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Mormyridae, a family of weakly electric fish, use electric pulses for communication

and for extracting information from the environment (active electroreception). The

electromotor system controls the timing of pulse generation. Ethological studies have

described several sequences of pulse intervals (SPIs) related to distinct behaviors (e.g.,

mating or exploratory behaviors). Accelerations, scallops, rasps, and cessations are four

different SPI patterns reported in these fish, each showing characteristic stereotyped

temporal structures. This article presents a computational model of the electromotor

command circuit that reproduces a whole set of SPI patterns while keeping the same

internal network configuration. The topology of the model is based on a simplified

representation of the network with four neuron clusters (nuclei). An initial configuration

was built to reproduce nucleus characteristics and network topology as described

by detailed morphological and electrophysiological studies. Then, a methodology

based on a genetic algorithm (GA) was developed and applied to tune the model

connectivity parameters to automatically reproduce a whole set of patterns recorded

from freely-behaving Gnathonemus petersii specimens. Robustness analyses of input

variability were performed to discard overfitting and assess validity. Results show that

the set of SPI patterns is consistently reproduced reaching a dynamic balance between

synaptic properties in the network. This model can be used as a tool to test novel

hypotheses regarding temporal structure in electrogeneration. Beyond the electromotor

model itself, the proposed methodology can be adapted to fit models of other biological

networks that also exhibit sequential patterns.

Keywords: neural sequences, inter-pulse interval coding, temporal structure evolutionary tuning, computational

neuroethology, multiple sequence network topology

1. INTRODUCTION

Pulse mormyriforms, a group of weakly electric fish, produce electric pulses with high temporal
precision. These fish have the ability to polarize their body in fast voltage transients whose
deflection in the fish surroundings is detected by the fish using a specialized electric organ (Caputi,
1999). The electric organ discharges (EODs) occur as a result of the synchronous activation of
modified muscle or nerve cells named electrocytes. This ability, known as active electroreception,
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is a well-suited sensory modality to study information processing
in a living neural system. The signal from a freely-behaving fish
can be monitored for long periods.

Information is encoded in the fish signal using a multiplexed
temporal coding (Baker et al., 2013; Nagel et al., 2018). The pulse
shape, with a mean duration of ∼1 ms, is stereotyped, although
there are variations among species (Hopkins and Bass, 1981),
sex (Bass and Hopkins, 1983), or relative dominance (Carlson
et al., 2000). The interval between EODs, known as the inter-
pulse interval (IPI), is much larger and more variable than the
duration of the EOD. At rest, IPIs are around 100–300 ms, but
they fluctuate from less than 10 to more than 400 ms (Teyssedre
and Boudinot, 1987). IPIs and sequences of pulse intervals (SPIs)
are also relevant to information processing in these animals, as
complex higher-level information can be encoded using this kind
of temporal coding (Hopkins and Bass, 1981; Baker et al., 2013).
For instance, IPIs decrease when the fish is actively probing their
environment (von der Emde and Bleckmann, 1992). The timing
flexibility of IPIs in this system gives rise to a remarkable set of
SPI patterns with behavioral relevance, as we will discuss below.

The neural system responsible for controlling the timing of
the EODs is the electromotor system, located in the central
nervous system of the fish (Caputi et al., 2005). A neural ensemble
known as the command nucleus (CN) initiates the EOD. Action
potentials in CN are correlated with EODs (i.e., each action
potential in CN leads to an EOD). Nevertheless, CN is not a
pacemaker but an integrator system. It mainly receives synaptic
input from the mesencephalic precommand nucleus (PCN) and
the adjacent thalamic dorsal posterior nucleus (DP) (Figure 1).
Nuclei DP and PCN receive projections from multiple sources,

FIGURE 1 | Abridged schematic of the electromotor command network based on Bell et al. (1983) and Carlson (2003) and used for developing the computational

model discussed in this article. An EOD occurs after each action potential in CN (Grant et al., 1986), thus, CN activations represent the output of the model. CN

receives excitatory projections from DP (ESDP) and PCN (ESPCN). Inhibitory afferents are driven to DP and PCN through VPd (ISDP and ISPCN, respectively) triggered by

the corollary discharge pathway (ESCDP), which makes VPd to fire a burst of action potentials right after the production of an EOD (Carlson, 2002b). This inhibition

feedback seems to regulate the rhythm of EOD output (Von der Emde et al., 2000). Current inputs to the electromotor model (InVPd, InDP, InPCN) can be tuned to

simulate different behavioral conditions that give rise to different SPIs.

but they are both inhibited by the ventroposterior nucleus
(VPd). The activation of VPd mediates this inhibition through
a feedback mechanism, the corollary discharge pathway (Bell
and Grant, 1989; Carlson, 2002b; refer to ESCDP in Figure 1).
Inhibition feedback is a mechanism for avoiding responses to the
fish’s own EOD and seems to regulate the resting electromotor
rhythm (Carlson and Hopkins, 2004a). The IPIs of DP/PCN
nuclei last, at least, as much as VPd bursts, which also emphasizes
this fact (Carlson, 2003).

Recurrent inhibition is one shared feature with central pattern
generators (CPGs), simpler neural control motor systems with
rhythmic outputs (Selverston, 1999) which are well characterized
in invertebrates. The intrinsic dynamics of the constituent
neurons and the network topology of such CPGs are well-known.
Using this knowledge, research on CPGs has taken advantage
of computational modeling to explain how its rhythmic neural
activity results from a combination of cellular and network
properties (e.g., the swimmeret system of crayfish Sherff and
Mulloney, 1996, the lobster stomatogastric ganglion Selverston,
2005, or the snail feeding network Vavoulis et al., 2007). In
contrast to most CPGs, the specific dynamics of the nuclei
and the synaptic properties within the electromotor system for
reproducing the variability of SPIs shown by this system are not
known. Furthermore, the electromotor system does not produce
rhythmic outputs but a variety of SPI patterns with characteristic
temporal structure and behavioral significance.

We have developed a model of the electromotor command
system of pulse mormyrids capable of reproducing the variability
of temporal firing patterns shown by these fish as a function
of the input while sustaining the same network architecture.

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2022 | Volume 16 | Article 912654

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Lareo et al. Modeling Electromotor System Sequential Patterns

FIGURE 2 | Characteristic SPI patterns recorded from freely-behaving Gnathonemus petersii specimens (top) and examples of corresponding synthetic SPIs to

evolve and validate the electromotor command network model (bottom). Regarding the different SPIs, accelerations are sustained IPI shortenings to a series of almost

regular shorter IPIs; scallops are sudden drops to very short IPIs (below the minimum IPI in accelerations) followed by a recovery to regular resting IPIs; rasps are a

combination of a sudden drop to very short IPIs as in a scallop followed by a step increase of IPIs duration for a sustained series of IPIs; cessations are activity

dropping in the EOD generation for periods up to 1 s. All of them have different temporal structures (Moller, 1970; Moller et al., 1989; Carlson and Hopkins, 2004b),

different behavioral significance, and they result from different activations within the electromotor network (Carlson, 2003; Carlson and Hopkins, 2004a). Recorded

SPIs were obtained from experimental data recordings of living G. petersii specimens and were used as targets for the R-GA configuration of the model. A set of

synthetic SPIs were constructed preserving the characteristic temporal structure of previously reported SPI patterns (Carlson and Hopkins, 2004b), they were used as

targets for obtaining the S-GA configuration of the model.

The model topology and nucleus dynamics are based on the
results from previous physiological studies of the pulsemormyrid
electromotor system (Bell et al., 1983; Carlson, 2002b, 2003;
Carlson and Hopkins, 2004a).

Samples of these patterns were obtained for this work from
experimental data recordings of living Gnathonemus petersii
specimens (Forlim and Pinto, 2014; Forlim et al., 2015; Lareo
et al., 2016, 2017) for the first time. These types of patterns have
been previously characterized in other species of theMormyridae
family (Carlson and Hopkins, 2004b).

An automated method based on genetic algorithms (GA),
with the development of a multiobjective fitness function for
this system, was applied for synaptic parameter setting. Patterns
recorded from G. petersii were used to fit the model parameters.
All of the previously described SPI patterns with behavioral
significance were consistently reproduced. Finally, the robustness
of the model was tested under systematic variations of network
inputs to assess the validity and discard overfitting to these
inputs. We argue that the proposed methodology to generate
functional temporal structure in SPI patterns can be applied to
model the electromotor command network in a variety of fish
species. Even more, the methodology proposed in this study can
be generalized to fit models of other biological networks that also
exhibit sequential patterns.

2. COMPUTATIONAL MODEL OF THE
ELECTROMOTOR COMMAND NETWORK

Figure 1 illustrates the model of the electromotor command
network described in the following subsections. We also describe
below the genetic approach used to fit the synaptic connectivity

parameters that give rise to distinct activity patterns as a function
of the stimuli.

2.1. Characteristic Sequences of Pulse
Interval
Pulse mormyrids generate a wide variety of electrical activity
patterns using different sequences of pulse intervals (SPIs) and
resting IPIs range from ∼100 to 300 ms. Previous studies
have described several stereotyped SPIs related to typical social
behaviors (Carlson and Hopkins, 2004b). Accelerations, scallops,
rasps, and cessations are four relevant SPIs that have been
described (Carlson and Hopkins, 2004b; Caputi et al., 2005). The
temporal structure of SPIs (i.e., the timing of the spikes and
the relative change between IPIs) is the defining part of these
behavioral displays. Carlson and Hopkins (2004b) demonstrated
the existence of three different modal classes of SPI displays
(accelerations, scallops, and rasps) with an increased firing rate
that differs categorically in their temporal structure. As scallops
are defined by a pause in the EOD generation, they also define a
fourth categorically different display (Moller, 1970; Moller et al.,
1989; Kohashi et al., 2021).

Accelerations are sustained IPI shortenings to a series of
almost regular shorter IPIs. Accelerations (refer to Figure 2) are
related to the activation of the neural ensemble known as the
adjacent thalamic dorsal posterior nucleus (DP, refer to Figure 1;
Carlson and Hopkins, 2004a). According to Kramer (1976), this
kind of SPI is related to aggressive behaviors.

Scallops (refer to Figure 2) are sudden drops to very short
IPIs (its minimum IPI use to be below the minimum IPI in
accelerations) followed by an almost immediate recovery to
regular resting IPIs. Contrary to what occurs in accelerations, IPIs
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drops in scallops are not sustained, so the total duration of the
display is shorter than accelerations or rasps. A scallop pattern
in CN takes place after the activation of the mesencephalic
precommand nucleus (PCN, refer to Figure 1). This kind of
firing pattern may serve as an advertisement signal (Serrier and
Moller, 1989; Caputi et al., 2005).

Rasps (refer to Figure 2) are a type of IPI pattern that has
an initial sudden decrease to very short IPIs, similar to the one
observed in scallops, followed by a step increase of IPIs duration
for a sustained series of IPIs, like a long tail of short regular
IPIs similar to the ones observed in the acceleration pattern
(Hopkins, 1981). Rasps likely rely on activation of both DP and
PCN (Caputi et al., 2005) (refer to network model in Figure 1).
This SPI is evoked during male courtship behavior (Carlson and
Hopkins, 2004b).

Finally, cessations (refer to Figure 2) correspond to activity
dropping in the EOD generation for periods up to 1 s. A
cessation is evoked by the activation of the ventroposterior
nucleus (VPd, refer to Figure 1). Submissive behavior has been
associated with this SPI (Moller, 1970; Moller et al., 1989), and
it has also been related to increased sensitivity to receiving
communication signals (Kohashi et al., 2021). We will use these
four representative patterns to validate our electromotor network
modeling approach.

All four SPI displays (accelerations, scallops, rasps, and
cessations) are well-defined behavioral firing patterns, although
they show a large temporal variability (both in its constituent
IPIs and their overall duration) not only between patterns but
also between samples of the same pattern. Examples of this
variability in SPI displays, especially regarding accelerations, are
shown in Carlson and Hopkins (2004b). Also, previous studies
describing acceleration-like bursts discuss timing variations
(Bell et al., 1974; Kramer, 1976). Regarding cessations, Moller
et al. (1989) show variations in the mean duration of silences
relating them to fish size. Both recorded and synthetic SPI
datasets used for GA optimization were constructed to reflect
this variability.

2.2. Nuclei Model
Four different neuron ensembles in the electromotor command
chain were modeled. They were the medullary command
nucleus (CN), the mesencephalic precommand nucleus
(PCN), the adjacent thalamic dorsal posterior nucleus
(DP), and the dorsal region of the ventroposterior nucleus
(VPd). Each nucleus was simulated using the neuron model
developed by Izhikevich (2003). This simplification was
adopted due to the lack of biological details both in the
constituent neurons and the synaptic properties at the
nucleus level. This model combines biological plausibility
and computational performance characteristics of the
integrate-and-fire neuron modeling approach (Long and
Fang, 2010). It is based on a two-dimensional system of ordinary
differential equations:

dv

dt
(t) = 0.04v2 + 5v+ 140− u+ isyn(t), (1)

du

dt
(t) = a(bv− u), (2)

with an auxiliary after-spike resetting:

if v ≥ 30mV, then

{

v = c
u = u+ d,

(3)

where v represents the neuron’s membrane voltage and u is
a voltage variable representing the combined action of ionic
current dynamics. The parameters a, b, c, and d set the working
regime of the neuron model. isyn is the model external input.

A wide range of neuron dynamics, and in particular
firing temporal structures, can be reproduced by selecting
different values of the parameters a, b, c, and d, as shown in
Izhikevich (2003).

The parameters of the neuron model were first adjusted to
reproduce the dynamics of the nuclei described by previous
neurophysiological studies of the electromotor command
network. According to Carlson (2003), units from DP/PCN
nuclei showed wide variations in baseline frequency, from
sporadical firing units to units with high spiking rates, so
no baseline firing frequency was preselected for the DP/PCN
models. Nevertheless, as it occurs in the living network, a bimodal
structure arose from the IPIs intervals before and after CN
action potential in both DP/PCN, with larger intervals occurring
after the CN activation. VPd nucleus model fires high-frequency
sequences of action potentials with a noticeable spike frequency
adaptation, which is in accordance with physiological records
showing bursts of action potentials from VPd during each
IPI. This behavior was modeled using a low-threshold spiking
firing regime, which is usually displayed by inhibitory neurons
(initial synaptic parameters were also adjusted to reproduce this
behavior). Model parameters were also selected to ensure that the
intrinsic dynamics could reproduce the characteristic temporal
structure observed in the resulting pattern evoked after activation
of each nucleus (i.e., frequency adaptation in PCN, regular
frequency in DP, bursting behavior in VPd, and spike integration
in CN). This was an assumption based on physiological results
in network behavior. However, the intrinsic characteristics of the
neurons in each nucleus are not known in detail, neither under
spiking nor step function inputs. Also, there was considerable
variation in the timing of the first spike of the burst relative to CN,
intraburst firing rate, burst duration, and the number of spikes
per burst from VPd units, so none of these characteristics was a
priori selected. Finally, the CN model was configured to a phasic
spiking firing regime as it mainly integrates inputs from DP and
PCN (Carlson, 2002a).

The parameter values for modeling each nucleus are listed in
Supplementary Section 2 and Supplementary Table S2 depicts
the activity of each model nucleus (isolated from the network)
in response to a step current input, and also an example of
the response of each model nucleus to synaptic input from the
network model.

2.3. Synapses Model
We reproduced neural projections using a model of chemical
synapses as chemical inter-nuclei communication takes place
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TABLE 1 | Relevant synaptic parameters of the GA adjusted to recorded

Gnathonemus petersii patterns (R-GA, refer to Figure 2) configurations of the

model (threshold = 0; Esyn = −80; T = 1; refer to Equations 4, 5).

R-GA

Synapse α β gsyn tmax

ISDP 0.539 5.297e-3 -1.658e-1 177.288

ISPCN 5.948 1.295e-3 -3.077e-1 167.175

ESDP 5.982 1.200e-1 2.381e-1 9.51458

ESPCN 5.027 2.186e-1 1.997e-1 84.4537

ESCDP 4.433 1.371e-2 6.471e-1 428.988

in the real electromotor command network. When the pre-
synaptic target generates an action potential in these synapses,
a certain amount of neurotransmitters are released and bind to
the postsynaptic receptors. The mathematical description used
to model this behavior is based on a description of the receptor
bindings (Destexhe et al., 1994). These equations define a simple
method for computing synaptic currents with low computational
cost. The ratio of bound chemical receptors in the post-synaptic
target (r) during a pulse (tf < t < tr) and after the pulse (tr < t)
was calculated as follows:

ṙ =

{

α[T](1− r)− βr, if tf < t < tr
−βr, otherwise,

(4)

where α and β are the forward and backward rate
constants for transmitter binding and [T] is the
neurotransmitter concentration.

The beginning of a pulse (tf ) was detected when the
presynaptic neuron’s membrane potential crossed a given
threshold. The time between tf and tr was defined as the
maximum release time (tmax). Both threshold and tmax were tuned
as a parameter of the synapses (refer to Table 1).

From the ratio of bound receptors is given by Equation 4, the
current received by the post-synaptic target, isyn, at any time t was
then calculated as follows:

isyn(t) = g · r(t) · (Vpost(t)− Esyn), (5)

where g is the synaptic conductance, Vpost(t) is the post-synaptic
potential at time t, and Esyn is the synaptic reversal potential at
the same time.

The topology of the model was set up using a standard
configuration of the model of chemical synapses (ESDP,
ESPCN,ISDP, ISPCN, ESCDP in Figure 1). The adjustment of the
parameters of these synapses is essential to generate the four
types of SPI patterns exhibited by the electromotor command
network. An ad hoc iterative tuning of the parameters of the
model was performed to match previously described dynamics
in the electromotor command network: (i) DP/PCN units firing
sporadically before CN, (ii) DP/PCN remaining silent for tens
to hundreds of milliseconds after an action potential from CN,
and (iii) VPd firing a burst of action potentials during DP/PCN
silence starting≈1–8 ms after CN activation.

The inherent complexity of tuning all the parameters to
reflect all these dynamics shown by the real network led to

the development of an automatic method for tuning synaptic
parameters of the model. Instead of making a purely random
search in the parameter space, this initial ad hoc configuration
served as a biologically plausible starting point. This method is
described in the next section.

2.4. Automatic Selection of Synaptic
Parameters
An automatic approach was used to tune the parameters of
the model synapses. This approach was followed to overcome
the lack of specific physiological information about the
characteristics of the synaptic configuration in the real system.
A genetic algorithm (GA) was developed and applied to evolve
the synapses’ parameters to reproduce the variability of the
electromotor command system patterns. Both synthetic and
recorded sets of patterns were used during GA optimization,
resulting in two different configurations of the model: S-GA
(optimized to synthetic patterns) and R-GA (optimized to
recorded patterns).

Each individual I in the population of the GA was conformed
by a set of 20 parameter values: α, β , g, tmax for each of the 5
synapses of the model (refer to Figure 1, Equations 4, 5). Each I
in a generation had different randomly modified values from the
initial configuration.

Each generation, starting from the initial one, was formed
by 100 different individuals. The GA follows a steady-state
GA scheme (Agapie and Wright, 2014; Lareo et al., 2018). In
this scheme, a temporary population was created by cross and
mutation. It was added to the original population. All individuals
were then evaluated (using the fitness function described in the
next section) and ranked according to their grades. The worst
individuals were discarded in order to return the population
to its original size. The best individuals (10%) were maintained
between generations. This process continued for a predefined
number of generations or until a relative increase of the initial fit
was reached (refer to Supplementary Section 4 for more details).

As usual, when using GAs for optimization, a balance is
needed between the parameter space size and the execution
time needed to cover it appropriately. In order to achieve this
balance, multiple runs of the GA were performed with different
narrower or wider ranges of valid parameter values (refer to
Supplementary Table S8 for details of different runs of the GA).

2.4.1. Fitness Function
Each individual, defined by a set of values for the previously
specified parameters, was evaluated being simulated under a
predefined set of 4 different simulation cases (S), each one
corresponding to a target SPI: Acceleration (Sacc), scallop (Ssca),
rasp (Srasp), cessation (Scess). Simulation cases (Spat) established
the current inputs required to reproduce the pat pattern. Each
individual I was modeled under all four simulation cases. The
fitness function of the overall individual (f (I)) was defined as the
sum of the fitness results under each case:

f (I) = facc(I)+ fsca(I)+ frasp(I)+ fcess(I). (6)

The four target patterns (acceleration, scallop, rasp, and
cessation) were defined in terms of an ordered sequence of
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FIGURE 3 | Steps for SPI output fitness evaluation in a rasp pattern example comparing a target SPI (top) and a simulated SPI (bottom). The input current step

function is injected at 500 ms and lasts for 400 ms. First, the SPI is normalized to 1,000 arbitrary units (in the figure, it is represented starting at the first IPI).

Normalized IPIs are then interpolated every 20 ms and differentiated (ġ(IPI)). Finally, the mean squared error (MSE) is calculated between the target SPI pattern and the

simulated one to get the fitting value for one specific pattern (Equation 7). The fitness value of the overall model is the sum of the fitness results for each pattern (refer

to Equation 6).

IPIs (p0, ..., pm) where pi is each IPI arranged successively.
The output of a simulation case was also defined in terms
of an ordered sequence of IPIs. Sequences were normalized
to the same duration (1,000 arbitrary units) and regularly
interpolated (every 20 arbitrary units, obtaining n = 50 points)
to detect the pattern shape. This was done to compare and
subsequently differentiate them. The SPI patterns are better
defined by the increasing/decreasing slopes between IPIs better
than the absolute timing values (refer to Figure 3 for an example).
Nevertheless, for each SPI the timing of the inputs and the total
simulation times are fixed, so even though differentiated data
is relative, it contains information about the absolute value of
the IPIs. Previous versions of the GA were based on a fitness
function using exclusively absolute IPI values (refer to Lareo
et al., 2018) thus obtaining worse results. The pseudocode of this
fitness function is shown in Algorithm 1.

Finally, the fitting value fpat(I) was calculated by comparing
the target SPI patterns after these transformations (pt0, ..., p

t
n)

with the SPI model outputs after the same transformations
(pS(I)0, ..., p

S(I)n) using the mean squared error (MSE) as follows:

MSE(I) =

∑n
i=0(p

t
i − pS(I)i)

2

n
, (7)

fpat(I) =
1

1+MSE(I)
. (8)

Mean squared error (Equation 7) was calculated for all target SPI
pattern examples (note that several examples were provided for

each pattern). Then, only the target example with the minimum
MSE (i.e., the one which is closest to the simulated SPI output)
was considered to calculate fpat(I) for each pattern (Equation 8
and EvalPattern procedure in Algorithm 1). After fpat(I) was
calculated for each pattern this way, the global fitness function
was calculated as defined in Equation 6.

2.4.2. Model Simulation
Since the model presented here is multi-objective (i.e., it
reproduces different SPI patterns when modifying only the
model inputs), a set of four different simulation cases (each
one related to a distinct SPI pattern) was determined. Each
simulation case was defined by the input current values
received by the model (InVPd, InDP, InPCN in Figure 1)
during the simulation of the four SPI patterns shown in
Figure 4.

These predefined inputs were step-functions representing
projections received by VPD, DP, and PCN nuclei from other
nervous system sources. We assume that with no input, there
is no activity in the model network. Before each simulation,
the model was initialized for a random amount of time.
During this period, the model is stimulated to reproduce a base
rhythm of IPIs of ∼120 ms (in the range of IPIs shown by
the real fish during resting). Input values for each SPI case
are described in Supplementary Section 3. The source code
of both the electromotor command network model and the
GA for synaptic parameter optimization are provided (refer to
Supplementary Section 13). The GA can be easily adapted to any
alternative experimental data from weakly electric fish.
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Algorithm 1 | Pseudocode of the fitness function, which relies
on three different procedures: First, tranformSPI procedure
considers the list of sequential IPIs that form one SPI and applies
the transformations showed in Figure 3. Then, evalPattern
procedure applies tranformSPI to both the simulated SPI
(simulSPI procedure) and the target pattern (targetSPI) to
compare them by calculating the mean squared error (MSE)
between both (msePattern, calculated as described in Equation 7).
The evalPattern procedure returns the fitting value of a pattern
(fitValuePattern) calculated as described in Equation 8. Finally,
evaluate procedure invokes evalPattern for each of the four
patterns (scallop, acceleration, rasp, and cessation) and adds
them to return the fitness value of the overall individual (fitValue,
equivalent to f (I) in Equation 6).

procedure TRANSFORMSPI(SPI)
SPI← normalize(SPI)
SPI← interpolate(SPI)
SPI← diff(SPI)
return SPI

end procedure

procedure EVALPATTERN(I,Spat)
transfSimulatedSPI← transformSPI(simulate(I, Spat))
for targetSPI in targetSPIs(Spat) do

transfTargetSPI← transformSPI(targetSPI))
msePattern← min(msePattern,
MSE(transfTargetSPI,transSimulSPI))

end for
fitValuePattern← 1/(1+msePattern)
return fitValuePattern

end procedure

procedure EVALUATE(I)
fitValue← 0
for Spat in Simulations do

fitValue← fitValue+ evalPattern(I,Spat)
end for
return fitValue

end procedure

2.4.3. Robustness to Input Variability and Overfitting

Analysis
Analysis for all the different configurations of the model
was conducted to assess robustness to input variability and
discard overfitting to the predefined stimulation cases. The
step functions used as inputs in the simulations are meant
to reproduce the nuclei activation associated with each
SPI (refer to Supplementary Section 3). Consequently, similar
SPIs were expected to result from distinct inputs as long
as the appropriate nucleus was stimulated. According to
this hypothesis, a robustness analysis of input variability
was conducted.

A set of different simulations was conformed by modifying
the intensity and duration of the predefined model inputs (i.e.,
the inputs used in the GA for simulating the patterns shown
in Figure 4) up to a 50% to perform this analysis. Being In0p(n)

the predefined value of the input received by nucleus n in the p
pattern simulation case (refer to Supplementary Section 3), and
t0p(n) the duration of the step, the set of simulations to assess

robustness is built by modifying intensity from −0.5 · In0p(n) to

0.5 · In0p(n) in steps of 0.05, and also modifying duration from

−0.5 · t0p(n) to 0.5 · t0p(n) using the same interval steps (refer
to Figure 5-Right). Then, the reproducibility of the patterns
under this set of stimulation cases was evaluated using the fitting
function. In this case, a relative fitting value was defined as the
change ratio of the fitting value from the default stimulation
case. Being f 0 the fitness value of the model under predefined
stimulation, and f i the fitness value under a given stimulation
case of the set, then, the relative fitting value (1f (I)) was given by:

1f (I) =
f i − f 0

f 0
, (9)

where negative results mean a decrement in the fitting value when
the stimulation inputs vary. When f I = f 0, 1f (I) = 0, which
is the case in the central point of robustness charts that we will
discuss later (refer to Figure 5-Left).

The robustness of the model is evaluated below in terms of
the relative increments and decrements of this value. Strong
robustness is defined as the ability to maintain 1f (I) > 0. Note
that the fitness function was used again to measure the distance
to target patterns but no GA was employed.

3. RESULTS

A model configuration fitted to reproduce SPI patterns recorded
from G. petersii specimens (R-GA) was analyzed (refer to
Table 1). R-GA reproduced all four SPI patterns with a different
level of accuracy and robustness. It is important to note that
each specific SPI pattern was evoked only due to the nuclei
being stimulated by the inputs (InVPd, InDP, InPCN in Figure 1),
without modifying the model’s internal parameters. In regards
to the resulting parameter values after GA-optimization, when
compared with the initial configuration there was a noticeable
increase in the absolute value of the synaptic conductance
(gsyn) for the ESPCN synapse (an increase of five times R-
GA from its initial value). Also, the corollary discharge has a
larger maximum release time than any other of the synapses
in the model, which is coherent with the idea that it might be
an indirect pathway. These characteristics are always present
in all best individuals obtained from the GA, and they are
also shared with another configuration of the model which
was fitted to synthetic patterns using the GA (S-GA, see
Supplementary Section 5).

Four different SPIs patterns were simulated in the R-GA
model configuration (Figure 4). The resulting scallops in this
configuration showed the typical temporal structure associated
with this pattern: a sudden drop to short IPIs (around 40 ms)
followed by an almost immediate recovery. Also, scallops reached
a lower IPI duration than accelerations, in accordance with the
activity recorded from the fish.
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FIGURE 4 | Simulation of the four SPI patterns in the configuration adjusted to patterns recorded from freely-behaving G. petersii specimens (R-GA). Each row shows

a schematic of the network where the nucleus/nuclei responsible for generating the SPI (Caputi et al., 2005) is/are highlighted using a circular red stroke. The results

are depicted in two columns: the first one shows SPIs resulting from the simulation, and the second one shows the nuclei voltages and synaptic currents. Each chart

is related to its corresponding nuclei/synapse by color. Step functions used as current inputs to activate nuclei/nucleus are depicted under each SPI pattern, and they

are also related to their corresponding nuclei by color. Relevant model parameters optimized by the GA are described in Table 1. Simulation parameters used in the

simulations are described in Supplementary Section 3.

Accelerations showed a series of almost regular shorter IPIs.
IPIs during acceleration were longer (around 85 ms in R-
GA), better complying with the accelerations from the fish
(which are highly variable, but consistently larger than 20
ms, and even larger in G. petersii recordings). It is worth

noting that, contrary to what happened in the initial model, in
both R-GA and S-GA configurations CN integrated several DP
spikes before firing (refer to accelerations in Figure 4, and also
Supplementary Figures S5.1, S5.2). Regarding IPIs regularity
during the acceleration, IPIs within SPI had approximately the
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FIGURE 5 | Robustness to input variability analysis of the R-GA electromotor model tuned to recorded G. petersii SPI patterns (Left). The central point in the left panel

represents the reference fitness value. The one obtained simulating the model under the predetermined simulation conditions (i.e., 1Duration = 0 and 1Intensity = 0).

Duration and intensity of the step function current input were varied from –0.5 to 0.5 from their initial values, and the relative change in the fitness value was calculated

as described by Equation 9. Reddish colors represent decreases in the fitness value under variable stimulation. White colors represent an equivalent result to the

reference fitness value. Blueish colors represent an improvement in the fitness value. Representative example of distinct current inputs in the simulation at different

places of the chart (Right).

same duration, complying with the regularity in the sequence of
short IPIs that define acceleration.

In R-GA configuration, rasps (Figure 4) showed an initial
scallop-type decrease to IPIs around 40 ms, followed by a
sustained burst of regular short IPIs like in accelerations.
Again, in both GA-fitted configurations, CN integrated several
DP spikes in their IPIs (refer to rasps in Figure 4 and
also Supplementary Figures S5.1, S5.2). Conversely, to what
happens with DP, PCN spiking was tightly phase-locked
with CN.

Finally, cessations (Figure 4) showed the expected stop in the
EOD production during long periods (of around 500 ms).

Results for the robustness analysis to input variability of
R-GA are depicted in Figure 5 using a color representation
of 1f (I) as described in Equation 9. Results did not show
relevant decreases in the fitting value for changes up to
50% in the intensity and duration of the default simulation
values. Conversely, they showed a limited increase of the
fitting value when a slight decrease in duration was balanced
with a slight increase in intensity. The result was the same
when slight increases in duration were balanced with slight
decreases in intensity. These results show that overfitting to
simulation timings has been avoided when considering all the
patterns at the same time. To also discard overfitting to each
SPI pattern, a robustness analysis disaggregated by pattern
was also performed (refer to Supplementary Section 10), also
showing no relevant drops in the fitness results for any of
the patterns. A complementary robustness analysis to test the
effect of Gaussian noise on the inputs of the system was
also performed (refer to Supplementary Section 9). Equivalent
results discarding overfitting were obtained.

In Figure 6, the IPI mean and SD of each SPI pattern
simulated during the robustness analysis of the R-GA model are

depicted. The line depicted in blue is the mean SPI of the several
executions with variable inputs, and the shade represents the SD
of the results. Finally, the black line corresponds to the closer
target pattern used to calculate the fitness. The simulation of
each SPI pattern was divided into three partitions according to
its fitting value: Worse fit than the one obtained with default
inputs (1f < −100); similar fit (−100 < 1f < 100); and
better fit (1f > 100). It is shown that even in the worst fit
results, the internal temporal characteristic of each SPI pattern
was reproduced: the sudden drop to the shortest IPI followed
by an almost immediate recovery in the scallop; a series of
almost regular short IPIs (above the minimum IPI in scallops)
in accelerations; a sudden drop followed by an acceleration-like
tail of regular IPIs; and a long pause of hundreds of milliseconds
in EOD production during cessations. Rasps were the least robust
SPI pattern in R-GA, but even those with the worsts fitting results
kept a recognizable rasp shape.

The robustness analysis also showed that the differences
between simulations of distinct SPIs were larger than the
differences between simulations of the same SPI with variated
inputs (refer to Figure 7). To measure this difference, the
mean Euclidean distance between each target SPI pattern
and the simulated SPIs during the R-GA robustness analysis
was calculated. Each chart in Figure 7 shows the distance
calculated to a different target SPI, and the darkest bar in each
chart highlights the simulations corresponding to that target.
This bar was expected to be minimum in each case as it
represents the mean distance between the set of simulations
of a specific SPI and its corresponding target. This held true
for all cases. Thus, for all simulations during the robustness
analysis, the differences between distinct SPIs were larger than
the differences between simulations of the same SPI obtained
from variated inputs.
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FIGURE 6 | Mean and variance of simulated SPIs using the R-GA model under the variated simulation conditions of the robustness analysis (refer to Figure 5). As in

the GA fitness function, the duration of each simulation was normalized to 1,000 arbitrary units for representation, starting at its first IPI. The blue line is the mean SPI

from the executions with variated inputs, blue shade represents the SD. Finally, the SPI represented in black is the closest target pattern. Simulations of each SPI

pattern were divided into three partitions (with a similar number of elements) according to its fitting value: the ones that obtain better fitting (upper row: 1f < −100),

those that obtain similar results to the reference fitness value (center row: −100 < 1f < 100) and the ones that yield worse fitting results (bottom row: 100 < 1f ).

FIGURE 7 | Mean euclidean distance (calculated after the evaluation function steps depicted in Figure 3) between each target SPI pattern and the simulated SPIs

during the R-GA robustness analysis. Each chart shows the distance calculated to a different target SPI: scallop, acceleration, rasp, and cessation; and the darkest

bar in each chart highlights the simulations corresponding to that target. This bar was expected to be minimum in each case as it represents the mean distance

between the set of simulations of a specific SPI and its corresponding target. This held true for all cases. Differences from cessation simulations are not depicted to

improve the clarity of the comparison because they are in a larger order of magnitude.

4. DISCUSSION AND CONCLUSION

Computational models have been used to answer different
questions in the study of electroreception and electrogenesis.

Regarding electrogenesis, Moortgat et al. (2000), Shifman
et al. (2015), and Lucas et al. (2019) used an anatomically
detailed model of the pacemaker of Apteronotus leptorhynchus
to study the electric organ signal and its spatiotemporal features
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in wave-type fish. In Shifman and Lewis (2018) a model
for the Eigenmannia was employed to address the jamming
avoidance response in these fish. Electroreceptor models are of
particular interest as they have a relevant role in understanding
the electrical sense, even in non-electroactive species. On
the other hand, bioinspired approaches have built robotic
electrosensory systems at different abstraction levels to mimic
electrolocation. In this context, a robotic model of electric
fish fins was developed to engage in electrocommunication
with living fish, study fish maneuverability and develop
an underwater autonomous robot with electric sense
(Neveln et al., 2013; von der Emde and Worm, 2021).

Despite the variety of models regarding signal generation in
weakly electric fish, the development of a computational model
of the electromotor command network that can produce the
variability of SPIs observed in pulse mormyrids had not been
attempted until now.

The modeling study presented here assesses the relevance of
different parameters in the electromotor command network for
reproducing as a whole the diverse temporal structure of output
patterns displayed by the living system. Our results suggest that
the diversity of SPIs shown by the system results from a dynamic
balance of intensity and timing between the synaptic properties
of the network. This highlighted the hypothesis that relevant
synaptic parameters (and not only the nucleus dynamics or the
network topology) play an important role in reproducing the
whole set of SPIs observed in experimental data.

A multi-objective genetic algorithm (GA) was developed and
applied to tune the synaptic parameters of the model. The
proposed GA optimization method allowed us to readily obtain
different parameter configurations, which optimize the ability
of the model to reproduce all target patterns under different
activations in the electromotor command network.

Automatic synaptic parameter optimization allowed to prove
that it is possible to reproduce the four pre-selected SPI patterns
using the same intrinsic dynamics and connectivity reaching a
dynamic balance between the synaptic properties in the network.
Supplementary Material provides complementary analysis
examining different topologies (Supplementary Sections 6, 7),
nuclei dynamics (Supplementary Section 8), and synaptic
inputs (Supplementary Section 9) supporting this conclusion.

In the resulting model each nucleus is represented by a single
(Izhikevich, 2003) unit because of the lack of biological details
below the nucleus level, neither on the constituent neurons
nor on the internal connectivity. The optimization process on
synaptic parameters is key in this regard to deal with this lack
of detail. Connections in this model integrate synapses that
occur between neurons in different nuclei in the real network.
This reinforces the importance of synaptic dynamics above other
parameters in the model to robustly generate the variability of
observed patterns.

It was observed during the fitting process that the different
configurations of the model are sensitive to even slight changes
in synaptic parameters, resulting in significant drops in themodel
performance, both in terms of the fitting value and the shape of
the simulated SPI patterns (for more details about the continuity

in the parameter space between the different configurations,
refer to Supplementary Section 12). This does not mean that
configurations are unique, as different configurations could
lead to similar results, but that they must show a delicate
balance between synaptic intensities and timings to succeed in
reproducing the SPI patterns.

Regarding the changes in the simulation input parameters
(duration or intensity of the stimulus presented to the model),
sometimes they also lead to losses of SPIs internal structure but,
as long as the proper nucleus/nuclei is/are stimulated, it does
not occur in such a critical way as it happens with changes in
the synaptic parameters (refer to Supplementary Section 11).
Robustness results show that overfitting to the stimulation
inputs was avoided. Although there are also drops in fitness
for certain combinations of inputs, the general tendency was to
maintain (and sometimes even improve) the performance of the
model under different stimulation (as shown in Figure 5). These
robustness results point out that SPI generation depends on the
nucleus activation and not on the intensity or the duration of
the inputs.

The implemented model and its computational efficiency
also enable novel closer-to-natural stimulation techniques to
perform more realistic closed-loop experiments with the real
system (as pulse-type mormyrids have been previously used
in several closed-loop studies where stimulation is guided by
the fish’s own activity, as in Forlim and Pinto, 2014; Forlim
et al., 2015; Lareo et al., 2016). In this context, we can
expect these experiments to benefit from a more realistic
stimulator based on the described model (Lareo et al., 2016).
The model also allows further studies of the underlying
mechanisms of electrocommunication, including its use in
robotic fish. Nevertheless, the internal relationship between fish
skin electroreceptors and the electromotor system is yet to be
further studied.

Beyond the mormyrids electromotor command network,
many other neural systems also produce outputs with
characteristic stereotyped temporal structures. However, it
is not an easy task to design a multiobjective modeling approach
flexible enough to automatically tune a model to several temporal
structured targets. The methodology described here, particularly
the fitness function and the GA, can be adapted to fine tune the
model of other neural networks also exhibiting a whole set of
sequential output patterns.

All the software developed and used in the present
analysis (the model, the multi-objective GA used for parameter
adjustment, the fitness function to represent and compare
different sequences of temporal firing patterns, and the
robustness analysis software) is made available1 for future studies
of this network and similar networks in other animals (refer
to Supplementary Section 13). We expect this open-source
contribution to help deepen our understanding of the role of
ensemble connectivity and the synaptic mechanisms shaping the
functional patterns of neural temporal structures.

1Code is available in the following github repository: https://github.com/GNB-

UAM/electromotor-nmodel/.
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