Science of Computer Programming 230 (2023) 103000

-
cience of Computer

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Original software publication

Wodel-Edu: A tool for the generation and evaluation of)

Check for

diagram-based exercises

Pablo G6mez-Abajo *, Esther Guerra, Juan de Lara

Computer Science Department, Universidad Auténoma de Madrid, Madrid, Spain

ARTICLE INFO ABSTRACT

Article history: Creating and grading exercises are recurring tasks within higher education. When these
Received 8 December 2022 exercises are based on diagrams - like logic circuits, automata or class diagrams - we can
Received in revised form 7 July 2023 represent them as models, and use model-driven engineering techniques for the large-scale

Accepted 10 July 2023

Available online 13 July 2023 generation of quizzes, which can be automatically graded.

This way, we propose a domain-independent tool for the generation and automated
evaluation of diagram-based exercises called WobeL-Epbu. WopeL-Epu is built atop WopkeL, an

ﬁgﬁfiﬁven engineering extensible tool for model mutation, and offers seven kinds of diagram exercises. It supports
Education code generation from the exercises for the MoooLe platform, the web, Anproip and 10S
Model mutation applications. Evaluations from the professor and student perspectives show good results.

Automated generation of exercises © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the
MoobLE CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Code metadata description

Current code version 1.2

Permanent link to code/repository used of this code version https://github.com/ScienceofComputerProgramming/SCICO-D-22-00339
Permanent link to Reproducible Capsule https://gomezabajo.github.io/Wodel/wodel-edu-video.html

Legal Code License EPL-1.0 License

Code versioning system used git

Software code languages, tools, and services used Eclipse Modelling Tools 2023-03 Release (4.27), EMF 2.33.0, Java 11, Xtext

2.30.0, Xtend 2.30.0, Sirius 7.1.0, EMF Compare 3.5.3, OCL Examples and Editors
SDK 6.18.0, USE ModelValidator 4.2.0, Graphviz 8.0.3, Circuit Macros 10.0.2,
emfjson 0.13.0

Compilation requirements, operating environments & dependencies Microsoft Windows 7 64-bit or later, Linux

If available Link to developer documentation/manual https://gomezabajo.github.io/Wodel/wodel-edu.html

Support email for questions pablo.gomeza@uam.es

1. Motivation and significance

One of the effects of the global pandemic has been the vast increasing need in higher education for a transition from
traditional face-to-face teaching into a long-distance or hybrid model. This long-distance educational model requires a mas-

* Corresponding author.
E-mail addresses: Pablo.GomezA@uam.es (P. Gémez-Abajo), Esther.Guerra@uam.es (E. Guerra), Juan.deLara@uam.es (J. de Lara).

https://doi.org/10.1016/j.scico.2023.103000
0167-6423/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.scico.2023.103000
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2023.103000&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ScienceofComputerProgramming/SCICO-D-22-00339
https://gomezabajo.github.io/Wodel/wodel-edu-video.html
https://gomezabajo.github.io/Wodel/wodel-edu.html
mailto:pablo.gomeza@uam.es
mailto:Pablo.GomezA@uam.es
mailto:Esther.Guerra@uam.es
mailto:Juan.deLara@uam.es
https://doi.org/10.1016/j.scico.2023.103000
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

P. Gomez-Abajo, E. Guerra and J. de Lara Science of Computer Programming 230 (2023) 103000

ﬁ **************************** 1 \ ()

I
seed models modelText | mutaText] eduTest

S[E) =L =
. 7
~ 7
2. define ggégrr?quels
concrete syntax
T
\4

language
engineer

LN
|

4. define 5. textual], (6. exercises
mutations representation description
T

v v
:: <'***'_"_E Wodel _E‘—-— 0]
! doin mod;Draw _l mnts M
: meta-model i professor
N ' p
)

exercises

8. automated 7. exercises
grading solving

Fig. 1. WODEL-EDU process.

sive creation of digital resources, such as course notes, videos, and exercises [12]. The task of a fair online (self-)assessment
of students becomes very frequently an unreachable effort for the professors, who need to create large amounts of exercise
variations and their evaluation in very short periods of time.

When these exercises are based on diagrams - such as those in the domains of software design, logic circuits, automata
theory or chemistry — we can represent them as models. Hence, we can use the automation techniques provided by model-
driven engineering (MDE) to generate exercises and provide their automated evaluation [4].

Following this idea, we propose a model-based solution called wopeL-Ebu, which represents the exercises as models. Wopet-
Eou supports the generation of exercises for any diagram-based domain, based on the automated generation of incorrect
answers (models) from correct ones, which enables fully accurate grades. In addition, wopeL-Epu allows the user to configure
the graphical and textual representation of the models by means of a family of DSLs, and the selection of the kind of
exercise that best fits the corresponding assignment among a set of seven.

2. Software description

Fig. 1 illustrates the process followed by wopeL-Epbu to generate exercises. It involves the roles of language engineer and
professor, which can be played by the same person. The former defines the modeling language over which the exercises are
created. The latter describes the text of the exercises and selects the types of exercises to be generated. Then, students can
solve the generated exercises, which get an automated grading.

In the first step, the language engineer must create the domain meta-model if it does not exist, and define its graphical
concrete syntax. As WopeL-Ebu generates diagrams for different platforms (MoooLe, the web, Anproip Or 10S), WobeL-Epu uses a
dedicated language to specify such concrete syntax, called mopeLDRaw.

Next, she facilitates an initial set of models, upon which the exercises are based. This task can be performed either
manually (step 3b) or using the automated seed model synthesizer provided by the wooei-Epu tool (step 3a).

Then, the language engineer defines the mutation operators of interest to generate the mutants. These operators specify
minimum model modifications, producing variations in the initial set of models. These are used to generate the exercises,
which are test-based (i.e., answers are based on a closed set of options). For example, in the simplest exercise type, the
student must distinguish correct (i.e., from the initial model set) from incorrect models (i.e., a model mutant). To define and
execute the mutation operations, wopeL-Epu uses a DSL called wookL.

In the fifth step, the language engineer provides the textual representation of the models and the applied mutation oper-
ators, using the mopeiText and mutaText DSLs. This is required by some types of exercises, which need the textual description
either of parts of the model or the modifications performed.

At this point, the process is ready for the professor to define and customize the set of exercises to be generated. This is
done using the eouTest DSL. Finally, the set of exercises is generated and ready to evaluate the students.

Fig. 2 shows the seven kinds of exercises currently supported by wopeL-Ebu. Some exercise kinds require a textual
statement, and the professor can benefit from the extension point provided by wopeL-Epbu to obtain an alternative textual
representation of the models and speed up the statements creation process. The exercises supported are:

o Alternative Response. This kind of exercise shows a diagram that either corresponds to the textual statement, i.e., the
seed model - where the answer is true, or one of its mutants - where the answer is false (see Fig. 2a).

P. Gomez-Abajo, E. Guerra and J. de Lara Science of Computer Programming 230 (2023) 103000

WooeL -, 1 <)
mutations’ /7
£

! >
[text(mutant @} &
|
text(mutant)@RY! exercise 1
v el JE-=----mmmmmms
'
|

mutations-1 (reversed) '
mutant-1 |

> [mutations-2

| [model H seed
1 [mutant | 1., | model

1 1
Is correct? 1 : Is correct?
’

How to correc

(Match the text with e correct option

\
h
'
| text(mcdlel m"’umtions-l (reversed) |
iLm
I
!
1[text{model m:numrions-z (reversed) |
: mutant-2) i
I
I
|

(| Orionsseeseay LR
(e) Match pairs. (f) Missing words. (g) Text drag and drop.

Fig. 2. Supported kinds of exercises.

e Multiple Diagram Choice. In this case, the exercise presents a textual statement and a set of diagrams that includes the
one corresponding to the seed model - the rest corresponds to other generated mutants. The student must tell which
of these diagrams corresponds to the statement, i.e., the seed model (see Fig. 2b).

e Multiple Text Choice. This kind of exercise shows a diagram and a set of textual representations of the models. One
of these provided textual representations corresponds to the statement, i.e., the seed model, and the remaining cor-
responds to other generated mutants. In this case, the solution is the textual representation of the seed model (see
Fig. 2c).

e Multiple Emendation Choice. This exercise presents a diagram that corresponds to a mutant, a textual statement, and a
set of textual options to emend it. The textual options correspond to a set of mutation operators that can be applied
to the shown diagram. The options that fix the diagram to satisfy the provided textual statement, i.e., the textual
representation of the seed model, are the correct answers. The remaining options, when applied to the shown mutant,
generate a different model (see Fig. 2d).

e Match Pairs. In this kind of exercise, the student must match a set of textual representations of mutation operators with
a set of textual representations of the generated mutants after they are applied to the shown diagram (see Fig. 2e).

e Missing Words. This exercise shows a textual statement that corresponds to the seed, a diagram that corresponds to one
of its mutants, and a set of textual representations of the mutation operators used to generate the presented diagram.
Each of these textual representations includes a gap for each variable field that contains a drop-down list with all its
possible values. In this case, the student must fill the gaps by selecting from such drop-down lists the value taken by
the corresponding mutation operator to generate the shown mutant (see Fig. 2f).

e Text Drag and Drop. The process followed to create this kind of exercise is similar to the one used in the Missing Words
kind. In this case, the missing text values are shown in labels grouped by category and the student can drag and drop
these labels to each gap. The solution to this exercise is the combination of labels in each gap that matches the values
taken by the applied mutation operators (see Fig. 2g).

3. Software architecture

wobkeL-Epu is an Eclipse plugin, available at: http://gomezabajo.github.io/Wodel/wodel-edu.html.

Fig. 3 shows the architecture of wopeL-Eou. Its engine provides editors for a family of five DSLs that allow the configu-
ration, specification and generation of the exercise applications. As later explained in Section 4, the first of these DSLs is
wopeL, a domain-independent language for model mutation that we presented in [8].

First, the language engineer specifies the domain meta-model (label 1) and includes a set of seed models over which
the selected mutation operators encoded in wopeL are applied (label 2). Alternatively, wopeL-Ebu supports an automated
synthesis of the seed models (label 3), over which the defined mutation operators are ensured to be applicable, and allows

http://gomezabajo.github.io/Wodel/wodel-edu.html

P. Gomez-Abajo, E. Guerra and J. de Lara Science of Computer Programming 230 (2023) 103000

WODEL-EDU alternative textual equivalent 0000 | e mm - @
representat\ons? detection moodle
(WobDEL-EDU engine

SEED 9
synthesizer

Fooo J__ MODELDRAW 5
«conforms to»! £
1 || Seep models T, MODELTEXT]

1 -
1) Lo—————"|(WopeL editor S
MUTATEXT :f
WODEL a
________________ program EDUTEST 8

«depends on»

1
| | MuTaNT L |
«conforms to» : models

ios

il U 2
£ T .
S

Fig. 3. Architecture of WODEL-EDuU.

£ runtime-EclipseApplication - platform:/resource/wodeledulc/data/model/LogicCircuit.aird/Default Review Diagram - Eclipse Platform - O
File Edit Diagram Navigate Search Project Run Window Help

o ¢ R Q@D A F OO Q iE

5 Project Explorer 52 = B »,
W wodeledulc.m... §2 W, wodeledulc.draw W wodeledulc.m. W wodeledulc.test & Default Review Diagram 32
) =0 = generate 6 mutants A RS I B-wrmet| B~ R -4100% V‘
v > wodeledulc Y

in “data/out/"

v (@ src from "data/model/"
W wodeledulc.draw metamodel “/wodeledulc/data/model/LogicCircuit.ecore” ® Outputpin @ @ inputin
W wodeledulc.modeltext .15 (0.1 tar
woaelecls cmodener with blocks {
. wodeledulc.mutatext & ntg ¢
W wodeledulc.mutator retype one [AND, OR] as [AND, OR]
W wodeledulc.test
#® src-gen e sip { §
9 = select one Gate
=\ JRE System Library 80 = 3 . . . % Gote
2 Plog- o Dependencics modify one Gate where {self <> g0} with {swapref(input, go->input)} Ay, 2 input B togiccirautt
& app = rnot {
v (= data n6 = select one NOT where {input->src <> null and output->tar <> null} v B oo
(= config :
& model
W Meta-model Static Footprint §3 W
> out
= META-INF Class/Attributes/References C.:83% M:33% D:50% IC:33% IM:16% ID:33%
b build.propeties © LogicCircuit _ [@@ || @@ @@ @® ot
v References
gates
InputPin et
OutputPin e
OR oc3f
AND 03
< > | > NoT loc3t |

Fig. 4. The WoDEL-EDU environment.

generating exercises of different difficulty levels. For this purpose, wopeL-Eou relies on the USE model finder [11]. Based on
this specification, this user generates a set of mutants by means of the wopeL tool (label 4). In the next step (label 5), the
language engineer specifies how the models are graphically represented with the mope.Draw DSL. The mopeiText DSL allows
specifying the textual representation of the elements of the models, and the mutaTexr DSL permits the definition of the
textual representation of the applied mutation operators.

Then, the professor can configure the features of the exercise application to be generated, such as the kinds of exercises,
or whether the application enables reattempts or not, by means of the ebuTest DSL. The provided code generator currently
supports the generation of exercises for MoooLg, the web, and Anoroip and 10s applications (label 6).

In addition, wopeL-Epbu provides two extension points. The first one allows the definition of an alternative (complex) tex-
tual representation for the models. As Section 4 shows, the language engineer can use this extension point to represent a
digital circuit with its equivalent boolean expression, or an automaton with its equivalent regular expression. The second
extension point facilitates the detection of equivalent mutants. This is useful to detect if two artifacts do not differ se-
mantically after applying a mutation operator. Since the exercises assume that mutants are semantically different from the
original model, these are discarded. Note that the tool avoids generating mutants that do not conform to the meta-model
and its OCL invariants.

Fig. 4 shows the wopeL-Ebu development environment. Label 1 is the project explorer, with the set of programs to con-
figure and generate the exercises. Label 2 shows the wopeL editor — Wopet-Epu provides editors for the mopeLDraw, MODELTEXT,
muTaTexT, and eouTest DSLs, too (not shown). Label 3 shows statistics on the number of times each meta-model element is
affected by the application of the mutation operators. Label 4 represents this meta-model coverage by the mutation oper-
ators graphically. Both label 3 and label 4 views allow the language engineer to understand the behavior of the mutation
operators over the models.

P. Gomez-Abajo, E. Guerra and J. de Lara Science of Computer Programming 230 (2023) 103000

diff_names: Namedltem.alllnstances()->forAll(n1, n2 | n1 <> n2 implies n1.name <> n2.name)l5'

[
L

LogicCircuit

gates

input 1.2
Gate & B InputPin

name: String ¢°UPU1 OutputPin name: String

name: String <
src tar

lAl\‘lD‘ l O‘R ‘ lNOT‘\

| | N
|input_size_2: self.input->size() = ZBI |input_size_1: self.input->size() = 1B|

Fig. 5. Logic circuit meta-model.

Ic: LogicCirauit b f
‘ g1:NOT ‘ﬂ Z: OutputPin ‘ ‘ 92: AND ‘ﬂ £ OutputPin ‘
a‘
‘ a: InputPin ‘ ‘ ¢ InputPin ‘ ‘ b: InputPin ‘

(b) Concrete syntax — circuit

(a) Abstract syntax. macros notation.

Fig. 6. Logic circuit model in its abstract syntax on the left and concrete syntax on the right.

generate exhaustive mutants in "data/out/" from "data/model/"
metamodel "http://Ic/1.0"

with blocks {

mtg1 "retypes an and gate as an or gate" {

retype one AND as OR

}13]

mtg2 from mtg1 repeat=no

"retypes an or gate as an and gate from mutants generated by mtg1" {
10 retype one OR as AND
111 }[3]

OO UL A WN =

Listing 1: Simple wopeL program.
4. Illustrative examples

As an illustration, we generate exercises for logic circuits (LCs). Fig. 5 shows the meta-model for this notation. An LC
consists of a set of Gates, which have a name, and are composed of a set of one or two InputPins and an OutputPin. An InputPin
has a name and a reference src to an OutputPin, and an OutputPin has a name and a reference tar to an InputPin. A Gate can be
of type AND, OR or NOT.

The meta-model has OCL constraints to require that all the elements in an LC have different names (diff_names), the AND
and OR Gates have two InputPins (input_size_2) and NOT Gates have one InputPin (input_size_1).

Fig. 6 presents a model conforming to the meta-model in Fig. 5, in its abstract syntax on the left (Fig. 6a), and its
concrete syntax using the Circuit Macros' notation on the right (Fig. 6b). This LC example has two initial InputPins (named ‘a’
and ‘v’), a NOT gate with the InputPin ‘a’ as its input, and an AND gate with inputs the InputPin ‘b’ and the output of the NOT
gate, and with output the OutputPin ‘f.

Next, we exemplify the use of the five DSLs to specify and generate LC exercises.

4.1. Defining mutations with WODEL

The wopet DSL supports the definition of mutation operators for any model defined by a meta-model [8]. It provides a
set of nine mutation primitives to select, create, clone, modify, retype (i.e., modify the type of an object to one of its sibling
types) and remove objects, and to create, modify and remove references.

Listing 1 shows a wopeL program that defines two mutation operators for LCs. Line 1 declares the strategy for mutant
generation, which in this case is exhaustive, meaning the generation of all possible mutants for the given mutation operators.
Alternatively, wooeL provides a stochastic mode, where the language engineer inputs the maximum number of mutants to

1 https://ece.uwaterloo.ca/~aplevich/Circuit_macros/.

https://ece.uwaterloo.ca/~aplevich/Circuit_macros/

P. Gomez-Abajo, E. Guerra and J. de Lara Science of Computer Programming 230 (2023) 103000

i
[5
le1: LogicCircuit 93:NOT > putPin :
_— 1 f
e) i
g1-NOT 2 OutputPin 92.AND v OulputPin ‘ [x OutputPin H g InputPin | 1
1
1
[ahouen | [omouen | [omoupn | [ecnoubn < ouom @ t-Oupuen | |
[5
Ic1: LogicCircuit a:NoT [—>{ ciinouPin | 1
—— : f
Q1NOT 2 OulputPin 92:0R > v outputpin ‘ [« OutputPin H o InputPin | :
1
1
[a: InputPin ‘ ‘ d: InputPin ‘ | b: InputPin | ‘ e: InputPin ‘ﬂ m@%‘ £ OulputPin ||
T 1
[
le1: LogicCircuit 93:NOT
e 1
1
91:NOT 2 OutputPin 92:0R ¥ Dﬂgul?n H OutputPin H g InputPin | 1 f
1
1
[ameuen | [dcoutein ‘ [(empuen | [Te InQulP\ | £ OuputPin :
1
1
1
1
1

Fig. 7. Example application of the mtg1 and mtg2 operators. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

metamodel "http://lc/1.0"

LogicCircuit: diagram {
Gate: node shape=logic
InputPin(src == null): node shape=circle
OutputPin(tar == null): node shape=circle
InputPin(src == null) — Gate: edge
Gate — OutputPin(tar == null): edge
Gate(output— tar) — Gate: edge

OV A WN =

—_

Listing 2: mopeLDraw excerpt.

generate. Line 1 also specifies the output folder to store the mutants and the input folder containing the seed models. Line 2
declares the URI or location of the language meta-model. The rest of the program defines two mutation operators to modify
the type of, i.e., to retype, AND and OR gates. Lines 5-7 define the mutation operator mtg1 to retype an AND gate as an OR
gate. Line 7 shows the wooeL functionality to limit the maximum number of mutants to be generated for each mutation
operator, in this case, 3. Lines 8-11 declare a similar mutation operator to mtg1, in this case to retype an OR gate as an AND
gate, taking the mutants generated by mtg1 as the seed models and requiring the generated mutants to be different from
the previous ones with the directive repeat=no. Note this directive can be beneficial when we have mutation operators of
higher orders.

Fig. 7 shows an example application of the defined mtg1 and mtg2 operators to an LC with its abstract syntax on the left
and its concrete syntax on the right. The model elements affected by the operator execution are labeled as go and g1. The
seed model of the LC is presented in the first row, where the AND gate go shaded in red is selected to be retyped as an OR
gate by the mutation operator mtg1. The resulting mutant is shown in the second row, where the new OR gate g0 is shaded
in green. Now, the mtg2 operator takes action, and the OR gate labeled as g1 and shaded in red in the second row is selected
to be retyped as an AND gate. The third row presents the resulting mutant with the new AND gate g1 created by the mtg2
operator shaded in green.

4.2. Defining the graphical syntax with MODELDRAW

The moperDraw DSL allows configuring the graphical representation of the models. It permits attaching different shapes
to the meta-model classes, and using conditional styles depending on the feature values.

Listing 2 shows the mopelDraw specification for LCs. The first line declares the language meta-model. Next, the listing
declares that gates are represented using their corresponding logic node shape for the three kinds of gates included - AND,
OR and NOT - (line 4), and the InputPins that do not have an src OutputPin, i.e., initial InputPins, and the OutputPins that do not
have a tar InputPin, i.e., final OutputPins, as circles (lines 5-6). Finally, the relations between the initial InputPins and Gates (line
7), Gates and final OutputPins (line 8), and non-final Gates with their immediate connected Gates (line 9) are represented as
edges.

P. Gomez-Abajo, E. Guerra and J. de Lara Science of Computer Programming 230 (2023) 103000

>Gate: %type gate
>Gate(input— src == null): input
>Gate(output— tar == null): output
>InputPin: input pin %name
>OutputPin: output pin %name
>InputPin.src: source
>OutputPin.tar: target

N U W =

Listing 3: mopeLTexT excerpt.

>ObjectRetyped: Change %object to %toObject /
Change %toObject to %object

[N

Listing 4: muTaTexT program.

The wobeL-Epu tool provides two kinds of graphical representations for the diagrams, enabling the language engineer to
select from the preferences page which of them best fits each domain. The first one is more generic and uses the Graphviz?
notation. The second uses the Circuit Macros library, and is specific for electric, electronic and line circuits, as illustrated in
Fig. 6b.

4.3. Representing model elements textually with MODELTEXT

The text options for the exercises multiple emendation choice, match pairs, missing words, and text drag and drop need to
represent the model elements textually.

The mopeiText DSL takes by default either the attribute name of the element, if it exists, or the class name as its textual
description. Additionally, this DSL allows overriding this text representation for the meta-model classes and relations. This
is achieved by providing a text template where the expressions preceded by % are evaluated over the element, and print
their value in the resulting description text.

Listing 3 shows the mopoeText specification for LCs. Line 1 specifies that if an object of type Gate is used in some text,
it will be written as its type — AND, OR, or NOT - followed by “gate”. For example, “AND gate” if the gate is of type AND.
Lines 2-3 define prefixes for the gates descriptions depending on the value of its references input->src and output->tar. Hence,
a gate of type AND that has an OutputPin with no tar as its output reference, is textually represented as “output AND gate”. If
an element is both input and output, both prefixes are conjoined. Line 4 defines that objects of type InputPin should be
represented with the text “input pin” followed by their name, e.g., an InputPin named “a” is textually represented as “input
pin a”. Line 5 defines the analogous description for OutputPin elements. Finally, lines 6-7 declare that the references src of
InputPins and tar of OutputPins are to be referred to as “source” and “target”, respectively.

4.4. Describing the mutations with MUTATEXT

Mutation operators also need to be represented as text. This is required to create the list of options in the multiple
emendation choice, match pairs, missing words, and text drag and drop exercises.

wopeL-Epu has default textual templates to represent each mutation primitive. These templates contain placeholders for
the textual representation of the elements they are applied to. For example, the default template for the retype object prim-
itive is ‘Change <objectClassName> <objectName> to <toObjectClassName> <toObjectName>". muTaTexT allows overriding these default
templates.

Listing 4 shows the mutaText specification for LCs. It defines the text to represent the retype object operator when it is
displayed in a correct answer of an exercise (line 1) and when it is a wrong answer (line 2). In addition, it enables using
predefined variables that contain information about the applied mutation, such as %object, which identifies the mutated
object. These variables return the textual representation of the object or reference specified with mopecText, or a default
textual representation if this specification is not available. For example, the text defined in line 2 of Listing 4 in combination
with the mopecText definition of Listing 3 generates text options such as: “Change input AND gate to input OR gate”.

4.5. Describing the exercises with EDUTEST

The eouTest DSL allows describing and configuring the set of exercises to generate. As explained in Section 2, WobeL-Ebu
currently supports seven kinds of exercises.

This DSL enables the professor to configure the aspects of the exercises: kind (alternative response, multiple diagram choice,
multiple text choice, multiple choice emendation, match pairs, missing words, and text drag and drop), order, statement, and retry
options. From this specification, wooeL-Ebu generates the exercises for the target environment (currently, MoooLe, the web,
and Anoroio and 10s applications).

2 http://www.graphviz.org/.

http://www.graphviz.org/

P. Gomez-Abajo, E. Guerra and J. de Lara Science of Computer Programming 230 (2023) 103000

navigation=free
MultiChoiceEmendation mtg1 {
retry=no, weighted=no, penalty=0.0,
order=options—descending, mode=checkbox
description for ’Ic1.model’ =
"Which changes shall be applied to this logic circuit to correspond to the boolean expression ’ %text(’bool—exp’)
description for ’Ic2.model’ =
"Which changes shall be applied to this logic circuit to correspond to the boolean expression * %text(’bool—exp’)

oAU A WN =

}
10| MatchPairs mtg1, mtg2, mtg3 {
11 retry=no, text="bool—exp’

12| description for ’Ic3.model’ =

13 ’Match the correct option on the right that modifies the below logic circuit to correspond with each of the boolean expressions on the left’
14| description for ’Ic4.model’ =

15 ’Match the correct option on the right that modifies the below logic circuit to correspond with each of the boolean expressions on the left’
16|}

Listing 5: Simple epuTest program.

Match the correct option on the right that modifies the below logic circuit to correspond
Which changes shall be applied to this logic circuit to correspond to the boolean expression f with each of the boolean expressions on the left
= (~av-b)v(~cad)

:zD\\ :_7}//
o o doe

a—{>0— f = ((-an-b)v(-(-cAd)

Select one or more: f = ((~av-b)v(~(~cvd)))

Change OR gate to AND gate. 3

Change input AND gate to input OR gate. 4

a. Change input AND gate to input OR gate
= (av-BIAC(cad choose +)
) b. Change OR gate to AND gate

Choose.

c. Change output AND gate to output OR gate Change output OR gate to output AND gate.

gate to input OR gate.

AND gat

Change input

Change

(b) Match pairs.

(a) Multiple emendation choice.

Fig. 8. Generated exercises for MOODLE.

Listing 5 shows an epuTest specification with some exercises. Line 1 states that the exercises can be solved in any
order. Lines 2-9 define two exercises of kind multiple choice emendation, which allow a single attempt (retry=no) and use the
mutants generated by the mtg1 operator. Lines 5-8 specify the statement of the exercises generated from the seed models
Ic1.model and Ic2.model. The professor may create these models by hand, or as introduced in Section 3, she can generate them
automatically by means of the seed synthesizer provided by the wopeL-Ebu tool.

Lines 10-16 define two exercises of the match pairs kind. The %text(‘bool-exp’) variable is automatically substituted by the
boolean expression that defines the LC of the corresponding model. Note that the professor can use this variable both inline
(lines 6 and 8) or as a parameter of the exercises template (line 11), when it is written as text="bool-exp’. This textual model
representation is generated by the extension point provided by wopeL-Epu to obtain alternative textual representations from
models (see Fig. 3). This approach saves the effort to calculate the boolean expression for each seed model, and is especially
beneficial when using the automated synthesis of a high number of seed models. Moreover, it enables defining additional
alternative representations, e.g., in domains such as automata, we can both obtain the regular expression or the regular
grammar equivalent to the automaton [10].

As an example of the generated exercises, Fig. 8a shows an exercise of the multiple emendation choice kind, where the
application of the mtg1 and mtg2 mutation operators of Listing 1 has produced both the text option(s) to emend the diagram
and the one(s) applicable to the diagram but leading to different LCs. Fig. 8b shows a match pairs exercise. Both exercises
have been generated for the MoopLe platform.

5. Impact and evaluation

The creation of exercises — and their grading - is a recurring task of professors nowadays. A tool like wopeL-Ebu automates
many of the steps of this process. Next we briefly report on a usability evaluation from the point of view of the professor
(Section 5.1) and the students (Section 5.2).

5.1. Usability evaluation: professor role

To evaluate wooeL-Epu from the point of view of the professor, we designed an experiment where, after a brief introduc-
tion, participants had to use wooeL-Ebu to generate exercises in the LC domain. Then, we assessed the tool’s usability using

P. Gomez-Abajo, E. Guerra and J. de Lara Science of Computer Programming 230 (2023) 103000

Score .
OAlternative response

EMissing word
Usefulness

B Emendation choice

Approp. Difficulty

ODiagram choice

B Match pairs

Understandability

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%

Fig. 9. Exercise quality results for DFA.

a System Usability Scale (SUS) questionnaire [5]. The materials and the raw data of the experiment are available at https://
gomezabajo.github.io/Wodel/wodel-edu-eval.html.

The experiment involved 10 participants, all academics, researchers in computer science, and 6 of them professors in-
volved in teaching at the University level. We collected their background using three Likert-scale questions. They declared
good knowledge of Eclipse (4.1 out of 5), being knowledgeable about MoopLe (3.7 out of 5) and being acquainted with LCs
(3.3 out of 5).

wobeL-Epu obtained a SUS score of 74 (out of 100), which, according to [2], can be qualified as Good (interval [71.4-85.5)).
The questionnaire also included two specific questions on WopeL-Ebu, one with a positive tone and one with a negative
tone. Specifically, the participants valued the exercises as very useful to learn the subject (4.7 out of 5), and disagreed that
they could have defined the same exercises by themselves with less effort (2.2 out of 5, where 1 is “completely disagree”).
Finally, we also asked participants to list three positive and negative points about the tool. Regarding the positive aspects, the
participants found wopeL-Ebu easy to use, appreciated its integration with Eclipse and praised the diversity of the generated
exercises. On the contrary, a point for improvement is better feedback to the user when the tool is generating the mutants
and the resources of the exercises.

Overall, we can conclude that participants found wopeL-Epu usable and useful, but we also noted some points for im-
provement. For the experiment, the main threats to validity are the reduced number of participants and the focus on one
domain (LCs). In the future, we plan to replicate the experiment on a larger scale.

5.2. Quality of generated exercises: student role

We applied our approach in real university courses on automata theory of the computer science degree at the Universi-
dad Auténoma de Madrid. For this, we produced exercises on deterministic finite automata (DFA) and pushdown automata.
We evaluated the quality of such exercises with the 68 students enrolled in the course [9]. Fig. 9 summarizes the results
for DFA. We generated 10 exercises overall, of 5 different types (we did not evaluate questions of types text drag and drop or
multiple text choice), using 8 mutation operators.

The first series (Score) shows the results obtained by the students with each considered exercise type. Overall, students
performed reasonably well, between 70% (for match pairs) and 87.12% (for alternative response). These results had a slight
correlation with the final grade of the students in the course (close to 0.5).

After performing the tests, we asked the students to evaluate the usefulness, appropriate difficulty and understandability
of the exercises. Usefulness ranges between 78.8% (for match pairs) and 87.9% (for alternative response). Alternative response
exercises were perceived as the easiest to understand (88.8%), while the most difficult ones were those of type diagram
choice (74.85%). Difficulty was deemed more appropriate for alternative response (90%), while the lowest value was for di-
agram choice (73.3%). Overall, we can conclude that these results are very positive, but we aim at performing subsequent
evaluations in further domains, like LCs.

A MmoobLe installation with the exercises produced is available at http://moodle.wodel.eu (username: demo, password:
Wodel-Edu4Moodle), and a more detailed analysis of results is available at [9].

6. Related work

Some works exist to automate the generation of exercises, but their scope is limited to a specific domain, like au-
tomata [1,15], entity-relationship diagrams [16], cybersecurity [14], English language verb tenses [7], or programming
languages [6]. Instead, wopeL-Epu is domain-independent. However, it is restricted to domains in which solutions to exercises
can be expressed diagrammatically (e.g., an LC), and whose correctness can be contrasted against a textual specification
(e.g., a boolean formula). This means that our approach cannot support open-ended questions or exercise types that provide
substantial freedom to the student.

Generally, approaches to exercise generation and automatic grading are either based on modification (like wopeL-Ebu) or
comparison. Regarding the former, Sadigh et al. [15] propose the use of mutation to generate variants of a seed model (a

https://gomezabajo.github.io/Wodel/wodel-edu-eval.html
https://gomezabajo.github.io/Wodel/wodel-edu-eval.html
http://moodle.wodel.eu

P. Gomez-Abajo, E. Guerra and J. de Lara Science of Computer Programming 230 (2023) 103000

finite automaton), and then SAT solving to create solutions to various problems. The approach is specific to a domain, and
rather a proposal without implementation.

Comparison-based approaches achieve automated grading by means of comparison algorithms [1,3,13,16], which may
be problematic if the exercise admits multiple solutions. This is not a limitation of wopeL-Epu. If an exercise has several
- semantically equivalent - solutions, the student is presented just one of them, and then some mutations of it. The
equivalent detection extension point (cf. Fig. 3) can be used to check that mutations are not equivalent to the original model,
ensuring that mutations are not solutions to the exercise. This situation occurs in our running example, since there are
many equivalent circuits for the same boolean formula.

7. Conclusions and future work

Creating and grading on-line exercises is a recurring task within higher education. wopeL-Ebu automates this process
by using a model-based approach to generate and evaluate diagram-based exercises. It has the advantage of being domain-
independent, supporting automated grading, and enabling a large-scale generation of exercises of seven kinds. The tool offers
advanced functionality for the automated generation of seed models, and to calculate alternative textual representations of
the models. We have used wopeL-Epu in the domains of LCs and automata, showing the versatility and usefulness of this
solution.

In the future, we plan to extend wopeL-Ebu to support gamification, and to generate other types of exercises, e.g., sup-
porting interactivity via direct diagram manipulation. In addition, another target is to use our approach in other domains,
such as software design and electric circuits. Finally, we are considering performing a larger-scale evaluation of wopeL-Ebu
from the point of view of the professor.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

Special gratitude to Andrés Rico-Fernandez and Jaime Velazquez Pazos for their help with the wopei-Epu implementa-
tion, building the code generators for the Anoroio and 10S exercises applications, respectively, and to all participants in the
evaluation. Project partially funded by the Spanish MICINN (PID2021-1222700B-100, TED2021-129381B-C21).

References

[1] R. Alur, L. D’Antoni, S. Gulwani, D. Kini, M. Viswanathan, Automated grading of DFA constructions, in: [JCAI, AAAI Press, 2013, pp. 1976-1982.
[2] A. Bangor, P. Kortum,]. Miller, Determining what individual SUS scores mean: adding an adjective rating scale,]. Usability Stud. 4 (2009) 114-123.
[3] W. Bian, O. Alam,]. Kienzle, Is automated grading of models effective? Assessing automated grading of class diagrams, in: MoDELS, ACM, 2020,
pp. 365-376.
[4] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in Practice, second edition, Synthesis Lectures on Software Engineering, Morgan
& Claypool Publishers, 2017.
[5] J. Brooke, et al., SUS-a quick and dirty usability scale, in: Usability Evaluation in Industry, 1996, p. 189.
[6] M. Christian, B. Trivedi, A comparison of existing tools for evaluation of programming exercises, in: ICTCS, ACM, 2016.
[7] K. Ferreira, A.R. Pereira Jr., Verb tense classification and automatic exercise generation, in: Brazilian Symposium on Multimedia and the Web, ACM,
2018, pp. 105-108.
[8] P. Gbmez-Abajo, E. Guerra, J. de Lara, M.G. Merayo, A tool for domain-independent model mutation, Sci. Comput. Program. 163 (2018) 85-92.
[9] P. Gbmez-Abajo, E. Guerra, J. de Lara, Automated generation and correction of diagram-based exercises for Moodle, Under evaluation, 2023.
[10] P. Gémez-Abajo, A. Rico-Fernandez, E. Guerra, J. de Lara, Wodel-Edu: an MDE solution for the generation and evaluation of diagram-based exercises,
in: ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems (MoDELS 2021), 2021, pp. 600-605.
[11] M. Kuhlmann, M. Gogolla, From UML and OCL to relational logic and back, in: MoDELS, Springer, 2012, pp. 415-431.
[12] S. Kurbakova, Z. Volkova, A. Kurbakov, Virtual learning and educational environment: new opportunities and challenges under the COVID-19 pandemic,
in: ICEMT, ACM, USA, 2020, pp. 167-171.
[13] T. Reischmann, H. Kuchen, A web-based e-assessment tool for design patterns in UML class diagrams, in: SAC, ACM, 2019, pp. 2435-2444,
[14] M. Ribaudo, A. Valenza, Semi-automatic generation of cybersecurity exercises: a preliminary proposal, in: EnSEmble Workshop, ACM, 2019, pp. 16-21.
[15] D. Sadigh, S.A. Seshia, M. Gupta, Automating exercise generation: a step towards meeting the MOOC challenge for embedded systems, in: WESE, ACM,
2013, pp. 2:1-2:8.
[16] P.G. Thomas, N. Smith, K.G. Waugh, Computer assisted assessment of diagrams, SIGCSE Bull. 39 (2007) 68-72.

10

http://refhub.elsevier.com/S0167-6423(23)00082-5/bib4952D678F765BED2C21E0DE146C458F1s1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib649CD9295C840348B52014EE94C050AAs1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib2A735CCEB33EF0FCFDBAEAD3638E7932s1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib2A735CCEB33EF0FCFDBAEAD3638E7932s1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib6B9368736C625CC3C11C23419CE4833As1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib6B9368736C625CC3C11C23419CE4833As1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bibFC49700D697A42FF696AB2123E296674s1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib2904C10D632D1F13F06525CA405772E1s1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib7D6A1A3140B95E9277EC686E20FB5BBEs1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib7D6A1A3140B95E9277EC686E20FB5BBEs1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib481866F8BB416188C59BB6BB793C6E26s1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib6CB5236923C03B38D20A87F00FEF7B8Bs1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib6CB5236923C03B38D20A87F00FEF7B8Bs1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib7DC33953B23388AD93A4DB20E33D26E4s1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bibAEBF9BF247ADDEAC6B938E93310ED1EEs1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bibAEBF9BF247ADDEAC6B938E93310ED1EEs1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib80BBBE244F1883E98F9F6CF5E747A5D6s1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib90C347AED5D729A0E462CABA9F0BBFCBs1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bibD4509E5C97671D524519155C98B29B0Cs1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bibD4509E5C97671D524519155C98B29B0Cs1
http://refhub.elsevier.com/S0167-6423(23)00082-5/bib59AE03E6D4BF7DB121306886DD925211s1

	Wodel-Edu: A tool for the generation and evaluation of diagram-based exercises
	1 Motivation and significance
	2 Software description
	3 Software architecture
	4 Illustrative examples
	4.1 Defining mutations with Wodel
	4.2 Defining the graphical syntax with ModelDraw
	4.3 Representing model elements textually with ModelText
	4.4 Describing the mutations with MutaText
	4.5 Describing the exercises with EduTest

	5 Impact and evaluation
	5.1 Usability evaluation: professor role
	5.2 Quality of generated exercises: student role

	6 Related work
	7 Conclusions and future work
	Declaration of competing interest
	Acknowledgements
	References

