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ABSTRACT

In this paper we study the applicability of a set of supervised machine learning (ML) 
models specifically trained to infer observed related properties of the baryonic component 
(stars and gas) from a set of features of dark matter only cluster-size halos. The training set is 
built from The Three Hundred project which consists of a series of zoomed hydrodynamical 
simulations of cluster-size regions extracted from the 1 Gpc volume Multidark dark-matter 
only simulation (MDPL2). We use as target variables a set of baryonic properties for the intra 
cluster gas and stars derived from the hydrodynamical simulations and correlate them with 
the properties of the dark matter halos from the MDPL2 N-body simulation. The different 
ML models are trained from this database and subsequently used to infer the same baryonic 
properties for the whole range of cluster-size halos identified in the MDPL2. We also test the 
robustness of the predictions of the models against mass resolution of the dark matter halos and 
conclude that their inferred baryonic properties are rather insensitive to their DM properties 
which are resolved with almost an order of magnitude smaller number of particles. We conclude 
that the ML models presented in this paper can be used as an accurate and computationally 
efficient tool for populating cluster-size halos with observational related baryonic properties 
in large volume N-body simulations making them more valuable for comparison with full sky 
galaxy cluster surveys at different wavelengths. We make the best ML trained model publicly 
available. 
Key words: cosmology: theory – cosmology:dark matter – cosmology:large-scale structure 
of Universe – methods: numerical – galaxies: clusters: general –galaxies: halos 

INTRODUCTION of DM is now widely accepted by the scientific community and 
strongly supported by modern cosmological theories, it has not 

Galaxy clusters are the largest gravitationally bound objects of been directly detected yet. To study galaxy clusters, we have 
the Universe and constitute one of the best cosmological probes therefore to focus on their baryonic component, which represents 
to constrain cosmological parameters of the Universe. The main the remaining 15 per cent of the mass. It is composed by the hot 
component of galaxy clusters is dark matter (DM), which accounts gas of the Intra Cluster Medium (ICM, around 10-15 per cent of 
for 85 per cent of the total mass (for a full review see e.g. Allen 
et al., 2011; Kravtsov & Borgani, 2012). Although the existence 
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the total cluster mass) and stars (less than 5 per cent of the mass). 

Numerical simulations play a fundamental role to study the 
properties of galaxy clusters. In the simplest scenario, N-body sim-
ulations can easily describe the dark-matter component of clusters, 
which is governed only by gravity; nowadays it is computationally 
possible to perform very large cosmological simulations, up to a few 
Gpc3, e.g. MillenniumXXL (Angulo et al., 2012), MICE (Fosalba 
et al., 2015), MultiDark (Klypin et al., 2016), Dark sky (Skillman 
et al., 2014), OuterRim (Habib et al., 2016), FLAGSHIP (Potter 
et al., 2017), Uchuu (Ishiyama et al., 2021), BACCO (Angulo et al., 
2021) and UNIT project (Chuang et al., 2019), which include thou-
sands of galaxy clusters. Nevertheless, when aiming to describe 
the baryon component of clusters, due to the complex physics in-
volved in the processes of cluster formation, radiative hydrodynamic 
numerical simulations have to be used. These simulations are com-
putationally very expensive so this puts strong limitations to the 
size of the computational volumes. Examples of state-of-the art of 
such simulations are: Illustris (Vogelsberger et al., 2014), Ea-
gle (Schaye et al., 2015), Horizon-AGN (Chisari et al., 2016), 
Magneticum (Dolag et al., 2016) or BAHAMAS (McCarthy et al., 
2018). Hydrodynamical simulations are essential to calibrate mass 
proxies and to study the systematics affecting observational mea-
surements. They are also essential to deeply understand the forma-
tion and evolution of clusters of galaxies and all their gas-dynamical 
effects. For this reason, numerical simulations have been a powerful 
tool to guide galaxy clusters observations for more than 20 years 
(Evrard et al., 1996; Bryan & Norman, 1998). 

In an ideal scenario one would need to have a large sample of 
simulated galaxy clusters with enough numerical resolution, both 
in mass and in the gravity and pressure forces. This high resolution 
would allow to accurately resolve the internal substructures and to 
obtain a detailed modelling of the most relevant physical processes. 
The best way to achieve this would be by simulating large cosmo-
logical boxes containing up to tens of thousands of galaxy clusters. 
Unfortunately, due to the large computational effort demanded by 
these simulations, one needs to find a compromise between their 
three main components: volume size, mass resolution and physical 
processes included. A possible solution to the computational prob-
lems related with scalability of present-day hydrodynamical codes 
is to proceed with the so-called ‘zoom’ simulations, such us the 
MUSIC1 simulation (Sembolini et al., 2013), the Dianoga clusters 
(Planelles et al., 2013), Rhapsody-G (Wu et al., 2015), MACSIS 
(Barnes et al., 2016), Cluster-EAGLE (Barnes et al., 2017), hy-
drangea (Bahé et al., 2017) clusters and The Three Hundred 
(The300)2 simulation project (Cui et al., 2018). Zoom simulations 
are performed mimicking the observations, by creating a catalogue 
of resimulated galaxy clusters that are extracted from low-resolution 
N-body simulations. The regions containing clusters of galaxies are 
then resimulated at very high resolution, adding gas physics in the 
resimulated areas and keeping the rest of the box at low resolution 
in order to reproduce the same gravitational evolution. 

An alternative approach to hydrodynamical simulations to de-
scribe the gas and stellar properties of galaxy clusters, is to use 
Semi-Analytic Models (SAMs), such us GALACTICUS (Benson, 
2012), SAG (Cora et al., 2018), SAGE (Croton et al., 2016) and 
GALFORM (Lacey et al., 2016). In this approach, the numerous 
complex non-linear radiative physical processes associated to the 
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gas-star components are modelled using a combination of analytic 
approximations and empirical calibrations of many free parameters 
against a set of observational constrains (see e.g. Baugh (2006) for 
a review). Nevertheless, SAMs are also computationally expensive 
since most of them are based on the information provided by merger 
history of each individual dark matter halo. A complementary ap-
proach is the use of phenomenological models to derive physical 
properties of the ICM as in Zandanel et al. (2018) and Osato & Na-
gai (2022). Describing the gas physics in simulated galaxy clusters 
requires therefore a big computational effort and impose a com-
promise between numerical resolution and size of the cosmological 
volume to simulate. 

The main goal of supervised Machine Learning (ML) is to gen-
erate models that can learn complex relationships between input and 
output variables from high-dimensional data that can later be used 
to make predictions on unseen data. In this scenario, ML could offer 
a powerful alternative to infer some fundamental information on the 
main properties (e.g. gas and star masses, gas temperature, etc) of 
the baryon component of galaxy clusters, without the large com-
putational cost required by hydrodynamical simulations or SAMs. 
Applications of ML to find a mapping between hydrodynamical 
and N-body simulations have been already presented in previous 
works. Firstly, in Kamdar et al. (2016), a promising technique to 
study galaxy formation using numerical simulations and ML was 
presented; Jo & Kim (2019) estimated galactic baryonic proper-
ties mimicking the IllustrisTNG simulation (Nelson et al., 2019); 
Wadekar et al. (2021) generated neutral hydrogen from dark matter; 
Bernardini et al. (2022) predicted high resolution baryon fields from 
dark matter simulations; Moews et al. (2021) used hybrid analytic 
and machine learning model to paint dark matter galactic halos with 
hydrodynamical properties; Lovell et al. (2022) explore the halo-
galaxy relationship in the periodic EAGLE simulations, and zoom 
C-EAGLE simulations of galaxy clusters; and McGibbon & Khoch-
far (2022) consider a ML model that is built using the extremely 
randomised tree (ERT) algorithm and takes subhalo properties over 
a wide range of redshifts as its input features for galaxy scales. 
Recently, The CAMELS collaboration (Villaescusa-Navarro et al., 
2022) has released results from almost ten thousands simulations 
(both hydrodynamical and N-body) with different cosmologies and 
baryon physical models that are an invaluable tool for training cur-
rent and future Artificial Intelligence algorithms that will be very 
useful for galaxy formation studies. Unfortunately, given the box 
sizes, the number of cluster-size objects is poorly represented in 
these simulations. 

The purpose of this study is to explore the applicability of 
ML techniques to generate baryon cluster properties from DM-only 
halo catalogues mimicking the results from The Three Hundred 
hydrodynamical simulations. More precisely, we use the properties 
of the cluster-sized halos extracted from parent dark matter only 
full box simulation MDPL2 as the features of our dataset. Then 
we collect several baryon properties of the objects that have been 
re-simulated with radiative processes and hydrodynamics as targets 
(the predicted variables) of the ML models. Our work differs from 
previous studies in that the baryon properties are extracted from 
‘zoom’ MDPL2-based simulations and therefore, we have paired 
one to one the objects corresponding to the full N-body only simu-
lations with their hydrodynamical counterparts. As explained below, 
The300 simulations corresponds to spherical regions centred on the 
324 most massive clusters found in the MDPL2 box. But there 
are more cluster-size halos found within each region with lower 
masses. The masses of the cluster-size catalogue of hydrodynami-
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cal simulated objects we are using ranges from ∼ 1013 ℎ−1M up 
to ∼ 1015 ℎ−1M . 

The article is structured as follows: In § 2, we describe how the 
training dataset is generated using The300 and the MDPL2 simu-
lations. In § 3, we explain the different ML algorithms used in this 
work and the training setup. We also study the feature importance 
and selection of our feature space. In § 4, the main results for this 
work are shown, including an analysis of the performance of the 
ML models and their dependence on mass resolution of the sim-
ulations. In § 5, we study the scaling relations extracted from the 
new ML-generated catalogues and finally in § 6, we draw our main 
conclusions and propose possible future studies. 

2 THE TRAINING DATASET

In order to create the database for training the ML models, we 
use the MDPL23 simulation, which has been run using the cosmo-
logical parameters measured by the Planck Collaboration (Planck 
Collaboration et al., 2016). The MDPL2 simulation consists of a 
periodic cube volume of comoving length 1 ℎ−1 Gpc containing 
38403 dark-matter particles each with a mass 1.5 × 109 ℎ−1M . 

To build this training dataset, we need first to identify and 
extract from the MDPL2 simulation the same cluster objects that 
were used to run zoomed The300 hydrodynamical simulations. We 
then select the main properties of the dark matter clusters and asso-
ciate them with the baryonic properties extracted from their The300 
hydrodynamical counterparts. 

2.1 MDPL2: Dark Matter input variables

In order to identify the dark matter halos and measure their in-
ternal properties in the MDPL2 N-body simulation we have used 
the Rockstar halo finder (Behroozi et al., 2012), complemented 
with additional information based on the halo mass accretion his-
tory from the Consistent Halo Merger Trees analysis (Behroozi 
et al., 2013). We have extracted a total of 26 relevant physical Rock-
star + Consistent Trees variables4 (masses at different radii, ve-
locities, symmetry factors, properties related with mass accretion 
history, etc) to create our dark matter catalogue. In addition, we 
have also considered the scale factor �(�) of clusters as an input 
variable. Furthermore, we have introduced a cut-off in halo mass 
such that log(�/( ℎ−1M )) ≥ 13.5 and redshift ≤ 1.03. 

In Fig. 1, we show the Spearman correlation matrix of the 26 
Rockstar variables and the scale factor �(�). These variables are 
ordered using a hierarchical clustering algorithm based on Ward’s 
linkage on a condensed distance matrix. We used the Python im-
plementation of this algorithm from SciPy (Virtanen et al., 2020). 
We can easily identify 5 groups in the correlation matrix. The first 
group (variables 0 to 12) corresponds to masses and velocities at 
different radii. In a second group, different ellipticity shape factors 
(from 13 to 16) are included. Variables from 17 to 21 corresponds to 
the scale radius, the ratio between the kinetic and potential energy 
and the offsets between density peak and centre-of-mass, which are 
directly related to the dynamical state of the cluster halos. The next 
group of variables (22 and 23) correspond to the dimensionless spin 
parameters of the cluster. Finally, variables from 24 to 26 represent 

3 www.cosmosim.org 
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the scale factor (redshift) and the time evolution of mass accretion. 
As can be seen in the figure, feature variables inside the same block 
are strongly correlated among them and they are weakly, or not 
correlated to variables inside other blocks. This might imply that 
selecting more than one feature belonging to the same block could 
not add any new predictive information. This is studied in detail 
in section § 3. A more detailed description of the selected feature 
variables can be found in the Appendix A. 

2.2 The300: baryonic output variables

Subsequently, for a subset of the MDPL2 cluster halos, we need 
to have their baryonic properties. For this purpose, we have used 
the results of The300 project, which has re-simulated spherical re-
gions of radius 15ℎ−1Mpc centred around the 324 most massive 
clusters found in the MDPL2 simulation at � = 0. These regions 
were then mapped back to the initial conditions and their particles 
were split into gas and dark-matter, while the rest of the particles 
in the remaining box were re-sampled into different levels of lower 
resolution and larger masses. With this zoom-in technique, we en-
sure that the subsequent gravitational evolution will reproduce the 
same objects in the high resolution area while we minimise the 
effects of contamination of low resolution particles from external 
regions due to mass segregation. In any case, we checked that all 
the clusters used in this work are free from contamination of low 
mass resolution particles at least within their virial radii. 

The300 project has produced different versions of hydrody-
namical simulations from these initial zoomed conditions which 
include different baryonic physics modules: radiative cooling, star 
formation and Supernovae Feedback using the Gadget-MUSIC 
SPH+TreePM code (Sembolini et al., 2013) and newer versions 
that include feedbacks from Super Massive Black Holes: Gadget-
X (Murante et al., 2010; Rasia et al., 2015), GIZMO-SIMBA (Davé 
et al., 2019; Cui et al., 2022). 

However, in this work, we only make use of the Gadget-X runs. 
The halos in these simulations are identified and analysed with the 
Amiga Halo Finder (AHF) (Knollmann & Knebe, 2009), which is 
more suitable than Rockstar for simulations with multiple particles 
species (i.e. dark matter particles, gas, stellar particles and Black 
Holes). From the information contained in the AHF catalogues, we 
have collected the following baryon properties: 

• The total gas mass �gas inside a spherical volume with a 
mass density that is 500 times larger than the critical density of the 
Universe at each redshift. The radius of this sphere is denoted as 
�500. 
• The Stellar mass �star inside �500. 
• The gas temperature �gas computed as the mass weighted tem-

perature, inside �500Í 
���� � ∈�500

� = Í , (1)
�� �∈�500 

where �� and �� are respectively the temperature and mass of the 
gas particle. We additionally made a cut of � > 0.3keV to exclude 
low-temperature gas particles. 

• The X-ray Y-parameter �X defined as�gas×�gas, which related 
with the total thermal energy of the gas and it has been shown that 
it is a good proxy of the total cluster mass (Kravtsov et al., 2006). 
Note that this quantity can be derived from others. However, we 
prefer to treat it as an independent target, i.e the ML models are also 
trained to predict �X as one of the target variables. 

• The integrated Compton-y parameter �SZ over �500 given by 
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the Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zeldovich, 1972). 
Particularly, the integrated value �SZ is computed from Compton-y 
parameter maps estimated as in the following:∫ 

�T�B
� = �e�e�� , (2)

�e�2 

where �T is the Thomson cross section, �B is the Boltzmann con-
stant, � the speed of light, �e the electron rest-mass, �e the electron 
number density, �e is the electron temperature and the integration 
is done along the observer’s line of sight. Assuming �� = ����, 
Eq.(2) is computed in our simulated data as in Sembolini et al. 
(2013) and Le Brun et al. (2015): ∑ �T�B
� = �i�e,i� (�, ℎ�) . (3)

�e�2�� i 

Note that here we have used the number of electrons in the gas 
particles �e given that �e = �e/�� . Moreover, � (�, ℎi) is the same 
SPH smoothing kernel as in the hydrodynamical simulation with 
smoothing length ℎi. The �-maps are generated with the centre on 
the projected maximum density peak position of the halo. Each 
image has a fixed angular resolution of 500 that is extended to at 
least �200 in all the clusters. The clusters at � = 0 are placed at 
� = 0.05 to generate the mock images while the clusters at higher 
redshifts simply use its original value from the simulations. We 
then integrate the Compton-y map up to �500 using only the z-
plane projection. Since the dataset is large, the effect of projections 
is negligible. Note that this approach of estimating �SZ gives us 
the cylindrical Compton-y parameter �500,cyl. In practice, �500,cyl 
is related to the corresponding spherically integrated value �500,sph
such that�500,cyl/�500,sph ' 1.2 as given by the Arnaud et al. (2010) 
pressure profile and also compatible with results from numerical 
simulations (Sembolini et al., 2013). 

Note that star forming gas particles with ��� > 0.1� yr−1 

are also excluded in the calculation of �gas �X and �SZ. This is 
commonly adopted in simulations with a multiphase subgrid physics 
model in which gas particles are composed of hot and cold gas 
components (see e.g. Borgani et al. (2004)). These star forming gas 
particles are poorly modelled as they are mostly made by the neutral 
cold gas component which should not emit any X-rays or contribute 
to the total electron thermal pressure.5 

2.3 The Final Training Dataset

After defining our input and output variables, we finally match one-
by-one the clusters between the two simulations that fulfil these two 
conditions for the relative shifts between the cluster centres and the 
halos mass differences: 

distance(CMDPL2,CThe300) < 0.4 × �200,The300 , (4) 

�MDPL2,200 − 1 < 0.1 . (5)
�The300,200 

Here, �MDPL2 and �The300 stand for the centre of mass of the 
clusters while �MDPL2,200 and �The300,200 stand for the mass in-
side a sphere of radius � = �200 for each simulations (between DM 

5 We have verified that changing to ��� > 0 makes no difference in the 
results due to a very small number of star forming gas particles in galaxy 
clusters(see Li et al., 2020). 

only Rockstar catalogue and the AHF catalogue respectively). Due 
to both the baryon effect (see Cui et al., 2012, 2014, for example) 
and to different algorithms used by the halo finders, it is not possible 
to determine with all certainty that all the halos are exactly matched. 
Notice that the centre difference can be as high as 0.4�200. How-
ever, with this restrictive selection criteria, only the true/very close 
counterparts are selected. In this way, we finally provide the baryon 
properties for the matched MDPL2 clusters using the corresponding 
The300 objects. 

After this procedure, our dataset is finally composed of 49540 
different objects. Note that all the 33 halo catalogues available from 
� = 0 to � = 1.03 in the two simulations have been considered. Only 
1264 objects correspond to clusters at � = 0, the rest of them are the 
progenitors of the same objects at different redshifts. The number 
of objects as a function of their mass and redshift can respectively 
be found in Fig. 2 and Fig. 3. Our final dataset is composed of 27 
DM input variables and 5 baryon output variables. These are the 
features and targets which are used for training and testing the ML 
algorithms described in the next section. 

3 MACHINE LEARNING ALGORITHMS:
DESCRIPTION AND TRAINING

In this section, we first describe the machine learning algorithms 
used in this work and the training setup. Then, we study the impor-
tance of our feature variables in order to reduce the dimensionality 
of our dataset. 

3.1 Machine Learning Algorithms and Training Setup

In order to estimate the baryon properties of the dark matter only 
clusters, several effective supervised machine learning methods 
have been employed. We particularly focus on four methods: random 
forest (RF; Breiman, 2001), extreme gradient boosting (XGBoost; 
Chen & Guestrin, 2016), dense Neural Networks or Multilayer Per-
ceptron (MLP; Schmidhuber, 2015) and Natural Gradient Boosting 
for Probabilistic Prediction (NGBoost; Duan et al., 2019). RF and 
XGBoost have shown to be among the best machine learning meth-
ods for tabular data (i.e. without a known grid-like topology, such 
as images) (Fernández-Delgado et al., 2014; Bentéjac et al., 2021; 
Zhang et al., 2017). Convolutional deep neural network models have 
shown spectacular performance for image-based and structured data 
in general (Schmidhuber, 2015). However, for tabular data, as is the 
case of this study, their performance is poor (Zhang et al., 2017). 
Notwithstanding, deep dense networks can perform well in these 
scenarios, so we will also consider these models. 

Random Forest and XGBoost are ensemble models composed 
of decision trees. During training, these algorithms build hundreds 
of decision trees from a single training dataset. The process for 
building these trees in random forest and XGBoost, is based on 
quite different ideas. Although, the objective in both cases is to 
build decision tree models that complement each other in order to 
obtain a classification/regression model better than any of its parts 
(Dietterich, 1998). 

Random forest rely on stochastic techniques to generate many 
random solutions to the problem at hand. In order to generate each 
single tree, the random forest algorithm first generates a new dataset 
by extracting at random � instances of the training data of size � 
with replacement (i.e. bootstrap sample). This bootstrap sample is 
used to train a decision tree in which the best split at each node of 
the tree is selected from a random subsample of features of the data. 

MNRAS 000, 1–20 (2022) 
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Figure 1. Spearman correlation coefficient matrix for the (feature) variables of the Rockstar identified clusters. The variables are organised in different 
blocks according to their correlation values. Variables for each block are denoted in the x-axis in brackets: [1,...,12] are mass and velocity variables, [13,...,16] 
correspond to ellipticity, [17,...,21] are related to the dynamical state of the cluster, [22,23] represent dimensionless spin parameters and [24,25,26] are related 
to the scale factor and time evolution of mass accretion. Note that this matrix is symmetric with respect to the diagonal. Each variable description can be found 
in Appendix A. 
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Figure 2. Mass distribution of the The300 Galaxy clusters analysed in this 
work 

Generally, the size of the random subset of features is of the order √
of � or log2 (�), with � the number of features of the problem. 
The final output of the random forest for a given instance is obtained 
as the mode or mean of all trees for classification and regression 
respectively. In addition, since the randomisation process to build 

Figure 3. Redshift distribution of The300 Galaxy clusters analysed in this 
work 

the trees is independent, the process of building a random forest can 
be easily parallelised. 

On the other hand, XGBoost relies mainly in a gradient de-
scend approach although it also incorporates stochastic techniques 
to further increase its performance. XGBoost is an additive model 
based on Gradient Boosting. The output of an additive model is 
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the sum of the outputs of its components. In order, to create this 
ensemble, regression trees are trained sequentially to approximate 
the gradient of the loss function of the data in the previous iter-
ations. Hence, each new tree learns the remainder of the concept 
not learned in previous steps. XGBoost also includes a penalisation 
term in the number of leaves of the trees to avoid over-fitting. In 
addition, XGBoost incorporates random feature selection, bootstrap 
sample and several other randomisation features. 

In order to perform a fair comparison among algorithms and 
also to obtain good estimations of the performance of the different 
algorithms, we carried out the following experimental procedure 
based on K-fold cross-validation and grid-search. K-fold cross-
validation consist in splitting the data into K disjoint sets of ap-
proximately equal size and then to use iteratively � − 1 sets for 
training the model and the remaining set for validation. The main 
experiment is performed using the same 10-fold cross-validation for 
the prediction of the five baryonic properties analysed in this study 
using the Rockstar halo catalogue from The300 hydro clusters. 
The steps for each of the 10 partitions of the cross-validation are: 

(i) Find the best hyper-parameters of each of the tested algorithms: 
RF, XGBoost and MLP. For that, a grid-search with 5-fold cross-
validation within the train dataset only was performed. The values 
for the grid of hyper-parameters are shown below; 
(ii) The best set of hyper-parameters for each method were used to 
train a single model using the whole training set; 
(iii) The models were validated using the test set; 

In order to generate dark matter only halo catalogues with hydrody-
namic properties, the 10 trained models from each of the 10-folds of 
the cross-validation were used. The hydrodynamic features of each 
halo are then computed as the average of the inferred values from 
these 10 models. 

For the grid search the set of values of the tested hyper-
parameters for each of the analysed methods are: 

• Random Forest: 

– The number of trees in the forest: ‘n_estimators’=[100,500] 
– the number of features to consider when looking for the best 

split ‘max_features’ : [ round(�1/2), round(‘log2 (�)’)] 

• XGBoost: 

– ‘n_estimators’= [100,500] 
– Maximum depth of a tree: 
‘max_depth’= [5,6,10,14,15,16,20] 
– Minimum loss reduction required to make a further partition 

on a leaf node of the tree: 
‘gamma’ = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] 
– Step size shrinkage used in update to prevent overfitting: 
‘eta’ = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] 

• MLP: 

– ‘hidden_layer_sizes’ = [(8,),(20,),(100,),(8,8),(8,20,8), 
(20,20,20),(100,100,100), (20,20,20,20),(100,100,100,100)] 

– ‘activation’=‘relu’, 
– ‘solver’=‘adam’, 
– ‘learning_rate’=10−4 

Furthermore, MLP has been trained for 500 epochs or until the 
training loss is constant during 20 epochs. For more information of 
these hyper-parameters, we refer the reader to the Python libraries 
used throughout this work: for RF and MLP we have used scikit-

learn6 (Pedregosa et al., 2011) and for XGBoost its own library7. 
For the hyper-parameters not considered in the search grids, their 
defaults values were used. 

In order to train these models the mean squared error of the 
logarithmic values of the targets (logarithmic MSE) was used as the 
loss function: ∑� 1
MSE = (log �true,� − < log �pred,� |�� >)2 , (6)

� 
�=1 

where �true,� is the true value of the target extracted from the The300 
simulation and <log �pred,� |�> is the predicted target’s value by our 
model. Note that, since the model is trained with log � as targets, 
then the prediction of the model is directly the logarithm of the 
given target. In addition, � corresponds to the number of objects 
in the dataset (e.g. train, validation and test set) where the MSE is 
computed. For numerical reasons, we have also used the logarithmic 
value of the features during the training process. 

Also note that these models infer only one prediction for every 
input value �� . These predictions are considered as the mean pre-
dictions without their statistical uncertainties. Moreover, Stiskalek 
et al. (2022) showed that by accounting for a proper modelling of 
uncertainties ML models can successfully mimic the statistics of 
the data, i.e. not only the mean but also the scatter. Moreover, mod-
elling uncertainties using ML algorithms is a topic of recent studies 
(e.g Kodi Ramanah et al., 2020, 2021; Ho et al., 2021; Eisert et al., 
2022; de Andres et al., 2022) 

In order to address this issue we apply a generalisation of 
gradient boosting for probabilistic modelling: NGBoost. NGBoost 
is a gradient boosting algorithm as XGBoost, but that is based 
on assuming a particular parametric (�) probability distribution 
�� (� |�). Thus, the loss function can be written in terms of these 
parameters as the negative log-likelihood: 

L(�, �) = − log �� (�). (7) 

In our work we assume a Gaussian distribution with parameters 
mean �� =< log �pred,� |�� > and standard deviation �� . Therefore, 
the last equation can be written as !∑� 1 (log �true,i− < log �pred,� |�� >)2 
LNGBoost (�, �) = ln �� 

2 + . 
� 2�2 

�=1 � 

(8) 

Note that for every input example NGBoost predicts a mean value 
� and its scatter which is given by the width of the Gaussian �. 
NGBoost also implements the generalised natural gradient when 
minimising the loss function. 

In order to tune NGBoost, we follow a procedure similar to the 
one proposed in the original paper. For every K-fold, we find the best 
value of the number of estimators by cross-validation. Moreover, 
for all the experiments the base learners are decision trees with a 
maximum depth of three levels and the learning rate is set to 0.01. 
In summary, the hyper-parameters for NGBoost are: 

• NGBoost 

– ‘n_estimators’= [best out of a maximum of 3000] 
– ‘max_depth’= 3 
– ‘learning_rate’= 0.01 

6 https://scikit-learn.org 
7 https://github.com/dmlc/xgboost 
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All other hyper-parameters were set to their default values. 
Note that NGBoost is the only model that can generalise the intrinsic 
scatter: 

(log � |�) =< (log � |�) > +�, (9) 

where � is the noise due to the scatter. Previous models 
(RF,XGBoost, MLP) are only designed to infer the mean value 
of < log � |� >. Moreover, NGBoost predictions on unseen data 
are computed by averaging over the 10 models’ distributions corre-
sponding to our 10 different K-folds: 

10∑ 1 
� = �� , (10)

10 
�=1 

10∑ 1 
�2 = �2 + (�� − �)2 . (11)

10 � 
�=1 

3.2 Feature importance and selection

Although machine learning models can generalise complex func-
tions, generally, it is not trivial to interpret their decisions. In fact, 
they are often referred as black box estimators (e.g. Barredo Arrieta 
et al., 2020). Therefore, it is of great value to be able to inspect 
what is the learnt relation between features and targets given a par-
ticular model. One such inspection technique is feature importance. 
Particularly, feature importance is a family of techniques that as-
signs a score �� (�, �) to each input features � depending on how 
useful they are when it comes to predicting a particular target �. 
Furthermore, feature selection is a family of techniques that aim at 
getting rid of non-informative variables from a model (e.g. Kuhn 
et al., 2013). In this section, we use a feature importance algorithm 
to determine what features are more relevant and therefore, reduce 
the dimensionality of our 27-dimensional input space. 

One commonly used algorithm to estimate feature importance 
for ensembles of decision trees (such as RF and XGBoost) is Per-
mutation Importance (Breiman, 2001). In this algorithm, the impor-
tance of each feature is estimated as the decrease of the model score 
when the values of a feature are randomly shuffled. This technique, 
however, fails when correlated features are present in the dataset 
(Altmann et al., 2010). A second shortcoming of this algorithm is 
that it only considers the importance of individual features. 

Other technique is the use of forest of trees to evaluate the 
importance of features computed as the mean and standard deviation 
of accumulation of impurity decrease within each tree (Breiman, 
2001), which for regression is the variance reduction. In random 
forest, internal node features are selected with some criterion, or 
loss function. We can then measure how on average each feature 
decreases the criterion in the splits of the forests. Nevertheless, 
this technique also fails due to the fact that our features are highly 
correlated, and it is also known to be biased in favour of variables 
with many possible split points (e.g Nembrini et al., 2018). 

Instead, we use the Greedy Search Feature Importance Algo-
rithm (GSFIA, see for example Ferri et al. (1994). This technique 
considers the importance of the combination of features and not 
only the individual feature importance. It works iteratively by se-
lecting and evaluating one variable at a time until all features are 
ordered from the most to the least relevant. The algorithm works 
with a list of selected variables, �, initially empty, � = [], and a 
pool of possible variables to be selected, �, initially containing all 
� variables of the problem, � = ��� (�1, . . . , ��). Then, a proce-
dure is repeated � times in which, at each step, one variable from 

the pool � is selected and moved to the list �. In the � − th step 
of the loop the procedure creates |� | models trained on all of the 
features in � plus one feature from �. The model that minimises the 
MSE identifies the most important variable from � in combination 
with the variables in �. This variable is then removed from � and 
appended to the list �. At the end of the algorithm, all variables 
of the problem are sorted by importance in list � together with 
the loss function associated with them. GSFIA it is depicted using 
pseudocode in Algorithm 1. 

With this algorithm, we can define the feature importance score 
� (�, �) as follows: 

• Run GSFIA to rank all features from the most to the least 
important variables and save the corresponding value of MSE. 

• The score is then defined as the MSE of every iteration nor-
malised to the corresponding value of the first iteration. 

Note that the normalised MSE will be 1 for the first feature, and 
will decrease progressively as we consider more features until it 
converges to a minimum value. It could happen that after including 
several features, the normalised MSE increases as more features are 
included (see Fig. 4 for the case of �star). This indicates that the last 
features included do not improve or even degrade the performance 
of the model. 

Algorithm 1: Pseudo code of Greedy Search Feature 
Importance Algorithm 

inputs : x = features dataset; y = target dataset 
outputs: L = organised list of features according to their 

importance degree ; score = normalised MSE of 
every element in L 

1 L = [empty list]; 
2 score = [empty list]; 
3 P = [�1, ... ,��]; 
4 for i in 1...D do
5 loss = zeros(length(P)); 
6 j = 1; 
7 while j<=length(P) do
8 dataset = L+P[j] # sum of lists ; 
9 model.train(dataset,y); 

10 loss[j]=model.MSE; 
11 j=j+1; 
12 indx = argmin(loss); 
13 L.append(P[indx]); 
14 P.drop(indx); 
15 score.append(loss[indx]); 
16 score = score / score[0]; 
17 return L, score 

The algorithm was run using random forest as model (line 9 of 
Algorithm 1). In addition, due to the randomness of the ML model, 
the inner loop of the algorithm was repeated 10 times in order to 
reduce the variability of the results. In Figure 4, the average of 
the normalised MSE and its standard deviation are shown for the 
different targets considered. In the horizontal axis, the final order 
for the feature variables is shown. Variables in red colour are the 
reduced set of features that will be considered for further analysis. 
These features are summarised in Table 1. 

As shown in Table 1, we expect that the selected variables 
generally come from different correlation blocks, as shown in Fig. 1. 
This is so, since variables from the same block are correlated and 
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Table 1. Lists of selected DM-only features for the different targets after 
applying GSFIA (Algorithm 1). 

target Important features
�gas M500c(2), Vpeak(7), scale_of_last_MM(25), Macc(6), a(24) 
�star Vpeak(7), Halfmass_Scale(26), scale_of_last_MM(25), a(24) 
�gas Vpeak(7), a(24), scale_of_last_MM(25) 
�X Vpeak(7), M500c(2), scale_of_last_MM(25), vrms(12),Macc(6) 
�SZ Vpeak(7), Mpeak(4), scale_of_last_MM(25), a(24), rs(17) 

once the algorithm chooses one feature, it skips using variables 
with the same information. However, this is not always the case 
(e.g. variables 2, 6 and 7 are selected for a couple of targets). This 
can be explained since the correlation between those variables is 
high, but it is not 1. Hence, for our case the marginal information 
that a second variable inside a correlated block gives, is higher than 
that given by other variables. As far as the meaning of selected 
variables is concerned, we can distinguish two different important 
blocks in the correlation matrix: The mass and velocity block (the 
first block from 0 to 12), and the time evolution block (from 24 to 
26). The conclusion of this analysis is that the rest of the blocks are 
redundant or contribute little to the estimating baryon properties, i.e. 
the ellipticity block (from 13 to 16), the dynamical state block (from 
17 to 21) and the spin block. Moreover, masses and velocities are the 
most important features for estimating baryon properties while the 
variables associated with the time evolution of the mass accretion 
into halos play a secondary role in the regression algorithms. The 
redundant role of the ellipticity variables can be explained by taking 
into consideration that we are estimating integrated quantities from 
the particles within spheres of radius � = �500, regardless of the 
shape of their 3D distributions. 

Note that, we combine data from different redshifts as our 
training and test samples. We do not think that the evolution of 
these baryon properties will affect our results because (1) as shown 
in Cui et al. (2022), these quantities in Gadget-X simulations hardly 
depend on redshift, especially at � . 1 (see also Truong et al., 2018, 
for example); (2) we also include the scale factor as a feature variable 
in the training. If there were a clear redshift dependence on any target 
variable, the scale factor feature would show a higher contribution. 
However, as shown in Fig. 4, the scale factor contributes only weakly 
to the normalised MSE. 

Furthermore, we have to highlight that although we have used 
Random Forest for the GSFIA, other Machine Learning algorithms 
might also be used. However, GSFIA is computationally expensive 
given the fact that its computing time increases with the number of 
features � as � (�2). Therefore, we prefer to use RF because it is 
computationally more efficient and it does not have as many hyper-
parameters to tune in. Consequently, this choice might introduce 
a bias given the fact that a particular model is being used for the 
selection of the important variables. However, in the next section 
we will show that this particular selection of variables yields similar 
performance for the different ML algorithms considered throughout 
this work. 

RESULTS

In this section, we first study what machine learning algorithm is 
of higher quality for our particular dataset and study the accuracy 
of our model predictions. Then, we populate the dark-matter-only 
MDPL2 simulation with baryon properties and determine whether 
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Figure 4. Normalised MSE (y-axis) given by GSFIA (Algorithm 1) as a 
function of DM-only variables described in Appendix A ranked by feature 
importance in descending order. From top to bottom we show our results for 
different targets: �gas, �star, �gas, �X and �SZ. Blue dashed lines represent 
the average value of the normalised MSE for 10 different k-folds and error 
bars correspond to the standard deviation. The selected features for each 
target are highlighted in red and shown in Table 1. 

we can also successfully use the trained machine learning model on 
dark-matter-only low resolution simulations. 

4.1 Error analysis

In order to determine the accuracy of our ML models, we have 
trained our four models on the dataset composed of all features and 
on the dataset with the reduced set of features summarised in Table 1 
using the experimental setup described in the previous section. The 
average performance of the models is shown in Fig. 5. In the top 
panel, we show the MSE defined in Eq.(6) for the different tested 
models as a function of the target variables when all input features 
are used. In the bottom panel, the same quantities are displayed for 
the reduced set of features. 
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Figure 5. The logarithmic MSE defined in Eq.(6) for the four ML models 
considered: RF in blue, XGBoost in red, MLP in black and NGB in green 
colour. The x-axis indicates the different baryon targets. The points with 
error bars represent the mean and the standard deviation of the logarithmic 
MSE for the test set using 10 different k-folds. The top panel corresponds 
to training the ML models using all the DM-only variables shown in Fig. 1 
and in the bottom panel the algorithms are trained with the reduced set of 
features listed in Table 1. 

As a general result, it can be observed from Fig. 5 that XG-
Boost algorithm has the best performance for all targets. For RF, 
we find equivalent performances for both sets of features in �gas, 
�X and �SZ; a somewhat worse result for the reduced set on �gas; 
and better performance on �star for the reduced set. For XGBoost, 
the trends are similar to those of Random Forest, although the dif-
ference in performance for XGBoost between both sets of features 
is negligible for �gas and smaller for �star. For the MLP model, 
all results using the reduced set of features are worse than those 
obtained when using all the features in the catalogues. These dif-
ferences between the tree based approaches (RF and XGBoost) and 
MLP can be explained taking into consideration that the selection 
of important features was done using Random Forest. In any case, 
the performance of MLP is the worst for all targets even when all 
features are considered. For NGBoost, the MSE of mean predictions 
is similar in both set of features and worse than XGBoost and RF. 
After the previous analysis, we can conclude that XGBoost gives 
the most accurate model predictions. However, as shown later, NG-
Boost is more accurate than XGBoost when it comes at mimicking 
the scatter of the true The300 data. Therefore, we will only consider 
XGBoost and NGBoost algorithms for the rest this work. A sum-
mary of the performance for all models can be found in Table 2 for 
the reduced set of features. 

The scores shown in Fig. 5 summarise in a single value the 
performance of the models. However, they do not allow us to under-
stand how the model performs in the different regions of the space 
of features and targets. In order to analyse this, we first define the 
relative difference in performance for a single target y as 

10<log �pred,� |�� > − �true diff(y) = , (12)
10<log �pred,� |�� > 

Machine Learning in Galaxy Clusters 

Note that in Eq.(12), we are not considering the logarithmic value of 
the targets, but the model aims at predicting the logarithmic values. 
One can interpret these differences as a probability distribution. 
This means that given a value of �pred one might estimate the 
aleatory scatter to that particular predicted value. These differences 
are shown in Fig. 6 as a function of the predicted target �pred (first 
column), the cluster mass �500 (second column) and the peak of 
the velocity profile along the mass accretion history, �peak (third 
column) for all redshifts. In Fig. 6, instead of plotting the individual 
differences for all instances, the mean value (dashed black) and 
the 66% (red region) and 95% (blue region) confident intervals are 
represented for sliding windows (bins) containing roughly the same 
number of objects. 

The main result that can be observed from Fig. 6 is that the 
predictions are unbiased with respect to the most important features 
(�500 and �peak) and with respect to the predicted targets, since the 
mean is very close to 0 for all ranges. However, the scatter varies 
depending on the target as it is depicted in Fig. 5 and Fig. 6. Partic-
ularly, �gas is the target most accurately predicted, with an average 
scatter of 7% (standard deviation of Eq.(12)) and �X is the predicted 
variable with higher average scatter ( 16%). The numerical values 
corresponding to 1 � of the distribution of the relative differences 
can be found in Table 2. In addition, we found a slight dependence 
of the scatter on the �500, �peak and on the inferred targets val-
ues (except for �gas). The scatter seems to decrease as these values 
increase. From a statistical point of view, the scatter of baryon prop-
erties for high mass halos is smaller compared to low mass halos. 
A possible physical explanation is that massive clusters are more 
self-similar than smaller groups that present a larger halo-to-halo 
variation due to the stronger impact of non-gravitational processes. 
The relative difference for the NGBoost mean predictions is similar 
to those of the other tested ML models (see Fig. 6). However, overall 
scatter is higher, as shown in Table 2. 

4.2 XGBoost vs NGBoost

As stated in section § 3, NGBoost is a probabilistic model that can 
learn to infer not only the mean predictions, but also the scatter. In 
Table 2, we show that the best model is XGBoost only when taking 
into account its mean predicted values. However, when it comes at 
mimicking the complete behaviour of the data, the scatter of the 
predicted targets tends to be underestimated for deterministic ML 
models. 

In order to test whether XGBoost and NGBoost predictions are 
similarly spread as in true The300 data, we bin our baryonic targets 
in mass (�500) bins. This is done for The300 true targets, XGBoost 
and NGBoost predictions. Then, for every mass bin, the scatter 
(standard deviation) of the baryonic properties is computed. Note 
that this process is repeated ten times for our ten disjoint K-folds. The 
results are displayed in Fig. 7 where we show the standard deviation 
per mass bin of XGBoost and NGBoost predictions divided by the 
standard deviation of the true baryonic data. As a general result, 
NGBoost successfully mimics the true scatter for most targets. In 
contrast, XGBoost baryonic properties are ∼ 0.1dex less spread. 
Notwithstanding, for �gas and �SZ the scatter of XGBoost is closer 
to the The300 true data with �pred/�true = 0.95 on average. Also 
note that the scatter for �star is not completely well predicted by 
either of the models. However, NGBoost prediction of the scatter is 
also more precise in this target. The reader should bear in mind that 
although NGBoost successfully mimics the behaviour of the data 
in terms of predicted scatter, the predicted baryonic values of the 
XGBoost models are always closer to The300 true data. 
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Figure 6. The relative difference (y-axis) defined in Eq.(12) as a function of the XGBoost-predicted target variable (first column), the cluster 3D dynamical 
mass �500� (2) (second column) and the peak of the maximum value of the radial circular velocity profile across the halo’s mass accretion history �peak (7)
(third column). From top to bottom, each row corresponds to different baryon targets: �gas, �star, �gas, �X, �SZ. Dashed black lines are the mean value of 
the relative difference, which are very close to diff=0. Red regions and blue regions represent the 1� and 2� scatter regions, respectively. Additionally, 0% 
and 20% relative difference lines are represented in dashed green colour. The data is binned using sliding windows that contain roughly the same number of 
clusters. 
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Table 2. The MSE defined in Eq.(6) for the reduced set of features in Table 1. In brackets, we show the standard deviation (scatter) � of the relative difference 
defined in Eq.(12). Rows correspond to values of the MSE for different models while columns correspond to values for different baryonic targets. 

MSE ×10−3 �gas �star �gas �X �SZ 
XGBoost 2.17 (11%) 3.43 (14%) 0.94 (7%) 4.81 (17%) 4.07 (16%) 
NGBoost 2.58 (12%) 5.69 (18%) 1.45 (9%) 5.71(19%) 5.34 (19%) 

RF 2.20 (11%) 3.47 (14%) 1.56 (10%) 4.85 (17%) 3.96 (16%) 
MLP 2.75 (12%) 8.16 (21%) 2.23 (11%) 5.97 (19%) 5.82 (19%) 

In addition, we have also computed the covariance between 
different baryonic properties and checked that XGBoost and NG-
Boost predictions have a similar covariance structure than that of 
The300 simulation. The interested reader can find these results in 
the Appendix B. 

4.3 ML inference of Baryonic properties in Dark matter only
datasets

We now proceed to apply the trained ML model to infer the different 
baryonic properties in the full set of MDPL2 halo catalogues. We 
will use the 10 different XGBoost models trained on the reduced 
set of features of The300 clusters. In order to create the catalogue, 
we first build a dataset with the reduced set of features (shown in 
Table 1) for each halo of the full MDPL2 box. Note that the same 
transformations and cutoffs are applied to the full MDPL2 Rockstar 
catalogue as in § 2. Next, we discard clusters whose features values 
are not inside the hyper-cube defined by the MDPL2 features used 
for training since ML models are not designed for extrapolation 
inference. This means that only MDPL2 clusters such that 

training ≤ �MLDP2 ≤ �training
� , for � ∈ features (13)maxmin 

will be taken into consideration. Where �training is a feature corre-
sponding to the training dataset and �MLDP2 is the same feature for 
the full MDPL2 simulation. Only 397 clusters out of 1,306,185 are 
outside the hyper-cube defined by the most important features and 
therefore, they are not considered for the analysis. 

In order to evaluate if the generated catalogue presents proper-
ties that are coherent with the properties of fully simulated data, we 
will compare our baryon properties with the halo mass for The300 
and the full MDPL2 generated catalogue. These results are shown 
in Fig. 8 for different redshift values (columns). In these plots, the 
values of the targets (rows) are plotted with respect to �500. For the 
targets �gas and �star, the plots show the relative fractions: 

�� = ��/�500 , (14) 

where � can be either gas or star. Error bars represent the intrinsic 
scatter of our baryon ML estimates on the MDPL2 catalogue (1�), 
orange/brown regions correspond to 1� region for The300 test set 
predictions (for all the k-folds) and blue regions are the equivalent 
but for The300 true targets. Moreover, in the last row of the figure 
the number of clusters per bin is represented as a function of �500 
for both The300 and MDPL2 datasets. 

As a general result, the XGBoost-predicted values for MDPL2 
objects (black error bars) are similar and also their distributions 
per mass bin are comparable with the true values (blue region), i.e. 
in agreement with Fig. 6. However, the scatter of the predictions 
is slightly smaller (around 10-20%) than the corresponding scatter 
using the true values of The300 data for �gas and �star. This issue can 
be solved by using probabilistic regression models such us NGBoost 
where the scatter is predicted more accurately. The mean predictions 
(green squares) and scatter (green dashed lines) for NGBoost is also 

shown in the same figure. Furthermore, a similar result to the ones 
shown in Fig. 8 are obtained when plotting as a function of �peak 
instead of �500. We need to point out that for massive clusters ( 
> 8 × 1014 ℎ−1M ), the number of objects is similar in the The300 
and MDPL2 simulations. Particularly, the last two mass bins are 
mostly composed of the same objects and the difference lies in the 
baryon properties of the The300 simulation. 

4.3.1 Dependence of ML model predictions on DM mass 
resolution 

The ML models have been trained on a particular DM simulation 
with a fixed resolution in mass. Here we are interested to compare 
the predictions of the ML model when applied to halo catalogues 
from simulations with lower mass resolution. Since some of the 
features of the halos are expected to be affected by resolution, then 
the infer baryon quantities from the ML models could also be affect 
by that. Since our goal is to make our ML models as universal as 
possible so they can be applied to different DM-only simulations 
with larger volumes, it is important to test for these effects. In order 
to do that, we are going to apply the trained XGBoost and NGBoost 
models in two simulations run with identical initial conditions but 
with a difference of a factor 8 in particle mass. For this test, we 
are going to use also another completely different realisation than 
MDPL2, i.e. the UNIT project. The UNIT8 N-body cosmological 
simulations (UNITSIM, Chuang et al., 2019) are designed to pro-
vide accurate predictions of the clustering properties of dark matter 
halos using the suppressed variance method proposed by Angulo & 
Pontzen (2016). We particularly focus on one of the UNIT simula-
tions with the same box side length than MDPL2, (i.e. 1 ℎ−1 Gpc ) 
and similar number of particles (40963). Furthermore, this simula-
tion has also been performed with 8 times less number of particles 
(20483). For simplicity we will refer to these two simulations as 
UNITSIM4096 and UNITSIM2048 for the high and low resolution 
versions respectively. 

Dark matter cluster-size halo catalogues from Rockstar+ 
Consistent Trees are then selected for UNITSIM4096 and UNIT-
SIM2048 following the same procedure described in § 2. We then 
apply the trained XGBoost and NGBoost models to these catalogues 
to infer the target baryon properties for each DM halos in the two 
versions. These baryon properties present similar statistics (mean 
and scatter per mass bin) as those shown in Fig. 8. In order to make 
a more quantitative comparison of the results for the two UNIT 
simulations, we bin the data as in Fig. 8 according to �500 and 
compute the difference of the mean values and estimate an upper 
limit for its scatter as √ 
�̄ = �2048 − �4096 and �̄ = �2 (15)2048 + �

2 
4096. 

Here, � stands for mean values and � for the standard deviation of 

8 https://unitsims.ft.uam.es 
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Figure 7. Predicted baryons’ scatter divided by the true The300 scatter for 
different mass bins �500 (x-axis). Dashed lines and shaded regions represent 
the mean and standard deviation for 10 different K-folds corresponding to 
NGBoost (blue) and XGBoost (orange) . From top to bottom, the results are 
shown for different targets. 

a bin. The particular values of �̄ and �̄ are shown for 3 different 
snapshots in Fig. 9. As can be seen in this figure, �̄ ' 0 with a 
small value for the scatter for all mass bins. The scatter �̄ is within 
∼ 2% for �gas and ∼ 0.5% for �star. For �gas, the residuals amount 
to ∼ 0.1 dex and for �X and �SZ up to ∼ 0.2 dex. Therefore, we 
conclude that the baryonic properties predicted by the ML model 
for the same halos simulated with a factor of 8 difference in mass 
resolution are statistically equivalent. NGBoost predictions have 
slightly larger scatter overall (green shaded area) and the mean 
values (green squares) are similar to XGBoost predictions. 

5 VALIDATION OF THE GAS SCALING RELATIONS

Scaling relations are generally power laws that relate properties in 
astrophysical systems, such us the Colour-Magnitude Relation or 
the Tully Fisher relation (Tully & Fisher, 1977) for galaxies. The 
applications of the scaling relations are manifold, such as inferring 
masses of galaxy clusters that are sensitive to cosmological param-
eters (e.g. Planck Collaboration et al., 2016). For a recent review 
of scaling relations for galaxy clusters we refer the reader to e.g. 
Lovisari & Maughan (2022). The temperature-mass relation can be 
written as � 
� (�)−2/3 �gas � 

��� 

= 10�� , (16)
keV M 

where � (�) = � (�)/�0 and H(z) is the Hubble parameter. Similarly, 
for the �X − � and �SZ − � we use � ��� �X � 

= 10�� 

ℎ−1M keV M
� (�)−2/3 (17) 

and 

�SZ 
� ���� 

� (�)−2/3 �
2 
� 

= 10��� 
� 

. (18)
Mpc2 M 

Here, �� and �� (� = �,X, SZ) are the parameters that we are 
interested in obtaining by fitting the above equations to our data. 
Once we have generated baryon catalogues for different N-body 
simulations we apply a simple linear fitting function in logarithm 
space to fit the data to the equations listed above. However, selecting 
data from different snapshots gives us small variations of the �� 
and �� best fitting parameters with redshift. Therefore, we use the 
following parametrization to study the redshift dependence: 

�� (�) = ��,0 (1 + �)�� (19) 

�� (�) = ��,0 (1 + �)�� (20) 

where ��,0 and ��,0 are the values of the intercept and slope at z=0 
and �� and �� describe their possible dependence with respect to the 
redshift. With this new parametrization we apply a non-linear least 
square fitting model to fit the function described by equations (16), 
(17) and (18) updated with equations (19) and (20). The best-fitting 
parameters are shown in Tables 3, 4, 5 and 6. Note that we have 
used the mass corresponding to the N-body simulation (the feature 
variable �500� (2) as the mass of the cluster). Moreover, in order to 
study the dependence of these parameters on the mass, we opt for a 
similar approach as Le Brun et al. (2017), i.e. a fixed broken power 
law. We split the data in different mass ranges and fit the above 
equations. The considered mass ranges are: 1) log � [ ℎ−1M ] > 
13.5 (all our data), 2) log � [ ℎ−1M ] > 14, 3) log � [ ℎ−1M ] ≤
14. We have considered this particular pivot point log � [ ℎ−1M ] = 
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Figure 8. XGBoost predictions (y-axis) as a function of cluster mass, �500� (2) , at 4 different redshifts (different columns) from � = 0 to � = 1.032. The 
first five rows correspond to the predictions of our baryonic targets: gas and star fractions �gas and �star, gas temperature �gas, X-ray Y-parameter �X and SZ 
Y-parameter �SZ. The data is binned along the x-axis and the means of the predicted values for the test set are shown in red dashed lines with their scatter 
(standard deviation) represented as shaded brown/orange region. True values of The300 train set are shown as a blue dashed line and their scatter corresponds 
to shaded blue region. Black points represent the average values for the predictions of MDPL2 clusters per mass bin and the error bars correspond to 1� scatter. 
The bottom row shows the number of cluster objects (N) per mass bin for The300 (blue histogram) and MDPL2 (orange) simulations. In addition, we show in 
green squares the predictions corresponding to NGBoost for the full MDPL2 box. 
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Figure 9. The difference of XGBoost (error bars) and NGBoost (green shaded region) baryonic properties for halos corresponding to the UNITSIM2048 and 
UNITSIM4096 DM-only simulations as a function of the cluster total mass �500� (2) . The y-axis represents values of �̄ (Black points and green squares) and 
�̄ (error bars and green region) defined in Eq.(15) for different mass bins. From top to bottom, different rows represent the baryonic properties considered: �gas, 
�star, �gas, �X and �SZ. From left to right, we show our results for three different redshifts z=0 (first column), z=0.52 (second column) and z=1 (third column). 

14 because all of the scaling relations appear to break at that point 
for the radiative models. Furthermore, in order to study how the data 
is spread around the scaling law, we also used the MSE defined in 
Eq.(6) and the relative error defined in Eq.(12). Note that here the 
mean predictions < �pred |� > will be given by the corresponding 
scaling law. 

As a general result, the fitting parameters are in agreement 
among the three different N-body simulations and are slightly dif-
ferent from The300 hydrodynamical simulation. This deviation, 
though small, is caused by the fact of considering the full box 
of dark matter only simulations instead of the smaller volume of the 
‘zoom’ simulation. The effect of resolution is negligible for galaxy 
clusters. There is also a small difference between The300 simula-
tions true data (The300), and the fitting counterpart using the ML 
predicted data (The300*). This slight difference can be mainly ap-
preciated in the intrinsic scatter of the linear fitting function, which 

is generally smaller in the case of The300*. It is important to note 
that the scatter of the scaling law for The300 simulations is generally 
larger when comparing it with the values shown in Table 2, where 
the scatter (standard deviation of the relative difference) is reduced 
by a factor of 0.5 for the gas temperature, 0.3 for �X and 0.45 for 
�SZ. Moreover, the most relevant variables for each gas properties 
presented in table Table 1 can be used for finding analytical expres-
sions for scaling laws with a reduced MSE using genetic algorithms 
(Wadekar et al., 2022). The difference between NGBoost and XG-
Boost is that the MSE with respect to the scaling law is generally 
bigger in the case of NGBoost-predicted baryonic properties. This 
means that probabilistic regression mimics the scatter of the true 
data more accurately than non-probabilistic models. 

As far as the redshift dependence is concerned, it is negli-
gible for �X and �SZ where the parameters � and � are of order 
. 10−3. However, the parameter �� ' 0.3 cannot be ignored. This 
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indicates that the evolution of �gas is relevant as it can also be ap-
preciated in Table 1, where the scale factor a(24) is the second most 
important variable, reducing the normalised MSE from 1 to 0.6. 
Regarding the mass dependence, the scaling law parameters can 
vary around ∼ 10%, for instance the slope of the �SZ can be 1.615 
(log � [ ℎ−1M ] > 14) or 1.8 (log � [ ℎ−1M ] ≤ 14) when using 
The300 data. An interesting result is that the mass dependence is 
less prominent when we consider the full statistics of the whole 
MDPL2 simulation, in which the slope of the �SZ can vary from 
1.677 (log � [ ℎ−1M ] > 14) or 1.730 (log � [ ℎ−1M ] ≤ 14). 

SUMMARY AND CONCLUSIONS

Numerical simulations are key to studying galaxy clusters. On the 
one hand, with the current technology it is possible to perform 
large volume N-body simulations that can be useful to describe 
the dark-matter component. However, big volume hydrodynamical 
simulations cannot be carried out due to their computational de-
mands. We have therefore trained a set of machine learning models 
to populate high volume dark-matter-only simulations with bary-
onic properties. In particular, we have defined our feature space as 
the Rockstar variables of DM-only halos and our target variables 
are directly estimated from The Three Hundred hydrodynamical 
simulations: the mass of the gas �gas, the mass of the stars �star, 
the gas temperature �gas, X-ray Y-parameter �X and the integrated 
Compton-y parameter �SZ. All these quantities are integrated quan-
tities in spherical region of overdensity 500 times the critical density 
at their corresponding redshift. 

Particularly, we have considered four different ML models, ran-
dom forest (RF), extreme gradient boosting (XGBoost), MultiLayer 
Perceptron (MLP) and Natural Gradient Boosting for Probabilistic 
Prediction (NGBoost). We have determined that XGBoost is the 
algorithm that is more suitable to our dataset and whose predictions 
are closer to the true hydrodynamical targets, as shown in Table 2. 
However, as depicted in Fig. 7, probabilistic regression is needed for 
a proper modelling of the scatter and therefore, NGBoost is the best 
model in that regard. We have applied an algorithm –Greedy Search 
Feature Importance Algorithm (GSFIA)– to identify the features 
that have more predictive information. By using GSFIA, we have 
managed to reduce the dimensionality of our feature space from 27 
to approximately 5 variables depending on the target variable. We 
have demonstrated that masses and velocities have a higher amount 
of predictive information while time evolution variables play a sec-
ondary role in the prediction of our targets. What is more, ellipticity, 
dynamical state, and spin features are redundant. A possible expla-
nation for this is that our baryon targets are integrated in spherical 
regions. 

Then, we have applied our trained ML models to populate 
halo catalogues with baryonic properties from two full box N-body 
simulations: the MultiDark simulation (MDPL2) and the UNIT N-
body cosmological simulations (UNITSIM). The MDPL2 predicted 
baryon properties are compatible to those of The300 simulations, as 
shown in Fig. 8. The application on two UNITSIM simulations with 
1 ℎ−1 Gpc box size 20483 and 40463 particles has determined that 
our model can be successfully applied to boxes whose resolution is 
up to 1/8 of the corresponding simulation used for training. This 
suggests that this is a promising method to populate the UNITSIM 
large volume N-body halos with baryon properties up to 27 Gpc3 

(i.e a 3 ℎ−1 Gpc box size with 61443 particles). This will be an 
excellent tool to study the large scale distribution of galaxy clusters 
in an unprecedented way. For instance, we can estimate the cosmic 
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variance in the number counts of X-ray detected clusters from the 
eROSITA satellite all-sky survey Liu et al. (2021) by extracting 
many different light-cones from this large computational volume. 
This will be the subject of a forthcoming paper. 

Furthermore, the scaling relations are powerful mass-
observable proxies. We have check that the best-fitting parame-
ters inferred using our three mock DM full-box baryon catalogues 
are compatible. They nevertheless differ slightly from those of the 
The300, partially because of the considerable smaller number of 
cluster objects in the hydrodynamical simulations used to get the 
best fit values. This would suggest that mass completeness have 
an small impact, thought not negligible, in the calibration of the 
mass-proxies. 

Our ML models have been trained using the results from a 
simulation with fixed cosmological parameters and a particular se-
lection of values for the parameters of the subgrid physics models 
implemented in GADGETX (Cui et al., 2018). This is clearly a lim-
itation of the applicability of the ML models presented in this paper 
for simulations with different cosmologies. This limitation could 
be alleviated by running an ensemble of thousands of simulations 
varying cosmological and astrophysical parameters and training the 
ML models so they can marginalise over all the parameters (ei-
ther explicitly as feature variables or implicitly inside other features 
such as mass, etc). A recent example of this method is the CAMELS 
project (Villaescusa-Navarro et al., 2022). Unfortunately, given the 
low density of cluster sized objects, the simulations needed to re-
peat the CAMELS technique for galaxy clusters would require of 
Gigaparsec volumes with multi-billion dark matter particles and 
then, using the zooming technique, generating many hydrodynam-
ical simulations of the same region with different baryon physics 
models. This is certainly a way to go for the future, but it is well 
beyond the scope of this paper. 

Moreover, our test concerning the dependence of ML models 
predictions on DM mass resolution in subsubsection 4.3.1 suggests 
that the joint distribution of halo properties (� , �peak, etc) is not 
very sensitive of the numerical resolution. 

To conclude, our work shows that ML models are very useful 
methods for finding a mapping between dark matter halo properties 
found in N-body and the complex hydrodynamical simulations. We 
checked that, on average, the generated catalogue for the 3 dark-
matter-only simulations used throughout this paper have the same 
distributions to that of true training set and therefore, they can be 
used for painting dark matter halos with baryonic properties that are 
directly related with observed quantities, providing added value to 
large volume collisionless N-body simulations. 
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Table 3. XGBoost best fit parameters: The best fit parameters for the � − � , �X − � and �SZ − � relations for the different simulation sets. The MSE in 
Eq.(6) and average scatter of the relative difference in Eq.(12), (in parenthesis), are also shown. For The300 simulation, the true values of the baryon properties 
have been used while for The300* the predicted XGBoost values are used instead. The relative error in the estimated parameters �� , and �� is always ≤ 10−3. 

�� ,0 �� ,0 MSE� �� ,0 �� ,0 MSEX ��� ,0 ��� ,0 MSESZ 
Simulation 

The300 
The300* 
MDPL2 

UNITSIM4096 
UNITSIM2048 

0.2083 
0.2082 
0.2133 
0.2122 
0.2126 

0.6081 
0.6054 
0.5863 
0.5865 
0.5854 

log � [ ℎ−1M ] > 13.5 
1.8 × 10−3(10%) 13.09 1.718 8.3 × 10−3(25%) 
1.6 × 10−3(10%) 13.08 1.718 3.9 × 10−3(19%) 
3.3 × 10−3(11%) 13.07 1.767 2.8 × 10−3(13%) 
3.3 × 10−3(11%) 13.07 1.767 2.8 × 10−3(13%) 
3.3 × 10−3(11%) 13.07 1.766 2.8 × 10−3(13%) 

-5.499 
-5.497 
-5.513 
-5.514 
-5.515 

1.697 
1.692 
1.710 
1.709 
1.709 

9.5 × 10−3(23%) 
7.2 × 10−3(20%) 
6.5 × 10−3(21%) 
6.5 × 10−3(21%) 
6.5 × 10−3(21%) 

The300 
The300* 
MDPL2 

UNITSIM4096 
UNITSIM2048 

0.2121 
0.2117 
0.2197 
0.2202 
0.2200 

0.6081 
0.6023 
0.5829 
0.5803 
0.5803 

log � [ ℎ−1M ] > 14 
1.4 × 10−3(8%) 13.14 1.642 5.7 × 10−3(19%) 
1.4 × 10−3(8%) 13.14 1.643 2.5 × 10−3(11%) 
2.4 × 10−3(11%) 13.10 1.673 1.8 × 10−3(10%) 
2.4 × 10−3(11%) 13.10 1.668 1.8 × 10−3(11%) 
2.4 × 10−3(11%) 13.10 1.668 1.9 × 10−3(12%) 

-5.436 
-5.438 
-5.501 
-5.502 
-5.501 

1.615 
1.614 
1.665 
1.664 
1.664 

6.1 × 10−3(19%) 
5.0 × 10−3(16%) 
5.1 × 10−3(17%) 
5.4 × 10−3(22%) 
5.5 × 10−3(22%) 

The300 
The300* 
MDPL2 

UNITSIM4096 
UNITSIM2048 

0.2052 
0.2030 
0.2090 
0.2076 
0.2081 

0.5928 
0.5746 
0.5632 
0.5622 
0.5622 

log � [ ℎ−1M ] ≤ 14 
2.0 × 10−3(10%) 13.09 1.827 9.3 × 10−3(26%) 
1.6 × 10−3(9%) 13.09 1.825 4.3 × 10−3(15%) 
2.1 × 10−3(10%) 13.08 1.827 2.9 × 10−3(13%) 
2.1 × 10−3(10%) 13.08 1.829 2.9 × 10−3(13%) 
2.1 × 10−3(10%) 13.08 1.828 2.9 × 10−3(13%) 

-5.490 
-5.491 
-5.505 
-5.506 
-5.508 

1.800 
1.767 
1.753 
1.751 
1.753 

11 × 10−3(25%) 
8.0 × 10−3(20%) 
6.6 × 10−3(19%) 
6.6 × 10−3(19%) 
6.6 × 10−3(19%) 

Table 4. XGBoost best fit redshift dependence parameters for the scaling relations defines in Eq. 19 and Eq. 20 

Simulation �� (×10−3) �� (×10−3) �X (×10−3) �X (×10−3) �SZ (×10−3) �SZ (×10−3)

The300 −339.0 ± 5.3 −3.8 ± 4.3 −1.15 ± 0.16 3.4 ± 3.3 5.36 ± 0.41 −11.3 ± 3.5 
The300* −336.7 ± 4.8 −11.1 ± 4.0 −0.73 ± 0.11 6.4 ± 2.2 6.22 ± 0.45 −12.2 ± 3.1 
MDPL2 −314.3 ± 1.2 30.4 ± 1.8 0.417 ± 0.021 0.42 ± 0.65 7.181 ± 0.074 0.2 ± 1.0 

UNITSIM4096 −308.1 ± 1.3 30.5 ± 1.8 0.52 ± 0.21 0.22 ± 0.68 7.162 ± 0.075 0.0 ± 1.1 
UNITSIM2048 −302.9 ± 1.3 29.9 ± 1.8 −0.052 ± 0.021 −0.93 ± 0.71 6.279 ± 0.075 −2.0 ± 1.1 

The300 −332 ± 18 
log � [ ℎ−1M ] > 14 

−20 ± 10 −5.28 ± 0.52 11.4 ± 7.4 17.1 ± 1.3 3.7 ± 7.7 
The300* −329 ± 18 −25 ± 10 −4.96 ± 0.35 16.8 ± 4.9 17.4 ± 1.2 2.9 ± 7.0 
MDPL2 −375.3 ± 8.2 40.2 ± 7.2 −2.17 ± 0.10 17.9 ± 2.2 7.23 ± 0.42 −1.1 ± 3.8 

UNITSIM4096 −382.0 ± 9.0 42.3 ± 7.9 −2.06 ± 0.11 18.9 ± 2.4 6.60 ± 0.47 −2.1 ± 4.2 
UNITSIM2048 −387.3 ± 9.0 53.2 ± 8.0 −2.03 ± 0.11 20.2 ± 2.4 6.13 ± 0.47 −3.2 ± 4.2 

The300 −301.4 ± 9.0 69 ± 14 
log � [ ℎ−1M ] ≤ 14 

−1.39 ± 0.27 −41 ± 10 5.37 ± 0.70 −48 ± 11 
The300* −294.7 ± 8.1 81 ± 13 −0.89 ± 0.18 −35.2 ± 7.1 5.52 ± 0.60 −31 ± 10 
MDPL2 −269.9 ± 1.8 115.4 ± 2.9 −1.011 ± 0.031 −32.0 ± 1.1 8.87 ± 0.11 −33.6 ± 1.7 

UNITSIM4096 −259.8 ± 1.8 121.9 ± 2.8 −1.063 ± 0.031 −35.2 ± 1.1 9.01 ± 0.11 −37.5 ± 1.7 
UNITSIM2048 −251.9 ± 1.8 122.8 ± 2.9 −0.698 ± 0.031 −33.7 ± 1.2 7.96 ± 0.11 −35.2 ± 1.8 

CosmoSim database used in this paper is a service by the Leibniz-
Institute for Astrophysics Potsdam (AIP). The MultiDark database 
was developed in cooperation with the Spanish MultiDark Con-
solider Project CSD2009-00064. The authors acknowledge The Red 
Española de Supercomputación for granting computing time for 
running the hydrodynamical simulations of The300 galaxy cluster 
project in the Marenostrum supercomputer at the Barcelona Super-
computing Center. 

DATA AVAILABILITY

The trained models and data products for MDPL2, UNITSIM2048 
and UNITSIM4096 are publicly available at https://github. 
com/The300th/DarkML. 
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Table 5. NGBoost best fit parameters: The best fit parameters for the � − � , �X − � and �SZ − � relations for the different simulation sets. The MSE in 
Eq.(6) and average scatter of the relative difference in Eq.(12), (in parenthesis), are also shown. For The300 simulation, the true values of the baryon properties 
have been used while for The300* the predicted NGBoost values are used instead. The relative error in the estimated parameters �� , and �� is always ≤ 10−3. 

�� ,0 �� ,0 MSE� �� ,0 �� ,0 MSEX ��� ,0 ��� ,0 MSESZ 
Simulation 

The300 
The300* 
MDPL2 

UNITSIM4096 
UNITSIM2048 

0.2083 
0.2085 
0.2000 
0.2000 
0.1989 

0.6081 
0.6089 
0.5726 
0.5716 
0.5726 

log � [ ℎ−1M ] > 13.5 
1.8 × 10−3(10%) 13.09 1.718 8.3 × 10−3(24%) 
1.6 × 10−3(10%) 13.08 1.715 7.0 × 10−3(20%) 
3.5 × 10−3(13%) 13.07 1.768 7.2 × 10−3(21%) 
3.5 × 10−3(13%) 13.07 1.770 7.3 × 10−322%) 
3.5 × 10−3(14%) 13.07 1.769 7.3 × 10−3(23%) 

-5.499 
-5.499 
-5.525 
-5.524 
-5.526 

1.697 
1.697 
1.716 
1.712 
1.712 

9.5 × 10−3(23%) 
8.3 × 10−3(21%) 
11 × 10−3(27%) 
11 × 10−3(27%) 
12 × 10−3(31%) 

The300 
The300* 
MDPL2 

UNITSIM4096 
UNITSIM2048 

0.2121 
0.2142 
0.1895 
0.1890 
0.1890 

0.6054 
0.6025 
0.6155 
0.6149 
0.6147 

log � [ ℎ−1M ] > 14 
1.4 × 10−3(8%) 13.14 1.642 5.7 × 10−3(19%) 
1.4 × 10−3(8%) 13.14 1.646 4.9 × 10−3(16%) 
3.7 × 10−3(14%) 13.10 1.688 4.6 × 10−3(16%) 
3.7 × 10−3(14%) 13.10 1.660 4.9 × 10−3(20%) 
3.7 × 10−3(14%) 13.10 1.675 5.0 × 10−3(21%) 

-5.436 
-5.430 
-5.510 
-5.513 
-5.510 

1.615 
1.610 
1.677 
1.674 
1.675 

6.1 × 10−3(19%) 
5.5 × 10−3(17%) 
9.5 × 10−3(23%) 
9.9 × 10−3(29%) 
9.8 × 10−3(28%) 

The300 
The300* 
MDPL2 

UNITSIM4096 
UNITSIM2048 

0.2052 
0.2061 
0.1915 
0.1917 
0.1914 

0.5928 
0.5908 
0.5300 
0.5287 
0.5289 

log � [ ℎ−1M ] ≤ 14 
2.0 × 10−3(10%) 13.09 1.827 9.3 × 10−3(25%) 
1.8 × 10−3(10%) 13.09 1.820 8.0 × 10−3(23%) 
3.4 × 10−3(13%) 13.08 1.824 7.6 × 10−3(21%) 
3.4 × 10−3(13%) 13.08 1.828 7.7 × 10−3(22%) 
3.4 × 10−3(13%) 13.08 1.828 7.6 × 10−3(22%) 

-5.490 
-5.491 
-5.523 
-5.523 
-5.521 

1.800 
1.794 
1.732 
1.732 
1.730 

11 × 10−3(25%) 
9.5 × 10−3(23%) 
12 × 10−3(27%) 
12 × 10−3(27%) 
12 × 10−3(27%) 

Table 6. NGBoost best fit redshift dependence parameters for the scaling relations defines in Eq. 19 and Eq. 20 

Simulation �� (×10−3) �� (×10−3) �X (×10−3) �X (×10−3) �SZ (×10−3) �SZ (×10−3)
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APPENDIX A: DESCRIPTION AND ENUMERATION OF
FEATURE VARIABLES

In this appendix, we describe the selected 26 features from the 
Rockstar + Consistent Trees catalogues. Although this infor-
mation can be found in Behroozi et al. (2012) and Behroozi 
et al. (2013), as well as in the CosmoSim Multidark database 
https//www.cosmosim.org/, we include in Table A1 a brief de-
scription of the variables, for the reader’s convenience. 

APPENDIX B: COVARIANCE STRUCTURE OF
BARYONIC TARGETS

In subsection 4.2 we have estimated the scatter for different targets 
binning in halo mass �500 intervals. In this appendix we check 
that the whole covariance structure of the ML-predicted baryonic 
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Figure A1. The covariance matrices, Q, of predicted target values for XGBoost and NGBoost, normalised to the covariance of the ground truth data from 
The300 simulations. 

Table A1. The feature variables used in this text from the Rockstar catalogue. The first column represents the variable name and their enumeration in brackets. 

Variable Units Description 

M2500c (0) ℎ−1M Mass inside a radius of a sphere where the matter density is 2500 times the critical density at the cluster’s redshift 
num_prog (1) 
M500c (2) 
M200c (3) 
Mpeak (4) 
mvir (5) 
Macc (6) 

ℎ−1M 
ℎ−1M 
ℎ−1M 
ℎ−1M 
ℎ−1M 

total number of progenitors of the cluster 
Mass inside a radius of a sphere where the matter density is 500 times the critical density at the cluster’s redshift 
Mass inside a radius of a sphere where the matter density is 200 times the critical density at the cluster’s redshift 
The peak value of the halo mass across its accretion history 
halo mass within the virial radius 
halo mass at accretion time. 

Vpeak (7) km/s Peak value of Vmax(9) across mass accretion history. 
Vmax\@Mpeak (8) km/s Vmax at the expansion time at which Mpeak was reach 
Vmax (9) km/s maximum value of the circular velocity. 
Vacc (10) 
rvir (11) 

km/s 
ℎ−1kpc 

Vmax at accretion time 
halo radius at virial overdensity 

vrms (12) km/s root mean squared velocity dispersion 
b_to_a(500c) (13) ration between the second largest shape ellipsoid axis and largest shape ellipsoid axis, for particles within �500 
c_to_a(500c) (14) ration between the third largest shape ellipsoid axis and largest shape ellipsoid axis, for particles within �500 
b_to_a (15) ration between the second largest shape ellipsoid axis and largest shape ellipsoid axis determined by method in Allgood et al. (2006) 
c_to_a (16) 
rs (17) 
Rs_Klypin (18) 

ℎ−1kpc 
ℎ−1kpc 

ration between the third largest shape ellipsoid axis and largest shape ellipsoid axis determined by method in Allgood et al. (2006) 
comoving scale radius from the fit to a NFW (Navarro et al., 1997) density profile 
comoving scale radius determined using Vmax and Mvir formula (Klypin et al., 2011) 

T/|U| (19) 
Xoff (20) ℎ−1kpc 

the ratio between the total kinetic and potential energies of particles within virial radius. 
Offset between comoving density peak and the particles center of mass position 

Voff (21) km/s Offset between halo core velocity and the center of mass velocity for particles within the virial radius 
Spin (22) Peebles’s dimensionless Spin parameter of the halo (Peebles, 1969). 
Spin_Bullock (23) Bullock’s dimensionless spin parameter (Bullock et al., 2001) 
a (24) Expansion scale factor of the corresponding simulation snapshot 
scale_of_last_MM (25) Expansion scale factor of the last major merger with a mass ratio greater than 0.3 
Halfmass_Scale (26) Expansion scale factor when the most massive halo progenitor reached 0.5 × Mpeak(4) 
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properties is similar to that of The300 simulation. In order to do 
that, we have computed the covariance matrix as 

Cov(�� , � � ) = � [(�� − � (��)) (� � − � (� � ))] (B1) 

and the element-wise quotient between the covariance matrix of ML 
predicted targets and the true targets, i.e. : 

Covpred Cov(��,pred, � � ,pred)Q = = . (B2)
Covtrue Cov(��,true, � � ,true)

In this way, Q shows how similar the covariance matrix of the 
predicted targets is with respect to the corresponding one of true 
targets. Q is plotted in Fig. A1 for both models XGBoost and NG-
Boost. As can bee seen in the figure, Q values are very close to 1 
but always less than 1. This means that the predictions of both ML 
models are distributed around the mean true values, but they do not 
completely reproduce the tails of the distributions of the real data. 
As a general result, NGBoost baryonic properties show a covariance 
structure closer to the corresponding ground-truth values of The300 
simulations. 

This paper has been typeset from a TEX/LATEX file prepared by the author. 
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