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Abstract: Myelination is required for fast and efficient synaptic transmission in vertebrates. In the
central nervous system, oligodendrocytes are responsible for creating myelin sheaths that isolate and
protect axons, even throughout adulthood. However, when myelin is lost, the failure of remyelination
mechanisms can cause neurodegenerative myelin-associated pathologies. From oligodendrocyte
progenitor cells to mature myelinating oligodendrocytes, myelination is a highly complex process
that involves many elements of cellular signaling, yet many of the mechanisms that coordinate it,
remain unknown. In this review, we will focus on the three major pathways involved in myelination
(PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/β-catenin) and recent advances describing the crosstalk
elements which help to regulate them. In addition, we will review the tight relation between Ras
GTPases and myelination processes and discuss its potential as novel elements of crosstalk between the
pathways. A better understanding of the crosstalk elements orchestrating myelination mechanisms is
essential to identify new potential targets to mitigate neurodegeneration.

Keywords: myelin; oligodendrocyte; neurodegeneration; PI3K/Akt/mTOR; ERK1/2-MAPK;
Wnt/β-catenin; R-Ras

1. Introduction

1.1. Myelination and Oligodendrocytes

Myelination is an essential process for the correct transmission of nerve impulses. Rapid and
effective neural electric transmission through the axon is required for the correct integration of
information. In the mammalian central nervous system (CNS), oligodendrocytes (OLs) are responsible
for axon myelination in a complex process involving various cellular interactions [1]. OLs form
myelin sheaths around axons to isolate them from extracellular space and provide them with
metabolic support. Myelin sheaths are multilayered membranes that result from wrapping and
compaction of the plasma membranes of OLs around axons [2,3]. Myelination facilitates the disposition
of depolarization machinery in discontinuous zones between myelin sheaths known as nodes of
Ranvier [4,5]. This organization guarantees that axonal membrane depolarization only occurs at
discontinuous zones, resulting in a rapid and effective saltatory conduction of the nerve impulse
through the axon, a feature believed to contribute to vertebrate evolution [6–8].

From a developmental point of view, OLs are generated from OL progenitor cells (OPCs) [9,10].
Before their differentiation, OPCs migrate along the CNS and begin to differentiate into mature
OLs [11]. From the beginning of development, differentiation steps have been identified according
to migratory capacity, morphologic complexity, gene expression, and expression pattern of specific
markers [12–15]. The maturation of oligodendroglial cells involves a progressive modification of
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OL abilities. Their initial migratory and proliferation capacity is lost during maturation, as they
progressively acquire an elaborate morphology [16,17].

In the myelination process, OLs are responsible for myelin development by extending processes
that wrap around axons and form compact myelin sheaths. Myelination starts as OPCs extend and
retract processes looking for axons that will be myelinated in the future [18,19]. Upon the first contact
with the axolemma, the end of the OPC process retracts or stabilizes, forming a specialized membrane
domain for continuous communication between the axon and the OL. Then, the future myelin sheath
expands radially and longitudinally, simultaneously with the addition of a new membrane at the
growth end of the internal tongue [20]. At the same time, the innermost layer of the sheath expands
laterally, compacting between the anterior layer and the axon, wrapping around it. The addition of
membrane at the expansion end requires transport of components that have been synthesized in the
soma, through the oligodendroglial processes, which means an increase in energy expenditure for the
OL. The cytoplasmic subdomains at the end of each myelin lamina remain in close contact with the
axon, which is covered by them moving laterally and around it towards the future node of Ranvier [4],
where they eventually form a series of closely juxtaposed paranodal loops. These multilayered
membrane compartments (nodes) are distributed along the axon to provide metabolic support and
protection from the extracellular space [21–24]. The importance of proper myelination is highlighted
by the existence of many neurodegenerative diseases in which myelin deficits cause alterations in
nerve impulse transmission.

1.2. Myelin Neurodegenerative Diseases

Myelin neurodegenerative diseases include a wide variety of disorders with different etiologies
and manifestations, including sensory, motor, and cognitive alterations [25]. Some of the most
important pathologies affecting the CNS are multiple sclerosis (MS), neuromyelitis optica (NMO),
hypomyelinating leukodystrophies, and Charcot-Marie-Tooth (CMT) disease.

MS is the most prevalent neurodegenerative disease of the CNS in young adults, affecting more
than 2 million people worldwide [26]. It is usually diagnosed around the age of 20–40 years, and it
is 2–3 times more frequent in women than men [27]. Although the etiology remains unknown, it is
believed to occur as a result of some combination of genetic and environmental factors [28]. Nowadays
MS is characterized by demyelination with concomitant axonal and neuronal degeneration that causes
a heterogeneous array of symptoms and signs [28–30]. NMO, previously called Devic’s disease,
is considered to be a rare, autoimmune, demyelinating disease of the CNS which manifests as optic
neuritis and acute transverse myelitis. This disease affects more than 2 million people worldwide
and has a prevalence of 1–3 per 100,000, being more frequent in women than in men [31,32]. Another
neurodegenerative disease is Pelizaeus–Merzbacher disease (PMD), a hypomyelinating leukodystrophy
where the PLP1 gene is mutated [33]. CMT disease is a phenotypically and genetically heterogeneous
group of sensory and motor neuropathies [34].

2. Cell Signaling Pathways Involved in Myelination

From initial OPC proliferation to myelin sheath maintenance through adulthood, myelination
requires a sophisticated interaction of multiple signaling pathways. The principal signaling
pathways driving OL differentiation, myelination, and remyelination after injury are PI3K/Akt/mTOR,
Erk1/2-MAPK, and Wnt/β-Catenin. In this review, we will focus on these signaling pathways
and the crosstalk between them. Given the many factors involved in the process, extending our
knowledge in this field will be crucial to understand the hidden mechanisms driving neurodegenerative
myelin-associated pathologies.

2.1. PI3K/Akt/mTOR

The phosphatidyl inositol-3-phosphate kinase (PI3K)/Akt/mTOR pathway has been studied from
a neurodegenerative point of view due to its important role in the regulation of OPC differentiation,
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myelination, and remyelination [35,36]. It is an ubiquitously expressed and important signaling
pathway that is involved in many cellular processes such as cell growth, proliferation, and survival.
The PI3K/Akt/mTOR pathway is initiated by the extracellular binding of growth factors like insulin
growth factor-1 (IGF-1) to receptor tyrosine kinases (RTKs) at the cell surface, activating them and
leading to the initiation of an intracellular cascade. Then, PI3K phosphorylates phosphatidylinositol
(4,5)-biphosphate (PIP2) to generate phosphatidylinositol (3,4,5)-triphosphate (PIP3). Consequently,
Akt and 3-phosphoinositide-dependent kinase 1 (PDK1) are recruited to the membrane, where Akt
is phosphorylated at Thr308 and partially activated. The complete activation of Akt is made by the
mechanistic target of rapamycin complex (mTORC2) through its phosphorylation at Ser473. Fully
activated Akt then inhibits tuberous sclerosis complex 2 (TSC2) by phosphorylation, a GTPase-activating
protein (GAP) that in normal conditions inhibits Rheb. By inhibiting TSC2, Rheb becomes active
and allows mTORC1 activation. In addition, the TSC complex, which is formed by TSC1 and TSC2,
can activate mTORC2 in an independent Rheb manner [36]. mTORC1 regulates p70S6k and sterol
regulatory element-binding proteins (SREBPs) such as SREBP1c and SREBP2, essential transcription
factors for the expression of myelin proteins and enzymes involved in lipid synthesis [37] (Figure 1a).
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Figure 1. Schematic representation of PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/β-catenin pathways.
(a) PI3K/Akt/mTOR signaling pathway key elements for oligodendrocyte maturation and myelination.
Arrowheads imply positive interactions while bars indicate inhibitory signals. BDNF: brain-derived
neurotrophic factor, NGF: nerve growth factor, NT3: neurotrophin 3, (s)Nrg1-III: (soluble) Neuregulin
1 type III, BACE1: β-site amyloid precursor protein cleaving enzyme 1, RTKs: receptors tyrosine
kinase, IRS-1: insulin receptor substrate 1, PI3K: phosphoinositide-3 kinase, PIP2: phosphatidylinositol
(4,5)-biphosphate, PIP3: phosphatidylinositol (3,4,5)-triphosphate, PTEN: phosphatase and tensin
homolog, PDK-1: 3-phosphoinositide-dependent protein kinase 1, Akt: protein kinase B, TSC1/2:
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tuberous sclerosis complex, Rheb: Ras homolog enriched in brain, mTOR: mammalian target of
rapamycin, mLST8: target of rapamycin complex subunit LST8, Raptor: regulatory associated protein
of mTOR, Rictor: rapamycin-insensitive companion of mTOR, SIN1: Target of rapamycin complex 2
subunit MAPKAP1, p70S6K: Ribosomal protein S6 kinase beta-1, S6RP: Ribosomal protein S6, SREBPs:
Sterol regulatory element-binding proteins. (b) ERK1/2-MAPK signaling pathway crucial elements
for oligodendrocyte maturation and myelination. Arrowheads imply positive interactions while
bars indicate inhibitory signals. PDGF: platelet-derived growth factor, FGF-2: fibroblast growth
factor 2, RTKs: receptors tyrosine kinase, IRS-1: insulin receptor substrate 1, Grb2: growth factor
receptor-bound protein 2, Sos: son of sevenless, MEK1/2: mitogen-activated protein kinase, ERK1/2:
extracellular signal-regulated kinases 1 and 2, p70S6K: Ribosomal protein S6 kinase beta-1, p90RSK: p90
ribosomal S6 kinase, S6RP: Ribosomal protein S6, MyRF: Myelin regulatory factor. (c) Wnt/β-catenin
signaling pathway essential elements for oligodendrocyte maturation and myelination. Arrowheads
imply positive interactions. Lrp5/6: Lipoprotein receptor-related proteins 5/6, Dvl: disheveled, GSK3:
glycogen synthase kinase 3, CK1: casein kinase 1, APC: adenomatous polyposis coli, βcat: β-catenin,
TCF4 (TCF2l7): transcription factor 4.

Many in vitro and in vivo studies have shown the relevance of PI3K/Akt/mTOR as a core pathway
involved in myelination. Neuregulin-1 (Nrg1), a growth factor from the large family of neuregulins [38],
is an important upstream activator of Akt. In the CNS, Nrg1 type III (Nrg1-III) modulates myelin
sheath thickness upon its cleavage by β-site amyloid precursor protein cleaving enzyme 1 (Bace-1).
Bace-1 knockout mice showed CNS hypomyelination with thinner myelin sheaths and reduced levels
of phosphorylated Akt (p-Akt), but no differences in the total number of OPCs or mature OLs were
found [39]. However, the role of Nrg1 in CNS myelination remains controversial: Nrg1 improves
proliferation, survival, and differentiation of OPCs in vitro through ErbB receptors and can promote
remyelination in vivo, but its absence has little to no effect on CNS myelination [40,41].

Initially, the role of Akt in myelination was addressed using mouse models with constitutively
activate Akt (Akt-DD). These mice showed significant hypermyelination throughout the CNS, associated
with a continuous increase in myelin thickness and myelin proteins, which became pathological as mice
aged [42]. Interestingly, no differences were found between the number of OPCs and mature OLs. In this
sense, conditional knockouts of phosphatase and tension homolog (PTEN) were generated using Cre
recombinase technology under oligodendrocyte transcription factor 2 (Olig2), 2′,3′-Cyclic-nucleotide
3′-phosphodiesterase (CNP) or myelin proteolipid protein (PLP) (Olig2Cre/+, CNPCre/+ or PLPCreERT2/+

respectively) promoters. The deletion of PTEN, an upstream inhibitor of Akt, achieved a phenotype
similar to Akt-DD, with hypermyelination in the CNS due to an increase in PIP3 levels and p-Akt
without changes in the total number of mature myelinating OLs [43]. However, inhibition of PTEN
was not a successful approach to treat demyelinating diseases, as it does not enhance remyelination
following white matter injury [44].

mTOR is recognized as a clear downstream effector of Akt, evidenced by numerous studies. Using
rapamycin, Narayanan and colleagues chronically inhibited mTOR in hypermyelinating Akt-DD mice.
Concurrent with a decrease in the degree of phosphorylation of downstream effectors (like p70S6K)
and expression of myelin proteins, the phenotype was reduced to approximately wild-type levels of
myelin production. Accordingly, when rapamycin was administered to young wild-type mice, the
rodents exhibited hypomyelination and lower levels of myelin proteins [45]. Several experiments
were conducted to describe whether the impact of mTOR on myelination was driven by mTORC1
or mTORC2, depending on mTOR binding to Raptor or Rictor, respectively. Conditional knockout
of Raptor induced hypomyelination in the corpus callosum, with thinner myelin sheaths, reduced
p-p70S6K and lowered myelin protein levels consistent with a delay in the maturation process, but not
a total loss of OLs. However, in the spinal cord, the hypomyelination was more severe and followed
a dramatic loss of OLs at P60 [46]. This could be explained by differences in the OL environment
or intrinsic OL heterogeneity, as emerging studies have shown the existence of distinct, spatially
segregated OL populations [12]. When Raptor ablation was induced in mature OLs, they were unable
to maintain proper myelin sheaths, suggesting a role of mTORC1 in the maintenance of adult myelin
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sheaths [47]. This study also revealed that mTORC1 regulates lipid biosynthesis via SREBPs, as its
removal produced a dysregulation of lipid composition [47]. On the other hand, Rictor ablation had
mild effects on myelination, as the mice only displayed a partial loss of myelin mRNAs and protein
without changes in myelin thickness or proportion of myelinated axons [46]. Interestingly, a lack of
Rictor resulted in an increase of mature OLs and a reduction of OPCs during myelination, suggesting a
role for mTORC2 in the transition from OPC to OL [47]. Upstream of mTOR, the deletion of TSC during
development resulted in hypomyelination [47]. However, there may be different roles for TSC, as its
inhibition in OPCs stimulated remyelination but its deletion in OLs slowed remyelination following
injury [48]. In addition, aberrant activation of mTORC1 by loss of Tsc1 can affect the correct paranodal
domain formation [49]. Another upstream regulator of mTORC1 is Rheb1, which has been implicated
in the differentiation from OPCs to mature OLs, but it is not needed for the production or maintenance
of new myelin in the adult brain [50]. Recent advances are shedding light on how mTOR promotes
myelination: by regulating cytoskeleton dynamics, mTOR induces cellular process expansion and
contributes to the expression and correct localization of myelin basic protein (MBP) [51] (Table 1).

To summarize, PI3K/Akt/mTOR signaling is a key pathway involved in CNS myelination through
many steps of the process. Akt principal effector, mTOR, is responsible for the initiation of OL
differentiation and maturation. mTORC1 plays a critical role in regulating correct myelination through
protein and lipid synthesis, while mTORC2 signaling is minor but important. In addition, mTORC1
is needed to maintain healthy myelin sheaths in the adult, even though it does not regulate myelin
sheath numbers. Therapeutic strategies focused on mTOR potentiation could be a good approach to
enhance remyelination in myelin disorders.

2.2. Erk1/2-MAPK

The mitogen-activated protein kinase (MAPK) pathway of extracellular signal-related kinases
1 and 2 (Erk1 and Erk2) has been described as a principal pathway that regulates oligodendroglial
development, proliferation, survival, differentiation, and myelination [36,52]. This ubiquitous signaling
pathway is involved in many cellular processes, including differentiation, proliferation, and survival.
The Erk1/2-MAPK pathway is initiated by activation of RTKs at the cell surface, resulting from the
binding of different extracellular growth factors like platelet-derived growth factor (PDGF), fibroblast
growth factor-2 (FGF-2) and neurotrophins (NGF, NT3, and BDNF). This is followed by the activation
of the Ras GTPase family, which phosphorylates Raf protein (MAP3K), which in turn phosphorylates
the mitogen extracellular signal kinases 1 and 2 (MEK1 and MEK2). MEK1 and 2 phosphorylate
Erk1 and Erk2 which are translocated to the nucleus; once there, they can regulate expression of
the master transcriptional regulator of critical myelin genes MyRF, which control Mbp and Plp gene
transcription [53,54] (Figure 1b).
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Table 1. Studies supporting the relevance of the PI3K/Akt/mTOR signaling pathway in OL development.

Experimental
Approach Myelin Thickness Myelination

Degree
Phosphorylation of

Downstream Elements
Myelin Proteins

Expression Nº of Mature OLs Nº of OPCs OL Differentiation References

Bace1−/− - Normal - - Normal Normal Normal [39]

Akt-DD 1 + + + + Normal Normal Enhanced [42]

Rapamycin 2 - - - - [45]

Ptenfl/fl; Cnp1Cre/+

Ptenfl/fl; Plp1CreERT2/+ + + Normal Normal [43]

Ptenfl/fl; Olig2Cre/+ + + + Normal Normal Normal [44]

CNPCre/+; Raptorfl/fl - - - - - + Delayed [46]

CNPCre/+; Rictorfl/fl Normal Slightly - - Normal - Increased [46]

CNPCre/+; Rptorfl/fl - - - - Normal Normal [47]

CNPCre/+; Rictorfl/fl - Delayed
myelination Normal Normal Normal Normal [47]

CNPCre/+; Rptorfl/fl; Rictorfl/fl - - - - - + Delayed [47]

CNPCre/+; Tsc1fl/fl - + - [47]

Olig1Cre/+; Rheb1fl/fl Normal - - - - + Impaired [50]

NG2Cre/+; Tsc1fl/fl + (later is normal) Enhanced
remyelination + Normal Normal Normal [48]

Plp1Cre/+; Tsc1fl/fl - (later is normal) Delayed
remyelination Normal Normal [48]

(-) indicates lower levels or numbers, (+) indicates higher levels or numbers. 1 constitutively active Akt, 2 mTOR inhibitor.



Int. J. Mol. Sci. 2020, 21, 5911 7 of 19

Erk1/2-MAPK involvement in myelination has been investigated principally in classical knockout
mice and mice with sustained activation of Erk1/2. Mice lacking Erk1/2 showed significant
hypomyelination and a decrease in myelin mRNAs associated with a persistent reduced protein
expression throughout adulthood. The absence of Erk1/2 did not alter the number of mature OLs
expressing PLP, but transcript mRNAs of Mbp and Plp were decreased, leading to a decrease in myelin
thickness [53,55]. Conversely, sustained activation of the pathway showed a significant increase
in myelin sheath thickness and expression of Myelin-associated glycoprotein (MAG) and MBP in
myelinating co-cultures of constitutively active MEK (MEK1DD) expressed in CNP+ OLs [56,57].
This pathway has also been studied by the conditional ablation of upstream regulators of this pathway
(FGF Receptor-2 [FGFR2] or tropomyosin receptor kinase B [TrkB]), which resulted in reduced myelin
thickness, whereas OPC differentiation and myelination initiation were unaffected [58–60]. All these
data demonstrate that Erk1/2-MAPK is not necessary for axonal contact, while it is determinant in
the correct establishment of myelin thickness according to axon diameter [36]. Another approach
made by Ishii and colleagues [61] was using mouse lines in which Erk1/2 activation was upregulated
conditionally in a graded manner. They demonstrated that fine-tuning of Erk1/2 signaling strength is
critically important for normal OL cell function. Moderate doses of activity led to the reactivation of
quiescent mature OLs, increasing myelin thickness and myelin mRNA levels. However, high doses of
Erk resulted in late-onset demyelination and axonal degeneration [61]. The importance of balancing
this pathway was later confirmed by a study of Suo [62], in which pharmacological inhibition of MEK
promoted myelin regeneration after injury in a cuprizone-induced demyelination model (Table 2).
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Table 2. Studies supporting the relevance of the ERK1/2-MAPK signaling pathway in OL development.

Experimental
Approach

Myelin
Thickness

Myelination Degree/Start
of Myelination

Phosphorylation of
Downstream Elements

Myelin Proteins
Expression

Cellular
Proliferation Nº of Mature OLs Nº of OPCs OL Differentiation References

MbpCre/+;
TrkBfl/fl - -/Delayed - + Normal + Normal [60]

CNPCre/+;
Fgfr1/2fl/fl - -/Delayed - - Normal Normal Normal Normal [58]

CNPCre/+;
Erk1−/−; Erk2fl/fl - Normal/Normal - Normal Normal Normal [53]

hGFAPCre/+;
Erk2fl/fl

NG2-Cre/+;
Erk2fl/fl

Slightly -/Delayed Normal - Normal Delayed [55]

CNPCre/+;
MEK1DD+/− (1) +

Normal/Enhanced
remyelination + + Normal Normal Normal Normal [53]

CNPCre/+;
MEK1DD+/− (1)

Olig1Cre/+;
MEK1DD+/− (1)

+ +/Normal + + Normal + [57]

Olig1Cre/+;
Erk1−/−;Erk2fl/fl - - - [57]

(-) indicates lower levels or numbers, (+) indicates higher levels or numbers. (1) constitutively active MEK1.
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To recap, Erk1/2-MAPK role in CNS myelination is to regulate myelin sheath thickness to match
the diameter of the ensheathed axon and its maintenance during adulthood, but it does not influence
the initial contact. In remyelinated lesions, it is common to see thinner myelin sheaths around the axons,
so pharmacological modulation of this pathway could be a potential strategy to enhance remyelination.

2.3. Wnt/β-Catenin

The wingless and integration site (Wnt) intracellular β-catenin signaling cascade has been
described as an essential negative regulator of OPC differentiation, myelination, and remyelination [63].
It is an ubiquitous and important signaling pathway that is involved in many cellular processes such as
development, growth, metabolism, and stem cell maintenance. The canonical Wnt/β-catenin pathway
is initiated with the extracellular binding of Wnt ligands to Frizzled receptors and their co-receptors
low-density lipoprotein receptor-related protein 5 and 6 (LRP5/6), at the cell surface. When the pathway
is repressed, β-catenin undergoes proteasomal degradation via the β-catenin destruction complex,
formed by adenomatous polyposis coli (APC), Axin, glycogen synthase kinase 3B (GSK-3B) and casein
kinase 1 (CK1). When the pathway is activated, the β-catenin degradation complex becomes inactive
by binding to LRP5/6, allowing cytosolic β-catenin to accumulate and translocate to the nucleus,
where it interacts with intranuclear T-cell factors/lymphoid enhancer factors (TCF/LEF) to activate
gene expression [36] (Figure 1c).

Early studies on the role of the Wnt/β-catenin canonical pathway in myelination were performed
after the expression of a dominant-active form of β-catenin (DA-Cat) in the OL lineage [64,65].
Olig2Cre/+; DA-Cat and CNPCre/+; DA-Cat mice showed a significant decrease in PLP+ mature OLs,
lower levels of myelin proteins, and/or a decrease in myelin thickness associated with a hypomyelinating
phenotype. However, the number of OPCs was normal, and the phenotype became normal as the
mice aged, suggesting a delay in myelination caused by inhibition of OPC differentiation via Wnt
signaling [64,65]. In vitro studies have tried to clarify the inhibitory effects of the pathway: addition
of Wnt3a (an extracellular agonist of Wnt) into cultures [66,67] led to an increase in OPC numbers
and a decrease in PLP+ (or GalC+) mature OLs. Moreover, pharmacological inhibition of GSK-3B
seemed to override Wnt3a effects and promoted OL differentiation, suggesting additional roles for the
pathway apart from inhibiting early OPC differentiation [66]. However, additional work evidenced
that the Wnt/β-catenin pathway not only has inhibitory effects on OL maturation but is also required
for proper myelination. In vitro studies showed that treatment with Wnt molecules increased OPC
proliferation and differentiation for proper myelination [68–70]. Deletion of APC in mice, an inhibitor
of Wnt signaling, caused a decrease in PLP+/CC1+ mature OLs and a significant decrease of Plp,
Cnp, and Mbp transcripts. Loss of APC resulted in sustained inhibition of differentiation, triggering
persistent hypomyelination throughout adulthood, independent ofβ-catenin signaling [71]. In addition,
β-catenin upregulation by Axin2 inhibition had inhibitory effects on myelination, provoking a decrease
in the number of mature OLs [72]. On the contrary, Axin upregulation had beneficial effects on
remyelination after injury [72].

Downstream of the pathway,β-catenin associated with TCF/LEF factors to promote gene expression.
The TEC/LEF family is comprised of four members in mammals, but Tcf7l2 (also known as Tcf4) is
the most highly expressed in OLs [64,71,73–76]. However, the exact role of Tcf4 has been disputed
by contrasting studies: while Fancy et al. correlated Tcf4 expression with immature OPCs [64],
Fu et al. described a hypomyelinating phenotype in Tcf4−/− mice [73]. Despite these controversial
results, it was proposed that the balance between Tcf4 and β-catenin must be responsible for proper
myelination [36,74,77]. Furthermore, the Zhao group has defined the stage-dependent functions of
Tcf4 to regulate OL lineage development [78]. These stage-dependent functions are mediated through
switching binding partners and provide a molecular framework for understanding the context-specific
control of CNS myelination [78] (Table 3).
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Table 3. Studies supporting the relevance of the Wnt/β-catenin signaling pathway in OL development.

Experimental
Approach

Myelination
Degree

Myelin Proteins
Expression

Cellular
Proliferation Nº of Mature OLs Nº of Immature

OLs (OPCs)
OL

Differentiation References

Olig2CreERT2/+;
APCfl/fl - - - - - Impaired [71]

Axin2−/−
Delayed

remyelination Normal - Normal Delayed [72]

Treatment
with XAV939 1 + + Normal + - Enhanced [72]

GSK-3B
inhibitors + + + + + Normal [66]

Olig2Cre/+;
DA-Cat 2 - PLP+ decreased - Normal Delayed [64]

CnpCre/+;
DA-Cat

- - Normal - Normal Delayed [65]

Tcf4−/− - - - Delayed [73,74]

(-) indicates lower levels or numbers, (+) indicates higher levels or numbers. 1 XAV939 stabilizes Axin2, 2

constitutively active β-Catenin.

We can conclude that although Wnt/β-catenin canonical signaling is key to maintain OPC
populations and inhibit their differentiation into mature OLs, numerous factors from the pathway have
their own signaling effects. Members of the β-catenin destruction complex such as APC or Axin can
promote OL maturation and stimulate remyelination in specific contexts [71,72], so they are emerging
candidates to study new treatments for neurodegenerative diseases derived from a loss of myelin.

2.4. Crosstalk Signaling

Correct orchestration of PI3K/Akt/mTOR, Erk1/2-MAPK, and Wnt/β-catenin pathways is essential
for myelination processes, so learning about how each of the signaling pathways functions by itself is
not enough. The highly dynamic environment surrounding OLs means that they receive constant,
sometimes conflicting signals which can decide their fate. Every extracellular signal must be assimilated
in the specific context of each OL, so the existence of crosstalk elements between pathways is imperative
(Figure 2).

First of all, the crosstalk between the PI3K/Akt/mTOR and Erk1/2-MAPK signaling pathways
has been approached from different points of view. Both pathways exhibit similar phenotypes after
their sustained activation, with an increase in myelin thickness without affecting OL proliferation
or differentiation [36,42–44,56,57,79]. Inhibition of the PI3K/Akt/mTOR pathway triggers an increase
in Erk1/2-MAPK activation, but there is no equivalent reciprocal effect after the inactivation of
Erk1/2-MAPK [80]. One of the first elements proposed for this crosstalk was IRS-1, which can
activate Erk1/2-MAPK and it is inhibited by mTOR [80]. Another element described for its interaction
between these pathways is TSC2. It has been described in tuberous sclerosis, that Erk1/2-MAPK and
PI3K/Akt/mTOR can independently phosphorylate and inactivate TSC2 at distinct residues, resulting in
activation of mTORC1. Consequently, TSC2 is considered a common element that can regulate mTOR
activation, and control of myelination in OLs [81]. Moreover, PI3K/Akt/mTOR downstream element
p70S6K was described by Michel et al. for convergence between both pathways within myelination [82].
The use of Erk2 knockout OL-specific mice revealed a decrease in p70S6K activation and S6RP (its
downstream target), both of which are fundamental for the transition from premyelinating OLs to
mature OLs. This decrease triggered a delay in Mbp translation [36,82]. Interestingly, in FGFR2
conditional ablation mice, an attenuation of myelin thickness was observed, accompanied by a
significant downregulation of p-mTOR, p-Raptor, and p-S6RP, without changes in p-Akt levels.
This revealed that FGFR2 regulates myelin thickness through Erk1/2-MAPK activation and promotes
mTORC1 activity in an Akt-independent way, highlighting the importance of mTORC1 as a crosstalk
element [83]. Several studies have established that the PI3K/Akt/mTOR and Erk1/2-MAPK intracellular
signaling pathways work independently, sequentially, and converge during oligodendroglial lineage
progress and myelination. Specifically, Ishii et al. have extensively studied how these two pathways
interact [35]. Briefly, they used a series of modified mice to explain how the deficit of different elements
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of one signaling pathway affected those in the other pathway. Sustained Akt overactivation in OLs of
Erk1/2 knockout mice was demonstrated to partially offset the deficit in myelin, p70S6K, and pS6RP
expression, but completely rescued p-mTOR expression. Constitutive activation of PI3K in OLs of
Erk1/2 knockout mice fully abrogated myelin gene expression deficits, myelin growth, and p-mTOR,
pS6RP, and p70S6K. Early loss of mTOR resulted in altered OL differentiation and hypomyelination,
which could not be rescued by overexpression of Mek1. However, Mek1 overexpression did reactivate
myelin gene expression in adult OLs. In summary, they described that during development and
initiation of myelination, PI3K/Akt/mTOR is the key regulator, whereas in active myelination, both
pathways are involved and converge at mTORC1. Conversely, Erk1/2-MAPK is the primary pathway
during adulthood responsible for the preservation of myelinated axon integrity, with reduced mTOR
involvement [35].

Crosstalk between PI3K/Akt/mTOR and Wnt/β-catenin was initially described by rapamycin
inhibition of mTOR in in vitro assays, which revealed a significant increase of Tcf4, a downstream
effector of the Wnt/β-catenin pathway. These results suggest that mTOR allows OL differentiation,
altering Wnt canonical pathway signaling [84]. Later, more evidence linked PI3K/Akt/mTOR and
GSK-3B through cyclin-dependent kinase 5 (CDK5), one of a family of serine/threonine kinases that are
mainly implicated in regulatory processes of the cell cycle. CDK5 is an atypical member involved in
the regulation of neuron differentiation and OL development [85]. When CDK5 was conditionally
knocked out in mice, p-Akt significantly decreased while GSK-3B activity was increased, accompanied
by diminished OPC differentiation and myelination following LPC-induced demyelination [36,86].
CDK5′s importance has also been noted for its critical contribution to the architecture of nodes of
Ranvier [87].

The crosstalk interactions that directly connect the Erk1/2-MAPK and Wnt/β-catenin pathways
during OL development and CNS myelination have yet to be described. Several studies in other
cell types have shown that kinase GSK-3B plays a pivotal role, interacting with multiple signaling
pathways. In cancer, it is known that GSK-3B is phosphorylated and inactivated by Erk1/2-MAPK
activation, provoking an upregulation of β-catenin [88,89]. Even though Wnt signaling has been
associated with a delay in differentiation, recent studies show that there may be crucial moments
during OL development in which Wnt is essential for correct myelination.

Therefore Erk1/2-MAPK may be a part of the complex regulatory mechanisms responsible for
tight control of Wnt/β-catenin signaling within OLs. Many non-neuronal cell cultures have pointed to
increases in mTOR and p70S6K activity by GSK-3B [36,90]. PI3K/Akt/mTOR interaction with GSK-3B
takes place at the level of Akt, which can phosphorylate and inactivate it. GSK-3B interacts with
the PI3K/Akt/mTOR pathway to regulate cell proliferation by phosphorylation of p70S6K [91,92].
Even though a direct interaction in signaling has not yet been shown in a myelination context, it is
not unreasonable to think that a link between all three pathways could occur in the same way. It is
necessary, in the future, to answer this question to clarify the contribution of GSK-3B between all
the pathways.

In summary, IRS-1, TSC2, p70S6K, mTORC1, CDK5, and GSK-3B are the principal crosstalk
elements that have been investigated because alterations to their functionality can completely modify
myelination. In this context, there is an element that may be orchestrating all these pathways together
and could be upregulated to potentiate remyelination: Ras GTPases, which are upstream initiators of
both PI3K/Akt/mTOR and Erk1/2-MAPK pathways, and can coordinate Wnt/β-catenin route through
downstream effectors.

2.5. The Ras Family of GTPases and Their Role in Neurodegenerative Myelin Diseases

The Ras Superfamily of small GTPases are membrane-anchored intracellular signal transducers
that share a conserved structure and biochemical properties. They are known for having low molecular
weights (20–30 kDa), and they act as molecular switches that switch signaling pathways on and off by
binding and hydrolyzing GTP, respectively [93,94]. In this way, they can transduce extracellular signals
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to intracellular signaling to regulate proliferation, differentiation, and survival. The Ras superfamily is
made up of 150 members that are clustered in 5 families according to their sequence homology: Ras,
Rho, Rab, Ran, and Arf [95].
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Wnt/β-catenin (green, right). Crosstalk elements between two or more pathways are highlighted
in yellow. Arrowheads imply positive interactions while bars indicate inhibitory signals. CDK5:
cyclin-dependent kinase 5.

Members of the classic Ras family (Hras, Kras, and Nras) are frequently mutated and constitutively
active in human cancers [96,97]. GTPases of the Ras-related (R-Ras) subfamily, composed of
R-RAS1 (RRas), R-RAS2 (TC21), and R-RAS3 (also called MRas), are less well understood [98–100].
R-Ras proteins share strong homology (55–60% amino acid identity, Figure 3) with the classic Ras
proteins [99,101,102] and with other effector proteins, but many of its functional implications remain
undescribed. R-Ras1 and R-Ras2 are ubiquitous [103,104], whereas R-Ras3 expression is more
restricted [105,106]. R-Ras1 encodes a 218-amino acid protein (23.5 kDa) that shares 55% homology
with H-Ras, 65% with R-Ras2 and 46% with R-Ras3. R-Ras1 has been described to be expressed in
OLs in vitro with a possible implication in maturation from OPCs to myelinating OLs [107]. R-Ras2
encodes a 204-amino acid protein (23.4 kDa). Some effectors known to be activated by R-Ras1 and
R-Ras2 are c-Raf and PI3K [108–113].
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Figure 3. R-Ras molecular structure and domains. (a) Representation of the R-Ras primary structure
showing domains related to its function. Switch I and II (blue and red) are critical interfaces for
downstream effectors and part of the nucleotide-binding pocket. The phosphate-binding loop (P-loop,
orange) and the N/TKxD (green) regions are important for binding nucleotides, while the DxxG (violet)
motif confers specificity for guanosine nucleotides. The CaaX C-terminal region is crucial for membrane
attachment via prenylation or fatty acid modification. (b) Crystal structure of R-Ras1 bound to GDP
(PDB: 2FN4) with highlighted regions corresponding to the ones in (a). GDP is shown as a ball and
stick model, with each atom colored by element. The lower box represents the molecular surface model
showing how GDP accommodates within the hydrophobic region. (c) The C-terminal ends of R-Ras1,
R-Ras2, and R-Ras3, which constitute the “hypervariable region” (HVR), show significant sequence
diversity important for their subcellular localization. CaaX box is underlined in yellow, with “C” being
a cysteine substrate for prenylation, “a” any aliphatic amino acid, and “X” any amino acid.

Recently, R-Ras1 and R-Ras2 have been described to play an essential role in OL differentiation
and survival and their absence reduces activation of the PI3K/Akt/mTOR and Erk1/2-MAPK pathways.
R-Ras1 and R-Ras2 can signal through PI3K/Akt/mTOR and Erk1/2-MAPK pathways, as their absence
produced a significant decrease of p-Thr308-Akt, p-Ser473-Akt, p-Erk1/2, and p-S6RP. Mice lacking
R-Ras1 and/or R-Ras2 showed a decrease in mature OL populations and a higher proportion of
immature OLs, correlated to an increased expression of Tcf4. Lack of R-Ras1 reduced myelin sheath
thickness, while the deletion of R-Ras2 decreased the total number of myelinated axons, with a more
severe phenotype in the R-Ras1−/−; R-Ras2−/− mice. This study revealed that R-Ras1 and R-Ras2
play essential and non-redundant functions in correct myelination processes [114], and their absence
modifies the major pathways involved in myelination. These data suggest that R-Ras1 and R-Ras2
GTPases are candidate players in crosstalk activities within these important signaling pathways.
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3. Conclusions

Myelin is essential for the proper function of the nervous system since it facilitates the correct
integration of the sensory, motor, and cognitive information. In this sense, the main objective for
control of neurodegenerative diseases is the rescue of myelin sheath integrity. In this review, we have
illustrated that even though signaling pathways individually contribute to myelination, there is also a
complex network of crosstalk elements that thoroughly connects these pathways, thereby controlling
the final effects on myelination. In addition, we have highlighted R-Ras1 and R-Ras2 proteins as
essential crosstalk elements for the proper coordination and control of myelination processes. A deeper
understanding of the molecular mechanisms which coordinate myelination and remyelination processes
is the key to establish new promising treatments to fight neurodegenerative myelin-associated diseases.
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