
Universidad Autónoma de Madrid
Escuela Politécnica Superior

Departamento de Ingenierı́a Informática

Advanced methods for dimensionality reduction
and clustering: Laplacian Eigenmaps and Spectral

Clustering

Master’s thesis presented to apply for the Master
in Computer Engineering and Telecommunications degree

By

Ángela Fernández Pascual

under the direction of

Julia Dı́az Garcı́a

Madrid, December 13, 2010

ii

Contents

Contents ii

1 Introduction 1

2 Classical dimensional reduction and clustering methods 3
2.1 Principal Component Analysis (PCA) . 3

2.1.1 Motivation . 3
2.1.2 Algorithm . 3
2.1.3 Advantages and disadvantages . 5

2.2 K-means clustering . 5
2.2.1 Motivation . 5
2.2.2 Algorithm . 5
2.2.3 Advantages and disadvantages . 7

2.3 New approaches . 7

3 Advanced Dimensional Reduction Methods 9
3.1 Motivation . 9
3.2 Laplacian Eigenmaps (LE) . 9

3.2.1 Algorithm . 10
3.2.2 Justification . 11
3.2.3 Discussion: advantages and disadvantages 17

3.3 Locally Linear Embedding (LLE) . 18
3.3.1 Algorithm . 18

3.4 LLE Laplacian point of view . 20

4 Spectral Clustering 25
4.1 Motivation . 25
4.2 Algorithms . 25

4.2.1 Unnormalized Spectral Clustering . 25
4.2.2 Normalized Spectral Clustering . 26

4.3 Justification . 27
4.4 Practical questions . 38
4.5 Advantages and Disadvantages . 41
4.6 Relation between LE and Spectral Clustering . 41

5 Out-of-Sample Spectral Clustering: Nyström Formula 43
5.1 Motivation . 43
5.2 The Nyström Formula: generalizing kernel eigenfunctions 43

5.2.1 Introduction . 43
5.2.2 Justification . 46

iii

iv Contents

5.3 Algorithm for Spectral Clustering . 50

6 Numerical Experiments 51
6.1 Methodology . 51
6.2 Experimental scenarios and datasets used . 52
6.3 LE Dimensionality Reduction Results . 53
6.4 Spectral Clustering Results . 57

7 Conclusions and further work 73
7.1 Conclusions . 73
7.2 Further work . 73

A Notation glossary 75
A.1 Graph notation . 75

B Constructing similarity graphs 77

C Laplacian Graphs 79

D Auxiliar Theorems and Lemmas 85
D.1 Gauss’s Divergence Theorem . 85
D.2 Rayleigh-Ritz Theorem . 85
D.3 Parseval’s Identity . 85
D.4 Green’s Function . 85
D.5 Mercer’s theorem . 86

Bibliography 87

Abstract

Dimensional reduction and clustering are important issues in machine learning. Classical methods
do not always provide good results as they do not take into account the explicit form of the diffe-
rential manifold structure in which our data probably lie. The objective of this work is to study new
methods in these disciplines, specifically we study Laplacian Eigenmaps and Spectral Clustering
algorithms. These techniques allow us to create an embedding based on the local geometric infor-
mation of the original data. But these approaches have the inconvenient of not knowing how to
treat new data points out-of-sample. With the purpose of clustering this new points we also present
an expanded Spectral Clustering method based on the Nyström Formula.

Acknowledgements

The author is kindly supported by the FPI-UAM grant. She has been also partially supported by
Spain’s TIN 2007-66862 and Cátedra IIC Modelado y Predicción.

Chapter 1

Introduction

In many of the artificial intelligence disciplines, the information retrieval subjects or the data
mining areas, we have to solve problems where the sample data sets are in a very high dimension
space. Usually, this data is embedded in a differential manifold of low dimension. One of the
main issues in machine learning and pattern recognition consists in the development of accurate
representations for this type of data whose treatment is usually complex.

The dimensionality reduction general problem has a large history. One of the commonly used
approximations for classification is Principal Component Analysis (PCA) [1]. The problem with
this kind of methods is that they do not consider the explicit form of the differential manifold
structure in which our data probably lie. The objective is to find an application that goes from
our original n-dimensional space X to a k-dimensional space Y , with k � n, in which the local
distances are conserved as much as possible.

If we based our study on graphs, we would be able to apply Laplacian Eigenmaps (LE) [2] to
our data set. The Graph Laplacian is used to compute a representation on a lower dimension that
preserves, in an optimal way, the sample local information. Following the pertinent algorithm, we
obtain a representation map that could be considered as a discrete approximation to the continuous
map that appears in a natural way from the differential manifold geometry where our set is em-
bedded. But we could only apply this theory in the concrete case in which the manifold data is
uniformly sampled.

To obtain the mentioned features, we can also study Locally Linear Embeddings (LLE) [3].
These non-supervised learning algorithms reduce the dimension of a non-linear structure, starting
from a linear adjustment and taking advantage of the near neighbors approaches. The advantage
of this method is its ability to take the entries to an unique coordinated global system of lower
dimension. It is also able to optimize the results without involving local minimums.

If we talk about clustering techniques, we have to start our study with classic algorithms as k-
means [4]. The goal to be reached is the identification of groups with similar properties in our data
set. With this purpose, we study Spectral Clustering methods because they present implementation
and efficiency advantages and also give us good results. The algorithms to be developed are based
on the spectral theory, where the clusters are defined by the eigenvalues and eigenvectors of the
Laplacian matrices of our data graph. ([5] [6])

Finally, when we have to lead with new points out of our training sample data, using the
techniques previously mentioned, we must repeat the whole algorithms with all the points we want
to work with. To avoid this, we can adapt our methods by learning eigenfunctions ([7] [8] [9]). We
will present the Nyström Formula [10] to reach this objective.

As a summary, in this research work we shall present the theoretical fundaments and some re-
sults applying dimensionality reduction methods and clustering techniques. The work is distributed
as follows. In chapter 2 we will present a review of classical dimensional reduction and clustering

1

2 Chapter 1. Introduction

methods, we mean, PCA and k-means. In chapter 3 we show the advanced dimensional reduction
methods studied: LE and LLE. In chapter 4 we put forward the Spectral Clustering theory and their
algorithms. In chapter 5 we explain how to adapt the previous Spectral Clustering methods to treat
new out-of-sample data applying the Nyström formula. We will show the experimental results of
LE and Spectral Clustering methods in chapter 6. Finally we will conclude in chapter 7 that the
methods explained are really good approaches to solve dimensional reduction and clustering com-
pared with classical methods. Additionally we include at the end some appendices presenting the
notation used in this work and some relevant related theory results needed to understand the study
we have carried out.

Chapter 2

Classical dimensional reduction and
clustering methods

2.1 Principal Component Analysis (PCA)

2.1.1 Motivation

Principal Component Analysis (PCA) is used to compress the information contained in our data
set. The main idea of this technique is to be able to compute the most relevant components or
factors from the original features. In this way, we obtain an information summary and a data
representation.

The objective is to simplify the data structure transforming the original features into others,
named principal components, applying linear combinations of those features. For this purpose,
PCA tries to reduce the dimensionality, preserving as much as possible the original randomness
(variance) in the high dimensional space.

2.1.2 Algorithm

Let x be a N -dimensional vector and {ϕ1, ϕ2, . . . , ϕN} be and orthonormal vectors basis, i.e,

ϕi · ϕj =

{
0 i 6= j

1 i = j

Then, we can express x as a linear combination of these vectors, as follows:

x =

N∑
i=1

yiϕi

where yi are the coeficients of the linear combination.
If we want to represent x only with k (k < N) vectors in the basis, we ignore the components

[yk+1, . . . , yN]T , obtaining the following expression:

x̂(k) =

k∑
i=1

yiϕi.

If we minimize yi with respect to yj , we obtain [4]

yi = xTϕj where j = 1, . . . , k.

3

4 Chapter 2. Classical dimensional reduction and clustering methods

The error made with this x representation can be calculated as follows:

∆x(k) = x− x̂(k)

=

N∑
i=1

yiϕi −

(
k∑
i=1

yiϕi

)

=
N∑

i=k+1

yiϕi.

The vector ∆x(k) is a difference vector, whose module represents the error magnitude. We
can quantify the mean error using the average of this quantity square, which represents the mean
square error. It is given by the expression:

ε̄2(k) = E
[
∆x(k)2

]
= E

 N∑
i=k+1

N∑
j=k+1

(yi)(yj)ϕ
T
i ϕj

=

N∑
i=k+1

E
[
(yi)

2
]

=
N∑

i=k+1

ϕTi E[xTx]ϕi

=
N∑

i=k+1

ϕTi Σxϕi. (2.1.1)

Where, Σx is the covariance matrix. In the target equation (2.1.1) we have taken into account
that ϕi is an orthonormal basis.

So, our algorithm find the basis vectors ϕi that minimize this mean square error. So, we have
to solve the minimization problem

min
ϕ,b

ε̄2(k) (2.1.2)

s.t. ϕ orthonormal basis.

Analitically, we can solve this problem (2.1.2) achiving a closed solution [4]: ϕi are the eigen-
vectors of the covariance matrix Σx. This means that the mean square error is: ε̄2(k) =

∑N
i=k+1 λi,

where λi are the eigenvalues that correspond to the discarded eigenvectors. So we have to take into
account the k eigenvectors that correspond to the highest eigenvalues.

We present a summary of this method in the algorithm (1).

2.2. K-means clustering 5

Algorithm 1 PCA algorithm
1: Input: X = {x1, . . . ,xN} ∈ Rn.
2: Normalize X: X̂ = X−µ

σ , where µ is X mean and σ its deviation.
3: Compute covariance matrix Σx̂.
4: Compute eigenvalues and eigenvectors of Σx̂.
5: Arrange eigenvalues in decreasing order Λ = {λi} and also arrange their corresponding eigen-

vectors ϕ = {ϕi}.
6: Compute the m principal components PCi as a linear combination of the original data:

PCi = ϕT x̂i.

7: return Principal Components computed.

2.1.3 Advantages and disadvantages

PCA is a classical dimensional reduction algorithm with many advantages:

• PCA studies the features relation, finding feature groups that are highly correlated.

• It is an useful technique for feature selection, for outlier detection or for clustering.

• It works properly when our features present a high correlation because few factors would
explain a high part of the total variability.

But it presents an important disadvantage: PCA does not take into account the vector’s classes,
so it does not look at the classes’ separability. This method only rotate the coordenates, changing
the data axis in the maximum variance direction. So, there does not exist any guarantee of having
good classifying information in the maximum variance axis.

2.2 K-means clustering

2.2.1 Motivation

The problem we must face with in clustering is the identification of groups of data in a mul-
tidimensional space. We denominate clusters to the groups that must present small intra-point
distances compared with the inter-points distances between clusters. K-means algorithm is a non
probabilistic technique for clustering. [4]

Let’s formalize this technique. Let {x1, . . . ,xN} be a data set of N observations of a random
n-dimensional euclidean variable x. We suppose that the number k of clusters that we must search
is given. To formalize our ideas, we must define some prototypes µm associated to each cluster m.
We could think about them as the centered representation of the clusters.

The objective will be to look for the association between points and clusters, and also to search
a set of vectors {µm} such that the squares sum of the distances from each data point to its closest
vector µm is a minimum.

2.2.2 Algorithm

To explain the k-means algorithm, we are going to introduce a 1-of-k coding scheme. This new
parameter will be denoted as rim ∈ {0, 1} with m = 1, . . . , k, that are binary indicators that

6 Chapter 2. Classical dimensional reduction and clustering methods

describes the cluster to which the data point xi is assigned to. I.e., if xi is assigned to cluster k,

then

{
rik = 1

rij = 0 j 6= k.
We must define also our objective function, called distortion measure, as follows:

J =
N∑
i=1

k∑
m=1

rim‖xi − µm‖2.

So the objective is to find values for {rim} and {µm} that minimize J . We could minimize
them in an iterative procedure. Each iteration involves two successive steps corresponding to opti-
mizations with respect to {rim} and {µm}. We make this with algorithm (2).

Algorithm 2 K-means algorithm
1: Input: X = {x1, . . . ,xN}, k.
2: Initial values for µm,m = 1, . . . , k.
3: while no convergence do
4: First step: Minimize J with respect to rim, with µm fixed.
5: Second step: Minimize J with respect to µm, with rim fixed.
6: end while
7: return Clusters C1, . . . , Ck.

We can study each step of the algorithm, to simplify their computation:

• Updating rim. J is a linear function with respect to rim, so the optimization can be per-
formed easily. The terms that involves different “i” are independent, so we could optimize
each one separately. We simply assign the i-th data point to the closest cluster centre. More
formally,

rim =

{
1 if m = arg minj ‖xi − µj‖2

0 otherwise.

• Updating µm. J is quadratic in µm, so it can be minimized by setting its derivative with
respect to µm to zero. This gives us,

2
N∑
i=1

rim(xi − µm) = 0.

And we obtain,

µm =

∑
i rimxi∑
i rim

.

The denominator represents the number of points assigned to the cluster m. So µm is the
mean of all the points assigned to cluster m.

We repeat the two phases until there is no change in the assignments or the number of iterations
is exceeded.

The convergence is assured because each phase reduces the value of J . But it can converge to
a local minimum instead of to the global one.

It is usually useful to normalize the data. Normally we standardize the variable such that it has
zero mean and unit standard deviation.

A good initialization of µm is to make it equal to a random subset of k data points.
So we could rewrite our algorithm as follows in algorithm (3).

2.3. New approaches 7

Algorithm 3 K-means algorithm
1: Input: X = {x1, . . . ,xN}, k.
2: Normalize the sample data: X̂ = X−µ

σ , where µ is X mean and σ its deviation.
3: Initial values for µm = random(x̂1, . . . , x̂N),m = 1, . . . , k.
4: iter = 0
5: while assignments change && iter < MAX ITER do

6: First step: rim =

{
1 if m = arg minj ‖x̂i − µj‖2

0 otherwise.
for m = 1, . . . , k.

7: Second step: µm =
∑

i rimx̂i∑
i rim

for m = 1, . . . , k.

8: iter + +
9: end while

10: return Clusters C1, . . . , Ck.

Testing algorithm

When we recibe a new data point out-of-sample, we do not have to repeat the whole algorithm
just explained. Once we have the cluster’s centers calculated, we only have to find the nearest
center to our new point. This means that we have to compute the distance between the new point
and the different cluster’s centers and we assign the new example to the cluster corresponding with
the minimum distance.

2.2.3 Advantages and disadvantages

K-means is a classical algorithm with many advantages:

• With a large number of variables, K-means is computationally fast.

• K-means may produce tight clusters if they are globular.

But it also presents some disadvantages:

• We have to fix the number of clusters, so to predict what k should be used is difficult.

• This algorithm could be slow because in each updating of rim it is necessary to compute the
Euclidean distance between every prototype vector and every data point. We can modify the
algorithm to arrange this problem. [4]

• The use of the Euclidean distance as dissimilarity measure limits the type of data variables
that can be considered. Also, it can make the cluster determination non-robust to outliers. A
more general method that solves this problem is shown in [4].

• The main problem is that it does not work well with non-globular clusters.

2.3 New approaches

The main problem with classic methods in both disciplines, dimensional reduction and cluster-
ing, is that they do not consider the explicit form of the differential manifold structure in which our
data probably lie. In practice, this gives rise to some of the principal disadvantages of the exposed
algorithms, like the missclasification of non-globular clusters applying k-means.

8 Chapter 2. Classical dimensional reduction and clustering methods

The objective of this work is to study different applications that go from our original n-
dimensional space X to a k-dimensional space Y , k � n, in which the local distances are con-
served as much as possible. And in the case of clustering, apply classical clustering methods in
such new space.

For this purpose we are going to present LLE and LE algorithms for dimensionality reduction,
and Spectral Clustering as an advanced clustering method.

Chapter 3

Advanced Dimensional Reduction
Methods

3.1 Motivation

In machine learning we usually come up against problems where the sample data sets lie in a
differential manifold of low dimension embedded in a space of very big dimension. Working in
low dimension is always easier and has many computational advantages. So, dimension reduction
is usually a very important issue we have to face in learning problems.

We describe the general dimensional reduction problem as follows: Our initial sample is
{x1, . . . ,xN}, with xi ∈ Rn, and we want to find another set {y1, . . . ,yN}, with yi ∈ Rk, where
k � n. In this way, yi would represent the points xi in our new data space. As just mentioned, we
pay special attention to the case {x1, · · · ,xN} ∈ M whereM ∈ Rn is a differential manifold of
dimension k.

There exist different classical dimensionality reduction methods like Principal Component
Analysis (PCA), Multidimensional Scaling (MDS) [11], Self-Organizing Maps (SOM) [12] or Ar-
tificial Neural Networks (ANR) [13] approaches. But all these algorithms do not attempt to use
properly the manifold structure information.

Advanced dimensional reduction methods as Locally Linear Embedding (LLE) or Laplacian
Eigenmaps (LE) try to obtain and use neighborhood information of each point by considering the
data as a graph.

In the following sections we are going to present these two techniques. In section 3.2 we
will show the algorithm, some possible justifications and advantages and disadvantages of LE. In
section 3.3 we will present the algoritm of LLE. To finalize this chapter, we will relate LLE to the
Laplacian point of view we applied in LE algorithm.

3.2 Laplacian Eigenmaps (LE)

The Laplacian Eigenmaps method is a very successful recently proposed procedure to reduce
dimensionality for semi-supervised learning [2]. To preserve the local information, we build a
weighted graph from a set of points {x1, · · · ,xN}, xi ∈ Rn, withN nodes and links only between
neighbors. The aim is to obtain an embedded map, computing the eigenvectors of a Laplacian
graph.

Let’s state the formal algorithm to apply this method.

9

10 Chapter 3. Advanced Dimensional Reduction Methods

3.2.1 Algorithm

Step 1: Constructing the adjacency graph. We are going to define our graph in the following
way

G = (S = {xi}, E).

where E are the edges of the graph and S the vertices, that coincide with the points of our original
sample. The edges will be established between two points when they are near; i.e. (i, j) ∈ E if
xi and xj are near. To decide when two points are neighbors we could use different methods as
ε-neighborhood graphs, k-nearest neighbor graphs or fully connected graphs, all of them specified
in the appendix B.

Step 2: Choosing the weights. To decide the value of wij we have two options:

• Simple-minded method, where the only possible values for our weights are 0 or 1.

wij =

{
1 if i, j are connected.
0 if i, j are not connected.

The obvious advantage is that we do not have to fix any parameter, but it gives us less
information about the local structure of our data.

• Heat Kernel with parameter t ∈ R. In this case we will set up the weights in the following
way

wij =

e−
‖xi−xj‖

2

t if i, j are connected.
0 if i, j are not connected.

Step 3: Computing eigenmaps. Once we have a connected graphG constructed following steps
1 and 2, we must define the map for the embedded coordinates. For this purpose, we work with the
Laplacian L of G.

We define an Unnormalized Graph Laplacian L as follows

L = D −W, (3.2.1)

where D is the degree matrix of the similarity matrix W , defined as the diagonal matrix with
degrees

di =
N∑
j=1

wij

as its diagonal elements.
We must compute the eigenvalues and eigenfunctions of the generalized eigenvector problem

Lf = λDf to find the coordinates in our new space. In the appendix C we can see a Lapla-
cian Graph classification and their properties. L has the special characteristic of being a positive
semidefinite matrix (lemma 1), so its eigenvalues are always λi > 0.

Lemma 1 The Graph Laplacian L is a positive semidefinite matrix.

3.2. Laplacian Eigenmaps (LE) 11

Proof To prove that L is positive semidefinite we check that fTLf > 0.

fTLf = fTDf − fTWf

=

N∑
i=1

dif
2
i −

N∑
i,j=1

fifjwij

=
1

2

 N∑
i=1

dif
2
i − 2

N∑
i,j=1

fifjwij +
N∑
j=1

djf
2
j

=

1

2

N∑
i,j=1

wij(fi − fj)2 (3.2.2)

> 0.

In the last equality (3.2.2) we have applied di definition (3.2.1) and the square of the subtraction
expression. �

Under these conditions, we solve our problem and we obtain the solutions f0, f1, . . . , fk, . . . ,
fn−1 ordered by their eigenvalues in an increasing way

0 = λ0 < λ1 < · · · < λn−1.

λ = 0 is always a trivial eigenvalue as, thanks to the normalization, our matrix satisfies:d1 − w1 · · · −w1n
...

−wn1 · · · dn − wnn

1

...
1

 =
(
1 · · · 1

)
.

We are not going to consider the trivial solution f0 = 1, associated to λ0 = 0. This eigenfunction,

f0 : xi → (1, . . . , 1),

collapses all the elements of each point onto the real number 1. This gives us, in a trivial way, the
minimum distance between points (as it is zero) but we loose all the information.

The rest of eigenvectors selected will be orthogonal to f0 as L is a positive semidefinite ma-
trix. We take the first k eigenvectors in order to have an embedding from the original space to an
euclidean k dimensional space:

F : xi → (f1(xi), . . . , fk(xi))

3.2.2 Justification

In this section, we are going to consider three different motivations to obtain this method [2].

Optimal Embeddings

A possible way to introduce the LE algorithm is by the construction of an embedding function
that preserves the local information.

First, we have the information organized in a weighted graph G = (S,E), with links between
neighbor nodes, as we have explained before. We assume that our graph G is connected and we
define an embedding that tries to link points that are close in the original space.

12 Chapter 3. Advanced Dimensional Reduction Methods

We present this justification with k = 1 to simplify notation and explanations. We have the
embedding

Y : G → R

A good map will minimize the objective function defined by the error criterion:

J(Y) =
1

2

∑
i,j

(yi − yj)2wij > 0 (3.2.3)

It is easy to see that applying the definition of D and L, the problem (3.2.3) can be written as
follows:

1

2

∑
i,j

(yi − yj)2wij =
1

2

∑
i,j

(y2
i + y2

j − 2yi · yj)wij

=
1

2

∑
i

y2
iDii +

∑
j

y2
jDjj − 2

∑
i,j

yi · yj · wij

=

1

2

[
Y TDY + Y TDY − 2Y TWY

]
=

1

2

[
2Y TDY − 2Y TWY

]
=

1

2

[
2Y T (D −W)Y

]
= Y TLY.

In other words, to solve (3.2.3) is equivalent to solve the matrix minimization problem

arg min
Y

Y TLY. (3.2.4)

s.t. Y TDY = 1. (3.2.5)

We add the restriction (3.2.5) to remove any arbitrary scaling factor and then avoid degenerated
solutions. Normally, we apply for this goal the restriction ‖Y ‖2 = 1. In this case, we use matrix
D because it is the natural measure on our graph, as it makes reference to the connections of each
vertex in a way such that a big value of di means that the vertex xi is strongly connected and, in
consequence, it is more important.

To solve the problem (3.2.4) we can use the Lagrange multipliers. We rewrite the equations,

φ(Y) = Y TLY − λ(Y TDY − 1)

∇φ(Y) = LY − λDY = 0

so the solution is the eigenvector Y corresponding to the minimum eigenvalue λ of L that satisfies

LY = λDY. (3.2.6)

If we consider the vector Y = 1 = (1, . . . , 1), we could easily see that it corresponds to an
eigenvalue 0.

L1i − λD1i = 0− λD1

= 0

⇔ λ = 0.

3.2. Laplacian Eigenmaps (LE) 13

But this is a trivial solution that collapses all vertices of G into the real number 1, as we have
seen at the end of the previous section (3.2.1). To eliminate this possible solution we must add an
additional constrain:

Y TD1 = 0.

To find the optimal embedding we must solve the minimization problem:

arg min
Y

Y TLY.

s.t.

{
Y TDY = 1

Y TD1 = 0.

We have seen above that to solve this problem with the first restriction is equivalent to search
the eigenvalues of the problem (3.2.6). With the second constrain we eliminate the trivial solution
associated to the zero eigenvalue. So we have arrived at the same problem that we had to solve in
LE.

Now let us generalize this explanation to a k dimensional embedding

Y : G → Rk.

In this case the embedding is given by theN×k matrix Y = [y1, . . . ,yk]. We have to minimize
the function ∑

ij

∥∥∥y(i) − y(j)
∥∥∥2
wij

where y(i) = [y1(i), . . . ,yk(i)]
T , which is equivalent to minimize the matrix expression

arg min
Y

tr(Y TLY)

s.t. Y TDY = 1.

We consider a restriction similar to that of the k = 1 case, but now, instead of preventing the
collapse onto a point, it prevents the collapse onto a subspace of dimension less than k − 1.

We prove this equivalence as we did when k = 1.

∑
ij

∥∥∥y(i) − y(j)
∥∥∥2
wij =

∑
ij

∥∥∥((y
(i)
1 − y

(j)
1), . . . , (y

(i)
k − y

(j)
k)
)∥∥∥2

wij

=
∑
ij

(
(y

(i)
1 − y

(j)
1)2 + · · ·+ (y

(i)
k − y

(j)
k)2

)
wij

=
∑
ij

(y
(i)
1 − y

(j)
1)2wij + · · ·+

∑
ij

(y
(i)
k − y

(j)
k)2wij

= yT1 Ly1 + · · ·+ yTk Lyk

= Tr(Y TLY).

The solution will be given by the eigenvector matrix corresponding to the lowest eigenvalues
of the generalized eigenvalue problem LY = λDY . We arrive at this conclusion by solving the
Lagrange multipliers problem, as we have just explained for k = 1.

14 Chapter 3. Advanced Dimensional Reduction Methods

The Laplace Beltrami Operator

We are going to change now our point of view. As we have explained this chapter motivation, we
hope that our data lies in a smooth, compact, k-dimensional manifoldM embedded in the original
space M ⊂ Rn. In order to work in this context we have to introduce the Laplace Beltrami
Operator which is the equivalent on a manifold to compute the Laplacian of a graph (used in the
subsection of Optimal Embeddings above).

We can start studying a map from the manifold to a real line

f :M → R,

where f must be at least twice differentiable with the general goal of sending near points in M
to near points in R. To formalize it, we think about two neighbor points x, z ∈ M and we study
each difference in the new space |f(z)− f(x)|. For this purpose, we consider a geodesic curve C
parametrized by length with origin in x, i.e.,

r = distM(x, z).

z = C(r).

x = C(0).

f(C(t)) = g(t).

With this notation, and since f(x) = f(C(0)) = g(0) and f(z) = f(C(r)) = g(r), we can
rewrite the difference that we want to study as

f(z)− f(x) = g(r)− g(0)

=

∫ r

0
g′(t)dt

=

∫ r

0
∇f(C(t)) · C ′(t)dt.

Taking absolute values in this difference and using the Schwarz inequality as we do in (3.2.7)
we have

|f(z)− f(x)| 6
∫ r

0
‖∇f(C(t))‖‖C ′(t)‖dt (3.2.7)

=

∫ r

0
‖∇f(C(t))‖dt (3.2.8)

=

∫ r

0
‖∇f(x)‖dt+ o(r) (3.2.9)

6 r‖∇f(x)‖+ o(r) (3.2.10)

= ‖z− x‖‖∇f(x)‖+ o(‖z− x‖). (3.2.11)

In the equality (3.2.8) we have used that the geodesic curve C is parametrized by length, so
‖C ′(t)‖ = 1. In the second equality 3.2.9 we used Taylor’s approximation that tells us that

‖∇f(C(t))‖ = ‖∇f(x)‖+O(t).

And for the last equality (3.2.11) we use the definition of distance

dM(x, z) = r = ‖z− x‖+ o(‖z− x‖).

3.2. Laplacian Eigenmaps (LE) 15

We look now for the best map for preserving local information. In (3.2.10) we see that
‖∇f(x)‖ gives us an approximation of the distance between neighbor points after applying the
embedding f . Thus to reach this goal, we must solve the minimization problem

min
f

∫
M
‖∇f(x)‖2 (3.2.12)

s.t ‖f‖L2(M) = 1,

where, in this case, the constrain helps us to remove scaling effects as we will work with unitary
vectors.

To relate this problem with the Laplacian of our graph, we prove next that∫
M
‖∇f‖2 =

∫
M
L(f)f.

In fact, by definition, Lf = −div∇(f) and applying this equality and the Gauss’s Divergence
Theorem (see appendix D.1), we can see that∫

M
< ∇f,∇f > = −

∫
M
div(∇(f))f

= −
∫
M
L(f)f

So, to solve the problem (3.2.12) is equivalent to solve the minimization problem

min
f

−
∫
M
L(f)f (3.2.13)

s.t ‖f‖L2(M) = 1,

L is semidefinite positive, so a minimum to this problem (3.2.13) has to be an eigenfunction of L.
[2]

As we have made before, we search the optimal embedding that is formed by the first k eigen-
functions that correspond with the lowest eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λk.

x → (f1(x), . . . , fk(x)).

The Heat Kernel and the Choice of Weight Matrix

Other important question that we must justify is the way of searching appropriate weights to
construct our graph. We are going to explain a methodology using kernel functions, in this case the
Heat Kernel.

The Heat equation is (
∂

∂t
+ L

)
u = 0,

where u(x, t) is the heat distribution in time t and f(x) = u(x, 0) is the initial heat distribution
with f :M→ R.

The solution to this equation is given in terms of the Heat kernel Ht as

u(x, t) =

∫
M
Ht(x,y)f(y).

The Ht(x,y) function is equivalent to the Green’s function (see appendix D.4) and tells us how
much heat flows from y to x in time t.

16 Chapter 3. Advanced Dimensional Reduction Methods

Our final objective in this chapter is to find the solution of the LE problem. As we have just
seen in the Laplace Beltrami Operator point of view, this problem is equivalent to minimize Lf(x)
(3.2.13). We could rewrite it using the Heat Kernel expression explained above.

Lf(x) = Lu(x, 0)

= − ∂

∂t
u(x, t)

∣∣∣∣
t=0

= − ∂

∂t

[∫
M
Ht(x,y)f(y)

]∣∣∣∣
t=0

,

where we have used that f is the initial heat distribution and we have introduced the Heat Kernel
equation and its solution.

In an exponential coordinate system (in which the first order coincides with the local coordinate
system given by a tangent plane in Rn), we can compute our Heat Kernel as a gaussian function
plus an error term as

Ht(x,y) = (4πt)−
k
2 e−

‖x−y‖2
4t (φ(x,y) +O(t)),

where φ(x,y) is a smooth function with φ(x,x) = 1. [14]
In the special case when x and y are very close and t is small, we can simplify the expression

of the Heat Kernel as

Ht(x,y) ≈ (4πt)−
k
2 e−

‖x−y‖2
4t . (3.2.14)

Using this concrete expression (3.2.14) for the Heat Kernel, we want to show how to look for
the weights of our graph. We must search the weights to ensure that the approximation matrix of
the Laplacian manifold is positive semidefinite. We could see [2] that when t→ 0 the Heat Kernel
is more localized and tends to Dirac’s δ-function:

lim
t→0

∫
M
Ht(x,y)f(y) = f(x).

So, if we apply the Heat Kernel equation, considering a small t, we obtain the following expre-
ssion using the derivative definition in (3.2.15)

Lf(x) = Lu(x, t)

= − ∂

∂s
u(x, s)

∣∣∣∣
s=t

∼= − lim
t→0

u(x, t)− u(x, 0)

t
(3.2.15)

∼=
1

t

(
f(x)−

∫
M
H(x,y)f(y)dy

)
∼=

1

t

(
f(x)− (4πt)−

k
2

∫
M
e−
‖x−y‖2

4t f(y)dy

)
. (3.2.16)

And, if x1, . . . ,xk are points inM, we could rewrite the expression (3.2.16) in the following
discrete form using only the information of our sample.

Lf(xi) ∼=
1

t

f(xi)−
1

k
(4πt)−

k
2

∑
xj

0<‖xi−xj‖<ε

e−
‖xi−xj‖

2

4t f(xj)

 . (3.2.17)

3.2. Laplacian Eigenmaps (LE) 17

The restriction that appears in the addition is due to the fact that points far away will give us a zero
result in the exponential. We are only interested in near points.

If we write α = 1
k (4πt)−

k
2 and we use the above expression (3.2.17) with f = 1, then Lf = 0

and we have

1

α
=

∑
xj

0<‖xi−xj‖<ε

e−
‖xi−xj‖

2

4t

⇒ α =

 ∑
xj

0<‖xi−xj‖<ε

e−
‖xi−xj‖

2

4t

−1

.

This expression assure us that the weights are normalized and they sum 1
t .

As our Laplacian expression is

Lf(xi) = dif(xi)−
∑
j

wijf(xj),

comparing it with the Heat Kernel expression at which we have arrived in (3.2.17) and considering
α = 1, the weights of the Laplacian Graph must take the values

wij =

e−
‖xi−xj‖

2

4t if ‖xi − xj‖ < ε,

0 otherwise.

3.2.3 Discussion: advantages and disadvantages

LE is an algorithm with many advantages:

• This algorithm is easy to implement. We only have to solve an eigenvalue problem and
have to do a few computations afterwards. The search of neighbor points could make our
algorithm less efficient but there exist optimal methods as we could see, for example, in [15].

• Also, this algorithm lets us interpret our data in a geometric way. We have seen in the
subsection (3.2.2) that we can change the dimension of our data to preserve its local geometry
with this method.

• The locality-preserving character of the LE algorithm makes it insensitive to outliers and
noise.

• It exhibits stability with respect to the embedding, because this approach is based on the
intrinsic geometric structure of the manifold. This means that we will have the same embe-
dding of the same underlying manifold into spaces of very different dimension.

But it is not a perfect algorithm, as it also presents some disadvantages:

• A problem of LE is that if we receive a new sample point, we must repeat the whole algorithm
over the new complete sample to reduce its dimension.

• The approximation presented only handles manifolds from which data is sampled uniformly.
The problem is that this rarely happens in real applications.

• It is difficult to select k, the reduced dimension, and t, the Heat Kernel parameter, and we do
not know an efficient fixed form to choose them. The best way depends of our data.

18 Chapter 3. Advanced Dimensional Reduction Methods

3.3 Locally Linear Embedding (LLE)

Locally Linear Embedding is a method that preserves neighborhood relations [3]. With this new
focus, we eliminate the requirement of distance computation between pairs of points that usually
appears in classical approaches. The main idea of the algorithm is the reconstruction of the non-
linear global structure from local linear information known in advance.

To formalize this method, assume we have a sample of N real vectors xi with dim(xi) = n.
We hope that the points xi are located in or near to a smooth low-dimensional manifold. We are
going to choose a reconstruction method of the graph knowing some local information. We briefly
describe the algorithm below.

3.3.1 Algorithm

Step 1: Selecting the neighbors. First of all, we must obtain the underlying information of our
data. We want to find for each xi the k nearest neighbors in our dataset: x

(i)
1 , . . . ,x

(i)
k There

exist different methods to reach this goal, like k-nearest neighbor graph o ε-neighborhood graph
(Appendix B), that are based on the minimum distance to the main point. An example of this step
is shown in figure 3.3.1.

Figure 3.3.1: In the first step of LLE algorithm, we select the k neighbors of each data point. In this case
we have used the k-nearest neighbors method with k=4.

Step 2: Reconstructing the graph with linear weights. We want to be able to reconstruct each
point with the information of its neighbors. The idea is to make an orthogonal projection of the
points xi in the affine linear span of the nearest data. With this idea, we define the following cost
function based on the reconstruction errors.

ε(W) =
∑
i

∣∣∣∣∣∣xi −
∑
j

wijx
(i)
j

∣∣∣∣∣∣
2

.

3.3. Locally Linear Embedding (LLE) 19

The weights wij symbolize the contribution of the neighbors x
(i)
j to the reconstruction of the

point xi. Our aim is to find the values of the wij weights. So, we try to minimize the cost function
defined above, subject to the following constrains:

1. xi must be reconstructed only by neighbor points. When they are not neighbors, the weight
between them must be equal to 0.

2.
∑

iwij = 1 ∀i.

3. An additional constrain could be: wij > 0, but we are not going to impose it in this case.

In figure 3.3.2 we present a picture that represents this step.

Figure 3.3.2: In the second step, we can see that neighbor points are linked. We assign to each pair a
different weight.

Step 3: Mapping to embedded coordinates. The last step of this algorithm consists in the cons-
truction of the neighborhood of each point in a new k dimensional space. A good approximation
is a linear mapping: a rotation, rescaling or translation of our dataset. The idea is that we have a
neighborhood in a n dimensional space and we want to map it to global internal coordinates on
the manifold of dimension k (k � n) that contains our subset. LLE builds a map with these ob-
jectives and considers that the reconstruction weights wij will help to the reconstruction of xi in k
dimensions. Our map will be:

Mapping f : xi → yi

Cost Function φ(Y) =
∑

i

∣∣∣yi −∑j wijy
(i)
j

∣∣∣2
Finally, we want to find the best reconstructed embeddings Y using the W matrix obtained

from the second step. So, we minimize the cost function solving the eigenvalue problem with
constrains:

1.
∑

i yi = ~0, to guarantee that our coordinates are centered at the origin.

20 Chapter 3. Advanced Dimensional Reduction Methods

2. 1
N

∑
i yi
⊗

yi = I , where yi
⊗

yi is the outer product (see appendix A) between embe-
dding points and I is the N × N identity matrix. We fix this constrain to avoid degenerate
solutions, because with this restriction we impose the embedding points to have unit cova-
riance.

We could rewrite our cost functions:

φ(Y) =
∑
ij

Mij(yiy
(i)
j)

whereMij = δij−wij−wji+
∑

l wliwlj and δij symbolizes the Kronecker’s delta. We can easily
prove this statement:

∑
i

∣∣∣∣∣∣yi −
∑
j

wijy
(i)
j

∣∣∣∣∣∣
2

=
∑
i

y2
i +

∑
i

∑
j

wijy
(i)
j

2

− 2
∑
i

yi
∑
j

wijy
(i)
j

=
∑
i

y2
i +

∑
i

∑
l,j

wilwijy
(i)
l y

(i)
j − 2

∑
i

yi
∑
j

wijy
(i)
j

=
∑
i,j

δijyiy
(i)
j +

∑
i,j,l

wilwijy
(i)
l y

(i)
j −

∑
i,j

wijyiy
(i)
j −

∑
i,j

wjiyiy
(i)
j

=
∑
i,j

(δij − wij − wji +
∑
l

wliwlj)(yiy
(i)
j)

=
∑
i,j

Mij(yiy
(i)
j).

If we use matrix notation, M = E = (I −W)T (I −W), as

E = (I −W)T (I −W)

= (I −W T)(I −W)

= I −W −W T +W TW

And, studying each component of this matrix, we aconclude the Mij definition:

Eij = δij − wij − wji +
∑
l

wliwlj

= Mij .

With this definition we see that to minimize the cost function φ(Y) is equivalent to minimize
Y TEY . And this is equivalent to find the eigenvectors of the sparse matrixE = (I−W)T (I−W),
which has the property of being a symmetric positive semidefinite matrix. The optimal embedding
is determined by the k + 1 minor eigenvalues of this matrix. We discard the eigenvector f0 · 1
corresponding to the eigenvalue zero. As we have done in LE, we discard this value because it is a
trivial solution. An illustration of the third step is shown in figure 3.3.3.

3.4 LLE Laplacian point of view

The LLE algorithm (explained in section 3.3) can be seen in the same Laplacian terms as the
LE algorithm (section 3.2). This point of view only affects to the last step: the embedding of our
original coordinates. The matrix

E = (I −W)T (I −W)

3.4. LLE Laplacian point of view 21

Figure 3.3.3: In the third step, after embedded our coordinates, we can see that the neighbor points in the
original space continue being neighbors (we preserve the local information) and the weights of each link are
the same computed in step 2.

can be approximately rewritten as

Ef ≈ 1

2
L2f.

We will see now how to justify this affirmation.

Proof 1. We fix a point xi. We want to prove first the expression

[(I −W)f]i ≈ −1

2

∑
j

wij(xi − x
(i)
j)TH(i)(xi − x

(i)
j),

where

• f is a function in our manifoldM

• H(i) is the Hessian of f at xi, H
(i)
kl = ∂2f

∂xl∂xl

• x
(i)
j are the neighbors of xi

• wij are the weights of each edge (i, j) of our graph.

We consider a coordinate system in the tangent plane TM centered at o = xi. Let’s intro-
duce the following notation:

• vj = x
(i)
j − xi

• αi = wij

• o = xi =
∑

j αj · vj with
∑

j αj = 1.

22 Chapter 3. Advanced Dimensional Reduction Methods

If f is a smooth function, we can use the second-order Taylor approximation to rewrite the
equation

f(v) = f(o) + vT · ∇f +
1

2
(vTHv) + o(‖v‖2).

On the other hand,

[(I −W)f]i =

1 0 · · · 0
0 1 · · · 0

. . .
0 · · · 0 1

−

w11 w12 · · · w1n

w21 w22 · · · w2n

. . .
wn1 · · · wnn

f(v1)

...

f(vn)

i

=

1− w11 −w12 · · · −w1n

−w21 1− w22 · · · −w2n

. . .
−wn1 · · · 1− wnn

f(v1)

...

f(vn)

i

=

f(v1)− w11f(v1)− · · · − w1nf(vn)

...
f(vi)− wi1f(v1) · · · − winf(vn)

...
f(vn)− wn1f(v1)− · · · − wnnf(vn)

i

= f(vi)− wi1f(v1) · · · − winf(vn) = f(o)−
∑
j

αjf(vj).

Using Taylor approximation for f(vj) we have

f(o)−
∑
j

αjf(vj) ≈ f(o)−
∑
j

αj(f(o) + vTj · ∇f(o) +
1

2
(vTj Hvj))

≈ f(o)−
∑
j

αjf(o)−
∑
j

αjv
T
j ∇f −

1

2

∑
j

αjv
T
j Hvj

≈ −1

2

∑
j

αjv
T
j Hvj (3.4.1)

To arrive to the final expression we have used in the step (3.4.1) that
∑

j αj = 1 and∑
j

αjvj = o.

2. We assume now that ui =
√
αi · vi form an orthonormal basis, i.e.,

<
√
αi · vi|

√
αi · ∇j >= δij , and let U be the matrix with ui as columns. We have∑

j

wij · vTj Hvj =
∑
j

√
αj · vTj H

√
αj · vj

=
∑
j

uTj Huj

= UTHU

= tr(H) (3.4.2)

= Lf. (3.4.3)

3.4. LLE Laplacian point of view 23

The equality (3.4.2) is true because ui form an orthonormal basis. The last equality (3.4.3)
derives from the usual Laplacian definition:

Lf(x1, . . . ,xn) =
n∑
i=1

∂2f

∂x2
i

(x1, . . . ,xn) = tr(H),

where H is the Hessian matrix, i.e, Hij = ∂2f
∂xi∂xj

.

If x is a random vector with uniform distribution on every sphere centered at xi, then the
trace of the H matrix is proportional to E(vTHv) .

If (e1, . . . , en) is an orthonormal basis for H with the eigenvalues λ1, . . . , λn, then using the
spectral theorem, we obtain the expression

E(vTHv) = E

(∑
i

λi < vi, ei >
2

)
. (3.4.4)

=
∑
i

λiE
(
< vi, ei >

2
)

(3.4.5)

The expectation E(< v, ei >
2) is independent of i so we call it r and we rewrite the expre-

ssion (3.4.4) in the form

E(vTHv) = r
∑
i

λi

= r · tr(H)

= r · Lf.

3. If we put the step 1 and 2 together, we observe that

(I −W)T (I −W)f ≈ 1

2
L2f.

LLE tries to minimize the function fT (I −W)T (I −W)f . We know that to minimize this
function is equivalent to look for the eigenvalues of the matrix (I −W)T (I −W). We have just
proved that matrix (I −W)T (I −W) is equivalent to matrix 1

2L
2. So we can just look for the

eigenvalues of L2, that coincide with those of L. �

24 Chapter 3. Advanced Dimensional Reduction Methods

Chapter 4

Spectral Clustering

4.1 Motivation

Clustering is one of the most widely used techniques for data analysis. In recent years, Spectral
Clustering has become one of the most popular modern clustering algorithms [5].This new method
is easy to implement and can be solved it efficiently. It could seem to be a little bit hard to un-
derstand how and why it works. In the end, this method is able to extract the geometry and local
information from the data set we are working with in order to, first, reduce dimension and, later,
apply any of the existing clustering algorithms that have a good performance in easier subspaces.
We have seen this idea in chapter 3 when we have explained LE algorithm.

In the following sections we are going to analyze this method in depth. Firstly, we present
the different possible algorithms based on the Laplacian Graph used. In section 4.3 we justify,
from different points of view, the use of these methods. In section 4.4 we explain some practical
questions on how to apply these algorithms and to chose the different parameters involved. Next,
we show some advantages and disadvantages of this method. And finally, in section 4.6, we present
a short comparison between Spectral Clustering and LE even though the main difference is the use
of k-means in the Spectral Clustering algorithm to classify the data.

4.2 Algorithms

Let us describe some different algorithms to implement Spectral Clustering. The main difference
between them is the Laplacian Graph they use to implement the embedding (see appendix C for
a classification of these special graphs). All these algorithms present the same structure. They
receive as input an arbitrary subset {x1, . . . ,xN}, with xi ∈ Rn. All the algorithms use the
weights W = (sij)i,j=1,...,N = (K(xi,xj))i,j=1,...,N according to some symmetric non-negative
kernel similarity function. The result are always the clusters in the original space. The main trick in
all the algorithms presented below is the change of the data {x1, . . . ,xN} from the original space
to the points yi ∈ Rk in an euclidean space of smaller dimension. This representation change is
very useful, because is easier to work in euclidean spaces, and the embedding does not change the
cluster properties of our data.

4.2.1 Unnormalized Spectral Clustering

The first algorithm (algorithm 4) we present is based on the Unnormalized Laplacian Graph to
reduce the dimension of the original space. We have defined the Unnormalized Laplacian Graph L
in chapter 3 (3.2.1) as follows

L = D −W.

25

26 Chapter 4. Spectral Clustering

Algorithm 4 Unnormalized Spectral Clustering
1: Input: x1, . . . ,xn, k which is the number of clusters we want to obtain.
2: Construct the similarity graph G, determining the weights by the adjacency matrix W .
3: Compute the Unnormalized Laplacian Graph L.
4: Obtain the first k eigenvectors v1, . . . , vk of L.
5: Let V ∈ RN×k be the matrix with the selected eigenvectors. To obtain the embedding:
6: for i = 1 to N do
7: Compute yi ∈ Rk as the i-th row of V .
8: end for
9: To obtain the clusters C1, . . . , Ck of our new points yi, apply k-means algorithm.

10: return Clusters A1, . . . , Ak where Ai = {j|yj ∈ Ci}.

4.2.2 Normalized Spectral Clustering

In this case, we present two different versions of the Spectral Clustering Algorithm, accord-
ing to the two different Normalized Laplacian Graphs considered. The first one, the Symmetric
Laplacian, is given by the expression

Lsym = D−
1
2LD−

1
2

= I −D−
1
2WD−

1
2 . (4.2.1)

The second one is the called Random Walk Laplacian, as it is closely related with random
walks.

Lrw = D−1L

= I −D−1W.

See appendix C for a further explanation.
In the first algorithm (algorithm 5), we realize that the eigenvalues obtained as solution of

Lv = λDv are equivalent to the eigenvalues of the Normalized Random Walk Laplacian Graph.

Lemma 2 λ is an eigenvalue of Lrw with v its corresponding eigenvector⇔ λ and v solves the
equation Lv = λDv.

Proof We assume that λ is an eigenvalue of Lrw and v its corresponding eigenvector. Then we
have

λv = Lrwv

= D−1Lv

and, therefore, we conclude

Lv = λDv.

�

As we will see in section 4.6, the algorithm (5) is essentially the LE algorithm plus k-means.

4.3. Justification 27

Algorithm 5 Normalized Spectral Clustering: Random Walk Laplacian
1: Input: x1, . . . ,xn, k which is the number of clusters we want to obtain.
2: Construct the similarity graph G, determining the weights by the adjacency matrix W .
3: Compute the Unnormalized Laplacian Graph L.
4: Solve the problem Lv = λDv and obtain the first k eigenvectors v1, . . . , vk.
5: Let V ∈ RN×k be the matrix with the selected eigenvectors. To obtain the embedding:
6: for i = 1 to N do
7: Compute yi ∈ Rk as the i-th row of V .
8: end for
9: To obtain the clusters C1, . . . , Ck of our new points yi, apply k-means algorithm.

10: return Clusters A1, . . . , Ak where Ai = {j|yj ∈ Ci}.

The second normalized algorithm (algorithm 6) is based on the Normalized Symmetric Lapla-
cian Graph and it includes a normalization step not necessary in the previous versions of our algo-
rithm. The reason will become clear in the justification of this method from a Graph Cut point of
view, in the next section (section 4.3).

Algorithm 6 Normalized Spectral Clustering: Symmetric Laplacian
1: Input: x1, . . . ,xn, k which is the number of clusters we want to obtain.
2: Construct the similarity graph G, determining the weights by the adjacency matrix W .
3: Compute the Normalized Symmetric Laplacian Graph Lsym = I −D−

1
2WD−

1
2 .

4: Obtain the first k eigenvectors v1, . . . , vk of Lsym.
5: Let V ∈ RN×k be the matrix with the selected eigenvectors. Compute a new matrix U , such

that each element is equivalent to a normalized element of V , i.e.,

uij =
vij

(
∑

l v
2
il)

1
2

The embedding is obtained from this matrix.
6: for i = 1 to N do
7: Compute yi ∈ Rk as the i-th row of U .
8: end for
9: We obtain the clusters C1, . . . , Ck of our new points yi by applying k-means algorithm.

10: return Clusters A1, . . . , Ak where Ai = {j|yj ∈ Ci}.

4.3 Justification

The main idea of clustering is to group our data in sets with similar properties, that is the purpose
of the algorithms previously implemented. In this new section we justify this statement from
different points of view.

Graph Cut point of view

A way to justify Spectral Clustering as a data clustering technique is by applying a graph cut
point of view. The idea is to construct a partition of the graph such that the edges between groups
have low weights but, inside the group, the edges have high weights. To study the possible parti-
tions in our graph, taking into account this definition, we introduce a new measure: the cut of the
graph.

28 Chapter 4. Spectral Clustering

Definition 1 Let A,B ∈ S, where A
⋂
B = ∅. Then, we define

cut(A,B) =
∑
i∈A
j∈B

wij

Looking on the clustering objectives, we want to look for disjoint subsets, so this measure gives
us an estimate about the edges that we must eliminate from A in order to have an isolated group
according to B.

If G is our similarity graph and W is our adjacency matrix, to find a partition of the graph is
the same than to solve the minimization problem of the cut. More generally, we have to find the
partition A1, . . . , Ak that minimizes

cut(A1, . . . , Ak) =
k∑
i=1

cut(Ai, Āi).

In practice, minimizing this quantity does not give us a good partition of the data. To sort out
this problem we could require that the sets of the partition A1, . . . , Ak were reasonably large. For
this purpose, we define the following objective functions:

RatioCut(A1, . . . , Ak) =
k∑
i=1

cut(Ai, Āi)

|Ai|
(4.3.1)

NCut(A1, . . . , Ak) =
k∑
i=1

cut(Ai, Āi)

vol(Ai)
. (4.3.2)

where |A| is the number of nodes in A and vol(A) =
∑

i∈A di, that represents the size of A.
The RatioCut (4.3.1) is related with the Unnormalized Spectral Clustering. It measures the

partition size by the number of vertices on the graph. The NCut (4.3.2) is related with the Nor-
malized Spectral Clustering. It measures the partition size by the weights of its edges.
In both cases, if Ai is very small, the objective function ((4.3.1) or (4.3.2)) has a high value. When
we solve the minimization problem of the objective functions, we see that the only difference lie
in the expressions

min

(
k∑
i=1

1

|Ai|

)
(4.3.3)

min

(
k∑
i=1

1

vol(Ai)

)
. (4.3.4)

Both of them achieve the minimum when all clusters have the same |Ai| (4.3.3) or vol(Ai) (4.3.4).
This means that we search for balanced clusters solving the problem of non-optimal solutions, but
we have now a NP-Hard problem to solve [16]. Spectral Clustering lets us solve relaxed versions
of these problems. Let us describe them.

Approximation to RatioCut

First, we are going to study the approximation to the RatioCut with k = 2. The main objective
is to solve

min
A⊂S

RatioCut(A, Ā)

4.3. Justification 29

For this purpose, we rewrite the problem. Let us assume A ⊂ S and consider

f = (f1, . . . , fN)T ∈ RN with entries fi =

√
|Ā|
|A| vi ∈ A

−
√
|A|
|Ā| vi ∈ Ā.

The objective function can be rewritten using the Normalized Laplacian Graph. We prove that
minimize fTLf is equivalent to minimize our original RatioCut problem. To do so, recall that
we proved in chapter 3 (3.2.2) that fTLf =

∑N
i,j=1wij(fi − fj)2. Then we have,

fTLf =
N∑

i,j=1

wij(fi − fj)2

=
∑
i∈A
j∈Ā

wij

(√
|Ā|
|A|

+

√
|A|
|Ā|

)2

+
∑
i∈Ā
j∈A

wij

(
−

√
|Ā|
|A|
−

√
|A|
|Ā|

)2

+
∑
i∈A
j∈A

wij

(√
|Ā|
|A|
−

√
|Ā|
|A|

)2

+
∑
i∈Ā
j∈Ā

wij

(
−

√
|Ā|
|A|

+

√
|Ā|
|A|

)2

=
∑
i∈A
j∈Ā

wij

(√
|Ā|
|A|

+

√
|A|
|Ā|

)2

+
∑
i∈Ā
j∈A

wij

(
−

√
|Ā|
|A|
−

√
|A|
|Ā|

)2

= 2cut(A, Ā)

(
|Ā|
|A|

+
|A|
|Ā|

+ 2

)
= 2cut(A, Ā)

(
|Ā|+ |A|
|A|

+
|A|+ |Ā|
|Ā|

)
= 2(|Ā|+ |A|)

(
cut(A, Ā)

|A|
+
cut(A, Ā)

|Ā|

)
= 2|S|RatioCut(A, Ā).

We can now rewrite the minimization problem that we must solve as

min
A⊂S

fTLf (4.3.5)

s.t. fi =

√
|Ā|
|A| vi ∈ A

−
√
|A|
|Ā| vi ∈ Ā.

We have discretized the RatioCut equation but it continues being NP-Hard. The problem is
that we minimize over A. In order to solve it, we can study some characteristic of the function f

30 Chapter 4. Spectral Clustering

we have just defined. We first notice that fT1 = 0. In fact we have

fT1 =
N∑
i=1

fi

=
∑
i∈A

√
|Ā|
|A|
−
∑
i∈Ā

√
|A|
|Ā|

= |A|

√
|Ā|
|A|
− |Ā|

√
|A|
|Ā|

=
√
|A||Ā| −

√
|Ā||A|

= 0.

We observe next that ‖f‖2 = |S|. So,

‖f‖2 =

N∑
i=1

f2
i = |A| |Ā|

|A|
+ |Ā| |A|

|Ā|

= |Ā|+ |A| = N = |S|.

Problem (4.3.5) is now equivalent to,

min
A⊂S

fTLf

s.t.

f⊥1

fi =

√
|Ā|
|A| vi ∈ A

−
√
|A|
|Ā| vi ∈ Ā

‖f‖ =
√
N.

We are going to apply a relaxation consisting on the elimination of the restriction over the
discrete values of fi, allowing fi ∈ R. So we can rewrite the problem as

min
f∈RN

fTLf (4.3.6)

s.t.

{
f⊥1

‖f‖ =
√
N.

Applying the Rayleigh-Ritz theorem (see appendix D.2), the solution is given by the eigenvec-
tor f1, which corresponds to the lowest eigenvalue λ1 of L not equal to 0. To obtain a partition of
the graph, we transform f in a discrete indicator

f =

{
vi ∈ A fi > 0

vi ∈ Ā fi < 0.

We have seen in chapter 3 that to solve the problem (4.3.6) is equivalent to find the eigenvectors
of the generalized eigenvalue problem Lf = λDf . So this is an Spectral Clustering algorithm, as
we must solve the same minimization problem. Thus, we obtain a solution resulting of the spectral
theory and we discretize the result in the same way.

4.3. Justification 31

We can extend this explanation to an arbitrary k in the following way. Let A1, . . . , Ak be a
partition of S. We define k indicator vectors hi = (h1i, . . . , hNi)

T such that

hji =

1√
|Ai|

j ∈ Ai

0 otherwise.

H ∈ RN×k will be the matrix that contains these indicator vectors hi on their columns. It is easy
to see that this matrix has the property of being an orthonormal matrix (HTH = I).

In this case, our objective function can be rewritten in the following way, remembering that W
is a symmetric matrix,

hTi Lhi =

N∑
l,m=1

wlm(hli − hmi)2

=
∑
l∈Ai

∑
m∈Ai

wlm(hli − hmi)2 +
∑
l∈Ai

∑
m∈Āi

wlm(hli − hmi)2 +
∑
l∈Āi

∑
m∈Ai

wlm(hli − hmi)2

+
∑
l∈Āi

∑
m∈Āi

wlm(hli − hmi)2

=
∑
l∈Ai

∑
m∈Ai

wlm

(
1√
|Ai|
− 1√

|Ai|

)2

+
∑
l∈Ai

∑
m∈Āi

wlm

(
1√
|Ai|

)2

+
∑
l∈Āi

∑
m∈Ai

wlm

(
− 1√
|Ai|

)2

+
∑
l∈Āi

∑
m∈Āi

wlm · 0

= 2
∑
l∈Ai

∑
m∈Āi

wlm

(
1√
|Ai|

)2

= 2cut(Ai, Āi)
1

|Ai|
.

In matrix notation,
hTi Lhi = (HTLH)ii.

So, the RatioCut can be rewritten as

RatioCut(A1, . . . , Ak) =
1

2

k∑
i=1

hTi Lhi

=
1

2

k∑
i=1

(HTLH)ii

=
1

2
Tr(HTLH).

The minimization problem to solve now will be

min
A1,··· ,Ak

Tr(HTLH)

s.t.

HTH = I

hji =

1√
|Ai|

j ∈ Ai

0 otherwise.

32 Chapter 4. Spectral Clustering

In this case, we relax the problem allowing any real entry in matrixH , and we arrive at the new
problem

min
H∈RN×k

Tr(HTLH)

s.t. HTH = I.

And thanks again to the Rayleigh-Ritz theorem (see appendix D.2), we know that a solution
will be a matrix H∗ with the first k eigenvectors of L as columns.

This result is equivalent to the matrix V computed in the Unnormalized Spectral Clustering
method. Now we can apply k-means over H’s rows and we will obtain the same results with both
methods.

Approximation to NCut

The approach to this approximation is really similar to the one just explained for the RatioCut.
We are going to start studying the easiest case, when k = 2. First of all we define a cluster indicator
vector

fi =

√

vol(Ā)
vol(A) vi ∈ A

−
√

vol(A)
vol(Ā)

vi ∈ Ā.

This indicator is related to the NCut defined before in (4.3.2). So, we have

fTLf =
N∑

i,j=1

wij(fi − fj)2

=
∑
i∈A
j∈Ā

wij

(√
vol(Ā)

vol(A)
+

√
vol(A)

vol(Ā)

)2

+
∑
i∈Ā
j∈A

wij

(
−

√
vol(A)

vol(Ā)
−

√
vol(Ā)

vol(A)

)2

+
∑
i∈A
j∈A

wij

(√
vol(Ā)

vol(A)
−

√
vol(Ā)

vol(A)

)2

+
∑
i∈Ā
j∈Ā

wij

(
−

√
vol(A)

vol(Ā)
+

√
vol(A)

vol(Ā)

)2

=
∑
i∈A
j∈Ā

wij

(√
vol(Ā)

vol(A)
+

√
vol(A)

vol(Ā)

)2

+
∑
i∈Ā
j∈A

wij

(
−

√
vol(A)

vol(Ā)
−

√
vol(Ā)

vol(A)

)2

= 2cut(A, Ā)

(
vol(Ā)

vol(A)
+
vol(A)

vol(Ā)
+ 2

)
= 2cut(A, Ā)

(
vol(Ā) + vol(A)

vol(A)
+
vol(A) + vol(Ā)

vol(Ā)

)
= 2vol(S)NCut(A, Ā).

We are going to take into account some restrictions associated with f . First we have that

4.3. Justification 33

(Df)T1 = 0 as shown below:

(Df)T1 =
∑
i

difi

=
∑
i∈A

difi +
∑
i∈Ā

difi

=

√
vol(Ā)

vol(A)

∑
i∈A

di −

√
vol(A)

vol(Ā)

∑
i∈Ā

di

=

√
vol(Ā)

vol(A)

∑
i∈A

N∑
j=1

wij −

√
vol(A)

vol(Ā)

∑
i∈Ā

N∑
j=1

wij

=

√
vol(Ā)

vol(A)
vol(A)−

√
vol(A)

vol(Ā)
vol(Ā)

=
√
vol(Ā)vol(A)−

√
vol(A)vol(Ā)

= 0.

Then we observe that fTDf = vol(S), following the next reasoning:

fTDf =
∑
i∈A

dif
2
i +

∑
i∈Ā

dif
2
i

=
∑
i∈A

di
vol(Ā)

vol(A)
+
∑
i∈Ā

di
vol(A)

vol(Ā)

=
vol(Ā)

vol(A)

∑
i∈A

N∑
j=1

wij +
vol(A)

vol(Ā)

∑
i∈Ā

N∑
j=1

wij

= vol(Ā) + vol(A)

= vol(S).

Taking these expressions into consideration, we can now rewrite the minimizationNCut prob-
lem (4.3.2) as

min
A⊂S

fTLf

s.t.

Df⊥1

fi =

√

vol(Ā
vol(A) vi ∈ A

−
√

vol(A)
vol(Ā)

vi ∈ Ā
fTDf = vol(S).

Now we relax the problem, allowing the functions fi to have any real value. The problem we
have to solve in this case is

min
f∈RN

fTLf

s.t.

{
Df⊥1

fTDf = vol(S).

34 Chapter 4. Spectral Clustering

Then we substitute next our function f by g = D
1
2 f , and we have

min
g∈RN

gTD−
1
2LD−

1
2 g

s.t.

{
g⊥D

1
2 1

‖g‖2 = vol(S).

We must observe that D−
1
2LD−

1
2 corresponds with Lsym (4.2.1). Applying as in previous

reasonings the Rayleigh-Ritz theorem (see appendix D.2), the solution to this problem is g = f1,
that is the first eigenvector ofLsym corresponding to the lowest non-zero eigenvalue. If we consider
f = D−

1
2 g, we obtain the eigenvectors of Lrw, as there exists a direct relation between both

Laplacian graphs (symmetric and random walks) (see appendix C). The eigenvectors of Lrw are
the same that solve the generalized problem Lv = λDv. So, in this case, we also obtain the same
results we have achieved with the Normalized Spectral Clustering methods.

We can extend this explanation to an arbitrary k, as we have made before in the RatioCut
approximation. So, we define hi = (h1i, . . . , hNi) such that

hji =

1√

vol(Ai)
j ∈ Ai

0 otherwise.

We can see that this function h is related with NCut. More precisely, we have

hTi Lhi =

N∑
l,m=1

wlm(hli − hmi)2

=
∑
l∈Ai

m∈Āi

wlm

(
1√

vol(Ai)

)2

+
∑
l∈Āi
m∈Ai

wlm

(
− 1√

vol(Ai)

)2

=
1

vol(Ai)

∑
l∈Ai

m∈Āi

wlm +
∑
l∈Āi
m∈Ai

wlm

=

2cut(Ai, Āi)

vol(Ai)
.

where the symmetry of W have been used in the last equality.
In matrix notation,

NCut(A1, . . . , Al) =
1

2

k∑
i=1

hTi Lhi

=
1

2

k∑
i=1

(HTLH)ii

=
1

2
Tr(HTLH).

We show next that HTDH = I . In fact, we have

4.3. Justification 35

hTi Dhi =
∑
l

dlh
2
li

=
∑
l∈Ai

dl
1

vol(Ai)

=
1

vol(Ai)

∑
l∈Ai

N∑
m=1

wlm

= 1.

As a consequence, now we can rewrite our minimization problem in the following way,

min
A1,...,Ak

Tr(HTLH)

s.t.

HTDH = I

hji =

1√

vol(Ai)
j ∈ Ai

0 otherwise.

Now we relax the problem allowing any real entry in matrix H . Also, we define the new
normalized matrix U as U = D

1
2H .

min
U∈RN×k

Tr(UTD−
1
2LD−

1
2U)

s.t. UTU = I.

And thanks to the Rayleigh-Ritz theorem (see appendix D.2), we know that a solution will be a
matrix U∗ which has the first k eigenvectors of Lsym as columns. We re-substituteH = D−

1
2U , so

H has the first k eigenvectors of Lrw that coincide with the ones that solve the generalized problem
Lv = λDv.

This result is equivalent to the matrix V computed in the Normalized Spectral Clustering
method (eigenvectors of matrix U∗ will give us V of a Symmetric Laplacian Graph and eigen-
vectors of matrix H will give us the matrix V of a Random walk Laplacian Graph). Then, we can
apply k-means over H’s rows and we will obtain the same results in both cases.

Random Walks point of view

In this subsection we present another way to justify the Spectral Clustering methods based, in
this case, on random walks on a graph. When we talk about random walks on a graph, we are
talking about a stochastic process that jumps in a random way from a vertex to another. But we can
also see a random walk on a graph as a way to search a partition on the graph such that

• The random walk spend more time inside the cluster.

• The random walk rarely jumps to another cluster.

We define the jump probability P = {pij} as

pij =
wij
di

P = (pij)i,j=1,...,N = D−1W.

36 Chapter 4. Spectral Clustering

If we assume that our graphG is connected and non-bipartite, i.e. its vertices can not be divided
into two disjoint sets U and V such that every edge connects a vertex in U to one in V (it contains
at least an odd-length cycle), then the associated random walk always has a unique stationary
distribution, that is the limit distribution of a stochastic process, π = (π1, . . . , πN)T such that

πi =
di

vol(G)

With the previous definition, we show that a graph with a low cut will also have few possibilities
to jump between clusters. So there exists a relation between random walks and NCuts,

Lrw = I −D−1W = I − P.

So, in this case, λ is an eigenvalue of Lrw with eigenvector v only if (1− λ) is an eigenvalue of P
with eigenvector v. To describe the properties of our graph, we can use the largest eigenvalues of
P and the smallest eigenvalues of Lrw.

Proposition 1 NCuts via transition probabilities
Let G be a connected and non-bipartite graph. Consider the random walk (Xt)t>0 that starts in
X0 and has associated the stationary distribution π. For disjoint subsets, A,B ⊂ S, consider

P (B|A) = P (X1 ∈ B|X0 ∈ A).

Then,
NCut(A, Ā) = P (Ā|A) + P (A|Ā).

Proof We start studying the probability of being in A at time 0 and in B at time 1,

P (X0 ∈ A,X1 ∈ B) =
∑
i∈A
j∈B

P (X0 = i,X1 = j)

=
∑
i∈A
j∈B

πipij

=
∑
i∈A
j∈B

di
vol(G)

wij
di

=
1

vol(G)

∑
i∈A
j∈B

wij .

Using this expressions and the fact that P (X0 ∈ A) = favourable cases
possible cases , we can compute the

conditional probability P (X1 ∈ B|X0 ∈ A).

P (X1 ∈ B|X0 ∈ A) =
P (X0 ∈ A,X1 ∈ B)

P (X0 ∈ A)

=

(
1

vol(G)

∑
i∈A
j∈B

wij

)
(
vol(A)
vol(G)

)
=

∑
i∈A
j∈B

wij

vol(A)
.

4.3. Justification 37

With this result and using the assumption of the proposition, we conclude
P (Ā|A) = P (X1 ∈ Ā|X0 ∈ A) =

∑
i∈A
j∈Ā

wij

vol(A)

P (A|Ā) = P (X1 ∈ A|X0 ∈ Ā) =

∑
i∈Ā
j∈A

wij

vol(Ā)

And if we add both expressions, we obtain the NCut definition:

P (Ā|A) + P (A|Ā) =
∑
i∈A
j∈Ā

wij

(
1

vol(A)
+

1

vol(Ā)

)

= NCut(A, Ā).

�

This proposition demonstrates that, when we minimize NCut, we are looking for a cut graph
such that the random walk on it has few transitions from A to Ā and vice versa. Another way to
relate random walks and Laplacians Graph is via the commute distance, as follows.

Definition 2 We define the commute distance or resistance distance cij as the expected time to
travel in the random walk from a vertex i to a vertex j and coming back.

This measure decreases if there exist many ways to connect i and j. It is based on the set of
shortest paths instead of looking only for the shortest one.

The commute distance is equivalent to the pseudo-inverse of the Laplacian Graph L†. We
compute this quantity describing our Laplacian Graph and its pseudo-inverse as

L = V ΛV T

L† = [LTL]−1LT = [(V ΛTV T)(V ΛV T)]−1(V ΛTV T)

= [V ΛTΛV T]−1(V ΛTV T) = V [ΛTΛ]−1V −1V ΛTV T

= V [ΛTΛ]−1ΛTV T = V Λ†V T

where V is the matrix that contains the eigenvectors of L.

Λ† is a diagonal matrix with entries

{
1
λi

λi 6= 0

0 λi = 0

then

l†ij =

N∑
m=1

1

λm
vimvjm.

Proposition 2 Let G be a connected and undirected graph, cij the commute distance between i
and j, and L† = (l†ij)i,j=1,...,N the pseudo-inverse of L. Then,

cij = vol(G)(l†ii − 2l†ij + l†jj)

= vol(G)(vi − vj)
TL†(vi − vj).

We can find the proof of this proposition in [17].
From this proposition we can conclude that √cij could be considered an euclidean distance

of the graph’s vertices, as it is a multiple of the vertices difference. This means that we can con-
struct an embedding xi ∈ S → yi ∈ RN such that the euclidean distance between the points yi
matched up with the commute distance between the corresponding points on the graph. We make
the embedding in the following way:

38 Chapter 4. Spectral Clustering

1. L† is a positive semidefinite matrix, so it induces an inner product in a subspace of RN
orthogonal to 1, as its eigenvectors are orthogonal.

2. We take now the points yi ∈ RN as the rows of (Λ†)
1
2V .

3. At the end, applying the proposition 2 and constructing the matrix L†we obtain

< yi,yj > = eTi L
†ej

‖yi − yj‖2 = cij .

We can observe that Spectral Clustering does not work exactly in the same way, there exist
some important differences:

• In Spectral Clustering the points xi of the graph are embedded to the points yi formed as the
rows of V . In the commute distance, they are embedded to the points yi formed as rows of
(Λ†)

1
2V , where V is the matrix formed by the eigenvectors of L.

• With the commute distance, the entries of yi are scaled by 1
λi

.

• To make the embedding, we take the first k columns of V . But in the case of the commute
distance we use all the columns of the matrix.

The main idea of this justification is that both methods are similar because they try to construct
clusters based on an euclidean distance between yi that is equivalent to construct them based on xi
and their commute distance on the graph.

4.4 Practical questions

In this section we want to synthesize the different choices we must make to apply Spectral
Clustering methods.

Constructing the similarity graph

The first step when we apply a Spectral Clustering method is to construct the similarity graph. This
involves two different parts.

1. We start selecting our similarity function Kij , a kernel function that will determine the edge
weights. We try to have a function that gives us an idea of significant local neighbors. The
problem is that there does not exist any rule to decided the best similarity function because
of our data, it depends on domain.

2. We construct our graph, computing W . We choose the algorithm to construct our similarity
graph based on the input data set. (See appendix B for the different methods explanation).
We will summarize here some considerations for this decision:

• The ε-neighborhood graphs will not work well if our data have different scales, i.e., if
the distances between the points are different in different regions.

• The k-nearest neighbor graphs connect points in different scales. But if we are not in
the ideal case, it will connect points of different clusters when they are close.

• The mutual k-nearest neighbors graph connect regions with the same density but they
do not connect regions with different densities on it, so it is perfect to detect clusters
of different density. When we have data with different scales, they work well, and they
do not mix scales, so this algorithm is between the two previous methods.

4.4. Practical questions 39

• The fully connected graphs, usually with a gaussian function, will give us a non sparse
similarity matrix.

Computing the eigenvectors

Once we have constructed the graph, we must compute the eigenvectors of the matrix. The k-
nearest neighbor and ε-neighborhood graphs give us sparse matrices. With this kind of matrix there
exist efficient methods to solve eigenvectors in an easy way. These methods have the property of
converging faster when the eigengap γk = |λk − λk+1| becomes bigger.

Selecting the number of clusters

We are going to present a special technique designed for Spectral Clustering: the eigengap heuris-
tic. This simple method choose a number k of clusters such that the eigenvalues λ1, . . . , λk are
small but the eigenvalue λk+1 is big.

This method is based on the spectral theory, because the cuts size is related with the first
eigenvalues size.

This method will work worst when we have noisy or overlapped clusters. This means that in
an ambiguous context, the result of our new technique will give ambiguous results.

Selecting Laplacian Graph type

To choose the best Laplacian Graph to compute Spectral Clustering methods, we have to observe
the degree distribution of the similarity graph. If we have a regular graph and all their vertices
are more or less big, all the Laplacians present a similar behavior. But if they have different
distribution, the different graphs do not work in the same way.

It is better to work with a Normalized Laplacian Graph than with an Unnormalized one. Be-
tween Lrw and Lsym there do not exist significant differences. We explain the reasons of this
preference in the following subsections.

Objectives satisfied by each method

Let us present some arguments in favor of the Normalized Spectral Clustering via a partition graph
point of view. Let be k = 2. We have two objectives when we make clustering:

1. We want that points in different clusters are not similar. So we must minimize the similarity
between clusters:

min
∑
i∈A
j∈Ā

wij .

2. We also want that points inside the same clusters are similar. So we want to maximize the
similarity inside the cluster:

max
∑
i,j∈A

wij , max
∑
i,j∈Ā

wij .

RatioCut and NCut incorporate the first goal because they take into account the cut(A, Ā).
If we analyze the second objective, both measures work in a different way. We see that∑

i,j∈A
wij =

∑
i∈A

j∈A
⋃
Ā

wij −
∑
i∈A
j∈Ā

wij

= vol(A)− cut(A, Ā).

40 Chapter 4. Spectral Clustering

So, the NCut implements the second objective for clustering. But the RatioCut does not take
into account the similarity intra-class, as it maximizes the |Ai| and |Āi|. We must remember that
theRatioCut is related to Unnormalized Spectral Clustering whileNCut is related to Normalized
algorithms.

We can conclude that Normalized Spectral Clustering give us better results than the Unnorma-
lized one.

Consistency reasons

We can also justify the preference for Normalized Spectral Clustering algorithms via convergence
reasons.

When we work in smooth conditions, both normalized algorithms are consistent from a statis-
tical point of view [18] [19]. This means that if we assume random data following any distribution,
with a number of elements which tend to∞, the result converge and the limit partition is a sensible
partition of the subjacent space.

This does not work with unnormalized algorithms. In this case, the algorithm could not con-
verge or it does to trivial solutions. If we want to avoid trivial solutions, we must impose that the
eigenvalues λi of L are significant under the minimum degree of the graph. Mathematically,

λi � min
j=1,...,N

dj i = 1, . . . , k.

This works because λ > min dj gives an approach to Dirac’s functions [18], i.e., they will be 0
in all coordinates except in one, so we only isolate the point with non-zero eigenvectors for all the
vertices.

4.5. Advantages and Disadvantages 41

4.5 Advantages and Disadvantages

Spectral Clustering algorithms present many advantages:

• They are simple algorithms, that can be implemented in an efficient form using standard
linear algebra methods. It does no matter the data sets size.

• They do not make any assumption about the cluster’s form, it can solve very general pro-
blems as intertwined spirals.

• They take into account the geometric information of local data.

These algorithms can be a very powerful tool if we apply them with care.

But they also presents some disadvantages that we must take into account:

• We have to consider several parameters as the selection of a good similarity graph or a
convenient number of clusters. We must select them carefully if we want to obtain good
results.

• If we want to use these methods with a classification purpose, we must repeat the whole
algorithm each time we have a new point in our data set. It does not make a difference
between training and testing processes. In next chapter 5 we present a modified algorithm
based on the Nyström Formula that lets us learn out-of-sample examples without repeating
the process.

4.6 Relation between LE and Spectral Clustering

Although Laplacian Eigenmaps are oriented to dimensionality reduction algorithm and Spectral
Clustering is focused on cluster data, they are very related.

Both methods are approaches provided by the eigenvectors of Laplacian Graphs. Specifically,
if we want to compare them, we must focus our attention on Normalized Spectral Clustering based
on Random Walks (algorithm 5). If we compare both algorithms (see comparative table 4.6.1),
we will see that the only difference is that Spectral Clustering makes one step more to cluster the
information in the new dimension.

42 Chapter 4. Spectral Clustering

LE algorithm
1: Input: x1, . . . ,xn, k is the dimension of our

new space.
2: Construct the similarity graph G, determi-

ning the weights by the adjacency matrix
W .

3: Compute the Unnormalized Laplacian
Graph L.

4: Obtain the first k eigenvectors v1, . . . , vk
resulting from the solution of the problem
Lv = λDv.

5: Let V ∈ RN×k be the matrix with the se-
lected eigenvectors. We obtain the embe-
dding in the following way:

6: for i = 1 to N do
7: Compute yi ∈ Rk as the i-th row of V .
8: end for
9: return Embedding {yi}.

Spectral Clustering algorithm
1: Input: x1, . . . ,xn, k is the number of clus-

ters we want to obtain.
2: Construct the similarity graph G, determi-

ning the weights by the adjacency matrix
W .

3: Compute the Unnormalized Laplacian
Graph L.

4: Obtain the first k eigenvectors v1, . . . , vk
resulting from the solution of the problem
Lv = λDv.

5: Let V ∈ RN×k be the matrix with the se-
lected eigenvectors. We obtain the embe-
dding in the following way:

6: for i = 1 to N do
7: Compute yi ∈ Rk as the i-th row of V .
8: end for
9: Obtain the clusters C1, . . . , Ck of our new

points yi by applying k-means algorithm.
10: return Clusters A1, . . . , Ak where Ai =
{j|yj ∈ Ci}.

Table 4.6.1: Comparative table between LE and Spectral Clustering

Chapter 5

Out-of-Sample Spectral Clustering:
Nyström Formula

5.1 Motivation

Machine learning methods normally have the advantage that they can be applied on new data
points without repeating the whole training algorithms. Such characterization is missing in LE
dimensional reduction and in Spectral Clustering algorithms. These methods do not provide a
function that can be applied to new points.

In this last chapter, the search of a way to extend our algorithm to new out-of-sample points is
discussed. Until now, we have presented methods which aim to provide coordinates for the training
points. In the following sections we are going to present an algorithm that extends the ones studied
to out-of-sample examples. In section 5.2 we explain the Nyström Formula, the way to improve
Spectral Clustering that we are going to apply. We shall show the motivation and justification of
this formula, that allows us to generalize any adequate kernel eigenfunction. We will also present
an adapted algorithm for Spectral Clustering using this technique in section 5.3.

5.2 The Nyström Formula: generalizing kernel eigenfunctions

5.2.1 Introduction

To learn Spectral Clustering, the first problem we face with is the metric selection. The choice of
the metric is one of the key issues of our algorithm. A first attempt to develop Spectral Clustering
methods, robust to irrelevant features, could be the learning of the similarity matrix [20]. The
problem of this kind of methods is that, even though we save the computation of W for each new
point and we eliminate the embedding part, they are less intuitive than the algortihms presented
in the previous chapter and they have the disadvantage that we must know a good classification in
clusters of the sample data in advance.

Because of this, we look for another method that, working over the algorithms explained in
chapter 4, can learn the embedding function and classify a new point on each corresponding cluster
without repeating the whole process. This algorithm is based on the Nyström Formula.

The Nyström Formula [7] is a general method for learning kernel eigenfunctions, based on the
prediction of the eigenvector value of a new data point and on the convergence of the eigenvalues
of a matrix when the number of examples of our data set grows.

The purpose of this section is to addapt this general theory to our Spectral Clustering method,
such that we can add new examples without computing again the eigenvalues and eigenvectors of
our graph.

43

44 Chapter 5. Out-of-Sample Spectral Clustering: Nyström Formula

We are going to work in a Hilbert’s space Hp, i.e, we work in a space of continuous functions
f with an associated inner product < f, g > defined as

< f, g >=

∫
f(x)g(x)p(x)dx,

where p(x) is the probability density in the input space.
The norm defined by an inner product is the real-valued function

‖f‖ =
√
< f, f >,

and in a Hilbert spaceHp, the functions fare square integrables, i.e.,∫
f2(x)p(x)dx <∞.

The distance between two functions f ,g inHp is also defined in terms of the norm by

d(f, g) = ‖f − g‖ =
√
< f − g, f − g >.

and according to this distance concept we define equivalence classes in the Hilbert space,

f, g in the same class ⇔
∫

(f(x)− g(x))2p(x)dx = 0.

As we have seen before (subsection 3.2.2), we can express the weight matrix W of our graph
using a kernel function [21] [22]. Associated to this kernel we have a linear operator on functions
defined by the integral

[Gf](x) =

∫
K(x,y)f(y)p(y)dy.

Since G is a linear operator, we can talk about its eigenvalues λk and eigenfunctions φk.
K(x,y) is a positive semidefinite Kernel function, i.e,

∫
f(z)Gf(z)p(z)dz > 0 ∀f , so λk > 0

and φk is an orthonormal basis of the Im(G). Then, we can apply the Mercer’s theorem (see ap-
pendix D.5) and rewrite our kernel with respect to an orthonormal basis of eigenfunctions in the
following way:

K(x,y) =
∞∑
j=i

λjφj(x)φj(y). (5.2.1)

We see that φk is an eigenvector of G, with eigenvalue λk (Gφk = λkφk) using the expression
(5.2.1) in the following way

[Gφk](x) =

∫
K(x,y)φk(y)p(y)dy

=

∞∑
j=i

λjφj(x)

∫
φj(y)φk(y)p(y)dy

= λkφk(x). (5.2.2)

In the third equality (5.2.2) we apply that the eigenfunctions φi form an orthonormal basis, so∫
φj(y)φk(y)p(y)dy = δjk, and the summatory only takes a non-zero value when j = k.

But we have many unknown variables in this expression: we do not know neither the data-
generating density function p(x) to determineG nor the eigenfunctions φk with their corresponding
eigenvalues λk.

5.2. The Nyström Formula: generalizing kernel eigenfunctions 45

To estimate them, we discretize our linear operators, using an approximation by a lower-
dimensional linear model Gn. A good approximation is given by the eigenfunctions of the kernel
correponding to n eigenfunctions of G which form a basis. To approximate this eigenfunction
equation (5.2.2), given an iid sample {x1, . . . ,xn} from p(x), we replace the integral over p(x) by
an empirical average to obtain

.[Gnφnk](y) =
1

n

n∑
i=1

Kn(y,xi)φ
n
k(xi) ≈ λkφk(y). (5.2.3)

Our new data-dependent bounded kernel Kn are also semidefinite positive in the limit:∫
f(x)Gnf(x)p(x)dx =

1

n

n∑
i=1

∫
f(x)K(x,xi)f(xi)p(x)dx

=
1

n

n∑
i=1

f(xi)Gf(xi)

→
∫
f(x)Gf(x)p(x)dx > 0.

Notice that, if we denote φnj as the eigenfunctions of Gn,

Gnφnj (x) =
1

n

n∑
i=1

n∑
k=1

λnkφ
n
k(x)φnk(xi)φ

n
j (xi)

=
n∑
k=1

λnkφ
n
k(x)

(
1

n

n∑
i=1

φnk(xi)φ
n
j (xi)

)
= λnj φ

n
j (x). (5.2.4)

where we have applied in the last equality that φni are eigenfunctions of Gn, so φnk(xi)φ
n
j (xi) =

δkj .
So, Gn has eigenfunctions φnk associated to eigenvalues λnk , i.e, Gn satisfy

Gnφnk(x) = λnkφ
n
k(x). (5.2.5)

To compute the eigenfunctions of Gn is not an easy task. This motivates to study the matrix
eigenproblem

KnV n = V nΛn, (5.2.6)

where,

• Kn is the n×nGram matrix, i.e. its entries are given byKn
ij = K(xi,xj) for i, j = 1, . . . , n.

• V n ∈ Rn×n is an eigenvectors vnij matrix of Kn.

• Λn is a diagonal eigenvalues matrix with entries `1, . . . , `n of Kn.

We will see in the justification below (subsection 5.2.2) that we obtain the following expres-
sions for some eigenfunctions of Gn:

φni (xj) =
√
nvnji

λni =
`i
n
.

46 Chapter 5. Out-of-Sample Spectral Clustering: Nyström Formula

With this approximation we define the Nyström Formula, that let us obtain the ith eigenfunction
of Gn

φni (x) =

√
n

`i

n∑
j=1

vnjiK
n(x,xj) i = 1, · · · , k

Our hypothesis is that the value of the eigenfunctions of Gn in the train examples will convergence
to the eigenfunctions of G and they will correspond with the spectral embeddings.

5.2.2 Justification

In this subsection, we are going to formalize the ideas presented above.
Our first purpose is to demonstrate that the Nyström Formula really gives us an expression of

the eigenfunctions of Gn in terms of the eigenvalues and eigenvectors of Kn.

Proposition 3 Let λnk , φ
n
k be the eigenvalues and eigenfunctions of Gn, and `k, vnk be the eigenva-

lues and eigenvectors of Kn. If we define a function ϕnk = ϕnk(x) =
√
n
`k

∑n
j=1K

n(x,xj)v
n
kj , then

λnk = `k
n and φnk(xi) =

√
nvnki.

Proof If φnk is an eigenfunction of Gn, it satisfies, according to the eigenproblem (5.2.5), that

φnk(x) =
1

λnk
Gnφnk(x)

=
1

λnk

1

n

n∑
j=1

K(x,xj)φ
n
k(xj).

The hypothesis tell us that

ϕnk(x) =

√
n

`k

n∑
j=1

K(x,xj)v
n
kj ,

with ϕnk(xi) =
√
nvnki. This is true because

ϕnk(xi) =

√
n

`k

n∑
j=1

Kn(xi,xj)v
n
kj

=

√
n`k
`k

vnki

=
√
nvnki.

In fact,

Gnϕnk(x) =
1

n

n∑
j=1

K(x,xj)ϕ
n
k(xj)

=
1

n

n∑
j=1

K(x,xj)
√
nvnkj

=
1√
n

n∑
j=1

K(x,xj)v
n
kj

=
`k
n

√
n

`k

∑
j

K(x,xj)v
n
kj

=
`k
n
ϕnk(x).

5.2. The Nyström Formula: generalizing kernel eigenfunctions 47

So, ϕnk(x) is an eigenfunction of Gn with eigenvalue `k
n , i.e

λnk =
`k
n

φnk(xi) =
√
nvnki.

�

We conclude from this proposition that the Nyström Formula generalizes the spectral embe-
dding out of the training set, because we can associate a new point with its corresponding eigen-
value and eigenvector. We choose this generalization instead of any other because it guarantees
convergence as n grows and we have interest in being near the asymptotic embedding.

Lemma 3 Assume that Kn is bounded |Kn(x,y)| < c, independently of n. Then, φnm(x) is
bounded by the quantity c

|λnm|
.

Proof Taking into account the assumption, we have

|φnm(x)| =

∣∣∣∣∣ 1

nλnm

n∑
i=1

φnm(xi)K
n(x,xi)

∣∣∣∣∣
6

1

n|λnm|

n∑
i=1

|φnm(xi)||Kn(x,xi)|

6
c

n|λnm|

n∑
i=1

|φnm(xi)| (5.2.7)

6
c

n|λnm|

n∑
i=1

√
n|vnim| (5.2.8)

6
c√
n|λnm|

√
n (5.2.9)

6
c

|λnm|
.

We have applied the bound on Kn in the inequality (5.2.7). In (5.2.8) we have applied the
proposition 3. And for inequality (5.2.9), we have used that vnim are orthonormal vectors and by
the Cauchy-Schwarz inequality,

∑
|vnim| ≤

(∑
1
) 1

2
(∑

(vnim)2
) 1

2 ≤
√
n.

�

Definition 3 We say that a function Fn converge uniformly in probability to another function F
when

∀ε > 0 lim
n→∞

P (sup
x,y
|Fn(x, y)− F (x, y)| > ε) = 0

Proposition 4 Let us assume that

1. The data-dependent bounded kernel Kn converges uniformly in probability toward K.

2. The eigenvalues and eigenvectors of the Gram matrix Kn converge.

48 Chapter 5. Out-of-Sample Spectral Clustering: Nyström Formula

3. The eigenfunctions φnm, with m = 1, . . . , k of Gn, associated to non-zero eigenvalues, con-
verge uniformly in probability to a function φ∞m .

Then, φ∞m are the eigenfunctions of G.

Proof 1. First of all we take into account some assumptions.
Let φnm converge in probability toward φ∞m . In fact,

∀ε > 0 lim
n→∞

P (sup
x
|φnm(x)− φ∞m (x)| > ε) = 0, (5.2.10)

Let Kn converge in probability toward K, which is a non-random kernel. Then,

∀ε > 0 lim
n→∞

P (sup
x,y
|Kn(x,y)−K(x,y)| > ε) = 0. (5.2.11)

2. Applying lemma 3, we know that φnm(x) is bounded by c
|λnm|

. We can apply the Koltchinskii
and Giné theorem [23], that tells us that the eigenvalues of Gn converge to the ones of G
(λnm → λm).

With these results plus the assumption of φ∞m (x) convergence (5.2.10), we arrive to

|φ∞m | 6
c

|λm|
.

3. We introduce now φ∞m in the Nyström Formula:

φnm(x) =
1

nλnm

n∑
i=1

φnm(xi)K
n(x,xi)

=
1

nλm

n∑
i=1

φ∞m (xi)K(x,xi)

+
λm − λnm
nλnmλm

n∑
i=1

φ∞m (xi)K(x,xi)

+
1

nλnm

n∑
i=1

φ∞m (xi)[K
n(x,xi)−K(x,xi)]

+
1

nλnm

n∑
i=1

Kn(x,xi)[φ
n
m(xi)− φ∞m (xi)]. (5.2.12)

We can substract 1
λm

∫
φ∞m (y)K(x,y)p(y)dy in the equation (5.2.12) obtaining∣∣∣∣φnm(x)− 1

λm

∫
φ∞m (y)K(x,y)p(y)dy

∣∣∣∣
6

∣∣∣∣∣ 1

nλm

n∑
i=1

φ∞m (xi)K(x,xi)−
1

λm

∫
φ∞m (y)K(x,y)p(y)dy

∣∣∣∣∣
+

∣∣∣∣∣λm − λnmnλnmλm

n∑
i=1

φ∞m (xi)K(x,xi)

∣∣∣∣∣
+

∣∣∣∣∣ 1

nλnm

n∑
i=1

φ∞m (xi)[K
n(x,xi)−K(x,xi)]

∣∣∣∣∣
+

∣∣∣∣∣ 1

nλnm

n∑
i=1

Kn(x,xi)[φ
n
m(xi)− φ∞m (xi)]

∣∣∣∣∣
6 An +Bn + Cn +Dn.

5.2. The Nyström Formula: generalizing kernel eigenfunctions 49

Analyzing these four therms separately we can see that they all tend toward 0.

• Bn → 0. This is true because of the convergence of λnm and the bound of φ∞m 6 C1

and K 6 C2. ∣∣∣∣∣λm − λnmnλnmλm

n∑
i=1

φ∞m (xi)K(x,xi)

∣∣∣∣∣ 6
∣∣∣∣∣λm − λnmnλnmλm

n∑
i=1

C1C2

∣∣∣∣∣
→

∣∣∣∣∣λm − λmnλ2
m

n∑
i=1

C1C2

∣∣∣∣∣→ 0.

• Cn → 0 in probability. Considering the statement (5.2.11) and the bound of φ∞m 6 C1,
we arrive at∣∣∣∣∣ 1

nλnm

n∑
i=1

φ∞m (xi)[K
n(x,xi)−K(x,xi)]

∣∣∣∣∣ 6
∣∣∣∣∣ 1

nλnm

n∑
i=1

C1[Kn(x,xi)−K(x,xi)]

∣∣∣∣∣
→

∣∣∣∣∣ 1

nλnm

n∑
i=1

C1[K(x,xi)−K(x,xi)]

∣∣∣∣∣→ 0.

• Dn → 0 in probability as, thanks to the statement (5.2.10) and the bound of Kn 6 C3,
we obtain:∣∣∣∣∣ 1

nλnm

n∑
i=1

Kn(x,xi)[φ
n
m(xi)− φ∞m (xi)]

∣∣∣∣∣ 6
∣∣∣∣∣ 1

nλnm

n∑
i=1

C3[φnm(xi)− φ∞m (xi)]

∣∣∣∣∣
→

∣∣∣∣∣ 1

nλnm

n∑
i=1

C3[φ∞m (xi)− φ∞m (xi)]

∣∣∣∣∣→ 0.

• If we apply the law of large numbers, An also converges to 0 in probability.

Then,

φnm(x)→ 1

λm

∫
φ∞m (y)K(x,y)p(y)dy in probability

and remembering that
φnm(x)→ φ∞m (x),

we obtain,

λmφ
∞
m (x) =

∫
φ∞m (y)K(x,y)p(y)dy ∀x

In this way, we observe that

φ∞m eigenfunction of G with eigenvalue λm
⇒ φ∞m = φm,

as φ∞m satisfies the Nyström function of G.
�

50 Chapter 5. Out-of-Sample Spectral Clustering: Nyström Formula

5.3 Algorithm for Spectral Clustering

We have just justified the use of the Nyström Formula, and how to use it to learn eigenfunctions.
We are going to present now the algorithms with the Nyström formula for Spectral Clustering: the
training algorithm (algorithm 7) and the testing one (algorithm 8) [10].

The normalization step let us determine the Laplacian Graph we use to construct the data graph.
The algorithm (7) is based on the Symmetric Laplacian Graph, because it is the only one of the
Laplacian Graphs studied that defines a symmetric kernel.

Algorithm 7 Training algorithm
1: Input: D = x1, . . . ,xN with xi ∈ Rn, k < n that is the number of clusters.
2: We compute the similarity matrix W , starting from KD(·, ·), that is a gaussian kernel such that
wij = KD(xi,xj).

3: We normalize the weight matrix W̃ having w̃ij =
wij√
didj

.

4: We search the k highest eigenvalues λi of W̃ and their associated eigenvectors vk.
5: We make the embedding of each point in the sample xi → yi, such that yik = vki is the i-th

element of the k-th eigenvector vk of W̃ .
6: We obtain the clusters C1, . . . , Ck of our new points yi by applying k-means algorithm.
7: return Clusters A1, . . . , Ak where Ai = {j|yj ∈ Ci}.

Algorithm 8 Testing algorithm
1: Input: x ∈ Rn, new point.
2: We compute our new kernel function K̃(a, b) = 1

N
K(a,b)√

Ex[K(a,x)]Ex′ [K(b,x′)]
, where the expecta-

tions are taken over the empirical data X .
3: Using the Nyström Formula we obtain the eigenfunction that we can apply to the new point

φk(x) =

√
N

λk

N∑
i=1

vkiK̃(x,xi).

4: From this eigenfunctions we obtain the embedded point yk = φk(x)√
N

= 1
λk

∑N
i=1 vkiK̃(x,xi).

5: We can apply the testing k-means algorithm in order to know the cluster that contains our new
point.

Chapter 6

Numerical Experiments

In this chapter we shall put under test some of the explained methods. As we have seen in
previous sections, the objective of this work is to study LE and Spectral Clustering techniques. We
have implemented them and we have proved their accuracy.

To explain how we have made this analysis, we will first detail the implementations made of
these methods, next we shall show which datasets were used for the tests, and finally the results of
the experiments will be presented.

6.1 Methodology

We have implemented an LE algorithm (chapter 3.2) for dimensional reduction and Spectral
Clustering methods (chapter 4) for clustering different data sets. Both techniques are very similar,
and in both of them we have to:

1. Read the entries of our data file.

2. Compute the weights of our graph using a Gaussian Kernel. In this way we obtain a non-
sparse weight matrix. We meta-model the variance parameter t varying this parameter in a
logaritmic scale between 0, 001 and 100, to find the one that best represent the local infor-
mation of our data.

3. Normalize the obtained weights according to the Laplacian graph we want to compute. In
the case of LE we compute always a Random Walk Laplacian.

4. Compute the eigenvalues and eigenvectors of such matrix and to embed our points to a k
dimensional space corresponding to the elements of the k eigenvectors with highest eigen-
values.

If we are computing one of the Spectral Clustering methods, the next steps must be:

1. Cluster the embedded data using k-means.

2. And, at the end, come back to the original space, where we have the information clustered.

All these algorithms have been implemented in C code.
To analyze the accuracy of our methods, in the one hand, we are going to study the results in a

visual way, plotting the reduced or clustered data, as we have examples in a low dimension. On the
other hand, to measure the accuracy of the Spectral Clustering methods we also use the percentage

51

52 Chapter 6. Numerical Experiments

of patterns correctly clustered. For this purpose, we have data sets with a target column. We
compute this measure as:

Percentage accuracy =
good targeted data

total data
.

To evaluate the efficacy of our methods we will compare this percentage with the one obtained if
we apply k-means to the data sets.

6.2 Experimental scenarios and datasets used

We have different data sets to test dimensional reduction techniques and Spectral Clustering
methods. For LE, we have two easy synthetic samples:

1. Spiral: We have 2500 data points of dimension 2 that we want to reduce into a lower di-
mensional space. The spiral is an embedded 1-dimensional manifold in a 2-dimensional
space.

2. Helix: We have 2500 3-dimensional examples. The helix is also an embedded 1-dimensional
manifold.

For Spectral Clustering we are going to use some data sets obtained from the Graph Demo
http://www.ml.uni-saarland.de/GraphDemo/GraphDemo.html based on article
[5]. They are also easy synthetic samples, that let us verify we have implemented correctly these
algorithms and that they obtain competitive results.

1. Two moons balanced: the first two dimensions are two half-circles of two moons shape.
In all dimensions, Gaussian noise with mean 0 and variance 0, 01 has been added. Both
moons have the same weight (probability mass), that is in average they will contain the same
number of data points.

2. Two moons unbalanced: as ”Two moons balanced”, but the two classes have unequal
weights of 0, 2 and 0, 8, respectively. That is, in expectation only 20% of the points come
from the first moon, while 80% of the points come from the second moon.

3. Two Gaussians balanced: The data are the two points, (−1.1,−1.1) and (1, 1), in two-
dimensional space. Both points are disturbed by Gaussian noise of variance 0, 36. Both
classes have equal weight.

4. Two Gaussians unbalanced: As ”Two Gaussians Balanced”, but unbalanced class weights
of 0, 2 and 0, 8.

5. Two Gaussians, different variance: As ”Two Gaussians Balanced”, but each point is dis-
turbed by a Gaussian noise of different variance, one of 0, 36 and thge other one of 0, 16.

6. Three Gaussians: The data are the three points (1, 1), (−1.1,−1.1) and (2,−2), in two-
dimensional space. All three points are disturbed by Gaussian noise of variance 0, 36. The
weights of the Gaussian are 0, 3, 0, 3 and 0, 4.

Finally, we will also prove Spectral Clustering methods with a classic classification example of
higher dimension: the Ringnorm problem. It has as inputs the points from two Gaussian distribu-
tions. Class 1 is multivariate normal with mean 0 and covariance 4 times the identity matrix. Class
2 has unit covariance and mean (a, a, ..., a), a = dim−0,5.

http://www.ml.uni-saarland.de/GraphDemo/GraphDemo.html

6.3. LE Dimensionality Reduction Results 53

6.3 LE Dimensionality Reduction Results

To prove the dimension reduction methods, we have executed the LE algorithm with two data
sets.

Helix The Helix problem is a set of 2500 examples in a 3-dimensional space. But an helix is a
1-dimensional manifold, so we want to reduce our points to a space with dimension 1. Then, to
apply LE we must use k = 1 and the best weight matrix parameter is fixed in t = 0, 1.

This easy example shows us that LE is really able to reduce dimension. The helix is perfectly
unrolled in dimension 1, as we can see because the colours follows the same order than in the
3-dimensional space.

54 Chapter 6. Numerical Experiments

Figure 6.3.1: Helix before and after the embedding applying LE algorithm .

6.3. LE Dimensionality Reduction Results 55

Spiral The Spiral problem is a data set with 2500 sample points in a 2-dimensional space. As
a spiral is an embedded 1-dimensional manifold, we apply LE with k = 1. The weight matrix
parameter in this case should be t = 0, 01.

The result of this method is shown in figure 6.3.2. The idea is to unroll the spiral in k = 1, so
the local information is conserved if and only if the colours in the reduced space follows the same
sequence than in the original one. Whereas PCA is not able to keep up local distance in this case
as it makes a linear projection of the data, with LE we unroll the spiral in a more satisfactory way.

56 Chapter 6. Numerical Experiments

Figure 6.3.2: Spiral before and after the embedding applying LE algortihm.

6.4. Spectral Clustering Results 57

6.4 Spectral Clustering Results

To cluster data, we have implemented Spectral Clustering with the three different Laplacian
Graphs studied before (chapter 4). We are going to see in the following results that, as we have
anticipated, the unnormalized laplacians do not work as well as the normalized one. Between
Symmetric and Random Walk Laplacians there do not exist a big difference, the best method
depend on the data set.

We are going to present the best results obtained with the different Spectral Clustering im-
plementations, comparing the results with the ones that we obtain if we apply k-means over the
original data. At the end of this section we present a table (6.4.1) with all the results obtained with
different parameters.

Case 1: Two moons balanced This data set is a 500 patterns sample of dimension 3. We reduce
it to a 2-dimensional space where we must find k = 2 clusters. The best Gaussian kernel parameter
is t = 0, 01, obtaining the same result for Symmetric and for Random Walk Laplacians.

The percentage accuracy in this case has been of 99, 60% better than k-means, that obtained a
78, 80%.

We show in figures (6.4.1), (6.4.2), (6.4.3) the results obtained with the Symmetric Laplacian
Graph. We observe that Spectral Clustering classifies almost every point in each corresponding
clusters while k-means always fail in the moons’ extremes.

Figure 6.4.1: Original clusters and predicted ones using Spectral Clustering in the initial space.

58 Chapter 6. Numerical Experiments

Figure 6.4.2: Original clusters and predicted ones using k-means in the initial space.

Figure 6.4.3: Original clusters and predicted ones using Spectral Clustering in the embedded space.

6.4. Spectral Clustering Results 59

Case 2: Two moons unbalanced We have now a 500 points data set of dimension 3. We reduced
it to a 2-dimensional space where we must find k = 2 clusters. The best results are obtained with
a Gaussian kernel parameter t = 0, 001 for Symmetric Laplacian Graph.

The percentage accuracy in this case has been of 100% better than k-means, that obtained a
62, 20%.

We show in figures (6.4.4), (6.4.5), (6.4.6) the results obtained for this example. We observe
that Spectral Clustering classifies well the whole data set while k-means always fail again in the
moons’ extremes.

Figure 6.4.4: Original clusters and predicted ones using Spectral Clustering in the initial space.

60 Chapter 6. Numerical Experiments

Figure 6.4.5: Original clusters and predicted ones using k-means in the initial space.

Figure 6.4.6: Original clusters and predicted ones using Spectral Clustering in the embedded space.

6.4. Spectral Clustering Results 61

Case 3: Two Gaussians balanced This data set is a 500 patterns sample of dimension 3. We
reduced it to a 2-dimensional space where we must find k = 2 clusters. The best Gaussian kernel
parameter is t = 0, 01, obtaining sligthly better results with a Random Walk Laplacian Graph
method. This two Gaussians are sufficiently separated, so any clustering method offers a good
prediction.

The percentage accuracy in this case has been of 99, 20%, that is really similar to the 99, 00%
obtained with k-means.

We show in figures (6.4.7), (6.4.8), (6.4.9) the results obtained with the Random Walk Lapla-
cian Graph.

Figure 6.4.7: Original clusters and predicted ones using Spectral Clustering in the initial space.

62 Chapter 6. Numerical Experiments

Figure 6.4.8: Original clusters and predicted ones using k-means in the initial space.

Figure 6.4.9: Original clusters and predicted ones using Spectral Clustering in the embedded space.

6.4. Spectral Clustering Results 63

Case 4: Two Gaussians unbalanced We cluster now a 500 patterns sample of dimension 3. We
reduced it to a 2-dimensional space where we must find k = 2 clusters. The best Gaussian kernel
parameter is t = 0, 01, obtaining the same result for Symmetric and Random Walk Laplacians.
This example is also very simple to solve, and results with Spectral Clustering and k-means are
both very good.

The percentage accuracy in this case has been of 98, 80%, very near to k-means results, that
obtained a 96, 60%.

We show in figures (6.4.10), (6.4.11), (6.4.12) the results obtained with the Symmetric Lapla-
cian Graph.

Figure 6.4.10: Original clusters and predicted ones using Spectral Clustering in the initial space.

64 Chapter 6. Numerical Experiments

Figure 6.4.11: Original clusters and predicted ones using k-means in the initial space.

Figure 6.4.12: Original clusters and predicted ones using Spectral Clustering in the embedded space.

6.4. Spectral Clustering Results 65

Case 5: Two Gaussians different variance This data set is a 500 patterns sample of dimension
3. We reduced it to a 2-dimensional space where we must find k = 2 clusters, corresponding to the
two Gaussians. The best Gaussian kernel parameter is t = 0, 1, obtaining a sligthly better result
with Random Walk Laplacians. Again, clustering two Gaussians that do not overlap in many points
is easy, so the results are very good.

The percentage accuracy in this case has been of 100% more or lees as k-means, that obtained
a 99, 80%.

We show in figures (6.4.13), (6.4.14), (6.4.15) the results obtained with the Random Walk
Laplacian Graph.

Figure 6.4.13: Original clusters and predicted ones using Spectral Clustering in the initial space.

66 Chapter 6. Numerical Experiments

Figure 6.4.14: Original clusters and predicted ones using k-means in the initial space.

Figure 6.4.15: Original clusters and predicted ones using Spectral Clustering in the embedded space.

6.4. Spectral Clustering Results 67

Case 6: Three Gaussians This data set is a 500 patterns sample of dimension 3. We reduced it
to a 2-dimensional space where we must find k = 3 clusters. The percentage accuracy in this case
is always lower than k-means, that obtained a 98, 60% independently of the parameters. The best
result is a 95, 20% obtained with a Random Walk Laplacian Graph and t = 0, 01.

If we observe the embedding (figure 6.4.18), for example for t = 0, 1 with a Random Walk
Laplacian, we see that it has made a good dimension reduction, as it conserves the geometric
distance between neighbors points. We see that the different clusters appears separately, and the
red and blue Gaussians, that in the original data (figure 6.4.16) are closer, maintain their distances.
The bad results are due to the k-means limitations in this situation. In the original space we face
with an easy problem so k-means gives excellent results (figure 6.4.17).

Figure 6.4.16: Original clusters and predicted ones using Spectral Clustering in the initial space.

68 Chapter 6. Numerical Experiments

Figure 6.4.17: Original clusters and predicted ones using k-means in the initial space.

Figure 6.4.18: Original clusters and predicted ones using Spectral Clustering in the embedded space.

6.4. Spectral Clustering Results 69

Case 7: Ringnorm With this data set of 400 examples, we want to prove a higher dimensional
case. The original data is embedded in a 20-dimensional space. We reduced it to a 2-dimensional
space where we must find k = 2 clusters. The best weight matrix parameter is t = 0, 1, obtained
with a Random Walk Laplacian Graph. This example represents a central circle with an external
annulus. For k-means is very difficult to cluster this kind of data, as we can see in figure (6.4.20),
whereas Spectral Clustering obtained a good result (figure 6.4.19).

The percentage accuracy in this case has been of 96, 00% better than k-means, that obtained a
59, 50%.

We show in figures (6.4.19), (6.4.20), (6.4.21) the results obtained with the Random Walk
Laplacian Graph method.

Figure 6.4.19: Original clusters and predicted ones using Spectral Clustering in the initial space.

70 Chapter 6. Numerical Experiments

Figure 6.4.20: Original clusters and predicted ones using k-means in the initial space.

Figure 6.4.21: Original clusters and predicted ones using Spectral Clustering in the embedded space.

6.4. Spectral Clustering Results 71

C
as

e
1

C
as

e
2

C
as

e
3

C
as

e
4

C
as

e
5

C
as

e
6

C
as

e
7

SC
kM

SC
kM

SC
kM

SC
kM

SC
kM

SC
kM

SC
kM

L
s
y
m

0,
00

1
51

,4
0%

78
,8

0%
10

0,
00

%
62

,2
0%

50
,2

0%
99

,0
0%

98
,6

0%
96

,6
0%

67
,0

0%
99

,8
0%

95
,0

0%
98

,6
0%

52
,2

5%
59

,5
0%

0,
01

0
99

,6
0%

78
,8

0%
99

,4
0%

61
,4

0%
99

,0
0%

99
,0

0%
98

,8
0%

96
,6

0%
51

,0
0%

99
,8

0%
18

,4
0%

98
,6

0%
53

,2
5%

59
,5

0%
0,

10
0

83
,0

0%
78

,8
0%

59
,4

0%
62

,2
0%

99
,0

0%
99

,0
0%

99
,4

0%
96

,6
0%

99
,8

0%
99

,8
0%

71
,2

0%
98

,6
0%

87
,7

5%
59

,5
0%

1,
00

0
76

,4
0%

78
,8

0%
62

,0
0%

61
,4

0%
99

,0
0%

99
,0

0%
99

,6
0%

96
,6

0%
99

,8
0%

99
,8

0%
68

,4
0%

98
,6

0%
51

,5
0%

59
,7

5%
10

,0
00

75
,6

0%
78

,8
0%

62
,2

0%
62

,2
0%

99
,2

0%
99

,0
0%

98
,8

0%
96

,6
0%

99
,8

0%
99

,8
0%

71
,4

0%
98

,6
0%

73
,5

0%
59

,5
0%

10
0,

00
0

75
,2

0%
78

,8
0%

61
,0

0%
62

,0
0%

99
,2

0%
99

,0
0%

98
,2

0%
96

,6
0%

99
,8

0%
99

,8
0%

71
,0

0%
98

,6
0%

71
,2

5%
60

,5
0%

L
r
w

0,
00

1
53

,8
0%

79
,2

0%
50

,0
0%

62
,2

0%
62

,6
0%

99
,0

0%
67

,6
0%

96
,6

0%
79

,0
0%

99
,8

0%
33

,4
0%

98
,6

0%
52

,2
5%

59
,2

5%
0,

01
0

99
,6

0%
78

,8
0%

56
,6

0%
62

,0
0%

99
,2

0%
99

,0
0%

98
,8

0%
96

,6
0%

99
,8

0%
99

,8
0%

95
,2

0%
98

,6
0%

53
,5

0%
59

,5
0%

0,
10

0
82

,6
0%

78
,8

0%
59

,8
0%

61
,2

0%
99

,0
0%

99
,0

0%
99

,6
0%

96
,8

0%
10

0,
00

%
99

,8
0%

76
,8

0%
98

,6
0%

96
,0

0%
59

,5
0%

1,
00

0
75

,8
0%

78
,8

0%
62

,0
0%

62
,2

0%
99

,2
0%

99
,2

0%
99

,6
0%

96
,6

0%
99

,8
0%

99
,8

0%
68

,8
0%

98
,6

0%
51

,5
0%

59
,5

0%
10

,0
00

75
,4

0%
78

,8
0%

61
,0

0%
61

,4
0%

99
,2

0%
99

,2
0%

97
,8

0%
96

,6
0%

99
,8

0%
99

,8
0%

71
,2

0%
98

,6
0%

72
,0

0%
59

,5
0%

10
0,

00
0

75
,2

0%
78

,8
0%

61
,2

0%
62

,0
0%

99
,0

0%
99

,0
0%

98
,2

0%
96

,6
0%

99
,8

0%
99

,8
0%

71
,0

0%
98

,6
0%

70
,5

0%
58

,5
0%

L 0,
00

1
54

,8
0%

78
,8

0%
70

,6
0%

62
,0

0%
53

,0
0%

99
,2

0%
71

,4
0%

96
,6

0%
51

,6
0%

99
,8

0%
29

,0
0%

98
,6

0%
52

,2
5%

59
,2

5%
0,

01
0

58
,4

0%
79

,2
0%

72
,0

0%
62

,0
0%

58
,6

0%
99

,0
0%

63
,4

0%
96

,6
0%

62
,6

0%
99

,8
0%

34
,6

0%
98

,6
0%

52
,2

5%
61

,7
5%

0,
10

0
51

,6
0%

78
,8

0%
55

,2
0%

62
,0

0%
53

,2
0%

99
,0

0%
69

,4
0%

96
,6

0%
63

,2
0%

99
,8

0%
40

,6
0%

98
,6

0%
53

,5
0%

59
,7

5%
1,

00
0

51
,4

0%
78

,8
0%

78
,8

0%
62

,0
0%

53
,8

0%
99

,0
0%

69
,4

0%
96

,8
0%

57
,6

0%
99

,8
0%

29
,0

0%
98

,6
0%

68
,7

5%
59

,5
0%

10
,0

00
51

,8
0%

78
,8

0%
79

,0
0%

62
,0

0%
51

,6
0%

99
,0

0%
74

,0
0%

96
,6

0%
51

,2
0%

99
,8

0%
27

,4
0%

98
,6

0%
58

,7
5%

60
,5

0%
10

0,
00

0
51

,8
0%

78
,8

0%
79

,0
0%

61
,4

0%
51

,6
0%

99
,0

0%
72

,4
0%

96
,6

0%
51

,8
0%

99
,8

0%
27

,4
0%

98
,6

0%
52

,7
5%

58
,5

0%

Ta
bl

e
6.

4.
1:

C
om

pl
et

ed
re

su
lts

fo
rS

pe
ct

ra
lC

lu
st

er
in

g
m

et
ho

ds

Chapter 7

Conclusions and further work

7.1 Conclusions

In this work we have made a revision of classical methods for dimensionality reduction and
clustering. After seen the disadvantages of these approaches, we conclude that the main problem is
that they do not consider the explicit form of the differential manifold structure in which our data
probably lie. With the purpose of solving this problem we have focused this work in the study of
advanced methods for dimensionality reduction and clustering, specifically Laplacian Eigenmaps
(LE) and Spectral Clustering algorithms. The main advantages of these techniques is that they re-
duced the dimension of our original data, preserving the local geometric information of the points.
The embedding of the points corresponds with the subjacent manifold to which the original data
belongs. For Spectral Clustering methods, we apply classical clustering methods over the embed-
ded data, problem that is easier to be solved. In this way, Spectral Clustering does not make any
assumption on the form of the clusters.

After a theoretical study, we have implemented and proved these methods. Whereas the exper-
iments have been made over synthetical simple examples, we have seen that the results are as good
as we have expected. In the one hand, LE reduce the dimension of our original data, constructing
an embedding that keeps close neighbor points. It is able to reduce in a good way examples as
spirals that PCA is not able to unroll. The problem of LE algorithm is that only works properly if
the data is uniformly sampled in the original space.

On the other hand, we have further proved that Spectral Clustering with the right parameters
gives very good results in easy examples. It also improves the results obtained with k-means in
examples where this classical algorithm is not able to find a proper solution. The main problem
of Spectral Clustering techniques is the selection of the parameter values and the Laplacian Graph
more adequate to each case. We have seen in the experimental work performed that depending on
the value of these variables, the results can be excelent or a complete disaster due to an inappropri-
ate embedding.

In conclussion, we have presented some methods for dimensional reduction and clustering that,
if they are correctly parametrized, improves the classical approaches studied until now.

7.2 Further work

The experiments presented in this work have been performed with synthetical simple data sets
that have allowed us to study the behaviour and accuracy of the different algorithms. In future work,
we will apply these methods to real high dimensional data sets. The objective will be to cluster the
data and try to classify it taking advantages of the information that gives us those clusters.

73

74 Chapter 7. Conclusions and further work

As the main problem of Spectral Clustering is the search of appropiate parameters for the
method, it will be useful to define a methodology to select these values depending on the properties
of the data sets we are working with.

Although we have carried out a deep theoretical study of the out-of-sample Spectral Clustering,
we have not implemented it in this work. In future works we want to prove this approximation to
Spectral Clustering and check that the results in test data are similar to the ones obtained with a
training set.

Also, we could improve these studies working on Diffusion Maps [24], [25]. These methods
are based on the searching of significant geometric properties of a data set and they work even with
non-uniformly distributed data. They are very related with Spectral Clustering and we would like
to compare the behaviour and accuracy of both approaches.

Appendix A

Notation glossary

A.1 Graph notation

1 is the unity vector, i.e., 1 = (1, . . . , 1).

G = (S,E), is the similarity graph, formed by the nodes V and the edges E.

S = {x1, . . . ,xN} is our set of nodes formed by the points of the dataset in the original n
dimensional space.

W = (wij), with wij > 0, is the adjacency matrix of the graph.

We work with undirected graphs, so wij = wji.

D is the degree matrix, defined as the diagonal matrix with the degrees di =
∑N

j=1wij as its
elements.

Ā = S/A where A ⊂ V is a subset of the vertices set. We define the indicator vector

1A = (f1, . . . , fm)′

where fi =

{
1 if xi ∈ A.
0 if xi /∈ A.

To simplify notation, we use the compact expression {i|xi ∈ A}.

|A| represents the number of nodes in A. It is a mesure based on the number of vertices of our
graph.

vol(A) =
∑

i∈A di represents the size of A. It is a mesure based on the weights of the edges of
our graph.

We say that our subset A is connected if any two vertices in A are connected and all the interme-
diate points belong to A.

A is a connected component if it is connected and it no has connections with Ā.

The sets A1, . . . , Am form a partition of the graph if Ai
⋂
Aj = ∅ and A1

⋃
· · ·
⋃
Ak = V ,

where k is the dimension of the reduced space.

75

76 Appendix A. Notation glossary

We call Frobenius norm to the two-norm for matrices. Mathematically, if A is a m × n matrix
and A∗ its conjugated matrix

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√
Tr(A∗ ·A) =

√√√√min{m,n}∑
i=1

σ2
i .

The Gram matrix G of a set of vectors v1, . . . , vn in an inner product space is the Hermitian
matrix of inner products, whose entries are given by Gij =< vi, vj >.

In linear algebra, the outer product typically refers to the tensor product of two vectors. It is
equivalent to a matrix multiplication uvT .

u⊗ v = uvT =

u1

u2

u3

u4

 [v1 v2 v3

]
=

u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

u4v1 u4v2 u4v3

 .

Appendix B

Constructing similarity graphs

To construct similarity graphs from a given set {x1, . . . ,xN}, we establish the nodes as the
points of the set. To create the links between nodes we must determine the proximity between
them and the weights of these edges. The goal we want to reach by the construction of a similarity
graph is to model the local neighborhood relationships between the data points. We are going to
present here some of these techniques, that appear explained in [2] and [5].

• The ε-neighborhood graphs: We connect all points with distance smaller than ε,

‖xi − xj‖2 < ε.

When the distances between all connected points are of the same scale the weights will not
incorporate more information, so we usually construct no weighted graphs. The principal
advantage of this method is that it is geometrically motivated, as it is the natural measure
between points. But in graphs very connected is more difficult to choose an appropriate ε.

• The k-nearest neighbor graphs: We connect xi with its k nearest neighbors. If we con-
struct our graph in this way, i.e, (xi,xj) ∈ E if xj ∈ k nearest neighbors of xi, we obtain a
symmetric graph. If we prefer to work with an asymmetric graph, we could modify slightly
this method in one of the following ways:

– Option 1: The usually called k-nearest neighbors graph is constructed without con-
sidering the direction, i.e., (xi,xj) ∈ E if xj ∈ k nearest neighbors of xi or xi ∈ k
nearest neighbors of xj .

– Option 2: The graph called mutual k-nearest neighbors graph is constructed connect-
ing xi and xj only if xj ∈ k nearest neighbors of xi and xi ∈ k nearest neighbors of
xj .

We weight the edges by the similarity between adjacent points. This relation is given by the
similarity matrix S (see appendix A). The advantage of this method is that the neighbors of
each point are easier to choose and the resulting graph is always connected. But we obtain a
graph geometrically less intuitive.

• The fully connected graphs: We connect each point with all the other nodes of our graph.
In this case, we weight the connected nodes with sij (see appendix A) for each edge. We
only use the similarity function with this purpose if it contributes with local information. An
example of this kind of functions is the exponential decay function:

s(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
,

where σ controls the change of our neighborhood.

77

78 Appendix B. Constructing similarity graphs

Appendix C

Laplacian Graphs

Laplacian Graphs are one of the main tools for Laplacian Eigenmaps and Spectral Clustering.
In this appendix we are going to explain the different types of Laplacian Graphs and their most
important properties following the classification given at [5]. For this purpose, we assume that
our graph G is an undirected weighted graph and the weighted matrix W has positive entries
(wij = wji > 0). We classify the Laplacian Graphs in unnormalized and normalized Laplacian
Graphs.

• Unnormalized Laplacian Graph

We define an Unnormalized Laplacian Graph L as follows

L = D −W

This kind of graphs are characterized by a series of properties describe in the following
proposition.

Proposition 5 Properties of L.

1. ∀f ∈ RN , where f is any vector, it satisfies

f ′Lf =
1

2

N∑
i,j=1

wij(fi − fj)2. (C.0.1)

2. L is a symmetric and positive semidefinite matrix.
3. The smaller eigenvalue of L is 0 and it corresponds to the eigenvector 1.
4. L has N non-negative real-valued eigenvalues 0 = λ0 6 λ1 6 · · · 6 λN−1.

Proof We prove each property separately.

1. We proof that the expression C.0.1 is true.

f ′Lf = f ′Df − f ′Wf

=
N∑
i=1

dif
2
i −

N∑
i,j=1

fifjwij

=
1

2

 N∑
i=1

dif
2
i − 2

N∑
i,j=1

fifjwij +

N∑
j=1

djf
2
j

 (C.0.2)

=
1

2

N∑
i,j=1

wij(fi − fj)2. (C.0.3)

79

80 Appendix C. Laplacian Graphs

In the equality C.0.2 we have applied that
∑N

i=1 dif
2
i =

∑N
j=1 djf

2
j . Finally, in the

last equality(C.0.3) we have applied di definition (see appendix A) and the square of
the subtraction expression.

2. To show that L is a symmetric matrix, we only have to realize that the matrices D
and W are symmetric by definition (see appendix A). As L = D −W , we can affirm
immediately that L is symmetric.
We could also prove in an easy way that L is positive semidefinite, i.e., that f ′Lf > 0.

f ′Lf =
1

2

∑
wij(fi − fj)2 > 0,

as long as

wij > 0, by definition.

(fi − fj)2 > 0, for being a square.

3. To look for the eigenvalues of L we must compute |L− λI| = 0.
If λ = 0, then

|L| = 0

|D −W | = 0∣∣∣∣∣∣∣
d1 − w11 w12 · · ·

. . .
· · · dN − wNN

∣∣∣∣∣∣∣ = 0.

And this is always true because each element in the diagonal is a linear combination of
the rest of the elements that form its row. If we apply this result to our equation to find
the corresponding eigenvector, we arrive to the vector 1,

(L− λI)f = 0.

Lf = 0

(D −W)f = 0d1 − w11 w12 · · · w1n

. . .
· · · dN − wNN

f1
...

fN

 = 0

For each row we have

diwiifi +
∑
j 6=i

wijfj = 0

diwiifi =
∑
j 6=i

wijfj∑
j 6=i

wijfi =
∑
j 6=i

wijfj

fi =

1
...
1

81

4. We have seen before that L is positive semidefinite, so, by definition, their eigenvalues
are positive.
L has alwaysN eigenvalues because f = (f1, . . . , fN), so the dimension of the weight
matrix W is N ×N . �

We have to notice that the Laplacian Graph does not depend on the elements on the diag-
onal of W . If we take U = W di we obtain the same Laplacian matrix L.

Proposition 6 Number of connected components in an Unnormalized Laplacian Graph.
Let G be an undirected graph with non-negative weights. Then the multiplicity k of the

eigenvalue λ0 of L is the number of connected components A1, . . . , Ak in our graph. The
eigenspace of the eigenvalue λ0 is spanned by the indicator vectors 1A1 , . . . ,1Ak

of these
components.

Proof First, we assume that k = 1, that means that G is a connected graph. Let f be an
eigenvector with eigenvalue 0. In this case,

0 = f ′Lf =

N∑
i,j=1

wij(fi − fj)2

As the weights are always non-negative valued,

N∑
i,j=1

wij(fi − fj)2 = 0

wij(fi − fj)2 = 0 ∀i, j.

So, we see that{
wij = 0 ⇒ xi and xj are not connected
wij > 0 ⇒ fi = fj ⇒ f is constant on the whole connected graph.

We study know the case with k connected components. We assume that the vertices are
ordered according to the connected components they belong to. In this case, our matrix L
will be formed by block diagonal components,

L =

L1 0

L2

. . .
0 Lk

 ,

where Li are Laplacian Graphs, each one corresponding to the i-th connected component of
G. As L is a block diagonal matrix, its spectrum is given by the union of the spectra of Li.
As each Li is a Laplacian connected graph, each one have an eigenvalue λi0 = 0 and its
corresponding eigenvector fi0 = 1. There exist k eigenvalues 0 valued in L. This tell us that
L has multiplicity k. �

• Normalized Laplacian Graph

82 Appendix C. Laplacian Graphs

We are going to study two types of Normalized Laplacian Graphs. The first one, the Sym-
metric Laplacian is given by the expression

Lsym = D−
1
2LD−

1
2

= I −D−
1
2WD−

1
2 .

Lsym has the property of being a symmetric matrix.

The second one is the called Random Walk Laplacian, as it is closely related with random
walks.

Lrw = D−1L

= I −D−1W.

As we have made before with Unnormalized Laplacian Graphs, we present a proposition
with the most important properties of these types of graphs.

Proposition 7 Properties of Lsym and Lrw.

1. ∀f ∈ RN , where f is any vector, it satisfies

f ′Lsymf =
1

2

N∑
i,j=1

wij

(
fi√
di
− fj√

dj

)2

. (C.0.4)

2. λ is an eigenvalue of Lrw with v its corresponding eigenvector⇔ λ is an eigenvalue
of Lsym with associated eigenvector w = D

1
2 v.

3. λ is an eigenvalue of Lrw with v its corresponding eigenvector⇔ λ and v solves the
equation Lv = λDv.

4. 0 is an eigenvalue of Lrw with eigenvector v = 1. 0 is also eigenvalue of Lsym associ-
ated to the eigenvector w = D

1
2 1.

5. Lsym and Lrw are positive semidefinite matrices and they have N non-negative real-
valued eigenvalues 0 = λ0 6 λ1 6 · · · 6 λN .

Proof We are going to prove each property separately.

1. In an analogous form to the one for Unnormalized Laplacian Graph, we proof that the

83

expression C.0.4 is true.

f ′Lsymf = f ′(I −D−
1
2WD−

1
2)f

= f2 − f ′D−
1
2WD−

1
2 f

= f2 −
(
f1 · · · fN

)
1√

d1
√
d1
w11

1√
d1
√
d2
w12 · · · 1√

d1
√
dN
w1N

. . .
1√

dN
√
d1
wN1 · · · 1√

dN
√
dN
wNN

 f1

...
fN

= f2 −

N∑
i,j=1

1√
di
√
dj
wijfifj

=

N∑
i,j=1

fifi −
1√

di
√
dj
wijfifj

=
1

2

f2
i + f2

j − 2

N∑
i,j=1

1√
di
√
dj
wijfifj

=

1

2

N∑
i,j=1

wij

(
fi√
di
− fj√

dj

)2

.

2. We assume that λ is an eigenvalue of Lsym and w = D
1
2 v its corresponding eigenvec-

tor.

Lsymw = λw

D−
1
2Lsymw = D−

1
2λw

D−
1
2D−

1
2LD−

1
2w = D−

1
2λw

D−1LD−
1
2D

1
2 v = D−

1
2λD

1
2 v

D−1Lv = λv

Lrwv = λv.

So, λ is an eigenvalue of Lrw and v is its corresponding eigenvector.

3. We assume now that λ is an eigenvalue of Lrw and v its corresponding eigenvector.

Lrwv = λv

DLrwv = Dλv

DD−1Lv = Dλv

Lv = λDv.

4. We could easily see that Lrw1 = 0, because we know that L1 = 0 (see proposition 5),
and Lrw = D−1L. We want to see also that Lsym1 = 0:

– If 0 is an eigenvalue of Lrw, then 0 is an eigenvalue of Lsym as we have seen in
the previous properties.

– In the same way, we could say that if 1 is an eigenvector of Lrw then D
1
2 1 is an

eigenvector of Lsym.

84 Appendix C. Laplacian Graphs

5. Lsym is positive semidefinite, as f ′Lsymf > 0. This is true because we have seen that

f ′Lsymf =
1

2

N∑
i,j=1

wij

(
fi√
di
− fj√

dj

)2

wij > 0(
fi√
di
− fj√

dj

)2

> 0.

Let’s prove know that Lrw is also positive semidefinite. Let be f = D
1
2 v,

D
1
2 v′D−

1
2LD−

1
2D

1
2 v > 0

v′D−
1
2D−

1
2Lv > 0

v′D−1Lv > 0

v′Lrwv > 0.

�

Proposition 8 Number of connected components in a Normalized Laplacian Graph.
Let G be an undirected graph with non-negative weights. Then the multiplicity k of the
eigenvalue λ0 of Lsym and Lrw is the number of connected components A1, . . . , Ak in our
graph. The eigenspace of the eigenvalue λ0 is spanned by the indicator vectors 1Ai of these
components in the case of Lrw, and it is spanned by D

1
2 1Ai in the case of Lsym.

The proof in this case is analogous to the one for the proposition 6, so we are not going to
present it here.

Appendix D

Auxiliar Theorems and Lemmas

D.1 Gauss’s Divergence Theorem

Theorem 1 Let V be a simple solid in R3 and S = ∂V its boundary, oriented by the outward
pointing unit normal field of the boundary S. Let F : V → R3 be a vector field C1 . Then∫

V
divF =

∫
S
F · n dS.

D.2 Rayleigh-Ritz Theorem

Theorem 2 Let A ∈ Cn×n be an hermitic matrix and R : Cn {0} → R such that,

R(x) =
xHAx

xHx
, with ‖x‖ 6= 0.

This expression is called the Rayleigh quotien and it defines the eigenvectors as critical points in
R. Then

λmax = max
‖x‖6=0

R(x)

λmin = min
‖x‖6=0

R(x).

D.3 Parseval’s Identity

This theorem is a generalization of the Pythagorean Theorem in separable Hilbert’s spaces.

Theorem 3 Let B be an orthogonal basis in a vectorial space. Then,

‖x‖2 =< x, x >=
∑
v∈B
|< x, v >|2 .

D.4 Green’s Function

The Green’s Function is the kernel of an integral operator. It is useful to solve non-homogeneus
boundary value problems.

Let L be the Sturm–Liouville differential operator, that presents the form

L =
d

dx

[
p(x)

d

dx

]
+ q(x)

85

86 Appendix D. Auxiliar Theorems and Lemmas

and let D be the boundary conditions operator

Du =

{
α1u

′(0) + β1u(0)
α2u

′(l) + β2u(l)

Let f(x) be a continuous function in [0, l]. We shall also suppose that the problem

Lu = f

Du = 0

is regular (i.e., only the trivial solution exists for the homogeneous problem).

Theorem 4 There is one and only one solution u(x) which satisfies

Lu = f

Du = 0

and it is given by

u(x) =

∫ l

0
f(s)G(x, s)ds

where G(x, s) is a Green’s function satisfying the following conditions:

1. G(x, s) is continuous in x and s.

2. For x 6= s, LG(x, s) = 0.

3. For s 6= 0, DG(x, s) = 0.

4. Derivative ”jumps”: G′(s+0, s)−G′(s−0, s) = 1
p(s) .

5. Symmetry: G(x, s) = G(s, x).

D.5 Mercer’s theorem

Theorem 5 Suppose K is a continuous symmetric non-negative definite kernel. Then there is an
orthonormal basis {ei}i of L2[a, b] consisting of eigenfunctions of TK, the linear operator as-
sociated to K, such that the corresponding sequence of eigenvalues {λi}i is nonnegative. The
eigenfunctions corresponding to non-zero eigenvalues are continuous on [a, b] and K has the rep-
resentation

K(s, t) =

∞∑
j=1

λjej(s)ej(t)

where the convergence is absolute and uniform.

Bibliography

[1] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

[2] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15:1373–1396, 2002.

[3] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290:2323–2326, 2000.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, 1 edition, 2007.

[5] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007.

[6] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. In Advances in Neural Information Processing Systems 14, pages 849–856. MIT
Press, 2001.

[7] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-François Paiement, Pascal Vin-
cent, Marie Ouimet, Département D’informatique Et Recherche Opérationnelle, and Centre
De Recherches Mathématiques. Learning eigenfunctions links spectral embedding and kernel
pca. Neural Computation, 16:2004, 2004.

[8] Yoshua Bengio, Pascal Vincent, Jean-François Paiement, Olivier Delalleau, Marie Ouimet,
and Nicolas Le Roux. Spectral clustering and kernel PCA are learning eigenfunctions. Tech-
nical Report 1239, Département d’informatique et recherche opérationnelle, Université de
Montréal, 2003.

[9] M. Belkin. Problems of Learning on Manifolds. PhD thesis, The University of Chicago,
2003.

[10] Yoshua Bengio, Jean-Francois Paiement, and Pascal Vincent. Out-of-sample extensions for
lle, isomap, mds, eigenmaps, and spectral clustering. In In Advances in Neural Information
Processing Systems, pages 177–184. MIT Press, 2003.

[11] T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, London, 1994.

[12] T. Kohonen. Self-organization and associative memory. Springer-Verlag New York, Inc. New
York, NY, USA, 1989.

[13] S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillan, New York, 1994.

[14] Rosenberg S. The Laplacian on a Riemannian manifold. Cambridge University Press, 1997.

87

88 Bibliography

[15] Piotr Indyk. Dimensionality reduction techniques for proximity problems. In In Proc. 9th
SODA, pages 371–378, 2000.

[16] Dorothea Wagner and Frank Wagner. Between min cut and graph bisection. In Mathematical
Foundations of Computer Science 1993, volume 711 of Lecture Notes in Computer Science,
pages 744–750. Springer Berlin / Heidelberg, 1993.

[17] A novel way of computing dissimilarities between nodes of a graph, with application to col-
laborative ltering and subspace projection of the graph nodes. Information Systems Research,
2005.

[18] Ulrike von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral cluster-
ing. pages 857–864. MIT Press, 2004.

[19] Ulrike Von Luxburg, Olivier Bousquet, and Mikhail Belkin. Limits of spectral clustering. In
In Advances in Neural Information Processing Systems. MIT Press, 2005.

[20] Francis Bach and Michael I. Jordan. Learning spectral clustering, with application to speech
separation. Journal of Machine Learning Research, 7:1963–2001, 2006.

[21] Christopher Williams and Matthias Seeger. The effect of the input density distribution on
kernel-based classifiers. In Proceedings of the 17th International Conference on Machine
Learning, pages 1159–1166. Morgan Kaufmann, 2000.

[22] Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems 13, pages 682–688. MIT
Press, 2001.

[23] V. Koltchinskii and E. Giné. Random matrix approximation of spectra of integral operators.
Bernouilli, 6:113–167, 2000.

[24] Richard Socher and Supervisor Prof. Matthias Hein. Manifold Learning and Dimensionality
Reduction with Diffusion Maps. PhD thesis, 2008.

[25] R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Analysis,
21(1):5–30, July 2006.

	Contents
	Introduction
	Classical dimensional reduction and clustering methods
	Principal Component Analysis (PCA)
	Motivation
	Algorithm
	Advantages and disadvantages

	K-means clustering
	Motivation
	Algorithm
	Advantages and disadvantages

	New approaches

	Advanced Dimensional Reduction Methods
	Motivation
	Laplacian Eigenmaps (LE)
	Algorithm
	Justification
	Discussion: advantages and disadvantages

	Locally Linear Embedding (LLE)
	Algorithm

	LLE Laplacian point of view

	Spectral Clustering
	Motivation
	Algorithms
	Unnormalized Spectral Clustering
	Normalized Spectral Clustering

	Justification
	Practical questions
	Advantages and Disadvantages
	Relation between LE and Spectral Clustering

	Out-of-Sample Spectral Clustering: Nyström Formula
	Motivation
	The Nyström Formula: generalizing kernel eigenfunctions
	Introduction
	Justification

	Algorithm for Spectral Clustering

	Numerical Experiments
	Methodology
	Experimental scenarios and datasets used
	LE Dimensionality Reduction Results
	Spectral Clustering Results

	Conclusions and further work
	Conclusions
	Further work

	Notation glossary
	Graph notation

	Constructing similarity graphs
	Laplacian Graphs
	Auxiliar Theorems and Lemmas
	Gauss's Divergence Theorem
	Rayleigh-Ritz Theorem
	Parseval's Identity
	Green's Function
	Mercer's theorem

	Bibliography

