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A B S T R A C T

Characterization of gene regulatory networks is fundamental to understanding homeostatic development. This
process can be simplified by analyzing relatively simple genomes such as the genome of Drosophila melanogaster.
In this work we have developed a computational framework in Drosophila to explore for the presence of gene
regulatory circuits between two large groups of transcriptional regulators: the epigenetic group of the Polycomb/
trithorax (PcG/trxG) proteins and the microRNAs (miRNAs). We have searched genome-wide for miRNA targets
in PcG/trxG transcripts as well as for Polycomb Response Elements (PREs) in miRNA genes. Our results show that
10% of the analyzed miRNAs could be controlling PcG/trxG gene expression, while 40% of those miRNAs are
putatively controlled by the selected set of PcG/trxG proteins. The integration of these analyses has resulted in the
predicted existence of 3 classes of miRNA-PcG/trxG crosstalk interactions that define potential regulatory circuits.
In the first class, miRNA-PcG circuits are defined by miRNAs that reciprocally crosstalk with PcG. In the second,
miRNA-trxG circuits are defined by miRNAs that reciprocally crosstalk with trxG. In the third class, miRNA-PcG/
trxG shared circuits are defined by miRNAs that crosstalk with both PcG and trxG regulators. These putative
regulatory circuits may uncover a novel mechanism in Drosophila for the control of PcG/trxG and miRNAs levels of
expression. The computational framework developed here for Drosophila melanogaster can serve as a model case
for similar analyses in other species. Moreover, our work provides, for the first time, a new and useful resource for
the Drosophila community to consult prior to experimental studies investigating the epigenetic regulatory net-
works of miRNA-PcG/trxG mediated gene expression.
1. Introduction

Regulation of gene expression is essential for the normal development
and healthy life of organisms. Transcription is controlled at multiple
levels and involves numerous factors and transcription cofactors that
work together to provide a robust and adequate level of temporal and
spatial gene expression. microRNAs (miRNAs) provide post-
transcriptional control while the Polycomb Group (PcG) and the tri-
thorax Group (trxG) of proteins function in the epigenetic regulation of
transcription. miRNAs and PcG/trxG proteins are highly conserved in
most eukaryotes including Drosophila and mammals, where they control
gene expression of many genes participating in a range of biological
processes (Schuettengruber et al., 2007; Shabalina and Koonin, 2008).

miRNAs are a class of small (19–24 nucleotides in length) RNAs that
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largely control transcription by binding to complementary sequences,
known as MicroRNA Response Elements (MREs), located mainly within
the 30untranslated region (30-UTR) of target mRNAs. Target recognition
is primarily initiated through base pairing at the miRNA seed region
(nucleotides 2–8 (Lewis et al., 2005), the minimal element required to
engage the target mRNA. This interaction produces either mRNA trans-
lational repression or mRNA degradation, ultimately leading to a
decrease in the amount of mRNA and a fine-scale tuning effect on protein
levels (Baek et al., 2008). The magnitude of repression depends partic-
ularly on the complementarity between a miRNA and its target MRE.

PcG and trxG proteins are chromatin modifiers that maintain tran-
scriptional states by controlling chromatin compaction and, thereby,
accessibility to DNA by transcription factors and cofactors. They have
counteracting activities: PcG represses gene expression and trxG activates
. Busturia).
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gene expression by either promoting a “closed” or an “open” chromatin
configuration, respectively (reviewed in (Kassis et al., 2017)). PcG/trxG
function as multimeric protein complexes, such as PRC1 (Polycomb
Repressive Complex 1), PRC2 (Polycomb Repressive Complex 2) or the
COMPASS-like complexes that bind to chromatin andmodify its structure
by either the covalent modification of nucleosome histones, such as
methylation or ubiquitylation or by ATP-dependent chromatin remod-
eling (Kassis et al., 2017; Piunti and Shilatifard, 2021). Recruitment of
PcG/trxG complexes to chromatin is essential for their function (Busturia
et al., 1997, 2001). In vertebrates experimental evidence, although still
controversial, is accumulating supporting CpG islands as targets of
PcG/trxG complexes (Bauer et al., 2016; Li et al., 2017; Du et al., 2018;
Owen and Davidovich, 2022). In Drosophila, it is well established that
recruitment of PcG/trxG complexes to chromatin is mediated by binding
to PREs (Polycomb Response Elements) and TREs (Trithorax Response
Elements). PREs and TREs are DNA cis-regulatory elements that contain
similar sequences, suggesting that PcG/trxG share genomic binding sites
at target genes (Kassis et al., 2017; Schuettengruber et al., 2009;
Schwartz et al., 2010; Kahn et al., 2014; Bredesen and Rehmsmeier,
2019). PREs contain clusters of transcription factors binding motifs,
variable in number and position within the PRE (Kassis and Brown,
2013). Genome searches for PREs using a number of different PRE pre-
diction tools (Bredesen and Rehmsmeier, 2019; Fiedler and Rehmsmeier,
2006; Khabiri and Freddolino, 2019; Ringrose et al., 2003; Zeng et al.,
2012) indicate that PcG/trxG proteins may regulate the expression of
roughly 30% of the Drosophila genes (Bredesen and Rehmsmeier, 2019).

Changes in miRNA and PcG/trxG expression levels contribute to
various physiological disorders and are signatures of several types of
pathologies, including cancer (Farazi et al., 2013; Chan andMorey, 2019;
Fathi et al., 2021). Therefore, understanding the mechanisms controlling
miRNAs and PcG/trxG levels is important for the definition of tran-
scriptional networks controlling normal and pathological development.

A complex vertebrate regulatory network between the PcG and
miRNAs gene expression has been described (Asangani et al., 2012;
Bueno et al., 2008; de Nigris, 2016; Ning et al., 2015; Sato et al., 2011;
Varambally et al., 2008; Wang et al., 2015; Xu et al., 2020) defining
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regulatory circuits that maintain each other's levels of expression. Of
these circuits, the positive and negative feedback loops involving the
EZH2 (Enhancer of Zeste 2) protein of the PRC2 complex and several
miRNAs are the most studied, and these have been shown to be involved
in the development of a variety of pathologies (You et al., 2018; Liu et al.,
2021; Jia et al., 2021; Cai et al., 2021). In Drosophila, less is known about
possible interactions between PcG/trxG and miRNAs. It has been shown
that dme-miR-34 regulates the expression of PRC2members, Pcl and Su(z)
12, to promote healthy brain development (Kennerdell et al., 2018).
Moreover, a genome search for PREs in Drosophila S2 cells identified
several miRNAs as PcG/trxG targets and the expression of these miRNAs
is altered in PcG mutant backgrounds (Enderle et al., 2011).

In this study, we have investigated the regulatory interactions be-
tween miRNAs and PcG/trxG using an in silico approach to uncover the
regulatory circuits in Drosophila. To this end, we have developed a
computational framework based on refined prediction data generated
using a combination of different predictors (Agarwal et al., 2018; Bre-
desen and Rehmsmeier, 2019; Khabiri and Freddolino, 2019) and
experimental datasets (Wessels et al., 2019) (Fig. 1). First, we have
analyzed whether each one of the miRBase v22 mature miRNAs
described (Methods) showed PcG and trxG binding enrichment. Second,
we have investigated the potential of each miRNA gene to be regulated
by PcG/trxG through the presence of PREs in its promoter region. The
results of these analyses have identified a novel and comprehensive set of
miRNAs that may act as regulators of PcG/trxG gene expression as well as
a set of miRNA genes potentially regulated by the PcG/trxG proteins.
Interestingly, the combination of the results has uncovered
cross-regulatory interactions between miRNAs and PcG/trxG that may
define direct regulatory circuits. Our results provide a computational
resource ready to be applied to the discovery of the molecular mecha-
nisms involved in the biological processes mediated by the miRNAs and
PcG/trxG networks in Drosophila. Moreover, the results presented here
can be used as a foundation for future work to deepen our understanding
on the intricate regulatory networks formed between these two large
groups of transcriptional regulators.
Fig. 1. Conceptual map of the computational
framework A) Search for miRNA binding of PcG
and trxG. TargetScanFly miRNA target predictions
(Agarwal et al., 2018) and experimentally defined
mature miRNA (Wessels et al., 2019) were paired and
filtered to generate the Refined miRNA Target pre-
dictions set (RmiRTps). Next, an overrepresentation
analysis (ORA) was applied to RmiRTps using the
selected PcG/trxG gene sets, resulting in a list of
miRNAs enriched in PcG or trxG transcripts predictive
binding. B) Search for pre-miRNAs with neigh-
boring PREs. Intersection of SVM-MOCCA (Bredesen
and Rehmsmeier, 2019) and KF19 (Khabiri and
Freddolino, 2019) predictions generated the Refined
PRE prediction set (RPREps) to which the pre-miRNAs
genomic coordinates were compared and filtered ac-
cording to the selection criteria of � 5 kb. This
resulted in a list of pre-miRNAs having a PRE located
at 5 kb or less from the pre-miRNAs 50end. C) Inte-
gration of A and B. Following the annotation of the
pre-miRNAs with the corresponding miRNAs, the
combination of results from A and B generated a list of
miRNAs forming circuits with PcG (16), with trxG (3)
and with both PcG and trxG (2). See Methods and
Fig. S1 for details.
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2. Methods

2.1. Data sources

miRBase v22 (Kozomara et al., 2019) was accessed to obtain
pre-miRNA genomic coordinates (“dme_miRBase.gff3”) and to annotate
the correspondence between pre-miRNAs and mature miRNAs (“miR-
NA.dat”). FlyBase (V2.0 (Thurmond et al., 2019), was consulted for the
generation of the PcG/trxG gene sets. TargetscanFlyV7 resource database
was used for miRNA target predictions (www.targetscan.org/fly_72/,
(Agarwal et al., 2018). Three precomputed prediction files were down-
loaded: 1) the Conserved site context scores prediction file, 2) The Non-
conserved site context scores prediction file, and 3) the Summary Counts, all
predictions file. In Files 1 and 2 every site with homology to a mature
miRNA seed region is classified depending on the MicroRNA Response
Element (MRE) site's conservation and scored by the contextþþ score (a
measure defined by 14 features described in (Agarwal et al., 2015)),
representing the predicted MRE repression. In File 3, all the MRE pre-
dictions of a given miRNA in a given transcript are integrated using the
most abundant mRNA isoform, thereby providing one prediction per
gene. These predictions are scored by the Cumulative Weighted Context
Score (CWCS), representing the predicted repression of a miRNA over a
gene. Additionally, in File 3 the predictions of the miRNAs of the same
seed are grouped in one miRNA family, selecting the highest CWCS of all
the individual mature miRNAs as the family CWCS. Both CWCS and
contextþþ score are represented with negative values: the lower the
value, the stronger predicted repression. For more information see Tar-
getScanFlyV7 website, (www.targetscan.org/fly_72/, (Agarwal et al.,
2018).

For the miRNA target experimental data, the High confidence miRNA
binding site set file from (Wessels et al., 2019) was used following the
recommended cut-offs, microMUMMIE_var ¼ 0.5, see Wessels et al., for
details (for details see Supplementary Data 10 in (Wessels et al., 2019).
This file contains the common MREs of two separate replicate samples of
an AGO1 PAR-CLIP experiment and includes the 30-UTR location of the
MREs associated with the top 30 expressed miRNAs in the Drosophila S2
cell line.

SVM-MOCCA (Bredesen and Rehmsmeier, 2019) and the predictor
developed by Khabiri and Freddolino (referred to here as KF19) (Khabiri
and Freddolino, 2019) were used for Polycomb Response Elements
(PREs) predictions. For SVM-MOCCA predictions, we selected the “Sup-
plementary File 3” (Bredesen and Rehmsmeier, 2019), which contains
genome-wide PRE predictions with a cut-off for an expected precision of
80% in dm6 assembly. For KF19, the 0.8 cut-off PRE predictions with a
precision of 98% and a recall of 0.26, in dm5.9 assembly, were kindly
provided by the authors. The KF19 predictions were later converted to
dm6 assembly with FlyBase Coordinate converter tool (dos Santos et al.,
2015).

2.2. Generation of the Refined miRNA Target predictions set (RmiRTps)

A Refined microRNA Target predictions set (RmiRTps) was generated
based on experimental data to apply a sensible threshold to the pre-
dictions (Fig. 1A and Fig. S1). An intersection strategy and several
filtering steps were done from TargetScanFlyV7 predictions (www.tar
getscan.org/fly_72/ (Agarwal et al., 2018), and Wessels et al. experi-
mentally defined MREs (Wessels et al., 2019) as follows. First, the Tar-
getScanFlyV7 Conserved and Nonconserved site context scores files (Files 1
and 2, see above and Fig. S1) were merged and the seed genomic co-
ordinates were calculated from the provided position within the 30-UTR
and the 30-UTR genomic coordinates (the UTR genome coordinate, Tar-
getScanFlyV7 website). Second, the overlap between these MRE pre-
dictions and the experimentally defined MREs was generated to explore
to what extent the MRE predictions were experimentally supported.
Third, the resulting contextþþ score distribution was analyzed and
compared to the score distribution of the MRE predictions. Finally, a
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cut-off was empirically established in a contextþþ score of�0.04 to filter
the TargetScanFlyV7 MRE predictions and a list of the “miRNA:transcript
pairs' below the �0.04 contextþþ score was extracted.

Next, the condensed miRNA families from the Summary Counts, all
predictions file (file 3 from (Agarwal et al., 2018), see above and Fig. S1)
were expanded to cover all individual miRNAs and the predictions were
filtered with the list of miRNA:transcript pairs below the established
cut-off. Only the summarized predictions included in the miRNA:tran-
script pairs list were selected, and thus excluded all the summarized
predictions that were exclusively formed by MRE predictions not ful-
filling the �0.04 contextþþ score cut-off. TargetScanFlyV7 Summary
Counts, all predictions considers only the main transcript isoform of each
gene, thus the last filtering step resulted in the RmiRTPs with unique
“miRNA:gene pairs”.

2.3. PcG/trxG gene set definition

For the definition of the PcG gene set, the PcG genes considered in
Kassis et al. review (Kassis et al., 2017) with a proven in vivo functionality
were used. For the definition of the trxG gene set the “common” genes
defined as “trxG genes” in FlyBase (https://flybase.org/reports
/FBgg0000303.html (Thurmond et al., 2019),) in Kassis et al. review
(Kassis et al., 2017) were selected. Additionally, among the “non com-
mon genes” only those with a proven in vivo functionality described in
Kassis et al. review and Ray et al., 2016, Brown and Kassis, 2010 were
included. This resulted in the inclusion of 22 PcG genes for the PcG gene
set and 26 trxG genes for the trxG gene set (Table S1).

2.4. PcG/trxG over representation analysis

The application of an over-representation analysis (ORA) allows to
test whether binding of a given miRNA to a given set of transcripts is
overrepresented, i.e. enriched in the context of all the miRNA predicted
binding sites. One-sided Fisher exact test was used for testing the miRNAs
predicted to target at least one PcG or one trxG transcript respectively, to
obtain those miRNAs enriched in PcG or trxG. The Odds Ratio (OR)
represents the statistical probability of a givenmiRNA binding to a PcG or
a trxG transcript within all the given miRNA targets. To evaluate the false
discovery rate of the ORA results, the robust False Discovery rate method
(rFDR) was used with one sided continuous p-values parameters (Pounds
and Cheng, 2006) using the “robust.fdr” function nested inside “prot2D00

Bioconductor package (Artigaud et al., 2013). Only rFDRs of 22% for
trxG, and 10% for PcG (corresponding with p-values �0.01) were
considered, as the main goal of this study is to provide a bonafide list of
candidate miRNAs for their in vivo experimental validation.

2.5. Generation of the refined PRE predictions set (RPREps)

The Refined PRE predictions set (RPREps) was produced by inter-
secting SVM-MOCCA (Bredesen and Rehmsmeier, 2019) and KF19
(Khabiri and Freddolino, 2019) PRE predictions (Fig. 1B, Fig. S2). The
goal of the intersection was to improve the confidence of PRE pre-
dictions, given the technical and biological differences between KF19
and SVM-MOCCA, such as the biological sample (isolated mesodermal
embryonic cells versus SG4 embryonic cells), the technical experimental
procedure of the training set (ChIP-seq versus ChIP-chip), the model
features and the model construction. KF19 predictions were converted to
the dm6 assembly using FlyBase Coordinate converter tool (dos Santos
et al., 2015) and then used BEDTools (Quinlan and Hall, 2010) to obtain
the overlap regions of the intersecting KF19 and SVM-MOCCA PRE
predictions, resulting in the RPREps (Fig. S2).

2.6. Association of each miRNA with the closest PRE

Following KF19 criteria (Khabiri and Freddolino, 2019), a distance of
� 5 kb between the PREs of the RPREps and the pre-miRNA 5’ end from
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miRBase v22 (Kozomara et al., 2019) was used to select the pre-miRNAs
potentially regulated by PcG/trxG proteins. Of those, we found that some
pre-miRNA contained a PRE within the pre-miRNA transcription unit and
were classified as overlap (Fig. 4).

2.7. Integration of the miRNAs enriched in PcG/trxG transcripts and the
pre-miRNAs potentially regulated by PcG/trxG proteins

pre-miRNAs at a distance of � 5 kb to a PRE were annotated with
their corresponding mature miRNAs using the miRBase v22 “miRNA.dat”
file (Kozomara et al., 2019) and then integrated with the
miRNA-PcG/trxG ORA results. This resulted in a list of mature miRNAs
forming the regulatory circuits with PcG or trxG proteins (Fig. 1C).
dme-miR-10404 and dme-miR-11182 were excluded due to differences
between the miRBase version utilized in this analysis and TargetScan-
FlyV7 predictions (Agarwal et al., 2018).

A network was produced to show the relation between miRNAs, PcG
and trxG by exploring the individual PcG/trxG targets of each miRNA
using Cytoscape (Shannon et al., 2003) (Fig. 5). For this, miRNAs were
considered as source nodes and PcG/trxG transcripts as target nodes.
Edges between source and target nodes are drawn based on RmiRTPs,
considering the expected repression (i.e., CWCS) of the predictions as the
edge weight (the thicker the edge the stronger the expected repression).
For representation of Fig. 5C, source nodes were filtered to keep only
miRNAs involved in regulatory circuits (See Data availability).

2.8. Data availability

The original files, as well as the RmiRTps and RPREps and all the code
used in this study are available at: https://github.com/j-solor/Drosoph
ila-miRNA-PcG-circuits/

Network available for analysis at NDEx:
https://www.ndexbio.org/#/networkset/998959df-1a4e-11ed-ac

45-0ac135e8bacf?accesskey¼6e232187b6745a196eca1d0321b2f8be
fd6dbd737e83a4407e6c9ce29e9842a0.

3. Results

3.1. Search for mature microRNAs potentially regulating PcG/trxG gene
expression

To search for miRNAs potentially regulating PcG and trxG gene
expression, we studied all of the 469 miRNAs so far identified in the
Drosophila genome. We generated a Refined miRNA Target predictions
set (RmiRTps) with 410,855 miRNA:Gene interactions for a total of
13,212 genes and an average number of ~31 mature miRNAs targeting
each gene (Fig. 1A). This curated miRNA Target prediction set was
produced by matching TargetScanFlyV7 predictions (Agarwal et al.,
2018) with the transcriptome-wide map of miRNAs target sites devel-
oped by CLIP-seq (crosslinking and immunoprecipitation followed by
sequencing) experiments in a Drosophila S2 cell line (Wessels et al.,
2019). This strategy allowed a reduction in the number of spurious and
residual miRNA predictions (Fig. S1, Methods), resulting in the selection
of only those miRNAs with at least one PcG or one trxG transcript target.
Therefore, 343 miRNAs were tested for binding enrichment in PcG tar-
gets and 335 miRNAs for binding enrichment in trxG targets.

Next, we sought to identify the miRNAs enriched in the putative
regulation of PcG/trxG genes by applying an overrepresentation analysis
(ORA, Methods) to test whether a miRNA could interact more specifically
with either PcG or trxG than with any other protein-coding gene se-
quences (Fig. 1A). To do this, we first defined the PcG/trxG gene sets
(Methods) that included 22 PcG genes and 26 trxG genes respectively
(Table S1). The application of ORA to search for the miRNAs enriched in
PcG regulation resulted in 35 out of 343 mature miRNAs predicted to
significantly target PcG genes (p-value <0.01). Additionally, the appli-
cation of ORA to find the miRNAs enriched in the putative regulation of
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trxG, resulted in 15 out of the 335 mature miRNAs predicted to signifi-
cantly target trxG genes (p-value <0.01). Out of these 50 (35 þ 15)
miRNAs, 6 target both PcG and trxG and thus, resulting in a total of 39
enriched miRNAs (Fig. 1A, Table S2). As shown in Fig. 2, there are
miRNAs showing high Odds Ratio (OR) values for PcG enrichment such
as dme-mir-8-5p (OR ¼ 6.02, p-value ¼ 6.6 � 10�4), miRNAs showing
high OR for enrichment in both PcG and trxG such as dme-mir-2283-5p
(OR ¼ 7.59, p-value ¼ 1.0 x 10�5 for PcG; OR ¼ 6.09, p-value ¼ 1.2 x �
10�5 for trxG) and miRNAs showing high OR for trxG enrichments such
as dme-mir-973-3p (OR ¼ 5.89, p-value ¼ 3.3 � 10�3) or dme-mir-963-5p
(OR¼ 7.40, p-value¼ 1.3� 10�3). Notably, our results predict that dme-
mir-34-5p targets Pcl, Su(z)12, ph-d and Jing transcripts (Fig. 3) which is
in accordance to the results indicating that dme-mir-34-5p targets, in vivo,
the Pcl and Su(z)12 transcripts (Kennerdell et al., 2018), thus validating
our methods.

In summary, we identified miRNAs enriched in PcG binding and 15
miRNAs enriched in trxG binding, thus suggesting potentially regulatory
interactions. Moreover, taking into account that miRNA binding
enrichment analysis was performed with 343 miRNAs for PcG and 335
microRNAs for trxG, our results suggest that roughly 10% and 3% of the
mature miRNAs putatively regulate PcG and trxG genes, respectively.

3.2. Search for pre-miRNAs potentially regulated by PcG/trxG proteins

To identify pre-miRNAs likely to be regulated by PcG/trxG proteins
we search for the presence of PREs in the vicinity of pre-miRNA genes. As
PREs serve as binding sites for both PcG and trxG proteins to regulate
chromatin structure (Kassis et al., 2017), the outcome of this search
provides a list of pre-miRNAs predicted to be regulated by both the PcG
and trxG proteins. We generated a Refined PRE predictions set (RPREps)
to obtain higher confidence in the predicted PREs. For that, we selected
the common PRE predicted sites by SVM-MOCCA (Bredesen and
Rehmsmeier, 2019) and by the predictor developed by Khabiri and
Freddolino (2019), referred in the text as KF19, for higher confidence in
the predicted PREs. This search identified 4258 PREs of 759bp average
length in the RPREps (Fig. S2). Next, we calculated the distance between
each pre-miRNA and its closest PRE using the coordinate information of
the 260 pre-miRNAs of the miRBase database (Kozomara et al., 2019)
and our RPREps. We considered a miRNA to be potentially regulated by
PcG/trxG if the 5'end of the pre-miRNA was located 5 kb or less from the
closest PRE, a similar strategy to that was used in Khabiri and Freddolino
(2019). We found that 40% (106 out of 260) of the pre-miRNAs are
potentially regulated by PREs (Fig. 4, Table S2). Of note, 16 of the 106
pre-miRNAs overlap with a PRE, i.e., contain a PREwithin the pre-miRNA
transcription unit (Fig. 4). This is the case for dme-miR-313 that together
with dme-miRNA-310, dme-miRNA-311 and dme-miRNA-312 form the
dme-miR-310s cluster (Ryazansky et al., 2011), suggesting a coordinated
control of all these miRNAs by PcG/trxG proteins. These findings suggest
an epigenetic mechanism of expression control by PcG/trxG proteins for
nearly half of the pre-miRNAs.

3.3. Analysis of miRNA-PcG/trxG crosstalk interactions: Definition of
regulatory circuits

Our results indicated that PcG/trxG proteins could interact with 40%
of pre-miRNAs (Fig. 4), and that 50 mature miRNAs are enriched in PcG/
trxG transcript binding (Fig. 2). This led us to search for the presence of
crosstalk interactions that could define regulatory circuits between
miRNAs and PcG/trxG.

First, we selected those miRNAs that contained a PRE in their vicinity
(�5 kb) (Fig. 4) and that additionally showed a significant enrichment of
its target sequence in PcG transcripts (Fig. 2). The results showed 16
crosstalk interactions defining potential miRNA-PcG regulatory circuits
(Fig. 5A, Table 1). For example, the regulatory circuit formed by the dme-
miRNA-313-3p (and the entire miR-310s cluster) with the Pc, Su(z)2 or
pho transcripts. dme-miRNA-313 “overlaps” (Fig. 5AB) with the



Fig. 2. Over-representation analysis of miRNAs binding PcG/trxG Barplot showing the Odds Ratio (OR) of the miRNAs significantly enriched in PcG and trxG as
the x-axis. OR represents the probability of a given miRNA binding to a PcG or a trxG transcript within all the given miRNA targets. p-values are represented as the
color gradient in a logarithmic scale, log10 p-values � �2 are significant. Brown color gradient for PcG enrichment and green color gradient for trxG enrichment.
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regulatory predicted PRE and shows significant enrichment for PcG
transcript binding (OR ¼ 4.14, p-value ¼ 4.7 x 10�3), with predicted
targets in Pc (Cumulative Weighted Context Score (CWCS) ¼ �0.606),
Su(z)2 (CWCS ¼ �0.342) and pho (CWCS ¼ �0.481) (Figs. 3 and 5B),
which all code for PcG proteins members of the PRC1, PRC2, PhoRC, and
dRAF complexes involved the establishment of repressive transcriptional
states (Kassis et al., 2017).

Second, we applied the same strategy to search for miRNA-trxG
crosstalk interactions. The results showed 3 potential miRNA-trxG regu-
latory circuits (Fig. 5A, Table 1), for example, the circuit formed by dme-
miR-210-5p with the trx, osa or Kis transcripts. dme-miR-210-5p is located
at 1952 bp from the predicted regulatory PRE (Fig. 5AB) and showed
significant enrichment for binding to trxG transcripts (OR ¼ 3.83, p-
value ¼ 3.9 x � 10�3), with predicted targets in trx (CWCS ¼ �0.921),
osa (CWCS ¼ �1.166) and Kis (CWCS ¼ �1.474) (Figs. 3 and 5B) coding
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for trxG proteins members of the TAC1, COMPASS-TRX, ASH1, BAP,
PBAP, KIS complexes all of which are involved in the establishment of
active transcriptional states (Kassis et al., 2017).

Finally, we selected those miRNAs that contained a PRE in their vi-
cinity (�5 kb) (Fig. 4) and that show a significant enrichment of its
targets both in PcG and in trxG transcripts (Fig. 2). Interestingly, the
combined results showed crosstalk interactions between miRNAs and
both PcG and trxG thus defining 2 “shared” regulatory circuits. We
identified dme-miR-972-5p and dme-miR-289-5p as potential miRNAs
involved in these circuits (Fig. 5A, Table 1). For instance, dme-miR-972-
5p is located 635bp from a predicted regulatory PRE and shows signifi-
cant enrichment for PcG transcripts (OR ¼ 4.72, p-value ¼ 8.1 x 10-4)
with predicted targets in 15 out of 22 PcG (Figs. 3 and 5AB). Moreover,
dme-miR-972-5p shows significant enrichment for trxG transcripts (OR ¼
2.76, p-value ¼ 8.5x 10�3) with predicted targets in 15 out of 26 trxG



Fig. 3. Predicted PcG/trxG targets of the significantly enriched miRNAs Heatmap indicating the Cumulative weighted context score (CWCS) shown in logarithmic
scale (blue color gradient). This represents the predicted strength of repression of a given miRNA (as specified) on a given PcG or trxG transcript (as specified). Orange
bar (left) indicates the miRNAs significantly enriched in PcG binding. Green bar (left) indicates the miRNAs significantly enriched in trxG binding.

Fig. 4. Distribution of the pre-miRNAs according to their distance from the closest PRE A) Representation of the number of pre-miRNAs (260 total) and their
5'end distance (in logarithmic scale) to the closest PRE. Shown are the number of pre-miRNAs containing a PRE within the pre-miRNA transcription unit (overlap),
located at � 5 kb and located at >5 kb. B) Pie chart representing the percentage of the three indicated classes of pre-miRNAs.

J. Solorzano et al. Developmental Biology 495 (2023) 63–75
transcripts (Figs. 3 and 5B).
Thus, our results identified 21 potential regulatory circuits between

miRNAs and PcG/trxG in which members could function to control each
other's levels of expression resulting in a complex regulatory network
(Fig. 5C). Of those, 16 are formed by crosstalk interactions between
miRNAs and PcG, 3 by crosstalk interactions between miRNAs and trxG
and 2 between miRNAs and both PcG and trxG (shared regulatory
circuits).
68
4. Discussion

A challenge in current biological studies is the identification of reg-
ulatory networks controlling the molecular and cellular mechanisms
directing homeostatic levels of gene expression during normal develop-
ment and upon stress stimuli. Regulatory network identification can be
simplified by analyzing organisms with relatively simple genomes such
as Drosophila melanogaster. In addition, genome-wide approaches allow
the investigation of the functional interdependence between selected



Table 1
Description of the miRNAs involved in the regulatory circuits. In the “PcG genes” and “trxG genes” columns, the Cumulative Weighted Context Score is displayed for the predicted miRNA targets.

mature
miRNA

pre-
miRNA

Distance to
PRE (bp)

Location closest PRE PcG enrichment odds
ratio

PcG enrichment p-
valuie

trxG enrichment odds
ratio

trxG enrichment p-
value

PcG genes [Cummulative
Weighted Context score]

trxG genes [Cummulative
Weighted Context score]

dme-miR-
4987-5p

dme-mir-
4987

1625 2L:10842101..10842650 4.69826272477903 0.008129240404036 0.635257731958762 0.795681983020144 Pcl [-0.196],
Jarid2 [-0.163],
Jing [-0.037],
Pho [-0.001],
Cg [-0.276]

e(y)3 [-0.000]

dme-miR-
2b-2-5p

dme-mir-
2b-2

1187 2L:19571451..19572350 4.09633757961783 0.008086165051436 0.43463768115942 0.898603414179656 Ph-p [-0.057],
Ph-d [-0.077],
Scm [-0.513],
Jing [-0.383], dSfmbt
[-0.350],
Spps [-0.262]

BAP170 [-0.002]

dme-miR-
4910-5p

dme-mir-
4910

870 2L:4818751..4819250 3.40322580645161 0.004662987082664 1.25114800423878 0.377504747288209 Pc [-0.299],
Psc [-0.079],
Su(z)2 [-0.555],
Scm [-1.677],
E(z) [-0.947],
Su(z)12 [-0.079],
Pcl [-0.394], dSfmbt
[-0.001],
Kdm2 [-0.105],
Asx [-0.118],
Cg [-0.827]

nej [-0.783],
Mnn1 [-1.030],
Ash1 [-0.192], fs(1)h
[-1.189],
mor [-0.001],
Bap60 [-0.363],
Act5C [-0.338]

dme-miR-
375-5p

dme-mir-
375

4942 2L:852051..852600 5.47640791476407 0.009760365974831 0.979455252918287 0.647137457593319 Ph-p [-0.306],
Ph-d [-0.075],
Jing [-0.302], dSfmbt
[-0.115]

Wds [-0.026]

dme-miR-
137-3p

dme-mir-
137

1586 2R:16066930..16067395 3.56179183135704 0.009925710209183 0.992229903445123 0.595722445208553 Pc [-0.577],
Su(z)2 [-0.435],
Su(z)12 [-0.463],
Jing [-0.133],
Pho [-0.001],
Asx [-0.180],
Spps [-0.273]

nej [-0.133],
fs(1)h [-0.205],
mor [-0.530]

dme-miR-
3-5p

dme-mir-
3

2018 2R:19658896..19659645 5.96256684491978 0.003138678689138 1.68026386645126 0.350251823728148 Su(z)12 [-0.133],
Jing [-0.123],
Pho [-0.002],
Asx [-0.441],
Cg [-0.122]

fs(1)h [-0.123],
Snr1 [-1.159]

dme-miR-
2498-5p

dme-mir-
2498

75 2R:20584196..20584745 6.41103518096684 0.005775287942213 Su(z)2 [-0.125],
Esc [-0.032],
Jing [-0.039],
Pho [-0.001]

dme-miR-
310-3p

dme-mir-
310

356 2R:20584196..20584745 4.22290388548057 0.004323871839355 0.36 0.935339409176805 Pc [-0.606],
Su(z)2 [-0.342],
Scm [-0.103],
Pcl [-0.321],
Jarid2 [-0.244],
Pho [-0.481],
Kdm2 [-0.329]

dSET1 [-0.313]

dme-miR-
311-3p

dme-mir-
311

236 2R:20584196..20584745 4.15555555555555 0.00468703052517 0.354281414597441 0.937992048476882 Pc [-0.606],
Su(z)2 [-0.342],
Scm [-0.103],
Pcl [-0.321],
Jarid2 [-0.244],

dSET1 [-0.313]

(continued on next page)

J.Solorzano
et

al.
D
evelopm

entalBiology
495

(2023)
63

–75

69



Table 1 (continued )

mature
miRNA

pre-
miRNA

Distance to
PRE (bp)

Location closest PRE PcG enrichment odds
ratio

PcG enrichment p-
valuie

trxG enrichment odds
ratio

trxG enrichment p-
value

PcG genes [Cummulative
Weighted Context score]

trxG genes [Cummulative
Weighted Context score]

Pho [-0.481],
Kdm2 [-0.329]

dme-miR-
312-3p

dme-mir-
312

75 2R:20584196..20584745 4.13122807017543 0.004826604182234 0.734394506866416 0.758521611488091 Pc [-0.606],
Su(z)2 [-0.342],
Scm [-0.103],
Pcl [-0.321],
Jarid2 [-0.244],
Pho [-0.481],
Kdm2 [-0.329]

dSET1 [-0.313],
Mnn1 [-0.075]

dme-miR-
313-3p

dme-mir-
313

0 2R:20584196..20584745 4.14162270786234 0.004766399534726 0.353098274568642 0.938537008793288 Pc [-0.606],
Su(z)2 [-0.342],
Scm [-0.103],
Pcl [-0.321],
Jarid2 [-0.244],
Pho [-0.481],
Kdm2 [-0.329]

dSET1 [-0.313]

dme-miR-
289-5p

dme-mir-
289

2329 3L:13623151..13623700 5.37753222836095 0.000172688985084 3.22504604051565 0.002823276295614 Pc [-2.046],
Psc [-0.160],
Su(z)2 [-1.605],
Ph-p [-0.134],
Ph-d [-0.108],
Sce [-0.785],
Scm [-1.068],
Su(z)12 [-0.080],
Escl [-2.322],
Jarid2 [-0.818],
Jing [-0.068],
Pho [-0.010], dSfmbt
[-0.005],
Kdm2 [-1.050],
Asx [-0.620],
Cg [-0.124]

trx [-0.075],
nej [-0.403],
Sbf [-0.521], dSET1
[-1.334],
Wds [-0.216],
Hcf [-0.531],
Cfp1 [-0.092],
Mnn1 [-3.006],
Ash1 [-0.563], fs(1)h
[-0.070],
mor [-0.576],
osa [-0.103],
Bap60 [-0.976],
Bap111 [-0.872], e(y)3
[-0.277],
BAP170 [-0.004]

dme-miR-
2501-3p

dme-mir-
2501

1137 3L:8109551..8109970 1.07066052227342 0.616431988714722 6.80669077757685 0.000644684384588 Pc [-0.161] nej [-0.041],
Hcf [-0.000], osa [-0.184],
Bap60 [-0.190],
Act5C [-0.144],
Kis [-0.049]

dme-miR-
92a-3p

dme-mir-
92a

423 3R:25646929..25647678 4.16255362099419 0.004647730883487 0.354875659382064 0.937717829011951 Pc [-0.606],
Su(z)2 [-0.342],
Scm [-0.103],
Pcl [-0.321],
Jarid2 [-0.244],
Pho [-0.481],
Kdm2 [-0.329]

dSET1 [-0.313]

dme-miR-
92b-3p

dme-mir-
92b

3070 3R:25647829..25648328 4.16957290876926 0.004608686337308 0.355471698113207 0.937442443701222 Pc [-0.606],
Su(z)2 [-0.342],
Scm [-0.103],
Pcl [-0.321],
Jarid2 [-0.244],
Pho [-0.481],
Kdm2 [-0.329]

dSET1 [-0.313]

dme-miR-
9384-3p

dme-mir-
9384

0 3R:4748529..4749078 3.42643581725268 0.008613674436318 2.20698758636184 0.068058853628999 Su(z)2 [-3.392],
Sce [-0.811],
Scm [-0.154],
Pcl [-0.172],

trx [-0.071],
nej [-1.342],
Wds [-0.907],
Mnn1 [-1.206], fs(1)h
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Table 1 (continued )

mature
miRNA

pre-
miRNA

Distance to
PRE (bp)

Location closest PRE PcG enrichment odds
ratio

PcG enrichment p-
valuie

trxG enrichment odds
ratio

trxG enrichment p-
value

PcG genes [Cummulative
Weighted Context score]

trxG genes [Cummulative
Weighted Context score]

Jarid2 [-0.603],
Jing [-0.058], dSfmbt
[-1.039],
Cg [-0.448]

[-0.881],
Act5C [-1.277], e(y)3
[-1.468]

dme-miR-
210-3p.2

dme-mir-
210

1952 X:18125718..18126267 5.72794117647058 0.00369715955157 1.6144375324002 0.367768836018748 Su(z)2 [-0.110],
Scm [-0.300],
Jing [-0.120], dSfmbt
[-0.001],
Asx [-0.049]

nej [-0.110],
Act5C [-0.415]

dme-miR-
210-5p

dme-mir-
210

1952 X:18125718..18126267 1.35567704924344 0.407210783239273 3.83031489639419 0.003858869992258 Su(z)12 [-0.758],
Asx [-3.526],
Cg [-3.578]

trx [-0.921],
nej [-1.609],
Mnn1 [-1.025], fs(1)h
[-3.397],
osa [-1.166],
Act5C [-0.439], e(y)3
[-0.932],
Kis [-1.474]

dme-miR-
972-3p

dme-mir-
972

635 X:19549968..19550517 5.20626187856356 0.00050721606566 0.976233385897724 0.605956509336639 Pc [-0.653],
Ph-p [-0.422],
Scm [-0.180],
Escl [-0.328],
Jing [-0.102],
Phol [-0.622], dSfmbt
[-0.200],
Cg [-0.127],
Spps [-1.325]

trx [-1.072],
nej [-0.042],
Act5C [-0.108]

dme-miR-
973-3p

dme-mir-
973

1011 X:19549968..19550517 0.927380952380952 0.667920256535042 5.88897637795275 0.001318090013727 Cg [-0.147] trx [-0.140],
Dpy-30L1 [-1.176],
Trr [-0.178],
Ash1 [-0.261], osa
[-0.152],
e(y)3 [-0.068]

dme-miR-
972-5p

dme-mir-
972

635 X:19549968..19550517 4.33913731697665 0.000805666185207 2.76001007302946 0.008545496503637 Pc [-2.046],
Psc [-0.160],
Su(z)2 [-1.605],
Ph-p [-0.134],
Sce [-0.785],
Scm [-1.068],
Su(z)12 [-0.080],
Escl [-2.322],
Jarid2 [-0.818],
Jing [-0.068],
Pho [-0.010], dSfmbt
[-0.005],
Kdm2 [-1.050],
Asx [-0.620],
Cg [-0.124]

trx [-0.075],
nej [-0.403],
Sbf [-0.521], dSET1
[-1.334],
Wds [-0.216],
Hcf [-0.531],
Cfp1 [-0.092],
Mnn1 [-3.006],
Ash1 [-0.563], fs(1)h
[-0.070],
mor [-0.576],
Bap60 [-0.976],
Bap111 [-0.872], e(y)3
[-0.277],
BAP170 [-0.004]
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Fig. 5. miRNAs defining PcG/trxG regulatory cir-
cuits A) Representation of the miRNA enrichment
p-values in relation to the distance to the closest
PRE. Left panel: miRNAs (orange dots) defining
miRNA-PcG circuits with a significant p-value. Right
panel: miRNAs (green dots) forming miRNA-trxG cir-
cuits with a significant p-value. Also indicated are the
miRNAs with a significant p-value (purple dots)
forming miRNA-PcG/trxG shared circuits. p-values are
in a logarithmic scale in y-axis, log10 p-values � �2
are significant. In the x-axis, pre-miRNA distance to
PRE is represented in the logarithmic scale. B)
Network representations of miRNA-PcG/trxG cir-
cuits. Panels from left to right show examples of
miRNA-PcG circuit (dme-miR-313-3p network, left),
miRNA-trxG circuit (dme-miR-210-5p network, mid-
dle), miRNA-PcG/trxG circuit (dme-miR-972-5p
network, right). C) Network representation with
the integration of the 16 miRNAs forming all three
classes of regulatory circuits. In panels B and C
color rectangles nodes represent miRNAs; diamond
and ellipse nodes represent target transcripts
belonging to the PcG and trxG respectively. Edge
weight represents the Cumulative Weighted Context
Score (CWCS) of each target prediction.
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components and the complex relationships between them.
We have developed an in silico genome-wide framework in Drosophila

(Fig. 1) to explore the existence of gene regulatory circuits between two
large groups of regulators: the Polycomb and trithoraxGroups genes (PcG/
trxG) and the microRNAs (miRNAs), relevant for organismal develop-
ment and human disease pathologies. Several studies have reported in-
teractions between these groups of regulators (Asangani et al., 2012;
Bueno et al., 2008; Ning et al., 2015; Varambally et al., 2008), in some
cases finding a reciprocal control through crosstalk interactions thus
defining regulatory circuits between vertebrate PcG and miRNAs (de
Nigris, 2016; Cao et al., 2011; Schubert et al., 2013; Jiang et al., 2019).
However, the existence of such regulatory circuits in Drosophila has not
yet been explored.

In this work, we searched for miRNA target enrichment for PcG/trxG
72
transcripts as well as for Polycomb Response Elements (PREs) in the vi-
cinity of pre-miRNAs. The intersection and combination of these analyses
resulted in the predicted existence of regulatory circuits, providing a high
value resource for the experimental analysis of these regulatory
Drosophila networks.

Our results identify 35 miRNAs as potential regulators of PcG gene
expression and 15 miRNAs as potential regulators trxG gene expression
(Figs. 2 and 3, Table S2). Considering that a total of 343 and 335 miRNAs
were included in our study to analyze PcG and trxG enrichment,
respectively, our results indicate that roughly 10% and 3% of the miRNAs
may regulate PcG and trxG gene expression. Moreover, our results indi-
cate that 40% of pre-miRNAs (106 out of 260 pre-miRNAs) could be
potentially regulated by PcG/trxG proteins through the binding to PREs
located in their vicinity (Fig. 4, Table S2). This percentage is higher than
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in a previous genome-wide analysis performed in Drosophila S2 cells
where it was reported that 41 out of the 157 pre-miRNAs described at the
time were potentially regulated by neighboring PREs (Enderle et al.,
2011).

The intersection of the PcG/trxG enriched miRNAs with the miRNAs
potentially regulated by PREs revealed the existence of putative miRNA-
PcG/trxG regulatory circuits. Our analysis strategy revealed 3 classes of
miRNA-PcG/trxG crosstalk interactions in Drosophila that define poten-
tial 21 regulatory circuits involving 21 miRNAs, 21 PcG and 21 trxG
(Fig. 5). In the first class, for example the regulatory circuit formed by the
dme-miRNA-313-3p and the Pc, Su(z)2 or pho transcripts (Fig. 5B), miR-
NAs that reciprocally crosstalk with PcG define the miRNA-PcG circuits.
Into this class, fall 16 of the 21 potential regulatory circuits. These are
composed of two reciprocal repressive elements, the miRNA and the PcG,
forming a double negative feedback loop (Ferro et al., 2019). Modeling
studies of this type of loop comprising miRNAs and epigenetic machinery
associate it with cell fate decisions (Osella et al., 2014). Examples
described in humans include the hsa-miR-214/EZH2 circuit involved in
skeletal muscle cell differentiation (Juan et al., 2009) and the
hsa-miR-138/SIRT1 circuit involved in axon regeneration (Liu et al.,
2013). In the second class, for instance, the circuit formed between
dme-miR-210-5p and the trx, osa or Kis transcripts (Fig. 5B), miRNAs that
reciprocally crosstalk with trxG define the miRNA-trxG circuits (3 out of
16). These are composed of a repressive element (the miRNA) and an
activating element (the trxG) forming a positive feedback loop (Ferro et al.,
2019). This second kind of circuits, similar to ones described between
miRNAs and activating transcription factors, allow for a tight control of
the activating element levels (Ferro et al., 2019). A known human
example of this class is the hsa-miR-17–92/E2F1 circuit that is critical for
balancing E2F1 protein levels important for the control of cell cycle
progression (Li et al., 2011). The third class, consisting of miRNAs that
reciprocally crosstalk with both PcG and trxG, such as the circuit formed
between dme-miR-972-5p and 15 and 15 PcG and trxG transcripts
respectively (Fig. 5B), define the miRNAs-PcG/trxG shared circuits (2 out
of 21). In these circuits, a negative regulator (the miRNA) represses both
a positive (trxG) and a negative (PcG) regulator. This class of crosstalk
interactions is the most complex and so far undescribed functionally.

Of note, our results are not necessarily comprehensive. There might
exist more circuits than the ones described here, both due to the intrinsic
nature of miRNA transcription (Yin et al., 2015), and/or due to the
technical compromise decision established in the different steps of the
computational workflow. The case of dme-mir-8 (hsa-mir-200 ortholog in
humans) is illustrative (Cao et al., 2011; Enderle et al., 2011; Polytarchou
et al., 2012). The closest predicted PRE is located 24 kb from dme-miR-8
pre-miRNA, thus it has not been included in our defined miRNA-forming
circuits in spite of its significant enrichment in PcG (Fig. 2).

Examination of the 21 miRNAs forming PcG/trxG regulatory circuits
revealed conserved miRNA families. This is the case for the TargetS-
canFlyV7 AUUGCAC family that share the same seed sequence and
include the dme-miR-310s cluster, composed of dme-miR-310-3p, dme-
miR-311-3p, dme-miR-312-3p and dme-miR-313-3p (Ryazansky et al.,
2011), as well as dme-miR-92a-3p and dme-miR-92b-3p. All of the Tar-
getScanFlyV7AUUGCAC family members form circuits of themiRNA-PcG
class (Fig. 5A). The dme-miR-310s cluster is conserved across different
Drosophila species (Lu et al., 2008) and has a role in the establishment of
complex morphological patterns through the regulation of Hox genes
(Kaschula et al., 2018). Inactivation of these miRNAs through shRNA
produces either pupal lethality or homeotic-like phenotypes (Unpub-
lished results Regojo and Busturia,), thus making the dme-miR-310s-PcG
circuit identified in this work a promising crosstalk interaction for in vivo
validation. Moreover, dme-miR-92a-3p and dme-miR-92b-3p are
conserved in all metazoans (Marco et al., 2013). Among other functions,
dme-miR-92a controls circadian rhythms (Chen and Rosbash, 2017) with
a target gene, l(3)73AH, that has been predicted to be a member of the
PCR1 complex (Gaudet et al., 2011; Irminger-Finger and N€othiger,
1995). Moreover, human orthologs of dme-miR-92a and dme-miR-92b
73
have been found to be up-regulated in many cancer types (Chen et al.,
2016; Huo et al., 2016; Motoyama et al., 2009; Nass et al., 2009; Poliseno
et al., 2010; Ren et al., 2016; Shrestha et al., 2014; Szuri�an et al., 2017;
Xiang et al., 2015), making dme-miR-92a-3p and dme-miR-92b-3p excel-
lent candidates for translational studies and in vivo validation.

The novel integrative computational framework developed in this
work has permitted a genome-wide analysis of putativemiRNA-PcG/trxG
regulatory circuits. Notably, this is the first time such an investigation has
been performed in Drosophila and this framework can serve as a basis for
similar analyses in other species. The work identified a group of miRNAs
that form regulatory circuits with PcG/trxG potentially regulating each
other 's expression. Interestingly, the integration of these circuits in
Fig. 5C shows a more complex and higher level of interactions than those
defined in this work, to be further explored. The results provided here
serve as a useful and concise resource for the Drosophila community to
consult prior to experimental studies investigating the Drosophila regu-
latory networks of miRNA-PcG/trxG mediated gene expression.

5. Conclusions

� A computational framework has been developed to search for in-
teractions between microRNAs (miRNAs) and Polycomb/trithorax
(PcG/trxG) from a genome-wide perspective in Drosophila mela-
nogaster. This framework may serve as a basis for similar analysis in
another species.

� The search has predicted that 35 and 15 mature microRNAs poten-
tially regulate the expression of PcG and trxG genes respectively. Also,
the search predicted that 160 pre-miRNAs are potentially regulated
by PcG/trxG proteins.

� This integrative approach resulted in the discovery of crosstalk reg-
ulatory interactions that define 16 miRNA-PcG regulatory circuits, 3
miRNA-trxG circuits and 2 miRNA-PcG/trxG shared circuits.

� A new and useful resource is provided to consult prior to experimental
studies investigating the Drosophila regulatory networks of miRNA-
PcG/trxG mediated gene expression.

� These regulatory circuits may uncover a putative novel mechanism in
Drosophila to control PcG/trxG and miRNAs levels of expression
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ydbio.2022.12.008.

Table S1. PcG/trxG gene sets. Gene sets obtained from the integration
of Kassis et al., (2017) (Kassis et al., 2017) review, Ray et al. (2016),
Brown and Kassis (2010) and Flybase v2.0 (Thurmond et al., 2019). See
Methods.

Table S2. Description of the 460 miRNAs analyzed. “Distance_PRE” is
the pre-miRNA 5'end distance to a PRE. “PRE_location” is the genomic
location of the pre-miRNA closest PRE. “PcG_OR” and “trxG_OR” repre-
sent the PcG and trxG enrichment odds ratio respectively. “PcG_pval” and
“trxG_pval” represent PcG and trxG enrichment p-value respectively. In
the “PcG_genes” and “trxG_genes” columns, the Cumulative Weighted
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Context Score (CWCS) is displayed for the predicted miRNA targets.
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