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1,2,3⋆ 1,2A.L. González-Morán , P. Arrabal Haro4 , C. Muñoz-Tuñón , 
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ABSTRACT 

We present an application of unsupervised Machine Learning Clustering to the 
PAU Survey of galaxy spectral energy distribution (SED) within the COSMOS feld. 
The clustering algorithm is implemented and optimized to get the relevant groups in 
the data SEDs. We fnd 12 groups from a total number of 5,234 targets in the survey 
at 0.01 < z < 0.28. Among the groups, 3,545 galaxies (68%) show emission lines in the 
SEDs. These groups also include 1,689 old galaxies with no active star formation. We 
have ftted the SED to every single galaxy in each group with CIGALE. The mass, age 
and specifc star formation rates (sSFR) of the galaxies range from 0.15 < age/Gyr 
< 11; 6 < log (M⋆/M⊙) < 11.26, and −14.67 < log (sSFR/yr −1) < −8. The groups 
are well defned in their properties with galaxies having clear emission lines also having 
lower mass, are younger and have higher sSFR than those with elliptical like patterns. 
The characteristic values of galaxies showing clear emission lines are in agreement with 
the literature for starburst galaxies in COSMOS and GOODS-N felds at low redshift. 
The star-forming main sequence, sSFR vs. stellar mass and UVJ diagram show clearly 
that diferent groups fall into diferent regions with some overlap among groups. Our 
main result is that the joint of low- resolution (R ∼ 50) photometric spectra provided 
by the PAU survey together with the unsupervised classifcation provides an excellent 
way to classify galaxies. Moreover, it helps to fnd and extend the analysis of extreme 
ELGs to lower masses and lower SFRs in the local Universe. 

Key words: galaxies: star formation – photometry – fundamental parameters – 
stellar content – starburst 

1 INTRODUCTION 

⋆ Contact e-mail: anagonzalez@uas.edu.mx The classifcation of galaxies into diferent types is as old as 
the notion of “extragalactic nebulae” (Hubble 1926). Galax-© 2016 The Authors 
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ies in the local Universe display a variety of shapes and 
structural properties. The main classifcation system still in 
use is Jeans-Hubble tuning fork diagram (Jeans 1928; Hub-
ble 1936), with all the refnements introduced by Sandage 
(1961) and de Vaucouleurs (1959), based on the morpholog-
ical properties of galaxies. The basic Hubble classifcation of 
galaxies into “early” and “late” types (and their subtypes) 
has survived because, among other reasons, these types cor-
relate well with other properties of galaxies, such as colours, 
stellar content or neutral hydrogen, among others (Kenni-
cutt 1992; Roberts & Haynes 1994; Buta et al. 1994; Strat-
eva et al. 2001; Sánchez Almeida et al. 2011; Aguerri et al. 
2012; Moutard et al. 2016). This is based mostly on tra-
ditional ways of galaxy classifcation, typically used in the 
past, which are based on broad band colours. 

Classifcations based on spectroscopic surveys provide 
enough spectral resolution to clearly distinguish absorption 
and emission lines as well as other spectral features from 
their spectral continuum, which provide information about 
diferent physical processes. Emission lines inform about the 
ionised interstellar medium (ISM; see Kewley et al. 2019, for 
a review on the topic), while absorption lines inform of the 
properties of the stellar population (Maraston et al. 2009). 
However, spectroscopic observations require large integra-
tion times whereas broad-band photometric surveys, with 
flters with full width at half maximum (FWHM) ∼ 1000 
˚ allow to obtain a high signal-to-noise ratio (SNR) withA 
relatively low integration times but the detection of spec-
tral features other than the continuum, given the low spec-
tral resolution, is limited to detecting the features with the 
highest equivalent widths. 

A good compromise comes from narrow-band photo-
metric surveys (FWHM ∼ 100 ˚ erez-A) such as SHARDS (P´ 
González et al. 2013), COSMOS SC4K (Sobral et al. 2018) or 
PAU (Physics of Accelerated Universe; Eriksen et al. 2020; 
Serrano et al. 2022). The sets of consecutive narrow band 
flters employed in this kind of surveys over a wide wave-
length range allow the observation of specifc spectral fea-
tures besides the spectral continuum, which are essential to 
determine galaxy properties. In this way, spectrophotomet-
ric surveys achieve the required spectral resolution for ro-
bust redshift determination as well as the characterization 
of several spectral signatures, which are difcult to analyze 
in their broad-band counterparts (see, e.g., Cava et al. 2015; 
Hernán-Caballero et al. 2017; Arrabal Haro et al. 2018; So-
bral et al. 2018; Lumbreras-Calle et al. 2019; Barro et al. 
2019). 

PAU surveys a large Northern area of the sky while 
simultaneously achieving a high number density of galaxies 
with sub-percent photometric redshift accuracy. This is pos-
sible thanks to the photometric camera, PAUCam: a unique 
combination of a large feld-of-view, with 40 narrow-band 
(NB) flters (13.5nm FWHM) spanning a wavelength range 
from 450nm to 850nm. PAUCam was commissioned in June 
2015 on the William Herschel Telescope (WHT), atop of the 
Roque de los Muchachos Observatory. This wavelength sam-
pling results in photometric redshifts, with a precision more 
than an order of magnitude more precise that conventional 
broad-band surveys, while being able to cover large areas of 
sky. 

The use of unsupervised Machine Learning (ML) clas-
sifcations over more traditional grouping methods enables 

a fast processing of large surveys and, most importantly, 
the capability of identifying hidden interconnections be-
tween diferent parameters of the sample that classical pre-
defned grouping algorithms could miss. Unsupervised ML 
algorithms have already been used in the past to perform 
automatic classifcations of large samples of galaxies based 
on their spectral energy distributions (D’Abrusco et al. 
2009; Sánchez Almeida et al. 2010; D’Abrusco et al. 2012; 
Sánchez Almeida & Allende Prieto 2013; Baron & Poznan-
ski 2017; Siudek et al. 2018; Turner et al. 2021; Dubois et al. 
2022; Teimoorinia et al. 2022, among others). In particular, 
Sánchez Almeida et al. (2010) used an unsupervised k-means 
cluster analysis algorithm to classify all spectra in the Sloan 
Digital Sky Survey data release 7 (SDSS/DR7). They iden-
tifed as many as 17 diferent classes of galaxies. This would 
have been extremely challenging using classical methods due 
to the huge number of spectra (∼ 174 k) to be processed. 

The goal of this paper is to perform an unsupervised 
ML clustering of the PAU survey within the COSMOS feld, 
focusing on the search for diferences in the shape of nor-
malised rest-frame low-z SEDs and linking them to stellar 
population properties. This work shows the potential of the 
PAU survey data in this regard. 

This paper is organized as follows: §2 describes the data 
sample. In §3 we explain the methodology applied to do an 
unsupervised ML classifcation. In §4 we describe the pro-
cedure applied to perform the SED ftting. In §5 we present 
and discuss the results of possible diferences associated with 
the Stellar Populations (SPs) of the galaxies from each class 
while the conclusions are given in §6. 

2 DATA SAMPLE 

To perform this study we used the full data from the 
PAU spectro-photometry catalogue provided by the PAU 
collaboration. PAU spans a fraction of the COSMOS feld 
(Scoville et al. 2007; Lilly et al. 2009). The data were 
taken with the WHT at the Observatorio del Roque de 
los Muchachos at La Palma, Canary Islands (Spain). 
The images were obtained with the especially conceived 
PAUCam instrument (Padilla et al. 2019). PAUCam is an 
optical camera equipped with 40 narrow band (NB) flters. 
The NB flters have ∼ 130 Å FWHM and are spaced at 
intervals of 100 Å, entirely covering the wavelength range 
from 4500 Å to 8500 Å (Casas et al. 2016), which results 
in an efective resolution of R ∼ 50. The basic properties 
of these 40 consecutive PAU NB band flters are showed 
in table 1, where in column 1 are the names, in column 2 
the efective wavelength, in column 3 the FWHM and, in 
column 4 the 5σ depth. The entire photometric catalogue 
comprises 64,151 galaxies up to iAB < 23. These data have 
been used in photo-z studies published by the PAU collabo-
ration (e.g. Eriksen et al. 2019; Cabayol-Garcia et al. 2020; 
Cabayol et al. 2021). PAU achieves a photometric redshift 
precision in the COSMOS feld of σ68/(1 + z) = 0.0037 
to iAB < 22.5 (Eriksen et al. 2019). These results have 
been further improved with enhancements over the original 
photo-z code (Alarcon et al. 2021), or ML approaches 
(Eriksen et al. 2020; Soo et al. 2021). For this paper we 
use the 30-bands photo-z from Ilbert et al. (2009) with 
σ68/(1 + z) = 0.007 at iAB < 22.5 rather than the PAU 

MNRAS 000, 1–14 (2016) 
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Figure 1. The trend of the BIC parameter with the number of 
groups. The blue squares represent the BIC mean value among 
the models resulting in each number of groups. 
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Figure 2. Evaluation of the BIC parameter gradient in terms 
of the σBIC as a function of the transitions between consecutive 
numbers of components (see eq. 4). This is used to identify up to 
which number of groups an increase in the amount of groups does 
not translate into a substantial BIC improvement. The horizontal 
dashed blue line represents to σBIC = 1. 

photo-z in order to use the entire PAU catalog with 64,151 
targets against the PAU photo-z catalog with 44,318 targets. 

3 MACHINE LEARNING CLASSIFICATION 

With the goal of identifying diferences in the rest-frame 
SED of PAU galaxies, we perform an unsupervised clus-
tering using Gaussian Mixture (GM; Duda & Hart 1973) 

MNRAS 000, 1–14 (2016) 

Classifying low-z SEDs in the PAU survey 

Table 1. Overview of the PAU flters. 

Filter λeff FWHM m5σ 

[Å] [Å] [AB mag] 

NB455 4549.76 134.79 22.81 
NB465 4644.65 134.25 22.81 
NB475 4750.71 135.03 22.81 
NB485 4845.87 135.03 22.81 
NB495 4948.25 130.38 22.80 
NB505 5047.50 132.11 22.80 
NB515 5147.12 132.89 22.79 
NB525 5249.58 132.45 22.78 
NB535 5348.23 133.62 22.77 
NB545 5348.23 133.62 22.79 
NB555 5552.23 133.70 22.79 
NB565 5653.18 133.03 22.46 
NB575 5748.19 133.08 22.71 
NB585 5847.12 132.64 22.74 
NB595 5948.15 132.07 22.59 
NB605 6046.08 133.18 22.59 
NB615 6145.16 133.88 22.73 
NB625 6252.25 132.74 22.79 
NB635 6347.43 132.23 22.23 
NB645 6443.39 133.45 22.13 
NB655 6548.42 135.21 22.79 
NB665 6647.45 133.76 22.80 
NB675 6748.52 134.67 22.78 
NB685 6847.70 134.44 22.75 
NB695 6948.68 137.05 22.65 
NB705 7050.10 134.53 22.77 
NB715 7146.52 133.68 22.80 
NB725 7254.03 135.80 22.69 
NB735 7354.69 136.38 22.60 
NB745 7453.55 133.26 22.65 
NB755 7547.60 118.09 22.52 
NB765 7657.67 118.09 22.42 
NB775 7750.97 135.02 22.55 
NB785 7849.11 132.19 22.42 
NB795 7949.79 134.19 22.54 
NB805 8053.69 135.51 22.51 
NB815 8146.03 133.54 22.49 
NB825 8259.04 132.36 22.28 
NB835 8358.30 132.65 22.30 
NB845 8454.65 131.47 22.39 

Data taken from Mart́ı et al. 2014 and 
https://pausurvey.org/paucam/flters/ 

models. This algorithm presents some advantages over the 
more classical k-means, in which each object can exclusively 
belong to a single group, depending on the distance to the 
center of the said group. On the contrary, the GM method 
assigns probabilities of belonging to diferent groups. In this 
way, objects in inter-group regions can belong to one or 
more groups with similar probabilities, defning transitions 
between those. Finally, the GM method is also more fexible 
at the time of defning the covariance of the groups, while 
that is constrained to be spherical in the k-means models. 
That means that the variance of the diferent components 
defning a group must be the same in the k-means models, 
while the components of the GM models are allowed to have 
diferent variances, which in turn translates into a more ac-
curate defnition of the groups. 

https://pausurvey.org/paucam/filters
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Figure 3. SEDs of the targets in the diferent groups resulting from the best classifcation derived via GM clustering. Note that the 
groups are not equally populated. Also, the continuum level detected in the same wavelength range changes depending on the group. 
Some groups represent the galaxies in a star-forming phase showing clear detection of Hβ, [O III]λ5007Å and Hα emission lines. The 
colour points represent the SEDs means color-coded by diferent groups. 

3.1 Input SED sample 

To automatically search for diferences in the shape of the 
SEDs, which trace physical properties between groups, we 
have to take into account some considerations before per-
forming the ML classifcation. First, we must work with 
rest-frame SEDs. Otherwise, the diferences introduced in 
the observed SEDs by the variety of redshifts present in the 
sample would interfere in the clustering process, making the 
redshift become one of the factors driving our classifcation 
instead of inner physical properties of the galaxies. 

The rest-frame SEDs are then interpolated to a common 
wavelength grid (24 steps in a range of 454.15 < λrest/nm 
< 653.11) to be used as the homogeneous input information 
for our GM model. Once in a common wavelength frame, the 
SEDs are also normalized to their mean fuxes to avoid get-
ting GM classes purely defned by the bolometric luminosity 
of the galaxies. 

The redshift range selected for this work (0.01 < z 
< 0.28) allows us to cover Hα, Hβ and [O III]λ5007Å in 
all the SEDs simultaneously within the spectral coverage of 
our dataset. These lines can be well identifed in the SEDs 

thanks to the good spectral resolution provided by the PAU 
spectrophotometry. Note that the redshift interval employed 
cannot be wider or we would lose homogeneity in the rest-
frame SEDs sampled by the PAU flters at higher z. In total, 
6,061 objects in the redshift range 0.01 < z < 0.28 are de-
tected in the 40 PAU narrow-band flters, from which 801 
were discarded as they are labeled as stars in the PAU’s 
catalogue. 26 other objects were discarded in the common 
wavelength grid creation. This is because in the interpolation 
process, if the points fall outside the common wavelength 
grid, an extrapolation was applied. So, a negative value was 
obtained for the fux corresponding to the frst wavelength 
for these 26 objects. After this, the fnal number of galaxies 
at 0.01 < z < 0.28 in our input sample is 5,234. 

3.2 GM clustering description 

The GM algorithm used in this work models the SEDs as a 
mixture of d-dimensional Gaussian distributions. The corre-
sponding d-variate Gaussian probability density distribution 
can be expressed as: 

MNRAS 000, 1–14 (2016) 
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Figure 4. Mean SEDs for classes in Fig 3 color-coded for a clearer comparison among the diferent groups. 

Σ−1exp[− 1 (X − µ)T (X − µ)]
G(X|µ, Σ) = 2 p , (1) 

2π|Σ|

where µ represents a d-dimensional mean vector and Σ is 
the covariance matrix. 

Considering K diferent groups within the sample, we 
can defne πk as the mixing coefcient of the k-th Gaus-
sian distribution, associated to the probability of observing 
a data point from the k-th Gaussian distribution. The com-
bination of all K distributions results in the total probability 
density function: 

KX 
p(X) = πkG(X|µk, Σk). (2) 

k=1 

The means, covariances and mixing coefcients are esti-
mated maximizing the log-likelihood of p(X) making use of 
the Expectation-Maximization (EM) algorithm (Dempster 
et al. 1977), an iterative way of fnding maximum-likelihood 
solutions for incomplete data or data with hidden variables. 
Given that the EM algorithm employed in the GM models 
can sometimes provide local optima solutions, the cluster-
ing process is executed a hundred times for each number of 
groups desired in the fnal confguration, employing diferent 
initial random seeds each time as well as diferent kinds of 
covariances. 

3.3 Best GM model selection 

The optimal number of groups in the most common unsuper-
vised clustering methods is usually determined by the min-
imum of the Bayesian Information Criterion (BIC, Schwarz 
1978) trend with the number of groups, where BIC is de-
rived from Bayesian statistics and penalises the likelihood 
in terms of q, the number of parameters of the model used 
and m, the number of independent data points available, as: 

BIC = χ2 + q ln(m), (3) 

However, it is possible that the BIC trend with the num-
ber of groups does not converge to a clear minimum but 
instead continuously decreases with the number of groups. 
Fig. 1 shows the just mentioned behavior for the BIC dis-
tribution obtained in our SEDs GM clustering. In this sit-
uation, the best number of groups can be estimated from 
the BIC gradient by identifying the number of groups up to 
which an increase in the amount of groups does not translate 
into a substantial BIC reduction. In fact, for this purpose, 
we evaluated this gradient using a BIC signifcance, σBIC , 
analysis, as: 

BICni −BICni+1σBIC = , (4)
ϵBICi+1 

where BICni and BICni+1 are the mean of the BIC param-
eters given by the combinations in the i-th and (i + 1)-th 
numbers of groups, respectively; and ϵBICi+1 is the standard 
deviation of the BIC parameters in the (i + 1)-th number 
of groups. Notice here that, as mentioned in §3.2, a hun-

MNRAS 000, 1–14 (2016) 
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dred diferent solutions from diferent initial random seeds 
are computed for each number of groups. 

The BIC gradient presented in Fig. 2 shows that most 
classifcations with a number of groups higher than 10 are 
within 1σ, although a well defned decreasing-increasing 
σBIC occurs between the 12- and 13-classes solutions. In-
creasing the amount of groups beyond that does not result 
in a signifcant improvement. Based on this criterion, we se-
lect 12 as the best number of groups for our SED clustering. 

Among all the diferent solutions obtained for 12-groups 
classifcation with our SED sample, we pick that with the 
highest silhouette score (Rousseeuw 1987). This coefcient 
is defned as: 

( 
b(xi)−a(xi) 

max{a(xi),b(xi)}
if |Ck| > 1 

s(xi) = (5) 
0 if |Ck| = 1. 

where a(xi) is the mean distance between a given SED xi 

belonging to the group Ck (with |Ck| members) and the rest 
of SEDs in its same group, while b(xi) is the minimum dis-
tance between said SED and all the other group. In this way, 
the higher the silhouette coefcient, the better defned the 
SED is within its group. This indicator can be extended to 
a mean silhouette score of each individual group or of the 
complete sample, providing information of how diferenti-
ated the groups are in the overall classifcation. Following 
this criterion, the model with the highest silhouette score 
among those resulting in 12 groups is selected as the best 
unsupervised classifcation of the SED sample. 

The SEDs of the targets separated in the diferent 
groups from the selected clustering model are shown in Fig. 
3, as well as the number of elements in each group. In or-
der to visualize a clearer comparison among the diferent 
groups, Fig. 4 shows the mean SEDs for classes in Fig 3. A 
frst glance to the SEDs groups reveals obvious diferences 
in size and physical properties such as continuum pattern or 
presence/absence of emission lines. Four groups (B, C, D, 
and G) do not show emission lines, and some groups (B, C, 
D, E, F, and J) present absorption lines such as Magnesium 
(Mg λ5175Å) and Sodium (Na I λλ5889, 5895 ÅÅ) which 
are characteristic of elliptical galaxies. Four groups (A, E, 
F, and J) have a large scatter with coincidence factor (see 
below) minimal < 43% and rms > 0.06. Five groups (A, H, 
I, K, and L) present a clear detection in emission lines such 
as Hβ, [O III]λ5007Å and Hα. In particular, group K hosts 
a small amount of objects with intense emission lines. 

To further evaluate the robustness of the diferent 
classes in our fducial clustering model, we compute the co-
incidence factor as defned in Sánchez Almeida et al. (2010). 
This parameter is calculated as the fraction of elements in 
each group that remain in the same group under a diferent 
12-groups classifcation (i.e. using a diferent initial random 
seed of the GM model). According to this parameter, those 
groups with higher coincidence factor can be considered as 
more resolved for the clustering algorithm, while groups with 
lower coincidence factor could be more subtle and/or poorly 
defned. 

The coincidence factors for the 12 groups under 100 dif-
ferent GM classifcations (see Fig. 5) suggest that groups A, 
E, J and L are the worst classifed (if we consider the min-
imal value of the coincidence factor), which in turn relates 
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Figure 5. Coincidence factor vs Group. This represents the per-
centage of the number of targets that fall in the same class in 
each group for 100 independent GM runs. The horizontal mark-
ers within each rectangle indicate the median value of the coin-
cidence factor. The quartiles of the coincidence factor are shown 
with rectangles, while the complete error bars show the entire 
range of the coincidence factor. Outliers are determined in terms 
of the interquartile range and are marked by empty circles. 

with these groups presenting the largest inner SEDs scatter 
(see Fig. 3). The statistical properties of the targets within 
each group classifed using ML are shown in table 2. 

4 ANALYSIS OF SED FITTING 

The analysis of stellar populations of the galaxies was made 
by ftting the SED to each single galaxy. However, modeling 
the SED of galaxies is not so easy as galaxies with diferent 
properties can have broadly similar SEDs. This is partic-
ularly the case when the SED wavelength ranges are too 
short as is the case of the SED obtained with PAU data. To 
circumvent this, we extend the wavelength coverage adding 
10 broad bands (BB) flters to the 40 NB SED. Note that, 
these BB flters are not considered in the ML classifcation. 
Fig. 6 shows an example of the complete SED to be used in 
this section to ft the stellar population models. In the fg-
ure, the shape of the flters used for each data point is also 
drawn. The points correspond to the photometric fuxes for 
one target, ID49378, belonging to group K (see Fig. 3). 

The stellar population modeling was performed using 
the Code Investigating GALaxy Emission (CIGALE; Noll 
et al. 2009; Boquien et al. 2019). CIGALE has already been 
successfully applied to PAU NB data before to derive rest-
frame colours and luminosities (Johnston et al. 2021) also 
stellar masses and sSFR (Tortorelli et al. 2021) as well as 
the D4000 spectral break index (Renard et al. 2022). 

CIGALE builds grids of models based on stellar spectra 
from the Star Formation History (SFH) and stellar popula-
tion models. It includes as well models for the nebular emis-
sion (lines and continuum), the attenuation of the stellar and 
nebular emission assuming an attenuation law, dust emis-
sion, and emission of an active nucleus. The resulting grid 
of models is ftted to the photometric data, and the galaxy 
properties are estimated analyzing the posterior likelihood 
distribution, producing a best-ft model, and a Bayesian es-
timate for each parameter. 

In CIGALE it is possible to use a double exponential 
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Figure 6. Observed SED of one target from our sample (ID49378). Pink dots are the photometric fuxes obtained from NB flters and 
the rest dots are the photometric fuxes obtained from BB flters. The transmission profle of flters used to get the fuxes are overplotted. 

SFH consisting of a frst decaying exponential corresponding 
to the long-term star formation responsible for the bulk of 
stellar mass, plus a second exponential that models recent 
starbursts (e.g. Papovich et al. 2001; Pérez-González et al. 
2003; Rodriguez Espinosa et al. 2014; Grazian et al. 2015; 
Lumbreras-Calle et al. 2019; Arrabal Haro et al. 2020). 

For SED modeling, we use Bruzual & Charlot (2003) 
stellar population models with a Salpeter Initial Mass Func-
tion (IMF; Salpeter 1955), as well as a modifed Charlot & 
Fall (2000) attenuation law for dust extinction. The dust 
emission templates are from Dale et al. (2014). Besides, the 
models were constructed by varying the interstellar medium 
(ISM) properties of metallicity (Z), the V-band attenuation 
in the ISM (AvISM ), the ionization parameter (log U) for 
nebular emission, the e-folding time of the main stellar pop-
ulation model (τ0), the age of the main stellar population 
in the galaxy (t0), and the burst parameter (fburst = 0) 
over a wide parameter space as indicated in Table 3. The 
fburst = 0 parameter accounts for the relative mass of the 
young burst with respect to the old population or main pop-
ulation, because it does not necessarily have to be old. When 
fburst = 0, a single population is considered. 

An example of the SEDs ftting for two targets belong-
ing to diferent ML classifed groups is shown in Fig. 7. The 
target on the left, ID 9343 belongs to group G, with no 

strong nebular emission. The panel on the right shows ID 
49378, a target belonging to group K, which has a signifcant 
nebular emission. The purple circles represent the observed 
fuxes and the black line represents the best model spectrum. 
The residuals between the observed and model fuxes are 
shown on the bottom panel. From the physical properties ob-
tained using CIGALE we estimated the sSFR=SFR/M⋆ of 
log(sSFR/yr−1)=−13.94 ±1.90 and −8.86 ±0.24 for ID9343 
and ID 49378, respectively. Table 4 shows the mean physi-
cal properties for the targets belonging to each group. These 
were derived ftting CIGALE to each individual object. As 
examples, for a very well populated class (G group), with no 
strong emission lines observed, we see that their SEDs ft-
ting give that this group is the most massive (log (M⋆/M⊙) 
∼ 10.5), oldest (age ∼ 10 Gyr), and with the lowest sSFR 
(log(sSFR/yr−1) ∼ -12.4) while group K is the least massive 
(log (M⋆/M⊙) ∼ 8), youngest (age ∼ 1 Gyr), and with the 
highest sSFR (log(sSFR/yr−1) ∼ -8.7). These results are in 
agreement with the SED shapes observed in each group (see 
Fig. 3). 
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Figure 7. Example of SED fttings using CIGALE for two targets. The purple circles are the photometric fuxes used in the ft, while 
the black line represents the best model. The dust free and attenuated stellar emission are also represented by the dashed blue line and 
yellow line, respectively. The residuals between the observed and model fuxes are shown on the bottom panels. 

Table 2. Statistical properties of the targets within each group 
classifed using Machine Learning. 

Name N arms Coinc. minb Coinc. medianc 

Group A 630 0.033 34% 54% 

Group B 41 0.065 61% 95% 

Group C 494 0.014 43% 55% 

Group D 476 0.021 46% 56% 

Group E 280 0.084 35% 54% 

Group F 164 0.074 43% 78% 

Group G 678 0.011 46% 49% 

Group H 902 0.025 49% 78% 

Group I 601 0.018 55% 80% 

Group J 288 0.057 37% 67% 

Group K 37 0.166 43% 87% 

Group L 643 0.041 36% 83% 

a The rms is derived taking into account the diference 
between the SED mean and all SED. The standard 
deviation of this distribution is considered the rms. 
b Minimal value of the coincidence factor. This means 
that at least this percent of targets fall in the same 
classifcation when the code is run 100 times. 
c Median value of the coincidence factor. 

5 RESULTS AND DISCUSSION 

We have classifed the galaxies in the COSMOS feld using 
the data in the PAU survey and an unsupervised ML clus-
tering procedure. The algorithm classifed the 5,234 galaxies 

Table 3. Selected parameters values for model to analyze the 
SEDs. 

Parameter Min Max N 

τ1 [Myr]0 50 30000 11 

f2 
burst 0.0 0.2 9 

t3 [Myr]0 10 12000 10 

Z4 [Z⊙] 0.0001 0.05 6 

log U5 -2 -2 1 

Av6 [mag]ISM 0.0 4.0 21 

1 e-folding time of the main stellar population model. 
2 The burst strength, fburst, is defned as the fraction 
of stars formed in the second burst relative to the 
total mass of stars ever formed. 
3 Age of the main stellar population in the galaxy. 
4 Metallicity. 
5 Ionization Parameter. 
6 V-band attenuation in the interstellar medium. 

in the sample into twelve groups. Each group has its partic-
ular SED with diferent slopes and patterns. Four groups (B, 
C, D, and G) do not show emission lines, and some groups 
(B, C, D, E, F, and J) present absorption lines such as Mg 
λ5175Å and Na I λλ5889, 5895 ÅÅ which are characteris-
tic of elliptical galaxies. Four groups (A, E, F, and J) have 
a large scatter with coincidence factor minimal < 43% and 
rms > 0.06. Five groups (A, H, I, K, and L) present a clear 
detection in emission lines such as Hβ, [O III]λ5007Å and 
Hα. The most extreme case in the emission pattern is group 
K, which includes galaxies with intense emission lines. In 
this sense and more specifcally, 68% of the total sample of 
5,245 galaxies in the PAU survey at 0.01 < z < 0.28 show 
emission lines in their spectra. The 12 groups are well pop-
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5+4 
−3 −9.66 ± 0.60 630 

The resulting stellar mass versus redshift for all the tar-
gets in each group is shown in Fig. 9. Here it can be seen 

7+3 
−3 −10.25 ± 0.36 41 

that groups spread across the entire redshift range, with 
targets with the lowest redshift in the low-mass zone and 

1+1 
−0 −11.19 ± 0.75 494 

targets with the highest redshift located in the higher-mass 
region resulting from a luminosity bias. The fgure shows 

1+1 
−2 −10.78 ± 0.77 476 clearly that the separation in groups is not dominated by 

the redshift with targets at almost all redshifts for all of the 

10+10 
−5 −9.12 ± 0.43 280 groups. 

11+6 
−4 −9.02 ± 0.37 164 

5.1 SF main sequence 

0+1 
−0 −12.42 ± 1.42 678 The mass growth of galaxies is mainly through star 

6+4 
−2 −9.48 ± 0.41 902 

formation. The more massive galaxies undergo a larger 
fraction of their star formation at early times whilst less 

4+4 
−2 −9.96 ± 0.49 601 

massive ones are still forming stars at a high rate today. 
Indications of how this process takes place can be revealed 

8+7 
−4 −9.48 ± 0.64 288 

through the star-forming main sequence (SFMS), a tight 
quasi-linear relation between stellar mass, and the star 

35+166 
−30 −8.71 ± 0.43 37 formation rate in log scale (Renzini & Peng 2015; Duarte 

Puertas et al. 2017; Belfore et al. 2018; Sánchez et al. 2019; 

9+6 
−4 −9.10 ± 0.34 643 Shin et al. 2021; Vilella-Rojo et al. 2021). 

ulated although the number of galaxies and scatter among 
galaxies shows a wide range. The details are summarized in 
§3.3, Fig. 3 and table 2. Specially, group K with very intense 
emission lines has the smallest number of members (37). 

Once the ML classifcation was done, we extend the 
wavelength range coverage adding BB photometric data 
to extend the wavelength coverage and characterize the 
classes properties using CIGALE SED fttings. From the 
analysis of physical properties obtained using CIGALE, we 
found that the range of age, mass, and sSFR of the galaxies 
are 0.15 < age/Gyr < 11, 6 < log (M⋆/M⊙) < 11.26 and 
−14.67 < log (sSFR/yr −1) < −8, respectively. 

The stellar mass, age and sSFR are summarized 
in §4 and table 4. Specifcally, group G is the most 
massive, oldest, and with the lowest sSFR while group 
K is the least massive, youngest, and with the highest sSFR. 

We note that the groups that show emission lines have 
mean values of age = 3.02 ± 2.16 Gyr, log (M⋆/M⊙)= 
8.72 ± 0.75 and, log (sSFR/yr −1)= −9.46 ± 0.57, respec-
tively. While the groups that do not show emission lines in 
the SEDs have mean values of age = 8.14 ± 1.94 Gyr, log 
(M⋆/M⊙)= 10.08 ± 0.54 and, log (sSFR/yr −1)= −11.36 ±
1.18. The distributions are shown in Fig. 8. 

Our results for groups that show emission lines are in 
agreement inside 1σ with those of log (M⋆/M⊙) ∼ 8.90 and 
log (sSFR/yr −1)= −9.52 given by Hinojosa-Goñi et al. 
(2016) for starburst galaxies in the COSMOS feld at 0 < z 
< 0.5 as well as with those of log (M⋆/M⊙) ∼ 8.50 given by 
Lumbreras-Calle et al. (2019) for star-forming galaxies at z 
< 0.36 in the GOODS-N from the SHARDS survey. 

The SFMS is presented in Fig. 10. From here, we can 
see that diferent groups fall into diferent regions, with 
some overlap. As discussed in §3, the GM classifcation 
allows overlapping between groups. 
To clarify if the behavior observed in the SFMS is domi-
nated by populations with diferent stellar mass, in Fig. 11 
we plot the sSFR vs. stellar mass. The behavior is similar 
to that observed in the SFMS. For example, groups G and 
C, gray and pink points, have similar stellar mass (∼1010.5 

M⊙) but diferent ages (9.5 and 8.5 Gyr, respectively). They 
fall in coincident regions with a slight ofset between them. 
However, group G (which contains the oldest quiescent 
galaxies and with the lowest sSFR, see table 4) is almost 
totally outside of the SFMS. Also, group K, which has 
intense emission lines, (see Fig. 3) falls in the region with 
the highest sSFR. 

The fraction of PAU galaxies in the group K (0.05%) 
is similar to the fraction of HII galaxies, HIIG, (0.02%) 
from Chávez et al. 2014 selected from the SDSS DR7 spec-
troscopic catalogue (Abazajian et al. 2009) for having the 
strongest emission lines relative to the continuum at 0.01 < 
z < 0.2. HIIG are compact low mass systems (M⋆ < 109 

M⊙) with the luminosity almost completely dominated by a 
young (age < 5 Myr) massive burst of star formation (Ter-
levich & Melnick 1981; Melnick et al. 1988; Bordalo & Telles 
2011; Chávez et al. 2014). By selection, they are the pop-
ulation of extragalactic systems with the strongest narrow 
emission lines (σ < 90 km/s). HIIG fall well above the over-
all average for star-forming galaxies of log(sSFR) ∼ −10 
yr −1 (Guo et al. 2015) and their sSFR approach to the 
largest starburst galaxies such as ULIRGS with log(sSFR) 
∼ −8 yr −1 (Doran et al. 2013). However, if we consider 
the sSFR of the present burst alone, the current starbursts 

MNRAS 000, 1–14 (2016) 

Classifying low-z SEDs in the PAU survey 9 

Table 4. Physical properties of the targets within each group 
classifed using Machine Learning. 

Name Age log M⋆ fa log sSFRburst 
−1[Gyr] M⊙ [10−4] yr

Group A 3.4+2.9 8.78+0.79 
−2.0 −0.34 

N 

In summary, the groups are well defned in their 
properties with galaxies with clear emission lines being in 
the lower mass, younger and higher sSFR regime than those 
with quiescent-like patterns. 

Group B 7.5+1.5 
−1.5 10.61+0.29 

−0.29 

Group C 8.5+0.8 
−3.0 10.20+0.68 

−0.23 

Group D 8.3+1.0 
−3.2 9.70+0.82 

−0.29 

Group E 1.5+1.9 
−0.7 8.20+0.79 

−0.37 

Group F 1.4+1.6 
−0.7 8.20+0.60 

−0.34 

Group G 9.5+0.4 
−0.7 10.50+0.45 

−0.26 

Group H 2.6+2.7 
−1.8 9.06+0.53 

−0.29 

Group I 4.2+2.1 
−2.6 9.62+0.65 

−0.30 

Group J 3.4+3.3 
−1.8 8.20+1.35 

−0.39 

Group K 0.9+3.2 
−0.7 8.09+1.52 

−0.39 

Group L 1.3+1.9 
−0.8 8.51+0.55 

−0.33 
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Figure 8. Stellar mass, age and sSFR distributions for the galaxies with emission lines (68%) in the SEDs represented in blue colour 
and, for galaxies without emission lines (32%) in the SEDs represented in red. 

in HIIG are producing new stars at a much higher rate of 
log(sSFR) ∼ −7 yr −1 (Telles & Melnick 2018). In fact, the 
most metal-poor compact starbursts at all redshifts tend to 

¨ appear as HIIG (Kunth & Ostlin 2000; Gil de Paz et al. 
2003; Amoŕın et al. 2012; Izotov et al. 2012; Kehrig et al. 
2016; Amoŕın et al. 2017; Kehrig et al. 2018; Woford et al. 
2021) besides they can be observed even at large redshifts 
becoming interesting standard candles (Melnick et al. 2000; 
Plionis et al. 2011; Terlevich et al. 2015; Chávez et al. 2016; 
Yennapureddy & Melia 2017; Ruan et al. 2019; González-
Morán et al. 2019; Wu et al. 2020; González-Morán et al. 
2021; Tsiapi et al. 2021; Mehrabi et al. 2022). Therefore, it 
could be interesting to expand the analysis of group K by 
doing a spectroscopic follow-up in order to detect if these 
targets are HIIG. Although the applied methodology is dif-
ferent, ML-classifed photometric methodology could be a 
fast way to choose HIIG candidates for incoming large sur-
veys. 

The results mentioned above pose an extra confrma-
tion on the physical meaning of the classifcation using ML. 
Diferent groups follow patterns associated to diferent stel-
lar populations and the classifcation using ML successfully 
separates an extreme population (G group) from the general 
SFMS trend. 

5.2 The colour of the galaxies 

The dependence of galaxy colour on morphological type is 
well established since the pioneer works by de Vaucouleurs 
(1961) and colour-colour diagrams have also been used 
to separate star-forming from quiescent galaxies (see e.g., 
Madau et al. 1996; Fioc & Rocca-Volmerange 1999; Fer-
reras et al. 1999). Among the possible diagrams, the most 
popular is the UVJ diagram, i.e., rest-frame U−V versus 
V−J (Labbé et al. 2005; Wuyts et al. 2007; Williams et al. 
2009). The efectiveness of the UVJ diagram comes from the 
fact that the combination of these two colors can break the 
degeneracy between age and dust reddening. The UVJ dia-
gram has been used for more than merely grouping galaxies 
into two categories. For example, UVJ colours have been 
used to infer the star formation rate and dust attenuation 
for star-forming systems (Fang et al. 2018), and the stellar 
ages for quiescent systems (Belli et al. 2019). 
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Figure 9. Stellar mass versus redshift for all the targets in each 
one of the 12 groups obtained by the unsupervised ML algorithm. 
The symbol colour represents the name of the groups. Note that 
the targets belonging to each group are spread across the entire 
redshift range. 

We derive U−V and V−J colours from the rest-frame 
fuxes, with the potential advantage that these come from 
directly observed photometry (e.g. Taylor et al. 2009). Fig. 
12 presents the mean of the rest-frame colour-colour and 
colour-mass relations of the PAU galaxies, classifed into 12 
classes with the unsupervised ML algorithm. On the left 
panels are the UVJ diagrams. The separation of the groups 
found in Fig 12 is clear. Galaxies in each ML classifed group 
have similar properties and span only a small region of the 
available parameter space. 

Comparing our results with those predicted using the 
age−colour relation given by Belli et al. (2019), these are 
in agreement inside 1σ. This is a relation between the stel-
lar age and the rest-frame U−V and V−J colours, which 
can be used to estimate the age of quiescent galaxies, given 
their colour. For example, for group G, we obtained using 
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Figure 10. SFMS for all the targets in each one of the 12 groups 
obtained by the unsupervised ML algorithm. The symbol colour 
represents the same as in Fig. 9. The dashed line corresponds to 
the SFMS for star-forming galaxies from Whitaker et al. (2012) at 
z=0. Diferent groups fall into diferent regions with some overlap 
between groups. The points separated from the main trend are 
the oldest quiescent galaxies. 
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Figure 11. sSFR vs. stellar mass for all the targets in each one of 
the 12 groups obtained by the unsupervised ML algorithm. The 
symbol colour represents the same as in Fig. 9. 

CIGALE an age of 9.5 + 0.4 − 0.7 Gyr and using the men-
tioned age−colour relation an age of 9.77 Gyr. 

Following Lumbreras-Calle et al. (2019), we applied the 
V−J colour threshold criterion to separate Emission Line 
Galaxies (ELGs) from non-ELGs in blue galaxy samples 
(V−J < 0.35). We found that 20% (groups K and L) of 
the galaxies with emission lines in the SEDs (68% of the 
total sample used in this work) fall in the ELGs region for 
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blue galaxies on the UVJ diagram. Besides, from the analysis 
of the main integrated properties of their stellar populations 
via SED ftting, these galaxies have the lowest stellar masses 
and highest sSFR. This suggests that the new V−J colour 
criterion to separate ELGs from non-ELGs in blue galaxies 
by Lumbreras-Calle et al. (2019) could be used as well to 
select the extreme ELGs in blue galaxy samples. 

To highlight the excellent spectral coverage of the PAU 
narrow bands, we compare our results with previous applica-
tions of unsupervised clustering over spectroscopic surveys, 
in particular, Siudek et al. (2018) also used an unsupervised 
machine-learning algorithm to classify the VIMOS Public 
Extragalactic Redshift Survey (VIPERS) into 12 groups. 
The number of groups, colours, and the SFMS trend show 
a similar classifcation to ours, although the redshift range 
is diferent (0.4 < z < 1.3) so the results can not be com-
pared directly to ours (0.01 < z < 0.28). However, interest-
ingly they found 3 classes of red passive galaxies with similar 
properties as us in the B, C, and G groups (they reported log 
(M⋆/M⊙) ∼ 10.8 and log (sSFR/yr−1) ∼ −12, while our val-
ues are log (M⋆/M⊙) ∼ 10.5 and log (sSFR/yr−1) ∼ −11.5). 
Besides, if we compare the SFMS, the trend is very similar, 
but the SFR is diferent perhaps due to a redshift evolution. 
These same photometric ML classifed groups (B, C, and G) 
show a log (SFR/M⊙ yr −1) ∼ −3, while the spectroscopic 
ML classifed classes have log (SFR/M⊙ yr −1) ∼ −1. Re-
garding the colours in the UVJ diagram, both trends are 
similar, but the Siudek et al. (2018) U−V colors are bluer 
than ours. Besides, in general, galaxies reported by them are 
more massive than ours. At the same time, group K from our 
classifcation falls in a region in the V−J colour that does 
not appear in the Siudek et al. (2018) classifcation. It is 
important to highlight that this group has a log (M⋆/M⊙) 
∼ 8, which is an order of magnitude lower than the class 
with the lowest stellar mass reported in Siudek et al. (2018) 
with a log (M⋆/M⊙) ∼ 9, however, both groups have a log 
(sSFR/yr−1) ∼ 8.6. Although our photometric ML classi-
fed work has some similarities with the spectroscopic ML 
classifed work from Siudek et al. (2018), we emphasize that 
the Siudek et al. (2018) sample belongs to a higher redshift 
than ours, so both results can not be compared directly. 

6 CONCLUSIONS. 

We have used an unsupervised ML classifcation associated 
with the shape of 5,234 low-redshift SEDs from the PAU 
survey in the COSMOS feld. From the analysis of the 
SEDs obtained from these data, we have found the following: 

1.- The GM clustering algorithm is implemented and 
optimized to get relevant classes. We have chosen 12 as the 
optimal number of classes based on the analysis of the BIC 
parameter gradient and the silhouette score. 

2.- The number of targets belonging to each ML 
classifed group is diferent, so the groups are not equally 
populated. Also, the continuum pattern of the diferent 
groups is diferent; four groups (B, C, D, and G) do not 
show emission lines, and some groups (B, C, D, E, F, and 
J) present absorption lines such as Mg λ5175Å and Na I 
λλ5889, 5895 ÅA.˚ Four groups (A, E, F, and J) have a 



12 Ana Luisa González-Morán et al. 
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Figure 12. Colour-colour and stellar mass-colour diagrams for our sample. The symbol colour represents the class obtained by the 
unsupervised ML algorithm. On the left panels are the UVJ diagrams whose limits for the quiescent regions (top-left region) are taken 
from Whitaker et al. (2011) for z < 0.5. On the right panels are the rest-frame U−R versus stellar mass relation. The error bars correspond 
to the frst and the third quartile of the distribution of the parameters, while the ellipses are centered in the mean and the axes correspond 
to the standard deviation of the distribution of the parameters. On the top panels, we have excluded the classes E, F, and J with large 
scatter in the SEDs (see Fig. 3) and one of the worst classifed by the robustness analysis. 

large scatter with coincidence factor minimal < 43% and 
rms > 0.06. Five groups (A, H, I, K, and L) present a 
clear detection in emission lines such as Hβ, [O III]λ5007Å 
and Hα emission lines. In particular, group K shows 
intense emission lines in their SEDs. In summary, 68% of 
the total sample of 5,245 galaxies in the PAU survey at 
0.01 < z < 0.28 are in a star-forming phase. The groups are 
not biased by redshift with targets in all the redshifts values. 

3.- The diferences in the galaxy population among the 

diferent classes have been studied. The stellar population 
and other physical properties have been explored using the 
CIGALE code. The mass, age and sSFR of the galaxies 
range from 0.15 < age/Gyr < 11, 6 < log (M⋆/M⊙) 
< 11.26 and −14.67 < log (sSFR/yr−1) < −8. The 
ML classifed groups are well-defned in their properties. 
Galaxies showing clear emission lines typically fall in the 
lower mass, younger and higher sSFR regime (mean values 
of log (M⋆/M⊙) = 8.72 ± 0.75, 3.02 ± 2.16 Gyr, and, log 
(sSFR/yr−1) = −9.46 ± 0.57) than galaxies in the groups 
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that do not show emission lines in their SEDs (mean values 
of log (M⋆/M⊙) = 10.08 ± 0.54, 8.14 ± 1.94 Gyr, and, 
log (sSFR/yr−1) = −11.36 ± 1.18). The SFMS and sSFR 
vs. stellar mass plots show that diferent groups fall into 
diferent regions with some overlap among groups. 

4.- We applied the new V−J colour criterion to separate 
ELGs from non-ELGs in blue galaxy samples (V−J < 0.35), 
as suggested in Lumbreras-Calle et al. (2019). We found 
that 20% of the galaxies with emission lines in the SEDs fall 
in the ELGs region for blue galaxies on the UVJ diagram. 
Besides, these galaxies have the lowest stellar masses and 
highest sSFR of the entire sample suggesting that the V−J 
colour criterion applied could be used to select the extreme 
ELGs. 

5- The fraction of galaxies at low- z in the PAU Survey 
with emission lines is 68% and their characteristic values of 
mass, age, and sSFR are consistent with those reported by 
other medium-band works in the COSMOS (Hinojosa-Goñi 
et al. 2016) and GOODS-N (Lumbreras-Calle et al. 2019) 
felds. 

6.- We have demonstrated that the joint of low- reso-
lution (R ∼ 50) photometric spectra provided by the PAU 
survey and unsupervised clustering represents an excellent 
opportunity to classify galaxies. Moreover, it helps to fnd 
and extend the analysis of extreme ELGs to lower masses 
and lower SFRs in the local Universe. 
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Chávez R., Terlevich R., Terlevich E., Bresolin F., Melnick J., 
Plionis M., Basilakos S., 2014, MNRAS, 442, 3565 
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