
Universidad Autónoma de Madrid
Escuela Politécnica Superior

Departamento de Ingenierı́a Informática

Advanced Methods for

Recurrent Neural Networks Design

Master’s thesis presented to apply for the Master in Computer Engineering and

Telecommunications degree and the Master in Mathematics and Applications degree

By

Carlos Marı́a Alaı́z Gudı́n

under the direction of

José Ramón Dorronsoro Ibero

Madrid, November 10, 2010

ii

Contents

Contents ii

1 Introduction 1

1.1 Definitions and General Descriptions . 2

1.1.1 Recurrent Neural Networks . 2

1.2 Evolution of the RNN Paradigms . 4

1.3 The Reference Model . 5

1.4 Classical Algorithms . 8

1.4.1 BackPropagation Through Time . 8

1.4.2 Real Time Recurrent Learning . 11

1.5 Echo State Networks and Liquid State Machines 13

1.5.1 The ESN Algorithm . 13

1.5.2 Algorithm . 14

1.5.3 Mathematical Formalization: Echo States Property 16

1.5.4 Practical Issues . 17

1.5.5 Liquid State Machines . 18

2 Atiya-Parlos Recurrent Learning 21

2.1 Definitions . 21

2.1.1 Definition of the Problem . 21

2.1.2 Definition of the Virtual Target . 22

2.1.3 Dimension Values . 23

2.2 Atiya-Parlos Batch Recurrent Learning . 23

2.3 Unification of BPTT and RTRL . 28

2.3.1 BackPropagation Through Time . 29

2.3.2 Real Time Recurrent Learning . 31

3 BackPropagation Decorrelation 35

3.1 From APRL to BPDC . 35

3.1.1 APRL Online Algorithm . 36

iii

iv Contents

3.1.2 Weight Dynamics . 37

3.2 BPDC . 40

3.2.1 BPDC Algorithm . 40

3.2.2 Cost of the Algorithm . 41

3.3 Back to ESN . 42

3.4 Reservoir Architecture Definition . 42

3.4.1 Unsupervised Reservoir Training: Intrinsic Plasticity 44

4 Simulations 51

4.1 Simulations Setup . 51

4.1.1 Model . 51

4.1.2 Input/Output . 52

4.1.3 Training and Testing Procedures . 53

4.1.4 Error Measurement . 54

4.1.5 List of Experiments . 54

4.2 Sinewave Generator . 54

4.2.1 Pure Generator . 55

4.2.2 Generator with Delay Input . 59

4.2.3 Modulated Pure Generator . 63

4.3 Mackey-Glass . 68

4.4 Application to Wind Power Forecasting . 73

4.5 Discussion and Remarks . 76

5 Discussion, Conclusions and Further Work 79

5.1 Discussion . 79

5.2 Further Work . 80

A Auxiliar Theorems and Lemmas 83

A.1 Takens Theorem . 83

A.1.1 Theorem . 83

A.1.2 Discussion . 83

A.2 Small Rank Adjustment Matrix Inversion Lemma 84

A.2.1 Lemma . 84

A.2.2 Application to APRL . 84

A.2.3 Application to BPDC . 85

B Notation Glossary 87

B.1 Abbreviations . 87

B.2 Notation . 88

Contents v

Bibliography 91

Acknowledgements

The author is kindly supported by the FPU-MEC grant reference AP2008-00167. He has been also

partially supported by Spain’s TIN 2007-66862 and Cátedra IIC Modelado y Predicción.

He also would like to thank Graz University of Technology for receiving him during his two

months visit supported by FPU-MEC grant reference AP2008-00167ESTANCIA-2010.

Abstract

Including temporal information in machine learning to model temporal series can be a difficult

task. Several solutions, like the addition of delays as synthetic inputs, has been presented to adapt

classical algorithms to this kind of problems. Nevertheless, the more correct treatment seems to

be the use of models that retain a temporal context intrinsically. It is with this background where

the RNNs arise. These models can trade with temporal information by their own definition, but the

classical algorithms to train them suffer from important disadvantages, mainly the computational

cost. The Reservoir Computing (RC) paradigm tries to solve this problem, proposing simpler

approaches that performs as well as the classical ones.

In this work, a description of the state of the art in RNNs is given. The evolution of the algo-

rithms from the classical ones to the RC approaches is studied, unifying all this techniques with the

same theoretical model. This will permit to analyze the consecutive simplifications that form the

path from the classical approaches to the new paradigm, in an attempt to justify its surprising effi-

ciency. In the same line some standard experiments comparing several algorithms and contrasting

the theory with their real behaviour are included. Finally, the application of these new approaches

to the prediction of wind power is presented.

Chapter 1

Introduction

The models most commonly used in machine learning consist on optimal transformations of the

inputs into the desired outputs, that is, a mathematical function whose result is defined only by the

instantaneous value of the variables. This type of methods are powerful enough for a big variety of

problems, but suffer from a big limitation: they do not include explicitly any temporal information.

One of the simplest solutions to this problem is just to use as inputs the original inputs in pre-

vious timesteps. So the new set of inputs will be the original inputs plus a set of delays of them.

This approach can capture any temporal dependency if the number of delays is big enough (this

is a consequence of Takens Theorem [1], see appendix A.1). The disadvantage is that the number

of variables produced by this projection of the temporal series into an equivalent multidimensional

space is usually very big, so this technique may result into very complex models, and a bad effi-

ciency.

To solve this problem Recurrent Neural Networks (RNNs) arise naturally. The general RNNs

derive from the widely used Feedforward Networks, or Multilayer Perceptron (MLPs), but with

feedback connections, as it will be defined in the following section. This allows a RNN to retain a

temporal context so it may come to be a powerful tool to model temporal series.

As a first approach to RNNs, Hopfield Networks (HN) [2] should be cited. In this model, some

connections between units of the internal layers transform it into a dynamical system. This system

evolves as the units are updated (one at a time), and it tends to certain stable states. This permits to

use HNs as associative memories, in the sense that a set of input patterns will drive the network to

the same final state, but used as temporal processing models.

In this work, the state of the art in the field of RNN is described. It is mainly focused on

the Reservoir Computing approach, as it will be explained, but the classical algorithms and the

evolution of the paradigms are also studied. The goal is to justify somehow the apparition of the

ESN algorithm and its efficiency. In fact, this technique works surprisingly well, as it will be

seen, so the natural development of this field should be to understand these results. As it will

be explained in section 1.2, the evolution of this techniques can be summarized in the scheme of

figure 1.0.1. Conceptually we will explain this relationship between the different algorithm, in

1

2 Chapter 1. Introduction

which consecutive simplifications permits to arrive to the simple ESN algorithm. We will also

try to relate these algorithms through the experimental part of the work, although there are some

difficulties to compare the algorithms, as it can be the different behaviour of the online techniques

versus the batch ones.

Classical Algorithms // APRL // APRL Online

��

BPDC-L

��

BPC-Soo BPDC-Coo

ESN

Figure 1.0.1: Evolution of the RNN algorithms.

The document is structured as follows. In chapter 1, the general definition of RNNs and the

model that will be used are given. Moreover the classical algorithms and the ESN/LSM approaches

are described. In chapter 2, a new formulation of the problem due to Atiya and Parlos and the

algorithm APRL are studied. BPDC, a natural derivation of the APRL approach, is described

next in chapter 3. In this chapter, some techniques for the construction of the reservoir are briefly

considered. In chapter 4 several experiments are reported, and a final discussion will is given in

chapter 5.

1.1 Definitions and General Descriptions

1.1.1 Recurrent Neural Networks

A Neural Network (NN) is a computational model with a certain inspiration in biological neural

networks. It consists on a group of process units, called neurons, that can store certain information

through the strength of the connections between them (the weights).

The simplest type of Neural Networks are the already mentioned Feedforward Networks (see

[3] for a brief survey), that are characterized by the absence of directed cycles. In these models the

information flows from the input units, through the hidden ones, to the output units, so it moves

only in one direction. Thus the value of a unit is a function of the previous units connected to it,

usually a nonlinear transformation, called the activation function, of a weighted summation.

A Recurrent Neural Network is a Neural Network with at least one cycle in the synaptic con-

nections. This converts the model into a dynamical system, that is, the state of the network does

not depend only on the current value of the inputs, but also on the previous complete time series.

As standard MLPs, a RNN is completely defined by the weights of the connections, given the

activation functions of the units.

1.1. Definitions and General Descriptions 3

(a) Recurrent NN.

(b) Feedforward NN.

Figure 1.1.1: Difference between a RNN and a MLP. For the RNN, a cycle is marked in red. The MLP

connections are defined by an acyclic directed graph.

The main differences between a MLP and a RNN are:

• In the MLPs the information flows from the input to the output, usually through one or more

hidden layers. In the RNNs, at least one cyclic path is present (see figure 1.1.1).

• The MLPs implement static input-output functions, while RNNs represent dynamical sys-

tems.

• MLPs are universal approximators for any nonlinear map (this is the universal approxima-

tion theorem [4]). RNNs are universal approximators for any dynamical system (they can

simulate any Turing machine [5]).

• For training MLPs there is a standard algorithm, BackPropagation (BP). For the RNNs there

is no clear winner.

• MLPs have been successfully applied to many practical applications. RNNs have been much

less applied in practical situations.

In this work the RNNs will be used to solve regression problems with temporal dependencies.

A classical regression problem consists on finding a map that converts the inputs into the desired

outputs. For this, a training dataset is used, i.e., a set of input-output pairs {(u1, d1), . . . , (uK , dK)},

4 Chapter 1. Introduction

usually considered as independent, identically distributed samples. This data is supposed generated

by a deterministic map φ and some non-biased noise, i.e. di = φ(ui) + εi. The problem is to find

an approximation of such a deterministic map φ̃ ≈ φ to predict the values of the unknown outputs

for some known inputs. In particular, the temporal ordering of the samples is irrelevant.

On the other hand, in a modeling problem with temporal dependencies one or more training

sequences, of the form {(uk, dk)}Kk=1, are used. In this case, the order of the data is crucial because

they are samples of some kind of dynamical system. So the output does not depend only on the

current input, but on all the input sequence until that moment. A possible model for this situation

could be d(k) = φ(u(1), . . . , u(k)) + εk. The goal is then to reproduce that system in order to

predict the unknown outputs given an input series.

As stated in [6], the classical methods from training RNN suffer from the following problems:

• The iterative change of the parameters can drive the network dynamic through bifurcations

where the gradient information is ill-defined, so the convergence can not be assured [7].

This means that, in contrast to classical MLP, where the error surface is continuous in weight

space, in a RNN a change of the weights can modify drastically the behaviour of the system,

thus the error surface may be discontinuous.

• The gradient information required for capturing long time dependencies exponentially fades

over time (gradient vanishment), so it is very difficult to get a long-range memory without

specialized architectures.

• Local minima problems, in which the algorithms get trapped, arise in many problems.

• If not properly set, this kind of algorithms may have high computational costs and can only

be applied to small networks.

• Some of these methods usually depends on global control parameters that may be difficult to

choose.

In any case, and while not yet very well understood, recurrent networks are a significant ex-

tension of standard MLPs that enhances their data processing ability. They are much closer to the

powerful biologic neural models and can be a source of new insights even in practical situations.

1.2 Evolution of the RNN Paradigms

In this subsection, a brief overview of the evolution of the main RNN paradigms will be given.

These will be discussed in more detail in subsequent sections.

The first algorithms for training RNNs were based on the exact computation of the error gra-

dient, and the iterative update of the weights through a classical gradient descent. The first pro-

posed methods were BackPropagation Through Time (BPTT) and Real Time Recurrent Learning

1.3. The Reference Model 5

(RTRL). BPTT [8] is based on the transformation of the RNN into a MLP, where classical Back-

Propagation algorithm can be applied. RTRL [9] computes the error gradient in a recursive way

using the information of the previous timestep.

A major change in perspective was the Atiya–Parlos Recurrent Learning (APRL) method [10],

that arises from the reformulation of the problem of training a RNN. They proposed a new inter-

pretation of training, which is treated as a constraint optimization problem and were able to unify

many of the classical methods. APRL is based on the computation of the error gradient with re-

spect to the states, instead of directly with respect to the weights. Once the desired change of the

states is known, a proportional change on the weights that produces the states’ change is computed.

This algorithm partially solves many of the problems listed above, with a faster convergence to the

solution.

The next step was BackPropagation Decorrelation (BPDC) [11], developed after an analysis

of the behaviour of APRL learning that simplifies some of its terms and results in a much more

efficient algorithm. But the most important contribution of this method is that, motivated by the

different dynamics of the weights update, it proposes to update only the weights that connect the

output. This only requires a linear cost.

More or less simultaneously with BPDC, the Echo State Network (ESN) approach [12] ap-

peared, that focuses only on the training of the output weights. In fact, as it will be explained, it

considers a part of the RNN, called the reservoir, that contains only the connections between the

hidden units, as a fixed transformation that projects the temporal series. Then, a readout (such as a

simple linear regression) is used to compute the output from the state of the reservoir.

The same idea takes place under the Liquid State Machines (LSM) approach [13], but using

models more realistic in a biological sense. In this case, a group of spiking neurons (the liquid)

processes the inputs, and then the readout (that can be quite complex, such as an MLP) is applied.

1.3 The Reference Model

A definition of the selected RNN model for this work will be given here, so that it can be referred

in the following chapters.

The units will be denoted by xi, with i = 1, . . . , N , so xi(k) denotes the value of the unit i at

time k. The inputs are a subset of the units (given by an index set I) whose values are fixed, so

xr(k) = ur(k), ∀r ∈ I, ∀k, 1 ≤ k ≤ K.

That is, the values of these units at each timestep k are the values of the corresponding inputs of

the sample. The number of inputs will be denoted by M = |I|. These input units do not receive

feedback connections (in fact, they do not depend on the values of other units but only on the

sample).

6 Chapter 1. Introduction

The outputs are treated in the same way. They are identified by an index set O, so xi will be

an output iff i ∈ O. The desired outputs (i.e., the targets) will be denoted by yi, with i ∈ O.

The number of outputs is given by L = |O|. There may be feedback connections arising from the

output units.

The update equation of this main model is

x(k + 1) = (1−∆t)x(k) + ∆tWf(x(k)), (1.3.1)

where ∆t is the time constant. When ∆t = 1, then the units themselves have not memory. When

∆t is small, close to 0, the value of a unit mostly depends on its previous value, so it changes

slowly keeping a certain memory.

This expression, when ∆t = 1, corresponds to the discrete model,

x(k + 1) = Wf(x(k)), (1.3.2)

and when ∆t→ 0, approximates the dynamic of the continuous time system

∂x

∂t
= −x+Wf(x). (1.3.3)

The activation function f is assumed to be, in general, a standard sigmoid differentiable func-

tion, centered at zero, like the hyperbolic tangent. It should be noticed that f can change for one

unit to another (in fact, this is a way of adapting the reservoir, as it will be explained in subsection

3.4.1), but this dependency will not be expressed explicitly.

In the model just given, the x(k) values correspond to the activations in standard MLPs. The

model can also be expressed in terms of the outputs o(k) = f(x(k)) as

o(k + 1) = f((1−∆t)x(k) + ∆tWo(k)),

or also as the discrete model

o(k + 1) = f(Wo(k)).

The weight matrix W represents the topology of the neural network. In the classical models

of MLP, where the units are separated into layers, and each layer only receives connections from

the previous ones (or from the input layer in the case of the first hidden layer) and we assume

a left-to-right ordering of the network units, W is a matrix with blocks under its diagonal. In the

general FFNN, where the only restriction is the absence of directed cycles,W is an lower triangular

matrix, because the units can be orderer so that the activation in one of them only depends on the

previous units. The weight matrix of the RNN can have any form, but in can be divided into blocks

in function of the type of units involved in the connections. Thus there can be connections from

the input units to the reservoir or to the output ones, from the reservoir to the reservoir itself or to

the output units, and from the output units to the reservoir or the output ones. As explained before,

1.3. The Reference Model 7

the input units do not receive any connection, but W will be considered as a N × N matrix for

simplicity (although a (N −M)×N matrix would be enough). In figure 1.3.1 an example of these

architectures is shown. In figure 1.3.2 the corresponding weight matrices are shown.

(a) MLP. (b) FFNN. (c) RNN.

Figure 1.3.1: Examples of the three different architectures, with one input i = 1 and one output i = 6.

0 0 0 0 0 0

X 0 0 0 0 0

X 0 0 0 0 0

0 X X 0 0 0

0 X X 0 0 0

0 0 0 X X 0

(a) MLP.

0 0 0 0 0 0

X 0 0 0 0 0

X X 0 0 0 0

X X X 0 0 0

X X X X 0 0

X X X X X 0

(b) FFNN.

0 0 0 0 0 0

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

(c) RNN.

Figure 1.3.2: Weight matrices for the different architectures of figure 1.3.1.

Under the reservoir computing paradigm, the internal units (those that are neither inputs nor

outputs) form the reservoir. The set of weights that interconnect the reservoir will be denoted by

the (N −M −L)× (N −M −L) matrix WRes. The properties of this matrix have a big influence

in the dynamic of the RNN.

For these models, the squared error (that the model will try to minimize) is given by the ex-

pression

E =
1

2

K∑
k=1

∑
s∈O

[xs(k)− ys(k)]2 . (1.3.4)

When computing the derivative of the error, the following instantaneous error will be used:

8 Chapter 1. Introduction

es(k) =

{
xs(k)− ys(k), s ∈ O,
0, s 6∈ O.

1.4 Classical Algorithms

In this section, the model given by equation (1.3.2) (the discrete one) will be used for both the BPTT

and RTRL classical algorithms, so the dynamic considers ∆t = 1 and x(k + 1) = Wf(x(k)).

1.4.1 BackPropagation Through Time

The most used algorithm for training classical Feedforward Neural Networks, that is, MLPs, is

BackPropagation [14]. It consists on the computation of the gradient of the squared error (see

equation (1.3.4)) in a recursive manner that permits to optimize the operations.

In the original model of MLP, each unit i in layer k produces an output, oki , that is given by

the activation function, f , applied to its activation xki , i.e. oki = f(xki). The activation is computed

using the outputs of the previous layer units (or the inputs if k = 1). Denoting the number of such

units by Nk−1, the expression is xki =
∑Nk−1

j=1 wkijo
k−1
j . Bias effects can be achieved adding an

extra input unit with a constant 1 value.

The main idea is to estimate first the derivatives of the error with respect to the activations of

the units, i.e., δki = ∂E
∂xki

. These are computed from the last layer (the output one, k = K), resulting

in

δKi =
∂E

∂xKi
=

∂E

∂oKi

∂oKi
∂xKi

= (oKi − yKi)f ′(xKi),

to the first layer, k = 1, using the previous results in each step through the formula

δki =
∂E

∂xki
=

Nk+1∑
j=1

∂E

∂xk+1
j

∂xk+1
j

∂xki
=

Nk+1∑
j=1

δk+1
j f ′(xk+1

j)wk+1
ji .

Once these values are known for each unit, the derivatives with respect to the weights ∂E
∂wkij

can

easily be calculated using the expression

∂E

∂wkij
=
∂E

∂xki

∂xki
∂wkij

= δki o
k−1
j .

Following the same philosophy, BackPropagation Through Time (BPTT) [8] unfolds a recur-

rent network in temporal steps, so the original recurrent network is transformed into a much larger

feedforward network. Then, the classical BP is applied to train the weights of the network.

Conceptually, the first step of the algorithm is to transform the RNN into a MLP. For this task, at

every timestep of the training sequence, a new layer is constructed as a copy of the reservoir (the set

of internal units of the RNN). The connections between the units of the reservoir are transformed

into connections from a layer to the following one. Each layer has also connections from the inputs

1.4. Classical Algorithms 9

at the respective time, and produces the corresponding output of the model. This is illustrated in

figure 1.4.1.

(a) RNN.

(b) MLP.

Figure 1.4.1: Transformation of a RNN into a MLP, unfolding the network over the timesteps of the training

sequence.

Formally, the unfolding of the network consists on the following steps:

• The state of the RNN at time k is represented by the k-th layer.

– The input i ∈ I at time k, xi(k) = ui(k), is encoded by the value of the i-th input to

the k-th layer.

– The reservoir unit j at time k, xj(k), is encoded by the value of the j-th internal unit

in the k-th layer.

• The dynamic of the resulting MLP is given by

xi(k + 1) = xk+1
i =

N∑
j=1

wijf(xkj) =

N∑
j=1

wijf(xj(k)).

10 Chapter 1. Introduction

Once the RNN has been so converted, the classical BP algorithm is used, resulting in the BPTT

method. More precisely, the gradient of the error function with respect to the weights is computed

in a recursive way, but this time over the timesteps of the training series, instead of over the layers

of the network. This recursion is based on the equation that relates the state in the current timestep

with the previous state, i.e. in this discrete model x(k + 1) = Wf(x(k)).

More exactly, let δi(k) be the derivative of the error with respect to the activation of the j-th

unit at time k:

δi(k) =
∂E

∂xi(k)
.

Starting with the last step of the series, k = K, it is clear that the value of the i-th unit xi(K) only

influences the error in that exact timestep (it has no influence through other units because there are

no more timesteps afterwards), so

δi(K) =
∂E

∂xi(K)
=

1

2

∂

∂xi(K)

K∑
k=1

∑
s∈O

[xs(k)− ys(k)]2 = ei(K), (1.4.1)

where we have ei(K) = xi(K)− yi(K), if i ∈ O, and ei(K) = 0, if i 6∈ O.

In order to define the recursion, the following expression will be used:

δi(k) =
∂E

∂xi(k)
=

∂EE

∂xi(k)
+

N∑
j=1

∂E

∂xj(k + 1)

∂xj(k + 1)

∂xi(k)

= ei(k) +
N∑
j=1

δj(k + 1)wjif
′(xi(k))

= ei(k) + f ′(xi(k))

N∑
j=1

δj(k + 1)wji, (1.4.2)

where the first term ∂EE
∂xi(k) represents the direct effect of xi(k) in the error (that is why it only

appears if the unit is an output of the RNN, i ∈ O), and the second one is the indirect error

propagated through the posterior timesteps. In what follows, the notation ∂E

∂xi(k) stands for the

explicit partial derivative with respect to xi(k) 1. With this equation, the δi(k) can be calculated

recursively over all k = 1, . . . ,K. The gradient of the error with respect to the weights will be

then given by

1 In general, for a function f that depends on a set of variables {x, a1(x), . . . , aN (x)}, the derivative of f w.r.t. x is

computed using the chain rule as

∂f

∂x
=
∂Ef

∂x
+

N∑
i=1

∂f

∂ai(x)

∂ai(x)

∂x
.

In this work, for simplicity, the dependence of the variables is not made explicit most of the times (so, in the example,

ai would be used instead of ai(x)). Sometimes, when the function does not depend explicitly on the variable, the

corresponding term ∂Ef
∂x

will be omitted directly.

1.4. Classical Algorithms 11

∂E

∂wij
=

K∑
k=1

∂E

∂xi(k)

∂xi(k)

∂wij

=

K∑
k=1

δi(k)
∂xi(k)

∂wij

=
K∑
k=1

δi(k)f(xj(k − 1)). (1.4.3)

Summarizing, the algorithm follows the steps:

1. Compute a forward pass with the current weights.

2. Compute the δ terms for k = K using

δi(K) = ei(K).

3. Compute the δ terms for k < K using

δi(k) = ei(k) + f ′(xi(k))
N∑
j=1

δj(k + 1)wji.

4. Compute the gradient of the error using

∂E

∂wij
=

K∑
k=1

δi(k)f(xj(k − 1)).

5. Update the weights using the gradient of the error.

It can be seen that BPTT computes the gradient through backward recursion over time.

Turning out attention to the cost of the algorithm, it is determined by the computation of the

gradient. The more complex task is to calculate the δi(k). Each of these terms requiresN multipli-

cations (in the summation). This must be done for each unit i = 1, . . . , N and for every timestep,

k = 1, . . . ,K, so the complexity of the algorithm comes to be O(KN2).

1.4.2 Real Time Recurrent Learning

Real Time Recurrent Leaning is the second classical algorithm for Recurrent Neural Networks.

It was describe by Williams and Zipser in [9]. It consists on the computation of the exact error

gradient in a recursive way. In this case, the derivative of the states with respect to the weights are

computed first, using the results of a timestep k to get the derivatives at the next timestep k + 1.

Since the initial states xi(0) of the units are fixed (so they are independent of the weights), the

first partials are immediate:

12 Chapter 1. Introduction

∂xi(0)

∂wml
= 0.

Given the update equation of the model used x(k + 1) = Wf(x(k)), that is, xi(k + 1) =∑
j wijf(xj(k)), the derivative of the states can easily be computed in a recursive way, result-

ing in

∂xi(k + 1)

∂wml
= δi,mf(xl(k)) +

N∑
j=1

∂xi(k + 1)

∂xj(k)

∂xj(k)

∂wml

= δi,mf(xl(k)) +
N∑
j=1

wijf
′(xj(k))

∂xj(k)

∂wml
, (1.4.4)

where δi,m is the Kronecker’s delta. It should be noticed that the first term corresponds to the

explicit dependence of xi(k + 1) on wml (so it only appears if m = i, i.e., wml connects xi) and

the second one corresponds to the dependence through the previous states (it is the term of the

recursion).

Now the gradient of the error can be computed as

∂E

∂wml
=

K∑
k=1

N∑
i=1

∂E

∂xi(k)

∂xi(k)

∂wml

=

K∑
k=1

N∑
i=1

ei(k)
∂xi(k)

∂wml

=
K∑
k=1

∑
i∈O

ei(k)
∂xi(k)

∂wml
. (1.4.5)

Although the summation is over all the units, only the terms corresponding to the output units

i ∈ O will appear because ei(k) = 0 for i 6∈ O.

The complete algorithm is:

1. Compute a forward pass with the current weights.

2. Compute the terms ∂xi(k)
∂wml

for k = 0 using

∂xi(0)

∂wkl
= 0.

3. Compute the terms ∂xi(k)
∂wml

for k = 1, . . . ,K using

∂xi(k)

∂wml
= δi,mf(xl(k − 1)) +

N∑
j=1

wijf
′(xj(k − 1))

∂xj(k − 1)

∂wml
.

1.5. Echo State Networks and Liquid State Machines 13

4. Compute the gradient of the error using

∂E

∂wml
=

K∑
k=1

N∑
i=1

ei(k)
∂xi(k)

∂wml
=

K∑
k=1

∑
i∈O

ei(k)
∂xi(k)

∂wml
.

5. Update the weights using the gradient of the error.

It is observed that RTRL computes the gradient through forward recursion on time. Hence, one

advantage of this algorithm is that it can be used in an online way, so the weights are being adapted

as the new training patterns are introduced. In this case, the instantaneous error

E(k) =
1

2

∑
s∈O

[xs(k)− ys(k)]2

is used. The weights at time k are updated with the gradient of E(k), which is given by

∂E(k)

∂wml
=

N∑
i=1

ei(k)
∂xi(k)

∂wml
.

With respect to costs, the more complex task in the algorithm is the computation of the gradient,

i.e., to solve the recursive expression to get the term ∂xi(k+1)
∂wml

. There are N3 terms of this form,

and each of them require an order of N multiplications, so the total cost is O(N4). This is the cost

for each timestep. If the algorithm is applied in a batch mode, then the total cost for an update is

O(KN4). If it is used online only the instantaneous error gradient is needed, so the complexity is

O(N4) for each update of the weights. So the cost grows with N4. It scales very bad compared to

the cost of BPTT, so it is suitable only for an online use.

1.5 Echo State Networks and Liquid State Machines

The idea of handling differently the weights connecting the reservoir and those that define the

output of the model arises simultaneously in two approaches, the Echo State Networks [12] by

Jaeger et al, and another one known as Liquid State Machines [13] by Maass et al.

1.5.1 The ESN Algorithm

In this approach, the model is trained in batch mode. The reservoir weights (given by the matrix

WRes) are not modified at all. They are fixed at the beginning, usually with a random initialization.

Sometimes they are scaled so the speed of the RNN fits the dynamic of the problem, as it will be

explained in subsection 1.5.4. Then the original algorithm only trains the output weights wsi, with

s ∈ S, as it can be viewed in figure 1.5.1.

14 Chapter 1. Introduction

Figure 1.5.1: In the ESN approach, only the output weights (the red ones) are modified.

1.5.2 Algorithm

The first step needed to calculate the output weights is the computation of the inner states in the

RNN, using the desired output (this technique is known as teacher forcing). So, following the

update given in section 1.3 by equation (1.3.1), but fixing the outputs to their desired value, i.e.,

xs(k) = ys(k) for all s ∈ S, the inner states x(k) are stored in a K ×N matrix X , so the k-th row

corresponds to the transpose vector xT (k),

X =

xT (1)

...

xT (K)

 =

x1(1) · · · xN (1)

...
. . .

...

x1(K) · · · xN (K)

 .

It is important to realize that these states are obtained “assuming” that the RNN estimates the output

perfectly.

Intuitively, the idea is to compute the states of the reservoir when the RNN is producing the

desired output. Once the states are obtained, the mentioned matrix X is used to look for the output

weights that reconstruct the desired output with these states.

When the RNN has been trained, the output s ∈ O at each timestep k+ 1 is computed with the

expression

xs(k + 1) = [Wf(x(k))]s =

N∑
j=1

wsjf(xj(k)) = wTs f(x(k)) = f(xT (k))ws, (1.5.1)

where wTs is the 1×N vector of weights that connect the output s, i.e. the s-th row of W .

On the other hand, the s-th desired output is collected into a K × 1 vector

Ys =

ys(2)

...

ys(K + 1)

 .

1.5. Echo State Networks and Liquid State Machines 15

Formally, the problem is to find the set of output weights {wsi, s ∈ S} that minimize the error

E given by equation (1.3.4). Each of the outputs can be trained independently, so the problem is

equivalent to minimize

‖f(X)ws − Ys‖2,

where we recall that f(.) is applied componentwise. It should be noticed that the vector Ys rep-

resents the output at timesteps 2, . . . ,K + 1, while X represents the states at timesteps 1, . . . ,K.

This is because the output xs(k + 1) at time k + 1 is computed using the value of the units in the

previous step k (see equation (1.5.1).

The minimization of the previous squared error is just a problem of linear regression, and the

solution is simply

ws = O+Ys,

whereO = f(X) is theK×N matrix with the outputs of the units (i.e., after applying the activation

function) at each timestep, and O+ denotes the pseudoinverse of O, i.e., O+ = (OTO)−1OT . In

other words, the problem can be reduced to the minimization of

‖Ows − Ys‖2 = (Ows − Ys)T (Ows − Ys) = wTs O
TOws − 2wTs O

TYs + Y T
s Ys.

Taking the gradient with respect to ws,

∇ws(‖Ows − Ys‖2) = 2OTOws − 2OTYs = 0 =⇒ ws = (OTO)−1OTYs = O+Ys.

The final complete algorithm is:

1. Iterate the dynamic of the network, forcing the outputs to the desired states (xs(k) = ys(k))

for k = 1, . . . ,K and using the expression given by equation (1.3.1),

x(k + 1) = (1−∆t)x(k) + ∆tWf(x(k)).

2. Collect the states into the matrix X for steps k0, . . . ,K. The first k0 − 1 steps are not used

because of their dependence on the initial state of the RNN (this is usually called the washout

of the network).

3. Compute the matrix O = f(X), the outputs of the units after the application of the transfer

function.

4. For each s ∈ S.

(a) Collect the desired output of unit s in the vector Ys for the steps k0 + 1, . . . ,K + 1.

16 Chapter 1. Introduction

(b) Compute wTs = O+Ys.

5. Substitute each ws in the corresponding row of the weight matrix W .

1.5.3 Mathematical Formalization: Echo States Property

One important characteristic of the RNN (before training it, i.e., independent of the output weights)

is the Echo States Property (ESP), defined as:

Definition 1 [Echo States Property] Assume a RNN with the input vector u(k) and the output

vector y(k) from compact subsets U and Y , respectively. The RNN has echo states (and there-

fore satisfies the echo states property) with respect to U and Y if for every left-infinity sequence

(u(k), y(k)), with k = . . . ,−2,−1, 0, and for all state sequences x(k), x′(k) compatible with the

teacher sequence, that is, with

x(k + 1) = (1−∆t)x(k) + ∆tWf(x(k)), xs(k) = ys(k) ∀s ∈ S,
x′(k + 1) = (1−∆t)x′(k) + ∆tWf(x′(k)), x′s(k) = ys(k) ∀s ∈ S,

it holds that x(k) = x′(k) for all k ≤ 0.

Clearly, the previous definition does not depend on the output weights, because it is based in

the sequence obtained teacher-forcing the RNN.

The intuitive interpretation of the ESP is that the current state of the network, when it has been

running during a long time, depends only on the sequence of inputs and the forced outputs. Thus,

the RNN forgets its initial state.

The ESP permits to express the present state of the RNN as a function of all the previous inputs

and (desired) outputs of the dynamical system being modeled. Usually in engineering problems,

any deterministic stationary system that one wants to solve will be assumed to depend only on

the previous inputs and outputs. This is because if the unknown initial state has any influence, it

could not be captured by the model and it should be obviated. Thus this kind of systems can be in

principle represented with such a function of the inputs and desired outputs, so this property gives

a way of relating the assumed desired outputs of the system with the real output of the RNN.

There is no known necessary and sufficient condition for the ESP. In [15], it was shown that a

sufficient condition for the non existence of echo states is that the spectral radius, that is, the largest

absolute eigenvalue of the reservoir weight matrixWRes (the matrix of the connections between the

units that are not inputs or outputs, as defined before) is greater than 1, i.e., |λmax(WRes)| > 1. This

ensures that the RNN has not the ESP w.r.t. any interval U ×D 3 (0,0). There are also sufficient

conditions, such as σmax(WRes) < 1 for tanh activations, where σmax is the largest singular value
2 of the matrix; or a less restrictive version, infD∈D σmax(DWResD−1) < 1, with D the set of

diagonal matrices of the proper dimension (see [16] for further details).
2A singular value σ and pair of singular vectors u and v of a matrix A are a nonnegative scalar and two nonzero

vectors so that

1.5. Echo State Networks and Liquid State Machines 17

1.5.4 Practical Issues

The first task is to initialize the reservoir. Although there is not an exact method for creating a

reservoir that satisfies the ESP, in the practice the following algorithm seems to guarantee this

property:

1. Generate a reservoir weight matrix W0.

2. Normalize it so its spectral radius comes to be 1, W1 = 1/|λmax|W0.

3. Scale it to an spectral radius α < 1, W = αW1.

Then the RNN resulting from this procedure usually behaves as an ESN, independently of the

connections with the input and output units.

This α has a very big importance, because the dynamic of the RNN depends on it [15]. When

α is close to 1, the reservoir stores the information for a long time, so the RNN produces a slow

dynamic. On the other side, if α is small the reservoir is fast, and it will forget quickly the past

information. So the selection of α should depend on the timescale of the problem being modeled

(see [15], or [17] for an experimental analysis). Moreover, in [18] the processing power of a system

working at the edge of stability, that is, where α ' 1, is studied.

We briefly discuss some practical recommendations for improving ESN training.

Internal States Analysis It is important to check the values of the internal states. Figures of the

evolution of the states will provide a visual analysis of the dynamic achieved. Fast oscillations

indicates that the spectral radius is too big, and should be scaled down, multiplying the weight

matrix by a certain factor smaller than 1 (this is equivalent to choose an smaller α during the

construction of the reservoir). When the states take values close to the limits of the activation

function (in the case of the tanh, 1 or −1) the reservoir is saturated (due to big inputs or outputs).

This can be solved by scaling the input or feedback weights. Nevertheless, this behaviour can be

desirable when the desired output oscillates at each step from a given value to another one. In this

case, the RNN has to change its state completely in only one step, so it should work in the nonlinear

region of the activation function, where it performs almost as a discrete activation.

Model Size The larger the network is, the more complex results it can produce. So difficult

problems will require big networks (but the overfitting problem should not be forgotten).

Av = σu

ATu = σv.

The singular values of A coincide with the square root of the eigenvalues of ATA, provided that

ATAv = ATσu = σATu = σ2v.

18 Chapter 1. Introduction

Selection of the Spectral Radius As it has been mentioned, the spectral radius sets the speed of

the network. A big α, α ≈ 1, implies a slow dynamic, and a small one, α ≈ 0, a short-memory

network.

Addition of Noise When the network is being trained to work in a generative way (that is, fore-

casting several consecutive steps into the future, usually using a vector of delays as training inputs,

and replacing it by the corresponding output for testing), problems of stability may appear. They

can be solved by adding noise to the states of the network during sampling [15] (i.e. when the

matrix X is computed). This can also be useful when the model suffers from overfitting (however,

the best idea in these cases is to reduce the network size, or to try some kind of regularization, as

using ridge regression instead of standard linear regression).

Use of a Bias When the output has not zero mean, it is a good idea to use a fixed input (“bias”)

during both training and test. The model will be kept unaltered, and the algorithms for training and

test will be exactly the same, but the data will be modified to add a fixed input ur(k) = C,∀k. The

magnitude of C can change the behaviour of the RNN, so if C is very big it will shift the value

of the units to the extremes of the activation function. A small C will not have influence in the

nonlinearity degree of the RNN.

Input Range The range of the input values can be shifted and scaled, in order to put it in a region

where the network works well for the problem at hand. If the problem is very nonlinear, a range

far away from zero can improve the results. The input should also be modified to avoid symmetric

problems. This is because, with a standard sigmoid network with a symmetric activation function

(such as tanh), if the output is y(n) with an input u(n), another sequence −u(n) will produce

−y(n), so problems like y(n) = u(n)2 cannot be solved.

1.5.5 Liquid State Machines

The Liquid State Machine (LSM) approach developed by Maas et al. ([13]) is partially similar to

the ESN one. This model was created trying to emulate the principal computational properties of

neural microcircuits.

It conceives a reservoir (called “liquid”) as a large RNN that will be fixed during all the training.

So, it is independent of the problem. As in the ESN approach, the “liquid” is often randomly

initialized. The information stored in this RNN is used by a trainable readout mechanism (though

dependent of the task), in an analogous way as in the ESN.

The main differences between both approaches are:

• LSM is focused in realistic models, that can represent biological phenomena. Typically

the connectivity is topologically and metrically constrained by biological reasons. ESN is

conceived more like an engineering tool.

1.5. Echo State Networks and Liquid State Machines 19

• In the LSM approach, the values of the internal units are assumed to be continuous over time,

so the dynamic of the system is usually defined with a differential equation. Thus the system

is defined continuously, and a discretization is used to simulate it. In the case of the ESN

approach, the system is generally discrete over time, so the values can change completely at

each timestep.

• The “liquid” of LSM is made of spiking neurons, whereas the ESN units are typically simple

sigmoid ones.

• LSM considers lots of readout mechanism (including feedforward networks), while ESN

typically uses a simple linear layer.

LSM used to model spike trains and not get in engineering problems. Thus we will not further

consider them more.

20 Chapter 1. Introduction

Chapter 2

Atiya-Parlos Recurrent Learning

In the year 2000, Atiya and Parlos published a work [10] in which the problem of training a RNN

was rewritten under a different approximation. This allows to unify the classical algorithms, and

to propose a new one, namely the Atiya-Parlos Recurrent Learning (APRL).

In this chapter, this APRL algorithm and the unification of both BPTT and RTRL using the

new approach will be explained.

2.1 Definitions

In this chapter, the model that will be used is the one explained in section 1.3, namely the general

one given by (1.3.1),

x(k + 1) = (1−∆t)x(k) + ∆tWf(x(k)).

2.1.1 Definition of the Problem

From the point of view of Atiya-Parlos [10], the dynamic of the network is not included in the

algorithm explicitly, but as a constrain of the optimization problem. Therefore, the objective of the

algorithm will be to solve the problem

minimize E with g ≡ 0, (2.1.1)

where g is the constraint that represents the dynamic of the RNN (see below).

The error E is defined as the squared error of the outputs (denoted with the index set O, as

done before) over all the K timesteps, that is,

E =
1

2

K∑
k=1

∑
s∈O

[xs(k)− ys(k)]2 .

The update of the state of the network x(t) = (x1(t), . . . xN (t))T (a vector of length N , the

number of units) follows the equation

21

22 Chapter 2. Atiya-Parlos Recurrent Learning

x(k + 1) = (1−∆t)x(k) + ∆tWf(x(k)).

The constraint function g will be satisfied if the dynamic of the network is respected, so

g(k + 1) = −x(k + 1) + (1−∆t)x(k) + ∆tWf(x(k)) = 0. (2.1.2)

In terms of the vector components,

gi(k + 1) = −xi(k + 1) + (1−∆t)xi(k) + ∆t
N∑
j=1

wijf(xj(k)) = 0. (2.1.3)

2.1.2 Definition of the Virtual Target

One of the principles of APRL is the use of a virtual target. The idea is to calculate the weight

changes that produce a desired state change, which is obtained solving the problem of minimizing

E with respect to the states of the RNN over all the timesteps. This technique will be formalized

next.

For notation, let wTi be the rows of W , so wi is a N × 1 vector. The variables involved are

collected into vectors of the form:

x = (xT (1), . . . , xT (K))T ,

g = (gT (1), . . . , gT (K))T ,

w = (wT1 , . . . , w
T
N)T .

The desired states update will be given by

∆x = −
(
∂E

∂x

)T
= −

(

∂E
∂x(1)

)T
...(

∂E
∂x(K)

)T
 = −

eT (1)

...

eT (K)

 ∈ RNK×1,

where e(k) is a 1×N row vector (so eT (k) is a N × 1 vector) given by

e(k) =
∂E

∂x(k)
=
(

∂E
∂x1(k) , · · · ,

∂E
∂xN (k)

)
=
(
e1(k), · · · , eN (k)

)
and

es(k) =

{
xs(k)− ys(k), s ∈ O,
0, s 6∈ O.

For posterior notation, we write

2.2. Atiya-Parlos Batch Recurrent Learning 23

∂E

∂x
= (e(1), . . . , e(K)). (2.1.4)

In order to estimate the change in the weights that will produce the desired change η
∆t∆x in

the states, the constraint g = 0 is used, that is, ∆w is estimated as the variation that compensates

the constraint when the states move ∆x:

0 = ∆g ≈ ∂g

∂w
∆w +

η

∆t

∂g

∂x
∆x =⇒ ∂g

∂w
∆w ≈ − η

∆t

∂g

∂x
∆x.

Finally, the pseudo-inverse is used to solve the equation, so

∆wbatch = − η

∆t

[(
∂g

∂w

)T (∂g
∂w

)]−1(
∂g

∂w

)T ∂g
∂x

∆x. (2.1.5)

2.1.3 Dimension Values

The dimensions of the matrices and vectors that will be used are described here:

• x: It is a vector of dimension NK (N units over K timesteps).

• ∆x: It is a vector of dimension NK (the update of x).

• g: It is a vector of dimension NK, because it is the constraint over x.

• w: It is a vector of dimension N2, it represents the weights matrix in a single vector.

• ∆w: It is a vector of dimension N2 (the update of w).

• E: It is a scalar, the error over all units and all timesteps.

• ∂g
∂x : It is a matrix of dimensions NK ×NK.

• ∂g
∂w : It is a matrix of dimensions NK ×N2.

• ∂E
∂x : It is a row vector of dimensions 1 × NK. It can be decomposed into K vectors of

dimensions 1×N as ∂E
∂x = (e(1), . . . , e(K)).

• ∂E
∂w : It is a row vector of dimensions 1×N2.

2.2 Atiya-Parlos Batch Recurrent Learning

In the following sections, the algorithm of APRL will be presented. Later (see chapter 3) it will be

further analyzed and simplified to arrive to the new Backpropagation Decorrelation (BPDC) online

algorithm. First of all, the terms that appear in the right side of equation (2.1.5) will be computed,

to get the desired update of the weights ∆w that will define the batch algorithm.

24 Chapter 2. Atiya-Parlos Recurrent Learning

Let fk = (f(x1(k)), . . . , f(xN (k)))T be the vector of activations at the step k. The partial of

the constraint function g with respect to w will be given by

∂g

∂w
=

∂g(1)
∂w1

· · · ∂g(1)
∂wN

...
. . .

...
∂g(K)
∂w1

· · · ∂g(K)
∂wN

=

∂g1(1)
∂w11

· · · ∂g1(1)
∂w1N

· · · ∂g1(1)
∂wN1

· · · ∂g1(1)
∂wNN

· ·
∂gN (1)
∂w11

· · · ∂gN (1)
∂w1N

· · · ∂gN (1)
∂wN1

· · · ∂gN (1)
∂wNN

...
...

...
. . .

...
...

...
∂g1(K)
∂w11

· · · ∂g1(K)
∂w1N

· · · ∂g1(K)
∂wN1

· · · ∂g1(K)
∂wNN

· ·
∂gN (K)
∂w11

· · · ∂gN (K)
∂w1N

· · · ∂gN (K)
∂wN1

· · · ∂gN (K)
∂wNN

∈ RNK×N

2
.

Differentiating in the expression (2.1.3) gives

∂g

∂w
=

f(x1(0)) · · · f(xN (0)) · · · 0 · · · 0

· · · · · · · · · . . . · · · · · · · · ·
0 · · · 0 · · · f(x1(0)) · · · f(xN (0))
...

...
...

...
...

...
...

f(x1(K − 1)) · · · f(xN (K − 1)) · · · 0 · · · 0

· · · · · · · · · . . . · · · · · · · · ·
0 · · · 0 · · · f(x1(K − 1)) · · · f(xN (K − 1))

=

fT0

fT0
. . .

fT0
...

...
...

...

fTK−1

fTK−1

. . .

fTK−1

∈ RNK×N
2
.

Using a compact notation,

∂g

∂w
=

diag[f0]T

...

diag[fK−1]T

 . (2.2.1)

2.2. Atiya-Parlos Batch Recurrent Learning 25

Notice that, by definition of diag[.] (see section B.2), we have diag[fTK−1] = diag[fK−1]T .

Let CK =
∑K−1

k=0 fkf
T
k be an approximation of the auto-correlation matrix (except for a con-

stant) of the activations (assuming they are centered at zero) over the steps 1, . . . ,K − 1. From the

expression above, it is easy to see that

[(
∂g

∂w

)T (∂g
∂w

)]
=

(
diag[f0] · · · diag[fK−1]

)
diag[f0]T

...

diag[fK−1]T

=

CK

CK
. . .

CK

=⇒

[(
∂g

∂w

)T (∂g
∂w

)]−1

=

C−1
K

C−1
K

. . .

C−1
K

 ∈ RN
2×N2

.

In the same way it is calculated the derivative with respect to the states:

∂g

∂x
=

∂g(1)
∂x(1) · · · ∂g(1)

∂x(K)
...

. . .
...

∂g(K)
∂x(1) · · · ∂g(K)

∂x(K)

 ∈ RNK×NK .

The following equalities are obtained from the equation (2.1.3):

∂gi(k + 1)

∂xi(k + 1)
= −1,

∂gi(k + 1)

∂xj(k + 1)
= 0, i 6= j,

∂gi(k + 1)

∂xi(k)
= ∆twiif

′(xi(k)) + (1−∆t),

∂gi(k + 1)

∂xj(k)
= ∆twijf

′(xj(k)), i 6= j,

∂gi(l)

∂xj(k)
= 0, l 6= k, k + 1.

Expressed in vector notation, the preceding equations become

26 Chapter 2. Atiya-Parlos Recurrent Learning

∂g(k)

∂x(k)
= −IN×N ,

∂g(k + 1)

∂x(k)
= ∆t

w11f

′(x1(k)) · · · w1Nf
′(xN (k))

...
. . .

...

wN1f
′(x1(k)) · · · wNNf

′(xN (k))

+ (1−∆t)IN×N

= ∆tAk + (1−∆t)IN×N ,

where Ak is defined to simplify the notation as

Ak =

w11f

′(x1(k)) · · · w1Nf
′(xN (k))

...
. . .

...

wN1f
′(x1(k)) · · · wNNf

′(xN (k))

 .

So, using the above matrix notation, we have

∂g

∂x
=

−IN×N 0 · · · 0 0

∆tA1+(1−∆t)IN×N −IN×N · · · 0 0

0 ∆tA2+(1−∆t)IN×N · · · 0 0
...

...
. . .

...
...

0 0 · · · ∆tAK−1+(1−∆t)IN×N −IN×N

. (2.2.2)

For the weights update in (2.1.5), the product −∂g
∂x∆x, denoted by γ, is needed, so

−∂g
∂x

∆x =

∂g(1)
∂x(1) · · · ∂g(1)

∂x(K)
...

. . .
...

∂g(K)
∂x(1) · · · ∂g(K)

∂x(K)

eT (1)

...

eT (K)

=

γ(1)

...

γ(K)

 ∈ RNK×1,

where γ(k) = (γ1(k), · · · , γN (k))T is given by

γ(k) = −eT (k) + (1−∆t)eT (k − 1) + ∆tAk−1e
T (k − 1).

Combining this result with the formula for ∂g
∂w , the following equality is obtained

2.2. Atiya-Parlos Batch Recurrent Learning 27

−
(
∂g

∂w

)T ∂g
∂x

∆x =

[f0] · · · [fK−1]

. . . · · · . . .

[f0] · · · [fK−1]

T

γ(1)
...

γ(K)

=

∑K−1

k=0 fkγ1(k + 1)
...∑K−1

k=0 fkγN (k + 1)

 ∈ RN
2×1,

where fkγi(k + 1) is a N × 1 vector that results from the product of the vector fk and the scalar

γi(k + 1).

Taking into account the term obtained for
[(

∂g
∂w

)T (
∂g
∂w

)]
, the batch weights update becomes

∆wbatch =
η

∆t

C−1
K

C−1
K

. . .

C−1
K

∑K−1

k=0 fkγ1(k + 1)
...∑K−1

k=0 fkγN (k + 1)

=
η

∆t

C−1
K

∑K−1
k=0 fkγ1(k + 1)

...

C−1
K

∑K−1
k=0 fkγN (k + 1)

 ∈ RN
2×1.

In terms of each component of w,

∆wbatch
ij (K) =

η

∆t

[
C−1
K

K−1∑
k=0

fkγi(k + 1)

]
j

. (2.2.3)

It should be noticed that the update formulae for ∆wbatch can be computed in a recursive form.

More precisely, we change from the vector notation for the weights w to the matrix notation W

defined in section 1.3). We then have

• The regularized version ĈK =
∑K−1

k=0 fkf
T
k + εIN×N of the matrix CK (to avoid numerical

problems with its inversion) can be expressed in terms of ĈK−1 as

ĈK = ĈK−1 + fK−1f
T
K−1.

• From this last formula and the small rank adjustment matrix inversion lemma (see appendix

A.2.2), the inverse of ĈK can be expressed as

Ĉ−1
K = Ĉ−1

K−1 −

[
Ĉ−1
K−1fK−1

] [
Ĉ−1
K−1fK−1

]T
1 + fTK−1Ĉ

−1
K−1fK−1

. (2.2.4)

28 Chapter 2. Atiya-Parlos Recurrent Learning

• For the other term of the update equation, let B(K) =
∑K−1

k=0 γ(k + 1)fTk . The order has

been reversed to express the update as a matrix of dimensions N ×N , instead of a N2 × 1

vector. More precisely, in scalar terms we have B(K)ij =
∑K−1

k=0 γi(k + 1)[fTk]j . With this

definition, it is clear that

B(K) = B(K − 1) + γ(K)fTK−1.

So the update (ignoring the effect of ε) can be expressed as the matrix

∆WBatch =
η

∆t
B(K)Ĉ−1

K .

In fact, notice that at the (i, j) component, the right hand side matrix gives

[∆WBatch]ij =
η

∆t

[
B(K)Ĉ−1

K

]
ij

=
η

∆t

N∑
l=1

[B(K)]il[Ĉ
−1
K]lj

=
η

∆t

N∑
l=1

[

K−1∑
k=0

γ(k + 1)fTk]il[Ĉ
−1
K]lj

=
η

∆t

N∑
l=1

K−1∑
k=0

γi(k + 1)[fTk]l[Ĉ
−1
K]lj ,

which coincides with (2.2.3) since we have

∆wbatch
ij (K) =

η

∆t

[
C−1
K

K−1∑
k=0

fkγi(k + 1)

]
j

=
η

∆t

N∑
l=1

[C−1
K]jl

K−1∑
k=0

[fk]lγi(k + 1)

=
η

∆t

N∑
l=1

[C−1
K]lj

K−1∑
k=0

[fk]lγi(k + 1),

where the symmetry of C−1
K has been used.

2.3 Unification of BPTT and RTRL

In this section the classical algorithms of BPTT and RTRL will be unified in terms of the constraint

problem defined by (2.1.1). Here we will consider ∆t = 1, i.e., the discrete model of the RNN, as

this is the one used by BPTT and RTRL. For this task, the trained network (that is, the weights that

minimize the error function satisfying the mentioned constraint) is found using gradient descent

2.3. Unification of BPTT and RTRL 29

over the weights. These two algorithms differ in the way in which this gradient is computed, but

both of them use the following two formulae in the reformulation of Atiya-Parlos:

• For the derivative of the error,

∂E(x(w))

∂w
=
∂EE(x(w))

∂w
+
∂E(x(w))

∂x

∂x(w)

∂w
=
∂E(x(w))

∂x

∂x(w)

∂w
, (2.3.1)

where the first term equals zero because of the absence of an explicit dependence.

• For the derivative of the constraint,

0 =
∂g(w,x(w))

∂w
=

∂Eg(w,x(w))

∂w
+
∂g(w,x(w))

∂x

∂x(w)

∂w
=⇒

∂x(w)

∂w
= −

(
∂g(w,x(w))

∂x

)−1 ∂Eg(w,x(w))

∂w
, (2.3.2)

where it has been used that g(w,x(w)) = 0.

Substituting (2.3.2) into (2.3.1), and with a simplified notation, the following equation for the error

gradient is obtained:

∂E

∂w
=

∂E

∂x

∂x

∂w

= −∂E
∂x

(
∂g

∂x

)−1 ∂g

∂w
. (2.3.3)

2.3.1 BackPropagation Through Time

In this approach, the term δ̂ = ∂E
∂x

(
∂g
∂x

)−1
, a vector of size 1 × NK, is evaluated first, and then

used to get the desired gradient. By definition,

∂E

∂x
=
∂E

∂x

(
∂g

∂x

)−1 ∂g

∂x
= δ̂

∂g

∂x
.

Denoting the 1×N components of δ̂ by δ̂(k), i.e.

δ̂ =
(
δ̂(1) · · · δ̂(K)

)
,

and using the formulae (2.1.4) and (2.2.2), the expression becomes

30 Chapter 2. Atiya-Parlos Recurrent Learning

(
e(1), · · · , e(K)

)
=

(
δ̂(1), · · · , δ̂(K)

)

−IN×N 0 0 · · · 0 0

A1 −IN×N 0 · · · 0 0

0 A2 −IN×N · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · AK−1 −IN×N

.

Notice than now ∆t = 1 and we drop the identity matrix in Ak. Therefore we have

e(K) = −δ̂(K),

e(k) = −δ̂(k) + δ̂(k + 1)Ak, k = 1, . . . ,K − 1.

or, equivalently,

δ̂(K) = −e(K),

δ̂(k) = −e(k) + δ̂(k + 1)Ak, k = 1, . . . ,K − 1.

And δ̂ can be computed iterating the above formulae backwards in time. If we develop the last

formulae at the δ̂i(k) component level we obtain

δ̂i(K) = −ei(K),

δ̂i(k) = −ei(k) +

N∑
j=1

[δ̂(k + 1)]j [Ak]ji

= −ei(k) +
N∑
j=1

δ̂j(k + 1)wjif
′(xi(k)),

where the first term coincides with (1.4.1) and the second expression with (1.4.2), up to a minus

sign. So δ̂ = −δ, where δ is defined as in the classical BPTT algorithm.

Once the term δ̂ is known, the gradient of the error with respect to the weights can be computed

using (2.3.3) and the expression for ∂g
∂w given by (2.2.1), so

dE

dw
= −δ̂ ∂g

∂w
= −δ̂

diag[f0]T

...

diag[fK−1]T

 = −
K∑
k=1

δ̃(k)diag[fk−1]T .

That is exactly the formula used in BPTT (see subsection 1.4.1) expressed in a vectorial form, as it

can be seen, focusing our attention in the component (i− 1)N + j, that corresponds to the update

of wij :

2.3. Unification of BPTT and RTRL 31

[
dE

dw

]
(i−1)N+j

= −

[
K∑
k=1

δ̃(k)diag[fk−1]T

]
(i−1)N+j

= −
N∑
l=1

K∑
k=1

[δ̃(k)]l[diag[fk−1]T]l,(i−1)N+j

= −
N∑
l=1

K∑
k=1

δ̃l(k)

fTk−1

fTk−1

. . .

fTk−1

l,(i−1)N+j

= −
K∑
k=1

δ̃i(k)[fk−1]j

=
K∑
k=1

δi(k)[fk−1]j ,

which is exactly the expression (1.4.3), where the change of sign compensates the one of the δ̂

expression.

2.3.2 Real Time Recurrent Learning

For this algorithm, the first step is to compute the matrix Z =
(
∂g
∂x

)−1
∂g
∂w of dimensions NK ×

N2. As before, it is clear that

∂g

∂w
=
∂g

∂x

(
∂g

∂x

)−1 ∂g

∂w
=
∂g

∂x
Z.

Again denoting the N ×N2 blocks of Z as Z(k),

Z =

Z(1)

...

Z(K)

 ,

and using the equalities (2.2.1) and (2.2.2) into the expression ∂g
∂w = ∂g

∂xZ, the following result is

obtained:

diag[f0]T

...

diag[fK−1]T

 =

−IN×N 0 0 · · · 0 0

A1 −IN×N 0 · · · 0 0

0 A2 −IN×N · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · AK−1 −IN×N

Z(1)

...

Z(K)

 .

From this expression, the following formulae for Z are obtained:

32 Chapter 2. Atiya-Parlos Recurrent Learning

diag[f0]T = −Z(1),

diag[fk]
T = AkZ(k)− Z(k + 1), k = 1, . . . ,K − 1.

or, equivalently,

Z(1) = −diag[f0]T ,

Z(k + 1) = AkZ(k)− diag[fk]
T , k = 1, . . . ,K − 1.

This is the classical recursive expression for RTRL (see section 1.4.2), for in fact we have

∂xi(k)

∂wkl
= − (Z(k))i,(k−1)N+l ,

i.e., Z(k) is the minus derivative of the states at time k with respect to the weights. This is clear if

we develop the right side of the expressions and take the corresponding (i, (k−1)N+l) component:

∂xi(1)

∂wkl
= [Z(1)]i,(k−1)N+l = −[diag[f0]T]i,(k−1)N+l

= −

fT0

fT0
. . .

fT0

i,(k−1)N+l

= −δik[f0]l.

Where δik stands for Kornoecker’s delta. For the other terms we have:

∂xi(k + 1)

∂wkl
= [Z(k + 1)]i,(k−1)N+l = [AkZ(k)− diag[fk]

T]i,(k−1)N+l

=

N∑
l=1

[Ak]i,l[Z(k)]l,(k−1)N+l − δik[fk]l

=

N∑
l=1

wi,l[f
′
k]l −

∂xl(k)

∂wkl
δik[fk]l.

Once Z has been computed, using (2.3.3) and the expression (2.1.4) for ∂E
∂x , the gradient be-

comes

dE

dw
=
∂E

∂x
Z = (e(1), . . . , e(K))Z =

K∑
k=1

e(k)Z(k).

Turning the attention to the component (i− 1)N + j that represents the update of wij , we get the

formula

2.3. Unification of BPTT and RTRL 33

[
dE

dw

]
(i−1)N+j

=

[
K∑
k=1

e(k)Z(k)

]
(i−1)N+j

=
N∑
l=1

K∑
k=1

[e(k)]l[Z(k)]l,(i−1)N+j

=

N∑
l=1

K∑
k=1

el(k)
∂xl(k)

∂wij

=
K∑
k=1

∑
l∈O

el(k)
∂xl(k)

∂wij
,

which is the same as obtained in (1.4.5) with the classical approach.

34 Chapter 2. Atiya-Parlos Recurrent Learning

Chapter 3

BackPropagation Decorrelation

The algorithm of BPDC was developed by Steil at [11]. It emerges as an evolution of the online

version of APRL. In that paper, it was presented as an algorithm based on three basic principles:

• The differentiation of the error function with respect to the states (not the weights, as usually)

in order to obtain a “virtual teacher” target. This new objective will be used to update the

weights.

This idea was introduced by Atiya and Parlos (see chapter 2), and it has been claimed that

their technique (APRL) outperforms the classical BPTT algorithm.

• The use of the temporal memory of the network dynamic.

• The use of the recurrent neural network as a kind of dynamic reservoir. Almost the whole net

is considered as a mechanism that projects the temporal series into a high dimensional space,

storing temporal information. This reservoir is not adapted in order to reduce the complexity

of the algorithm, and permits an online training with linear complexity with respect to the

number of units of the network.

As it has been said before, this vision emerged simultaneously as the ESN [12] approach and

in the LSM one [13].

In this chapter the BPDC algorithm will be analyzed. First, the online version of APRL, and some

considerations about its behaviour will motivate the changes that transforms APRL into BPDC.

Then, the BPDC algorithm will be explained, and some considerations about the mentioned relation

with the ESN approach will be given. Finally, a brief introduction to plasticity methods for reservoir

architecture selection will be presented.

3.1 From APRL to BPDC

In this section, some considerations about the APRL algorithm (the basis of BPDC) will be in-

cluded. First, the online version of APRL will be explained. Then, an analysis of the weight

35

36 Chapter 3. BackPropagation Decorrelation

dynamics will support the idea of the functional separation between the output weights and the

reservoir ones.

3.1.1 APRL Online Algorithm

For the online version of the APRL algorithm, at timestep k+1, the batch weight update is divided

into the update up to step k and the new online update ∆wij(k + 1), so

∆wij(k + 1) = ∆wbatch
ij (k + 1)−∆wbatch

ij (k)

=
η

∆t

[
Ĉ−1
k+1

k∑
r=0

frγi(r + 1)

]
j

− η

∆t

[
Ĉ−1
k

k−1∑
r=0

frγi(r + 1)

]
j

=
η

∆t

[
Ĉ−1
k+1fk

]
j
γi(k + 1) +

η

∆t

[(
Ĉ−1
k+1 − Ĉ

−1
k

) k−1∑
r=0

frγi(r + 1)

]
j

.

This expression can be rewritten to see better the relation with the batch update,

∆wij(k + 1) =
η

∆t

[
Ĉ−1
k+1fk

]
j
γi(k + 1) +

η

∆t

[(
Ĉ−1
k+1ĈkĈ

−1
k − Ĉ

−1
k

) k−1∑
r=0

frγi(r + 1)

]
j

=
η

∆t

[
Ĉ−1
k+1fk

]
j
γi(k + 1) +

η

∆t

[(
Ĉ−1
k+1Ĉk − I

)
Ĉ−1
k

k−1∑
r=0

frγi(r + 1)

]
j

.

(3.1.1)

The second term corresponds to ∆wbatch
ij (k) times the factor

(
Ĉ−1
k+1Ĉk − I

)
. It is easy to see that

this factor decays to zero, since

lim
k→∞

Ĉ−1
k+1Ĉk = lim

k→∞

k + 1

k
Ĉ−1
k+1Ĉk = I,

where it has been used that limk→∞
1
kCk = C, the autocorrelation matrix of the activations. So

the update consists on a mixture of a one-step error term, and a momentum term. The fading of the

second term implies that this algorithm cannot include information from a long time back.

Using the same matrix notation of the previous chapter, the online update matrix ∆W (K + 1)

is given by

∆W (K + 1) = ∆WBatch(K + 1)−∆WBatch(K)

=
η

∆t
B(K + 1)Ĉ−1

K+1 −
η

∆t
B(K)Ĉ−1

K

=
η

∆t

([
B(K) + γ(K + 1)fTK

]
Ĉ−1
K+1 −B(K)Ĉ−1

K

)
=

η

∆t

(
B(K)Ĉ−1

K+1 + γ(K + 1)fTKĈ
−1
K+1 −B(K)Ĉ−1

K

)
,

3.1. From APRL to BPDC 37

where again the terms B(K)
(
Ĉ−1
K+1 − Ĉ

−1
K

)
vanishes when k →∞.

Substituting the recursive expression of Ĉ−1
K+1 = Ĉ−1

K −
[Ĉ−1
K fK][Ĉ−1

K fK]
T

1+fTK Ĉ
−1
K fK

given by equation

(2.2.4), we obtain:

∆W (K + 1) =
η

∆t

B(K)Ĉ−1
K −B(K)

[
Ĉ−1
K fK

] [
Ĉ−1
K fK

]T
1 + fTKĈ

−1
K fK

+γ(K + 1)fTKĈ
−1
K − γ(K + 1)fTK

[
Ĉ−1
K fK

] [
Ĉ−1
K fK

]T
1 + fTKĈ

−1
K fK

−B(K)Ĉ−1
K

=

η

∆t

−
[
B(K)Ĉ−1

K fK

] [
Ĉ−1
K fK

]T
1 + fTKĈ

−1
K fK

+
γ(K + 1)fTKĈ

−1
K

[
1 + fTKĈ

−1
K fK

]
1 + fTKĈ

−1
K fK

−

[
γ(K + 1)fTKĈ

−1
K fK

] [
Ĉ−1
K fK

]T
1 + fTKĈ

−1
K fK

=

η

∆t

−
[
B(K)Ĉ−1

K fK

] [
Ĉ−1
K fK

]T
1 + fTKĈ

−1
K fK

+
γ(K + 1)fTKĈ

−1
K

1 + fTKĈ
−1
K fK

+
γ(K + 1)fTKĈ

−1
K fTKĈ

−1
K fK

1 + fTKĈ
−1
K fK

−

[
γ(K + 1)fTKĈ

−1
K fK

] [
Ĉ−1
K fK

]T
1 + fTKĈ

−1
K fK

=

η

∆t

γ(K + 1)
[
Ĉ−1
K fK

]T
1 + fTKĈ

−1
K fK

−

[
B(K)Ĉ−1

K fK

] [
Ĉ−1
K fK

]T
1 + fTKĈ

−1
K fK

+
γ(K + 1)fTKĈ

−1
K fTKĈ

−1
K fK

1 + fTKĈ
−1
K fK

−

[
γ(K + 1)fTKĈ

−1
K fK

] [
Ĉ−1
K fK

]T
1 + fTKĈ

−1
K fK

=

η

∆t

[
γ(K + 1)−B(K)Ĉ−1

K fTK

] [
Ĉ−1
K fK

]T
1 + fTKĈ

−1
K fK

, (3.1.2)

where it has been used that Ĉ−1
K = (Ĉ−1

K)T (it is symmetric by definition) and that the last two

terms cancel because fTKĈ
−1
K fK is a scalar.

3.1.2 Weight Dynamics

In this section we will demonstrate the following lemma of Schiller and Steil [19], which states

that, in the single output case, the APRL weights connecting the reservoir are strongly coupled.

Lemma 1 Assume a network with a single output i = 1. Then the update given by APRL satisfies

the equation

38 Chapter 3. BackPropagation Decorrelation

∀k, ∀i > 1,∀j > 1,∀h : ∆wih(k) =
wi1(0)

wj1(0)
∆wjh(k) = sij∆wjh(k), (3.1.3)

where sij is defined as the rate between the initial weights to unit i and j, sij = wi1(0)
wj1(0) .

Proof In order to demonstrate the previous result, the following series of equalities will be proved

for i > 1, j > 1, k:

• γi(k) = sijγj(k),

• Bih(k) = sijBjh(k),

• ∆wih(k) = sij∆wjh(k),

• wi1(k) = sijwj1(k).

Induction on k will be used for the demonstration. To begin with, in the case k = 1, the fourth

term is just the definition of sij and the first three terms are in fact 0 and we trivially have:

γi(1) = −ei(1) = 0 = −ej(1) = γj(1) = sijγj(1).

Bih(1) = γi(1)f(xTh (0)) = 0 = γj(1)f(xTh (0)) = Bjh(1) = sijBjh(1).

∆wih(1) =
η

∆t

N∑
l=1

Bil(1)
[
C−1

1

]
lh

= 0 =
η

∆t

N∑
l=1

Bjl(1)
[
C−1

1

]
lh

= ∆wjh(1)

= sij∆wjh(1);

in the first equality we have used the expression of γ in terms of its components, that is,

γi(k) = −ei(k) + (1−∆t)ei(k − 1) + ∆t
N∑
l=1

wilf
′(xl(k))el(k − 1). (3.1.4)

Now, assuming the equalities to hold for k, they will be demonstrated for k + 1. To do so, we will

use the induction hypothesis, the fact that ei(k) = 0 for i > 1, the expression (3.1.4) for computing

γ, and formula (3.1.2) for the update with matrix notation. We have:

3.1. From APRL to BPDC 39

γi(k + 1)

γj(k + 1)
=
−ei(k + 1) + (1−∆t)ei(k) + ∆t

∑N
l=1wilf

′(xl(k + 1))el(k)

−ej(k + 1) + (1−∆t)ej(k) + ∆t
∑N

l=1wjlf
′(xl(k + 1))el(k)

=
∆twi1f

′(x1(k + 1))e1(k)

∆twj1f ′(x1(k + 1))e1(k)
=
wi1
wj1

= sij .

Bih(k + 1)

Bjh(k + 1)
=

Bih(k) + γi(k + 1)f(xTh (k))

Bjh(k) + γj(k + 1)f(xTh (k))

=
sij
(
Bjh(k) + γj(k + 1)f(xTh (k))

)
Bjh(k) + γj(k + 1)f(xTh (k))

= sij .

∆wih(k + 1)

∆wjh(k + 1)
=

(
γi(k + 1)−

∑N
l=1Bil(k)

[
Ĉ−1
k fk

]
l

) [
Ĉ−1
k fk

]T
h(

γj(k + 1)−
∑N

l=1Bjl(k)
[
Ĉ−1
k fk

]
l

) [
Ĉ−1
k fk

]T
h

=
sij

((
γj(k + 1)−

∑N
l=1Bjl(k)

[
Ĉ−1
k fk

]
l

))
(
γj(k + 1)−

∑N
l=1Bjl(k)

[
Ĉ−1
k fk

]
l

) = sij .

wi1(k + 1)

wj1(k + 1)
=

wi1(k) + ∆wi1(k + 1)

wj1(k) + ∆wj1(k + 1)

=
sij (wj1(k) + ∆wj1(k + 1))

wj1(k) + ∆wj1(k + 1)
= sij .

�

According to lemma 1, in each update of the APRL algorithm, the weight update matrix can

be expressed as

∆W (k) =

∆w11(k) ∆w12(k) · · · ∆w1N (k)

∆w21(k) ∆w22(k) · · · ∆w2N (k)

s32∆w21(k) s32∆w22(k) · · · s32∆w2N (k)
...

...
. . .

...

sN2∆w21(k) sN2∆w22(k) · · · sN2∆w2N (k)

,

and the weight at time K is given by

wij(K) = wij(0) + si2

K∑
k=1

∆w2j(k), j > 2.

So, in the single output case, between the N2 weights, which are the free parameters that define

the model, only 2N are really independent. On one side, the N weights that connect the reservoir

to the single output. On the other side, all the N(N − 1) reservoir weights are determined by the

value of the N weights from the whole network to one of the reservoir units (for example, in the

equation above, they are determined by the weights w2i from the network to unit 2), and the initial

weight matrix. This result suggests a functional separation between the output weights and the

reservoir weights of a RNN.

40 Chapter 3. BackPropagation Decorrelation

3.2 BPDC

The BPDC algorithm will be given here, starting from the previous results for APRL. We shall also

discuss its cost.

3.2.1 BPDC Algorithm

The consideration of formula (3.1.1) suggests to delete the momentum term and also not to try to

accumulate the full matrix Ck, using instead only instantaneous information. Doing this in (3.1.1)

and recalling the definition Ĉ(k) = εI + fkf
T
k , the update is then given by

∆wij(k + 1) =
η

∆t

[
Ĉ(k)−1fk

]
j
γi(k + 1).

For the computation of Ĉ(k)−1, the small rank adjustment matrix inversion lemma is used (see

appendix A.2.3), so

Ĉ(k)−1fk =

[
1

ε
I −

[1
ε Ifk][

1
ε Ifk]

T

1 + fTk
1
ε Ifk

]
fk

=

[
1

ε
I − 1

ε2
fkf

T
k

1 + 1
εf

T
k fk

]
fk

=
1

ε
fk −

1

ε2
fkf

T
k fk

1 + 1
εf

T
k fk

=
1

ε
fk −

1

ε2
fk‖fk‖2

1 + 1
ε‖fk‖2

=

[
1

ε
− 1

ε

‖fk‖2

ε+ ‖fk‖2

]
fk

= 1
ε

[
ε+ ‖fk‖2 − ‖fk‖2

ε+ ‖fk‖2

]
fk

=

[
1

ε

ε

ε+ ‖fk‖2

]
fk

=
1

ε+ ‖fk‖2
fk.

Thus the online update of the new algorithm will be expressed as

∆wij(k + 1) =
η

∆t

f(xj(k))∑N
s=1 f(xs(k))2 + ε

γi(k + 1), (3.2.1)

where we recall that

γi(k + 1) =
∑
s∈O

(
(1−∆t)δis + ∆twisf

′(xs(k))
)
es(k)− ei(k + 1).

3.2. BPDC 41

3.2.2 Cost of the Algorithm

The cost of the algorithm will be calculated in the most common case of a problem with only one

output. For notation, it will be considered that S = {1}, that is, the first unit is the output of the

model. Applying equation (3.2.1) to this particular problem, the update becomes

∆wij(k + 1) =
η

∆t

f(xj(k))

‖f(x(k))‖2 + ε

×

{
((1−∆t) + ∆tw11f

′(x1(k))) e1(k)− e1(k + 1), i = 1,

∆twi1f
′(x1(k))e1(k), i > 1.

(3.2.2)

The complexity will be measured in terms of the number of multiplications to obtain the update.

We discuss next the cost of the full algorithm (with update of all the weights) and the corresponding

cost of the simplified version (updating only the outputs weights, as it will be explained in section

3.3).

Complete Update

For the whole algorithm the operations required are:

• The denominator of the equation (3.2.2) can be computed withN multiplications (to estimate

the norm of the vector of activations).

• The product of the denominator by the numerator is one operation for each j, with a total of

N .

• The upper term of the right part (when i = 1) will be calculated only once, so it is not

considered.

• In the lower term, the dependence on i is given only by the term wi1, which means that,

precalculating ∆tf ′(x1(k))e1(k), just one more multiplication is needed for each i, that is,

a total of N operations.

• The remaining calculation is the multiplication of the left part by the right one, for each i

and j, with a cost of N2.

Putting this results together, the total cost of the online algorithm of BPDC is N2 + 3N for each

data point k.

Update of the Output Weights

Changing only the output weights implies a big simplification. This is obtained fixing i = 1 in the

update equation.

• The denominator, again, requires N multiplications.

42 Chapter 3. BackPropagation Decorrelation

• The product of the denominator by the right part will be calculated once, so it does not

change the cost.

• The numerator will be multiplied by the previous quantity for each j with a cost N .

The complexity of the simplified BPDC is 2N for each data point.

3.3 Back to ESN

The relationship within the reservoir weights stated by lemma 1 represents a clear division between

those that connect with the output, and those between the units of the reservoir.

On the other side, in formula (3.2.2) it is clear that the instantaneous error ei(k + 1) only is

propagated to the output weights, as stated in [11]. Moreover in [20] an empirical comparative of

the magnitude of the update for APRL was presented. In this work, it was shown that the output

weights change much faster than the other ones.

These ideas motivate the separation of the model training into two parts: the construction of a

reservoir that stores as much temporal information as possible (with respect to the problem need)

and the creation of a readout function to transform all this information into the desired target. This

is exactly the paradigm known as Reservoir Computing that emerged both as the ESN and the LSM

approaches (as mentioned in section 1.5).

In the case of BPDC algorithm, this justifies the update of only the output weights. With

a slightly simplification on equation (3.2.2) we have the LMS [21] filter, that it comes to be an

online version of a simple linear regression. Using the classical batch linear regression (with the

pseudoinverse of the internal states matrix) we recover again the ESN approach.

So with this last simplification, mainly the update only of a part of the weights, the theoretical

path from the classical approaches to the RC paradigm is complete.

3.4 Reservoir Architecture Definition

Although this part of the RC paradigm, the training/construction of good reservoirs, is a very big

research field, here only some notions about the main ideas will be given.

It is important to notice that the random initialization of the reservoir matrix of a RNN is

almost an antonym of optimization. In fact, even the simplest selection of reservoirs, as could be

the generation ofN random ones, and the selection of the best (provided that an evaluation method

is given) will produce an improvement, with respect to the case of generating only one matrix, with

probability N−1
N (that is, the proportion of the N matrices that are not optimal).

Moreover, a big variability in the results has been observed, as stated in [22], so the importance

of reservoir definition should not be obviated.

In the present section, some of the existing algorithms for defining a reservoir will be briefly

explained.

3.4. Reservoir Architecture Definition 43

The simplest approach to the reservoir definition is to try to build good “general” models. This

means that the reservoirs will be independent of the concrete problem to be solved. So no data will

be used, neither the inputs nor the desired outputs, to optimize the reservoir, and only some general

receipts which are expected to produce models with a richness enough for most of the problems

will be used.

Some examples of this approach are:

• In the ESN paradigm, the reservoir has to provide [23]:

– A rich set of dynamics, so it has to be big enough.

– Independent dynamics, so the reservoir matrix should be sparse.

– Random dynamics. This permits the reservoir to have different dynamics and so to

store more information. The matrix will be therefore randomly initialized.

– Independence of the initial state. As it was described in subsection 1.5.3, this is essen-

tially the ESP.

• As it was explained in the section 1.5, the scale of the weights can be used to determine the

network speed and its nonlinearity, in function of the behaviour required.

• Another approaches try to specify special topologies, such as bioinspired ones, small-world,

expansions of good small networks to bigger ones... Or even simplified versions, such as

FFNN with delays, diagonal weight matrices...

Other more complex approaches use information that depends on the problem. These tech-

niques can be classified into two big groups: the unsupervised and the supervised training methods.

The first ones do not use any information about the desired target of the problem. An example

of these approaches, the Intrinsic Plasticity adaptation, will be described in detail in subsequent

sections.

The second approaches, the supervised one, use the desired output for improving the reservoir

performance. As an example, the evolutionary methods developed in [24] can be cited. In this

work, the main parameters of a RNN are estimated with an evolutionary strategy (ES). This param-

eters are the size of the RNN, the spectral radius of the reservoir weight matrix and the connectivity

(the proportion of links over the total N2 possibilities). Moreover, evolutionary algorithms (EA)

were also used to find all the weights of the RNN for small networks. A simplification of this

method is to fix the topology (i.e., set first which weights will be equal to zero) and to apply the

EA only to the non zero ones. Another method of this type used in [25] is to search in the space

of the connection topology, i.e., the evolutionary algorithm determines which weights will be zero.

That is, a mask matrix will be applied to a fixed weight matrix, and the optimization will be done

over the space of this mask matrices.

In this work, the supervised reservoir training methods will not be further considered, and we

will focus on the plasticity methods.

44 Chapter 3. BackPropagation Decorrelation

3.4.1 Unsupervised Reservoir Training: Intrinsic Plasticity

Intrinsic plasticity (IP) is the capability of certain neurons to change their excitability in function

of the stimulus that are receiving [26]. This phenomenon is determined only by the presynaptic

activity, so the unit presents an adaptation based on local information.

This property has been simulated in several models of artificial neurons. In particular, two of

them will be described next: Exponential Intrinsic Plasticity (EIP) and Gaussian Intrinsic Plasticity

(GIP).

These two techniques are considered unsupervised because they only use the input of the unit

to estimate the adaptation of the network, so it is not necessary to have any knowledge about the

desired final output of the model. In fact, they only adapt the reservoir so every unit transmits as

much information as it can, with independence of the task that the network will have to solve.

Exponential Intrinsic Plasticity

Triesch [27] introduced an algorithm to simulate this IP in a neuron model with a continuous

activation function. This method tries to transform the distribution of the output of a neuron into an

exponential distribution. This is because the exponential distribution is the one that maximizes the

entropy (and so the information that a neuron can transmit) among those with a given mean. This

can be viewed, in a biological sense, as the distribution that maximizes the information transmitted

with a given metabolic cost.

The model that will be used in this case is a single unit with input synaptic current x, with

density p(x). This input is transformed with a nonlinearity g to get y = g(x). In an analog model,

this will be directly the output of the unit. If a firing mechanism is used, y will represent the

firing rate of the neuron. This is why g will be considered non-negative. Assuming that is also

monotonically increasing (as the usual Fermi activation) the density of y will be (using a simple

change of variable):

q(y) =
p(x)
∂y
∂x

. (3.4.1)

The objective now is to make q(y) as close as possible to fexp(y) = 1
µ exp −yµ , with µ fixed.

As the measure of the distance between the two distributions the Kullback Leibler Divergence

(KL-Divergence) is used. So the goal is to minimize the expression

3.4. Reservoir Architecture Definition 45

D ≡ dKL(q‖fexp) =

∫
q(y) log

(
q(y)

1
µ exp −yµ

)
dy

=

∫
q(y) log q(y)dy −

∫
q(y)

(
− y
µ
− log

1

µ

)
dy

=

∫
q(y) log q(y)dy +

1

µ

∫
q(y)ydy + logµ

∫
q(y)dy

= −H(y) +
1

µ
E [y] + log µ.

From this expression it can be deduced that the exponential distribution is the one which max-

imizes the entropy for a fixed mean. Consider q(y) an arbitrary distribution, with a given mean

µ = E [y]. The KL-Divergence with respect to the exponential distribution is always positive. In

fact, the KL-Divergence is a distance, so it is zero if and only if q(y) is precisely fexp(y). But this

divergence is minimized if and only ifH(y) is maximized (because µ = E [y] and logµ = logE [y]

are fixed), so q(y) has maximum entropy if and only if the divergence is 0, and the divergence is

zero if and only if q(y) = fexp(y). In other words, if the distribution q(y) has maximum entropy,

then it has to be precisely the exponential distribution for a mean µ. If not, then the KL-Divergence

to the exponential distribution will be positive, and a distribution of an exponential variable z will

have a KL-Divergence of 0 and so a larger entropy:

dKL(q‖fexp) = −H(y) +
1

µ
µ+ logµ > 0 = −H(z) +

1

µ
µ+ logµ = dKL(fexp‖fexp)

=⇒ H(z) > H(y).

In this case, we shall use as the activation function

y = g(x) =
1

1 + exp (−(ax+ b))
.

The adaptation of the unit will be given by the modification of the activation function parameters a

and b for which a stochastic descent gradient rule will be derived to minimize the expression given

for D with respect to them.

Now the derivatives of D with respect to the parameters a and b will be computed. They are

the basis of the plasticity rule.

46 Chapter 3. BackPropagation Decorrelation

∂D

∂a
= −∂H(y)

∂a
+

1

µ

∂E [y]

∂a

=
∂

∂a
E

[
log q(y) +

1

µ
y

]
=

∂

∂a
E

[
log

p(x)
∂y
∂x

+
1

µ
y

]

= E

[
∂

∂a
log p(x)− ∂

∂a
log

∂y

∂x
+

1

µ

∂y

∂a

]
= E

[
− ∂

∂a
log

∂y

∂x
+

1

µ

∂y

∂a

]
= E

[
− ∂

∂a
log a− ∂

∂a
log y − ∂

∂a
log(1− y) +

1

µ

∂y

∂a

]
= E

[
−1

a
− 1

y
xy(1− y) +

1

1− y
xy(1− y) +

1

µ
xy(1− y)

]
= E

[
−1

a
− x+ xy + xy +

1

µ
xy − 1

µ
xy2

]
= −1

a
+ E

[
−x+

(
2 +

1

µ

)
xy − 1

µ
xy2

]
.

It has been used that ∂y∂x = ay(1 − y), and ∂y
∂a = xy(1 − y). The corresponding derivative for the

parameter b is the expression:

∂D

∂b
= −∂H(y)

∂b
+

1

µ

∂E [y]

∂b

=
∂

∂b
E

[
log

p(x)
∂y
∂x

+
1

µ
y

]

= E

[
− ∂

∂b
log

∂y

∂x
+

1

µ

∂y

∂b

]
= E

[
− ∂

∂b
log a− ∂

∂b
log y − ∂

∂b
log(1− y) +

1

µ

∂y

∂b

]
= E

[
−1

y
y(1− y) +

1

1− y
y(1− y) +

1

µ
y(1− y)

]
= E

[
−(1− y) + y +

1

µ
y − 1

µ
y2

]
= E

[
−1 + 2y +

1

µ
y − 1

µ
y2

]
= E

[
−1 +

(
2 +

1

µ

)
− 1

µ
y2

]
,

where the equality ∂y
∂b = y(1− y) has been used.

In the online stochastic gradient descent we replace the averages above by their sample values

and the learning rule (with learning rate η) updates the a and b parameters in the opposite direction

of the gradient, that is:

3.4. Reservoir Architecture Definition 47

∆a = η

(
1

a
+ x−

(
2 +

1

µ

)
xy +

1

µ
xy2

)
,

∆b = η

(
1−

(
2 +

1

µ

)
y +

1

µ
y2

)
.

In figure 3.4.1 an example of the transformation of the output distribution through this algo-

rithm is showed.

Figure 3.4.1: Transformation of the output distribution in a single Fermi unit with Gaussian noise as input.

Exponential IP is applied during 1000 steps with η = 0.01 and µ = 0.2.

Gaussian Intrinsic Plasticity

Schrawen and Steil [28] followed the same philosophy as Triesch (i.e. to adapt the distribution of

the output of the units in order to maximize the entropy). But this time the target distribution is not

the exponential one (that maximizes, for a fixed mean, and in a non-negative domain, the entropy)

but the Gaussian distribution. This distribution is defined over all the real axis, and transmits the

maximum information for a fixed mean and a given deviation. This new algorithm can be applied,

therefore, with activation functions such as the hyperbolic tangent, with both negative and positive

values.

The model is similar as the one for exponential IP, but this time the nonlinearity g will be

defined over all R. Again, the equality (3.4.1) will be used.

The KL-Divergence will measure the distance between the two distribution. Now, the goal is

to approximate q(y) to fgaus(y) = 1
σ
√

2π
exp

(
− (y−µ)2

2σ2

)
, for µ and σ given, so the expression to

minimize is

48 Chapter 3. BackPropagation Decorrelation

D ≡ dKL(q‖fgaus) =

∫
q(y) log

 q(y)

1
σ
√

2π
exp

(
− (y−µ)2

2σ2

)
 dy

=

∫
q(y) log q(y)dy −

∫
q(y)

(
log

1

σ
√

2π
− y2

2σ2
− µ2

2σ2
+
µy

σ2

)
dy

= −H(Y) + E

[
y2

2σ2
− µy

σ2

]
+K,

where K is an expression that does not depend on y (thus it will not contribute to the optimization

of the parameters).

In this case, the stochastic descent gradient rule will be obtained for the activation function g,

defined as

y = g(x) = tanh (ax+ b) =
exp(ax+ b)− exp(−(ax+ b))

exp(ax+ b) + exp(−(ax+ b))
,

∂D

∂a
= −∂H(y)

∂a
+

∂

∂a
E

[
K +

y2

2σ2
− µy

σ2

]
=

∂

∂a
E

[
log q(y) +K +

y2

2σ2
− µy

σ2

]
=

∂

∂a
E

[
log

p(x)
∂y
∂x

+K +
y2

2σ2
− µy

σ2

]

= E

[
∂

∂a
log p(x)− ∂

∂a
log

∂y

∂x
+

∂

∂a

(
K +

y2

2σ2
− µy

σ2

)]
= E

[
− ∂

∂a
log

∂y

∂x
+

∂

∂a

y2

2σ2
− ∂

∂a

µy

σ2

]
= E

[
− ∂

∂a
log a− ∂

∂a
log(1− y2) +

∂

∂a

y2

2σ2
− ∂

∂a

µy

σ2

]
= E

[
−1

a
+

1

1− y2
2yx(1− y2) +

1

2σ2
2yx(1− y2)− µ

σ2
x(1− y2)

]
= −1

a
+ E

[
x
(
− µ

σ2
+

y

σ2
(2σ2 + 1− y2 + µy)

)]
,

where the equalities ∂y
∂x = a(1 − y2), and ∂y

∂a = x(1 − y2) have been used. The derivative with

respect to the parameter b is:

3.4. Reservoir Architecture Definition 49

∂D

∂b
= −∂H(y)

∂b
+

∂

∂b
E

[
K +

y2

2σ2
− µy

σ2

]
=

∂

∂b
E

[
log

p(x)
∂y
∂x

+K +
y2

2σ2
− µy

σ2

]

= E

[
− ∂

∂b
log

∂y

∂x
+

∂

∂b

y2

2σ2
− ∂

∂b

µy

σ2

]
= E

[
− ∂

∂b
log a− ∂

∂b
log(1− y2) +

∂

∂b

y2

2σ2
− ∂

∂b

µy

σ2

]
= E

[
1

1− y2
2y(1− y2) +

1

2σ2
2y(1− y2)− µ

σ2
(1− y2)

]
= E

[
− µ

σ2
+

y

σ2
(2σ2 + 1− y2 + µy)

]
,

where it has been used that ∂y∂b = (1− y2).

So the online learning rule (with rate η) is:

∆a = −η
(
−1

a
+ x

(
− µ

σ2
+

y

σ2
(2σ2 + 1− y2 + µy)

))
,

∆b = −η
(
− µ

σ2
+

y

σ2
(2σ2 + 1− y2 + µy)

)
.

An example of the output distribution transformation can be viewed in figure 3.4.2 .

Figure 3.4.2: Transformation of the output distribution in a single tanh unit with gaussian noise as input.

Gaussian IP is applied during 1000 steps with η = 0.01, µ = 0.2 and σ = 0.4.

50 Chapter 3. BackPropagation Decorrelation

Chapter 4

Simulations

In this chapter, a set of experiments will be described. First, some simulations will help to under-

stand how the ESN (and the RC approach in general) works. Then, some state of the art problems

will be tackled to show the effectiveness of ESN. Finally, the application to a real world problem,

the prediction of wind power, will be included.

4.1 Simulations Setup

A general description of the simulation environment will be given next.

4.1.1 Model

In this section, the RNN used during the simulations will be described.

• The time constant will be equal to 1, i.e., ∆t = 1, so each update is given by equation (1.3.2),

x(k + 1) = Wf(x(k)). This implies that the units themselves have no memory.

• The activation function used is the tanh function, with parameters a and b, so

f(x; a, b) =
exp (ax+ b)− exp (−(ax+ b))

exp (ax+ b) + exp (−(ax+ b))
.

The parameters a and b are included to generalize the model, but in this simulations no IP

adaptation is used, so they will be fixed, a ≡ 1 and b ≡ 0.

• In all the simulations below the RNN will have only one output.

• At the beginning of the simulations, a synthetic input with constant value to 1 will be gener-

ated. This input will act as the bias of the model.

• In the case of the ESN model, the weights will not be updated, and only a linear regression

will take place at the end of the algorithm. In the BPDC model, the weights will be updated

at each timestep with equation (3.2.2):

51

52 Chapter 4. Simulations

∆wij(k + 1) =
η

∆t

f(xj(k))

‖f(x(k))‖2 + ε

×

{
((1−∆t) + ∆tw11f

′(x1(k))) e1(k)− e1(k + 1), i = 1,

∆twi1f
′(x1(k))e1(k), i > 1,

where ε = 0.02 for all the experiments.

• In both BPDC and ESN, during the iteration of the model over the training test, gaussian

noise can be injected to the states. This is done easily. In the case of ESN, once the matrix

with the outputs of the units O has been computed, some gaussian noise (with a deviation

σ that depends on each experiment, but generally it will be of σ = 0.00001) will be added.

Then, the perturbed matrix will be used to compute the output weights. For BPDC, the

gaussian noise is added at each step, before updating the weights of the model.

• Another auxiliary model, a MLP, will be used for obtaining a basis error. It will be applied

only to those problem will delay windows, because the MLP itself can not retain any tem-

poral information, so its application to purely generative (without inputs) tasks makes no

sense.

4.1.2 Input/Output

Although each experiment will be explained in its corresponding section, a general idea of the input

and output of the system will be given here.

• As it has been described, the algorithm will use a training sequence composed of the in-

put/output pairs evolution through the time, i.e.

((u(1), y(1)), . . . , (u(K), y(K))).

• Once the model is trained, testing is done by iterating the dynamic of the RNN (i.e. updating

its state with equation (1.3.2), x(k + 1) = Wf(x(k)), using if needed the inputs of the

test set) starting at the point in which the training ended. So the testing is viewed as a

continuation of the training sequence, but without using the desired outputs or updating the

weights (for BPDC model).

• In those experiments where some previous outputs will be used as inputs (using a temporal

window), during the test the RNN is run in a generative way. This means that, instead of

using the true outputs as inputs, the outputs produced by the RNN in previous timesteps are

inserted again as inputs, so no exterior information is put into the model.

4.1. Simulations Setup 53

4.1.3 Training and Testing Procedures

In this work, two main training algorithms will be used. The first is the ESN approach (described

in section 1.5). This is one of the basics algorithms of the RC paradigm, and it is the end in the

evolution path of RNN algorithms that we have considered. It is also very illustrative of how the

RC paradigm works, and it presents surprisingly good results. Basically, the method consists on:

• Compute internal states using teacher forcing, iterating the RNN dynamic for each timestep.

So for each step of the training sequence the state of the RNN is computed with x(k +

1) = Wf(x(k)), forcing the state of the output unit to the desired value at each timestep,

x1(k) = y1(k).

• The internal states are collected into a matrix X , so each row in X contains the state of the

RNN at one timestep.

• Clean up a percentage p% of the the first data values (this is the washout, it is done because

of the dependency of this data on the initial state). More precisely, this means dropping the

first p% rows of the matrix X . In our case, this will be replaced for doing an extra epoch at

the beginning.

• Compute the output weights through a simple linear regression, using the pseudoinverse of

the matrix O = f(X) and the desired output vector Y .

The second algorithm is BPDC (see section 3.2), where we follow three different variations,

although the training procedure will be the same for all of them. In the first one, every weight will

be updated. We will refer to this variation as BPDC-C (complete BPDC). In the second approach,

only the output weights will be changed (this is the simplified BPDC, BPDC-S). The third variation

is a simplification of the second one. The learning rule is modified so the LMS filter rule (see [21])

could be applied, we will call this combination of LMS and BPDC as BPDC-L. Summarizing,

training is done as follows:

• For each timestep.

– Iterate the network dynamic with expression x(k + 1) = Wf(x(k)), using the desired

output of the RNN.

– Update the weights according to the corresponding BPDC rule if the washout phase

has been completed, either all the weights, or only the output ones.

With respect to the washout of the system, we have decided to do it using extra epochs over all

the data (see section 4.5 for more details).

In both algorithms the testing phase is analogous. The trained RNN is iterated using either

inputs of the test patterns or, if a generative mode is desired, feeding back the outputs into the

inputs at the next timestep:

54 Chapter 4. Simulations

• For each timestep.

– Feed back the previous outputs as the next inputs if a generative model is sought.

– Iterate the network dynamic.

4.1.4 Error Measurement

To quantify the error produced by a model, the normalized square error will be used. This error is

defined as:

NSE =

K∑
k=1

∑
s∈O

[xs(k)− ys(k)]2

σ2
.

In our case only one output will be considered, so the NSE can be reduced to

NSE =

K∑
k=1

[x1(k)− y1(k)]2

σ2
,

where K is the length of the test sequence and σ is the deviation of the teacher signal y1(k) over

the timesteps k = 1, . . . ,K. Notice that this error is normalized, so a trivial predictor that uses the

mean of the target as the predicted values will have an error NSETP = 1 = 100%.

The error measures included in this work are the mean over 20 repetitions of the simulations

(to take account of the variability due to the random initialization). The standard deviation of the

error is also given, to evaluate this variability.

4.1.5 List of Experiments

Table 4.1.1 summarizes the settings of each of the experiment included in this chapter.

Name Ref Model Parameters

Pure Sinewave Generator 4.2.1 ESN/BPDC N = 20, ep = 1, λ = 0.8, η = 0.01

Sinewave Generator with Delay Input 4.2.2 ESN/BPDC/MLP N = 20, ep = 1, λ = 0.8, η = 0.05

Modulated Pure Sinewave Generator 4.2.3 ESN/BPDC N = 100, ep = 1, λ = 0.8, η = 0.01

Mackey-Glass 4.3 ESN/BPDC/MLP N = 100, ep = 1, λ = 0.8, η = 0.01

Pure Wind Power Forecasting 4.4 ESN/BPDC/MLP N = 30, ep = 1, λ = 0.8, η = 0.01

Table 4.1.1: Settings of the simulations. N is the number of units (considering also the output one), ep is

the number of epochs used to do the washout, λ is the spectral radius of WRes and η is the learning rate for

the BPDC algorithms.

4.2 Sinewave Generator

The first experiment consists simply on learning to generate a sinusoidal wave. This is quite an

easy problem, although obtaining a stable autonomous generator is not trivial, because the RNN

4.2. Sinewave Generator 55

must have a dynamic strong enough to keep the desired trajectory without fading to zero, but if

the network becomes too unstable, the system will diverge quickly. But it is illustrative of how a

RNN works under the RC paradigm. This set of simulations will illustrate the capability of the

ESN algorithm. The BPDC variations will also be included in order to contrast their behaviour.

The parameters, results and observations will be described in the corresponding sections.

4.2.1 Pure Generator

In this experiment, the task is to transform the RNN into a sinewave generator. The desired output

is given by

y(k) =
1

2
sin

(
k

4

)
.

The size of the train set is 300 (the washout will be done with a complete epoch), and 50 steps

of test are done (this means approximately 12 cycles for training and 2 for testing). Nevertheless,

the error in a much bigger test sequence will be shown, to see how the model degenerates with

time. The total number of units is 20, and the spectral radius 0.80. To set the spectral radius,

every connection between the units of the reservoir (in our case, every wij with i > 1, j > 1 and

i ≤ N −M, j ≤ N −M) will be scaled dividing by the spectral radius of WRes. Then, they will

be multiplied by the desired value 0.80. As it will be further discussed in section 5.2, this spectral

radius close to 1 increases the computational power of the RNN, and it permits an autonomous

dynamic. If the spectral radius were bigger, then the trajectory could diverge. The learning rate

for the online algorithms (the BPDC methods) is η = 0.01. This value has been chosen so that the

network dynamic does not diverge in any simulation. As it will be explained below, bigger values

of η can provide better results.

No inputs are used; conceptually: during training the desired output enters into the RNN

through the feedback connections (the links from the output unit to the other units), thanks to

teacher forcing (the output unit is supposed to produce exactly the desired output). So, after some

timesteps the sinewave should be spread over the internal units, and the reconstruction of the output

should be possible. This is illustrated in figure 4.2.1, where the internal states during training of

the first 4 units in ESN are shown (unit 1 is not included because is the output unit).

The error obtained for this task, in the case of the ESN model, is very small, as can be observed

in table 4.2.1. In figure 4.2.2 the last two cycles of the test of this model is represented. As it

can be observed, the RNN conserves the desired trajectory for a very long time. In the case of

the models derived of BPDC, the error is bigger. Observing the graphics (see for example figure

4.2.3, corresponding to the BPDC-S model), with the used learning rate the models are not able

to capture the dynamic. If a bigger learning rate is used, the stability of the model depends on

the random initialization, so in the set of 20 repetitions it is easy that one diverges completely, but

in some simulations the model success to learn the desired trajectory (see figure 4.2.4, where the

BPDC-L models very well the sinewave dynamic). These results will be discussed in section 4.5.

56 Chapter 4. Simulations

C
ycles

Steps
E

SN
E

SN
*

B
PD

C
-L

B
PD

C
-L

*
B

PD
C

-S
B

PD
C

-S*
B

PD
C

-C
B

PD
C

-C
*

4
1
0
0

3
.0
9
e−

0
2
±

3
.0
6
e
−

0
3

3
.0
8
e−

0
2
±

3
.3
8
e
−

0
3

8
.8
0
e−

0
1
±

2
.3
7
e
−

0
1

9
.0
3
e−

0
1
±

1
.7
5
e
−

0
1

8
.5
8
e−

0
1
±

8
.8
9
e
−

0
2

8
.7
7
e−

0
1
±

3
.8
4
e
−

0
2

9
.0
6
e−

0
1
±

6
.8
8
e
−

0
6

9
.0
6
e−

0
1
±

3
.6
0
e
−

0
6

8
2
0
0

4
.7
3
e−

0
2
±

5
.3
5
e
−

0
3

4
.7
5
e−

0
2
±

6
.9
8
e
−

0
3

9
.2
6
e−

0
1
±

1
.6
2
e
−

0
1

9
.3
3
e−

0
1
±

9
.2
7
e
−

0
2

8
.7
5
e−

0
1
±

6
.1
3
e
−

0
2

8
.8
8
e−

0
1
±

1
.9
3
e
−

0
2

9
.0
3
e−

0
1
±

3
.2
9
e
−

0
6

9
.0
3
e−

0
1
±

1
.7
1
e
−

0
6

1
2

3
0
0

6
.5
8
e−

0
2
±

7
.9
9
e
−

0
3

6
.6
3
e−

0
2
±

1
.0
9
e
−

0
2

9
.4
4
e−

0
1
±

1
.1
0
e
−

0
1

9
.4
9
e−

0
1
±

6
.4
1
e
−

0
2

8
.8
1
e−

0
1
±

4
.6
8
e
−

0
2

8
.9
2
e−

0
1
±

1
.2
9
e
−

0
2

9
.0
2
e−

0
1
±

2
.0
9
e
−

0
6

9
.0
2
e−

0
1
±

1
.0
8
e
−

0
6

1
6

4
0
0

8
.5
1
e−

0
2
±

1
.0
7
e
−

0
2

8
.5
8
e−

0
2
±

1
.4
8
e
−

0
2

9
.5
7
e−

0
1
±

6
.7
5
e
−

0
2

9
.5
7
e−

0
1
±

5
.5
3
e
−

0
2

8
.8
5
e−

0
1
±

3
.7
6
e
−

0
2

8
.9
4
e−

0
1
±

9
.7
1
e
−

0
3

9
.0
1
e−

0
1
±

1
.4
9
e
−

0
6

9
.0
1
e−

0
1
±

7
.6
9
e
−

0
7

2
0

5
0
0

1
.0
5
e−

0
1
±

1
.3
4
e
−

0
2

1
.0
6
e−

0
1
±

1
.8
6
e
−

0
2

9
.6
7
e−

0
1
±

5
.9
3
e
−

0
2

9
.5
4
e−

0
1
±

6
.4
7
e
−

0
2

8
.8
8
e−

0
1
±

3
.1
0
e
−

0
2

8
.9
5
e−

0
1
±

7
.7
7
e
−

0
3

9
.0
1
e−

0
1
±

1
.1
9
e
−

0
6

9
.0
1
e−

0
1
±

6
.1
5
e
−

0
7

2
4

6
0
0

1
.2
5
e−

0
1
±

1
.6
1
e
−

0
2

1
.2
6
e−

0
1
±

2
.2
4
e
−

0
2

9
.7
6
e−

0
1
±

6
.3
6
e
−

0
2

9
.5
7
e−

0
1
±

6
.8
3
e
−

0
2

8
.9
0
e−

0
1
±

2
.6
2
e
−

0
2

8
.9
6
e−

0
1
±

6
.5
1
e
−

0
3

9
.0
1
e−

0
1
±

8
.9
5
e
−

0
7

9
.0
1
e−

0
1
±

4
.5
5
e
−

0
7

2
8

7
0
0

1
.4
5
e−

0
1
±

1
.8
8
e
−

0
2

1
.4
6
e−

0
1
±

2
.6
2
e
−

0
2

9
.8
1
e−

0
1
±

6
.6
6
e
−

0
2

9
.5
8
e−

0
1
±

6
.2
8
e
−

0
2

8
.9
1
e−

0
1
±

2
.2
4
e
−

0
2

8
.9
6
e−

0
1
±

5
.5
8
e
−

0
3

9
.0
1
e−

0
1
±

7
.6
7
e
−

0
7

9
.0
1
e−

0
1
±

3
.9
0
e
−

0
7

Table
4.2.1:

E
volution

of
the

norm
alized

square
error

for
Sinew

ave
w

ith
respectto

the
length

of
the

testsequence.
T

he
m

odels
m

arked
w

ith
*

are
perturbed

w
ith

w
hite

noise.T
he

m
ean

erroris
presented

w
ith

its
deviation.B

oth
term

s
are

com
puted

over
2
0

runs.

4.2. Sinewave Generator 57

Figure 4.2.1: Activation of the first 4 internal units (units 1 to 5) during training, for the pure sinewave

generator with ESN.

Figure 4.2.2: Prediction of the RNN versus the target (the sinewave) for the test of the pure sinewave

generator with ESN. The model captures perfectly the required dynamic for the complete shown sequence.

58 Chapter 4. Simulations

Figure 4.2.3: Prediction of the RNN versus the target (the sinewave) for the test of the pure sinewave

generator with BPDC-S. The model fades too quickly.

Figure 4.2.4: Prediction of the RNN versus the target (the sinewave) for the test of the pure sinewave

generator with BPDC-L. The models captures the dynamics, but with more error than in the ESN example.

A learning rate of η = 0.3 (30 times the one used for the mean error) has been used, which can derive in

stability problems.

4.2. Sinewave Generator 59

4.2.2 Generator with Delay Input

This experiment consists on the generation of a sinewave but using a delay windows with the last

5 steps as inputs. This is a little windows compared to the size of a sine cycle (25 steps), but it

is enough to capture the tendency of the dynamical system, making much easier the task. So the

input will be the delays of the last 5 outputs, and they will be used to predict the next step. For

testing the model, it will be run in an autogenerative way, using its own predictions as the inputs of

the next timesteps.

The configuration of the network is the same than in the previous experiment, a small RNN of

only 20 units and a spectral radius of 0.80. The learning rate for the online algorithms is η = 0.05

(the delay window provides more stability to the RNN, so a bigger learning rate could be used).

As we have mentioned, this is a big simplification with respect to the pure sinewave generator

of the previous simulation, and so the error will be much lower, as it can be appreciated in the error

table 4.2.2. Nevertheless, the error of the BPDC models is much bigger than the one of ESN. As it

can be viewed in figure 4.2.6, the BPDC-L model starts losing the dynamics in a few cycles, while

the ESN model (figure 4.2.5) conserves it almost perfectly. Observing the weights in this simple

example, it can be seen in figure 4.2.7 that the model trained with BPDC-L tends to the one trained

with ESN. It has a dynamic much weaker, but its error is better than the one of the other variations.

Moreover, the ESN model is centered mainly in the input units (that are the last 6 with the bias),

so the corresponding weights are much bigger than the other ones. The importance of the inputs

also explains the great performance of the simple MLP. Again, an increase of the learning rate will

provide best results for the BPDC algorithms, but with the risk of divergence problems.

60 Chapter 4. Simulations

C
ycles

Steps
E

SN
E

SN
*

B
PD

C
-L

B
PD

C
-L

*
B

PD
C

-S
B

PD
C

-S*
B

PD
C

-C
B

PD
C

-C
*

M
L

P

4
1
0
0

6
.8
1
e−

0
7
±

4
.6
8
e
−

0
7

7
.0
6
e−

0
7
±

5
.2
4
e
−

0
7

1
.7
2
e−

0
1
±

4
.6
2
e
−

0
2

1
.8
0
e−

0
1
±

3
.9
1
e
−

0
2

4
.5
6
e−

0
1
±

9
.8
0
e
−

0
2

3
.8
2
e−

0
1
±

1
.3
7
e
−

0
1

3
.9
5
e−

0
1
±

1
.0
1
e
−

0
1

3
.8
8
e−

0
1
±

1
.2
8
e
−

0
1

2
.7
5
e−

0
4
±

2
.5
7
e
−

0
4

8
2
0
0

1
.0
2
e−

0
6
±

7
.2
7
e
−

0
7

1
.1
9
e−

0
6
±

8
.6
3
e
−

0
7

3
.3
3
e−

0
1
±

9
.7
3
e
−

0
2

3
.4
6
e−

0
1
±

8
.3
7
e
−

0
2

8
.7
3
e−

0
1
±

1
.1
8
e
−

0
1

7
.4
8
e−

0
1
±

2
.4
7
e
−

0
1

7
.8
8
e−

0
1
±

1
.8
0
e
−

0
1

7
.5
8
e−

0
1
±

2
.2
5
e
−

0
1

5
.3
2
e−

0
4
±

5
.8
8
e
−

0
4

1
2

3
0
0

1
.3
6
e−

0
6
±

1
.0
2
e
−

0
6

1
.6
9
e−

0
6
±

1
.2
0
e
−

0
6

4
.7
8
e−

0
1
±

1
.4
4
e
−

0
1

4
.9
3
e−

0
1
±

1
.2
6
e
−

0
1

9
.5
6
e−

0
1
±

7
.8
6
e
−

0
2

8
.7
2
e−

0
1
±

2
.3
7
e
−

0
1

9
.4
4
e−

0
1
±

1
.7
6
e
−

0
1

8
.9
3
e−

0
1
±

2
.2
3
e
−

0
1

7
.9
1
e−

0
4
±

9
.2
6
e
−

0
4

1
6

4
0
0

1
.7
3
e−

0
6
±

1
.3
4
e
−

0
6

2
.2
0
e−

0
6
±

1
.5
4
e
−

0
6

6
.2
1
e−

0
1
±

1
.8
3
e
−

0
1

6
.3
9
e−

0
1
±

1
.6
6
e
−

0
1

9
.4
8
e−

0
1
±

5
.0
4
e
−

0
2

9
.0
2
e−

0
1
±

2
.1
2
e
−

0
1

9
.3
5
e−

0
1
±

1
.6
4
e
−

0
1

9
.0
0
e−

0
1
±

1
.8
3
e
−

0
1

1
.0
9
e−

0
3
±

1
.3
2
e
−

0
3

2
0

5
0
0

2
.1
0
e−

0
6
±

1
.6
7
e
−

0
6

2
.7
3
e−

0
6
±

1
.8
9
e
−

0
6

7
.5
7
e−

0
1
±

2
.1
8
e
−

0
1

7
.7
6
e−

0
1
±

2
.0
4
e
−

0
1

9
.7
5
e−

0
1
±

5
.7
6
e
−

0
2

9
.3
6
e−

0
1
±

1
.9
6
e
−

0
1

9
.5
8
e−

0
1
±

1
.5
7
e
−

0
1

9
.1
2
e−

0
1
±

1
.3
6
e
−

0
1

1
.3
8
e−

0
3
±

1
.6
8
e
−

0
3

2
4

6
0
0

2
.4
5
e−

0
6
±

1
.9
8
e
−

0
6

3
.2
4
e−

0
6
±

2
.2
2
e
−

0
6

8
.6
5
e−

0
1
±

2
.4
0
e
−

0
1

8
.8
7
e−

0
1
±

2
.3
3
e
−

0
1

1
.0
0
e
+
0
0
±

6
.9
9
e
−

0
2

9
.5
9
e−

0
1
±

1
.8
3
e
−

0
1

9
.7
5
e−

0
1
±

1
.4
0
e
−

0
1

9
.3
1
e−

0
1
±

1
.0
6
e
−

0
1

1
.6
7
e−

0
3
±

2
.0
6
e
−

0
3

2
8

7
0
0

2
.8
3
e−

0
6
±

2
.3
1
e
−

0
6

3
.7
6
e−

0
6
±

2
.5
7
e
−

0
6

9
.5
4
e−

0
1
±

2
.4
4
e
−

0
1

9
.7
9
e−

0
1
±

2
.5
0
e
−

0
1

9
.9
6
e−

0
1
±

5
.9
5
e
−

0
2

9
.5
9
e−

0
1
±

1
.6
7
e
−

0
1

9
.5
7
e−

0
1
±

1
.1
4
e
−

0
1

9
.5
0
e−

0
1
±

8
.1
5
e
−

0
2

1
.9
8
e−

0
3
±

2
.4
6
e
−

0
3

3
2

8
0
0

3
.1
9
e−

0
6
±

2
.6
2
e
−

0
6

4
.2
9
e−

0
6
±

2
.9
2
e
−

0
6

1
.0
3
e
+
0
0
±

2
.3
9
e
−

0
1

1
.0
6
e
+
0
0
±

2
.6
1
e
−

0
1

9
.8
7
e−

0
1
±

3
.9
2
e
−

0
2

9
.6
8
e−

0
1
±

1
.5
5
e
−

0
1

9
.6
0
e−

0
1
±

9
.9
6
e
−

0
2

9
.7
9
e−

0
1
±

7
.3
7
e
−

0
2

2
.2
7
e−

0
3
±

2
.8
3
e
−

0
3

3
6

9
0
0

3
.5
6
e−

0
6
±

2
.9
4
e
−

0
6

4
.8
1
e−

0
6
±

3
.2
5
e
−

0
6

1
.0
7
e
+
0
0
±

2
.2
7
e
−

0
1

1
.1
1
e
+
0
0
±

2
.6
5
e
−

0
1

9
.8
8
e−

0
1
±

2
.0
2
e
−

0
2

9
.8
0
e−

0
1
±

1
.4
2
e
−

0
1

9
.7
0
e−

0
1
±

8
.8
0
e
−

0
2

9
.8
5
e−

0
1
±

6
.7
9
e
−

0
2

2
.5
8
e−

0
3
±

3
.2
2
e
−

0
3

4
0

1
0
0
0

3
.9
4
e−

0
6
±

3
.2
7
e
−

0
6

5
.3
3
e−

0
6
±

3
.6
0
e
−

0
6

1
.1
0
e
+
0
0
±

2
.0
5
e
−

0
1

1
.1
4
e
+
0
0
±

2
.5
8
e
−

0
1

9
.8
5
e−

0
1
±

2
.0
7
e
−

0
2

9
.8
4
e−

0
1
±

1
.2
5
e
−

0
1

9
.7
9
e−

0
1
±

7
.8
0
e
−

0
2

9
.9
0
e−

0
1
±

7
.1
4
e
−

0
2

2
.8
9
e−

0
3
±

3
.6
2
e
−

0
3

Table
4.2.2:

E
volution

of
the

norm
alized

square
error

for
Sinew

ave
w

ith
D

elay
Input

w
ith

respect
to

the
length

of
the

test
sequence.

T
he

m
odels

m
arked

w
ith

*
are

perturbed
w

ith
w

hite
noise.T

he
m

ean
erroris

presented
w

ith
its

deviation.B
oth

term
s

are
com

puted
over

2
0

runs.

4.2. Sinewave Generator 61

Figure 4.2.5: Prediction of the RNN versus the target (the sinewave) for the test of the sinewave generator

with delay input with ESN. This task is easier than the one of the pure sinewave generator, so the model

captures the required dynamic perfectly.

Figure 4.2.6: Prediction of the RNN versus the target (the sinewave) for the test of the sinewave generator

with delay input with BPDC-L. The model is worse than the ESN one.

62 Chapter 4. Simulations

Figure 4.2.7: Weights of the ESN model versus the weights of the BPDC-L model. The first unit is the

output, and the 6 last are the inputs (the 5 delays and the bias).

4.2. Sinewave Generator 63

4.2.3 Modulated Pure Generator

The problem of this experiment is represented in figure 4.2.8. As it can be observed, the frequency

of the output is modulated by the input, so the higher the input is, the faster the output is. This

problem presents two difficulties. First, it is a pure generator (it has no delay windows), so the

RNN has to conserve the dynamic in a generative way. Second, it uses an input that transforms the

output.

Formally, the input of the problem at time k is given by

u(k) =
sin (0.01πi) + 1

2
,

and the corresponding output

y(k) =
sin (a(k)) + 1

2
,

with a(k) = a(k − 1) + 0.1 + 0.9u(k), and a(0) = 0.

The size of the training set is of 1200 steps. The original testing set is composed of the follow-

ing 50 steps, although a much longer test is done for showing the degradation of the dynamic. A

RNN of 100 units has been used, with a spectral radius of 0.80. The learning rate for the online

algorithms was again η = 0.01.

As before, figure 4.2.9 represents the internal states, that show the frequency changes in func-

tion of the input. In figure 4.2.10 the test of the model is represented for ESN. This is the unique

model that captures (initially) the dynamic of the problem. The rest of the algorithms have a tra-

jectory too damped, so they only tend to the mean of the desired output, as it can be seen in figure

4.2.11 for the BPDC-L algorithm.

The evolution of the mean relative error in function of the number of testing steps is given in

table 4.2.3. Notice that the BPDC models have less error than the ESN one. This is because, as

explained above, the online algorithms do not produce models with an autonomous dynamic, so

these RNNs fade to zero quickly. For this reason the error of these models is almost as big as the

one of the trivial predictor (i.e. they have an error equal to the squared standard deviation). On the

other hand, the ESN model is too unstable, so it conserves the desired dynamic for a few cycles,

and then it starts to oscillate quickly, producing a bigger error.

64 Chapter 4. Simulations

Steps
E

SN
E

SN
*

B
PD

C
-L

B
PD

C
-L

*
B

PD
C

-S
B

PD
C

-S*
B

PD
C

-C
B

PD
C

-C
*

1
0
0

3
.9
9
e
+
0
0
±

3
.6
9
e
+

0
0

4
.1
3
e
+
0
0
±

2
.6
9
e
+

0
0

9
.4
7
e−

0
1
±

1
.0
5
e
−

0
2

9
.4
9
e−

0
1
±

1
.0
4
e
−

0
2

9
.3
4
e−

0
1
±

8
.8
6
e
−

0
3

9
.3
8
e−

0
1
±

1
.1
8
e
−

0
2

9
.5
7
e−

0
1
±

3
.7
8
e
−

0
3

9
.5
7
e−

0
1
±

4
.1
2
e
−

0
3

2
0
0

8
.6
8
e
+
0
0
±

4
.9
3
e
+

0
0

8
.7
9
e
+
0
0
±

2
.9
1
e
+

0
0

9
.3
6
e−

0
1
±

7
.3
8
e
−

0
3

9
.3
8
e−

0
1
±

5
.8
4
e
−

0
3

9
.4
5
e−

0
1
±

5
.7
4
e
−

0
3

9
.4
6
e−

0
1
±

7
.8
4
e
−

0
3

9
.3
8
e−

0
1
±

1
.6
6
e
−

0
3

9
.3
9
e−

0
1
±

1
.6
7
e
−

0
3

3
0
0

1
.0
3
e
+
0
1
±

5
.3
6
e
+

0
0

1
.0
1
e
+
0
1
±

2
.9
8
e
+

0
0

9
.5
1
e−

0
1
±

7
.0
6
e
−

0
3

9
.5
2
e−

0
1
±

5
.6
1
e
−

0
3

9
.5
9
e−

0
1
±

4
.8
2
e
−

0
3

9
.6
0
e−

0
1
±

7
.3
5
e
−

0
3

9
.5
6
e−

0
1
±

2
.1
7
e
−

0
3

9
.5
6
e−

0
1
±

2
.2
9
e
−

0
3

4
0
0

1
.1
5
e
+
0
1
±

5
.5
5
e
+

0
0

1
.1
1
e
+
0
1
±

3
.0
9
e
+

0
0

9
.4
5
e−

0
1
±

6
.8
0
e
−

0
3

9
.4
7
e−

0
1
±

4
.6
4
e
−

0
3

9
.5
9
e−

0
1
±

5
.2
6
e
−

0
3

9
.5
9
e−

0
1
±

7
.4
3
e
−

0
3

9
.4
7
e−

0
1
±

1
.5
4
e
−

0
3

9
.4
7
e−

0
1
±

1
.5
5
e
−

0
3

5
0
0

1
.2
0
e
+
0
1
±

5
.6
0
e
+

0
0

1
.1
5
e
+
0
1
±

3
.1
3
e
+

0
0

9
.4
4
e−

0
1
±

6
.8
5
e
−

0
3

9
.4
5
e−

0
1
±

4
.9
2
e
−

0
3

9
.5
5
e−

0
1
±

4
.5
9
e
−

0
3

9
.5
6
e−

0
1
±

7
.1
5
e
−

0
3

9
.4
9
e−

0
1
±

1
.9
6
e
−

0
3

9
.4
9
e−

0
1
±

2
.0
4
e
−

0
3

6
0
0

1
.2
5
e
+
0
1
±

5
.6
7
e
+

0
0

1
.1
9
e
+
0
1
±

3
.2
0
e
+

0
0

9
.4
2
e−

0
1
±

6
.9
0
e
−

0
3

9
.4
3
e−

0
1
±

4
.7
4
e
−

0
3

9
.5
7
e−

0
1
±

5
.0
6
e
−

0
3

9
.5
7
e−

0
1
±

7
.3
2
e
−

0
3

9
.4
5
e−

0
1
±

1
.5
8
e
−

0
3

9
.4
5
e−

0
1
±

1
.5
8
e
−

0
3

7
0
0

1
.2
8
e
+
0
1
±

5
.7
0
e
+

0
0

1
.2
0
e
+
0
1
±

3
.2
2
e
+

0
0

9
.4
7
e−

0
1
±

7
.0
1
e
−

0
3

9
.4
9
e−

0
1
±

4
.9
6
e
−

0
3

9
.6
1
e−

0
1
±

4
.6
7
e
−

0
3

9
.6
1
e−

0
1
±

7
.1
7
e
−

0
3

9
.5
2
e−

0
1
±

1
.8
2
e
−

0
3

9
.5
2
e−

0
1
±

1
.8
5
e
−

0
3

8
0
0

1
.3
1
e
+
0
1
±

5
.7
4
e
+

0
0

1
.2
3
e
+
0
1
±

3
.2
7
e
+

0
0

9
.4
4
e−

0
1
±

6
.8
4
e
−

0
3

9
.4
6
e−

0
1
±

4
.6
3
e
−

0
3

9
.6
0
e−

0
1
±

4
.9
9
e
−

0
3

9
.6
0
e−

0
1
±

7
.2
9
e
−

0
3

9
.4
7
e−

0
1
±

1
.5
5
e
−

0
3

9
.4
8
e−

0
1
±

1
.5
4
e
−

0
3

Table
4.2.3:

E
volution

of
the

norm
alized

square
error

for
M

odulated
Sinew

ave
w

ith
respectto

the
length

of
the

testsequence.
T

he
m

odels
m

arked
w

ith
*

are
perturbed

w
ith

w
hite

noise.T
he

m
ean

erroris
presented

w
ith

its
deviation.B

oth
term

s
are

com
puted

over
2
0

runs.

4.2. Sinewave Generator 65

Figure 4.2.8: Input versus output of the modulated pure sinewave generator trained with ESN.

66 Chapter 4. Simulations

Figure 4.2.9: Activation of some of the first 4 internal (not output) units during training, for the modulated

pure sinewave generator with ESN.

Figure 4.2.10: Prediction of the RNN versus the target for the test of the modulated pure sinewave generator

with ESN. The model follows the dynamic of the problem in the initial states, but at the end of the sequence

it loses the desired trajectory.

4.2. Sinewave Generator 67

Figure 4.2.11: Prediction of the RNN versus the target for the test of the modulated pure sinewave generator

with BPDC-L. The model soften the dynamic too much.

68 Chapter 4. Simulations

4.3 Mackey-Glass

The Mackey-Glass attractor is a classical problem in the field of temporal series prediction [29]. It

consists on modeling the semi-chaotic trajectory which is a solution of the differential equation

y′(t) = −0.1y(t) +
0.2y(t− τ)

1 + y(t− τ)10
.

In this case, the value τ = 17 will be used. This trajectory presents the form shown in figure 4.3.1.

In this simulation, a training sequence of 3000 steps will be given. The error will be measured

on the next 500 steps. This is quite a difficult problem, because the RNN has to present an au-

tonomous complex trajectory. A delay windows of the last 10 steps is used. A RNN of 100 units

with a spectral radius of 0.80 has been applied to this task. The learning rate was η = 0.01.

The results presented in table 4.3.1 show that the best model for this task is again ESN. As

it could be seen in the discussion, section 4.5, this could be due to the magnitude of the weighs,

because the trajectory of the RNN trained with the BPDC algorithms are again too soft, so they

fade to zero and do not capture the complex details of the trajectory (only the main dynamic). This

can be seen in figure 4.3.4. In figure 4.3.3 the results for the ESN model are shown. Figures 4.3.6

and 4.3.5 show the last steps of the test sequence. Although the error is almost the same in both

models, the ESN one conserves the dynamic (but it is shifted with respect to the target) while the

BPDC-C model is completely damped.

Figure 4.3.1: Mackey-Glass trajectory for τ = 17.

4.3. Mackey-Glass 69

St
ep

s
E

SN
E

SN
*

B
PD

C
-L

B
PD

C
-L

*
B

PD
C

-S
B

PD
C

-S
*

B
PD

C
-C

B
PD

C
-C

*
M

L
P

1
0
0

1
.1
1
e
−
0
1
±

2
.3
1
e
−

0
2

1
.2
4
e
−
0
1
±

2
.6
4
e
−

0
2

6
.7
0
e
−
0
1
±

8
.0
6
e
−

0
2

7
.5
2
e
−
0
1
±

1
.7
8
e
−

0
1

6
.3
5
e
−
0
1
±

1
.6
8
e
−

0
2

6
.2
9
e
−
0
1
±

2
.3
7
e
−

0
2

6
.2
7
e
−
0
1
±

2
.2
9
e
−

0
2

6
.2
4
e
−
0
1
±

1
.5
2
e
−

0
2

5
.9
4
e
−
0
1
±

1
.8
9
e
−

0
1

2
0
0

2
.0
3
e
−
0
1
±

3
.4
0
e
−

0
2

2
.2
2
e
−
0
1
±

5
.0
3
e
−

0
2

7
.5
0
e
−
0
1
±

5
.5
6
e
−

0
2

9
.4
4
e
−
0
1
±

2
.7
6
e
−

0
1

7
.4
4
e
−
0
1
±

6
.9
7
e
−

0
3

7
.4
0
e
−
0
1
±

1
.1
7
e
−

0
2

7
.3
6
e
−
0
1
±

1
.1
1
e
−

0
2

7
.3
5
e
−
0
1
±

7
.8
4
e
−

0
3

7
.7
2
e
−
0
1
±

1
.6
8
e
−

0
1

3
0
0

3
.2
4
e
−
0
1
±

5
.9
1
e
−

0
2

3
.4
1
e
−
0
1
±

5
.0
0
e
−

0
2

8
.1
3
e
−
0
1
±

3
.7
2
e
−

0
2

1
.2
2
e
+
0
0
±

4
.8
5
e
−

0
1

7
.9
9
e
−
0
1
±

4
.5
7
e
−

0
3

7
.9
7
e
−
0
1
±

7
.5
3
e
−

0
3

7
.9
4
e
−
0
1
±

7
.1
6
e
−

0
3

7
.9
4
e
−
0
1
±

4
.9
5
e
−

0
3

8
.7
2
e
−
0
1
±

1
.0
9
e
−

0
1

4
0
0

5
.2
4
e
−
0
1
±

1
.1
9
e
−

0
1

5
.7
0
e
−
0
1
±

1
.3
4
e
−

0
1

8
.2
1
e
−
0
1
±

2
.8
9
e
−

0
2

1
.5
2
e
+
0
0
±

8
.2
4
e
−

0
1

8
.0
7
e
−
0
1
±

3
.3
6
e
−

0
3

8
.0
5
e
−
0
1
±

5
.6
1
e
−

0
3

8
.0
4
e
−
0
1
±

5
.3
5
e
−

0
3

8
.0
3
e
−
0
1
±

3
.6
6
e
−

0
3

8
.7
3
e
−
0
1
±

1
.0
8
e
−

0
1

5
0
0

6
.1
6
e
−
0
1
±

1
.5
9
e
−

0
1

2
.0
6
e
+
2
6
±

8
.9
6
e
+

2
6

8
.3
1
e
−
0
1
±

2
.4
6
e
−

0
2

3
.0
9
e
+
0
0
±

5
.1
0
e
+

0
0

8
.1
6
e
−
0
1
±

2
.7
2
e
−

0
3

8
.1
5
e
−
0
1
±

4
.5
2
e
−

0
3

8
.1
4
e
−
0
1
±

4
.3
0
e
−

0
3

8
.1
3
e
−
0
1
±

2
.9
4
e
−

0
3

8
.9
7
e
−
0
1
±

1
.2
9
e
−

0
1

Ta
bl

e
4.

3.
1:

E
vo

lu
tio

n
of

th
e

no
rm

al
iz

ed
sq

ua
re

er
ro

r
fo

r
M

ac
ke

y-
G

la
ss

w
ith

re
sp

ec
tt

o
th

e
le

ng
th

of
th

e
te

st
se

qu
en

ce
.

T
he

m
od

el
s

m
ar

ke
d

w
ith

*
ar

e
pe

rt
ur

be
d

w
ith

w
hi

te
no

is
e.

T
he

m
ea

n
er

ro
ri

s
pr

es
en

te
d

w
ith

its
de

vi
at

io
n.

B
ot

h
te

rm
s

ar
e

co
m

pu
te

d
ov

er
2
0

ru
ns

.

70 Chapter 4. Simulations

Figure 4.3.2: Activation of some of the first 4 internal (not output) units during training, for the Mackey-

Glass problem with ESN.

Figure 4.3.3: Prediction of the RNN versus the target for the test of the Mackey-Glass attractor with ESN.

The model captures the required dynamic, but it starts to lose the trajectory when it has been running au-

tonomously for a long time.

4.3. Mackey-Glass 71

Figure 4.3.4: Prediction of the RNN versus the target for the test of the Mackey-Glass attractor with BPDC-

C. The model captures only the main dynamic, softening the trajectory and fading to zero.

Figure 4.3.5: Last steps of the test sequence for the Mackey-Glass attractor with ESN. The model conserves

the dynamic, but it is shifted with respect to the target.

72 Chapter 4. Simulations

Figure 4.3.6: Last steps of the test sequence for the Mackey-Glass attractor with BPDC-C. The model has

converged to the mean of the target.

4.4. Application to Wind Power Forecasting 73

4.4 Application to Wind Power Forecasting

In this section, a RNN will be applied to the problem of wind power forecasting. The time series

of power production of a wind power station presents certain periodic behaviour, so some hidden

patterns can be discovered by the model (see figure 4.4.1 to see this trajectory).

The data used in this simulations correspond to the power production of all the country (so it

is a somehow regular series) for 7 months. The first 6 months will be used to train the models, and

the last one to test it. Predictions in a autogenerative way will be emitted for 48 hours starting at

the end of the training set.

This simulation consists on the forecasting of the wind power itself. For this task, a delay

window of the last 24 productions will be used to predict the next hour production. So the system

receives 24 inputs with the last 24 productions (i.e. the information of the last day). When testing

the model, the RNN will be iterated in an autogenerative way for 48 steps, so the complete predic-

tion of the next two days will be used to measure the error. This procedure will be repeated for 1

month, following the steps:

• For each day of the testing month (composed by 30 days).

– Train the model with the previous 6 months data (180 days). One pattern is obtained

for each hour, so 4320 points will be used to train the RNN.

– Test the model iterating the RNN for the following 2 days (48 steps).

A RNN of 100 units has been used, with a spectral radius of 0.80. The learning rate for the

online algorithms was η = 0.01. The models has been trained with a noise of deviation σ = 0.01,

that permits the ESN model to converge and stabilize over the required two days of test sequence.

Simulations without noise showed that the ESN model diverges very quickly from the desired

trajectory, producing a much bigger error.

In table 4.4.1 the comparative of the 4 main algorithms is given. Here, the error used is the mean

absolute error normalized using the total power of the considered plants. As it can be observed, the

BPDC-C algorithm and the BPDC-L one present the best results. The ESN improves slightly the

results of the MLP, that are at the same level as the ones of BPDC-L.

74 Chapter 4. Simulations

D
ay

E
SN

*
B

PD
C

-L
*

B
PD

C
-S*

B
PD

C
-C

*
M

L
P

1
5
.5
8
e
−

0
2
±

3
.8
9
e
−

0
4

5
.8
4
e
−

0
2
±

1
.6
3
e
−

0
3

5
.6
2
e
−

0
2
±

6
.9
8
e
−

0
4

5
.5
9
e
−

0
2
±

9
.7
5
e
−

0
4

5
.7
6
e
−

0
2
±

5
.5
3
e
−

0
4

2
9
.4
4
e
−

0
2
±

4
.7
1
e
−

0
4

9
.7
4
e
−

0
2
±

1
.9
0
e
−

0
3

9
.4
8
e
−

0
2
±

5
.7
1
e
−

0
4

9
.4
3
e
−

0
2
±

6
.3
7
e
−

0
4

9
.5
0
e
−

0
2
±

6
.4
2
e
−

0
4

3
4
.1
0
e
−

0
2
±

5
.4
1
e
−

0
4

4
.6
6
e
−

0
2
±

7
.5
3
e
−

0
4

4
.1
6
e
−

0
2
±

7
.8
3
e
−

0
4

4
.2
2
e
−

0
2
±

6
.9
3
e
−

0
4

4
.1
6
e
−

0
2
±

5
.3
7
e
−

0
4

4
6
.3
6
e
−

0
2
±

7
.8
7
e
−

0
4

6
.6
0
e
−

0
2
±

1
.7
5
e
−

0
3

6
.4
5
e
−

0
2
±

1
.5
0
e
−

0
3

6
.4
8
e
−

0
2
±

1
.9
2
e
−

0
3

6
.3
8
e
−

0
2
±

2
.6
3
e
−

0
4

5
7
.5
4
e
−

0
2
±

1
.0
7
e
−

0
3

8
.3
3
e
−

0
2
±

3
.8
8
e
−

0
3

7
.9
4
e
−

0
2
±

1
.3
9
e
−

0
3

7
.9
4
e
−

0
2
±

8
.5
0
e
−

0
4

7
.5
5
e
−

0
2
±

5
.2
3
e
−

0
4

6
1
.0
1
e
−

0
1
±

1
.0
5
e
−

0
3

8
.9
4
e
−

0
2
±

3
.2
2
e
−

0
3

9
.1
4
e
−

0
2
±

1
.3
6
e
−

0
3

9
.2
1
e
−

0
2
±

2
.8
6
e
−

0
3

9
.9
6
e
−

0
2
±

4
.3
0
e
−

0
4

7
1
.2
1
e
−

0
1
±

1
.1
7
e
−

0
3

1
.1
7
e
−

0
1
±

2
.2
3
e
−

0
3

1
.1
3
e
−

0
1
±

2
.2
5
e
−

0
3

1
.1
2
e
−

0
1
±

1
.0
1
e
−

0
3

1
.2
1
e
−

0
1
±

4
.1
1
e
−

0
4

8
6
.1
9
e
−

0
2
±

9
.9
5
e
−

0
4

6
.9
2
e
−

0
2
±

5
.1
3
e
−

0
3

6
.3
4
e
−

0
2
±

2
.5
9
e
−

0
3

6
.2
7
e
−

0
2
±

1
.6
8
e
−

0
3

6
.2
8
e
−

0
2
±

4
.2
4
e
−

0
4

9
1
.3
2
e
−

0
1
±

5
.5
3
e
−

0
4

1
.2
9
e
−

0
1
±

1
.4
0
e
−

0
3

1
.2
8
e
−

0
1
±

6
.6
5
e
−

0
4

1
.2
9
e
−

0
1
±

9
.1
4
e
−

0
4

1
.3
2
e
−

0
1
±

4
.7
7
e
−

0
4

1
0

6
.1
5
e
−

0
2
±

1
.1
5
e
−

0
3

7
.1
4
e
−

0
2
±

5
.3
3
e
−

0
3

6
.1
0
e
−

0
2
±

2
.4
2
e
−

0
3

5
.9
7
e
−

0
2
±

2
.8
1
e
−

0
3

6
.4
2
e
−

0
2
±

8
.0
0
e
−

0
4

1
1

6
.4
0
e
−

0
2
±

4
.5
1
e
−

0
4

5
.9
3
e
−

0
2
±

1
.7
3
e
−

0
3

6
.0
7
e
−

0
2
±

1
.4
0
e
−

0
3

6
.0
7
e
−

0
2
±

7
.8
0
e
−

0
4

6
.4
6
e
−

0
2
±

6
.2
0
e
−

0
4

1
2

5
.6
0
e
−

0
2
±

4
.7
2
e
−

0
4

6
.0
1
e
−

0
2
±

2
.9
7
e
−

0
3

5
.7
1
e
−

0
2
±

1
.5
5
e
−

0
3

5
.6
3
e
−

0
2
±

1
.2
2
e
−

0
3

5
.7
0
e
−

0
2
±

5
.8
6
e
−

0
4

1
3

7
.3
8
e
−

0
2
±

6
.9
3
e
−

0
4

8
.1
0
e
−

0
2
±

1
.8
4
e
−

0
3

7
.6
3
e
−

0
2
±

7
.7
9
e
−

0
4

7
.6
4
e
−

0
2
±

8
.1
5
e
−

0
4

7
.4
7
e
−

0
2
±

3
.0
1
e
−

0
4

1
4

6
.3
5
e
−

0
2
±

1
.8
8
e
−

0
3

6
.5
1
e
−

0
2
±

4
.3
5
e
−

0
3

6
.1
5
e
−

0
2
±

4
.5
2
e
−

0
3

6
.1
2
e
−

0
2
±

3
.2
0
e
−

0
3

6
.3
2
e
−

0
2
±

5
.3
8
e
−

0
4

1
5

1
.2
4
e
−

0
1
±

4
.9
5
e
−

0
4

1
.0
7
e
−

0
1
±

2
.7
5
e
−

0
3

1
.1
5
e
−

0
1
±

7
.3
4
e
−

0
4

1
.1
5
e
−

0
1
±

9
.4
0
e
−

0
4

1
.2
4
e
−

0
1
±

5
.1
8
e
−

0
4

1
6

5
.1
8
e
−

0
2
±

1
.4
2
e
−

0
3

5
.6
0
e
−

0
2
±

4
.3
1
e
−

0
3

5
.2
6
e
−

0
2
±

1
.6
0
e
−

0
3

5
.2
3
e
−

0
2
±

1
.8
9
e
−

0
3

5
.2
8
e
−

0
2
±

4
.5
4
e
−

0
4

1
7

7
.6
1
e
−

0
2
±

1
.1
3
e
−

0
3

6
.9
2
e
−

0
2
±

3
.3
3
e
−

0
3

7
.1
9
e
−

0
2
±

1
.9
7
e
−

0
3

7
.2
6
e
−

0
2
±

1
.4
7
e
−

0
3

7
.5
8
e
−

0
2
±

4
.6
3
e
−

0
4

1
8

9
.7
1
e
−

0
2
±

1
.3
4
e
−

0
3

8
.4
9
e
−

0
2
±

2
.5
1
e
−

0
3

8
.9
7
e
−

0
2
±

1
.4
8
e
−

0
3

9
.0
5
e
−

0
2
±

2
.2
0
e
−

0
3

9
.6
0
e
−

0
2
±

4
.0
9
e
−

0
4

1
9

1
.0
1
e
−

0
1
±

1
.7
6
e
−

0
3

9
.9
6
e
−

0
2
±

3
.5
2
e
−

0
3

9
.6
0
e
−

0
2
±

3
.6
4
e
−

0
3

9
.4
7
e
−

0
2
±

2
.1
0
e
−

0
3

1
.0
4
e
−

0
1
±

6
.9
3
e
−

0
4

2
0

4
.9
2
e
−

0
2
±

1
.7
6
e
−

0
3

6
.1
5
e
−

0
2
±

7
.8
5
e
−

0
3

5
.2
3
e
−

0
2
±

4
.0
8
e
−

0
3

5
.3
0
e
−

0
2
±

3
.0
3
e
−

0
3

5
.1
7
e
−

0
2
±

8
.5
6
e
−

0
4

2
1

3
.7
7
e
−

0
2
±

2
.5
8
e
−

0
3

5
.3
4
e
−

0
2
±

9
.2
8
e
−

0
3

4
.0
3
e
−

0
2
±

4
.2
7
e
−

0
3

3
.9
1
e
−

0
2
±

2
.6
4
e
−

0
3

3
.9
0
e
−

0
2
±

7
.7
5
e
−

0
4

2
2

6
.4
5
e
−

0
2
±

1
.4
1
e
−

0
3

7
.1
6
e
−

0
2
±

4
.9
1
e
−

0
3

6
.4
9
e
−

0
2
±

1
.3
0
e
−

0
3

6
.5
2
e
−

0
2
±

1
.3
3
e
−

0
3

6
.6
0
e
−

0
2
±

6
.2
6
e
−

0
4

2
3

6
.8
9
e
−

0
2
±

4
.0
2
e
−

0
4

7
.6
5
e
−

0
2
±

3
.1
6
e
−

0
3

7
.0
8
e
−

0
2
±

4
.8
7
e
−

0
4

7
.0
9
e
−

0
2
±

6
.0
8
e
−

0
4

6
.9
9
e
−

0
2
±

4
.4
7
e
−

0
4

2
4

5
.0
1
e
−

0
2
±

7
.7
4
e
−

0
4

5
.2
6
e
−

0
2
±

3
.3
5
e
−

0
3

4
.9
4
e
−

0
2
±

2
.6
1
e
−

0
3

4
.8
7
e
−

0
2
±

1
.1
1
e
−

0
3

5
.0
4
e
−

0
2
±

5
.6
2
e
−

0
4

2
5

4
.6
9
e
−

0
2
±

1
.2
5
e
−

0
3

5
.2
8
e
−

0
2
±

4
.7
9
e
−

0
3

4
.9
0
e
−

0
2
±

1
.6
1
e
−

0
3

4
.8
9
e
−

0
2
±

2
.1
1
e
−

0
3

4
.6
7
e
−

0
2
±

4
.5
2
e
−

0
4

2
6

5
.0
3
e
−

0
2
±

1
.1
5
e
−

0
3

4
.5
1
e
−

0
2
±

2
.6
3
e
−

0
3

4
.7
2
e
−

0
2
±

1
.9
3
e
−

0
3

4
.7
6
e
−

0
2
±

1
.3
6
e
−

0
3

5
.0
4
e
−

0
2
±

2
.1
9
e
−

0
4

2
7

9
.8
2
e
−

0
2
±

6
.2
1
e
−

0
4

9
.6
6
e
−

0
2
±

1
.7
1
e
−

0
3

9
.1
1
e
−

0
2
±

1
.0
5
e
−

0
3

9
.1
5
e
−

0
2
±

1
.0
7
e
−

0
3

9
.9
4
e
−

0
2
±

5
.9
7
e
−

0
4

2
8

7
.9
6
e
−

0
2
±

2
.3
7
e
−

0
3

8
.0
0
e
−

0
2
±

7
.3
2
e
−

0
3

7
.4
1
e
−

0
2
±

4
.2
2
e
−

0
3

7
.2
9
e
−

0
2
±

2
.0
9
e
−

0
3

8
.1
2
e
−

0
2
±

3
.7
2
e
−

0
4

2
9

5
.8
3
e
−

0
2
±

1
.6
4
e
−

0
3

5
.4
2
e
−

0
2
±

1
.8
5
e
−

0
3

5
.3
6
e
−

0
2
±

1
.1
3
e
−

0
3

5
.4
8
e
−

0
2
±

3
.4
6
e
−

0
3

5
.7
3
e
−

0
2
±

2
.9
4
e
−

0
4

3
0

1
.0
3
e
−

0
1
±

4
.1
2
e
−

0
4

9
.8
4
e
−

0
2
±

2
.2
4
e
−

0
3

9
.9
1
e
−

0
2
±

8
.0
0
e
−

0
4

9
.9
4
e
−

0
2
±

7
.2
0
e
−

0
4

1
.0
4
e
−

0
1
±

5
.5
0
e
−

0
4

M
ean

7
.4
1
e
−

0
2
±

2
.5
2
e
−

0
2

7
.5
1
e
−

0
2
±

2
.1
5
e
−

0
2

7
.2
2
e
−

0
2
±

2
.2
7
e
−

0
2

7
.2
1
e
−

0
2
±

2
.2
7
e
−

0
2

7
.4
7
e
−

0
2
±

2
.5
0
e
−

0
2

Table
4.4.1:M

ean
absolute

error(norm
alized

overthe
totalpow

erofthe
considered

plants)foreach
ofthe

testdays.T
he

m
ean

erroris
presented

w
ith

its
deviation.B

oth

term
s

are
com

puted
over

20
runs.T

he
erroroverallthe

m
onth

and
its

deviation
is

presented
in

the
lastrow

.

4.4. Application to Wind Power Forecasting 75

Figure 4.4.1: Wind power for 10 days (240 hours). A certain periodicity can be observed in the trajectory.

76 Chapter 4. Simulations

4.5 Discussion and Remarks

Some important remarks related with the previous simulations will be given in this section. First,

the BPDC algorithm does not require, in principle, the use of teacher forcing. Nevertheless, the

convergence of the weights using the real output of the RNN can be much slower. Moreover, a

comparative between the ESN approach and the BPDC one can be done easily if the RNN presents

the same dynamic during training. This is achieved using the desired output instead of the real one

even for BPDC.

The addition of noise has demonstrated to be an important regularization technique. In this

work we have disturbed the internal states of the RNN through gaussian white noise. Although fur-

ther research is needed, the first results seem to suggest that also in this context the noise regularizes

the dynamic. In this sense, the deviation of the injected perturbation determines the magnitude of

the weight absolute values versus the complexity of the model. Complex dynamics can be achieved

if no noise is added, but the resulting trajectory can be too unstable. On the other hand, if the noise

is too big the RNN dynamic will fade to zero. In fact, in the simple case in which the correlation

matrix is invertible, if the noise is big enough then the correlation matrix changes completely, and

it becomes approximately a multiple (with a big constant σ that is the deviation of the noise) of

the identity, O ≈ σI . So any information about the variables gets lost, and the regression makes

no sense. Moreover, since the inverse of the correlation matrix is approximated by the inverse of

this multiple of the identity, the weights will be equal to the desired outputs divided by the noise

deviation, and they will tend to zero:

ws = O+Ys ≈
1

σ
Ys → 0.

As this technique controls the magnitude of the weights, it could also be used as a way of avoiding

overfitting.

The washout of the data is generally done ignoring the first p% of the training sequence steps.

Nevertheless, we have opted for iterating the RNN over a complete cycle of the training set before

starting the training itself. This means that for the ESN algorithm 2 iterations have been done.

At the end of the second one, the internal states matrix of this last cycle are used to estimate the

output weights. In the case of BPDC, one complete cycle have been done, iterating the RNN and

using teacher forcing, before the online update of the weights starts. We have observed in all the

experiments that in only one cycle the RNN stabilizes completely, so the following iterations will

produce the same patterns (with the little variations due to the addition of noise).

The comparative between the output weights obtained by the BPDC-L algorithm versus the

pure ESN algorithm shows some interesting results. The ESN algorithm use the pseudoinverse, in

this case implemented using the SVD decomposition of the matrix. This is the mathematical gener-

alized definition of the pseudoinverse (see, for example, [30]), and it finds the solution of minimal

norm even when the matrix is not full rank. On the other hand, a further study of the behaviour

4.5. Discussion and Remarks 77

of the LMS filter when the covariance matrix is singular could clarify why the BPDC-L algorithm

seems to find a minimal in the error surface with smaller weights. Anyway, if the reservoir is

considered to be the whole RNN (including the output unit), then these weights can modify the

effective spectral radius. This could justify why the ESN presents a more active trajectory, while

the RNN trained with BPDC fades to zero quickly.

The above consideration is also appreciated in the experiment of the wind power production.

Here, the ESN RNN (if no noise is used to regularize it) diverges in a few steps, while BPDC

produced a much more stable RNN. Nevertheless, these are still only hypotheses, and further work

is needed to understand this complex behaviour.

78 Chapter 4. Simulations

Chapter 5

Discussion, Conclusions and Further
Work

5.1 Discussion

In this work, a state of the art in the field of RNNs has been discussed. In particular, the paradigm

of Reservoir Computing has been studied. For the complete understanding of this approach, the

evolution of the learning algorithms of RNN has been studied. First, classical algorithm based on

the computation of the exact error gradient emerged. These techniques were inspired in classical

approaches such as the algorithms for the MLPs. They suffered from some important disadvan-

tages, as their computational cost. Then, a new point of view given by Atiya and Parlos permitted

the unification of most of the previous algorithms, and derived into the new APRL algorithm. Some

simplifications on the online learning rule of APRL result in the BPDC algorithm. The analysis

of the dynamic of the weights of APRL and the update equation of BPDC suggested the adapta-

tion only of a small part of the RNN. This is a possible way to arrive at the Reservoir Computing

approach.

The ESN technique, based on the training only of the output weights of a RNN, can be consid-

ered, with the LSM approach, the basis of the RC paradigm. In this work, a complete description

of this algorithm has been given. The simulations showed that this model, despite its simplicity,

works very well. This is surprising because of the random nature of the initial state or the weight

matrix initialization, and specially for the lack of reservoir weights adjustment. Some mathemati-

cal considerations, like the ESP, support that under certain conditions this models depends only on

the inputs and desired outputs, so the initial state has (theoretically) no influence. But the reservoir

initialization is still a crucial point for this approach. In fact, currently the RC paradigm assumes

only a functional separation between two parts of the RNN. One (big) part, the reservoir, is used as

a tool that projects the temporal information into a multidimensional space, and the other (smaller)

part combines this information to rebuild the desired output. So a specialized training of the reser-

voir is also admitted.

79

80 Chapter 5. Discussion, Conclusions and Further Work

Another remarkable point is the difficulty of tuning the parameters in this kind of models. This

was one of the disadvantages of the classical approaches, and in ESN is partially solved because

the only important parameter to be set is the spectral radius of the reservoir. Nevertheless, the

algorithm of BPDC and its variations have a bigger complexity because of their online nature.

That is, it is necessary to choose a correct learning rate, and the number of epochs needed to train

the model. So the parameters require a certain experience with this algorithm, or some kind of

metatraining, to achieve the best results.

In the experimental part of this work a “continuous” transformation from the classical ap-

proaches to the ESN has been presented. The starting point is the complete BPDC algorithm. This

technique is based on the Atiya-Parlos reformulation (so it is not really one of the first approaches

to RNN training, as it could be BPTT or RTRL) and it updated all the weights of the RNN. Then,

the mentioned coupled update of the reservoir weights suggest to adapt only the output weights.

This is the BPDC without reservoir simplification. If we focus our attention in the BPDC output

weights update, then only a term makes it different from the LMS filter. Deleting this term drives

to what we have called the BPDC-L algorithm. Assuming that the ESP of the RNN is satisfied, that

a big enough washout is done and that the net is teacher driven during training, then the reservoir

starts to produce the same results at each epoch. So the internal states of the RNN arise as a set

of fixed patterns, and the BPDC-L algorithm can be seen in fact as the online version of a simple

linear regression. Changing this online regression by a batch one (this is, obtaining the output

weights using the pseudoinverse of the internal states matrix) constitutes the ESN algorithm.

5.2 Further Work

In this work, the transition from the classical algorithm to ESN has been described conceptually.

The experimental comparative between the algorithms from complete BPDC to ESN has not been

too successful as it has been described in section 4.5. The first extension to this research is to

improve the simulations, trying to explain the path BPDC→ ESN. The introduction of more sce-

narios, or other state of the art time series, could help in this task. Moreover, a further analysis about

the theoretical relationship between these algorithms is also needed. Maybe the step from online

algorithm to batch ones produces any “discontinuity” in the mentioned path, what will partially

explain the results.

It is important to realize that the best results in the experiments have been achieved using a

spectral radius near to 1. In this region, the network has an almost chaotic behaviour. It has

been claimed in [18] that in this region, the edge of chaos, the network has more computational

power. A more exhaustive study of the behaviour of the RNN at the edge of chaos can clarify

some results of the simulations of this work. On the other hand, the relationship between the

regularization (through the addition of noise) and the spectral radius of the trained network can be

another interesting extension of this research.

5.2. Further Work 81

As it has been explained before, an analysis of the different architecture selection techniques

can be done. Although some insights on the reservoir adaptation have been tackled in this work

with the IP techniques, this is still an expanding field with continuous contributions from the bi-

ological branch of the neuroscience. In particular, an interesting future work could be the use of

some evolutive approaches, like the construction of bigger nets and the posterior pruning of the

least important units (considering its correlation with the output or more complex measures).

The experimental work can be extended with experiments using the IP adaptation rule. The

study of this results and the regularity of the internal states matrix can clarify if this technique in

fact increases the information transmitted by the net. Moreover, the parameters obtained with the

IP rule for the activation functions can also indicate which units are important and which ones only

act as binary inputs. This could be the basis of another pruning method.

Finally, this work has required the implementation of these complex algorithms. There is not

too much open code available, and most of it is implemented in Matlab. The publication of an open

source toolbox in C is another future extension of this work.

82 Chapter 5. Discussion, Conclusions and Further Work

Appendix A

Auxiliar Theorems and Lemmas

A.1 Takens Theorem

As mentioned in the introduction, Takens Theorem [1] can be used as a first approach to transform

predictions for a dynamical system into a classical regression problem. In this section, the theorem

will be cited and a brief description of its implications will be given.

A.1.1 Theorem

Theorem 1 (Takens) Let M be a compact manifold of dimension m. For pairs (φ, y), with φ ∈
Diff2(M), y ∈ C2(M,R), it is a generic property that the map Φ2m+1,(φ,y) : M → R2m+1,

defined by

Φ2m+1,(φ,y)(x) = (y(x), y(φ(x)), . . . , y(φ2m(x))),

is an embedding.

Here the term “generic” means that this property is verified in a dense and open subset U ⊂
Diff2(M)× C2(M,R).

A.1.2 Discussion

The functions y ∈ C2(M,R) are known as measurement functions, and the maps Φ(φ,y) as recon-

struction maps.

The measurement function provides observations of the current state of the hidden dynamical

system, given by the orbit of φ

(x0, x1, x2, . . .) = (x0, φ(x0), φ2(x0), . . .).

For the prediction of a temporal series, a hidden state xi with dynamic xi+1 = φ(xi) can be

assumed, so the desired output is given by the readout yi = y(xi). The goal is to predict the

83

84 Appendix A. Auxiliar Theorems and Lemmas

next value of the series, yi+k, given the previous observations (. . . , yi+k−2, yi+k−1). Using Takens

Theorem, the reconstruction map Φk,(φ,y)(x), k > 2m1 permits to transform the hidden space M

to the observation space Rk, so the prediction can be done as indicated in next scheme:

xi
φ−→ xi+1

Φk,(φ,y) ↓↑ Φ−1
k,(φ,y) Φk,(φ,y) ↓↑ Φ−1

k,(φ,y)

(yi, . . . , yi+k−1)
Φk,(φ,y)◦φ◦Φ−1

k,(φ,y)−→ (yi+1, . . . , yi+k)

,

where the invertibility of the embeddings has been used.

In summary, if the number of delays used as input k is big enough, then a deterministic function

that predicts the next observation will exist and could be approximated by a certain model.

A.2 Small Rank Adjustment Matrix Inversion Lemma

A.2.1 Lemma

The following matrix inversion lemma has been used to get the results for the BPDC online algo-

rithm.

Lemma 2 (Small Rank Adjustment Matrix Inversion) Let A be square N ×N matrix. Let U ,

C and V be matrices of dimensions N ×K, K ×K and K ×N respectively. Then

(A+ UCV)−1 = A−1 +A−1U(C−1 + V A−1U)−1V A−1.

A.2.2 Application to APRL

For compute, in a recursive way, the inverse of ĈK = ĈK−1 + fK−1f
T
K−1 in terms of Ĉ−1

K−1.

Using the lemma 2 with A = ĈK−1, A−1 = Ĉ−1
K−1, U = fK−1, C = 1, V = fTK−1:

Ĉ−1
K = Ĉ−1

K−1 −

[
Ĉ−1
K−1fK−1

] [
fTK−1Ĉ

−1
K−1

]
1 + fTK−1Ĉ

−1
K−1fK−1

= Ĉ−1
K−1 −

[
Ĉ−1
K−1fK−1

] [
Ĉ−1
K−1fK−1

]T
1 + fTK−1Ĉ

−1
K−1fK−1

.

It has been used that 1 + 1
εf

T
K−1Ĉ

−1
K−1fK−1 is a 1× 1 matrix (that is, a scalar), so its inverse is just

1
1+ 1

ε
fTK−1Ĉ

−1
K−1fK−1

.

1Note that if k > 2m+1 the embedding will be given by Takens Theorem and the canonical embedding R2m+1 i→
Rk.

A.2. Small Rank Adjustment Matrix Inversion Lemma 85

A.2.3 Application to BPDC

It has been applied to prove the equality

(εI + fkf
T
k)−1 =

1

ε
I −

[1
ε Ifk][

1
ε Ifk]

T

1 + fTk
1
ε Ifk

,

where I is the identity of dimension N ×N , and fk is a vector N × 1. Substituting in the lemma

2 the expressions A = εI , A−1 = 1
ε I , U = fk, C = 1, V = fTk :

(εI + fkf
T
k)−1 = A−1 +A−1U(C−1 + V A−1U)−1V A−1

=
1

ε
I − 1

ε
Ifk

(
1 +

1

ε
fTk Ifk

)−1

fTk
1

ε
I

=
1

ε
I − 1

ε
Ifk

1

1 + 1
εf

T
k Ifk

fTk
1

ε
I

=
1

ε
I −

[1
ε Ifk][

1
ε Ifk]

T

1 + fTk
1
ε Ifk

.

Where it has been used that (1 + 1
εf

T
k Ifk)

−1 = 1
1+ 1

ε
fTk Ifk

.

86 Appendix A. Auxiliar Theorems and Lemmas

Appendix B

Notation Glossary

During all the work, a unified notation has been used, so all the algorithms can be easily compared

and related.

In this appendix, a summary of this notation is included.

B.1 Abbreviations

APRL Atiya-Parlos Recurrent Learning.

BP BackPropagation.

BPDC BackPropagation Decorrelation.

BPTT BackPropagation Through Time.

EA Evolutionary Algorithm.

EIP Exponential Intrinsic Plasticity.

ES Evolutionary Strategy.

ESN Echo State Network.

ESP Echo States Property.

FFNN Feedforward Neural Network.

GIP Gaussian Intrinsic Plasticity.

IP Intrinsic Plasticity.

LSM Liquid State Machine.

MLP Multilayer Perceptron.

87

88 Appendix B. Notation Glossary

NN Neural Network.

RC Reservoir Computing.

RNN Recurrent Neural Network.

RTRL Real Time Recurrent Learning.

B.2 Notation

aki Activation of the unit i at layer k in a MLP.

Ak Matrix defined in the APRL algorithm for compact notation.

α Spectral radius of the built reservoir weigh matrix.

B(k) Matrix defined in the APRL algorithm for matrix notation.

CK Approximation of the auto-correlation matrix (except for a constant) at time k.

ĈK Regularized version of Ck.

Ĉ(k) Instantaneous version of Ĉk.

dKL Kullback Leibler Divergence.

diag[v] Matrix with the vector v in its diagonal, it is equivalent to I ⊗ v where ⊗ stands for the

Kronecker product and I is the identity matrix.

δ Vector defined for BPTT reformulation.

δim Kronkecker’s delta, δii = 1 and δim = 0, i 6= m.

δi(k) Derivative of the error w.r.t. the activation of the unit j at time k.

∆a Update of parameter a.

∆b Update of parameter b.

∆t Time constant for the RNN dynamic.

∆x Desired state update (in the opposite direction of the error gradient).

∆wbatch
ij Update of the weight from unit j to unit i in APRL for the batch algorithm.

∆wij(k) Update of the weight from unit j to unit i at time k for an online algorithm.

∆W batch Weight update in APRL for the batch algorithm with matrix notation.

∆W (k) Weight update at time k for an online algorithm with matrix notation.

B.2. Notation 89

∆w Weight update in APRL.

∆wbatch Weight update in APRL for the batch algorithm.

es(k) Instantaneous error of unit s at time k.

e(k) Vector of the instantaneous errors of the N units at time k.

E Squared error of the RNN over the training set.

E [a] Expectation of a.

ε Regularization constant.

η Learning rate.

f() Activation function of the RNN.

fk Vector of activations at time k.

fa(a) Density function of a.

g Constraint of the optimization problem defined in APRL.

g() Activation function of the RNN with IP notation.

gi(k) Constraint of the optimization problem defined in APRL for unit i at time k.

g(k) Constraint vector of the optimization problem defined in APRL at time k.

g Vector collecting the constraints of the N units at the K timesteps.

γ Vector defined in the APRL algorithm for compact notation.

γi(k) Element of γ associated to unit k at time k.

γ(k) Subvector of γ associated to time k.

H(a) Entropy of a.

I Index set of the RNN inputs.

k0 Number of timesteps discarded at the beginning of the training sequence in ESN algorithm.

K Number of timesteps in the training set.

λmax(A) Spectral radius of A, its largest absolute eigenvalue.

µ Desired mean in IP.

N Number of units of the RNN.

90 Appendix B. Notation Glossary

oki Value of the unit i at layer k in a MLP.

O Index set of the RNN outputs.

O Matrix of the collected outputs of the units of a RNN, O = f(X).

p(x) Density function of the input x in IP.

q(y) Density function of the output y in IP.

σ Desired deviation in IP.

σmax(A) Largest singular value of A.

ukr Value of the input r at layer k in a MLP.

ur(k) Value of the input r at time k.

u(k) Input vector at time k.

ws Vector of weights that connects output s.

wij Weight of the connection from unit j to unit i.

wkij Weight of the connection from unit j to unit i in layer k in a MLP.

w Vectorial form of the weight matrix of the RNN.

W Weight matrix of the RNN.

WRes Reservoir weight matrix of the RNN.

xki Value of the unit i at layer k in a MLP.

xi(k) Value of the unit i at time k.

x(k) State vector at time k.

x Vector collecting the states of the N units at the K timesteps.

X Matrix of the collected states of the units of a RNN.

yi(k) Value of the desired output i at time k.

y(k) Desired output vector at time k.

Ys Vector of the collected desired s-th output.

τ Parameter of the Mackey-Glass system.

[v]s Component s of a vector.

Z Matrix defined for RTRL reformulation.

Bibliography

[1] Floris Takens. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence,

Warwick 1980, pages 366–381, 1981.

[2] J. J. Hopfield. Neural networks and physical systems with emergent collective computational

abilities. Neurocomputing: foundations of research, pages 457–464, 1988.

[3] D.R. Hush and B.G. Horne. Progress in supervised neural networks. Signal Processing

Magazine, IEEE, 10(2):8–39, 1993.

[4] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals, and Systems (MCSS), 2:303–314, 1989.

[5] Hava T. Siegelmann and Eduardo D. Sontag. Turing computability with neural nets. Applied

Mathematics Letters, 4:77–80, 1991.

[6] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent neural

network training. Computer Science Review, 3(3):127–149, August 2009.

[7] Kenji Doya. Bifurcations in the learning of recurrent neural networks. IEEE INTERNA-

TIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, pages 2777–2780, 1992.

[8] Paul J. Werbos. Backpropagation through time: What it does and how to do it. Proceedings

of the IEEE, 78(10):1550–1560, October 1990.

[9] Ronald J. Williams and David Zipser. Experimental analysis of the real-time recurrent learn-

ing algorithm. Connection Science, 1:87–111, 1989.

[10] Amir F. Atiya and Alexander G. Parlos. New results on recurrent network training: Unifying

the algorithms and accelerating convergence. IEEE Trans. Neural Networks, 11:697–709,

2000.

[11] Jochen J. Steil. Backpropagation-decorrelation: online recurrent learning with o(n) complex-

ity. IEEE Transactions on neural networks, 2:843–848, July 2004.

[12] H. Jaeger. Echo state network. Scholarpedia, 2(9):2330, 2007.

91

92 Bibliography

[13] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing without

stable states: A new framework for neural computation based on perturbations. Neural Com-

putation, 14(11):2531–2560, 2002.

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error

propagation. Parallel distributed processing: explorations in the microstructure of cognition,

vol. 1: foundations, pages 318–362, 1986.

[15] H. Jaeger. The ‘‘echo state’’ approach to analysing and training recurrent neural networks.

GMD Report 148, 2001.

[16] M. Buehner and P. Young. A tighter bound for the echo state property. Neural Networks,

IEEE Transactions on, 17(3):820 –824, may 2006.

[17] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. An experimental unifica-

tion of reservoir computing methods. Neural Networks, 20(3):391 – 403, 2007. Echo State

Networks and Liquid State Machines.

[18] R. Legenstein and W. Maass. Edge of chaos and prediction of computational performance

for neural circuit models. Echo State Networks and Liquid State Machines, 20(3):323–334,

April 2007.

[19] U. D. Schiller and J. J. Steil. On the weight dynamics of recurrent learning. in: Proc. ESANN,

2003, pages 73–78, 2003.

[20] Ulf D. Schiller and Jochen J. Steil. Analyzing the weight dynamics of recurrent learning algo-

rithms. Neurocomputing, 63:5 – 23, 2005. New Aspects in Neurocomputing: 11th European

Symposium on Artificial Neural Networks.

[21] B Widrow and M E Hoff. Adaptive switching circuits. Institute of Radio Engineers, Western

Electronic Show and Convention, Convention Record, Part 4, pages 96–104, 1960.

[22] Fei Jiang, Hugues Berry, and Marc Schoenauer. Supervised and evolutionary learning of echo

state networks. Proceedings of the 10th international conference on Parallel Problem Solving

from Nature, pages 215–224, 2008.

[23] H. Jaeger. Tutorial on training recurrent neural networks, covering bppt, rtrl, ekf and the

â echo state networkâ approach. Technical report, Fraunhofer Institute AIS, St. Augustin-

Germany, 2002.

[24] K. Ishii, T. van der Zant, V. Becanovic, and P.-G. Plöger. Identification of motion with echo

state network. 2004.

Bibliography 93

[25] Keith Bush and Batsukh Tsendjav. Improving the richness of echo state features using next

ascent local search. In Proceedings of the Artificial Neural Networks in Engineering Confer-

ence, 2005.

[26] R. H. Cudmore and N. S. Desai. Intrinsic plasticity. Scholarpedia, 3(2):1363, 2008.

[27] Jochen Triesch. A gradient rule for the plasticity of a neuronâs intrinsic excitability. Pro-

ceedings of the International Conference on Artificial Neural Networks, 2005, pages 65–70,

2005.

[28] Benjamin Schrauwen, Marion Wardermann, David Verstraeten, Jochen J. Steil, and Dirk

Stroobandt. Improving reservoirs using intrinsic plasticity, 2007.

[29] L. Glass and M. Mackey. Mackey-glass equation. Scholarpedia, 5(3):6908, 2010.

[30] Andrew R. Webb. Statistical pattern recognition. 2002.

	Contents
	Introduction
	Definitions and General Descriptions
	Recurrent Neural Networks

	Evolution of the RNN Paradigms
	The Reference Model
	Classical Algorithms
	BackPropagation Through Time
	Real Time Recurrent Learning

	Echo State Networks and Liquid State Machines
	The ESN Algorithm
	Algorithm
	Mathematical Formalization: Echo States Property
	Practical Issues
	Liquid State Machines

	Atiya-Parlos Recurrent Learning
	Definitions
	Definition of the Problem
	Definition of the Virtual Target
	Dimension Values

	Atiya-Parlos Batch Recurrent Learning
	Unification of BPTT and RTRL
	BackPropagation Through Time
	Real Time Recurrent Learning

	BackPropagation Decorrelation
	From APRL to BPDC
	APRL Online Algorithm
	Weight Dynamics

	BPDC
	BPDC Algorithm
	Cost of the Algorithm

	Back to ESN
	Reservoir Architecture Definition
	Unsupervised Reservoir Training: Intrinsic Plasticity

	Simulations
	Simulations Setup
	Model
	Input/Output
	Training and Testing Procedures
	Error Measurement
	List of Experiments

	Sinewave Generator
	Pure Generator
	Generator with Delay Input
	Modulated Pure Generator

	Mackey-Glass
	Application to Wind Power Forecasting
	Discussion and Remarks

	Discussion, Conclusions and Further Work
	Discussion
	Further Work

	Auxiliar Theorems and Lemmas
	 Takens Theorem
	Theorem
	Discussion

	 Small Rank Adjustment Matrix Inversion Lemma
	Lemma
	 Application to APRL
	 Application to BPDC

	Notation Glossary
	Abbreviations
	Notation

	Bibliography

