, but requiring an annotated schema as starting point, while in our case
providing synonyms is an optional step. Similarly, [19] integrates chatbots to service
systems by annotating and linking the chatbot definition to the service models. In both
cases, annotations and links must be manually created by the chatbot designer to gen-
erate the conversational elements. In contrast, our approach is fully automatic. In [22],
chatbots are generated from OpenAPI specifications but the goal of such chatbots is
helping the user in identifying the right API Endpoint, not answering user queries.

Altogether, to our knowledge there are no automatic approaches to the generation
of flexible chatbots with model query capabilities. We believe that applying classical
concepts from CRUD-like generators to the chatbot domain is a highly novel solution
to add a conversational interface to any modelling language.

6 Conclusion

Conversational interfaces are becoming increasingly popular to access all kind of ser-
vices, but their construction is challenging. To remedy this situation, we have proposed
the automatic synthesis of chatbots able to query the instances of a domain meta-model.

In the future, we aim to support more complex queries, including the conversational
and reactive ones mentioned in Section 2.1. Our approach could be used to query other
types of data sources (e.g., databases or APIs) via an initial reverse engineering step to
build their internal data model and translate the NL query into the query language of
the platform. Finally, we would like to add access control on top of the bot definition to
ensure users cannot explore parts of the model/system unless they have permission.
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22. Vaziri, M., Mandel, L., Shinnar, A., Siméon, J., Hirzel, M.: Generating chat bots from web

API specifications. In: Proc. ACM SIGPLAN Onward! pp. 44–57 (2017)
23. Xu, A., Liu, Z., Guo, Y., Sinha, V., Akkiraju, R.: A new chatbot for customer service on

social media. In: Proc. CHI. pp. 3506–3510. ACM (2017)



205 B.5 Model-driven chatbot development  

B.5 Model-driven chatbot development  

Title Model driven chatbot development.

Publication 39th International Conference on Conceptual Modelling (ER’2020)

Core 2020 Core A

Authors Sara Pérez-Soler Universidad Autónoma de Madrid

Esther Guerra Universidad Autónoma de Madrid

Juan de Lara Universidad Autónoma de Madrid

Doi 10.1007/978-3-030-62522-1_15

Date November 2020

Abstract Chatbots are software services accessed via conversation in natural language. They are
increasingly used to help in all kinds of procedures like booking flights, querying visa
information or assigning tasks to developers. They can be embedded in webs and social
networks, and be used from mobile devices without installing dedicated apps. While many
frameworks and platforms have emerged for their development, identifying the most
appropriate one for building a particular chatbot requires a high investment of time.
Moreover, some of them are closed – resulting in customer lock-in – or require deep
technical knowledge.

To tackle these issues, we propose a model-driven engineering approach to chatbot
development. It comprises a neutral meta-model and a domain-specific language (DSL) for
chatbot description; code generators and parsers for several chatbot platforms; and a
platform recommender. Our approach supports forward and reverse engineering, and model-
based analysis. We demonstrate its feasibility presenting a prototype tool and an evaluation
based on migrating third party Dialogflow bots to Rasa.



Model-driven chatbot development
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1 Introduction

Chatbots are software programs that interact with users via natural language
(NL) conversation. Their use is booming because they can be used within webs
and social networks – like Telegram, Twitter or Slack – without having to in-
stall dedicated apps [23]. Many companies are developing chatbots to offer 24/7
customer service while reducing costs, and their presence is percolating a wide
range of areas such as education [26, 29, 30] or civic engagement [27].

The success of chatbots has led to the emergence of a plethora of technologies
for their creation. Not only big software companies have made available chat-
bot creation tools, like Google’s Dialogflow [9], IBM’s Watson Assistant [28],
Microsoft’s bot framework [17] or Amazon’s Lex [15], but many other proposals
exist, like Rasa [21], FlowXO [10] and Pandorabots [18]. Among them, we find a
variety of approaches. For example, Dialogflow and Watson offer low-code cloud
development platforms that support the creation and deployment of bots, while
Rasa is a framework that requires Python programming for bot development.

Overall, these chatbot creation tools are indisputably powerful (e.g., some
provide NL processing, speech recognition, etc.). However, since there are so
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many options, choosing the most appropriate one to develop a chatbot with
certain features is not easy. There may also be operational factors to consider
in the decision, as for example, some options may imply vendor lock-in, and
migrating chatbots between tools is not generally supported. Last but not least,
some approaches have a steep learning curve and require expert knowledge.

To overcome these problems, we propose a model-driven engineering (MDE)
approach [22] to chatbot development. This relies on a meta-model with core
primitives for chatbot design, and a domain-specific language (DSL) to define
bots independently of the implementation technology. Chatbots defined with the
DSL can be analysed for “smells” of defects, and a ranked list of appropriate bot
creation tools is recommended based on the chatbot definition and other require-
ments. Our DSL can be used for forward engineering, to produce the chatbot
implementation from its specification; and for reverse engineering, to produce
a model out of a chatbot implementation, which can then be analysed, refac-
tored and migrated to other platforms. Currently, we provide code generators
and parsers from/to Dialogflow and Rasa, but our architecture is extensible. We
evaluate our approach migrating third-party Dialogflow chatbots to Rasa.

In the rest of the paper, Section 2 introduces chatbot design and motivates
our work. Section 3 outlines our proposal. Section 4 describes the meta-model
and the DSL. Section 5 details our platform recommender. Section 6 presents tool
support. Section 7 reports an evaluation based on migration. Section 8 compares
with related works, and Section 9 concludes and outlines future work.

2 Building a chatbot: background and limitations

Chatbots (also called conversational agents) are software programs with a con-
versational user interface. They can be classified into open-domain, if they can
converse on any topic with users, or task-specific, if they assist in a concrete task
(e.g., bookings flights or shopping). Our work targets the latter kind of bots.
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Fig. 1: Chatbot working scheme.

Fig. 1 shows the typical working
scheme of task-specific chatbots. They
are designed around a set of intents
that users may want to accomplish.
Given a user utterance (e.g., “I’d like
to buy a flight ticket from Madrid to
Vienna”, label 1 in the figure), the
chatbot tries to identify the corre-
sponding intent (label 2). The ap-
proach for this depends on the par-
ticular chatbot creation tool. Some
of them – like Pandorabots – permit
defining patterns or regular expres-
sions upon which the utterance is matched, while others – like Dialogflow, Lex
or Rasa – require declaring training phrases and apply NL processing (NLP)
techniques. If the chatbot does not find any matching intent, some approaches
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allow having a default fallback intent. In addition, the conversation flow can be
structured into expected sequences of intents (relation follow-up in the figure).

After matching an intent, the chatbot extracts the parameters of interest from
the utterance (e.g., the origin and destination of the flight, label 3). Parameters
may be typed by entities, which can be either predefined (e.g., date, number)
or specific to a chatbot (e.g., flight class). If the utterance lacks some expected
parameters (e.g., date of flight), the chatbot can be configured to ask for them.

As a last step, the chatbot can perform different actions depending on the
intent, such as calling an external service (e.g., a booking information system,
label 5) or replying to the user (label 6). The simplest response format is text,
but some chatbot deployment platforms (e.g., Telegram, Twitter) also support
images, URLs, videos or buttons.

There are numerous tools for creating chatbots that follow this scheme.
These tools use different approaches, ranging from low-code form-based plat-
forms (e.g., Dialogflow, Lex, Watson, FlowXO) to frameworks for programming
languages (e.g., Rasa, Botkit [4]), libraries (e.g., Chatterbot [6]) and services
(e.g., LUIS [16]). Such a variety makes it difficult to ascertain which tool is
suitable to build a specific chatbot, as not every tool supports every possible
feature (e.g., only a few provide NLP or multi-language support). Moreover,
the conceptual model of the chatbot might be difficult to attain, as the chatbot
definition frequently includes tool-specific accidental details. As a consequence,
reasoning, understanding, validating and testing chatbots independently from
the implementation technology becomes challenging. Finally, some platforms are
proprietary which hinders chatbot migration and results in vendor lock-in.

In the following section, we present our proposal to overcome these problems.

3 Model-driven engineering of chatbots

Fig. 2 shows a scheme of our proposal. It provides a technology-agnostic DSL
called Conga (ChatbOt modelliNg lanGuAge) to design chatbots. This is built
on the basis of a neutral, platform-independent meta-model resulting from an
analysis of the existing approaches. The DSL permits modelling chatbots in-
dependently of any development platform, and validating quality criteria and
well-formedness rules on the chatbot models. Section 4 introduces this DSL.

To facilitate the task of selecting a development tool for implementing a given
chatbot model, we provide an extensible recommender that analyses the chatbot
model as well as other requirements, to provide a ranked list of suitable tools.
Section 5 explains the recommender system and its extensible architecture.

In addition, the DSL is complemented with code generators that synthesize
chatbot implementations from chatbot models for specific development tools
(e.g., JSON configuration files in the case of Dialogflow, or Python programs
and configuration files in the case of Rasa). The chatbots so generated can be
deployed in different platforms (e.g., Telegram, Slack or Twitter) to make them
available to users. Likewise, the DSL facilitates chatbot migration by the pro-
vision of parsers from several development platforms into the DSL. Our tool
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Fig. 2: Overview of our proposal.

support for these scenarios is explained in Section 6, while its evaluation based
on migration scenarios is presented in Section 7.

Overall, the advantages of our proposal are the following: it keeps the design
of the chatbot independent of the specific development technology; it provides
analyses applicable at the design level (i.e., prior to the implementation); it as-
sists in the selection of an appropriate development tool; it enables both forward
and backward engineering; and it reduces the risk of vendor lock-in.

4 Conga: a DSL for chatbot design

Our DSL Conga enables the design of chatbots conformant to the neutral meta-
model of Fig. 3. This is a platform-independent meta-model which gathers recur-
rent concepts in chatbot development approaches. Table 1 summarizes the main
concepts of the 15 approaches that we have revised to design our meta-model.

The main meta-model class is Chatbot, which has a name and a list of sup-
ported languages to allow the definition of multi-language chatbots. Chatbots
can define intents, entities, actions and structure the dialogue via flows.

Most analysed approaches (10 out of 15) rely on the notion of intent. In our
meta-model, an Intent has a name, can be a fallback intent, and defines one set
of regular expressions or NL training phrases per supported language. As Table 1
shows (3rd and 4th columns), all approaches support at least one of these two
definition mechanisms, while 6 approaches can combine regular expressions with
NL phrases. An example of a training phrase in English to query the price of a
cake can be “How much does a chocolate cake cost?”.

Intents may need to collect information, like the cake flavour in the previ-
ous sentence. This information is stored in Parameters, which most approaches
support (see 5th column of Table 1). In our meta-model, Parameters have a
name, a type, can be a list, can be required, and may define a list of prompts to
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Fig. 3: Platform-independent chatbot design meta-model (simplified excerpt).

Table 1: Recurrent concepts of representative chatbot creation approaches.

Approach Intent NLP Regular Phrase Entities Answ. Answ. Http Dialogue
expr params Text Image Rq/Rs structure

Botkit [4] no no yes no no no no no programm.
Bot framework [17] yes yes yes yes yes yes yes yes tree
Chatfuel [5] no yes no no no yes yes yes tree
Chatterbot [6] no yes no no yes no no no context
Dialogflow [9] yes yes no yes yes yes yes yes context
FlowXO [10] yes no yes no yes yes yes yes tree
Landbot.io [14] no no yes no no yes yes yes tree
Lex [15] yes yes no yes yes yes yes yes session
LUIS [16] yes yes yes yes yes no no no tree
Pandorabots [18] yes no yes yes no yes yes no DSL
Rasa [21] yes yes no yes yes yes yes yes tree
SmartLoop [24] yes yes yes yes yes yes yes no context
Watson [28] yes yes yes yes yes yes yes yes context
Xatkit [8] yes yes yes yes yes yes yes yes context
Xenioo [31] no yes yes yes yes yes yes no tree

ask for a value when the parameter is required but the user utterance does not
include its value. Parameters are typed by entities (6th column in the table).
Our meta-model supports both predefined entities (enumeration PredefinedEn-
tity with values text, date, number, float and time) and chatbot-specific ones
(class Entity).

Chatbot-specific entities can be Simple entities, defined as a list of words
with their synonyms, or Composite entities, made of other entities and text. For
example, in our bakery example, we may define simple entities for the prod-
ucts (cake, cupcake, biscuit...) and flavours (chocolate, strawberry, vanilla...),
and a composite entity combining both (〈product〉 with 〈flavour〉 flavour, 〈flavour〉
〈product〉, 〈flavour〉 flavoured 〈product〉...).
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Chatbots can perform different Actions. The most common ones are the
following (see 7th to 9th columns in Table 1): sending a Text response to the
user, which requires specifying the actual text for each chatbot language; sending
an Image which is identified by its URL; performing an HttpRequest to a given
URL, optionally providing some headers and data; and sending to the user an
HttpResponse for a previous http request.

Finally, a chatbot can define conversation Flows. As the last column of Ta-
ble 1 shows, all approaches provide some way to structure the dialogue, and in
particular, the meta-model has primitives to cover conversation trees and intent
activation based on contexts and sessions. Pandorabots supports a richer mech-
anism based on a DSL – the Artificial Intelligence Markup Language (AIML)1

– which our meta-model does not include due to its specificity. A flow is made
of UserInteractions associated to an intent, and BotInteractions comprising one
or more actions. A flow must start with a user interaction followed by a bot
interaction, after which there may be other user interactions, and so on.

To facilitate the instantiation of this meta-model, we have designed a textual
concrete syntax for it. Listing 1 illustrates its usage by showing an excerpt of
the definition of a chatbot for a bakery to which users can consult prices and
order different products like bread or cakes. The first line defines the chatbot
name and the supported languages (English and Spanish). Lines 4–18 define an
intent named Price, which declares a set of training phrases for each language of
the chatbot. If a set of phrases does not specify a language (as is the case in line
5), then they are assumed to be in the first language declared by the chatbot
(English in this example). The intent defines four parameters in lines 15–18. The
training phrases can refer to them (e.g., [count param] in line 6) and assign them
a value in the context of the phrase (e.g., three in line 6). The parameters type
can be a predefined entity, like number, or a user-defined one, like flavour.

Lines 21–29 show the definition of the simple entity flavour. This declares the
admissible flavours for each language supported by the chatbot, together with
their synonyms.

Lines 31–42 illustrate the definition of actions, specifically, a text response
called PriceResponse. As in the training phrases, text responses can be in differ-
ent languages, and use parameter values (e.g., [Price.bread param] in line 34).

Finally, lines 44–49 define the conversation flow (i.e., sequences of user and
chatbot interactions). The listing configures two flows, which always must start
with a user interaction and the corresponding intent. Flows are defined once,
independently of the language. The flow in line 45 takes place when the user ut-
terance matches the Price intent, in which case, the chatbot performs the action
PriceResponse defined in lines 32–42. The second flow (lines 46–49) corresponds
to the intent Buy. In this case, the chatbot asks for the product type to buy, and
the flow is split depending on the user answer (cake or bread). This branching
can be recursively nested to enable a compact representation of alternative flows.

The DSL includes model validation rules of two kinds. The first ones are
integrity constraints that ensure the well-formedness of chatbot models. For ex-

1 http://www.aiml.foundation/
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ample, some of these rules forbid equally named elements (e.g., two Actions with
the same name) and validate that each Intent has exactly one LanguageIntent for
each language of the chatbot (attribute Chatbot.lang). The second kind of rules
performs a static analysis of the chatbot definition to assess whether it adheres
to best practices for chatbot design. Violating these rules may be a “smell” of
a bad chatbot design. Currently, the DSL validates the following aspects: there
is a fallback intent; text responses only use parameters of intents appearing in
the conversation flow; there are no two intents with the same training phrase;
all intents define either one regular expression or at least three training phrases;
and training phrases do not start by a parameter typed by the predefined entity
text, as this would match any user utterance which can be problematic.

1 chatbot Bakery language: en, es
2
3 intents:
4 Price:
5 inputs {
6 ”How much are” (three)[count param] (bread)[bread param] ”?”,
7 ”How much is a” (cake)[cake param] ”?”,
8 ”How much is a” (chocolate)[flavour param](cake)[cake param] ”?”
9 }

10 inputs in es {
11 ”¿Cuanto cuesta el” (pan)[bread param] ”?”,
12 ”¿Cuanto cuesta una” (tarta)[cake param] ”?”,
13 ”¿Cuanto cuesta un” (pastel)[cake param] ”de” (chocolate)[flavour param] ”?”
14 }
15 parameters:
16 bread param, cake param: entity product;
17 flavour param: entity flavour;
18 count param: entity number;
19
20 entities:
21 simple entity flavour:
22 inputs in en {
23 chocolate synonyms choco, cocoa, truffle;
24 ...
25 }
26 inputs in es {
27 chocolate synonyms choco, cacao, trufa;
28 ...
29 }
30
31 actions:
32 text response PriceResponse:
33 inputs {
34 ”The” [Price.bread param] ”costs 1 euro per unit”,
35 ”The” [Price.flavour param] [Price.cake param] ”costs 10 euro per unit”,
36 ”The” [Price.cake param] ”costs 10 euro per unit”
37 }
38 inputs in es {
39 ”El” [Price.bread param] ”cuesta 1 euro por unidad”,
40 ”Las” [Price.cake param] ”de” [Price.flavour param] ”cuestan 10 euros por unidad”,
41 ”Las” [Price.cake param] ”cuestan 10 euros por unidad”
42 }
43
44 flows:
45 − user Price => chatbot PriceResponse;
46 − user Buy => chatbot Type {
47 => user Cake => chatbot Quantity => user num => chatbot BuyCakeHttp, buyCakeResponse;
48 => user Bread => chatbot Quantity => user num => chatbot BuyBreadHttp, buyBreadResponse;
49 }

Listing 1: Excerpt of chatbot model definition with the Conga DSL.
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5 Recommending a chatbot creation tool

Due to the large amount of tools and approaches for chatbot creation (cf. Ta-
ble 1), selecting the best option to build a particular chatbot becomes complex.
To assist in this task, we provide a recommender that receives a chatbot model
specified with Conga and the answers to a questionnaire relative to other as-
pects of the chatbot (e.g., technical, organizational or managerial requirements),
and from this information, it recommends an appropriate tool to implement the
chatbot. The recommender builds on a model-based extensible architecture that
enables the addition of new chatbot creation tools and the customization of the
questions and model features the recommendation builds on.

Requirement
name: String
text: String
multi: boolean

Analysis
evaluator: JavaClass

Option
name: String

Question

Tool
name: String

Recommender

*
possible

*
unknown

*
unavailable

*
available

options
2..*

requirements

1..*

tools

1..*

Fig. 4: Recommender meta-model.

Fig. 4 shows the meta-model
our Recommender relies on. To
make a recommendation, it con-
siders a list of chatbot Require-
ments, whose value can be re-
trieved either by means of a
Question to the developer, or
automatically via an Analysis of
the chatbot model. Both kinds
of requirements have a name, a
text, a list of admissible Options, and can be multi-response or not. In addition,
Analysis requirements define an evaluator, which is the (Java) class in charge of
analysing the chatbot model. This latter class must extend the built-in abstract
class Evaluator and implement its abstract method evaluate, which receives a
chatbot model and returns the Options that this model fulfils. The recommen-
dation consists of a list of Tools. For each tool, the recommender stores the
requirement options that are available, unavailable, unknown or are ultimately
possible (i.e., not natively supported but achievable using a workaround).

The recommender currently considers the requirements in Table 2, and new
ones can be added if needed. The table also shows the coverage of these require-
ments by two chatbot creation tools: Dialogflow and Rasa. Regarding analysis
requirements, we check whether the chatbot model is multi-language (like in
Listing 1), the targeted languages2, and whether it uses predefined or chatbot-
specific entities, calls to external services, parameters, training phrases or regu-
lar expressions. Rasa does not support multi-language bots, but a workaround
is generating one bot per language, hence the value possible in the table.

Questions are chatbot requirements explicitly asked to the developer as they
cannot be inferred from the chatbot model. The first seven questions in Table 2
deal with technical aspects. Specifically, we ask for the following issues: the so-
cial network the chatbot is to be deployed in (Dialogflow supports 16, and Rasa
8); the hosting server of the chatbot, since some platforms (e.g., Dialogflow) can
host the chatbot themselves, but others (e.g., Rasa) require an external server;
the level of support for version control, which is built-in in platforms like Di-

2 For brevity, Table 2 shows the number of languages supported, not the list of them.
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Table 2: Requirements that the recommender currently takes into consideration.

Text Multi- Options Dialogflow Rasa
response

Analyses

Is the chatbot multi-language? false
Yes avail. possib.
No avail. avail.

Which are the chatbot languages? true - 21 all

Does the chatbot use new or predefined
entities?

true
Predefined avail. avail.

New entities avail. avail.
None avail. avail.

Does the chatbot call to external services? false
One avail. avail.

Multiple possib. avail.
None avail. avail.

Does the chatbot use phrase parameters? false
Yes avail. avail.
No avail. avail.

Does the chatbot need persistent or volatile
parameter storage?

true
Persistent avail. avail.
Volatile avail. avail.
None avail. avail.

Does your chatbot need natural language
processing or pattern matching?

true
NLP avail. avail.

Pattern unavail. unavail.
Questions

Which social networks do you want to deploy
the chatbot in?

true - 16 8

Do you want to deploy the chatbot on your
own host?

false
Tool host avail. unavail.
Own host unavail. avail.

Do you want to use a built-in version control
system?

false
Yes avail. avail.
No avail. avail.

Do you require native support for chatbot
analytics?

false
Yes avail. unavail.
No avail. avail.

Do you require native support for utterance
persistence?

false
Yes avail. avail.
No avail. avail.

Do you require the chatbot to support speech
recognition?

false
Yes avail. unavail.
No avail. avail.

Do you require the chatbot to support
sentiment analysis?

false
Yes avail. unavail.
No avail. avail.

Do you require to use an open-source tool? false
Yes unavail. avail.
No avail. avail.

Which price model do you plan to use? true

Free avail. avail.
Pay as you go avail. unavail.

Quota unavail. unavail.
Pay advanced feats. unavail. avail.

What’s the level of expertise of the
development team?

false
Low avail. unavail.
High avail. avail.

alogflow, while programming-based approaches like Rasa need to use an external
version control system like github; the need to monitor the chatbot performance
(e.g., Dialogflow provides some chatbot analytics); the persistence of utterances
for their subsequent analysis; and the need to support speech recognition or
sentiment analysis.

The last three questions in Table 2 tackle organizational and managerial
aspects concerned with open-source and price model requirements, and the level
of expertise of the development team. For example, the expertise for using Rasa
is higher than for Dialogflow, since the former requires programming.

Since some requirements may be more important than others depending on
the project, we assign an importance level to each requirement, which the devel-
oper can customize. The supported levels are: irrelevant, relevant, double relevant
and critical. Irrelevant requirements are not considered for the recommendation,
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and critical ones are breaking factors (i.e., tools that do not comply with the
requirement will not be recommended). For each tool, the recommender com-
putes a score based on the supported requirements and their importance level.
Available requirements add 1 to the score of a tool, unavailable ones add 0, un-
known ones add 0.5, and possible ones add 0.75. In all cases, double relevant
requirements score double. Then, the recommender orders the tools according
to their score, and produces a report with the ranking of tools and how each
requirement contributes to this ranking.

Incorporating a new chatbot creation tool (e.g., Watson) into our frame-
work requires: (i) informing the tool options for every requirement in the recom-
mender; (ii) providing a code generator from Conga to the tool; (iii) optionally,
providing a parser if reverse engineering is required. Our framework prevents the
code generation for a tool whenever the chatbot requirements are unavailable in
that tool. There may be some possible requirements though, meaning that their
support is not native in the tool but they can be implemented. For instance,
Rasa does not support multi-language chatbots, but this can be emulated by
generating one chatbot per language. As another example, Dialogflow only sup-
ports one external service call per intent, and so, the generator only considers
the first call and warns the developer.

6 Tool support

We have built tool support for our approach. Fig. 5(a) shows the developed editor
for the Conga DSL, which uses the Eclipse Modeling Framework (EMF) [25]
and Xtext. The editor provides syntax highlighting, autocompletion, and informs
of errors and warnings found in the chatbot models.

Upon uploading a chatbot model to a web server, we can apply the rec-
ommender (Fig. 5(b)) and generate code for a specific chatbot creation tool.
Currently, the recommender considers 14 up-to-date tools, and we provide gen-
erators and parsers from/to Dialogflow and Rasa. Anyhow, as previously ex-
plained, both aspects are extensible. Figs. 5(c.1) and 5(c.2) show two generated
chatbots for Dialogflow and Rasa in their respective development environments,
from where the chatbots can be deployed into a social network.

7 Evaluation

This section reports on an evaluation of our approach on a migration scenario
which involves both backward and forward engineering. The goal is to answer
two research questions (RQs): RQ1: Is Conga expressive enough to capture the
details of existing chatbots? RQ2: Can the migration process be fully automated?
For this purpose, we have migrated four Dialogflow agents developed by third
parties (three from github, one built by Google) into Rasa. Table 3 summarizes
the experiment results.
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a) CONGA DSL 

b) Recommender tool 

c.1) Dialogflow test console 

c.2) Rasa test console 

Fig. 5: Our tool in action for forward engineering. (a) Conga editor. (b) Recommender.
(c.1) Generated bot for Dialogflow. (c.2) Generated bot for Rasa.

Table 3: Assessment metrics.

Dialogflow Conga Rasa

No.
intents

No.
ents.

Http
req.

No.
files

Lang
No.

objects
No.
lines

No.
chatbots

No.
Python

lines

No.
Markd.

lines

No.
yaml
lines

Game 11 0 yes 30 en/fr 541 268 2 378 242 362
Room reservation 7 1 no 17 en 717 196 1 253 166 137
Coffee shop 21 8 no 60 en 931 393 1 657 394 269
Nutrition 4 7 no 23 en 833 610 1 802 81 99

Game3 is a conversational agent for a numeric guessing game. It has 11
intents, no entities, one http request, and supports English and French. Its Di-
alogflow specification is made of 30 JSON files. From this specification, our parser
creates a model with 541 objects and 268 lines of Conga code. Since Rasa does
not support multi-language chatbots, two Rasa chatbots are generated from the
Conga model, one for each language. These have 378 lines of Python code (to
define parameters and actions), 242 lines of Markdown code (to define intents
and flows) and 362 lines of YAML code (to configure the chatbot).

Room reservation4 is a chatbot to book hotel rooms. It has 7 intents and one
entity, and works in English. The migration produces a Rasa chatbot with 253
lines of Python code. Since the original Dialogflow chatbot has button actions,
which are unsupported by Conga, we had to add them manually in Rasa.

Coffee shop is a Dialogflow pre-built agent to order food to a coffee shop. Its
specification is the most complex of the four chatbots, spanning 60 JSON files.
These are parsed into a Conga model with 931 objects.

3 https://github.com/actions-on-google/dialogflow-number-genie-nodejs
4 https://github.com/dialogflow/dialogflow-java-client-v2/tree/master/samples/resources
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Nutrition5 is a chatbot to query the nutritional value of meals. Although it is
a small chatbot with 4 intents and 7 entities, it generates many lines of Python
code because the entities have many entries.

Overall, we were able to migrate all Dialogflow chatbots but the button ac-
tions on the room reservation bot, which confirms the expressiveness of Conga
(RQ1). Except for that bot, migration was fully automatic (RQ2). These re-
sults are very promising, but more case studies are needed to strengthen the
confidence in the capabilities of Conga. Moreover, we manually checked that
the produced Rasa chatbots preserved the original Dialogflow behaviour, but we
plan to automate this check in future work (e.g., using tools like Botium6).

8 Related work

The popularity of chatbots has promoted the appearance of many tools for their
construction. In this section, we revise works built atop these tools to simplify
some aspect of chatbot development.

Xatkit [8] (formerly known as Jarvis [7]) is a model-driven solution for devel-
oping chatbots. Similar to our approach, it proposes a meta-model and a textual
DSL. However, differently from us, Xatkit has its own bot execution engine that
builds on Dialogflow to identify the user intent using NLP, and does not generate
code for existing chatbot development tools. Moreover, even though Xatkit is
model-based, it does not address the recommendation of suitable chatbot plat-
forms, nor reduces the risk of vendor lock-in by supporting chatbot migration.

In [3], Baudat et al. facilitate the definition of Watson chatbots by means
of an OCaml library which produces the necessary JSON files, and the use of
ReactiveML to orchestrate the dialog. While this approach is generative, it is
limited to Watson and does not support reverse engineering.

There are some recent model-based proposals to automate the construction
of chatbots for a specific task. For example, the framework in [1] permits creating
chatbots for video game development; in [20], we generate Dialogflow chatbots
to allow instantiating meta-models using a NL syntax; and in [19], we generate
model query chatbots. Other works do not rely on models for automating chatbot
creation, such as [13], where the authors enable a black-box reuse of components
for creating chatbots for FAQ exploration. All these approaches are not general-
purpose, but they produce chatbots for a specific task (creating video games,
creating models, querying models, or exploring FAQs).

Conversely, in [2], the authors envision a reverse engineering process called
botification to produce a conversational interface for existing web sites. The pro-
cess parses a web page to produce a domain model, which serves to configure the
allowed NL interactions. Botified webs improve the user experience for visually
impaired users, and the development cost is low. We believe that our architecture
could serve as a reference to implement this scenario.

5 https://github.com/Viber/apiai-nutrition-sample
6 https://www.botium.ai/
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Another related line of research concerns crowd-powered conversational as-
sistants [11, 12]. While they are not auto-generated, as we do in this paper, they
can auto-evolve by learning appropriate responses from previous ones.

Finally, some development tools are specific for voice-user interfaces. For
example, tortu7 supports the visual creation of conversation flows, but it does
not allow code generation or bot migration. In a similar vein, VoiceFlow8 offers
a graphical DSL to create voice-based conversation flows that can be deployed
on Google home or Alexa, but does not provide recommendation or migration
facilities, and the deployment platforms are fixed.

Overall, our approach is novel as it provides a complete MDE solution com-
prising a unifying DSL for chatbot design, a recommender of up-to-date chatbot
development tools according to given design and technical chatbot requirements,
and supporting forward and backward engineering, including migration.

9 Conclusion and future work

Nowadays, we can find many tools for building chatbots. While these tools ac-
celerate chatbot development, the chatbot design can become obscured under
technical tool details. Moreover, selecting the most appropriate tool, or chatbot
migration, require a high investment of time. To alleviate these problems, we
have proposed an MDE approach to chatbot development that includes a tex-
tual DSL, a platform recommender, code generators and parsers. Our approach
supports both forward and reverse chatbot engineering, and has been evaluated
by migrating four Dialogflow chatbots developed by third parties to Rasa.

In the future, we plan to extend our framework with more chatbot creation
tools, facilities for model-based testing, quick-fixes for violations of chatbot best-
practices, and mechanisms to make Conga extensible with platform-specific
concepts, like buttons. We are currently migrating our editor of Conga models
to a web environment, and later we plan to perform a user study with developers
to assess the advantages of our approach. Finally, we plan to create higher-level
DSLs to define domain-specific chatbots (e.g., for education or commerce) which
can be transformed into our framework for validation and code generation.

Acknowledgments. Work funded by the Spanish Ministry of Science (RTI2018-
095255-B-I00) and the R&D programme of Madrid (P2018/TCS-4314).
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I. INTRODUCTION

Chatbots are conversational agents that support interaction
via natural language (NL) [1]. The improvements in NL
processing have triggered their proliferation to access all kind
of services, like flight booking, food delivery or customer
support. By 2022, Gartner predicts that 70% of all customer
interactions will involve machine learning, chatbots and mo-
bile messaging1. Many companies are offering their services
via chatbots to make them more accessible and user-friendlier,
since chatbots are used via NL and can be deployed in social
networks (called channels) like Telegram or Slack with no
need to install dedicated apps [2].

Many chatbot development tools have emerged in recent
years. Prominent software companies like Google, IBM, Mi-
crosoft or Amazon have launched products for chatbot devel-
opment (Dialogflow2, Watson3, Microsoft Bot Framework4,
Amazon Lex5), but a plethora of other options exist, like
Rasa6, Xenioo7 or Landbot.io8, to name a few. This variety
of tools poses several challenges to chatbot developers:
• Challenge 1: How to identify the most appropriate devel-

opment tool based on the chatbot requirements? [3]. For
example, only some tools offer off-the-shelf speech recog-
nition, and tools wildly vary on the supported deployment

1 https://www.gartner.com/smarterwithgartner/top-cx-trends-for-cios-to-watch/
2 https://dialogflow.com/ 3 https://www.ibm.com/cloud/watson-assistant/
4 https://dev.botframework.com/ 5 https://aws.amazon.com/en/lex/
6 https://rasa.com/ 7 https://www.xenioo.com/en/ 8 https://landbot.io/

channels. Choosing an inadequate tool may lead to increased
effort [4], lower chatbot quality or project failure.

• Challenge 2: How to design chatbots independently of the
particular tool to enable early reasoning and analysis, prior
to the implementation? Chatbot development tools are very
diverse, ranging from low-level programming frameworks
(like Rasa) to lowcode development platforms based on
forms (like Dialogflow). Grasping the design behind a chat-
bot implementation may be challenging due to accidental,
technical details of the tools themselves.

• Challenge 3: How to keep up with the rapidly evolving
ecosystem of chatbot tools? With a few exceptions [5],
most chatbot tools are closed, proprietary software with no
support for migration between tools, e.g., to benefit from the
pricing plans of a competitor. This leads to vendor lock-in.
To address these challenges, we propose a web IDE called

CONGA that offers a neutral domain-specific language (DSL)
for chatbot modelling [6]. Chatbot models can be statically
analysed to detect errors and quality issues, and be compiled
into tools such as Rasa or Dialogflow. CONGA includes a
recommender of suitable development tools for a given chatbot
design. The recommender relies on the criteria identified in [3],
and takes into account the chatbot model and the answers to
a questionnaire of chatbot technical aspects (e.g., is hosted
deployment required?) and managerial requirements (e.g.,
pricing model). Chatbot migration is facilitated by parsers
from development tools into CONGA models, which in turn
can be compiled into other platforms. The envisioned users of
CONGA are developers and designers with conceptual knowl-
edge on chatbots but not necessarily on their technologies.

This paper showcases the CONGA web IDE, which com-
prises a textual editor for chatbot modelling, graphical views
of the designed conversation flow, a chatbot tool recommender,
and generators/parsers to/from some prominent chatbot tools.

II. APPROACH

Next, we overview our approach (Section II-A) and describe
its two main components: the DSL for chatbot modelling
(Section II-B) and the recommender system (Section II-C).

A. Overview of the usage methodology of CONGA

We address the 3 challenges identified in the introduction
by means of an automated process supporting both forward
(i.e., creating new chatbots) and backward engineering (i.e.,
migrating existing chatbots). Fig. 1 depicts this process.
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Fig. 1: Forward/backward chatbot engineering with CONGA.

Forward engineering. First, the developer describes the chat-
bot with a dedicated DSL (label 1 in the figure), explained in
Section II-B. The result is a chatbot model that is independent
of any development tool and can be statically analysed to
detect flaws. Next, to get recommendations on suitable chatbot
development tools, the developer answers a questionnaire on
additional bot requirements beyond its functional behaviour
(label 2). The recommender – detailed in Section II-C – analy-
ses the developer’s answers and the chatbot model to elaborate
a ranked list of tools. This recommendation step is optional.
Then, the developer selects a particular tool (label 3), and the
system generates a fully functional chatbot implementation for
it. Finally, the developer can deploy the chatbot on a channel
(e.g., Telegram) using the selected tool (label 4).

Backward engineering. To support migration, the developer
can import an existing chatbot implemented in a specific
development tool, and CONGA parses the code to produce
the corresponding chatbot model (label 5). The developer can
then use this model for forward engineering.

B. The neutral DSL for chatbot modelling

CONGA provides a textual DSL for chatbot modelling,
designed based on an analysis of 15 prominent chatbot de-
velopment tools [6]. Listing 1 illustrates its usage to model
a chatbot to help booking flights. First, line 1 declares the
languages the chatbot should converse in, in this case just
English (en), but multi-language chatbots are also possible.

Chatbots are designed around intents. These are the actions
that users can perform with the bot, like booking or changing
a flight. In CONGA, intents can be defined either by regular
expressions, or by a set of training phrases showcasing typical
ways in which users may express the intention (lines 5–10 in
Listing 1). Training phrases may contain parameters, which
are relevant data that the chatbot needs, such as the source,
destination and date of a flight (“from”, “to” and “when” in
lines 6–7). Each parameter is formally declared by providing
its type, whether it is optional or required, and in the latter
case, a phrase that the chatbot should ask to the user to request
a value for the parameter if it is missing (lines 11–14).

Parameters are typed by entities (lines 16–21), which can be
pre-defined (like “date”) or user-defined (like “City”). User-
defined entities specify a set of entries and their synonyms.

Upon recognizing an intent, the chatbot can perform differ-
ent actions such as replying to the user or accessing an external
database. This is configured in an “actions” section (lines
23–35). The listing declares a text response (lines 24–27),
an image response (lines 28–29) and a POST HTTP request

1 chatbot FlightBooking language: en
2
3 intents:
4 Book_flight:
5 inputs {
6 "I need to fly from" ("Madrid")[from] "to" ("Paris")[to]
7 "on" ("Monday at 9 AM")[when],
8 "I want to book a flight",
9 "I need a flight to" ("Rome")[to]

10 }
11 parameters:
12 from: entity City, required, prompts ["What’s the flight origin?"];
13 to: entity City, required, prompts ["What is the destination?"];
14 when: entity date, required, prompts ["When do you want to fly?"];
15
16 entities:
17 Simple entity "City":
18 inputs in en {
19 Madrid synonyms MAD, madrid
20 Rome synonyms ROM
21 }
22
23 actions:
24 text response fly_response:
25 inputs in en {
26 "Your flight from" [Book_flight.from] "to" [Book_flight.to] "is booked"
27 }
28 image response send_image:
29 URL: "https://image.shutterstock.com/image−vector.jpg"
30 Request post airline_service:
31 URL: "myURL.com";
32 basicAuth: "user":"pass";
33 headers: "header1":"value1";
34 data: "from": [Book_flight.from], "to": [Book_flight.to];
35 dataType: JSON;
36
37 flows:
38 − user Book_flight => chatbot airline_service, fly_response;

Listing 1: A chatbot for booking flights with CONGA (excerpt).

(lines 30–35). The text and the HTTP request use parameters
gathered in the intent (Book_flight.from and Book_flight.to).

A last “flows” section permits defining conversation flows
(lines 37–38). These are sequences of user intents (Book_flight)
followed by chatbot actions (airline_service and fly_response).
Flows can have any length, and there may be several possible
user continuations after a chatbot action.

C. The recommender of chatbot development tools

CONGA models are not executable, but they can be com-
piled into code for a particular development tool. In previous
work [3], we identified technical and managerial requirements
influencing the tool selection process. To help in selecting an
appropriate tool, CONGA integrates a recommender.

The recommender infers some tool requirements from the
chatbot model, like the need to support multiple languages,
user-defined entities or phrase parameters, among others. Ad-
ditionally, the developer is presented a questionnaire concern-
ing other non-functional requirements that may influence the
tool selection but cannot be derived from the chatbot model.
Some examples include the channels where the chatbot is
to be deployed, support for chatbot analytics, speech recog-
nition, or being open-source. Overall, the questionnaire has
10 questions [6], each with a customizable relevance that
reflects its importance on the recommendation. This way,
developers can specify that the answer to a given question
is irrelevant (disregarded in the recommendation but stored
for documentation), relevant, double relevant or critical (tools
that do not fulfil the requirement will not be recommended).



The recommender uses the chatbot model and the answers to
the questionnaire to assign a score to each development tool,
where higher scores indicate wider requirements coverage.

III. TOOL SUPPORT

This section describes the architecture (Section III-A) and
front-end (Section III-B) of CONGA. The tool is open source,
and is available at https://saraperezsoler.github.io/CONGA/.

A. Architecture

CONGA is available to chatbot developers as a web appli-
cation. Fig. 2 shows its architecture. The front-end includes
user and project managers, a DSL editor, a graphical renderer
of conversation flow models, importers/exporters for some
chatbot tools, a questionnaire for the tool recommender, and a
visualizer of tool recommendations. The back-end handles the
requests of the front-end concerning chatbot model validation,
code generation, parsing, and recommendation computation.

… 
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Fig. 2: CONGA’s architecture.

The storage model of CONGA conforms to the meta-model
of Fig. 3. It includes a Recommender class that defines the list
of Tools that may be recommended (e.g., Dialogflow, Lex), and
the Requirements considered to calculate the recommendation.
There are two types of requirements: Question, which corre-
sponds to a query in the recommender questionnaire (e.g., the
deployment channels), and Analysis, which refers to technical
requirements extracted from the chatbot model (e.g., the bot
spoken languages). Both requirement types have a name, a text
question, a closed list of response options, and can optionally
be multi-option. Each tool considered for recommendation
must define which of the specified requirements options are
available, unavailable, unknown or might be possible in the
tool. Currently, our recommender considers 10 questions, 7
model analyses, and 14 up-to-date target implementation tools;
however, our model-based design makes the recommender
fully extensible with new questions, analyses and tools.

Chatbot definitions are stored in Projects. Each project
stores the developer’s Answers to the Questions in the rec-
ommender Questionnaire. The answers comprise both the se-
lected options and the relevance level assigned to the question.

B. Front-end

Fig. 4 shows the main interface of CONGA. The header
(label 1) includes the logged user name, and a sign out button.
The toolbar (label 2) contains buttons to save the file with
the chatbot model, create a new project, format the displayed

User 

nick:  String 
password: String 

CONGA 

Project 

name:       String 
creation:       Date 
modification: Date 
model:      File 

users 

* 

projects * 

projects 
* owner 

Recommender 

Requirement 

name: String 
text:    String 
multi:  boolean Question 

Analysis 

evaluator: JavaClass 

Option 

name:  String 

Tool 

name: String 

available 

unavailable 

unknown 

possible 

* 

* 

* 

* 

* 

* 
requirements 

tools 

recommender 

Questionnaire 

date: Date 

Answer 

relevance: Level 

questionnaire 

0..1 

* answers 

question 

* 

selected 

options * <<Enum>> 

Level 
Relevant 
Irrelevant 
Double relevant 
Critical 

Fig. 3: CONGA storage meta-model.

file, select a development tool to generate code for (currently
Dialogflow or Rasa), fill in the recommender questionnaire,
and display the recommendation results. New projects can be
created empty, or be populated with a model parsed from an
existing chatbot implementation (currently from Dialogflow).

1

2

3 4

Fig. 4: CONGA’s main interface.

The DSL editor (label 3) features syntax highlighting, con-
tent assistance and error reporting. In addition to syntax errors,
a validator checks problems like intents with overlapping
training phrases, similar conversation flows, or flows where
an action uses parameters that no previous intent in the flow
defines. In the figure, the editor reports some warnings; the first
one warns that the chatbot is multi-language (English, Spanish)
but the training phrases only consider one language (English).
Technically, the editor is implemented in Xtext, using its web
deployment options for the codemirror JavaScript library.

The flow diagram to the right (label 4) depicts graphically
the conversation flow defined by the chatbot model. The
diagram represents the user interactions as transitions, and
the chatbot interactions as states with the actions that the
chatbot performs inside. This view is built using PlantUML,
and becomes updated whenever the chatbot file is saved.

Fig. 5a shows an excerpt of the questionnaire that developers
can answer to obtain tool recommendations. The questionnaire
is created on-the-fly according to the modelled requirements
(cf. Fig. 3), which allows updating easily the requirements.



(a) Requirements questionnaire. (b) Resulting tool ranking.

Fig. 5: CONGA recommender support.

TABLE I: Assessment metrics.
Dialogflow CONGA Rasa

Back-end #Files LOC Python LOC Markd. LOC YAML LOC
Bike Shopa yes 13 80 185 61 187
Mystery Animalb yes 199 7042 9494 13722 879
Smalltalkc no 58 1515 284 1421 281
IoT: Turn lightsd yes 6 53 125 23 168
a https://bit.ly/38THi8h b https://bit.ly/2IQZ8yf c https://bit.ly/36KMKrq d https://bit.ly/3lEchc2

Each question has a list of options and a selector of relevance.
Fig. 5b displays the ranking of tools ordered by decreasing

score. By clicking on the button to the right of a tool, the
corresponding code generator is invoked and the developer
can download the resulting artefacts.

IV. EVALUATION

We have evaluated the migration capabilities of CONGA
by importing four third-party, non-trivial Dialogflow agents
from GitHub into CONGA, and then generating corresponding
chatbot implementations for the Rasa development framework.
This evaluation extends the one presented in [6] by considering
more challenging bots with back-ends or complex logic,
leading to models with thousands LOC in CONGA.

Table I shows size metrics of the chatbots in Dialogflow,
CONGA and Rasa. Bike Shop schedules appointments for a
shop; Mystery Animal is a guessing game via Q&A; Smalltalk
is a chitchatting agent; and IoT turns the lights on/off via NL.

CONGA was able to automatically migrate all chatbot logic
from Dialogflow to Rasa, obtaining functional bots. The largest
bot parsed into >7000 CONGA LOC, and produced a Rasa
implementation with >9000 Python LOC and >14000 LOC
in configuration files. This proves the usefulness of our tool.

However, two aspects required manual intervention. First,
Smalltalk uses emojis, currently not supported by CONGA.
Second, three Dialogflow agents had back-ends developed
using Google libraries tightly integrated with Dialogflow.
Those cases required configuring the Google services manu-
ally and, in one case, implementing a middleware. Generally,
the chatbot/back-end connection cannot be migrated fully
automatically since it may rely on native technologies of the
chatbot platform (e.g., Google’s cloud, AWS services).

V. RELATED WORK

The raising popularity of chatbots has led to new tools for
their construction (see [3] for a survey). Most are frameworks

or platforms, and only a few provide DSLs. The closest work
to ours is the model-based solution Xatkit [5]. This provides a
textual DSL for chatbot development, but contrary to CONGA,
the defined chatbots are executable by providing an execution
engine. Moreover, even though Xatkit can help addressing
challenge 2 in the introduction (chatbot design), it neither
provides a neutral language nor supports tool recommendation
or migration (challenges 1 and 3).

Baudart et al. [7] propose an embedded DSL to define
Watson chatbots based on an OCaml library, and orchestrate
the dialog using ReactiveML. However, an embedded DSL
makes the chatbot design less explicit, and while the approach
is generative, it is limited to Watson and does not support
migration. Protochat [8] provides a graphical DSL for conver-
sation design, and supports a crowd-testing approach whereby
crowd workers can provide feedback on the conversation.
Finally, some approaches automate chatbot construction from
existing artefacts, such as web sites [9].

Overall, there are previous proposals of DSLs for chatbot
design, but CONGA is unique for being designed from an
analysis of 15 chatbot development tools, and because it
addresses tool migration and recommendation.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented CONGA, a model-driven solution
for forward and backward chatbot engineering, featuring a
recommender system that assists in selecting the most suitable
chatbot development tools. Our approach is extensible by
implementing interfaces to create new code generators and
parsers, but we are currently working in extension points to
facilitate this extensibility. Finally, we plan to conduct a user
study to assess the usability of CONGA.
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1 Introduction
Modelling plays a fundamental role in Software Engineering,
especially in model-driven engineering (MDE) [9]. In this
paradigm, models are actively used in the different develop-
ment phases to specify, analyse, design, simulate and test
the system to be built, among other activities.

Modelling is performed using modelling languages which
can be general-purpose ones, like the Unified Modelling
Language (UML) [56], or domain-specific languages (DSLs)
tailored to a target domain [27, 58]. Today, sophisticated
development environments and powerful language work-
benches are the norm. However, modelling remains mostly a
manual activity, which often does not profit from knowledge
found in existing models, or the experience of engineers
working on similar domains.

Recommender systems (RSs) [1] are information filtering
systems that help users in choosing among a potentially
large set of items (e.g., movies, songs or books). They aim at
predicting the preferences of users to offer a prioritised list
of potentially interesting items. They are widely used in all
sorts of commercial and leisure applications, and their use
in software engineering activities is increasing as well [46].
This way, we can find RSs that help in choosing appropriate
third-party programming libraries [38, 55], recommend API
method invocations [37], suggest code refactorings [13, 22],
and assist on the evaluation of change impact analysis [8],
to name a few. Recently, we are also witnessing an incipient
interest to apply RSs to modelling (see, e.g., [2, 5, 10, 12, 15,
20, 23, 31, 34, 35]); however, their use in MDE is not the norm
yet. One possible reason is that building RSs requires deep
expertise in recommendation techniques, and involves an
important development effort [4, 36].

With the aim to facilitate the adoption of RSs in MDE, we
propose a model-driven solution to automate the synthesis of
RSs for modelling languages. Based on the vision put forward
in [3], our solution consists of a DSL calledDroid supporting
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the configuration of the kind of model elements to be rec-
ommended, and an engine that automates the evaluation of
different recommendationmethods against configurable met-
rics. The selected recommendation method is deployed as a
service, which heterogeneousmodelling clients can integrate.
Currently, we provide an automated, out-of-the-box integra-
tion with the tree editor of the Eclipse Modeling Framework
(EMF) [53], but additionally, the generated recommenders
can be integrated with other modelling technologies. To as-
sess this fact, we describe a case study of the integration of
a recommender with a third-party modelling chatbot called
Socio [42]. Finally, to assess the usefulness of our proposal,
we report on an offline evaluation of a RS created with our
approach over UML models. The experiment results are in
line with RSs specifically created for class diagrams [10], but
our approach does not require any programming.
Paper organization. Section 2 provides background on RSs.
Section 3 overviews our approach, and Section 4 presents the
Droid DSL. Section 5 details the technical architecture and
tool support. Section 6 presents a case study incorporating a
RS to amodelling chatbot, and an offline evaluation. Section 7
compares with related research, and Section 8 ends with the
conclusions and future work.

2 Recommender Systems
Recommender systems have become a key component of a
large and varied number of software applications. Nowadays,
everyone is exposed to recommendation services on mu-
sic (e.g., Spotify, Pandora) and video (e.g., Netflix, YouTube)
streaming platforms, e-commerce sites (e.g., Amazon, eBay),
and social networks (e.g., Facebook, Twitter), among others.

Common to all these applications, RSs analyse the activity
of a typically very large group of users to provide them with
personalised suggestions of options (items), based on the evi-
dence observed about their interests and preferences. In this
context, they provide advantages both for the users – whose
experience is improved by receiving ideas about content to
consume or products to buy – and the service providers –
by promoting increased sales and customer loyalty, as cus-
tomers are able to discover content or products that they
would not have known otherwise.

In Software Engineering in general [21], and MDE in par-
ticular [4], RSs have also found a wide array of applications.
Integrated in software design and development tools, recom-
mendation services can assist on the creation [43], comple-
tion [2, 20], repair [6, 41, 50], search [35], and reuse [54] of
artefacts, e.g., models, meta-models and transformations.

In these cases, the target user for whom recommendations
are generated and her preferences (or profile) may have special
meanings. For instance, it may refer to a class in a UML
diagram for a recommender that is devoted to suggesting
potential attributes and methods of interest for incomplete
classes; the recommended items or artefacts are thus class

attributes and methods, and the preferences and features
that describe users and items can be the names and types of
class attributes, methods and method arguments.
In general, the recommendations are generated based

on content-based similarities between users and items [33],
user-item preference (rating) patterns identified in the user
community via collaborative filtering techniques [39], or
both sources of information via hybridisation methods [11].
Content-based (CB) systems suggest items “similar” to those
the target user preferred in the past, whereas collaborative fil-
tering (CF) systems suggest items preferred by like-minded
people. Moreover, CF approaches can consider either the
similarities of the k most similar users – known as nearest
neighbours – to the target user (UBCF), or the similarities
of the k most similar items (IBCF) to the target user’s items.
Finally, typical hybrid approaches follow user- or item-based
CF strategies exploiting content-based similarities (CBUB or
CBIB) instead of rating-based similarities as CF does.

The quality of the recommendations can also be evaluated
through different approaches [24]. User studies allow evalu-
ating a recommender online, e.g., via A/B tests that capture
the impact that recommendations have in real time. Offline
experiments, by contrast, are conducted on datasets made of
past user-item interactions, and are split into training and
test data to build and evaluate a recommender, respectively.
For both types of evaluations – online and offline – several
metrics can be computed [7]. Typical metrics that measure
the ranking quality of the recommendation lists are preci-
sion, i.e., the probability that a selected item is relevant; recall,
i.e., the percentage of relevant items in the recommendation
lists; F1, i.e., the harmonic mean of precision and recall;MAP
(Mean Average Precision), i.e., the mean average precision
over all the users; and nDCG (Normalized Discounted Cumu-
lative Gain), which considers if the most useful items appear
in the top positions of the recommendation lists. Other com-
plementary metrics are USC (User Space Coverage), which
measures the percentage of users that the RS can recom-
mend, and ISC (Item Space Coverage), which measures the
diversity of the recommendations.

As we will present in the subsequent sections, our model-
based approach to automatically generate RSs allows con-
figuring all the above-mentioned aspects: recommendation
methods, target user and item profiles, and offline evaluation
methodologies and metrics (cf. Listing 1).

3 Overview of the Approach
To facilitate the construction of RSs for arbitrary modelling
languages, we propose amodel-based solutionwhose scheme
is depicted in Fig. 1. Our solution permits customising a RS
for a particular modelling language, assists in deciding which
recommendation method works better for the recommenda-
tion task at hand, and generates a recommendation service
that can be integrated with external modelling tools.



Automating the Synthesis of Recommender Systems for Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

RS designer 

modelling 
language 

MM 

DROID 
model 

model 
set 

«instance of» 

active 
model 

modelling client 

deploy 
Recommen- 

dations 

language 
users 

 1. Configure 
         RS 
  (dsl DROID) 

 2. Train & 
   evaluate          
       RS 

 3. Select  
 recomm. 
 method  

«instance of» 

RS 
service 

Figure 1. Overview of the approach.

Our approach makes available a DSL called Droid to con-
figure the RS for the targeted modelling language. The ap-
proach assumes that the modelling language is defined by
a meta-model. This way, in the first step, the designer of
the RS uses Droid to select from the modelling language
meta-model the elements that are to be recommended (e.g.,
attributes for a class, tasks for a process model). The DSL also
permits specifying the candidate recommendation methods,
the dataset used to train the recommenders, and the evalua-
tion metrics used to rank the built recommenders. Section 4
will present Droid in detail.

Next, in the second step, our system automatically eval-
uates each selected recommendation method against the
indicated metrics, using the provided dataset. The result is
an interactive report with the value of each metric for the
recommendation methods.
In the last step, the RS designer chooses a recommenda-

tion method, and the system automatically synthesizes a
RS service that can be integrated within different modelling
tools. Currently, our system provides full automatic support
for deploying the RS within the Eclipse modelling tree ed-
itor [53], but other modelling clients are possible as well.
Sections 5.4 and 6.2 will provide details on this out-of-the-
box client integration, and others.

4 The Droid DSL
Droid is a textual DSL for the configuration of RSs for par-
ticular modelling languages. Fig. 2 shows its meta-model,
which permits detailing the following aspects of a RS:

(i) The URI of the meta-model of the modelling language,
and the repository containing the instance models to be
used for training the RS. In Fig. 2, this is captured by the
class RecommenderConfiguration and its attributes.

(ii) The class subject to recommendations, called target
(class DomainClass and reference RecommenderCon-
figuration.target). The items to be recommended (class
DomainProperty, its subclasses and reference Domain-
Class.items).

(iii) The way the objects of the target class and the items are
identified in the models (references DomainClass.pk and
DomainClass.features).

inv: not (perUser
and perItem)

feature

evaluation

DomainProperty
aliasName: String

«enumeration»
SplitType

CROSSVALIDATION
RANDOM

«enumeration»
MethodType

ITEMPOP
IBCF
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COSINECB
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MetricType
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MAP
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neighbour
* metric
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target

splitmethods
1...*

Figure 2.Meta-model of Droid.

(iv) The information about the candidate recommendation
methods for the RS, and the metrics used to compare
them. This is specified through the classes Recommen-
dationMethod, SplitMethod and EvaluationMethod.

To illustrate Droid, we will use an example consisting of
the configuration of a RS for UML class modelling. The RS
will recommend attributes, operations and superclasses for
a given class. Listing 1 shows its configuration using Droid.

In Listing 1, line 1 specifies the name of the recommender;
line 2 specifies the meta-model that the RS will use (in this
case, the meta-model of UML 2.0 class diagrams); and line
3 specifies the repository of models to be used to train and
evaluate the selected candidate recommendation methods.
The latter models need to conform to the specified meta-
model. Since in our example, the training models are UML
class models in the domain of libraries, the recommender is
named “Literature Recommender.”

Fig. 3 shows a small, simplified excerpt of the UML meta-
model needed for our example: Classes, which contain both
attributes (class Property) andOperations, and relate to their
ancestors using the superClass derived reference.

The section “Target” in Listing 1 (lines 5–11) declares the
target class of the recommendation and its relevant items.
This way, the synthesised RS will provide recommendations
for each declared item when invoked on objects of the target
class. Line 6 specifies that the class Class is the recommen-
dation target, and lines 7–9 specify three types of items to
recommend: attributes, methods and superclasses. Each item
has a name (displayed to the user when the recommendation
is performed), and the attributes or references leading from
the target class to the items (in the example, ownedAttribute,
ownedOperation and superClass, cf. Fig. 3). The meta-model
of Droid also permits specifying derived properties via OCL
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1 Recommender: "LiteratureRecommender"
2 Metamodel: "http://www.eclipse.org/uml2"
3 Repository: "/LiteratureRecommender/instances"
4
5 Target {
6 class Class {
7 item "attributes" : ownedAttribute;
8 item "methods" : ownedOperation;
9 item "super classes" : superClass;
10 }
11 }
12
13 Identifiers {
14 class Class {
15 pk feature name;
16 }
17 class Property {
18 pk feature name;
19 pk feature type;
20 }
21 class Operation {
22 pk feature name;
23 pk feature type;
24 }
25 class Type {
26 pk feature name;
27 }
28 }
29
30 Recommendations {
31 Methods {
32 collaborativeFiltering: ItemPop, IBCF(10,15,20,25,50,100),
33 UBCF(10,15,20,25,50,100);
34 contentBased: CosineCB;
35 hybrid: CBIB(10,15,20,25,50,100), CBUB(10,15,20,25,50,100);
36 }
37 Split {
38 splitType: CrossValidation;
39 nFolds: 10;
40 perUser: true;
41 }
42 Evaluation {
43 metrics: Precision, Recall, F1, NDCG, ISC, USC, MAP;
44 cutoffs: 1,5,10,15,20;
45 maxRecommendations: 50;
46 relevanceThreshold: 0.5;
47 }
48 }

Listing 1.Defining a RS for UML class diagrams withDroid.

ownedOperationownedAttribute

DataType

Type

TypedElement

StructuralFeature
isReadOnly: boolean

NamedElement
name: String

generalization

Generalization
Classifier

isAbstract: boolean

Property
aggregation: AggregationKind

Operation
type: Type [0..1]

Class
isActive: boolean = false /superClass

*

*

type
0..1

general

*
specific

* *

Figure 3. Simplified excerpt of the UML meta-model.

expressions [40] (class DerivedProperty in Fig. 2), though
our current implementation does not support it yet.

The section “Identifiers” in lines 13–28 declares the iden-
tifiers and features of the involved classes. In our example,
Classes are described by their name (line 15), which is their
primary key (prefix pk), while Properties andOperations are
identified by their name and type. The type of the latter is
Type (cf. Fig. 3), and so, lines 25–27 declare its identifier.

The last section is “Recommendations”, in lines 30–48.
This enables the configuration of recommendation methods
for the RS, and the way to evaluate them. This information
is optional, since Droid provides default values in case the
RS designer does not have the required expertise or is not
interested in a fine-grained configuration of the evaluation
process (see, e.g., the default values of class SplitMethod in
Fig. 2). The section has three subsections: “Methods”, “Split”
and “Evaluation” (classes RecommendationMethod, Split-
Method and EvaluationMethod in Fig. 2).

First, the subsection “Methods” (lines 31–36) specifies the
recommendation methods that the designer wants to ex-
periment with to determine the best one for the case at
hand. Lines 32–33 select the collaborative filtering methods
ItemPOP (item popularity), IBCF (item-based collaborative
filtering), and UBCF (user-based collaborative filtering). The
latter two are configured with neighbourhood sizes of 10, 15,
20, 25, 50 and 100. Next, line 34 specifies the content-based
method CosineCB (pure content-based method), and line 35
selects the hybrid methods CBIB (content-based item-based)
and CBUB (content-based user-based) with neighbourhood
sizes of 10, 15, 20, 25, 50 and 100. Overall, these are the six
recommendation methods currently supported by Droid (cf.
enumerationMethodType in Fig. 2).
The subsection “Split” (lines 37–41) specifies how to di-

vide the dataset for the evaluation of the recommendation
methods. The listing defines a 10-fold cross-validation split
type, following a perUser technique. The split type refers to
the approach to divide the data into training and test sets.
Cross-validation divides the data into k subsets, one used for
test and the rest for training, and repeats the process assign-
ing in each iteration the role of test set to each one of the k
subsets. Droid also supports random split, in which case, the
percentage of data used for training/test must be given, and
the sampling for the test/training sets is done randomly with
a uniform distribution [45]. Splits can be built using either a
perUser or a perItem technique. In the former case, the sub-
sets are built per available user, while with perItem, they are
built by available item. For example, a perUser random split
type with 80% training percentage implies that 80% of the
preferences of each user (i.e., 80% of the attributes, methods
and superclasses of each class) will be used as the training
set, and the remainder 20% as the test set.
The last part of the listing (subsection “Evaluation” in

lines 42–47) describes the evaluation protocol. This includes
the desired metrics for the evaluation (Precision, Recall, F1,
nDCG, ISC,USC andMAP, cf. Section 2); the number of items
in the top of the ranking that will be used to calculate the
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metrics (cutoffs, line 44); the maximum number of items that
the RS will recommend (maxRecommendations, line 45); and
a threshold value for the rating of items used to determine
whether an item is relevant and a good recommendation, or
not (relevanceThreshold, line 46). This threshold defines a
binary classification for the probability of a prediction to be
true. In the listing, the relevance threshold of 0.5 implies that
the rating values below 0.5 are considered false (irrelevant),
and those equal to or above 0.5 are true (relevant).

5 Architecture and Tool Support
In this section, we introduce the architecture of Droid (Sec-
tion 5.1), the tool support for RS design (Section 5.2), the
generated recommendation service (Section 5.3), and the au-
tomatic integration with the EMF tree editors (Section 5.4).

5.1 Architecture
Fig. 4 shows the architecture of the Droid ecosystem, which
comprises three parts. The first one is theDroid Configurator,
which permits the configuration, evaluation and synthesis of
RSs. The configurator provides an Eclipse textual editor for
the DSL presented in Section 4, where the RS designer can
configure the RS for a particular modelling language (label 1).
The specified configuration is the input to the RS Evaluator
(label 2), which relies on the external libraries RankSys [57]
and RiVal [49] to evaluate the recommendation methods
selected by the RS designer using Droid. RankSys is a frame-
work for the implementation of recommendation algorithms,
and RiVal is a toolkit for data splitting and evaluation of
RSs. The results of each metric chosen by the RS designer
are displayed in an Eclipse view (label 3). Section 5.2 will
provide more details on the Droid Configurator.

RankSys

RS
designer

…

modelling
language 

user

RS 
Evaluator

DROID

Editor

RiVaL

Results 
View

RS 
Synth

1

config
files
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Tree Editor

5

SOCIO

6

3

Figure 4. Architecture of Droid.

Based on the obtained results, the RS designer can select
the preferred recommendation method, and a RS Synthesizer
generates a set of configuration files out of the selection
and the RS configuration (label 4). The configuration files
are used by the second part of our ecosystem, which is the
Droid Service (label 5). This is a generic recommendation
REST API that can be customised for particular modelling
languages using the configuration files generated by the RS
Synthesizer. The service enables clients to request recom-
mendations using a JSON-based model representation. The

service processes such requests and sends the recommenda-
tions as a response. Section 5.3 will elaborate on this service.

Finally, in the Client part, any modelling tool can use the
Droid Service to obtain recommendations and make them
available to the modelling language users (label 6). Currently,
our tooling supports the automatic integration of the result-
ing RSs within the default tree editor that EMF provides for
Ecore-based languages. In Section 6.2, we will show another
integration within a modelling chatbot.

5.2 Tool support: The Droid configurator
The Droid Configurator (https://droid-dsl.github.io/) is an
Eclipse plug-in that helps the RS designer in configuring and
evaluating RSs for a modelling language.

It provides a wizard where the RS designer can create droid
projects by specifying a name for the project, the meta-model
of the language for which the RS is being developed, a folder
containing the models to be used for training and evaluating
the RS, and the format of these models (XMI, Ecore, or UML).
To simplify the RS configuration, the wizard gives the option
to automatically generate a default one (i.e., default values for
the “Recommendations” section in lines 30–48 of Listing 1),
which the designer can modify later if so desired.

Fig. 5 shows the Droid Configurator environment. The
Droid editor (label 1) permits the configuration of the RS via
the DSL introduced in Section 4. The editor has been built
using Xtext [59], and features syntax highlighting, autocom-
pletion, and markers for errors and warnings. With label
2, the figure shows an auto-completion pop-up window to
choose an existing attribute of the class Class from the UML
meta-model, to serve as an item of the target class.
The environment includes a code generator that synthe-

sizes Java code from the Droid specification. This code is in
charge of evaluating the RSs. The package explorer in the fig-
ure (label 3) shows the generated Java classes in the src-gen
folder. The RS designer does not need to look into this code,
since the RS Evaluator component (cf. Fig. 4) automatically
generates the code and displays the results in a dedicated
Eclipse view (label 4).
The Results View (label 4) summarises in a drill-down

table the evaluation results for each recommendationmethod
and metric. The table uses different colours to facilitate the
comparison of the metric values (specifically, of the values
of the F1 metric). The recommendation methods whose F1
value is in the top 20% are shown in green; the methods
whose F1 value is under the median are shown in red; and
the rest of the methods are shown in orange.
Fig. 6 shows the Results View in more detail. The view

groups the evaluated methods by category: Collaborative
Filtering, Content-Based and Hybrid. Within a group, each
method contains a subsection per neighbourhood size, if
applicable. The rows corresponding to a group show the
results of the method with the best F1 value within the group.
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Figure 5. Screenshot of the Droid Configurator.

For example, row “Collaborative Filtering” shows the metrics
of the collaborative filtering method with best F1 value.

Figure 6. Results View of the Droid Configurator.

5.3 Tool support: The Droid service
We have built a generic recommender called DroidREST. It
is a REST service implemented in Java using Jersey1 and
Tomcat2. The service computes the recommendations based
1https://eclipse-ee4j.github.io/jersey/
2http://tomcat.apache.org/

on the configuration files generated by the RS Synthesizer
(cf. Fig. 4). These configuration files store the trained rec-
ommender that knows which items to suggest based on the
context information. Hence, there is no need to deploy a
different service for each RS defined with Droid.
Clients can make POST requests to the service, which

receives a recommender name together with a JSON file
containing the target object of the recommendation and its
context (i.e., the items that the target contains). The response
to the request is a list of recommended items for the given
target, using the recommendation method selected by the
designer. In addition, clients can pass optional parameters for
specific settings, like the maximum number of recommended
items to retrieve (newMaxRec), the threshold for the ranking
value (threshold), and the type of item (itemType). The re-
sponse time of the service to calculate the recommendations
is less than a second.
The REST service implementation comprises three main

classes: Recommender, which handles the requests from
clients; ContextItem, which parses the received JSON files to
extract the recommendation target and its items from the
modelling context; and RecommenderGenerator, which gen-
erates the recommendations for the given target taking its
context and the provided query parameters into account.

5.4 Tool support: Integration with EMF tree editor
EMF automates the synthesis of a default modelling editor
starting from the Ecore meta-model of a modelling language.
This editor permits creating instances of the meta-model
using a tree view. Given the widespread use of these editors,
our implementation generates out-of-the-box an integration
of the Droid recommendation service into the default EMF
tree editor of a modelling language. Next we explain the tech-
nical details of this client integration, and show an example.

In EMF, the generation of the default tree editors is auto-
mated by means of a model-to-text template language called
Java Emitter Template (JET)3. JET supports the definition and
execution of code generation templates from EMF models.
This way, EMF provides a set of predefined JET templates that
generate the Java code implementing the editor for a given
Ecore meta-model. We have overwritten those templates
to extend the generated tree editor with a “Recommender”
pop-up menu on the objects that may be target of recommen-
dations. This menu shows, for a selected object, the kinds
of items that can be recommended. This information (i.e.,
the kinds of recommendation targets and items, see lines
5–11 in Listing 1) is not hard-coded in Java, but stored in
a configuration file called recommender.properties. This per-
mits building the “Recommender” menu dynamically upon
clicking on an object, and facilitates the external evolution
of the menu. Upon selecting a recommendation item kind
for an object, a request is sent to the Droid service, passing

3https://projects.eclipse.org/projects/modeling.m2t.jet
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the object, its context and the item type as parameters. The
response is a list of recommendations, which are displayed in
a table ordered by their relevance. The users can then select
recommendations and apply them to the current model.
As an example, next, we show the integration of a RS

specifiedwithDroid, within the default tree editor generated
for a simple modelling language for object-oriented design.
The RS recommends attributes, methods and superclasses
for classes. We do not use the running example to illustrate
our client integration, since our approach requires starting
from an Ecore meta-model and generates the whole editor
from scratch, while the UML modelling editor has not been
created using the JET templates predefined in EMF. The main
concepts used in both examples are similar though.
Fig. 7 shows the use of the RS within the generated tree

editor. The package explorer (label 1) contains a project with
a model and the recommender.properties configuration file.
The model is being edited in the window to the right (label 2).
Right-clicking on any object of type Klass (label 3) shows the
“Recommender” pop-up menu (label 4). This menu contains
a submenu for each available kind of recommendation (in
this case, “Attributes”, “Methods” and “Superclasses”).

1

2

4 5

3

Figure 7. Selecting the recommendation item kind

The upper part of Fig. 8 shows the result of selecting the
submenu “Attributes” on a Klass named Customer. A list of
recommended attributes is presented to the user, including
their name, type and rating (i.e., trust on the recommen-
dation). When the user selects an attribute (“direction” in
the figure, label 1), this is automatically added to the Klass
Customer (label 2) and removed from the list.

6 Evaluation
With the aim to check the usefulness of the recommendations
provided by Droid RSs, Section 6.1 reports on an offline
evaluation with UML class models. To assess the feasibility
of using Droid RSs outside Eclipse, Section 6.2 presents
a case study that integrates a Droid RS with a modelling
chatbot [42]. Finally, Section 6.3 discusses threats to validity.

1

2

_____________________________________________________________________________

Figure 8. Selecting and applying a recommendation

6.1 Usefulness of recommendations
The goal of this first experiment is to answer the research
question (RQ) RQ1: “How precise and complete are the recom-
mendations provided by Droid recommenders?”. To this aim,
we performed the offline experiment that is reported next.

6.1.1 Experiment setup. We ran an offline experiment
on two datasets from two different domains. The purpose
was to analyse the performance of the RSs generated with
Droid on distinct domains.
The used datasets contain models extracted from

MAR [25]. This is a structure-based search engine for models
and meta-models, which can be queried via input keywords.
In particular, we retrieved UML models, since they are the
most numerous in MAR. As domains for our experiment,
we chose Literature and Education. The keywords used to
retrieve the models for the Literature domain were bibliogra-
phy, book, author, journal and magazine. The keywords used
for the Education domain were professor, teacher, student and
alumn (as stem of other words like alumnus or alumni). The
resulting datasets are available at https://github.com/Droid-
dsl/DroidConfigurator.
Table 1 shows, per each domain, the number of models,

users (i.e., classes), items (i.e., attributes, methods and su-
perclasses) and features (i.e., attributes describing users and
items) in the datasets. The Literature and Education datasets
have 1,447 and 1,051 UML models, respectively, conformant
to the UML 2.0 class diagrams meta-model (cf. Fig. 3). The
table does not consider duplicate elements. Hence, if two
models contain classes with the same name, they are con-
sidered to be the same class. This is more evident in the
Education domain, which has more models than users.

6.1.2 Experiment. We used Droid to configure a RS for
each domain, selecting all available recommendation meth-
ods with different parameters. Specifically, we used the
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Table 1. Description of the datasets.

Literature Education
Num. models 1,447 1,051
Num. users 1,740 905
Num. items 6,731 3,317
Num. features 6,497 3,231

Droid specification shown in Listing 1, and so, we trained
multiple RSs through a variety of collaborative, content-
based and hybrid recommendation methods: item popular-
ity (ItemPop), item-based collaborative filtering (IBCF), user-
based collaborative filtering (UBCF), content-based with co-
sine similarity (CosineCB), content-based item-based (CBIB)
and content-based user-based (CBUB). We parameterised the
methods IBCF, UBCF, CBIB and CBUB with neighbourhood
sizes k 10, 15, 20, 25, 50 and 100. In the following, we refer to
the methods that use neighbourhoods by concatenating the
method name and the neighbourhood size k. For instance,
IBCF50 refers to the IBCF k-NN method with 50 neighbours.

In all cases, we used 10-fold cross-validation and a per-user
technique to split the datasets (cf. Section 4). We analysed
the performance of the RSs by means of the ranking qual-
ity metrics precision (p), recall (r), F1, MAP (Mean Average
Precision) and nDCG (Normalized Discounted Cumulative
Gain); and the coverage and diversity metrics USC (User
Space Coverage) and ISC (Item Space Coverage). Addition-
ally, in the experiment, we used a relevance threshold of 0.5,
and cut-offs 5, 10, 15 and 20.

6.1.3 Experiment results. Table 2 shows the results of
the experiment for each domain/dataset (Literature and Edu-
cation). The rows show the selected recommendation meth-
ods, and the columns correspond to the metric values. For
space constraints, the table omits the results of the recom-
mendation methods IBCF and CBIB, as their performance is
worse than that of UBCF and CBUB.

We can observe that the order of magnitude of the metric
values is the same in both domains. As studied in the RS
field [7], this magnitude depends on many factors, such as
the dataset characteristics (e.g., the average number of prefer-
ences per user, or the rating sparsity, which is the proportion
of existing ratings from the whole set of potential user-item
preference relations), and the evaluation methodology (e.g.,
the method to split training and test data, or the test ratings
for which the metrics are computed). In our experiment, we
followed the TestItems methodology [7] which, for a target
user, evaluates recommendation lists that may contain test
items from all users. This explains why the precision values
are close to 0. For this reason, in general, the important as-
pect to consider is the relative difference of the metric values
achieved by the different recommendation methods.
Analysing Table 2, a first conclusion is the fact that the

content-based method CosineCB was the worst performing,

being outperformed even by the ItemPop baseline. This is
not surprising in our experiment. CosineCB estimates the
preference of a user (class) for an item (attribute, method,
or superclass) by means of the cosine of the angle between
the user and item feature vectors. These feature vectors cor-
respond to the names of the classes, attributes and meth-
ods in the models of the datasets. Since we do not perform
any text pre-processing on those names (e.g., to unify low-
ercase and uppercase, singular and plural, morphological
deviations, misspellings, synonyms, ambiguities), there are
different names that could have been considered the same,
facilitating the cosine similarity. Moreover, we may have
used finer-grained user and item profiles which capture the
occurrence frequency of features.
By contrast, UBCF and CBUB were the best performing

recommendation methods. The results of their item-based
counterparts were worse, and are not reported in the ta-
ble. UBCF with neighbourhoods of sizes 10 and 15 achieved
the best F1 values in both domains. In terms of MAP and
nDCG, which focus on the precision of the top positions
in the recommendation lists, the best results were obtained
with neighbourhoods of sizes 20 and 25 in the Education
domain, and sizes 50 and 100 in the Literature domain. If we
consider F1, MAP and nDCG all together, UBCF with neigh-
bourhood size 15 seems the best choice for the available data
and targeted task.
As expected, since CosineCB and ItemPop do not depend

on user-item rating patterns, they have an USC of 1, which
means that they are able to make recommendations for 100%
of the users. In terms of ISC diversity, there is no significant
difference between methods and domains, which reflects
that both popular and unpopular items are recommended.

Table 3 shows the precision and recall of the recommenda-
tion methods on both domains per cut-off values, p@k and
r@k, focusing on the first k = 5, 10, 15 and 20 recommen-
dations. We observe that the higher the value k, the lower
the precision and the higher the recall. Again, CosineCB was
outperformed by ItemPop. As we explained above, the poor
performance of CosineCB can be improved by performing
some text pre-processing, which we plan to address in fu-
ture work. However, even with raw data, these results are
in-line with the precision reported by other RSs for class di-
agrams [10] (around 0.04). Although not shown in the table,
UBCF outperformed IBCF. The hybrid use of content-based
and collaborative filtering techniques did not improve the
recommenders based on a single technique. When consider-
ing both p@k and r@k, UBCF with neighbourhood size 50
was the best performing method.

Answering RQ1, our evaluation shows that standard rec-
ommendation methods are able to provide sensible recom-
mendations for every class, starting from relatively small
datasets that have not been pre-processed. These results are
in-line with RSs specifically created for class diagrams [10].
Still, we have identified some aspects that would allow
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Table 2. Results of the experiment. The best values are shown in bold.

Literature EducationMethod p r F1 MAP nDCG USC ISC p r F1 MAP nDCG USC ISC
ItemPop 0.006 0.180 0.012 0.055 0.086 1.000 0.012 0.007 0.224 0.013 0.082 0.117 1.000 0.017
CosineCB 0.001 0.032 0.002 0.017 0.020 1.000 0.004 0.002 0.076 0.004 0.003 0.017 1.000 0.007
UBCF10 0.033 0.290 0.060 0.157 0.195 0.824 0.059 0.035 0.337 0.064 0.184 0.227 0.830 0.056
UBCF15 0.026 0.304 0.048 0.160 0.201 0.860 0.060 0.026 0.346 0.048 0.184 0.228 0.863 0.057
UBCF20 0.022 0.319 0.041 0.161 0.205 0.863 0.060 0.022 0.360 0.042 0.183 0.232 0.868 0.057
UBCF25 0.020 0.327 0.038 0.163 0.208 0.865 0.060 0.021 0.369 0.039 0.184 0.235 0.868 0.057
UBCF50 0.019 0.348 0.037 0.159 0.211 0.865 0.058 0.018 0.383 0.035 0.176 0.231 0.868 0.057
UBCF100 0.020 0.360 0.037 0.155 0.210 0.865 0.056 0.019 0.387 0.035 0.166 0.224 0.868 0.055
CBUB10 0.015 0.202 0.028 0.108 0.132 0.929 0.055 0.023 0.258 0.042 0.137 0.168 0.926 0.053
CBUB15 0.011 0.210 0.022 0.105 0.130 0.962 0.056 0.015 0.260 0.029 0.135 0.165 0.984 0.054
CBUB20 0.009 0.213 0.017 0.102 0.129 0.963 0.056 0.012 0.265 0.022 0.133 0.165 1.000 0.055
CBUB25 0.008 0.212 0.015 0.098 0.125 0.987 0.056 0.010 0.271 0.019 0.133 0.166 1.000 0.055
CBUB50 0.006 0.212 0.011 0.088 0.117 1.000 0.055 0.008 0.304 0.016 0.133 0.176 1.000 0.055
CBUB100 0.007 0.242 0.014 0.097 0.133 1.000 0.051 0.008 0.302 0.016 0.124 0.169 1.000 0.052

Table 3. Results of the experiment per cut-offs. The best values are shown in bold.

Literature EducationMethod p@5 p@10 p@15 p@20 r@5 r@10 r@15 r@20 p@5 p@10 p@15 p@20 r@5 r@10 r@15 r@20
ItemPop 0.022 0.014 0.012 0.010 0.072 0.090 0.110 0.123 0.027 0.018 0.015 0.012 0.099 0.129 0.154 0.168
CosineCB 0.003 0.002 0.002 0.001 0.016 0.018 0.020 0.021 0.001 0.001 0.001 0.001 0.001 0.004 0.006 0.007
UBCF10 0.053 0.033 0.025 0.020 0.194 0.231 0.253 0.265 0.061 0.037 0.027 0.022 0.228 0.270 0.295 0.308
UBCF15 0.055 0.034 0.026 0.021 0.200 0.237 0.259 0.272 0.060 0.038 0.028 0.022 0.227 0.272 0.299 0.313
UBCF20 0.057 0.036 0.027 0.022 0.205 0.245 0.267 0.282 0.062 0.038 0.029 0.023 0.232 0.276 0.305 0.320
UBCF25 0.058 0.037 0.028 0.022 0.207 0.250 0.274 0.289 0.063 0.039 0.029 0.023 0.235 0.281 0.310 0.329
UBCF50 0.060 0.038 0.029 0.023 0.212 0.261 0.286 0.302 0.062 0.039 0.030 0.024 0.229 0.279 0.313 0.335
UBCF100 0.060 0.039 0.029 0.024 0.210 0.260 0.287 0.306 0.059 0.038 0.029 0.024 0.217 0.270 0.302 0.327
CBUB10 0.031 0.018 0.013 0.011 0.139 0.163 0.176 0.184 0.040 0.024 0.018 0.014 0.178 0.209 0.226 0.237
CBUB15 0.030 0.019 0.014 0.011 0.135 0.165 0.180 0.188 0.039 0.024 0.018 0.014 0.174 0.206 0.226 0.236
CBUB20 0.029 0.019 0.014 0.011 0.130 0.168 0.184 0.193 0.038 0.024 0.018 0.014 0.170 0.205 0.225 0.236
CBUB25 0.028 0.018 0.014 0.011 0.124 0.162 0.180 0.190 0.038 0.024 0.018 0.014 0.169 0.206 0.227 0.239
CBUB50 0.025 0.016 0.013 0.011 0.114 0.142 0.167 0.183 0.044 0.027 0.021 0.017 0.173 0.211 0.243 0.261
CBUB100 0.034 0.022 0.017 0.014 0.129 0.163 0.182 0.197 0.043 0.026 0.021 0.017 0.166 0.202 0.230 0.252

improving the generated recommendations, such as using
larger datasets, pre-processing the text features that the
content-based methods exploit, or even incorporating more
specific, task-oriented recommendation methods.

6.2 Case study on RS integration
This section shows a case study on the integration of a RS
specified with Droid into a modelling chatbot called Socio.
With this study, we aim to answer the following RQ (RQ2):
How difficult is it to integrate a Droid-based RS with a non-
Eclipse-based modelling client?
Socio [42] is a chatbot or conversational agent that en-

ables heterogeneous groups of domain andmodelling experts
to collaborate onmodelling tasks. It works in social networks,
like Telegram or Twitter, and facilitates the active partici-
pation of domain experts with no technical background in
building models (class diagrams) by using natural language
(NL) as the modelling interface.

Fig. 9(a) shows a user interaction with Socio in Telegram.
The user can sendmessages expressing domain requirements
in NL to the chatbot (labels 1 and 3). Socio interprets the
messages and the current status of the model, infers the nec-
essary modelling actions, updates the model, and sends back

an image of the model with the modified elements in green
(labels 2 and 4). For example, given the message “School
contains teachers and students” (label 1), Socio infers that
there must be three classes named School, Teacher and Stu-
dent. Then, because of the contains verb, it infers that School
should have two containment references with cardinality
one to many (as teachers and students are plural), one called
teachers and going to Teacher, and the other called students
and going to Student. Since the model is empty at this mo-
ment, Socio creates all these elements (label 2).

Users normally do not provide all requirements in a single
message, and so, Socio permits a model to be incomplete or
incorrect. The interaction with label 3 illustrates this. When
the user says “Teachers have a name and surname”, Socio
interprets that there must be a class named Teacher with two
features, name and surname. Since the class already exists, it
only adds the two features, but since there is no information
about their types, their definition is incomplete (label 4).
Besides model creation via NL processing, the chatbot

has commands to manage, validate, download the model, or
undo and redo the modelling actions. In Telegram, these com-
mands start by a backslash followed by a keyword. Labels 5
and 6 in Fig. 9(a) show an example of the undo command.
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Figure 9. Example of Socio interaction in Telegram.

For this case study, we extended Socio with a RS specified
with Droid and hence available as a service. Fig. 10 shows
a scheme of the integration of the RS within Socio, where
the new components are highlighted in green. Socio has a
front-end provided by Telegram and a back-end. The latter is
the main component of the architecture since it handles all
the functionality of Socio: information and model storage,
NL processing and modelling actions. The Telegram client
connects the user interaction in Telegram with the back-end.
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Figure 10. Architecture of Droid integration with Socio

For the integration, we created a Recommender command
on the client side (label 1 in Fig. 10). When the user types this
command to obtain recommendations (label 1), the Telegram
client sends a request to the back-end, which is handled by
the Recommender handler (label 2). Since the model is in-
ternally represented with EMF, a Transformer converts the

context element of the recommendation into the JSON for-
mat required by Droid (label 3). Then, the Recommender
handler requests recommendations to the Droid service (la-
bel 4), and sends the returned recommendations back to the
client (label 5). In the client, an Interactive message handler
transforms the recommendations into an interactive mes-
sage containing one button per recommended item (label
6). When the user selects one of these buttons, the handler
sends a request to the back-end to add the selected item
to the model (label 7). Then, the selected button is deleted,
while the other buttons remain available to permit applying
further recommendations.

Fig. 9(b) shows the usage of the /recommender command
in Telegram.When a user types the command (label 7), Socio
displays the current model and prompts the user to select a
class (label 8). Once the user selects a class (label 9), Socio
asks the kind of items to be recommended (label 10). Since
Socio models do no support methods, the user can choose
the recommendation of attributes and supertypes.

Fig. 11 illustrates the recommendations provided byDroid.
It shows the recommended supertypes (label 1) and attributes
(label 2) for the class Teacher. When the user presses the but-
ton with the recommendation Person, Socio creates a new
class because it does not exist, and adds it as a supertype of
Teacher. When the user presses the button with the recom-
mendation name, Socio detects that Teacher already defines
this attribute and only updates its type. This way, recom-
mendations not only add new elements to the model, but
sometimes also allow fixing incomplete elements.

1

2

Figure 11. Droid recommendations in Socio.

Table 4 shows the LOC and number of Java classes de-
veloped to achieve the RS integration. The Interactive mes-
sage handler is the largest component, which is normal as
it handles several user interactions. We can observe that
the integration did not require many changes in the Socio
architecture, and the new components are not large.

Answering RQ2, this case study proves that Droid-based
RSs can be easily integrated with tools outside Eclipse. While
the integration with Socio has not many LOC, we added
code on both its front-end and its back-end. Moreover, more
than 50% of the code was dedicated to the user interaction.
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Table 4.Metrics for integrating Droid with Socio.

LOC Num. Classes

Back Recommender handler 160 2
Transformer 44 1

Front Recommender command 128 2
Interac. message handler 400 1
Total 732 6

These two circumstances can make a big difference in the
effort required to integrate the RS with other modelling tools.

6.3 Threats to validity
Next, we discuss threats to validity in our evaluations.
With respect to the offline experiment of Section 6.1, we

tried to minimize the threats to its external validity by mak-
ing use of two independent and large datasets from two
different domains. However, the domain selection and the
keywords chosen for the query may affect the generality
of the results. To tackle this issue, we plan to conduct ex-
periments with other domains and datasets in the future.
Another threat is the specific recommendation task accom-
plished in the experiment, namely the completion of class
diagrams with new attributes, methods and superclasses.
Hence, further experiments are needed to draw conclusions
on the use of our approach for other recommendation tasks.
Concerning internal validity, we tried to avoid any bias on
the results by the use of third-party datasets.
Regarding the case study reported in Section 6.2, the re-

sults are specific to Socio and cannot be generalized, which
remains the main threat to the external validity. However,
the integration of Socio was specially challenging due to
its distributed architecture and its independence of Eclipse;
hence, we expect that the effort to integrate a Droid-based
RS in other clients will not be higher than for Socio.

7 Related Work
In this section, we review the two main areas of related
works: recommenders for modelling languages, and auto-
mated approaches for the synthesis of RSs.

7.1 Recommenders for modelling languages
According to [4], the most common usage purposes for rec-
ommenders in MDE are completion, finding, repair, reuse,
and to a lesser extent, creation ofmodelling artefacts. The rec-
ommendations typically apply to models and meta-models,
while recommenders for model transformations and code
generators are scarce. Droid can be applied to any kind of
artefact, provided that it is defined by a meta-model.

Most recommenders for modelling languages target UML,
especially class diagrams. IPSE [20] has a knowledge-based
RS that guides students on creating class diagrams, and
the recommendations build on Prolog constraints defined

by the teacher. RapMOD [31] recommends relevant auto-
completion actions for graphical UML class diagrams. RE-
BUILDER [23] relies on case-based reasoning, Bayesian net-
works and WordNet to recommend class diagrams similar
to a given one. Elkamel et al. [16] use similarity metrics to
recommend similar classes to the ones in the current class
diagram. Other researchers propose RSs for other UML dia-
grams: Cerqueira et al. [12] propose a CB approach for recom-
mending behavioural features for UML sequence diagrams,
and Aquino et al. [5] present a recommender of actors and
use cases for use case diagrams.While these works tackle use-
ful modelling tasks, they serve a specific modelling language
and the recommendation method is fixed. Instead, Droid
is not UML-specific but it permits customizing the target
modelling language, the kind of items to be recommended,
and the recommendation algorithm.
Some approaches aim to provide semantically related

terms and context-sensitive information for a modelling task.
Burgueño et al. [10] propose a domain concept recommender
based on the analysis of the textual information available on
the domain model being constructed, as well as on general
knowledge about the business domain. The domain mod-
elling tool DoMoRe [2] exploits a knowledge base of domain-
specific terms and their relationships to provide context-
sensitive recommendations. Other tools, like Extremo [35]
or the assistant envisioned by Savary-Leblanc [51], employ
semantic similarity based on lexical databases like WordNet
to recommend semantically related terms. While these tools
target a specific modelling task, our framework is generic
and configurable for arbitrary modelling languages.
Recommenders have also been applied to business pro-

cessmodelling. For example, to recommend complete process
models based on the user profile [28], as well as finer-grained
recommendations that pursue completing a process model
with new fragments [30], activity nodes [14, 32], tasks [44]
or actor roles [44]. Again, these works are specific to a mod-
elling language, and the recommendation method is fixed.

In contrast to the previous language-specific approaches,
others are language-independent. These are typically appli-
cable to arbitrary modelling languages defined in a given
meta-modelling framework, such as EMF. For example, PAR-
MOREL [6, 26] uses reinforcement learning to repair mal-
formed EMF models based on the user preferences and the
experience gained from previous repairs. ReVision [41] sug-
gests consistency-preserving model editing rules for model
repair. SimVMA [54] uses clone detection to help mod-
ellers find models or operations relevant to them. Finally,
Kögel [29] proposes to analyse the history of past model
changes to suggest recommendations, and foresees the use
of machine learning, heuristic search algorithms, associa-
tion rules and decision trees. Altogether, even though these
works plan on frameworks for different languages, the rec-
ommendation method is fixed, and the recommendations
cannot be customised, as we can do using Droid.
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7.2 Recommender system generation
While we can find many RSs for modelling languages, most
were developed by hand from scratch, which requires a high
effort [36]. Hence, recent studies [4] have identified the need
of methods and tools automating the construction of recom-
menders for modelling languages. This work aims to fill this
gap. Next, we compare with other related approaches.

Fellmann et al. [19] define a reference model with the data
perspective requirements of RSs for process modelling. The
model can be instantiated as a guide for developing new
process modelling recommenders, or to assess existing ones.
While useful, the approach is specific to process modelling,
and does not provide automation or code synthesis.

Rojas et al. [48] present an MDE framework to create mo-
bile RSs of geographic points of interest. The framework
helps defining the structural, behavioural and navigational
aspects of the RS, and customising the user preferences, sim-
ilarity metrics and similarity formula. In [47], a similar solu-
tion is used to recommend trips and tours. However, in both
works, the target domain of the recommendation is fixed.

We also find MDE proposals to support non-expert users
on applying data mining. For example, Espinosa at al. [17, 18]
reuse the past experiences of data mining experts to com-
pute the accuracy for a given new dataset and recommend
the one with the best performance. The framework permits
customising the data mining task to perform, the evaluation
method and metrics, and the mining algorithm. Even though
this solution offers the flexibility and benefits of MDE, the
generated recommenders are data mining applications.

In a more general setting, Hermes [15] is a generic frame-
work to build recommenders for modelling environments.
Its extensible architecture permits defining new recommen-
dation strategies, new widgets to trigger and display the
recommendations, and new contexts to adapt the recommen-
dations to the modelling environment. These elements are
coded as extensions of base classes, or registered in the case
of resources like icons and labels. Hermes provides a dash-
board to define the class extensions, and supports the manual
testing of the recommender. In contrast, our DSLDroid does
not require coding, but it provides a simple syntax to config-
ure the kinds of recommended items, the recommendation
method, and its evaluation based on standard metrics. More-
over, it automatically generates a tailored RS as a web service
to make it available from arbitrary environments.

More similar to our proposal, the vision paper [52] foresees
a lowcode development environment where end users can
define RSs by using graphical interfaces, drag-and-drop util-
ities and forms. The authors aim to support the construction
of arbitrary RSs, not specific for modelling languages. The
lowcode environment will build on a generic meta-model to
provide components implementing recurring functionalities
for RSs, such as data pre-processing, capturing context, and
producing and presenting recommendations. The authors

foresee having several DSLs to configure each aspect of the
recommender. Our philosophy is similar, but we focus on
RSs for modelling. This way, our DSL allows the fine-grained
specification of the recommendation target and items, and
our tooling generates a RS available as a REST API that can
be integrated in other tools.

8 Conclusions and Future Work
RSs are increasingly being used in Software Engineering,
and MDE is no exception to this trend. Since building RSs for
DSLs is time expensive, we have developed a model-based
approach to automate their construction. The approach pro-
vides a DSL to configure the target of the recommendation
and the type of the recommended items, and supports the
evaluation of the RSs to identify the best one for the problem
at hand. Our solution relies on a generic recommendation
service that can be integrated out-of-the-box with the EMF
tree editor for models. We have demonstrated the feasibility
of its integration with non-Eclipse tools, and have evaluated
the precision and completeness of the recommendations.
In practice, the creation of RSs for modelling requires

having big sets of models for training. These exist for popular
modelling languages (e.g., UML, BPMN, Simulink), but not
for other DSLs. We trust that the emergence of dedicated
model search engines [25] and repositories will facilitate
this task. Moreover, there are other options. First, RSs can
be trained with the available models, and retrained as more
models become available. Second, one may apply “transfer
learning” for some DSLs, i.e., training the RS with models of
another similar DSL. For example, one may build a RS for
UML class diagrams, and apply it to Ecore meta-models.
In the future, we plan to work on pre-processing tech-

niques for the model sets. For instance, for the UML class
recommender, it could be useful to pre-process names (e.g.,
deleting blank spaces) and cluster semantically similar names.
We would also like to enrich the recommendation context,
e.g., including classes related to the recommendation target.
We have focussed on classical recommendation methods, but
we aim to make Droid a DSL front-end to configure arbi-
trary recommendation methods, including those specific for
modelling tasks. For this purpose, we are making our archi-
tecture extensible via extension points, to be implemented
for specific methods. Another line to explore is to gather
recommendation feedback from the users, and adjust future
recommendations based on it. Finally, we plan to make a user
study to identify strengths and weaknesses of our proposal.
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ABSTRACT
Chatbots are being increasingly used to provide a natural language
interface to all kinds of software services. However, while there are
many platforms and tools for chatbot development, they typically
lack support to statically measure properties of the designed chat-
bots, as indicators of their size, complexity, quality or usability, and
facilitating comparison.

To attack this problem, in this paper we propose a suite of 20
metrics for chatbot designs. The metrics are defined on a neutral
chatbot design language, becoming independent of the implemen-
tation platform. We have developed a tool, called Asymob, which
supports the translation of chatbots defined in several platforms
into this neutral format to perform the measurements. As a proof-
of-concept, we evaluate the metrics over a collection of Dialogflow
and Rasa chatbots from several sources and open-source reposi-
tories. Our metrics helped detecting quality issues statically, and
served as a basis for comparing chatbots from different origins and
built using different technologies.
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1 INTRODUCTION
Chatbots are becoming popular to access all sorts of services (e.g.,
banking, shopping, tourism, health) using conversation in natural
language [36], and they are being increasingly used to assist in
software engineering activities [17]. For this reason, many plat-
forms are available for their construction [29], like Google’s Di-
alogflow [12], Amazon Lex [18], IBM’s Watson [38], the Microsoft
bot framework [21], and many others by smaller companies and
communities like Rasa [32], Pandorabots [26], or FlowXO [15].

While there are many chatbot implementation platforms, their
support for chatbot quality assurance is limited [29]. Since chatbots
are a kind of software, their construction should follow sound engi-
neering principles. Some recent approaches [4, 5, 13] and tools [3]
propose methods for testing chatbots. Dynamic testing is essential
to ensure the quality of the resulting chatbot, but it requires having
a functional, deployed chatbot; it demands high effort for creating
testing phrases and oracles; and it is time-consuming.

In this paper, we propose the use of metrics as a tool to guide and
control the quality of the chatbot throughout its development, be-
coming a complement to dynamic testing. Metrics are an accepted
mechanism for assessing and controlling properties of software
products and processes [14]. They are complementary to dynamic
testing as they can be used at design time, even when the chatbot
is not yet functional. They can discover issues (e.g., regarding the
design complexity and size) which are not the target of dynamic
testing, and can be used to trigger recommendations for the im-
provement of the chatbot design. However, to our knowledge, there
is hardly any proposal for the practical application of metrics to
chatbot designs.

We argue that static metrics for chatbots can be useful to detect
potential problems related to user experience (e.g., complex conver-
sation flows, hard-to-read chatbot answers); as indicators of chatbot
complexity; to compare properties of heterogeneous chatbots; to
discover chatbot commonalities and cluster similar chatbots; and
to understand how different implementation platforms can impact
on the chatbot design. Ultimately, the availability of metrics may
have a notable impact on current bot development practices and
tools, helping to increase the quality of chatbots.

To pursue this goal, we propose a suite of 20 static metrics for
chatbot designs, and an accompanying tool called Asymob that sup-
ports their evaluation over heterogeneous chatbot implementations.
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To avoid reimplementing the metrics for every chatbot implemen-
tation platform, Asymob defines the metrics over a neutral design
notation called Conga [28], and provides importers from several
platforms into Conga. We report on an evaluation applying the
metrics over Dialogflow and Rasa chatbots from public repositories,
and over predefined chatbots provided by the implementation plat-
forms. Our experiment reveals quality issues in some chatbots, and
shows that the metrics can serve as a basis for comparing chatbots
from different sources and built using different technologies.

The rest of the paper is organized as follows. Section 2 explains
the basics about chatbots. Section 3 revises related work. Section 4
proposes a suite of chatbot metrics over a neutral chatbot design
notation. Section 5 describes tool support, and Section 6 evaluates
the metrics over chatbots from several sources (predefined, open-
source repositories) and technologies (Rasa, Dialogflow). Finally,
Section 7 concludes and outlines lines for future work.

2 AN OVERVIEW OF CHATBOTS
Chatbots are conversational software systems with a natural lan-
guage interface to existing services, like those in banking or shop-
ping. Figure 1 shows a diagram with their typical working scheme.
Normally, the user starts the interaction by providing an utterance –
a phrase in natural language – (step 1) which the chatbot processes
to give a proper response (step 6). The interaction can be using text
(e.g., if the chatbot is embedded in a social network like Telegram1)
or voice (e.g., if the chatbot is deployed on smart speakers like
Amazon echo2). The processing of the user utterance involves a
number of steps, which we detail next.

user 

utterance 
(NL) 

intent1 

chatbot match 
intent 

… 

intenti 
… 

chatbot 
response 

2 

4 
external  
service 

build 
response 
extract 
params 

5 

3 

1 

6 

Figure 1: Chatbot working scheme.

Most chatbots are designed around a set of intents. These are
conversation topics the chatbot aims at recognizing (step 2 in the
figure), related to the offered functionality. Depending on the im-
plementation platform, intents are defined either using regular
expressions (e.g., as in Pandorabots [26]) or with training phrases
that become interpreted using natural language processing (NLP).
Additionally, intents can include parameters identifying relevant
information pieces to be extracted from user utterances (step 3).

As an example, a chatbot for a cafeteria would define an intent
to recognize the users’ orders. This intent would be matched by
phrases like “I’d like a medium cappuccino”, from which the chatbot
would extract two parameters: the type of drink (cappuccino) and
1https://telegram.org/
2https://en.wikipedia.org/wiki/Amazon_Echo

its size (medium). Parameters are typed by entities, which can be
pre-existing in the platform (e.g., dates or numbers) or user-defined
for a specific domain (e.g., the type and size of drinks). User-defined
entities declare a list of literals (e.g., medium and large for the size
of drinks) with their synonyms.

Upon receiving a user utterance, the chatbot matches the more
likely intent, performs some predefined actions to handle the intent,
such as accessing an external service (step 4), and composes a
text/voice response (step 5) which may incorporate media elements
(e.g., images, links) or widgets supported by the social network
(e.g., buttons in Telegram). For example, the cafeteria chatbot may
need to access an information system to check the availability of
discounts and annotate the order, and the response may report
the final price. If the chatbot lacks a matching intent for a user
utterance, it can trigger a fallback intent to ask for clarification.

Typically, conversations are structured into flows that intertwine
user utterances and chatbot responses. As an example, upon the
user utterance “I’d like a medium cappuccino”, the chatbot may
answer “Would you like something to eat?”, leading to a new user
interaction (e.g., “No thanks”), and so on, according to the defined
conversation flow within the chatbot design.

Moore and Arar [23] propose a classification of chatbots depend-
ing on their conversation style. System-centric chatbots answer
user queries or interpret commands by means of 2-turn conversa-
tions (i.e., each user turn starts a new conversation and the chatbot
lacks state). Content-centric chatbots act as an interface for FAQs,
typically providing long document-like responses that may not
be appropriate for voice-based interfaces or mobile devices with
small screens. Visual-centric chatbots present buttons and other wid-
gets to facilitate user interaction, in a style borrowed from mobile
phones. Finally, conversation-centric chatbots mimic human conver-
sations, offering conversation management utterances (e.g., “What
do you mean?”) and short responses. This latter type of chatbots are
normally preferred because their conversation style suits a wider
variety of devices and engages better in natural conversations.

3 RELATED WORKS ON CHATBOT QUALITY
ASSESSMENT

Since the early days of conversational systems [39], researchers
have proposed ways for evaluating their quality. For example, PAR-
ADISE [37] is an early framework based on the correlation of per-
formance and user satisfaction.

Recently, the popularity of chatbots has raised concerns on
proper conversational design. For example, IBM’s Natural Con-
versation Framework [24] proposes conversation patterns [25] and
design principles [23, 34]. The latter include guidelines like recipi-
ent design (i.e., allow multiple conversation paths for different user
types), minimization (i.e., use concise chatbot answers), and repair
(i.e., provide support for clarifications). In this line, Chatbottest [9]
defines guidelines for chatbot design issues in categories like an-
swering, error management, intelligence, navigation, personality
and understanding. However, the burden is on the developer to
manually test whether the chatbot fulfils the guidelines.

Literature reviews [27, 31] have also identified chatbot quality
properties and ways to assess them. Radziwill and Benton align
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bot quality attributes with the ISO-9241 notion of usability [1] (effi-
ciency, effectiveness and satisfaction), while Peras [27] adds further
categories (e.g., information retrieval, affect). Generally, the assess-
ment of these quality properties relies on the dynamic execution
of the chatbot, on collecting statistical data, or on subjective evalu-
ations [10, 16, 22, 33]. Instead, our goal is to provide metrics that
can be calculated automatically and statically on chatbot designs.

Other approaches assess quality via testing [7]. For instance,
tools like Botium [3] or OggyBug [13] support test automation.
Still, the developer has to provide a set of user utterances and ex-
pected chatbot answers within the envisioned conversation flows.
To alleviate this burden, some works focus on the generation of
challenging test user utterances [4, 5], e.g., via mutation of the train-
ing phrases defined for the intents. ChatEval [35] targets testing
readability, which can be done statically by applying metrics (e.g.,
BLEU2 and average cosine similarity [19]) to the chatbot responses,
and interactively by requiring the user to complete evaluation tasks.
Instead, our goal is to provide complementary assessment mecha-
nisms to testing in the form of metrics, which can be applied prior to
deploying the chatbot and can reveal defects in the chatbot design.

As we will see in Section 4.2, some of our metrics profit from the
work of the NLP community, which has developed useful readability
metrics [19, 30]. For example, Pitler and Nenkova [30] combine
lexical, syntactic and discourse features in a highly predictive model
of human judgements of text readability. In this model, several
linguistic features correlate best with readability judgments. In
particular, the average number of verb phrases per sentence, the
number of words in the text, and the vocabulary, among others, are
associated with human assessments of how well a text is written.
More specific to chatbots, Liu et al. [19] identify some weaknesses
of metrics for chatbot responses, and provide recommendations for
future chatbot evaluation systems.

Overall, we observe a lack of metrics to evaluate statically and
automatically quality aspects of chatbot designs, independently of
the chatbot implementation platform. Our goal is to fill this gap.

4 CHATBOT DESIGN METRICS
In order to provide a suite of metrics independent from the chatbot
implementation technology, we propose using a neutral design
notation to represent chatbots, over which the metrics can be com-
puted. In this section, firstly, Section 4.1 introduces the chatbot
design notation, and then, Section 4.2 details our proposed metrics.

4.1 A neutral notation for chatbot designs
Since our aim is to develop metrics for chatbot designs, we need a
concrete notation over which to define the metrics. For this purpose,
we rely on the chatbot neutral notation we proposed in [28], called
Conga. We opt for this neutral notation because, as reported in [28],
its definition is based on a thorough revision of 15 widely used chat-
bot development platforms. This means that the design concepts in
Conga can be mapped from and to all these platforms. Hence, by
defining the metrics over Conga, they become platform-agnostic as
well as significant for many chatbot development platforms. As we
will show in Section 5, another practical implication is that one can
build importers from different platforms into Conga to perform
the measurement of existing chatbots.

Figure 2 depicts the meta-model of Conga. It permits represent-
ing a chatbot by a Chatbot object, which contains a set of Intents,
Entities, Actions performed by the bot, and conversation Flows. The
notation supports multi-language chatbots, and so, each intent can
declare a number of TrainingPhrases per definition language. The
phrases may refer to Parameters, which are defined at the level of
the intent. Parameters are typed either by predefined entities (enu-
meration PredefinedEntity) or user-defined Entity objects. Entities
can be Simple, Regex (regular expressions, a change in this new
version of the meta-model) or Composite, and for each language (En-
tityLanguage), they declare the set of literals and synonyms making
up the entity. For example, a chatbot can declare a simple entity
for drink sizes with literals small, medium and large in English, and
additionally define synonyms regular for medium and big for large.

A chatbot can define one or more Actions of type Text, Image,
HttpRequest, HttpResponse and Empty. The two first types are used
to compose responses combining text and images. HttpRequest and
HttpResponse allow configuring the communication of the chatbot
with external services in the backend. The last action type Empty
is a wildcard for other platform-specific actions, added in this new
version of the meta-model to facilitate transformation between
platform-specific definition into Conga (explained in Section 5.2).

Finally, the conversation flow between the chatbot and the users
is modelled by Flow objects consisting of user and bot turns (classes
BotInteraction and UserInteraction). The user turn refers to the intent
to be recognized in the interaction (reference UserInteraction.intent).
The bot turn specifies the actions that the bot has to perform (ref-
erence BotInteraction.actions).

4.2 A metrics suite for chatbot designs
We propose the suite of metrics for chatbot designs that Table 1
shows. All metrics measure internal attributes of chatbots. We
considered three sources when designing the metrics:
• Some of them, like INT (the number of intents) or ENT (the num-
ber of user-defined entities), are calculated by taking statistics
of concepts from the meta-model in Figure 2. According to [28],
these concepts are common in chatbot development frameworks.

• Some other metrics have been adapted from the NLP litera-
ture [19, 30] to assess the readability of the chatbot responses
or the complexity of the expected user utterances.

• Finally, we use the conversation design principles proposed
in [23, 34], and Moore and Arar’s classification of chatbots [23],
to interpret the value of some metrics such as PATH (the number
of conversation paths), FLOW (the number of conversation entry
points) and WPOP (the number of words per bot output phrase).
The fourth column of Table 1 classifies the potential impact of

the metrics on usability (as defined in the ISO 9241-11) [1] in terms
of Effectiveness (i.e., accuracy and completeness with which users
achieve their goals), efficiencY (i.e., time and resources that users
expend to achieve their goals) and Satisfaction (i.e., comfort and
acceptability of use). We also classify metrics based on their target:
either global design properties, or specific aspects of intents, entities
or conversation flows. Non-global metrics can be computed per
element (intent, entity, flow) or averaged for all elements of a kind.

4.2.1 Global metrics. We start introducing global metrics. These
measure the number of intents (INT), entities (ENT) and flows (FLOW,
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Figure 2: Meta-model for chatbot design (adapted from [28]).

Table 1:Metrics for chatbot designs. Columndimension uses
abbreviations for Effectiveness, efficiencY and Satisfaction.

Metric Description Type Dim
Global metrics

INT # intents design size E
ENT # user-defined entities vocabulary size S
FLOW # conversation entry points conversation diversity E
PATH # different conversation flow paths conversation complexity S,Y
CNF # confusing phrases [8] bot understanding E,S
SNT # positive, neutral, negative output phrases [33] user experience S

Intent metrics
TPI # training phrases per intent topic complexity E,S
WPTP # words per training phrase topic complexity Y
VPTP # verbs per training phrase topic complexity S,Y
PPTP # parameters per training phrase topic complexity E
WPOP # words per output phrase readability S,Y
VPOP # verbs per output phrase readability S
CPOP # characters per output phrase readability S,Y
READ reading time of the output phrases [6] readability Y

Entity metrics
LPE # literals per entity vocabulary complexity S
SPL # synonyms per literal vocabulary complexity S
WL word length readability Y,S

Flow metrics
FACT # actions per flow bot response complexity E,S
FPATH # conversation flow paths conversation complexity S,Y
CL conversation length conversation complexity Y

PATH), and include understanding and user experience metrics (CNF,
SNT).

INT is an indicator of design size and functionality, since each
intent contributes to functionality offered to the user. The larger
INT is, the more functionality the bot offers, potentially impacting
effectiveness. ENT measures the size of the chatbot vocabulary and
the conversation topic diversity, which may affect satisfaction.

FLOW counts the number of conversation entry points for users,
being an indicator of conversation diversity. Since each entry point

might correspond to a functionality, FLOW may impact effective-
ness. PATH measures conversation complexity. If PATH=FLOW, all
conversations are linear, while if PATH>FLOW, some conversation
splits into several paths. As an example, Figure 3 shows two small
excerpts of chatbot designs conformant to the Conga meta-model.
The chatbot design (a) depicts a linear flow (i.e., FLOW=PATH=1).
Linear flows enable simple conversations, typically request/reply,
which may indicate a system-centric chatbot [23]. The chatbot
design (b) shows a conversation flow that splits after the bot in-
teraction (FLOW=1, PATH=2). This kind of flows permits non-linear
conversations with multiple turns and dialogue alternatives, typical
of conversation-centric chatbots [23].
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Figure 3: Chatbot design excerpts illustrating (a) a linear con-
versation flow, (b) a forked conversation flow.

The combined use of FLOW and PATH can help detecting devia-
tions of some design principles. The recipient principle [34] advices
to design for the target users, from experts (who may give all in-
formation at once) to novices (where the bot needs to prompt for
more information). In turn, the repair principle [34] recommends
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supporting clarifications in the conversation, and multiple paths
may be an indication of this. Moreover, having several paths per
flow potentially results in more natural conversations (impacting
satisfaction) but less predictable for the user (likely impacting the
user effort or efficiency).

The CNF metric measures the semantic distance between the
training phrases of different intents, identifying similar phrases
that may confuse the bot to make it identify a wrong intent [8].
Since this may cause errors, the metric is related to effectiveness
and satisfaction.

Finally, SNT measures the sentiment of the chatbot output
phrases, classifying them into positive, negative and neutral. This
is related to satisfaction, since a bot that outputs mostly negative
phrases may cause a negative user experience [33].

4.2.2 Intent metrics. Intent metrics measure quality properties of
each intent with respect to the expected user utterances and the
bot output phrases.

Related to user utterances, TPI counts the number of training
phrases in the intent definition. The larger TPI is, the more precise
the intent recognition might be, but this also may indicate a com-
plex intent. WPTP measures the length of the training phrases in
words. Long phrases are not adequate or even possible in social
networks (e.g., Twitter restricts message length), and so, largeWPTP
values might be problematic. VPTP measures the number of verbs
per training phrase. This is an indication of interaction complexity,
since composite phrases with several verbs can be more difficult
to elaborate for the user [30]. PPTP measures the number of infor-
mation items (i.e., parameters) the user needs to provide, and the
larger PPTP is, the more complex is the intent domain concept.

Regarding chatbot outputs,WPOPmeasures the number of words
per bot output phrase. According to the minimization principle [23,
34], the bot answers should be concise. Large phrases are more
difficult to understand and can be problematic in social networks.
The latter is more concretely targeted by CPOP, as high values may
require scrolling (e.g., in mobile devices) and long reading times
(with the risk that the user does not complete the reading [23]). Long
outputs are especially problematic for voice-based chatbots, since
speaking takes longer than reading [23]. Hence, large CPOP values
may decrease user satisfaction and efficiency. Similarly, VPOP is
another indicator of the complexity of the chatbot responses, given
by the number of verbs per output phrase. Finally, READ measures
the expected reading time of the bot output responses (a metric
related to efficiency). This is calculated as the ratio between the
number of words per output phrase, and the number of words that
an average person can read per minute [6].

4.2.3 Entity metrics. Entity metrics target user-defined entities rep-
resenting domain concepts. LPE and SPL are indicators of the com-
plexity of the conceptsmanaged by a chatbot, impacting satisfaction.
High LPE and SPL values signal elaborate concepts, but since SPL
counts synonyms, a large number may improve recognition in user
utterances (better satisfaction). A narrow vocabulary (low SPL) may
constrain the way users communicate with the chatbot, and may
lead to frustration if the chatbot does not recognize important pa-
rameters within user utterances. WL measures the length of words,
and similar to CPOP, it contributes to readability and may impact
user satisfaction and efficiency.

4.2.4 Flow metrics. Flow metrics consider features of the conversa-
tion flows. FACT measures the bot actions (presenting images, text,
calling backends) in each conversation flow. The more actions, the
more sophisticated tasks can be achieved. Moreover, rich controls
help to reduce the user cognitive load and speed up the completion
of the intended task. Hence, FACT may impact effectiveness and
satisfaction. FPATH measures the number of possible paths per con-
versation flow. High values signal complex conversations (i.e., more
natural-sounding but less predictable). The PATH global metric is
calculated by adding up FPATH for each flow. Finally, CL measures
the length of each path within a flow, as the number of bot and
user turns. This is an indicator of conversation complexity. Longer
paths require more time to complete – which affects efficiency –
and are typical of conversation-centric chatbots [23].

5 ARCHITECTURE AND TOOL SUPPORT
We have developed a tool called Asymob supporting the automatic
measurement of chatbot designs specified with Conga. Next, Sec-
tion 5.1 presents the architecture of Asymob, including its main
features, underlying technologies, and steps required to compute
the metrics. Then, Section 5.2 details the conversion of chatbots
implemented in two mainstream platforms into Conga.

5.1 Overview of Asymob
We have built a Java framework called Asymob for measuring
chatbot designs. The framework is available at https://github.com/
ASYM0B/tool. Asymob has a modular architecture that facilitates
adding new metrics in multiple programming languages, like Java,
Python and Perl. To support chatbots from different platforms, it
relies on the neutral chatbot design notation Conga, introduced
in Section 4.1. Hence, Asymob computes the metrics on Conga
models, independently of any chatbot implementation platform.
To measure chatbots from a specific platform, an importer from
the platform into Conga must be provided. Currently, Asymob has
importers from Dialogflow and Rasa. Section 5.2 will provide more
details about these two importers.

To simplify the implementation of newmetrics,Asymob supports
third-party technologies such as Stanford CoreNLP [20], Tensor-
Flow [2] and Deep Java Learning [11]. Stanford CoreNLP is an NLP
library that Asymob uses to perform sentiment and syntactic analy-
sis of the chatbot training and output phrases. The implementation
of metrics SNT and VPTP make use of this library. Asymob relies on
Deep Java Learning and TensorFlow to detect confusing phrases
between intents, using the cosine similarity algorithm. The CNF
metric is based on this algorithm.

Figure 4 shows the architecture of Asymob, and the steps to
measure a chatbot design. First, the user selects a set of metrics
(label 1) and a chatbot (label 2). Then, the Asymob core configures
the metrics database with the selected metrics, and converts the
provided chatbot into a Congamodel (label 3, see Section 5.2). Next,
the metric engine applies the selected metrics to the Conga model,
and stores the results in a meta-data file (label 4). On request (label
5), the user can obtain a report with the results in several formats
like plain text, Excel and LATEX (label 6).
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Figure 4: Architecture of Asymob.

5.2 Importing chatbots into Conga
In the following, we provide details of the importers that we have
built to convert chatbots from two representative and widely used
chatbot platforms (Dialogflow and Rasa) into Conga.

5.2.1 From Dialogflow to Conga. Dialogflow is a low-code de-
velopment platform to create chatbots using a graphical interface
within the browser. Chatbots so defined can be exported as JSON
files, which our importer is able to convert into Conga models.

In the JSON-based representation of a Dialogflow chatbot, the file
Agent.json describes global chatbot features, like its name, definition
languages, or connection data to external services (the webhook).
The latter include details such as the URL, headers, and authentica-
tion credentials. Our importer creates a Conga Chatbot object using
the agent name and languages, and an HttpRequest action with the
webhook data.

Entities in Dialogflow can be predefined or user-defined. The lat-
ter are described either by a regular expression, a list of literals with
synonyms, or a composite entity. Each user-defined entity becomes
exported as a JSON file containing the entity name and configura-
tion information (if it is a regular expression or a composite entity),
and one file per definition language with the corresponding literals.
Our importer converts these files into Conga Entity objects.

Intents in Dialogflow have a name, training phrases, responses,
parameters, and an indication of whether they are fallback or enable
a webhook, among other features. Intents are exported into JSON
files. For each intent definition file, our importer creates a Conga
Intent object with its Parameters and TrainingPhrases, as well as the
necessary Actions to compose each response. We currently support
text and image responses, and convert other custom responses into
Empty actions. Anyhow, this does not affect the defined metrics.

Finally, Dialogflow controls the conversation flow via contexts.
These can be input/output to intents, and can store relevant con-
versation state. Our importer uses the contexts and the responses
of the related intents to generate Conga Flow objects.

5.2.2 From Rasa to Conga. Rasa is a framework to develop chat-
bots using Python, markdown and YAML. The definition of a Rasa
chatbot comprises several files. The config.yml file defines con-
figuration properties, like the chatbot language or the used NL
prediction model. The data/nlu.md file contains training data to
identify the intents correctly, with its entities and synonyms or
regular expressions. As an example, the data/nlu.md file in Listing 1
defines an intent called order (lines 1–4). The parameters in the
training phrases can be defined within brackets and followed by
the entity name in parenthesis (e.g., [cappuccino](type)), or with
curly brackets (e.g., [medium]{"entity": "size", "value": "medium"}).

1 ## intent:order
2 − I'd like a [medium]{"entity": "size", "value": "medium"} [cappuccino](type)
3 − I want a [small]{"entity": "size", "value": "small"} [latte](type)
4 − Can I order a [large]{"entity": "size", "value": "large"} [black](type) coffee?
5 ## synonym:small
6 − little
7 − short
8 ## synonym:medium
9 − regular
10 − median
11 ## synonym:large
12 − big
13 − extra

Listing 1: Example of data/nlu.md Rasa file

1 ## story1
2 ∗ order
3 − utter_confirm_order

Listing 2: Example flow from data/stories.md Rasa file

The listing also declares synonyms for literals small (lines 5–7),
medium (8–10) and large (11–13).

The file domain.yml defines the chatbot intents, entities and
actions. Actions can be text, images, buttons, or custom actions
defined in the Python file actions.py. Finally, the file data/stories.md
specifies the conversation flows. Listing 2 shows a flow exam-
ple, by which matching the intent order triggers the response ut-
ter_confirm_order.

We have built an importer that reads the chatbot language from
the config.yml file and creates Conga intents and entities from
the data/nlu.md file, Conga actions from the domain.yml file, and
Conga flows from the data/stories.md file. As in the case of Di-
alogflow, our importer from Rasa supports text and image responses,
and converts Rasa custom actions into Conga empty actions.

6 EVALUATION
We have used Asymob to perform an empirical study to assess the
suitability of our metrics to detect quality issues and compare bots.
We aim at answering the following research questions (RQs):
RQ1 Can the definedmetrics detect quality issues in real chatbots?
RQ2 Can the defined metrics be used to compare heterogeneous

chatbots?
Next, Section 6.1 describes the experiment setting, Sections 6.2

and 6.3 answer the RQs, and Section 6.4 discusses threats to validity.

6.1 Experiment setting
We have analysed 6 Dialogflow chatbots and 6 Rasa chatbots built
by third parties, available at https://github.com/ASYM0B/evaluation.
Table 2 shows the metric results, with some extreme values marked
in bold. Chatbots are categorised depending on their implemen-
tation platform (Dialogflow or Rasa) and their source (Github or
Predefined natively on the platform). We used Asymob to import
the chatbots into the Conga format (cf. Section 5.2) and obtain the
metrics.

6.2 RQ1: Detection of quality issues
Some metric values reveal design issues. The CPOP of the FAQ-RASA-
NLU chatbot is 285 characters. This indicates poor accessibility and
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Table 2: Summary of the evaluation. Columns use abbreviations for Dialogflow (DF), Rasa (RS), Github (G) and Predefined (P).

Chatbot Global metrics Intent metrics Entity metrics Flow metrics
Name Plat. Src INT ENT FLOW PATH CNF SNT (%) TPI WPTP VPTP PPTP WPOP VPOP CPOP READ LPE SPL WL FACT FPATH CL
bikeShop DF G 5 1 4 4 3 38 50 12 2.60 3.48 0.81 0.60 14.00 2.60 55.20 12.00 2.00 5.50 6.64 2.00 1.00 2
googleChallenge DF G 32 34 32 32 1442 19 59 22 6.94 9.62 1.76 0.94 19.81 3.49 105.16 16.00 3.15 4.54 11.37 1.00 1.00 1
mysteryAnimal DF G 62 37 62 62 770 0 0 0 6.52 4.34 1.30 2.27 0.00 0.00 0.00 0.00 163.84 3.89 9.21 3.00 1.00 1
Car DF P 77 14 61 117 4188 0 0 0 9.70 6.80 1.29 2.25 0.00 0.00 0.00 0.00 14.93 3.60 11.41 1.00 1.92 2
Dining-Out DF P 9 15 4 14 148 20 61 19 94.67 3.81 0.76 8.33 8.50 2.56 31.44 7.00 1255.00 2.39 11.36 1.25 3.50 3
Easter-Eggs DF P 6 0 6 6 0 10 51 39 7.17 6.23 1.31 0.00 7.46 1.63 37.54 6.00 0.00 0.00 0.00 1.00 1.00 1
05_event_bot RS G 17 0 1 20 167 40 60 0 3.82 2.05 0.12 0.00 15.00 2.75 87.00 12.00 0.00 0.00 0.00 1.02 20.00 6
FAQ-RASA-NLU RS G 8 0 7 7 4 15 34 51 3.38 4.67 1.00 0.00 54.56 3.56 285.56 46.00 0.00 0.00 0.00 1.00 1.00 1
small-talk-rasa-stack RS G 87 0 86 92 8467 24 62 14 22.51 3.82 1.13 0.00 6.66 1.81 28.48 5.00 0.00 0.00 0.00 1.00 1.07 16
concertbot RS P 6 2 1 1 0 25 75 0 0.00 0.00 0.00 0.00 2.25 0.25 12.25 1.00 0.00 0.00 0.00 3.50 1.00 2
formbot RS P 8 1 2 9 37 17 83 0 35.63 4.25 0.92 1.25 5.00 1.50 22.50 4.00 0.00 0.00 0.00 1.16 4.50 7
moodbot RS P 6 0 2 4 22 20 80 0 10.50 2.10 0.44 0.00 3.00 1.00 11.25 2.00 0.00 0.00 0.00 1.10 2.00 3

Figure 5: Large response from
FAQ-RASA-NLU in a mobile in
Telegram.

readability, as large an-
swers require scrolling in
mobile devices, long read-
ing times (46 seconds for
this bot), and cannot be
fully displayed on social
networks like Twitter due
to their message length
constraints. As an exam-
ple, Fig. 5 shows a chatbot
response deployed on
Telegram using a mobile
phone, which requires
scrolling as the response
has more than 30 lines.
This is an example of a
content-centric chatbot
to access a FAQ. How-
ever, according to [23],
conversation-centric
chatbots with short
answers and a natural
conversation style are
usable in more platforms.
The googleChallenge chat-
bot has the same problem
to a lesser extent (CPOP
is 105, READ is 16).

The flowmetrics reveal
some complex conversations. The bot 05_event_bot has a single
FLOW with 20 paths (PATH and FPATH are 20). Another indicator of
conversation complexity is the conversation length CL. The chatbot
with the highest CL value (16) is small-talk-rasa-stack.

The sentiment of the bot responses may affect the user experi-
ence. In this respect, FAQ-RASA-NLU and Easter-Eggs have 51% and
39% of negative responses (third value of column SNT). Also related
to user experience, the high CNF values in bots small-talk-rasa-stack,
Car and googleChallenge (8467, 4188 and 1442) may signal chatbot
understanding problems due to the existence of similar training
phrases in different intents, which may confuse the bots. For ex-
ample, Car has similar training phrases in different intents, such as

“turn down the heater for each seat in the car” and “turn off the heating
in my car”. Other bots with confusing training phrases are small-talk-
rasa-stack (“I am very bored” / “I’m bored of you”), googleChallenge
(“What is the time duration for completing Masters in Artificial Intel-
ligence?” / “Completion period for masters in AI?”), Dining-Out (“now
cafe” / “find cafe”), and bikeShop (“Can you fix my road bike?” / “Can
you service my bike?”). Hence, CNF provides useful information to
detect intents that a chatbot may mismatch, without resorting to
intensive dynamic testing.

Overall, we can answer RQ1 positively, since our metrics could
detect issues regarding readability (CPOP), conversation complexity
(FLOW, CL), user experience (SNT) and bot understanding (CNF).

6.3 RQ2: Comparing chatbots
Metrics also serve to compare or classify chatbots based on their
design style [23]. For instance, some chatbots like Car,mysteryAnimal
and small-talk-rasa-stack are very detailed and complex according
to their number of intents (INT), flows (FLOW) and paths (PATH).
Instead, others like bikeShop and moodbot are simpler.

Interestingly, two chatbots have no output phrases, one for being
a predefined template bot that the developer needs to complete (Car),
and the other because a backend API generates the output dynami-
cally (mysteryAnimal). Likewise, chatbots Easter-Eggs, 05_event_bot,
small-talk-rasa-stack and FAQ-RASA-NLU lack a domain-specific vo-
cabulary, since ENT is 0. This might be explained as being general-
purpose (e.g., for small talk) or simple bots (e.g., 05_event_bot).

Regarding conversations, some chatbots have linear conversa-
tions where FLOW=PATH (e.g., FAQ-RASA-NLU, concertbot), while
others support complex conversations where FLOW<PATH (e.g.,
Car, Dining-Out, 05_event_bot). Additionally, the conversation length
of some bots is limited to one user-bot interaction (CL=1), and
hence, they can be classified as system-centric [23]. Within this
set, bots providing long responses (like FAQ-RASA-NLU) are likely
content-centric. Other bots allow longer, more elaborate conversa-
tions (CL>1). Bots with non-linear conversations (FLOW<PATH) and
multiple turns (CL>1) can be classified as conversation-centric [23].

Metrics are also helpful to compare implementation platforms.
First, all entity metrics of the analysed Rasa chatbots have value
0. This is so as entities in Rasa are not defined explicitly, but via
a Python method that returns whether an entity accepts a given
String. The concertbot bot has 0 training phrases because Rasa bots
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can be trained interactively. We observe that bots in Rasa define
fewer entities (ENT) than in Dialogflow. In general, the analysed
Dialogflow bots are more detailed in terms of functionality (INT),
vocabulary (ENT) and intent recognition (TPI). Conversations in the
Dialogflow bots tend to be linear (PATH=FLOW) while in Rasa they
split in several paths (PATH>FLOW), denoting less predictability.

Finally, metrics can be used to compare open-source and prede-
fined bots. In Rasa, the predefined bots are simpler than the Github
ones, reflected on lower values of INT, FLOW and PATH. This does
not happen with the Dialogflow bots.

Overall, we can answer RQ2 affirmatively. Our metrics permit
comparing chatbot complexity and size regarding intents, flows
and paths; enable classification of chatbots along Moore and Arar’s
taxonomy [23]; and – being defined over Conga – they can be
applied to different chatbot technologies and chatbot sources.

6.4 Threats to validity
Given the limited size of the experiment, we cannot claim dif-
ferences or similarities between implementation platforms or
predefined/open-source bots, for which we would need a larger
scale experiment. Instead, our goal was to hint at the usefulness of
the defined static chatbot metrics.

Another limitation of our evaluation is that it relies on custom-
made importers from existing platforms into Conga. Since Rasa
is a framework, it permits programming some aspects of chatbots
in different ways. For example, one may train the model on the fly
instead of using training phrases, or even change the conversation
flow using Python. All these variants may affect the metric values.

7 CONCLUSIONS AND FUTURE WORK
The increasing relevance of chatbots demands support for assessing
their quality prior to testing. With this aim, we have proposed a
suite of metrics that can be evaluated statically on chatbot designs,
independently of their implementation platform. We have demon-
strated the feasibility of our proposal by building the Asymob tool,
which we have used to evaluate existing heterogeneous chatbots.

In the future, we plan to extend our evaluation to get a panorama
of the features of open-source chatbots and derive metric thresholds.
Our metrics could be correlated with development metrics like ef-
fort, and validated with usability metrics collected dynamically. We
plan to extend our tool to cluster chatbots by similarity, and enable
semantic clustering by representing chatbots using a bag-of-words
model. The latter can be useful to provide a search facility over
chatbot repositories. Technically, we aim at embedding Asymob as
a web service to let the community profit from its metrics.
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ABSTRACT
Chatbots have become a popular way to access all sorts of services
via natural language. Many platforms and tools have been proposed
for their construction, like Google’s Dialogflow, Amazon’s Lex or
Rasa. However, most of them still miss integrated quality assurance
methods like metrics. Moreover, there is currently a lack of mech-
anisms to compare and classify chatbots possibly developed with
heterogeneous technologies.

To tackle these issues, we present Asymob, a web platform that
enables the measurement of chatbots using a suite of 20 metrics.
The tool features a repository supporting chatbots built with differ-
ent technologies, like Dialogflow and Rasa. Asymob’s metrics help
in detecting quality issues and serve to compare chatbots across
and within technologies. The tool also helps in classifying chat-
bots along conversation topics or design features by means of two
clustering methods: based on the chatbot metrics or on the phrases
expected and produced by the chatbot. A video showcasing the tool
is available at https://www.youtube.com/watch?v=8lpETkILpv8.
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1 INTRODUCTION
Chatbots are increasingly used to access all sorts of services, includ-
ing leisure (e.g., shopping, booking flights or hotels), customer ser-
vices, professional support (e.g., banking) and information services
(e.g., weather) [19]. Their success is due to their natural language
conversational interface, which can be used through many channels
such as social networks, web apps, or intelligent speakers.

The popularity of chatbots has triggered the emergence of a
plethora of platforms, libraries and tools for their construction [14].
Some prominent examples are Google’s Dialogflow1, Amazon’s
Lex2, IBM’s Watson3, Rasa4 or Pandorabots5, to name a few.

The quality of chatbots is critical for their success. In this respect,
some researchers have proposed techniques for testing chatbots [3,
5] and guidelines for their design [11]. However, most tools lack
static quality assurance mechanisms that can be used at design
time to assess desired chatbot properties. Likewise, there is a lack
of tools to compare, cluster and classify chatbots along design
features or conversation topics. Such tools would enable a better
understanding of the current chatbot landscape, the comparison
of chatbots across implementation technologies (e.g., Dialogflow,
Rasa) and provenance (e.g., open source repositories, proprietary
platforms), and the extraction of valuable data for chatbot analysis.

In order to address these challenges, we present the web platform
Asymob for chatbot measurement and clustering. The tool features
a repository where chatbots developed using different technologies
(currently Dialogflow and Rasa) can be uploaded. It offers a suite
of 20 metrics that measure aspects of design size, complexity, and
user experience. It also enables the clustering and comparison of
chatbots based on these metrics; as well as on conversation topics
extracted from the bot expected and issued phrases. The envisioned
users of our tool are chatbot designers and developers.

In the rest of the paper, Section 2 introduces the basic notions of
chatbots, Section 3 presents the Asymob platform and reports on a
preliminary evaluation, Section 4 compares with related work, and
Section 5 concludes with a summary and open research lines.

2 AN OVERVIEW OF CHATBOTS
Chatbots offer a conversational interface via natural language to
software services. They are typically powered by natural language
1https://dialogflow.com/
2https://aws.amazon.com/en/lex/
3https://www.ibm.com/cloud/watson-assistant/
4https://rasa.com/
5https://home.pandorabots.com/
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processing (NLP) technologies that provide good understanding
capabilities on sets of predefined topics, called intents. Intents are
expected conversation topics, which reflect the functionality of the
chatbot. Frequently, intents are defined via training phrases that
illustrate the different ways a user may approach the chatbot. For
example, a chatbot for a pizzeria may have two main intents, one
for ordering (expecting phrases like “A small margherita, please”)
and another for obtaining information about the available pizza
types (expecting utterances like “What pizzas are available?”).

Intents may define parameters, whose value is extracted from the
user utterances. For example, when ordering a pizza, the user should
specify the type of pizza (e.g., hawaiian) and the size (e.g., medium),
via phrases like “I’d like a medium hawaiian pizza”. Parameters may
be tagged as mandatory, in which case, the chatbot will request
their value if absent from the user phrase. Parameters are typed by
entities, which can be either user-defined (e.g., for pizza types) or
pre-defined (e.g., for numbers or dates).

Conversations are defined by means of flows of expected intents
and resulting bot actions. The latter normally involve an output
phrase (which may also include parameters), but may also include
other elements like images or widgets specific to the deployment
channel (e.g., buttons in the Telegram social network). In addition,
the chatbot may need to access an external service to manage the
intent. For example, in the pizzeria, the chatbot needs to access an
information system to store the order.

3 THE ASYMOB PLATFORM
Asymob is a web platform providing static chatbot quality assurance.
Next, Section 3.1 describes its architecture, Sections 3.2–3.4 detail its
functionality, and Section 3.5 reports on a preliminary evaluation.

3.1 Overview and architecture
Asymob6 permits uploading chatbots of heterogeneous technolo-
gies, which then are measured using a suite of 20 metrics. Asymob
provides statistics of the metrics across all chatbots in the repository.
In addition, users can query the repository to search for chatbots
within certain metric bounds and compare them against each other
according to their metric values. The platform also allows clustering
chatbots by metric values, or by the conversation topics as given
by the words used in training phrases, bot responses and entities.

Fig. 1 shows the architecture of Asymob. Its functionality is
offered via a web interface, which interacts with a service layer via
a REST API. The presentation layer is implemented in HTML and
JavaScript, and supports the interactive presentation of metrics and
clusters using the libraries Plotly7 and Cytoscape8.

The service layer (the Asymob core) implements the function-
ality related to measuring and clustering chatbots. This core has
an extensible design, which makes it easy to add new types of
metrics, clustering criteria and chatbot technologies. To support
the uniform handling of chatbots from heterogeneous technolo-
gies, the core relies on a neutral chatbot design notation called
Conga [12]. This way, our platform enables the contribution of
importers from specific chatbot implementation platforms into

6http://miso.ii.uam.es/asymobService
7https://plotly.com/
8https://cytoscape.org/
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Figure 1: Architecture of Asymob.

Conga, and the measurement and clustering are applied to Conga
models. Section 3.2 will provide more details about Conga and the
available importers. Then, Section 3.3 will present the current list
of supported metrics, built upon established technologies such as
TensorFlow9, CoreNLP10 and the Deep Java Library (DJL)11. Next,
Section 3.4 will focus on the chatbot clustering functionality, devel-
oped using Python libraries like NLTK12, SKLearn13 and SciPy14.

An additional backend layer provides persistence. This stores
the uploaded chatbots in the filesystem of the machine where the
Asymob core is deployed, and uses mongoDB15 for storing the
data produced in the service layer (i.e., the metric values and the
information required for conducting clustering).

3.2 Handling heterogeneous chatbots
Asymob provides static mechanisms to assess chatbot quality. Since
there are many chatbot development tools, Asymob implements
those mechanisms over a neutral, technology-agnostic chatbot de-
sign notation called Conga, and provides importers from different
technologies into Conga. This permits reusing the functionality of
Asymob with chatbots of heterogeneous technologies.

Conga [12] is designed based on an analysis of 15 popular chat-
bot tools, so its primitives can bemapped from/to all of them.Conga
supports the concepts explained in Section 2 (intents, parameters,
entities, conversation flows, bot actions). Intents can be defined via
training phrases. User-defined entities can be described as a list of
words with synonyms, via a regular expression, or providing a set
of strings and other entities. Possible chatbot actions include send-
ing text, images, HTTP requests to external services, or presenting
widgets like buttons.

Currently, there are importers from Rasa and Dialogflow chat-
bots into Conga. Rasa is a framework to develop chatbots using

9https://www.tensorflow.org/
10https://stanfordnlp.github.io/CoreNLP/
11https://djl.ai/
12https://www.nltk.org/
13https://scikit-learn.org/
14https://scipy.org/
15https://www.mongodb.com/
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Table 1: Metrics for chatbot designs.

Metric Description Type
Global metrics

INT # intents design size
ENT # user-defined entities vocabulary size
FLOW # conversation entry points conversation diversity
PATH # different conversation flow paths conversation complexity
CNF # confusing phrases bot understanding
SNT # positive, neutral, negative output phrases user experience

Intent metrics
TPI # training phrases per intent topic complexity
WPTP # words per training phrase topic complexity
VPTP # verbs per training phrase topic complexity
PPTP # parameters per training phrase topic complexity
WPOP # words per output phrase readability
VPOP # verbs per output phrase readability
CPOP # characters per output phrase readability
READ reading time of the output phrases readability

Entity metrics
LPE # literals per entity vocabulary complexity
SPL # synonyms per literal vocabulary complexity
WL word length readability

Flow metrics
FACT # actions per flow bot response complexity
FPATH # conversation flow paths conversation complexity
CL conversation length conversation complexity

Python, markdown and YAML. Dialogflow is a lowcode develop-
ment platform to create chatbots using a graphical web interface,
and the chatbots can be exported as JSON files.

Overall, users of Asymob can register on the platform or use a
generic user. When uploading a chatbot to the platform, the user
must specify the chatbot implementation technology (Dialogflow,
Rasa orConga), its visibility (private, so that only the owner can see
the chatbot, or public, to allow other users see it), and its version (to
enable version control for the chatbot). Then, the proper importer is
automatically applied to the chatbot, and both the original chatbot
and the resulting Conga model are stored.

3.3 Measuring chatbots
Asymob includes a metrics engine to analyse static characteristics
related to the correct design of chatbots. This provides a suite of 20
metrics, which we proposed in [6], covering both global design as-
pects and specific features concerning the design of intents, entities
and conversation flows. The metrics are summarized in Table 1 and
we explain them next.

Global metrics capture global properties of the chatbot. Specifi-
cally, Asymobmeasures the number of intents (INT), user-defined
entities (ENT), conversation entry points (FLOW), conversation
flow paths (PATH), confusing phrases (CNF), and output phrases
with positive, neutral or negative sentiment (SNT). Confusing
phrases refer to similar training phrases (i.e., with small semantic
distance) defined by different intents. They are problematic, since
a chatbot may confuse them and end up identifying a wrong
intent. Additionally, a chatbot that mostly outputs phrases with
negative sentiment may impact negatively the user experience.
Overall, global metrics are useful to assess the chatbot design size

(INT), the chatbot vocabulary size (ENT), the conversation diver-
sity and complexity (FLOW and PATH), and to report potential
problems in bot understanding (CNF) and user experience (SNT).

Intent metrics measure quality and complexity aspects of intents,
namely, the number of training phrases per intent (TPI), word-
s/verbs/parameters per training phrase (WPTP/VPTP/PPTP), word-
s/verbs/characters per output phrase (WPOP/VPOP/CPOP) and
average reading time of the output phrases (READ). Overall, these
metrics quantify the complexity and readability of phrases. Large
phrases are difficult to understand, are problematic in social net-
works with constrained message length (like Twitter), and may
require scrolling in mobile devices with small screens. For exam-
ple, high CPOP and READ values entail long reading times, which
may make users not to read fully the bot answers. This is even
more problematic for voice-based chatbots, since speaking takes
longer than reading [11].

Entity metrics analyse the user-defined entities, which represent
domain concepts. They are useful to obtain ameasurement of their
complexity and readability. Entity metrics include the number of
literals per entity (LPE), the synonyms per literal (SPL) and the
length of words (WL). These are indicators of the complexity of
the concepts and the width of the vocabulary of the chatbot.

Flow metrics are concerned with the complexity of the conver-
sation flows and the sophistication of the bot responses. They
comprise the number of actions per flow (FACT), the number of
conversation paths (FPATH) and the conversation length (CL).
When a chatbot is uploaded, Asymob computes its metrics and

displays their value in a table and also in interactive graphs that
compare these values with statistics of the chatbots in the repository.
Fig. 2 shows the graph for metric INT. The left bar displays statistics
of the chatbot repository, and the bar to the right displays the metric
value for the uploaded chatbot. We observe that the new chatbot
can be considered large, since it has 25 intents, while the average
number of intents of the chatbots is around 10 (with a median of
6). The computed metrics are persisted to speed up the generation
of statistics when new chatbots are uploaded, and to facilitate the
functionalities we explain next.

Figure 2: Displaying the value of metric INT.

First, Asymob offers statistics of the metrics of all chatbots in the
repository (average, minimum, maximum, median and 1st and 3rd
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quartiles). They are displayed as a table, as a graph, and side-by-side
with the metric values of a specific chatbot, as Fig. 2 shows.

Additionally,Asymob permits comparing a collection of chatbots
based on a set of metrics selected by the user. Fig. 3 illustrates this
functionality. The x-axis displays the selected metrics (ENT, INT
and FLOW in the figure), and the y-axis shows their value for the
selected chatbots from the repository (4 bots in this case). We can
see that mysteryAnimal stands out in the three metrics, meaning that
it has more vocabulary (entities), conversation alternatives (intents)
and conversation flows. This comparison can also be performed
for several versions of the same chatbot (if different versions were
uploaded into the repository) to reason about the evolution between
chatbot versions in terms of metrics.

Figure 3: Metric-based comparison of chatbots.

The platform also includes a metric-based chatbot search facility.
This permits users to specify the lower and upper limits for the
value of some metrics of interest, and Asymob displays the chatbots
in the repository with metric values within these boundaries. This
is useful to obtain sets of chatbots with certain characteristics. For
example, we might be interested in simple chatbots with few intents
and no defined entities, or complex chatbots with many intents and
complex conversation flows.

3.4 Clustering chatbots
Asymob supports the automated classification of chatbots based on
two disjoint criteria: metric values, or the chatbot vocabulary.
Metrics-based clustering is useful to identify groups of chatbots
with (dis)similar design features. For this purpose, the user can
select one or more metrics, and the chatbots become classified
based on the metric(s) values. For example, clustering by metric
INT (i.e., number of intents) would create groups of chatbots
with similar size complexity, whereas if the user performs the
clustering using metrics FLOW and PATH, then the chatbots would
be grouped according to the complexity of their conversations.
Technically, the platform implements the K-means algorithm for
clustering the chatbots based on the value of the selected metrics.
The user can also select the number of clusters to create (i.e., the
k-value), or otherwise, it is automatically computed using the
silhouette coefficient [16], as supported by SKLearn.
Asymob visualizes the resulting clusters in a table and graphically,
as Fig. 4 shows. The graph can display two or three dimensions,
so if the user selects more than three metrics, then the platform
reduces the number of dimensions using the principal component

analysis (PCA). The graphic represents each chatbot as a dot, and
uses a different colour for each cluster of chatbots. In Fig. 4, there
are two clusters of 3 and 26 chatbots.

Figure 4: Metrics-based clustering.

Vocabulary-based clustering classifies chatbots by their vocab-
ulary, which is useful to identify chatbots targeting analogous
topics. For example, chatbots for booking flights are likely to be
in the same cluster, since their vocabulary tends to be similar. We
foresee this clustering to be useful as a way to search for chatbots
by similarity to a given one, or by existing topics (represented
by clusters). We also envision using this clustering method as
a way to present and organize a large set of chatbots within a
repository.
For this kind of clustering, Asymob stores all the relevant words
that appear in the training phrases, chatbot responses and user-
defined entities of each chatbot, along with their frequency of
occurrence. Stop words such as prepositions, articles and conjunc-
tions are discarded. Then, the similarity of two bots is given by
the cosine-similarity of their bag-of-words vectors [10]. Note that
each chatbot has to be compared with all the other ones, which
becomes time-expensive as the repository grows. To reduce this
time,Asymob calculates this similarity as a backend process when
a chatbot is uploaded, and caches the result in a database.
In the front-end, users can select a set of chatbots and a similarity
threshold for the agglomerative clustering algorithm. The results
are shown in a table and an interactive hierarchical graph. The
first graph layer has a node per cluster, and clicking on a node
shows the chatbots it contains. Fig. 5 shows the chatbots within
a cluster. The width of the edges conveys the similarity of two
chatbots. Clicking on a chatbot displays its metrics on the right.

Figure 5: Vocabulary-based clustering.
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3.5 Preliminary evaluation
We have evaluated the cost of uploading a chatbot, which implies
its measurement and extracting its bag-of-words for clustering. The
latter requires updating a global vocabulary index when the chatbot
introduces new words. We found this to require constant time, in
the order of 100ms. At this point, a backend process compares and
caches the cosine similarity between the bag-of-words vector of
the uploaded chatbot and all the rest, which we found to grow
linear with the number of chatbots (around 99ms per bot). Being
a backend process, it does not affect responsiveness, but we are
currently working on its parallelization. In the future, we plan to
perform more detailed scalability experiments to detect possible
bottlenecks in our architecture and optimize where needed.

4 RELATED WORK
Most approaches to assess chatbot quality rely on testing. Some
development platforms (e.g., Dialogflow, Lex, Watson) integrate a
web chat console to test chatbots manually. There are also dedicated
testing tools like Botium [3] and OggyBug [7] which automate the
testing of chatbots built with different technologies. Still, developers
need to define concrete test conversation cases. To alleviate this bur-
den, Bottester [20] simulates the user interactions, and other works
generate challenging test user utterances automatically [4, 5, 17].
Compared to these works, Asymob provides complementary assess-
ment mechanisms to testing in the form of metrics that are collected
statically (i.e., without deploying the chatbot), with reduced effort
compared to testing, and which can reveal defects on several quality
aspects of the chatbot design.

Additionally, some development platforms (e.g., Dialogflow, Wat-
son, Bot Framework) provide chatbot analytics. This information
is collected dynamically when the chatbot is in production, while
Asymob targets the design time.

Another popular way to evaluate chatbots is by means of user
studies [9, 18]. These typically evaluate user satisfaction and chat-
bot performance, and require the recruitment and participation
of users [15]. Asymob complements these studies with chatbot
information that can be gathered automatically and inexpensively.

The support of static means for quality assessment – like those
in Asymob – is less frequent. Next, we discuss some exceptions. Di-
alogflow performs some chatbot validations (e.g., detecting intents
with similar training phrases) categorized by severity. Almansor
and Hussain [1] use fuzzy logic to detect inappropriate responses
based on the sentiment and length of utterances, and Gao et al. [8]
use machine learning to predict the popularity of chatbots based
on static metrics (e.g., number of intents, conversation flow length).
These two works use metrics supported by Asymob, showing that
our tool could enable the use of artificial intelligence for prediction.

Finally, our tool takes inspiration from services available in repos-
itories of other artefacts, like meta-models (e.g., MDEForge [2]).
However, to the best of our knowledge, Asymob is the first proposal
of a chatbot repository featuring metrics and clustering.

5 CONCLUSIONS AND FUTUREWORK
This paper has presented Asymob, the first platform enabling mea-
suring and clustering chatbots. The tool fills a gap on current prac-
tice, which is providing automatic means for assessing the quality

of chatbots prior to their deployment and dynamic testing. The tool
comprises a repository of chatbots, static metrics that can be homo-
geneously evaluated on heterogeneous technologies, and chatbot
clustering facilities based on chatbot metrics and vocabulary.

We are currently building converters from other technologies
(e.g., Pandorabots, Lex) into Conga. We are also improving the tool
with visualization mechanisms able to capture a large amount of
informations, e.g., heatmaps and dendograms for clusters. In the
future, we plan to use Asymob to evaluate open source chatbots
to get a panorama of their features and derive metric thresholds.
We also plan to exploit our clustering techniques to provide search
facilities over chatbot repositories. Finally, we would also like to
integrate Asymob’s services within chatbot development tools like
the Conga web IDE [13].
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Abstract—The advances in natural language processing and
the wide use of social networks have boosted the proliferation of
chatbots. These are software services typically embedded within a
social network, and which can be addressed using conversation
through natural language. Many chatbots exist with different
purposes, e.g., to book all kind of services, to automate software
engineering tasks, or for customer support.

In previous work, we proposed the use of chatbots for domain-
specific modelling within social networks. In this short paper, we
report on the needs for flexible modelling required by modelling
using conversation. In particular, we propose a process of meta-
model relaxation to make modelling more flexible, followed by
correction steps to make the model conforming to its meta-
model. The paper shows how this process is integrated within our
conversational modelling framework, and illustrates the approach
with an example.

Index Terms—Flexible Modelling; Conversational Agent; Nat-
ural Language Processing; Chatbots

I. INTRODUCTION

Model-driven engineering (MDE) [1] uses models in all
phases of software development. Models are usually built
with a domain-specific language (DSL). DSLs are defined
with an abstract syntax and a concrete syntax. The abstract
syntax in MDE is defined with a meta-model, where the
concepts of the domain are specified. The concrete syntax
is usually graphical or textual. The creation of models is an
activity that is not only performed by developers, but there
are scenarios in which it is necessary to involve the end users,
e.g., requirements modelling [2], to define touristic routes [3]
or create IoT applications [4]. However, end users normally
have low technical profiles and are not familiar with modelling
tools or DSLs.

In recent years, the advances in natural language (NL)
processing has boosted chatbots or conversational agents.
These programs interact with the user in NL and are usually
integrated into social networks. They are currently used to
automate tasks such as customer support [5], shopping as-
sistance [6], queries assistance [7] or education support [8].
Moreover, as social networks incorporate communication
channels, chatbots are perfect for collaborative tasks. Due to
the increase in the use of chatbots, several tools have emerged
that facilitate their creation, e.g., Dialogflow from Google1,

Work funded by the R&D programme of the Madrid Region (S2018/TCS-
4314) and the Spanish Ministry of Science (RTI2018-095255-B-I00).

1https://dialogflow.com/

IBM Watson2 or Amazon Lex3. These frameworks offer an
environment in the cloud, with a graphical interface that allows
the user to configure the conversation flow of the chatbot.
These frameworks work using machine learning to match
the user message with an intent. For this process, the intent
needs some training phrases and the key values or parameters
collected from the phrases. Also, it is necessary to define a
conversation flow, indicating the order of the intents.

In previous work [9], we proposed an approach to assign a
conversational syntax to a DSL and generate a conversational
agent from the DSL definition. This approach exploits the ad-
vantages of performing modelling tasks collaboratively using
NL in social networks. Using NL to build models facilitates
this activity to users unfamiliar with modelling. The use of
social networks eliminates the need to install and learn to
use a new tool for modelling. But making a conversational
agent manually from a meta-model is a time-consuming and
repetitive task that requires the design and creation of the
NL interpreter and a modelling service to take care of the
model creation. Therefore, we proposed to automate the task
of designing and creating the agent, and using a dynamic
modelling service based on a meta-model.

However, when using NL, people normally do not provide
all the information in their phrases. Moreover, we want to
let users express their ideas in a more free way, which can be
refined later. For this reason, in this work, we present a flexible
modelling approach – especially tailored to conversation-based
interaction – which allows to save incomplete or incorrect
information in a model, waiting for its later refinement.

The rest of this paper is organized as follows. Section II
overviews the approach to automate the creation of conversa-
tional agents for modelling. Section III presents our approach
to make modelling more flexible for chatbots. Section IV
shows examples of flexible modelling for NL. Section V shows
how the tool works in Telegram. Section VI compares our
approach with related research, and Section VII concludes.

II. CREATING MODELLING CHATBOTS

In [9], we developed an approach to create modelling agents
through NL in social networks, based on the DialogFlow
framework. Specifically, starting from a domain meta-model,
we automatically generate a conversational concrete syntax.

2https://www.ibm.com/watson
3https://aws.amazon.com/es/lex/
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Fig. 2. University meta-model

UAM :University

name: Universidad Autónoma 

de Madrid

There is a university with code 
UAM and name Universidad  

Autónoma de Madrid

Fig. 3. NL processing to create a University object

Figure 1 shows the creation process of a modelling agent
with our approach. First, the chatbot designer must provide
the domain meta-model (label 1). The NL syntax configurator
automatically generates a configuration model that will be
used to create the chatbot as well as the NL syntax to create
models (label 2). This configuration can be later extended
and modified by the designer, for example adding synonyms
with which the user can refer to elements of the meta-model
(classes, attributes and references). To create a model using
conversation, it is necessary to be able to differentiate the
objects; for this reason, this configuration needs to indicate
the identifier attributes of each class. It is also possible to
configure the instances of which classes can be outside of any
container object and which ones can not, that is, which objects
must be assigned to a container reference or which ones can
be directly contained in the model. The designer of the chatbot
typically reviews the configuration generated, adjusting it to
the needs of the domain.

Once refined, the configuration and the domain meta-model
are passed to an agent generator module (label 3). The agent

UAM :University

name: Universidad Autónoma 

de Madrid

Sofía García :Person

birthdate: 19/05/1989

Sofía García was born 
on May 19, 1989

UAM :University

name: Universidad Autónoma 

de Madrid

Fig. 4. Phrase that can not be handled due to the rigidity of the meta-model

generator generates the conversational flow, the intents, the
training phrases and the parameters automatically, saving this
job to the designer of the chatbot. Once the agent is ready,
it is automatically deployed in Dialogflow (label 4) and users
can interact with it through social networks (labels 5 and 6).

Finally, there is a modelling back-end that transforms the
user’s intent into model actions (label 7). This back-end is the
same for all the modelling agents, so it works generically and
needs the meta-model and the configuration.

Figure 2 shows a meta-model and the configuration provided
by the designer of the chatbot. The elements of configuration
are represented with stereotypes, that is, they are between
the symbols « and ». This example is a meta-model of a
University. The University class has a code, which is an
identifier (indicated with the stereotype «id»), a name and one
or more addresses. The University has also a list of professors
and students. Both Professor and Student inherit from Person,
which is abstract. Student has the attribute id as identifier,
while Professor and Person have name and surname. Student
has one or two tutors with type Professor, and Professors have
a department. Finally, while objects that have a University type
do not need to be contained in any other object (stereotype
«without container»), objects of type Person, Professor and
Student must have a container (stereotype «with container»).

Using the meta-model of the University in the process
of creating a chatbot, we obtain an agent able to interpret
sentences and generate University models. Figure 3 shows an
example of a user sentence and how the agent interprets it to
generate the model. The agent, after processing the sentence
(“There is a university with code UAM and name Universidad
Autónoma de Madrid”), infers that there is an object with type
University, that the attribute code has the value "UAM" and
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the attribute name is "Universidad Autónoma de Madrid"
When the agent processes the subsequent phrase “Sofía

García was born on May 19, 1989” (Figure 4), it infers
that there is an object of type Person with name “Sofía”
surname “García” and date of birth “05/19/1989”. However,
class Person is abstract, and so there is no way to save this
partial information that the user gave to the agent.

III. FLEXIBLE MODELLING WITH CHATBOTS

To allow the agent to save partial or incorrect information in
the model, we propose to relax the meta-model with which the
user will work. This relaxation takes place in the modelling
back-end of Figure 1.

Figure 5 displays the steps we follow to make modelling
with chatbots more flexible. The first step is to relax the meta-
model. To do this, the tool changes the domain meta-model
and the NL configuration as follows:

• Cardinality: It sets the cardinality of the features that are
not identifiers to [0..*]. The identifiers can not change the
cardinality because they can not be ambiguous, as users
need them to refer to the objects.

• Abstract classes: The abstract classes become concrete.
• With container class: All classes are allowed to be

outside of a container.
Then, users can build models according to the relaxed meta-

model (step 2), so that they can instantiate abstract classes,
or assign more values than permitted by the cardinality in a
feature. At any moment, the user can validate the model to
check its conformance to the original meta-model. The tool
notifies all errors found in the model to the users. This way,
users can fix the inconsistencies. The ways to resolve the
inconsistencies are:

• Cardinality: If a feature has less values than the lower
cardinality, it is necessary to add at least as many values
as indicated by the lower cardinality. If the feature has
more values than the upper cardinality, it is necessary
to remove values until the size is equal or less than the
upper cardinality.

• Abstract classes: There are several ways to retype an
object with an abstract type into a concrete type:

– The user specifies the type directly (e.g., “The Person
Sofía García is a Student”).

– The user sets a feature that only belongs to one of
the subclasses of the abstract class (e.g. “Sofía García
belongs to the Computer Science Department”).

– The user adds the object to a reference whose type
is a subclass of the abstract class (e.g. “Sofía García
is a UAM professor”).

• With container class: The objects must be added in a
container reference.

The last step is a model-to-model transformation. This
transformation is necessary due to the limitation of the Eclipse
Modeling Framework (EMF) [10], the technology we use
to model. EMF treats features with cardinality greater than
one and features with cardinality one in a different way
when serializing models. This way, to permit opening the
model created with the meta-model provided by the user, it
is necessary to perform the transformation.

Figure 6 shows the relaxed meta-model from Figure 2 with
the changes made shaded. The Person abstract class has been
transformed into a concrete class, the classes configured with
«with container» are configured with «without container» and
all properties that are not class identifiers are set cardinality
[0..*]. The Student features name and surname must be overri-
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Sofía García :Person
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name: [Universidad Autónoma 

de Madrid]

Fig. 7. Example of model creation in NL

den to increase the cardinality, since in Person and in Professor
their cardinality must be [1..1], since they are identifiers.

IV. EXAMPLE

Figure 7 shows an example of a message in NL and how
it is interpreted to generate the model according to the meta-
model of Figure 6. From the message “Sofía García was born
on May 19, 1989” the agent can infer that there is a Person
with name Sofía, her surname is García and her date of birth is
May 19, 1989, but it does not have information to classify her
as a Professor or as a Student. With our flexible modelling
approach the agent creates a Person object to save all the
information provided by the user, and waits for the rest.

Figure 8 displays several ways to make the object type
concrete. The most direct one is that the user says the type
explicitly (Figure 4.b) with the phrase “Sofía García is a
Professor”. This results in an object retyping, which preserves

Sofía García :Professor

birthdate: [19/05/1989]
department: [”Computer 

Science”]

UAM :University

name: [Universidad Autónoma 

de Madrid]

a) Sofía García teaches at Universidad 
Autónoma de Madrid

c) Sofía García belongs to Computer 
Science Department

b) Sofía García is a Professor

professors

UAM :University

name: [Universidad Autónoma 

de Madrid]

Sofía García :Professor

birthdate: [19/05/1989]

UAM :University

name: [Universidad Autónoma 

de Madrid]

Sofía García :Professor

birthdate: [19/05/1989]

d) Sofía García’s supervisor is 
Daniel Pérez

UAM :University

name: [Universidad Autónoma 

de Madrid]

Daniel Pérez :Professor

1 :Student

birthdate: [19/05/1989]
name: [Sofía]
surname: [García] 

tutors

Fig. 8. Four examples to type a Person object

Fig. 9. Example of model creation in NL

existing attributes and links. However, there are other ways to
concretize the type. For example when the object is assigned
to the reference professors with type Professor (Figure 4.a),
when the user sets feature department, which belongs to
Professor (Figure 4.c) or tutors, which belongs to Student
(Figure 4.d). Moreover, the phrase “Sofía García’s supervisor
is Daniel Pérez” creates Daniel Pérez as Professor because
only professors can be supervisors of students.

V. TOOL SUPPORT

Figure 9 displays the interaction of a user with a col-
laborative modelling agent for the University meta-model in
Telegram. Telegram is a social network based on instant
messaging. Users can communicate in chats that can be private
(only two users exchanging messages) or groups (more than
two users in the chat). Chatbots work almost the same as



the rest of the users in the chats. On top, the figure shows
a model with one University with code “Harvard”, name
“Harvard University” and address “Cambridge, Unite State
of America”. There is a Professor with name and surname
“Jennifer Smith”, birth date “19/05/1980”, and department
“Computer Science”. Finally, there is a Person with name and
surname “Andy Jackson”, with birth date “1/11/1999”. When
the user validates the model (“/validate”), the agent sends
back a list with all errors. The first error says that a Person
object must be contained in a reference. The second says that
the object “Andy Jackson :Person” cannot be Person because
Person is an abstract class. Then, the user modifies the model
using NL. The sentence “Andy Jackson studies in Harvard”
indicates that Andy Jackson is a Student but students must
have an id, so the bot asks the id to the user. From now on,
Andy Jackson is identified by this id. The next phrase, “The
supervisor of 202465 is Jennifer Smith”, links Andy Jackson
with Jennifer Smith through the reference tutors. Finally, the
last validation shows there is no error in the model.

A video showing the interactions of two users with another
modelling agent can be found at https://saraperezsoler.github.
io/ModellingBot/.

VI. RELATED WORK

There are many efforts in the field of requirements en-
gineering on creating domain models (class diagrams) from
textual requirements [11], [12]. While we also have the need
to interpret NL, our approach is based on conversation, while
the model we create is domain-specific.

Domain-specific modelling using NL or voice is a novel ap-
proach that is recently receiving a lot of attention. For example,
in [13], the authors propose an approach called ModelByVoice,
which supports voice recognition and speech synthesis for
editing models. The tool assumes a diagrammatic concrete
syntax for models, and editing actions are generic commands.
For instance, creating any kind of object is done through the
command “create node”, after which the tool prompts the user
about the node type and its attributes. VoiceToModel [14] is
similar but for goal-oriented models, object models and feature
models. Compared to ModelByVoice, it supports a smaller set
of modelling languages, but their commands are less generic
(e.g., there is a create command for each object type) though
still rigid. Instead, our focus is to synthesize conversational
syntaxes for DSLs that become as natural as possible, by using
NL instead of commands.

We have seen that modelling using conversation benefits
from a more flexible approach to modelling, which tolerates
inconsistencies. Approaches to flexible modelling, based on
the parsing of drawings, benefit from techniques for inferring
types as well [15], just like we do. Some requirements for
flexible modelling approaches were proposed in [16]. For
example, the need for a configurable conformance relation,
and modelling processes guiding in the transition from infor-
mal to formal models. However, these requirements targeted
traditional modelling tools, while here we use modelling using
conversation.

VII. CONCLUSIONS

In this paper, we have argued that modelling using chatbots
would profit from adding some flexibility to modelling. In
particular, we have proposed a meta-model relaxation process
to give users more freedom when building models in NL, e.g.,
allowing the creation of abstract objects or the assignment of
an arbitrary number of values to features. Then, a correction
process converts the relaxed model into an instance of the orig-
inal meta-model, reporting detected errors. These ideas have
been implemented in our conversational modelling platform.

We are currently investigating further aspects which may
bring flexibility to modelling through NL. For instance, our
modelling chatbots are currently limited to error reporting,
but we plan to extend them so that they can suggest to the
user possible fixes in NL. We also foresee the possibility to
customise the modelling process depending on the domain.
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