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a b s t r a c t

Burchnall and Chaundy showed that if two ordinary differential operators (ODOs) P , Q with analytic
coefficients commute then there exists a polynomial f (λ,µ) with complex coefficients such that
f (P,Q ) = 0, called the BC-polynomial. This polynomial can be computed using the differential resultant
for ODOs. In this work we extend this result to matrix ordinary differential operators, MODOs. Our
matrices have entries in a differential field K , whose field of constants C is algebraically closed
and of zero characteristic. We restrict to the case of order one operators P , with invertible leading
coefficient. We define a new differential elimination tool, the matrix differential resultant. We use it to
compute the BC-polynomial f of a pair of commuting MODOs, and we also prove that it has constant
coefficients. This resultant provides the necessary and sufficient condition for the spectral problem
PY = λY , QY = µY to have a solution. Techniques from differential algebra and Picard–Vessiot
theory allow us to describe explicitly isomorphisms between commutative rings of MODOs C[P,Q ]

and a finite product of rings of irreducible algebraic curves.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
i

1. Introduction

The main contribution of this paper is the construction of
new differential elimination tool, a differential resultant for
atrix ordinary differential operators (MODOs). Our main goal is

o prove that this tool provides an effective criterion to guarantee
he solvability of the eigenvalue problem for commuting MODOs

Y = λY , BY = µY . (1)

We restrict to the case where L is monic and has order one, since
ccording to Wilson [1], this situation is interesting because L
oes have order 1 in practically all the most interesting exam-
les [2], see also [3]. Furthermore, it should be noted that by
eans of the Cyclic Vector Lemma, there is a correspondence be-

ween systems of order 1 and size ℓ×ℓ and differential operators
f order ℓ, see for example Churchill and Kovacic [4], or Katz [5].
Differential resultants were first defined for ordinary differen-

ial operators, as the natural generalization to a non commutative
nvironment of the algebraic resultant of two univariate poly-
omials, see for instance [6]. A few years ago the theory of
ifferential resultants was formalized for multivariate differential
olynomials and reviewed in two recent reports [7,8]. See also [9,
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nc-nd/4.0/).
10] for differential resultants in the case of partial differential
operators. We provide here the first definition of a differential
resultant for MODOs. Every previously existing notion of diffe-
rential resultant provides a condition on the coefficients of the
differential operators (or differential polynomials) that guaran-
tees the existence of common nontrivial solutions. The tool we
develop here provides such a condition in the case of MODOs, but
many difficulties emerge in trying to extend previous methods to
the present situation. These are a consequence of two main facts:
matrix coefficient rings are non commutative and, in addition,
rings of MODOs are not euclidean domains.

Throughout this paper we use the language of differential
algebra and Picard–Vessiot theory. For the main definitions and
notation we recommend the following Refs. [6,11–13], and [14].
The essential terminology has been summarized in the Appendix.
We consider the ring Rℓ of ℓ×ℓ matrices with entries in an ordi-
nary differential field K , whose field of constants C is algebraically
closed. The derivation of K can be extended to a derivation D on
Rℓ. The MODOs of this paper belong to the ring of differential
operators Rℓ[D], for details see Section 2.

In this article, we define in Section 3 (see Definition 1) the
differential resultant DRes(P,Q ) of two MODOs P and Q inRℓ[D],
n the case where P = A0 +A1D, with A1 invertible, and prove the
following result.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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heorem A. Given MODOs P and Q in Rℓ[D], P of order 1 with
nvertible leading coefficient matrix. The following statements hold:

1. If there exists a common nontrivial solution in some diffe-
rential field extension of K of PY = 0 and QY = 0 then
DRes(P,Q ) = 0.

2. If P and Q commute, and if DRes(P,Q ) = 0, then the
matrix differential system PY = 0, QY = 0, has a solution
ψ = (ψ1, . . . , ψℓ)t with every ψi in a differential extension
of finite algebraic transcendence degree Σ of K .

These results motivate the definition of the differential re-
ultant for MODOs in the general case, where P has arbitrary
rder. For that purpose the Picard–Vessiot theory of MODOs
eeds further development that could benefit from results about
he factorization of MODOs such as those obtained by A. Kasman
n [15].

The classical problem of describing pairs of commuting diffe-
ential operators was first studied by Burchnall and Chaundy [16,
7], and Baker in [18], for ODOS. The work of Grinevich in [19]
eneralizes this problem to the case of MODOs, assuming that
hey are in so called general position and for matrix coefficients
n the field of analytic complex functions. The effective construc-
ion of commuting matrix differential operators has been also
ddressed in Oganesyan’s article [20].
This paper contributes to a generalization to the case of

ODOs, of the famous results by Burchnall and Chaundy in [16],
hich establish a correspondence between rings of commuting
rdinary differential operators and planar algebraic curves, see
lso [21]. For a commuting pair L, B of ODOs, it is easy to observe
he existence of a polynomial h(λ,µ) with constant coefficients
uch that h(L, B) = 0: Burchnall and Chaundy showed that
he opposite is also true [16,17] in the specific situation they
tudied, see [22] for recent contributions on this matter. This is
he defining polynomial of a plane algebraic curve Γ , commonly
nown as the spectral curve, and it can be computed by means

of the differential resultant of L − λ and B − µ. These facts are
an important motivation to develop differential resultants for
MODOs to study the spectral problem (1).

Next we consider P = L − λ and Q = B − µ as MODOs
with matrix coefficients in the differential field K (λ,µ), for al-
gebraic variables λ and µ, whose field of constants is C(λ,µ).
We generalize Previato’s theorem on differential resultants for
ODOs, see [23,24], to prove the next analogous result for MODOs,
showing that the differential resultant of L − λ and B − µ is a
polynomial with differentially constant coefficients.

Theorem B. Let us consider matrix differential operators L and B
in Rℓ[D], and assume that L has order one with invertible leading
coefficient. If L and B commute then the differential resultant

f (λ,µ) = DRes(L − λ, B − µ) (2)

is a polynomial in C[λ,µ].

Coming back to Theorem A, for a commuting pair L, B, the
spectral problem (1) has a nontrivial solution, for λ = λ0 and

= µ0, if and only if f (λ0, µ0) = 0, see Corollary 2. Thus (1) is
n fact a coupled problem since λ and µ are not free parameters.
he algebraic curve Γ defined by f (λ,µ) = 0, which guarantees

the solvability of the eigenvalue problem, is the so-called spectral
curve, see [19]. In other words, each point of Γ provides a spectral
problem associated to a pair of commuting operators, L, B that
admits a common solution.

The present work studies the so called direct problem for
commutative algebras C[L, B] associated with a commuting pair
of MODOs L, B, for the first time in the case of an arbitrary diffe-
rential field K . More precisely, given L, B inR [D], assuming that L
ℓ

2

has order one and invertible leading coefficient matrix, we prove
in Theorem C a decomposition theorem for the algebra C[L, B]
in terms of the irreducible components of the spectral curve in
this context. The tool we develop, the differential resultant for
MODOs, plays a crucial role. It is important to note that we do
not restrict to the case of irreducible curves or nonsingular curves.
Working in an arbitrary differential field and using Picard–Vessiot
theory allows to reduce the hypothesis on the leading coefficient
of L, in comparison with previous works, see for instance [19].
Similar benefits are expected for L of arbitrary order, after an
appropriate differential resultant for MODOs is defined.

We define the Burchnall–Chaundy ideal of the pair L, B to be the
set

BC(L, B) := {g ∈ C[λ,µ] | g(L, B) = 0},

whose elements are Burchnall–Chaundy (BC) polynomials, in anal-
ogy with the theory of ODOs. We assume that the differential
resultant f is a BC polynomial, being this assumption very likely
to happen as explained in Remark 4. We present this fact as a
conjecture, for K an arbitrary differential field, in Section 5. More-
over, once f has been computed, its decomposition in irreducible
factors f = hσ11 · · · hσss will allow us to give the Algorithm BC-
generator to compute a polynomial F such that BC(L, B) =

(F ).
We establish the ring structure of the commutative algebra

C[L, B] by means of an isomorphism

C[L, B] ≃
C[λ,µ]

BC(L, B)
.

he next decomposition theorem is by itself important and al-
ows to classify the commutative algebras C[L, B] as products of
quotient rings related with the irreducible components Γi of the
spectral curve Γ .

Theorem C. Let us consider commuting matrix differential operators
L and B in Rℓ[D], and assume that L has order one with invertible
leading coefficient. Let f (λ,µ) = DRes(L − λ, B − µ) and assume
that f (L, B) = 0. Then there exists a polynomial F = hr1

1 · · · hrs
s

hat divides f such that BC(L, B) = (F ). Furthermore the following
somorphism can be established

[L, B] ≃
C[λ,µ]

(hr1
1 )

× · · · ×
C[λ,µ]

(hrs
s )

, (3)

whose ring structure is componentwise addition and multiplication.

These results can be used to classify the commutative al-
gebras C[L, B] in terms of the irreducible components of the
spectral curve, more precisely the irreducible factors of its defin-
ing polynomial f , the differential resultant. In particular, if Γ is
an irreducible curve then

C[L, B] ≃
C[λ,µ]

(hr )
here h is the unique irreducible factor of f = hσ , 1 ≤ r ≤ σ .
or matrix coefficients of size ℓ = 2 the classification is then

clear and can be applied to pairs of operators L and B defining
the famous AKNS hierarchy. We finish this paper illustrating our
results with a computed example, the first non trivial case of the
AKNS hierarchy, since f (L, B) = 0 in this case. All computations
were performed in Maple 21.

The paper is organized as follows. Section 2 includes impor-
tant notation and definitions, together with the context of the
problems studied in relation to the work of other authors using
different approaches. Section 3 is dedicated to the construction
of the differential resultant for MODOs and the proof of Theo-
rem A. The spectral curve Γ is defined in Section 4 after proving
Theorem B. It is shown that problem (1) is a coupled spectral

https://www.maplesoft.com/
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roblem, that admits a solution whenever λ = λ0 and µ =

0 are related through f (λ0, µ0) = 0. It is in Section 5 that
he ideal of BC polynomials BC(L, B) is canonically associated to
he operators L, B. In Theorem 1 we prove that the differential
esultant f (λ,µ) = DRes(L − λ, B − µ) provides a MODO f (L, B),
hich is zero on the solution space of L−λ. Under the assumption
(L, B) = 0, in Theorem 2 it is proved that the ideal BC(L, B)
s bounded by ideals defined by f . Section 6 contains the proof
f Theorem C and the Algorithm BC-generator to compute its
ecomposition as a product of rings associated with irreducible
urves. Finally, we illustrate our results in Section 7 by applying
hem to the AKNS hierarchy, where all hypothesis are fulfilled.

Professor Emma Previato passed away on June 29, 2022 while
e were preparing the final version of this article. This work has
een carried out under her constant inspiration even after her
ntimely passing. We sincerely wish her rest in peace, and we
ulfill her wish that this work be published in the special volume
n honor of H. Flaschka.

. Matrix coefficient ODOs

Let K be a differential field with derivation ∂ , whose field of
onstants C is algebraically closed of characteristic zero. Given
∈ K we denote ∂(a) by a′. The commutation rule in the ring
f differential operators K [∂] is then defined by ∂a = a∂ + a′.
Let us consider the ring Rℓ = Mℓ(K ) of ℓ × ℓ matrices with

oefficients in K . Given A = (aα,β ) ∈ Rℓ, let us denote by
′
= (a′

α,β ). Thus we can extend the derivation ∂ to a derivation
in Rℓ as D(A) := A′. We will work with matrix coefficient

ifferential operators as elements of Rℓ[D], called matrix ordinary
ifferential operators or MODOs, where the commutation rule is
aturally defined by DA := AD + A′. In addition, we will denote
y 0 the matrix with all entries equal to 0. Observe that we can
dentify Rℓ[D] with Mℓ(K [∂]).

The ring of scalar differential operators K [∂] is embedded in
he ring of matrix differential operators Rℓ[D] by sending a scalar
ifferential operator

∑
ai∂ i to the matrix differential operator

aiIℓDi, for the identity matrix Iℓ of Rℓ. In the scalar case, ODOs
njoy many properties that are essential to the classification of
ommutative rings of ODOs. In the matrix-coefficient case, it is
ot known whether such properties hold. We list the main ones:

I The commutator of two operators of orders m and n has
order strictly less than n + m.

II If two operators commute with an operator L of order at
least 1, then they commute among themselves, since the
centralizer of L is a commutative ring, [25].

Observe that, in the matrix case, Property I does not hold. For a
ounterexample, let us consider operators MD, ND, where M, N
re two constant non-commuting matrices

MD,ND] = [M,N]D2
+ (N ′

− M ′)D.

ne might wonder whether in the algebraic case the property
ight hold; in fact, the assumption in [1] is that the leading
oefficients are diagonal. In addition, Property II fails. In fact,
D, ND as above both commute with IℓD.
These observations bring out the intrinsic interest of studying

ommutative subrings of matrix differential operators; however,
iven the difficulties that arise, some special assumptions are usu-
lly considered. We review below some of the existing literature
o highlight the contributions of the present paper.

Observe that the ring Rℓ[D] of MODOs is included in the
lgebra of pseudo-differential operators with matrix coefficients

ℓ[D,D−1
] :=

{
n∑

AiDi
| Ai ∈ Rℓ, n ∈ Z

}
.

i=−∞
t

3

or a pseudo-differential operator L =
∑n

i=−∞
AiDi, we call An

ts leading coefficient, whenever it is non-zero, and n is called
ts order. Furthermore, we will say that L is in normal form if
n−1 = 0.
The above construction has been generalized as follows. Given

L =
∑n

i=0 UiDi, with Ui =
(
ui,αβ

)
1≤α,β≤l, if we consider ui,αβ as

differential variables over C , we can define the ring of differential
polynomials

B = C{ui,αβ} = C
[
u(j)
i,αβ ; 1 ≤ α, β ≤ l, 0 ≤ i ≤ n, j ≥ 0

]
.

n [1], Wilson studied the centralizer Z(L) of L in Ml(B)[D,D−1
],

nd it is in this algebra that some of the properties of scalar ODOs
ersist. In [1], Proposition 2.19, he shows that Z(L) is commuta-
ive, i.e. that Property II holds under the following assumptions:

(a) The leading coefficient Un is an invertible diagonal matrix,
diag(c1, . . . , ck), the cα being non-zero constants.

(b) If cα = cβ , then un−1,αβ = 0.

s Wilson writes, one can conjugate L into its leading term by
suitable ‘integral operator’ (formula (5.1) in [1]). This is what
ives the affine ring of a curve.
In Mulase et al. [26], a correspondence is established between

ntegral algebras of MODOs (those containing an operator in
ormal form) and geometric data related to an algebraic curve,
ssuming that the differential field K is C((x)), the field of formal
aurent series in the variable x with coefficients in C . In this
ramework, there exists a classification of commutative elliptic
lgebras of MODOs, in the Verdier sense [27]. In Mulase et al. [28]
n equivalence of categories provides such a classification: On
ne hand the category of algebras of commuting MODOs; on
he other, coverings of algebraic curves (spectral curves) together
ith some associated geometric data.
This type of rings occurred in the study of the so-called inverse

pectral problem for an algebraic curve with some extra geometric
ata. The problem was initially studied by Krichever [29]. He
stablished a method to use MODOs to construct a pair of matrix
perators whose spectral curve is some given curve Γ , based on
he configuration of its points at infinity. One can observe that the
atrices associated to a curve by Krichever’s construction are of
ilson’s type, [30].
Given L ∈ Rℓ[D], one can consider the centralizer C(L) of L in

ℓ[D] or the centralizer Z(L) of L in Rℓ[D,D−1
]. In this paper we

tudy the algebras C[L, B], for B in C(L). One first observation is
hat the algebra C[L, B] is not in general a maximal commutative
ubalgebra of Rℓ[D] . The following inclusion

[L, B] ⊂ C(L) = Rℓ[D] ∩ Z(L).

n general proper, suggests the interest in studying the centralizer
(L) of L in Rℓ[D]. The results of K. Goodearl in [25] concerning
entralizers of ODOs have proven to be important for the effective
omputational approaches in [24,31,32]. In this sense, a general-
zation to the case of MODOs of Goodearl’s results would give an
ffective description of C(L), but we emphasize that we do not
ursue such a description in this paper.
In this work, as in the scalar case, we will use the concept of

ifferential resultant to establish a correspondence between pairs
f commuting matrix differential operators L, B and algebraic
urves [16]. More precisely, we will assign to each commutative
lgebra C[L, B] a plane algebraic curve, the spectral curve. This is
he goal of the second part of this paper from Section 4 onward.
or this purpose, let us consider algebraic variables λ and µ
ith respect to ∂ . To complete this brief overview of the general
ituation for MODOs, we would like to indicate that by using
icard–Vessiot extensions, we obtain a representation of the cen-

ralizer C(L). Let E be a Picard–Vessiot field of the differential
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quation LY = λY , for details see Remark 3. Since L−λ = L−λIℓ
nd B − µ = B − µIℓ commute, the operator B − µ acts linearly
n the solution space of L − λ, and this action provides an ℓ× ℓ

atrix M(L − λ, B − µ), as constructed in Section 4. Moreover,
he null space of M(L−λ, B−µ) provides a representation of the
pace of common solutions at each point of the spectral curve.
It was E. Previato who glimpsed for the first time the power

f a triple approach combining differential algebra, Picard–Vessiot
xtensions and representation theory, in her important work [33]
n the generalization of Burchnall and Chaundy’s ideas to ODOs
n several variables. The present work is written in this philo-
ophy, uniting these techniques for the study of coupled spectral
roblems for MODOs.

. Characterizing common solutions

In this section we present the construction of the main tool
hat allows for our characterization of the existence of common
olutions for MODOs. This tool is the differential resultant and
e define it under some hypotheses. Let us consider matrix
ifferential operators in Rℓ[D],

= A0 + A1D and Q =

n∑
j=0

BjDj, where n ≥ 1 , (4)

with Ai, Bj in the differential ring Rℓ. We will assume that the
eading coefficient matrix A1 of P is invertible, allowing for the
onsideration of a monic operator.
In this section we will investigate necessary and sufficient

onditions on the entries of the coefficient matrices of P and Q
or the system{
PY = 0
QY = 0

, Y = (y1, . . . , yℓ)t , 0 = (0, . . . , 0)t , (5)

to have a nontrivial solution ψ = (ψ1, . . . , ψℓ)t , with all the ψi
in some differential extension Σ of the differential field K . To
guarantee the existence of such an extension, we will associate
to system (5) a differential field, the classical Picard–Vessiot field
extension of K for the system PY = 0, a differential extension of
inite algebraic transcendence degree containing the entries of a
undamental solution matrix [13].

First, observe that the differential equation PY = 0 can be
ewritten as

Y = NY with N = −A−1
1 A0 ∈ Rℓ. (6)

Next consider the matrix differential recursion in Rℓ:

p0(N) := Iℓ , pj(N) := pj−1(N)N + (pj−1(N))′ , j ≥ 1, (7)

and denote by M(P,Q ) the ℓ× ℓ matrix in Rℓ defined by

M(P,Q ) :=

n∑
j=0

Bjpj(N). (8)

Remark 1. Let us consider a Picard–Vessiot extension Σ of K for
the differential system (6). Hence, if ψ is a solution of this system,
then ψ is a solution of PY = 0 and reciprocally. Observe that Σ
is a differential extension of finite algebraic transcendence degree
of K , see the Appendix.

Given a solution ψ = (ψ1, . . . , ψℓ)t of system (6), we have
∈ Σℓ and observe that

Djψ = pj(N)ψ , j ≥ 1,

with pj(N) defined by (7). Thus in Σℓ the derivation is defined by
he differential system DY = NY .
4

From the previous remark the following essential lemma is
obtained. It will be used to prove the main results of this paper.

Lemma 1. Let P and Q be matrix differential operators as in (4).
et Ψ be a fundamental solution matrix for system (6). Then,

Ψ = M(P,Q )Ψ . (9)

Proof. Let us consider a solution ψ = (ψ1, . . . , ψℓ)t of system
6). By Remark 1, we have ψ ∈ Σℓ. Consequently we obtain

ψ =

n∑
j=0

BjDjψ =

n∑
j=0

Bjpj(N)ψ = M(P,Q )ψ. □ (10)

efinition 1. With notations as above, we define the matrix
ifferential resultant of two matrix differential opera-
ors P and Q in Rℓ, with P of order one and invertible leading
oefficient matrix, to be

Res(P,Q ) = detM(P,Q ). (11)

We are ready to prove Theorem A from the introduction. This
heorem ensures that the vanishing of the differential resultant of
and Q is a necessary and sufficient condition on the entries of

he coefficient matrices of P and Q for the existence of a common
ontrivial solution of (5), whenever P and Q commute.

roof of Theorem A.

1. Let us assume that there is a nonzero common solution ψ
of system (5), ψ ∈ Σℓ. By Lemma 1, Qψ = M(P,Q )ψ . Thus
the linear map defined by M(P,Q ) on Σℓ has a non trivial
kernel, and then its determinant is zero.

2. Suppose now that the determinant of the matrix M(P,Q )
is zero. Let Ψ be a fundamental matrix of system (6), that
is an invertible matrix in Mℓ(Σ), whose columns form a
fundamental system of solutions. By Lemma 1 it holds that
QΨ = M(P,Q )Ψ and therefore the matrix QΨ has zero
determinant.
Let us now consider the columns {Qφ1, . . . ,Qφℓ} of the
matrix QΨ . They form a system of linearly dependent
vectors in Σℓ over the differential field K , but also over
the field of constants C . To verify this we can proceed as
follows.
Up to a change of the order of the variables, we can
assume that any proper subset of {Qφ1, . . . ,Qφr} is li-
nearly independent over K and

Qφ1 =

r∑
i=2

ciQφi with ci ∈ K . (12)

Since P and Q commute then Qφj is also a solution of P
and by Remark 1 then D(Qφj) = N(Qφj). So, differentiating
(12) we get

0 = D(Qφ1) −

r∑
i=2

c ′

iQφi −

r∑
i=2

ciD(Qφi)

= N(Qφ1) −

r∑
i=2

c ′

iQφi −

r∑
i=2

ciN(Qφi).

Then, the equality 0 =
∑r

i=2 c
′

iQφi implies that c ′

i = 0, so
they are constants in C .
Finally we have obtained that the vectors {Qφ1, . . . ,Qφr}

are linearly dependent over C . Then, for some constants
c ∈ C not all zero, we can consider the vector inΣℓ defined
i
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by ψ := c1φ1 + · · · + cℓφℓ verifying

Pψ =

ℓ∑
i=1

ciPφi = 0 , Qψ =

ℓ∑
i=1

ciQφi = 0.

So ψ is a common solution, and it is not the null solution
because Ψ is a fundamental matrix. □

orollary 1. Let P and Q be commuting matrix differential ope-
rators as in (4). The space of common solutions of (5) in a Picard–
essiot extension Σ of K for the differential system (6) is non trivial
f and only if DRes(P,Q ) = 0. Moreover, the subspace of solutions
f QY = 0 within the space of solutions of PY = 0 is defined by the
quation

(P,Q )Y = 0. (13)

oreover, its solutions ψ = (ψ1, . . . , ψℓ)t have entries belonging to
differential extension of finite algebraic transcendence degree Σ of
.

roof. The result follows by Theorem A and Lemma 1. □

Remark 2. Observe that Eq. (13) together with the structure of
Σ , a Picard–Vessiot field for the system (6), determines the space
of common solutions of (5).

The previous results indicate the interest of developing a theo-
ry of differential resultants for matrix differential operators in
Rℓ[D], which we initiate in this work and plan to develop in the
near future. To define a Sylvester style matrix whose determinant
is the resultant, the notion of Wronskian for MODOs developed
in [15] will be useful. In the remaining parts of this paper we
will apply Theorem A to guarantee the solvability of matrix-type
spectral problems.

4. Spectral curves for MODOs

Let us consider algebraic variables λ and µ with respect to ∂ .
hus ∂λ = 0 and ∂µ = 0 and we can extend the derivation ∂ of K
o the polynomial ring K [λ,µ]. Hence (K [λ,µ], ∂) is a differential
ing whose ring of constants is (C[λ,µ], ∂). Since Iℓλ is a matrix
n Mℓ(K [λ,µ]), given a matrix differential operator L in Rℓ[D]

e will denote by L − λ the matrix differential operator L − Iℓλ
n the matrix ring Mℓ(K (λ,µ))[D], extending the derivation D to
atrices with entries in the differential field K (λ,µ).
Given differential operators L and B in Rℓ[D] = Mℓ(K )[D], we

onsider the spectral problem

Y = λY , BY = µY , Y = (y1, . . . , yℓ)t . (14)

The spectral problem (14) can be studied using Theorem A for

= A0 + A1D and B =

n∑
j=0

BjDj, where n ≥ 1 , (15)

ssuming that A1 is invertible. More precisely, we will apply
heorem A to the matrix differential operators

P = L − λ = (A0 − Iℓλ) + A1D,
Q = B − µ = (B0 − Iℓµ) +

∑n
j=1 BjDj.

(16)

Let Nλ be the matrix Nλ = −A−1
1 (A0 − Iℓλ) in Mℓ(K (λ,µ)), and

onsider the differential system

Y = NλY with Nλ = −A−1
1 (A0 − Iℓλ). (17)

e will consider next the matrix differential resultant defined in
11) for P = L − λ and Q = B − µ,
Res(L − λ, B − µ) = detM(L − λ, B − µ) (18)

5

here

(L − λ, B − µ) = B0 − Iℓµ+

n∑
j=1

Bjpj(Nλ), (19)

ith pj defined by the recursion (7). With the above assumptions
e have the following statements.

emma 2. The differential resultant DRes(L − λ, B − µ) is a
olynomial f (λ,µ) in K [λ,µ], of degrees ℓ in µ and less than or
qual to ℓn in λ. More precisely

(λ,µ) = (−1)ℓµℓ + det(Bn) det(A−1
1 )nλnℓ + q(λ,µ), (20)

here the degree of q is less than ℓ in µ and less than nℓ in λ. Thus
the degree in λ is exactly nℓ if and only if det(Bn) ̸= 0.

Proof. By (19) M(L − λ, B − µ) is an ℓ × ℓ matrix with entries
in K [λ,µ]. Thus f (λ,µ) = detM(L − λ, B − µ) is a polynomial in
K [λ,µ]. Let us use (19) to obtain (20).

1. We will prove by induction the following claim:

pj(Nλ) = (A−1
1 )jλj +∆j−1, for every j ≥ 1 (21)

where ∆j−1 is a matrix whose entries are polynomials in λ
of degree less than or equal to j − 1.
By (7) we know that p1(Nλ) = Nλ = A−1

1 λ + ∆0 with
∆0 = −A−1

1 A0. Let us assume (21) to compute

pj+1(Nλ) = pj(Nλ)Nλ + pj(Nλ)′

= ((A−1
1 )jλj +∆j−1)(A−1

1 λ+∆0) + pj(Nλ)′

= (A−1
1 )j+1λj+1

+∆j,

where

∆j = (A−1
1 )j∆0λ

j
+∆j−1A−1

1 λ+∆j−1∆0 + pj(Nλ)′

is a matrix whose entries are polynomials in λ of degree
less than or equal to j.

2. We can now prove (20). The ℓ× ℓ matrix

M = M(L − λ, B − µ) = B0 − Iℓµ+

n∑
j=1

Bjpj(Nλ)

= B0 − Iℓµ+

n∑
j=1

Bj(A−1
1 )jλj + Bj∆j

has entries αi,jλ
n
+βi,j(λ)−δij µ where δij is the Kronecker

delta,

Bn(A−1
1 )n = (αi,j) ∈ Mℓ(K )

and

B0 +

n−1∑
j=1

Bjpj(Nλ) = (βi,j(λ)) ∈ Mℓ(K [λ]).

It is now immediate that (20) follows from

det(M) = det(αi,jλ
n
+ βi,j(λ) − δij µ)

= (−µ)ℓ + det(αi,j)λnℓ + q(λ,µ). □

Remark 3. We can consider the operators P = L − λ and
Q = B − µ with matrix coefficients with entries in F = K (λ,µ).
Let F be an algebraic closure of the differential field F , and C
its field of constants, which is known to be algebraically closed,
see (A.4) in the Appendix. In consequence, by Remark 5 in the
Appendix, there exists a fundamental matrix Ψλ of (17) in Mℓ(E)
such that DΨλ = NλΨλ, or equivalently

LΨ = λΨ , (22)
λ λ
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here E is a Picard–Vessiot extension of F for this differential
ystem.
To be more precise, the matrix coefficients of P and Q have

ntries in the differential ring K [λ,µ], whose ring of constants is
[λ,µ]. Observe that C[λ,µ] ⊂ C and K [λ,µ] ∩ C = C[λ,µ]. For

details, see Lemma 6 in the Appendix.

The next lemmas will be necessary to prove the main result in
this section.

Lemma 3. Given a solution ψ of (17) in Eℓ, the next identity holds

(B − µ)(ψ) = M(L − λ, B − µ) · ψ. (23)

Proof. By Remark 3 and Lemma 1 for P = L − λ and Q = B − µ
the equality follows. □

Lemma 4. Let us assume that L and B commute. Given a funda-
mental matrix of solutions Ψλ of LY = λY in Mℓ(E) the next identity
holds

(B − µ)(Ψλ) = Ψλ ·∆ , (24)

for some ℓ× ℓ matrix ∆ with entries in the field of constants C of E .

Proof. With notations as above, we consider Ψλ a fundamental
matrix satisfying (22). Moreover, observe that (B−µ)Ψλ satisfies
(22) as well, since

(L − λ)((B − µ)Ψλ) = (B − µ)((L − λ)Ψλ) = 0.

Hence, ∆ = Ψ −1
λ · (B − µ)Ψλ is differentially constant. □

We are ready to prove Previato’s Theorem for MODOs in this
situation, see [23,24] for Previato’s Theorem for ODOs.

Proof of Theorem B. With the previous notations, we consider
Ψλ a fundamental matrix satisfying (22). By Lemma 4

(B − µ)Ψλ = Ψλ ·∆ , (25)

for some matrix ∆ with entries in C. On the other hand, by
Lemma 3

(B − µ)Ψλ = M(L − λ, B − µ)Ψλ.

Therefore, since the fundamental matrix Ψλ is an invertible ma-
trix, we obtain that det(M(L − λ, B − µ)) = det(∆), so DRes(L −

λ, B − µ) is a polynomial in C[λ,µ], since K [λ,µ] ∩ C =

C[λ,µ]. □

From now on in this paper we will assume that L and B
commute. Therefore, using the matrix differential resultant we
compute

f (λ,µ) = DRes(L − λ, B − µ), (26)

the defining polynomial of the affine plane algebraic curve

Γ = {(λ,µ) ∈ C2
| f (λ,µ) = 0}. (27)

We will call Γ the spectral curve of the pair L, B. In
Sections 5 and 6 we establish an isomorphism between the ring
of this curve and the commutative subring C[L, B] of the ring of
MODOs, under an appropriate hypothesis on Γ .

In general Γ is not an irreducible curve, that is, Γ may have
more than one irreducible component. In Section 7, we give
Example 1 with an irreducible spectral curve and Example 2
where the spectral curve has two irreducible components. Thus
one open issue is to characterize the irreducibility of the curve Γ
or study the role of the irreducible components of Γ in the study
of the direct and inverse spectral problems.
6

We finish this section applying Theorem A to the pair L − λ0
and B − µ0, for some arbitrary point P = (λ0, µ0) in C2. We
onclude that the spectral problem

Y = λ0Y , BY = µ0Y . (28)

s a coupled problem by the algebraic relation f (λ0, µ0) = 0.

orollary 2. Given commuting matrix differential operators L and
in Rℓ[D], with L = A0 + A1D and invertible leading coefficient, let
s consider the polynomial f (λ,µ) defined by DRes(L − λ, B − µ).

Let P = (λ0, µ0) ∈ C2. The spectral problem

LY = λ0Y , BY = µ0Y . (29)

has a nontrivial solution if and only if f (P) = 0, that is P is a point on
the spectral curve Γ defined in (27). Moreover the common solution
ψ belongs to Σ0

ℓ, where Σ0 is a Picard–Vessiot extension for the
linear differential system

DY = Nλ0Y with Nλ0 = −A−1
1 (A0 − λ0Iℓ). (30)

5. The ideal of Burchnall-Chaundy polynomials

Let us consider commuting matrix differential operators L and
B in Rℓ[D], of respective orders 1 and n ≥ 1. We assume that the
leading coefficient of L is an invertible matrix. Using the matrix
differential resultant we compute

f (λ,µ) = DRes(L − λ, B − µ), (31)

the defining polynomial of the spectral curve Γ of the pair L, B,
see (27). We will prove next that f is a good candidate as a
polynomial of Burchnall–Chaundy type for the pair of commuting
MODOs L, B. We propose below the next conjecture: when λ is
replaced by L and µ is replaced by B then f becomes the zero
matrix differential operator, see Conjecture 1.

Consider the natural ring homomorphism

ρ : C[λ,µ] −→ Rℓ[D], (32)

efined by ρ(c) = cIℓ, for every c ∈ C ,

↦→ L and µ ↦→ B. (33)

hus

ai,jλiµj
↦→

∑
ai,jLiBj.

bserve that the image of ρ is a commutative subalgebra of
ℓ[D], namely the commutative algebra

[L, B] :=

{∑
ai,jLiBj

| ai,j ∈ C
}
. (34)

iven g ∈ C[λ,µ] we will denote its image ρ(g) by g(L, B).
Let us consider the kernel Ker(ρ) of ρ and observe that the

olynomials in Ker(ρ) play the role of Burchnall–Chaundy poly-
omials in the case of ODOs [16].

efinition 2. Given a pair of commuting MODOs L and B in
ℓ[D], with L of order 1 and invertible leading coefficient matrix,
e will say that g ∈ C[λ,µ] is a Burchnall-Chaundy (BC)
olynomial of the pair L, B if

(L, B) = 0.

We will prove next that f (L, B), for f defined in (31), is a
ODO, that becomes zero when considering its action on solu-

ions of L − λ.

heorem 1. Given commuting MODOs L and B in Rℓ[D], we
ssume that L has order 1, with invertible leading coefficient. Let us
onsider the polynomial f (λ,µ) = DRes(L − λ, B − µ) in C[λ,µ].
hen f (L, B)(Ψλ) = 0, for any fundamental matrix Ψλ of the system
Y = λY .
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roof. Let us prove that f belongs to Ker(ρ). We denote by Vλ
the eigenspace of L corresponding to the eigenvalue λ,

Vλ = {ψ ∈ Eℓ | Dψ = Nλψ}. (35)

By Remark 3 and Picard–Vessiot theory [13], Vλ is an ℓ-dimensio-
al C-vector space. We define Bλ as the restriction of B to the
igenspace Vλ:

λ : Vλ → Vλ ,

λ(ψ) = B(ψ) = (B − µ)(ψ) + µψ = (M + µIℓ)ψ,
(36)

here M = M(L − λ, B − µ) by Lemma 3. In consequence, the
matrix differential resultant is the characteristic polynomial of Bλ
ince the following equality holds

et(Bλ − µIℓ) = det(M) = f (λ,µ). (37)

y the Cayley–Hamilton Theorem, f (λ, B) = 0. In consequence
for Ψλ a fundamental matrix of (6) the Burchnall–Chaundy type
equality holds:

0 = f (λ, B)(Ψλ) = f (L, B)(Ψλ). □ (38)

Remark 4. The conclusion of Theorem 1 can be improved in
some cases. In [19], Grinevich studied commuting MODOs L1
nd L2, of orders m and n respectively, with analytic coefficients,

under some assumptions on their leading terms. In particular,
for L1 = L, with m = 1 and L2 = B and matrix coefficients
n Mℓ(C{x}), with entries in the ring C{x} of convergent power
eries, [19], Lemma 1, states that f (L, B) is the zero operator. In
his case, observe that our approach allows the computation of a
efining polynomial f of the spectral curve.
In Section 7, we show that f (L, B) is the zero MODO, that is f

s a BC-polynomial, for the first case of the AKNS hierarchy.

The previous remark motivates the following conjecture, the
roof of which is a challenging open problem.

onjecture 1. Let K be a differential field, whose field of constants
is algebraically closed and of zero characteristic. Let us consider

ommuting MODOs L and B with coefficients in Mℓ(K ), of respective
rders 1 and n ≥ 1 as in (15). Then the differential resultant (31) is
BC-polynomial, that is f (L, B) = 0.

efinition 3. With notations as above, we define the
urchnall-Chaundy (BC) ideal of the pair L, B to be the ideal
n C[λ,µ] defined by

C(L, B) = Ker(ρ) = {g ∈ C[λ,µ] | g(L, B) = 0}. (39)

Under the assumption f (L, B) = 0 then f is a BC polynomial
and BC(L, B) is a nonzero ideal. From the definition of ρ in (32)
we can now consider the isomorphism
C[λ,µ]

BC(L, B)
≃ C[L, B].

A natural question is whether C[L, B] is isomorphic to the ring of
the curve Γ defined in (27), but one encounters some difficulties
related with the algebraic nature of the situation described. More
precisely, since we are working with matrices, C[L, B] is not in
general an integral domain. In fact, from the previous isomor-
phism, we know that C[L, B] is an integral domain if and only
if BC(L, B) is a prime ideal. The next technical lemma will allow
us to obtain some conclusions about this issue.

Lemma 5. Let us assume that L and B commute, and let us consider
a fundamental matrix of solutions Ψλ of LY = λY in Mℓ(E). Given
a polynomial g(λ,µ) =

∑p
i=0 ai(λ)µ

i in C[λ,µ] the next identity
holds

g(λ,µ)Ψ = g(L, B)(Ψ ) +Θ(g)Ψ ∆, (40)
λ λ λ

7

for some matrix Θ(g) with entries in K [λ,µ] and some matrix ∆
with entries in C, whose determinant equals DRes(L − λ, B − µ).

Proof. By Lemma 4, we can define the constant matrix

∆ := Ψ −1
λ · (B − µ)(Ψλ) ∈ Mℓ(C).

Let us define the C-linear operator

∆̂ : Mℓ(E) → Mℓ(E), by ∆̂(S) = S ·∆,

on the C-vector space Mℓ(E). Thus Ψλ is a µ eigenvector for B−∆̂

and it follows immediately that

(B − ∆̂)i(Ψλ) = µiΨλ, i ≥ 1. (41)

In addition observe that the C-linear operators B and ∆̂ com-
mute, since ∆ has constant entries. The following formula is a
consequence of this fact,

(B − ∆̂)i(Ψλ) :=

i∑
k=0

(−1)i−k
(
i
k

)
Bk(Ψλ) ·∆i−k, i ≥ 1. (42)

Given a matrix A of size ℓ× ℓ we assume that A0
= Iℓ.

Now, consider an arbitrary polynomial of degree p in µ,
g(λ,µ) =

∑p
i=0 ai(λ)µ

i in C[λ,µ]. Then, applying (41) we obtain

g(λ,µ)Ψλ =

p∑
i=0

ai(λ)µiΨλ =

p∑
i=0

ai(λ)(B − ∆̂)i(Ψλ)

= g(λ, B)(Ψλ) +

p∑
i=1

ai(λ)[(B − ∆̂)i − Bi
](Ψλ).

(43)

Let M = M(L−λ, B−µ) and Mλ = M + Iℓµ. By Lemmas 3 and
4 we have

M · Ψλ = Ψλ ·∆ and Mλ · Ψλ = Ψλ · (∆+ µIℓ). (44)

Since B(Ψλ) = Mλ · Ψλ these by induction on k implies

Bk(Ψλ) = Mk
λ · Ψλ, k ≥ 1.

By (42), for 1 ≤ i ≤ p

[(B − ∆̂)i − Bi
](Ψλ) =

(
i−1∑
k=0

(−1)i−k
(
i
k

)
Bk(Ψλ) ·∆i−1−k

)
·∆

= Θi · Ψλ ·∆,

where, by (44) we have matrices

Θi =

i−1∑
k=0

(−1)i−k
(
i
k

)
Mk
λM

i−1−k
∈ Mℓ(K [λ,µ]).

Finally, from (43) and equality LΨλ = λΨλ the result follows

g(λ,µ)Ψλ = g(L, B)(Ψλ) +Θ(g) · Ψλ ·∆. (45)

where Θ(g) =
∑p

i=1 ai(λ)Θi ∈ Mℓ(K [λ,µ]). □

Theorem 2. Let us consider commuting MODOs L and B in Rℓ[D],
with L of order one and invertible leading coefficient. Given the
polynomial f (λ,µ) = DRes(L − λ, B − µ) in C[λ,µ], then the
following inclusions of ideals in C[λ,µ] hold

BC(L, B) ⊆ (fred), (46)

where fred = h1 · · · hs, with h1, . . . , hs the distinct irreducible factors
of f . Moreover, if f (L, B) = 0 then

(f ) ⊆ BC(L, B) ⊆ (f ). (47)
red
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roof. Given g ∈ BC(L, B) = Ker(ρ), by Lemma 5,

g(λ,µ)Ψλ = Θ(g)Ψλ∆. (48)

Taking determinants on both sides we obtain gℓ = det(Θ(g))f (λ,
µ), since det(∆) = f (λ,µ). It follows that det(Θ(g)) ∈ C[λ,µ].
This implies that the square free part fred of f divides the square
free part of g and proves that Ker(ρ) ⊂ (fred). In addition, if we
assume f (L, B) = 0, then (f ) ⊆ BC(L, B). □

Since the polynomial f (λ,µ) = DRes(L − λ, B − µ) may not
be irreducible, see Example 2 in Section 7, the ideal (f ) may not
be a prime ideal. The next corollary presents the conclusions in a
particular situation.

Corollary 3. Let us consider commuting MODOs L and B in
Rℓ[D], with L of order one and invertible leading coefficient. Given
f (λ,µ) = DRes(L − λ, B − µ), then the following statements hold
for some polynomial h = µ− R(λ) in C[λ,µ]:

1. If B ∈ C[L] then BC(L, B) = (h) and f (λ,µ) = hℓ.
2. If f = hℓ and f (L, B) = 0 then BC(L, B) = (hr ), for r minimal

such that h(L, B)r = 0, 1 ≤ r ≤ ℓ. In particular, if r = 1 then
B ∈ C[L].

Proof. Recall that by Lemma 2 the polynomial f has degree ℓ in µ.
Observe that if B ∈ C[L] then B − R(L) = 0, for some R(λ) ∈ C[λ].
Thus h = µ − R(λ) belongs to BC(L, B) and by Theorem 2 then
fred = h. Thus f = hℓ. Similarly we can prove 2. □

6. Commutative algebras of MODOs

As in the previous sections, let us consider L in Rℓ[D] of
order one and invertible leading coefficient matrix. Given B in the
centralizer of C(L) of L in Rℓ[D], let us assume that B is non trivial,
that is B /∈ C[L], see Corollary 3. From now on, we will assume
that f (L, B) = 0. In Remark 4 we provided evidences showing that
this hypothesis is satisfied in important families of examples.

In this section we give an algorithm to describe the commu-
tative algebras C[L, B] of MODOs in terms of products of rings of
irreducible algebraic curves. We start with the case where Γ is an
irreducible plane algebraic curve, that is, its defining polynomial
f has a unique irreducible factor h, and then f = hσ .

Theorem 3. Let us consider commuting MODOs L and B in Rℓ[D],
with L of order one and invertible leading coefficient. Let us assume
that Γ is an irreducible plane algebraic curve defined by f = hσ as
in (31) and that f (L, B) = 0. Then BC(L, B) = (hr ) for a positive
integer r minimal such that h(L, B)r = 0, 1 ≤ r ≤ σ . Moreover,

C[L, B] ≃
C[λ,µ]

(hr )
. (49)

If in addition f is irreducible in C[λ,µ], the algebra C[L, B] is an
integral domain whose maximal spectrum is isomorphic to Γ .

Proof. By Theorem 2 we know that (hσ ) ⊂ BC(L, B) ⊂ (h). Then
there exists r minimal verifying 1 ≤ r ≤ σ and h(L, B)r = 0. Thus
BC(L, B) = (hr ). Therefore, if f is irreducible, then r = 1, and the
result follows. □

We conclude that if Γ is an irreducible and reduced plane
algebraic curve, then the commutative ring of MODOs C[L, B] is
isomorphic to the ring of regular functions on Γ and therefore is
an integral domain. In addition Theorem 3 indicates that if f is not
irreducible, we can check whether its irreducible square free part
is a BC polynomial, and otherwise we can find a minimal power
hr which is a BC polynomial for the pair L, B.

The previous result allows to complete the classification of
commutative algebras of MODOs C[L, B] for order one operators
8

L with invertible leading coefficient matrix when K is any diffe-
rential field with algebraically closed field of constants C , in the
zero characteristic case. See Mulase et al. [26] for the differential
field K = C((x)).

For a non irreducible curve Γ , whose defining polynomial is
f = hσ11 · · · hσss , where each hi is irreducible, we consider now each
irreducible component

Γi = {(λ,µ) ∈ C2
| hi(λ,µ) = 0}. (50)

We repeat the argument of Theorem 3 for each irreducible com-
ponent Γi of the curve Γ .

Algorithm (BC-generator). Given commuting MODOs L and B
in Rℓ[D], with L of order one and invertible leading coefficient,
eturn a polynomial F in C[λ,µ] such that BC(L, B) = (F ).

1. Compute the differential resultant
f (λ,µ) = DRes(L − λ, B − µ).

2. If f (L, B) = 0 then factor f to obtain hσ11 · · · hσss , each hi
irreducible in C[λ,µ].

3. For each i = 1, . . . , s, compute the minimal integer ri, with
1 ≤ ri ≤ σi, such that∏
i

hi(L, B)ri = 0.

4. Return F = hr1
1 · · · hrs

s .

We prove the correctness of Algorithm BC-generator in the
ext proof of Theorem C. Observe that by Remark 4 the condition
(L, B) = 0 is always satisfies for matrices whose entries are

analytic functions.

Proof of Theorem C. By Theorem 2, we have (f ) ⊂ BC(L, B) ⊂

h1 · · · hs). Since f (L, B) = 0, there exist minimal integers ri, with
1 ≤ ri ≤ σi such that∏
i

hi(L, B)ri = 0.

hus F = hr1
1 · · · hrs

s ∈ BC(L, B) and BC(L, B) = (F ).
We can establish the isomorphism in (3), using the classical

decomposition of the quotient

C[L, B] ≃
C[λ,µ]

BC(L, B)
=

C[λ,µ]

(hr1
1 · · · hrs

s )
,

ee for instance [34] pag. 7. □

. The AKNS system

In 1974, Ablowitz, Kaup, Newell and Segur introduced in [35],
system of integrable nonlinear evolutionary equations called the
KNS system, whose stationary version is the nonlinear differen-
ial system
ı
2vxx + ıv2u = 0 ,
ı
2uxx + ıvu2

= 0 ,
(51)

hich can be regarded as the complexified nonlinear stationary
chödinger (nS) equation
ı
2
uxx ± ı|u|2u = 0, (52)

or v = ∓u∗ and u∗ the complex conjugate of u. In [36], Gesztesy
nd Holden provide a matrix recursion for an integrable ma-
rix hierarchy, called the AKNS hierarchy, whose first non trivial
ember has Eqs. (51) as integrability conditions. Its matrix pre-
entation provides a pair of MODOs L, B in R2[D] for matrix
oefficients with entries in the differential field K = C⟨u, v⟩,



E. Previato, S.L. Rueda and M.-A. Zurro Physica D 453 (2023) 133811

w
S

L

w

N

B

I
i

[

w

p

(

T

w
f

P
p
a

−

I

o

f

n
D
C
V

(

I
s

ξ

h

L

t
B
K

φ

a

2

φ

i
q

E
u

L

B

C
4
f

Ψ

here u and v satisfy (51), see Examples 1 and 2 of this section.
pecifically, let L be the 2 × 2 matrix

= ı
[
D u
v −D

]
= A0 + A1D,

ith A0 = ı
[
0 u
v 0

]
, A1 = ı

[
1 0
0 −1

]
.

(53)

ext consider the second order matrix differential operator

= ı
[
−2D2

− uv −2uD − ux
−2vD − vx 2D2

+ uv

]
= B0 + B1D + B2D2 , (54)

where

B0 = ı
[
−uv −ux
−vx uv

]
, B1 = ı

[
0 −2u

−2v 0

]
, B2 = ı

[
−2 0
0 2

]
.

This matrix B is matrix Q2 in [36], p. 180, for integration constants
c1 = 0 and c2 = 0 and potentials p = v and q = −u. The matrices
(53) and (54) can be found in [30] as L1 and L2 respectively, and
in that context, u and v are solutions to a complexified non-linear
Schrödinger (NLS) system, so that below we will take v to be the
complex conjugate of u, denoted by u∗,

u′′
+ 2u2v = 0 , v′′

+ 2v2u = 0 . (55)

n fact, it is easy to check that the commutator of these operators
s the zero order operator

L, B] =

[
0 −u′′

− 2u2v

v′′
+ 2v2u 0

]
, (56)

hich is the zero operator by (55).
Next we will study the spectral problem associated with the

air of operators L, B. This is the coupled eigenvalue problem

L − λI2)Y = 0 , (B − µI2)Y = 0 . (57)

he BC-ideal in this case is described by the following result.

Theorem 4. Let us consider commuting MODOs L and B in R2[D],
ith L of order one and invertible leading coefficient. If B /∈ C[L] and
(L, B) = 0, then BC(L, B) = (f ), for f (λ,µ) = Dres(L − λ, B − µ).

roof. In the case of matrix coefficients of size ℓ = 2, the
olynomial f has degree 2 in µ, see Lemma 2 . Hence the options
re limited to:

1. By Theorem 2, if f is irreducible or has two different irre-
ducible components then BC(L, B) = (f ).

2. If f is the square of a polynomial of type h = µ−R(λ), then
by Corollary 3, BC(L, B) = (h) if and only if B = R(L). Hence,
for B not a polynomial in L, we obtain BC(L, B) = (f ). □

The classification of algebras C[L, B] for MODOs of size ℓ = 2
follows from Theorem 4: If f has one irreducible component then,
by Theorem 3, then C[L, B] ≃ C[λ,µ]/(f ); If f = h1 · h2, by
Theorem C, then C[L, B] ≃ C[λ,µ]/(h1) × C[λ,µ]/(h2).

The differential resultant DRes(L−λ, B−µ) is the determinant
of the 2 × 2 matrix defined in (11) for Nλ,

Nλ = −A−1
1 (A0 − λI2) (58)

M(L − λ, B − µ) = B0 − µI2 + B1Nλ + B2(N2
λ + N ′

λ) (59)

=

[
−ıuv + 2 ıλ2 − µ ıu′

+ 2 uλ
ıv′

− 2 vλ ıuv − 2 ıλ2 − µ

]
. (60)

Moreover,

f (λ,µ) = DRes(L − λ, B − µ) = µ2
+ 4 λ4 + I0λ+ I1 (61)

where the differential polynomials I0 = u2v2 + v′u′ and I1 =

2 iv′u + 2 iu′v are first integrals of the NLS system (55), since
′
= 2uu′v2+2u2vv′

+v′′u′
+vu′′

= 0 , I ′ = −2ıv′′u+2ıu′′v = 0.
0 1 O

9

Consequently, the polynomial (61) defines a plane algebraic curve
Γ in C2, the spectral curve. Moreover, f (L, B) is a MODO of zero
rder, equal to

(L, B) =

[
2v(2u2v + u′′) 2(2u2v + u′′)′

−2(2v2u + v′′)′ 2u(2v2u + v′′)

]
, (62)

which is the zero operator by (55).
Next we will study the spectral problem associated with the

pair of operators L, B at a point P = (λ0, µ0). The spectral problem
(57) has associated the plane algebraic curve defined by f (λ,µ) =

Dres(L − λ, B − µ). Let us consider a point P on the curve Γ
with µ0 ̸= 0 (i.e. a nonbranching point). In particular, P is a
on singular point. Let E be a Picard–Vessiot field for the system
Y = Nλ0Y . Let Vλ0 be kernel of L − λ0. It is a 2-dimensional
-vector space. If we consider the operator B − µ0 restricted to
λ0 , we obtain

B − µ0)(ψ) = (B0 − µ0I)(ψ) + B1D(ψ) + B2D2(ψ) =

M(L − λ0, B − µ0) · ψ .
(63)

n addition, the matrix M(L − λ0, B − µ0) has zero determinant
ince f (P) = 0. Thus the linear map

: Vλ0 → Vλ0 , ξ (ψ) := M(L − λ0, B − µ0) · ψ, (64)

as a nontrivial kernel LP ,

P =
{
(ψ1, ψ2) :

(
−ıuv + 2 ıλ02 − µ0

)
ψ1

+
(
ıu′

+ 2 uλ0
)
ψ2 = 0

}
.

(65)

This kernel LP defines the one dimensional C-linear space of
he common solutions of the linear differential systems LY = λ0Y ,
Y = µ0Y , and the rational function in the fraction field of
[λ,µ]/(f )

(λ,µ, u, v) = −
−ıuv + 2 ıλ2 − µ

ıu′ + 2 uλ

satisfies φP := φ(P, u, v) =
ψ2

ψ1

(66)

s (λ−λ0, µ−µ0)/(f ) is a maximal ideal of the ring K [λ,µ]/(f ).
Moreover φP satisfies the Riccati-type equation φ′

P − uφ2
P −

ıλ0φP − v = 0, since
′
− uφ2

− 2ıλφ − v = −u · f (λ,µ) ,

n total agreement with [36], formula (3.62) with p = v and
= −u.

xample 1. If we consider K = C(e2ıx) and the NLS potentials
(x) = e−2ıx, v(x) = 2e2ıx, then

= ı
[

D e−2ıx

2e2ıx −D

]
,

= ı
[

−2D2
− 2 −2e−2ıxD + 2ıe−2ıx

−4e2ıxD − 4ıe2ıx 2D2
+ 2

]
.

onsequently, the spectral curve is defined by f (λ,µ) = µ2
+

(λ + 1)2(λ2 − 2λ + 3) = 0. Its branching points are obtained
or λ0 = −1, 1 + ı

√
2, 1 − ı

√
2. Observe that this curve is an

irreducible singular curve. The algebra C[L, B] is isomorphic to
the domain C[λ,µ]

(f ) . The common solution of the coupled spectral
problem (57) at a nonbranching point P = (λ0, µ0) is

=

(
1
φP

)
with φP = −

−2ı + 2ıλ20 − µ0

2 + 2λ0
· e2ıx .

Example 2. Next consider K = C(x) and the NLS potentials
u(x) = x and v(x) = 0. Then f (λ,µ) = µ2

+4λ4 and φ = −
2iλ2−µ

i+2xλ .
bserve that in this case the branching point is P = (0, 0).
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We know that f (L, B) = 0 but one can easily check that none
of the irreducible components of f , namely h1(λ,µ) = µ − 2iλ2
or h2(λ,µ) = µ + 2iλ2 are BC polynomials for the pair L, B.
he decomposition (3) in Theorem C gives the ring structure of
[L, B] ≃ C[λ,µ]/(µ2

+ 4λ4) as the product of C[λ,µ]/(hi). In
ther words, for a polynomial g ∈ C[λ,µ] we have

(L, B) = 0 ⇐⇒ h1|g and h2|g.
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ppendix. Differential algebra complements

Let N be the set of positive integers including 0. For concepts
in differential algebra we refer the reader to [13,37], or [38].

A differential ring is a ring R with a derivation ∂ on R. A
ifferential ideal I is an ideal of R invariant under the derivation.
differential ring R is called a simple differential ring if it has no
roper non zero differential ideals. We denote by

onst(R) = {r ∈ R | ∂(r) = 0} ,

hich is called the ring of constants of R. Assuming that R is a
ifferential domain, its field of fractions Fr(R) is a differential field
ith extended derivation

(f /g) = (∂(f )g − f ∂(g))/g2.

differential field (K , ∂) is a differential ring which is a field.
iven a ∈ K we denote ∂(a) by a′. Note that Const(K ) is a field

whenever K is. We assume that C := Const(K ) has characteristic
0.

Let α be an algebraic element over K . The derivation ∂ of K
can be extended to K (α), the minimum field generated by α and
K , with extended derivation

∂(α) = −
P (d)(α)
P ′(α)

, (A.1)

here P(T ) ∈ K [T ] is the minimal polynomial of α, P (d)(T )
denotes the polynomial obtained from P(T ) by derivating each
ne of its coefficients, and P ′(T ) stands for the formal derivative of
(T ) with respect to the variable T . In particular, if α is algebraic
ver C then α is a constant of K .
Moreover, we can extend the derivation ∂ of K to an algebraic

losure K
alg

of K using (A.1). Then, this algebraic closure has an
 f

10
algebraically closed field of constants, since

Const(K
alg

) = C
alg
. (A.2)

See for instance [39], Corollary 3.3.1.
For an ordinary differential system of equations, the above

algebraic theory can be applied as follows. Let us fix ℓ ∈ N,
̸= 0. The derivation ∂ is extended to a derivation D in the

ing Mℓ(K ) of matrices with coefficients in K , as follows. Given
= (aα,β ) ∈ Mℓ(K ) then D(A) := A′, with A′

= (a′

α,β ). Consider an
ordinary differential system

DY = AY , with A ∈ Mℓ (K ) , (A.3)

and Y = (y1, . . . , yℓ)t , DY = (y′

1, . . . , y
′

ℓ)
t .

Let R be a differential ring containing the differential field K
and having C as its field of constants. A matrixΦ ∈ Mℓ(R) is called
a fundamental matrix for Eq. (A.3) if Φ is invertible and the
equality DΦ = AΦ holds. Furthermore, if Φ and Ψ are both
fundamental matrices, then, applying the derivation, we obtain
that ∆ = Φ−1Ψ is a constant matrix. Consequently, Φ = Ψ∆ for
a matrix ∆ ∈ Mℓ(C).

The following definition establishes the necessary require-
ments so that a differential field contains the solutions of the
given differential system, and that it is the smallest differential
field with this property keeping the field of constants fixed.

Definition 4. A Picard-Vessiot ring over K for Eq. (A.3), is
a differential ring R over K satisfying:

1. R is a simple differential ring.
2. There exists a fundamental matrix Ψ for (A.3) with coef-

ficients in R, i.e., the matrix Ψ ∈ GLℓ(R) satisfies Ψ ′
=

AΨ .
3. R is generated as a ring by K , the entries of a fundamental

matrix Ψ and the inverse of the determinant of Ψ .

Its fraction field Σ is called the Picard-Vessiot field of this
ifferential system.

emark 5. Observe that any Picard–Vessiot ring R for Eq. (A.3)
s a domain, since R has no proper maximal differential ideals.
ee [13], Proposition 1.20. Moreover, assuming that the field of
onstants C is algebraically closed, a classical theory (Picard–
essiot Theory) guaranties the existence and uniqueness of the
icard–Vessiot field for Eq. (A.3). See [13], Proposition 1.22.

In this work we apply the previous considerations to the
ollowing framework.

Let λ and µ be algebraic variables with respect to ∂ . Thus
λ = 0 and ∂µ = 0. The derivation ∂ of K can be extended to
he polynomial ring K [λ,µ], and then (K [λ,µ], ∂) is a differential
ring whose ring of constants is (C[λ,µ], ∂).

We define F to be the differential field F = Fr(K [λ,µ]) =

(λ,µ) and F an algebraic closure of F . By formula (A.2) ap-
plied to the differential field F , the field of constants of F is
algebraically closed and equal to

C := Const(F)
alg
. (A.4)

Given a differential operator L in Mℓ(K )[D], we consider the
spectral problem

LY = λY , Y = (y1, . . . , yℓ)t .

This spectral problem can be studied for L = A0 + A1D, assuming
that A1 is invertible. Let Nλ be the matrix Nλ = −A−1

1 (A0 − Iℓλ) in
Mℓ(K [λ,µ]), and consider the differential system

DY = NλY with Nλ ∈ Mℓ(F). (A.5)

Let E be a Picard–Vessiot extension of F with field of constants C,
or the differential system (A.5), see Remark 5. Then, there exists
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a

D

F
C

L

C

P

C

R

fundamental matrix Ψ such that

Ψ = NλΨ , with Ψ ∈ Mℓ(E). (A.6)

urthermore, the polynomial ring C[λ,µ] can be recovered from
as read in formula (A.7).

emma 6. The polynomial ring C[λ,µ] equals

[λ,µ] = K [λ,µ] ∩ C . (A.7)

roof. Obviously we have C[λ,µ] ⊂ K [λ,µ]∩C. But the converse
is also true since the ring of constants of K [λ,µ] is C[λ,µ].
onsequently we obtain the required equality. □

eferences

[1] G. Wilson, Commuting flows and conservation laws for Lax equations,
Math. Proc. Cambridge Philos. Soc. 86 (1979) 131–143.

[2] V. Zakharov, A.B. Shabat, A scheme for integrating the non-linear equations
of mathematical physics by the inverse scattering method, Funct. Anal.
Appl. 8 (1974) 43–53, (Russian), 226–235 (English).

[3] B.A.E. Dubrovin, Completely integrable hamiltonian systems associated
with matrix operators and abelian varieties, Funct. Anal. Appl. 11, 4
(265-277), 51–108.

[4] R.C. Churchill, J.J. Kovacic, Cyclic vectors, in: Proceedings of the Interna-
tional Workshop. Differential Algebra and Related Topics, World Scientific,
New York, NY, 2002, pp. 191–218.

[5] N.M. Katz, A simple algorithm for cyclic vectors, Amer. J. Math. 109 (1)
(1987) 65–70.

[6] M. Chardin, Differential resultants and subresultants, in: Proc. FCT’91, in:
Lecture Notes in Comput. Sci., vol. 529, Springer-Verlag, 1991, pp. 471–485.

[7] S. McCallum, F. Winkler, Resultants: Algebraic and Differential, Techn. Rep.
RISC18-08, J. Kepler University, 2018.

[8] W. Li, C. Yuan, Elimination theory in differential and difference algebra, J.
Syst. Sci. Complex. (2019) 287–316.

[9] A. Kasman, E. Previato, Commutative partial differential operators, Physica
D 152–153 (2001) 66–77, Advances in Nonlinear Mathematics and Science:
A Special Issue to Honor Vladimir Zakharov.

[10] A. Kasman, E. Previato, Factorization and resultants of partial differential
operators, Math. Comput. Sci. 4 (2010) 169–184.

[11] J.F. Ritt, Differential Algebra, in: Amer. Math. Soc. Colloq. Publ., vol. 33,
1950.

[12] E.R. Kolchin, Differential Algebra and Algebraic Groups, in: Pure Appl. Math.
(Amst.), No. 54, Academic Press, Boston, MA, 1973.

[13] M. van der Put, M.F. Singer, Galois Theory of Linear Differential Equations,
in: Grundlehren Math. Wiss., vol. 328, Springer, 2012.

[14] J.J. Morales-Ruiz, Differential Galois Theory and Non-Integrability of
Hamiltonian Systems, in: Progr. Math., Birkhäuser, Basel, 1999.

[15] A. Kasman, On factoring an operator using elements of its kernel, Comm.
Algebra 45 (4) (2017) 1443–1451.

[16] J. Burchnall, T. Chaundy, Commutative ordinary differential operators, Proc.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 118 (1928) 557–583.

[17] J. Burchnall, T. Chaundy, Commutative ordinary differential operators II.
the Identity Pn

= Qm , Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 134
(1931) 471–485.
11
[18] H.F. Baker, Note on Commutative ordinary differential operators, by J.
L. Burchnall and T. W. Chaundy, Proc. R. Soc. Lond. Ser. A 118 (1928)
584–593.

[19] P.G. Grinevich, Vector rank of commuting matrix differential operators.
Proof of S. P. Novikov’s criterion, Math. USSR-Izv. 28 (3) (1987) 445–465.

[20] V. Oganesyan, Matrix commuting differential operators of rank 2 and
arbitrary genus, Int. Math. Res. Not. 2019 (3) (2017) 834–851.

[21] I. Krichever, Commutative rings of ordinary linear differential operators,
Funct. Anal. Appl. 12 (3) (1978) 175–185.

[22] J. Guo, A.B. Zheglov, On some questions around Berest’s conjecture. arXiv:
2203.13343.

[23] E. Previato, Another algebraic proof of Weil’s reciprocity, Atti Accad. Naz.
Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2 (2) (1991)
167–171.

[24] J.J. Morales-Ruiz, S. Rueda, M. Zurro, Factorization of KdV Schrödinger
operators using differential subresultants, Adv. Appl. Math. 120 (2020)
102065.

[25] K. Goodearl, Centralizers in differential, pseudo-differential and fractional
differential operator rings, Rocky Mountain J. Math. 13 (4) (1983) 573–618.

[26] M. Kimura, M. Mulase, Commutative algebras of ordinary differential op-
erators with matrix coefficients. https://arxiv.org/pdf/alg-geom/9604020.
pdf.

[27] J.L. Verdier, Équations différentielles algebriques, Lecture Notes in Math.
710 (1979) 101–122.

[28] Y. Li, M. Mulase, Category of morphisms of algebraic curves and a
characterization of Prym varieties. https://archive.mpim-bonn.mpg.de/id/
eprint/1604/.

[29] I. Krichever, Rational solutions of Kadomtsev-Petviashvili equation and
integrable systems of n particles on a line, Funct. Anal. Appl. 12 (1978)
59–61.

[30] E. Previato, Hyperelliptic quasi-periodic and soliton solutions of the
nonlinear Schrödinger equation, Duke Math. J. 52 (2) (1985) 329–377.

[31] E. Previato, S.L. Rueda, M.A. Zurro, Commuting ordinary differential oper-
ators and the dixmier test, SIGMA Symmetry Integrability Geom. Methods
Appl. 15 (101) (2019) 23.

[32] J.J. Morales-Ruiz, S.L. Rueda, M.A. Zurro, Spectral Picard–Vessiot fields for
Algebro-geometric Schrödinger operators, Ann. Inst. Fourier (Grenoble) 71
(3) (2021) 1287–1324.

[33] E. Previato, Multivariable Burchnall–Chaundy theory, Philos. Trans. R. Soc.
A 366 (2008) 1155–1177.

[34] M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra,
Addison-Wesley, 1969.

[35] M. Ablowitz, D. Kaup, A. Newell, H. Segur, The inverse scattering transform
- Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974)
249–315.

[36] F. Gesztesy, H. Holden, Soliton Equations and their Algebro-Geometric So-
lutions: Volume 1, (1+ 1)-Dimensional Continuous Models, in: Cambridge
Stud. Adv. Math., vol. 79, Cambridge University Press, 2003.

[37] T. Crespo, Z. Hajto, Algebraic Groups and Differential Galois Theory, in:
Grad. Stud. Math., vol. 122, American Mathematical Society, 2011.

[38] J.J. Morales-Ruiz, Differential Galois Theory and Non-Integrability of
Hamiltonian Systems, in: Progress in Mathematics, vol. 179, Birkhäuser,
1999.

[39] M. Bronstein, Symbolic Integration I: Transcendental Functions, Vol. 1,
Springer Science & Business Media, 2013.

http://refhub.elsevier.com/S0167-2789(23)00165-3/sb1
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb1
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb1
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb2
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb2
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb2
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb2
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb2
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb4
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb4
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb4
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb4
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb4
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb5
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb5
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb5
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb6
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb6
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb6
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb7
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb7
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb7
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb8
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb8
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb8
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb9
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb9
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb9
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb9
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb9
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb10
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb10
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb10
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb11
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb11
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb11
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb12
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb12
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb12
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb13
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb13
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb13
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb14
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb14
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb14
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb15
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb15
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb15
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb16
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb16
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb16
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb17
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb17
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb17
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb17
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb17
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb18
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb18
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb18
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb18
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb18
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb19
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb19
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb19
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb20
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb20
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb20
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb21
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb21
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb21
http://arxiv.org/abs/2203.13343
http://arxiv.org/abs/2203.13343
http://arxiv.org/abs/2203.13343
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb23
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb23
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb23
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb23
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb23
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb24
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb24
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb24
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb24
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb24
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb25
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb25
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb25
https://arxiv.org/pdf/alg-geom/9604020.pdf
https://arxiv.org/pdf/alg-geom/9604020.pdf
https://arxiv.org/pdf/alg-geom/9604020.pdf
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb27
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb27
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb27
https://archive.mpim-bonn.mpg.de/id/eprint/1604/
https://archive.mpim-bonn.mpg.de/id/eprint/1604/
https://archive.mpim-bonn.mpg.de/id/eprint/1604/
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb29
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb29
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb29
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb29
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb29
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb30
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb30
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb30
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb31
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb31
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb31
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb31
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb31
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb32
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb32
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb32
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb32
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb32
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb33
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb33
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb33
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb34
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb34
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb34
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb35
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb35
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb35
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb35
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb35
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb36
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb36
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb36
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb36
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb36
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb37
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb37
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb37
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb38
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb38
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb38
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb38
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb38
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb39
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb39
http://refhub.elsevier.com/S0167-2789(23)00165-3/sb39

	Burchnall–Chaundy polynomials for matrix ODOs and Picard–Vessiot Theory
	Introduction
	Matrix coefficient ODOs
	Characterizing common solutions
	Spectral curves for MODOs
	The ideal of Burchnall-Chaundy polynomials
	Commutative algebras of MODOs 
	The AKNS system 
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Differential Algebra Complements
	References


