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Abstract. Donat-Vargas C, Guallar-Castillon P, Nys-
tröm J, Larsson SC, Kippler M, Vahter M, et al.
Urinary phosphate is associated with cardiovascu-
lar disease incidence. J Intern Med. 2023;294:358–
369.

Introduction. Elevated phosphate (P) in urine may
reflect a high intake of inorganic P salts from food
additives. Elevated P in plasma is linked to vascu-
lar dysfunction and calcification.

Objective. To explore associations between P in urine
as well as in plasma and questionnaire-estimated
P intake, and incidence of cardiovascular disease
(CVD).

Methods. We used the Swedish Mammography
Cohort-Clinical, a population-based cohort study.
At baseline (2004–2009), P was measured in urine
and plasma in 1625 women. Dietary P was esti-
mated via a food-frequency questionnaire. Incident
CVD was ascertained via register-linkage. Associ-
ations were assessed using Cox proportional haz-
ards regression.

Results. After a median follow-up of 9.4 years,
164 composite CVD cases occurred (63 myocar-

dial infarctions [MIs] and 101 strokes). Median
P (percentiles 5–95) in urine and plasma were
2.4 (1.40–3.79) mmol/mmol creatinine and 1.13
(0.92–1.36) mmol/L, respectively, whereas dietary
P intake was 1510 (1148–1918) mg/day. No corre-
lations were observed between urinary and plasma
P (r = −0.07) or dietary P (r = 0.10). Urinary P
was associated with composite CVD and MI. The
hazard ratio of CVD comparing extreme tertiles
was 1.57 (95% confidence interval 1.05, 2.35; P
trend 0.037)—independently of sodium excretion,
the estimated glomerular filtration rate, both P and
calcium in plasma, and diuretic use. Association
with CVD for plasma P was 1.41 (0.96, 2.07; P
trend 0.077).

Conclusion. Higher level of urinary P, likely reflecting
a high consumption of highly processed foods, was
linked to CVD. Further investigation is needed to
evaluate the potential cardiovascular toxicity asso-
ciated with excessive intake of P beyond nutritional
requirements.
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Introduction

The homeostasis of phosphorous—occurring in the
body as the pentavalent form phosphate (P) with
many structural and functional roles—is regulated
through a complex interaction among gastroin-
testinal absorption, bone remodeling, and urinary
excretion [1]. Dietary P intake promotes the pro-

duction of hormones increasing its renal clearance
[2–4], reverting a high postprandial blood P con-
centration to fasting state. During normal condi-
tions, urinary P excretion reflects P absorbed in
the digestive tract [5, 6]. Excess dietary P intake
may disrupt the P-responsive hormones (fibrob-
last growth factor-23, parathyroid hormone, and
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calcitriol) [7], contributing to vascular calcifica-
tion [8–10]. Elevated plasma P concentrations are
linked to increased oxidative stress of the endothe-
lial cells, vascular dysfunction [11], and artery cal-
cification [12–14].

The main dietary sources of phosphorus in its nat-
ural form (organic P) are protein-rich foods, such
as dairy products, meat, fish, and legumes. In con-
trast, the inorganic P salts are incorporated into
foods as additives, especially prevalent in ultra-
processed food (UPF) [15]. UPFs [16], whose con-
sumption has increased substantially over the last
decades [17, 18], are foods that undergo intense
industrial processing and may contain substances
usually not found in domestic kitchens. Uninten-
tional contamination during processing and pack-
aging (e.g., phosphorous flame retardants) has also
been observed in highly processed foods [19].

Unlike organic P, added inorganic P has high
bioavailability and is almost entirely absorbed in
the digestive tract [20–24]. An accurate quantifica-
tion of inorganic P intake is currently not possible
due to a lack of a quantitative labeling system of
additives on packaged food. Roughly estimated, P
from additives may contribute up to 20%–30% of
the total dietary P intake [15] but could be sub-
stantially higher [25]. UPF is likely the main source
of the so-called hidden P that may not be properly
quantified in food composition tables and popula-
tion dietary survey studies [20, 26–28].

Based on this background, we hypothesized that
elevated levels of P in urine, mostly reflecting a high
consumption of inorganic P from additives com-
mon in UPF, might be associated with an increased
incidence of cardiovascular disease (CVD). For this
purpose, we assessed P in urine, plasma, and diet
in a population-based cohort of women.

Material and methods

Study population

The Swedish Mammography Cohort (SMC) is
a large population-based longitudinal cohort
established in 1987–1990 and part of the
national research infrastructure SIMPLER
(www.simpler4health.se). All women born between
1914 and 1948 residing in two counties in central
Sweden (n = 90,303) were invited to complete
a self-administrated questionnaire concerning
diet (response rate 74%). In 1997, a more detailed
questionnaire was sent to all participants who were

still alive and living in the study area (response
rate 70%). More details on the study design have
been published elsewhere [29].

The present study was conducted in a clinical
sub-cohort, the Swedish Mammography Cohort-
Clinical (SMC-C). It was established in 2003–
2009 by inviting women from the cohort <85-
year old and living in Uppsala to participate in
a health examination, comprising the baseline of
the present study. Of them, 5022 (response rate
61%) completed a diet and lifestyle questionnaire,
and measurements of height, weight, and a fasting
blood sample were collected. Starting from 2004,
4480 of them also provided urine samples for ele-
ment analyses. Element analysis in urine was per-
formed in two analytical assessment rounds. The
first, which included urine from women <70 years
of age, did not include P because it was not yet a
research focus. Thus, urinary P was measured only
in the second round, which included urine from all
SMC-C women≥70-year old and all those who were
younger and had performed their urine sampling
after December 2008 (in total n= 1782). Thus, after
excluding those with prevalent CVD (n = 157), our
final study population included 1625 women with
urinary P at baseline (of whom 21% <70 years;
Fig. 1). Written informed consent was obtained
from all study participants, and the study was
approved by the Regional Ethical Review Board in
Stockholm, Sweden.

P biomarkers

In 2004, urine sampling for element analyses was
initiated, and the women received posted instruc-
tions and containers for the collection of first
voided morning urine, to provide at the day of
examination (n = 4480). Baseline total urinary
P was assessed in first voided morning urine
and measured in acid-diluted samples (1:10 in
1% nitric acid, 65% w/w, Scharlab S.L., Sent-
menat, Spain), using ICP-MS (Agilent Technolo-
gies 7700×, Tokyo, Japan) with an Octopole Reac-
tion System operated in helium mode at the Insti-
tute of Environmental Medicine, Karolinska Insti-
tutet. The limit of detection (calculated as three
times the standard deviation of the blank val-
ues) for was 4.3 μg/L (0.0001 mmol/L). As quality
control, two commercial reference materials were
included in each run, and there was good agree-
ment between recommended and obtained phos-
phorous values (Seronorm Trace Elements Urine
1011644: approximate value: 559 mg/L, obtained
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Fig. 1 Flow chart of the study population sample from the Swedish Mammography Cohort-Clinical. Includes myocardial
infarction and stroke (ischemic stroke and unspecified stroke). CVD, cardiovascular disease.

value 504 ± 37 mg/L [n = 20]; Seronorm Trace
Elements Urine 1011645: approximate value:
543 mg/L, obtained value 503 ± 40 mg/L [n = 19]).
Urine P concentrations were adjusted for the
variation in dilution by dividing them by the
urine creatinine concentration, measured at Skåne
University Hospital using an enzymatic method
(Roche Diagnostics, Germany), and expressed in
mmol P/mmol creatinine.

Baseline plasma P was measured in fasting sam-
ples by use of routine clinical method and an Archi-
tect C16000 (Abbott Laboratories, Abbott Park, IL,
USA) [30] at the Department of Clinical Chemistry
and Pharmacology (Uppsala University Hospital).
The laboratory is accredited according to SS-EN-
ISO/IEC 15189 and participates in external qual-
ity assessment schemes from Equalis AB (Uppsala,
Sweden).

Dietary P intake and covariates

Estimated dietary intake of P was derived from the
semiquantitative 124-item food-frequency ques-
tionnaire completed by the participants at baseline

(2004–2009), obtained by multiplying the individ-
ual intake frequency and portion size with the con-
tent in specific foods, compiled using the Swedish
Food Agency’s database [31]. Dietary P intake was
adjusted for total energy intake using the residual
method [32].

Self-reported information on education, family his-
tory of myocardial infarction (MI), smoking, physi-
cal activity, diet, and alcohol consumption, use of
vitamin D supplements and medication use were
obtained from the questionnaires completed at
baseline (2004–2009). From the Swedish National
Prescribed Drug Register, we obtained complete
information on diuretics use (the Anatomical Ther-
apeutic Chemical classification system, ATC-code
C03). Since this register was initiated in mid-2005,
and some urine samples were collected prior to this
date, we completed the register data with the self-
reported use of diuretics.

Prevalent diabetes and hypertension at baseline
were identified as a combination of information
based on self-reports (including the use of antihy-
pertensive, and antidiabetic drugs), the National

360 © 2023 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
Journal of Internal Medicine, 2023, 294; 358–369

 



Urinary phosphate and cardiovascular disease / C. Donat-Vargas et al.

Diabetes Register, and the Patient Register. A
Mediterranean diet score was created based on
the eight-point scoring system (low to high adher-
ence) reflecting the consumption of fruits and veg-
etables, whole grain/fiber-rich foods, legumes and
nuts, fish, fermented dairy foods, olive/rapeseed
oil, and alcohol (in moderation) as positive com-
ponents; and red and processed meat and excess
alcohol as negative components [33].

We measured cystatin C and creatinine in plasma
(Uppsala University Hospital) and sodium (ICP-
MS at the Institute of Environmental Medicine,
Karolinska Institutet) in urine (as a proxy for
dietary salt intake). Estimated glomerular filtration
rate (eGFR) was calculated by using the combined
creatinine–cystatin C equation [34].

Cardiovascular outcomes

CVD was defined as first incident MI (Interna-
tional Classification (ICD-10 code I21)), ascer-
tained either via computerized linkage to the
National Hospital Discharge Register [35] or the
Cause of Death Register (verified by autopsy), or
first incident ischemic stroke (National Hospital
Discharge Register ICD-10 I63-I64). Participants
were followed up from baseline (2004–2009) to
December 31, 2017.

Statistical analyses

The correlation between P in urine and in plasma
and the energy-adjusted dietary P intake was
assessed by Spearman´s rank correlation. We cat-
egorized participants into tertiles of urinary P,
plasma P, and dietary P at baseline. Associations
of P concentrations with CVD, MI, and stroke
were examined prospectively using Cox propor-
tional hazard regression models, setting age as
the underlying timescale, and calculating hazard
ratios (HRs) and their 95% confidence interval (CI).
Tests for linear trends (P trend) across tertiles were
conducted by assigning the median value for each
tertile and modeling it as a continuous variable. We
verified the proportionality of hazards with a test
based on Schoenfeld residuals; the nonsignificant
result (p-value >0.80 in all cases) suggested that
the proportionality assumption was met.

Regression models were age-adjusted (model 1)
and additionally adjusted for the following base-
line variables (model 2): body mass index (continu-
ous), postsecondary education >12 years (yes/no),
family history of MI <60 years (yes/no), history of

diabetes (yes/no), history of hypertension (yes/no),
smoking (never, former, or current smoker),
walking/cycling >20 min/day (yes/no), leisure-
time inactivity >5 h/day (yes/no), adherence to
Mediterranean diet (0–4, 5, 6–8 score), alcohol
consumption (g/day), vitamin D supplement use
(yes/no), and eGFR (≤ or >60 mL/min/1.73 m2).
In model 3, we additionally adjusted for uri-
nary sodium (mmol/mmol creatinine), plasma
calcium—which is linked to both the exposure and
risk of CVD [36, 37]—and use of diuretics. For uri-
nary P analyses, we also estimated an additional
model 4 further adjusted for plasma P, suspect-
ing this variable as a potential confounder of the
urinary P-CVD association, assuming that alter-
ations in fasting plasma P are consequences of P
homeostasis dysregulation rather than differences
in dietary P intake. Based on an a priori judgment
related to the limited sample size and number of
cases, no stratified analyses were performed. All
probability values were two-sided. Analyses were
performed with Stata 16 SE software (Stata Corpo-
ration Inc., TX, USA).

Results

The age of the women at baseline ranged from 56
to 85 years (median 73 years). Median (percentiles
5–95) P concentration in urine and plasma was 2.4
(1.40–3.79) mmol/mmol creatinine and 1.13 (0.92–
1.36) mmol/L, respectively, whereas the median
estimated P intake was 1510 (1148–1918) mg/day.

Participants with the highest urinary P concen-
trations (third tertile) had slightly more frequently
a family history of MI <60 years, were more fre-
quently current smokers, were less frequently tak-
ing vitamin D supplements, had higher levels of
urinary sodium, and slightly more often users
of diuretics. No relevant differences in plasma P
concentrations, dietary P intake, or eGFR were
observed across tertiles of urinary P concentra-
tions (Table 1). Participants in the upper range
of plasma P concentrations, on the other hand,
were more educated, were more frequently current
smokers, were less inactive, and used less diuret-
ics than those with lower plasma P (Table 1). No
meaningful correlation was observed between uri-
nary and plasma P (r = −0.07), between urinary P
and dietary P (r = 0.10), or between plasma P and
dietary P (r = −0.01).

Among 1625 women who were followed up during a
median period of 9.4 years (15,195 person-years),
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Table 2.Hazard ratios (HR, 95% confidence interval [CI]) estimating the associations between categories of urinary phosphate
concentrations and cardiovascular disease.

Tertiles of urinary phosphate
T1 T2 T3 P trend

Urinary phosphate, mmol/mmol,
(percentile 5–95)

1.09–2.09 2.15–2.71 2.78–4.34

Cardiovascular diseasea

Cases/n 44/542 58/542 66/541
Person-years 5037 5032 5126
Model 1, HR (95%CI) 1 (ref.) 1.33 (0.90, 1.97) 1.41 (0.96, 2.06) 0.094
Model 2, HR (95%CI) 1 (ref.) 1.48 (0.99, 2.21) 1.53 (1.03, 2.29) 0.047
Model 3, HR (95%CI) 1 (ref.) 1.48 (0.99, 2.22) 1.52 (1.01, 2.27) 0.056
Model 4, HR (95%CI) 1 (ref.) 1.53 (1.02, 2.28) 1.57 (1.05, 2.35) 0.037
Myocardial infarction
Cases/n 17/542 29/542 29/541
Person-years 5132 5164 5262
Model 1, HR (95%CI) 1 (ref.) 1.72 (0.95, 3.13) 1.60 (0.88, 2.92) 0.167
Model 2, HR (95%CI) 1 (ref.) 2.00 (1.08, 3.69) 1.83 (0.98, 3.43) 0.084
Model 3, HR (95%CI) 1 (ref.) 2.00 (1.08, 3.70) 1.87 (0.99, 3.53) 0.074
Model 4, HR (95%CI) 1 (ref.) 2.04 (1.10, 3.79) 1.93 (1.02, 3.64) 0.061
Stroke
Cases/n 28/542 32/542 41/541
Person-years 5122 5134 5228
Model 1, HR (95%CI) 1 (ref.) 1.13 (0.68, 1.88) 1.35 (0.83, 2.19) 0.211
Model 2, HR (95%CI) 1 (ref.) 1.23 (0.73, 2.07) 1.41 (0.85, 2.33) 0.187
Model 3, HR (95%CI) 1 (ref.) 1.23 (0.73, 2.07) 1.39 (0.84, 2.30) 0.212
Model 4, HR (95%CI) 1 (ref.) 1.28 (0.76, 2.15) 1.43 (0.86, 2.36) 0.178

Note: The Swedish Mammography Cohort-Clinical. Model 1: adjusted for age; model 2: further adjusted for BMI, edu-
cation, family history of myocardial infarction before 60 years., history diabetes, history of hypertension, smoking,
walking/cycling >20 min/day, leisure-time inactivity >5 h/day, adherence to Mediterranean diet, alcohol consump-
tion, vitamin D supplement use and estimated glomerular filtration rate; model 3: further adjusted for urinary sodium
(mmol/mmol creatinine), plasma calcium (mmol/L), and use of diuretics (ATC-codes C03); model 4: further adjusted for
plasma phosphate (mmol/L).
Abbreviation: BMI, body mass index.
aMyocardial infarction and stroke combined.

164 incident CVD cases occurred (63 MI cases and
101 stroke cases). Urinary P concentration was
dose-dependently associated with increased CVD
risk, defined as composite MI and stroke events
(Table 2). The multivariable-adjusted HRs (95%CI)
of CVD for model 2 were 1.48 (0.99, 2.21) and
1.53 (1.03, 2.29) for the second and third tertiles,
respectively, when compared with the first tertile of
urinary P (P trend 0.047). Adding urinary sodium
excretion, plasma calcium, and use of diuretics
information (model 3) had no major impact on the
association. After additional adjustment for plasma
P concentrations (model 4), the HRs of CVD for
the second and third tertile were 1.53 (1.02, 2.28)
and 1.57 (1.05, 2.35), respectively, when compared

with the lowest tertile (P trend 0.037). When cardio-
vascular events were differentiated, the significant
association with MI was stronger—HR 1.93 (1.02,
3.64; P trend 0.061)—whereas it was weaker for
stroke—HR 1.43 (0.86, 2.36; P trend 0.178) (Table
2).

High plasma P was close to being statistically sig-
nificantly associated with elevated CVD risk (Table
3). The multivariable-adjusted HRs (95%CI) of CVD
for the second and third tertiles of P in plasma were
1.27 (0.86, 1.86) and 1.41 (0.96, 2.07), respec-
tively, when compared to the lowest tertile (P trend
0.075). Adding urinary sodium, plasma calcium
and use of diuretics information to the model had
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Table 3.Hazard ratios (HR, 95% confidence interval [CI]) estimating the associations between categories of plasma phosphate
concentrations and cardiovascular disease.

Tertiles of plasma phosphate
T1 T2 T3 P trend

Plasma phosphate, mmol/L,
percentile (5–95)

0.85–1.08 1.09–1.19 1.20–1.42

Cardiovascular diseasea

Cases/n 52/567 56/535 60/523
Person-years 5229 5064 4902
Model 1, HR (95%CI) 1 (ref.) 1.19 (0.82, 1.74) 1.35 (0.93, 1.95) 0.117
Model 2, HR (95%CI) 1 (ref.) 1.27 (0.86, 1.86) 1.41 (0.96, 2.07) 0.075
Model 3, HR (95%CI) 1 (ref.) 1.28 (0.87, 1.88) 1.41 (0.96, 2.07) 0.077
Myocardial infarction
Cases/n 27/557 23/535 25/523
Person-years 5347 5204 5027
Model 1, HR (95%CI) 1 (ref.) 0.94 (0.54, 1.64) 1.08 (0.63, 1.86) 0.796
Model 2, HR (95%CI) 1 (ref.) 1.05 (0.59, 1.85) 1.16 (0.66, 2.03) 0.619
Model 3, HR (95%CI) 1 (ref.) 1.05 (0.59, 1.85) 1.15 (0.66, 2.03) 0.626
Stroke
Cases/n 28/567 36/535 37/523
Person-years 5335 5161 4988
Model 1, HR (95%CI) 1 (ref.) 1.43 (0.87, 2.34) 1.55 (0.95, 2.53) 0.080
Model 2, HR (95%CI) 1 (ref.) 1.50 (0.91, 2.48) 1.63 (0.98, 2.69) 0.058
Model 3, HR (95%CI) 1 (ref.) 1.51 (0.91, 2.51) 1.63 (0.98, 2.71) 0.057

Note: The Swedish Mammography Cohort-Clinical. Model 1: adjusted for age; model 2: further adjusted for BMI, edu-
cation, family history of myocardial infarction before 60 years., history diabetes, history of hypertension, smoking,
walking/cycling >20 min/day, leisure-time inactivity >5 h/day, adherence to Mediterranean diet, alcohol consump-
tion, vitamin D supplement use and estimated glomerular filtration rate; model 3: further adjusted for urinary sodium
(mmol/mmol creatinine), plasma calcium (mmol/L), and use of diuretics (ATC-codes C03).
Abbreviation: BMI, body mass index.
aMyocardial infarction and stroke combined.

no impact on the estimates. In this case, the asso-
ciations were mainly driven by stroke as a specific
outcome and not MI (Table 3). Estimated dietary
P intake was not associated with the incidence of
CVD or stroke, but inversely associated with MI,
HR of 0.55 (0.30, 1.00; P trend 0.049) (Table 4).

Discussion

In this population-based prospective cohort of
upper middle-aged and elderly women, urinary P
was associated with an increased incidence of com-
posite CVD as well as with MI. Weaker associ-
ations, not reaching statistical significance, were
observed when evaluating P in plasma in relation to
the CVD events. As expected, dietary questionnaire
estimated P intake—mainly accounting for organic
P, naturally present in foods—was not correlated to
P either in plasma or urine. Higher questionnaire-

based P intake was not associated with composite
CVD but showed an inverse association with MI.

Inorganic P in UPF, urine P concentrations, and CVD

Inorganic P-based additives are commonly used in
UPF to enhance flavor, preserve, regulate acidity,
make foods creamier, allow melting of foods that
would not normally melt, maintain the juiciness
of meat, and prevent beverages from separating
into individual ingredients, among several other
functional applications in food processing. Sodium
phosphates (E 339), potassium phosphates (E
340), calcium phosphates (E 341), diphosphates (E
450), triphosphates (E 451), or polyphosphates (E
452) are some examples of the nearly 50 commonly
used P ingredients [15]. Typical foods with signifi-
cant amounts of added P-based additives are pro-
cessed meat, ham, sausages, canned fish, baked
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Table 4.Hazard ratios (HR, 95% confidence interval [CI]) estimating the associations between categories of dietary phosphate
and cardiovascular diseasea.

Tertiles of dietary energy-adjusted phosphate
T1 T2 T3 P trend

Energy-adjusted dietary phosphate,
mg/day, percentile (5–95)

1057–1372 1391–1561 1587–2074

Cardiovascular diseasea

Cases/n 59/473 40/473 54/472
Person-years 4471 4582 4442
Model 1, HR (95%CI) 1 (ref.) 0.71 (0.47, 1.06) 0.90 (0.62, 1.31) 0.657
Model 2, HR (95%CI) 1 (ref.) 0.76 (0.51, 1.15) 0.88 (0.60, 1.28) 0.546
Model 3, HR (95%CI) 1 (ref.) 0.75 (0.49, 1.12) 0.86 (0.59, 1.26) 0.498
Myocardial infarction
Cases/n 29/473 20/473 19/472
Person-years 4597 4666 4588
Model 1, HR (95%CI) 1 (ref.) 0.73 (0.41, 1.29) 0.65 (0.37, 1.17) 0.151
Model 2, HR (95%CI) 1 (ref.) 0.80 (0.45, 1.43) 0.55 (0.30, 1.01) 0.051
Model 3, HR (95%CI) 1 (ref.) 0.78 (0.43, 1.40) 0.55 (0.30, 1.00) 0.049
Stroke
Cases/n 34/473 23/473 36/472
Person-years 4587 4653 4525
Model 1, HR (95%CI) 1 (ref.) 0.71 (0.42, 1.21) 1.05 (0.66, 1.68) 0.757
Model 2, HR (95%CI) 1 (ref.) 0.78 (0.45, 1.33) 1.06 (0.66, 1.73) 0.737
Model 3, HR (95%CI) 1 (ref.) 0.77 (0.45, 1.32) 1.06 (0.65, 1.72) 0.811

Note: SMC (N = 1418 [207 subjects with missing data on dietary phosphate intake]). Model 1: adjusted for age; model
2: further adjusted for BMI, education, family history of myocardial infarction before 60 years., history diabetes, history
of hypertension, smoking, walking/cycling >20 min/day, leisure-time inactivity >5 h/day, adherence to Mediterranean
diet, alcohol consumption, vitamin D supplement use and estimated glomerular filtration rate; model 3: further adjusted
for urinary sodium (mmol/mmol creatinine), plasma calcium (mmol/L), and use of diuretics (ATC-codes C03).
Abbreviations: BMI, body mass index; SMC, The Swedish Mammography Cohort.
aMyocardial infarction and stroke combined.

goods, beer, wine, cola, and other soft drinks [15].
A diet high in UPF is suggested to increase the daily
P intake by 250–1000 mg as compared to a diet
based on fresh and unprocessed foods [25].

The inorganic P content has been disregarded in
previous attempts to estimate dietary P intake from
nutrient databases [28] because the added amount
of food additives is neither declared on the food
labeling [20, 38] nor always considered in the stan-
dard nutrient databases. These inaccuracies lead
to a gross underestimation of dietary P intake
[28]. As expected, in our data, questionnaire-
estimated dietary P was not correlated with urinary
P (r = 0.10).

Intestinal absorption of P depends on its form and
source. Organic P from natural sources is less
digestible and hence less bioavailable (absorption

∼20%–60%) than inorganic P, which has the max-
imum potential bioavailability (absorption greater
than 80%) [15, 20–24]. Animal studies have con-
firmed this pattern [39, 40].

In healthy subjects, nearly 100% of plasma P
is filtered via the renal glomerulus, and 80%–
90% is reabsorbed via sodium-mediated facilitated
cotransporters in the renal tubules. The portion
not reabsorbed is excreted in the urine, and total
renal P excretion is balanced to P intake [6, 24].
Therefore, in the general population with preserved
renal function, urinary P is a reliable marker of the
intestinal absorption of P and thus potentially use-
ful for the assessment of dietary P intake in epi-
demiologic studies [23, 27, 41, 42].

Animal and human data have shown that dietary
P intake and oral P loading stimulated increases in
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parathyroid hormone and fibroblast growth factor-
23 [7, 43, 44], whose deregulation is suggested
to have a pathogenic cardiovascular effect [8, 9,
45, 46]. Our findings, with the highest tertile of
urinary P being associated with increased CVD
risk, suggest that a high content of inorganic P
may play a role in cardiovascular damage. This
finding may also add insights into the mechanisms
linking UPF to CVD risk [47].

Our results indicated stronger associations for MI
than for stroke. It is suggested that P affects the
vascular calcification of the smaller arterial beds,
especially the coronary arteries [48]. If confirmed,
our results may reflect differences in risk factors
between coronary disease and stroke, and in reac-
tivity between the coronary and cerebral arteries
[49]. Indeed, ischemic stroke is a complex hetero-
genic entity, and different stroke subtypes with
possible differential risk factors have been sug-
gested [50].

Our findings differ, however, with the limited pre-
vious literature. Among 1325 community-living
elderly men from the US, urinary P was not related
to CVD mortality [51]. In 880 elderly Americans—
mainly male patients with established coronary
artery disease—24-h urinary P excretion (median
20 mmol) was associated with lower, rather than
higher, risk of cardiovascular events [52]. The rea-
sons for inconsistent results are not known but
could potentially be due to studying specific dif-
ferences. Although the first study addressed mor-
tality alone, and its mean P in urine was lower
(0.45 ± 0.17 mg/mg creatinine ∼1.6 mol/mol crea-
tinine), the second included only those with estab-
lished disease. Furthermore, these previous stud-
ies have been carried out in men, whereas our
cohort includes women. A greater excretion of P in
females than in males in response to oral challenge
of P has been reported [53], but any sex-specific dif-
ferences in P-homeostasis or susceptibility to large
intakes of P in relation CVD risk can only be spec-
ulated.

Plasma P concentrations and CVD

Disruption of P-responsive hormone regulation
has been detected at high dietary P consump-
tion but without measurable change in plasma
P concentrations in healthy adults and in ani-
mal studies [54]. This disruption promotes arte-
rial calcification, hypertension, and left ventricular
dysfunction—even with plasma P within the nor-

mal range in healthy subjects [8, 9]—as the body
has the ability to correct the elevated plasma P
to fasting concentrations [43, 44, 55]. Under nor-
mal physiologic conditions, a balance is achieved
by complex endocrine feedback, and there is an
adjustment of urine excretion that equals the net
intake [1]. Accordingly, we observed no correla-
tion between P in blood and urine in our studied
women.

In a healthy population, high plasma P concen-
tration (even within the upper-normal range) was
associated with atherosclerosis, coronary calcifi-
cation, impairment of the endothelial function,
and microvascular dysfunction [56, 57]. Even a
short time high postprandial P concentration may
impair endothelial function [10, 58]. In our study,
in which only 1% of the women had plasma P
levels above the normal range (>1.45 mmol/L),
there was a weaker association between CVD and
P in plasma than with P in urine, and did not
strictly reach statistical significance; if anything,
this was more pronounced for stroke than for MI
as a specific outcome. Although we do not have a
clear explanation for this result, sustained hyper-
phosphatemia might imply certain kidney dysfunc-
tion, in which the compensatory mechanisms fail
[49,72]. We cannot rule out that other mechanisms
are involved in this association.

Strengths and limitations

The main strengths of this study are the rea-
sonably large sample of women with three dif-
ferent measurement types of P, the prospective
design, and the availability of data to finely adjust
for potential confounding parameters—including
eGFR, diuretic use, urinary sodium, plasma cal-
cium, and vitamin D supplementation. However,
the results of this study should be interpreted with
some limitations taken into account. The main one
is that we only conducted a single measurement of
urinary P in first voided spot morning urine, which
may not be enough to obtain a reliable indicator
of long-term intake of P [27]. This could result in
some non-differential misclassification of the expo-
sure, and further studies with repeated measure-
ments of urinary P are warranted to validate our
findings. Moreover, we cannot rule out that other
characteristics of diet or non-dietary factors con-
tributed to the association observed between uri-
nary P and CVD. Our premise was that a high uri-
nary P excretion in these women was likely the
result of an ample intake of inorganic P, which
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in turn was due to a high UPF consumption. Yet,
due to the design of the dietary questionnaire, we
were unable to verify the link to UPF consumption.
Additional sources of P might include organophos-
phates (pesticides and contamination of UPF dur-
ing processing/packaging) [19, 59] and residues
of P in drinking water from fertilizers. Most likely
these sources are minor. The use of bisphospho-
nates as drug therapy for osteoporosis may also
contribute. The ascertained number of cases of
stroke and MI was limited, and the lack of statis-
tical significance in some analyses was likely due
to lack of statistical power. For the same reason,
we could not explore different a priori assump-
tions involving restrictions or subgrouping. Finally,
since the study was restricted to upper middle-
aged and elderly women, we cannot generalize the
findings to men or other age groups.

Conclusions

Higher concentrations of urinary P were associated
with an increased risk of composite CVD and MI. A
weaker association was observed between plasma
P and CVD. These findings may propose that a
diet high in P–based additives may contribute neg-
atively to cardiovascular health and could be one
mechanism underlying the evidenced link between
UPF and CVD. Accurate estimates of inorganic
dietary P intake are essential, for which a com-
prehensive labeling of P-based additives in UPF is
required.
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