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ABSTRACT: This work numerically investigates dense disordered
(maximally random) jammed packings of hard spherocylinders of
cylinder length L and diameter D by focusing on L/D ∈ [0,2]. It is
within this interval that one expects that the packing fraction of
these dense disordered jammed packings ϕMRJ hsc attains a
maximum. This work confirms the form of the graph ϕMRJ hsc
versus L/D: here, comparably to certain previous investigations, it
is found that the maximal ϕMRJ hsc = 0.721 ± 0.001 occurs at L/D =
0.45 ± 0.05. Furthermore, this work meticulously characterizes the
structure of these dense disordered jammed packings via the special
pair-correlation function of the interparticle distance scaled by the
contact distance and the ensuing analysis of the statistics of the
hard spherocylinders in contact: here, distinctly from all previous investigations, it is found that the dense disordered jammed
packings of hard spherocylinders with 0.45 ≲ L/D ≤ 2 are isostatic.

1. INTRODUCTION

Systems of hard particles are basic model systems with which to
investigate [(soft-)condensed] states of matter.1,2 One aspect of
this investigation concerns the determination of those packings,
i.e., single configurations of hard particles that satisfy the
nonoverlap constraint, that are very dense; in particular, the
determination of those packings that are the densest under
certain conditions.1,2 One example is the determination of the
absolutely densest packings; another example is the determi-
nation of the relatively densest packings among those that are
classifiable as disordered and jammed.1,2

To date, most work has focused on unicomponent packings of
hard (three-dimensional) spheres. Since (at least) J. Kepler,3 it is
(essentially) known that hard spheres pack most densely in the
hexagonal-close-packed crystal and its stacking variants that
include the face-centered-cubic lattice. If ρ is the number density
and v the volume of the hard particles, the maximal value of the
packing fraction ϕ = ρv that hard spheres attain is

/(3 2 )max hs = .4 More complicated and subtler is the
problem of the random close packing5 or, more modernly and
precisely, the maximally random jammed (MRJ) state6 of hard
spheres. The difficulty in finding first a consensus definition of
this nonequilibrium state and then a rigorous analytic
calculation of ϕMRJ hs is palliated by the relative ease with
which this nonequilibrium state and ϕMRJ hs ≃ 0.64 are
reproduced in numerical and real experiments.5−7

Similar numerical and real experiments can be adapted to
investigate the densest-known and dense disordered (maximally
random) jammed packings of hard-nonspherical particles.

Numerous hard-nonspherical particles whose densest-known
and dense disordered jammed packings have been investigated
are actually familiar since the school years:

(i) Ellipsoids, both uniaxial and biaxial:8−17 Arguably, they
are the most direct generalization of hard spheres since an
ellipsoid is an affine transformation of a sphere; yet, the
densest-known packings of hard ellipsoids are signifi-
cantly more complicated and denser8,9,11,17 than the
packings that result from applying the same affine, ϕ-
invariant, transformation to the densest packings of hard
spheres.

(ii) (Circular right) Cylinders: The only hard-nonspherical
particle for which a mathematical proof of the densest
packings was released,18 and an experimental measure-
ment of the probability distribution of the number of
contacts per hard particle in dense disordered jammed
packings was reported.19
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(iii) The Platonic polyhedra as well as the Archimedean
polyhedra:20−29 Out of all of these hard polyhedra, the
hard tetrahedron emerged for the assortment of its
candidate densest-known packings20−24,26 and seemingly
being the hard convex nonspherical particle that disorder-
edly packs most densely.24,25,27,29

One more specialist hard-nonspherical particle is the hard
spherocylinder. It is formed by capping both ends of a hard
cylinder of a length L and a diameter D with an equidiameter
hard hemisphere (Figure 1) so that

v D
L
D6

1
3
2

3i
k
jjj y

{
zzz= +

This seeming complication is instead very useful. L. Onsager
did introduce this type of hard-nonspherical particles so as to
show that the expression of their excluded volume is unusually
very simple.31 This simplification facilitates any theoretical
investigation of the isotropic fluid�nematic liquid-crystal phase
behavior of hard-spherocylinder systems.31−33 To detect
whether two hard spherocylinders would overlap or not
amounts to computing the shortest distance between two
segments, for which the algorithm is very simple. This
simplification facilitates any numerical simulation investigation
of hard-spherocylinder packings and systems; in particular, it
facilitated the investigation of their complete phase behavior. In
addition to the lower-density isotropic phase and the higher-
density crystal phase, it features a plastic(rotator)-crystal phase
for values of L/D sufficiently close to 0 and two liquid-crystal
phases for values of L/D sufficiently far from 0.34 The
combination of a central cylinder with two extremal hemi-
spheres suggests to combine the results for the densest hard-
sphere packings3,4 and those for the densest hard-cylinder
packings18 to confidently surmise that
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for the densest hard-spherocylinder packings.35

Dense disordered compact hard-spherocylinder packings
have also been already investigated.36−43 These previous
works agree that hard spherocylinders disorderedly pack more
densely than hard spheres, provided the value of L/D is not too
large. The values of the packing fraction that they report are,
however, not concordant.36−43 In addition, not all of these
previous works report the mean numbers of contacts per hard
spherocylinder. Those that do report these mean numbers are,
however, not concordant, and the values that they report are
always hypostatic, even for larger values of L/D.36,39,41,43

Under these circumstances, this work would like to revisit
dense disordered jammed packings of hard spherocylinders by

focusing on L/D ∈ [0,2]. It calculates not only their packing
fraction ϕMRJ hsc and the mean number of contacts per hard
spherocylinder ⟨nc⟩ but also further and meticulously character-
izes their microstructure. Here, this characterization is based on
the special pair-correlation function g(s) of the scaled distance s
that is obtained by dividing the distance between two hard-
spherocylinder centers by their orientation-dependent contact
distance.

By essentially using Monte Carlo numerical simulations in the
isobaric(-isothermal) ensemble, dense packings are produced
that are effectively MRJ (section 2.1). The subroutine that
analyzes these jammed configurations to provide g(s) also
provides a number of structural descriptors by which one could
monitor how the microstructure of the MRJ packings changes as
L/D increases from the hard-sphere point L/D = 0 (section 2.2).

Here, comparably to two previous works,41,43 it is found that
the maximal ϕMRJ hsc = 0.721 ± 0.001 occurs at L/D = 0.45 ±
0.05. Concurrently to attaining this maximum, ⟨nc⟩ nearly
attains the isostatic value of 2 × 5 = 10. Here, distinctly from all
previous works,36,39,41,43 it is found that the isostatic value is
maintained at larger values of L/D (section 3).

One observes that L/D ≃ 0.45 seemingly coincides with the
value of L/D at which the plastic(rotator)-crystal phase
disappears in the equilibrium phase diagram,34,44 while it still
is too small a value for allowing liquid-crystal phases to appear in
the equilibrium phase diagram.34 One may surmise that L/D ≃
0.45 is “optimal” for all of these three reasons: (i) it is the value of
L/D for which the MRJ state is the densest; (ii) it is the smallest
value of L/D for which isostaticity is obtained in the MRJ state;
and (iii) it is the smallest value of L/D for which neither a
plastic(rotator)-crystal phase nor a liquid-crystal phase are
thermodynamically stable. In the future, to assess whether the
concurrence of all of these facts is a mere coincidence or rather
the symptom of anything more profound in the hard-
nonspherical-particle (jammed) configuration space may
deserve close attention (section 4).

2. METHODS
2.1. Production of the Dense Disordered Jammed

Packings. To produce dense disordered jammed packings of
hard spherocylinders, it was opted for a procedure that
essentially consists of a progression of (precipitous) compres-
sions. It is based on the Monte Carlo (MC) method45,50,51 in the
isobaric(-isothermal) (NPT) ensemble46,47,50,51 with, impor-
tantly, a deformable container48−50 as well as the usual periodic
boundary conditions.45−51 It should be equivalent to a stochastic
version of the adaptable shrinking cell method that has been
used to produce either densest-known or MRJ packings of a
number of hard noncircular or nonspherical particles.22,23,27,52,53

One started by considering configurations of N hard
spherocylinders that were produced in equilibrium MC-NPT
calculations of as many hard spherocylinders with L/D = 5 at P*
= PD3/(kB T) = 1, where P is the pressure, kB is the Boltzmann
constant, and T is the absolute temperature. For this value of
dimensionless pressure, a system of hard spherocylinders with
L/D = 5 equilibrates in the isotropic phase with ϕ ≃ 0.2.34

Configurations that were produced in these equilibrium MC-
NPT calculations are devoid of any interparticle overlap. They
remain eligible configurations should they be used to start
numerical simulations of as many hard spherocylinders with the
same value of D and a value of L < 5D.

One of these configurations was then used to start a first MC-
NPT calculation at P* = 1 of a system of N hard spherocylinders

Figure 1. Example spherocylinder, specifically one with L/D = 2, with L
as the length of the central cylindrical part and D as the diameter of the
central cylindrical part and of the two extremal hemispherical parts. The
image was produced by the program QMGA.30
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with the same value of D and a value of L that corresponded to
the value of L/D that was under consideration; the last
configuration of this MC-NPT calculation was then used to start
a second MC-NPT calculation at P* = 10; and so on; at each
step of such a sequence of MC-NPT calculations, the value of P*
was incremented by a factor of 10 until P* = 109 was reached.
Each of these ten MC-NPT calculations lasted 105 MC cycles. In
any of these MC-NPT calculations, an MC cycle consisted of 2N
+ 1 attempts of a change: with a probability N/(2N + 1), a
random translation, of maximal length δt, of the center of a
randomly selected hard spherocylinder;45−51 with a probability
N/(2N + 1), a random rotation, of maximal angle δr, of the
cylindrical axis of a randomly selected hard spherocylinder;50

and with a probability 1/(2N + 1), a random variation, of
maximal length δc, of a randomly selected element of the (e.g.,
upper) triangular 3 × 3 matrix that described the container.48−50

Random translations and random rotations were accepted if
they did not cause any overlap of the hard particle with the
remaining hard particles; random variations of the container
were accepted if they passed the characteristic MC-NPT
exponentiated test46,47,50,51 and they did not cause any overlap
between the hard particles. In any of these MC-NPT
calculations, for each of these three types of attempted change,
the respective maximal amount of change was usually such that
the respective probability of acceptance was around 20−30%.
However, especially at the largest values of P*, the values of δt, δr,
and δc could be as large as to determine a respective probability
of acceptance of only a few percent. To assess whether an
effectively jammed state had been obtained at last, each hard
spherocylinder of the last configuration of the last MC-NPT
calculation at P* = 109 was progressively inflated while
maintaining the same value of L/D until overlaps were detected;
usually, L and D of a hard spherocylinder could be increased only
by a factor smaller than 1 + 10−7. The configuration of these
barely inflated hard spherocylinders remained essentially stable
in an MC calculation in the canonical ensemble, with a
deformable container, that was started from it and lasted another
105 MC cycles; no systematic drift in the hard-spherocylinder
positions and orientations could be observed. The configuration
of these barely inflated hard spherocylinders was then
considered as the final, effectively jammed configuration of the
procedure.

For each value of L/D under consideration, this procedure
was carried out first with N = 220 to acquire preliminary results
and then with N = 500 to acquire more definitive results. In the
last case, it was repeated seven times, each time starting with a
different configuration of N = 500 hard spherocylinders with L/
D = 5 that was obtained in those equilibrium MC-NPT
calculations at P* = 1. For each value of L/D under
consideration, the seven final effectively jammed configurations,
each one with its own ϕ, were statistically analyzed.
2.2. Statistical Analysis of the Dense Disordered

Jammed Packings. 2.2.1. Ordinary Pair-Correlation Func-
tions. The most basic pair-correlation function is the positional
pair-correlation function g(r). For a configuration of (hard)
particles, it can be theoretically defined as

g r
N
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1 1

( )
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=
= = (1)

where δ(r) is the usual (radial) delta function and rij = |ri⃗j| is the
modulus of the distance vector ri⃗j = rij rîj between the centroids of

the ith (hard) particle and of the jth (hard) particle; while it can
be practically defined as

g r
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where dn(r) is the (infinitesimal) mean number of (hard)
particles that are at a distance between r and r + dr from a (hard)
particle and dnideal(r) is the analogous (infinitesimal) mean
number of ideal (overlappable) particles in an equidense system
of ideal (overlappable) particles.

For a configuration of (hard) nonspherical particles,
(bond‑)orientational pair-correlation functions can also be
defined, such as
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where P2(x) is the second-order Legendre polynomial and ûi is
the unit vector along a (symmetry) axis of the ith (hard)
nonspherical particle that contributes to describing its
orientation; here, ûi is along the cylindrical axis of the ith hard
spherocylinder.

While g(r) informs on the positional pair correlations between
the (hard) particle centroids, G2

û(r) and G2
r ̂(r) inform on the

(bond-)orientational pair correlations between the (hard)
nonspherical particle (symmetry) axes and interparticle distance
vectors. If the graphs of these pair-correlation functions have a
(dense-)fluid-like form and g(r) attains a limit value of
(essentially) unity and G2

û(r) and G2
r ̂(r) attain a limit value of

(essentially) zero, the packing is considered both positionally
and orientationally globally disordered.

2.2.2. Special Pair-Correlation Function and Statistics of
Contacts. The statistical analysis of the dense disordered
jammed packings of hard spherocylinders is actually based on
the special pair-correlation function g(s) of the scaled distance s.

For a pair of hard spherocylinders i and j, whose distance
vector between their centers is ri⃗j and the respective orientation
is described by the unit vector ûi and the unit vector ûj, the scaled
distance s is defined as

s
r

r u u( , , )
ij

ij i j
=

(5)

where σ(rîj, ûi, ûj) is the contact distance between the hard
spherocylinders i and j. It is the distance between their centers at
which they contact once they are moved along the direction rîj,
while their orientations ûi and ûj are maintained fixed. Since hard
spherocylinders are convex: if rij ≥ σ(rîj, ûi, ûj) then the two hard
spherocylinders do not overlap, while they do if rij < σ(rîj, ûi, ûj).
Thus, σ(rîj, ûi, ûj) can be numerically determined by the simple
and reliable bisection algorithm or the more sophisticated and
equally reliable Brent algorithm,54 as the zero of the overlap
function
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which is a function of rij that parametrically depends on rîj, ûi and
ûj.

The pair-correlation function g(s) can be defined as

g s
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where dn (s) is the (infinitesimal) mean number of hard particles
that are at a scaled distance between s and s + ds from a hard
particle and dnideal (s) is the analogous (infinitesimal) mean
number of overlappable (ideal) particles of the same geometry in
an equidense system of overlappable (ideal) particles of the
same geometry. In three dimensions
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the completely orientationally averaged excluded volume,55

which, for two congruent hard spherocylinders, is actually equal
to the following:31
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For a system of hard-nonspherical particles, the pair-correlation
function g(s) offers a generalization of the usual g(r) for a system
of hard spheres. It is a measure of the correlation between a pair
of hard particles that are separated by the same scaled distance s.
In particular, it considers as equally “nearby” two parallel hard
spherocylinders in either an end-to-end arrangement or a side-
by-side arrangement, while the ordinary pair-correlation
functions would always consider the two hard spherocylinders
in the former arrangement as “far apart.”

The determination of the contact distance that is required in
the calculation of g(s) naturally allows for a definition of contact
between two hard particles. Two hard particles are defined as
exactly in contact if s = 1, while they can be defined as effectively
in contact if 1 ≤ s ≤ 1 + ds. Thus, in a calculation of g(s), one can
also tally the number of hard particles nc that contact another
hard particle and then construct the corresponding probability
distribution Π(nc) from which the mean number of contacts per
hard particle ⟨nc⟩ results.

Once the hard particles in contact have been detected, one can
assess their degree of (bond-)orientational order. If i is the
reference hard spherocylinder and j one of its nc contacting
neighbors
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are quantifiers of the local (bond-)orientational order of the j =
1, ···, nc contacting neighbors; here, ⟨ ⟩ signify the average over
all of those hard spherocylinders i that contact nc hard
spherocylinders j.

Once the hard particles in contact have been detected, one can
locate the contact points. One can differentiate as to whether

they occur on the cylindrical part or any of the two
hemispherical parts of the two hard spherocylinders in contact.
This enables the calculation of the fraction of contact points that
are of the cylindrical−cylindrical type fcc, the fraction of contact
points that are of the cylindrical−spherical type fcs, and the
fraction of contact points that are of the spherical−spherical type
fss. One can also probe the microstructure of the contact points
via the calculation of their pair-correlation function gcp(r), whose
definition, mutatis mutandis, coincides with eqs 1 and 2.56

3. RESULTS
By the procedure of section 2.1, dense disordered jammed
packings of hard spherocylinders with L/D ∈ [0,2] have been
produced; from the hard-sphere point L/D = 0, the values of L/
D have been incremented in steps of 0.1; for each of these values
of L/D, seven jammed configurations have been produced.

For any hard-particle packing, the principal characteristic is its
ϕ. For the present hard-spherocylinder MRJ packings, their
ϕMRJ hsc abruptly increases as the hard-sphere point L/D = 0 is
departed from, attains a maximum at L/D = 0.45 ± 0.05, whose
value is 0.721 ± 0.001, and gently decreases as L/D further
increases [Figure 2a]. This behavior agrees with the results of
previous numerical simulations on hard-prolate-ellipsoid MRJ
packings.10,14 Overall, this behavior also agrees with the results
of previous numerical simulations on hard-spherocylinder dense
disordered compact packings36−43 [Figure 2b]. For these
previous dense disordered packings10,14,36−43 as in Figure 2a,
the maximal ϕ occurs at a value of aspect ratio approximately
equal to 3/210,14,36−43 and its value is approximately equal to
0.72,10,14,41,43 a value significantly larger than that of ϕMRJ hs.

5−7

However, from a comparison of the present data of ϕMRJ hsc with
previous data of ϕ of dense disordered compact packings of hard
spherocylinders,36,38,39,41−43 differences are apparent: the
present hard-spherocylinder MRJ packings are generally denser,
especially for L/D ≳ 0.45 [Figure 2b].

The reason for these differences probably lies in the different
procedures to produce dense disordered packings. Consistently
with previous data of ϕ of hard-prolate-ellipsoid MRJ
packings,10,14 the present data of ϕMRJ hsc were obtained by
employing a procedure that is based on a numerical simulation
method: previous hard-prolate-ellipsoid MRJ packings were
produced by employing a procedure that is based on the
molecular dynamics method,10,14 while present hard-spherocy-
linder MRJ packings were produced by employing a procedure
that is based on the MC method. Instead, most previous data of
ϕ of dense disordered compact packings of hard spherocylinders
were obtained by employing a method that was termed the
mechanical contraction method36 or its variants.38,39,41−43 It was
already noticed36,39,42 that the mechanical contraction method
had to be supplemented either with an MC method36,42 or a
molecular dynamics method39 so as to be able to produce denser
disordered packings. In the previous investigations of hard-
prolate-ellipsoid MRJ packings and the present investigation of
hard-spherocylinder MRJ packings, configurations were (effec-
tively) compressed while always preserving the nonoverlap
constraint and, importantly, using a deformable container and
effective jamming was checked for. In the previous investigations
of dense disordered compact packings of hard spherocylinders
that employed the mechanical contraction method or its
variants, configurations evolved in such a manner that
spherocylinders ended up overlapping and these overlaps had
to be removed by moving the spherocylinders within a varying
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container which, however, was always maintained cubic, and
effective jamming was generally left unchecked.

To confirm that all of the hard-spherocylinder dense jammed
packings are positionally and orientationally globally disordered,
the jammed configurations have been directly visualized (Figure
3), and the ordinary pair-correlation functions g(r), G2

û(r), and
G2

r(̂r) have been calculated and observed to have a graph with a
(dense-)fluid-like form and essentially attain the respective long-
distance limits of unity and zero (Figure 4).

Once the positional and orientational global disorderliness of
the hard-spherocylinder dense jammed packings has been
confirmed, the investigation has directed to the characterization
of the contacts between the hard spherocylinders.

To this aim, the principal instrument here is the pair-
correlation function of the scaled interparticle distance g(s).
This special pair-correlation function is not only a generalization
for hard-nonspherical particle systems of the g(r) for hard-
sphere systems but, when it is calculated for hard-particle
jammed packings, also allows for a definition of the interparticle
contacts and, consequently, their detection and the obtention of
their statistics.

The (dense-)fluid-like form of the graph of g(s) and the
attainment of the limit value of unity by the g(s) further confirm
the positional and orientational global disorderliness of the hard-
spherocylinder dense jammed packings. In particular, the
(dense-)fluid-like form of the graph of g(s) excludes any
discernible [plastic(rotator)-]crystallinity, while the limit value
of unity that g(s) attains excludes any liquid-crystallinity (Figure
5). The changes that this special pair-correlation function
experiences as the elongation of the hard spherocylinders
progressively increases let one appreciate that it is the hard-
sphere MRJ g(r/D) ≡g(s) [Figure 5a] that exhibits the most
pronounced beyond-contact degree of short-range order [cf.
Figure 5a with Figure 5b,c,d] and that this degree of short-range
order progressively decreases as L/D increases [Figure 5b,c,d].

In the statistical analysis of the jammed configurations to
calculate g(s), the contacts between the hard spherocylinders are
detected. This allows the calculation of the probability
distribution Π(nc) that a hard spherocylinder contacts with nc
neighbors (Figure 6) and, hence, of the mean number of
contacts per hard spherocylinder ⟨nc⟩ [Figure 7a].

From a value ⟨nc⟩ ≃ 6.7 at the hard-sphere point L/D = 0,
larger than the isostatic value 2 × 3 = 6 yet in agreement with
previous real experiments on hard-sphere MRJ packings,5,7 ⟨nc⟩
increases with L/D [Figure 7a]. This behavior is in common
with the behavior of hard-prolate-ellipsoid MRJ packings10,14

and of hard-spherocylinder dense disordered compact pack-
ings36,39,41,43 [Figure 7b].

This increase persists until the isostatic value 2 × 5 = 10 is
approximately attained at a value of L/D that seemingly
coincides with the value of L/D at which the maximal ϕMRJ hsc
occurs [cf. Figures 2a and 7a]. The isostatic value ⟨nc⟩ ≃ 10 is
maintained in the present MRJ packings of hard spherocylinders
with L/D ≳ 0.45 [Figure 7a]. The maintenance of isostaticity in
the present MRJ packings of hard sufficiently elongated
spherocylinders is consistent with the results of previous
numerical simulations on hard-prolate-ellipsoid MRJ packings,
which report that ⟨nc⟩ ≃ 10 for MRJ packings of hard sufficiently
elongated prolate ellipsoids.10,14 The maintenance of isostaticity

Figure 2. (a) Maximally random jammed state packing fraction of hard
spherocylinders ϕMRJ hsc as a function of L/D (black circles; data are the
average over the respective seven jammed configurations; the error
bars, which typically are ∼0.001, are the corresponding standard
deviation; the gray region corresponds to those values of ϕ that are
prohibited as they are larger than the corresponding value of ϕmax hsc).
(b) Comparison of the present data of ϕMRJ hsc (black circles) with
previous data of ϕ of dense disordered compact packings of hard
spherocylinders ϕddc hsc (various symbols, each symbol corresponding
to a previous work as the legend indicates).

Figure 3. Example image of a jammed configuration of hard
spherocylinders with L/D = 0.5. The color or tint of gray of a hard
spherocylinder is related to the angle that its cylindrical axis forms with
an arbitrary axis, e.g., the y-axis, of the frame of reference. The image was
produced by the program QMGA.30
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in the present MRJ packings of hard sufficiently elongated
spherocylinders is instead not consistent with the results of
certain previous numerical simulations on dense disordered
compact packings of hard spherocylinders, which tend to report
⟨nc⟩ < 10 also for dense disordered compact packings of hard
sufficiently elongated spherocylinders,36,39,41,43 while other
previous numerical simulations on dense disordered compact
packings of hard spherocylinders did not report any value of
⟨nc⟩37,38,40,42 [Figure 7b].

In line with the above comments on ϕ (Figure 2), the
maintenance of isostaticity in the previous MRJ packings of hard
ellipsoids10,14 and present MRJ packings of hard spherocylinders
vis-a-̀vis its deficiency in the previous dense disordered compact
of hard spherocylinders36,39,41,43 (Figure 7) can be explained by
the different procedures to produce dense disordered packings
and their (in)capability of producing disordered packings that
are very dense and jammed with a well-established contact
network.

One argument has been provided to justify that the hypostatic
value ⟨nc⟩ = 8 would exclusively apply to MRJ packings of hard
sufficiently elongated spherocylinders.58,59 This argument is
based on the surmise that, as L/D increases, the probability of
cylinder−cylinder contacts prevails over that of cylinder−sphere
contacts and that of sphere−sphere contacts so much that since
the cylinder−cylinder contacts are coplanar, an effective
reduction of the degrees of freedom by 1 would result; this
would then lead to a mean number of contacts per hard
spherocylinders equal to 2 × 4 = 8.58,59 Consistently with this
argument, a mean-field theory predicts that, once having
attained its maximum at L/D ≃ 0.5, the value of ϕ significantly

drops for dense disordered jammed packings of hard
spherocylinders with L/D > 0.5, and a hypostatic value ⟨nc⟩ ≃
8 already occurs for dense disordered jammed packings of hard
spherocylinders with a value of L/D as small as 1.58,59 These two
mean-field theoretical predictions contrast with the present
results in Figure 2 and in Figure 7.

This work can assess the validity of that argument and, hence,
further test the validity of that mean-field theory for hard-
spherocylinder dense disordered jammed packings. To this aim,
one has to (1) further confirm that the hard-spherocylinder
jammed packings are not only globally disordered but also
locally essentially disordered; this is essential to discard the
possibility that the larger values of ⟨nc⟩ that the present work
finds could be due to considerable local (bond-)orientational
order; (2) with this being confirmed, calculate the fraction of the
three types of contacts: cylinder−cylinder fcc, cylinder−sphere
fsc and sphere−sphere fss.

The locally (bond-)orientationally disordered character of the
present hard-spherocylinder MRJ packings is confirmed by the
small values that n( )u c and n( )r c take on, especially for the
most probable values of nc [Table 1a−d]. One observes that the
values of u tend to be positive (nematic) for the smallest (and
little probable) value of nc and negative (antinematic) for the
largest (and little probable) value of nc. These two facts agree
with the common experience: if one has to positionally
disorderedly arrange a number of hard rods in contact with a
reference hard rod, this number has to be relatively small if the
hard rods are maintained parallel to the reference hard rod, while
this number can significantly increase if the hard rods are
allowed to be perpendicular to the reference hard rod.

Figure 4. Pair-correlation functions g(r), G2
û(r), and G2

r(̂r) for dense disordered jammed packings of hard spherocylinders with (a, b, c) L/D = 0.3; (d,
e, f) L/D = 1.1; and (g, h, i) L/D = 1.9 (in each panel, the graph is the average over the respective seven jammed configurations).
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Expectedly, the fraction of the sphere−sphere type of contacts
fss decreases with L/D [Figure 8a]. However, its decrease is not
as marked as one could have naıv̈ely believed; even for a value of
L/D as large as 1.9, fss ≃ 0.22 [Figure 8a], a fraction hardly
considerable as negligible. In addition, it is the fraction of the
cylinder−sphere type of contacts fcs, a type of contact that still
involves one of the hemispheres, that prevails for L/D ≳ 0.7
[Figure 8a]. The fraction of the cylinder−cylinder type of
contacts fcc, although expectedly increasing with L/D, is never
able to attain a value larger than 0.3 [Figure 8a]. In the interval
L/D ∈ [0,2], at least, the role of the hemispheres in establishing
contacts between the hard spherocylinders cannot be neglected.

The present results for fss, fcs, and fcc overall agree with
previous results for these fractions41,43 although differences are
apparent [Figure 8b]. Once they are compared with present
results, the most recent previous results43 overestimates fcs and
even underestimates fcc [Figure 8b]. This may actually be the
cause of their reporting a decreasing hypostatic value of ⟨nc⟩ as
L/D increases [Figure 7b].

The present results in Figure 8 invalidate the argument that
would justify the hypostatic value ⟨nc⟩ = 8 in the case of dense
disordered jammed packings of hard spherocylinders with 1 ≥
L/D ≤ 2.58,59 Together with the present results in Figure 2 and
in Figure 7, the present results in Figure 8 refute the mean-field
theory that predicts a significant drop of the value of ϕ as well as
of the value of ⟨nc⟩ as L/D ≳ 0.5 so that ⟨nc⟩ ≃ 8 already for
dense disordered jammed packings of hard spherocylinders with
L/D > 1.58,59

It is relevant to investigate the microstructure of the contact
points via their pair-correlation function gcp(r).56 From the hard-
sphere point L/D = 0, the degree of short-range order, which the
number and ordinate value of the various peaks of gcp(r) reflect,
decreases with L/D: gcp(r) evolves to resemble ever more the
unit-step function U r D( /2) (Figure 9). This is the form that

Figure 5. Pair-correlation function g(s) for dense disordered jammed
packings of hard spherocylinders with (a) L/D = 0; (b) L/D = 0.5; (c)
L/D = 1; and (d) L/D = 1.5 (in each panel, the graph is the average over
the respective seven jammed configurations). In panel (a), the present
g(s) (black) is compared with the accurate hard-sphere MRJ g(r/D)
(red or gray) that was previously calculated.57

Figure 6. Probability distribution of the number of contacts per hard
spherocylinder Π(nc) for dense disordered jammed packings of hard
spherocylinders with (a) L/D = 0.2; (b) L/D = 0.7; (c) L/D = 1.2; and
(d) L/D = 1.7 (in each panel, the histogram is the average over the
respective seven jammed configurations).
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gcp(r) would have if the contact points were completely
uncorrelated. Thus, the form that gcp(r) progressively acquires
with L/D is not inconsistent with the basic assumption of the
older random contact equation60,61 that aimed to explain the
values of ϕMRJ of hard, very elongated particles. In the derivation
of that equation,60,61 it was assumed that the contact points
become increasingly uncorrelated as the elongation of the hard
particles increases.

4. CONCLUSIONS
This work has numerically generated and studied dense
disordered jammed packings of hard spherocylinders with L/
D ∈ [0,2].

On increasing L/D from the hard-sphere point L/D = 0, the
packing fraction first ascends, then maximizes at L/D = 0.45 ±
0.05 with a value of 0.721 ± 0.001, and finally descends, while
the mean number of contacts per hard spherocylinder first
ascends until the isostatic value of 10 is nearly attained at L/D =
0.45 ± 0.05 and then it is maintained at larger values of L/D.

The present results agree with previous results on maximally
random jammed packings of hard-prolate ellipsoids10,14 but

partially agree with previous results on dense disordered
compact packings of hard spherocylinders.36−43 Distinctly
from these, the present results point out the isostaticity of the
maximally random jammed packings of hard sufficiently

Figure 7. (a) Mean number of contacts per hard spherocylinder ⟨nc⟩ as
a function of L/D (black circles; data are the average over the respective
seven jammed configurations; the error bars, which typically are ∼0.05,
are the corresponding standard deviation). (b) Comparison of the
present data of ⟨nc⟩ (black circles) with previous data of ⟨nc⟩ of dense
disordered compact packings of hard spherocylinders (various symbols,
each symbol corresponding to a previous work as the legend indicates).

Table 1. Values of the Local (Bond-)Orientational Order
Parameter u and r and of the Probability Π as a Function
of the Number of Contacting Neighbors nc for Dense
Disordered Jammed Packings of Hard Spherocylinders with
(a) L/D = 0.3; (b) L/D = 0.8; (c) L/D = 1.1; and (d) L/D =
1.8a

nc u r Π
(a) 3 0.1 ± 0.2 −0.1 ± 0.2 0.001 ± 0.001

4 n.a. n.a. n.d.
5 0.1 ± 0.2 −0.03 ± 0.04 0.001 ± 0.001
6 0.03 ± 0.08 −0.11 ± 0.03 0.015 ± 0.003
7 0.04 ± 0.03 −0.07 ± 0.01 0.06 ± 0.01
8 0.04 ± 0.02 −0.048 ± 0.007 0.160 ± 0.009
9 0.03 ± 0.01 −0.028 ± 0.005 0.30 ± 0.015
10 0.021 ± 0.009 −0.007 ± 0.007 0.29 ± 0.02
11 0.02 ± 0.015 0.009 ± 0.003 0.14 ± 0.01
12 −0.02 ± 0.025 0.019 ± 0.006 0.024 ± 0.006

(b) 4 −0.002 ± 0.006 0.03 ±0.08 0.0003 ± 0.0007
5 0.03 ± 0.06 −0.03 ± 0.08 0.0006 ± 0.0009
6 0.05 ± 0.08 0.00 ± 0.075 0.003 ± 0.003
7 0.09 ± 0.04 −0.03 ± 0.02 0.028 ± 0.006
8 0.09 ± 0.03 0.001 ± 0.008 0.10 ± 0.02
9 0.08 ± 0.01 0.02 ± 0.01 0.23 ± 0.03
10 0.04 ± 0.01 0.038 ± 0.004 0.31 ± 0.03
11 0.03 ± 0.01 0.044 ± 0.004 0.22 ± 0.01
12 −0.01 ± 0.02 0.043 ± 0.009 0.08 ± 0.02
13 −0.02 ± 0.03 0.06 ± 0.01 0.020 ± 0.006
14 −0.05 ± 0.1 0.02 ± 0.04 0.002 ± 0.0015
15 0.01 ± 0.02 0.01 ± 0.025 0.0003 ± 0.0007

(c) 3 0.03 ± 0.065 −0.1 ± 0.1 0.0003 ± 0.0007
4 0.1 ± 0.3 −0.03 ± 0.07 0.0003 ± 0.0007
5 0.15 ± 0.2 0.00 ± 0.09 0.0009 ± 0.001
6 0.2 ± 0.2 −0.12 ± 0.07 0.008 ± 0.004
7 0.18 ± 0.03 0.03 ± 0.02 0.038 ± 0.009
8 0.19 ± 0.02 0.05 ± 0.01 0.12 ± 0.02
9 0.14 ± 0.02 0.065 ± 0.003 0.225 ± 0.02
10 0.10 ± 0.02 0.068 ± 0.008 0.28 ± 0.02
11 0.06 ± 0.04 0.08 ± 0.01 0.20 ± 0.02
12 0.00 ± 0.02 0.075 ± 0.01 0.09 ± 0.01
13 −0.025 ± 0.04 0.08 ± 0.01 0.028 ± 0.007
14 0.0 ± 0.1 0.08 ± 0.05 0.004 ± 0.002
15 −0.01 ± 0.02 0.01 ± 0.01 0.0003 ± 0.0007

(d) 4 0.1 ± 0.2 0.0 ± 0.2 0.001 ± 0.002
5 0.32 ± 0.15 −0.1 ± 0.1 0.002 ± 0.001
6 0.34 ± 0.05 0.00 ± 0.02 0.015 ± 0.007
7 0.29 ± 0.05 0.06 ± 0.04 0.055 ± 0.007
8 0.22 ± 0.04 0.075 ± 0.009 0.137 ± 0.008
9 0.17 ± 0.01 0.010 ± 0.008 0.22 ± 0.01
10 0.13 ± 0.02 0.101 ± 0.007 0.25 ± 0.015
11 0.085 ± 0.02 0.113 ± 0.009 0.18 ± 0.01
12 0.02 ± 0.02 0.10 ± 0.01 0.091 ± 0.006
13 0.01 ± 0.06 0.11 ± 0.03 0.034 ± 0.009
14 −0.05 ± 0.06 0.09 ± 0.02 0.011 ± 0.006

an.a. means “not available,” while n.d. means “not detected”.
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elongated spherocylinders and the considerable, rather than
negligible, role that the extremal hard hemispheres have in
establishing contacts between hard spherocylinders with L/D ≤
2.

For hard spherocylinders with L/D > 2, more numerical
simulations are required to accurately determine not only the
packing fraction of the maximally random jammed packings but
also the mean number of contacts per hard spherocylinder and
their type. If these numerical simulations are conducted for hard
spherocylinders with L/D ≫2, they will contribute to a
complete test of the newer random contact equation62 that
aims to predict the values of the packing fraction of maximally
random jammed packings of hard very elongated particles in
terms of the mean number of contacts per hard very elongated
particle.

Qualitatively, the rise in the maximally random jammed state
packing fraction of hard-nonspherical particles, as the hard-
sphere point is departed from, is related to the concurrent rise in

the mean number of contacts per hard-nonspherical particle
until isostaticity is attained and successively maintained so that
excluded-volume effects cause the successive decrease of the
maximally random jammed state packing fraction. Quantita-
tively, this behavior is yet to be fully understood. One theoretical
approach that focuses on the slope of the rise of the maximally
random jammed state packing fraction at the hard-sphere point
for a number of hard-nonspherical particles has been recently
proposed, but to date, its predictions remain essentially
untested.63

One further aspect that may deserve close attention originates
from the observation that the value of L/D at which the
plastic(rotator)-crystal phase disappears in the equilibrium
phase diagram of hard spherocylinders34,44 seemingly coincides
with the value of L/D at which the nonequilibrium maximally
random jammed state of hard spherocylinders attains the

Figure 8. (a) Fractions of cylinder−cylinder contacts fcc, cylinder−
sphere contacts fcs, and sphere−sphere contacts fss as a function of L/D
(black empty symbols; data are the average over the respective seven
jammed configurations; the error bars, which typically are ∼0.01, are
the corresponding standard deviation). (One observes that fcc and fcs do
not seem to extrapolate to zero nor fss to unity as L/D → 0.) (b)
Comparison of the present data of fcc, fcs, and fss (black empty symbols)
with previous data of fcc, fcs, and fss of dense disordered compact
packings of hard spherocylinders (red or darker gray and yellow or
lighter gray filled symbols, each symbol corresponding to a previous
work as the legend indicates).

Figure 9. Pair-correlation function gcp(r) for dense disordered jammed
packings of hard spherocylinders with (a) L/D = 0; (b) L/D = 0.5; (c)
L/D = 1; and (d) L/D = 1.5 (in each panel, the graph is the average over
the respective seven jammed configurations). In panel (a), the present
gcp(r) corresponds to the hard-sphere “contacts RDF” that was
previously calculated.56
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maximal packing fraction and isostaticity. Similar observations
could also be made for hard ellipsoids (cf. their equilibrium
phase diagram64−67 with the packing fraction and staticity of
their nonequilibrium maximally random jammed states10,14)
and hard convex lens-shaped particles (cf. their equilibrium
phase diagram68 with the packing fraction and staticity of their
nonequilibrium maximally random jammed states69,70). It is
unclear whether this is a mere coincidence or rather the
symptom of anything more profound in the hard-nonspherical-
particle (jammed) configuration space.
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