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A B S T R A C T   

Growing interest in biodiversity mapping has spurred the development of species distribution atlases, often 
mainly based on citizen-science projects. Atlas data have been frequently exploited to model species' ecological 
niches and distributions on a species-by-species basis. However, spatial autocorrelation and phylogenetic 
relatedness among species complicate the statistical description of species' niches. Also, the effects of species' 
traits and co-occurrences on species-habitat relationship are commonly disregarded. In this work, we build a 
hierarchical multi-species model based on a major citizen-science project (the third Spanish breeding bird atlas) 
that simultaneously accounts for spatial, phylogenetic and trait-based dependencies. We predict the distributions 
of species niches, species richness and community traits along regional ecological gradients. Climate, habitat 
associations and species' traits all contribute (in this order) to structuring species' distributions. Species richness 
increases towards intermediate climatic conditions and with aquatic habitat cover and decreases with increasing 
forest and woody agricultural land cover. Species were distributed along regional climate gradients in accor-
dance with their global thermal niches. Forest habitats favoured assemblages dominated by generalist, small- 
sized and cold-dwelling species with limited migratory behaviour. Increasing sampling effort augmented the 
model performance. Model performance was weaker for rare species and those with decreasing population sizes, 
likely due to their low niche saturation. Overall, we show that ecological relationships generalize from local to 
large scales and may be eludicated from atlases based on citizen-science mapping efforts.   

1. Introduction 

Ongoing biodiversity loss has bolstered global interest in monitoring 
biodiversity and its ecosystem impacts (Jetz et al., 2019; Pereira et al., 
2013). Diverse monitoring schemes have been implemented and the 
resulting data are habitually used to compile species distributional 
atlases (Keller et al., 2020; Robertson et al., 2010; Sillero et al., 2014). 
Atlas data have subsequently been analyzed with single-species distri-
bution models to, for example, fill sampling gaps, assess population sizes 
and to describe species-environment relationships (e.g.: Estrada and 
Arroyo, 2012; Seoane et al., 2003), including dimensions of species' 
environmental niches (Elith and Leathwick, 2009). 

Atlases do not represent the full distribution of the species, thus 
ecological models built from them must take into account the fact that 
species' distributions are spatially and temporally structured by envi-
ronmental conditions, biotic interactions (e.g.: Kosicki, 2022, 2021), 
intrinsic processes such as dispersal (Estrada et al., 2015;Guisan et al., 
2017; Sillero et al., 2021), and historical contingences (Guisan et al., 
2017; Sillero et al., 2021). Species' ecological traits (such as, for animals, 
average body size, resource and environmental specialization, and 
migratory behaviour) modulate their responses to biotic and abiotic 
drivers and dispersal, and are also expected to affect the predictive 
success of models of species distributions and ecological niches (Estrada 
et al., 2016; Guisan et al., 2017; McPherson and Jetz, 2007). For 
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instance, specialist species occupy small ranges that are more easily 
described by distribution models than those of generalist species, and 
migratory species may be more challenging to model than sedentary 
species due to seasonally shifting habitat preferences (e.g.: Estrada and 
Real, 2021; Moreno-Zarate et al., 2020). Species' prevalences and their 
temporal population trends may also influence model performance. Rare 
species may be difficult to model due to insufficient observations, while 
ubiquitous species may show no clear associations with any predictor 
variable (Thibaud et al., 2014; van Proosdij et al., 2016). Species with 
temporally shifting abundances or ranges are not at environmental 
equilibrium and do not fill their potential distributions, and hence 
models of such species are hampered by commission and omission errors 
(Peterson et al., 2011). If ecological traits tend to be shared by close 
relatives, there may furthermore be phylogenetic structure in species' 
distributions and niche similarity (Wiens and Graham, 2005). Other 
largely unresolved complications in understanding current species dis-
tributions from biodiversity atlases, which are mentioned here for 
completeness but are not the focus of this study, are the role of historical 
events and dispersal in determining current ranges (Barve et al., 2011; 
Holt, 2003), and the scale-dependence of contributing factors (Chave, 
2013). The former has long been recognized as a most relevant source of 
differences between the occupied and invadable niches and geograph-
ical areas (Peterson et al., 2011; Soberón, 2007). Including barriers to 
dispersal as model predictors (e.g.: Aliaga-Samanez et al., 2020) and a 
thorough consideration of the study area background and extent have 
been suggested to address this issue (Guisan et al., 2017; Sillero et al., 
2021). Finally, the grain and extent of observations and the environ-
mental descriptors are known to affect our understanding of ecological 
phenomena (Willis and Whittaker, 2002). Modelling exercises have 
tackled this by using predictors defined at several alternative scales (e. 
g.: Azcárate et al., 2023; Pérez-Granados et al., 2017) or implementing 
hierarchical frameworks (e.g.: Lomba et al., 2010; Mateo et al., 2019). 

Most species atlases are based on citizen-science, that is, on the 
collection of data by non-professionals for scientific purposes (McKinley 
et al., 2017). These have greatly extended basic and applied research 
initiatives, and public support for these, despite their quality limitations 
(Galván et al., 2021). Atlas monitoring programs typically apply simple 
structured sampling to secure large numbers of participants over large 
areas (Tulloch et al., 2013). However, it is unclear whether the resulting 
data are of sufficient quality to describe species' niches (McKinley et al., 
2017). 

Here, we explore the niche determinants and other correlates of 
species' distributions for entire bird assemblages across Spain (one of the 
most biodiverse countries in Europe). To do so, we build a joint species 
distribution model, where a multivariate model is fitted to the species' 
co-occurrences to explore species-specific responses to environmental 
variables and simultaneously account for interactions across taxa. Cor-
relations among species are captured by including a random effect 
(Warton et al., 2015). The model is based on observational data from the 
newest Spanish Breeding Bird Atlas (Molina et al., 2022). Specifically, 
we apply the hierarchical model of species communities framework 
(Ovaskainen et al., 2017), which compares favourably to other model-
ling techniques (Norberg et al., 2019). Thus, our description of niches is 
spatially structured and integrates information on species-environment 
relationships, and the potential effects of species interactions, species' 
traits and phylogenetic relatedness. We also test the hypotheses that 
species' prevalence, average specialization and body size, and popula-
tion stability augment model performance, while migratory behaviour 
has a negatively impact. Overall, our study explores the usefulness of 
atlas data in combination with our modelling methodology for 
describing species' niches and gaining insight into niche determinants, 
species richness and trait-based patterns along ecological gradients. 

2. Materials and methods 

2.1. Study design and sampling protocol 

2.1.1. Bird data 
The Third Spanish Breeding Bird Atlas (Molina et al., 2022), a 

citizen-science project, recorded the occurrences of 450 breeding bird 
species in almost five thousand 10 km × 10 km UTM grid cells across 
Spain from 15 April to 15 June in 2014 to 2018. Most observations were 
by private individuals (amateur ornithologists), but information from 
species-specific monitoring programmes, occasional sightings (gathered 
from electronic platforms) and professional surveys of undersampled 
areas were also incorporated. Around 1400 volunteers selected a survey 
cell and engaged in one of three progressively more involved schemes 
(species lists, timed species-count in 15-min transects, and linear tran-
sects with two distance bands), aiming at a minimum of 10 h of field 
effort, either cross-country or by footpaths trying to survey every habitat 
in the grid cell. The data used in this study encompasses the occurrences 
of 191 terrestrial species within 817 UTM cells in mainland Spain 
(Fig. 1). This subset includes cells with a surface area > 50 km2 that were 
judged to be well sampled by expert coordinators and to provide rela-
tively even spatial coverage. Extremely rare and common species (those 
with prevalences outside the range 3–97%), introduced species without 
self-sustaining populations and pelagic species were excluded from 
analysis (see Table A.1 for the species list and inclusion criteria). 

2.1.2. Explanatory variables 
We selected eleven environmental covariates to represent climatic 

and habitat conditions in each UTM cell (Table B.1). First, 16 climatic 
variables describing temperature, radiation and water availability were 
synthetized into two PCA axes explaining 89% of variation in climate. 
PCA1 (68%) contrasts warm and dry Mediterranean conditions (roughly 
the southern three-quarters of Spain) to the cool, high rainfall Euro-
siberian conditions in the north (Table B.2). PCA2 (21%) describes a 
continentality gradient, on which mean winter temperature and the 
number of days below freezing have large, opposite loadings (Figs. B.1- 
B.2). Habitat variables were the land covers (%) of seven main vegeta-
tion types. These were woodlands dominated by either coniferous 
(pine), broadleaf (deciduous oak, beech and riparian tree species), or 
evergreen (Holm and Cork oak) trees, open agriculture or woody crops, 
shrubland and aquatic environments. Aquatic habitats are generally rare 
but attract specialized species. Terrain ruggedness was captured by 
average slope (in degrees). Average human population density (log in-
habitants / km2) was included to represent anthropogenic impacts on 
birds and density-associated biases in sampling effort. Second order 
terms for the climatic and human population variables were included to 
describe potential curvilinear relationships. The number of sources of 
bird occurrence information per cell was included as an additional in-
dicator of sampling effort. 

2.1.3. Species traits 
We selected five traits with established links to species' niches and to 

the range-shift capacities of species (Estrada et al., 2016). These were 
migratory behaviour (which also relates to the range-shift process), 
body mass, reproductive effort (average annual egg mass relative to 
body size), an index of species' habitat and trophic specialization (after 
Morelli et al., 2019) and a species-specific thermal index (e.g.: Gaüzère 
et al., 2015), which are related to both establishment and proliferation 
(Table 1). 

2.1.4. Statistical analyses 
We used Hierarchical Modelling of Species as our modelling frame-

work (HMSC, Ovaskainen et al., 2017; Ovaskainen and Abrego, 2020). 
HMSC is a joint species distribution model (Warton et al., 2015) that 
includes a hierarchical structure allowing us to ask how species' re-
sponses to environmental covariates depend on their traits and 
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phylogenetic relationships (Abrego et al., 2017). 
The sampling units in our model (ny = 817) were the selected 10 ×

10 km UTM cells described above. The response variables (the matrix ny 
× ns Y of HMSC; see Ovaskainen et al., 2017), were the binary occur-
rences of each of the ns = 191 species. We built a probit regression of 
species occurrences including as fixed effects the 14 environmental 
terms described above and sampling effort per UTM cell (the ny × nc 
matrix X of HMSC; where nc is the number of species-specific regression 

parameters to be estimated). 
We included the five species traits described above (Table 1). Closely 

related species in a phylogeny may share niche characteristics beyond 
those accounted for by the traits considered here and thus have corre-
lated distributions. To assess whether such a phylogenetic signal was 
apparent in our data we included a 50% majority-rule consensus tree 
based on 100 phylogenetic trees downloaded from BirdTree.org (Jetz 
et al., 2012). To account for the spatial structure of the study design, we 

Fig. 1. (a) Study area. Black dots show the set of 10 × 10 km UTM square grids selected for the analyses (n = 817) out of the complete set available that was judged 
to be well sampled according to the expert opinion of regional and national survey coordinators (n = 2638, in gray). The inset shows the location of the study area 
within Europe. We show the following as examples of ecological gradients: (b) forest cover (in %) and (c) scores in the first PCA axis describing variation in climate 
(dry and warm Mediterranean climate vs wet and cool Eurosiberian conditions). (d) Predicted species richness. Richness was estimated by assuming median sampling 
effort in each sampled cell and stacking individual species' probabilities of occurrence (each being the average of 1000 posterior samples). These were interpolated 
with inverse squared distance and categorized in five classes for display (see Fig. C.6 for a colour map with a continuous palette). 

Table 1 
Species' traits used to explore their role in determining ecological niches and the range-shift stage process to which they correspond. The metric and source of each trait 
is also given.  

Trait Range-shift stage Metric Source 

Migratory 
behaviour 

Emigration Sedentary, short- and long-distance migrants According to Storchová and Hořák (2018) amended and extended 
with information in De Juana and Garcia (2015) 

Body mass Movement Log-transformed mean body mass (g) Wilman et al. (2014) 
Reproductive effort Establishment and 

proliferation 
Residuals of a linear regression of log(number of broods per 
year x clutch size per brood x mean weight per egg) on log 
(body mass) 

Data from Storchová and Hořák (2018), extended with data from BWP 
(Cramp and Perrins 1977–1996), and HBW (Del Hoyo et al., 
1992–2013). 

Species' 
specialization 
index 

Establishment and 
proliferation 

Average specialization index across five habitat and trophic 
niche dimensions (range 0 [absolute generalist] to 1 
[maximum specialist]) 

Methods and data in Morelli et al. (2019), amended and extended 
with data from BWP (Cramp and Perrins 1977–1996) and HBW (Del 
Hoyo et al., 1992–2013) 

Species' thermal 
index 

Establishment and 
proliferation 

Mean long-term temperature in its global (breeding) 
distribution 

Distributional data provided by BirdLife International and (2019) 
[version 2019.1] overlaid with WorldClim climatic rasters 
(1970–2000, Fick and Hijmans, 2017)  
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included a spatially explicit random effect, implemented through the 
predictive Gaussian process for big spatial data (Tikhonov et al., 2020a). 
This random effect models spatial variation among sampling units that is 
not directly accounted for by the environmental covariates. 

We fitted the model with the R-package Hmsc (Tikhonov et al., 
2020b) using the default prior distributions (for details, see Ovaskainen 
and Abrego, 2020). We sampled the posterior distribution with four 
Markov Chain Monte Carlo (MCMC) chains, each run for 375,000 iter-
ations, and removed the first 125,000 as burn-in. The chains were 
thinned by 1000 to yield 250 posterior samples per chain and 1000 
posterior samples in total. We assessed MCMC convergence based on the 
potential scale reduction factors (PSRFs) of the model parameters 
(Gelman and Rubin, 1992). We performed 10-fold crossvalidation based 
on models thinned by 100. 

Model performance for each bird species was quantified in terms of 
Tjur's R2 and AUC values (Pearce and Ferrier, 2000; Tjur, 2009). These 
metrics give complementary information on the ability of individual 
species' models to correctly discriminate between species presences and 
absences. Tjur's R2 is asymptotically equivalent to the coefficient of 
determination R2 and AUC summarizes model accuracy. To quantify the 
drivers of bird community structure, we ran variation partitioning 
quantifying the fractions of variance in species occurrences (in terms of 
Tjur's R2) explained by each environmental covariate, by sampling effort 
and by the spatial random effect (see Chapter 5 of Ovaskainen and 
Abrego, 2020). We also quantified species' predicted responses to each 
model covariate (i.e., their predicted β parameters), and calculated the 
proportions of species that showed a positive or negative predicted re-
sponses to each covariate with at least 95% posterior probability. 

We tested for relationships between model performance in terms of 
Tjur's R2 and AUC and species' 1) prevalence (total number of occupied 
cells), 2) population trends over time and 3) traits (log body mass, 
species' specialization, thermal affinity and migratory behaviour). Spe-
cies populations were coded as stable, strongly or moderately declining, 
or strongly or moderately increasing during the last decade (following 
Escandell and Escudero (2019) and monitoring reports from https 
://www.seo.org/resultados-seguimiento-de-aves/). Migratory behav-
iour was coded as sedentary, short-distance or long-distance. Linear 
models for Tjur's R2 and AUC were built with each of these properties in 
turn as predictors (continuous variables were included as second-order 
polynomials). Statistical significance and the relative importance of 
each term was assessed using log-likelihood ratio tests and type-II 
variance decomposition. The species' predicted occurrence probabili-
ties were clustered to identify regions of common profile by partitioning 
around medioids, a robust alternative to k-means partitioning (Kauf-
mann and Rousseeuw, 1990). 

3. Results 

Individual species' models had good to excellent fit according to their 
AUC values (AUC > 0.90 and AUC > 0.80 respectivelly, Araújo et al., 
2005) and their explanatory ability when assessed with Tjur's R2 was 
substantial (> 0.5) for a third of species. Although, performance varied 
widely among species (mean Tjur's R2 0.44 ± s.d. 0.14, range 0.09–0.83; 
AUC 0.92 ± s.d. 0.05, range 0.79–0.99, Fig. C.1). Ten-fold cross-vali-
dation results based on models thinned by 100 for Tjur's R2 ranged from 
0.02 to 0.78 (mean 0.32 ± s.d. 0.14) and for AUC ranged from 0.66 to 
0.99 (mean 0.86 ± s.d. 0.07). Note that the performance of models 
thinned by 1000 and by 100 was highly correlated (ρ = 0.992 and ρ =
0.998 for Tjur's R2 and AUC, respectively). Total environmentally 
explained variance averaged 25% and additional variance captured by 
the spatial random effect averaged 18%. Sampling effort was a positive 
predictor of occurrence in 86% of species. It accounted for just 1% of 
total variance on average, but for >4% of variance in some models, e.g., 
of raptors like the Peregrine Falcon Falco peregrinus and the Red Kite 
Milvus milvus, that are recorded in multiple schemes (Table A.3). 

The two climatic PCs contributed most, on average, to explained 

variance (14%), followed by slope (3%), the three forest types (summed 
mean 2%), and the two agricultural habitat types (summed mean 2%, 
Table A.3). 

The explanatory power of the models was significantly associated 
with species' prevalence and population trends (Table 2). The relation-
ship with prevalence was downward concave for Tjur's R2 and upward 
concave for AUC, with partial R2 = 10% and 39% respectively (Figs. 2 
and Fig. C.1). Average explanatory power was similar among the pop-
ulation trend classes, except that strongly declining species had lower 
values (partial R2 = 9% and 11% respectively). Only the contrast of 
strongly declining to moderately increasing species remained significant 
at α = 0.05 after Tukey adjustment for multiple comparisons. Tjur's R2 

values were also curvilinearly associated with species' specialization 
(partial R2 = 3%, Table 2). Model explanatory power was not related to 
body mass, species' thermal affinity or to migratory behaviour. 

3.1. Species' environmental responses 

Parameter convergence was satisfactory (PSRFs <1.05 for 97% of 
parameters, with a maximum value of 1.2). There was strong posterior 
support for phylogenetically correlated residuals: E[ρ] = 0.73 (Pr[ρ >
0] = 1) indicating that closer relatives tended to have more similar 
environmental niches. 

In relation to climate, there was statistical support for a positive 
response (with >95% posterior probability) to PC1 in 45% of species (e. 
g., the Eurasian Bullfinch Pyrrhula pyrrhula and Yellowhammer Emberiza 
citrinella) and a negative response in 30% of species (such as Sardinian 
Warbler Curruca (Sylvia) melanocephala). The square term was further-
more negative for 45% of species, indicating intermediate optima or 
other curved responses to the gradient. For climatic PC2, the equivalent 
values for the linear term were 22% positive, 19% negative, and 24% 
negative for the square term (Fig. C.2). 

Associations with habitat types were statistically supported in 83% 
of species, and these generally matched our prior understanding of 
regional species-habitat relationships. For example, we found posterior 
support for positive associations with forest types in 19% of the species. 
Among these, the Coal Tit Periparus ater and Crested Tit Lophophanes 
cristatus had the largest positive coefficients for coniferous forests, while 
the Eurasian Jay Garrulus glandarius and Eurasian Nuthatch Sitta euro-
paea had the largest coefficients for broadleaf and evergreen forests 

Table 2 
Deviance table (type II tests) for the effects in linear regressions with Gaussian 
errors of data properties and ecological traits on the explanatory power (a: Tjur's 
R2, b: AUC) of individual species' models. Degrees of freedom (Df), F-test (F), 
partial R2, and p-values per term. P-values after type II tests with 
heteroscedasticity-corrected covariance matrices by hc3 correction (Long and 
Ervin, 2000). Partial R2 based on nested comparisons to full model and the 
improvement on residual sum of squares. Prevalence, log body mass speciali-
zation and thermal affinity were modelled as second-order polynomials.  

Explanatory variable Df F R2 p-value  

a) Tjur's R2     

Prevalence 2 5.96 0.10 0.003 
Population trend 4 3.62 0.09 0.007 
Body mass (log) 2 0.48 0.01 0.622 
Species specialization index 2 3.37 0.03 0.037 
Species thermal index 2 0.94 0.01 0.394 
Migratory behaviour 2 1.90 0.02 0.153 
Residuals 176      

b) AUC     
Prevalence 2 45.79 0.39 <0.001 
Population trend 4 4.12 0.11 0.003 
Body mass (log) 2 1.09 0.01 0.338 
Species specialization index 2 2.59 0.03 0.078 
Species thermal index 2 0.12 0.01 0.886 
Migratory behaviour 2 1.41 0.02 0.248 
Residuals 176     
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(Fig. C.3). 
Positive responses to terrain slope were detected in 24% of species 

and negative responses in 39% of species. Mountain-dwelling species 
such as the Water Pipit Anthus spinoletta and Common Rock Thrush 
Monticola saxatilis were among those with large positive coefficients for 
slope, while steppe birds (e.g., Stone-curlew Burhinus oedicnemus, 
Mediterranean Short-toed Lark Alaudala rufescens) had large negative 
coefficients (Fig. C.4). Finally, there was posterior support for a positive 
effect of an intermediately high human population density for 16% of 
species. 

There were positive residual correlations among most taxa. This and 
the fact that the spatial random effect accounted for 17% of total vari-
ance implies that our environmental covariates did not include all the 
relevant drivers of bird distributions. 

Species richness was predicted to increase towards intermediate 
climatic conditions, extensive aquatic habitats, and with increasing 
human population density, but was predicted to decrease with 
increasing forest and woody agricultural land covers (Fig. C.5). Maps of 
predicted richness broadly coincide with earlier reports (Carrascal and 
Lobo, 2003; Moreno-Rueda and Pizarro, 2009) and highlight as hotspots 
the border between the Mediterranean and Eurosiberian biomes, the 
northwestern Iberian temperate forests, major wetlands (Doñana, La 
Mancha Húmeda) and particular mountain ranges (i.e., the Pyrenees, 
Central and Iberian ranges, but not the southern Sierra Nevada and 
Baetic ranges; Fig. 1, Fig. C.6). 

Three bioregions (‘regions of common profile’) were identified by 

clustering the species' predicted occurrence probabilities. These high-
light distinct bird communities in the Eurosiberian domain, the Medi-
terranean North and mountains in the Mediterranean South, and the 
Mediterranean South and dry interior basins (Fig. C.14). 

3.2. Trait-mediated niche differences 

Species' traits explained 16% of variation in their occurrences and 
were related to several environmental covariates (Fig. 3, Figs. C.6-C.7). 
Many specialized species (with high SSIs) had a strong Mediterranean 
climate affinity and often an intermediate optimum on the con-
tinentality gradient. Species with warm thermal preferences (high STIs) 
were more frequently associated with a Mediterranean climate, and 
negatively associated with coniferous and broadleaf (but not evergreen) 
forests, than species with lower STIs (Fig. 4). 

Larger species were more likely to be negatively associated with 
coniferous and broadleaf forests, shrub cover and sloping terrain 
(roughly indicative of mountainous areas), and positively with human 
density and aquatic environments than smaller species. Short-distance 
migrants and sedentary species were more likely to be associated with 
coniferous and evergreen forests, respectively, than long-distance mi-
grants. Also, short-distance migratory species were more likely to have 
affinities for Eurosiberian and continental climate, and for aquatic en-
vironments. In contrast, resident species were more likely in rugged 
areas, but less likely in populated areas rich in aquatic environments or 
open crops. Species with a higher reproductive effort were more likely to 

Fig. 2. Relationship between the explanatory power of individual species models (Tjur's R2) and species' prevalences across sample sites, recent population trends 
and traits (A: prevalence, B: log-body mass, C: species specialization index, D: thermal affinity, E: population trend, F: migratory behaviour). Solid lines with polygons 
for continuous variables, and open circles with whiskers for factors, represent mean marginal effects and their 95% confidence intervals for each model term (see 
Table 2a). Raw data points are shown in the background, slightly jittered, for reference. Population trend: St: stable, Dm: decreasing moderate, Ds: decreasing strong, 
Im: increasing moderate, Is: increasing strong. Migratory behaviour: sed: sedentary, long: long-distance migration, short: short-distance migration. Relationships with 
log-body mass and migratory behaviour had p > 0.05 (see Table 2). 
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show positive response to continentality, aquatic environments, and 
populated areas, and negative response to sloping terrain, than those 
with a lower reproductive investment (Figs. C.8-C.13). 

4. Discussion 

4.1. Drivers of species' distributions 

Our results demonstrate that citizen-science-based atlases provide 
valuable information on the abiotic (Grinellian) and functional (Elto-
nian) limits to the ecological niches of birds, and on regional biodiver-
sity patterns. Joint modelling allows the ecological niches and regional 
distributions of entire assemblages to be successfully described, while 
simultaneously accounting for their inherent spatial and phylogenetic 
structure, although the task remains computationally challenging. 

Climate is the major driver of species distributions across mainland 
Spain at our study grain and scale, followed by terrain slope and land- 
cover. This is in line with previous modelling results at similar spatial 
grains and extents and with theoretical expectations based on a hierar-
chy of biodiversity drivers (Guisan and Thuiller, 2005; Luoto et al., 
2007; Mateo et al., 2017). Most species showed directional climatic 
responses aligning with the major bioregions of the study area, from 
warm and dry Mediterranean areas to cooler and more humid Euro-
siberian areas. Typical northern- and southern-European species were 
associated with opposite ends of this climatic gradient, matching ex-
pectations based on their continental ranges (Keller et al., 2020). Hence, 
our models captured their climatic responses successfully despite being 

fitted with data from a subset of their entire range (Chevalier et al., 
2022). All but one species showed associations with either climatic or 
habitat descriptors and these associations generally matched expert 
knowledge and the main reports on species' ecological preferences and 
distributions in Spain (e.g.: De Juana and Garcia, 2015; Telleria et al., 
1999). The one revealing exception was the Common Kestrel Falco tin-
nunculus, the model for which had weak explanatory power and failed to 
indicate any environmental associations. This is a generalist species that 
favours fine-grained habitat features that were inadequately summa-
rized by our environmental descriptors. Overall, species' responses to 
climate and habitat translate into three major bioregions with partially 
distinct bird communities (the Eurosiberian domain, Mediterranean 
north and Mediterranean south, Fig. C.14). 

4.2. Model performance 

Model performance in our study was comparable to that of other 
regional modelling efforts based on atlas data (González-Taboada et al., 
2007; Ovaskainen et al., 2016). Our rudimentary proxy for sampling 
effort boosted explanatory performance for most species. Its contribu-
tion was generally small, but was more substantial for some owls, rap-
tors and other relatively common species nesting in particular landscape 
features (cliffs, cavities). This suggests that adding occurrence infor-
mation from multiple sources may counterbalance the imperfect 
detection of some moderately rare species (albeit not of the rarest spe-
cies, which require targetted monitoring). We hence reiterate calls to 
record sampling effort in biodiversity monitoring (Barbosa et al., 2013; 

Fig. 3. Heatmap of estimated beta parameters for covariates describing species niches. Black and gray colours show the parameters that are estimated to be positive 
and negative, respetively, with at least 0.90 posterior probability. The phylogenetic relationship among species is shown to the left. Covariates are: C1, intercept; C2, 
sampling effort; C3 and C4, linear and second-order polynomial terms for first climatic PCA axis (Mediterranean to Eurosiberian climate), respectively; C5 and C6, 
linear and second-order polynomial terms for second climatic PCA axis (continentality), respectively; C7, C8 and C9 percentage cover of coniferous, broadleaf and 
evergreen forest, respectively; C10, percentage cover of aquatic environments; C11 and C12, percentage cover of open and woody crops, respectively; C13, per-
centage cover of shrubland; C14, average slope; C15 and C16, linear and second-order polynomial terms for log-human population density. 
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Calenge et al., 2015). 
Indices of species' rarity and trend, and ecological characteristics 

were moderately to weakly related to model performance (Table 2). 
Species prevalence had a curvilinear relationship with model discrimi-
nation (Fig. 2 and Fig. C.1). In agreement with previous simulation 
studies, Tjur's R2 peaked at intermediate prevalence (Jiménez-Valverde 
et al., 2009; Reese et al., 2005). The interplay of prevalence and sample 
size has complex effects on model performance (van Proosdij et al., 
2016). Large sample sizes are beneficial if they improve geographical 
and environmental coverage (Tessarolo et al., 2014). However, logistic 
regression model predictions are biased towards presences or absences, 
depending on which category is more frequent. Studies indicate that 
model performance tends to decrease with increasing prevalence for a 
given sample size, and that the sample size of the rare category is of 
paramount importance (Jiménez-Valverde et al., 2009; van Proosdij 
et al., 2016). Here, overall, our models attained very good explanatory 
power and explained a substantial proportion of variance in species 
distributions irrespective of their prevalence. 

Recent population trends were weakly related to model perfor-
mance. The distributions of strongly declining species were least reliably 
predicted (Table 2). Temporally changing abundances and ranges 
violate the equilibrium assumption of species' distribution models 
(Peterson et al., 2011). Thus, we expected a lower fit for models of 
species with unstable population trends. The fact that reduced 

explanatory power was only evident for strongly declining species sug-
gests that occurrence data at this coarse spatial resolution may be 
insufficiently sensitive to accurately characterize less pronounced tem-
poral trends. 

Species' ecological specialization was negatively associated with 
model discrimination, albeit weakly: model performance decreased 
substantially with specialization above roughly intermediate values, 
against our prior expectations (Table 2). Earlier studies have found 
positive relationships between habitat specialization and model per-
formance, as it facilitates the ability of modelling algorithms to distin-
guish between suitable and unsuitable habitats (McPherson and Jetz, 
2007; Sillero et al., 2021). The effects of specialization on model per-
formance can, however, easily be confounded with those of prevalence, 
because specialists tend to be rare and to have small range sizes, and are 
hence difficult to model successfully (Jiménez-Valverde et al., 2009). 
However, we tested the marginal effects of specialization and prevalence 
on model performance in a combined model and found that poor model 
performance for specialists was not a simple function of their rarity. In 
general, the available species' traits were not clearly related to model 
performance, perhaps because coarse-grained occurrence and environ-
mental data decouples model performance from species' characteristics. 
However, the distributions of species with intermediate to high preva-
lences, and those with strongly declining populations, tended to be less 
successfully predicted than other taxa. 

Fig. 4. Community-weighted mean (CWM) values for a selection of traits and environmental combinations. We show here as an illustration predictions of CWM of 
species' thermal preferences (STI top row; higher values for warm-dwelling species) and species' specialization (SSI bottom row; higher values for specialists) along 
gradients in climate (PCA1; higher values for Eurosiberian conditions) and percent of forest cover (second to fourth column: coniferous, broadleaf and evergreen). 
Points are coloured as three regions of common profile based on species' occurrence probabilities (see Fig. C.14): light gray for Eurosiberian domain, medium gray for 
Mediterranean North and mountains in the Mediterranean South, black for Mediterranean South and dry interior basins. The support of predicted change from 
gradient minimum to maximum was in all cases >95% except for SSI on coniferous and evegreen forest (0.73 and 0.77 respectively). Predictions are made fixing all 
other covariates except the focal one at their mean value. See Figs. C.8-C.13 for all the trait and environment combinations. 
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4.3. Patterns of species richness 

Environmental trends in species richness matched previous obser-
vations and theoretical expectations linking diversity to broad-scale 
energetic constraints and habitat heterogeneity (Davies et al., 2007; 
Moreno-Rueda and Pizarro, 2009; Fig. C6). Richness was lower at both 
ends of the climatic gradients where temperature, water availability and 
continentality may strongly filter taxa (Moreno-Rueda and Pizarro, 
2008). 

Species richness is further limited in these areas by the interaction of 
habitat type with the constraints set by ambient energy and water 
availability (Seoane et al., 2017). 

In accordance with the well-established positive relationship be-
tween habitat diversity and species richness (Tews et al., 2004) and the 
role of land use in shaping large scale richness patterns (Martins et al., 
2014), larger extents of most habitat types were associated with lower 
bird species richness. Some specialists require large areas of specific 
habitats, but our findings suggest that these do not compensate for the 
absence of many species in more homogeneous landscapes. The notable 
exception was aquatic habitats, for which there was a positive rela-
tionship between extent and species richness over much of the gradient, 
highlighting the importance of wetland and riverine ecosystems for bird 
diversity (González-Taboada et al., 2007; Ramirez et al., 2018). Finally, 
the observed positive relationship of species richness with human den-
sity has been previously interpreted as a productivity effect, whether 
directly boosted by energy derived from human activity, or simply due 
to the coincidence of larger human and bird populations in high-energy 
areas (González-Taboada et al., 2007; Moreno-Rueda and Pizarro, 
2009). However, residual correlations among species in our models were 
overwhelmingly positive, which implies that we failed to identify some 
relevant drivers of bird species distributions and richness. Likely can-
didates are fine-scale habitat structure, vegetation composition and 
human disturbance. 

4.4. Species' traits and environmental variables 

Correlations between species' traits and environmental variables 
provide insights into niche constraints to species distributions. Notably, 
species' thermal indices were correlated with their climatic and habitat 
distributions. Typically, cold-dwelling species avoided warm Mediter-
ranean conditions and favoured pine and broadleaf forests, but not oak 
woodlands. Forest species may exhibit colder climatic niches in Europe 
than species of open habitats due to the broad latitudinal extent of 
postglacial forests and higher agricultural land conversion in southern 
than in northern Europe (Barnagaud et al., 2012). 

Species' habitat and trophic specialization also correlated with 
climate and habitat gradients. Bird assemblages of Mediterranean en-
vironments were predicted to include high proportions of specialists. 
However, past-century forest expansion in Mediterranean areas, 
resulting from agriculatural land abandonment and rural depopulation, 
is likely to have favoured generalists over these specialists, thereby 
promoting the functional homogenization of bird communities (Clavero 
and Brotons, 2010; Fusco et al., 2021). The observed trait-environment 
relationships also suggest contrasting changes in bird assemblages under 
projected climatic warming (i.e., increases in specialist bird species) and 
habitat change (increases in species with cooler thermal preferences 
with increasing forest cover). Two other relationships between habitat 
preferences and species' traits stand out. First, sedentary and short- 
distance migratory strategies were positively associated with non- 
seasonal evergreen forests and woodlands. This supports previous 
findings that trans-Saharan migrants are more frequent in seasonal en-
vironments (Telleria et al., 1999) and observations of large seasonal 
changes in bird assemblages in these areas (Villén-Pérez et al., 2013). 
Second, average body mass correlated negatively with forest cover, 
mainly because small-sized species were more frequent in woodlands, 
exemplifying variation among habitats in the eco-evolutionary 

constraints on body size (Polo and Carrascal, 1999). 

4.5. Conclusions 

Overall, this work illustrates the promise of joint species distribution 
models for capitalizing on the enormous efforts invested in compiling 
biodiversity atlases, and demonstrates that recognized aspects of 
climate- and habitat-driven structure in local bird assemblages gener-
alize to the regional scale. Adding analytical value to citizen-based atlas 
projects promotes our ecological knowledge of entire regional commu-
nities and can also help to raise public awareness to fight the biodiver-
sity crisis. 
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Pérez-Granados, C., López-Iborra, G.M., Seoane, J., 2017. A multi-scale analysis of 
habitat selection in peripheral populations of the endangered Dupont’s Lark 
Chersophilus duponti. Bird Conserv. Int. 27, 398–413. https://doi.org/10.1017/ 
S0959270916000356. 

Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., 
Nakamura, M., Araújo, M.B., 2011. Ecological Niches and Geographic Distributions 
(MPB-49), Ecological Niches and Geographic Distributions (MPB-49). Princeton 
University Press. https://doi.org/10.23943/princeton/9780691136868.001.0001. 

Polo, V., Carrascal, L.M., 1999. Shaping the body mass distribution of Passeriformes: 
habitat use and body mass are evolutionarily and ecologically related. J. Anim. Ecol. 
68, 324–337. https://doi.org/10.1046/j.1365-2656.1999.00282.x. 

Ramirez, F., Rodríguez, C., Seoane, J., Figuerola, J., Bustamante, J., 2018. How will 
climate change affect endangered Mediterranean waterbirds? PLoS One 13, 
e0192702. https://doi.org/10.1371/journal.pone.0192702. 

Reese, G.C., Wilson, K.R., Hoeting, J.A., Flather, C.H., 2005. Factors affecting species 
distribution predictions: a simulation modeling experiment. Ecol. Appl. 15, 554–564. 
https://doi.org/10.1890/03-5374. 

Robertson, M.P., Cumming, G.S., Erasmus, B.F.N., 2010. Getting the most out of atlas 
data. Divers. Distrib. 16, 363–375. https://doi.org/10.1111/j.1472- 
4642.2010.00639.x. 
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