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Borylated Subphthalocyanines: Versatile Precursors for the
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Dedicated to Professor Maurizio Prato on the occasion of his retirement.

The peripheral borylation of porphyrinoids has become a key
step to prepare advanced functional materials. This study
reports the synthesis, electronic properties, and reactivity of
borylated subphthalocyanines. These compounds, which are
prepared by Suzuki–Miyaura borylation in excellent yields, are
easily purified, display a great stability, and serve as powerful
starting materials for the post-functionalization of SubPcs via

cross-coupling reactions. Remarkably, this novel approach is
more efficient than the methodologies already described and
enables the preparation of exotic systems, such as SubPc
dimeric species linked by C� C bonds, which are not accessible
so far and present promising properties for optoelectronic
devices.

Introduction

Subphthalocyanines (SubPcs; Figure 1),[1] bowl-shaped aromatic
compounds possessing unique photophysical properties, are
receiving much attention because of their potential in state-of-
the-art technologies, such as molecular photovoltaics,[2]

spintronics[3] or ferroelectric materials.[4] Unlike other π-con-
jugated materials, SubPcs offer a tremendous functional
versatility since their characteristics can be finely tailored by
performing chemical modifications. In particular, the peripheral
substituents have a crucial impact on the properties of the
macrocycle since they are in π-conjugation with the aromatic
skeleton. Thus, properties as fundamental as supramolecular
organization, band-gap or HOMO–LUMO levels, can be conven-
iently adjusted by using proper peripheral groups.[1,5] Generally,
the peripheral functionalization of SubPcs is tackled following
two strategies: (i) using phthalonitriles previously functionalized
(SubPc pre-functionalization); or (ii) derivatizing a SubPc

decorated with functionalizable groups (SubPc post-functional-
ization). The former is seriously limited because very few
functional groups are compatible with the harsh conditions of
the cyclotrimerization. By contrast, the method (ii) is a more
elegant and efficient approach to convergently prepare
modified SubPcs from readily accessible starting materials. In
this line, our group and others have reported some palladium-
catalyzed Suzuki or Sonogashira cross-coupling reactions start-
ing from iodinated SubPcs.[5a–b,6] Despite these efforts, the
development of novel synthetic methods for the peripheral
functionalization of SubPcs still remains highly desired.

Over the years, borylated porphyrins have become key
building blocks in the synthesis of novel functional
porphyrinoids.[7] Along this line, notable is the progress made
by the Osuka's group, which by employing meso- and β-
borylated (sub)porphyrins has reported multiple π-extended
systems with impressive optoelectronic and structural proper-
ties (Figure 1). On this basis, the synthesis and manipulation of
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Figure 1. Representative examples of borylated porphyrinoids and borylated
subphthalocyanines herein reported.
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peripherally borylated SubPcs seems to be a promising
approach for expanding the chemical space, and thus the
functionality, of these materials. As a matter of fact, we recently
used a β-borylated SubPc to prepare imide-fused SubPcs,
valuable semiconductors for molecular photovoltaics.[2a] Despite
these precedents, a detailed study focused on borylated SubPcs
have not yet been reported.

Herein we describe the synthesis, properties, and reactivity
of peripherally borylated SubPcs. Our study starts by assessing
the reaction conditions for the peripheral borylation of SubPcs
via Suzuki–Miyaura reactions. Then, the properties of the
resulting borylated SubPcs are analyzed experimentally and
theoretically. Finally, we explore the utility of these borylated
SubPcs as synthons for several cross-coupling reactions, as well
as for the preparation of SubPc-SubPc dimers linked by single
C� C bonds.

Results and Discussion

Peripheral borylation of SubPcs

The palladium-catalyzed Suzuki–Miyaura borylation is arguably
the most common method for the preparation of borylated
aromatic compounds.[8] Therefore, we selected this reaction to
explore the peripheral borylation of the SubPcs. To this end, the
brominated SubPc 1, which bear an axial aryloxy group to
ensure stability and solubility, was prepared. Then, various
catalyst, solvents and additives were screened for the palla-
dium-catalyzed borylation. We found that Pd(dppf)Cl2 as the
catalyst, potassium acetate as the base, and THF as the solvent
afforded the borylated product (1-Bpin3) in a 92% yield (Entry 1,
Table 1). It should be highlighted that the purification of 1-
Bpin3 is carried out just by extraction and a subsequent
filtration in hexane. Hereby, 1-Bpin3 is obtained as an easily

manipulable viscous solid presenting a great stability under
ambient condition. Importantly, the reaction yield does not
depend on the SubPc regioisomer employed (i. e., C3 or C1-
symmetric) as they present similar reactivities (Entry 2). Con-
sequently, we used C1-symmetric SubPcs from then on because
this regioisomer is obtained in higher yield during the SubPc
formation. The influence of the peripheral leaving group on the
borylation yield was then explored. Interestingly, the most
reactive halogen (i. e., iodine) led to lower yields compared to
that of bromine (Entry 3). We hypothesize that undesired
reactions, such a homocoupling or dehalogenation, may be
facilitated due to the higher reactivity of 2. On the other hand,
the triflated derivative 3 led to a 71% yield, which render them
good starting materials for the preparation of borylated SubPcs
as well (Entry 4). As expected, significant lower yields are
obtained with peripheral chlorine atoms (4), which barely reach
the 12% yield (Entry 5). Crucially, the borylation reaction is
compatible with other axial groups (Entries 6–7), such as
chlorine (5) or fluorine (6). One step further, we investigated
whether the borylation could be applied in ortho-substituted
SubPcs (7), which generally are rather challenging to
functionalize.[1] Remarkably, ortho-borylated SubPc (2-Bpin3)
can also be obtained in moderate yield using our conditions
(Figure 2).

Optical and electronic properties of borylated SubPcs

The boryl pinacol fragments possess a partially empty p-orbital
and thereby the electronic structure of the aromatic core may
be perturbed. Hence, we studied the optoelectronic properties
of 1-Bpin3 and 2-Bpin3 by UV/Vis absorption and fluorescence
spectroscopy, voltammetry, as well as Density Functional
Theory (DFT) calculations. As shown in Figure 3, 1-Bpin3 and 2-
Bpin3 exhibit the characteristic Soret and Q bands of SubPcs at
ca. 310 nm and 570 nm, respectively. In comparison to those of
non-substituted SubPc (hereafter referred as SubPcH12), the
absorption and emission maxima of 1-Bpin3 and 2-Bpin3 are
slightly red-shifted (5-10 nm), suggesting a certain conjugation
of the π-skeleton with the peripheral groups. Importantly, both
absorption and emission spectra are similar in shape to that of
typical SubPcs, which discard additional electronic transitions
involving the boryl moieties. In accordance with previous works,
2-Bpin3 displays lower extinction coefficient than that of meta
substituted 1-Bpin3.

[9] As determined by time-dependent DFT
(TD-DFT; See Supporting Information for further details), the Q

Table 1. Influence of the axial ligand and peripheral groups on the SubPc
borylation.

Entry L X Starting
SubPc

Regioisomer Yield[a]

1 OtBuPh Br 1 C1 92%

2 OtBuPh Br C3-1 C3 94%

3 OtBuPh I 2 C1 56%

4 OtBuPh OTf 3 C1 71%

5 OtBuPh Cl 4 C1 12%

6 Cl Br 5 C1 90%

7 F Br 6 C1 92%

[a] Yields were determined after purification.

Figure 2. Borylation and Suzuki-Miayura cross-coupling of a ortho-substi-
tuted SubPc. Reagents and conditions: (i) B2pin2, Pd(dppf)Cl2, KOAc, THF,
65 °C, 12 h, 54% (ii) Ph� Br, Pd(dppf)Cl2, Cs2CO3, THF, r. t., 12 h, 47%.
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band of both 1-Bpin3 and 2-Bpin3 are mainly derived from
HOMO!LUMO and HOMO!LUMO+1 transitions (f=0.71 and
0.88, respectively, see Supporting Information for further de-
tails). Regarding the emission properties, both 1-Bpin3 and 2-
Bpin3 exhibit strong fluorescence peaking at 590 and 583 nm,
with a quantum yield of 0.41 and 0.35, respectively, and Stokes
shifts in the range of typical SubPcs (ca. 15 eV).

Electrochemical experiments further confirm a slight elec-
tronic communication between the boryl groups and the SubPc
π-system. As shown in Figure S6.1, 1-Bpin3 presents one-
electron oxidation and reduction peaks at � 1.48 V and 0.63 V,
respectively. Likewise, 2-Bpin3 reveals these peaks at � 1.41 V
and 0.63 V, respectively. From these values and comparing with
SubPcH12 (Table 2), it can be concluded that the borylation does
not significantly vary either the redox properties of SubPcs or
their HOMO–LUMO energy levels. However, the reduction peaks
in borylated SubPcs are broader and composed of smaller

peaks, which is probably associated with a lower redox stability.
Further insights into the electronic structure of 1-Bpin3 and 2-
Bpin3 were obtained by inspection of the DFT calculated
frontier molecular orbitals. As shown in Figure 3b–c, the HOMO,
HOMO-1, LUMO and LUMO+1, which are the orbitals govern-
ing either the Q band or first oxidation/reduction processes, are
mainly located at the π-core and a negligible participation of
the peripheral boron atoms is noticeable. This finding is in nice
agreement with the experimental fact that the SubPc optoelec-
tronic properties remain almost unaltered after peripheral
borylation.

Post-functionalization reactions of borylated SubPcs

The excellent formation yield and great stability of 1-Bpin3

encouraged us to explore their use as synthetic precursor for
Suzuki–Miyaura reactions with bromo-unsaturated compounds.
To this end, bromobenzene (Ph� Br) was selected as model
substrate. After extensive screening, we found that the coupling
reaction of 1-Bpin3 with Ph� Br using Pd(dppf)Cl2 and Cs2CO3 in
THF at room temperature gave 8 in an 86% yield (Figure 4).
Notably, the reaction is compatible with chlorine as axial ligand
which, despite being more labile than aryloxy, is preferred for
technological applications. Importantly, these catalytic condi-
tions can be also applied for the post-functionalization of ortho
derivatives by employing 2-Bpin3, which affords 9 (Figure 2).
With the optimized conditions in hand, we studied the reaction

Figure 3. Optical and electrochemical properties of 1-Bpin3 (purple) and 2-
Bpin3 (pink). a) UV/Vis-NIR and fluorescence (λex=550 nm) spectra in THF at
room temperature. (2.0×10� 5 M for UV-Vis-NIR and 1.0×10� 6 M for
fluorescence). Selected molecular orbitals and their energy levels calculated
by DFT at the B3LYP/6-31G(d) level of theory for b) 1-Bpin3 and c) 2-Bpin3.
Isosurface value=0.02. Hydrogen atoms are omitted for clarity.

Table 2. Electrochemical oxidation and reduction potentials of SubPcH12,
1-Bpin3 and 2-Bpin3 obtained by cyclic voltammetry in THF.

ERed

[V]
EOx

[V]
HOMO
[eV]

LUMO
[eV]

λabs

[nm]
λem

[nm]

SubPcH12 � 1.51 0.57 � 5.75 � 3.59 563 578

1-Bpin3 � 1.48 0.63 � 5.76 � 3.62 575 590

2-Bpin3 � 1.41 0.67 � 5.81 � 3.69 568 583

Figure 4. Suzuki-Miyaura reactions of 1-Bpin3.
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using bromoaryls with different electronic nature and bulkiness,
as well as heterocyclic compounds or even bromo-alkenes and
-alkynes. Fortunately, our catalytic system proved to be very
effective for coupling both 3,4,5-fluorophenyl, 3,4,5-metoxy-
phenyl and 3-thiophene, providing 10, 11 and 12 in excellent
yields. Moreover, we also succeeded when using the bulky
anthracene and ortho-dimethylphenyl brominated precursors,
which gave rise to 13 and 14 in ca. 70% yield. On the other
hand, the use of phenylalkene and phenylalkyne bromides,
enabled the peripheral functionalization with Csp2 and Csp3

groups (15 and 16). It is noteworthy that the reported
palladium-catalyzed Suzuki–Miyaura cross-couplings over
SubPcs requires high temperatures (70-100 °C) and the reac-
tions yields are moderate. In stark contrast, the methodology
herein reported provides outstanding yields at room temper-
ature. To get a direct comparison with the reported conditions,
we performed the same cross-couplings using iodinated SubPcs
and boronic esters/acids (the corresponding yields are indicated
in brackets; Figure 4). In all cases, the reaction yields observed
are significantly lower than those of the method employing
borylated SubPcs. Furthermore, higher temperatures (100 °C)
were required. Based on these results, we can conclude that
SubPcs are excellent precursors for the post-functionalization of
SubPcs.

We then explored the utility of borylated SubPcs to prepare
exotic SubPc-based systems. Oligomeric porphyrinoids are
known to display intriguing properties, such as NIR absorption/
emission or high electronic conductivity.[10] Hence, we turned
our attention to the synthesis of the SubPc dimers linked
together by single C� C bond, which so far can be only prepared
by on-surface chemistry.[11] To this end, we prepared two key
mono-substituted SubPcs, 17 and 18 (Figure 5). The synthesis of
17 was carried out by statistical cyclotrimerization of phthaloni-
trile and 4-bromophthalonitrile followed by the regioisomers
separation. 18 was then obtained from 17 by Suzuki–Miyaura
borylation. With these compounds in hand, we conducted their
cross-coupling reaction employing our optimized conditions.
Fortunately, this reaction afforded the SubPc dimer 19 in a 79%
yield. Due to the chirality of both 17 and 18 (M and P
enantiomers), this dimer is based on two regioisomers,
homochiral and heterochiral. The former, in turn, coexist as a
mixture of enantiomers (MM and PP).

To get a preliminary idea about the electronic communica-
tion between the SubPc cores in 19, we analyzed the UV/Vis
spectra and DFT calculated molecular orbitals. Interestingly, 19
display a Q-band composed of two intense bands peaking at
568 and 594 nm, respectively. As shown in Figure 6, the orbital
distribution of 19 is rather unusual for a SubPc system since, in

contrast to common SubPcs where the LUMO and LUMO+1
are energetically degenerate, 19 presents the LUMO more
stabilized than the LUMO+1 and LUMO+2 which, in turn, are
energetically degenerate. Furthermore, the HOMO and HOMO-1
present similar energy, while in common SubPcs the HOMO is
significantly less stable than HOMO-1 and HOMO-2. Remarkably,
the LUMO is delocalized over the two SubPc units, while the
LUMO+1 and LUMO+2 are located at one of the two
macrocycles. Similarly, the energetically degenerate HOMO and
HOMO-1 are well extended over both SubPcs. As supported by
TD-DFT calculations, two transitions in the range of the Q-band
are now possible, one derived from HOMO!LUMO transitions,
and other resulting from transitions between four orbitals:
HOMO-1, HOMO, LUMO+1 and LUMO+2 transitions. These
interesting findings render oligomeric SubPc promising for the
design of NIR-absorbing materials and n-type semiconductors.

Conclusions

In summary, a very efficient and versatile method for the
preparation of borylated SubPcs in excellent yields has been
developed. Despite being in conjugation with the aromatic
core, the peripheral boryl groups do not perturb the electronic
properties of the macrocycle. These borylated compounds,
which exhibit an excellent stability and can be easily purified,
were used for the post-functionalization of SubPcs via Suzuki–
Miyaura cross-coupling reactions. Remarkably, this method
provided higher yields than those previously described, thus

Figure 5. Synthesis of SubPc dimer 19 via Suzuki-Miyaura cross-coupling
starting from 17 and 18.

Figure 6. Optical and properties. a) UV/Vis-NIR and fluorescence
(λex=530 nm) spectra of 19 in THF at room temperature. (2.0×10� 5 M for
UV-Vis-NIR and 1.0×10� 6 M for fluorescence). b) Selected molecular orbitals
of 19 and their energy levels calculated by DFT at the B3LYP/6-31G(d) level
of theory. Hydrogen atoms are omitted for clarity.
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rendering it a powerful approach for the preparation of more
complex SubPc derivatives. As a proof of concept, this method-
ology was then exploited for the preparation of a SubPc dimer
exhibiting a broad, red-shifted absorption and an extended π-
conjugated skeleton. Applications of borylated SubPcs for
fabricating more elaborated SubPc oligomers are actively in
progress in our laboratory.
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