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Fano-Like Resonance from Disorder Correlation in
Vacancy-Doped Photonic Crystals

Jose Angel Pariente, Farzaneh Bayat, Alvaro Blanco, Antonio García-Martín,
Carlos Pecharromán, Manuel I. Marqués, and Cefe López*

By preparing colloidal crystals with random missing scatterers, crystals are
created where disorder is embodied as vacancies in an otherwise perfect
lattice. In this special system, there is a critical defect concentration where
light propagation undergoes a transition from an all but perfect reflector (for
the spectral range defined by the Bragg condition), to a metamaterial
exhibiting an enhanced transmission phenomenon. It is shown that this
behavior can be phenomenologically described in terms of Fano-like
resonances. The results show that the Fano’s parameter q experiences a sign
change signaling the transition from a perfect crystal exhibiting a reflectance
Bragg peak, through a state where background scattering is maximum and
Bragg reflectance reaches a minimum to a point where the system reenters a
low scattering state recovering ordinary Bragg diffraction. A simple dipolar
model considering the correlation between scatterers and vacancies is
proposed and the reported evolution of the Fano-like scattering is explained in
terms of the emerging covariance between the optical paths and
polarizabilities and the effect of field enhancement in photonic crystal (PhC)
defects.
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1. Introduction

Understanding how the arrangement of de-
fects in photonic crystals (PhC) impacts
their photonic properties is crucial for the
design of functional materials. Sparse de-
fects can be assumed isolated and are
well understood. The opposite, fully disor-
dered scatterers that form photonic glasses,
present other kinds of features but are also
fairly well understood. There is, however,
a middle region where defects can be as-
sumed neither few and isolated nor so
abundant that either band theory or single
scattering approaches offer ready help.

Resonances are undoubtedly one of the
most deeply studied phenomena in the his-
tory of physics.[1] From the atomic scale[2]

to celestial mechanics,[3] not forgetting the
perpetual harmonic oscillator,[4] resonances
are present in any type of system due
to the simplicity of their description and
the processes involved. For wave physics

in general and for photonics, in particular, resonances are the cor-
nerstone on which plenty of devices are based. In this sense, they
can be the result of the interaction of light with the structure as in
waveguides,[5] dielectric nanostructures,[6] and random lasers,[7]

or by using resonators that exploit well-known photonic proper-
ties such as those based on Fabry–Perot oscillations,[8] Bragg,[9]

or Mie scattering.[10]

A singular example of resonance is Fano’s resonance. Gen-
erally speaking, Fano resonance appears in perturbed systems
where two transition channels interfere, one associated to a dis-
crete state (narrow band) and the other to a continuum of states
(broadband).[11] The “fingerprint” in this type of resonance is
the lineshape asymmetry contained in the Fano q parameter,
whose value defines the weight of each channel involved in the
interference.[12] Additionally, this parameter indicates whether
the system presents a high degree of resonance (higher values
of q) or it is mostly dissipative (close to zero values of q). Work in
numerous areas succeeded in identifying this type of resonance
by their asymmetric peaks.[13] In photonics, in particular, Fano’s
resonance has gathered a great deal of attention in the last few
years[14] as a tool to enhance light emission in metasurfaces,[15]

in the development of photonic molecules,[16] or to improve
sensitivity of hybrid PhC,[17] and plasmonic sensors[18] among
others.[19]
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Figure 1. Schematic illustration of the binary self-assembled crystals a) before and b) after the removal of the doping spheres. SEM images of binary
PhCs made of PMMA spheres of 334 nm c) before and d) after PS spheres are removed with cyclohexane. The scale bar in the SEM images is 10 μm.

In PhCs, the Fano’s resonance appears in many systems in a
natural way. Here, the narrow band is associated with the pho-
tonic band gap (Bragg peak) while the broadband, arising upon
the perturbation of the system, can be brought about by an un-
even background, either produced by Fabry–Perot oscillations[20]

or by incoherent or Mie scattering.[21,22] In the latter case, the scat-
tering is usually associated with disorder in the system and, there-
fore, it could be inferred that any kind of disorder introduced in
the structure would give rise to asymmetric peaks in the spectra.
However, geometrical disorder, whether in the form of polydis-
perse building blocks[23] or of a binary mixture of widely mis-
matched block sizes,[24,25] enhances light diffusion by the loss of
lattice periodicity. As a consequence, the optical properties fade
away leading to weaker but symmetric peaks in the spectra.[24] In
contrast, as showed by Poddubny et al.,[26] Fano resonances can
be observed in systems with compositional disorder, i.e., due to a
variation in the dielectric constant of one of the components that
form the structure.[27,28] The underlying reason is that geometri-
cal disorder deteriorates the crystallinity of the structure leading
to the extinction of the narrow band leaving only the diffusive,
broadband channel available for transport. In contrast, compo-
sitional disorder alters both channels simultaneously, gradually
degrading them and thus providing the characteristic asymmetry
of the Fano resonance to the Bragg peak.

In this work, the optical properties of vacancy-doped PhCs
are analyzed. These structures have been proved to be excel-
lent archetypes for controlled insertion of random vacancies.[29]

The asymmetric peaks obtained in reflectance spectra can be de-
scribed as Fano resonances brought about by the interference be-

tween the photonic band gap reflection and the emerging back-
ground diffusion caused by vacancies and relying on the field en-
hancement at such defects. At a singular composition, signaled
by the change of sign of the q parameter, a structure emerges
where Bragg reflectance not just decreases but completely van-
ishes. Herewith, we propose that the origin of such anomalous
behavior is a consequence of both the singular electromagnetic
field distribution in PhC’s and their point defects. A simple
model which considers the relative polarizability of the elements
of a PhC and field enhancement in defects can account for such
behavior. The final theoretical results closely resemble the exper-
imental observations and give the guidelines to understand the
electromagnetic response of defective PhCs.

2. Fabrication

Binary self-assembled crystals were built by the standard ver-
tical deposition method,[30] where the building blocks used
were monodisperse Polymethyl Methacrylate (PMMA) and
Polystyrene (PS) spheres (acting here as dopants) of Ds = 334 and
Dd = 313 nm of diameter respectively. The small difference in
size (≈6%, just above the polydispersity) does not have any neg-
ative effect on the growth (see Figure S1, Supporting Informa-
tion). Once the composite structures were achieved, Figure 1a,
selective etching of the PS dopants yielded vacancy-doped crys-
tals with a precisely controlled amount of vacancies from 𝜌 ≈ 0%
to 𝜌 ≳ 38%, Figure 1b. The mechanical stability of the crystals
was compromised above 38% vacancy, so we imposed this experi-
mental limit in order to obtain reliable results. SEM inspection of
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internal facets obtained by cleaving the samples reveals a binary
face-centered cubic (fcc) structure before PS removal, Figure 1c,
and a uniform distribution of vacancies inside the crystal after re-
moval, Figure 1d. More details of the fabrication of the samples
can be found elsewhere.[29]

3. Optical Characterization

Optical characterization was carried out by measuring both spec-
ular reflectance and transmittance in an IFS-66 Bruker Fourier
Transform Infrared spectrometer at normal incidence (perpen-
dicular to the opal (111) planes). For the sake of clarity, only re-
flectance will be discussed. The same results are obtained for the
transmittance (see Figure S2, Supporting Information).

Figure 2a shows a contour plot compiled from the reflectance
spectra taken at normal incidence as a function of wavelength
and vacancy fraction in the range 0−38% vacancies for 20 lay-
ers thick structures, a safe choice of thickness that allows to as-
sume the samples infinite.[31] Notice a continuous blue-shift of
the Bragg peak due to the decrease in the effective refractive index
of the structure as the number of vacancies increases. Different
regions can be clearly identified at first sight from which repre-
sentative spectra have been extracted and shown in Figure 2b. Re-
flectance spectra from Figure 2b can be fitted to Fano lineshapes
according to the following general expression:

F (�̃�) = A + B
(�̃� + q)2

1 + �̃�2
(1)

where a single parameter, q, governs the asymmetry and the res-
onator strength. A and B are constants related to background and
intensity, �̃� = 2(𝜔 − 𝜔0)∕𝛿 is the adimensional frequency related
to the unperturbed resonance frequency, 𝜔0 and the resonance
width 𝛿.

Figure 2b shows reflectance spectra from self-assembled va-
cancy doped crystals at four representative vacancy concentra-
tions (red lines) and their respective fits to a Fano lineshape (blue
lines). Well below certain critical concentration (𝜌 ≪ 𝜌c ≈ 20%) a
fairly clear Lorentzian profile (Figure 2b, 𝜌 = 0%) is obtained.

For low 𝜌 the intensity of the Bragg peak (centered around
𝜆B = 740 nm) is reduced as the number of vacancies increase.
Samples belonging to this region present a behavior typical of
PhCs with defects. A peak is measured corresponding to Fano
lineshapes with q ≫ 1. In this case, there is little or no contri-
bution of scattering through the continuum. Therefore, the only
possible transition is through the (modified) discrete state. This
is consistent with previous work on diffusion,[5,32] and optical loss
in PhCs.[33,34]

For 𝜌 from 10% to 19% (Figure 2b, 𝜌 = 13%), the intensity of
the Bragg peak steadily decreases and the Fabry-Perot oscillations
become fuzzy. Fitting to the Fano model bring q parameters close
to unity as the reflectance profile clearly turns asymmetric.[35]

For 𝜌 from 20% to 26%, a weak dip at the wavelength of the
band gap can be seen (Figure 2b, 𝜌 = 26%) when parameter q
vanishes. In terms of optical properties, the net effect of disor-
der is that a band gap due to the band structure developed into
a pass band where reflectance is almost fully inhibited. The un-
usual behavior adopted by the scattering can serve to mark the
critical concentration.

Figure 2. a) Specular reflectance of the vacancy doped crystals where the
evolution of the photonic band gap is observed as the disorder of the struc-
ture increases. The asymmetric Bragg peak vanishes for 𝜌 = 20–25% to re-
cover the asymmetry for higher percentages of vacancies. b) Reflectance
spectra (red line) and the fit (blue line) to the Fano line-shape at the band
gap for a) 0%, b) 13%, c) 26%, and d) 32%. Different symmetric or asym-
metric profiles are obtained depending on the percentage of vacancies. All
the spectra are from 20-layers thick samples.

Above 26% an asymmetric profile is recovered that tends back
to Lorentzian in profile for concentrations far above the critical
(𝜌 > 𝜌c). Notice that the peak is the mirror image of that be-
low threshold with the relative maxima and minima positions
exchanged (Figure 2b, 𝜌 = 32%). This lineshape change can be
obtained simply through a change of sign in the q parameter of
the Fano resonance only when q is small. This singular system,
in which spheres are removed without altering the lattice param-
eter, preserves band gap features even for a high percentage of
the vacancies.

One of the most remarkable features of the disorder present in
this system, at variance with disorder induced by polydispersity
of the spheres is that, here, long-range correlation is preserved.

We identify the narrow Fano channel with the photonic
band gap (Bragg diffraction) whereas the broad continuum is
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Figure 3. Fano’s q parameter. Experimental values: squares are average
over sample thicknesses, bars span one standard deviation and pointed
triangles cover the whole range of values encountered.

originated by the background scattering, i.e., by lattice defects
that cause diffuse light scattering. In the case of a regular geo-
metrical arrangement of spheres, two types of scattering can be
expected. On the one hand, diffuse scattering arises from the in-
teraction of electromagnetic waves with a medium comprising
different refractive indices like in an alloyed colloidal crystal[36]

or different sizes.[24] On the other hand, frustrated Fabry–Perot
interference can be caused if a number of lattice sites are absent
disrupting the index periodicity like in this case. This latter con-
tribution is exclusive of periodic structures (like PhC’s) and ap-
pears when defects modify the optical path preventing coherent
interference.

The behavior just described can be seen in Figure 3 that sum-
marizes the results for the q parameter obtained from the fittings
of experimental spectra as in Figure 2 to the Fano Equation (1) for
doped crystals of up to 35 monolayers. This type of representation
is most appropriate since it consolidates data spread due to both
the normal statistical dispersion and thickness dependence. The
squares are the mean values, the solid bars mark one standard
deviation from the mean values, and inward pointing triangles
cover the full data spread. Notice that samples thinner than 𝜆B
always produce an underestimate of q even for low vacancy con-
centrations. It has been commonly understood that bands can
be seen as emerging from sphere resonances as electronic bands
emerge from atomic levels. This was first studied by computing
the DOS in an fcc structure as a function of packing fraction to
observe that pseudogap is as a remnant of the single-sphere Mie
resonances.[37] When the crystal is in the early stages of growth
(thin layers) the Bragg peak is forming and the corresponding
resonance narrowing and strengthening (see Figure S3, Support-
ing Information). The minimum values, very close to zero, are
always observed to arise from the thinnest samples.

4. Modeling

In order to shed light on the behavior of the reflectance one may
normally resort to two types of approaches. The obvious one is
to numerically solve the Maxwell equations by FDTD. However,
this approach is severely limited by CPU and memory constrains
when multiple defects are to be considered since large super-
cells would be needed. Therefore, such kind of calculations can-
not be used to but the simplest instances of this system, and we
have limited those to selected configurations. Instead, we have
resorted to an analytical model where the crystal is simulated by
representing the periods of PhC by a set of dipoles in a Bravais
lattice. For simplicity, we assume a one-dimensional string like
columns in Figure S4 (Supporting Information). Each element
of the column corresponds to a unit cell of the PhC structure of a
length given by D and a volume Vc ∝ D3. In the case of the perfect
crystal, the chain is composed by two types of regions with differ-
ent polarizability or dielectric constant, ϵ. Those with the largest
permittivity, ϵs, corresponds to the PhC spherical particles (deep
yellow in Figure S4, Supporting Information), while those with
ϵv represent the voids of the crystalline structure (light yellow in
Figure S4, Supporting Information). Dielectric contrast between
them, along the periodic structure, produces Bragg reflections in
perfect crystals. On this structure, we introduce vacancies at ran-
dom replacing the pair (ϵs, ϵv) making up normal cells with whole
empty cells, with dielectric constant ϵd (light yellow cells in Figure
S4, Supporting Information) and average over many realizations.
In our particular case, we consider that, the refractive index of
voids in ordinary cells is identical to that of the vacancies, as both
media are filled with air, that is, ϵv = ϵd. In this way, we can intro-
duce different dielectric polarizations for each region. Consider-
ing the relative sizes of the spheres, fVc, and (1−f)Vc, correspond
respectively to the volume occupied by spheres and voids, being
f ≈ 0.74 is the filling fraction of the fcc crystalline structure. Using
Clausius–Mossotti we can approximate the static polarizabilities
of each component of the model:[38]

𝛼s = 𝜀0 Vcf
𝜀s − ⟨𝜀⟩
𝜀s + 2⟨𝜀⟩

𝛼v = 𝜀0 Vc

(
1 − f

) 𝜀d − ⟨𝜀⟩
𝜀d + 2⟨𝜀⟩

𝛼d = 𝜀0 Vc

𝜀d − ⟨𝜀⟩
𝜀d + 2⟨𝜀⟩ =

𝛼v(
1 − f

) (2)

The latter expression includes the relationship between the
voids and defects polarizabilities: 𝛼v = (1 − f) 𝛼d. All the three
polarizations are expressed as a function of an effective dielectric
constant of the medium 〈𝜖〉. To calculate it we have employed the
Bruggemann model[39] that binds every component’s filling frac-
tion and dielectric function: (1 – 𝜌)f and ϵs for spheres; (1 – 𝜌)(1 – f)
and ϵd for voids; 𝜌 and ϵd for vacancies, in a single expression.

(1 − 𝜌) f
𝜀s − ⟨𝜀⟩
𝜀s + 2⟨𝜀⟩ + (1 − 𝜌)

(
1 − f

) 𝜀d − ⟨𝜀⟩
𝜀d + 2⟨𝜀⟩ + 𝜌

𝜀d − ⟨𝜀⟩
𝜀d + 2⟨𝜀⟩ = 0 (3)

If the dielectric polarizations are known, the total dipolar field
can be computed by averaging over of N-cell strings with the cor-
responding cell polarizability �̃�i. In the simplest approximation,
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a plane wave travelling along the Z direction that impinges on a
string of dipoles lying on the Z-axis will be reflected creating a
field at z = − ∞ given by:

Er ∝
N∑

i = 1

pi

zi
e−2𝜄kzi ≈ 1

h

N∑
i = 1

pie
−2𝜄kzi (4)

with 𝜄 the imaginary unit, pi and zi the ith dipole and its position;
k = 2𝜋/𝜆 being the wave number in vacuum of the incoming
radiation and h the distance to the detector.

The induced dipole can be written as pi = �̃�i E(zi) as a
function of the local field which, in turn, can be expressed as
E(zi) = 𝛾 i E0(zi) in terms of the incident radiation with 𝛾 i a fac-
tor allowing for the field enhancement in case the ith position is
empty which constitutes a microcavity in a PhC. Thus 𝛾 i = 𝛾 for
defects (vacancies or empty cells) and 𝛾 i = 1 for full cells. There-
fore, the effective polarizability of defects is given by: �̃�d = 𝛾𝛼d.

Since we have so far only considered static polarizability, in the
summation of Equation (4) the different phases of the dipoles in
the unit cell of the PhC must be introduced. When calculating the
dielectric response of the occupied cells, the delay originating in
the high (sphere) and low (vacuum) refractive index regions is
shifted by an amount Λ ≈ D/2, where D is the sphere size. We
introduce an effective complex polarizability for the whole cell �̃�s
as:

�̃�s = 𝛼s + 𝛼ve
𝜄knsΛ (5)

In this equation we have distinguished between dielectric po-
larization of different dielectric elements and the full electromag-
netic polarization of each cell in the PhC by using the tilde sign
“˜” for the latter.

Thus, with probability 𝜌, a cell is empty (vacancies) presenting
polarizability �̃�d, which represent the dopants; otherwise, it will
present polarizability �̃�s.

Since in a crystal the dipoles are immersed in a material
medium, when computing the phase, the optical paths across a
scatterer and a dopant must be considered and are given by their
optical sizes, ds = D ns and dd = D nd respectively. Therefore, the
optical paths are given by:

zi =
1
2

(
d1 + di

)
+

i−1∑
j>1

dj (6)

Notice that, even when both defect and occupied sites are of
the same size (required for good crystalline quality) their optical
size is different and this is one of the sources of the modification
of the Fano profile of the Bragg reflection.

In order to compute Equation (4) the following cases should be
considered. If two random particles are next-nearest neighbors
the optical path from center to center is given by ds with proba-
bility (1 − 𝜌)2 (scatterer-scatterer), dd with probability 𝜌2 (dopant–
dopant) or (ds+dd)

2
with probability 2𝜌(1 − 𝜌) (scatterer–dopant or

dopant–scatterer).
The reflected intensity, I ∝ E∗

r ⋅ Er, is given by

I ∝
N∑

i = 1

||�̃�i
||2 + 2

N∑
i = 1

N∑
j>i

�̃�∗
i �̃�jcos

(
2k

(
zj − zi

))
(7)

where �̃�i = �̃�s with probability 1–𝜌 (a scattering cell) and �̃�i = �̃�d
with probability 𝜌 (a dopant, empty cell).

Let us now consider the average over many different N-dipole
strings. Each of them will have different random distributions
of dopants but with the same dopant density and all of them
will incoherently contribute to the backscattering. That is, let’s
assume that for each sample region (columns in Figure S4, Sup-
porting Information) the field is the vector sum from the stacked
dipoles’ contributions (according to their phase) and that regions
contribute to the intensity independently. Then, the reflected in-
tensity will be given by averaging over many realizations of the
summation in Equation (7):

⟨I⟩ ∝ ⟨
N∑

i = 1

||�̃�i
||2
⟩

+ 2

⟨
N∑

i = 1

N∑
j>i

�̃�∗
i �̃�j cos

(
2k

(
zj − zi

))⟩
(8)

which, using the definition of covariance between two random
variables (see Supporting Information) can be separated in two
terms 〈I〉∝Isym + Icov with designations (symmetric and covari-
ance) justified below:

Isym =

⟨
N∑

i=1

||�̃�i
||2
⟩

+ 2
N∑

i=1

N∑
i<j

⟨�̃�∗
i �̃�j⟩⟨cos[2k(zi − zj)]⟩ (9)

and

Icov = 2
N∑

i = 1

N∑
j>i

cov
{
�̃�∗

i �̃�j, cos
[
2k

(
zi − zj

)]}
(10)

Considering the statistical distribution of a number of vacan-
cies in a stack it is possible (see Supporting Information) to arrive
at an analytical expression for the random optical paths needed
to compute the phases that provide an analytical expression for
both terms giving:

Isym = N⟨|�̃�|2⟩ + 2|⟨�̃�⟩|2 N∑
i = 1

N∑
j>i

(1 − 𝜌)2Tij
ss

(k) + 𝜌2Tij
dd

(k)

+2𝜌 (1 − 𝜌) Tij
sd

(k) (11)

with the three T parameters depend only on the i−j distance
(i–j–1) and carry the dependence on wavelength, geometrical fea-
tures, and the concentration of vacancies (see Supporting Infor-
mation).

In the particular case of the symmetric contribution further
simplification can be had for dd/ds ≈ 1 where Isym term can be
approximated by the familiar functional form:

Isym ≈ N𝜎2
𝛼
+ |⟨�̃�⟩|2[ sin Nkd

sin kd

]2

(12)

with d ≡ 〈d〉 = (1 − 𝜌) ds + 𝜌dd the average optical
size; 𝜎2

𝛼
= ⟨|�̃�|2⟩ − |⟨�̃�⟩|2, the polarizability variance; and|⟨�̃�⟩|2 = (1 − 𝜌)2 |�̃�s|2 + 𝜌2|�̃�d|2 + 2𝜌(1 − 𝜌)ℜ(�̃�s�̃�

∗
d ).

Isym contains a constant background intensity, proportional to
the variance of the polarizability, plus the Bragg diffraction line-
shape coming from a homogenous PhC with polarizability and
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Figure 4. Computed spectra. The symmetric, covariant a total reflectance
as a function of wavelength or various defect densities considering 𝛾 = 3.
Notice how the background in Isym (reflectance outside the Bragg peak)
increases with disorder allowing for a negative contribution in Icov to bring
the total to near cancellation.

particle optical size given by the averaged values. This is the typ-
ical spectrally symmetric response of a regular periodic structure
hence the designation, see Figure 4.

The second term (Icov) arises from the covariance between
phases’ differences and polarizabilities’ products in the dipoles’
column, hence the designation. Both quantities are correlated be-
cause the phase at an element in the stack depends on how many
constituents of each kind (scatterers or dopants) there are under-
neath. Using the definition of covariance as the average of the
products of fluctuations around the mean (see Supporting Infor-
mation) leads to:

Icov = 2
∑
i<j

(1 − 𝜌)2
(||�̃�s

||2 − |⟨�̃�⟩|2)Tss
ij

(k)

+𝜌2
(||�̃�d

||2 − |⟨�̃�⟩|2)Tdd
ij

(k)

+2𝜌 (1 − 𝜌)
(
ℜ

(
�̃�∗

s �̃�d

)
− |⟨�̃�⟩|2)Tsd

ij
(k) (13)

This contribution to the reflectance is a function that inverts its
asymmetry when |⟨�̃�⟩|2 reaches a minimum, like a Fano function
does when q goes to zero, where it adopts an inverted Lorentzian
lineshape (see Figure 4).

Once the polarizabilities and defect density have been set, we
can plot the value of (Isym + Icov)∕(N2𝛼2

s ) versus 𝜆. In Figure 4
we have plotted contributions from both Isym and Icov to the total
backscattered intensity for 𝛾 = 3. The calculated reflected inten-
sity is very similar to that found experimentally for the vacancy-
doped PhC. The Lorentzian Bragg diffraction found for light dop-
ing, 𝜌 ≈ 0, turns into a Fano-like response with q ≫ 0. Then, for
𝜌 ≈ 𝜌c it assumes a q ≈ 0 and changes sign. For further doping,
𝜌 > 𝜌c, the line recovers the Lorentzian shape with q < 0.

This illustrates the fact that the q parameter behavior strongly
depends on the density of vacancies due to the change on the be-

havior of the covariance versus wavelength. Notice that, without
considering the covariance only a maximum can be obtained.

The value of q can be interpreted as the ratio of the discrete
state-mediated transition rate to that mediated by the continuum
of states. It derives from the strength of the interaction with
the perturbation introduced by the continuum in the perturba-
tive approximation of the original quantum formulation.[12] In
our case, it is governed by the concentration of the vacancies in
the opals and a value of zero points to total dominance of non-
resonant scattering as opposed to photonic band-mediated scat-
tering where q would tend to infinity.

5. Critical Concentration

According to Equation (12), apart from a background term, the
factor |⟨�̃�⟩|2 determines the strength of the wavelength depen-
dent term in Isym. Therefore, we can expect, to a good degree of
approximation, that the defect concentration which minimizes|⟨�̃�⟩|2 will make Bragg diffraction peak disappear. As a conse-
quence, the intensity curve Icov adopts a dip corresponding to a
q = 0 Fano profile. This critical concentration is the solution to:

d|⟨�̃�⟩|2
d𝜌

= 0 (14)

According to Equation (5) the explicit expression of |⟨�̃�⟩|2is
given by |⟨�̃�⟩|2 = |(1 − 𝜌)(𝛼s + 𝛼ve

𝜄knsΛ) + 𝜌𝛾𝛼d|2 so that, at the
Bragg maximum, k = 𝜋

d
the minimum condition in Equa-

tion (14) is given by:

𝜌

(
𝛼2

s + 𝛼2
v + 𝛼2

s 𝛾
2 − 2𝛼s𝛼d𝛾 + 2𝛼v

(
𝛼s − 𝛼d𝛾

)
cos 𝜋Λ

d

)
= 𝛼2

s + 𝛼2
v − 𝛼s𝛼d𝛾 + 𝛼v

(
2𝛼s − 𝛼d𝛾

)
cos 𝜋Λ

d
(15)

Additionally, another condition can be obtained from the equa-
tion of the effective medium for the dielectric constant, as the
Bruggemann model (Equation (3)) requires by definition that the
effective static polarizability be zero. So that, considering of Equa-
tion (2), Equation (3) can be written as

(1 − 𝜌) 𝛼s +
(
1 − f + 𝜌f

)
𝛼d = 0 (16)

With the definitions in Equations (2), (15), and (16) it is pos-
sible to define a system of two equations in 𝜌 and 𝛾 , resulting
in a relationship between the field enhancement at the defects,
represented by 𝛾 , and the critical defect density 𝜌c, given by the
expression:

𝜌c =

(
1 − f

) (
2f − 𝛾 − 1

) (
1 − cos 𝜋Λ

d

)
1 + 2f 2 + 𝛾2 − 2f (1 + 𝛾) − 2

(
1 − f

) (
𝛾 − f

)
cos 𝜋Λ

d

(17)

Now the reflectance curve becomes a minimum at the Bragg
wavelength. It is worth to note that the critical defect density does
not depend on the polarizability but on geometric parameters
and on the field enhancement factor. Substituting f = 0.74 and
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Figure 5. Fano’s q parameter. Symbols correspond to experimental aver-
age values as in Figure 3. Fano parameters obtained by fitting the spectra
in Figure 4 are plotted here as solid lines for several values of 𝛾 .

Λ = D/2 we get an explicit expression for the critical density:

𝜌c =
0.260𝛾 − 0.125

𝛾2 − 1.480𝛾 + 0.615
(18)

that shows that as the enhancement grows the critical concentra-
tion of vacancies notably reduces (see in Figure S4).

Using Equations (11) and (13) and assuming vacancy den-
sity independent enhancement, it is possible to compute the re-
flectance spectra and, by fitting, the Fano’s q parameter as a func-
tion of 𝜌.

Results are plotted in Figure 5 (solid color lines) for several val-
ues of 𝛾 . Note how, in agreement with the experimental results,
the model predicts a crossover form positive to negative values
of the q parameter as the density of vacancies increases. To keep
the model as simple as possible we have considered a constant
value of 𝛾 , affecting only to the dopants. However, from Figure 5,
it is clear that a more elaborated dependence with the density is
needed in order to quantitative reproduce the experimental re-
sults.

As can be seen, all dependence of the critical density is on the
field enhancement, which, in turn, will mostly depend on the re-
fractive index contrast. Note how, if 𝛾 = 1 (no field enhancement)
the critical density is equal to one: homogeneous medium. In
other words, Bragg band inversion in vacancy-doped PhC’s is an
indirect effect of the field enhancement in defect sites.

6. Field Enhancement

At this point, we wish to provide an estimate of the field enhance-
ment in defects at the Bragg band. Light with wavelength in the
Bragg band cannot propagate in the crystal. However, defects cre-
ate localized states that open channels for propagation. There-
fore, the field inside a defect, Ed, (empty space left by a missing

sphere) should be much larger than in the small (octahedral and
tetrahedral) voids, Ev, (always empty) in the perfect PhC. In or-
der to check this hypothesis, we modelled a finite PhC by FDTD.
Details can be found in the Supporting Information.

Using the 3D field amplitude in the perfect and defective PhC,
it is possible to compute 𝛾 . The definition of 𝛾 considers the ra-
tio of field enhancement at defect loci, with dielectric constant
ϵd with respect to that of voids at perfect PhC, with the same di-
electric constant ϵv = ϵd. So that, according to this definition its
average ⟨𝛾⟩ can be calculated as:

⟨𝛾⟩ = ∫Cd
Eddv

∫v Ev,PhCdv
(19)

In this expression we considered that the incident field of
Equations (4) and (7) Er is linearly polarized (perpendicular to the
z-axis), so that the coherent interference of the internal field will
only take place with the parallel component to Er so that Er‖Ed.
The integrals in Equation (19) are computed in the volume of a
single cell containing one defect (Cd) and the voids completing
the unit cell (Vc), respectively. That is, the amplification factor is
given by the ratio between the average electric field in the empty
volume left by a removed sphere and the field averaged in its as-
sociated voids in a perfect PhC. Figure 6 summarizes the results
for five wavelengths around the Bragg center (717 nm for the par-
ticular simulation).

This simple calculation indicates that outside the Bragg con-
dition, the amplification factor is modest, but right at the Bragg
wavelength, it can reach values of ⟨𝛾⟩ = 3. Such enhancement is
mostly due to the fact that, in a perfect PhC at the spectral region
of the bandgap, the field distribution follows a periodic pattern.
However, when a defect appears, it can be seen how the field at
the defect resembles that of the perfect crystal, so that at the defect
position, the field is quite similar to that of an occupied position.
This behavior does not take place in case of a quasistatic approx-
imation, and this fact seems to be the responsible of the Bragg
maximum inversion.

This enhancement factor may change with defect concentra-
tion, growing smaller as the defect concentration increases. How-
ever, one can expect that, when defects are few and far between,
this value will be high but the crystal average will not much dif-
fer from 1. Let’s not forget that 𝛾 depends on the number of va-
cancies in the defect, their shape, the average dielectric function
of their environment and their relative abundance. Regarding
the latter, size, shape, and amount greatly increase for large va-
cancies concentration,[29] rendering its contribution highly non-
trivial and difficult to grasp with our simple model. This fact is
probably the main reason behind poorer fitting for higher 𝜌. In
addition, for concentrations larger that the critical value, contin-
uous paths of defects can be expected that extend throughout
the PhC. This seems to be closely linked with percolation theory
where this event is expected at 𝜌c = 0.18.

In this regions, two opposite mechanism compete. On the one
hand, defects and the high field regions associated to them may
coalesce, decreasing the net polarization of the whole PhC. On
the other hand, field enhancement is expected to diminish, as it
depends on the “average” contrast between different phases. In
this regard, the band inversion associated to a change of sign of
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Figure 6. Field a) inside and b) outside the spheres, in c,d) the case where
the structure is the PhC, and when one sphere is missing. The enhance-
ment in Equation (18) is the ratio of the average field intensity around
the center sphere in (b) and the missing sphere in (d). e) Field enhance-
ment measured as the ratio of the field at the center of a missing dielectric
sphere (vacancy) to that in the empty space surrounding a present sphere
for various wavelengths around the Bragg wavelength 𝜆B = 717 nm.

q, can be rationalized as the condition when the effective polar-
ization is zero. If so, the interaction causing the resonance disap-
pears. From an electromagnetic point of view, fields may propa-
gate even at the Bragg condition. But, as field inside defects is am-
plified, the material presents an enhanced transmission. In fact,
this is the condition for manufacturing an invisible metamate-
rial. It should be noted, that at the q =0 condition, the reflectance
minimum is very close to zero, so that the transmission (assum-
ing no losses) is T = 1 – R ≈ 1.

For larger concentrations, 𝛾 will progressively be smaller, as
the high dielectric phase becomes scarce, so that Bragg inversion
gradually tends to disappear. However, covariance-driven band
asymmetry remains resulting in a negative q.

7. Discussion

The observed data and the theoretical models indicate that va-
cancy doped PhC’s constitute the first systems where doping

decreases average refractive index (by removing material) and
thus present a series of linked unusual phenomena also found
in similar systems. In fact, the effect of vacancies in sphere
PhC’s has been previously well established and there is plenty
of references in the literature where vacancies are used to cre-
ate microcavities.[40] Usually, a single and isolated defect intro-
duces a forbidden electromagnetic state into the bandgap which
is associated to a field localization which can be observed as a
dip in the Bragg reflection peak. As the spectral position of this
dip depends on the defect details, a statistical distribution of de-
fects produces a reduction and broadening of the Bragg band.
We have assimilated this feature at low vacancies concentration
as an increase of the damping term of the Fano-like Bragg band
profile. When the defects start to be abundant, they remove di-
electric spheres, the high permittivity component, in apprecia-
ble proportions. This, in turn, lowers the average polarizability
and, according to Equation (12), reflection, beside causing a blue
shift in the Bragg. However, at a critical defect concentration, the
Bragg peak not only loses intensity but it transforms into a min-
imum. This unintuitive result for dielectric spheres and air PhC
has nevertheless been found in PhC’s, in which the low refractive
medium is filled with a material to fully cancel the dielectric con-
trast. This result can be rationalized by considering that when
both refractive indices are identical, light propagates as a plane
wave because the medium is optically homogeneous.

The theoretical model here used reproduces the same features
of PhC’s with two matching dielectric materials, but at the ex-
pense of introducing the defect local field enhancement hypoth-
esis.

In this sense, the local field enhancement is the key to under-
stand the strange behavior of defective PhCs. In this case, nor
the refractive index matching supresses the Bragg peak, but the
enhanced field inside the vacancies do. Additionally, vacancies
break optical coherence so that they considerably increase the
scattering contribution. These features modify the Fano curve,
decreasing the q parameter (as a consequence of reduction of po-
larization and field enhancement) and increasing 𝛾 (due to inco-
herent scattering). However, those effects are not linear as defect
concentration increases because the PhC crystalline structure is
substantially modified as well as the electromagnetic field dis-
tribution. Consequently, the Bragg resonance in a defective PhC
can be described by Fano curves with non-linear behavior versus
defects concentration. When a critical concentration of defects is
achieved, internal electric fields cancel the effect of the external
one, giving place to a reflectance minimum.

8. Conclusions

In conclusion, in this work we have studied the variation of op-
tical properties in PhCs with fine control over vacancies compo-
sition. Fano-like resonances manifest in the optical reflectance
spectra. Not only have we achieved all the different asymmetric
profile characteristics of the Fano resonance, but we have also
set a correlation between the q parameter and the percentage of
vacancies. We have presented a simplified model based on the
single scattering from a two components system capable of mim-
icking the experimental results. The fundamental role played by
the covariance in this model has two important implications.
The first is that in order to find non-symmetric responses, a low
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transversal coherence is required. And the second, that the field
localization in PhC defects must be taken into account. Under
this hypothesis, the experimental results can be fairly accounted
for. In other words, we can say that defects have two main effects
in the optical properties of PhC. On the one hand, they reduce
the average effective static polarizability of the medium, so that
the Bragg peak reduces its intensity. On the other hand, and in
a more quantitative way, it can be said that Fano process reduces
the resonant part, q, and increases the damping 𝛾 . However, and
due to the field enhancements at defects, their role in the electro-
magnetic response of the PhC is substantially larger than would
correspond to a mere “rule of mixtures” law. Therefore, for de-
fects concentrations around 𝜌 = 0.2, the total contribution of de-
fects is similar to the remaining 80% of dielectric spheres.

To conclude, it is worth to mention that this phenomenon re-
sembles the well-known extraordinary transmission, where inter-
action between resonances results in large field enhancements as
has been described in subwavelength plasmonic structures.[41] In
both cases, the systems may be considered invisible metamateri-
als as they do not reflect light at the critical condition.

9. Experimental Section
Experimental details and any associated references are available in the
Supporting Information.
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