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Abstract

We present a comprehensive study of the velocity operator, v̂ =
i
ħh [Ĥ , r̂ ] , when used in

crystalline solids calculations. The velocity operator is key to the evaluation of a num-
ber of physical properties and its computation, both from a practical and fundamental
perspective, has been a long-standing debate for decades. Our work summarizes the
different approaches found in the literature, but never connected before in a compre-
hensive manner. In particular we show how one can compute the velocity matrix ele-
ments following two different routes. One where the commutator is explicitly used and
another one where the commutator is avoided by relying on the Berry connection. We
work out an expression in the latter scheme to compute velocity matrix elements, gen-
eralizing previous results. In addition, we show how this procedure avoids ambiguous
mathematical steps and how to properly deal with the two popular gauge choices that
coexist in the literature. As an illustration of all this, we present several examples using
tight-binding models and local density functional theory calculations, in particular us-
ing Gaussian-type localized orbitals as basis sets. We show how the the velocity operator
cannot be approximated, in general, by the k-gradient of the Bloch Hamiltonian matrix
when a non-orthonormal basis set is used. Finally, we also compare with its real-space
evaluation through the identification with the canonical momentum operator when pos-
sible. This comparison offers us, in addition, a glimpse of the importance of non-local
corrections, which may invalidate the naive momentum-velocity correspondence.
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1 Introduction

The quantum mechanical velocity operator, v̂ , plays a central role in the evaluation of macro-
scopic optoelectronic properties of crystalline solids. The velocity matrix elements (VMEs) are
generically needed to determine transitions between band states through several formalisms
such as Fermi’s golden rule [1] for decay and optical excitation processes or the more general
Kubo linear response theory [2]. Closely related to v̂ , the canonical momentum operator p̂
also plays a key role, but more from a methodological standpoint. The momentum matrix
elements (MME) are, for instance, needed to find parameter-free effective models within k · p̂
perturbation theory [3].

It is common to consider the velocity operator as v̂ = i[Ĥ, r̂ ] (in atomic units, which
we will use throughout the text), following a classical to quantum mechanics identification
through the Heisenberg equations of motion (Heisenberg picture). In the cases where Ĥ only
contains the kinetic energy and a potential commuting with the position operator r̂ (i.e., in
absence of spin-orbit coupling or non-local potentials), to work with v̂ or with p̂ becomes
completely equivalent. In coordinate representation this means that i[H, r ] and −i∇r are
interchangeable.

In the following, we review the state of the art of the uses and misuses of these two opera-
tors as well as the position operator r̂ when evaluating matrix elements between band states.
Evaluating the commutator matrix elements presents no problems when dealing with local-
ized states, as in atomic physics, but fundamental difficulties can be found when dealing with
Bloch eigenstates due to rψnk(r ) not belonging to the same Hilbert space as that of the states
themselves, ψnk(r ). This issue has been addressed by Gu and coworkers [4], in addition to
presenting an extensive review of the existing p-r relations (as called in their work) in the
literature. Gu et al. find the correct relation between the momentum (or velocity for the case
when v̂ and p̂ are equivalent) and position matrix elements:

〈nk| v̂ |n′k ′〉v = i[εn(k)− εn′(k
′)] 〈nk| r̂ |n′k ′〉v +Cnk,n′k ′ . (1)

When deriving the previous formula, eigenstates are normalized following the usual mathe-
matical convention of considering a finite volume v and making wavefunctions obey periodic
boundary conditions (PBCs), therefore not decaying at the boundaries even if the volume tends
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to infinity. The surface term C is calculated on the (hypothetical) surface of the solid. With
this is mind, one can easily convince oneself that the position (also called dipole) matrix el-
ement depends on the origin of coordinates and that C compensates this choice (as the VME
cannot depend on the origin). Eq. (1) above presents a fundamental view of i[Ĥ, r̂ ] rather
than convenient shortcut to evaluate the VME, as a challenging integration in coordinate space
is needed on the right side of the equality. It also remarks the difference with the atomic case,
where the surface term does not appear.

In practice, Bloch eigenstates are very often represented in a Bloch basis which, in turn,
may be expanded in a local orbital basis. In this regard, a good effort has been put in the
actual evaluation of the VME over the last decades. As we will show below, the VME between
same-k Bloch eigenstates can be calculated through the following expression:

〈nk|v̂ |n′k〉v =
∑

αα′

c∗αn(k)cα′n′(k)∇k 〈αk|Ĥ|α′k〉v

+
∑

αα′

c∗αn(k)cα′n′(k)
�

iεn(k)Aαα′(k)− iεn′(k)A
∗
α′α(k)
�

,
(2)

where the c’s are the coefficients of the expansion of eigenstates in a generic |αk〉v Bloch
basis and Aαα′(k) is the Berry connection associated with such a Bloch basis. There is a vast
literature where one can find expressions seemingly related to Eq. (2) with implementations
involving local orbital basis sets. Our derivation of Eq. (2) does not need the aid of these type
of basis sets, thus constituting a generalization of previous works.

The first term of Eq. (2) is sometimes referred to as the Peierls approximation (we will
also call it the “k-gradient approximation”), while the second term is needed to deliver the
full matrix element. The suppression of the second and third terms, as we will show later, can
lead to large and uncontrolled quantitative errors. This issue was first explored by Pedersen
et al. [5], by trying to complete the Peierls approximation within a tight-binding scheme. Paul
et al. [6] noted the importance of using the Peierls approximation with the appropiate gauge
choice in a Wannier basis. Later, Wang et al. [7] derived the equivalent of Eq. (2) for the
specific case of a Wannier basis with the aid of perturbation theory. Years after, Tomczak
et al. [8] independently worked out an expression for VMEs, introducing an intra-unit cell
correction to∇k Hαα′(k) (we will see later that this can be understood as a consequence of the
gauge choice), and adding extra terms to this quantity similar to those in Eq. (2). Tomczak
et al. contribution was later replicated, perhaps in a clearer and more complete way, in the
work of Lee et al. [9], who presented a complete expression similar to that of Eq. (2) for
a general, nonorthonormal local basis. Actually, as originally reported in Ref. [9], the Berry
connection did not appear. The fact that Eq. (2) can be recast in this form will be shown
below in this work, thus generalizing the evaluation of the VME to any basis, not necessarily
comprised of local orbitals. The relative importance of every term in Eq. (2) is an open issue,
mainly because it depends on the specific basis and gauge choice that is used. We note a very
recent work by Ibanez-Aspiroz et al. [10] exploring this issue in the context of a Wannier-
function interpolation scheme. They have found that neglecting inter-atomic contributions
when evaluating VMEs can lead to important errors in the evaluation of optical properties.
Here we perform a similar analysis by means of density functional theory (DFT) calculations
relying on Gaussian-type orbitals (GTOs).

In the light of Eq. (1), Eq. (2) presents a somewhat puzzling aspect: first, there is no
surface term and, second, no term depends on the placement of the integration volume v.
However, Eq. (2) was derived in Ref. [9] essentially in the same manner as Eq. (1) was
derived in Ref. [4], namely, by making use of v̂ = i[Ĥ, r̂ ] projected in a chosen basis, the
coordinate basis in Eq. (1) and a Bloch basis (in turn, constructed from a local orbital basis)
in Eq. (2). This have has been unnoticed in the literature and is an additional motivation to
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carry out the present work. We will also explain how the the popular expression for position
matrix elements given by Blount [11] fits into this comparison.

We organize this study as follows. In Sec. 2 we present the main theoretical ingredients
by first recalling the differences between periodic boundary conditions versus the infinite vol-
ume case when defining Bloch eigenstates. We follow by introducing two ways of treating
v̂ = i[Ĥ, r̂ ], one relying on an integration in the whole finite volume of the system, and the
other based on using the k representation for operators, involving matrix elements between
the cell-periodic part of the Bloch eigenstates. In Sec. 3 we explain how Eq. (2) rigorously
comes about from the second method, while showing the way it has been previously derived in
the literature is mathematically inconsistent, to say the least. In Sec. 4 we present a numerical
study that gives us insight into the quantitative error that one makes when assuming the equal-
ity 〈nk|v̂ |n′k ′〉= 〈nk|p̂|n′k ′〉 (again, recall the use of atomic units), even in the presence of a
local potential, and the trade-off between computational simplicity and accuracy when using
the Peierls approximation in a practical situation. Finally, we summarize our main conclusions
in Sec. 5.

2 Theory

2.1 Preliminary definitions

We start by recalling the normalization choices for eigenstates in a crystal. This turns out
to be a key point to understand the relation between position and velocity operators. Two
options are compatible with Bloch theorem: one can assume a finite volume v normalization
or let the eigenstates extend to all space following a distribution-like normalization. In order
to distinguish the two cases, we write

|nk〉v =
1
p

N
eik·r̂ |unk〉 , |nk〉=

1
(2π)2/3

eik·r̂ |unk〉 , (3)

being the normalization conditions for every case case

〈nk|n′k ′〉v =
∫

v[x0]
d3rψ(v)∗nk (r )ψ

(v)
n′k ′(r ) = δnn′δkk ′ ,

〈nk|n′k ′〉=
∫ ∞

−∞
d3rψ∗nk(r )ψn′k ′(r ) = δnn′δ(k − k ′) .

(4)

Note that this convention assumes |unk〉 to be normalized to one in the finite volume case and
to the unit cell volume (denoted with Ω in the following) in the distribution case. The

∫

v[x0]
means that the integration domain (the volume v) is defined by the parallelepiped determined
by Niai with Ni being the number of cells in each direction given by the primitive vectors ai .
Its origin vertex is located at the x0 point, which have to be selected in the first place. Finally
N = N1N2N3 is the total number of cells of the crystal. Born-von Karman boundary conditions
ψnk(r + Niai) = ψnk(r ) are applied, leading to a quantization of the crystal momentum ac-
cording to k = l1

N1
G1+

l2
N2

G2+
l3
N3

G3 with G being reciprocal lattice vectors and li = −Mi , . . . , Mi
such as Ni = 2Mi + 1. In general, matrix elements of operators whose application on eigen-
states breaks periodicity may depend on x0. On the other hand, in the case of infinite volume
normalization, the integrals run over the whole unbounded space, including infinities. In this
case, k vectors become a dense set inside the Brillouin zone (BZ).

The representation of a given operator Ô in both cases becomes (we will assume that
∫

is
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equivalent to
∫∞
−∞ in the following)

O(v)nk,nk ′ ≡ 〈nk|Ô|n′k ′〉v =
∫

v[x0]
d3rψ(v)∗nk (r )[Ôψ

(v)
n′k ′](r ) ,

Onk,n′k ′ ≡ 〈nk|Ô|n′k ′〉=
∫

d3rψ∗nk(r )[Ôψn′k ′](r ) ,

(5)

where [Ôψ](r ) ≡ 〈r |Ô|ψ〉. If the operator Ô is such that [Ôψ](r ) is still of Bloch form, the
matrix elements can be reduced to an integration within the unit cell involving the periodic
part of eigenstates

〈nk|Ô|n′k ′〉v = δkk ′ 〈unk |Ôk |un′k〉Ω , (6)

where Ôk ≡ e−ik·r̂ Ôeik·r̂ , sometimes called the “k representation of an operator”. The Kro-
necker delta is factorize using the relation 1

N

∑

R ei(k−k ′)·R = δkk ′ for wave vectors inside the
first BZ, after doing the usual change from the total integration volume to a sum of unit cell vol-
umes. In the infinite volume case the expression is similar but taking unk(r ) −→ Ω−1/2unk(r ),
according to our criteria of Eq. (3), as well as replacing the Kronecker delta by a Dirac delta.
In what follows we particularize to the velocity operator v̂ and its relation to other quantities.

2.2 Relation between the velocity and momentum matrix elements

As discussed in the introduction, the velocity and momentum operators can only be inter-
changed if spin-orbit coupling is neglected and the periodic potential in the crystal is assumed
to be local. Let the Hamiltonian be separated into Ĥ = ĤL + Ĥ ′, where ĤL = p̂2/2 + V (r̂ )
with V (r̂ ) the local periodic part of the lattice potential. Ĥ ′ includes all the non-local parts of
the Hamiltonian, e.g. pseudopotential terms, spin-orbit coupling, or even the contribution of
non-local functionals in case they are used in the DFT calculation. Then, for the first term one
can write p̂ = i[ĤL , r̂ ], and the projection of the full velocity operator on a subspace of band
states can be written as

〈nk|v̂ |n′k ′〉v = i 〈nk|[ĤL + Ĥ ′, r̂ ]|n′k ′〉v = 〈nk|p̂|n′k ′〉v + i 〈nk|[Ĥ ′, r̂ ]|n′k ′〉v . (7)

The presence of the second term in Eq. (7) is challenging from a practical standpoint
and only when Ĥ ′ = 0, Eq. (7) becomes the theoretical velocity-momentum equality. In any
case, evaluating the VME seems to require, in principle, the evaluation of the MME through
its representation -i∇r .

In a practical calculation, one can expect an appreciable discrepancy between the left and
right hand sides of the equation above. This is due to the closure relation Î =

∑

nk |nk〉 〈nk|
not being fully satisfied, as the Hilbert space is truncated in first principles calculations.
This can also be ultimately traced back to the fact that the canonical commutation relation
[r̂α, p̂β] = iδαβ can never exactly hold for a finite-matrix representation since in such cases
Tr(r̂α p̂β) = Tr(p̂α r̂β). Therefore, one can only expect the (7) to be negligible if the physical
states are sufficiently well represented in the working Hilbert space. We will give below a few
examples of this practical limitation.

In the following we explore two routes that can be followed to by-pass the evaluation of
the MME and, at the same time, of the non-local term if present.

2.3 Relation between velocity matrix elements and the Berry connection

We first write the VME in the k representation. It is easy to see that
v̂k = e−ik·r̂ i[Ĥ, r̂ ]eik·r̂ =∇k Ĥk , so one can write

〈nk| v̂ |n′k ′〉v = δkk ′ 〈unk |(∇k Ĥk)|un′k〉Ω . (8)
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By applying chain rule it is straightforward to find

〈nk|v̂ |n′k ′〉v = δkk ′[iωnk,n′k Ann′(k) +∇kεn(k)δnn′] , (9)

where ωnk,n′k ≡ εn(k) − εn′(k) and Ann′(k) ≡ i 〈unk |∇kun′k〉Ω, this last quantity being the
Berry connection.1 Eq. (9) can be found in the literature, see e.g. Ref. [12]. The equation
above replaces Eq. (7) by introducing the evaluation of the Berry connection associated with
the Bloch eigenstates. This, however, can be a cumbersome task since k derivatives of eigen-
states are not known in numerical diagonalization procedures. While this problem can be
circumvented through perturbation theory [13], in Sec. 3 we show how Eq. (9) can be recast
in a more convenient and familiar form. Incidentally, note that Eq. (9) provides a way to
compute the non-diagonal Berry connection elements if the VMEs are known.

2.4 Relation between velocity and position matrix elements

Alternatively, we can directly perform the integrals that appear in Eq. (7) when representing
in coordinate space. Assuming Ĥ ′ = 0 and, therefore, being able to write v̂ ≡ i[Ĥ, r̂ ] = p̂,
one is free to use −i∇r̂ or i[Ĥ, r̂ ]. In both cases the explicit knowledge of the real-space
wavefunction of the eigenstates is required. In the former case derivatives need to be carried
out, which depending on the orbital basis can be more or less cumbersome to implement. In
the latter, the use of the commutator entails further steps, where one needs to pay attention
to the correct use of the hermiticity of Ĥ in the Ĥ r̂ product. This procedure, which has been
followed by Gu and coworkers in Ref. [4], only applies to eigenstates in the framework of finite
volume normalization, where integrals for matrix elements can be converged. One starts with

〈nk|v̂ |n′k ′〉v = i

∫

v[x0]
d3rψ(v)∗nk (r )[Hr − r H]ψ(v)n′k ′(r ) , (10)

where we have to act with −∇2
r on rψ(v)n′k ′(r ) and ψ(v)n′k ′(r ). After performing the derivatives

and using Gauss’s theorem, one obtains

〈nk|v̂ |n′k ′〉v = iωnk,n′k ′ 〈nk|r̂ |n′k ′〉v +Cnk,n′k ′ , (11)

where

Cnk,n′k ′ = −
i
2

∫

∂ v[x0]
dS ·
§

ψ
(v)∗
nk (r )∇rψ

(v)
n′k ′(r )− [∇rψ

(v)
nk (r )]

∗ψ
(v)
n′k ′(r )
ª

r (12)

(same comment1 applies here). Note the presence of the r = (x , y, z) breaking the periodicty
of the integrand at two opposite surfaces. The appearance of this last surface term arises from
the finite value of the wavefunctions in the surface of the material volume, which we denote
with ∂ v[x0]. It is important to note that the wavefunctions do not decay even in the limit of
an infinite volume and this term is always present.

As noticed in Ref. [4], the hermiticity property cannot be applied as usual in
〈nk|v̂ |n′k ′〉v = i 〈nk|[Ĥ r̂ − r̂ Ĥ]|n′k ′〉v , which results in the surface term above. Secondly,
both matrix elements on the right hand side (RHS) in Eq. (11) depend on the origin of the
integration volume and are not k-diagonal, while the sum does not depend on this arbitrary
choice of origin and is diagonal in the wave vector as the VME actually is. The relative weight
of 〈nk|r̂ |n′k ′〉v versus Cnk,n′k ′ with respect to the full VME is also explored in Ref. [4] showing
that, in general, one cannot find a point x0 that makes the surface term to vanish, even for
certain analytical models.

1 Note that Berry connection is not an operator and hence it does not follow the initial definition of Eq. (5).
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We note that in the diagonal case, 〈nk|v̂ |nk〉, the first term of Eq. (10) vanishes, and all
contribution goes to Cnk,nk . In that case the dependence of this term with the origin for the
crystal is removed due to the symmetry inside the integrand. Comparing with Eq. (9), we see
that the value of Cnk,nk is equal to ∇kεn(k) .

Therefore, Eq. (11) presents no advantage versus directly computing −i 〈nk|∇r̂ |n′k ′〉 to
find the VME, as one still has to perform nontrivial integrations for position and surface matrix
elements. It provides us, however, with the conclusion that momentum and dipole matrix
elements (multiplied by the frequency) should never be interchanged when dealing with Bloch
eigenstates in a finite volume.

2.5 Relation between velocity and position matrix elements with a distribution
basis

If Bloch eigenstates are normalized as distributions [recall Eqs. (3) and (4)], then one can
still use them as a basis to represent general physical quantum states in the crystal. We will
name this basis states as the distribution basis. This was originally referred to as the crystal
momentum representation (CMR) [11], where one writes

|φ〉=
∑

n

∫

BZ

d3kgn(k) |nk〉 , (13)

with gn(k) being the envelope function for the n band. The matrix elements between two
physical states is written

〈φ1|Ô|φ2〉=
∑

nn′

∫

BZ

d3kd3k′g(1)∗n (k)g(2)n′ (k
′) 〈nk|Ô|n′k ′〉 . (14)

Now one needs to find the matrix element 〈nk|Ô|n′k ′〉 that enters in the calculation above. As
only the full n sums and k integrations are relevant, we can take into account the boundary
properties of the state |φ〉. This is the case of the matrix elements for the position operator, for
which Blount [11] noticed that 〈nk|r̂ |n′k ′〉 is ill-defined by itself but that a distribution form
can be given if r̂ is assumed to act on a state |φ〉 belonging to its domain. Specifically, Blount
showed that

〈nk|r̂ |n′k ′〉= −i∇k ′δ(k
′ − k)δnn′ +

1
Ω
δ(k ′ − k)Ann′(k) . (15)

The effect of boundary conditions on eigenstates is highlighted here, as 〈nk|r̂ |n′k ′〉 funda-
mentally differs from 〈nk|r̂ |n′k ′〉v , addressed in the previous section. Here, only the diagonal
matrix elements of the position operator depend on an origin through the arbitrary choice
r̂ → r̂ + d, which involves doing 〈nk|r̂ |n′k′〉 → 〈nk|r̂ |n′k′〉+ dδnn′δ(k − k ′) . On the other
hand, assuming a finite volume always makes 〈nk|r̂ |n′k′〉v depend on the integration limits.
Position operator matrix elements in Eq. (15) do not depend on any arbitrary origin, but only
make sense within Eq. (14).

As far as the velocity operator is concerned, Eq. (9) is still perfectly valid in the infinite
volume case:

〈nk|v̂ |n′k ′〉= δ(k − k ′)[∇kεn(k)δnn′ +
i
Ω
ωnk,n′k ′Ann′(k)] , (16)

expression to be used, again, only in the context of Eq. (14). Alternatively, in Appendix A we
also show that projecting v̂ on general physical states 〈φ|v̂ |φ′〉 = i 〈φ|[Ĥ, r̂ ]|φ′〉 , along with
Eq. (15), also leads to Eq. (16).
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Finally, to complete the connection between the different matrix element expressions, it is
straightforward to show that

〈nk|v̂ |n′k ′〉= iωnk,n′k ′ 〈nk|r̂ |n′k ′〉 . (17)

Again, one simply needs to project 〈φ|v̂ |φ′〉= i 〈φ|[Ĥ, r̂ ]|φ′〉 and proceed in the same manner
as explained in previous section. Here, however, the surface term vanishes due to |φ〉 and
|φ′〉 being square-integrable over all space. Notice that this momentum and position relation
matches that in atomic physics. This is also shown in Ref. [4] by using narrow k envelope
functions in the limit of zero width.

3 Velocity matrix elements when representing in a Bloch basis.

Having established a comprehensive overview of the available recipes to evaluate the VME and
their proper use, we proceed now with their actual computation when a generic and possibly
non-orthonormal Bloch basis is used to expand the Bloch eigenstates:

|nk〉v =
∑

α

cαn(k) |αk〉v . (18)

We stress again that |αk〉v is a generic basis state satisfying Bloch’s theorem in a finite volume,
with α being a generic quantum number. The coefficients cαn(k) are found by solving the
generalized eigenvalue problem

∑

α′

H(v)
αα′
(k)cα′n(k) = εn(k)

∑

α′

S(v)
αα′
(k)cα′n(k) , (19)

where H(v)
αα′
(k) and S(v)

αα′
(k) are the matrices representing the Hamiltonian and identity oper-

ators, respectively.
Eq. (9) can now be properly converted into more familiar expression. First the Berry

connection reads

Ann′(k) = i
∑

αα′

S(v)
αα′
(k)c∗αn(k)∇k cα′n′(k) +

∑

αα′

c∗αn(k)cα′n′Aαα′(k) . (20)

In this expression one has to perform derivatives in k space of the coefficients cαn(k). In most
cases these coefficients are obtained by numerical diagonalization of Eq. (19) so that they
are not continuous and, therefore, differentiable. However, this can be avoided by directly
employing the chain rule after inserting Eq. (20) into Eq. (9), leading to

〈nk|v̂ |n′k〉v = v (A)
nn′ (k) + v (B)

nn′ (k) ;

v (A)
nn′ (k) =
∑

αα′

c∗αn(k)cα′n′(k)∇k H(v)
αα′
(k) ,

v (B)
nn′ (k) = i
∑

αα′

c∗αn(k)cα′n′(k)
�

εn(k)Aαα′(k)− εn′(k)A
∗
α′α(k)
�

.

(21)

We show the complete derivation in Appendix B. Eq. (21) is one important result of this work:
it allows to compute VME from the Hamiltonian matrix elements and the Berry connection in
whichever Bloch basis. It also generalizes similar formulas that can be found in the literature
[see our discussion at the introduction section about Eq.(2)]. We have differentiated two
contributions, A and B, to the VME. The first one is evokes the exact expression v̂k = ∇k Ĥk ,
but the second one is equally important, as we will show below. Eq. (21) clearly shows that
∇k Ĥk is not, in general, equivalent to ∇k H(v)

αα′
(k).
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In many practical cases the Bloch basis is expanded, in turn, in a local orbital basis. Re-
garding this, two different types of basis can be found in the literature:

|αk〉v =
1
p

N

∑

R

eik·R |αR〉v and |α̃k〉v =
1
p

N

∑

R

eik·(R+dα) |αR〉v , (22)

where |αR〉v is an orbital with dα position vector inside the unit cell of site R. A finite size
crystal containing N cells is assumed throughout. Bloch eigenstates are now given by

|nk〉v =
∑

α

cαn(k) |αk〉v or likewise |nk〉v =
∑

α

bαn(k) |α̃k〉v , (23)

with both expansions being related by cαn(k) = eik·dα bαn(k). We will use the former basis in
this work by default, which we refer to as the cell gauge, and make considerations related to
the other one, the atom gauge, when appropriate. In this basis the matrices needed in Eq. (19)
become

H(v)
αα′
(k) =
∑

R

eik·R 〈α0|Ĥ|α′R〉 and S(v)
αα′
(k) =
∑

R

eik·R 〈α0|α′R〉 . (24)

Now we can recast the Berry connection terms in Eq. (21) into an explicit form involving the
position operator

Aαα′(k) =
∑

R

eik·R 〈α0|r̂ |α′R〉+ i∇kS(v)
αα′
(k) ,

A∗α′α(k) =
∑

R

eik·R 〈α0|r̂ |α′R〉 .
(25)

Note that Berry connection between non-orthonormal states is not an hermitian quantity and
present a certain asymmetry for its conjugate. The gradient of the overlap matrix can be
directly computed using Eq. (19). With this expressions, Eq. (21) becomes identical to that
reported in Ref. [9] (we invite the reader to see Appendix B for all the details in the derivation).

It is important to note that neither of the two terms in Eq. (21) is gauge independent. One
can easily check how the two terms change when switching to the atom gauge, according to
Eq. (22). For instance, the first term becomes (we denote the gauge choice in the superscripts)

v (A, atom)
nn′ (k) =
∑

αα′

b∗αn(k)bα′n′(k)∇k H̃(v)
αα′
(k)

= v (A, cell)
nn′ (k) + i
∑

αα′

c∗αn(k)cα′n′(k)H
(v)
αα′
(k)(dα′ − dα) ,

(26)

while the correction for the B term is the same with opposite sign, showing that the absolute
value of the sum v (A)

nn′ + v (B)
nn′ is gauge invariant, as it should be for a physical operator.

It is an interesting exercise to obtain the form of Eq. (21) when one works with maximally
localized Wannier functions (MLWFs) and in the purely tight-binding (TB) limit. MLWFS still
have a finite spread while TB orbitals are considered to be point-like. Despite this difference,
one usually neglects inter-atomic and intra-atomic position matrix elements beyond orbital
centers [10] in both cases. Denoting this basis orbitals with ν, we obtain

〈nk|v̂ |n′k〉v =
∑

νν′

c∗νn(k)c
∗
ν′n′(k)∇k H(v)

νν′
(k) + i
∑

νν′

c∗νn(k)c
∗
ν′n′(k)H

(v)
νν′
(k)(dν′ − dν) , (27)

which is the same as Eq. (26). This tells us that if we neglect inter-orbital contributions, the
computation of the VME with only the gradient term (the A term) in the atom gauge, therefore
neglecting v (B, atom)

nn′ , is equivalent to computing both terms (the full VME) in the cell gauge.
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This means that v (B, atom)
nn′ = 0, as can be easily checked. The second line of Eq. (26) [or

equivalently Eq. (27)] was presented in Ref. [8] as a “Peierls substitution approach to the case
of multiatomic unit cells”. Based on our previous discussion, we see that it appears naturally
within the atom gauge. In the more general case of a non-orthonormal basis, both terms of
Eq. (21) must be evaluated regardless of the gauge choice. We examine this more in depth in
Sec. 4 by using GTOs as basis functions, which are far from the maximally localized limit.

It is worth ending this section by briefly discussing the work of Lee et al. [9]. They present
an expression for the VME which is, in fact, a particular case of our general expression Eq.
(21) (we reproduce it in Appendix B). However, we believe that in order to reach their ex-
pression for the VME, they have inadvertently mixed Hilbert spaces. Their derivation starts
from v̂ = i[Ĥ, r̂ ] and, briefly, they follow by projecting 〈nk|v̂ |n′k〉v = i 〈nk|[Ĥ, r̂ ]|n′k〉v , ex-
panding eigenstates in a non-orthonormal local orbital basis, and inserting the closure relation
Î =
∑

αR,α′R′ SαR,α′R′ between the product of operators. We note that their procedure is equiv-
alent to start by writing

〈nk|v̂ |n′k〉v = iωnk,n′k 〈nk|r̂ |n′k〉 , (28)

and proceeding in the same manner. The problem of starting with Eq. (28) is that, as ex-
plained in Sec. 2, this equality only holds in the case of open boundary conditions (infinite
systems). This is not the case when using Bloch states constructed as a phased sum of local
orbital basis sets, namely, Wannier orbitals or TB models, where the band eigenstates obey a
finite volume normalization [see Eq. (5) and Eq. (22)]. The correct result found in Ref. [9]
can only be explained by the unjustified identification of 〈nk|r̂ |n′k〉v + Cnk,n′k ′ in Eq. (11)

with 〈nk|r̂ |n′k〉 =
∫∞
−∞ d3rψ(v)∗nk (r )rψ

(v)
n′k ′(r ), which leads to Eq. (28). By doing this, the

dependence on an arbitrary origin of integration is effectively removed by the new integration
limits, but the integral is ill-defined. This subtle issue, which can be easily missed, is stressed
by our notation in Eq. (28), where we have put the subscript v is on the left hand side but not
on the right hand side of the equality.

In the next section we present some numerical examples in order to explore the details of
the VME formulas in a practical situation.

4 Practical cases: hexagonal boron nitride and graphene

The first goal of this section is to gauge the importance of the different terms in Eq. (7),
by comparing between independent evaluations of the VME and MME. Particularizing to a
local orbital basis case, the former can be evaluated from Eq. (21), while the latter becomes
〈nk|p̂|n′k〉 = −i

∑

αα′R c∗αn(k)cα′n′(k)e
ik·R 〈α0|∇r̂ |α′R〉 . Our second goal is to explore the

relative importance of the two terms in Eq. (21).

4.1 Detailed numerical analysis of VME and MME

We start by computing the band structure of a benchmark material. We choose a monolayer
of hexagonal boron nitride (hBN), which is a sufficiently complex system to our purposes. In
Fig. 1, we show: (i) a tight-binding (TB) two-band calculation for the upper (lower) valence
(conduction) bands, including only first neighbour interactions between the pz orbitals of B
and N atoms, (ii) a DFT calculation employing a small-core pseudopotential basis set [14]
to replace the 1s2 electrons in every atom (labelled here as CRENBL [14])2 and, (iii) an all-
electron calculation with the 6-31G* basis set [15]. The DFT calculations were performed
using CRYSTAL17 [16] with the local von Barth-Hedin exchange-correlation functional [17].

2Our basis sets can be found on https://www.basissetexchange.org/ by searching in the element’s database
(as accesed on October 2022).
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Figure 1: Comparison of the band structure of monolayer hBN using different ap-
proaches: (i) a first-neighbour tight-binding two-band model with 2.15 eV hopping,
(ii) a DFT calculation using a small-core pseudopotential basis set and (iii) a DFT
all-electron calculation (see text for further details).

For our further analysis, we require to perform matrix elements in the form 〈γ(αi)
lm |Ô|γ

(α
′
i )

l ′m′〉,
with γ(αi)

lm (r ) GTOs basis sets [16] centered at the atomic sites (l and m give the symmetry of
the orbital while αi its spatial extent). For momentum and position operators, we are left with
integrations that can be evaluated in an analytical fashion.

We are not concerned here with the accuracy of the obtained gap so we have excluded the
use of hybrid functionals and their possible extra non-local contributions.

Both DFT band structures are essentially similar up to the conduction band. The agreement
is particularly good for the valence and conduction bands, both with a band gap of 4.55 eV,
except maybe for a noticeable difference at the M point of≃ 0.5 eV. As expected, only the more
accurate all-electron calculation with a large basis can reproduce results in the literature [18].
The tight-binding parameters can be fitted to resemble one of these calculations. It is easier
to obtain a better overall fit to the CRENBL band structure with a hopping t = 2.15 eV, as only
two pz orbitals are present to reproduce the energy dispersion.

We now explore in some detail Eqs. (7) and (21). To this purpose, in Fig. 2 we show the
magnitude of several quantities relevant to the band-gap optical transition along the Γ −K−M
path. Fig. 2(a) shows the absolute value of the x component of the VME and the MME for the
three cases shown in Fig. 1. Looking at the VME, the TB result deviates quantitatively from
the other two, but not qualitatively. When comparing the VME and the MME, we observe that
for the CRENBL basis the difference is significant, particularly near M, while that for the large
basis this difference is negligible. We explain this differences as follows. For the CRENBL case,
this difference comes, as reflected in Eq. (7), due presence of the non-local pseudopotential,
invalidating the velocity and momentum equivalence. In the all-electron case, the difference
is almost negligible. Since the evaluation of the MME is essentially analytical due to the use of
Gaussian orbitals, we discard possible errors when evaluating Eq. (21). Hence, we attribute
the very small difference to the finite size of the Hilbert Space, which is always required in
numerical calculations [see our discussion below Eq. (7)]. This effect is, of course, also present
in the pseudopotential case and should be more important due to the smaller Hilbert Space (8
and 36 bands for the CRENBL and all-electron case, respectively.)

We have therefore notice the use of non-local functionals in the starting DFT calculation.
In order to explore this effect further in, we have repeated the all electron (6-31G*) calcula-
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tion using the HSE06 hybrid functional [19]. We have also used the same large all-electron
basis as before, allowing us to isolate the effect of the non-locality from that coming from
the finite basis size. We show the results in the inset of Fig. 2(a), where we compare the
velocity and momentum curves. In this case, the deviation between the VME and MME curves
becomes appreciable, but not larger than the one stemming from the finite basis in the previ-
ously discussed CRENBL case. Our results suggest that the use of a nonlocal functional have
a relevant impact when assuming the equality versus momentum and velocity operators. In
summary, these results explicitly show that the VME and MME cannot always be taken as the
same quantity. This can only be safely done, in principle, when using large all-electron basis
sets in DFT-LDA calculations.

In Fig. 2(b), we compare the magnitude of the k-gradient term [the A term in Eq. (21)]
calculated in the atom gauge for the three different cases. In the TB case, this term gives the full
value for the VME. In the DFT case, the results deviate significantly from the exact value [shown
in Fig. 2(a)], showing the importance of the B term in Eq. (21). The CRENBL basis presents
a larger deviation: this shows that having a smaller size do not guarantees having small inter-
orbital contributions to Eq. (25), which turn into an important contribution to v(B,atom). As
mentioned in Sec. 3, only the maximal localization condition (or point-like orbitals) for the
basis set ensures that v(A, atom) gives the exact VME. This condition is not met in neither of
the two DFT basis sets used in our calculations. We also show the result obtained in the cell
gauge in Fig. 2(c). Now, not only quantitative differences appear, but also selection rules
break when approaching the Γ point (here the VME must be zero according to the irreducible
representations of the wave functions). Therefore, identifying the VME simply as a k-gradient
of the Bloch Hamiltonian in the cell gauge can lead, not only to quantitative errors, but also
to incorrect physical interpretations.

4.2 Optical conductivity

The calculation of an experimentally measurable quantity such as the optical conductivity can
be affected by an incorrect evaluation of the VME. To show this we make use of the Kubo-
Greenwood [20] expression (we do not use atomic units here for clarity):

σαβ(ω) = −
i

Nk

e2ħh
Ω

∑

nn′k

�

fnk − fn′k

ωnk,n′k

�

×
〈nk|v̂α|n′k〉v 〈n′k|v̂β |nk〉v
ħhω+ωnk,n′k + iħhη

, (29)

where fnk is the Fermi-distribution occupation number and Nk is the number of k points in the
discretized Brillouin zone.

In Fig. 3 we show the longitudinal optical conductivity, computing the VMEs within the dif-
ferent approximations considered in previous section. We have separated the results obtained
with the small-core basis from those with the all-electron basis, as shown in Fig. 3(a) and Fig.
3(b), respectively, where we have also added the calculation with the TB model in both pan-
els. At the bandgap frequency, the DFT and TB calculations involving the exact VME are able
to reproduce the quasiuniversal behaviour [21] for a parabolic noninteracting semiconductor,
yielding σ = e2/2ħh. The use of MMEs, instead of the VMES, fails for the pseudopotential and
small basis case [black dashed line in Fig. 3(b)], as expected from the discussion in previous
subsection. At higher frequencies the TB model underestimates the response, which is simi-
lar in magnitude for both DFT cases, the only difference being the position of the Van Hove
singularity which originates in the bands at the M point (see Fig. 1). In both DFT calcula-
tions, replacing the VME by its k-gradient approximation overestimates the exact result. A
calculation with the k-gradient term in the cell gauge v̂ → v (A, cell) (not shown) gives an even
larger discrepancy at all frequencies, but worse, also removes the isotropic behaviour of the
conductivity tensor with σx x ̸= σy y . This erroneous behaviour has been already discussed for
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Figure 2: Absolute value of matrix elements for the band-gap transition along the
Brillouin zone of monolayer hBN. (a) Velocity and momentum matrix elements for
the two DFT calculations presented in 1 [the inset show an extra DFT case using the
HSE06 functional (see main text)] and in the tight-binding approximation (b) Same
for the first term of Eq. (21) in the atom gauge [see. Eq. (23)]. (c) Same as (b) but
in the cell gauge.

graphene in Ref. [22] and highlights the importance of taking the k-gradient approximation
for VME using the appropriate gauge. It is also worth mentioning here the work by Wissgott
et al. [23]. There, the Peierls approximation in the atom gauge is tested versus the complete
VME also through a conductivity analysis of transition-metal oxides. Our conclusion about the
gauge choice, not explored in their work, could give a better insight about the discrepancies
that are found in Ref. [23].

A direct comparison with experiments can be made by analyzing the optical response of
graphene. It is known that monolayer graphene shows a quasi-constant absorbance of∼ 2.3%,
corresponding to σ = e2/4ħh, over the energy region that goes from the far-infrared to the
visible spectrum where excitonic effects are negligible (< 2 eV) [24–26]. Therefore, in this
energy range, Kubo-Greenwood DFT-based calculations are expected to give a faithful optical
response. In Fig. 4 we show the optical conductivity calculated with two different basis sets,
equivalent to those used for hBN. We present results for the exact VMEs and their approximated
values using the MMEs. Experimental results from Ref. [24] are also shown. We can see that
both basis sets give results in very good agreement with the experimental ones when employing
VME. For the case of MMEs, the CRENBL basis set gives ∼ 0.175e2/ħh, which translates in a
30 % error when comparing to the experimental curve. This result complements our previous
study of hBN, showing the significant effect of non-local operators and finite basis sets when
trying to replace the VMEs by the MMEs.

We end this section by commenting the recent work by Ibañez-Aspiroz and coworkers [10],
which has been carried out in parallel to our study. They have explored the effect of progres-
sively adding inter-atomic position matrix elements in Eq. (27), through a Wannier interpo-
lation scheme. In Ref. [10] it is found that including position matrix elements beyond orbital
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Figure 3: Frequency-dependent sheet conductivity of monolayer hBN as obtained
from the evaluation of Eq. (29) using (a) a all-electron and (b) small-core pseudopo-
tential DFT calculations. The calculation with a first-neighbour tight-binding model
is included in both panels. See Fig. 1 for the corresponding band structures.

Figure 4: Same as Fig. 3 for the case of graphene. Experimentals results from Ref.
[24] are shown. VME and MMe has been used to represent the velocity operator in
the Kubo-Greenwood formula for the two DFT calculations (other approximations
are not shown in this case).

centers in Eq. (25) leads to appreciable quantitative differences in the evaluation of the linear
(dielectric function) optical response of BC2N. Even more, it is shown that very significant er-
rors are introduced when computing the quadratic response (shift photoconductivity). Here,
we have shown that performing such approximation using GTOs as basis sets can lead to
greater discrepancies even in the evaluation of the Kubo linear response. This is related to the
fact that GTOs are less localized that Wannier functions, which are usually maximally localized
per construction.

5 Conclusion

We have presented a comprehensive study of the evaluation of VME in crystalline solids, as
obtained from the fundamental relation v̂ = i[Ĥ, r̂ ]. We have scrutinized several available
expressions in the literature, filling the gaps and connecting them in a coherent story. We have
seen that, when working in coordinate representation, one is bound to deal with a very incon-
venient surface term which can be avoided by going first into the k-representation. We have
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obtained a general expression which contains a familiar k-gradient term plus a correction term
which involves the Berry connection of the Bloch basis elements. When using local orbitals as
a basis, this can be rewritten in a more familiar form (see, e.g., Ref. [9]), but whose previous
derivations contain unjustified mathematical steps. We have also shown several equivalences
which involve the momentum and position operators, including well-known expressions in the
crystal momentum representation (nonphysical distribution basis).

We have numerically tested the validity of different approximations to the VME by com-
puting the optical conductivity of monolayer hBN and graphene through the Kubo-Greenwood
formula. In particular, we have shown that approximating the VME by ∇k Hαα′(k) in a non-
orthonormal basis produces significant quantitative errors and may also give rise to qualitative
ones if one is not careful with the choice of gauge. We have also made emphasis on the fact
that the velocity and momentum matrix elements can only be safely interchanged if the Hamil-
tonian is free of non-local terms and eigenstates are well-represented in the working Hilbert
space.

Additionaly, our numerical analysis is in close relation to a very recent work of Ref. [10],
where a similar study has been carried out using Wannier functions. We expect our work will
contribute to remark the importance of going beyond the k-gradient approximation for the
velocity matrix elements when using general local orbital basis sets. In summary, this work
may well serve as a complete as well as a rigorous guide to the intricate relations behind the
evaluation of the velocity, momentum, and position matrix elements in crystalline solids.
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A Representation of v̂ = i[Ĥ, r̂ ] in the distribution basis

In this appendix we prove that projecting v̂ = i[Ĥ, r̂ ] in CMR along with the correspond-
ing expression for the position operator, Eq. (15), allows to obtain Eq. (9). Let |mk〉 be a
general Bloch basis (orthonormal for simplicity) following a distribution normalization. An
identification with the eigenstates basis will be made in the end. We have

〈φ1|v̂ |φ2〉= i 〈φ1|[Ĥ, r̂ ]|φ2〉= i
∑

mm′

∫

BZ

d3kd3k′g(1)∗m (k)g(2)m′ (k
′) 〈mk|[Ĥ r̂ − r̂ Ĥ]|m′k ′〉 .

(A.1)
Now we insert the closure relation between the two operators:

〈φ1|v̂ |φ2〉=i 〈φ1|[Ĥ, r̂ ]|φ2〉

=i
∑

mm′m′′

∫

BZ

d3kd3k′d3k′′g(1)∗m (k)g(2)m′ (k
′)

× (Hmk,m′′k ′′ rm′′k ′′,m′k ′ − rmk,m′′k ′′Hm′′k ′′,m′k ′)

≡〈φ1|v̂ (1)|φ2〉+ 〈φ1|v̂ (2)|φ2〉 .

(A.2)
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We have splitted the full matrix elements into two terms according to the two parts in Eq.
(15). First we work out 〈φ1|v̂ (1)|φ2〉,

〈φ1|v̂ (1)|φ2〉=
i
Ω

∑

mm′m′′

∫

BZ

d3kd3k′d3k′′g(1)∗m (k)g(2)m′

× (k ′)Hmm′′(k)δ(k − k ′′)[−iδm′′m′∇k ′δ(k
′ − k ′′)]

−
i
Ω

∑

mm′m′′

∫

BZ

d3kd3k′d3k′′g(1)∗m (k)g(2)m′ (A.3)

× (k ′)[−iδmm′′∇k ′′δ(k
′′ − k)]Hm′′m′(k

′′)δ(k ′′ − k ′) .

We have taken into account that a crystal Hamiltonian is diagonal in the k vector, this is
Hmk,m′k ′ ≡ Ω−1Hmm′(k)δ(k−k ′) . Using the identity F(k)[∇kδ(k−k ′)]=−[∇k F(k)]δ(k−k ′)
straightforwardly, one can see

〈φ1|v̂ (1)|φ2〉=
1
Ω

∑

mm′

∫

BZ

d3kd3k′d3k′′g(1)∗m (k)g(2)m′ (k
′)Hmm′(k)δ(k − k ′′)[∇k ′δ(k

′ − k ′′)]

−
1
Ω

∑

mm′

∫

BZ

d3kd3k′d3k′′g(1)∗m (k)g(2)m′ (k
′)[∇k ′′δ(k

′′ − k)]Hmm′(k
′′)δ(k ′′ − k ′)

=−
1
Ω

∑

mm′

∫

BZ

d3kg(1)∗m (k)[∇k g(2)m′ (k)]Hmm′(k)

+
1
Ω

∑

mm′

∫

BZ

d3kg(1)∗m (k)g(2)m′ (k)[∇k Hmm′(k)]

−
1
Ω

∑

mm′

∫

BZ

d3kd3k′∇k[g
(1)∗
m (k)Hmm′(k)]g

(2)
m′ (k

′)δ(k − k ′) , (A.4)

and applying the chain rule,

〈φ1|v̂ (1)|φ2〉=−
1
Ω

∑

mm′

∫

BZ

d3k∇k[g
(1)∗
m (k)g(2)m′ (k)Hmm′(k)]

+
1
Ω

∑

mm′

∫

BZ

d3kg(1)∗m (k)g(2)m′ (k)[∇k Hmm′(k)] .
(A.5)

The first term is zero following the conditions required by Blount [11]. Now we look at the
Berry connection term

〈φ1|v̂ (2)|φ2〉=
i
Ω2

∑

mm′m′′

∫

BZ

d3kd3k′g(1)∗m (k)g(2)m′ (k
′)[Hmm′′(k)Am′′m′(k

′′)δ(k − k ′′)δ(k ′ − k ′′)

− Amm′′(k)Hm′′m′(k
′′)δ(k ′′ − k)δ(k ′′ − k ′)]

=
i
Ω2

∑

mm′m′′

∫

BZ

d3kg(1)∗m (k)g(2)m′ (k
′)[Hmm′′(k)Am′′m′(k)− Amm′′(k)Hm′′m′(k)] .

(A.6)

We now find the expression in the eigenstates basis. For clarity we rename m = n, and use
Hnn′(k) = εn(k)δnn′Ω, obtaining

〈φ1|v̂ |φ2〉=
∑

nn′

∫

BZ

d3kg(1)∗n (k)g(2)n′ (k)
¦

∇kεn(k)δnn′ +
i
Ω
[εn(k)− εn′(k)]Ann′(k)

©

≡
∑

nn′

∫

BZ

d3kd3k′g(1)∗n (k)g(2)n′ (k
′) 〈nk|v̂ |n′k ′〉 ,

(A.7)
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where 〈nk|v̂ |n′k ′〉 = δ(k − k ′)
�

∇kεn(k)δnn′ + iΩ−1ωnk,n′k ′Ann′(k)
�

, which is precisely Eq.
(16).

B Derivation of Eq. (21)

We start from Eq. (9) for the case k = k ′,

〈nk|v̂ |n′k〉v = iωnk,n′k Ann′(k) +∇kεn(k)δnn′ . (B.8)

Recall that the Berry connection is defined Ann′(k)≡ i 〈unk |∇kun′k〉Ω. Expanding the periodic
part in a Bloch Basis, |nk〉 state is |unk〉=

∑

α cαn(k) |uαk〉, we readily obtain

Ann′(k) = i
∑

αα′

Sαα′(k)c
∗
αn(k)∇k cα′n′(k) +

∑

αα′

c∗αn(k)cα′n′Aαα′(k) . (B.9)

We now insert this expression into Eq. (B.8 ), obtaining

〈nk|v̂ |n′k〉v =− εn(k)
∑

αα′

c∗αn(k)∇k cα′n′(k)S
(v)
αα′
(k)

+ εn′(k)
∑

αα′

c∗αn(k)∇k cα′n′(k)S
(v)
αα′
(k) +∇kεn(k)δnn′

+ i[εn(k)− εn′(k)]
∑

αα′

c∗αn(k)cα′n′(k)Aαα′(k) .

(B.10)

Applying the chain rule in the second term

εn′(k)
∑

αα′

c∗αn(k)∇k cα′n′(k)S
(v)
αα′
(k) =− εn′(k)
∑

αα′

∇k c∗αn(k)cα′n′(k)S
(v)
αα′
(k)

− εn′(k)
∑

αα′

c∗αn(k)c
∗
αn′(k)∇kS(v)

αα′
(k) ,

(B.11)

so we have

〈nk|v̂ |n′k〉v =−
∑

αα′

εn(k)S
(v)
αα′
(k)c∗αn(k)∇k cα′n′(k)−

∑

αα′

∇k cαn(k)εn′(k)S
(v)
αα′
(k)c∗α′n′(k)

− εn′(k)
∑

αα′

c∗αn(k)cα′n′(k)∇kS(v)
αα′
(k) +∇kεn(k)δnn′ (B.12)

+ i[εn(k)− εn′(k)]
∑

αα′

c∗αn(k)cα′n′(k)Aαα′(k) .

Now we can introduce the Hamiltonian matrix elements in the first two terms according to the
eigenvalue equation, yielding

−
∑

αα′

H(v)
αα′
(k)c∗αn(k)∇k cα′n′(k)−

∑

αα′

∇k c∗αn(k)H
(v)
αα′
(k)cα′n′(k) =

−∇k

�

∑

αα′

c∗αn(k)H
(v)
αα′
(k)cα′n′(k)

�

+
∑

αα′

c∗αn(k)cα′n′(k)∇k H(v)
αα′
(k) .

(B.13)

The first term cancels the gradient of the energy band in Eq. (B.12 ). In order to write the
final form of the expression, we note that Aαα′(k)≡ i 〈uαk |∇kuα′k〉Ω = i∇kS(v)

αα′
(k)+A∗α′α(k) ,

which leave us with

〈nk|v̂ |n′k〉v = v (A)
nn′ (k) + v (B)

nn′ (k) ;

v (A)
nn′ (k) =
∑

αα′

c∗αn(k)cα′n′(k)∇k H(v)
αα′
(k) ,

v (B)
nn′ (k) =
∑

αα′

c∗αn(k)cα′n′(k)
�

iεn(k)Aαα′(k)− iεn′(k)A
∗
α′α(k)
�

,

(B.14)
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as presented in the main text. Finally this expression is particularized for Bloch states expanded
in a local orbital basis, where |αk〉v = 1/

p
N
∑

R eik·R |αR〉v , leading to the Berry connection

Aαα′(k) =
∑

R

eik·R 〈α0|r̂ |α′R〉 −
∑

R

eik·RR 〈α0|α′R〉 . (B.15)

The expression above is a generalization for that of a Wannier basis, see e.g. Ref. [13,27]. Also
note that −
∑

R eik·RR 〈α0|α′R〉= i∇kS(v)
αα′
(k) . Here, an extra term arises accounting from the

nonorthonormal character of atomic states, differently from the Wannier orbitals, which are
orthonormal by construction. This is also reflected by the appearance of the overlap matrix
in the first line of Eq. (20). In Eq. (B.15 ), dipole matrix elements between the basis set
are integrated in all space and not in the unit cell, different than in the original definition for
the Berry connection. This change is done by passing from

∫

cell to limN→∞
1
N

∫∞
−∞ , that is

well-defined for a periodic integrand. Finally Eq. (B.14 ) can be written

〈nk|v̂ |n′k〉v =
∑

αα′

c∗αn(k)cα′n′(k)
�

∇k H(v)
αα′
(k)− εn(k)∇kS(v)

αα′
(k)
�

+ i[εn(k)− εn′(k)]
∑

αα′

c∗αn(k)c
∗
αn′(k)
∑

R

eik·R 〈α0|r̂ |α′R〉 ,
(B.16)

which is the formula given in Ref. [9].
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