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Abstract

We study the homogeneous Cauchy-Dirichlet Problem (CDP) for a nonlinear and nonlocal
diffusion equation of singular type of the form dyu = —Lu™ posed on a bounded Euclidean
domain  C RY with smooth boundary and N > 1. The linear diffusion operator £ is a sub-
Markovian operator, allowed to be of nonlocal type, while the nonlinearity is of singular type,
namely u™ = |u|™ !y with 0 < m < 1. The prototype equation is the Fractional Fast Diffusion
Equation (FFDE), when L is one of the three possible Dirichlet Fractional Laplacians on

Our main results shall provide a complete basic theory for solutions to (CDP): existence and
uniqueness in the biggest class of data known so far, both for nonnegative and signed solutions;
sharp smoothing estimates: besides the classical L? — L*° smoothing e ects, we provide new
weighted estimates, which represent a novelty also in well studied local case, i.e. for solutions to
the FDE u; = Au"™. We compare two strategies to prove smoothing e ects: Moser iteration VS
Green function method.

Due to the singular nonlinearity and to presence of nonlocal diffusion operators, the question
of how solutions satisfy the lateral boundary conditions is delicate. We answer with quantitative
upper boundary estimates that show how boundary data are taken.

Once solutions exists and are bounded we show that they extinguish in finite time and we
provide upper and lower estimates for the extinction time, together with explicit sharp extinction
rates in different norms.

The methods of this paper are constructive, in the sense that all the relevant constants involved
in the estimates are computable.
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1 Introduction

We study the homogeneous Cauchy Dirichlet Problem for a nonlinear and nonlocal diffusion equation
of singular type of the form
O = —Lu™ (FFDE)

posed on a bounded Euclidean domain € RY with smooth boundary and N > 1. The linear
diffusion operator £ is a densely defined sub-Markovian operator, allowed to be of nonlocal type,
while the nonlinearity is of singular type, namely u™ = |u|™ 'u with 0 < m < 1.

On the whole space, the prototype equation is the so-called Fractional Fast Diffusion Equation
on the whole space, studied in [3, 17, 53, 54, 55],

up = —(—Agn)*u™ (1)
where the Fractional Laplacian is commonly represented via the hypersingular kernel
fx) — f(y)

(~Agn)*f(z) == P.V. ay,

RN |$ _ y|N+2s
but other equivalent definitions are possible on RY, see e.g. [23, 46].

These models have received a lot of attention in the last years, especially because of their natu-
ral interplay with probability and stochastic processes, but also for the numerous applications, for
instance to anomalous diffusions in physics and biology, cf. [10, 47, 59]. These equations appear in
boundary heat control problems [3], and also as hydrodynamic limits of interacting particle systems
with long-range dynamics, cf. [38, 39]. We refer to [3, 17, 18, 54, 59, 64, 66, 67] for further details
about possible applications of these useful nonlinear and nonlocal diffusion models.

A quite complete theory for the Cauchy problem on R for (1) has been developed for all m > 0,
covering the Fractional Porous Medium Equation (FPME, m > 1) and the Fractional Fast Diffusion
Equation (FFDE, m < 1), see [3, 17, 36, 51, 52, 53, 54, 55, 58, 60, 65, 68], including numerical
methods [29, 61]. Of course, when m = 1 we have the Fractional Heat Equation (FHE) which has a
very rich literature, see [7, 16] and references therein.

This kind of problems has been extensively studied when £ = —A, in which case the equation
becomes the classical Porous Medium Equation (m > 1) or Fast Diffusion Equation (m < 1),
(30, 32, 62, 63].

Even if the results of this paper apply also in the local case (s = 1), and provide some novelties
also for the classical FDE when £ = —A, we are mainly interested here in treating nonlocal
diffusion operators, in particular fractional Laplacian operators. Since we are working on a bounded
domain, the situation dramatically changes and there are several non-equivalent versions of fractional
Laplacian operators® : the Restricted Fractional Laplacian (RFL), the Spectral Fractional Laplacian
(SFL), and the Censored Fractional Laplacian (CFL); see Section 2.2 for more details.

The basic theory for the FFDE on bounded domains is only partially understood, [15, 50, 54],
and not in the generality nor in the unified framework that we present here. We find here the biggest
class of data - known so far - to which the basic theory, existence, uniqueness and boundedness
of solutions applies. We shall complement the theory with quantitative estimates about the finite
extinction time, together with sharp extinction rates.

We use these names because they already appeared in some of our previous works [12, 13, 14, 15, 18, 19], but we
point out that RFL is usually known as the Standard Fractional Laplacian, or plainly Fractional Laplacian, and CFL
is often called Regional Fractional Laplacian.



The Cauchy-Dirichlet problem for the classical FDE, u; = Au'™, has attracted the attention of
prominent researchers since the celebrated paper of Berryman and Holland [8]. The basic theory,
local and global Harnack inequalities and optimal interior regularity are well understood [30, 33, 34].
The asymptotic behaviour is a delicate issue, started with the pioneering paper [8] and followed
by progressive advances [1, 34, 35]. The sharp asymptotic results were found only recently in [11].
Recent results appeared about optimal boundary regularity [40] and asymptotic behaviour [41].
The Cauchy-Dirichlet Problem for singular nonlocal diffusions. Consider the problem

Ovu(t,z) = —Lu™(t, x) on (0,+00) x
u(t,) =0 on the lateral boundary, V¢ > 0, (CDP)
(07 ) = U in

where 0 < m < 1, 'nd € RY is a bounded smooth domain, which we assume at least of class
C?, even most of the results indeed hold for C'!' domains, but we choose not to address delicate
questions of boundary regularity here. Throughout the paper we assume N > 2s, but most of the
results can be easily adapted to the case when N =1 and s € [1/2,1).

When m = 1, we have the fractional heat equation, whose theory can be considered nowadays
classical, since Fourier analysis allows to obtain a complete basic theory analogous to the case s =1
of the local heat equation. However many basic questions have been solved only recently, like sharp
bounds for the heat kernel by Zhang in 2002, and more recently by many authors often by means of
probabilistic techniques, we refer to Section 2.2 for more details and references. Many fine properties
of solutions are based on the representation formula, and become quite simple once good (or better,
sharp) bounds on the heat kernel are known.

An “almost representation formula”. In the nonlinear case there is not a representation formula,
however we shall show how to produce a nonlinear analogous through the Green function method,
see section 3.2. This “fundamental pointwise formula”, see Lemma 3.4, was proven for the first time
by Vézquez and one of the authors in 2015, [18] in the case m > 1, here for the first time when
m < 1. It was later extended to more general operators in [12, 13, 14, 15, 18, 19]. The Green function
method allows to construct a solid theory for the Porous Medium on Riemannian Manifolds, [6].

A short reminder about nonlocal degenerate equation on bounded domains. When m > 1 we have the
FPME for which a quite complete theory was developed by Figalli, Sire, Ros-Oton, Vazquez and one
of the authors [12, 13, 15, 18, 19]. The concept of Weak Dual Solutions (WDS) that we use here,
together with the “Green function method” and the “almost representation formula” were introduced
by Vézquez and one of the authors in [18] in the case where £ is the Spectral Fractional Laplacian.
The methods turned out to be flexible and extended to a large class of operators, [13, 15, 19]. In
these papers existence and uniqueness of (minimal) WDS is proven, together with weighted L! — L>°
smoothing effects, which constitute what we call the basic theory. In clear contrast with the local
case, that exhibits the peculiar phenomenon of finite speed of propagation, in [12, 13] it is shown
that the FPME propagates with infinite speed. Together with the Global Harnack Principle, (global
optimal explicit upper and lower estimates, which imply more classical form of parabolic Harnack
inequalities) allow to prove higher regularity results, [12, 13], up to C’; Ia’oo when the operator allows
it. The most intriguing thing however is the appearance of an anomalous boundary behavior, that
only happens in some parameter range, and shows how the nonlinear fractional world can present
unexpected behaviours, that do not happen in the local case. Also the sharp asymptotic behaviour
has been proven in [13, 15].



The goal of this paper is to extend the basic theory developed for the FPME to the fast diffusive
case, and to mark the qualitative and quantitative differences between local and nonlocal versions
and degenerate versus singular diffusions.

Main results: a basic theory for FFDE. Few partial results appear in literature dealing with
the theory of FFDE, essentially only the papers [15, 50, 54], contain some advances in this direction,
essentially only when L is either the SFL or the RFL. We shall build a basic theory, which includes
existence and uniqueness in the largest (known so far) class of data, namely H* for signed solutions
and LCII)1 for nonnegative ones. We also prove different energy estimates and LP — L° smoothing
e ects. For the proof of the smoothing estimates, we compare the classical Moser iteration with
the Green function method, providing two different proofs of the smoothing effects, under different
assumptions, in order to cover as many operators as possible. Once solutions are bounded we see
that they extinguish in finite time and we show explicit sharp extinction rates. We detail our main
results in the next section. All our proofs are constructive, meaning that all the constants in the
inequalities are computable.

About the lateral boundary condition, dual formulation of the problem. Since we are
allowing the linear operator £ to be nonlocal, the lateral boundary condition is tricky to define
in general, since it depends on the operator itself. Let us make an example with the three most
common Dirichlet Fractional Laplacians on bounded domains, the Spectral (SFL), the Restricted (or
the “standard”, RFL) and the Censored (or Regional, CFL). The first one is defined as the spectral
power of the Dirichlet Laplacian, hence the boundary condition needs only to be imposed on the
topological boundary d . In the case of the RFL, since the operator needs to be defined on the
whole RY | we need to impose that our solutions vanish on the complement of , or we need to
“restrict” the set of admissible functions to the ones supported in , hence the name. As for the
CFL the boundary condition is even more subtle: the Dirichlet boundary condition holds only for
s € (1/2,1), while when s € (0,1/2] a kind of Neumann condition holds. This can be understood in
terms of the underlying a—stable process, see the original paper of Bogdan, Burdzy and Chen [9],
for more details.

We overcome this difficulty by means of a dual formulation of the problem, through the Green
function of the linear operator, that encodes the boundary conditions. Indeed, we shall prove that
solutions are zero at the boundary in a quantitative way, namely for a.e. x € we have that

0 < u(t,z) < dist(z,0 )’ for some 8 > 0

See Theorem 9 for a more precise and quantitative statement.
Degenerate VS singular di usions: a problem at the boundary. To better understand the issue, let
us consider the local case,

up = Au™ = mV - (U™ V)

it is clear that when m > 1 the (time dependent) diffusion matrix 4™ I becomes zero at the
boundary, as u does. This is one of the causes of the finite speed of propagation and, in the nonlocal
case, of the appearance of the anomalous boundary behaviour. On the other hand, when m < 1, the
diffusion matrix becomes infinite, as v = 0 on the lateral boundary. This causes serious regularity
issues, that are understood here by the condition 2s > ~, in the smoothing effects or on the conditions
that guarantees that WDS are strong. We shall explain with more details later on. We foresee the
appearance of an anomalous boundary behaviour also in this case, but for different reasons, and this
will be investigated in a forthcoming paper where we shall analyze the sharp boundary behaviour,
an impossible task without the results contained in this paper.



2 Preliminaries and main results

2.1 Main Assumptions

In order to understand the main results, it is important to discuss our main hypotheses, their
connections and basic implications.

Assumptions on £. The linear operator £ : dom(£) C L'( ) — L'( ) is densely defined and
sub-Markovian, more precisely, it satisfies:

(A1) L is m-accretive in L'( )

(A2) Tf0 < f < 1then 0 < e f <1, or equivalently,

(A2’) If B is a maximal nonotone graph in R x R with 0 € 8(0),u € dom(L), Lu € LI( ), 1 < g < o0,
ve LYEN( ) v(z) € B(u(x)) a.e., then

/ v(x)Lu(z)dz > 0.

We recall that the assumptions on £ are the same as in [14], where detailed proofs of the claims
below can be found as well as a rich set of examples of operators. See also [13, 19] and Section 2.2.

Assumptions on £~ !. In order to develop the theory that follows in this paper we will need to
deal with the dual form of (CDP). Therefore, we asume that £ has an inverse £~ : L'( ) — L( )
that can be represented by a kernel G as

Cf)() = / G (z,9)f(y)dy,

which satisfies at least one of the next assumptions, for some s € (0,1] and for a.e. =,y €

e There exists a constant ¢, > 0 such that

C1

0<G (l’ay)ﬁm- (K1)

According to Proposition 5.1 of [14], this assumption guarantees that £~! is compact in L2( ),
hence that is has a discrete set of eigen-elements for £, namely (Ag, ®y), with &, € L>®( ). In
particular there exists a ground state ®; > 0, and the Poincaré inequality holds with A; > 0

A / fLlfde < / f?dx or equivalently )\ / f2dx < / fLfdz.

The eigenfunction are always Holder continuous in the interior, see Theorem 7.1 of [14].

(K1) implies Hardy-Littlewood-Sobolev and Sobolev type inequalities: It has been shown in Theorem
7.5 of [15] that assumption (K1) implies the Hardy-Littlewood-Sobolev inequality:

2N
(V<H -y ith (2%) = : 2
I Fll ey < Hell flleey with  (27) N s (2)
Moreover, following Lieb’s duality argument [48], as in Proposition 7.4 of [15], we have that the
above inequality is equivalent to the fractional Sobolev inequality:

2N
I/

N —2s’
We refer to the Appendix of [15] for further details.

(3)

o <Scllfllpy  with 2 =




e The second assumption is needed when we want to take into account boundary behaviour. Let
dy(z) := dist(z,0 )” for some « € (0,1].

There exist ¢y, ,c1, > 0 such that

c, /57(53) 57(?4)
o H@hW) =6 ) S G <kﬂ—y|v D= “>< "

Proposition 5.3 of [14], guarantees that under this assumption, the boundary behaviour of eigen-
function is dictated by the power =, namely

Koy (x) < ®1(x) <R dy(2) and [P (x)| < B dy(2)

In this case, eigenfunction are classical in the interior, i.e. C?*T®, whenever the operator allows it,

and have a sharp boundary regularity C7( ), see Theorems 7.1 and 7.2 of [14] for more details.

It is therefore convenient to use the ground state as a smooth extension of the distance to the
boundary (to the power ), and this allows us to rephrase the assumption (K2) as follows:

C1

o DRN) <C (@) < <€1—(ﬁ” A 1> ( fl_(z)p A 1> ( (K3)

e In many examples, the Green function satisfies an even stronger estimate

6 ) = (@—(?w n) (25 01) ( (Y

This is the case for instance of the three most common Fractional Laplacians, namely for the SFL
~v =1, while for RFL v = s, and CFL v = 2s — 1). See Section 2.2 for more details.

Notations. We will write the L” norm in  as ||f|l, := ([ |f[Pdz)"/?, but for weighted norms

with the first eigenvalue ®; we use HfHLg)l( ) = (f |fPdy da:)l/p in the space L () == {f €

Li.(): HfHLg () < +oo}. The Heaviside function will be denoted by sign, (f) := max{0,signf},
1

and positive and negative part as [f]4 := max{0, f} and [f]- = max{0, —f}, respectively. We also
use the following notation for maxima and minima: f A g := max{f, g}, f V¢ := min{f, g}.

2.2 Di erent fractional Laplacian operators on domains and other examples

We briefly exhibit a number of examples to which our results apply. These include a wide class of
local and nonlocal operators. We just sketch the essential points, we shall give the values 7, s in each
example, and specify the lateral boundary conditions. See [13, 19] for a more detailed exposition.

The Restricted Fractional Laplacian (RFL). We define the fractional Laplacian operator acting
on bounded domain by using the integral representation on the whole space in terms of a hypersin-
gular kernel, namely

F@) = )

(=4 )’ f(x) =ens PV, phEsn Y

RN |2 —



where we restrict the operator to functions that are zero outside . The initial and boundary
conditions associated to (CDP) are u(t,z) = 0 in (0,00) x RV\ and u(0, ) = ug. As explained in
[15], such boundary condition can be understood via the Caffarelli-Silvestre extension [23]. The sharp
expression of the boundary behaviour for the RFL was investigated in [56]. The sharp expression of
the boundary behavior for the RFL was investigated in [57]. We refer to [15] for a careful construction
of the RFL in the framework of fractional Sobolev spaces, and [7] for a probabilistic interpretation.
See also [37]. For this operator, assumptions (A1), (A2) and (K4) are satisfied with v = s, cf. [45].

Other RFL-type integral operators “with Holder coefficients” can be considered
a(z,y)
L =P.V. — ——=d
/() [ (@) = £ ) o .

where a is a measurable symmetric function, bounded between two positive constants, and satisfying

a(x,y) — a(®, ) Xjz—yl<1 <z —y|7, with0<s<o<1,
for some ¢ > 0. Actually, we can allow even more general kernels, cf. [18, 42]. Then, for all s € (0, 1],
the Green function G (z,y) of L satisfies (KK4) with v = s, cf. Corollary 1.4 of [42].

Spectral Fractional Laplacian (SFL). Consider the so-called spectral definition of the fractional
power of the classical Dirichlet Laplacian A on  defined by a formula in terms of semigroups,
namely

(-8 @) = i | €2 f@) - @) vaquj,

where (\j, ¢;),j = . are the eigenvalues and eigenfunctions of the classical Dirichlet Laplacian
f= [ f x) dx and ||¢;|l2 = 1. The initial and boundary conditions associated to (CDP)
are u(t x) = 0 on (0 oo) x 0 and u(0,-) = ug. For this operator, assumptions (A1), (A2), and
(K2) are satisfied with v = 1. Assumption (K2) and also (K4) can be obtained by the Heat kernel
estimates valid for the case s = 1, cf. [31], as explained in [18, 19].
Spectral powers of linear operators in divergence form. Consider any operator A = — Zf-yjzl 0i(a;j0;)
with uniformly elliptic C! coefficients and with discrete spectrum (Aj, ¢j) (consequence of uniform
ellipticity). We can build the following spectral power of the operator: for any s € (0, 1]

o0

Lf(x):= A°f(z) ;:Z<§fj¢j(;¢), where fj:/f(g;)¢jdx.

j=1
The Green function of this operator satisfies (K2) with v = 1, see [31].
Censored Fractional Laplacian (CFL) with general kernels. This third kind of Fractional

Laplacian was introduced in [9], in connection with censored stable processes. The operators takes
the form:

Ef(x):P.V./(f(:n)—f(y))%dy, with%<s<1,

where a(z,y) is a symmetric function of class C'! bounded between two positive constants. Actually,
not only £ satisfies (A1), (A2), but the Green function G (x,y) satisfies (K4) with v = 2s — 1, cf.
Corollary 1.2 of [25]. The boundary condition is a bit mysterious here: notice that when s € (0,1/2],
the boundary condition transitions from Dirichlet to a Neumann type, as explained in [9]. In this



case it is clear the advantage of the weak dual formulation (WDS) which encodes the boundary
condition in the Green function. In literature this is also known as Regional Fractional Laplacian.

Other examples. As it is shown in [13, 19], this assumptions hold for many other examples:

(i) Sums of two fractional operators: £ = (=4 )° + (=4 )7, with 0 <o < s <1, where (=4 )*
is the RFL. Here, (K4) holds with s € (0,1) and v = s, see [24].

(ii) Sum of the Laplacian and a nonlocal operator kernels

L=a(-A )+ As, with0<s<1 and a>0,
with

AS@) =PN. [ (Fa+9) = ) = V@) <) Cy<ldu<y> |
where the measure v on RY \ {0} is invariant under rotations around bdrigin and satisfies suitable
integrability conditions at zero and infinity. Here, (K4) holds with s =1, v = 1.

(iii) Schrodinger equations for non-symmetric diffusions £ = A + -V + v, where A is a uniformly
elliptic operator with C' coefficients both in divergence and non-divergence form, more details can
be found in [43]. Here, (KK4) holds with s =1, v = 1.

(iv) Gradient perturbation of restricted fractional Laplacians, £ = (=4 )® +b -V, where b is a
vector valued function belonging to a suitable Kato class. Here, (K4) holds with v = s, see [27].

(v) Relativistic stable processes,

Ez(cl/S—A>s—c, withe >0, and 0 <s < 1.

Here, (K4) holds with v = s, see [26].

2.3 The dual formulation of the problem. Di erent concepts of solutions

We can reformulate problem (CDP) in an equivalent dual form, by means of the inverse operator

L1

u(0,-) = ug in

A clear advantage of this formulation is that the lateral boundary conditions are encoded in the
inverse £71. Now we define a concept of weak solutions suitable for the above formulation, firstly
introduced in [18, 19].

Definition 2.1 (Weak dual solutions). Let T' > 0, we say that u € C((0,T) : L<11>1( )) is a weak dual
solution of (CDP) if u™ € Ll(f, T]: Lclbl( )) fnd

T T
/ /c—lu atl/zdxdt:/ /umwdxdt Vap /By € CL(0,T) : L=( ). (WDS)
0 0

We say that u is a WDS of the Cauchy-Dirichlet Problem (CDP), corresponding to the initial datum
ug € Lg (), if moreover u € C([0,T) : Lg ( )), and

T u(t) = wollyy, (=0

9



A 'WDS is called strong if in addition t dyu € L>((0,T) : Lg, ( )). A WDS is called Minimal Weak
Dual Solution (MWDS) if it is obtained as the non-decreasing limit of a sequence of semigroup (mild,
gradient flow) solutions.

We will construct our WDS, more precisely the MWDS, as the monotone limit of gradient flow
solutions in a suitable Hilbert space, modeled ad hoc for the operator £. The class of nonnegative
WDS contains the nonnegative semigroup solutions that will form our approximating sequence, see
Lemma 8. We shall construct such semigroup solutions using the celebrated theory of Brezis on
Maximal Monotone Operators [20, 21], see also Komura [44] and the excellent lecture notes [2]: we
define the free energy (or entropy functional) as follows

E(U):{ =t () da if we L™ ),

00 otherwise,

and show that L is the subdifferential of the convex and lower-semicontinuous energy functional £
on the Hilbert space H*( ). Note that H*( ) is defined as the (topological) dual space of H( ),
the domain of the quadratic form associated to L:

H( ):{{eﬁ( ):/uﬁudx<oo}<

We can endow H*( ) with the natural scalar product and the associated norm

(u, v) e ):/uﬁ_lvdx and Hu|%]( ) = {u,u) g ):/uﬁ_ludx.

We refer to [15] for further details about the spaces H( ) and H*( ) and their relation with the

fractional Sobolev spaces Hi( ), Héf( ), H*( ) and their duals H=%( ). Following [2, 20, 21], we
recall the definition of semigroup (or gradient flow) solutions adapted to our setting:

Definition 2.2 (Gradient flow and EVI solutions).

e We say that u : (0,+00) — L'*™( ) is a gradient flow (GF) of the functional £ defined above, if
u(t) € ACioc((0,00) : H*( ) and

—owu(t) € 0E(u(t)) for a.e. t € (0,00).
We say that u(t) starts from uo € H*( ) if lim [Ju(t) — uo|z=( y = 0.
t—0t
e A curve u(t) € ACpc((0,00) : H*( )) is called an EVI solution starting from uy € H*( ) if for

any w € H*( ) we have that lim |lu(t) — uol[z-( y = 0 and that
t—0t

——|Ju(t) — wH%{*( ) < E(w) — E(u(?)) for a.e. t € (0,00).

It is well-known that if £ is convex and lower-semicontinuous then a locally absolutely continuous
curve u(t) € H*( ) is a GF if and only if it is a EVI solution, see for instance Theorem 11.15 of [2].
We are now in the position to state the celebrated Brezis-Komura Theorem, the nonlinear anal-
ogous of the Hille-Yosida or Lumer-Phillips Theorem. The statement, adapted to our setting, reads:

10



Theorem 2.3 (Brezis-Komura [20, 44]). For every ug € H*( ), there exists a unique gradient flow
starting from ug that we denote by u(t) = Syug. This defines a continuous semigroup Sy : H*( ) —
LY*™( ) for t > 0 with the T-contraction property in H*( )

[(Stuo = Spvo) |l ) < [[(wo —vo) &l ),  VE>0, Vug,v9 € H*( ). (4)
Moreover, GF solutions are H*-strong, namely for oll T > 0 we have
tu™, tou e L=((0,T): H*( )).

Indeed, GF solutions are H-energy solution, i.e. the following energy estimate for everyt >t > t1 >
0 we have
(L+m) E@ult) _ 1 luto)lIF-(

2m (tl — t) - 2m(1 + m) (tl — t)(t — t()) ’

[u™ () F ) <

Remark 1. (i) Note that in this class of GF solutions, the comparison principle holds, namely by
(4) it is clear that if up < vp a.e. in , then u < v a.e. in (0,00) x . A formal proof of (4) is the
following: by Kato inequality we know that sign (u™ — v™)L(u™ — v™) > L(u™ — v"™) 1 so that

d 3 m m m m -
E”(U_U)J,_H%{* = —2/ sign,, (u™ — v™)L(u™ — ™)L (u —v) 4 dz
< —2/(1/” —0") 4 (u—v); de.

Indeed, this is rigorous since solutions are H*-strong, i.e. dwu(t,-) € H*( ).
(ii) Notice that uniqueness in H* follows by (4), indeed we have the H*-contraction (just summing
the positive and negative part estimates)

lu(®) — vl ) < lluo —vollm=( ) for all t > 0.

(iii) Note that here we do not assume any sign condition on ug, and this is to the best of our knowledge
the largest class of data without sign restrictions, for which existence and uniqueness hold. The above
theorem generalizes the existence and uniqueness result of [15], Theorem 2.2, where the case of SFL
and RFL were thoroughly investigated in the framework of fractional Sobolev Spaces. Most of that
theory applies also in the present case, but we have preferred to simplify the setup aiming at a larger
class of nonnegative solution, which are the WDS in the LCII)1 framework.

(iv) This Theorem follows by adapting Brezis’ proof [20] originally in the H~! framework, to the
present H* setting, as it has been done in [15], where more general nonlinearities and further details
are given; in particular, we recall that under assumption (K1) it is possible to identify H* and H ™%,
when s # %

The first of our main results concerns existence and uniqueness of nonnegative solutions.

Theorem 2.4 (Existence and uniqueness of nonnegative MWDS in L<11>1)' Let (A1) and (A2) hold.
Then, for every 0 < ug € L<11>1( ), there exist a unique minimal weak dual solution u of (CDP) with

_ QHUOH 1
t+h t LY
lim [lu(t) —wolls (=0 and fm ACFM ) o ollee, O
o " h—0* h oy (L=m)t

1

11



Moreover, the T-contraction estimates hold: let 0 < ug, vy € L‘ll)l( ) and u(t),v(t) be the correspond-
ing MWDS, then, for all t > 0 we have

1(u(®) = o@®)xllzy () = (o —vo)xllry (-

Remark 2. (i) As for the previous Theorem, the T-contraction implies comparison and uniqueness
in L<11>1 (via contractivity), but we stress on the fact that our proof only guarantees the validity of
these properties for the MWDS, a priori we can not exclude that ug € LCII)1 produces other WDS.
(ii) A closer inspection of the proof reveals that the MWDS does not depend on the particular
choice of the approximating sequence, we only require the approximating sequence to be monotone
increasing, see Step 4 of the proof of Theorem 2.4 for more details.

(iii) The question of uniqueness is a delicate issue in this L}I)l—setting, since the energy functional is

Flul] :/umCI)l dz

which is clearly not conver when m € (0,1). A full uniqueness result for WDS is still missing. This
is an intriguing open problem and it would imply that all WDS are minimal (hence a priori more
regular). This lack of convexity makes it impossible to apply Crandall-Liggett type Theorems, as
done in the L'-setting in [28]. See [36, 60] for related uniqueness results on RY.

(iv) A larger “existence” class of nonnegative solutions. When we deal with nonnegative functions,
H*( ) C Lg,( ), indeed by Cauchy-Schwartz inequality and the normalization [|[®][2 = 1, we get

g, )= [widr= [ £ £h@n) da

1 1 . (5)
< L2y ) ﬁECI)l 2:)\12”11,”11*( ).

To the best of our knowledge, the largest class of nonnegative data for which existence of solutions
to the (CDP) is guaranteed, is precisely L<11>1-

In Section 5.5, we will proof that under some assuptions MWDS are indeed L}I)l—strong.

Theorem 2.5 (Lj, -strong solutions). Let (A1) and (A2) hold. Then, the MWDS u corresponding
to the initial datum 0 < ug € L‘ll)l( ), is moreover a L}I)l—strong solution, with the bound

2 JluollLy (

whenever one of the following additional conditions hold:

1. Let N > 2s > ~ and either (K1) or (M1) hold. Moreover, assume ug € LP( ) with p > 1 if
m € (me, 1) or p> pe if m € (0,m].

2. Let N,y > 2s, m € (0, %) and either (K1) or (M1) hold. Assume moreover that ug € LP( ) with
p>1ifm e (me, 1) orp>pe if m € (0,me].

3. Let N > 2s >~ and (K2) hold. Assume moreover that ug € Ly, () withp > 1 if m € (mey,1)
or P> pery if m e (0,meq].

12



Remark 3. Essentially the above theorem says that MWDS are strong when they are bounded.
Since the L' — L> smoothing effects are not true for L<11>1 data when m is close to zero, it is therefore
quite natural to expect that we need some extra LP integrability on the initial datum to obtain
bounded -hence strong- solutions, as it will be made precise below.

2.4 Smoothing e ects

In this paper we compare two different methods for proving smoothing effects for solutions of (CDP)
in order to be able to cover a larger class of operators. First, we show how Moser iteration can be
used to obtain the boundedness of weak dual solutions with initial data uy € LP( ) and p depending
on 0 < m < 1. This first part will require some assumption on the operator together with the validity
of functional inequality of Sobolev and Stroock-Varopoulos type, which we call (M1), see Section 3.1
for a careful explanation. Sometime these ingredients are not at hand, but we can find results about
the inverse of the operator. This is the key tool needed in order to use the Green function method,
introduced in [18], based on the dual formulation of the problem, that allows to prove an “almost
representation formula”, i.e. pointwise bounds essential to prove the smoothing effects.
(K1) Assumption and unweighted Smoothings. When dealing with the question of bounded-
ness of solutions, it is convenient to introduce the following exponents

N —2s N(1—m)

Me i= ¥ and Pe = 9%

As in the local case s = 1, when m < m, we have that L' data do not necessarily produce bounded
solutions, as firstly shown by Brezis and Friedman [22], see also a thorough discussion in [62, 17].
We present now our main results about LP — L™ estimates: with and without weights.

Theorem 2.6 (LP — L*° smoothing). Let N > 2s, m € (0,1) and assume (Al), (A2) and either
(K1) or (M1). Let u be a nonnegative WDS of (CDP) corresponding to the initial datum uy € LP( )
with p > 1 if m € (me, 1) or p > p. if m € (0,m.]. Then, for everyt >ty > 0 we have

spd
(ko) |5 . 1
oo <K ———F—— th U, = ,
le®llee <7 =y S, with 9y = o (6)

where 0 < K only depends on N, m,s,p and

Moser Iteration VS Duality and Green function method. In Section 3 we will provide two different
proofs of this Theorem, one based on a nonlinear variant of the classical Moser iteration which will
requer only assumptions on the operator £, namely (M1), the other based on dual formulation of the
problem and we will required only assumption on £~!, namely (K1). In the first case, we shall see
that (M1) involves the validity of Sobolev and Stroock-Varopoulus type inequalities. In the second
case, the assumption (K1) compares the nonnegative Green function -the kernel of £~!- from above
with the Green function of the Fractional Laplacian on RY. Indeed this proves that the smoothing

(6) is valid for all p € (w, 2—1\;> b(j By Hélder inequality, (6) with p < % implies LP1 — L

smoothing effects for all py > p > p., but the exponents may not be sharp (for small times)
2spd 2sp0
Hu(t)H <FE Hu(tO)Hpsp g <% ”u(to)”pr ?
T (t—to)V T (t—tg) N
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In order to obtain sharp exponents as in (6), we need Kato inequality (66), see Section 3.2.1.

New H* — L* smoothings. We also proof H* — L*° estimates using Theorem 2.6 along with the
energy estimate below, Lemma 3.6. For this last estimate, we have to introduce another critical
exponent

N —2s

- N+2s’

ms

Theorem 2.7 (H* — L*™ smoothing). Let N > 2s, m € (ms,1) and assume (Al), (A2) and (K1).
Let u be a nonnegative WDS of (CDP) corresponding to the initial datum ug € H*( ). Then, for
every t >ty > 0 we have

4s 191+m
HU(tO)HH*( ) 1
t ith 0 = 7
lu(®)lloe < 7 t—t) NV 2rm T S A T N —m) (™)
where 0 < K only depends on N, m,s and
| H* - L™ |
‘ LP_>LOO‘ ‘ L1+m_>Loo H L1—>L°o ‘
p>pe>14+4m 1+m>p.>1 1>p.>0
0 mg me 1 m
( Very Fast [{iffusion Good EDE PM (
Heat\Eg.

Figure 1: LP — L*° and H* — L* smoothing effects in the different fast diffusion regimes in relation
with the critical exponents:
N(1—m) N —2s N —2s
me = me. =
2s ¢ N N 42s

Pc =

(K2) Assumption: weighted smoothing e ects and upper boundary estimates. The Green
function method is somehow more flexible and allows to prove more general smoothing effects, for
data in ng as follows, but we shall introduce first two new exponents that naturally appear in this
weighted setting
N+~v—2s N(1—m)

N 25—y

Theorem 2.8 (Lf — L* smoothing). Let N > 2s > v, m € (0,1) and assume (A1), (A2) and
(K2). Let u be a nonnegative WDS of (CDP) corresponding to the initial datum ug € Ly, () with
p>1ifme (mey,1) orp>pey if m € (0,mey]. Then, for every t >ty > 0 we have

My = and Deyy i=

(25=7)p ¥,
(tO)HLgl( ) 1

u®)loe < & —— S5y with Uy = e s (5)
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5 — L® Ly, — L™

P> Doy > 1 1>pe,>0

| I 5 L@ | |Lt+m 1] | L' 5 L™ |
p>p.>1+m 1+m>p.>1 1>p.>0

[l 1 1 1 ]

L T T T ]

0 mg me Mc, 1 m

Figure 2: Weighted and unweighted smoothing effects in the different fast diffusion regimes in
relation with the critical exponents:
m_N—Zs m _ N+~v-—2s m_N—Qs N1 —-m) N1 —-m)
cT TN CTT TN ST Nt2s PeT T o L P

Remark 4. Boundedness of signed solutions. All our smoothing effects are stated for non-
negative solutions, but they can easily be extended to signed solutions, since a closer inspection of
the proof reveals that they hold for nonnegative subsolutions, hence they hold for the positive and
negative part (both subsolutions) hence for |u|, just by summing the bounds (and possibly paying a
2 in R).

2.5 Upper boundary behaviour

Under assumption (K2) we can prove quantitative upper bounds of the solutions in terms of the first
eigenfunction that we recall to satisfy

Qi (z) < 0y(x) = dist(z,0 ).
The following result provides a strong quantitative information of how the lateral boundary conditions

are satisfied.

Theorem 2.9 (Upper boundary estimate). Let N > 2s, m € (0,1) and assume (Al), (A2) and
(K2). Let u be a nonnegative WDS of (CDP) corresponding to the initial datum ug € LP( ) with
p>1ifmée (me,1) or p>peif me (0,me]. Then, u(t) satisfies boundary condition and we have

2spp
u™(t,g) <F % B1(®1(xg)) for a.e. z9p € and YVt >ty >0, 9)

with ® depending on p,m,s,v, N and , and By is defined as in Lemma 4.1 of [14],

1(z0), for 2s > 7,
B1(®1(z0)) = q Ru(@o)(1 + [log P1(wo)l),  for 25 =7, (10)
1(zo) for 2s < .

Moreover, let N > 2s > v and u(t) a nokegative WDS where uy € L‘gl( ) withp > 1 if m € (M, 1)
or p > pey if m € (0,men]. Then u(t) also satisfies boundary condition and we have

25— 3
lato)lI 5

u™(t,x0) <R D4 (x0) for a.e. o € and allt >1t9>0.

(t _ to)l-i—Nﬁp,
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2.6 Finite Extinction Time and extinction rates

Once we have that solutions are bounded, we will show that they extinguish in finite time.

Proposition 1 (L? estimates and Extinction Time). Assume (Al), (A2), (M1) and let m € (0,1).
Let u be a nonnegative WDS corresponding to the initial datum ug € LP( ) with p > p.. Then, there
exists a finite extinction time T > 0 such that

0<T =T(uop) < cplluoll,™,
where ¢, > 0 only depends on p,m,s, N,\1,Sz, . In addition, for every 0 <tg <t <T we have
cp(T = 1) < JJu(@®)[l,™™ < Jlulto)ll,™™ = ep(t —to) - (11)

Proposition 2 (H* estimates and Extinction Time). Assume (A1), (A2), (K1) and let m € (0,1).
Let u be a nonnegative WDS with uf € H*( ) and let us define a. = min{1, W} Then,
there exists a finite extinction time T > 0 such that

1-m
0<T="T(up) <cqu Hu8‘||H*( ) Yo > ac,

with ¢, depending on a,m,s, N and Hp . Moreover, for every 0 <ty <t <T we have

1-m 1-m
calT = 1) < [u Bl = < [u®(t0)ll =, — Calt —to).- (12)

Proposition 3 (L<11>1 estimates). Assume (Al), (A2), (K1) and letm € (0,1). Let u be a nonnegative
WDS with ug € Ly (), and let T > 0, be its extinction time. Then

1

@iy, () Sa(T-H==  VO<t<T,

1
with ¢y = A\ 7™ ||®1|l1. As a consequence, we have the following lower bound for the extinction time,

1-m
T>X\ <HUOHL}P1 H@lﬂl)

In the “Sobolev” regime of fast diffusion m € (mg, 1), we show that the above time decay is
optimal.

Proposition 4 (Sharp L!™™ extinction rate). Let 0 < m < 1 and assume (A1) and (A2). Let
u be a nonnegative WDS with ug € L**™( ). If there exists an extinction time T, then for every
0 <t<T we have

lu(®) i < (1 —m) Qlug] (T —1). (13)

In addition, if m € (mg,1) and we assume (M1), then for every 0 <t < T we have

cn(T = 1) < lu(®) 17 < (1 —m) Qluo] (T —1). (14)
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Proposition 5 (Sharp H* extinction rate). Let 0 < m < 1 and u be a nonnegative WDS with initial
data ug € '™ N H*( ). Assume (A1) and (A2). If there exists and extinction time T > 0 and
(K1) holds, then

lu®) - ) < €1 Q' fug) = (T — )= for every 0 <t <T,

1
with ¢y = (1 —m)T=m. In addition, if m € (mg,1), then we also have the lower estimate
1

(T — )T < u(®)l[g+( ) <1 Qug] =7 (T — )T for every 0 <t <T,

with co depending on m,s, N, and H.

3 Smoothing e ects. Moser iteration VS Green function method

The aim of this section is to present two different strategies to obtain LP — L estimates. The first
is based on the “Green function method”, the second is the more classical approach through Moser
iteration. For these two methods, we use different assumptions, as we shall explain carefully below.
The advantage of the Green function method is that the proof is simpler and it allows to obtain
weighted estimates, which are new also in the case of the classical FDE, i.e. £ = —A. As we shall
see, the smoothing effect not always hold for merely L' or L<11>1 functions, as in the degenerate case,
cf. [13, 18, 19]. As it happens in the local case, more integrability is required to obtain bounded
solutions to FDE, and new exponents appear: m, which can be characterized as the first m such that
L' data do not produce bounded solutions, and p. = p.(m) as the minimal integrability required
to have bounded solutions. The function p.(m) creates a “green line”? in the (m,p)-plane that
identifies the zone of validity of the smoothing, see Figure 3 (with s = = 1 in the local case). This
is carefully explained in the monograph [62] and in the Appendix of [17]. Here we present new critical
exponents in the weighted and unweighted case, that allow to extend the “green line” of validity of
the smoothing effects, to the nonlocal setting.

p I : p I
] I 1
LP — L | : !
N N D (0’s) !
2_8-'~~ :L1+m_>LOO: 23_7-'~~ L@l - L : 1 oo
ha 1 1 L]' —)LOO e [ L _> L
~§. ] I ~§. 1 él
- ~
| :
~“~ : pcb"f~“~ :
Pe *elll R
1 - > 1 ™ >
\ \
L4 L4
0 msg me 1 m 0 Me,y 1 m

Figure 3: On the left side, the green line in the (m,p)—plane.
On the right side, the weighted green line in the (m,p)—plane.

2Juan Luis Vézquez, to whom we dedicate this work, explained the “green line” to M.B. in 2005, as something he
wanted to add in the wonderful monographs that he was writing at the time, [62, 63], to clarify the “mess of exponents”.
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3.1 Moser iteration

Functional setting and idea of the proof. One possible strategy to prove smoothing effects
is to use a variant of the celebrated Moser iteration, following the main steps developed in [54] in
the case of the fractional Porous medium equation. Moser iteration relies on two main ingredients:
a suitable Sobolev inequality for the quadratic form associated to the operator, and a Stroock-
Varopoulos type inequality. This was firstly used in [54], in the case of the Fractional Laplacian
on RY and of the standard Fractional Sobolev inequality on H*(RY), together with the relation
[fLf = 12 =< 1112 SRN)" In our setting, we need the following Sobolev inequality: there exists

2* > 2 such that for all f € H( )

IF13 < SENFIG y = 3%/ FLfdz = S7 || ?ul3. (15)
We also deduce a family of Gagliardo-Nirenberg-Sobolev (GNS) inequality: let p > ¢ > 0 and
2q . qg+m—1 0 g+m—1
—— <2 d S AN P S
grm—1-"7 " 2 PO,
then, by interpolation of LP norms, we have
WA 20 < UFIG IS < S2UFIG AL (GNS)
q+m—1 g+m—1 qgt+m—1

However, GNS are not sufficient to run Moser iteration in the nonlocal setting. We need the Stroock-
Varopoulos inequality: that there exists a constant ¢, , > 0

_ q+m—1 q4+m—1 g+m—1 2 gt+m—1 2
/uq lﬁumd$20m7q/ u e Lut e dz =y LY , = Cmq W2 ey (16)
So that, combining the two above inequalities, one gets
+m—1
—1 gtm-1 2 —o_|lullg *
/ uq £um dzx 2 Cm,g U 2 2 Cm7qS£ T 1—ggtm-1 - (Ml)
e lull,® 2

This implies the decay of the L9-norm, i.e. ||u(t)|q < ||u(to)|lq for all t > t9 > 0 and all ¢ € [1, o0].
The latter inequality is the minimal assumption to run the Moser iteration. We shall discuss
under which assumption this is true. Somehow, the Stroock-Varopoulos inequality is a quantitative
version of (A2’), which only asserts that the above integral is nonnegative.
In the local case, the validity of this (M1) is usually a consequence of the classical ellipticity
condition or of assumptions on the kernel of the operator, in the nonlocal case: there exist 0 < A < A
such that for all £ € RV

i,j=1 i,j=1

N N
if L[f] = — Z i (ai;0; f) (then we need A¢[* < Z &iai i€ < AP, (17)

and the Stroock-Varopoulos inequality follows by integration by parts and chain rule:

ptm—1 2

/up_lﬁum dz > )\/ V(P - v(u™) de = cm7p)\/ Vu 2 dz
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and we obtain (M1) just by using the classical Sobolev inequality on H¢( ), with 2* = 2% > 2.
In the nonlocal case, the situation gets more involved: define the operator as

i L[f)(x) = P.V. / (@) — FW) K(z.y) dy (18)

RN
restricted to functions supported in , and impose the ellipticity condition on the kernel:

A A
— <K < . 1
z — y|N+2s = (z,y) < |z — y[N¥2s (19)

Under this assumptions, using the Stroock-Varopoulos inequality (6.2), and the Sobolev inequality
on Hi( ), one can prove (M1), as it has been done for the first time in [53]. See also [15] for more
details about Sobolev spaces on bounded domains.

Unfortunately, the above assumptions do not cover the case of the Spectral Fractional Laplacian,
and more generally “spectral type operators”, i.e. powers of elliptic operators of type (17) or even
of type (18). This is because spectral operators can be represented with a kernel as follows:

£ =PV, [ ()~ 1) (o) dy + B (@ (20)
and there exist 0 < A < A such thatfor a.e. z,y € we have

0y(2)0 (y 0~ ()0~ (y
A%SK(%MSA% and 0< B(z) <

RER (L)
and having a kernel supported in  and zero at the boundary, they clearly do not satisfy the ellipticity
condition (19). We will show how to deal with these operators more easily, with the Green function
method in Section 3.2, but we can also take into account the following remark.

Assumption (K1) and (L1) imply (M1). We have seen that assumption (K1) implies the validity
of a Hardy-Littlewood (HLS) inequality: for all f € H*( )

2N

£ = 1L 2 F13 < Hell flley  with (27) = ; (21)
N + 2s

which is equivalent to the desired Sobolev inequality,

2N

If N o5

5 <SEIfIHy  with 2% = (22)
by using Legendre duality, as carefully explained in Appendix 7.8 of [15].

On the other hand, the Stroock-Varopoulos follows by the fact that K(z,y) > 0, see Lemma 6.2
for a proof. Hence, (M1) holds under the assumption (K1), an upper bound on the Green function,
the kernel of the inverse £~

We refer to [19, 14, 13] for more details and further examples of operators, briefly summarized
in Section 2.2.

We begin by proving how (M1) easily implies smoothing effects from LP to L? with p. < p < ¢ <
+00.
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Lemma 3.1 (L? - L9 smoothing). Let L satisfy (A1), (A2), and (M1) with 2* = 2N/(N —2s). Let
u be a GF solution with 0 < ug € L>®( ). Then, for all max{l,p.} < p < q < +oco there exists
Rp,qg > 0 such that for all t >ty > 0:

pYp
_ (o)™ : L
Al < th o, = 23
lu@llq < Fpg o) 50 o T g TN —m) >

where Ry 4 only depends on p,q, N,m,s, and is given in (24).

Proof. Let us begin by deriving the L4-norm and using (M1), recalling that in this case the constant
in the Stroock-Varopoulos inequality is given by

_ 4g—-1)m
(g +m —1)2
so that
d (¢—1) l Hﬁ%i
_ _ o 4g(g—1)m u
1 1 2
g uwlde = q/ w Ouudr = —q/ wI™ Ly de < =S, G+m_1)y lfle T

lullp™

Few remarks are in order: first, we have to ensure that

p—l—m—1§2:N—23’ that is pzpc:%.
Hence, we have
gt+m—1
d / — </ ) af . _ 4q9(q — 1)m S-2
— [ uldr < —Fo uldzx with %y = 75 —
d (g+m—1)2 HUOHEQ)(Q%U

Integrating the above inequality on [tg, t], we get

_CI+77571+1 + 1

q —

(f ura) m(%_l)(t_to)
q

recalling that

g+m—1 1= 2sp — N(1 —m)
qt N(q—p)
we obtain
2sp— N(1 —m) ~ T N
[ wran < (m 2L 0 )
P2 NOm) \ 75 N
([ xst@rm-1a-p)  July 7

Xg(g—1)m (2sp — N(1 —m)) t— to ( ’
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which gives exactly (23) with the constant

N(¢—p)9p
—_ (NSEa=p)g+m =120, [
pa dq(g—1)m

(24)

0

Notice that we cannot let ¢ — oo in the Lemma above, since the constant blows up. Hence, we
use Moser iteration to prove from Lemma 23 that solutions are bounded. The following Theorem
is a slightly different verison of Theorem 2.6, since we ask only for assumptions on the operator L.
Theorem 2.6 is proved recalling that (K1) and (L1) implies (M1).

Theorem 3.2 (LP - L™ smoothing). Let L satisfy (A1), (A2), and (M1) with 2* = 2N/(N — 2s).
Let u be a nonnegative WDS with ug € LP( ) and p > p. if m € (0,m¢] or p > 1 if m € (me,1).
Then, there exists a constant & = R(N,m,s,p,Sg, ) > 0 such that for any t >ty > 0

2sp v
_ Muto) ]2 1

< 3 g .
Ju(t)|oo <R @ 1) with Jy = (25)

Proof. We split the proof in three steps: first we establish the bound (25) for nonnegative bounded
GF solutions for p > max{1,p.}, then we establish it for p =1 when m € (m,, 1) in Step 2, then we
will deduce the final result by approximation in Step 3.

e STEP 1. Smoothing estimates for bounded GF solutions. We begin by establishing the bound (25)
for nonnegative bounded GF solutions, more precisely we will prove the following

Claim: Let £ satisfy (A1), (A2) and (M1) with 2* = 2N/(N — 2s) and let u be a GF solution with
0 <wup € L*( ). Then, for any p > max{1,p.} there exists a constant & = &(N,m, s,p,S¢, ) >0
such that (25) holds for any ¢ > ¢ty > 0.

Proof of the claim. Let us rewrite (23) for each k > 1 with py, = 2kp and t;, such that tj —t_1 = tg%,
N(Pkfpkfﬂﬁ

_ Pr—19%—1
Ck Pk kot

u(ti—1) 1 7™ (26)

ute) e < (

where ¥, := 3, = (2sp, — N(1 —m))~" and

gy — th—1

_ NSZ(pr — pe—1)(px +m —1)%0;_y
4pi (pr — )m :

Then, let us bound ¢ uniformly in k using the definition of py:

Cf

NS (rtmo1) _NSp (- gy
= 8m (pr - D@sproy - N(L—m)) — Sm (1 Ly(; - Mo,
NS P -

T 2m (p—1)(2sp—N(1—-m))

which is bounded since p > p.. Hence, we can iterate in (26)

. N(Pk;Pkfl),ﬂk71 Pr—1%%—1
k 5
T il
bt — tp_1

21



N(Pk*Pkﬂ)ﬂ N(pg—1—Pr—2) Pr—1Yk—1

_ _ _ 9 Pk— Qﬂk 2
[@ Pk k C Pr—1 k=27"p 0
= <7> (7) [(tr—2) | 75"
e —th—1 lk—1 — lk—2

N(pj—pj—1) 9951 pp

k % 2
“TI(i——)( " e+

1
N(;_1-75) EP

k _ 3 pﬁp
. C 2s e
) u(to)

where in the last inequality we have used that (p; — pj—1)9;-19; = w.

Now, we see that the product is uniformly bounded with respect to k:

N9y [ Nlog(2) N _
j_ € % _ 08 A ¢ 9.
H 2 t_t0>( exp | = Zy(vﬂ]_l 9;) + 5, log (t_t0> é:(ﬁj_l 79])] (
7=1 L 7=1 =1
[ Nlog(2) j N ¢
< 2 - _
<exp 9 ; 25 pr + s 0g — v — Ok)

< exp

e
<15
=
W~
+
=}
0]
VR
~
N
=
N————
<
=
<
>
=
VR

Notice that klim (pr9g)~! = 2s and klim ¥ = 0. Therefore, since t > t, for all £k > 1 and decay of
—00 — 00

the LP-norm holds, we conclude that

le@®lloo = Jim [[a(t)p, < T fu(te)lp,

N(9p—>9g)

1
Ok 2sp 1
= lutto)llp o

< lim |23% [ —© ” i
< lim | 227 P— [[u(to)llp W-

This is exactly (25) when p > max{1, p.}, and the proof of the claim is complete.

e STEP 2. The case p =1 and m € (m.,1). We extend the claim of Step 1 to the case p = 1. Let
u be a nonnegative gradient flow solution with uy € L*°( ) and m € (m,,1). Take any p; > 1 > p,
hence u(t) satisfies the claim for p,

250
g 2pidpy _ O / (p1=1)+1 > "
Jul®)lo < G o) 527 = i ([ )
191
2s9p, (p1—1) 250p,
c1|u(to)lloo ™ 259, 2501 (p—1) €1 l[u(to)lly
< t 1<—ut + 2289101 1)
= (t — to)Nﬁpl H ( O)H H ( 0)”00 (t — to)Nﬁpl
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where we have used Young inequality, ab < %al + 21— bl%, with a = 259, (p1 — 1) < 1. We
can eliminate the term 3 ||u(ty)|| by applying De Giorgi’s Lemma 6.3 and conclude the proof of the
claim also in this case.

e STEP 3. Approximation with GF solutions. We approximate the initial data 0 < ug € LP( ) by
truncation, g, = min{ug,n}, so that ug, — ug in LP. Since ug, € L*( ) C H*( ), there exists
a gradient flow solution w,(t) given by Theorem 2.3, that is also bounded and satisfies the Claim of
Step 1. Hence, by lower semicontinuity of the L°° norm we obtain

. . _ _ 2sp? _ — 2spY
u(®)lloe < lim un(®)loo < lim F(E — 1)~ e (00) [ = (e — t0) N> ulto) 577
This concludes the proof. O

3.2 Green function method

In this section we will show the advantage of the Weak Dual Formulation (WDS) and the power of
the Green function method: we shall obtain a fundamental pointwise estimates (31) of Lemma 3.4,
the “almost representation formula”, the nonlinear analogous of the representation formula in the
linear case, proven in [18, 19] in the case m > 1. Another advantage, is that we only need assumption
(K1) to obtain the same results obtained with the Moser iteration in the previous section, with a
much simpler proof. On the other hand, the Green function method allows also to prove weighted
smoothing effects, and boundary estimates: since in the nonlocal setting it is quite rare to have
weighted Sobolev type inequalities, essential to run a Moser Iteration, here we just need to know the
boundary behavior of the Green function, namely (K2).
Let us recall the assumptions on £~! that we will use, in this Section:

e There exists a constant ¢;, > 0 such that

0<G (z,y) < — =

. K1
S oy e

e Let &1 > 0 be the first eigenfunction of £. Then, ®1(z) < dist(x,0 )7, and we assume

o @) <G (o) < b (P ) (U Al)( (K3)

= |z —y[N-2s k—yw x — y|v

As we have already explained in Section 2.1, assumption (K1) on guarantees existence of a positive
and bounded eigenfunction ®1, and the validity of HLS, Sobolev and Poincaré inequalities. If we
assume (K2) then ®; =< dist(-,0 )7, cf. [14] for further details. Also, (K2) implies (K3), which is
more practical in the computations: ®; turns out to be a smart&smooth extension of dist(-,0 )7.

In what follow, we shall use the following useful Lemma of [14] that allows to estimate the L%
norm of the Green function, under (K1) and (K2) assumptions.

Lemma 3.3 (Green function estimates I, [14]). Let G be the kernel of L™1, and assume that (K1)
holds. Then, for all 0 < ¢ < N/(N — 2s), there exist a constant ¢z, (q) > 0 such that

sup / G? (z,z0)dz < ¢, (q). (27)

ToE
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Moreover, if (K2) holds, then for the same range of q there exists a constant c3, (q) > 0 such that,

for all xg €
1

c3, (@)®1(wo) < (/ G’ (ﬂfaﬂio)dUU)q < a1, (¢)Bg(P1(20)), (28)
where By : [0,00) — [0,00) is defined as follows:
1($0)7 f0r0<q<$5+77

By (®1(z0)) := { [®1(x0) (I+ log @1 () )( for ¢ = x=5555 »
1(xO)N q(qN72s)

N N
’ fO’I” N—2s+v <q< N—-2s*

Q=

Finally, for all 0 < f € Ly \ ), (K2) implies that

/ f(@)G (z,z9)dz > co, <I>1(x0)||f||L<1P1( ) forallxzg e . (29)

The constants ¢;, , i = 0,...,5, depend only on s, N,7,q, , and have an explicit expression, cf.
[14].

Lemma 3.4 (Fundamental pointwise estimates). Assume (A1) and (A2). Let u be a bounded and
nonnegative GF solution, then for all zg € and 0 <ty < t1 we have

um(tla / t07 tla y)G ($ y) dy < um(t(b 33‘) (30)
t ITm - 1 —m 1 ™ ’ - lj:rl '
1 -ty to

The proof presented here is an adaptation to the FDE of the proof of Proposition 4.2 of [18], or
Proposition 5.1 of [19].

Proof. Let us give first a formal proof: test the weak formulation (WDS) of the equation with (the
a priori not admissible test function) x[4, +,] 6z, in order to obtain on the left-hand side

/t:l/ut t, ) L7 [65,) dudt = /(U(t1,$)—u(t0’$))G (z0,7)dz

and on the right-hand side

t1 t1
—/ / U™ (t, )0, (x) dz dt = —/ u™(t, xo)dt.
to to

Using the time monotonicity, namely that (%) "u(ty) < u(t) < ulto) (%) " we can estimate
the time integral from above and below, and obtkin (30).
l/n( 0)

For a rigorous proof it suffices to approximate d,, with ¢, = By (@0)]
(WDS) formulation, and obtain that

t1
/ / (t, 2)pn () dz dt 222 m(t,mo) dt
to

at every Lebesgue point of u(t,-). Also, we shall approximate x[;, ;] With X, as in Lemma 6.4. [

which is admissible in the
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In what follows we will only need the lower bound of (31), in the following form:

Proposition 6 (Fundamental upper bounds). Assume (A1), (A2) and Kato’s inequality (66). Let
u be a bounded and nonnegative GF solution, then for all xo € and 0 <tg <7 <t <t we have

p+m—1
t 1-m
uPT Nt o) < ¢y ———— [ u(r,2)P G (z0,2)dx . (31)
(t—7)Tm
where ¢,y = fiq"i:nl). Note that when p = 1 the above inequality follows from (30), and there is no

need of assuming Kato’s inequality (66).

Proof. First, we multiply the equation by pu?~'!G and integrate on [0,7] x . On one hand, we
obtain

/ /ttlpup_l(t,a:) Owu(t,z) G (zg,x)dtdz :/(u(tl,x)p —u(ty,z)?) G (z0,x)dx.

ptm—1
m

m
prm—1Y

On the other hand, we use Kato’s inequality with v = «™ and f(v) =

—p/t:/u”‘lﬁ(u(t,w)m>G (z0,2)drdt < — ——r / /cwm Y(t,2))G (o, z)dxdt

= p7+p$_1/ uP T (¢t ) dt

+m—1

Using the time monotonicity, namely that (%)(ﬁ u(t1) < u(t), we can estimate the time integral
U

from above and obtain (6).

Lemma 3.5 (Lgl—stability). Let u be a nonnegative GF solution with ug € Lgn( ) and p > 1, then
ut)lg () < lutto)llsg () forevery 0<ty<t <T.

Proof. Without loss of generality, we assume u(t) € L*°( ). Let us multiply the equation pointwise
with pup_ltﬁlx[tmtl] and integrate:

t1 T
/ / puP 1 Ou @y do dt = / / O (uP @1) X[19,4y) dz dt = / uP ()P do — / uP(to) Py dx .
to 0

On the other hand, by Kato’s inequality we get

t1 -1 t1
—/ /pup_lﬁum ® dxdt < —M/ / LuPT 1D, da dt
to to

m
A —1) (™
S 1p(p £+ m )/ /up+m_1<1>1d:1:dt§0.
m
Finally, we shall approximate x4, ¢, with X, as in Lemma 6.4. O
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3.2.1 Proof of Theorems 2.6 and 2.8

We shall prove simultaneously Theorems 2.6 and 2.8, indeed the only difference in their proof is one
step (Step 2A and 2B below) that involve Green function estimates which hold under assumptions
(K1) or (K2), respectively. This shows how the Green function method allows to deal with both
weighted and unweighted smoothing effects essentially in the same way.

It is enough to prove the result for bounded nonnegative GF solutions u and then approximate
the WDS by means of GF solutions u,,(t) starting at ug,(t) = min{ug,n}, see Step 3.
e STEP 1. Fundamental pointwise estimate and De Giorgi Lemma. Let us assume that v is a
nonnegative GF solution with ug € L>( ). Then the following estimate holds for all 0 < ¢y < #;

p+m—1
p+m—1 £
p+m—1 ptm—l—c 121 e 1—-m-+e
JuCt)[5d™ " <27 m———5— sup u (1,2)G (x0,2)dx
(t —7)T=m r€fto,t1] / Br(zo)
o€ (32)
ptm—1
tl 1—m )
+Cpm —p_ Sup u(r,z)? G (xg,z)dz.
(t —7)1=m reftot] ) \Br(xo)

S
To prove the above inequality, we apply the Fundamental upper bounds (31) of Proposition 6 to
obtain that for all zg € and 0 <tg <7 <t <tq,

p+m—1
1-m
tl

(t—7)Tm

WPt @0) < cpm

/ u(t,z)? G (xg,x)dx . (33)

Next, we split the last integral in two parts: fix R > 0 to be determined later and let € € (0,p+m—1)

ptm—1
_ t 1-m L 3
) S e IR [ ) 6 () da
— T)1-m r(zo
S
+com 7(]5 ! )% /\B ( )up(T,:E) G (zg,z)dx
—T)=m Rr(Zo
ptm—1
1 +m—1 pim—1-e thlrfgl 1—-m+e E
<Sllu(r)[E +2 = Cpm—————>5— U (1,2) G (xg,x)dx
(t — T) 1-m BR(.’E())
S
- T) ™ Rr(Zo
1 o
by using Young’s inequality, ab < a® +27-1 bo—1, with o = pi_’i;”izi - > 1
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Taking supremum on both sides we obtain for all 0 <ty <7 <t < ty,

lu(®) 5™ <5 HU( g™

prm—1

zqrimfl )
m—l—g t -
+ 2% ,mlip sup / U1_m+6(7—7x)G (1’0,1’) dz
(J (t — T)m T€[to,t1] Y Br(wo)
S
p+m—1
tl 1-m
T Cm 5 sup wro)" G (zo,)dx
(t —7)T=m r€ftot1]/ \Br(zo)

xo€

We can conclude by De Giorgi’s Lemma 6.3, with the function Z(t) := [Ju(t)|[2™ ! and obtain (32).
Important: The next step is the only point where we shall distinguish between weighted (Step 2B)
and unweighted smoothing effects (Step 2A).

e STEP 2.A. LP — L™ smoothing e ects via (K1). Given any p as in Theorem 2.6, we shall prove
the following estimate for bounded GF solutions: for every t > ty > 0 we have

_ o)™ 1

< i =
lu(®)||oo <R (t—to)¥7 with 9, 25y~ N —m)’ (34)

where k¥ > 0 only depends on N,m, s,p and

The proof consists in carefully estimating the two terms in the right-hand side of (32) separately,
using assumption (K1), namely G (zg,z) < ¢, |v — 29| "™=29). First, we observe that for all
exponent 0 < g < % and ¢ = q_il > % we can use Holder’s inequality

1—-m-+e
/ ul—m—f—a(T’:E) G (zg,z)dz < ¢y, / ui(zvﬂjs) dz
Br(zo) Br(o) ’x - xo‘

1 q
1—-m-+e
" e e
” ( )Hq(l m-l,-e [\/BR;CO ‘x_xo‘qN 28)

1- N-g(N-2s) 1- 25— %
< callu(to)] q/(In_—;i_:,_E) R a4 = calu(to)] q/(In_—;i_,_g) R4
where ¢ > 0 depends on ¢, N,s and ¢;, . We have also used the LP-norm decay since if we fix
€€ (O, W) 6 (0,p +m — 1) we can choose ¢’ := m as
N
- < q, — L .
2s l1-m+e¢
On the other hand, using the LP-norm decay we have
u(T, z)P u(to)||b
/ uw(r, )’ G (xg,z)dx < ¢, / (Tjizzf_zs doe < ¢, % .
\Br(zo) \Br(wo) | = ol R
Plugging the above estimates in (32) and choosing ¢ty = 0, we obtain
Juoll3+ o
_ m—1-c ugll,”™TE  2spoNGomie) | € luollh 1
P i TP T "ol p > p__ -
(e < et b=
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Finally, we choose

p
tl p—N(1—m)
Juollp™™

and, by the time-shift invariance of the equation, we obtain the desired smoothing effects (34) for
every p > 1if m € (m, 1) and p > p. if m € (0, m,).

e STEP 2.B. L‘gl — L smoothing e ects via (K2). Under assumption (K2), we shall prove the
following smoothing effect for bounded GF solutions and any p as in Theorem 2.8: for every ¢ > tg > 0

we have

2s 9
lutto)lls (5 .

Nleo <7 ith 9, = .
lul®)lloo <7 —5— to)wp, W e T s )p— N(1—m)

The proof follows analogously to STEP 2.A, that is, we have to estimate properly the two terms of
(32), but in this case we have to use assumption (K2), namely G (zg,2) < ¢, |z—2o| "N H17290 (z).

First, observe that for every 0 < g < ﬁ and ¢/ = q% > we can define p := ¢'(1—m+e)
to obtain by Holder’s inequality that

(35)

N
25—

1—-m+e
[ e maarse, [ L,
B (z0) Bp(zo) |7 —mo|NTY

Q=

-1 1
c P e 1— m+€ / dz
1, [ P1lloc @ flu(r )|| [ B (zo) |$_330|q(N+’y 25)

(N+ —2s) )p—N(1—m+-e)
< ealfulto)331'S Riq —alut)lf T RS

(36)

where ca > 0 depends on go, N, s, ®; and c¢;, , and we have also used the L‘gl—norm decay. Notice

that we have to choose € € (O, W) 6 (0,p +m — 1) to ensure

N
1—-m+4e’

<
25 — vy 1

On the other hand, we use the Lgl—norm decay to obtain

p
[ umers mndesea, [ MEDEE,
\BR("EO) \BR(LEQ) |':l7 - IEO| v

Hu(tO)Higl( )
SO RNt

Plugging the above estimates in (32) and choosing ty = 0, we obtain

p+m—1
HUOHl " : [[uoll7»
p+m l1—¢ ) (25— )p=N({A=—m+e) Lq> ( ) 1
lu(tn)|BS™ <2 2 t1 i ’ M B— — RN
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with ¢z, ¢3 > 0 depending on p, N, s,v,®; and ¢;, . Finally, we choose in (37)

p
t s— )p—N(1—-m)
R= (711%)
[[uollp

and, by the time-shift invariance of the equation, we obtain the desired smoothing effects (35) for
every admissible p.

e STEP 3. Approzimation with GF solutions. We approximate the initial data 0 < ug € LP( ) by
truncation, ug, = min{ug,n}, so that ug, — up in LP. Since ug, € L>®( ) C H*( ), there exists
a gradient flow solution w,(t) given by Theorem 2.3, that is also bounded and satisfies the Claim of
Step 1. Hence, by lower semicontinuity of the L° norm we obtain

. . _ _ 2sp9
lu®oo < T fun®)loe < Tim F(t = t0) N lun(to) [
n—oo
= R(t — to) N7 u(t >H2”’”P.

This concludes the proof of the smoothing effects of Theorems 2.6 and 2.8 assuming Kato inequality.
e STEP 4. Smoothing without using Kato inequality. We notice that when p = 1, the fundamental
upper bound (31) of Proposition 3.4 does not require the validity of Kato inequality, hence we can
repeat Step 1 with p = 1, and obtain inequality (32) with p = 1 without using Kato inequality. We
can then repeat Steps 2.A and 2.B respectively, and this is where the restriction p < N/(2s — v)
comes from, as we shall see. The unweighted case corresponds to v = 0 and follows with minor
modifications.
The first integral of (32) can be estimated as in (36)

1-m+e
[ w6 madrsa, [ L,
Br(0) Br(zo) |7 — xo|NHY

1— m—l—s N—q(N+ —2s) 1—mte (2s— )pg—N(1—m+e) (38)
< eaflulto)ll g0 e, B = collu(to)|| no S R 70
Q>1 ( ) <1>1( )
where we have set pg :=¢'(1 —m +¢) > %
We next have to estimate the second integral of (32) as follows
u(T,z)Py(x
/ u(r,z) G (zg,z)dx < ¢, / (T’+i(—)25 dx
\Br(zo) \Br(z0) |z — @V (39)
lulto)llLy, ( )
< ¢, P R (N+7—25)—N
with ¢/ > ﬁ, so that ¢ < 5 s]i o This is where the restriction on p comes from.
We would like to chose now py = ¢, and this is possible only when M <po=9¢< 5= for all
€ (0,m), which means in fact for all py € <N2(;7:;n), 25{ V) .(Hence, for all such pgy we have
1—-m+e %
m—e ||u0HLPO () (2s— )pg—N(1—m+e) cq ||u(t0)||Lp0 ()
[u(t)% <275 |eo ————R 70 +— -
t1 gﬁ t1 RPO 1(N-i-'y 2s)—N
with ¢z, ¢4 > 0 depending on pg, N, 5,7, ®; and ¢;, . Letting RPO»0 = ||u0\|z"”p31( )tl gives the desired
1
bounds. This concludes the proof of Theorems 2.6 and 2.8. O
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3.3 H*— L* smoothing e ects. Proof of Theorem 2.7

It is possible to use the LP — L°° estimate obtained above to get H* — L smoothing effects, but it
is required to be in the regime m € (ms, 1), since we need the energy estimates below.

Lemma 3.6 (GF solutions are Energy solutions). Assume (A1) and (A2) and let u be a GF solution
with ug € H*( ). Then, for every t; >t >ty > 0 we have

1 fu@)liin 1 Julto)l
= 2m (ti—t) — 2m(1+m)(t; —t)(t —to)

lw™ ()¢ (40)
Proof. We provide a formal proof in order to explain the main ideas, for a rigorous proof see Propo-
sition 11.9 of [2].
First inequality. Let us derive the H*-norm as in (48) and use the decay of the L'*™-norm

d (f wm™Lu™ dx)2 (f um™Lu™ dx)2

— MLy de < =2 < -2 .
dt/u woar s mem [ wtmdz T " [ u(to)+mdx

The result folows by integrating on [¢,¢1].
Second inequality. We derive the L'T™-norm (the energy) as in (46) to obtain the following ODE,

2
i/uHmdxg—Hi;n( u1+md:17> .
d Tt

Then, the upper estimate follows by integrating on [tg, t]. O

From the above energy estimate Theorem 2.7 easily follows, let us recall the statement:
Let N > 2s, m € (ms, 1) and assume (Al), (A2) and (K1). Let u be a nonnegative WDS of (CDP)
corresponding to the initial datum ug € H*( ). Then, for every t >ty > 0 we have

4s V14m
o)l 1

lu@o <7 2s(1+m) — N(1—m)

(t — to)(N+25)014m with  V14m =

Proof of Theorem 2.7. We combine the energy estimate of Lemma 3.6 with L'*™ — L> smoothing
effect. Given t >ty > 0, let us choose t = % so that

4501 4m 45914
(G i ¢ (o) 37+ o)l
lu(t)llo < c Ltm < <R . 0
oo = (t t)N191+m - (1 + m) (t _ t)N191+m (t _ t0)28’l91+m - (t _ to)(N+2s)'¢91+m

3.4 Upper boundary estimates.

Once we have proved unweighted and weighted smoothing effects, we are able to show that bounded
WDS satisfy the lateral boundary conditions as explained in the Introduction and in Section 2.5.
We are in the position to prove the upper boundary estimate of Theorem 2.9.

Proof of Theorem 2.9. From Theorem 2.6 it follows that u(¢) is bounded for every ¢ > 0. Indeed,
for a.e. zp € and t > 0 we have (recall that B; is defined in (10))

/U(t/lﬂf)(G (@0, 2) dz < [[u(t/2) |G (w0, )1 ) < erllu(t/2)lloBr(®1(z0)),  (41)
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where in the last step we have used Lemma 4.2 of [14] which requires (K2). We remark that constant
¢1 depends on m, s,y and N. Then, we use (41) in estimate (31) with p =1, t; =t and 7 = t/2,

T 2 (/) e Ba (B (0)

(1—=m)

u™(t, o) <

/u(t/2,x)G (20, 7) d <

Now, let us apply the smoothing estimate of Theorem 2.6,

1 2sp?
2T ¢ 2T ¢y [Jug|p "

——— [|u(t/2) /0o B1(® < Bi(® .

a=m)i [u(t/2) (|00 B1(®1(0)) < A=) 0% 1(®1(70))

Estimate (9) follows from the property of semigroups (time-shift invariance). For the weighted result
with 2s > «, we repeat this last step with the smoothing estimate of Theorem 2.8,

u™(t, xp) <

1 (25— )pop, (25—7)pVp,
. 2T-m ¢y 2 Tm ¢ HUOHLgl( )
u" (t, o) Sm”“(t/?)Hooq)l(iEO) < 1 —m) ST NIy, ®y(20). O

4 Energy estimates and Finite Extinction Time

Once we have that solutions are bounded for sufficiently smooth initial data, we will prove that they
vanish in finite time, with estimates from above and below for the extinction time in different norms.
Also we will show sharp time decay estimates as t — 1T~ that show how bounded solution extinguish
in finite time, and constitute the first step towards the understanding of the asymptotic behaviour,
which is a really delicate issue already in the local case, cf. for instance [11].

4.1 Norm estimates and bounds for the extinction time

The first estimates that we present about the LP-norm requires Sobolev and Stroock-Varopoulus
inequalities which can be deduced from assumption (K1) and (M1) as we show in Section 3.1.

LP estimates and Extinction Time: Assume (Al), (A2), (K1) and (L1). Let u be a nonnegative
WDS' corresponding to the initial datum uy € LP( ) with p > p.. Then, there exist an extinction
time T > 0 and for every 0 <ty <t <T we have

ep(T =) < Jlul)l,™™ < Julto)ll,™ — et —to), (42)

where ¢, > 0 only depends on p,m,s, N, \1,S¢,
Proof of Proposition 1. Recall that (K1) and (L.1) implies (M1) and Sobolev inequality, see Section
3.1. Hence,

d m—
E/ wdr= _p/“p_lﬁumdm < —empl L2 |3 (43)
_ pt+m—1 _ _
< —Cmp, SPHUTE | e = —emyp S u|BT

p+m—1

where in the last inequality we have use Sobolev in the following form,

el -1
o <| | S IL7 w2,

ptm—1_ 1
ull 2 <[ | 2% "% [lu

p+m—1
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since p > p. implies p+3§—1 < 2* = . Now, integrating the ODE that [ju(t)||} satisfies on the

intervals [to,t] and [t,T] we obtain (42). For the upper bound on T, just let t = 0 in (42). O
It is also possible to prove upper bounds of the extinction time in terms of the H*-norm using

the HLS inequality, which is provided by assumption (K1), see (2).

H* estimates and Extinction Time: Assume (A1), (A2) and (K1). Let u be a nonnegative WDS

with 0 < m < 1 and let a, = min{1, W} Then, there exists an extinction time T > 0 and
for every 0 <tg <t <T we have
1-m 1-m
calT =) < [u® (D)l ) < I (t)gog ) = Calt —to) (44)

with cq > 0 depending on a,m,s, N and H .
Proof of Proposition 2. Let us derive in time the H*-norm of u® for any a > a.,

d

" WL Y dr = 2a/ w o L7 da = —2a/ w T Lu™ L7 A

2am 2am

< — u2a+m—1dx7
a+m—1

/ LucTm e~y de = —

a+m-—1

where we have applied Kato’s inequality (66) with f(v) = s—v = and v = u™. Assumption
(K1), ensures the validity of the HLS inequality for the H*-norm (2), that applied to f = u® with

q = 2etm=loives
_2 4m—1 2 +m—1
m— 2
i/ wL I dr < —M (uo‘)2 = 4 < — amty /uo‘ﬁ_luo‘ dz
dt a+m—1 a+m—1
Integrating this ODE on the intervals [tg,t] and [t,T] we conclude (44). The upper bound of the
extinction time is provided by choosing ¢ = 0 in the lower bound of (44). 0

Once we have proven the extinction of the solution, we can study the rate of extinction. For
this purpose, we provide the decay of the L}Dl—norm in terms of the extinction time. This result is
deduced directly from the formulation of the WDS without assumptions on £71.

L}I,l estimates: Assume (Al) and (A2). Let u be a nonnegative WDS with 0 < m < 1. Given the
extinction time T > 0, there exists c; > 0 depending on A1 and ®1 such that

lu®llzy <l —i)Tn VO<t<T.

Proof of Proposition 3. Let us consider the test function (7, z) = A\1®1(z) x[,77(7) in the weak dual
formulation (we approximate X[ 77 as in Lemma 6.4) and use that ®; satisfies L7 = )\1_1<I>1,

T T
ey~ 1Tl = [ [ womn @rdedr=a [ [ £ w0 qen 1dear
T T T
:/ /E_luaTl/dedT:/ /umwdasz:)\l/ /um@ldxdT
0 0 t
1 g 1
< M@l ), dr < Ml u(OlE, (7 -1

where we have use Holder and the L}b ~decay in the last inequalities. The result follows from the
fact that T is the extinction time, hence Hu(T)HL}I) = 0. O
1
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4.2 Nonlinear Rayleigh Quotients and extinction rates

We now restrict to the exponent range m € (mg, 1). Let us consider the “Dual” Nonlinear Rayleigh
Quotient

1+m 1+m
I T
(f fﬁ_lfdﬂj) 2

/112
We shall show that Q*[u(t)] is decreasing along the FFDE flow, namely that

([ ultudz) " (f u“’mdw)(

(f ultm dx)2
(f uﬁ—ludx)l?"“HHm) (J wetude)™™ o

%Q*[u(t)] <—(1+m)

since we have that

14+m m—1

% <{ uﬁ_ludx> t —(1+m) <[ uﬁ_ludx> i <[ u1+mdx><
and also that

o 1/2,m\2 (p—1/2,\2
i U dx:/umatudJEZ—/umﬁumdg::_/(‘C u™)? (L w) dz

dt 1+m (L=1/2)2

1/2,,m\( r—1/2,,\||2 1 2

1(L712u)?y [[uto) I
where we have used the decay of the H*-norm and the Cauchy-Schwarz inequality in the following
form )

g Hglh
Let us consider the Nonlinear Rayleigh Quotient
1™ 1y [ fmLfmda

Qlf] = = TN
=T, = e an)

As before, Q[u(t)] decays along the FFDE flow,

) A i B € )
dt (f witm d;n)(fm ({ wltm dx)(.%Jr
since (47) implies that
o u?" (Lu () umLum da)’
_/ Lu™ do = —2m/ ul-i-m “dw < —2m e (48)

The decay of the Nonlinear Rayleigh Quotient Q[u(t)] provides another proof of the upper esti-
mate of the L'*™-norm without using a Sobolev-type inequality.
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Sharp L™ decay rate: Let m € (ms, 1) and assume (A1), (A2) and (M1). Letu be a nonnegative
WDS with ug € L**™( ). If there exists a extinction time T, then for every T >t > 0 we have

(T 1) < Ju®)liT < (1—m) Qluo] (T —1). (49)

In addition, the upper bound holds for every m € (0,1).
Proof of Proposition 4. Let us derive the L'*™-norm of u(t),

d

E/ utmdr = —(1 + m)/ u"Lu™ dz = —(1 +m)Qlu(t)] < Sl d$> Ttm

2m

> —(1+m)Qlug (( ut+ d)(m 7

since Qu(t)] < Q[ug]. Hence, the result follows from integrating on [¢t,T]. For the lower bound we
apply Proposition 1 with p =1+ m. O

On the other hand, we prove the extinction rate of the H*-norm presented in Proposition 5
Sharp H* decay rate: Let m € (mg, 1) and u a nonnegative WDS with initial data ug € L'T™ N
H*( ). Assume (Al), (A2) and (K1). If there exists and extinction time T > 0, then

1 1

co(T — t)ﬁ S Nu@llg= )y <1 @ ug] = (T —t)T=m for every 0 <t <T,
with ¢g = co(m,s,N, ,Hr) and ¢ = (1 — m)ﬁ If m € (0,my), then we only have the upper
bound.
Proof Proposition 5. Upper bound. We derive the H*-norm and use the monotonicity of Q*[u(t)],
1tm

% / Llude = —2 / AT dg = —2 Q% [u(t)] ( ( wwdw)

14+m
> —2 Q" [ug] <[ uﬁ_ludx>

The upper estimate follows from integrating in [¢, 7] the ODE for ||u(t)|| m=.

Lower bound. Since 1 +m > (2*) = N2TN25’ we have that (K1) implies HLS inequality. Therefore,

N42s
2N

1
[l < Hellfll 2 < Hel | | f 1 -

N+2s

Now, we derive in time the H*-norm of the solution u(¢) and we apply the estimate above,

14+m
d
T ul udr = —2/ Wt dr < —2(c He) T </ uﬁ_ludx>
The lower estimate follows from integrating on [t,T] the ODE for ||u(t)|| m=. O
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5 Existence and uniqueness

In this section, we prove the existence and uniqueness of MWDS. For this, in the first section,
we prove the existence of GF solutions, adapting to our setting the celebrated theorem of Brezis-
Komura [20, 44]. This class of solutions enjoys useful properties and we use them to build a monotone
approximating sequence, needed to build the MWDS. In Section 5.2, we prove the time monotonicity
of the norm and the fact that GF solutions are strong in L<11>1( ), and we also give a explicit bound
for ||Oyull Ly, () Then, we use the strong formulation of the problem to prove the T-contractivity in

L<11>1( ). In Section 5.3, we prove that nonnegative GF solutions are indeed WDS. Finally, in Section
5.4 we give the proof of Theorem 2.4, and in Section 5.5 we prove Theorem 2.7.

5.1 Proof of Theorem 2.3. Existence of GF solutions

In order to obtain existence of solutions of (CDP), we shall adapt the Brezis-Komura Theorem to
our H*( ) setting. We recall that the energy functional is defined as

£ () {jmf lultT™ dx if we L),
u) =

00 otherwise .

First, let us check if conditions to apply Brezis-Komura Theorem are satisfied, i.e. if the functional
E(u) is convex and lower semicontinuous in H*( ).

Lemma 5.1. The functional E(u) is convex and lower semicontinuous in H*( ).

We prove the above lemma in Section 6.2. This is enough to prove Theorem 2.3, indeed:

Proof of Theorem 2.3. Once we know by Lemma 5.1 that £ is convex and lower semicontinuous in
H*( ), the rest of the proof follows as in Theorem 2.2 of [15], which is the adaptation to our setting
of the proof of Brezis [20] for the classical H~! case. See also [2]. O

5.2 Time Monotonicity and L} -contractivity

In this section, we prove the Benilan-Crandall estimates, i.e. the time monotonicity of solutions.
We shall also see that nonnegative GF solutions are strong in Lclbl( ), and we show different L<11>1'
contractivity of solutions. All these properties hold for GF solutions, this makes them a very good
choice to build the approximating sequence needed to construct the MWDS, that will inherit most
of these properties.

In order to prove that GF solutions are strong in L<11>1( ) we need the following theorem of Benilan
and Gariepy [5], that we restate here in our notations:

Theorem 5.2 (Theorem 1.1 of [5]). Let w = u'E e WEL(0,T) - Ly (1)), p(r) = 1fmri—z and

v = /pr(r)dr € BV((0,T) : L<11>1( )

where BV is the class of functions of bounded variation. Then v € WH1((0,T) : L<11>1( )) and the
chain rule holds for the time derivative:

Ov(t) = p(w(t))opw(t) = dpu(t) .
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We recall that u € L‘ll)l( ) is a BV function if its distributional derivative d;u can be represented
by a finite Radon measure. In our case, the distributional derivative 0;u must be a Radon measure,
as the limit of incremental quotients of u that are uniformly bounded in L<11>1( ). Our purpose is to
prove that, indeed, this limit is in O;u is a function of Lclbl( ).

The following result holds for the whole class of nonnegative WDS, and will be essential later.

Lemma 5.3. Let 0 < u < v be two ordered WDS of (CDP) with initial data 0 < ug < vg. Then, for
all 0 <ty < t1 < o0, the following property holds

/[v(tl) )] @y da g/[v(to) ~ ult)] @y dx .

Proof. We apply the weak formulation (WDS) to the difference v — u, using the admisible test
function v, = ®; x,, where x,, is the same as in (6.4). Then, the left-hand side of the equality
(WDS) reads

T T
/0 / E_l(v — u)Opthy, dax dt = /0 / (v — u)@txnﬁ_lq)l drdt
noo, )\1_1/ [(v(te) — ulto)) — (v(tr) — u(tr))] fl dz |

As for the other side of the equality, we have

T T t1
/ / L7 (v — u)dpp, dzdt = / / (V™ — u™Vip, dadt 22 /(vm —u™)®ydxdt >0,
0 0 to

since u < v implies u™ < v™ whenever m > 0, and this proves the lemma. [l

The proofs of the next results, Lemmata 5.4, 5.5 and 5.6, follow the ideas in [4, 5], adapted in
[53] to the case of the RFL on RY and on domains. However we offer few interesting twists and
variants.

Lemma 5.4 (Time Monotonicity). Let u be a GF' solution to (CDP), then

u

a—m o

up <

1
in the sense of distributions. This is the weak formulation of the fact that t — t T-m u is non
increasing on t for a.e. x €

We will adapt the classical proof of [4] for the L! case, see also [63].

Proof. First of all, notice that GF solutions satisfy T-contractivity property in H*, hence, given two
ordered solutions u < v, we have that for every 0 <ty < t; < oo,

0 < fl(u(t) = o)y () < A Mult) = o)l )
< NI (ulto) = v(ta)) 4l y =0,

which implies comparison in L‘11>1( ) and, particularly, almost everywhere in
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Consider the rescaled function
up(t,z) = )\_ﬁu()\t,x),

which is also a solution of (CDP). Now, for a fixed ¢, let us choose \ = # with h > 0 and observe

that, A > 1 and AT <1, hence, u)(0) < up and uy(t) < u(t) by comparison. Then,

<#> (W up(t, ) — u)\(t’x)] 6 ux(t,x)h— u(t, z)

u(t+hx) —ultz) 1
h ~h

(51)

The above formula has to be intended in the distributional sense. Since we know by Theorem 2.3
that GF solutions are H*-strong, namely t dyu € L*°((0,T) : H*( )), this implies convergence of the
right-hand side to the distributional time derivative d;u as h — 07, and concludes the proof. [l

Lemma 5.5. Let u be a GF solution of (CDP), then BT € L% ((0,T): L*( )), more precisely,
we have that for all 0 <tg <ty <T

2
e e(1+m)lluto/2)|%. | 1
19602 W2 (t9,80): 22( )) < Am?2 0+T—t1 o t/) (52)

Moreover, the bound is uniform in ty > 0, since Hu(to/2)|]§{*( ) < HUQH%{*( )-

Proof. We follow the strategy of Lemma 8.1. of [54] who, in turn, give a generalized result of the the

original one in [5]. We would like to use &(t)0u™(t, ) as test function in the H*( ) formulation of

the problem (see (5.7)), where £(t) € C2°(0,00). However, a priori we do not know if dyu"™(t,z) is

sufficiently regular for this purpose so, following the idea in [5], we will use the Steklov averages.
For any g € Li. (R) we define the Steklov average as

loc

t+h
g (t,x) = E/ g(r,x)dr, so that dig (t, x) = .
t

We already know that a GF solution satisfies the equation pointwise in the H*( ) sense and, conse-
quently, so does its Steklov average, i.e. for every t € (0,7))

oul = —L[(u™)M a.e. in

with dyu”, L[(u™)"] € H*( ). Now, we multiply the above equation by a suitable test function 1
and we integrate in time and space to get the following expression

/(]T/“dedt:—/:/ﬁ(um)hwdxdt Vi € CL([0,T], H( )).

At this point, notice that d;(u™)" has the same regularity as «™, namely, by Lemma 3.6 we have
that «™ € H( ) so, therefore, we can take ¢ = £0;(u™)" as test function in the equation above,

37



where £ € C((t0/2,T)), 0 < <1land & =1 € [ty,t1] for 0 <ty < t; < T. Since everything is well
defined now, we have

/ /at )0y (u §dxdt_——/ /gat\ﬁlﬂ ™2 dg dt
_ 5/0 /atg CY2](mY ]2 da dit

Then, we apply numerical inequality (68) on the left hand side to get

at(uh)at(um)h = % [u(t+h) —u(t)] [u"™(t+ h) —u(t)™]

4m

T (Tt m)?

. 2 1 .
Now, notice that ”8t§”LOO(t7O7t1) < o + 7—5) for every to <y in (0,T), so that

2 m 1 +m 2
/t /\at(u”z )h]2dxdt§(87)H8t§HLw(t_ot / /aycm )| da dt
0

1+m 1 t+h  pt+h
= %H@SHW ta g h—/ / / / ¢)dz drd¢ dt
1+m 1 t+h . .
< 10l g [ [ I (0 yaraca
1+m 2 IIU(to/2)| P
< (Si)HatillLoo 2 / Tom 2 SRRV
1

c(1+m)\lzsg/2)”2*< ) <€+ T—t1> <% _%><

where we have used Cauchy-Schwarz inequality, in the third line, and Lemma 3.6. Finally, the result
follows by taking the limit as h — 0 on the left hand side and using Fatou’s Lemma. O

Lemma 5.6. Let w € H*( ) be a GF solution to the problem (CDP) with initial data 0 < wuy €
H*( ). Then, u is a strong solution in L<11>1( ) and for every t € (0,T),

2uolly () 22 fuolla-(
(1-m)t — (I1-m)t

HatuHL}I)l( ) <

We will adapt the classical proof of [4] for the L! case, see also [63]. The main difference in the
L<11>1 case, is that we will only use the “half” contractivity for ordered solutions of Lemma 5.3, instead
of the full contractivity as in original proof of [4].

Proof. We follow the same idea of the proof of Lemma 5.4 to get

1 1 (t+h 1
Flute+1) = ully, <5 () f— @l ( )+ ) - u®lzy (-
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Here, using Lemma 5.3 and the decay of L} . ()-morm we arrive to

1 1 [t+h m 1
EHu(t +h) — u(t)HLé)l( ) < - <T>f 1 HUA,OHL}PI( )+ E”UA,O - UOHL<11>1( ) -

Then, passing to the limit as in (5.4) we get that the time increments are bounded in L} )

lim
h—0

h 14 < 1-mt — (A-m)t ~’

/ u(t +h,w) —ult,z) o 2wollzy, () - 20" Juo g+ (53)

by (5), thus, we have that v € BV ((0,7), L<11>1( )). With this and Lemma 5.5, applying Theorem
5.2 with v = u, we conclude that dyu € Lg (). O

The above result implies that the equation is satisfied pointwise as functions of L<11>1( ). We use
this fact to prove the following proposition:

Proposition 7 (T-contractivity in Lc11>1)- Let uw and v be two GF solutions of (CDP) with initial
data ug,vg € H*( ). Then, for all 0 <ty < t; < oo we have the following property

/[u(tl) — U(tl)]:l:(pl dzx S / [u(t()) — U(to)]i(pl dx .
Notice that T-contractivity implies usual contractivity,
lultt) =o)Ly () < llulto) =v(o)lley (-

Proof. 1t is sufficient to prove the result for [-]4, the case of [-]_ being completely analogous. We
start from the strong formulation of (CDP). Let us multiply the equation by

Y(t,z) = sign+(u - U)(I)IX[to,tl} (t)

and integrate in time and space. Then, notice that on one hand

/ / (Opu — Op) Y dadt = / / u — v) Oy (sign, (u U)X[tmtl]) 1dxdt
— [ lutt0) - vlto))+ @ o+ [ fu(tr) ~ olt)) 21 do

On the other hand, we compute

//&gu—@tv Ydxdt = // —L(u ™p da dt

t1
/ / L(u ")signy (u —v)®y dadt
to

—/ /E([um—vm]+) 1dxdt:—)\1/ / — 0" @1 dedt <0
to to

where we have used Kato inequality (66) for the convex function [-];. 0
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5.3 Nonnegative GF solutions are WDS

In this Section, we prove a technical fact needed in Section 5.4, in the proof of the existence of WDS,
Theorem 2.4. We will show in Lemma 5.8, that GF solutions, in the sense of Def. 2.2, satisfy a
suitable weak formulation, that characterizes an “intermediate” class of solutions that we will call
H*-solutions. Finally, Proposition 8, shows that nonnegative H*-solutions are WDS.

We need to introduce an intermediate concept of solution, a weak formulation suitable for GF
solutions.

Definition 5.7. (H*-solutions). u € C([0,7] : H*( )) is an H*-solution of (CDP) if u™ € L*([0,T] :
H( )) such that

/OT/M/Jtdxdt:/OT/umﬁwdxdt vy € CH[0,T], H( )),

or equivalently,

/OT/uat(ﬁ_l(p)dgpdt:/oT/um(pd:Edt Vo € CH0.T], H*( ).

Notice that both statements are equivalent due to the fact that £ is an isomorphism between
H( )and H*( ), as remarked in [15] where this concept of solutions has been previously introduced.

We show next that GF solutions satisfy the H*( ) formulation, which constitutes the link between
the two important class of solutions of the paper, i.e. GF and WDS.

Lemma 5.8. Let u € AC)oc((0,00); H*( ) be a GF solution of (CDP) given by Theorem 2.3, then,
it 1s an H*-solution.

Proof. Let ¢ € R\ {0} and ¢ € C}([0,T], H*( )), then, from the definition of gradient flow and
subdifferential we have that

E(u+ ep) > E(u) + e{—ug, ©) Hex H* a.e. int € (0,00), Vo€ CH[0,T],H*( )).
Now, if we compute the taylor expansion of |u + ep|™*! around u we get
e/|u|m_1u<,0d:17—|—0(e) > —e/ w L tpde.
Here, we divide by € and reparing to the fact that € can be either positive and negative, we find
/|u|m_1u<pd$ = —/ w L rpdx a.e. int e (0,00), YeoeCH[0,T],H*( )).
with u; € H*( ) and therefore |u|"'u € H( ). Asx: (0,00) — D(E) C H* is absolutely continuous

we have that uy, |u|™ 1u € LY((0,T); H*). Finally, since £ is an isomorphism between H and H* we
have that ¢ = L1 for ¢ € H, so integrating by parts in time we get

T T
/0 /|u|m_1u£1/)dxdt:/0 /m/)tdmdt for all ¢ € CX([0,T), H( )).

Hence v is a H* solution. O
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Lemma 5.9. Let u be a nonnegative GF solution with ug € L<11>1( ). Then, for everyt; >ty > 0 we
have

0< [ (ulto) — u(t))®1do < cullunlly (01— t0), (54)

with ¢y = M ||®1]]77™. Moreover, letting T = T(ug) be the extinction time, we get

1

() <c(T—t)Tm. (55)

Proof. Let us derive the L}I)l—norm of the solution and use Holder inequality,

d m
E / ’LL(t)(I)l dx = —/ ﬁumq)l dx = —)\1/ um(I)l dx 2 —/\1”(1)1”%_”1 <( ’LL(t)(I)l dl‘) . (56)
We apply the decay of L<11>1( ) on the right hand side and we integrate in (¢, t1) to get

lulicy ) = llulo)liy ()= —A1|!‘I’1H%_mHUOH?;1( ) (t1 —to)

=

(54) follows by the nonnegativity of u(t). For the extinction rate, we just integrate (56) on [t,T].
O

Proposition 8 (Nonnegative GF solutions are WDS). Let u be a GF solution of (CDP) with initial
datum 0 <wug € H*( ). Then, u(t) is a WDS, according to Definition 2.1.

Proof. By Lemma (5.8), we have that u(t) is a H* solution. Therefore, let us prove that the set of
test functions in H* solutions is bigger than in the case of weak dual solution. Since ||®;||;2 = 1, we
have

1]

Moreover, by (5) we have that non negative solutions in H* are indeed in the natural space for WDS:

()= / WL dw < AT/ @12,

1/2
lullzy, () < A2l

H*( ).
Then, we have to verify that the next equality is true
T T 1/}
/ /u@t(ﬁ_lw) da dt:/ /c—luat(¢) dzdt V- € C(o0,T], L>=( ). (57)
0 0 1

Indeed, we have

10|

2 )= / O L™ () dz <103/ 1]|oo / ©1LTH(Op) dr < AL H|O/ Bl

and (57) holds. It remains to prove that v € C((0,7] : Lc11>1( )). From the time monotonicity of
Lemma 5.4, we deduce that

u(ty) —u(ty) < 1-— <i—(1)> ﬁ) é(tl) Vt; > to >0 and ae. z €
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and hence we have the following estimate for the positive part,

1 1

fTm T
[u(t1) — u(to)]s < L—7"2— u(ty) Vi1 > tp>0and ae. z € . (58)

1-m
tl

Recalling that |f| = 2[f]+ — f for any function, let us bound ||u(t;) — U(tO)HL}I () as follows
P1

Jutr) = ulto)lzy, ( ) =2 / fu(ty) — ulto)], @1 d — / (ut) — u(to)) By da

1 1
t177rl _tlfm
<Bo 2 [ueide el (G-t (69)
Pl

t
where we have used (58) and Lemma 5.9 to conclude. O

5.4 Proof of Theorem 2.4. Existence of nonnegative MWDS

In this section we prove Theorem 2.4 by approximating WDS from below with bounded GF solutions.
We recall the statement of Theorem 2.4 for the reader’s convenience:
For every 0 < ug € Lg () there exist a unique MWDS u € C((0,T], Ly, () of (CDP) such that

. 2[[uoll 1y

t+h t L

im |lu(t) —uollpy (y=0 and lim u(t+h) = u®) < — )

t—0t @1 h—0+ h Lé ( ) (1 - m)t
P1

Moreover, the T-contraction estimates hold: let 0 < ug,vo € Lg, () and u(t), v(t) be the correspond-
ing MWDS, then, for all t > 0 we have

I1Cu(®) = vE)xllLy ) =< (w0 —vo)xllzy (- (60)

Proof of Theorem 2.4. The proof is divided into several steps.

e STEP 1. Eumistence of the minimal limit solution.. We approximate 0 < wug € L<11>1( ) from
below with the non-decreasing and bounded sequence 0 < wg, = ug An € L>( ). Recall that the
integrability of G implies that L>°( ) C H*( ), therefore up,, € H*( ) for all n > 1. By monotone
convergence, we have that g, — ug in the strong L<11>1 topology, namely

n——+o0o

0.< lhuo — wollzy ()= /(uo )P da 22 . (61)

Now, we are in the position to apply Theorem 2.3 which provides us the existence of the nonnegative
GF solution w,(t) in H*( ) starting at ug,. Since the L* norm is non-increasing in time (just let
p — oo in (43)), we know that w,(t) € L>°( ). Next, Lemma 8 tells us that u, is also a WDS
corresponding to the initial datum ug, € L*( ). Finally, since GF solutions satisfy the comparison
principle, we have that u,(t,z) < up41(t,z) for a.e. (t,z) € (0,00) x

Since for any fixed ¢ > 0 and a.e. € the sequence u,(t,x) is monotone increasing in n, the
limit exists (can be +00) and we can define our candidate limit solution as follows

u(t,z) = lirginf U (t, x) for a.e. (t,x) € (0,00) X
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We shall see that this limit solution defines a continuous path in t — u(t) € L‘ll)l( )
Convergence in Lclbl. Notice that for all t > 0 we have that (take k& > n so that ug > u,,)

I Ol 5 < Bt o)~ Ol ) ST s®) Ol )

n—-4o0o

where the first inequality follows by Fatou’s lemma, in the second step we have used the Lclb1 con-
traction for ordered WDS, and finally that wug, and u,(0) = ug; tend to ug strongly in L‘ll)l( ) by
(61).
e STEP 2. u € C((0,T],Lg,( )). By Proposition 8, we know that u, € C((0,T]: Lg, ( )), indeed,
by (59) and the decay of ||un(t)||L(1I> ( > we have that for every 0 <tg <t <T

1

1 1
=ty 1
ln (t1) = un(to)lley () < —————llwonllLy () +em(ts —to) ™=
"
Then, since ug, — ug strongly in L<11>1( ) as explained in Step 1, we have that by Fatou’s Lemma
1 1

tll m_tlm 1

[u(ty) = u(to)llpy () < lm Jlun(ty) = un(to)llpy () < H——="—lluollzy ( )+ cm(ts —to) =7 ,
50) 50) — O

n—00 T—m
tl

(63)

hence u € C((0,T], Ly, ( )) as desired. Notice that the above estimate just gives uniform bounded-
ness of the limiting Radon measure when ty = 0, and it is not sufficient to conclude continuity on
[0, 7).

e STEP 3. The limit solution is a WDS. Let us prove that the limit solution u constructed above
is a WDS in the sense of Definition 2.1. Indeed, we shall show that satisfies the weak formulation
(WDS), which amounts to check that

T T
lim / /ﬁ_l(u —Uup) Oppdrdt = lim / /(um —uy )pdedt =0.

(, 0 L (H)( (
First, notice that (I) vanishes as n — oo as a consequence of (62)

(I) < éw //c (u— up) &y dodt < A7 8” // ) — U (1))@ dzdt 2= 0.

On the other hand, by Proposition 7, we have that following the same argument as for (I),

(1) < (I‘fl / / DEdedt < - Oo/ /u—un) B, dz dt
< & el /0 (/ <u<t>_un<t>><p1dx>zdtm().
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We conclude that u € C((0,T], Lg, ( )) is a MWDS.

e STEP 4. The initial datum is taken strongly in L<11>1- Once we have shown that our limit solution
is a WDS according to Definition 2.1, we need to show that it takes the initial datum strongly in
Ly, that is u € C([0,T], Ly, () satisfying the limit tl—i>H01+ ||u(t) — u0||L<11>1 = 0. Actually it is enough

to check the latter which in turn implies the Lclpl—continuity at zero. Let us add and substract in
[lu(t) — wollry () the truncation of the initial data uo, € L>( )N H*( ) and the associated GF
1

solutions u,(t) € L>®( )N H*( ):
/|u(t) | dz < / la(t) — 1y (8)] 1 dz + / i (£) — 1 0|1 dar + / g — 1| @1
=)+ (II)+ (III).
Now let us analyse each addend in order to pass to the limit. Since uy,(t) < u(t), by Lemma 5.3 we
have that
(D) = [ () = un(®)1do < [ (a0~ wo) 1

Moreover, by construction it holds that ug, < ug, therefore

(III):/(Uo—UO’n)q)leE.

On the other hand, let us estimate (IT) using that u,(t) — upo in H*( ) as ¢ — 07 by definition
of GF solution and ||u,(t)||2 < ||un,oll2 for all t > 0.
First, we prove that weak convergence in H*( ) implies weak convergence in L?( ) using that H( )
is dense in L?( ). Given any function ¢ € L?( ) consider a sequence {¢y}r>1 C H( ) satisfying
¢ — ¥ in L?( ). Then,

[ ) = oyt = [ (@)= wmoherds + [ (wn(®) — )6~ 1) da
< [ n®) ~ noderds + fen(®) = wnlal = el
< [ n® ~ wna)orda -+ 2ungls [ il
If we take limit when t — 0T we obtain

m [ (un(t) = un0)yde < 2ffunpll2 19 — wrll2 Vk>1,
t—0t

since u,(t) — wuno in H*( ). Letting k — oo above gives the weak-L?( ) convergence of wu,,(t)
to un as t — 07. Next we prove convergence of L?( )-norms, namely that ||u,(t)|l2 — [|unoll2
as t — 0, using the weak lower semicontinuity of the norm: since u,(t) — unpo in L?( ) and
[un()ll2 < [[un,oll2, we have

[un,oll2 < Tim inf [[un (£)[]2 < limsup [[un (£)[]2 < [[un,oll2 -
t—0+ t—0+
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This implies strong-L?( ) convergence of uy(t) to u,o as t — 07, since in any Hilbert space, weak
convergence plus convergence of norms implies strong convergence. Then, we estimate (I1) as follows

t—0F

(1) =/ [tn () = 0|1 da < JJun(t) — unoll2|P1ll2 = lun(t) — unolla — 0. (64)

Finally, putting together the estimates of (I), (II) and (II1) we have shown that

/ ]u(t) — UO‘(I)l dx § 2/ (U() — ’u,n,o)@l dx + Hun(t) — ’u,n,o”g s
which implies by (64)

lim / |u(t) — up|P1 da < 2/(u0 — Up,0)Py dz Vn>1.
t—0t

We conclude taking limit when n — +oo and applying (61).

e STEP 5. Independence of approximating sequence and uniqueness of MWDS. Let us see that
MWDS do not depend on the particular choice of the approximating sequence, we only require the
approximating sequence to be monotone increasing. We adapt here the proof of Theorem 3.2 of [17]
for reader’s convenience. Let us choose another nonnegative monotone sequence {vy} € L>( )
which converges to ug from below. Repeating the construction of the previous steps, there exists a
weak dual solution v(t, ) € C([0,T] : Ly, ( )) fenerated by the GF solutions starting from vg . We
want to prove that u = v, i.e. that the minimdl weak dual solution is unique. For this, we start by
proving that v > v and then we prove the oppousite inequality. First, let us prove that v > v. By
Proposition 7, we have that

lim [?)k — un]+<I>1 < lim /[Uo’k — U()7n]+(1)1 < / [UO,k — UO]+(I)1 = O,
n—oo n—oo

as vg; < ug by construction. This gives that v, < u for all k, so taking the limit we get that v < u.
The opposite inequality follows by exchanging the roles of u and v.

Remark. Notice that we have proven uniqueness of MWDS, which does not exclude a priori that

there can be other WDS starting from ug which are not obtained as limit of a nondecreasing sequence
of GF solutions. Strong uniqueness is known so far only for strong WDS solutions, c.f. Theorem 2.7.

e STEP 6. T-contractivity for MWDS. Comparison and Contractivity. ~ We approximate again
ug € L<11>1( ) by the same sequence as in the uniqueness proof u, so by Lemma 7 we have that

Hm [ [up(t1) — vp(t1)]+ P < nh_{{.lo/ [0, — Vo,n)+P1.

n—oo

The strong L' convergence of ug ,, vo,, implies the fact that [ [ug, —vo )+ ®1 — [ [uo—vo]4+P1, and
Fatou’s Lemma applied on the left-hand side allow to conclude. Consequently, we have contractivity
for MWDS, hence, uniqueness in LclI>1 of MWDS, as solutions get closer as t increases. Moreover, by
T-contractivity we have that comparison holds for MWDS, i.e. if ug(z) < vo(x) a.e z €  then

0< /[u — ]3P < /[uo —vg]+®P1 =0,
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which implies that u(t) < v(t) a.e x € , as ®; > 0 in the interior of
e STEP 7. Boundedness of incremental quotient of u . Again, for the approximating sequence,
notice that before passing to the limit A~ — 0 in (53) we have

m_tlfm:l T

- 2||uonllLy
/ un(t—kh,x})l U (t, x) B, de < l[(t+h) 1 1 o, ( )‘

tlfm

Now, we pass to the limit as n — oo on the right hand side and on the left by Fattou’s lemma. The
rest follows by the same argument as in the last part of the proof of Lemma 5.6. O

5.5 Proof of Theorem 2.7. L}Dl—strong solutions and uniqueness

We prove now in which cases are MWDS actually L}I,l—strong solutions and satisfies the equation
u; = —Lu™ pointwise as function of Lc11>1' Indeed, this also provides T-contractivity hence strong
uniqueness in L}I)l. Let us recall Theorem 2.7:

Assume (A1) and (A2). Then, for every ug € L<11>1( ) there exist a unique L}Dl-strong WDS u,

hence it is the MWDS corresponding to ug, whenever one of the following additional conditions is
satisfied:

i) N > 2s > v and either (K1) or (M1) hold. Moreover, uy € LP( ) with p > 1 if m € (me, 1) or
p > pe if m e (0,mg].

ii) N,y > 2s, m € (0,%)and either (K1) or (M1) hold. Moreover, uy € LP( ) with p > 1 if
m € (me, 1) or p > pc if m € (0,me].

iit) N > 2s > and (K2) hold. Moreover, ug € Ly () withp > 1 if m € (mey,1) orp > pey if
m € (0,mecy].

Proof of Theorem 2.7. In the three cases we follow the same steps. We use Theorem 5.2 for the MWDS
in order to prove that d;u is a integrable function, more precisely that to,u € L*((0,T) : L<11>1( )))-
We have to check if the assumptions of Theorem 5.2 are satisfied, namely, if the solution satisfies
we BV((0,T): Lk () and u 2" € WH((0,T) : L, ().

e STEP 1. w € BV((0,T) : L‘ll)l( )): The former condition follows by applying Lemma 5.6 to the
monotone increasing GF solutions w,(¢) that approximate the MWDS wu(¢) and passing to the limit,

5 < b (9 N 2 llwomllzy ) Zluollzy ()
| tuHLcll)l( ) = n1—>H<;lo | tunHLcll)l( ) = n1—>H<;lo (I—m)t - (1—m)t
since we use Fatou’s Lemma and ug, — ug in L<11>1( ).

e STEP 2. u 2" € WHL((0,T) : Ly, ()): On the other hand, the latter condition will be satisfied
by Lemma 5.5, but first we have to bound the |luy(to/2)| 5+ ) in terms of HUO,n”L}P ( ) in order to
1

pass to the limit. Thus, let study the three cases of Theorem 2.7:
i) Let un(t) be a GF solution, then by Theorem 2.9, recalling the fact that £71®; = A\['®y, we
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ii)

have

— Up (T _ _1 Up(t
un ()12 ):/unﬁ lyydr < Ul /(5 e =37 D s
CMEIES S
ol ™ Juoslly”
— Uo,nllp " - )
<R ol () img— SFEAC 101 2, T

m m

where we have used the decay of the Lclbl-norm and Holder’s inequality. Hence, combining the
above estimate with inequality (52) of Lemma 5.5, we obtain

1 2 1 )
1Betn® (L2 g2 ) < Em (é + t1> <% - E) (un(to/z)”H*( )

1+2sp19

VR WA T 0 P
< s _ - O p WOnllp
_cm<£+T_tl>(to t)é ol 2,22 e

We can let n — oo and using Fatou’s Lemma on the left-hand side, and that ug, — ug in LP( )

on the right-hand side, therefore we conclude that u e wt 1((0,7) - L‘ll)l( ))-

Let u,(t) be a GF solution, then by Theorem 2.9 with m < % <1land £L7'®; = )\1_1<I>1, we
have

2 -1 < un(t) 1
lun Oz y= [ wn £ upde < —5 O, " LTy da
o, >
25 1 up(t _ _ 25 Uy (t
<o [ e e I Oy, )
P, B M
2spYp 1_1_251”97)
-1 [wonllp ™ -1 =1 l[uonll
<K ||¢>1H Huo,n||L}I>1( ey < FA (@l H<1>1IIPL+W,,
m m
2s 1+255119P
-1 2t lluonml]
SEAL (®afle"| |7 S rer

m

where we have used the decay of the Lclbl-norm and Holder’s inequality. Hence, combining the
above estimate with inequality (52) of Lemma 5.5, we obtain

1 2 1 )
< 2= .
9ot L2 g2 ) < Em (é + T—t1> <t0 t1> (”"(to/z)”H () .
SP

14+=2r
LV (2 0t o5y 2 ol
<en (Bt ) (25 ) ot nmy o7 Loale 2
o Toh/ N h (to/2)"

We can let n — oo and using Fatou’s Lemma on the left-hand side, and that ug, — ug in LP( )

on the right-hand side, therefore we conclude that u e wt 1((0,7) - L‘ll)l( ))-
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iii) Let u,(t) be a GF solution, then by Theorem 2.9 and recalling the fact that £71®; = A\ 1@y,

we have
_ Up (T _ _1 Up(t

fan I = [t twde < B fetugeae =t 28 a0y,
¢m 00 @{n 00 1
uonllyy ol
UO,n LP (m) P UO,n LP ( )m

-1 @ -1 - ®
<SR uonlley () tHNip, <SEAL @7 =8

where we have used the decay of the L}Dl—norm and Holder’s inequality. Notice that in the case
p = 1 we just stop at the second inequality and the Theorem is proven. In the rest of the cases,
we combine the above estimate with inequality (52) of Lemma 5.5, to obtain

1+2m 1 2 1 9
[0un® Nl L2((t0,t2):L2( ) < €m tra )\ n |un (to/2) 1 y
l+(257 )pOp,

1 2 1\ /.. o lwonllzy )"
gcm( - )(———) e T

We can let n — oo and using Fatou’s Lemma on the left-hand side, and that ug, — ug in LP( )
on the right-hand side, therefore we conclude that W e Wh((0,7) : Lclbl( ). O

6 Appendix

6.1 Useful inequalities

Operators with nonnegative kernels. Let £ be an operator of the form
L[v](z) :=P.V. / [v(z) —v(y)] K(z,y)dy + B(x)v(z) with  K,B>0. (65)

We show next a simple formal proof of Kato and Stroock-Varopoulus inequalities, without any
claim of originality, indeed different proofs appear in literature for operators like £. Our proof of
Stroock-Varopoulos is inspired from [54], and from personal communications with the authors of that
paper. Of course, justifying that all the integrals involved are finite would make this proofs rigorous.
Throughout the paper, we pay attention to this fact and all the involved quantities are finite.

Lemma 6.1. (Kato’s inequality). Let £ be an operator as in (65), and let f € C°(R) be a convex
function with f(0) < 0. Then, if L]v] € Llloc( )» Kato inequality holds in the sense of distributions:

L) < f'(v) Lo. (66)
Proof. Recall that a convex function lies above its tangent:

J©) ~ fw) < f@)w—w)  VoweR

48



Then, since K(z,y) > 0 and B(x) > 0, it holds that

Lf(v(z)) = /RN [f (v()) — f(o(y)] K(z,y) dy + B(z)f(v(z))
< /RN [f (v(z)) = fo()] K(z,y) dy + B(z) [f(v(x)) = f(0)]
< /RN f'(v(@)) [v(z) = v(y)] K(z, y) dy + B(x) f'(v(z))v()

= f'(v(@))Lf(v(z)).
O

Lemma 6.2. (Stroock-Varopoulus inequality). Let £ be an operator as in (65) with s €
(0,1).Then for any q > 1

4(g — 1 2

/ v Lvde > %/ L£Y2092 7 4y (67)

for allv € L( ) such that £5/%v € LI( ).

Proof. In this proof we will use the following inequality: let 0 < «, 8 € R such that o + § = 2, then
(a® = b*)(a® —b°) > aBa —b)?,  Va,beR (68)

Which can be proved just by Cauchy-Schwarz inequality as follows

(a—b)zz(/adt)2:( at%t%dtfg( ata—ldt)( atgldt)g(aaba)(aﬁbﬁ).
b o /8

b b b
Using the symmetry of the kernel, Fubini’s theorem and inequality (68) wr

/vq_lﬁvdaz: / [/vq_l(:n)(v(x)—v(y)) (z,y)dy + B(z)vi(z)] {:E
-5/ / (zc—%w)—vq—l(y))( (@) o) f) dyds + [ Bla)ot(a)do
> %%// ((/Q(x)—vq (y))2K(x,y dyda:+/ B(z)v!(x)dx
4(qg —1
— %/ 0d/2 L082.

Now, we can use the assumption (L1) to get

/vq/zﬁvq/Qx// (vq/2($)_vq/2(y))2dydx+/ B(z)vi(z) dx,

|z — y|N+2s

get

which tells us that [ v9/2Lv9/? is a Dirichlet form (symmetric and closed). This and the fact that
—L is a non-positive self-adjoint operator allows us to write

/vq/2£vq/2 :/ L1249/ ’ de.
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We recall a variant of a brilliant Lemma due to De Giorgi, often used in Elliptic equations that
we adapt here for our purposes.

Lemma 6.3. (De Giorgi). Let Z(t) be a bounded nonnegative function in the interval [to,t1].
Assume that for tg < 7 <t < t1 we have

Z(t)<6zZ(1)+ i—ne

A

B +C

with A,B,C >0, a>0and0<60<1. Then

where

cla, N\, 0) =

Z(t1) <

Ac(a, A\, 0)

ML

Be(B, A, 0) c

(t1 — to)®

1

(1= (

— i)
A
Proof. We define the sequence {7;} as follo(s

T0 = t1,

(t1 —to)?

for any

Titl = Ti —

(1-19)

1

— M)A (t1 — to)

(69)

(70)

Ae(0,1).

SO T =1] — Zf:_ol(l — M)Aty — tg) and limy_.oo T = to. Now, we can iteratively write (69) as

B
Z(m) <6Z(n) + e+ s O
0B
<p?
<6*Z(r) + CET i
A k—1

<O%Z (1) +

(1 =Nt —to)*

+0C +

A B
_|_

(10 — 11)"

1=

(r0 —11)P

+C

; <Ai>+ (1 ”Wil ~t0)? kzol @)*Ci(

Finally, as the series on the right hand side converge we take the limit as k — oo and we get (70). O

6.2 Technical proofs

Lemma 6.4. (Decay of L}I)l—norm). Let u(t) be a nonnegative WDS, then

)y,

Proof. We want to use the inadmissible test function (¢, x)
therefore we consider the C! approximation in time 1, (t,z) =

Xn(t)

< Jluto)llzy,

50

forevery 0<ty<ti<T.

if tefto—+ to)
if t e [to,to + 1)
if € [to —l— St —
if teft—q,t)
if telt,t + 5)
otherwise .

= Xito,t](£)®P1() in the equation,
Xn(t)®1(z) where

)



Using the LHS of (WDS), we obtain

T T T
/ /ﬁ_luaﬂpdxdt:/ /uc‘)txnﬁ_I(I)ldxdt:)\l_l/ lu(®)ll Ly Oexn(t)dt
0 0 0 ’1

Let us show that 0y, is an approximation of d§;, — d;,. We know that

(t—to+2) if teto— 1 )
ni(t—to— 1) if te [to,t 1y
Oxn = fn2(t—t1+ 1) if te[ti—L.t)
2t—t1— 1) if te[tl,t1+ 1)

otherwise
Now, let us consider the following apgroximation of the identity:

t+21)y if te[-1,0)
ha(t) =< fn2(t—1) if te|0,2)

otherwise.

It can be seen that for any f € C(R) ik holds that li_>m Jg f()hn(t)dt = £(0), since we can take
limits in

mf {f }</f t)ydt < sup {f(t)} Vn > 0.

tel-1,1]

n’n

Notice that the inf{f} and the sup{f} above are attain due to Weierstrass Theorem.
Then, as we can rewrite dxy(t) = hy(t — to) — hn(t — t1), we conclude that

T
)z, = Ity = Jim [ Ol (fult = t0) = hle = 10) f
T T
= Jm [ Ol e = im [ ] umeidede o,

since using 1, as a test function in (WDS), it follows that

T T
/ Hu(t)HL%I Opxn(t) dt = )\1/ / u™ O xpdrdt >0 Vn > 0.
0 1 0

U
i(r)

and we notice that it satisfies lim T = too.
[r| =400
Convexity condition follows from the convexity of j, thus, let us check the l.s.c condition. We have

two different convergence settings:

Proof of Lemma 5.1. We define j(r) = |m+1

+1 r

e Let u,, —» win H*( ) and assume VA > 0 In € N such that [ j(u,) > A. Then, it holds
that
liminf &(uy,) = 400 > E(u) .

n— oo

o1



e Let u, — win H*( ) and suppose X > 0 such that Vn e N [ j(up) < A

In this second case, we follow the same strategy as Brezis does for H~1( ) in [20]. First, we show
that (up)nen is uniformly integrable, i.e.

Ve >0 39 > 0 such that if |E| <J then / lun| <€ Vn e N.
E

Let A > 2 and R be such that % > A for |r| > R. If we choose § < 5%, then

/|un|d:17:/ |un|dx+/ |un|dx§/](u") dx+/Rdx§i—|—R5<s.
E {z€FE:un(z)>R} {z€FE:un(z)<R} A E A

Then, we apply Dunford-Pettis theorem, which states that in bounded domain uniformly integrable
implies weakly precompact in L*( ). Hence, (u,)nen has a subsequence (un, )reny which converge
weakly in L'( ), that is,

Ji € L*( ) such that w, — @ in L'( ).

Further, v = @ in H*( ), as {u,} already converges weakly to v in H*( ) and C°( ) C L*>®( )N
H( ), which is dense in H.

Now, to conclude the proof, we just have to show that £(u) is weakly lower semicontinuous in
LY( ). So, let u, — w in L*( ), then, there exists a subsequence (uy,);ey which converge almost
everywhere to u. Since j is non negative, we can apply Fatou’s Lemma,

liminf [ j(up)dz > / lim inf j(u,)dx = / lim inf {j(u,)}dz

n—o00 n—o00 n—oo m>n

z/llim inf {j(unk)}da::/lilminfj(um)da::/j(u)dx,
—00

—00 m>n

where we have used in the last equality that j is continuous (notice that it suffices to be ls.c.).
Finally, since £(u) is convex and ls.c. in L'( ), it holds that £(u) is weakly ls.c. in L'( ) by
Mazur’s Lemma.

O
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