

Universidad Autónoma de Madrid

Escuela Politécnica Superior

Departamento de Ingeniería Informática

Temporal Models in Recommender Systems:

An Exploratory Study on

Different Evaluation Dimensions

Pedro G. Campos Soto

Supervisor: Fernando Díez Rubio

Co-supervisor: Manuel Sánchez-Montañés

Trabajo Fin de Máster

Programa Oficial de Posgrado en Ingeniería Informática y de Telecomunicación

Universidad Autónoma de Madrid

Junio de 2011

i

Abstract

A Recommender System (RS) is a computer program able to identify specific objects for

different user interests. Given that many RS have been operating for years, temporal in-

formation as a source to obtain better recommendations is acquiring more importance.

The currently active research field of RS, has tried to incorporate this information in the

form of new recommendation algorithms. However, a common evaluation framework for

testing improvements on this area is still missing; most proposals have been developed for

and tested under specific (and different) datasets, circumstances and metrics, making it

difficult to fairly compare them.

This work aims to help establishing a better perspective of the impact of techniques that

deal with temporal information on RS. An extensive review of published work on the sub-

ject was carried out, including not only time aware techniques, but also the basic techniques

upon which time aware extensions are built. A considerable proportion of the techniques

under study and metrics for their evaluation were implemented, and a rigorous evaluation

protocol scheme was developed, in order to allow the usage of the different techniques

under a common experimental setting, which included two common recommendation

tasks (rating prediction and top-N recommendation). We assessed the recommendations’

results obtained with the different implemented recommendation algorithms on five differ-

ent evaluation dimensions (statistical accuracy, decision support accuracy, novelty, diversity

and coverage), including six different metrics (RMSE, Precision, AUC, Self-Information,

Intra List Similarity and Interest Coverage).

Results show that, differently to what could be expected, not all time-aware algorithms

were able to outperform their time-unaware counterparts, in particular with respect to ac-

curacy on rating prediction (statistical accuracy), which is somewhat unexpected given that,

in general, the main motivation for the elaboration of such extensions is accuracy increase.

Moreover, the behavior of algorithms on the assessed metrics varies notably, and no par-

ticular technique can be considered as “the best” across the different evaluation dimen-

sions. These findings remarks 1) the importance of establishing a common and rigorous

evaluation scheme when different algorithms are to be compared and 2) the most suitable

recommendation algorithm will depend on the particular task at hand and evaluation di-

mension of interest.

To finalize, we identify interesting research topics related to this work, some of which we

hope to address in the near future.

iii

Contents

Chapter 1. Introduction .. 1

1.1 Motivation ... 1

1.2 Problem definition ... 2

1.3 Research goals ... 5

1.4 Outline ... 5

1.5 Publications ... 5

Chapter 2. Recommender Systems and State-of-the-Art .. 7

2.1 Introduction .. 7

2.2 Recommender Systems .. 7

2.3 Classical Recommender Algorithms Classification ... 8

2.3.1 Content-Based Filtering .. 9

2.3.2 Collaborative Filtering algorithms ... 10

2.3.3 Hybrid algorithms .. 12

2.3.4 Preference Based Filtering .. 13

2.4 Temporality in Recommender Systems Literature .. 14

2.4.1 First approaches ... 14

2.4.2 Weighting schemes .. 15

2.4.3 Time influence in kNN algorithms ... 15

2.4.4 Incorporation of time parameters into models ... 16

2.4.5 Evaluation of interest drift ... 17

2.4.6 Periodicity in tastes .. 18

2.4.7 Inclusion of Temporal Dimension as Contextual Information 19

2.4.8 Other proposals .. 21

2.5 Metrics for recommendation evaluation ... 23

2.5.1 Experimental Setting for Metric Application and Notation 23

2.5.2 Statistical accuracy metrics .. 24

2.5.3 Decision-support accuracy metrics ... 25

2.5.4 Coverage Metrics.. 29

2.5.5 Novelty and Diversity Metrics ... 31

2.5.6 Time-aware Recommendation Metrics ... 33

Chapter 3. Using Time Information in Recommendation .. 35

3.1 K-Nearest Neighbors .. 35

3.2 Time Decay and Truncation ... 36

iv

3.3 Temporal CF with Adaptive Neighborhoods .. 37

3.3.1 Instantaneous Adaptive Neighborhoods .. 38

3.4 Bias Baseline estimates .. 38

3.4.1 Bias Baseline Extension: Incorporating temporal biases 39

3.5 Matrix Factorization ... 40

3.5.1 MF Extension: Adding Temporal Biases and Temporal Factors 41

3.6 AutoSimilarity in Time .. 42

3.6.1 Time Series Auto Similarity Adjusted Time Decay ... 44

3.7 Clustering ... 44

3.7.1 Clust-kNN ... 44

3.7.2 MF and Time Aware MF Clustering ... 46

3.7.3 Cluster AutoSimilarity in Time .. 46

3.7.4 Time Series clustering .. 46

3.8 kNN on Factors Matrix ... 46

3.9 Time Aware CF Proposal: Time Influence .. 46

Chapter 4. Experiments and Results .. 49

4.1 Introduction .. 49

4.2 Experimental setting .. 49

4.2.1 Dataset ... 49

4.2.2 Evaluation Protocol ... 52

4.3 Implementation details .. 54

4.3.1 kNN based Models .. 54

4.3.2 Time Decay and Time Truncation Models .. 55

4.3.3 Bias Baseline Models ... 55

4.3.4 Matrix Factorization Models .. 55

4.3.5 Clustering Models .. 55

4.3.6 AutoSimilarity Models ... 56

4.4 Results .. 56

4.4.1 Rating Prediction Error ... 56

4.4.2 Top-N Recommendation (Ranked Recommendations) 60

4.4.3 Novelty and Diversity ... 65

4.4.4 Other metrics .. 71

4.4.5 Concluding Remarks ... 74

Chapter 5. Conclusions and Future Work ... 77

v

5.1 Conclusions ... 77

5.2 Future Work .. 79

Bibliography ... 80

Annex 1. Numerical results ... 89

Annex 2. Statistical test results .. 91

Annex 3. Brief Review of Related Data Mining Techniques .. 93

Data Mining and Knowledge Discovery ... 93

Data Mining and Recommender Systems ... 94

Temporal Data Mining ... 95

Annex Bibliography .. 99

vii

List of Figures

Figure 1. Multidimensional model for a ���� � ���� � ���� recommendation space (from

[Adomavicius et al., 2005]). .. 20

Figure 2. Paradigms for incorporating context in RS (from [Adomavicius and Tuzhilin,

2011]). .. 21

Figure 3. Example of a ROC curve (taken from [Herlocker et al., 2004]) 27

Figure 4. Rating, Community and Catalog Growth of ML 1M Dataset 50

Figure 5. Temporal Analysis of Users’ Rating Volume ... 51

Figure 6. Temporal Analysis of User Ratings ... 51

Figure 7. Temporal Analysis of User Ratings (computed over 30-days periods) 52

Figure 8. Proposed data division design. ... 53

Figure 9. General overview of algorithms RMSE performance through time (non-

cumulative data) ... 57

Figure 10. General overview of algorithms RMSE performance through time (cumulative

data) ... 58

Figure 11. Detailed view of RMSE performance through time ... 59

Figure 12. General overview of P@5 performance through time (non-cumulative data) ... 60

Figure 13. General overview of P@5 performance through time (cumulative data) 61

Figure 14. Detailed view of P@5 performance through time .. 62

Figure 15. General overview of AUC performance through time (non-cumulative data) ... 63

Figure 16. General overview of AUC performance through time (non-cumulative data) ... 64

Figure 17. Detailed view of AUC performance through time ... 65

Figure 18. General overview of Self-Information@5 performance through time (non-

cumulative data) ... 66

Figure 19. General overview of Self-Information@5 performance through time

(cumulative data) .. 67

Figure 20. Detailed view of Self-Information@5 performance through time 68

Figure 21. General overview of ILSCB@5 performance through time (non-cumulative

data) ... 69

Figure 22. General overview of ILSCB@5 performance through time (cumulative data) .. 70

Figure 23. Detailed view of ILSCB@5 performance through time .. 71

Figure 24. General overview of Interest Coverage performance through time (non-

cumulative data) ... 72

Figure 25. General overview of Interest Coverage performance through time (non-

cumulative data) ... 73

Figure 26. Detailed view of Interest Coverage performance through time 74

Figure 27. Relation between KDD process and DM (adapted from [Hernández Orallo et

al., 2004]) ... 94

Figure 28. Example of misaligned, yet similar TS (from [Mitsa, 2010]). 96

1

Chapter 1. Introduction

1.1 Motivation

A recommender system (RS) is a computer program able to identify specific objects for

different user interests, based on several information sources which the system can access.

Nowadays the creation of new and better recommendation algorithms is an active field of

research and development, as shown by the existence of scientific conferences dedicated

exclusively to this topic as, for example, the ACM Conference on Recommender Systems1. There

have been also competitions sharing big money prizes, as the Netflix Prize2 one, emphasiz-

ing practical aspects of the recommendation process itself. The analysis and development

of RS is a very active research area at the present time, encompassing a diversity of aspects

as, for example, those related with data modeling, those related with the accuracy and effec-

tiveness of recommendation results, or with temporal aspects, as will be detailed in this

work.

Generally speaking, the most valued goal in this field has been the effectiveness of recom-

mendations, measured usually in terms of the accuracy of ratings that the system is able to

predict, with respect to ratings given by the user. In fact, the most used metrics for the

evaluation of RS in the literature correspond to variants of the difference between those

values, as MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error)[Herlocker et al.,

2004]. Because of this, most of the research has focused on techniques that allow RS to

increase their accuracy, as for example Matrix Factorization [Koren et al., 2009]. However,

there are other aspects that may be equally important when the goal is that users find useful

recommendations, as the novelty of recommendations (showing items unknown but inter-

esting to users). Therefore, there exists the need of improving other metrics different to

accuracy, as the aforementioned novelty, or the diversity of recommendations [Herlocker et

al., 2004].

One characteristic with increasing importance is the data volume to be processed by the

RS. For example, the dataset used in the Netflix Prize contains more than 100M ratings giv-

en by 480.189 users to a set of 17.770 movies (and this is just a part of the total dataset of

Netflix). Traditional algorithms as k- Nearest Neighbors (kNN) [Herlocker et al., 2002] require

excessive execution time. There are many proposals to deal with this scalability problem,

related mainly with dimensional reduction of data [Sarwar et al., 2000]. Other tested tech-

nique is clustering [Ungar and Foster, 1998], which has high scalability, but with more

trade-offs on accuracy as reported on literature [Su and Khoshgoftaar, 2009].

Given that many RS have been operating for years, the temporal dimension is acquiring

more importance. One example of that is the change of tastes (evolution) of users through

time. Many new algorithms try to incorporate this information effectively [Ding and Li,

1 http://recsys.acm.org/
2 http://www.netflixprize.com/

Chapter 1

2

2005; Ding et al., 2006; Lee et al., 2008; Lee et al., 2009; Koren, 2009a]. The existence of

multiple temporal data mining algorithms give the possibility to perform additional im-

provements, taking advantage of the potential of this dimension of information. On the

other hand, most proposals of time aware RS have been developed for and tested under

specific (and different) datasets, circumstances and metrics, making it difficult to fairly

compare them; a common evaluation framework for testing improvements on this area is

still missing.

From the foregoing it can be observed the need of rigorously studying how the application

of different (and novel) techniques that aim to deal properly with temporal information, as

clustering or matrix factorization, impacts on RS results not only in terms of accuracy, but

on other less studied metrics as coverage, novelty or diversity. The present work analyses

the state of the art on different techniques used on RS which incorporates temporal data,

studying their influence on a variety of metrics, some of them not used commonly in the

evaluation of recommender systems under a common evaluation protocol, in order to have

a better perspective of the impact of the techniques over different aspects of interest to

deal with. In doing so, the advantages and restrictions of applications of each technique

are detailed, which allow readers to have a better understanding of the implications of using

each specific technique.

1.2 Problem definition

Traditionally, the recommendation problem has been formulated as the estimation of rat-

ings for items that have not been used 3 by a user using, as primary input, ratings given by this

user to other items, and maybe some other information if available and the system is able

to take advantage of it. Such estimates for unrated items allow to recommend the item(s)

with the highest estimated rating(s) to the user [Adomavicius and Tuzhilin, 2005; Linden et

al., 2003]. In this section we formalize these concepts, and the related time-aware RS notion.

As elegantly described in [Adomavicius and Tuzhilin, 2005], in general a utility function can

be estimated that measures the usefulness of an item to a user. Let 	 be the set of users

and
 the set of items in the system. Let � be the utility function:
 �: 	 �
 � � (1)

where � is a totally ordered set (� is usually but not necessarily a subset of �).
Definition: The rating prediction problem consists in the estimation of � for each � � 	 and

each � �
 whose utility is unknown a-priori:
 �� � 	 � �� �
, �̂�,� � ���, �� (2)

where ���,� is the predicted utility (predicted rating).

3 Here used involves several different senses or activities like, for example, seen, heard, tasted, purchased, etc.
depending on the type of the item being recommended.

Introduction

3

Conceptually, if the function � can be computed for the whole pairs of the 	 �
 domain,

a RS is able to select for recommendation the item with the highest utility for each user:

 �� � 	, ����� � arg max��
 ���, �� (3)

This notion can be extended to generate a top-N recommendation list, that is, selecting for

recommendation an ordered set consisting on the N items with highest utility.

Definition: The top-N recommendation problem consists in determining, for each user �, the
set of items
"� ��� such that4,5:
 �� � #,
"� ��� � $ �%����"

%&' (�%���� � arg max��
)
*+,� ��� ���, ��
with:
1���� � 2

(4)

The main source of information for computing � is the set of utility values (ratings) that
users have previously assigned to some items (the so called rating matrix 3). Different con-

figurations of how 3 is analyzed, the kind of data in 3, and what additional sources of in-
formation are used, give rise to different types of RS. For example, some RS use informa-

tion about declared characteristics of items (e.g. genre and director in case of movies) to

find items with similar characteristics to those highly rated by a user, assuming users like

items with similar characteristics, whilst others focus on pure rating information, which

may be explicit or implicit.

Typically, the additional information is managed as profiles. For instance, each element of

the user space can be defined with a user profile that includes various user characteristics,

such as age, gender, income, marital status, etc. In the simplest case, the profile can contain

only a single (unique) element, commonly the user ID. Similarly, each element of the item

space can be defined with a set of their declared characteristics. In this work we focus on

RS that make use of temporal information, generally in the form of time-stamped ratings,

that is, taking advantage of knowing when ratings were done. This information can be ma-

naged as a rating profile, which contains the rating value and additional rating context informa-

tion (information about the context in which the rating was done) which in our case will

contain the rating time, although other contextual information may be added, e.g. the place

of rating, the user mood at rating time, the company, etc. This way recommendation algo-

rithms may, for example, discard old rating data, find similarities between users or items

taking into account how ratings evolve through time, etc.

When using this additional contextual information, not only the way the estimations are

computed can be modified, but the whole utility notion may be affected, as the RS could

4 In these definitions we are assuming implicitly that items already used by the target user have lower utility
(or no utility at all) than items not already used. Indeed, in many practical implementations, items already used

by � are discarded for selection of
"� . However, it should be noted that this assumption may not hold on
particular domains and situations, e.g. after a long time period since the user used the items.
5 There are other ways of computing the recommendation list, e.g. [Rendle et al., 2009b].

Chapter 1

4

be able to estimate the utility of items not only considering the particular user who needs

the recommendation. In fact, now the utility may be differentiated according to the time,

place, etc. for which the recommendation is asked6. Adomavicious et al. tackles this as a

multidimensional recommendation problem (as opposed to the traditional two-dimensional 	 �
 problem)[Adomavicius et al., 2005], in which the recommendation space 4 is modeled as

a set of dimensions 5', 56, 7 , 58, each dimension 5� being a subset of a Cartesian product
of some attributes. Examples of dimensions 5� are a user profile (e.g. ���� � 9����_�;, <�=;��, ><�?), an item profile (e.g. in the case of movies ���� �9�@A��_�;, <�=��, ;���B�@�?), time of recommendation (e.g. ���� � 9C@��_@D_;>E,;>E_@D_F��G, �@=�C, E�>�?), location (e.g. H@B>��@= � 9B��E, B@�=��E?), or mood of the

user (e.g. �@@; � 9�@@;_�;?).
This way, the utility function � can be defined over the space 4 as [Adomavicius et al.,

2005]:

 �: 5' � 56 � 7 � 58 � � (5)

The above implies that the utility (rating) a user assigns to an item depends, for example,

on the location where the item is used, at what time, etc., and thus, the estimation of utili-

ties should also depend of such dimensions. Particularly, a RS that takes into account the

time dimension for recommendation will use a recommendation space of the form 4 � 	 �
 � I, where I is the time dimension.

Definition: The time-dependant rating prediction problem consists in the estimation of the utili-

ty of items for users at particular times:

 �� � 	 � �� �
 � �� � I, �̂�,�,J � ���, �, �� (6)

Similarly, the time-dependant top-N recommendation problem consists in the recommendation of

the highest utility items for users at particular times:

 �� � # � � � I,
"� ��, �� � arg max��
)
*+,� ��,J� ���, �, ��
with:
1���, �� � 2

(7)

Definition: A time-aware RS is a RS which uses any form of temporal information to solve

a recommendation problem.

Note that recommenders defined by (2)-(4) as much as those defined by (6)-(7) can be con-

sidered time-aware RS, if they take advantage of any kind of temporal information for utili-

ty estimation, either as data in profiles for estimation computation and/or as target rec-

ommendation context.

6 Note there is a difference between using contextual information in profiles during utility estimation, and
estimating utility for a particular recommendation context.

Introduction

5

1.3 Research goals

The main goal of this work is to carry out an exploratory study of state-of-the-art tech-

niques in data mining and machine learning fields applied to recommender systems, em-

phasizing on techniques allowing to deal with temporal information. We aim to establish

their main characteristics and restrictions, and the possible advantages from their usage, on

different evaluation perspectives. This way, this work has the following specific research

goals:

• To carry out a state-of-the-art revision of techniques used in recommender systems,

especially those able to handle temporal information.

• To apply some of the state-of-the-art data mining techniques for recommendation.

• To analyze possible benefits derived from the application of clustering, as a tradi-

tional data mining technique, on the elaboration of recommendations.

• To study the impact of techniques on different metrics related with the outcome of

recommender systems.

1.4 Outline

This work is structured as follows: This chapter establishes the motivation and problem

definition, and includes a list of publications related with Master’s work of the candidate.

Chapter 2 presents a review of the state-of-the-art on RS and related techniques, with focus

on time-aware recommendation. Also a brief review of recommendation metrics is in-

cluded. Chapter 3 details the different techniques implemented for this work, some of them

with a particular emphasis on the time-dependant recommendation problem. Chapter 4

describes the experimental setting and results obtained from experimentation with the

techniques presented in Chapter 3. Finally, 4.4.4 establishes main conclusions derived from

this work and devises related future lines of research.

1.5 Publications

The following publications are related to this work:

1. Pedro G. Campos, Fernando Díez. La Temporalidad en los Sistemas de Recomen-

dación: Una revisión actualizada de propuestas teóricas. I Congreso Español de Recupe-

ración de Información (CERI 2010). Madrid, España, 15 y 16 de junio.

2. Pedro G. Campos, Alejandro Bellogín, Fernando Díez, J. Enrique Chavarriaga.

Simple Time-Biased KNN-based Recommendations. Proceedings of the Workshop on

Challenge on Context-aware Movie Recommendation, CAMRA 2010, part of the 4th ACM

Conference on Recommender Systems, RecSys2010. Barcelona, Spain, September 30th,

2010.

3. Pedro G. Campos, Fernando Díez, Manuel Sánchez-Montañés. Towards a More

Realistic Evaluation: Testing the Ability to Predict Future Tastes of Matrix Factori-

Chapter 1

6

zation-based Recommenders. Submitted as short paper to 5th ACM Conference on Re-

commender Systems, RecSys2011.

There are also other publications that were completed during the time period of the Mas-

ter. Although they are not directly within the scope of this work, all of them were devel-

oped within the scope of subjects of the Master, which reflects an adequate degree of assi-

milation of general topics covered in the program:

1. Pedro G. Campos, Ruth Cobos. Towards Awareness Services Usage Characteriza-

tion: Clustering Sessions in a Knowledge Building Environment. In Y. Bi and M.-

A. Williams (Eds.): KSEM 2010, LNAI 6291, pp. 270-281. Springer, Heidelberg

(2010).

2. Fernando Díez, J. Enrique Chavarriaga, Pedro G. Campos, Alejandro Bellogín. A.

Movie Recommendations based in explicit and implicit features extracted from the

Filmtipset dataset. Proceedings of the Workshop on Challenge on Context-aware Movie Rec-

ommendation, CAMRA 2010, part of the 4th ACM Conference on Recommender Systems,

RecSys2010. Barcelona, Spain, September 30th, 2010.

3. Pedro G. Campos, Silvia Acuña, José A. Macías. Implementación de Propiedades

de Usabilidad con Impacto en el Diseño Mediante la Programación Orientada a

Aspectos. Actas del XI Congreso Internacional de Interacción Persona-Ordenador, INTE-

RACCION 2010, parte del Congreso Español de Informática 2010, CEDI 2010. Valen-

cia, España, 7-10 de septiembre de 2010. Jesús Lóres Best Paper Award.

We would like to acknowledge computing time support from the Scientific Computing

Institute at UAM (CCC at UAM), which was fundamental for the elaboration of some of

these publications, and in particular for experimentation during this work.

7

Chapter 2. Recommender Systems and State-of-the-Art

2.1 Introduction

Nowadays Internet and particularly the World Wide Web bring access to almost non-

limited information resources. However, this phenomenon involves some problems, being

one of the most important ones the information overload problem. A proposal to deal with

this difficulty is to use a Recommender System (RS), aiming to give personalized user guid-

ance about interesting and/or useful items.

This chapter explains some basic concepts about RS, and then presents a review of the

state of the art on recommender techniques, analyzing particularly techniques suitable for

including temporal information on recommendation. A revision of evaluation metrics used

to compare recommender results is also included.

2.2 Recommender Systems

RS apply varying techniques from statistics and knowledge discovery to the problem of

recommending items to users of a system [Sarwar et al., 2000]. Most known RS are used in

e-commerce; within this context, RS suggest products to customers. Products can be rec-

ommended based on best sellers on a site, based on the demographics of the customers, or

based on an analysis of the past buying behavior of the customer as a prediction for future

buying behavior. Broadly, these techniques are part of personalization on a site, because

they help the site to adapt itself to each customer. RS automate personalization of the Web,

enabling individual personalization for each customer [Schafer et al., 1999].

As noted by [Adomavicius and Tuzhilin, 2005], although the roots of RS can be traced

back to the work on cognitive science, approximation theory, information retrieval or fore-

casting theories, RS emerged as an independent research area in the mid-1990s when re-

searchers started focusing on recommendations problems that explicitly rely on the ratings

structure.

One of the first known RS was the Tapestry system [Goldberg et al., 1992], developed at

Xerox Parc. This was a filtering system for electronic documents, primarily e-mail and

Usenet postings. A user could create filtering rules like “show me documents that are rep-

lied to by other members of my research group” or “don’t show me any messages which

Joe said were a waste-of-time”. Non-automated filtering systems such as Tapestry required

the user to determine the relevant predictive relationships within the community, placing a

large cognitive load on the user [Herlocker, 2000]. Automating the process of recommen-

dation allow recommendations for large communities of users. In this sense, one of the

first automated RS was GroupLens [Resnick et al., 1994]which used a neighborhood-based

algorithm.

Chapter 2

8

Several issues have been addressed though the last decade and a half. According to [Lathia

et al., 2007], traditionally RS face two conflicting challenges: on one hand accuracy (the

generation of recommendations that closely match the user’s actual taste), and on the other

hand, scalability, since generating such recommendations requires a lot of computational

power. With a broader vision, [Kumar et al., 2001] argue that most research on RS have

been focused on three areas: (i) the design of algorithms that, given the past preferences of

the user, will make useful recommendations; (ii) how to gather the information on user

preferences as conveniently and unobtrusively as possible; and (iii) privacy issues, i.e., how

to combine the information gathered from a group of users to the advantage of an individ-

ual user, without divulging information about other users.

Other topics covered to a lesser extent are how to evaluate recommendation results [Her-

locker et al., 2004], usability aspects related with RS [Santos and Boticario, 2008] and inte-

gration to software development processes [Rojas et al., 2009], to name a few. Multiple and

diverse ideas and techniques have been used with the goal of improving RS performance,

as for example machine learning techniques such as neural networks [Pazzani and Billsus,

1997] or Bayesian classifiers [Mooney and Bennett, 1998], using contextual information

[Adomavicius et al., 2005], genetic algorithms [Kim and Ahn, 2008], ontologies [Mylonas et

al., 2008], matrix factorization techniques [Takács et al., 2008] or temporal information

[Lee et al., 2009; Koren, 2009a; Lathia et al., 2009a].

Among the different ideas and techniques, it is notable that one of the most popular tech-

niques for developing recommender algorithms is Collaborative Filtering [Su and Khoshgof-

taar, 2009; Symeonidis et al., 2008b] or a mixture including it (as in a hybrid recommender).

Multiple information sources may be used, but we must remark that the most valuable one

is explicit rating information, which is the primary input for collaborative filtering. In order

to introduce and structure appropriately the different techniques, a classic RS classification

scheme is presented.

2.3 Classical Recommender Algorithms Classification

RS are usually classified into the following categories, according to the algorithms used to

generate recommendations [Adomavicius and Tuzhilin, 2005], i.e., how the information

filtering task is performed:

• Content-based filtering: The system will recommend items with similar declared charac-

teristics to the ones the target user7 preferred in the past;

• Collaborative filtering: The system will recommend items that people with similar

tastes and preferences to the target user liked in the past;

• Hybrid approaches: These methods combine collaborative and content-based filtering

elements.

As stated in section 1.2, the common task for RS is to recommend to the target user those

items with the highest predicted utility, that is, the RS uses its filtering approach to establish

7 User for whom the recommendation is made, also called the active user.

Recommender Systems and State-of-the-Art

9

individual items’ utilities, and then recommending those with highest utility. However,

there exist another variant whose aim is to determine the relative order that the user would

gave to items instead of their individual utilities. This variant is sometimes called Preference

Based Filtering [Jin et al., 2003], although the techniques used for the ordering generation can

also fall into the three aforementioned categories.

2.3.1 Content-Based Filtering

Content-based filtering (CBF) algorithms search for items similar to other items that the

user liked in the past. That is, the predicted utility ���, �� of item � for user � is estimated

based on the known utilities (ratings) 3�,�K L 3 assigned by user � to the set of items �M �

that are similar to item �. To estimate such similarity, the RS uses stored information about

the items, e.g. in the case of movies, genre, director, etc. This approach has its roots in the

classical Information Retrieval (IR) [Baeza-Yates and Ribeiro-Neto, 1999] and Information

Filtering [Belkin and Croft, 1992] research fields. The improvement over traditional IR

approaches come from the use of user profiles that contain information about users’ tastes,

preferences, and needs. The profiling information can be elicited from users explicitly, e.g.,

through questionnaires, or implicitly—learned from their transactional behavior over time

[Adomavicius and Tuzhilin, 2005]. Accordingly, the item information stored by the RS is

known as item profile. It is usually computed by extracting a set of features of the item (pos-

sibly from external sources), and is used to determine the appropriateness of the item for

recommendation purposes.

Given the significant advances on the IR field, typically item and user profiles are described

as sets of keywords which allow the subsequent use of traditional techniques of IR to deter-

mine matching documents (in this case item profiles) to a predefined query or set of terms

(in this case user profile) [Adomavicius and Tuzhilin, 2005]. In this kind of RS, the utility

function ���, �� can be described as a computation on the user and item profiles. Follow-

ing the notation of [Adomavicius and Tuzhilin, 2005], we can formalize this computation

as follows.

Definition: Let NO_����_P�@D�H���� be a content based user profile, consisting in a set of
(weighted) keywords describing tastes and preferences of �, and let ����_P�@D�H���� be an
item profile, consisting in a set of (weighted) keywords describing characteristics of item �.
The utility function ���, �� on a content-based RS is calculated as a scoring function on the
user and item profiles:

 ���, �� � �B@��QNO_����_P�@D�H����, ����_P�@D�H����R (8)

Using a keyword based representation for profiles and, for example, the well-known key-

word weighting scheme term frequency-inverse document frequency (TF-IDF) measure [Baeza-

Yates and Ribeiro-Neto, 1999], ����_P�@D�H���� and ����_P�@D�H���� can be represented
as TF-IDF vectors, and thus, �B@���·,·� can be calculated with known IR scoring heuristics
such as the cosine similarity measure [Baeza-Yates and Ribeiro-Neto, 1999]. Other tech-

niques for content-based recommendations have also been used, such as Bayesian classifi-

Chapter 2

10

ers or machine learning techniques including clustering, decision trees, and artificial neural

networks [Adomavicius and Tuzhilin, 2005].

Given its nature strongly dependent on users’ activities and stored information, content-

based RS have a number of limitations [Adomavicius and Tuzhilin, 2005]:

• Limited content analysis: content-based RS are limited by the features that are ex-

plicitly associated with the objects that these systems recommend. This means that

the content (item profiles) must either be in a form that can be parsed automatically

by the system (e.g., text) or the features should be assigned to items manually. Au-

tomatic feature extraction can be particularly difficult for certain item domains (e.g.

music), and the assignation of attributes by hand may be unpractical due to limita-

tions of resources. Moreover, different items represented by the same (limited) set

of features may be indistinguishable.

• Overspecialization: When the system can only recommend items that score highly

against a user’s profile, the user is limited to being recommended items that are

similar to those already rated. This problem is not only that content-based RS can-

not recommend items that are different from anything the user has seen before, but

sometimes recommend items too similar to something the user has already used,

such as different news articles describing the same event. Thus, this problem is di-

rectly related with the diversity of recommendations presented to users.

• New user problem: A RS needs enough information in the user profile before it can

generate reliable recommendations. Therefore, a new user, which has entered very

few information to the system, would not be able to get accurate recommendations.

2.3.2 Collaborative Filtering algorithms

Collaborative Filtering (CF) algorithms try to predict the utility of items for a particular

user based on the items previously rated by other users (as opposed to CB RS which base

their recommendations on items previously rated by the same user). This way, a CF RS is not

limited to recommend items similar to those that the target user already know, enabling the

recommendation of items completely unknown by him/her, taking advantage of informa-

tion from other users (that is why this kind of filtering is known as collaborative). In firsts

formulations, the utility ���, �� of item � for user � is estimated based on the known utili-

ties (ratings) 3�T,� assigned to item � by those users �T � 	 that are related to user �. To
estimate the existence of a relation between users, the RS compares the profiles of users,

which in this case includes (or consists primarily on) ratings given to items by the user,

identifying users with similar tastes and preferences to the target user (deduced from similar

ratings for instance). Following the notation of [Adomavicius and Tuzhilin, 2005], we can

formalize this computation as follows.

Definition: Let U�VWX��� be a function which returns a set of users related to � (the neigh-
borhood of �). The utility function ���, �� on a user based collaborative filtering RS is calcu-
lated as a computation on the known utilities that other users have informed about the

same item:

 ���, �� � aggr�K�"YZ[\��� 3�K,� (9)

Recommender Systems and State-of-the-Art

11

Here we emphasize the user based characteristic, because the computation relies on (implicit)

relations between users. There are many proposals in the RS literature to compute the ag-

gregation function, and particularly U�VWX���, usually taking into account the degree of
similarity among the target user � and the possible related users �T. The most common

approach is to select the k most similar users (in terms of rating behavior), leading to the

traditional kNN algorithm (see section 3.1 for further details about kNN algorithms). As a

way to overcome with huge computational effort in domains where the number of users

far exceeds the number of items, [Sarwar et al., 2001] proposed to compute similarities

between items and thus obtain ratings from items similar to the target item �, leading to top-N

item recommendations [Deshpande and Karypis, 2004](a.k.a. item based collaborative RS):

Definition: Let U�JW]��� be a function which returns a set of items related to � (the neigh-
borhood of �). The utility function ���, �� on an item based collaborative filtering RS is cal-

culated as a computation on the known utilities that the user has informed about other

items:

 ���, �� � aggr�K�"^_[`��� 3�,�K (10)

It is important to note here that in the computation of U�JW]��� ratings given by other us-
ers to item � are used, thus maintaining the premise of collaborative filtering of take advan-

tage of ratings from users distinct from the target user. This approach has been shown to

provide better computational performance than user-based CF on environments with more

users than items.

The previous approaches have been identified as memory based (a.k.a. heuristic based) CF, due

to the fact that in the computation of U�VWX��� (and similarly in the computation of U�JW]���) the entire collection of known utility values is used. An additional approach for
CF exists, known as model based CF, in which the known utility values are used to learn a

model which is then used to compute ���, �� [Breese et al., 1998]. For model based algo-

rithms, different approaches are described in the RS literature, such as probabilistic models

[Getoor and Sahami, 1999], neural networks [Pazzani and Billsus, 1997], clustering [Breese

et al., 1998], to name a few. A method combining both memory and model based algo-

rithms have been also published [Pennock et al., 2000], showing better results than pure

memory based and model based CF algorithms.

As mentioned earlier, collaborative RS are able to recommend items dissimilar to those

used in the past by the target user, because the recommendation relies on other users’

(items’) recommendations. Due to this, it is possible also for this kind of RS to deal with

any kind of content (items), because it does not need (textual) descriptions of the items.

However, collaborative RS have their own limitations:

Chapter 2

12

• New user problem: Similarly as with content based RS, the system needs enough

information about tastes and preferences of the user in order to make accurate rec-

ommendations.

• New item problem: If no enough users rate new items added to the system, it

would not be able to recommend those items. New user and new item problems

are also known as cold start and ramp-up.

• Sparsity: Usually, the number of ratings stored in a RS is very small compared to

the number of ratings that need to be estimated, which difficult a correct estimation

of unknown ratings.

• Grey sheep: If there are users whose tastes are unusual compared to the rest of the

population, there will not be (enough) other users who are similar.

To overcome in part the two last problems, it has been proposed to use additional informa-

tion present in the user profile, particularly demographics (i.e. gender, age, location, etc.).

This kind of collaborative RS is sometimes called demographic filtering. To deal with cold start,

a common approach is to use hybrid algorithms

2.3.3 Hybrid algorithms

In RS context, a hybrid recommender is a combination of content based and collaborative

filtering algorithms, which helps to avoid some limitations of such algorithms alone.

[Adomavicius and Tuzhilin, 2005] classify hybrid RS as follows:

• RS with separate implementations of collaborative and content based methods,

combining their predictions. The mixture can be made using a linear combination

of ratings or a voting scheme. Alternatively, at a given moment one of the individu-

al recommenders (the “best” according to some metric) can be chosen.

• Collaborative RS incorporating some content based characteristics. For example,

using content based information in the user profile to calculate user similarity.

• Content based RS incorporating some collaborative characteristics. For example,

using dimensionality reduction techniques (used to reduce dimensionality of sparse

rating matrix on CF RS) on content based profiles.

• RS with a general unifying model that incorporates both content based and colla-

borative characteristics. That is, using content based and collaborative characteris-

tics in a single method which is able to generate recommendations taking advantage

of all these characteristics. There have been some proposals of such unifying mod-

els in literature, for example [Ansari et al., 2000] in which the profile information of

users and items are used in a single statistical model.

[Burke, 2002] presented a more detailed taxonomy of hybrid RS, which include:

• Weighted hybrids: The utility of an item is computed from the result of all availa-

ble recommendation techniques (equivalent to the “separate implementations

combining their predictions” class mentioned before).

• Switching hybrids: The RS uses some criterion to switch between recommendation

techniques (equivalent to the “best” chosen individual recommender).

Recommender Systems and State-of-the-Art

13

• Mixed hybrids: Recommendations from more than one technique are presented

together. Strictly speaking, this is not a hybrid, but a mix of recommendations.

• Feature combination hybrids: In this case collaborative information is treated as

additional feature data associated with each example and use content based tech-

niques over this augmented data set. It is a particular case of “Content based RS

incorporating collaborative characteristics”.

• Cascade hybrids: Recommendation techniques are employed one after another, in

a staged process, breaking ties and refining results from the previous technique.

The output of one recommender is not the input for the next, but the results of

the recommenders involved are combined in a prioritized manner.

• Feature augmentation hybrids: One technique is employed to produce a rating or

classification of an item, and that information is then incorporated into the

processing of the next recommendation technique.

• Meta-level hybrids: The entire model generated by one recommender algorithm is

used as the input for another.

In summary, hybridization is used to alleviate some of the problems associated with con-

tent based or collaborative filtering techniques alone (although not all—new user problem

will be present in content based, collaborative and hybrid recommenders as well). Anyhow,

several papers empirically compare the performance of hybrid vs. pure collaborative and

content based methods, showing that hybrid recommenders can provide more accurate

recommendations [Balabanovic and Shoham, 1997; Melville et al., 2002; Pazzani, 1999;

Soboroff and Nicholas, 1999].

2.3.4 Preference Based Filtering

The most common method to recommend items to users have been to predict the absolute

value of ratings (utility) that individual users would give to the yet unused items, using

some of the filtering techniques mentioned earlier [Adomavicius and Tuzhilin, 2005].

However, another approach that has been studied is the prediction of the relative prefe-

rences of the users, that is, to estimate the correct relative order of preference that a user

would give to a set of items.

A simple approach to generate ranked list of items (expecting to reflect an ordering of user

preferences) is to use the predicted utility computed with some of the above-mentioned

methods, and then rank items sorting them according to that rating (see for example

[Deshpande and Karypis, 2004; Breese et al., 1998; Billsus and Pazzani, 1998]). While such

approach might work well in practice, it still do not guarantee that the generated ranking

match effectively the preference order of users [Freund et al., 2003], i.e., a user might prefer

(use) an item �a with a lower computed utility than another item �b. This seemly weird be-

havior may be due to the fact that frequently in CF the prediction of the utility of an item

for a user is computed as an aggregation of utilities manifested by many users who often

use completely different ranges of utility to express identical preferences [Freund et al.,

2003]. Another problem with such approach is that elements that should be ranked may be

considered as negative feedback during training (user have not manifested utility for such

items) [Rendle et al., 2009b; Pan et al., 2008].

Chapter 2

14

Considering the above, another approach more suitable for this task is to model relative

ordering between items instead of the absolute utility, assuming that relative orderings be-

tween items are more consistent than the values of utilities within the class of users with

similar interests [Jin et al., 2003]. For example, if a user � manifest that ���, �a� c ���, �b�,
then the only information considered is that �a is preferred to �b, leaving aside the utility
values. With this purpose [Cohen et al., 1999] propose a two-stage method, learning a prefe-

rence function d��D��a, �b� returning a measure of how certainty is that �a should be ranked
before �b in the first stage, and using the learned preference function to order a set of
items8. [Jin et al., 2003] use a probabilistic approach to generate a graphic model only mod-

eling relative orderings, and computing the probability for each user to rate pairs of items

with a particular ordering.

The problem of generating a ranked list of preferences instead predicting utility (in the

form of ratings) has also been tackled on CF recommending environments that do not

collect ratings, depending on implicit information to make recommendations (e.g. book-

marked web pages), which correspond to positive only feedback (commonly there is no

way to make a “negative” bookmark); this kind of CF is sometimes called One Class CF

[Pan et al., 2008]. In such environments it makes no sense to predict a rating, as users do

not rate items, thus the recommendation is a prediction of the probability that the user will

prefer the item. The problem is how to determine which elements are less preferred by

users, in the absence of negative feedback; in order to compute the preference, the missing

values may be treated as negative or unknown values, or a combination of them. For ex-

ample, [Pan et al., 2008] use different strategies to balance and tune the interpretation of

missing values as negative ones.

Based on the before-mentioned considerations, Rendle et al.[Rendle et al., 2009b] propose

a Bayesian Personalized Ranking criterion for optimization of personalized rankings, and a

learning algorithm based on stochastic gradient descent which are applicable to recom-

mender models such kNN or matrix factorization, outperforming equivalent models opti-

mized for error minimization on the area under the ROC curve, which is a metric used to

evaluate ranking classifiers [Ling et al., 2003].

2.4 Temporality in Recommender Systems Literature

2.4.1 First approaches

Temporality has attracted little attention in the RS literature untill recently. One of the firsts

works mentioning this dimension is the proposal of Zimdars et al. [Zimdars et al., 2001], in

which authors treat the CF problem as a time-series prediction task testing two approaches:

i) transforming the implicit preference data (web page visits) to encode the ordering of

visits through a data expansion scheme; and ii) binning the data. This work showed im-

provements over non-temporal approaches tested, although increased data sparsity9 arose

8 The work of [Cohen et al., 1999] is not directly devoted for RS, so they use the concept of instances instead
of items, but within the context of the present work these terms may be used interchangeably.
9 The data expansion scheme, though did not truncate data, indeed incremented considerably the number of
parameters to be optimized by the learning algorithm.

Recommender Systems and State-of-the-Art

15

as a challenging problem. In 2002 Terveen et al. used personal history of users to deter-

mine their present musical preferences, in a visual interactive system called “HistView”

[Terveen et al., 2002]. In 2003, Tang et al. used the production year of movies to scale

down the candidate set of a CF RS of movies by pruning “old” movies, which lead to a

“truncation” of ratings considered on computations and thus reducing dimensionality.

Moreover they obtained improved recommendation accuracy [Tang et al., 2003]. Though

only one particular temporal aspect was considered, this work shows the importance of

temporal dimension. Another related work is from Sugiyama et al. who in 2004 explored a

temporal CF approach in which a detailed analysis of the internet navigation history during

a day is performed [Sugiyama et al., 2004].

2.4.2 Weighting schemes

In 2005, Ding and Li incorporated a time based weight into a memory based CF, increa-

singly penalizing old ratings, i.e., decreasing the importance of known ratings as time dis-

tance from recommendation time increases [Ding and Li, 2005]. Upon this strategy, in

2006 they developed a recency based CF algorithm [Ding et al., 2006]. In 2007, Ma et al. [Ma

et al., 2007] extended this strategy incorporating a preprocessing step which consisted in

the usage of a CBF algorithm to calculate unknown rating values (alleviating sparsity), thus

obtaining a full virtual rating matrix, which is then used with the CF weighting algorithms.

In 2008, Lee et al. proposed a CF algorithm based upon implicit feedback (purchase data)

with a somewhat more general temporal model as it includes two temporal aspects: the

“launch” time of an item (the moment at which it is incorporated into the catalog of the

RS) and the purchase time. The purchase data is converted into “pseudo-rating” data, and

obtained ratings are increasingly weighted as launch time of the item or purchase time is

more recent, based on the assumptions that i) more recent purchases better reflect a user’s

current preference, and ii) recently launched items appeal more to users. With a very simple

weighting scheme, they obtain substantial increments (up to 47%) in the number of items

recommended that are also purchased by users (the RS recommended mobile wallpapers)

[Lee et al., 2008]. In 2009, the same research team presents a more detailed analysis with

different weighting approaches according to temporality of data [Lee et al., 2009]; these

results show that taking into consideration any of the two temporal aspects separately leads

to better item sales, and using both temporal aspects further improves sales, though not

additively. Although these results were promising, the time weighting scheme seems limited

as valuable information becomes undervalued, similarly to the information lost occurring in

rating “truncation”.

2.4.3 Time influence in kNN algorithms

Another approach for time inclusion in RS was given by Neal Lathia and collaborators

[Lathia et al., 2009a; Lathia et al., 2008; Lathia et al., 2009b]. In 2008 they analyzed kNN

algorithm’s behavior from a temporal perspective, considering the algorithm as a process

generating an implicit social network in which nodes represent users and edges represent

relationships between users [Lathia et al., 2008]. Some interesting findings in this work are:

i) neighborhoods formed by kNN are dynamic, i.e., they change as time passes though fi-

nally converge into a stable set; ii) the convergence velocity (of the neighborhood) depends

on the similarity measure (which determines the similarity between pairs of users); and iii) it

Chapter 2

16

is possible to identify “power users”—users frequently selected to form other users’ neigh-

borhood, and so having stronger influence on predictions made by the algorithm. In 2009

these researchers pose that production RS must continually adjust parameters as new in-

formation is incorporated into the dataset. However, observing the results of applying kNN

on a dataset iteratively (simulating data actualizations from time to time), results are not as

good as those from applying kNN on a static dataset. From this, in [Lathia et al., 2009a] a

method for updating the neighborhood size for each user is proposed, which leads to lower

prediction error as showed in their experimentation. Later on, in [Lathia et al., 2009b] an

analysis about evaluation in RS field is performed, criticizing an excessive focus in accura-

cy10, proposing a new metric for evaluating CF through time called Time Averaged RMSE

(Root Mean Squared Error), which is the average RMSE11 among predictions and ratings

until a particular time (instead of calculating it over the full dataset). Applying this metric

allows seeing differences in accuracy through time. Moreover, they also propose to evaluate

diversity among recommendation lists generated in different moments, using a metric

based on Jaccard similarity. Their experimentation showed that methods with better accu-

racy have also poorer diversity. One step further, in [Lathia et al., 2010] authors argue that

temporal diversity is a need, as reproducing similar recommendations through time may

generate a negative perception on user (this point is held based upon a user survey). This

work also presents a simple metric for evaluating diversity among recommendation lists,

and simple (but effective) approaches to increment temporal diversity, which seems to have

no impact on accuracy.

2.4.4 Incorporation of time parameters into models

The methods reviewed so far in this section can be considered as time-aware heuristics, in

the sense that all of them perform direct computations on the full dataset, varying only the

particular computation performed according to the additional time information. However,

(as is the case with general CF data) it is also possible to learn models from the dataset,

which are then used to make recommendations12. One way to make such models time-

aware is to incorporate into them additional parameters reflecting dynamic changes in data.

The incorporation of parameters reflecting systematic effects associated to users or items,

known as biases [Bell and Koren, 2007; Bell et al., 2008; Koren, 2008] in the context of the

Netflix Prize competition13 motivated this line of research. For example, typical CF data

exhibits large systematic tendencies for some users to give higher ratings than others, and

for some items to receive higher ratings than others. Incorporating parameters which iso-

late such tendencies help researches to improve model’s results [Koren et al., 2009]. Simi-

larly, additional parameters reflecting dynamic tendencies such as users’ taste change or

items’ popularity drift allows models to obtain better results. For instance Xiang and Yang

[Xiang and Yang, 2009] considers four main types of temporal effects, incorporating the cor-

responding parameters into Matrix Factorization (MF) models: i) time bias, reflecting

changes in society’s interests and habits (e.g. fashion changes); ii) user bias shifting, reflecting

individual change in user habits (e.g. a user may become more demanding as he/she ac-

10 In fact other authors have also criticized the only-accuracy evaluation approach, e.g. Adomavicius and
Tuzhilin [Adomavicius and Tuzhilin, 2005] and Herlocker et al. [Herlocker et al., 2004].
11 See section 2.5.2.2 for details.
12 These algorithms were introduced as model based previously in this chapter.
13 www.netflixprize.com

Recommender Systems and State-of-the-Art

17

quires more experience with items, lowering ratings to all items); iii) item bias shifting, reflect-

ing individual change in item popularity (e.g. a movie may become more popular for a

short period of time after it wins an Oscar award); and iv) user preference shifting, reflecting

individual change in user preferences (e.g., a user may like cartoons when he/she is young,

but when he grows up may dislike them). Other time effects are also mentioned, as the

year/month effect, which reflect particular tendencies associated with the moment of recom-

mendation (e.g. periodicity on a year/month basis) and the loyalty, activity and popularity effect

which reflects the amount (duration) of activity of users/items in the RS. Their experimen-

tation show better RMSE results on Netflix data as more time effects are incorporated into

models. This work also note that time decay (i.e. time weighting) is not optimum due to

lost (or undervaluation) of old though important data.

As mentioned earlier, the Netflix Prize competition encouraged an enormous amount of

research and improvements in the CF field. Some major findings listed by the competi-

tion’s winning team led by Yehuda Koren are the usage of MF models, the ensemble of

different methods including variants of neighborhood based CF and MF based CF, and the

incorporation of time information [Koren et al., 2009; Koren, 2009a; Bell and Koren, 2007;

Bell et al., 2008; Koren, 2008; Koren, 2009b; Bell et al., 2009]. In 2007, Bell and Koren

[Bell and Koren, 2007] considers temporal effects as global effects, considering that inte-

ractions between time and users (or items) vary linearly with the square root of the number

of days since the first rating from the user (or to the item) untill the date of the actual rating

being predicted. In 2008 they propose the use of parameters associated with time intervals,

grouping ratings according to the rating date, aiming to better model temporal dynamics in

user and item tendencies. Given that tendencies change more slowly on items, with few

parameters of this kind it is possible to adequately learn and model item temporal tenden-

cies; however the modeling of users becomes more complex as they may have many kinds

of dynamics, e.g. sudden (during one day due to bad humor) and long term (slow change of

interests as the user becomes older), thus requiring more parameters and training data to

appropriate learning [Bell et al., 2008]. With a detailed explanation, Koren [Koren, 2009a]

fully describes their proposal in 2009, which includes many temporal effects that may be

included in MF models or neighborhood based ones, and arguing the use of temporal in-

formation as a key to win the Netflix Prize competition. He also notes clear temporal ef-

fects on Netflix data, emphasizing that the inclusion of temporal dynamics proved more

useful than various algorithmic enhancements in order to improve accuracy of rating pre-

dictions.

2.4.5 Evaluation of interest drift

Another line of research in this context has been the explicit detection of drift in user in-

terests. In 2005 Min and Han [Min and Han, 2005] propose two simple methods in the

context of a user kNN recommendation algorithm to detect changes in user interests: i) a

clustering based method which detects change of user’s cluster in different timeframes

(each cluster correspond to a set of users with similar interests), and thus a change of clus-

ter is interpreted as interest drift; and ii) a similarity based method (named auto similarity),

which compares ratings of the active user by the classic Pearson correlation coefficient in

different timeframes, thus interpreting a negative correlation as a change in user interests. If

Chapter 2

18

an interest change is detected, then the neighborhood formation is affected by weighting

differentiation on the computation of similarity among users, according to the timeframe at

which the interest change was detected. To deal with data sparsity, a dimensionality reduc-

tion technique based on item hierarchy is used, by which the ratings are treated at item

category level.

In 2009 Cao et al. [Cao et al., 2009] presents a graph based method to identify interest drift.

They identify four types of user interest patterns, based in the category of items rated by

the user: i) Single Interest Pattern (SIP), which correspond to users with one interest (rates

only one category of items) during a time span; ii) Multiple Interest Pattern (MIP), which re-

flects users with more than one interest during a time span; iii) Interest Drift Pattern (IDP),

which reflects users with identifiable interests but not lasting all the time span; and iv) Ca-

sual Noise Pattern (CNP), which reflects users with very short duration interests. In order to

establish the pattern of a user, a rating graph and rating chain are built. The rating graph has

nodes representing items rated by a user, and there is an edge between items if their simi-

larity (according to some predefined measure) is bigger than a certain threshold. The densi-

ty of this graph allows to observe how similar are the items rated by the user. On the other

hand, the rating chain also has nodes representing items rated by a user (identifying them

according to the rating time), and there is a link between a pair of nodes (i.e. items rated

consecutively) only if those two items are similar. With a simple analysis on those structures

it is possible to determine simple interest and casual noise patterns. Users whose rating

graph have high density and whose rating chain have high continuity have a single interest

patterns, meanwhile low density rating graphs and low continuity rating chains reflect a

casual noise pattern. Determining multiple interest and interest drift patterns require a

more careful analysis, being need to identify whether there is any drift point. With this goal,

an algorithm called Density Based Segmentation is proposed, which is able to identify such drift

points based on the rating graph and rating chain characteristics. A multiple interest pattern

has no drift point, whilst an interest drift pattern may have one or more drift points. With

this information, the authors propose a general framework to improve a RS, which in

summary consist in identifying the corresponding pattern of a user’s rating series, and de-

pending upon the type of pattern detected, apply one of the following: a) make recommen-

dation using the full rating series (for SIP and MIP); b) recommend the most popular items

discarding the user’s rating series (for CNP); and c) use only ratings after the last interest

drift of the user (for IDP). Results on Movielens dataset and synthetic data show im-

provements in recommendation performance. The authors argue that a wide range of RS

can be enhanced with this approach, as it can be considered a wrapper which can be added

as an interest pattern detection module into an existing RS.

2.4.6 Periodicity in tastes

Another view of the time influence on the recommendation problem is given by Baltrunas

and Amatriain in 2009 [Baltrunas and Amatriain, 2009], who assumes that user preferences

change over time but have temporal repetition in the music domain (e.g. a user listens to

one type of music while working and another type before going to sleep). They tested some

time segmentation of the rating data (which corresponded to transformed implicit feedback

as in [Celma, 2008]) in order to create micro-profiles of users containing ratings of such time

Recommender Systems and State-of-the-Art

19

segments (e.g. morning/evening, working day/weekend, cold season/hot season). Using

data from the corresponding micro-profile they improved accuracy (MAE) on about 2%

compared to the usage of the full rating data with an ad-hoc dataset extracted from

last.fm14 RS using a factorization CF algorithm. One faced problem was that of how to

define a time segment, e.g. morning, as it may differ for different users; they try with differ-

ent partitioning schemes, and interestingly tested cross-validation, information gain and

explained variance schemes to estimate the best split.

2.4.7 Inclusion of Temporal Dimension as Contextual Information

A general framework for extending the traditional scheme of recommendation based only

on (user, item, rating) pieces of information have been developed by Gediminas Adomavi-

cious and collaborators [Adomavicius et al., 2005; Adomavicius and Tuzhilin, 2011; Ado-

mavicius and Tuzhilin, 2001a; Adomavicius and Tuzhilin, 2001b; Adomavicius and Tuzhi-

lin, 2008]. With this purpose, in [Adomavicius and Tuzhilin, 2001a] propose to incorporate

multiple dimensions of information (besides the classical user and item dimensions), one of

which is time, store it in a recommendation warehouse and use OLAP15-like aggregation capa-

bilities in order to be able to aggregate information from this more complex recommenda-

tion space. Building on this idea, in [Adomavicius and Tuzhilin, 2001b] the authors extend

their previous proposal incorporating a Recommendation Query Language with the purpose of

allowing to express a wide range of specific recommendations “on the fly”. Later on, in

[Adomavicius et al., 2005] they gave a further description of this model, and the additional

information that the model allows to incorporate is defined as contextual information

(some details of this model are depicted in section 1.2). Figure 1 shows a graphical repre-

sentation of the proposed model. This paper also describes reduction-based, heuristic-

based and model-based rating estimation approaches based on multidimensional informa-

tion. The former is deeper discussed, suggesting to do a pre-processing of data and select-

ing from the multidimensional space the information that matches the contextual values

(i.e. for a recommendation during a weekday select only ratings related with users and items

that were done during weekdays), thus reducing the recommendation space to the classical 	 �
 domain, and enabling the usage of existing RS.

14 www.last.fm
15 On-Line Analytical Processing: An approach for fast answering of multi-dimensional database queries.

Chapter 2

Figure

This scheme, as noted by the authors, may help improving recommendation accuracy in

some cases, due to incremented data sparcity.

companion

hybrid of reduce

the 2

cius and Tuzhilin, 2008]

dation process

2011]

equivalent to the reduce

which consists on predict ratings in traditional fashion (with

able) and then using contextual information to adjust the results; and iii) contextual mode

ing, which uses contextual information directly in the modeling technique.

schematic view

Chapter 2

Figure 1. Multidimensional model for a

This scheme, as noted by the authors, may help improving recommendation accuracy in

cases, due to incremented data sparcity.

companion, they built a

hybrid of reduce

the 2nd ACM Conference on Recommender Systems, Adomavicius and Tuzhilin

cius and Tuzhilin, 2008]

dation process, which was later on expanded in a book chapter

2011], identifying three stages for context exploitation: i) contextual pre

equivalent to the reduce

which consists on predict ratings in traditional fashion (with

) and then using contextual information to adjust the results; and iii) contextual mode

ing, which uses contextual information directly in the modeling technique.

schematic view of the proposed approaches.

. Multidimensional model for a

This scheme, as noted by the authors, may help improving recommendation accuracy in

cases, due to incremented data sparcity.

built a movie RS for evaluation purposes

hybrid of reduce-based and classic CF over classic CF alone

ACM Conference on Recommender Systems, Adomavicius and Tuzhilin

cius and Tuzhilin, 2008] propose a more general scheme for the context

, which was later on expanded in a book chapter

, identifying three stages for context exploitation: i) contextual pre

equivalent to the reduce-based

which consists on predict ratings in traditional fashion (with

) and then using contextual information to adjust the results; and iii) contextual mode

ing, which uses contextual information directly in the modeling technique.

of the proposed approaches.

. Multidimensional model for a

This scheme, as noted by the authors, may help improving recommendation accuracy in

cases, due to incremented data sparcity.

movie RS for evaluation purposes

based and classic CF over classic CF alone

ACM Conference on Recommender Systems, Adomavicius and Tuzhilin

propose a more general scheme for the context

, which was later on expanded in a book chapter

, identifying three stages for context exploitation: i) contextual pre

based approach previously discussed; ii) contextual post

which consists on predict ratings in traditional fashion (with

) and then using contextual information to adjust the results; and iii) contextual mode

ing, which uses contextual information directly in the modeling technique.

of the proposed approaches.

20

al., 2005]).

This scheme, as noted by the authors, may help improving recommendation accuracy in

cases, due to incremented data sparcity. Using

movie RS for evaluation purposes

based and classic CF over classic CF alone

ACM Conference on Recommender Systems, Adomavicius and Tuzhilin

propose a more general scheme for the context

, which was later on expanded in a book chapter

, identifying three stages for context exploitation: i) contextual pre

approach previously discussed; ii) contextual post

which consists on predict ratings in traditional fashion (with

) and then using contextual information to adjust the results; and iii) contextual mode

ing, which uses contextual information directly in the modeling technique.

of the proposed approaches.

 recommendation space (

This scheme, as noted by the authors, may help improving recommendation accuracy in

Using as contextual dimensions

movie RS for evaluation purposes, obtaining better results with a

based and classic CF over classic CF alone. Afterwards in a tutorial during

ACM Conference on Recommender Systems, Adomavicius and Tuzhilin

propose a more general scheme for the context

, which was later on expanded in a book chapter

, identifying three stages for context exploitation: i) contextual pre

approach previously discussed; ii) contextual post

which consists on predict ratings in traditional fashion (with the full

) and then using contextual information to adjust the results; and iii) contextual mode

ing, which uses contextual information directly in the modeling technique.

recommendation space (from

This scheme, as noted by the authors, may help improving recommendation accuracy in

as contextual dimensions

, obtaining better results with a

Afterwards in a tutorial during

ACM Conference on Recommender Systems, Adomavicius and Tuzhilin

propose a more general scheme for the context-aware recomme

, which was later on expanded in a book chapter [Adomavicius and Tuzhili

, identifying three stages for context exploitation: i) contextual pre-filtering, which is

approach previously discussed; ii) contextual post

the full

) and then using contextual information to adjust the results; and iii) contextual mode

ing, which uses contextual information directly in the modeling technique.

from [Adomavicius et

This scheme, as noted by the authors, may help improving recommendation accuracy in

as contextual dimensions time, place

, obtaining better results with a

Afterwards in a tutorial during

ACM Conference on Recommender Systems, Adomavicius and Tuzhilin [Adomav

aware recomme

[Adomavicius and Tuzhili

filtering, which is

approach previously discussed; ii) contextual post-filtering,

 rating data avai

) and then using contextual information to adjust the results; and iii) contextual mode

ing, which uses contextual information directly in the modeling technique. Figure 2 shows a

[Adomavicius et

This scheme, as noted by the authors, may help improving recommendation accuracy in

place and

, obtaining better results with a

Afterwards in a tutorial during

[Adomavi-

aware recommen-

[Adomavicius and Tuzhilin,

filtering, which is

filtering,

rating data avail-

) and then using contextual information to adjust the results; and iii) contextual model-

shows a

Recommender Systems and State-of-the-Art

21

Figure 2. Paradigms for incorporating context in RS (from [Adomavicius and Tuzhilin, 2011]).

In [Panniello et al., 2009] a comparison among pre and post-filtering approaches is pre-

sented, using time information as part of contextual information, establishing that neither

of the approaches outperforms the other consistently among different datasets. Also they

argue that selecting a good post-filtering strategy is time-consuming, proposing a simple

heuristic for approach selection. Authors claim improvements up to 30% on F-measure

over classic recommendation in their experimentation.

2.4.8 Other proposals

In 2005, Zhang et al. [Zhang et al., 2005] propose an extension to the pLSA model for CF

[Hofmann, 1999; Hofmann, 2001; Hofmann, 2004] which allows an incremental learning

of the model, taking into consideration the variation of ratings through time and thus al-

lowing the algorithm to track factor drift as argued by the authors. Their experiments show

improvements of ~10% over original pLSA in MAE.

In 2007, Ricci and Nguyen [Ricci and Quang Nhat Nguyen, 2007] incorporate long-term

and short-term preferences in a critique-based mobile RS. The long-term preferences cor-

responded to mined past interactions and users’ explicitly defined stable preferences, whilst

short-term preferences corresponded to session-specific preferences expressed by the user.

In 2009, Lu et al. [Lu et al., 2009] propose a spatio-temporal model for CF based on MF,

which includes a Markov random field to incorporate spatial correlations across users

and/or items, and a state space framework to model temporal structure estimated by a li-

near Kalman Filter. They obtained an improvement of 1.4% over standard MF in RMSE in

their experimentation.

Chapter 2

22

More recently, motivated by the Challenge on Context-Aware Movie Recommendation

(CAMRa 201016) performed jointly with the 4th ACM Conference on Recommender Sys-

tems (RecSys 201017), which included a temporal track (weekly track), Gantner et al. [Gant-

ner et al., 2010] propose to use Pairwise Interaction Tensor Factorization [Rendle and

Schmidt-Thie Lars, 2010], a tensor factorization model [Lathauwer et al., 2000] initially

developed for tag prediction [Symeonidis et al., 2008a; Rendle et al., 2009a] which incorpo-

rates an optimization criterion based on preference filtering instead of prediction error mi-

nimization18. This work won the weekly track of CAMRa 2010. Another proposal pre-

sented in this challenge was from Brenner et al. [Brenner et al., 2010], which used a popu-

larity measure (based upon high rated movies) in order to forecast popularity of movies in a

short-term period. Interesting results were found on new users (cold start problem) rec-

ommended with movies rated during the first two weeks of previously signed-in users.

As well during 2010, Xiang et al. [Xiang et al., 2010] propose the construction of Session-

based Temporal Graphs (STG), which simultaneously models users’ long-term and short-term

preferences over time. The authors argue that time dimension is a local effect and should

not be compared across all users arbitrarily. They exemplify indicating that users bought

different items at the same time triggered by completely different external events, and so

acknowledging a relation among those items or users on time is typically not useful because

the occurrence is purely coincident, but in the other hand, it is more likely due to the same

external event that a user bought multiple items in a short period; that is, user-specific time

dimension is more likely to capture the “true” correlation over time [Xiang et al., 2010].

Thus, STG allows modeling such local effects. STG is a bi-partite graph composed of user,

item and user-session nodes, allowing links between user and item or user-session and item

nodes reflecting items viewed by a user at any time (long-term preferences) and items

viewed by a user during a specific time bin or session (short-term preferences) respectively.

Moreover, they propose an Injected Preference Fusion algorithm, which allows injecting user

preferences into nodes of STG and propagate them to item nodes in a weighted arrange-

ment depending upon the type of relation (long or short-term). On this graph authors per-

form a Temporal Personalized Random Walk, based on personalized Page Rank [Haveliwa-

la, 2002; Scarselli et al., 2004], obtaining improvements on Hit Ratio metric over Delicious

and Citeulike datasets19.

Finally, it is important to mention the existence of a recent US Patent related to temporal

recommendation [Zhao and Fukushima, 2010]. This invention proposes the use of tem-

poral rating models to predict how the user would rate an item at different times, and thus

estimate the optimal time to recommend such item to the user. The authors exemplify

some strategies, as for example determining which hours of the day (or which days of the

week) users rate a restaurant highly (e.g. before dinner), and so recommend the restaurant

at peak rating time (or some time before the peak).

16 http://www.dai-labor.de/camra2010/
17 http://recsys.acm.org/2010/
18 See section 2.3.4 for details.
19 Public datasets available through e-mail contact to CiteULike (www.citeulike.org) and DAI-Labor
(www.dai-labor.de) respectively

Recommender Systems and State-of-the-Art

23

2.5 Metrics for recommendation evaluation

RS have a variety of properties that may affect its results (and therefore user experience)

such as accuracy, robustness, scalability and so forth [Shani and Gunawardana, 2011]. Giv-

en the scope of the present work, this section is mainly devoted to metrics that allow com-

parison of RS algorithms in an offline setting, i.e. without user interaction, using for this

purpose rating data in existing datasets.

The most widely studied evaluation dimension for RS in literature has been accuracy [Her-

locker et al., 2004]. Accuracy metrics can be classified as either statistical or decision-support

[Adomavicius and Tuzhilin, 2005; Herlocker et al., 1999]. Statistical accuracy metrics com-

pare estimated utilities by the RS against the actual utilities collected from the user (typically

ratings). Thus, they are commonly used to evaluate rating prediction task’ results. Exam-

ples of such metrics are Mean Absolute Error, Root Mean Squared Error, and correlation

between predictions and ratings [Adomavicius and Tuzhilin, 2005]. On the other hand,

decision-support metrics determine how well a RS can predict (recommend) high-relevance

items20. These metrics are more related to top-N recommendation task. Examples of such

metrics are classical IR metrics of precision (percentage of truly relevant items among those

recommended by the system), recall (percentage of correctly recommended items among all

the ratings known to be relevant), F-measure (a harmonic mean of precision and recall) and

Receiver Operating Characteristic (ROC) metric demonstrating the trade-off between true

positive and false positive recommendations in RS [Adomavicius and Tuzhilin, 2005; Herlocker

et al., 1999]. Other studied evaluation measure has been coverage. Coverage measures the

percentage of items for which a RS is capable of estimate utility [Adomavicius and Tuzhi-

lin, 2005; Herlocker et al., 1999].

As pointed by [Adomavicius and Tuzhilin, 2005], these metrics do not adequately capture

other dimensions such as usefulness, quality, novelty or diversity of recommendations, which

indeed constitute important dimensions for users (see for example [Lathia et al., 2010;

Yang and Padmanabhan, 2001]). Thus novel metrics aiming to evaluate these dimensions

are being proposed and used to evaluate RS. In this section some of them are reviewed. We

will consider that users express the utility in form of ratings, and that the RS computed

utility is a predicted rating. Prior to the description of the metrics, the experimental setting

needed to apply such metrics is briefly introduced.

2.5.1 Experimental Setting for Metric Application and Notation

The experimental setting in the present work considers the usage of existing datasets that

allow low-cost comparison of algorithms in an offline manner [Shani and Gunawardana,

2011]. Thus, it is necessary to divide such datasets into a train and a test set, the former used

in the training phase where the algorithms learn about users’ tastes and items’ being preferred,

and the latter used during the testing phase, where the metrics are applied, simulating the

online process where the system makes recommendations and the users uses (or not) those

recommendations. Let e���f�� � gQ�, �, �, ��,�,JR: � � 	, � �
, � � I, ��,�,J � 3h be the test

20 A common interpretation of relevant items in RS field has been “items that would be rated highly by user”
[Adomavicius and Tuzhilin, 2005]. However, the concept of “high rating” is not equivalent for all users, as
noted by [Freund et al., 2003].

Chapter 2

24

set, which correspond to a 4-tuple consisting of user, item, time and the corresponding

rating. It is important to note that a rating pertaining to the test set is not present in the

train set (ussually, a part of the known ratings in a dataset is hidden, forming the test set,

and the unhidden ratings form the train set). It should also be noted that most metrics are

not time-aware, thus the time component is not considered. In such cases the time

component is ommited. Additionaly, let 	iWVJjWJ � 9�: � � e���f��?.
2.5.2 Statistical accuracy metrics

These metrics measure the difference between predicted and real utility values. According-

ly, these metrics are better suited in cases where it is important to determine the level of

satisfaction that a particular item will cause to a particular user, e.g. in systems which the

predicted rating will be displayed to the user [Herlocker et al., 2004].

2.5.2.1 Mean Absolute Error
Mean Absolute Error (MAE) measures the average absolute deviation between a predicted

rating and the user’s true rating:

 klm � ∑ o�̂�,� p ��,�oXY,^�iWVJjWJ|e���f��| (11)

where �̂�,� is the predicted rating value (computed as ���, ��). In this case, lower values of klm indicate better accuracy.
2.5.2.2 Root Mean Squared Error
Root Mean Squared Error (RMSE) puts more emphasis on large errors between predicted

and true ratings compared with MAE:

 3kfm � r∑ Q�̂�,� p ��,�R6XY,^�iWVJjWJ|e���f��|
(12)

As the case of klm, lower values of 3kfm indicate better accuracy.
2.5.2.3 Correlation
Correlation is a statistical measure of agreement between two vectors of data. Thus, the

correlation between predicted and real ratings can be used to evaluate the accuracy of a RS,

in terms of agreement between those values. A correlation coefficient such as Pearson

product-moment correlation coefficient can be used with this purpose [Sarwar et al., 1998].

Normally, higher correlation values imply better accuracy.

2.5.2.4 Other Statistical Accuracy Metrics
Other statistical accuracy metrics, or different ways to apply them, can be found in RS lite-

rature. For example, normalized mean absolute error [Goldberg et al., 2001] is mean absolute

error normalized with respect to the range of rating values, theoretically allowing compari-

son between prediction runs on different datasets. On the other hand, [Shardanand and

Maes, 1995] measured separately mean absolute error over items to which users gave ex-

Recommender Systems and State-of-the-Art

25

treme ratings. They partitioned their items into two groups, based on user rating (a scale of

1 to 7). Items rated below three or greater than five were considered extremes. The intui-

tion was that users would be much more aware of a recommender system’s performance

on items that they felt strongly about. The mean absolute error of the extremes did provide

a different ranking of algorithms than the common mean absolute error.

It is important to note that these measures are typically performed on test data that the

users choose to rate, so test data are likely to constitute a skewed sample (users tend to rate

only items they find useful) [Adomavicius and Tuzhilin, 2005].

2.5.3 Decision-support accuracy metrics

These metrics takes into consideration how many relevant items are recommended by the

RS. Usually, the ranking of recommended items is also considered in the metric values.

Thus, these metrics are better suited in cases where it is important to test if lists of recom-

mended items contain items that are valuable for the user [Herlocker et al., 2004].

2.5.3.1 Precision
Precision of an IR system is defined as the ratio of documents retrieved by the system that are

relevant (for a user petition or query) [Baeza-Yates and Ribeiro-Neto, 1999]. In the context

of RS, items take the place of documents. Moreover, there is no explicit query from the

user, so user tastes and preferences (in the user profile) take the place of the query. Regard-

ing relevance, a common interpretation of relevant items in RS field has been “items that

would be rated highly by user” [Adomavicius and Tuzhilin, 2005]. Thus, RS Precision is the

ratio of recommended items that are relevant. Being
���� the ordered set of all recom-

mended items to user �, let 3�H�� be the true set of items considered relevant by user �
(also called ground truth), and 3�H�3�B@��� the set of items recommended that are rele-

vant, that is 3�H�3�B@��� �
���� s 3�H��, then Precision of recommendation for user �
is:

 d� � |3�H�3�B@���||
����| (13)

The Precision of the RS among all (tested) users may be computed by:

 d � ∑ d���	t[Z_u[_|	iWVJjWJ| (14)

If only the top N recommended items are taken into consideration, this ratio is called Preci-

sion at N or d@U. Let 3�H�3�B@���@U �
"� ��� s 3�H��, then:
 d�@U � |3�H�3�B@���@U||
"� ���| (15)

Equivalently, d@U of the RS among all (tested) users may be computed by:

Chapter 2

26

 d@U � ∑ d�@U��	t[Z_u[_|	iWVJjWJ| (16)

2.5.3.2 Recall
Recall of an IR system is defined as the ratio of relevant documents that are retrieved. As in

the case of Precision, here items replace documents, and the retrieved set of documents

correspond to the recommended items by the RS. Thus RS Recall is the ratio of relevant

items recommended. Following the notation defined previously, the Recall of recommen-

dation for user � is:
 3�B>HH� � |3�H�3�B@���||3�H��| (17)

Similarly, Recall at N, Recall of the RS among all (tested) users, and Recall at N among all

(tested) users may be computed by:

 3�B>HH�@U � |3�H�3�B@���@U||3�H��| (18)

 3�B>HH � ∑ 3�B>HH���	t[Z_u[_|	iWVJjWJ| (19)

 3�B>HH@U � ∑ 3�B>HH�@U��	t[Z_u[_|	iWVJjWJ| (20)

2.5.3.3 F-measure
Several approaches have been taken to combine Precision and Recall into a single metric.

One approach is the F1 metric, which combines Precision and Recall into a single number,

as a harmonic mean:

 w1� � 2d�3�B>HH�d� z 3�B>HH� (21)

2.5.3.4 Receiver Operating Characteristic
The Receiver Operating Characteristic (ROC) model [Swets, 1969] attempts to measure the

extent to which an information filtering system can successfully distinguish between signal

(relevance) and noise [Herlocker et al., 2004]. The model requires that the system predicts

the level of relevance of every potential item. It measures the true positive rate (TPR; percen-

tage of relevant items predicted as relevant, that is, 3�B>HH in the IR context) versus the
false positive rate (FPR; percentage of irrelevant items predicted as relevant). Considering that

typically items are presented to the user in a ranked list, the ROC curve plots this propor-

tion at different cutoffs levels (search lengths). Figure 3 shows an example of an ROC

curve. As larger TPR values and lower FPR values means that the system is able to effec-

Recommender Systems and State-of-the-Art

27

tively predict relevant items as relevant, a better predictive system will have a curve most

near to the upper left corner of the plot. A random predictor will have a straight line from

the origin to the upper right corner.

In the computation of ROC curve, items not rated (i.e. whose relevance is not known) are

discarded and do not affect the curve negatively or positively [Herlocker et al., 2004]. How-

ever [Schein et al., 2002] states that a perfect recommender may not produce a perfect

ROC graph, because some recommender systems may display more recommendations than

there exist “relevant” items to the recommender, and that these additional recommenda-

tions should be counted as false-positives.

Figure 3. Example of a ROC curve (taken from [Herlocker et al., 2004])

2.5.3.5 Area under the ROC curve
The area underneath a ROC curve can be used as a single metric of the system’s ability to

discriminate between good and bad items, independent of the search length. According to

[Hanley and McNeil, 1982], the area underneath the ROC curve is equivalent to the proba-

bility that the system will be able to choose correctly between two items, one randomly

selected from the set of bad items, and one randomly selected from the set of good items.

Intuitively, the area underneath the ROC curve captures the recall of the system at many

different levels of fallout. One form to compute this metric is to build the ROC curve and

compute the area. Alternatively it can be computed directly from a ranked list by [Ling et

al., 2003]:

Chapter 2

28

 l#N� � f1 p P@����A��P@����A� z 1�/2P@����A� � =�<>��A� (22)

where f1 � ∑ �>=G�����|W}VY , �>=G��� is the rank position of item �, P@����A� is the num-

ber of positive (relevant) items for � (i.e. |3�H��|) and =�<>��A� is the number of negative

(non relevant) items for � (i.e. |
 p 3�H��|).
It also can be computed considering directly the relative ordering assigned by the RS [Ren-

dle et al., 2009b]:

 l#N� � 1|3�H��||
 p 3�H��| ~ ~ Q��,�,%R%�
)|W}VY��|W}VY
 (23)

where ��,�,% � 1 if item � is ranked before (in top of) item � in
����, and ��,�,% � 0 in other
case.

2.5.3.6 Discounted Cumulative Gain
Precision and Recall do not take into account the usefulness of an item based on its posi-

tion in a result list. The premise of Discounted Cumulative Gain (DCG) metric is that

highly relevant documents appearing lower in a search result list should be penalized, so the

relevance value is reduced logarithmically proportional to the position of the result. The

DCG accumulated at a particular rank position N is [Jarvelin and Kekalainen, 2002]:

 �N��@U � ��H�,' z ~ ��H�,��VH@<6P@�
"

��V&6 (24)

where ��H�,��V is the relevance value for user � of the item at position P@�21. In order to

allow fair comparison among different users, the DCG should be normalized. This is done

by sorting recommended items by known relevance, producing an ideal DCG at position N,

thus obtaining the normalized DCG:

 =�N��@U � �N��@U��N��@U (25)

The nDCG of the RS among all (tested) users may be computed by:

 =�N�@U � ∑ =�N��@U��	t[Z_u[_|	iWVJjWJ| (26)

21 There are actually many variants for this computation. For instance, the trec_eval utility used for evaluation

in TREC (http://trec.nist.gov/) compute it as �N��@U � ∑ XW}Y,��Z}������V�'�"��V&' .

Recommender Systems and State-of-the-Art

29

2.5.3.7 Considerations on Decision-support Accuracy Metrics
The major problem with decision-support accuracy metrics is that the true set of relevant

items 3�H�� (according to the heuristic of “high rated items”) is unknown, but only a sub-

set of them, as users only rate a small subset of the full item set. Indeed, the idea of a RS is

to recommend items unknown to the users (otherwise why would the user need a RS).

Thus, it is possible to have items actually relevant to a user and recommended by the RS

being not considered by the metrics.

A second, apparently minor problem is that of determining which items are indeed relevant

to the users. If items are rated binary (e.g. “dislike” and “like” or 0 and 1), it is easy to de-

termine which items are found relevant by the users (and predicted as relevant by the sys-

tem). The former may lead to think that in the case of multi-valued ratings (e.g. 1-10 scale)

higher ratings correspond directly to higher relevance. However, as stated by [Freund et al.,

2003], given that a numeric rating can have a different meaning for different users (some

users tend to give higher ratings for instance), and that in CF predictions are usually build

upon ratings from many different users, it is not clear that between two items �', �6, �̂�,�, c �̂�,�� implies that �' is more relevant than �6 for user �. The latter may be particularly

important in computing metrics which depend on the top N ranked list of recommended

items, such as d@U or 3@U.

2.5.4 Coverage Metrics

Coverage in RS measures what proportion of items the system is able to compute predic-

tions to.

2.5.4.1 Prediction Coverage
This metric measures directly the percentage of items for which the recommender can

form predictions [Herlocker et al., 2004]. Consider again the set
����, the set of item for

which the system is able to compute ���, ��. The coverage for a user � can be computed

as:

 N@A��XW� � |
����||
| (27)

It is important to note that different recommendation algorithms may be unable to gener-

ate a prediction for different users on the same item. To calculate the prediction coverage

among all users, we can compute the average by:

 N@A�XW� � ∑ N@A��XW���	|	| (28)

2.5.4.2 Catalog Coverage
This metric measures what percentage of available items does the RS ever recommend to

users. This form of coverage may be more important for e-commerce sites [Herlocker et

al., 2004]. Following prior notation in this chapter, let
� � 9�: � � �
������	 ?, i.e.,
� is the

Chapter 2

30

set of items among all recommendation list generated by the RS. Then the general catalog

coverage of a RS can be computed as:

 N@A�aJa}�� � |
�||
| (29)

Catalog coverage is usually measured on a set of recommendations formed at a single point

in time. For instance, it might be measured by taking the union of the top 10 recommenda-

tions for each user in the population [Herlocker et al., 2004].

2.5.4.3 Interest and Relevance Coverage
An alternative way of computing coverage considers only coverage over items in which a

user may have some interest. Coverage of this type is not usually measured over all items,

but only over those items a user is known to have examined. For instance, when the pre-

dictive accuracy is computed by hiding a selection of ratings and having the RS computed

predictions for those ratings (e.g. ratings in a test set), the coverage can be measured as the

percentage of covered items for which a prediction can be formed [Herlocker et al., 2004].

Let
�,iWVJjWJ � g�: ��,� � e���f��h be the set of items in which � has shown interest (i.e.
have rated such items), and let
�,iWVJjWJ� � 9�: � �
�,iWVJjWJ � ���, �� � 2? be the set of
items of interest for user � for which the RS is able to calculate predictions of utility. Then
the interest coverage for a user � can be computed as:

 N@A��8JWXWVJ � o
�,iWVJjWJ� oo
�,iWVJjWJo (30)

The interest coverage among all users can be computed as:

 N@A�8JWXWVJ � ∑ N@A��8JWXWVJ��	t[Z_u[_|	iWVJjWJ| (31)

Similarly, [Bellogín et al., 2010] propose a relevance coverage, which is coverage over rele-

vant items. It can be computed as:

 B@AXW} � |� 3�H�3�B@�����	 ||� 3�H����	 | (32)

It should be noted that the interest coverage metric is another form of relevance coverage,

if e���f�� is constituted only by positive ratings.

Recommender Systems and State-of-the-Art

31

2.5.5 Novelty and Diversity Metrics

As pointed by [Herlocker et al., 2004], some RS produce recommendations that are highly

accurate and have reasonably coverage—and are yet useless for practical purposes. As ex-

ample, they mention that in a grocery store context, recommending bananas would be sta-

tistically highly accurate (almost everyone buys bananas), but useless, as most people knows

bananas, and knows whether or not they want to buy some, ignoring such recommenda-

tion. Much more valuable would be a recommendation for the new frozen food the cus-

tomer has never heard of—but would love. For this purpose, new dimensions for analyzing

RS that consider the “nonobviousness” of the recommendation are being considered in the

literature. Examples of such dimension are novelty (and serendipity), which could be de-

fined as the proportion of items unknown to the user that are recommended (and liked),

and diversity, which tries to measure the differentiation among items recommended. The

measurement of such dimensions is not easy, given that commonly for evaluation there is

only a test set corresponding to (some) items evaluated by the user, but in most cases this is

not the full set of known items (users do not rate all items they know due to time or other

constraints). Moreover, it is not possible to know whether an item will be of interest for a

user if he/she does not know it, so there is no information about the full set of interesting

items. Despite of these problems, there are different proposals in the literature of metrics

to measure these important dimensions. Here we review some of them.

2.5.5.1 Self information-based Novelty
[Zhou et al., 2010] note that novelty in RS is concerned with suggesting items a user is un-

likely to know about already, and propose to use the self-information or surprisal, a meas-

ure of unespectedness of items relative to their popularity. Let 3�H�� be the set of users that
consider relevant the item �, then the self-information based novelty of the recommenda-

tion set
"� ��� is:

 =@A�VW}�)�8��X]aJ��8Q
"� ���R � ∑ log6 � |	|3�H�����
�� ��� U
(33)

And the mean self-information based novelty of a RS on top-N recommendation lists is:

 =@AVW}�)�8��X]aJ��8@U � ∑ =@A�VW}�)�8��X]aJ��8Q
"� ���R@U��	t[Z_u[_ |	iWVJjWJ| (34)

2.5.5.2 Unpopularity-based Novelty
[Fouss and Saerens,] propose a novelty metric which is based in the idea that “best-seller”

items (those items frequently rated) are the opposite of novel items (it is expectable that

“best-seller” items are mostly known by users). Thus, they measure the rating frequency of

the top N items recommended. Being 3·,� the set of known ratings assigned to item � (in
this case, ratings in train set), the unpopularity-based novelty for a user � among the top N

items recommended can be calculated by:

Chapter 2

32

 =@A��8����}aX�J�Q
"� ���R � median��
�� ��� Qo3·,�oR (35)

The unpopularity-based novelty of a RS on top-N recommendation lists can be calculated

by:

 =@A�8����}aX�J�@U � ∑ =@A��8����}aX�J�Q
"� ���R@@U��	t[Z_u[_ |	iWVJjWJ| (36)

2.5.5.3 Intra-list Similarity
With the purpose of balancing top-N recommendation lists according to the user’s full

range of interest, [Ziegler et al., 2005] introduce an intra-list similarity metric that intends to

capture the diversity of a list. In their work, diversity may refer to all kinds of features, e.g.,

genre, author, and other discerning characteristics. Based upon an arbitrary similarity func-

tion ���:
 �
 � � with values of ��� incrementing as the similarity between items in-

crement, [Ziegler et al., 2005] define intra-list similarity for a user’s ranked recommendation

list
���� as:
 ��fQ
����R � ∑ ∑ ���Q�% , ��R���
����,�*����*�
���� 2 (37)

Lower values of ��fQ
����R means more dissimilar elements in
����, i.e., better diversity.
As noted in their paper, this definition of ��fQ
����R is permutation-insensitive, i.e., rear-

ranging positions of items in
���� does not affect ��fQ
����R.
2.5.5.4 Set Diversity and Item Novelty
Aiming to identify the difficulty of a recommendation task based on the novelty of items in

the user profile, [Zhang and Hurley, 2008; Zhang and Hurley, 2009] propose an item no-

velty metric which is based upon a diversity measure of items. The diversity function de-

pends on a distance function ;:
 �
 � �, which stands for the distance or dissimilarity be-

tween a pair of items. Thus, the diversity of a set of recommended items
���� is:
 ;�AQ
����R � 1|
����|�|
����| p 1� ~ ~ ;Q�% , ��R���
����,�*����*�
���� (38)

A simple distance function may be build using a similarity metric such as cosine similary,

thus making ;Q�% , ��R � 1 p ���Q�% , ��R. They also propose a computation for measuring the

novelty of an item �, as the amount of additional diversity that � brings to the set
����.
Thus, the item novelty of a recommended item is computed by:

Recommender Systems and State-of-the-Art

33

 =@A�
���� � |
����| �;�AQ
����R p ;�A�
���� p 9�?�
� 1|
����| p 1 ~ ;Q�, �%R�*�
����

(39)

2.5.6 Time-aware Recommendation Metrics

Untill this point, all metrics reviewed are time-unaware. However, in recent RS literature

some time-aware recommendation metrics have been proposed, due to work of Lathia and

collaborators. These metrics are described below:

2.5.6.1 Time-averaged RMSE
In 2009 [Lathia et al., 2009b] pose a temporal accuracy metric based on RMSE, which they

call Time-averaged RMSE, consisting simply in the RMSE computed on ratings made until a

particular point of time �:
 el_3kfmJ � r∑ Q�̂�,�RXY,^�iWVJjWJ_|e���f��J| (40)

where e���f��J is the set of test ratings made until time �, i.e. e���f��J � g��,�,JK: ��,�,,J �e���f�� � �T ¡ �?.
2.5.6.2 Temporal Novelty and Diversity
In 2010 [Lathia et al., 2010] consider the problem of recommendation through time. A user

which assiduously uses a RS may receive the same recommendations over and over, thus

devaluating user interest in recommendations. As a way to overcome this problem, the

authors argue that diversity should be introduced into recommendations. In order to meas-

ure the degree of diversity, they simple measure the level of difference between consecutive

recommendation lists presented to a user (at a level N) at different times �' and �6 (�' ¢�6), as the size of their set theoretic difference:
 ;�A�����E@U �
",J,� ���,
",J�� ��� � o
",J�� ���\
",J,� ���oU (41)

where
",J� ��� is the set of top-N items recommended at time �. As noted by the authors,
one limitation of this metric is that it measures the diversity between two lists, highlighting

the extent that users are being sequentially offered the same recommendations, but no clue

of how recommendations change in term of new items is given. Thus, they also introduce a

novelty metric, which compares the recommendation list (
",J� ���) to the set of all items

that have been recommended untill time �,
J�:
 =@A�H�E@U �
",J� ��� � o
",J� ���\
J�oU (42)

35

Chapter 3. Using Time Information in Recommendation

As described in the previous chapter, there are a number of proposals for incorporating the

time dimension into RS. However, the majority of such proposals have been tested only

against accuracy metrics (in particular using only MAE or RMSE), leaving other important

evaluation dimensions aside. Hence there is the need of make a systematic study of these

techniques, establishing how the accuracy improvement (if any) impacts on other metrics,

and looking for additional improvements in other recommendation dimensions. This chap-

ter details techniques that have been implemented throughout this work, which includes

time-unaware algorithms and time-aware extensions for them, with the purpose of allow a

better understanding of how the time dimension have been incorporated. We also suggest

some possible novel time-aware extensions.

3.1 K-Nearest Neighbors

The kNN family of algorithms is one of the most widely used techniques in RS. The key

idea behind it is to establish a set of similar users (or items), called the nearest neighbors,

whose ratings over the target item (user) are then extrapolated in order to compute a rating

prediction. As pointed out in Chapter 2, the firsts formulations of this technique in the RS

context were user based, in which a neighborhood of users similar to � (U�VWX���) is de-
termined, and then their ratings on item � are aggregated:
 ���, �� � aggr�K�"YZ[\��� 3�K,� (43)

Many variants for the computation of U�VWX��� as well as for the aggregation function have
been proposed. In general, the set of neighbors of � is determined from a similarity meas-

ure, usually assessed from the set of common ratings among users in a pair basis, selecting

the k users most similar to � (from there its name kNN). That is:

 U��VWX��� � $ �%T�
%&' (�%T � arg max�K�)"*+,YZ[\���,���K �����, �T�

withU1�VWX��� � 2

(44)

Additionally, instead of selecting the k nearest neighbors, it is also possible to select all us-

ers whose similarity with � is greater than a pre-specified threshold, i.e. U�VWX��� �� �T: �����, �T� ¤ ¥V�]�K�	,�K�� . One of the most used approaches for computation of ����·,·� is based on correlation among co-ratings [Adomavicius and Tuzhilin, 2005; Herlock-

er et al., 1999]. If
�¦ represent the set of items co-rated by both user � and A, i.e.
�¦ �

Chapter 3

36

g� �
|��,� � 2 � �¦,� � 2h, then the Pearson Correlation similarity can be computed by

[Adomavicius and Tuzhilin, 2005]:

 �����, A� � ∑ Q��,� p �§�RQ�¦,� p �§¦R��
Y¨
©∑ Q��,� p �§�R6��
Y¨ ∑ Q�¦,� p �§¦R6��
Y¨

(45)

where �§� is the average rating value of user �. This similarity is used as a weight in the ag-

gregation computation. The most common aggregation approach is to use a weighted sum

[Adomavicius and Tuzhilin, 2005]:

 ���, �� � �̂�,� � B z ~ �����, �T� � ��K,��K�"YZ[\���
(46)

where B is a normalizing factor, usually computed as B � 1 ∑ �����, �T��K�"YZ[\���⁄ . In or-

der to avoid the selection of users based on too few co-ratings, [Herlocker et al., 1999] in-

troduced a significance weighting, in which if the two users � and A had fewer than 50 co-
rated items, i.e. |
�¦| ¡ 50 the computed value of B is multiplied by |
�¦| 50⁄ .

3.2 Time Decay and Truncation

The basic assumption of these approaches is that users change their preferences as time

goes by, so recent ratings better reflect their present tastes. The common way to model

temporal concept drift had been by means of incrementally penalizing past data as they

become older, in the form of an associated weight, or even eliminating them. One of the

first proposals was the “truncation” of the recommendable item set based on a temporal

feature of items (e.g. movie production year in the case of a movie RS, as in [Tang et al.,

2003]). In a more general conception, this idea is to eliminate from the training data any

information not meeting a predefined temporal condition. In the simplest case, where

available information consists in the rating matrix and temporal information, this would be:

 �� � 3: � ¬ 2 ��D ���P@�>H_B@=;���@=��� � D>H�� (47)

where ���P@�>H_B@=;���@=�·� may be for example E�>���� c 2000 or ;>E�_�HH>P��;��, �� ¢ ¥J�]W, where ;>E�_�HH>P��;��, �� is the number of days elapsed

since � was done untill time �, and ¥J�]W is a time threshold (this last scheme is also known

as using a time window). A less strict approximation is to use an exponential decay factor on

the temporal feature of interest (the so-called time-decay approach). For example, [Ding and

Li, 2005] modified the common rating prediction computation used in kNN (eq. (46))

incorporating a time weighting factor F���:
 ���, �, �� � �̂�,� � B z ~ �����, �T� � F �;>E�_�HH>P��;Q��K,� , �R � ��K,��K�"YZ[\���

(48)

Using Time Information in Recommendation

37

with

 F��� � �)­ �] (49)

where ® is the decay rate, set to ® � 1/k1. k1 is known as the half-life of F�k�, a value such
that F�k1� � �1/2�F�0�. That is, the weight reduces by 1/2 in k1 days. This way, older
ratings have less weight in prediction computation.

Note that the normalizing factor B must be accordingly recomputed, i.e. B � 1 ∑ �����, �T� � F �;>E�_�HH>P��;Q��K,� , �R �K�"YZ[\���¯ .

3.3 Temporal CF with Adaptive Neighborhoods

In this kNN extension proposed by [Lathia et al., 2009a], authors note that real, production

RS data are constantly updated, but CF algorithms are not designed to adapt to these

changes. To address this problem, they propose a method to automatically assign and up-

date per-user neighborhood sizes, which is supposed to outperform a global, static G para-
meter value (under TA_RMSE metric22). The k values are computed by [Lathia et al.,

2009a; Lathia, 2010]:

 �� � 	: G�,J�' � max��° Q��,J p el_3kfm�,J,�R (50)

where G�,J�' is the G value selected for predicting ratings of user � in the time interval ±�, � z 1± (such a time interval may correspond to a few days), ² is a set of potential G val-
ues to be tested (authors used ² � 90,20,35,50?), ��,J is the TA_RMSE achieved until time � between the ratings in the user profile and predictions actually made (with the G values
selected on time intervals before �), and el_3kfm�,J,� is the TA_RMSE on the user pro-

file that would be achieved with parameter value G. Thus, (50) selects the parameter value G
that maximize the improvement on the current user error. This model can be further gene-

ralized to consider, instead of only different kNN parameter values, different CF algo-

rithms [Lathia, 2010]:

 �� � 	: lH<�,J�' � max´}� � °Q��,J p el_3kfm�,J,µR (51)

In (51), ² is a set of algorithms. A main drawback of this last approximation noted by the

authors, is the computation overload of maintaining several CF algorithms running in pa-

rallel, and moreover being retrained for each user at each time �. It should be noted how-
ever that, to increase accuracy to her highest level, the main approach consists on blending

several recommenders [Koren, 2009b]. A drawback for the purposes of this work is the

difficulty for testing this method, because its computation considers values obtained at

different moments. It would be unfeasible to calculate metrics such as Precision or Recall,

which requires one ranking of recommended items (to the best of our knowledge there are

no definitions of how to compute Precision, Recall and related metrics on successive ranking

22 Details in section 2.5.6.1.

Chapter 3

38

lists). This problem can be easily solved by using eq. (50) or eq. (51) iteratively for obtain-

ing the best parameter (or algorithm) for each user at the end of the training period. Then, the

selected value (or algorithm) can be used to compute every rating prediction. We note

however that, this approach seems not to have consideration of users’ taste change through

time, as the G parameter value selected is computed measuring the error over all past rat-

ings of the user, i.e. past tastes not currently present have the same importance (for the

computation of G value) as users’ current tastes.
3.3.1 Instantaneous Adaptive Neighborhoods

Based on Lathia et al.’s work, we propose to use the adaptive neighborhood scheme with a

slight modification, in order to speed up the training phase of the algorithm. Our idea is to

consider only two temporal bins, the first standing for train set, and the second for test set.

We define �JWVJ as the time instant that splits both sets, leaving all rating data time-stamped

after �JWVJ as test set, and the remainder as train set. Then, we apply the adaptive neighbor-

hood formula, but directly minimizing the TA_RMSE on the users’ profile, as there will

not be different error computations prior to �JWVJ:
 �� � 	: GJ¶J_[Z_ � min��° Qel_3kfm�,J_[Z_,�R (52)

Then, with the computed GJ¶J_[Z_ we generate predictions for items in test set, and further

rank items based on such predicted ratings.

3.4 Bias Baseline estimates

As noted by [Koren, 2008], typical CF data exhibit large user and item effects, for example,

some users are more exigent and tend to rate movies below their average ratings. One of

the lessons learned during the Netflix Prize competition was that these effects must be

taken into consideration in order to obtain accurate models for rating prediction [Koren,

2009b]. So, although they might seem simple, baseline estimates based on bias from users

and items’ ratings may become a powerful tool in the recommending task, moreover com-

bined with other techniques. A simple bias baseline estimate of the rating may be com-

puted by [Koren, 2008]:

 �̂�,� � · z ¸� z ¸� (53)

where · stands for the global mean rating, ¸� is the mean rating bias of user �, and ¸� is the
mean rating bias of item �. The error of this rating prediction rule is:
 ��,� � ��,� p · z ¸� z ¸� (54)

 These parameters can estimated from data using the least squares method with regulariza-

tion [Koren, 2008; Koren, 2009b]:

Using Time Information in Recommendation

39

 minb� ¹ � ~Q��,� p · p ¸� p ¸�R6 z º »~ ¸�6� z ~ ¸�6� ¼�,� (55)

The first term of ¹ looks for finding parameters ¸� and ¸� that minimize the quadratic error

on the known ratings. The second (regularization) term controls the magnitude of these

parameters, aiming to avoid overfitting. The minimization problem (55) can be solved us-

ing a stochastic gradient descent approach, were the gradient of ¹ is used to determine the

direction of steepest minimization (gradient’s opposite direction), and the parameter values

are updated iterating over each value ��,�. The updating equations for (55) are:
 ¸�T � ¸� p ½ · ¾¹¾¸�¸�T � ¿� p ½ · ¾¹¾¸�

 (56)

with

 ¾¹¾¸� � p2��,� z 2º¸�¾¹¾¸� � p2��,� z 2º¸�
 (57)

3.4.1 Bias Baseline Extension: Incorporating temporal biases

It is important to note, as noted in Chapter 2, that such biases can be very time dependent.

For example, an item may become popular on a particular season or because an external

event (e.g. movies nominated to Oscar). On the other hand, users may change their taste as

they become older, thus changing their rating behavior. Based on this idea, additional bias

parameters have been considered by Koren [Koren, 2009a; Koren, 2009b]. A baseline es-

timate of the rating incorporating time changing bias can be:

 �̂�,���� � · z ¸���� z ¸���� (58)

Following the analysis of [Koren, 2009a; Koren, 2009b] for the items’ case, temporal-aware

bias information can be added using specific parameters on a predefined temporal span (i.e.

using temporal bins) considering that items’ bias change slowly over time:

 ¸���� � ¸� z ¸�,À�8�J� (59)

In the users’ case, Koren considers two biases definitions, one accounting for gradual con-

cept drift, and the second accounting for sudden, day-specific drifts. The latter may model

a change in a specific day of user’s mood for example, or even the fact that sometimes

more than one user uses the same account in a RS. Thus, the user’s bias becomes [Koren,

2009a; Koren, 2009b]:

 ¸���� � ¸� z Á� · ;�A���� z ¸�,� (60)

Chapter 3

40

The first term correspond to the stationary part of the user bias (i.e. its value holds for the

whole time interval analyzed). The second term represents the gradual concept drift of the

user, where ;�A���� � sign�� p ��� · |� p ��|Ã stands for the time deviation of a rating from

the mean rating date of �, ��, with |� p ��| measuring the temporal distance in days be-

tween the rating date � and �� [Koren, 2009a; Koren, 2009b]. The parameter Ä was set by
the authors to best fit the data they were using (Netflix dataset), whilst the parameter Á� is
learned for each user. The third term in (60) corresponds to the bias on users’ ratings on a

specific day.

3.5 Matrix Factorization

The Matrix Factorization (MF) technique corresponds to an extension of the Singular Val-

ue Decomposition (SVD) approach. As explained in [Lathia, 2010] and [Amatriain et al.,

2011], in classical SVD a = � � data matrix 3 is decomposed (factorized) into new matrices UΣk, with U a = � D matrix, k a � � D matrix, and Σ a D � D diagonal matrix, such that:

 3 � UΣki (61)

The values of Σ are known as singular values or eigenvalues, and the columns of U and the col-

umns of k are known as singular vectors or eigenvectors. An interesting property of the SVD

algorithm is that the new matrices split the original values of 3 into D linearly independent
components or factors. This fact was exploited by [Deerwester et al., 1990], where they

take a term�document matrix k and used SVD to find latent relations among documents

and terms (based on the factors computed by the technique). As noted by the authors, the

dimensionality reduction given by SVD (usually D Æ =, �) makes it possible to “relate”

documents and terms even by terms not present in some documents. Thus, it seems a nat-

ural choice to use this technique to find relations among users and items. However, a prob-

lem with this approach is that SVD is not well defined for sparse matrices. [Sarwar et al.,

2000] used imputation (filling missing values of 3 with some predefined value, e.g. user

mean rating or item mean rating), to allow posterior usage of SVD.

On the other hand, U and k can be used to approximate 3. For instance, if 3 is a rating
matrix, the user’s rating given to an item can be computed as the dot product between the

user’s factor vector (U�,· or =�) and the item’s factor vector (k�,· or ��) [Lathia, 2010]. That
is:

 �̂�,� � ~ U�,% ��
%&1 k%,� � =�i�� (62)

From the above, U and k can be approximated iteratively to fit 3, for example minimizing

the Frobenius Norm between the difference on them: min Ç3 p UkÇ6. This have been
commonly known as matrix factorization. This way, it is not necessary to use imputation,

Using Time Information in Recommendation

41

as it is possible to use only the known values of 3 to estimate U and k. However, overfit-

ting can become a huge problem, which can be alleviated using regularization, i.e., penaliz-

ing the magnitude of the approximated vectors. The common regularized formulation for

collaborative filtering is inspired in minimizing the squared error on the set of ratings [Ko-

ren et al., 2009]:

 min8�,]� ¹ � ~ Q��,� p =�i��R6 z º�Ç=�Ç6 z Ç��Ç6���,��|� (63)

Different algorithms exist to compute this kind of factorization, with prominence of the

alternating least squares and the stochastic gradient descent approaches [Koren et al., 2009]. A

widely used implementation of stochastic gradient descent was published by Simon Funk23

in the context of the Netflix Prize. In this implementation, for each known rating, the pa-

rameters are optimized by updating them in the opposite direction of the gradient of the

optimization criterion, using a learning rate parameter ½ which controls the amount of up-

date [Koren et al., 2009; Takács et al., 2008]:

 =�T ¬ =� p ½ · ¾¹¾=���T ¬ �� p ½ · ¾¹¾��
 (64)

3.5.1 MF Extension: Adding Temporal Biases and Temporal Factors

In an outstanding paper selected for Best Research Paper Award at KDD24 2009, Koren

[Koren, 2009a] describes the incorporation of biases, temporal biases and temporal user-

item interaction factors into a MF model (he also discusses the incorporation of temporal

dynamics into a neighbor model). The biases and temporal biases incorporated are the

same discussed in section 3.4, only being needed to adapt the learning rates and regulariza-

tion constants. The factorization model with temporal biases, leads to the following rating

prediction:

 �̂�,���� � · z ¸���� z ¸���� z =�i�� (65)

with ¸���� and ¸���� as defined in (59) and (60) respectively. The discussion in the paper about
temporal dynamics in user-item interactions highlights that as users are due to personal changes in

their tastes, factors describing their rating behavior are more likely to be prone to temporal effects

than factors related with items. Thus, they apply a modeling similar to those used on the user bias

effects on the user factors’ modeling, leading to [Koren, 2009a]:

23 http://sifter.org/~simon/journal/20061211.html
24 ACM SIGKDD Conference on Knowledge Discovery and Data Mining

Chapter 3

42

 �̂�,���� � · z ¸���� z ¸���� z =�i����� (66)

with:

 =�,%��� � =�,% z Á�,%T · ;�A���� z =�,%,J (67)

The full model leads to the following minimization problem:

 min ¹ � ~ Q��,�,J p · p ¸� p ¸�,b�8�J� p ¸� p Á�;�A����Ã p ¸�,J��,�,J�|�p �=�i z Á�T · ;�A���� z =Ji���R6
z º »~ ¸�6� z ~ ¸�,b�8�J�6

� z ~ ¸�6� z ~ Á�6� z ~ ¸�,J6
�z Ç=����Ç6 z Ç��Ç6È

(68)

which can be solved using the stochastic gradient descent algorithm discussed previously. It

is important to note that, although the author in [Koren, 2009a] do not give further details

about parameter values, it is argued in another publications of the Netflix Prize winning

team [Koren, 2009b; Koren and Bell, 2011] that each regularization term (as ∑ ¸�6� , ∑ ¸�,b�8�J�6� , etc.) should be associated with a different regularization constant (º', º6, etc.).
Moreover, even the learning rates should be individually adjusted in order to obtain the

better improvements in the minimization. We also remark that authors used a slightly dif-

ferent factorization model than (63), which they called SVD++ [Koren, 2008], that in-

cludes a set of factors accounting for “implicit” information (which items had been rated

by each user instead the rating values given). In this work we are left with the model as in

(63) because our aim is to study the effect of the incorporation of time-aware terms into

the factorization model, instead to compare different factorization models.

3.6 AutoSimilarity in Time

Having time-stamped rating data may bring the opportunity to treat this information as

time series. However, a first problem with such an approach is to define which dimensions

of observation should be used. Observing single user’s ratings pattern does not seem as a

good approach, as he/she rates different kind of items, and thus they are not comparable.

The same applies when considering the pattern of a single item being rated by users with

different tastes and interests. If we consider a pattern of ratings on a (user, item) pair basis,

then we only have one rating (normally users rate items once). [Min and Han, 2005] faced

this problem, proposing to use a (user, item category) pair basis rating pattern. They used

an item hierarchy scheme to assign each item into a category, thus obtaining a temporal

rating pattern for each user on each item category. An example of a simple categorization

scheme in the movies domain is to relate each movie with its genre, though other more

advanced schemes may be used.

Using the ratings of a user on items of a particular category enables to compute a rating

value on the category by [Min and Han, 2005]:

Using Time Information in Recommendation

43

 B>�_��,�aJ � ~ ��,�o��,�o�É�aJ (69)

where B>�_��,�aJ is the categorical rating of user � to the item category B>�. In order to obtain a
time series, the rating data are divided into different time intervals, and for each interval the

category ratings are computed25. Once having the time series, many of the existing methods

of time series analysis may be used. In this case, we stay with the method proposed in [Min

and Han, 2005], which tries to identify the moment when a concept drift occurs based on

the user auto similarity, that is, analyzing how similar are the category ratings between dif-

ferent time intervals. With this purpose they used the Pearson correlation coefficient on

category ratings of the same user, but on different time intervals:

 lf��, �� , �%� � ∑ �B>�_��,�aJ,J^ p B>�_��,JÊËËËËËËËËËË ��B>�_��,�aJ,J* p B>�_��,JÌËËËËËËËËËËË ��aJ
©∑ �B>�_��,�aJ,J^ p B>�_��,JÊËËËËËËËËËË ��aJ 6 � ©∑ �B>�_��,�aJ,J* p B>�_��,JÌËËËËËËËËËËË��aJ 6 (70)

where lf��, �� , �%� is the auto similarity of user � between time intervals �� and �%, B>�_��,�aJ,J is the category rating of user � on category B>� during time interval �, and B>�_��,JËËËËËËËËËË is the mean category rating of user � on all categories during time interval �. Given

a similarity threshold value ¥V�], if lfQ�, �� , �%R ¢ ¥V�] then it is concluded that user �
changed his/her tastes on time interval �%. Following [Min and Han, 2005] pose, if no

change is detected, ratings may be predicted using e.g. the standard kNN formulas. When a

change is detected, the similarity computation among users is modified, differentiating

weights according to rating time. If the rating was performed before the concept drift, then

they are given a lower weight. In the particular case presented in [Min and Han, 2005], rat-

ings after concept drift are over weighted w.r.t. the rest of the ratings proportionally to the

auto similarity value computed:

 �����, A� � ∑ Q��,� p ��Í RQ�¦,� p �¦Í RFb�����
Î z ∑ Q��,� p ��Í RQ�¦,� p �¦Í RFa�����
Ï
©∑ ���,� p ��Í �� 6 � ©∑ ��¦,� p �¦Í �� 6

(71)

where
b and
a are the set of items rated by user � before and after �’s concept drift re-
spectively (which is considered to occur at time �%), and Fb and Fa are the weights assigned
to them accordingly (assigned with values 1 and 1 z 0.5olfQ�, �%)', �%Ro in the original paper
respectively). Note that for similarity computation, the individual item ratings are used in-

stead of category ratings.

Using this modified similarity computation, neighbors are selected and predictions are gen-

erated using the already described kNN formulas.

25 Hopefully, there will be enough ratings in each time interval and category as to compute a confident aver-
age value.

Chapter 3

44

3.6.1 Time Series Auto Similarity Adjusted Time Decay

Taking advantage of information provided by the computation of Auto Similarity of item

categories’ Time Series data, which indicates at which time a user is changing his/her taste,

we propose to compute a Time Decay algorithm variation, which uses such information to

personalize the decay rate value used. The proposed algorithm computes AutoSimilarity of

each user’s category rating as explained above, detecting at which time interval each user

changes his/her tastes. Neighbor selection is done with the common Pearson similarity

formula (eq. (45)). Then we apply Time Decay formula (eq. (48)) to compute rating predic-

tions, using instead a fixed ® for every user, a personalized ®� computed by ®� �1/;>E�_�HH>P��;��� z ∆�, ���, where lf��, ��)', ��� ¢ ¥V�], and ∆� is a weight adjusting
factor used to model that, if a taste change occurs during time �, then ratings in that period
should have more than the half of the weight of a recent rating. This scheme is similar on

essence to the one described in [Cao et al., 2009], where graphs of similarities between

movies are built, and then interest on time series rating data of related items are observed

to detect changes on ratings through time, in order to discard ratings previous to a user’s

change (we remark anyhow that the way of generating time series data and detecting taste

change differ notoriously from [Cao et al., 2009]).

3.7 Clustering

Although clustering has not been a popular approach for recommendation due to a de-

crease of performance on statistical accuracy metrics, some works highlight its scalability

on CF, which would allow a fast recommendation generation on nowadays huge RS’ data-

bases. Considering that this is one of the most popular data mining techniques, we decided

to include some CF clustering algorithms to contrast them against other techniques, as a

first step to devise how they could be extended to cope with temporal rating information.

3.7.1 Clust-kNN

[Rashid et al., 2007] presents a simple though effective clustering approach for CF. They

formed l user clusters, and used the clusters centroids as surrogate users. Thus each surrogate

user is a vector whose components are the average rating values for each item on all users

of a cluster. In order to compute a prediction, the algorithm computes the similarity be-

tween the active user and each surrogate user (instead of every other user in the system),

thus enabling a faster rating prediction. From this point, the algorithm performs like a tra-

ditional kNN algorithm, using the computed surrogates. To compute the clusters, they

used an improved variant of the popular k-Means algorithm called Bisecting k-Means,

which performs iteratively a 2-Means clustering on the largest cluster to split until getting

the desired number of clusters. In our implementation, we tested three different clustering

algorithms (k-Means [MacQueen, 1967], Expectation-Maximization (EM) [Dempster et al.,

1977] and Bisecting k-Means [Rashid et al., 2007]). As these algorithms depends on initiali-

zation values (initial centroids in KMeans variants, and initial parameters in EM), we test

with different starting points for each algorithm, selecting the models with the lowest Da-

vies-Bouldin Index, which attempts to measure the separation between clusters[Davies and

Bouldin, 1979]:

Using Time Information in Recommendation

45

 �O � 1= ~ max��% Òf��B�� z f�QB%R;QB� , B%R Ó8
�&' (72)

where f��B� is the average distance of all objects in cluster B to the cluster centroid, and ;QB� , B%R is the distance between clusters centroids. Following we briefly explains the differ-
ent clustering algorithms used.

3.7.1.1 k-Means Clustering
This clustering algorithm aims to partition a set n of vector-valued objects 9@', @6, 7 , @8?
into G clusters (G ¢ =) (� 9B', B6, 7 , B�? so as to minimize the sum of squares of objects

within clusters:

 arg min� ~ ~ Ô@% p ·�Ô6
�*��^

�
�&' (73)

where ·� is the mean of objects in B�. Note that the Euclidean distance is applied (although

others could be used). In order to compute the partition B, the algorithm performs teo

steps iteratively: 1) assign each object to the cluster with the closest centroid; 2) recompute

new centroids as means of the objects in each cluster. The initial centroids can be assigned

with randomly selected objects and the iteration ends when assignments no longer change.

This way this algorithm performs a local optimization, whose result will depend on the

initial centroids selected.

3.7.1.2 Expectation Maximization Clustering
This algorithm aims to estimate parameters of k distributions (representing k clusters)

which maximize the likelihood that objects come from these distributions. Given the pa-

rameter values, and assuming particular distributions (e.g. normal distribution), it is possible

to compute the probability that an object belongs to each cluster [Witten et al., 2005]:

 PQB%|@�R � PQ@�|B%R · PQB%RP�@�� � D �@; ·�* , Ö�* PQB%RP�@�� (74)

where D�@; ·, Ö� is the normal distribution function. Similarly to k-Means, this algorithm starts

with an initial guess of the parameter values, and then iteratively computes 1) probabilities

of objects coming from the distributions (expectation step); and 2) computation of distri-

bution parameters which maximizes the (log) likelihood of the distributions given the data

(maximization step), which can be computed as the product of the probabilities of each

object coming from each distribution (cluster). The iteration ends when increase in (log)

likelihood becomes negligible.

3.7.1.3 Bisecting k-Means
This algorithm iteratively 1) picks a cluster to split; 2) applies a 2-Means clustering to pro-

duce 2 sub-clusters; and 3) repeat step 2 � times and then selects the best split. The iteration

Chapter 3

46

ends when the G clusters have been found. As different selection criteria can be applied on
steps 1) and 3), we follow [Rashid et al., 2007] who suggest to pick the largest remaining

cluster in 1) (initially all objects are in one cluster), and to select the cluster with best (max-

imum) intra-cluster similarity in 3).

3.7.2 MF and Time Aware MF Clustering

Following the previous idea, it is possible to cluster the user (or item) factor matrix gener-

ated by the matrix factorization method (instead the rating matrix) in order to detect similar

users. Being MF a method able to find latent relations among users, it is expectable that

clustering on this reduced data could form different yet meaningful clusters compared to

the clusters generated directly from rating data. Moreover, clustering may be performed on

the factor matrix generated with the consideration of temporal information (see section

3.5.1), which could be considered as form of time aware clustering.

3.7.3 Cluster AutoSimilarity in Time

[Min and Han, 2005] describe a clustering-based approach for computing users’ AutoSimi-

larity on Time(see section 3.6). This alternative scheme computes each user assigned cluster

at time �, B��, ��, based on rating data, and the distance between consecutive (in time) users

assigned clusters, ����QB��, ��)'�, B��, ���R. Given a similarity threshold value ¥V�], if ����QB��, ��)'�, B��, ���R ¢ ¥V�] then it is concluded that user � changed his/her tastes on
time interval �� . In such a case, eq. (71) is used to compute similarities between users

(items), and predictions are computed as in traditional kNN.

3.7.4 Time Series clustering

Another way of using clustering on temporal data is to cluster the time series derived from

the rating data, as described in section 3.6. There are many ways to cluster time series data.

For example, it is possible to compute many temporal representations e.g. Piecewise Ag-

gregate Approximation, which in turn can be the input to a non-temporal clustering me-

thod (see Annex 3).

3.8 kNN on Factors Matrix

Similarly to the idea described in section 3.7.2, the users’ (or items’) factors matrix can be

used to find similar users (items). Thus, a kNN like approach can be applied for selecting

nearest neighbors based on factors information, and then compute ratings predictions from

rating data as in traditional kNN, but using the factors’ induced neighbors. This scheme

have been proposed previously by [Paterek, 2007].

3.9 Time Aware CF Proposal: Time Influence

Unlike the previous approaches, in the search of interesting relations among users taking

advantage of temporal information (which may lead to neighborhood formation), we

theorize about the existence of a time influence relation between some users. Consider a

couple of users where one of them (user �) consistently rates items after the other user

(user A) have rated the same items. This may indicate that the first waits to see the rating

Using Time Information in Recommendation

47

behavior of the second. Using this idea, we could define a time influence coefficient, which

should be positive if the ratings of � (on the same movies rated by A) are done consistently
after the ratings of A (� is time-influenced by A), and zero in other case.
If we analyze theoretically such coefficient, we hypothesize that its highest value should

occur when 1) each rating of �a is made after the corresponding rating of A, and 2) the
ratings of � are done on the short period of time possible after A (� rates the item as

he/she sees that A rated it). The latter can be expressed as the portion of time influence

(PTI) of the ratings ��,� and �¦,� (ratings of user � and A for item � respectively), that is:

de�Q��,� , �¦,�R �
×ØÙ
ØÚ1 p e�����DD ��Q��,�R, �Q�¦,�R |e����=���A>H| �D �Q��,�R ¤ �Q�¦,�R

0 �D �Q��,�R ¢ �Q�¦,�R
Û (75)

where ���� returns the date of rating �, e�����DD�;', ;6� returns the difference between
dates ;' and ;6, and |e����=���A>H| is the total length of the time interval analyzed. Cur-

rently we consider as time unit the day, but others can be used (e.g. week or hour).

Considering the above, we define the Time Influence coefficient between any two users that

have rated some common items as:

 e���, A� � 1|�� s �¦| � ~ de�Q��,� , �¦,�R��
Ys
¨
 (76)

where
� are the items rated by user �.
The above expression gives an idea about the influence that a user has on another user, but

the coefficient only takes into account the time at which the rating is performed, leaving

out the rating value itself. If ratings are no correlated, it is possible that a high TI value is

due to fortune. Thus, a more careful assessment should include this information. The pre-

vious coefficient can be extended into a Time Influence Correlation, incorporating an estima-

tion of the correlation of rating values:

 ÜiÝ��, A� � Ü��, A� � e���, A� (77)

where Ü� � is a standard correlation function, such as the Pearson product-moment correla-

tion coefficient. Currently we are running experiments to determine the applicability of this

scheme (and possible adjustments).

49

Chapter 4. Experiments and Results

4.1 Introduction

The different approaches reviewed so far are based on a variety of algorithmic techniques,

data transformations, model assumptions, etc. These different approaches may have dissi-

milar effects on the multiple evaluation dimensions that a RS is subject to. Moreover, the

extension of models allowing them to take advantage of temporal information, commonly

with the goal of accuracy increase, may have dissimilar impacts on other evaluation dimen-

sions (and even accuracy itself may be impacted differently, depending upon the particular

techniques used). In order to bring a more complete view of how the different time aware

extended recommendation models (and the corresponding “base” models) behave on clas-

sical and newer evaluation dimensions, we performed experiments comparing the models.

This section describes the experimentation and results obtained, starting with a brief de-

scription of the experimental setting, including a depiction of the used dataset and the eval-

uation protocol. Then the results of each algorithm along evaluation dimensions are pre-

sented and discussed (a detailed description of the used metrics was presented in section

2.5).

4.2 Experimental setting

4.2.1 Dataset

As the focus of this work is to compare different time-aware recommendation models, the

most basic requirement for a dataset to be used is that, besides the dataset includes the

rating data with user and item identifiers, each rating must have a timestamp, in order to

allow algorithms to detect temporal effects. Over this initial condition, other information

may be incorporated, which could be used by the algorithms to improve their performance,

e.g. demographic user data, additional information about items, other kind of user feedback

different from ratings (e.g. comments) with their corresponding timestamps, etc. On the

other hand, the usage of a publicly available dataset is desirable, as it facilitates the compari-

son with prior approaches, and allows other scientist to replicate results.

Given all the posed requirements, we selected for experimentation the MovieLens (ML)

Datasets, a family of three datasets generated by the GroupLens Research Group, publicly

available on the Internet26. The ML Datasets are compounded by a small-size dataset with

100.000 movie ratings (the so called ML 100K), a medium-size one with 1.000.209 movie

ratings (ML 1M) and a large-size one with 10.000.054 movie ratings (ML 10M). All the

three have associated timestamps for each rating, and also have additional information of

movies (at least title and genre). Also, every user has at least 20 ratings in each dataset. We

decided to use ML1M dataset, given it is particularly well suited for our purposes. This da-

26 http://www.grouplens.org/node/73

Chapter 4

taset cont

2003) from users

respon

ratings as to detect temporal trends in metrics

that,

which after the first year stays almost

Table

As may be seen in

by each user

rating window (i.e. the number of days between the first and the last rating in th

very small (3 months in mean), comparing to the item rating window. This effect can be

better

majority of ratings immediately after th

their rating window (time

than 50

first day in the system

(Figure

Chapter 4

taset contains ratings over a timespan of three years (from April 26

2003) from users

respond to a follow

ratings as to detect temporal trends in metrics

 most items are rated during the first year

which after the first year stays almost

a) Rating Growth

Figure

Table 1 shows some

Dataset
Rating
Users
Items (movies)
Mean (±standard deviation)
Mean per user
Mean (±standard deviation) user rating window (days)
Mean (±standard deviation) # ratings p
Mean per item
Mean (±standard deviation)
Rating period (days)

As may be seen in

by each user and

rating window (i.e. the number of days between the first and the last rating in th

very small (3 months in mean), comparing to the item rating window. This effect can be

better understood

majority of ratings immediately after th

their rating window (time

than 50 days (Figure

first day in the system

Figure 5b). Consequently

ains ratings over a timespan of three years (from April 26

2003) from users who joined ML during year 2000,

d to a follow-up of these users; this way,

ratings as to detect temporal trends in metrics

most items are rated during the first year

which after the first year stays almost

) Rating Growth

Figure 4. Rating, Community and C

some statistics

Dataset
Ratings
Users
Items (movies)

(±standard deviation)
per user rating value

Mean (±standard deviation) user rating window (days)
Mean (±standard deviation) # ratings p

per item rating value
Mean (±standard deviation)
Rating period (days)

As may be seen in Table 1, there is a considerable variation on the numbe

and received by

rating window (i.e. the number of days between the first and the last rating in th

very small (3 months in mean), comparing to the item rating window. This effect can be

understood by looking at

majority of ratings immediately after th

their rating window (time elapsed

Figure 5a). In fact,

first day in the system, rapidly decreasing to less than 1 rating per day on subsequent days

Consequently, the cumulative mean number of ratings per user increases more

ains ratings over a timespan of three years (from April 26

who joined ML during year 2000,

up of these users; this way,

ratings as to detect temporal trends in metrics

most items are rated during the first year

which after the first year stays almost fixed.

b) Community Growth

. Rating, Community and C

statistics about the

(±standard deviation) # ratings per user
rating value

Mean (±standard deviation) user rating window (days)
Mean (±standard deviation) # ratings p

rating value
Mean (±standard deviation) item
Rating period (days)

Table 1. Statistics of

there is a considerable variation on the numbe

received by each item. F

rating window (i.e. the number of days between the first and the last rating in th

very small (3 months in mean), comparing to the item rating window. This effect can be

by looking at Figure

majority of ratings immediately after th

elapsed between their first and last ratin

a). In fact, an average of 120 ratings are made during a typica

, rapidly decreasing to less than 1 rating per day on subsequent days

, the cumulative mean number of ratings per user increases more

50

ains ratings over a timespan of three years (from April 26

who joined ML during year 2000,

up of these users; this way, this dataset have enough users

ratings as to detect temporal trends in metrics, as

most items are rated during the first year, a fact

fixed.

b) Community Growth

. Rating, Community and Catalog Growth of

the dataset:

ratings per user

Mean (±standard deviation) user rating window (days)
Mean (±standard deviation) # ratings per item

item rating window (days)

. Statistics of ML 1M dataset

there is a considerable variation on the numbe

. For our work

rating window (i.e. the number of days between the first and the last rating in th

very small (3 months in mean), comparing to the item rating window. This effect can be

Figure 5. It shows clearly that most users make the vast

majority of ratings immediately after their incorporation into the system.

between their first and last ratin

an average of 120 ratings are made during a typica

, rapidly decreasing to less than 1 rating per day on subsequent days

, the cumulative mean number of ratings per user increases more

ains ratings over a timespan of three years (from April 26

who joined ML during year 2000, that is, ratings on 2001 and 2002 co

this dataset have enough users

, as Figure 4 shows

a fact also reflected in the catalog

b) Community Growth

atalog Growth of

ratings per user

Mean (±standard deviation) user rating window (days)
er item

rating window (days)

ML 1M dataset

there is a considerable variation on the numbe

or our work it is prominent the fact that,

rating window (i.e. the number of days between the first and the last rating in th

very small (3 months in mean), comparing to the item rating window. This effect can be

. It shows clearly that most users make the vast

eir incorporation into the system.

between their first and last ratin

an average of 120 ratings are made during a typica

, rapidly decreasing to less than 1 rating per day on subsequent days

, the cumulative mean number of ratings per user increases more

ains ratings over a timespan of three years (from April 26th, 2000 to February 28

that is, ratings on 2001 and 2002 co

this dataset have enough users

shows. It can be

also reflected in the catalog

c) Catalog Growth

atalog Growth of ML 1M Dataset

ML 1M
1.000.209

165.6 (±192.75)

94.79(±221
269.89(+-

793.15(±294.66)

there is a considerable variation on the numbe

it is prominent the fact that,

rating window (i.e. the number of days between the first and the last rating in th

very small (3 months in mean), comparing to the item rating window. This effect can be

. It shows clearly that most users make the vast

eir incorporation into the system.

between their first and last rating in the dataset) is less

an average of 120 ratings are made during a typica

, rapidly decreasing to less than 1 rating per day on subsequent days

, the cumulative mean number of ratings per user increases more

, 2000 to February 28

that is, ratings on 2001 and 2002 co

this dataset have enough users, item

. It can be seen as well

also reflected in the catalog

c) Catalog Growth

1M Dataset

1.000.209
6.040
3.706

165.6 (±192.75)
3.70

(±221.79)
-384.05)

3.24
793.15(±294.66)

1039

there is a considerable variation on the number of ratings given

it is prominent the fact that, the user

rating window (i.e. the number of days between the first and the last rating in the dataset) is

very small (3 months in mean), comparing to the item rating window. This effect can be

. It shows clearly that most users make the vast

eir incorporation into the system. For most users,

g in the dataset) is less

an average of 120 ratings are made during a typical user’s

, rapidly decreasing to less than 1 rating per day on subsequent days

, the cumulative mean number of ratings per user increases more

, 2000 to February 28th,

that is, ratings on 2001 and 2002 cor-

, items and

as well

also reflected in the catalog size,

r of ratings given

the user

e dataset) is

very small (3 months in mean), comparing to the item rating window. This effect can be

. It shows clearly that most users make the vast

r most users,

g in the dataset) is less

l user’s

, rapidly decreasing to less than 1 rating per day on subsequent days

, the cumulative mean number of ratings per user increases more

slowly as time goes by

“older” in the system)

from users with shorter rating windows

a) Rating Window Size

Figure

cumulative, i

rating distribution (proportion of each rating value out of the total ratings per day)

can be seen that, even though

next, when the computation is

it seems a kind of decreased level of variation during the first year

that is

that on the subsequent period there are less ratings (from different users), mean values

show

a)

slowly as time goes by

“older” in the system)

from users with shorter rating windows

a) Rating Window Size

Figure 6 shows the evolution of the mean rating value through time, cumulative and non

cumulative, in a daily basis

rating distribution (proportion of each rating value out of the total ratings per day)

can be seen that, even though

next, when the computation is

it seems a kind of decreased level of variation during the first year

that is just an effect due

that on the subsequent period there are less ratings (from different users), mean values

shown a greater difference.

a) Mean Rating Value

slowly as time goes by (Figure

“older” in the system) tend to have a higher total rating count

from users with shorter rating windows

a) Rating Window Size

Figure 5

shows the evolution of the mean rating value through time, cumulative and non

n a daily basis (a), the standard deviation of rating value (b) and the cumulative

rating distribution (proportion of each rating value out of the total ratings per day)

can be seen that, even though

next, when the computation is

it seems a kind of decreased level of variation during the first year

just an effect due to the dense

that on the subsequent period there are less ratings (from different users), mean values

a greater difference.

Mean Rating Value

Figure

Figure 5c). It also shows that users with longer rating windows

tend to have a higher total rating count

from users with shorter rating windows.

b) Ratings per User

5. Temporal Analysis of User

shows the evolution of the mean rating value through time, cumulative and non

(a), the standard deviation of rating value (b) and the cumulative

rating distribution (proportion of each rating value out of the total ratings per day)

can be seen that, even though there is a great difference between values on on

next, when the computation is made on cumulative

it seems a kind of decreased level of variation during the first year

to the dense proportion of ratings made during that period. Given

that on the subsequent period there are less ratings (from different users), mean values

b) Rating Standard Deviation

Figure 6. Temporal Analysis of User Ratings

51

. It also shows that users with longer rating windows

tend to have a higher total rating count

.

b) Ratings per User Age (daily)

. Temporal Analysis of User

shows the evolution of the mean rating value through time, cumulative and non

(a), the standard deviation of rating value (b) and the cumulative

rating distribution (proportion of each rating value out of the total ratings per day)

a great difference between values on on

on cumulative

it seems a kind of decreased level of variation during the first year

proportion of ratings made during that period. Given

that on the subsequent period there are less ratings (from different users), mean values

Rating Standard Deviation

. Temporal Analysis of User Ratings

. It also shows that users with longer rating windows

tend to have a higher total rating count

Age (daily)

. Temporal Analysis of Users’ Rating Volume

shows the evolution of the mean rating value through time, cumulative and non

(a), the standard deviation of rating value (b) and the cumulative

rating distribution (proportion of each rating value out of the total ratings per day)

a great difference between values on on

on cumulative values, they tend to stabilize. Moreover,

it seems a kind of decreased level of variation during the first year

proportion of ratings made during that period. Given

that on the subsequent period there are less ratings (from different users), mean values

Rating Standard Deviation

. Temporal Analysis of User Ratings

Experiments and Result

. It also shows that users with longer rating windows

tend to have a higher total rating count, though not much different

c) Ratings per User Age (C
mulative)

Volume

shows the evolution of the mean rating value through time, cumulative and non

(a), the standard deviation of rating value (b) and the cumulative

rating distribution (proportion of each rating value out of the total ratings per day)

a great difference between values on on

values, they tend to stabilize. Moreover,

it seems a kind of decreased level of variation during the first year (Figure 6

proportion of ratings made during that period. Given

that on the subsequent period there are less ratings (from different users), mean values

c) Rating Distribut
la

. Temporal Analysis of User Ratings

Experiments and Result

. It also shows that users with longer rating windows

, though not much different

per User Age (C
mulative)

shows the evolution of the mean rating value through time, cumulative and non

(a), the standard deviation of rating value (b) and the cumulative

rating distribution (proportion of each rating value out of the total ratings per day)

a great difference between values on one day and the

values, they tend to stabilize. Moreover,

6 (a) and (b))

proportion of ratings made during that period. Given

that on the subsequent period there are less ratings (from different users), mean values

Rating Distribution (cum
ative)

Experiments and Results

. It also shows that users with longer rating windows (i.e.

, though not much different

per User Age (Cu-

shows the evolution of the mean rating value through time, cumulative and non-

(a), the standard deviation of rating value (b) and the cumulative

 (c). It

e day and the

values, they tend to stabilize. Moreover,

(a) and (b)), but

proportion of ratings made during that period. Given

that on the subsequent period there are less ratings (from different users), mean values

umu-

Chapter 4

52

Figure 7 is similar to the previous one, but computed over 30-days periods. This allows

seeing fluctuations on different periods that the daily or cumulative plots do not admit.

When analyzed on these period it is notable for example the fluctuations of the rating val-

ues distribution on final periods, which show some differences in tendencies w.r.t. initial

periods. This can have an effect in recommenders’ measured performance if, for instance,

RS are trained with data having some particular distribution, and the test data have a differ-

ent distribution.

a) Average Rating Value b) Rating Standard Deviation c) Rating Distribution

 (non-cumulative)
Figure 7. Temporal Analysis of User Ratings (computed over 30-days periods)

4.2.2 Evaluation Protocol

As a basic evaluation protocol, the dataset must be divided into a train and test sets. We

consider that, when a RS is used in a real-world application it only can use past data to pre-

dict the present (or near future) taste of the users, the natural division scheme should be

date-based, taking as training data those ratings done until a predefined date �JWVJ, and leav-
ing as test data those ratings after such a date. Although it may be seen as a basic requisite

for RS performance analysis, as noted by [Lathia, 2010], most works in the area make the

data division without a temporal perspective, whilst data changes as time goes by (as Figure

7 shows). Arguments for not to take into account the timestamps are the incremented data

sparsity and the observed user behavior of rating most items at incorporation time (see

Figure 5). For instance, the renowned and influent Netflix Prize competition used as test-

ing data a predefined number of the most recent ratings (i.e. last ratings) of each user [Ben-

net and Lanning, 2007]. However, this latter approach no way ensures that the train set

does not have “future data”. The “last ratings” of one user may have been performed in

different dates from other user’s “last ratings”, as considered in the training set of the Net-

flix Prize dataset, which has been used previously to test some of the time-aware algorithms

implemented in this work. So we stay with the “date-based” data division scheme.

We also would like to perform a sort of cross validation. However, as discussed previously,

the common n-folds splitting scheme, with ratings randomly divided into n splits (that is, n-1

splits used as training data and the one left as testing data, without considering rating time-

stamps) is not a choice for this task, as it does not ensure a time-ordering among splits.

Experiments and Results

53

One possibility could be to make time-ordered splits, that is, ordering all ratings based on

their timestamps, and then assigning them into each split sequentially, as in [Fu and Silver,

2004]. This option implies selecting for experimentation a number of the � ¢ = first splits
(designed for simplicity with the starting time of ratings within them, e.g. �1, �', 7 , �])') as
training data, and use the subsequent split (�]) as test data. A second experimental scheme

could be using as training splits �' through �] and �]�' as test data, and so on until using
split �8 as test data. Although we think this is a much better data division scheme, we dis-

carded it as we wanted to get a scheme which allows us to cross-validate results using the

same �JWVJ on all splits27.
Considering the above mentioned, we decided to make a user-based subsampling of the

dataset. We selected different users in different time-ordered “folds” (or data splits), which

allow forming time-ordered data splits. Within this scheme, ratings from users in each split

prior to �JWVJ become the training set, whilst ratings posterior to �JWVJ from users in the

same split form the test set, i.e. recommendations generated with the training set can be

contrasted against the same users’ future ratings (posterior to �JWVJ). This scheme also al-

lows building an additional validation set (required by some algorithms) whose ratings lie in

between training and test ratings. Figure 8 (a) shows a schematic view of the proposed data

division design.

a) General data division design. b) Test data division design.
Figure 8. Proposed data division design.

An important consideration to this scheme is that new users/items may get incorporated

into the system during the test phase (i.e. their first rating date is posterior to �JWVJ). In such
a case, if the algorithms tested cannot make recommendations for new users (for which

there is no training data), then such users are not valid for comparison purposes. Of

course, it is always possible to use a recommender wrapper, which in needed cases returns

a prediction making use of an alternative method (e.g. based on items’ mean rating for new

users), but then we would not be measuring the output from the original recommender.

Conveniently, users (and items) in the selected dataset got incorporated during the first

year. On the other hand, it is also possible that a user in the training set do not have data to

validate or test. Moreover, some users may only have data in the validation set given the

small rating window of many of them. Although this additional data may help some algo-

27 This scheme allows such comparison selecting for training, for example, different subsets of the m first
splits. However, we preferred to leave the study of such a scheme (and possible side effects due to split selec-
tion) as future work.

Chapter 4

54

rithms to find e.g. neighbors to use during prediction, their tastes will not be contrasted.

Thus, we decided to select only those users with at least 1 rating in each interval.

Considering the previous scheme (with �¦a}��aJ��8 �January 1st, 2001 and �JWVJ �June 15th,
2001), 504 users from MovieLens 1M set met the selection criteria. We divided them ran-

domly into 5 subsets of 100 users each and form a split with 4 out of the 5 subsets. Thus

we got 5 different overlapping samples of 400 users. We call these the time-aware splits.

Additionally to the above-mentioned, we sought a way for measuring the impact over time.

At this point we identified two main designs that could satisfy this purpose. The first is

based on varying the size of training data (in terms of data’s encompassing time interval),

i.e. to generate several train/test sets varying �JWVJ, and then training each recommender on

each training set, in order to evaluate their results on the corresponding test set. This

scheme requires training each recommender m times (where m is the number of train/test

sets generated). The second is to generate a unique training set, and generate several test

sets (for example, dividing the whole test time interval into several test time sub-intervals).

This way, we could assess the ability of a recommender to predict future ratings whitout

obtaining new training data. We selected the latter for two reasons: First, from a scientific in-

terest viewpoint, to assess recommenders output in a novel way (to the best of our know-

ledge, there are no works on RS field applying such an evaluation scheme). Second, from a

practical viewpoint, it allows us avoid repeatedly train several recommenders (note that we

have a training set for each data split). Figure 8 (b) shows schematically this design. Using

30-days intervals, we obtained 21 test intervals. In order to have a more complete view, we

generated two test sets per time interval, one using test data of each test interval alone

(non-cumulative data), and a second using test data from �JWVJ untill the end of each test inter-
val (cumulative data).

To finalize, there was a last decision to make: In order to perform the top-N recommenda-

tion task within our scheme, it is necessary to generate predictions for a set of items, whose

ratings are then ordered to produce the top-N recommendations. So, a list of items whose

ratings are to be predicted must be selected. Although the ideal approach is to consider the

full training item set, in practice a common approach is to consider only a subset of it.

Some research considers only the set of items with known ratings on test of each user; giv-

en this list is usually short, we consider this approach not fear (In practice, a RS do not

know which subset of items will be rated by a user). On the other extreme is the approach

of generating ratings for all known items, but it result on very time consuming experimen-

tation (although is almost the only possibility in practice). We selected a compromise on

both, using the set of items whose rating is known in the full test set for any user.

4.3 Implementation details

4.3.1 kNN based Models

As noted in Chapter 2 , a problem with this algorithm is given by cold start settings, or

moreover with unpopular items, which are rarely rated. In such case it is hard to find a set

of co-raters, hindering the computation of similarity (either in user-based or item-based

approach), and thus obtaining few neighbors. It could be the case that few users had rated

Experiments and Results

55

a particular item, and thus even with a set of user neighbors identified, as very few (or

none) neighbor had rated the item, prediction computation is unfeasible (this is similar in

item-based approach). In such cases, a common heuristic is to use a default value, as the

user mean rating, or item mean rating. However in this work, for algorithm comparison

purposes, we consider such cases as impossible to recommend, i.e. no prediction is com-

puted in those cases (we are confident only when the algorithm finds at least 2 neighbors

that had rated the item being predicted). For the computation of ranking-based metrics,

such items are placed at the end of the ranking, ordered by their identification number. We

note that all ties are break by the identification number of the items, following the scheme

of the trec_eval utility. All the above mentioned holds for all similarity-dependant algo-

rithms.

Regarding the k value, we tested with several values, and finally set it to k=200, as it got the

lowest RMSE on the test set, and provided a good coverage.

4.3.2 Time Decay and Time Truncation Models

These approaches were implemented on a Weighted Pearson Item-based kNN base

scheme. We selected k1 � 250 days for Time Decay model, and used the last 12 months of

training data for Time Truncation model. Both of these values were selected after testing with sev-

eral different values, as they provided good RMSE values.

4.3.3 Bias Baseline Models

These models are trained iteratively using the stochastic gradient descent method with re-

gularization. This implies the need to adjust parameters needed by the method (see eqs.

(55)-(56)), as different parameter values affect the final model obtained. Although some

general values are detailed in the literature, such parameter values can be optimized for the

particular data at hand. Thus, we used an implementation of the Nelder-Mead (Simplex)

optimization method provided by the Institut für Mathematik of the Technische Universität Ber-

lin28.

4.3.4 Matrix Factorization Models

In general, as more factors are incorporated, the better precision a MF model deliver.

However, we used only 10 factors in our tests (D � 10). We decided to use a low value

because the dataset we are dealing with is small, and to allow the fast computation of the

optimization procedure. We are aware that more extensive testing is required, particularly

regarding higher dimensional models. With respect to training phase, here we also use sto-

chastic gradient descent method with regularization. Parameter values were also optimized

using the Nelder-Mead optimization method.

4.3.5 Clustering Models

We used a fixed number of 40 clusters to be formed on the different tested clustering va-

riants. For all variants, we repeated the clustering process at least 10 times with different

seed values, and kept the clustering result with lowest Davies-Bouldin Index.

28 Available at http://www3.math.tu-berlin.de/jtem/

Chapter 4

56

4.3.6 AutoSimilarity Models

These models are very sensitive to the similarity threshold value ¥V�]. We tested several

values for this parameter, and finally set it to ¥V�] � p0.1, as it allows to detect more poss-

ible taste changes of users. We also tested different weight values Fa and Fb, and finally
decided to use same values as in the original proposal at light of RMSE results.

4.4 Results

This section presents the results obtained with all the tested algorithms, obtained from

averaging results on 5 data splits generated from the ML 1M dataset according to the eval-

uation protocol detailed in section 4.2.2. Aiming to facilitate its analysis, results have been

grouped according to the task and related metrics. Additionally, for each metric we first

present a comparative among all tested algorithms, and then we focus on sub sets of re-

lated algorithms (kNN-variants, MF & Bias Baseline variants, and clustering variants.). All

results are presented for non-cumulative and cumulative test data (test data was divided in

21 time intervals, see section 4.2.2).

In order to have a more confident analysis of results, we also computed statistical signific-

ance of differences between pairs of algorithms (on interesting cases) using the Wilcoxon

Signed Rank Test [Bauer, 1972] with 95% confidence. As we seek to establish what algo-

rithm are the best performing ones, we use a variant of the test that evaluates if one algo-

rithm consistently obtain higher metric values than the other; thus, statistical significance

differences presented imply that the first mentioned algorithm statistically have higher me-

tric values than the second one. Statistical test were computed on results on the first test set

(derived from the first test time interval), that is, first 30 days starting from �JWVJ (which we
call Test Interval 1, TI1), and on the full cumulative test set, that is,624 days or approx-

imately 1 year and 10 months after training period (which we call Full Test Interval, FTI) as

we consider them the most interesting ones.

4.4.1 Rating Prediction Error

Figure 9 shows a general overview of algorithms’ performance through time, in terms of

RMSE. This plot corresponds to non-cumulative data. Figure 10, shows the same results

on cumulative data. For comparison purposes, we have included the results of a non-

personalized, popularity-based recommender (Popularity, which recommends the most

popular train items to all users), and a random recommender (Random).

It may be seen that, using this metric all algorithms perform far better from random or

from the non-personalized, popularity based recommender. In general, clustering variants

have higher RMSE than other personalized algorithms, whilst MF algorithm performs the

better, particularly on the cumulative results (in the non-cumulative case, in some particular

intervals MF is beaten by other algorithms, as will be detailed later).

All user-neighbors based algorithms perform worst than their item-based counterparts on

kNN based variants, so we only included results from the latter. Item-based kNN and MF

can be considered as baseline algorithms, as they are not time aware and have very good

RMSE results.

Experiments and Results

57

As one of the most interesting findings, all algorithms have a very similar performance

through time, even when predicting ratings made more than a year after the last training

rating considered. Moreover, most of them have similar tendencies on the different inter-

vals (i.e. most of them show a drop in performance in the same intervals). It seems that

changes in test ratings’ distribution affect algorithms almost equally; in other words, this

appears to reflect that, after all users’ taste do not change too much individually, but gener-

al rating behavior can be affected by temporal situations (e.g. changes in popularity of

items), although we have not identified the particular circumstances causing it. Anyhow, it

calls out attention that we do not find a major degradation on accuracy as time goes by.

Figure 9. General overview of algorithms RMSE performance through time (non-cumulative data)

Figure 11 shows the more detailed view of RMSE performance of the different algorithms

tested. The left column of the figure shows non-cumulative results, whilst right column

show cumulative results. Regarding kNN variants (first file in figure), most notably the

Time Decay method is able to outperform the Weighted Pearson kNN (KNN in plot le-

gend) algorithm, although not strongly on TI1 (statistically significant differences, s.s.d.

from now on, on 2 out of 5 data splits on TI1 and on 5 data splits on the FTI). Albeit aver-

age results show that Time Decay is still far from MF RMSE, the statistical test show that

the difference is not so strong (s.s.d. on 1 data split on TI1 and on 3 data splits on FTI). In

the non-cumulative case, there is no absolute winner algorithm, although MF is the one

with lower RMSE on most intervals. The AutoSimilarity algorithm has results similar to

Chapter 4

58

kNN (only 1 data split presents s.s.d. on TI1), whilst Time Truncation is behind them (3

data splits on FTI and 1 data split on TI1 present s.s.d. w.r.t. kNN), and Adaptive-kNN

remains last (s.s.d on 4 data splits on TI1 and on 5 data splits on FTI w.r.t. kNN). The Au-

toSimilarity Adjusted Time Decay (AutoSim. Time Decay in plot legend) algorithm per-

forms similarly to Time Decay, not being able to take advantage of the detection of the

time at which users change their taste (there are no s.s.d. on any data split).

Figure 10. General overview of algorithms RMSE performance through time (cumulative data)

Respecting MF and bias baseline models (second row in figure), we note that all time-aware

variants tested perform worst than basic MF, and even worst that item-based kNN (Time

Aware MF -TA MF in plot legend— presents s.s.d. w.r.t MF on 3 data splits on FTI, and

on 1 data split on TI1). Actually, this result was not unexpected, given that these variants

work by heavily fitting into data. We must remember that most of their formulations were

made in the context of the NetFlix prize in which, as already discussed in section 4.2.2, last

ratings of users were used as test data, meaning that the algorithm is able to take advantage

(learn) from some ratings made on prediction time, which in our setting is not allowed.

Thus, as MF is less fitted into data, it is able to better predict users’ future ratings. We con-

sider this an important finding, which motivated a poster submission to RecSys conference

to be held this year. We also note that kNN presents s.s.d. w.r.t. MF on 4 data splits on

FTI and on 2 data splits on TI1.

Experiments and Results

59

a) Non-cumulative results. b) Cumulative results.

Figure 11. Detailed view of RMSE performance through time

With respect to clustering-based implementations (third row in figure), it is possible to see

that all tested implementations (which correspond to item-based variants) except Cluster

AutoSimilarity perform worst than kNN and MF algorithms, being the worst those that

cluster items using as attributes the MF resulting factors (Cluster Time Aware MF –

ClustTAMF in plot— and Cluster MF variants). Although Bisecting k-Means is supposed

to provide better results, our experiments showed consistently a better behavior of the k-

Means algorithm (s.s.d. on 5 data splits on the FTI, and on 4 data splits on TI1). It may be

Chapter 4

60

due to the fact that Bisecting k-Means tends to provide more similar-sized clusters, and

thus, each surrogate becomes more a mixture of different preferences (from different us-

ers), whilst k-Means tends to hold on each cluster only the most similar users to each other,

thus surrogates can be the result of less different preferences (although there may be some

very small clusters). However, this particular aspect should be studied more deeply. As in

the case of AutoSimilarity, the ClusterSimilarity algorithm is not able to take advantage of

the additional information provided for making recommendations (s.s.d. w.r.t. kNN only

on 1 data split on TI1). As may be seen, in this case, clustering recommenders that use

time-aware information are not able to improve accuracy.

4.4.2 Top-N Recommendation (Ranked Recommendations)

We count with many metrics for comparing algorithms output when we consider the top-N

recommendation task. Given that 1) Precision and Recall are the most used IR measures; 2)

our consideration that people, particularly on RS, only see a reduced part of a list of choic-

es; and 3) we found that relative performances of algorithms were similar on Precision and

Recall, we selected for analysis P@5 metric. Additionally, as AUC reflects the probability

that relevant items are positioned over irrelevant items, which complement the general

view of performance on the top-N recommendation task, thus we also include it for analy-

sis.

Figure 12. General overview of P@5 performance through time (non-cumulative data)

Experiments and Results

61

Figure 12 and Figure 13 show the general P@5 performance of all algorithms on non-

cumulative and cumulative data respectively. In this case, we may see that all algorithms

perform worst than the non-personalized, popularity based recommender. Moreover, there

are algorithms that perform worst than a Random recommender, in particular Time Decay

variants (s.s.d. between Random and Time Decay on 3 data splits on TI1 and on all data

splits on FTI). There seems to be a clear tendency on users to more heavily rate popular

items. It is interesting to note that the second best performing algorithm is Time Aware

Bias Baseline, particularly on cumulative data (s.s.d between Time Aware Bias Baseline and

MF on 3 data splits on FTI and on none data split on TI1). The MF algorithm also stands,

and interestingly it seems that the Time-Aware MF algorithm is able to outperform MF on

average values on last test intervals. These results may imply that, the Time Aware models

are able to better detect long-term preferences of users than their specific rating behavior

(considering that the MF model had a better performance than its Time Aware counterpart

and Time Aware Bias Baseline on RMSE). We note that only 1 data split presents s.s.d. on

the FTI when comparing MF and Time Aware MF.

Figure 13. General overview of P@5 performance through time (cumulative data)

Figure 14 shows the detailed P@5 performance on the different groups of algorithms.

From this figure we may appreciate that kNN variants are bad choices for the top-N rec-

ommendation task, and in particular Time Decay variants have a poor performance (s.s.d.

between kNN and Time Decay on all data splits on FTI and 4 data splits on TI1). We also

Chapter 4

62

note that there are not big differences between kNN and MF based kNN (s.s.d. on none

data split on TI1 and on 2 data splits on FTI). On the other hand, Cluster kNN variants

show poor performance on this metric, differently from Cluster MF variants, which have

results similar to MF (s.s.d between MF and Cluster MF (k-Means) on 1 data split on both

TI1 and FTI).

a) Non-cumulative results. b) Cumulative results.

Figure 14. Detailed view of P@5 performance through time

Figure 15 through Figure 17 show algorithms’ AUC performance. It is interesting to note

that, again most algorithms have worst performance than the popularity based recom-

Experiments and Results

63

mender, although in this case Cluster MF and Cluster Time MF variants rival best perfor-

mance results (s.s.d. between Popularity and Cluster Time MF algorithms on 3 data splits

on FTI and on 1 data split in TI1), a result consistent with the observed on P@5. On the

other hand, although Time Decay variants again show a poor performance, they perform

better than Random under this metric (s.s.d. between Random and Time Decay algorithms

on all data splits on both TI1 and FTI). It may show that, although Time Decay algorithms

have a bad performance for detecting the top preferences of users as showed by P@5

(considering that we impose a heavy restriction on the amount of preferences contem-

plated, just the first 5 of them), these algorithms in general have a better chance when or-

dering a long list of items for each user. Anyhow, we consider this result not as meaningful

as P@5, given that it is expectable that users focus only on the very first items of a recom-

mendation list.

Figure 15. General overview of AUC performance through time (non-cumulative data)

The detailed view reveals that, in case of kNN variants, Time Decay algorithms perform

the worst, which is consistent with P@5 observed behavior (s.s.d. on all data splits both on

FTI and TI1).

In the case of MF and Bias models, it is possible to see a better performance of Time-

Aware Bias model w.r.t. Bias model (s.s.d. on 5 data splits both on FTI and TI1). But,

Chapter 4

64

Time-Aware MF model is outperformed by MF model (s.s.d. on 5 data splits on FTI and

on 4 data splits on TI1). The kNN on MF algorithm is able to rival MF (s.s.d. between Mf

and kNN on MF on 2 data splist on FTI and on none data split on TI1).

Figure 16. General overview of AUC performance through time (non-cumulative data)

Regarding Clustering-based algorithms, it is interesting to note that variants which cluster

the results of MF are able to outperform results of the MF model on cumulative data, with

statistical significance (s.s.d. between Cluster Time MF and MF algorithms on all data splits

both on TI1 and FTI).

Experiments and Results

65

a) Non-cumulative results. b) Cumulative results.

Figure 17. Detailed view of AUC performance through time

4.4.3 Novelty and Diversity

We selected Self-Information (SelfInf) and Content-Based Intra List Similarity (ILSCB) as

novelty and diversity metrics. The former have been used previously to formalize the ge-

neric novelty of items (lower values indicate decreased novelty), whilst the latter allows

getting an idea of how similar are the items in a recommendation list, in terms of their de-

clared content (lower values indicate increased diversity). In particular, in this implementa-

tion we used the genre(s) of the movies (as provided in the ML 1M dataset) as declared

Chapter 4

66

content. They are measured on the first 5 recommended items for congruency with pre-

viously shown metrics.

Figure 18. General overview of Self-Information@5 performance through time (non-cumulative data)

Figure 18 through Figure 20 show the results on Self-Information@5 metric. We note that

in this case, clearly the Time Decay variants outperform all other algorithms, which indi-

cates their ability to recommend more novel items than other algorithms (s.s.d. w.r.t. kNN

on all data splits on both FTI and TI1). On the other hand, MF variants, particularly Time-

Aware MF, and the Cluster MF algorithm have a bad performance (s.s.d. between MF and

Time-Aware MF models on all data splits on FTI, and on 4 data splits on TI1). Moreover,

MF algorithm is outperformed by Random recommender (s.s.d. between MF and Random

on all data splits on both TI1 and FTI). Popularity based recommendations have the worst

novelty as expected (Self-Information is defined in terms of popularity of items).

Experiments and Results

67

Figure 19. General overview of Self-Information@5 performance through time (cumulative data)

The detailed view allows seeing more clearly that kNN variants outperform the MF model

(there are s.s.d. between kNN and MF algorithms on 4 data splits on TI1 and on all data

splits on FTI). Without considering Time Decay variants, other Time Aware kNN variants

show worse performance than the basic kNN algorithm (there are s.s.d. between kNN and

Adaptive-kNN on all splits on both TI1 and FTI; between kNN and AutoSimilarity, there

are s.s.d. on 4 data splits on TI1 and on 3 data splits on FTI).

In the case of MF variants, kNN on MF, and particularly kNN on Time Aware MF shows

better novelty than MF and kNN baselines (s.s.d. between kNN on Time Aware MF and

MF, and between kNN on Time Aware MF and kNN on all data splits on both TI1 and

FTI).

With respect to clustering algorithms, Cluster kNN variants are able to outperform kNN

(e.g. there are s.s.d. between Cluster kNN using EM clustering algorithm and kNN on all

data splits on both TI1 and FTI). On the other hand, algorithms that cluster MF factors

show worse performance (there are s.s.d. between MF and Cluster Time Aware MF on 4

data splits on TI1 and on all data splits on FTI).

Chapter 4

68

a) Non-cumulative results. b) Cumulative results.
Figure 20. Detailed view of Self-Information@5 performance through time

Figure 21 through Figure 23 show the Content-Based Intra List Similarity@5 results. In

this case and opposite to novelty results, Time Decay algorithm shows the worst perfor-

mance (here higher values mean more similar items in the list, i.e. less diverse w.r.t. their

declared content), even worse than Popularity based recommendations (s.s.d. on 3 data

splits on both TI1 and FTI).

Experiments and Results

69

Figure 21. General overview of ILSCB@5 performance through time (non-cumulative data)

The detailed view shows that kNN variants outperform the MF model (there are s.s.d. be-

tween MF and kNN on 4 data splits on both TI1 and FTI). It is interesting that AutoSimi-

larity performs relatively better than kNN, although not statistically significant (s.s.d. on 1

data split on both TI1 and FTI when comparing kNN and AutoSimilarity).

In the case of MF and Bias models, on average Time Aware MF outperforms MF but not

statistically significant (s.s.d. on 2 data splits on both TI1 and FTI). Other Time Aware

variants have worse performance than their basic counterparts (s.s.d. between Time Aware

Bias Baseline and Bias Baseline on all data splits on both TI1 and FTI). kNN has a relative-

ly worse behavior when compared with Bias model on average values, although there are

s.s.d. when comparing kNN and Bias Baseline only on 1 data splits on TI1 and on 2 data

splits on FTI.

With respect to Clustering algorithms, although it seems that ClusterAutoSimilarity per-

forms somewhat better than kNN, there are s.s.d. only on 1 data split on both TI1 and

FTI. Other cluster based algorithms perform worse than kNN (e.g. there are s.s.d. between

Cluster Time Aware MF and kNN algorithms on 4 data splits both on TI1 and FTI).

Chapter 4

70

Figure 22. General overview of ILSCB@5 performance through time (cumulative data)

Experiments and Results

71

a) Non-cumulative results. b) Cumulative results.

Figure 23. Detailed view of ILSCB@5 performance through time

4.4.4 Other metrics

Among other possible evaluation dimensions, we centered on coverage, as it allows getting

an idea of how much of the catalog can be recommended by a RS. In particular, we se-

lected to assess Interest Coverage, as it allows to see how many items on which the user

have manifested interest the RS is able to generate predictions.

Figure 24 through Figure 26 show results on the selected metric. We may see that majority

of algorithms perform reasonably well, with the exception of the one that post-process MF

Chapter 4

72

results via KNN. This is due to the selected neighbor formation scheme for these variants

(similarity threshold instead a fixed number of neighbors), which was used for delivering

acceptable accuracy results.

Figure 24. General overview of Interest Coverage performance through time (non-cumulative data)

The detailed view do not show considerable differences on Interest Coverage among the

algorithms (except the above mentioned) which implies that most algorithms are to make

predictions on almost all interesting items in the catalog. A slight tendency to decrease cov-

erage through time can be seen (particularly con cumulative data), but with low effect (cov-

erage on the last time interval is still over 0.98 for most algorithms).

Experiments and Results

73

Figure 25. General overview of Interest Coverage performance through time (non-cumulative data)

Chapter 4

74

a) Non-cumulative results. b) Cumulative results.
Figure 26. Detailed view of Interest Coverage performance through time

4.4.5 Concluding Remarks

The results shown provide an important insight about the influence that the incorporation

of time information into recommendation models –and also the different base approaches

(kNN, MF or Clustering)— have on different evaluation dimensions. As a first key finding,

we must remark that time evolution differently affects results, depending on the evaluation

dimension, and the recommendation task. Whilst accuracy on rating prediction appears not

being penalized by not counting with recent information for generating predictions, in the

Experiments and Results

75

case of top-N recommendation it seems that time distance between training and recom-

mendation dates does have an impact on results. On the other hand, the usage of models

that increasingly fit into data seems to have a downgrading effect on statistical accuracy,

which does not seem to occur on decision support accuracy.

It is interesting to note that a simple time-incorporation scheme as Time Decay was practi-

cally the only extension that showed improvements upon the base algorithm on rating pre-

diction accuracy, although the Bias Baseline model also showed improvements when en-

hanced with temporal information. We were unsuccessful on improving the powerful MF

model with the additional time information. It seems that in this case, simple is better.

These results differ when the task is top-N recommendation, particularly assessed on P@5.

All of these don’t allow us to state that time information effectively helps to improve rec-

ommendation performance in terms of results’ accuracy on all recommendation tasks.

Moreover, the most suitable technique will depend on the particular task at hand. Anyhow,

we can state that the MF model do bring cross-task strong results. We also note that, dur-

ing experimentation, appropriate parameter tuning was crucial for obtaining good accuracy

results (particularly for MF variants). This point motivated us to look for and use an aux-

iliary optimization library.

Regarding the less common evaluation dimensions of novelty and diversity again is not

possible to establish what the best performing algorithm on both dimensions is. It is nota-

ble the case of the TimeDecay algorithm, which is at the same time the best on Novelty

and the worst on Diversity. Moreover, in this case kNN variants bring in general better

results than MF variants, oppositely to the observed on accuracy dimensions.

With respect to coverage, the different tested approaches seem to have a minor impact on

coverage, having all of them a desirable performance with appropriate parameters selection.

Finally, we must remark in any case that these results are not conclusive, as we used only

one particular dataset. Moreover, the different data splits used for testing shows variability

on the results, as showed by the statistical test performed, so further research using addi-

tional datasets is needed so as to reach to more deciding conclusions. Additionally, we can-

not discard that some of these results are biased due to the particular data selection we

performed and a comparison using other possible (e.g. less restrictive) data selection

scheme is desirable. Likewise, the different approach of generating different time-evolving

training sets should also be studied more deeply, as it is more related to real-world tasks,

although some practical problems should be adequately faced (e.g. how to make recom-

mendations for novel –without training data—users).

77

Chapter 5. Conclusions and Future Work

5.1 Conclusions

Throughout this Master Thesis we have developed an exploratory study of different state-

of-the-art extensions that incorporate time information into recommendation algorithms,

and their results on several evaluation dimensions, under a common experimental setting,

on a publicly available dataset. In doing so, we have also compared the performance of

different recommendation approaches, such as kNN or Matrix Factorization, bringing this

way insight about their impact beyond accuracy.

The main goal of this work was to study state-of-the-art techniques in data mining and

machine learning fields that, applied on recommender systems, allow to deal with temporal

information. The analyzed methods cover a considerable range of the published approach-

es on the subject. Moreover, we also tested novel ways of using these approaches.

The main contribution of this work is the assessment of many different techniques over

diverse evaluation dimensions and recommendations tasks, under a common and systemat-

ic evaluation framework. This attempts to characterize the main benefits and disadvantages

of each of them, thus bringing new information about what the techniques more suitable

for a particular task and evaluation dimension are.

The specific research goals defined were:

a) To carry out a state-of-the-art revision of techniques used in recommender systems,

especially those able to handle temporal information.

b) To apply some of the state-of-the-art data mining techniques for recommendation.

c) To analyze possible benefits derived from the application of clustering, as a tradi-

tional data mining technique, on the elaboration of recommendations.

d) To study the impact of techniques on different metrics related with the outcome of

recommender systems.

Regarding a), an extensive review of published work on the subject was carried out, includ-

ing not only time aware techniques, but also the basic techniques upon which time aware

extensions are built. Additionally, a review of evaluation metrics available for assessing the

different evaluation dimensions was carried out, which allowed us to select the most ap-

propriate metric for each dimension, according to our judge.

A considerable proportion of the studied techniques and metrics were implemented from

scratch (so as to have full control of implementation details which could affect recom-

menders output and metrics computation), and a rigorous evaluation protocol were devel-

oped, in order to allow the usage of the different chosen techniques under a common ex-

perimental setting, which included two common recommendation tasks, so as to properly

fulfill b).

Chapter 5

78

Considering c) we implemented several recommendation algorithms which made use of

different clustering techniques, in order to establish benefits derived from their usage on

recommendation tasks.

Finally, we assessed the results of recommendations obtained with the different imple-

mented recommendation algorithms, using a unique dataset under a common evaluation

protocol, on five different evaluation dimensions (statistical accuracy, decision support

accuracy, novelty, diversity and coverage), including six different metrics (RMSE, Precision,

AUC, Self-Information, Intra List Similarity and Interest Coverage) as devised on d), ob-

taining dissimilar results for each technique on these diverse metrics.

At the light of the observed results, differently to what we expected, not all time-aware

algorithms were able to outperform their time-unaware counterparts, in particular with

respect to accuracy on recommendation prediction (statistical accuracy), which is somewhat

unexpected given that in general the main motivation for the elaboration of such exten-

sions is accuracy increase. Over-fitting to training data induced by the usage of additional

(time) information appears as a possible explanation for this result. These results appear

somewhat opposite to observed behavior on accuracy on top-N recommendation task (de-

cision support accuracy). Moreover, these results differ from results in literature, difference

that we mainly impute to the different evaluation protocol that we have used. We remark

this as a key finding that need to be further analyzed, which motivated us to submit a Post-

er to the RecSys conference to be held this year. We should note that, at this point, we

reckon that the scheme of computing rating predictions in order to build on them a rec-

ommendation list is not the best approach, as can be noted when using a non-personalized,

popularity based recommendation algorithm, which outperforms all the other tested algo-

rithms.

Clustering methods do not appear as strong methods with respect to accuracy; however,

their performance can be considered to be on the average, depending upon the particular

data on which clusters are built. Thus, these methods should not be discarded a-priori, fur-

thermore considering that, once trained, they may provide fast recommendation genera-

tion, given the dimensional reduction they induce.

With respect to the global evaluation of incorporating time information into recommenda-

tion models, at the light of results on the different evaluation dimensions assessed, it was

not possible to establish a clear contribution from these models. Our conclusion is that the

most suitable recommendation algorithm will depend on the particular recommendation

task at hand and evaluation dimension of interest. We also note the importance of proper

parameter tuning, which can heavily affect algorithms’ results. In any case, we remark that

we use a single dataset for testing, thus our results cannot be considered conclusive. More-

over, the different data splits used for testing showed dissimilar results. Regarding this

point, replication of this kind of studies on different datasets is devised as a way for reach-

ing towards more deciding conclusions.

From a personal perspective, I would like to remark two important outcomes from the

fulfillment of this work. First, a deep understanding of several decision points and trade-

offs of recommendation algorithm development, due to the extensive effort of implement-

Conclusions and Future Work

79

ing from scratch those algorithms and related metric computation code. And second, the

observation of the need for rigorous and systematic evaluation on scientific disciplines, and

in particular on RS field, to which we hope to have contributed with this work.

5.2 Future Work

To the judge of the authors, this work has brought more questions than the answers given

(as expectable from an exploratory study). Additionally to the replication of this study on

other datasets, among many interesting research lines that can be developed, we identify

the following as top priority:

• Development of different recommendation generation schemes for top-N predic-

tion task:

As noted in the Conclusions section, generating rating predictions is not the most suitable

approach for this task. Other schemes such as relative ordering approaches should be

tested, and furthermore, the impact of incorporating time information into them should be

assessed.

• Extension of time-aware algorithms making them suitable for other domains, and

rating data.

The review of state-of-the-art showed that most work on time-aware algorithms has been

performed on movie recommendation domain. However, other domains can also be fa-

vored by incorporating time information, e.g. music or educational material recommenda-

tion to name a few, which may require completely different approaches to take advantage

of temporal information. In fact, almost all proposals have been performed for explicit

rating domains, and thus, implicit rating domains remains as an open field of research.

• Novelty and diversity impact.

As the presented results show, performance on these evaluation dimensions is very dissimi-

lar. How to take advantage of temporal information in order to improve results on them

appears as an interesting research opportunity, moreover given the increasing attention

these dimensions are getting.

• Delivery of “better” recommendations

Given the multiple evaluation dimensions RS currently being evaluated, and the different

impacts that a particular technique have on them, how to produce best recommendations is

no longer just an accuracy problem. Consequently, novel ways of combining recommenda-

tion techniques, and how to decide which particular combination is better than other, arise

as a research problem of increasing importance.

80

Bibliography

Adomavicius, G., Tuzhilin, A. (2001a), Extending Recommender Systems: A Multidimensional
Approach. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI-01), Workshop on Intelligent Techniques for Web Personalization (ITWP2001).
pp. 4-6.

Adomavicius, G., Tuzhilin, A. (2001b), Multidimensional Recommender Systems: A Data Ware-
housing Approach. Proceedings of the Second International Workshop on Electronic
Commerce. Springer-Verlag, London, UK, pp. 180-192.

Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A. (2005), Incorporating Contextual
Information in Recommender Systems using a Multidimensional Approach. ACM Trans.Inf.Syst.
23(1), 103-145.

Adomavicius, G., Tuzhilin, A. (2005), Toward the Next Generation of Recommender Systems: A
Survey of the State-of-the-Art and Possible Extensions. IEEE Trans.on Knowl.and Data Eng.
17(6), 734-749.

Adomavicius, G., Tuzhilin, A. (2008), Context-Aware Recommender Systems. Proceedings of the
2008 ACM conference on Recommender systems. Lausanne, Switzerland. ACM, New
York, NY, USA, pp. 335-336.

Adomavicius, G., Tuzhilin, A. (2011), Context-Aware Recommender Systems. In Ricci, F.; Ro-
kach, L.; Shapira, B.and Kantor, P. B. (eds.), Recommender Systems Handbook. Springer
US. . ISBN 978-0-387-85820-3.

Amatriain, X., Jaimes, A., Oliver, N., Pujol, J. M. (2011), Data Mining Methods for Recommend-
er Systems. In Ricci, F.; Rokach, L.; Shapira, B.and Kantor, P. B. (eds.), Recommender
Systems Handbook. Springer US. . ISBN 978-0-387-85820-3.

Ansari, A., Essegaier, S., Kohli, R. (2000), Internet Recommendations Systems. J. Marketing Re-
search. 37(3), 363-375.

Baeza-Yates, R. A., Ribeiro-Neto, B. (1999), Modern Information Retrieval. Addison-Wesley
Longman Publishing Co., Inc, Boston, MA, USA. . ISBN 020139829X.

Balabanovic, M., Shoham, Y. (1997), Fab: Content-Based, Collaborative Recommendation. Com-
mun ACM. 40(3), 66-72.

Baltrunas, L., Amatriain, X. (2009), Towards Time-Dependant Recommendation Based on Implicit
Feedback.

Bauer, D. F. (1972), Constructing Confidence Sets using Rank Statistics. Journal of the American
Statistical Association. 67(339), 687-690.

Belkin, N. J., Croft, W. B. (1992), Information Filtering and Information Retrieval: Two Sides of the
Same Coin? Commun ACM. 35(12), 29-38.

Temporal Models in Recommender Systems

81

Bell, R. M., Koren, Y. (2007), Scalable Collaborative Filtering with Jointly Derived Neighborhood
Interpolation Weights. ICDM '07: Proceedings of the 2007 Seventh IEEE International
Conference on Data Mining. IEEE Computer Society, Washington, DC, USA, pp. 43-
52.

Bell, R. M., Koren, Y., Volinsky, C. (2008), The Bellkor 2008 Solution to the Netflix Prize.

Bell, R. M., Bennett, J., Koren, Y., Volinsky, C. (2009), The Million Dollar Programming Prize.
IEEE Spectr. 46(5), 28-33.

Bellogín, A., Cantador, I., Castells, P. (2010), A Study of Heterogeneity in Recommendations for a
Social Music Service. Proceedings of the 1st International Workshop on Information Hete-
rogeneity and Fusion in Recommender Systems. Barcelona, Spain. ACM, New York,
NY, USA, pp. 1-8.

Bennet, J., Lanning, S. (2007), The Netflix Prize. KDD Cup and Workshop.

Billsus, D., Pazzani, M. J. (1998), Learning Collaborative Information Filters. ICML '98: Proceed-
ings of the Fifteenth International Conference on Machine Learning. Morgan Kaufmann
Publishers Inc, San Francisco, CA, USA, pp. 46-54.

Breese, J. S., Heckerman, D., Kadie, C. (1998), Empirical Analysis of Predictive Algorithms for
Collaborative Filtering. Morgan Kaufmann, pp. 43-52.

Brenner, A., Pradel, B., Usunier, N., Gallinari, P. (2010), Predicting most Rated Items in Weekly
Recommendation with Temporal Regression. Proceedings of the Workshop on Context-Aware
Movie Recommendation. Barcelona, Spain. ACM, New York, NY, USA, pp. 24-27.

Burke, R. (2002), Hybrid Recommender Systems: Survey and Experiments. User Modeling and
User-Adapted Interaction. 12(4), 331-370.

Cao, H., Chen, E., Yang, J., Xiong, H. (2009), Enhancing Recommender Systems Under Volatile
Userinterest Drifts. Proceeding of the 18th ACM conference on Information and know-
ledge management. Hong Kong, China. ACM, New York, NY, USA, pp. 1257-1266.

Celma, O. (2008), Music Recommendation and Discovery in the Long Tail. PhD Thesis, Universi-
tat Pompeu Fabra.

Cohen, W. W., Schapire, R. E., Singer, Y. (1999), Learning to Order Things. J.Artif.Int.Res.
10(1), 243-270.

Davies, D. L., Bouldin, D. W. (1979), A Cluster Separation Measure. Pattern Analysis and
Machine Intelligence, IEEE Transactions on. PAMI-1(2), 224-227.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., Harshman, R. (1990), Index-
ing by Latent Semantic Analysis. Journal of the American Society for Information Science.
41(6), 391.

Dempster, A. P., Laird, N. M., Rubin, D. B. (1977), Maximum Likelihood from Incomplete Data
Via the EM Algorithm. Journal of the Royal Statistical Society, Series B. 39(1), 1-38.

Bibliography

82

Deshpande, M., Karypis, G. (2004), Item-Based Top-N Recommendation Algorithms. ACM
Trans.Inf.Syst. 22(1), 143-177.

Ding, Y., Li, X. (2005), Time Weight Collaborative Filtering. CIKM '05: Proceedings of the 14th
ACM international conference on Information and knowledge management. Bremen,
Germany. ACM, New York, NY, USA, pp. 485-492.

Ding, Y., Li, X., Orlowska, M. E. (2006), Recency-Based Collaborative Filtering. ADC '06: Pro-
ceedings of the 17th Australasian Database Conference. Hobart, Australia. Australian
Computer Society, Inc, Darlinghurst, Australia, Australia, pp. 99-107.

Fouss, F., Saerens, M. Evaluating Performance of Recommender Systems: An Experimental Compari-
son. . ISBN 978-0-7695-3496-1.

Freund, Y., Iyer, R., Schapire, R. E., Singer, Y. (2003), An Efficient Boosting Algorithm for
Combining Preferences. J.Mach.Learn.Res. 4933-969.

Fu, C., Silver, D. (2004), Time-Sensitive Sampling for Spam Filtering. In Tawfik, A.; and Good-
win, S. (eds.), Advances in Artificial Intelligence. Springer Berlin / Heidelberg.

Gantner, Z., Rendle, S., Schmidt-Thie Lars. (2010), Factorization Models for Context-/time-
Aware Movie Recommendations. Proceedings of the Workshop on Context-Aware Movie
Recommendation. Barcelona, Spain. ACM, New York, NY, USA, pp. 14-19.

Getoor, L., Sahami, M. (1999), Using Probabilistic Relational Models for Collaborative Filtering.
Working Notes of the KDD Workshop on Web Usage Analysis and User Profiling.

Goldberg, D., Nichols, D., Oki, B. M., Terry, D. (1992), Using Collaborative Filtering to Weave
an Information Tapestry. Commun ACM. 35(12), 61-70.

Goldberg, K., Roeder, T., Gupta, D., Perkins, C. (2001), Eigentaste: A Constant Time Colla-
borative Filtering Algorithm. Inf.Retr. 4(2), 133-151.

Hanley, J. A., McNeil, B. J. (1982), The Meaning and use of the Area Under a Receiver Operating
Characteristic (ROC) Curve. Radiology. 143(1), 29-36.

Haveliwala, T. H. (2002), Topic-Sensitive PageRank. Proceedings of the 11th international
conference on World Wide Web. Honolulu, Hawaii, USA. ACM, New York, NY, USA,
pp. 517-526.

Herlocker, J., Konstan, J. A., Riedl, J. (2002), An Empirical Analysis of Design Choices in Neigh-
borhood-Based Collaborative Filtering Algorithms. Inf.Retr. 5(4), 287-310.

Herlocker, J. L., Konstan, J. A., Borchers, A., Riedl, J. (1999), An Algorithmic Framework for
Performing Collaborative Filtering. SIGIR '99: Proceedings of the 22nd annual international
ACM SIGIR conference on Research and development in information retrieval. Berke-
ley, California, United States. ACM, New York, NY, USA, pp. 230-237.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., Riedl, J. T. (2004), Evaluating Collaborative
Filtering Recommender Systems. ACM Trans.Inf.Syst. 22(1), 5-53.

Temporal Models in Recommender Systems

83

Herlocker, J. L. (2000), Understanding and Improving Automated Collaborative Filtering Systems.
PhD Thesis, University of Minnesota. ISBN 0-599-89612-4.

Hofmann, T. (1999), Probabilistic Latent Semantic Indexing. SIGIR '99: Proceedings of the
22nd annual international ACM SIGIR conference on Research and development in in-
formation retrieval. Berkeley, California, United States. ACM, New York, NY, USA, pp.
50-57.

Hofmann, T. (2001), Unsupervised Learning by Probabilistic Latent Semantic Analysis.
Mach.Learning. 42(1), 177-196.

Hofmann, T. (2004), Latent Semantic Models for Collaborative Filtering. ACM Trans.Inf.Syst.
22(1), 89-115.

Jarvelin, K., Kekalainen, J. (2002), Cumulated Gain-Based Evaluation of IR Techniques. ACM
Trans.Inf.Syst. 20(4), 422-446.

Jin, R., Si, L., Zhai, C. (2003), Preference-Based Graphic Models for Collaborative Filtering. Morgan
Kaufmann, San Francisco, CA, pp. 329-336.

Kim, K., Ahn, H. (2008), A Recommender System using GA K-Means Clustering in an Online
Shopping Market. Expert Syst.Appl. 34(2), 1200-1209.

Koren, Y., Bell, R. M. (2011), Advances in Collaborative Filtering. In Ricci, F.; Rokach, L.; Sha-
pira, B.and Kantor, P. B. (eds.), Recommender Systems Handbook. Springer US. . ISBN
978-0-387-85819-7.

Koren, Y. (2008), Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Mod-
el. KDD '08: Proceeding of the 14th ACM SIGKDD international conference on Know-
ledge discovery and data mining. Las Vegas, Nevada, USA. ACM, New York, NY, USA,
pp. 426-434.

Koren, Y. (2009a), Collaborative Filtering with Temporal Dynamics. KDD '09: Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining. Paris, France. ACM, New York, NY, USA, pp. 447-456.

Koren, Y. (2009b), The BellKor Solution to the Netflix Grand Prize. Report from the Netflix
Prize Winners.

Koren, Y., Bell, R., Volinsky, C. (2009), Matrix Factorization Techniques for Recommender Sys-
tems. Computer. 42(8), 30-37.

Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A. (2001), Recommendation Systems: A
Probabilistic Analysis. J.Comput.Syst.Sci. 63(1), 42-61.

Lathauwer, L. D., Moor, B. D., Vandewalle, J. (2000), A Multilinear Singular Value Decomposi-
tion. SIAM J.Matrix Anal.Appl. 21(4), 1253-1278.

Lathia, N. (2010), Evaluating Collaborative Filtering Over Time. PhD Thesis, Dept. of Computer
Science, university College London, UK.

Bibliography

84

Lathia, N., Hailes, S., Capra, L. (2007), Private Distributed Collaborative Filtering using Estimated
Concordance Measures. RecSys '07: Proceedings of the 2007 ACM conference on Recom-
mender systems. Minneapolis, MN, USA. ACM, New York, NY, USA, pp. 1-8.

Lathia, N., Hailes, S., Capra, L. (2008), KNN CF: A Temporal Social Network. RecSys '08:
Proceedings of the 2008 ACM conference on Recommender systems. Lausanne, Switzer-
land. ACM, New York, NY, USA, pp. 227-234.

Lathia, N., Hailes, S., Capra, L. (2009a), Temporal Collaborative Filtering with Adaptive Neigh-
bourhoods. SIGIR '09: Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval. Boston, MA, USA. ACM, New
York, NY, USA, pp. 796-797.

Lathia, N., Hailes, S., Capra, L. (2009b), Evaluating Collaborative Filtering Over Time. Proceed-
ings of the SIGIR 2009 Workshop on the Future of IR Evaluation. pp. 41-42.

Lathia, N., Hailes, S., Capra, L., Amatriain, X. (2010), Temporal Diversity in Recommender Sys-
tems. Proceeding of the 33rd international ACM SIGIR conference on Research and de-
velopment in information retrieval. Geneva, Switzerland. ACM, New York, NY, USA,
pp. 210-217.

Lee, T. Q., Park, Y., Park, Y. (2008), A Time-Based Approach to Effective Recommender Systems
using Implicit Feedback. Expert Syst.Appl. 34(4), 3055-3062.

Lee, T. Q., Park, Y., Park, Y. (2009), An Empirical Study on Effectiveness of Temporal Information
as Implicit Ratings. Expert Syst.Appl. 36(2), 1315-1321.

Linden, G., Smith, B., York, J. (2003), Amazon.Com Recommendations: Item-to-Item Collaborative
Filtering. IEEE Internet Comput. 7(1), 76-80.

Ling, C., Huang, J., Zhang, H. (2003), AUC: A Better Measure than Accuracy in Comparing
Learning Algorithms. In Xiang, Y.; and Chaib-draa, B. (eds.), Advances in Artificial Intelli-
gence. Springer Berlin / Heidelberg.

Lu, Z., Agarwal, D., Dhillon, I. S. (2009), A Spatio-Temporal Approach to Collaborative Filtering.
RecSys '09: Proceedings of the third ACM conference on Recommender systems. New
York, New York, USA. ACM, New York, NY, USA, pp. 13-20.

Ma, S., Li, X., Ding, Y., Orlowska, M. E. (2007), A Recommender System with Interest-Drifting.
Proceedings of the 8th international conference on Web information systems engineer-
ing. Nancy, France. Springer-Verlag, Berlin, Heidelberg, pp. 633-642.

MacQueen, J. B. (1967), Some Methods for Classification and Analysis of MultiVariate Observations.
L. M. Le Cam; and J. Neyman (eds.), Proc. of the fifth Berkeley Symposium on Mathe-
matical Statistics and Probability. University of California Press, pp. 281-297.

Melville, P., Mooney, R. J., Nagarajan, R. (2002), Content-Boosted Collaborative Filtering for Im-
proved Recommendations. Eighteenth national conference on Artificial intelligence. Edmon-
ton, Alberta, Canada. American Association for Artificial Intelligence, Menlo Park, CA,
USA, pp. 187-192.

Temporal Models in Recommender Systems

85

Min, S., Han, I. (2005), Detection of the Customer Time-Variant Pattern for Improving Recommender
Systems. Expert Syst.Appl. 28(2), 189-199.

Mooney, R. J., Bennett, P. N. (1998), Book Recommending using Text Categorization with Ex-
tracted Information. In Recommender Systems. Papers from 1998 Workshop. AAAI Press,
pp. 49-54.

Mylonas, P., Vallet, D., Castells, P., Fernández, M., Avrithis, Y. (2008), Personalized Informa-
tion Retrieval Based on Context and Ontological Knowledge. Knowl.Eng.Rev. 23(1), 73-100.

Pan, R., Zhou, Y., Cao, B., Liu, N. N., Lukose, R., Scholz, M., Yang, Q. (2008), One-Class
Collaborative Filtering. Proceedings of the 2008 Eighth IEEE International Conference on
Data Mining. IEEE Computer Society, Washington, DC, USA, pp. 502-511.

Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C., Pedone, A. (2009), Experimental
Comparison of Pre- Vs. Post-Filtering Approaches in Context-Aware Recommender Systems. Pro-
ceedings of the third ACM conference on Recommender systems. New York, New
York, USA. ACM, New York, NY, USA, pp. 265-268.

Paterek, A. (2007), Improving Regularized Singular Value Decomposition for Collaborative Filtering.
ACM Press.

Pazzani, M., Billsus, D. (1997), Learning and Revising User Profiles: The Identification of Interesting
Web Sites. Mach.Learn. 27(3), 313-331.

Pazzani, M. J. (1999), A Framework for Collaborative, Content-Based and Demographic Filtering.
Artif.Intell.Rev. 13(5-6), 393-408.

Pennock, D. M., Horvitz, E., Lawrence, S., Giles, C. L. (2000), Collaborative Filtering by Perso-
nality Diagnosis: A Hybrid Memory and Model-Based Approach. Proceedings of the 16th Con-
ference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc, San
Francisco, CA, USA, pp. 473-480.

Rashid, A. M., Lam, S. K., LaPitz, A., Karypis, G., Riedl, J. (2007), Towards a Scalable kNN
CF Algorithm: Exploring Effective Applications of Clustering. Proceedings of the 8th Know-
ledge discovery on the web international conference on Advances in web mining and
web usage analysis. Philadelphia, PA, USA. Springer-Verlag, Berlin, Heidelberg, pp. 147-
166.

Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thie Lars. (2009a), Learning Optim-
al Ranking with Tensor Factorization for Tag Recommendation. Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining. Paris,
France. ACM, New York, NY, USA, pp. 727-736.

Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thie Lars. (2009b), BPR: Bayesian Perso-
nalized Ranking from Implicit Feedback. Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence. Montreal, Quebec, Canada. AUAI Press, Arlington,
Virginia, United States, pp. 452-461.

Rendle, S., Schmidt-Thie Lars. (2010), Pairwise Interaction Tensor Factorization for Personalized
Tag Recommendation. Proceedings of the third ACM international conference on Web

Bibliography

86

search and data mining. New York, New York, USA. ACM, New York, NY, USA, pp.
81-90.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J. (1994), GroupLens: An Open
Architecture for Collaborative Filtering of Netnews. Proceedings of the 1994 ACM conference
on Computer supported cooperative work. Chapel Hill, North Carolina, United States.
ACM, New York, NY, USA, pp. 175-186.

Ricci, F., Quang Nhat Nguyen. (2007), Acquiring and Revising Preferences in a Critique-Based
Mobile Recommender System. Intelligent Systems, IEEE. 22(3), 22-29.

Rojas, G., Domínguez, F., Salvatori, S. (2009), Recommender Systems on the Web: A Model-
Driven Approach. EC-Web 2009: Proceedings of the 10th International Conference on E-
Commerce and Web Technologies. Linz, Austria. Springer-Verlag, Berlin, Heidelberg,
pp. 252-263.

Santos, O. C., Boticario, J. G. (2008), Users' Experience with a Recommender System in an Open
Source Standard-Based Learning Management System. USAB '08: Proceedings of the 4th Sym-
posium of the Workgroup Human-Computer Interaction and Usability Engineering of
the Austrian Computer Society on HCI and Usability for Education and Work. Graz,
Austria. Springer-Verlag, Berlin, Heidelberg, pp. 185-204.

Sarwar, B., Karypis, G., Konstan, J., Reidl, J. (2001), Item-Based Collaborative Filtering
Recommendation Algorithms. Proceedings of the 10th international conference on World
Wide Web. Hong Kong, Hong Kong. ACM, New York, NY, USA, pp. 285-295.

Sarwar, B. M., Konstan, J. A., Borchers, A., Herlocker, J., Miller, B., Riedl, J. (1998), Using
Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering Sys-
tem. Proceedings of the 1998 ACM conference on Computer supported cooperative
work. Seattle, Washington, United States. ACM, New York, NY, USA, pp. 345-354.

Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J. T. (2000), Application of Dimensionality
Reduction in Recommender System - A Case Study. In ACM WebKDD Workshop.

Scarselli, F., Tsoi, A. C., Hagenbuchner, M. (2004), Computing Personalized Pageranks. Pro-
ceedings of the 13th international World Wide Web conference on Alternate track pa-
pers & posters. New York, NY, USA. ACM, New York, NY, USA, pp. 382-383.

Schafer, J. B., Konstan, J., Riedi, J. (1999), Recommender Systems in e-Commerce. Proceedings of
the 1st ACM conference on Electronic commerce. Denver, Colorado, United States.
ACM, New York, NY, USA, pp. 158-166.

Schein, A. I., Popescul, A., Ungar, L. H., Pennock, D. M. (2002), Methods and Metrics for
Cold-Start Recommendations. Proceedings of the 25th annual international ACM SIGIR
conference on Research and development in information retrieval. Tampere, Finland.
ACM, New York, NY, USA, pp. 253-260.

Shani, G., Gunawardana, A. (2011), Evaluating Recommendation Systems. In Ricci, F.; Rokach,
L.; Shapira, B.and Kantor, P. B. (eds.), Recommender Systems Handbook. Springer US. .
ISBN 978-0-387-85820-3.

Temporal Models in Recommender Systems

87

Shardanand, U., Maes, P. (1995), Social Information Filtering: Algorithms for Automating "Word of
Mouth". Proceedings of the SIGCHI conference on Human factors in computing sys-
tems. Denver, Colorado, United States. ACM Press/Addison-Wesley Publishing Co,
New York, NY, USA, pp. 210-217.

Soboroff, I. M., Nicholas, C. K. (1999), Combining Content and Collaboration in Text Filtering.
Joachims, T. (ed.), Stockholm, Sweden.

Su, X., Khoshgoftaar, T. M. (2009), A Survey of Collaborative Filtering Techniques. Adv.in Ar-
tif.Intell. 2009.

Sugiyama, K., Hatano, K., Yoshikawa, M. (2004), Adaptive Web Search Based on User Profile
Constructed without any Effort from Users. WWW '04: Proceedings of the 13th international
conference on World Wide Web. New York, NY, USA. ACM, New York, NY, USA, pp.
675-684.

Swets, J. A. (1969), Effectiveness of Information Retrieval Methods. American Documentation.
20(1), 72-89.

Symeonidis, P., Nanopoulos, A., Manolopoulos, Y. (2008a), Tag Recommendations Based on
Tensor Dimensionality Reduction. Proceedings of the 2008 ACM conference on Recom-
mender systems. Lausanne, Switzerland. ACM, New York, NY, USA, pp. 43-50.

Symeonidis, P., Nanopoulos, A., Papadopoulos, A. N., Manolopoulos, Y. (2008b), Collabor-
ative Recommender Systems: Combining Effectiveness and Efficiency. Expert Syst.Appl. 34(4),
2995-3013.

Takács, G., Pilászy, I., Németh, B., Tikk, D. (2008), Investigation of various Matrix Factorization
Methods for Large Recommender Systems. Proceedings of the 2nd KDD Workshop on Large-
Scale Recommender Systems and the Netflix Prize Competition - NETFLIX '08. pp. 1-8.

Tang, T. Y., Winoto, P., Chan, K. C. C. (2003), On the Temporal Analysis for Improved Hybrid
Recommendations. WI '03: Proceedings of the 2003 IEEE/WIC International Conference
on Web Intelligence. IEEE Computer Society, Washington, DC, USA, pp. 214.

Terveen, L., McMackin, J., Amento, B., Hill, W. (2002), Specifying Preferences Based on User
History. CHI '02: Proceedings of the SIGCHI conference on Human factors in compu-
ting systems. Minneapolis, Minnesota, USA. ACM, New York, NY, USA, pp. 315-322.

Ungar, L. H., Foster, D. P. (1998), Clustering Methods for Collaborative Filtering. AAAI Press, .

Witten, I. H., Frank, E., Hall, M. V. (2005), Data Mining: Practical Machine Learning Tools and
Techniques, Third Edition (the Morgan Kaufmann Series in Data Management Systems). 2nd edi-
tion. ed. Morgan Kaufmann, . ISBN 0123748569.

Xiang, L., Yang, Q. (2009), Time-Dependent Models in Collaborative Filtering Based Recommender
System. WI-IAT '09: Proceedings of the 2009 IEEE/WIC/ACM International Joint Con-
ference on Web Intelligence and Intelligent Agent Technology. IEEE Computer Society,
Washington, DC, USA, pp. 450-457.

Bibliography

88

Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., Sun, J. (2010), Temporal Rec-
ommendation on Graphs Via Long- and Short-Term Preference Fusion. Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data mining.
Washington, DC, USA. ACM, New York, NY, USA, pp. 723-732.

Yang, Y., Padmanabhan, B. (2001), On Evaluating Online Personalization. Proceedings of the
Workshop on Information Technology and Systems.

Zhang, L., Li, C., Xu, Y., Shi, B. (2005), An Efficient Solution to Factor Drifting Problem in the
pLSA Model. Proceedings of the The Fifth International Conference on Computer and
Information Technology. IEEE Computer Society, Washington, DC, USA, pp. 175-181.

Zhang, M., Hurley, N. (2008), Avoiding Monotony: Improving the Diversity of Recommendation
Lists. Proceedings of the 2008 ACM conference on Recommender systems. Lausanne,
Switzerland. ACM, New York, NY, USA, pp. 123-130.

Zhang, M., Hurley, N. (2009), Novel Item Recommendation by User Profile Partitioning. Proceed-
ings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence
and Intelligent Agent Technology - Volume 01. IEEE Computer Society, Washington,
DC, USA, pp. 508-515.

Zhao, M., Fukushima, T. (2010), Temporally-Controlled Item Recommendation Method and System
Based on Rating Prediction. 706/12;706/58. United States. G06F15/18; G06N5/02.
2010/08/26.

Zhou, T., Kuscsik, Z., Liu, J., Medo, M., Wakeling, J. R., Zhang, Y. (2010), Solving the Ap-
parent Diversity-Accuracy Dilemma of Recommender Systems. Proceedings of the National Acad-
emy of Sciences. 107(10), 4511-4515.

Ziegler, C., McNee, S. M., Konstan, J. A., Lausen, G. (2005), Improving Recommendation Lists
through Topic Diversification. Proceedings of the 14th international conference on World
Wide Web. Chiba, Japan. ACM, New York, NY, USA, pp. 22-32.

Zimdars, A., Chickering, D. M., Meek, C. (2001), Using Temporal Data for Making Recommen-
dations. Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence. Mor-
gan Kaufmann Publishers Inc, San Francisco, CA, USA, pp. 580-588.

89

Annex 1. Numerical results

This annex presents numerical results of the several metric obtained on Test Interval 1

(TI1) and Full Test Interval (FTI). (see section 4.2.2). These results are the averages of each

metric over 5 data splits. Other results are available by request to the author

(pedro.campos@uam.es).

Algorithm RMSE P@5
 TI1 FTI TI1 FTI
KNN (Item Based) 0.9136583 0.8943395 0.009524444 0.036
MF 0.9050957 0.8841213 0.02671865 0.084
Time Decay 0.912255 0.8929205 0.0006654526 0.0028
Time Truncation 0.9142166 0.8955481 0.007751293 0.0357
Adaptive KNN 0.9246044 0.9008993 0.01040853 0.0369
AutoSimilarity 0.9135654 0.8946313 0.008855239 0.0364
AutoSimilarity Time Decay 0.9124045 0.8928052 0.0006654526 0.0028
Bias Baseline 0.920211 0.9011059 0.01877876 0.0671
TA Bias Baseline 0.919899 0.8978512 0.02579219 0.0881
Time Aware MF 0.9157953 0.8952391 0.02339875 0.0801
KNN on MF 0.935196 0.9113028 0.009061267 0.0301
KNN on TimeMF 0.954415 0.9410557 0.001318814 0.0116
ClusterAutoSimilarity 0.9139536 0.8945347 0.009504944 0.0383
ClustKNN (k-Means) 0.9407408 0.914537 0.004199791 0.0139
ClustKNN (Bisecting k-Means) 0.9618602 0.9628034 0.004675019 0.0203
ClustKNN (EM) 0.9416885 0.9156121 0.003535675 0.0144
ClustMF (k-Means) 1.269809 1.251704 0.02123358 0.0722
ClustMF (EM) 1.278982 1.260849 0.02253544 0.0734
ClustTimeMF (k-Means) 1.305815 1.302852 0.01942959 0.0676
Popularity 2.63967 2.690642 0.05931003 0.2209
Random 2.64009 2.691833 0.005527406 0.0171

Annex 1

90

Algorithm AUC Self-Information@5
 TI1 FTI TI1 FTI
KNN (Item Based) 0.6875297 0.6990058 3.797389 3.721897
MF 0.7048149 0.7143651 2.886243 2.93225
Time Decay 0.6535042 0.6621876 5.789974 5.79098
Time Truncation 0.6864019 0.6960275 3.756424 3.678098
Adaptive KNN 0.6822814 0.693321 3.669079 3.582289
AutoSimilarity 0.6876028 0.6990833 3.727576 3.665136
AutoSimilarity Time Decay 0.6526178 0.6621954 5.789974 5.79098
Bias Baseline 0.6800378 0.6871704 2.391977 2.360986
Time Aware Bias Baseline 0.6904698 0.698419 1.809306 1.771239
Time Aware MF 0.6892061 0.696455 1.996751 1.960706
KNN on MF 0.7065517 0.710401 4.037931 3.88936
KNN on TimeMF 0.6807459 0.6885066 4.341832 4.297828
ClusterAutoSimilarity 0.6875831 0.6989588 3.705999 3.640499
ClustKNN (k-Means) 0.6843489 0.6951586 4.312874 4.281835
ClustKNN (Bisecting k-Means) 0.6842975 0.6924516 3.949744 3.882886
ClustKNN (EM) 0.6849637 0.694853 4.429649 4.393718
ClustMF (k-Means) 0.7763728 0.7935729 1.78232 1.807992
ClustMF (EM) 0.7773855 0.7934578 1.769774 1.796565
ClustTimeMF (k-Means) 0.7714272 0.7906982 1.830442 1.853962
Popularity 0.7757836 0.7960166 0.6881637 0.65901
Random 0.4924091 0.5000232 3.826033 3.824432

Algorithm ILS_CB@5 Interest Coverage
 TI1 FTI TI1 FTI
KNN (Item Based) 1.009498 1.018482 0.9924694 0.987531
MF 1.327015 1.319061 1 1
Time Decay 2.050362 2.036783 0.9924694 0.987531
Time Truncation 1.039887 1.059741 0.9905477 0.9802097
Adaptive KNN 1.034752 1.039145 0.976237 0.9793449
AutoSimilarity 1.000824 1.011263 0.992606 0.987826
AutoSimilarity Time Decay 2.050362 2.036783 0.9924694 0.987531
Bias Baseline 0.9999232 0.9881048 1 1
Time Aware Bias Baseline 1.390166 1.40541 1 1
Time Aware MF 1.254781 1.249305 1 1
KNN on MF 1.427013 1.406609 0.9334269 0.9411179
KNN on TimeMF 1.40673 1.442351 0.9870192 0.9833644
ClusterAutoSimilarity 0.9809189 1.005442 0.9924694 0.987611
ClustKNN (k-Means) 1.372318 1.319268 0.9937091 0.9921372
ClustKNN (Bisecting k-Means) 1.284892 1.279476 0.9937091 0.9921372
ClustKNN (EM) 1.104902 1.12111 0.9937091 0.9921372
ClustMF (k-Means) 1.156812 1.164824 1 1
ClustMF (EM) 1.192315 1.168148 1 1
ClustTimeMF (k-Means) 1.134733 1.123588 1 1
Popularity 1.568129 1.589977 1 1
Random 1.100741 1.046557 1 1

91

Annex 2. Statistical test results

This annex presents the p-values obtained of the application of the Wilcoxon Signed Rank

Test [Bauer, 1972] with 95% confidence, on the results of RMSE metric of particular rec-

ommendation algorithms, using the Wilcox.test routine implemented in R language. In order

to obtain such value, after obtaining recommendations with the corresponding recom-

mender, we computed RMSE for each user. That is, we obtained recommendations for a

particular user and computed and saved each metric result for that user (and repeated this

process for each user). Those per-user values were the input to the Wilcoxon test. With this

approach, we computed differences on each data split, and moreover, on each test set (see

section 4.2.2).

As we seek to establish what algorithm are the best performing ones, we use a variant of

the test that evaluates if one algorithm consistently obtain higher metric values than the

other; thus, statistical significance differences presented imply that the first mentioned algo-

rithm statistically have higher metric values than the second one. A p-value < 0.05 implies

statistical significance (at 95% confidence).

We present results on Test Interval 1 (TI1), corresponding to test data on the first 30 days

after training period, and on Full Test Interval (FTI), corresponding to test data on the 624

days after training period (these scheme was similarly applied for computing other metrics’

difference statistical significance). Other results are available by request to the author (pe-

dro.campos@uam.es).

RMSE on TI1

Split kNN vs.
TimeDecay

TimeDecay vs.
TSAdj.TimeDecay

kNN vs. TSAu-
toSimilarity

kNN vs
MF

TA_MF
vs. MF

1 0.125 0.584 0.179 0.269 0.253
2 0.023 0.314 0.472 0.238 0.446
3 0.021 0.864 0.985 0.062 0.097
4 0.168 0.371 0.609 0.001 0.015
5 0.101 0.901 0.462 0.042 0.107

RMSE on FTI

Split kNN vs.
TimeDecay

TimeDecay vs.
AutoSimilarity
TimeDecay

kNN vs. TSAu-
toSimilarity

kNN vs
MF

TA_MF
vs. MF

1 0.026 0.807 0.119 0.018 0.023
2 0.001 0.705 0.665 0.03 0.106
3 0.005 0.956 0.910 0.078 0.327
4 1.59e-05 0.995 0.693 0.007 0.001
5 0.000 0.727 0.620 0.042 0.003

93

Annex 3. Brief Review of Related Data Mining Techniques

Data Mining and Knowledge Discovery

Witten and Frank [Witten et al., 2005] defines Data Mining (DM) as the process of pattern

discovery in data. The pattern discovered should be significant, in the sense that they allow

obtaining some advantage, e.g. allowing an e-commerce site to increment sales by identify-

ing which items are likely to be bought by customers in order to put them visible. From the

previous definition it follows that DM consists in extracting useful and understandable

knowledge, previously unknown. This process should be automatic or semi-automatic (as-

sisted) to be effective, and the discovered patterns usage should help to make safer deci-

sions, thus reporting some benefit [Hernández Orallo et al., 2004]. In addition, in [Seifert,

2004] the author states that DM involves the usage of sophisticated data analysis tools to

discover new knowledge, from large datasets stored in a variety of formats. These tools

include statistical models, mathematical algorithms and machine learning methods29.

Some common DM tasks are i) identify associations, which are patterns of the form A is

associated to B, e.g. purchasing beers and diapers30; ii) identify sequences (or path analysis),

corresponding to patterns of the form A leads to B, e.g. get a promotion and buy a new car;

iii) classification of patterns, that is to identify coincidences among a new pattern and some

predefined patterns, e.g. identify the kind of job of a person given his/her buying behavior

knowing beforehand the jobs and buying behavior of a set of persons; iv) clustering of

patterns, which aim to identify groups of related patterns without knowing relations among

them previously, e.g. group people according to his/her buying behavior; and v) forecast-

ing, whose purpose is to discover patterns which allow to predict some future fact, e.g.

how much a person will expend next month given its past buying behavior.

DM is part of a larger process commonly known as Knowledge Discovery in Databases (KDD).

Fayyad et al. [Fayyad et al., 1996] defines KDD as the non-trivial process of identifying

valid, new, potentially useful and understandable patterns from data. This is a complex

process, and includes not only the collection of models and patterns (DM goal) but the

evaluation and possible interpretation of them, as shown in Figure 27. We stress the impor-

tance of the data pre-processing stage, as its output is the input for the DM stage, and the

quality of the data will allow (or not) to obtain quality knowledge [Witten et al., 2005;

Hernández Orallo et al., 2004].

29 Machine learning can be conceived as algorithms that improve their performance automatically by means
of experience, as neural networks or decision trees.
30 A common DM example says that retailers found by DM that men who buy diapers also buy beer, though
it is not necessarily realistic (http://www.dba-oracle.com/oracle_tips_beer_diapers_data_warehouse.htm).

Annex 3

94

Remainder of this section is mainly devoted to give the reader an overview of the DM

work related with RS and temporal data mining. Majority of its content correspond to re-

sumes of specific works which make a broader revision on the RS context [Amatriain et al.,

2011], and on temporal data mining [Mitsa, 2010; Laxman and Sastry, 2006]. We point the

interested reader to these works to get further details about particular methods and applica-

tions.

Data Mining and Recommender Systems

Considering the mentioned in the above section, it is interesting to note that most RS bear

in their core an algorithm that can be understood as a particular instance of a DM tech-

nique [Amatriain et al., 2011]. More specifically, in this context of recommender applica-

tions, the term data mining is used to describe the collection of analysis techniques used to

infer recommendation [Schafer, 2009].

Most classical DM techniques have been applied on RS [Amatriain et al., 2011; Schafer,

2009; Adomavicius and Tuzhilin, 2005; Su and Khoshgoftaar, 2009]. For instance, the

kNN algorithm (see section 3.1) can be seen as a particular case of an instance-classification

algorithm [Cover and Hart, 1967], in which utility (ratings) are considered as class labels

[Amatriain et al., 2011]. Decision trees [Rokach and Maimon, 2008] have been used in con-

junction with association rules [Cho et al., 2002; Nikovski and Kulev, 2006] and Bayesian

networks [Breese et al., 1998]. An ontology-based decision tree has also been proposed

[Bouza et al., 2008]. Bayesian classifiers have also been used, including Naïve Bayes Clas-

sifiers [Ghani and Fano, 2002; Miyahara and Pazzani, 2000; Pronk et al., 2007], Bayesian

Networks [Breese et al., 1998] and Hierarchical Bayesian Networks [Yu et al., 2004]. Artifi-

cial Neural Networks (ANN) [Zurada, 1992] and Support Vector Machine (SVM) [Cristia-

nini and Shawe-Taylor, 2000] classifiers have been tested as well [Pazzani and Billsus, 1997;

Berka et al., 2002; Xia et al., 2006; Xu and Araki, 2006]. Moreover, ANN have been used to

combine (or hybridize) the input from several recommendation modules or data sources

[Hsu et al., 2007].

Figure 27. Relation between KDD process and DM (adapted from [Hernández Orallo et
al., 2004])

Data pre-

processing

Data min-

ing

Evaluation/ Inter-

pretation/ Visuali-

zation

Patterns

Data

Knowledge

KDD

Brief Review of Related Data Mining Techniques

95

Clustering [Hartigan, 1975] is another DM technique that has been applied on RS. The

classical k-means algorithm has been used to cluster users [Xue et al., 2005; Sarwar et al.,

2002] and items [OConnor and Herlocker, 1999]. Probabilistic models also have been clus-

tered for recommendation [Ungar and Foster, 1998; Li and Kim, 2003]. The main goal

behind the usage of clustering is to improve efficiency as computations (after clusters for-

mation) are considerable reduced, at the cost of accuracy, so there must be a consideration

of tradeoffs between scalability and prediction performance [Su and Khoshgoftaar, 2009],

even though many papers shows a minimum lost in accuracy whereas obtaining great sca-

lability gaining [Rashid et al., 2007; Kim and Ahn, 2008; Braak et al., 2009; Georgiou and

Tsapatsoulis, 2010].

According to [Schafer, 2009], one of the best known examples of DM in RS is the discov-

ery of association rules [Witten et al., 2005], which can be used to make recommendation

lists essentially by finding association rules between a set of co-viewed items [Sarwar et al.,

2000]. It is important to note that the fact that two items are found to be related means co-

occurrence but not causality [Amatriain et al., 2011]. Mobasher et al. [Mobasher et al., 2001]

present a web personalization system based on association rule mining which outperforms

a kNN-based RS both in terms of precision and coverage, based on the idea of multiple

minimum supports for rules [Liu et al., 1999]. Lin et al. presented what can be considered

as an evolution of this idea, reported as adaptive support rule mining [Lin et al., 2002].

More recently association rules have been proposed to tackle cold-start recommendations

through cross-level association rule mining [Leung et al., 2008].

Temporal Data Mining

According to Mitsa [Mitsa, 2010], Temporal DM deals with the harvesting of useful infor-

mation from temporal data. Laxman and Sastry [Laxman and Sastry, 2006] moreover states

that TDM is concerned with data mining of large sequential data sets, meaning by “sequen-

tial data” data that are ordered with respect to some index (often, but not necessarily, time),

thus being the ordering among the records the important and differentiating aspect. For

instance, gene sequences fall into this definition of sequential data. They note that time

series constitute a popular class of sequential data, whose analysis has more than fifty years

by means of statistical modeling and spectral analysis [Box et al., 1994], whereas TDM has

a more recent origin and somewhat different constraints and goals, being one of the main

differences the size and nature of data sets (often prohibitively large for conventional time

series modeling to handle efficiently). A second major difference described by authors is

the kind of information to estimate from the data. Whereas classical time series analysis is

intended to forecast or control specific variables, very often in DM applications it is not

even known which variables in the data are expected to exhibit any correlations or causal

relationships. In fact, exact model parameters (e.g. coefficients of an ARMA model) may be

of little interest in DM context compared to unveiling of useful (and often unexpected)

trends or patterns in the data. In the context of the present work, we center on data in-

dexed by time, and often we will refer to it simply as time series (TS).

Annex 3

96

TDM tasks can be broadly classified into [Mitsa, 2010; Laxman and Sastry, 2006]: i) classifi-

cation, ii) clustering, iii) prediction, and iv) pattern discovery. A central step for many of

these tasks is the possibility of computing distance between TS. Mitsa [Mitsa, 2010] distin-

guishes the following similarity metrics for TS: 1) Distance-based similarity, which includes the

classical Euclidean distance, Absolute Difference, etc.; 2) Dynamic Time Warping [Kruskal

and Liberman, 1983; Niels, 2004], a non-linear distance measure that is able to “distort”

(warp) the time axis, compressing it at some places and expanding it at others, thus allow-

ing to compare misaligned, yet similar TS (see Figure 28); 3) Longest Common Subsequence

(LCSS) [Das et al., 1997], a measure tolerant to gaps and able to handle noisy data and out-

liers better than DTW, and also more scalable [Mitsa, 2010; Vlachos, 2005].

Figure 28. Example of misaligned, yet similar TS (X axis represents time) (from [Mitsa, 2010]).

Additionally, it is important to note that many non-temporal DM techniques for tasks like

classification or clustering of TS can be used after the application of one or more temporal

representation scheme(s) to the TS data. The goals of such schemes, used mainly to facili-

tate comparison among TS through similarity analysis, are to reduce dimensionality (in the

similarity search problem) and to avoid false dismissals (i.e. if two TS are to be found simi-

lar in the original space, they should also be found similar in the transformation space)

[Mitsa, 2010]. Some of these transformation schemes are [Mitsa, 2010]: i) Discrete Fourier

Transform (DFT) [Agrawal et al., 1993a], which represents a time series Þ � 9��, �', 7 , �8)'? in the frequency domain by means of the DFT coefficients w� �∑ ���)%6ß��/88)'�&1 , where G � 0,1, 7 , = p 1, with the advantage of the existence of a fast
algorithm for its computation known as the Fast Fourier Transform; ii) Discrete Wavelet

Transform (DWT) [Chan and Fu, 1999], which utilizes basis functions known as wavelets

(functions that allow localization of a TS in both frequency and space), allowing the analy-

sis of a TS at different scales or resolutions. Similarly to DFT, wavelets preserve the Eucli-

dean distance after proper normalization[Chan et al., 2003]; iii) Piecewise Aggregate Ap-

proximation (PAA) [Keogh et al., 2001], a transformation significantly simpler than DFT

and wavelet transform, but whose dimensionality reduction ability rivals with the ability of

the before-mentioned techniques; iv) Singular Value Decomposition of TS [Korn et al.,

1997], a method based on Singular Value Decomposition which allows data compression;

Brief Review of Related Data Mining Techniques

97

v) Shape Definition Language (SDL) [Agrawal et al., 1995], a representation that uses a

limited vocabulary that describes the gradient in the TS; vi) Landmark-Based Representa-

tion [Perng et al., 2000], in which only perceptually important points of a TS are used to

represent it; vii) Symbolic Aggregate Approximation (SAX) [Lin et al., 2003], a further dis-

cretization of a PAA-represented TS using a string alphabet. Also important are summari-

zation methods, which use global characteristics of a TS to represent it, allowing significant

dimensionality reduction. Commonly a feature vector consisting in several summarization

methods’ output is used to represent (and compare) a TS [Mitsa, 2010]. Some of these me-

thods are [Mitsa, 2010]: i) Basic statistics-based summarization, like Mean, Median, Mode

or Variance; ii) Fractal Dimension-based Summarization [Leduc et al., 1994], a method

introduced in ecology research of landscapes and related to a estimation of self-similarity; iii)

Run-Length-based Signature [Uppaluri et al., 2002], based on computations over sequences

of consecutive values such as Short Run-Length Emphasis, Long Run-Length Emphasis or

Run-Length Non-uniformity; iv) Histogram-based Signature and Statistical Measures, the

former being a simple representation of each TS value and value frequency pair, and the

latter being statistical computations defined on the histogram such as skewness, kurtosis or

entropy; v) Local Trend-based Summarization [Batyrshin et al., 2005], in which linear regres-

sions on TS values are calculated in a moving window scheme, thus obtaining a kind of

moving average regression.

As stated by Mitsa, “classification is the task of assigning a new sample to a set of previous-

ly known classes, while clustering is the task of grouping samples into clusters of similar

samples. This is the reason that classification is known as supervised learning while clustering

is known as unsupervised learning”[Mitsa, 2010]. Most non-temporal classification and cluster-

ing algorithms can be applied on a TS representation made with one (or more) of the

above-mentioned representation schemes. Nonetheless, specific methods have been devel-

oped for TS classification and clustering, as [Mitsa, 2010]: 1-NN TS Classification with Dy-

namic Time Warping used as similarity metric [Xi et al., 2006], which is argued as one of the

best classification methods for TS. Other classifier proposals include the discretization of

TS using an entropy measure [Chen et al., 2007], or variants and improvements for 1-NN

TS Classification and DTW computation on classification (see for example [Xi et al., 2006;

Ratanamahatana and Keogh, 2004; Wei and Keogh, 2006]). Involving clustering, proposals

include a wavelet-based partitional clustering method which allows anytime clustering31 [Lin et

al., 2004] and clustering based on Hidden Markov Models (HMM) [Alon et al., 2003]. Oth-

er proposals are intended to cluster particular kind of TS, as Auto-Regresive Integrated

Moving Average (ARIMA) modeled TS [Kalpakis et al., 2001] or TS data streams [Aggar-

wal et al., 2003; Guha et al., 2003; Rodrigues et al., 2008].

The prediction task, whose goal has to do with forecasting (typically) future values of the

TS based on its past samples [Laxman and Sastry, 2006], can be further split on two related

sub-tasks [Mitsa, 2010]: i) TS prediction a.k.a. TS forecasting, in which the problem is to predict

the value of a variable at a multiple of a time interval, and ii) event prediction, whose goal is to

predict the occurrence (or the number or duration of ocurrences) of an event, given the

31 An anytime algorithm improves its quality with execution time, allowing to trade execution time for quality
of results.

Annex 3

98

existence of certain conditions. The most simple models for these can be built using regres-

sion, which examines whether a variable (the dependent variable) can be predicted using

one or more variables (the independent variable(s)). Several kinds of regression models can

be built, ranging from simple linear regression (one independent variable, and the dependent

variable being described by a linear curve) to multiple non-linear regression (several dependent

variables, and the dependent variable described by a non-linear curve; this way, by means

of e.g. a simple linear regression, the total duration of hypoglycemic episodes can be predicted

from the daily medication dosage of patients on treatment of diabetes [Mitsa, 2010]). Other

simple models that can be used in TS forecasting are [Mitsa, 2010]: moving averages, whose

idea is to forecast the average of past patterns using a sliding window, exponential smoothing,

in which is possible to weight differently recent and past observations via the use of a

smoothing constant, random walk, whose main idea is that the difference between successive

observations is random. A more elaborated model is based on autoregression, in which the TS

forecasting are done via a regression where the independent variables are lagged values (i.e.

previous values) of the dependent variable. In order to determine the best lagged values to

include, the autocorrelation formula can be used [Mitsa, 2010]:

 l��@B@���H>��@=] � ∑ �à� p à]Wa8��à��] p à]Wa8�")]�&' ∑ �à� p à]Wa8�6"�&'
(78)

where à', à6, 7 , à" is a series of observations, à]Wa8 is the mean of the observations and �

is the lag being computed. The highest correlated lags are then used to compute the auto-

regression [Mitsa, 2010]:

 à��� � B z O' � à�� p 1� z O6 � à�� p 2� z 7 (79)

where the coefficients O� and B are calculated via regression. Combining autoregression and

moving average ideas lead to AutoRegressive Moving Average (ARMA) models [Mitsa, 2010;

Box et al., 1994]:

 à��� � B@=��>=� z ~ >�à�� p ��á
�&' z ~ ¸�m�� p �� z â���"

�&' (80)

where the first summation is the autoregressive part consisting of weighted past observa-

tions, the second summation is the moving average part consisting of weighted past obser-

vation errors, and â��� is an error term that is assumed to be a random variable sampled

from a normal distribution. ARMA models are designed for stationary TS (i.e. the mean

and the variance of the TS do not change over time). AutoRegressive Integrated Moving Average

(ARIMA) models are ARMA models intended to deal with stationary TS after a transfor-

mation via differentiation or logarithms which converts the TS into a stationary one [Mitsa,

2010]. Some other ideas has also been tested, as the usage of ANN [Palit and Popovic,

2005], Genetic Algorithms [Ferreira et al., 2005], or Clustering [Geva, 1999; Sfetsos and

Siriopoulos, 2004] for TS forecasting.

Brief Review of Related Data Mining Techniques

99

Temporal pattern discovery deals with the discovery of temporal patters of interest in TS,

or temporal sequences, where the interest is determined by the domain and the application

[Mitsa, 2010]. A pattern in this context is a local structure in the data, existing many ways of

defining what constitutes a pattern [Laxman and Sastry, 2006]. Two main related sub-task

can be identified [Mitsa, 2010; Laxman and Sastry, 2006]: sequence mining (or frequent sequential

pattern discovery), whose purpose is to find frequent sequences (in this context a (time) ordered

list of itemsets, with an itemset consisting of all items that appear together in a transaction or

session) that exceed a user-specified support threshold (where support is the percentage of

tuples in a database that contain the sequence) and frequent episode discovery, where an episode is

defined as a sequence of events appearing in a specific order, where an event correspond to

time-stamped data. A third related sub-task identified by Mitsa [Mitsa, 2010] is temporal asso-

ciation rule discovery, where a temporal association rule can be defined as pair �3�H�, e� where 3�H� is an association rule and e is a temporal feature, such as a period or calendar [Mitsa,

2010; Chen et al., 2007]. The firsts algorithms for sequence mining are based on the Apriori

algorithm [Agrawal et al., 1993b], which iteratively finds frequent itemsets using an efficient

candidate generation scheme taking advantage of the fact that any subset of a frequent

itemset is also a frequent itemset. Based on this idea, Agrawal and Srikant [Agrawal and

Srikant, 1995] extend the frequent itemset idea to the case of items with temporal order.

Since its publication, variants and improvements of this algorithm have been proposed, e.g.

parallelizing its computation [Shintani and Kitsuregawa, 1996]. Other proposals include

Generalized Sequential Patterns (GSP) [Srikant and Agrawal, 1996], which takes advantage

of user-specified taxonomies of items, allows the incorporation of time constraints and

further has very good scalability; and Sequential PAttern Discovery using Equivalence

classes (SPADE) [Zaki, 2001], which is able to discover all sequences in only three data-

base scans. In the case of frequent episode discovery, the proposal of Mannila et al. [Man-

nila et al., 1997] presents a framework widely used for this task consisting of defining epi-

sodes as partially ordered sets of events within specific time windows. Finally, regarding

temporal association rule discovery, proposals range from the usage of extension of the

Apriori algorithm [Ale and Rossi, 2000], to the use of genetic programming and specialized

hardware [Hetland and Saetrom, 2002].

Annex Bibliography

Adomavicius, G., Tuzhilin, A. (2005), Toward the Next Generation of Recommender Systems: A
Survey of the State-of-the-Art and Possible Extensions. IEEE Trans.on Knowl.and Data Eng.
17(6), 734-749.

Aggarwal, C. C., Han, J., Wang, J., Yu, P. S. (2003), A Framework for Clustering Evolving Data
Streams. Proceedings of the 29th international conference on Very large data bases - Vo-
lume 29. Berlin, Germany. VLDB Endowment, pp. 81-92.

Agrawal, R., Srikant, R. (1995), Mining Sequential Patterns. Data Engineering, 1995. Proceed-
ings of the Eleventh International Conference on. pp. 3-14.

Annex 3

100

Agrawal, R., Faloutsos, C., Swami, A. N. (1993a), Efficient Similarity Search in Sequence Data-
bases. Proceedings of the 4th International Conference on Foundations of Data Organi-
zation and Algorithms. Springer-Verlag, London, UK, pp. 69-84.

Agrawal, R., Imielinski, T., Swami, A. (1993b), Mining Association Rules between Sets of Items in
Large Databases. Proceedings of the 1993 ACM SIGMOD international conference on
Management of data. Washington, D.C., United States. ACM, New York, NY, USA, pp.
207-216.

Agrawal, R., Psaila, G., Wimmers, E. L., Zait, M. (1995), Querying Shapes of Histories. Pro-
ceedings of the 21th International Conference on Very Large Data Bases. Morgan
Kaufmann Publishers Inc, San Francisco, CA, USA, pp. 502-514.

Ale, J. M., Rossi, G. H. (2000), An Approach to Discovering Temporal Association Rules. Proceed-
ings of the 2000 ACM symposium on Applied computing - Volume 1. Como, Italy.
ACM, New York, NY, USA, pp. 294-300.

Alon, J., Sclaroff, S., Kollios, G., Pavlovic, V. (2003), Discovering Clusters in Motion Time-Series
Data. Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Com-
puter Society Conference on. pp. I-375-I-381 vol.1.

Amatriain, X., Jaimes, A., Oliver, N., Pujol, J. M. (2011), Data Mining Methods for Recommend-
er Systems. In Ricci, F.; Rokach, L.; Shapira, B.and Kantor, P. B. (eds.), Recommender
Systems Handbook. Springer US, . ISBN 978-0-387-85820-3.

Batyrshin, I., Herrera-Avelar, R., Sheremetov, L., Panova, A. (2005), Association Networks in
Time Series Data Mining. Fuzzy Information Processing Society, 2005. NAFIPS 2005. An-
nual Meeting of the North American. pp. 754-759.

Berka, T., Behrendt, W., Gams, E., Reich, S. (2002), Recommending Internet-Domains using
Trails and Neural Networks. Proceedings of the Second International Conference on Adap-
tive Hypermedia and Adaptive Web-Based Systems. Springer-Verlag, London, UK, UK,
pp. 368-371.

Bouza, A., Reif, G., Bernstein, A., Gall, H. (2008), SemTree: Ontology-Based Decision Tree Algo-
rithm for Recommender Systems. International Semantic Web Conference (Posters & Demos).

Box, G., Jenkins, G. M., Reinsel, G. (1994), Time Series Analysis: Forecasting & Control. 3rd;
3rd ed. Prentice Hall, , February. ISBN 978-0130607744.

Braak, P. t., Abdullah, N., Xu, Y. (2009), Improving the Performance of Collaborative Filtering Re-
commender Systems through User Profile Clustering. Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technology -
Volume 03. IEEE Computer Society, Washington, DC, USA, pp. 147-150.

Breese, J. S., Heckerman, D., Kadie, C. (1998), Empirical Analysis of Predictive Algorithms for
Collaborative Filtering. Morgan Kaufmann, pp. 43-52.

Chan, K., Fu, A. W. (1999), Efficient Time Series Matching by Wavelets. Data Engineering, 1999.
Proceedings., 15th International Conference on. pp. 126-133.

Brief Review of Related Data Mining Techniques

101

Chan, F. K., Wai-chee Fu, A., Yu, C. (2003), Haar Wavelets for Efficient Similarity Search of
Time-Series: With and without Time Warping. IEEE Trans.on Knowl.and Data Eng. 15(3),
686-705.

Chen, X., Ye, D., Hu, X. (2007), Entropy-Based Symbolic Representation for Time Series Classifica-
tion. Proceedings of the Fourth International Conference on Fuzzy Systems and Know-
ledge Discovery - Volume 02. IEEE Computer Society, Washington, DC, USA, pp. 754-
760.

Cho, Y. H., Kim, J. K., Kim, S. H. (2002), A Personalized Recommender System Based on Web
Usage Mining and Decision Tree Induction. Expert Syst.Appl. 23(3), 329-342.

Cover, T., Hart, P. (1967), Nearest Neighbor Pattern Classification. Information Theory, IEEE
Transactions on. 13(1), 21-27.

Cristianini, N., Shawe-Taylor, J. (2000), An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge University Press, , March 2000. ISBN 978-
0521780193.

Das, G., Gunopulos, D., Mannila, H. (1997), Finding Similar Time Series. Proceedings of the
First European Symposium on Principles of Data Mining and Knowledge Discovery.
Springer-Verlag, London, UK, pp. 88-100.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. (1996), Advances in Knowledge Discovery and
Data Mining. In Fayyad, U. M.; Piatetsky-Shapiro, G.; Smyth, P.and Uthurusamy, R.
(eds.), American Association for Artificial Intelligence, Menlo Park, CA, USA. . ISBN 0-
262-56097-6.

Ferreira, T. A. E., Vasconcelos, G. C., Adeodato, P. J. L. (2005), A New Evolutionary Method
for Time Series Forecasting. Proceedings of the 2005 conference on Genetic and evolutio-
nary computation. Washington DC, USA. ACM, New York, NY, USA, pp. 2221-2222.

Georgiou, O., Tsapatsoulis, N. (2010), Improving the Scalability of Recommender Systems by Clus-
tering using Genetic Algorithms. Proceedings of the 20th international conference on Artifi-
cial neural networks: Part I. Thessaloniki, Greece. Springer-Verlag, Berlin, Heidelberg,
pp. 442-449.

Geva, A. B. (1999), Non-Stationary Time-Series Prediction using Fuzzy Clustering. Fuzzy Informa-
tion Processing Society, 1999. NAFIPS. 18th International Conference of the North
American. pp. 413-417.

Ghani, R., Fano, A. (2002), Building Recommender Systems using a Knowledge Base of Product Se-
mantics.

Guha, S., Meyerson, A., Mishra, N., Motwani, R., O'Callaghan, L. (2003), Clustering Data
Streams: Theory and Practice. IEEE Trans.on Knowl.and Data Eng. 15(3), 515-528.

Hartigan, J. A. (1975), Clustering Algorithms (Probability & Mathematical Statistics). John Wiley
& Sons Inc, . ISBN 047135645X.

Annex 3

102

Hernández Orallo, J., Ramírez Quintana, M. J., Ferri Ramírez, C. (2004), Introducción a La
Minería De Datos. Pearson Educación, S. A., Madrid.

Hetland, M. L., Saetrom, P. (2002), Temporal Rule Discovery using Genetic Programming and Spe-
cialized Hardware. . Ahmad Lotfi; Jon Garibaldiand Robert John (eds.), Proceedings of the
4th International Conference on Recent Advances in Soft Computing. The Nottingham
Trent University, Nottingham, United Kingdom, pp. 182-188.

Hsu, S. H., Wen, M., Lin, H., Lee, C., Lee, C. (2007), AIMED: A Personalized TV Recommen-
dation System. Proceedings of the 5th European conference on Interactive TV: a shared
experience. Amsterdam, The Netherlands. Springer-Verlag, Berlin, Heidelberg, pp. 166-
174.

Kalpakis, K., Gada, D., Puttagunta, V. (2001), Distance Measures for Effective Clustering of
ARIMA Time-Series. Proceedings of the 2001 IEEE International Conference on Data
Mining. IEEE Computer Society, Washington, DC, USA, pp. 273-280.

Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S. (2001), Dimensionality Reduction for Fast
Similarity Search in Large Time Series Databases. Knowledge and Information Systems. 3(3),
263-286.

Kim, K., Ahn, H. (2008), A Recommender System using GA K-Means Clustering in an Online
Shopping Market. Expert Syst.Appl. 34(2), 1200-1209.

Korn, F., Jagadish, H. V., Faloutsos, C. (1997), Efficiently Supporting Ad Hoc Queries in Large
Datasets of Time Sequences. Proceedings of the 1997 ACM SIGMOD international confe-
rence on Management of data. Tucson, Arizona, United States. ACM, New York, NY,
USA, pp. 289-300.

Kruskal, J. B., Liberman, M. (1983), The Symmetric Time-Warping Problem: From Continuous to
Discrete. In Sankoff, D.; and Kruskal, J. B. (eds.), Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading,
Massachusetts.

Laxman, S., Sastry, P. (2006), A Survey of Temporal Data Mining. Sadhana. 31(2), 173-198.

Leduc, A., Prairie, Y. T., Bergeron, Y. (1994), Fractal Dimension Estimates of a Fragmented
Landscape: Sources of Variability. Landscape Ecol. 9(4), 279-286.

Leung, C. W., Chan, S. C., Chung, F. (2008), An Empirical Study of a Cross-Level Association
Rule Mining Approach to Cold-Start Recommendations. Know.-Based Syst. 21(7), 515-529.

Li, Q., Kim, B. M. (2003), Clustering Approach for Hybrid Recommender System. Proceedings of
the 2003 IEEE/WIC International Conference on Web Intelligence. IEEE Computer
Society, Washington, DC, USA, pp. 33.

Lin, J., Keogh, E., Lonardi, S., Chiu, B. (2003), A Symbolic Representation of Time Series, with
Implications for Streaming Algorithms. Proceedings of the 8th ACM SIGMOD workshop on
Research issues in data mining and knowledge discovery. San Diego, California. ACM,
New York, NY, USA, pp. 2-11.

Brief Review of Related Data Mining Techniques

103

Lin, J., Vlachos, M., Keogh, E. J., Gunopulos, D. (2004), Iterative Incremental Clustering of Time
Series. . Bertino, E.; Christodoulakis, S.; Plexousakis, D.; Christophides, V.; Koubarakis,
M.; Böhm, K.and Ferrari, E. (eds.), Advances in Database Technology - EDBT 2004, 9th
International Conference on Extending Database Technology. Heraklion, Crete, Greece.
Springer, pp. 106-122.

Lin, W., Alvarez, S. A., Ruiz, C. (2002), Efficient Adaptive-Support Association Rule Mining for
Recommender Systems. Data Min.Knowl.Discov. 6(1), 83-105.

Liu, B., Hsu, W., Ma, Y. (1999), Mining Association Rules with Multiple Minimum Supports. Pro-
ceedings of the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining. San Diego, California, United States. ACM, New York, NY, USA, pp.
337-341.

Mannila, H., Toivonen, H., Inkeri Verkamo, A. (1997), Discovery of Frequent Episodes in Event
Sequences. Data Min.Knowl.Discov. 1(3), 259-289.

Mitsa, T. (2010), Temporal Data Mining. Chapman & Hall/CRC, . ISBN 978-1-4200-8976-9.

Miyahara, K., Pazzani, M. J. (2000), Collaborative Filtering with the Simple Bayesian Classifier.
Proceedings of the 6th Pacific Rim international conference on Artificial intelligence.
Melbourne, Australia. Springer-Verlag, Berlin, Heidelberg, pp. 679-689.

Mobasher, B., Dai, H., Luo, T., Nakagawa, M. (2001), Effective Personalization Based on Associ-
ation Rule Discovery from Web Usage Data. Proceedings of the 3rd international workshop
on Web information and data management. Atlanta, Georgia, USA. ACM, New York,
NY, USA, pp. 9-15.

Niels, R. (2004), Dynamic Time Warping: An Intuituve Way of Handwriting Recognition? Nijme-
genm, The Netherlands: Radboud University Nijmegen.

Nikovski, D., Kulev, V. (2006), Induction of Compact Decision Trees for Personalized Recommenda-
tion. Proceedings of the 2006 ACM symposium on Applied computing. Dijon, France.
ACM, New York, NY, USA, pp. 575-581.

OConnor, M., Herlocker, J. (1999), Clustering Items for Collaborative filtering.

Palit, A. K., Popovic, D. (2005), Computational Intelligence in Time Series Forecasting: Theory and
Engineering Applications (Advances in Industrial Control). Springer-Verlag New York, Inc, Se-
caucus, NJ, USA. . ISBN 1852339489.

Pazzani, M., Billsus, D. (1997), Learning and Revising User Profiles: The Identification of Interesting
Web Sites. Mach.Learn. 27(3), 313-331.

Perng, C. S., Wang, H., Zhang, S. R., Parker, D. S. (2000), Landmarks: A New Model for Simi-
larity-Based Pattern Querying in Time Series Databases. Data Engineering, 2000. Proceedings.
16th International Conference on. pp. 33-42.

Pronk, V., Verhaegh, W., Proidl, A., Tiemann, M. (2007), Incorporating User Control into Re-
commender Systems Based on Naive Bayesian Classification. Proceedings of the 2007 ACM con-

Annex 3

104

ference on Recommender systems. Minneapolis, MN, USA. ACM, New York, NY, USA,
pp. 73-80.

Rashid, A. M., Lam, S. K., LaPitz, A., Karypis, G., Riedl, J. (2007), Towards a Scalable kNN
CF Algorithm: Exploring Effective Applications of Clustering. Proceedings of the 8th Know-
ledge discovery on the web international conference on Advances in web mining and
web usage analysis. Philadelphia, PA, USA. Springer-Verlag, Berlin, Heidelberg, pp. 147-
166.

Ratanamahatana, C., Keogh, E. J. (2004), Making Time-Series Classification More Accurate using
Learned Constraints. . Berry, M. W.; Dayal, U.; Kamath, C.and Skillicorn, D. B. (eds.), Pro-
ceedings of the Fourth SIAM International Conference on Data Mining. Lake Buena
Vista, Florida, USA.

Rodrigues, P. P., Gama, J., Pedroso, J. (2008), Hierarchical Clustering of Time-Series Data
Streams. IEEE Trans.on Knowl.and Data Eng. 20(5), 615-627.

Rokach, L., Maimon, O. (2008), Data Mining with Decision Trees: Theory and Applications. .
Bunke, H.; and Wang, P. S. P. (eds.), Series in Machine Perception and Artificial Intelli-
gence. World Scientific Publishing, .

Sarwar, B., Karypis, G., Konstan, J., Riedl, J. (2000), Analysis of Recommendation Algorithms for
e-Commerce. Proceedings of the 2nd ACM conference on Electronic commerce. Minneap-
olis, Minnesota, United States. ACM, New York, NY, USA, pp. 158-167.

Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J. (2002), Recommender Systems for Large-Scale
E-Commerce: Scalable Neighborhood Formation using Clustering.

Schafer, J. B. (2009), The Application of Data-Mining to Recommender Systems. In Wang, J. (ed.),
Encyclopedia of Data Warehousing and Mining. 2nd. edition ed. Information Science Publish-
ing, . ISBN 9781605660103.

Seifert, J. W. (2004), Data Mining: An Overview.

Sfetsos, A., Siriopoulos, C. (2004), Time Series Forecasting with a Hybrid Clustering Scheme and
Pattern Recognition. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on. 34(3), 399-405.

Shintani, T., Kitsuregawa, M. (1996), Hash Based Parallel Algorithms for Mining Association
Rules. Parallel and Distributed Information Systems, 1996., Fourth International Confe-
rence on. pp. 19-30.

Srikant, R., Agrawal, R. (1996), Mining Sequential Patterns: Generalizations and Performance Im-
provements. Proceedings of the 5th International Conference on Extending Database
Technology: Advances in Database Technology. Springer-Verlag, London, UK, pp. 3-17.

Su, X., Khoshgoftaar, T. M. (2009), A Survey of Collaborative Filtering Techniques. Adv.in Ar-
tif.Intell. 20092-2.

Ungar, L. H., Foster, D. P. (1998), Clustering Methods for Collaborative Filtering. AAAI Press, .

Brief Review of Related Data Mining Techniques

105

Uppaluri, R., Mitsa, T., Hoffman, E. A., McLennan, G., Sonka, M. (2002), Method and Appa-
ratus for Analyzing CT Images to Determine the Presence of Pulmonary Tissue Pathology. 382/128,
382/131. United States. G06K 9/00. oct 15, 1998.

Vlachos, M. (2005), A Practical Time Series Tutorial with Matlab. Porto, Portugal: .

Wei, L., Keogh, E. (2006), Semi-Supervised Time Series Classification. Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining.
Philadelphia, PA, USA. ACM, New York, NY, USA, pp. 748-753.

Witten, I. H., Frank, E., Hall, M. V. (2005), Data Mining: Practical Machine Learning Tools and
Techniques, Third Edition (the Morgan Kaufmann Series in Data Management Systems). 2nd edi-
tion. ed. Morgan Kaufmann, . ISBN 0123748569.

Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C. A. (2006), Fast Time Series Clas-
sification using Numerosity Reduction. Proceedings of the 23rd international conference on
Machine learning. Pittsburgh, Pennsylvania. ACM, New York, NY, USA, pp. 1033-1040.

Xia, Z., Dong, Y., Xing, G. (2006), Support Vector Machines for Collaborative Filtering. Proceed-
ings of the 44th annual Southeast regional conference. Melbourne, Florida. ACM, New
York, NY, USA, pp. 169-174.

Xu, J. A., Araki, K. (2006), A SVM-Based Personal Recommendation System for TV Programs.
Multi-Media Modelling Conference Proceedings, 2006 12th International. pp. 4 pp.

Xue, G., Lin, C., Yang, Q., Xi, W., Zeng, H., Yu, Y., Chen, Z. (2005), Scalable Collaborative
Filtering using Cluster-Based Smoothing. Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in information retrieval. Salvador, Bra-
zil. ACM, New York, NY, USA, pp. 114-121.

Yu, K., Tresp, V., Yu, S. (2004), A Nonparametric Hierarchical Bayesian Framework for Informa-
tion Filtering. Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval. Sheffield, United Kingdom. ACM,
New York, NY, USA, pp. 353-360.

Zaki, M. J. (2001), SPADE: An Efficient Algorithm for Mining Frequent Sequences. Mach.Learn.
42(1-2), 31-60.

Zurada, J. (1992), Introduction to Artificial Neural Systems. West Publishing Co, St. Paul, MN,
USA. . ISBN 0-314-93391-3.

