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Abstract

The use of hand gestures o�ers an alternative to the commonly used human computer interfaces,

providing a more intuitive way of navigating among menus and multimedia applications. This

work presents contributions to hand gesture recognition on the basis of range data. Firstly, a

real and synthetic benchmarking dataset is compiled, providing with a comparison framework for

hand gesture recognition systems. A novel collection of critical factors of utility when designing a

hand gesture dataset is proposed, analyzing the State Of Art solutions attending to these criteria.

In terms of gesture scalability, apart from the method for synthetic generation of hands range

data included in the mentioned dataset, the concept of synthetic subject is introduced, improving

classi�cation results by the variation of several intra-hand parameters. The representativity of

the synthetically generated collection is demonstrated with an evaluation scheme in which the

learning stage is fed with synthetic data while the evaluation is done with real subjects recordings.

Two examples of gesture recognition systems are presented in this work, making use of two

of the dictionaries proposed in the dataset:

� The �rst one is a framework for generic hand gesture recognition which performs hand

segmentation as well as a low-level extraction of potentially relevant features which are

related to the morphological representation of the hand silhouette. Classi�cation based on

these features discriminates between a set of possible Static Hand Postures (SHPs) which

results, combined with the estimated motion pattern of the hand, in the recognition of

Dynamic Hand Gestures (DHGs).

� The second recognition system is focused on motion-based hand gestures. The hand trans-

lations are modelled on the basis of a novel human arm model, which is able to represent

di�erent motion patterns at di�erent speeds.

Both systems work in real-time, allowing practical interaction between user and application.





Resumen

El uso de gestos manuales ofrece una alternativa a los interfaces hombre-máquina más comunes,

proporcionando una manera más intuitiva de navegar a través de menus y aplicaciones multi-

media. Este trabajo presenta contribuciones en el ámbito de reconocimiento de gestos man-

uales tomando como entrada información de profundidad de la escena. Inicialmente se presenta

una colección de videos e imágenes de profundidad asociada a distintos diccionarios de gestos

manuales: los videos son capturas reales, mientras que las imágenes son generadas sintética-

mente. Este contenido constituye un marco para la comparación de distintas soluciones de

reconocimiento de gestos manuales. Junto a esta colección se proponen una serie de factores

críticos a considerar a la hora de recopilar contenido asociado a gestos manuales, evaluando su

incidencia en las distintas colecciones disponible en el Estado del Arte. En terminos de escal-

abilidad, además de la solución para la genereción de datos sintéticos utilizada en la colección

propuesta, se propone el concepto de usuario sintético, que es el resultado de introducir varia-

ciones en los paremetros que de�nen la mano sintética utilizada en el proceso de creación de

contenido arti�cial. La representatividad de la colección sintética queda demostrada con un es-

quema de evaluación en el que el entrenamiento se realiza con esta misma, mientras la evaluación

se realiza con contenido de usuarios reales.

Se presentan dos ejemplos de aplicación de sistemas de reconocimiento de gestos manuales,

que hacen uso de dos de los diccionarios propuestos en la colección:

� El primero reconoce gestos de distinta naturaleza, previa segmentación basada en informa-

ción de profundidad, y en base a una descripción de bajo nivel relacionada con información

morfológica del contorno de la mano. La posterior clasi�cación discrimina entre un dic-

cionario de poses estáticas de mano para luego, en combinación con la trayectoria estimada

de la mano, realizar una separación entre los gestos dinámicos..

� El segundo sistema se centra en gestos manuales basados en la trayectoria realizada. En

esta aproximación se modelan distintas trayectorias mediante un modelo sintético de brazo

humano, que es con�gurado para la consecución de patrones de movimiento de distinto

tipo y con distintas velocidades.



Ambos sistemas son capaces de trabajar en tiempo real, permitiendo así la interacción práctica

entre hombre y máquina.
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Chapter 1

Introduction

1.1 Motivation

Human Computer Interaction (HCI) technology and algorithms are evolving very rapidly. The

user experience of high technological services is not always optimal and HCI might help bringing

these services to the mass market. Although RGB cameras are still the most common cap-

ture technology, the trend in the last years is to use range data information. As a sign of the

fast establishment of 3D user interfaces [Laviola, 2008], in the last years such kind of interfaces

are becoming more important in the console gaming scenario123. Besides, in desktop comput-

ers interfaces, the usage of the hand as input device provides natural HCI [Mitra and Acharya,

2007]. Traditionally, simple RGB capturing solutions were proposed for hand gesture recognition

[Stenger et al., 2006, Chen and Tseng, 2007, Nickel and Stiefelhagen, 2007, Zheng et al., 2007,

Teng et al., 2005, Lee and Park, 2009], but the use of 2.5D or 3D information enriches whichever

human-computer interface. There are three main capture solutions for obtaining 2.5D informa-

tion (i.e. two spatial coordinates plus depth information) of a scene: by the use of markers (or

gloves) [Holte and Stoerring, 2004, Kelly et al., 2010, Martin Larsson, 2011, Keskin and Akarun,

2009, Usabiaga et al., 2009, Lee et al., 2009, Han, 2010, Heo et al., 2010] or accelerometers like in

[Cheng et al., 2010]; using RGB stereo-vision con�gurations [Ho et al., 2011, Causo et al., 2009,

2008] and using TOF cameras [Soutschek et al., 2008, Kollorz et al., 2008, Molina et al., 2011].

The use of markers can result intrusive for the user of the system, while stereo-vision solutions

require a complex setup and the presence of singular points in the scene in order to register

the di�erent views. Range cameras are an emerging technology which does not stop decreasing

its price while increasing its capabilities (more resolution and wider viewing angle), making the

confronting of possible interaction problems more a�ordable [Liu and Fujimura, 2004]. Addition-

1http://wii.com
2http://www.xbox.com/kinect/
3http://playstation.com/psmove/
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ally, the segmentation process (even in the presence of camera motion) becames easier than with

exclusively color data and with a much simpler setup than stereo-vision solutions.

The ultimate goal of this thesis is to improve user's experience when interacting with vertical

surfaces, such as a TV display. Potential applications would be the navigation among maps,

allowing intuitive movements of the earth surface; the control of multimedia menus [Soutschek

et al., 2008] or the modi�cation of the point of view on a virtual environment. We can �nd an

example of TV remote control by hand gestures in [Premaratne and Nguyen, 2007] where TV

commands codes are mapped on a collection of static hand gestures.

Usability constitutes a main issue in the development of HCI systems and some of the main

aspects are pointed out in [Iso, 1998]; whilst a study devoted to improve user experience can be

found in [Castilla et al., 2009]. The gestures selected along this work are chosen bearing in mind

usability and gesture scalability criteria. As well, gesture scalability is a valuable characteristic

in gesture recognition, allowing the inclusion of new detectable gestures with low cost.

1.2 Related work

When detecting hand gestures the �rst step is hand recognition, that is often performed by

background subtraction. Depending on the application, the problem can be simpli�ed by using a

zenital camera and an homogeneous background (the interactive surface) [Letessier and Bérard,

2004]. However, in most applications that require vertical gestures, the motion of the body of

the person produces artifacts in common background subtraction techniques. Skin colour-based

segmentation also presents problems in this context [Zhu et al., 2000], often due to the fact

that the face of the person is also visible and corresponds to the same colour than the hand. It

must be said that the use of depth information has been crucial in the last years for solving the

segmentation problem. Time-of-Flight (TOF) range cameras supply depth information per pixel

which makes them ideal for binary segmentation as depth information can generally separate the

object from the background much better than intensity images, where colors, lighting, re�ection

and shadows almost always in�uence the performance of segmentation algorithms [Guomundsson

et al., 2010a]. Some proposals for depth-based hand segmentation are proposed: in [Yang et al.,

2012] the hand is expected to present wave motions; in [Molina et al., 2011] the hand is expected

to be the nearmost to the camera part of the body. In [Moeslund et al., 2006] some approaches to

hand recognition and tracking are enumerated in the context of human motion characterization

and body actions understanding, a much more generic �eld than the speci�c set-up presented in

this work.

The use of depth information to improve hand gesture recognition has been recurrent in the

last decade: Stereo-vision based systems such as [Grzeszczuk et al., 2000], in which background

subtraction and 3D reconstruction make possible a proper hand segmentation and gesture recog-

4



nition within seven di�erent static gestures, or [Nickel and Stiefelhagen, 2007], where gestures

are de�ned by the pointing direction of hands and head and are used in remote robot-control.

In [Athitsos and Sclaro�, 2003], where hand poses are detected, and in [Stenger et al., 2006],

where hands are segmented and tracked, a 3D hand model is adjusted to a single view 2D input

images. A recent approach is to use Time-of-Flight (TOF) range cameras that supply real-time

depth information per pixel [Soutschek et al., 2008] at low cost. Some examples of the use of

this technology can be found in [Guomundsson et al., 2010a] where it is used to improve peo-

ple tracking in a smart room. The use of depth information results in an enrichment of the

communication between user and machine by means of gestural interfaces. In this line, in [Liu

and Fujimura, 2004] some advantages are remarked: robustness to illumination changes and

easy segmentation even when there is camera motion. In [Breuer et al., 2007] the depth image

captured by a Time-Of-Flight camera is transformed into a cloud of points to which a 3D hand

model is adjusted. In [Kollorz et al., 2008] experiments are performed over a collection of twelve

static hand gestures. [Soutschek et al., 2008] studies the application of this technology to the

navigation among medical images using hand gestures. Another technology for obtaining range

data is the one proposed in [Malassiotis and Strintzis, 2008] where the scene is illuminated with

a coloured pattern, captured by a common RGB camera and later processed to infer depth infor-

mation. The Kinect sensor4, which is based on a stuctured ligth imaging solution, is a popular

and cheap solution for obtaining depth information of a scene. Recently it has been used for

several gesture recognition solutions [Doliotis et al., 2011, Ren et al., 2011a, Yang et al., 2012,

Antonio Hernández-Vela, 2012].

An interesting survey related with hand pose estimation was published in 2007 [Erol et al.,

2007]. In [Poppe, 2007] the problem of body pose estimation, rather than hand pose, is overviewed.

Several approaches have been followed for facing the problem of hand pose estimation, but it

has been in the last years when the use of depth information has become really popular. When

talking about 2D images (i.e. color or gray images) as input some works come up: in [Chen

and Tseng, 2007], static hand postures within a dictionary are detected based on gray images.

Another approach to the problem is presented in [Stenger et al., 2006] where discrimination

between hand postures is performed, mainly focusing on hand features extraction starting from

color images. In [Alon et al., 2009] a complete framework is presented, introducing the tempo-

ral component and detecting gestures de�ned by their motion pattern, such as digits drawn to

the camera. The captures are still taken by a 2D camera. In [Zheng et al., 2007] a projective

invariant hand feature vector is proposed and applied to person identi�cation. In [Cheng and

Trivedi, 2006, Ho et al., 2011] a hand pose estimation scheme based on 3D voxels adjusted to

multicamera views of the hand is presented.

Di�erent approaches for the description of the captured images have been proposed. In

4Microsoft Corp. Redmond WA. Kinect for Xbox 360.
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[Chakraborty et al.] the concept of Eigenvector applied to hand gesture recognition is introduced.

A hand pose angle estimation Gabor-�lter based approach is described in [Huang et al., 2011].

[Li and Greenspan, 2011] treats hand gesture recognition as a secondary point. Authors of

[Guomundsson et al., 2010b] present an approach for hand pose estimation with restrictions

based on the adaptation of an ellipsoid 27 Degrees Of Freedom (DOF) hand model to the depth

image. The variations performed in each articulation are guided by the principal components

obtained from a synthetical postures data set. In [Liu and Kavakli, 2010] singular vectors are

used to perform a global and local description of the capture. In [Cheng et al., 2010] a feature

fusion method for 3D hand gesture recognition by learning a shared hidden space is proposed.

A metric should be associated to a descriptor in order to be able to compare two descriptions.

Usually this metric is the euclidean distance but some other proposals can be found in the

literature [Baysal, 2010].

While most of the works which perform a training process or include a validation setup use

real users data sets, there are some that make use of a synthetically generated collection [Baysal,

2010, Stenger et al., 2007].

1.3 Structure of the document

This document is divided in two main parts: one focused in the generation of a scalable hand ges-

ture dataset, a second one which presents two examples of application of hand gesture recognition

solutions:

� in Part II a dataset and associated scalability contributions are presented: in Chapter 2 a

corpus, dataset and associated ground-truth, for the evaluation of hand gesture recognition

approaches in Human Computer Interaction scenarios is presented. A novel collection of

critical factors involved in the creation of a hand gestures dataset is proposed: capture

technology, temporal coherence, nature of gestures, representativeness, complexity of ges-

tures and scalability. Eleven users were recorded with a TOF camera. They were asked

to execute hand gestures of di�erent nature selected from several dictionaries of the State

of Art. Special attention is given to the scalability of the set, proposing a method for the

generation of synthetic depth images of gestures. Gestures covered in the corpus include

single and multiple poses gestures (pose-based and compound), as well as gestures de�ned

by motion and by pose and motion (motion-based and pose-motion based). Three kind

of annotated data units are taken into consideration: static pose videos, gesture execution

videos, both of them presenting temporal coherence (i.e. are continuous in time), and

synthetically generated images. The resulting corpus, which exceeds in terms of repre-

sentativity and scalability the datasets existing in the State of Art, provides a signi�cant

evaluation scenario for di�erent kinds of hand gesture recognition solutions. In Chapter 3
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the training framework for hand posture recognition systems based on a learning scheme

fed with synthetically generated range images presented in Chapter 2 is extended. One of

the most di�cult issues when designing a hand gesture recognition system is to introduce

new detectable gestures without high cost, this is known as gesture scalability. Commonly,

the introduction of new gestures needs a recording session of them, involving real users in

the process. Di�erent con�gurations of a 3D hand model result in sets of synthetic users,

which have shown good performance in the separation of gestures from several dictionaries

of the State of Art. The proposed approach allows the learning of new dictionaries with

no need of recording real users, so it is fully scalable in terms of gestures. The obtained

accuracy rates for the dictionaries evaluated are comparable to, and for some cases better

than, the ones reported for di�erent real users training schemes.

� Part III presents two novel hand gestures recognition approaches together with the com-

plete systems used in their validation. The dictionaries used in the evaluation of both

systems are included in the dataset proposed in Chapter 2. In Chapter 4 a framework

is presented, which, starting from the images captured by a TOF camera, performs hand

segmentation as well as a low-level extraction of potentially relevant features which are

related to the morphological representation of the hand silhouette. Classi�cation based on

these features discriminates between a set of possible Static Hand Postures (SHPs) which

results, combined with the estimated motion pattern of the hand, in the recognition of

Dynamic Hand Gestures (DHGs). The whole system works in real-time, allowing practical

interaction between user and application. In Chapter 5 an innovative solution, also based

on TOF video technology, to motion patterns recognition for real-time dynamic hand ges-

ture recognition is presented. The resulting system is able to detect motion-based hand

gestures getting as input depth images. The recognizable motion patterns are modeled on

the basis of the human arm anatomy and its degrees of freedom, generating a collection

of synthetic motion patterns that is compared with the captured input patterns in order

to �nally classify the input gesture. For the evaluation of our system one of the signi�-

cant collections of gestures described in Chapter 2 is used, getting results for 2.5D pattern

classi�cation as well as a comparison with the results using only 2D information.

� Finally, the main conclusions and future work lines are compiled in Part IV.
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Chapter 2

A natural and synthetic corpus for

benchmarking of hand gesture

recognition systems

2.1 Introduction

2.1.1 Motivation

One of the most important limitations when designing a hand gesture recognition system is the

lack of annotated datasets adapted to the particularities of the context of the application to be

designed. This is critical when evaluating a system's performance. In this chapter, the design,

generation and annotation of a new corpus1 is described. It is composed of gestures of several

collections of the State of Art (SoA). Furthermore, it includes some other gestures that we have

considered as useful for nowadays application enviroments.

In a dataset design process, some critical factors should be taken into account. In Section

2.1.2, a collection of factors are identi�ed and proposed, and a review of the SoA in this frame-

work is included. In Section 2.1.3, the proposed dataset designed in the light of these critical

factors is outlined; special attention is then given to the scalability factor, covered via synthetic

content generation (see Section 2.2). In Section 2.3, the dataset content is described, indicating

the considered dictionaries and the characteristics of the compiled videos and images. Some

classi�cation experiments are presented in Section 2.4 in order to estimate the separability of a

dictionary (see Section 2.4.1) and to validate a posture detection approach which, by using the

aforementioned synthetic content, does not require real users in the training stage (see Section

2.4.2). Finally, in Section 2.5, main conclusions are presented and future work lines are pointed

out.
1available at http://www-vpu.eps.uam.es/DSs/HGds

11



2.1.2 Critical factors involved in hand gesture datasets

The compilation of a dataset for the evaluation of hand gesture recognition should consider some

factors that could be critical when evaluating a system in a speci�c context of application. These

critical factors are identi�ed and described below, including in the discussion the main reviewed

works of the SoA (see Table 2.1).

Temporal coherence: the examined datasets just provide with either images or videos,

being sets of single images per gesture sample the most common situation [Triesch and VD Mals-

burg, 1996, Marcel, 1999, Soutschek et al., 2008, Kollorz et al., 2008, Ren et al., 2011b]. However,

video temporal continuity (as in [Marcel et al., 2000, Holte and Stoerring, 2004, Kim et al., 2007,

Han and Liang, 2008, Martin Larsson, 2011]) allows temporal �ltering either in the analysis or

in the decision phase. Moreover, considering videos as annotation units allows a more adequate

adaptation to real situations, in which gestures are performed during some consecutive frames.

Besides, natural hand transitions during a gesture, which use to be the hardest poses to model,

are intrinsicly included in videos.

Representativeness: when designing and generating a dataset, one of the main objectives

is to cover as many practical situations as possible. In this line, the representativeness of a ges-

ture dataset increases with the number of users, with their heterogeneity and with the variations

in the point of view of the captures. Besides, the more available and heterogeneous dictionaries

(according to the nature of their gestures), the more scenarios could be considered when design-

ing a recognition solution. Finally, the availability of videos instead of single images, provide

transitory frames in which the performed gestures vary in appearance with respect to the iconic

models of their front-side versions, which enhances representativeness.

Nature of gestures: in the SoA four di�erent kinds of gestures can be identi�ed:

� Pose-based, de�ned entirely by the pose of the hand, as in [Triesch and VD Malsburg,

1996, Marcel, 1999, Triesch and VD Malsburg, 2001, Holte and Stoerring, 2004, Dadgostar

et al., 2005, Soutschek et al., 2008, Kollorz et al., 2008, Han and Liang, 2008, Ren et al.,

2011b].

� Motion-based, in which the hand pose is not relevant, i.e., the hand trajectory explicitly

de�nes the gesture, as in [Marcel et al., 2000, Holte and Stoerring, 2004, Martin Larsson,

2011].

� Pose-motion based, de�ned both by a pose and certain motion pattern in the execution,

as in [Kim et al., 2007].

� Compound, which are gestures composed of a sequence of pose-based gestures, as in [Holte

and Stoerring, 2004].
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Scalability: this refers to the capacity of easily extending a dataset to include a new collection of

gestures, which is a very valuable characteristic. In practice, it is hard to collect a representative

group of users to perform a recording session. In [Dadgostar et al., 2005], a method for the

generation of synthetic hand color images is described, but the authors suggest that their model

is far from ideal. None of the analyzed datasets present a scalable solution.

Capture technology: RGB cameras are the most common technology due to its low cost.

However, the trend in the last years is to use hand's range information, either via stereo-vision

[Ho et al., 2011, Causo et al., 2009, 2008] or via Time-Of-Flight (TOF) cameras [Soutschek

et al., 2008, Kollorz et al., 2008, Molina et al., 2011]. TOF technology has several advantages

[Liu and Fujimura, 2004]: it allows to obtain 2.5D data in a non-intrusive way, without using

markers or gloves, as in [Holte and Stoerring, 2004, Martin Larsson, 2011], with a simpler set-up

than stereo-vision systems, and it is robust to illumination conditions. Additionally, the hand

segmentation process becomes easier than with exclusively color data, and much simpler than in

stereo-vision solutions, even in the presence of camera motion.

Pose issues: some problematic factors are grouped here, either intrinsical to the gesture

de�nition or introduced by the acquistion process, that may hinder pose detection with the

existing analysis techniques. These issues can be signi�cant when they make two or more poses

more similar:

� Finger occlusion, owing to either crossed �ngers or to a lateral point of view of the camera.

� Hand-core occlusion, understanding the hand-core as the part of the hand that it is not

�ngers. Oclussion happens when the point of view of the camera hides the palm and the

opisthenar area.

� 2D silhouettes with no protuberances: Many hand gesture detection approaches in the of

the SoA, such as [Hu, 1962], use a description of the detected silhouette rather than that

of the hand. When there is more than one gesture in which the �ngers are not identi�able

on the basis of the hand silhouette, the gesture detection task becomes more di�cult. The

absence of a representative 2D silhouette for more than one gesture introduces a handicap

for the detection of these gestures.

� Forearm presence: the miss-segmentation of the forearm as part of the hand may increase

the di�cultty to later classi�y a gesture, which was trained from forearm-free samples.

This only applies to videos capturing real users and depends on the acquistion process.
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[Triesch and VD Malsburg, 1996] × ×
√

× 24 10 0 0 0 ×
√

×
√ √ √

× ×
√

[Marcel, 1999] × ×
√

× 10 6 0 0 0 ×
√

×
√

×
√

× ×
√

[Marcel et al., 2000] ×
√

× × 10 0 4 0 0 ×
√

×
√

- - - -
√

[Triesch and VD Malsburg, 2001] × ×
√

× 19 12 0 0 0 ×
√

×
√

×
√

×
√ √

[Holte and Stoerring, 2004] ×
√

× × 16 9 2 0 2 ×
√

× ×
√ √

×
√ √

[Kim et al., 2007] ×
√

× × 2 0 0 9 0 ×
√

×
√ √

× × ×
√

[Soutschek et al., 2008] × ×
√

× 15 5 0 0 0 × ×
√ √ √ √

× × ×

[Kollorz et al., 2008] × ×
√

× 34 12 0 0 0 × ×
√ √ √ √ √ √

×

[Han and Liang, 2008] ×
√

× × 1 0 0 9 0 ×
√

×
√

× × × × ×

[Martin Larsson, 2011] ×
√

× × 10 0 5 0 0 × ×
√

× - - - -
√

[Ren et al., 2011b] × ×
√

× 10 14 0 0 0 ×
√ √ √

× ×
√

×
√

Prop
√ √ √ √

11 58 8 2 2
√

×
√ √ √ √ √ √ √

Table 2.1: Comparison of hand gestures data-sets in terms of the proposed critical factors (in
bold). '-' is used for the critical factor �Pose issues� when for a certain dictionary there are no
pose-based gestures.

2.1.3 Dataset design

Tha last row of Table 2.1 describes the proposed dataset according to the identi�ed critical

factors. This section details the decissions taken for the creation of the proposed data-set,

decisions focused on covering as much as possible these critical factors.

Temporal coherence has been considered by including three types of data in the proposed

data-set:

� Static pose videos, obtained asking users to perform a hand pose in front of the camera for

a certain amount of time.

� Execution videos, where users were asked to get into the capture interaction area, execute

the gesture under consideration, and move outwards.

� Images, both synthetic images and samples from the mentioned videos.

As aforementioned, the inclusion of execution videos also a�ects representativeness, as it indi-

rectly includes transitory frames in which the executed gestures vary in appearance with respect

to the iconic models of their front-side versions. This critical factor has also been considered
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C I f k

(a) Examples of �nger oclussion.

I L

(b) Examples of
hand-core oclussion.

G I L

(c) Examples of 2D silhouettes
with no protuberances.

I e

(d) Examples of fore-
arm presence.

Figure 2.1.1: Incidence of pose issues.

by including a signi�cant number of users (see Section 2.3.2), by developing a methodology for

synthetically generating images of a hand pose from di�erent points of view (see Section 2.2),

and by including a set of dictionaries which detailed description can be found in Section 2.3.1.

Regarding the nature of gestures, the proposed dataset includes all the identi�ed categories:

posed-based, motion-based, pose-motion based and compound gestures.

Scalability , as already mentioned in Section 2.1.2, is a highly valuable factor, since it allows

the inclusion of new gestures with no need of gathering new users. In this line, a method for the

synthetic generation of depth images for new dictionaries is proposed (see Section 2.2).

The proposed dataset was recorded with a TOF camera (SR4000 developed by Mesa Imag-

ing2), considering the advantages, mentioned in Section 2.1.2 , of this capture technology .

The dataset was decided to include several dictionaries (see Section 2.3.1). Figure 2.1.1

illustrates some pose captures showing the aforementiones pose issues: �nger oclussion in 'C'

and 'I' or 'f' and 'k' from Figure 2.1.1a ; hand-core occlusion in 'I' and 'L' from Figure 2.1.1b;

2D silhouette with no protuberances in 'G', 'I' and 'L' from Figure 2.1.1c; forearm presence in

'I' or 'e' from Figure 2.1.1d.

2.2 Generation of syntethic hand poses

This Section describes a novel method for the synthec generation of whichever hand gesture

collection; it is based on a widely used kinematic hand model [Erol et al., 2007, Ge et al., 2006]

with 27 degrees of fredoom (DOF). Once the model parameters have been de�ned for each hand

pose of the desired collection (see Section 2.2.1), a volumetric hand is created via a morphological

dilation process. Then, the position of the point of view is set to capture a range data image

similar to the ones captured by TOF technology (see Section 2.2.2).

2http://www.mesa-imaging.ch/
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2.2.1 Hand pose de�nition

In order to de�ne a hand pose, it is necessary to set values to the 27 degrees of freedom which

de�ne the con�guration of the aforementioned kinematic model. The nomenclature used in

Figure 2.2.1 is the one followed in [Ge et al., 2006] and it is used for the de�nition of the hand

model setups. The associated parameters are:

� Global hand parameters:

� Tx, Ty and Tz refer to the global translation of the model.

� θx1 , θ
y
1 and θz1 refer to the global rotation.

� Finger and phalange parameters:

� θx<PH>i, θ
y
<PH>i and θ

z
<PH>i are used for indicating the rotation of each phalange,

where:

* < PH > indicates the �nger for which the rotations are performed; its posible

values are: Thumb (T ), Index (I), Middle (M), Ring (R) and Little (L).

* x, y and z indicate the relative axis about which the rotation is performed.

* i indicates the depth of the joint (i = 1 for the wrist point, i = 3 the last joint

of the thumb and i = 4 for the last joints of rest of �ngers) used as reference for

applying the rotations.

� Fixed hand parameters, chosen to have realistic proportions in the resulting hands (see

Figure 2.2.1):

� Hand Scale, de�nes the size of the hand: in this work the scale was subjectivelly �xed

to a value of 3.

� The coordinates for the point in the base of the palm (using the reference axis indicated

in Figure 2.2.1):
−−→
OT1 = Scale · [2, 1, 0],

−−→
OI1 = Scale · [1, 1, 0],

−−−→
OM1 = Scale · [0, 1, 0],

−−→
OR1 = Scale · [−1, 1, 0],

−−→
OL1 = Scale · [−2, 1, 0].

� The length for the phalanges of the hand:
∣∣∣−−−→T1T2

∣∣∣ = 4 · Scale ,
∣∣∣−−→I1I2

∣∣∣ =
∣∣∣−−−−→M1M2

∣∣∣ =∣∣∣−−−→R1R2
∣∣∣ = 4 · Scale ,

∣∣∣−−−→L1L2
∣∣∣ = 3 · Scale,

∣∣∣−−−→T2T3
∣∣∣ =

∣∣∣−−→I2I3
∣∣∣ =

∣∣∣−−−−→M2M3
∣∣∣ =

∣∣∣−−−→R2R3
∣∣∣ =∣∣∣−−−→L2L3

∣∣∣ = 3 · Scale,
∣∣∣−−→I3I4

∣∣∣ =
∣∣∣−−−−→M3M4

∣∣∣ =
∣∣∣−−−→R3R4

∣∣∣ =
∣∣∣−−−→L3L4

∣∣∣ = 2 · Scale and also

2 · Scale for the extreme segments of the �ngers. The rotation angles about ẑ for the

segments of the palm: for I1I2, −π/18; for M1M2, 0; for R1R2, π/18; for L1L2, π/9.
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set-up parameters hand model

Tx1 = 0, T
y
1 = 0, Tz1 = 0, θx1 = 0, θ

y
1 = 0, θz1 = 0

θxT1 = π/4, θzT1 = −π/8, θxT2 = 0, θzT2 = π/4, θzT3 = π/4

θxI2 = 0, θzI2 = 0, θxI3 = 0, θxI4 = 0

θxM2 = π/2, θzM2 = 0, θxM3 = π/2, θxM4 = π/2

θxR2 = π/2, θzR2 = 0, θxR3 = π/2, θxR4 = π/2

θxL2 = π/2, θzL2 = 0, θxL3 = π/2, θxL4 = π/2

Tx1 = 0, T
y
1 = 0, Tz1 = 0, θx1 = 0, θ

y
1 = 0, θz1 = 0

θxT1 = π/4, θzT1 = 0, θxT2 = 0, θzT2 = π/4, θzT3 = π/4

θxI2 = 0, θzI2 = 0, θxI3 = 0, θxI4 = 0

θxM2 = 0, θzM2 = π/12, θxM3 = 0, θxM4 = 0

θxR2 = π/2, θzR2 = 0, θxR3 = π/2, θxR4 = π/2

θxL2 = π/2, θzL2 = 0, θxL3 = π/2, θxL4 = π/2

Tx1 = 0, T
y
1 = 0, Tz1 = 0, θx1 = 0, θ

y
1 = 0, θz1 = 0

θxT1 = 0, θzT1 = −π/4, θxT2 = 0, θzT2 = 0, θzT3 = 0

θxI2 = 0, θzI2 = 0, θxI3 = 0, θxI4 = 0

θxM2 = 0, θzM2 = π/12, θxM3 = 0, θxM4 = 0

θxR2 = π/2, θzR2 = 0, θxR3 = π/2, θxR4 = π/2

θxL2 = π/2, θzL2 = 0, θxL3 = π/2, θxL4 = π/2

Tx1 = 0, T
y
1 = 0, Tz1 = 0, θx1 = 0, θ

y
1 = 0, θz1 = 0

θxT1 = π/4, θzT1 = π/16, θxT2 = 0, θzT2 = π/4, θzT3 = π/4

θxI2 = 0, θzI2 = 0, θxI3 = 0, θxI4 = 0

θxM2 = 0, θzM2 = 0, θxM3 = 0, θxM4 = 0

θxR2 = 0, θzR2 = π/32, θxR3 = 0, θxR4 = 0

θxL2 = 0, θzL2 = π/20, θxL3 = 0, θxL4 = 0

Tx1 = 0, T
y
1 = 0, Tz1 = 0, θx1 = 0, θ

y
1 = 0, θz1 = 0

θxT1 = 0, θzT1 = −π/4, θxT2 = 0, θzT2 = 0, θzT3 = 0

θxI2 = 0, θzI2 = 0, θxI3 = 0, θxI4 = 0

θxM2 = 0, θzM2 = 0, θxM3 = 0, θxM4 = 0

θxR2 = 0, θzR2 = π/32, θxR3 = 0, θxR4 = 0

θxL2 = 0, θzL2 = π/20, θxL3 = 0, θxL4 = 0

Figure 2.2.1: Hand model set-ups.
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θx1 = 0, θy1 = −π/4, θz1 = 0 θx1 = 0, θy1 = 0, θz1 = 0 θx1 = 0, θy1 = π/4, θz1 = 0

θx1 = π/8, θy1 = −π/4, θz1 = 0 θx1 = π/8, θy1 = 0, θz1 = 0 θx1 = π/8, θy1 = π/4, θz1 = 0

θx1 = π/4, θy1 = −π/4, θz1 = 0 θx1 = π/4, θy1 = 0, θz1 = 0 θx1 = π/4, θy1 = π/4, θz1 = 0

Figure 2.2.2: Synthetically generated range data images with di�erent points of view.

Di�erent setups of the model result in di�erent hand poses (see Figure 2.2.1) and orientations

of the hand. As mentioned, three parameters describe the global orientation of the hand: θx1 , θ
y
1

and θz1. Examples of the resulting range images for di�erent orientations are included in Figure

2.2.2.

2.2.2 Depth image generation

Beginning from the con�gured hand model, the synthetic depth image is obtained by a morpho-

logical dilation process using a 3D morphological library3, using as structuring element a sphere

of ratio 4 voxels. In Figure 2.2.3 the loci de�ned along this section are ilustrated: joint points,

auxiliar points, �lling line and extra points. The resulting seed points, for which the 3D dilation

is performed, are computed following the next steps:

1. The joint points (*) are de�ned as the set of points located between two phalanges (in-

cluding also the hand origin).

2. In order to provide the synthetic hand with a natural appearance, a set of auxiliar points

(o) are included following the next distribution:

3http://www.mmorph.com/
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Hand model with extra points Synthetic depth image

Figure 2.2.3: Synthetic depth image generation from hand model set-up. '.' extra points, '*'
joint points, 'o' auxiliuar points.

(a) one point at the middle of the segments: L1R1, R1M1, M1I1, L2R2, R2M2 and

M2I2.

(b) three equidistant points in the segments: T1I1, T2I2 and T2M2 (in a way that such

segments are divided in �ve sub-segments of equal length).

3. The anchor points are de�ned as the union of joint points (*) and auxiliar points (o).

4. Some pairs of anchor points (those depicted at Figure 2.2.3) are selected in order to give

volume to the palm of the hand, for the later de�nition of �lling lines.

5. An interpolation process is performed over each �lling line by introducing extra points (.)

between the selected anchor points: being L the length of a �lling line, the interpolation

process consists on the division of the �lling line in segments with a minimum length of

Lmin = Scale/2. Then, the number of sub-segments between two anchor points is Nseg =

trunc(L/Lmin), where trunc(Q) returns the integer part of Q.

6. The seed points for the morphological 3D dilation are the union of joint points (*) and

extra points (.).

Finally, the synthetic depth image is obtained by calculating the distance from the volumetric

hand to a virtual camera symbolized by a 3D point and a capture direction. The relative position

between such point and the volumetric hand de�nes the point of view and the size of the 2D

projection of the syntetic hand over the view plane.
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2.3 Dataset generation

This Section �rst describes the dictionaries selected for the proposed data-set, and then explains

the procedures followed to populate the data-set, both with gestures from real users and with

syntethically generated gestures.

2.3.1 Dictionary selection

The proposed data-set includes six dictionaries, chosen following representativeness (including

several SoA dictionaries), nature of gestures (considering pose-based, motion-based,

pose-motion based and compound) and pose issues (selecting dictionaries containing gestures

with oclussions) criteria:

1. Dictionary proposed in [Kollorz et al., 2008] (see Figure 2.3.1a): This is a 12 pose-based

gestures dictionary.

2. Dictionary proposed in [Molina et al., 2011] (see Figure 2.3.1b and 2.3.1): In this dictionary

we can �nd 9 pose-based, 2 motion-based and 2 compound gestures.

3. Dictionary proposed in [Soutschek et al., 2008] (see Figure 2.3.1c): This is a 5 pose-based

gestures dictionary.

4. Miscellaneous pose-based gestures dictionary (see Figure 2.3.1d)

5. Spanish sign language alphabet4 (see Figure 2.3.1e): 25 posed-based and 4 posed-motion

based gestures (�n�/�ñ� and �v�/�w�, see Figure 2.3.1e).

6. Slaps dictionary (see Figure 2.3.2a): It consists of 9 motion-based gestures.

As a result, a representative dataset is provided, with dictionaries useful in di�erent contexts of

application: generic HCI interfaces for which dictionaries such as 3, 1, 2 or 4 could be of utility;

interfaces for changing the point of view in a 3D virtual scene or moving a virtual object, in

which 6 could apply; or some more speci�c, such as a sign language translator, in which 5 could

be of help in �rst versions.

The detailed criteria followed for the selection of the gestures included in dictionaries 2 and 6

can be found respectively in Chapters 4 and 5 respectively, where two gesture detection systems

are presented.

Summarizing, the dataset includes 70 gestures: 55 pose-based, 9 motion-based, 4 pose-motion

based, and 2 compound.

4http://www.sematos.eu/lse.html
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A B C D E F G H I J K L

(a) [Kollorz et al., 2008]

Enum1 Enum2 Enum3 Enum4 Enum5 Stop Fist OkLeft OkRigth

(b) [Molina et al., 2011]

a b c d e

(c) [Soutschek et al., 2008]

m1 m2 m3 m4

(d) Miscellaneous pose-based gestures.

a b c d e f g h i

j k l m n ñ o p q

r s t u v w x y z

(e) Spanish sign language alphabet.

Figure 2.3.1: Captures from compiled dictionaries. First row of images of real users performing
static pose videos. Second row of synthetic images.

21



(a) Captures from Slaps dictionary: N, NE, E, SE, S, SW, W and NW, the cardinal points
indicating the direction of the executions. IO, meaning Inwards-Outwards.

(b) Captures of the compound gestures Take and
Click, de�ned in [Molina et al., 2011].

Figure 2.3.2: Temporal evolution of motion-based and compound gestures.
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2.3.2 Recording of natural gestures

The hardware used for recording the data-set described in this paper consisted of the Mesa

Imaging SR4000 TOF camera which was placed on top of a 22� TFT display, which constituted

the feedback component for HCI. This camera captures depth images with QCIF resolution

(176x144 pixels) with a depth resolution of ±1cm. The camera was con�gured to capture 30fps

and to operate in a 3m depth range (0.3m-3.3m) in order to remove background objects.

For the compilation of this data-set, 11 users of di�erent gender, age and technical background

were asked to participate in a recording session of around one hour each, with a few minutes

time break between the two stages described below:

� Static pose videos: these were recorded just for the pose-based gestures. Users were asked

to keep a static pose in front of the camera, moving through the interaction area for a short

period of time (250 frames).

� Execution videos: these videos were recorded for all kind of gestures. They allow an o�-line

evaluation similar to real scenarios. Users were asked to execute each gesture 5 times. Each

execution consisted in getting the hand in the interaction area, performing the gesture and

moving it outwards.

2.3.3 Generation of synthetic gestures

For each pose-based gesture, several captures were compiled with randomly generated global

rotation angles applied to the initial pose setup, which depends on the posture being modelled.

These variation angles belong to the domain: 4θx1 ε [0, π/8], 4θy1ε [−π/8, π/8], 4θz1ε [−π/8, π/8]. Dif-

ferent setups are generated, corresponding to the number of points of view (POV) captured per

gesture: 1, 20 , 50 and 200 POV. So, for each pose-based gesture, we have 1, 20, 50 and 200

samples, depending on the setup.

2.4 Discussion

As a result of experimentation with the proposed data-set, this section focuses on two relevant

aspects: the �rst is to describe the observation that the ability of a detector to identify pose-

based gestures on a speci�c dictionary is highly correlated with the number of gestures with pose

issues; the second is to validate the proposed scalability approach.

These experiments have been conducted using two di�erent hand descriptors, fully described

in [Molina et al., 2011, Hu, 1962]. While the descriptor presented in [Hu, 1962] can be used for the

description of whichever 2D visual shape, the one presented in [Molina et al., 2011] (see Appendix

V) was speci�cally conceived for the modelling of range data associated to hand gestures. Both

descriptors provide with a �xed length description of the contour of the detected hand.
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]

[Soutschek et al., 2008] 5 2 0.400 0.856 0.913

[Kollorz et al., 2008] 12 7 0.583 0.602 0.846

[Molina et al., 2011] 9 2 0.222 0.706 0.971

Misc. pose-based 4 3 0.750 0.791 0.861

Spanish SL alphabet 25 11 0.440 0.354 0.624

Table 2.2: Separability estimation ( #G is the number of the pose-based gestures in the dictio-
nary; #PI the number of them which present pose issues) and accuracy rates for the evaluation
scheme NT (Natural content Training) detailed in Section 6.2 for the descriptors described in
[Hu, 1962] and in [Molina et al., 2011].

2.4.1 Estimating the separability of pose-based gestures

There are two factors which might have a priori in�uence in the detection accuracy in a collection

of pose-based gestures: the size of the dictionary, the higher the number of gestures, the more

di�cult might be to separate among them; and the pose issues, which can make some gestures

of a dictionary very similar between them.

In the proposed dictionaries, it is quite straightforward to identify subsets of hand postures

that, due to the ocurrence of pose issues, present similar visual appearence (see Figure 2.3.1):

a-d for [Soutschek et al., 2008]; A-J, G-J-L and H-I-K for [Kollorz et al., 2008] ; Stop-Fist for

[Molina et al., 2011]; m2-m3-m4 for the Misc pose-based dictionary; and d-r, f-k-s-t and a-o-p-q-y

for the Spanish SL alphabet .

Table 2.2 summarizes three basic indicators for each dictionary: the number of gestures (#G),

the number of gestures with pose issues (#PI), and the ratio between them (#PI/#G). It can

be observed that it exists a signi�cant correlation (p-value<5%) between the computed values of

#PI and the accuracy rates (detailed in the next section) obtained using descriptors [Hu, 1962]

and [Molina et al., 2011]: these correlations are 0.949 and 0.963 respectively. The correlations

between #PI/#G and the accuracies are not signi�cant, while for #G the correlation with the

accuracy rate obtained with [Hu, 1962] is 0.981, and with [Molina et al., 2011] it is not signi�cant.

It can be concluded that the number of gestures with pose issues (#PI) in a pose-based gestures

dictionary is signi�cant for the estimation of its separability; and that this indicator is more

relevant than the size of the dictionary (#G) or the ratio #PI/#G.
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Dict. ⇓ | Desc.⇒ Baseline (BL) [Hu, 1962] ST [1|20|50|200] [Molina et al., 2011] ST [1|20|50|200]

[Soutschek et al., 2008] 0.200 0.619|0.672|0.664|0.674 0.498|0.667|0.770|0.810

[Kollorz et al., 2008] 0.083 0.240|0.262|0.286|0.283 0.483|0.562|0.553|0.569

[Molina et al., 2011] 0.111 0.460|0.551|0.562|0.568 0.652|0.834|0.851|0.882

Misc. 0.250 0.413|0.481|0.423|0.518 0.708|0.731|0.725|0.729

Spanish SL 0.040 0.130|0.168|0.174|0.179 0.219|0.298|0.317|0.309

Table 2.3: Accuracy rate for the ST setups : 1, 20, 50 and 200. Training with a synthetic model
captured from di�erent Points Of View. Baseline (BL), is the accuracy rate for random gesture
detection, i.e., 1/#G

2.4.2 Validation of the scalability approach

The tests that have been run to validate the scalability approach for each dictionary of the

proposed data-set are described here. As synthetic content is only available for pose-based

gestures, the evaluation only targets their detection. Two evaluation schemes have been set out

in order to obtain and compare the accuracy rates in the detection of gestures for each dictionary,

and also compare them with the a priori probabilities of each posture in each dictionary, named

as Baseline (BL):

1. Training with natural content (NT): Leave-One-Out for a user independent cross-validation

using Nearest Neighbour as classi�er, which is the scheme described in [Kollorz et al., 2008].

2. Training with syntethic content (ST): in this scheme, the system is trained with the syn-

thetic compiled data, while the evaluation is performed over recordings with real users.

In Table 2.3, the accuracies for the proposed synthetic trained setups are presented. Notice that

in most of the cases, the accuracy rate increases with the number of points of view considered. In

Figure 2.4.1, a grapichal comparison of the results for real users training and synthetic training

is presented. The best results for synthetic training are promising: achieving more than 80%

correct detections for two of the dictionaries and going beyond twice the baseline accuracy for

all of them.

Deepening into the confussion matrixes of each dictionary applying the ST200 evaluation

scheme (see A(200) matrixes in Appendix A), it is possible to observe that the loss in accuracy

for the ST evaluation scheme is mainly due to misclassi�cation in some speci�c situations: d is

detected as b,a in [Soutschek et al., 2008]; A as J, G as J and E as D in [Kollorz et al., 2008];

Stop as Fist in [Molina et al., 2011]; m3 as m2 in the Misc pose-based dictionary; and a as o, c

as l, g as b, o as p, q as c, a and m, in the Spanish SL alphabet.

From these results it can be concluded that pose-based gestures with no protuberances are

specially problematic when there are more than one in the dictionary. In the Spanish SL dic-

tionary there are �ve of these (i.e. a, b, o, p and q), which, for the used descriptors, produce a
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Figure 2.4.1: Accuracy comparison for di�erent descriptors and synthetic train setups.

lot of errors. The dictionary presented in [Kollorz et al., 2008], apart of three gestures with no

protuberances (i.e. A, G and J), presents two gestures, E and D, only di�ering in a protuberance

and, as the descriptors have shown, are therefore not easy to detect. The information associated

to the contour of the hand is very valuable when detecting poses. The proposed model does not

properly represent poses with similar protuberances. This could be solved varying �xed hand

parameters (i.e. scale and intra-hand proportions) in order to create di�erent synthetic users

pro�les, increasing this way, the representativity of the synthetic collection.

2.5 Conclusions

In this chapter a corpus of hand depth images for benchmarking of hand detection systems has

been presented. It has been compared in terms of a set of novel critical factors with several

datasets of the SoA. It has real users recordings of several dictionaries described in other papers,

as well as synthetically generated depth images associated to the hand poses of those gestures.

The used capture technology provides 2.5D data in a non intrusive way. The compiled collection

includes posed-based, motion-based, pose-motion based and compound gestures. In terms of

representativity, 11 di�erent users participated in the compilation of the collection. Moreover,

point of view variations can be introduced in the synthetic data, increasing the signi�cance of

the collection. In relation with the temporal coherence of the compiled corpus, for the real

data, the annotation units are videos, allowing the introduction of a temporal preprocessing

module in the design of a hand gesture detection solution. A separability study for pose-based

gestures is proposed and validated, providing with a method for the estimation of the di�culty

to separate a set of gestures, with no need of applying classi�cation techniques. The proposed

method for the generation of synthetic images makes posible the generation of images for new

gestures with a simple design process and with no need of training users, what constitutes an
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important advantage in terms of scalability. The synthetic generation method has been validated

with synthetic content training schemes presenting promising results, which are close (for some

dictionaries) to those obtained by the the real users training scheme.
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Chapter 3

A Method for enhancing gesture

scalability

3.1 Introduction1

As mentioned in Chapter 2, one of the most important limitations when designing a hand gesture

recognition system is the lack of annotated datasets (which are critical for evaluating the system's

performance and are commonly used in the learning stage) adapted to the particularities of the

context of the application to be designed. Gesture scalability is a highly desirable characteristic

for a gesture recognition system as pointed out in Chapter 2. A solution for achieving this scal-

ability is the use of synthetic data in the training stage. Some works use synthetically generated

images: for example, in [Stenger et al., 2007] 2D hand images are generated for evaluating color

and shape features in hand pose classi�cations; in [Baysal, 2010], con�gurations of a 3D hand

model are used for modelling a hand manipulating objects; in Chapter 2 a hand model and the

process to obtain range data images from it are described in detail.

The main contribution presented in this chapter is the introduction of synthetic users pro�les

to extend the synthetic collection presented in Chapter 2, improving the scalability of the solution

proposed there. As the obtained results show, some synthethic training con�gurations obtain

results comparable to the ones with real users, and saving the complexity of such approach.

Di�erently to [Baysal, 2010], the proposed solution evaluates the system with real users records,

whilst with respect to [Stenger et al., 2007] their input images contain color information not

depth as the ones considered in this work.

The chapter is structured as follows: in Section 3.2, the concept of synthetic user is introduced

and the parameters for generating a set of them is explained; in Section 3.3 the real users and

1This chapter is based on : J. Molina, and J. M. Martínez, �A Synthetic Training Framework for providing
gesture scalability to 2.5D pose-based hand gesture recognition systems�, Machine Vision and Applications (under
review).
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Figure 3.2.1: Hand Model, the joints are denoted with *.

the generated synthetic data set are described, the used evaluation schemes are enumerated, and

the results for the di�erent natural and synthetic con�gurations are presented; the conclusions

and future work lines are included in Section 3.4.

3.2 Generation of synthetic users pro�les

3.2.1 Previous work

In Chapter 2, a method for the generation of synthetically generated range images is presented.

It is based on a 27 Degrees of Fredoom (DOF) kinematic model widely used [Erol et al., 2007,

Ge et al., 2006]. As already described, for each con�guration of the hand model a volumentric

hand is created via a morphological dilation process. Variations in the point of view (POV) are

introduced to increase the representativity of the collection: the range of variation of the angles

are 4θx1 ε [0, π/8], 4θy1ε [−π/8, π/8], and 4θz1ε [−π/8, π/8], being θx1 , θ
y
1 and θz1 the global rotation

angles about x, y and z axes (see Figure 3.2.1).

3.2.2 Hand parametrization: user pro�les

In order to increase the signi�cance of the synthetic collection, new degrees of freedom are now

introduced in the generation stage. Synthetic users pro�les are created on the basis of the

combinations of values for the following parameters, which de�nition are formulated using the

reference points indicated in Figure 3.2.1:
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FP-AR PW # user pro�les

A(#POV) {1} {3} 1x1 = 1

B(#POV) {1, 1.1, 1.2, 1.3} {2, 3, 4} 4x3 = 12

C(#POV) {1, 1.05, 1.1, 1.15, 1.2} {2, 2.5, 3, 3.5, 4} 5x5 = 25

D(#POV) {0.9, 0.95, 1, 1.05, 1.1} {2, 2.5, 3, 3.5, 4} 5x5 = 25

Table 3.1: Synthetic users pro�les con�guration parameters. The �rst two columns are the
chosen values for the parameters. The number of users pro�les are all the posible combinations
of the parameters values.

� Fingers-Palm Aspect Relation (FP-AR): the ratio between the length of the phalanges of

�ngers and hand.

FP −AR =

∣∣∣−−−−→M1M2
∣∣∣

2 ?
∣∣∣−−−−→M2M3

∣∣∣
Notice that certain restrictions are applied to the hand model (see Chapter 2), among

them:
∣∣∣−−−−→M1M2

∣∣∣ =
∣∣∣−−→I1I2

∣∣∣ =
∣∣∣−−−→R1R2

∣∣∣ =
∣∣∣−−−→L1L2

∣∣∣ and ∣∣∣−−−−→M2M3
∣∣∣ =

∣∣∣−−→I2I3
∣∣∣ =

∣∣∣−−−→R2R3
∣∣∣ =

∣∣∣−−−→L2L3
∣∣∣

� Palm Width (PW): the width of the palm.

PW =
∣∣∣−−−→T1L1

∣∣∣
3.2.3 Sets of user pro�les

Di�erent sets of synthetic users pro�les (from now on will be referred as sets) are generated

applying variations in the parameters described above. In Table 3.1, the possible values of the

two paremeters are indicated (notice that the set A(#POV) is the one evaluated in Chapter 2),

while in Figure 3.2 the 12 range images for one of the postures and for the set B(1) (see Table

3.1) are shown.

3.3 System validation

3.3.1 Dataset

For the validation of the proposed solution the static poses videos compiled from real users (see

Section 2.3.2) are used.

The dictionaries under consideration are the ones with posed-based gestures (see Section

2.3.1): [Soutschek et al., 2008], [Kollorz et al., 2008], [Molina et al., 2011], Miscellaneous pose-

based gestures dictionary and Spanish sign language alphabet.

The synthetic dataset is compiled generating each of the sets of user pro�les (see Section

3.2.3) for the above listed dictionaries. Notice that the gestures synthetically generated do not
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2 3 4
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1

1.1

1.2

1.3

Table 3.2: Resulting images for set of pro�les B(1). Notice that, since the number of POV is 1,
only one image is renderized per user pro�le and gesture.
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include motion-based ones, since these are out of the scope of this work. Each real user, for each

of the gestures, is asked to record up to 250 frames, using in the evaluation 200 of them.

3.3.2 Experimental setups

The used descriptor is the one described in [Molina et al., 2011], which showed good results

for real users training. This descriptor is a feature characterization scheme based on a geodesic

description of the 3D surface of the hand. In order to evaluate the proposed solution for hand

gesture detection, two evaluation schemes are proposed:

� Natural Training, NT(N): the static pose videos of N of the 11 users (see Section 2.3.2) are

used for training while the rest for evaluation. Notice that the number of combinations to

be evaluated for each value of N is

(
11

N

)
. For each value of N, the mean accuracy rate

for the resulting combinations is computed. This scheme can be understood as a measure

of the performance of the system trained with N users, the more training users, the more

representative the system is. Three values of N have been used in the evaluation stage:

N = 1, 2 and 10. Notice that when N = 10, this scheme is named Leave-One-Out [Kollorz

et al., 2008, Molina et al., 2011].

� Synthetic Training, A(#POV), B(#POV), C(#POV) and D(#POV), in the learning stage

one of these synthetic sets is used (see Table 3.1), while for the evaluation the static pose

videos of the eleven users in the real users content are used.

3.3.3 Results

The accuracy rates for the evaluation schemes enumerated in Section 3.3.2 can be found in Table

3.3. The used descriptor in these evaluations is described in [Molina et al., 2011]. In Figure

3.3.1, the most signi�cant evaluation schemes are compared in terms of their accuracy rates, for

later discussing the inferred conclusions.

As expected, the accuracy rates for NT(N) increase with N: the higher number of users used

in the training stage, the more signi�cant the resulting model will be. Notice that, since the used

descriptor was designed for working with the dictionary proposed in [Molina et al., 2011], this

is the one for which the descriptor works best, independently of the number of gestures of each

dictionary. The low accuracy rates obtained for dictionaries [Kollorz et al., 2008] and Spanish

sign language, in natural and synthetic evaluation schemes, make think that the used descriptor

[Molina et al., 2011] does not perform adequately for the particularities of these dictionaries.

Anyway the main contribution of this work is to present a training framework that does not need

real users participation, and that is open to new descriptors more adapted to the particularities

of the gestures to classify.
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Dict.\setup-> NT(1|2|10) A(1|20|50|200) B(1|20|50|200) C(1|20|50|200) D(1|20|50|200)

[Soutschek et al., 2008] 0.834| 0.876| 0.913 0.498| 0.667|

0.770| 0.810

0.631| 0.860|

0.849| 0.843

0.688| 0.846|

0.857| 0.858

0.592| 0.858|

0.833|0.859

[Kollorz et al., 2008] 0.734| 0.775| 0.846 0.483| 0.562|

0.553| 0.569

0.544| 0.541|

0.582| 0.558

0.543| 0.567|

0.566| 0.551

0.492| 0.542|

0.525|0.595

[Molina et al., 2011] 0.875| 0.92| 0.971 0.652| 0.834|

0.851| 0.882

0.703| 0.876|

0.875| 0.879

0.620| 0.865|

0.879| 0.872

0.578| 0.845|

0.882|0.913

Misc. 0.764| 0.799| 0.861 0.708| 0.731|

0.725| 0.729

0.749| 0.682|

0.672| 0.663

0.757| 0.662|

0.714| 0.694

0.693| 0.709|

0.712|0.758

Spanish SL* 0.529| 0.596| 0.624 0.219| 0.298|

0.317| 0.309

0.308| 0.361|

0.359| 0.357

0.328| 0.359|

0.345| 0.339

0.271| 0.305|

0.316|0.307

Table 3.3: Accuracy rate in the detection of pose-based hand gestures on the basis of di�erent
synthetic training setups.

As shown in Table 3.3, the best synthetic training con�guration (for four of the �ve dictionar-

ies) is D(200), this is, the set of pro�les D, described in Table 3.1, with 200 randomly generated

variations of the POV in the ranges mentioned in Section 3.2.1. The worst synthetic con�gura-

tion is A(1), the simplest one, with only one synthetic user pro�le and with no variations in the

POV.

As can be checked in Figure 3.3.1, the setup D(200) rose above the accuracy rates obtained

with NT(1) and is near to the ones for NT(2) for two dictionaries [Soutschek et al., 2008, Molina

et al., 2011], being comparable for another one, the Miscellaneous dictionary. No synthetic sets

present better results than the ones reported for NT(10). These results show that the proposed

synthetic training solution is not able to perform as good as a system trained with ten real users,

but it is if the system is trained with only one user. As well, it can be said that the accuracy

rate obtained in Section 2.4.2 for its best setup (A(200)) is overcome by, among others, the setup

D(200). The confussion matrixes associated to the synthetic training schemes A(200), B(200),

C(200) and D(200) are compiled in Appendix A.

3.4 Conclusions

In this Chapter a method for the generation of synthetic hands range data is proposed, introduc-

ing the concept of synthetic user pro�le. This approach is evaluated in terms of accuracy rate,

with a training stage performed using synthetic data and an evaluation with real users. This

solution o�ers a gesture scalable approach, which allows the learning of new gestures with no

need of recording real users. As well, the use of synthetic users with di�erent hand particular-

ities makes the collection more representative, as the evolution of the results for the Synthetic

Training schemes shows. The proposed training framework is able to work for some dictionaries
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Figure 3.3.1: Accuracy comparison for di�erent evaluation schemes. BL refers to Base Line,
these accuracy rates are obtained assuming the gestures of each dictionary equiprobables.

as good as a system trained with one real user.

The particularities of the gestures for some of the dictionaries under consideration make

di�cult their correct separation. Some specially problematic pose-based gestures are pointed

out in Section 2.4.2, describing possible causes for the missclassi�cation in their detection. The

experiments carried out in this chapter corrobotates these proposed causes. The future use of

di�erent visual descriptors more adapted to the particularities of the collection of gestures to be

detected would improve the results as already pointed out in the previous chapter.
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Part III

Recognition systems
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Chapter 4

Simple, compound and motion-based

hand gesture recognition using static

and dynamic models

4.1 Introduction1

The framework presented in this chapter works with a set of gestures [Molina et al., 2011] that

have been shown to be both user friendly and descriptive enough to cover most common human-

computer interactions [Castilla et al., 2009], such as controlling multimedia menus or interacting

with virtual enviroments. This set of gestures is described in Section 2.3.1 and some captions of

real users executions can be found in Figure 2.3.1b.

Starting from the captured range data, precise hand segmentation is performed, to introduce

depth information in its low-level description and to determine the start and end times of the

gestures. A hand feature characterization scheme based on a geodesic description of the 3D

surface of the hand is used [Molina et al., 2011]. This characterization feeds two middle-level

classi�cation stages: Static Hand Postures (SHP) and Dynamic Hand Gestures (DHG) recogni-

tion. First, the SHP recognition stage determines the posture of the hand for each frame with a

set of classi�cation machines, one per posture in the proposed dictionary; then, the probability

of presence of at least a positive for each SHP within a temporal window is calculated. Addi-

tionally, the motion of the hand within the considered temporal window is stored and �tted to

a set of possible motion patterns. Finally, the restrictions introduced by a Finite State Machine

(FSM) and the estimated motion pattern result in the �nal recognition of simple, compound and

motion based gestures, this is, DHGs.

1This chapter is based on: J. Molina, M. Escudero-Viñolo, A. Signoriello, M. Pardás, C- Ferrán, J. Bescós,
F. Marqués, and J. M. Martínez, �Real-time user independent hand gesture recognition from time-of-�ight camera
video using static and dynamic models�, Machine Vision and Applications, pp. 1-18, 2011 (on-line �rst).
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The remainder of the chapter is structured as follows. Firstly the State Of Art is presented

in Section 4.2, for later including a system overview in Section 4.3. In Section 4.4.2 the SHP

is de�ned as a concept, describing the chosen approach to its recognition. In Section 4.4.3,

starting from the intra-frame recognition of SHPs, the methodology for the recognition of the

DHGs included in the proposed dictionary is introduced. In Section 4.5.2 results for the proposed

gestures, as well as for the ones described in [Soutschek et al., 2008], are presented for �nally

pointing out in Section 4.6 conclusions and future work lines.

4.2 Related work

Regarding the hand gesture recognition, in [Chen and Tseng, 2007], static hand postures within

a dictionary are detected based on 2D gray images. Another approach to the problem is pre-

sented in [Stenger et al., 2006], where discrimination between hand postures is performed, mainly

focusing on hand features extraction starting from 2D images. In [Alon et al., 2009], a complete

framework is presented, introducing the temporal component and detecting gestures de�ned by

their motion pattern, such as digits drawn to the camera. The captures are still taken by a

2D camera. In [Zheng et al., 2007], a projective invariant hand feature vector is proposed and

applied to person identi�cation. In [Teng et al., 2005], static hand posture detection is applied

to the recognition of some gestures of the Chinese sign language. In [Zaki and Shaheen, 2011,

Holden et al., 2005], American and Australian Sign Languages gestures are recognized basing on

hand shape, place of articulation, hand orientation and movement, while [Kelly et al., 2010] do

so only focusing in static postures.

There are several approaches for processing a temporal sequence of observations: [Mitra and

Acharya, 2007] presents the use of Finite State Machines (FSM) and Hidden Markov Models

(HMM) for gesture recognition in a general way for then pointing out di�erent contexts of

application. In the proposed approach, a gesture is assumed to start when the hand is detected

in the scene, and the end of the gesture is declared when the hand is not detected anymore.

In comparison with the SoA, a segmentation technique based on range data captured by a

TOF camera is proposed, thus performing a non intrusive hand segmentation (unlikely to glove

dependent approaches: [Kelly et al., 2010, Keskin and Akarun, 2009, Usabiaga et al., 2009])

robust to low illumination conditions (not as in color camera based systems: [Stenger et al.,

2006, Chen and Tseng, 2007, Nickel and Stiefelhagen, 2007, Zheng et al., 2007, Teng et al.,

2005]) and face to hand occlusion (di�erently than skin color based systems like: [Zhu et al.,

2000, Athitsos and Sclaro�, 2003, Grzeszczuk et al., 2000, Alon et al., 2009, Zaki and Shaheen,

2011]). Regarding the referred range data based systems [Soutschek et al., 2008, Breuer et al.,

2007, Kollorz et al., 2008, Malassiotis and Strintzis, 2008], none of them faces the problem of

detecting compound or motion based gestures.
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Summarizing, the key di�erentiating feature of the proposed framework from existing work

in gesture recognition is the recognition of simple, compound and motion based gestures in a

uni�ed real-time framework and in a non intrusive fashion. For this novel recognition framework

a novel abstraction of gestures, depending on their temporal evolution is proposed: Static Hand

Poses (SHP) and Dynamic Hand Gestures (DHG). The detection of SHPs is peformed by a novel

Support Vector Machines (SVM) scheme, while a con�guration of a Finite State Machine (FSM)

is presented for DHG recognition.

4.3 System overview

The proposed system allows the user to control applications in a vertical display using hand

gestures for the interaction. Analogously to the recording sessions described in Section 2.3.2, a

TOF camera (SR4000 developed by Mesa Imaging2) is placed above a display and the system

analyzes the performed gestures. This camera captures depth images with QCIF resolution

(176x144 pixels) and a depth precision of ±1cm. The camera has been con�gured to capture

30fps and to operate in a 3m depth range (0.3m-3.3m), in order to remove background objects.

From now on this range will be named the interaction area.

Figure 4.3.1: System Overview.

The recognition system consists of the following modules:

� (i) acquisition of depth images: this initial stage performs the acquisition of the depth

image performed by a TOF camera, which results in a volumetric surface of the captured

hand.
2http://www.mesa-imaging.ch/
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� (ii) hand features extraction: with an appropriate post-processing and thresholding the

segmentation of the hand is performed, removing the forearm. The hand is therefore

assumed to be the nearest scene object. If no object is clearly detected at this point, it

is assumed that it is because the hand is not in the de�ned interaction area. Later, the

descriptor described in Appendix V is extracted, modeling the hand by a feature vector.

� (iii) SHP recognition: on the basis of the mentioned description, a Support Vector Solution

is proposed (Section 4.4.2).

� (iv) DHG recognition: starting from the recognized SHPs and the estimated hand motion

and by means of a Finite State Machine, the temporal sequence is processed (Section 4.4.3)

� (v) communication with the GUI: the recognized DHGs and the 3D hand coordinates are

sent to the GUI allowing the control of the application under consideration.

4.4 Hand gesture recoginition approach

4.4.1 Introduction

The gesture recognition approach consists on three stages:

� preprocessing and hand description: The accurate detection of the hand silhouette, even

using a TOF camera, is not a solved problem. When the gestures are executed in the

central part of the image, a simple thresholding provides good segmentation results which

do not depend on the posture of the hand. However, when the gestures are executed

far from the central part of the image it is common to �nd the forearm as part of the

mask. In the left image of Figure 4.4.1, the forearm is clearly visible becoming a problem

when applying the descriptor extraction detailed in Appendix V. In order to eliminate

the forearm before the feature extraction, the brightest pixel (the nearest point to the

camera) is identi�ed. A mask is generated including in it at least 20 gray levels below the

brightest one (twenty centimeters from the nearest point). In this way good segmentation

results are obtained, since for most of the cases the forearm is removed without losing hand

pixels. When the gestures are executed in the outermost area of the screen, it is harder to

eliminate the forearm, which results in a problem in the recognition of certain gestures, as

it will be explained in Section 4.4.3.2. The used descriptor is fully described in Appendix

V; it is a model of the silhouette built using the following parameters: Geodesic Center

(3D coordinates), ellipse parameters, Minimum Depth Point, number of maxima, and for

each maximum: intensity, amplitude and angle.
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Figure 4.4.1: Depth Segmentation: the captured depth image of a hand and its segmentation

� SHP recognition for a hand captured in an instant of time (see Section 4.4.2). On the

basis of the contour description already introduced, a classi�cation among a dictionary of

postures is performed using Support Vector Machines (SVM).

� DHG recognition results of processing the temporal evolution of the detected SHPs and

of the estimated hand coordinates (see Section 4.4.3). For this purpose, a Finite State

Machine (FSM) is con�gured.

4.4.2 Static hand posture recognition

The concept of SHP is introduced as an intermediate level to achieve the detection of DHGs. A

SHP is understood as a posture of the hand captured in an instant of time. Relative position to

the camera is not signi�cant when separating SHPs, that is, a SHP can be performed anywhere

in the interaction area.

4.4.2.1 Dictionary of static hand postures

In [Castilla et al., 2009], an experiment with real users was conducted to de�ne a gestural

dictionary allowing a user to interact with a system in a natural way. The interaction can be

done with real/non real and horizontal/vertical metaphors. Examples of interactions with real

metaphors are rotation, grabbing or catching and with non-real metaphors `cancel'. The amount

of interaction possibilities with the metaphors is very high, but the experiment identi�es the

most frequent ones and its associated hand gesture.

Those gestures and interactions that can improve the user experience without fatiguing him

have been selected for recognition. Therefore, among the complete set of gestures obtained from

the experiment a sub-set has been selected to de�ne the dictionary used in this work, based

on a trade-o� between usability and recognition. This dictionary was included in the dataset
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proposed in Section 2.3.1 (see Figure 2.3.1b). Static pose videos (see Section 2.3.2) from just

three of the users (users 1, 2 and 3) were selected for training purposes, selecting 200 frames per

video. This resulted in 600 positives samples per SHP.

4.4.2.2 Learning static hand postures

The recognition of a SHP is performed at frame level using SVMs [Chang and Lin, 2001], which

requires a representative data collection (see Section 4.4.2.1), a selection of an adequate feature

vector and a design of the training schema.

Feature vector The feature vector designed to describe each frame is compound of a com-

bination of the global parameters and contour characteristics mentioned described in Appendix

V. Summarizing, the chosen features are:

� Number of maxima.

� For each maximum: intensity, amplitude and angle.

� A description of the �tted ellipse: major axis angle and major and minor axis length.

These values constitute the feature vector of intra-hand characteristics, let us call it, vi, where

i indicates that the feature vector is extracted from a frame with the SHP-i, where i is the id of

the SHP (see Table 4.1). Considering always 5 maxima (if there are less their coordinates are

�lled with `−1'), a vector with 19 coordinates is obtained.

Training scheme A SVM [Chang and Lin, 2001] has been trained for each SHP using the

samples of a speci�c SHP as positives and the samples of the rest of SHPs as negatives. Each

coordinate of the input pattern has been normalized with mean 0 and standard deviation 1. The

Radial Basis Function (RBF) kernel has been used:

K(xi, xj) = C ∗ e−γ‖vi−vj‖
2

(4.4.1)

, where C and γ are the parameters of the kernel and vi, vj two feature vectors . In order to

identify the optimal con�guration of this kernel, it has been evaluated with the following grid:

C = 2−3,−2,...,3, combined with γ = 2−3,−2,...,0. For this purpose a 5-fold cross-validation has

been performed, optimizing the F-score [Goutte and Gaussier, 2005] �xing β = 0.5:

Fβ =
(1 + β2) ∗ (precision ∗ recall)

β2 ∗ precision+ recall
(4.4.2)

This value of β weights the precision over the recall. Experimentally, this measure shows

a reasonable incidence of positive recognition without deteriorating excessively the precision.

Table 4.1 compiles the achieved values for F-0.5 as well as the number of true positives (tp), false

positives (fp), true negatives (tn) and false negatives (fn).
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SHP Id F-0.5 tp fp tn fn

EnumOne 1 0.983 577 7 4793 23
EnumTwo 2 0.989 600 9 4791 0
EnumThree 3 0.969 595 25 4775 5
EnumFour 4 0.972 566 11 4789 34
EnumFive 5 0.993 585 1 4799 15
Stop 6 0.984 572 4 4796 28
Fist 7 0.960 586 29 4771 14
OkLeft 8 0.983 575 6 4794 25
OkRight 9 0.995 600 4 4796 0

Table 4.1: Accuracy in intra-frame SHP estimation.

As shown in Table 4.1, the predictions for each SHP indicate di�erent reliabilities (e.g.,

predictions for EnumOne or EnumTwo are more reliable than predictions for Fist). In order to

achieve better results, the use of the temporal context of each frame is proposed (see Section

4.4.3.2).

4.4.3 Dynamic hand gesture recognition

SHPs can be combined with motion in order to obtain a semantically richer dictionary of gestures,

the DHGs. Moreover, this approach allows for a more robust recognition of the performed gesture,

assuming that a user cannot change the gesture frame-to-frame along a gesture execution.

Notice that in SHP recognition more than a SVM can return a positive output at each frame

thus, more than a single SHP might be detected per frame. Some temporal coherence evaluation

of the SVM output would help to extract the right sequence of SHPs and, consequently, the

performed DHG.

Figure 4.4.2 illustrates this situation for a particular DHG. At each time instant and hand

position (the y coordinate corresponds to the center of the ellipse as explained in Section 4.4.3.2)

the SHP recognition can yield several results (SHP Ids). From this information the performed

gesture has to be identi�ed, corresponding this to a hand performing SHP-Fist and moving

slightly down and up (i.e. oscillating y) along twenty �ve frames.

The recognition of a DHG should then involve an evaluation of its corresponding SHP along

time and of the hand motion pattern.

4.4.3.1 Dictionary of dynamic hand gestures

Most DHGs can be understood as a sequence of a single SHP; these are denoted as simple DHGs

in which the hand is placed statically or pseudo-statically in front of the camera. Recognizing

these gestures entails testing SHP coherence inside the analysis window and hand stillness. In
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Figure 4.4.2: Execution of DHG Fist performed by training user 3

Figure 4.4.3 some DHGs belonging to this category are shown, including all static gestures. Table

4.2 shows the dictionary of these type of simple DHGs, which allow the user to interact with

complex applications in an easy and straight way as explained in [Castilla et al., 2009]. This

dictionary could be easily con�gured for remote controlling a TV menu, in the same line as in

[Premaratne and Nguyen, 2007].

DHG SHPs Id sequence Motion Pattern

EnumerateOne 1 Partial or totally static

EnumerateTwo 2 Partial or totally static

EnumerateThree 3 Partial or totally static

EnumerateFour 4 Partial or totally static

EnumerateFive 5 Partial or totally static

Cancel 6 Partial or totally static

Fist 7 Partial or totally static

MenuRight 8 Partial or totally static

MenuLeft 9 Partial or totally static

Table 4.2: Simple Static DHGs.

One of the requirements of the targeted applications is to allow users interaction with spread-

ing out menus. In this sense, and also considering the gesture de�nition studies developed in

[Castilla et al., 2009], two additional simple DHGs which additionally involve hand motion are

proposed: MenuOpen and MenuClose (see Table 4.3). Figure 4.4.4 depicts the hand evolution

for realizations of these two DHGs. SHPs conforming these DHGs widely change along the
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Figure 4.4.3: Examples of static DHGs: its recognition just relies on SHP recognition and hand
stillness.

execution. Consequently, SHP coherence is not required to detect these gestures.

DHG SHPs Id sequence Motion Pattern

MenuOpen any move up
MenuClose any move down

Table 4.3: Simple DHGs with a speci�c motion pattern.

In response to the requirement of catching, grasping and releasing items in an application,

the compound DHGs Catch and Release were included, both de�ned as combinations of simple

DHGs: �rst the interface item is searched; when located, it is caught and dragged to desired

position; �nally, the item is released. This is modeled with a combination of two DHGs (see
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Figure 4.4.4: Examples of simple DHGs involving motion, which requires SHP recognition and
a estimation of the hand motion pattern. Notice that these two gestures are the same as N and
W in Figure 2.3.2a.

Figure 2.3.2b in Chapter 2): �rst the user moves with EnumerateFive until the item to take is

found; then the user closes his/her hand over it executing DHG Fist. At this point the item is

selected and the Catch is detected. The user can make any displacement of the item and �nally

the system detects Release when the user returns to EnumerateFive. The whole process results

in an intuitive and natural gesture. An illustration of this DHG is shown in Figure 2.3.2b (top)

(in Chapter 2) and described in Table 4.4.

Following the same line, in response to the requirement of selecting an item, DHG Click was

introduced consisting of two simple DHGs: EnumerateOne and Fist (see Figure 2.3.2b- bottom).

Its description can be found in Table 4.4.

Compound DHGs are the most challenging to detect. Users are allowed to perform any kind

of motion and displacement over the interaction area, obviously including motion patterns like

those associated to DHGs MenuOpen and MenuClose. Furthermore, SHPs conforming these

DHGs are subjected to transitions between postures and are suitable to be captured as shapes

di�erent to those modeled. These situations are considered and controlled by the system as

explained in Section 4.4.3.2.

Even though the de�nition of the DHGs has been application driven, it is important to

remember that the interpretation of those DHGs must rely on a higher semantic level of the
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DHG DHGs sequence Motion Pattern
Catch EnumerateFive Any

Fist

Release Fist Any
EnumerateFive

Take Catch Any
Release

Click EnumerateOne Any
Fist

Table 4.4: Compound DHGs.

system, as clicks and movements of a mouse are translated to actions by particular applications

or operating systems.

The execution videos3 (see Section 2.3.2) records of the users no considered in training (i.e.

users 4, 5, 6, 7, 8, 9, 10 and 11) were used for the �nal evaluation (see 4.5.2) while the records

of training users (i.e. 1, 2 and 3) are used for motion pattern learning (see Section 4.4.3.2). So,

40 videos per DHG, executed by users are not used in training.

4.4.3.2 Detecting the dynamic hand gestures4

In contrast to the learning approach for SHPs (see Section 4.4.2.2), no training is performed in

the case of DHGs. The recognition is based on three fundamental information sources:

� the SHPs predictions detailed in Section 4.4.3.2.

� the observed motion behaviors in the DHG collection data, de�ned in Section 4.4.3.2.

� the de�nition of the DHG themselves, with their associated restrictions and transitions

modeled by the Finite State Machine (FSM) described in Section 4.4.3.2.

Combining these sources of information a gesture recognition at the output of the FSM is ob-

tained.

SHP recognition in a temporal window When a user performs a SHP, it is reasonable

to expect him/her to keep it for some frames. In order to take advantage of this temporal

redundancy, a �rst approach could consist on just counting the incidences of each detected SHP

within a temporal window, and decide by majority vote on the performed DHG. However, there

are two main limitations in the intra-frame SHP recognition process (see Section 4.4.2.2) that

can be summarized as follows:
3Available at http://www-vpu.eps.uam.es/~vision/paper/indexpaper.html
4Thanks to Marcos Escudero-Viñolo for his contributions in the design of the Finite State Machine and the

motion-based gestures recognition system.
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1. Discrimination capabilities of extracted low-level features may not be enough to separate

among the SHPs of the dictionary, specially in compound DHGs, as mentioned in Section

4.4.3.1, and in transitions frames.

2. For every single SHP, the variety derived from di�erent users and scenarios prevents any

data collection from being representative enough to model it.

These two limitations might seriously a�ect SHPs recognition. However, SHPs have been se-

lected to be as di�erent as possible among them, and the obtained results (see Section 4.4.2.2)

demonstrate that the indicated limitations can be overcome.

Considering intra-frame statistics compiled in Table 4.1, which indicate that there are SVMs

more reliable than others, the probability of having a negative output when introducing a low

level feature vector vj (describing a frame with SHP-j) into a SVM trained with data describing

SHP-i ( i 6= j) can be computed as

pi(0/pred = 0) =
tni

tni + fni
(4.4.3)

and the probability of wrongly detecting it as positive:

pi(0/pred = 1) =
fpi

tpi + fpi
(4.4.4)

The values of these probabilities, calculated for the training static pose videos of the gestures

described in Section 4.4.2.1, are compiled in Table 4.5.

SHP/id pi(0/pred = 0) pi(0/pred = 1)

EnumOne/1 0.995 0.012
EnumTwo/2 1 0.015
EnumThree/3 0.999 0.040
EnumFour/4 0.993 0.019
EnumFive/5 0.997 0.002
Stop/6 0.994 0.007
Fist/7 0.997 0.047
OkLeft/8 0.995 0.010
OkRight/9 1 0.007

Table 4.5: Probabilities of correctly detecting a negative or wrongly detecting a positive.

Notice that reliability of predictions for a SVM trained with SHP-i patterns is better for low

values of pi(0/pred = 1) and for high values of pi(0/pred = 0). In the light of the di�erences

among SHPs probabilities, it makes sense to treat predictions for each SHP di�erently. The

prediction for this SVM-i (SVM trained with SHP-i patterns) for the frame n is modeled as a
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function named predi(n). The possible values for this function are `0' and `1' (i.e. negatives and

positives).

A temporal window is considered, de�ned by

∆Tn0 ≡ {n : n− n0 < N} (4.4.5)

where n0 is the frame number in which the temporal window begins and N its duration ( N = 13

was experimentally adopted)

The probability of occurrence of no positives for within 4Tn0, is:

pi4Tn0(#pos = 0) = pi4Tn0(#neg = |4Tn0|)

=

∏
∇n∈4Tn0/predi(n)=1

pi(0/pred = 1) ?

∏
∇n∈4Tn0/predi(n)=0

pi(0/pred = 0), (4.4.6)

The above expression corresponds to a product with two di�erentiated groups of factors: �rst,

the probabilities of being wrong when having detected positives; second, the probabilities of being

right when having detected negatives. The whole product, consequently, is the probability of

having all negatives within 4Tn0.

So, the probability of occurrence of, at least, one positive stands:

pi4Tn0(#pos ≥ 1) = 1− pi4Tn0(#pos = 0) (4.4.7)

In conclusion, starting from the binary predictions of SHP-i in a temporal window, it is

posible to estimate the probability of the incidence of, at least, one positive SHP-i. Computing

probabilities for each of the considered SHPs and comparing them, it is possible to estimate the

one with higher probability of having been performed within the temporal window.

Motion pattern analysis The trajectory described by the hand at each DHG execution is

the main parameter to characterize the MenuOpen and MenuClose DHGs. Furthermore, it can

be used as a control parameter to improve the recognition of the simple static DHGs described

in Table 4.2. In any case, the de�nition of a process to extract hand's trajectory, its velocity and

the boundaries among the di�erent trajectories is needed.

Complex processes to extract hand trajectory may result in unfeasible analysis in a real time

environment. Fortunately, the evolution of the position of the characteristic points (see Appendix

V) extracted for each DHG execution o�ers a rough description of the hand trajectory.

Selection of point to track Figure 4.4.5 shows the evolution of the Y component of three

of these points (the Geodesic Center of the hand, the Ellipse Center, and the Minimum Depth
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Point) for di�erent DHGs execution videos (see Section 2.3.2) performed by the training users.

Each row includes �fteen executions (three training users, �ve repetitions each).

Figure 4.4.5: Stability of the Y coordinate evolution for each of the characteristic points. Three
types of DHGs, perfomed by training users, are evaluated: MenuClose (1st row), Simple Static
Gestures(2nd row) and MenuOpen (3rd row).

Although all the points describe correctly the Y motion pattern, the Ellipse Center seems

to be the most stable in terms of transition softness, as can be observed in Figure 4.4.5. The

standard deviation of the �rst derivative for the Y evolution of these three points at each DHG

execution is computed. Computing the mean of these standard deviations for the training users

and for each of the three groups of DHGs indicated in Figure 4.4.5, the following values are

obtained: 11.9816 (Geodesic Center), 10.0692 (Ellipse Center) and 11.6709 (Minimum Depth

Point). In the light of these results, which supported the observation, the Ellipse Center was

selected as the most suitable point to characterize the Y evolution of the hand for the considered

DHGs. The same process could be performed to extract coordinate X's evolution and coordinate

Z's evolution.

Motion pattern clasi�cation Nevertheless, as DHGs have been de�ned, coordinate Y's

evolution is enough to discriminate between MenuUp and MenuClose and between these and

the simple static DHGs (Table 4.2). Furthermore, coordinate Y's evolution can also be used to

separate non-stationary parts at the beginning and end of the simple static gestures executions

(see second row of Figure 4.4.5), parts modeled as a time percentage, ρ, of the gesture length. In

order to discriminate motion patterns (see Section 4.4.3.1), a point trajectory is characterized by
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its slope during a temporal window of length W . Figure 4.4.6 shows six slope areas, associated

to di�erent motion patterns. The intervals for this slope angle are [0,Π/2) and (−Π/2, 0] radians,

where 0 means staticity and Π/2 and −Π/2 instantaneous hand movements, upwards and down-

wards respectively. The β parameter establishes a margin to categorize a trajectory as static ,

and the α de�nes a margin for an upward trajectory and a downward one. The area between

the boundaries is tagged as unknown and is destined to some of the unpredictable trajectories

of the compound DHGs and to the non-stationary parts of the simple static gestures.

Figure 4.4.6: Y coordinate trajectory characterization

So far two couples of parameters which have to be set were identi�ed: α and W , targeted to

control the recognition of upward and downward motion; and β and ρ, targeted to model the non-

stationary parts of simple static DHGs. In order to set those parameters di�erent optimization

processes were followed for each couple.

First, α and W have been set by optimizing the F-score measure in the recognition of Men-

uOpen and MenuClose when analyzing trajectories from every training DHG and user (including

compound DHGs). A grid search is performed with grid parameters α and W uniformly dis-

tributed between the intervals [0,Π/2] and [2, 13] and with, respectively, parameter steps Π/120

and 1. Results are included in Figure 4.4.7 and show the α and W combination that maximizes

both DHGs F-score in recognition: α = 1, 388 rad and W = 13 frames.

A similar optimization has been performed to set optimal values for β and ρ. The aim is to

discriminate between stationary and non-stationary parts of a simple static gesture execution.

For this, it is assumed that there is a percentage of transitory frames at the beginning and the

end of each DHG execution. A grid search is performed with grid parameters β and ρ uniformly

distributed between the intervals [0,Π/2] and [5%, 20%] and with, respectively, parameter steps
Π/120 and 1%. The resulting graph is included in Figure 4.4.8 and shows its maximum value for

β = 0.739 rad and ρ = 8%.

Although the speed of gestures can vary from user to user, the parameters chosen have proved
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Figure 4.4.7: Grid search of parameters α and W to maximize F_score in the recognition of
DHGs MenuOpen and MenuClose.

Figure 4.4.8: Grid search of parameters β and ρ to maximize F_score in the recognition of the
stationary part of simple static DHGs

to be adequate for the compiled dataset, which contains a wide range of execution speeds, as

users were not asked to perform the motion-based gestures with a certain rhythm.

Gesture recognition by means of a FSM The decision on the performed SHP over a frame

sequence and the estimated motion pattern are the inputs to the FSM developed for this system.

The FSM establishes priorities in the DHG recognition and also avoids forbidden transitions

(whichever di�erent from the ones described in Section 4.4.3.1).

As opposed to the FSM used by [Hong et al., 2000], where it constitutes the main strategy to

recognize hand gestures, the proposed FSM works as a supervisor module; its speci�c functions

are:
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� To control that just one DHG is declared at each gesture execution.

� To apply restrictions according to the estimated motion pattern (see Section 4.4.3.2).

� To model transitions in the execution of compound DHGs.

� To discard unconsidered DHGs.

It is important to notice that except for compound DHGs, just one DHG is returned by

the system, immediately after recognition and at each gesture execution. No gesture might be

detected when the system is deactivated, i.e., when the hand is out of the interaction area. The

FSM ful�lls this restriction by remaining in a deactivation state. FSM deactivation, which can

occur at any time, forces the system to decide on a DHG. If the system is unable to detect one,

it returns Unknown.

The recognition of the compound DHGs Take and Click is also a task of the FSM (see Figure

4.4.9), which in this case needs to keep track of previously detected DHGs. It is important to

remember that the estimated motion of these gestures does not need to �t any speci�c pattern.

Figure 4.4.9: FSM transitions and conforming DHGs in the execution of DHGs Take and Click.

Let us de�ne a conforming DHG as a DHG that has meaning by itself but it is also part

of a compound DHG. For instance, DHGs EnumerateFive and EnumerateFour are gestures (see

Section 4.4.3.1) and also conforming DHGs of DHG Take. The same applies to EnumerateOne, to

Fist and to Cancel, which are considered as conforming DHGs just if any of the other conforming

DHGs has been detected before. If any of the aforementioned conforming DHGs is detected, the

system delays its declaration waiting for a subsequent recognition of a compatible conforming

DHG. If this occurs, then the FSM advances in the state and either �nally declares the compound

DHG or starts waiting for the next conforming DHG. Otherwise, the system returns the initial
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conforming DHG when one of these situations occurs:

i. A deactivation takes place.

ii. The last detected conforming DHG is repeatedly detected: a time-out counter was set

in order not to force the user to deactivate the system to recognize isolated conforming DHGs.

Experimentally this counter was set to a time equivalent to three non-overlapping temporal

windows (TO = 3N ), which resulted to be an adequate time for the users asked to perform the

evaluation.

Regarding to the estimation of the hand trajectory, if it is categorized as Unknown Trajectory,

no gesture will be declared; this aims to avoid wrong recognitions caused by unconsidered hand

movements where SHP may be not modeled. Exceptions to this rule are compound DHGs in

which any motion pattern is valid (see Table 4.4). If the trajectory is tagged as Static, the system

could return any of the DHGs compiled in Table 4.2 but also any of the compound DHGs. If

the angle that describes the trajectory is over α (Upward) or under −α (Downward), the DHGs

MenuOpen and MenuClose are declared, independently of the SHP sequence, if and only if none

of the conforming DHGs have been previously detected (see Section 4.4.3.2). Finally, the FSM

con�guration forces the system to return Unknown when user executes forbidden actions as

trying to execute a new gesture without deactivating the system.

FSM additional concerns FSM transitions for taking and clicking (see Figure 4.4.9) are

specially problematic since the executions of DHGs Take and Click occur indistinctly in all the

screen area. This produces the loose of the thumb for several cases, producing for example the

recognition of SHP EnumFour instead of EnumFive (this is due to the fact that the �ngers are

expected to point up to be correctly detected [Molina et al., 2011]) and Stop instead of Fist (the

segmentation process described in Section 4.4.1 does not completely eliminate the forearm when

execution takes place near the corners of the display, making these two SHPs more similar).

This is the reason for equating the associated DHGs to the mentioned SHPs: EnumerateFour

(as EnumerateFive) and Cancel (as Fist).

4.5 Experiments

4.5.1 Experimental setup

This section presents two di�erent evaluation scenarios for DHG recognition: user independent

and non user independent. For this purpose the real users static pose videos and the execution

videos described in Section 2.3.2 are used. The hand is modeled with descriptor described in

Appendix V.

1. User independent: in this evaluation scheme, the static pose videos of three users are used

in the training stage while the execution videos of the other eigth users are used in the
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DHG predictions

DHG U 1 2 3 4 5 6 7 8 9 10 11 12 13

EnumerateOne (1) 1 39 0 0 0 0 0 0 0 0 0 0 0 0

EnumerateTwo (2) 0 0 35 0 0 0 0 0 1 4 0 0 0 0

EnumerateThree (3) 0 0 4 31 0 3 0 0 0 2 0 0 0 0

EnumerateFour (4) 5 0 0 0 31 2 0 0 1 0 0 0 1 0

EnumerateFive (5) 0 0 0 0 1 37 0 0 0 0 0 0 2 0

Cancel (6) 0 0 0 0 0 0 35 4 0 0 0 1 0 0

Fist (7) 0 0 0 0 0 0 1 38 1 0 0 0 0 0

MenuOpen (8) 0 0 0 0 0 0 0 0 40 0 0 0 0 0

MenuClose (9) 0 0 0 0 0 0 2 1 0 35 1 0 0 1

MenuLeft (10) 0 0 0 0 0 0 0 0 1 0 39 0 0 0

MenuRight (11) 0 0 0 0 0 0 0 0 0 0 0 40 0 0

Take (12) 7 0 0 0 0 0 0 1 0 0 0 0 32 0

Click (13) 0 1 0 0 0 0 0 2 0 0 1 0 0 36

Table 4.6: User Independent Confusion Matrix for proposed DHGs.

evaluation.

2. Non user independent: the static pose videos of all the users are used for training the

system, the execution videos for these same users are used in the evaluation.

The resulting accuracy rates for several dictionaries are compared with the State of Art for user

and non user independent works.

4.5.2 Results

In this section the results for DHG evaluation are presented. Notice that the used data set is

not the same one as the ones used in the papers with which the comparisons are performed, new

training (static pose videos) and evaluation (execution videos) video collections were recorded

(see Chapter 2).

The evaluation results for the DHG data collection are compiled in the confusion matrix of

Table 4.6 where identi�ers of the DHGs are listed in rows while �nal predictions of the system

are included in columns (column labeled as �U� correspond to Unknown). From the confusion

matrix the achieved accuracy rate can be calculated, 0.900, an encouraging value taking into

account the number of DHGs separated, 13, the number of evaluation executions compiled, 40

per gesture, and the quality of separations described in some similar works. Considering only

static gestures the obtained accuracy is 0.939.

From the results compiled in Table 4.6 there are several aspects subject to improvement:

1. Some executions of EnumerateThree are wrongly classi�ed as EnumerateTwo. This is
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because sometimes the thumb is not detected as a prominence since the system expects

�ngers to point up, due to the limitations of the used descriptor (see Appendix V).

2. Sometimes the Static motion pattern is not detected for DHGs for which it is mandatory.

This reverts in some misclassi�cations: EnumerateFour detected as Unknown.

3. The recognition of non considered DHGs in some DHG Take executions (see Section 4.4.3.2)

produces various Unknown recognitions.
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Accuracy 0.900 0.939 0.906 0.891 0.918 0.872 0.946

# gestures 13 7 30 30 10 9 12

Table 4.7: User independent gesture recognition works comparison.

A strict comparison with the State Of Art systems is di�cult, because each system uses a

di�erent set of gestures and a di�erent database to compute the results, with di�erent number

of users and executions per gesture. However, for the sake of completeness, in Table 4.7 the

results achieved in the literature for some user independent systems are compiled. In [Teng

et al., 2005], the obtained accuracy rate for 30 static gestures is 0.906. In [Zaki and Shaheen,

2011], separating 30 di�erent gestures they obtain an accuracy of 0.891 using 90 repetitions for

training and 30 for test. [Kelly et al., 2010] manages to get an accuracy of 0.918 separating

10 static hand postures without facing the segmentation problem (i.e. using a color glove or a

�xed and static background). In [Malassiotis and Strintzis, 2008], assuming a scenery similar to

the proposed (referred as 'Session B' in that paper) and separating 9 static gestures, the best

obtained result is 0.872. In [Kollorz et al., 2008], 12 gestures are separated and evaluated with

34 executions per gesture, achieving an accuracy rate of 0.946; but it is important to point out

that none of the considered gestures are compound or present a speci�c motion pattern.

A comparison with non user independent system has also been performed. Using the whole

set of gestures in non user independent context, the systems are trained with the SHPs records

(i.e. static pose videos) of all users and evaluated with the DHGs executions (i.e. execution
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videos) for all the users, as well. The obtained accuracy for the proposed gestures raises from

the 0.900 obtained in Table 4.6 to 0.933. In order to compare the proposed system with the

State of Art, it has also been evaluated in a non user independent context using the gestures

proposed in [Soutschek et al., 2008]. The resulting confusion matrix can be found in Table 4.8.

The overall accuracy is 0.971, slightly better than the one reported in [Soutschek et al., 2008]

for the best set-up: 0.943, obtained in a non user independent approach. A compilation of the

results obtained for di�erent non user independent systems is provided in Table 4.9.

DHG predictions

DHG [Soutschek et al., 2008] U 1 2 3 4 5

Translation (1) 0 49 1 0 5 0

Cursor (2) 0 0 53 1 0 1

Click (3) 0 0 0 55 0 0

Rotation (4) 0 0 0 0 55 0

Reset (5) 0 0 0 0 0 55

Table 4.8: Non User Independent Confusion Matrix for another collection of DHGs.

System� Proposed Proposed [Soutschek et al., 2008] [Keskin and Akarun, 2009]

Accuracy 0.933 0.971 0.943 0.941

Dataset Proposed [Soutschek et al., 2008] [Soutschek et al., 2008] [Keskin and Akarun, 2009]

Table 4.9: Non User independent gesture recognition works comparison.

4.5.3 Computational cost

The computational cost of the di�erent stages of the system has been measured, resulting in the

execution times compiled in Table 4.10, which have been measured on an Intel(R) Core(TM)2

Duo CPU E7500 @ 2.93Ghz with 2.98GB RAM. Notice that these processing times allow the

system to work up to 33.9 fps, enabling real-time human-computer interaction.

Segmentation Desc. ( Molina et al. [2011]) Classi�cation

msec 16.114 4.311 9.054

Table 4.10: Computational Cost (msec) per frame

4.6 Conclusions

A non intrusive system for the recognition of hand gestures based on a TOF camera has been

presented in this chapter. It is able to work in realtime as it has been measured (see Section

5.5.3). Gesture classi�cation is based on features which are based on extraction of crucial points
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of the silhouette using the geodesic distance to the center of the segmented hand. Three di�erent

types of hand gestures are considered: simple, compound and based on motion pattern. The

system has been evaluated with a signi�cant number of users, obtaining user independent results

that improve the ones reported in the State Of Art for simple gestures. The proposed system

shows remarkable performance even when comparing to non user independent systems. In terms

of usability, the system properly works in real-time with a low response time, allowing the

interaction with application interfaces.

In the light of the results described in Section 4.5.2 three main future work lines are consid-

ered: the improvement of the hand segmentation, which would be useful for solving the forearm

elimination in the outermost areas of the screen; the improvement of the hand descriptor, to

avoid the need of having �ngers pointing up to obtain a proper description; and the integration

of a Hidden Markov Model based solution for making the system more robust to noisy SHPs

recognitions.
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Chapter 5

Motion-based hand gesture recognition

using synthetic trajectories

5.1 Introduction1

The ultimate goal of this work is to provide the user with a natural interaction and a good

experience when interacting with a computer in contexts of application such as the interaction

with maps2, allowing intuitive movements of the earth surface. Other contexts of application of

this approach can be the control of multimedia menus [Soutschek et al., 2008] or the point of view

on a virtual environment. Other motion based gestures recognition could allow the interpretation

of sign languages [Holden et al., 2005, Kelly et al., 2010].

Starting from the captured range data, a Point Of Interest (POI) is de�ned and computed in

a temporal window in order to describe the trajectory of the user's hand. This captures are then

compared to synthetically generated trajectories covered at di�erent speeds in order to recognize

the proposed motion-based gestures collection.

Two POIs are taken under consideration along this Chapter: the nearmost point to the

camera and the geodesic center of the binary mask resulting of limitating the range of depth

information. The comparison of the modelled and captured trajectories is performed using

Dynamic Time Warping (DTW), a distance that o�ers more robustness than euclidean to phase

lag between compared temporal signals. The �nal detected gesture for a input sequence depends

on the nearest synthetic motion pattern to the one captured.

The chapter is structured as follows: In Section 5.2 the State Of Art is exposed and the

innovations of the proposed system are pointed out before giving an overview of it in Section

5.3. In Section 5.4 the proposed dictionary of gestures and the compilation of users executions is

1This chapter is based on : J. Molina, J. A. Pajuelo and J. M. Martínez, �Real-time Motion-based Hand
Gestures Recognition from Depth Sensor video,� IEEE Transactions on Consumer Electronics (under review).

2Atlas Gloves: A DIY Hand Gesture Interface for Google Earth, http://atlasgloves.org/about
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described for later presenting the approach followed for its recognition is explained. In Section

5.5, the signi�cant user-independent evaluation �gures are presented for later enumerating the

achieved conclusions in Section 5.6.

5.2 Related work

The evolution of the capturing technologies is important when talking about HCI, a main di�er-

ence should be done: RGB based solutions [Stenger et al., 2006, Chen and Tseng, 2007, Nickel

and Stiefelhagen, 2007, Zheng et al., 2007, Teng et al., 2005, Lee and Park, 2009, Kelly et al.,

2010, Wenjun et al., 2010]; 2.5D [Molina et al., 2011, Doliotis et al., 2011, Yang et al., 2012] and

3D solutions [Keskin and Akarun, 2009, Usabiaga et al., 2009, Cheng et al., 2010]. In relation

with the intrusiveness of the capturing solutions, as mentioned in Chapter 1, there are several

intrusive solutions for obtaining 2.5D or 3D information [Keskin and Akarun, 2009, Usabiaga

et al., 2009, Cheng et al., 2010], while TOF technology is getting more importance in the last

years [Soutschek et al., 2008, Kollorz et al., 2008, Molina et al., 2011].

There are several works which focus on the detection of motion pattern based gestures. In

[Wenjun et al., 2010], a system for the detection of shape and motion based gestures is presented,

using 2D images as input. It is evaluated for four di�erent gestures, but only two di�erent

trajectories. [Yoon et al., 2001] recognizes 26 alphabetical gestures on the basis of features of

location, angle and velocity. In [Cheng et al., 2010], based on 3D motion captures obtained with

an accelerometer, digits 0 to 9 drawn to the air are recognized. [Kim et al., 2008] presents a

solution based on neural networks fed with spatiotemporal information. In Chapter 2 several

dictionaries are proposed, one of them is the one used in this study (see Section 5.4.2). Notice

that two of the gestures under account (i.e. N and S) are also used in [Molina et al., 2011]

(see Chapter 4). Some recognition solutions based on the Kinect sensor3 have been proposed in

the last years: in [Doliotis et al., 2011] numbers drawn in the air are recognized with a Nearest

Neighbour scheme; in [Yang et al., 2012] eigth motion based gestures are separated using a HMM

solution. In [Chai et al., 2010] a kinematics chain model for upper body is proposed for de�ning

synthetic human body gestures based on body parts position.

In this chapter, a novel non intrusive (i.e. there is no need of gloves or markers like in [Kelly

et al., 2010, Keskin and Akarun, 2009, Usabiaga et al., 2009] or accelerometers like in [Cheng

et al., 2010]) real-time approach to the detection of intuitive motion based gestures usable in

di�erent application contexts is presented. The learning phase of the proposed approach does

not need the capture of ground-truth real data, since the patterns are de�ned synthetically by

using a human arm model (see Section 5.4.3) making it user independent (di�erently to [Wenjun

et al., 2010, Yoon et al., 2001, Cheng et al., 2010, Kim et al., 2008, Yang et al., 2012]). This

3Microsoft Corp. Redmond WA. Kinect for Xbox 360.
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kinematic model is similar to part of the one proposed in [Chai et al., 2010], but in our case it

is used to de�ne hand trajectories rather than position based con�gurations. In [Doliotis et al.,

2011] only two test users are considered while in the proposed work, eleven users were asked to

record the gestures collection. During evaluation, performed with the collaboration of several

users (see Section 2.3.2), the system worked properly, as the results con�rm (see Section 5.5).

Thanks to the proposed normalization (see Section 5.4.6) and the representativity of the chosen

arm model (see Section 5.4.3), the system is robust to variations in the distance to the camera,

in the height of the user and in the size of arm and hand. The use of TOF technology, apart from

providing an accurate segmentation robust to low illumination conditions (not as in color camera

based systems [Stenger et al., 2006, Chen and Tseng, 2007, Nickel and Stiefelhagen, 2007, Zheng

et al., 2007, Teng et al., 2005]), o�ers a representative point of the hand motion, the closest one

to the camera, with no need of application of traditional segmentation techniques.

5.3 System overview

In Figure 5.3.1, an overview of the system is presented:

� (i) acquisition of depth images, �rst of all, the depth data range is limited to a maximum

distance of 3 meters, as explained in Section 2.3.2.

� (ii) feature extraction, the Point Of Interest (POI) to be tracked is computed, storing its

coordinates from frame to frame (i.e. each pi represents the 3 coordinates of the POI at

frame i) which are an estimation of the hand trajectory. More concretely, the proposed

POI is the point detected closest to the camera. An alternative POI is also proposed for

evaluating purposes, this is the geodesic center of the segmented hand mask (see section

5.4.5).

� (iii) motion patternmodelling, synthetically generated motion patterns (i.e. each ξai repre-

sents the coordinates of pattern associated to gesture a at sample i) are generated on the

basis of a proposed arm model (See Section 5.4.3).

� (iv) motion patterns recognition, �ve samples trajectory segments (i.e. four translation

segments) are compared with the synthetically generated motion patterns. using the Dy-

namic Time Warping (DTW) distance as explained in Section 5.4.6. So, each translation

segment will be locally labeled with the closest synthetic pattern. This results, along a

gesture execution, in a collection of assigned labels to several translation segments. The

�nal label of the gesture will be the most common assigned label.

� (v) communication with the GUI, the recognized motion patterns are sent to the GUI

allowing the control of the application under consideration.
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Figure 5.3.1: Overview of the system.

5.4 Hand gesture recoginition approach

5.4.1 Introduction

The proposed approach consists of the de�nition of synthetic motion patterns (see Section 5.4.4)

on the basis of a human arm model (see Section 5.4.3). This collection of synthetic motion

patterns will be compared with the hand motion estimations (see Section 5.4.5) computed from

the natural data execution videos (see Section 5.4.2).

5.4.2 Dataset

The dictionary of gestures is proposed following usability criteria: slaps executed in di�erent

directions are an intuitive way of interacting with a virtual environment. Two usability objectives

[ISO9241-11, 1998] have been taken into account in the gestures selection process: learnability

and minimization of support requirements. In terms of learnability, it can be said that none

of the users showed di�culties in learning the dictionary and that they only required of a brief

introduction: they were asked to perform the indicated gestures as if they were interacting with

a menu environment. In terms of minimization of support requirements, it can be said that no

user presented doubts about how to execute the gestures.

Nine gestures with clear motion patterns independently from the hand pose were selected (see

Figure 5.4.1): slaps in 8 directions (named as the cardinal directions: N, NE, E, SE, S, SW, W

and NW) and one slap getting closer and further to the camera (named IO, Inwards-Outwards).
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The execution videos described in 2.3.2 make a total of 495 videos4 (11 users, 9 gestures and 5

repetitions per user and gesture). This collection is entirely used for evaluation purposes, since

the knowledge used by the detection system is expressed by the motion patterns de�ned via

the arm model described in Section 5.4.3. The recorded users were not asked to keep a certain

distance to the camera neither to perform the gestures with any speed restriction. As well, the

users had di�erent heights, what makes the collection certainly representative of the potential

users of the system. Some captures of this data set can be found in Figure 2.3.2a in Chapter 2..

Figure 5.4.1: Gestures observed from user's point of view.

5.4.3 Motion pattern modelling

An arm model, responding to human anatomy, has been proposed for the de�nition of the

considered motion patterns. Two arm segments are considered (see Figure 5.4.2): the upper

arm represented by the vector −→rU which goes from the shoulder to the elbow and the lower arm

reprensented by −→rL, from the elbow and to the wrist. The hand is not considered explicitly in

this model, since the variation that could introduce is non signi�cant in comparison with the

ones shown by the arm movements. The lengths for these upper and lower segments were de�ned

with �xed length: |−→rU | = |−→rL| = 1. Finally, the vector that describes the trajectory of the wrist

to be analized is −→r = −→rU +−→rL . In Figure 5.4.2 some set-ups of the arm model are shown. Notice

that for a variation of 4θ in angles θx and θy for the upper segment, the lower segment presents

4http://www-vpu.eps.uam.es/publications/papermotion/indexpaper.html,
(user: vision, password: visionpaper)
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a variation of 24θ, acumulating this way the variation of the upper segment. The expression of

the vectors −→rU and −→rL are the following:

� For gestures N and S (see Figure 5.4.2a):

−→rU = [0,−sin(θx), cos(θx)]

−→rL = [0,−sin(2θx), cos(2θx)]

where θx ∈ [0, π/2]. For gesture N θx goes from π/2 to 0, while for gesture S from 0 to π/2.

Notice that these two motion patterns are contained in plane yz and that the two gestures

only di�er in the direction of execution: N begins with the hand in front of the chest, while

S with the arm pointing down.

� For gestures E and W (see Figure 5.4.2b):

−→rU =−sin(ψ0)

[
cos(θy),

cos(ψ0)

sin(ψ0)
,−sin(θy))

]
−→rL = [−cos(2θy − π/2), 0, sin(2θy − π/2)]

where θy ∈ [π/4, 3π/4] and ψ0 = 25o×πrad
180o . ψ0 is the angle formed by the upper segment of

the arm and −ŷ . For gesture E θy goes from 3π/4 to π/4, while for gesture W from π/4 to
3π/4. Notice that these two motion patterns are contained in plane xz, only di�ering in the

direction of execution: E, from left to rigth; W. from rigth to left.

� For NE, SE, SW and NW : a rotation about the z axis is performed over the gestures N

and S (see Figure 5.4.2c). This rotation matrix, R, is:

R =


sin(θz0) cos(θz0) 0 0

−cos(θz0) sin(θz0) 0 0

0 0 1 0

0 0 0 1


and so, the homogenous coordinates for vectors −→rU and −→rL are:

−−→
rhomU = R× [0,−sin(θx), cos(θx), 0]′

−−→
rhomL = R× [0,−sin(2θx), cos(2θx), 0]′

where θx ∈ [0, π/2] , as for gestures N and S, θz0 = π/4 for gestures NW and SE and

θz0 = 3π/4 for gestures NE and SW. The application of these rotation matrixes implies that
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the modelled patterns are contained in the plane xz rotated about the z axis.

(a) N and S gestures. (b) E and W gestures. (c) NW and SE gestures.

Figure 5.4.2: Model set-ups of the arm model. −→rU is a vector that goes from the shoulder to
the elbow and −→rL from the elbow to the wrist. The angles θx and θy are variables which de�ne
the trajectory of the arm in 5.4.2a and 5.4.2b, while ψ0 and θz0 are �xed angles that de�ne the
position of the elbow at the beggining of the execution of the movement in Figure 5.4.2b and
Figure 5.4.2c respectively. ψ0 is the angle formed by −→rU and −ŷ (see 5.4.2b). θz0 indicates the
rotation angle applied to N and S gestures, which results in the set-up shown in 5.4.2c.

5.4.4 Motion pattern de�nition

The direction in which the de�ned intervals are covered depends on the direction of execution

of the speci�c gesture, for example, in the case of gesture N θx for −→rU begins in 0 and ends in
π/2 , while for gesture S is the other way around. In order to consider di�erent speeds in the

execution of the gestures 6 di�erent patterns per gesture are presented: 1 for the whole arc , 1

for each half and 1 for each third. This makes 6 synthetic patterns per gesture. The selected

length for these patterns was 5 samples (i.e. 4 translation segments) what de�nes the temporal

window used for the comparison of synthetic and real patterns (see Figure 5.3.1).

For the de�nition of the IO synthetic pattern no angles or arm model were considered,

just a simpler approach was followed: the pattern was de�ned as a sequence of movements in

the z axis. Three kinds of translations segments (i.e., an homogeneous motion interval) were

considered: I, translation getting closer to the camera; O, moving away from the camera; S,

staticity between two frames (applying the normalization described in Section 5.4.6 spurious
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translations are considered as staticity). Following the line of considering di�erent execution

speeds, various motion patterns (composed by 4 translation segments) were de�ned: IIII, IIIS,

IISS, SSOO, SOOO, OOOO, IIIO, IIOO and IOOO. For example, if the execution of the gesture

is very fast and only 5 samples are captured during it, the expected segments pattern would

be IISS or SSOO. While, if the execution is slower sequences such as IIII or OOOO could be

detected.

5.4.5 Motion pattern capturing

In order to capture a representative trajectory of the hand motion it is important to choose an

easily traceable point. An inestable point would present noisy translations that could produce

wrong estimations of the hand motion. The use of range information provides us with a robust

to illumination and easy to detect POI, the closest to the camera. For the detection of this point

it is not even necessary to previously segment the image.

With the intention of showing the advantages of using depth information, an approach that

makes no use of depth information (except for the depth range limitation) is also presented: it

extracts the tracking point considering the segmentation mask image resulting from the depth

range limitation as binary (considering foreground all the pixels of the depth image with value

over zero). In this case, the chosen tracking POI is the geodesic center of the binary mask, which

is estimated by performing the ultimate erosion [Lantuejoul and Maisonneuve, 1984] up to a

point.

5.4.6 Patterns comparison

For calculating the distance between two patterns a previous normalization is performed, con-

sisting of setting to one the length of each displacement between two sucesives samples frames

of the POI. This solution has been used in problems such as hand writing recognition [Hu et al.,

1996] or motion hand based gestures detection, like in [Wenjun et al., 2010] where the length of

the translations is not used as a feature, something equivalent to �xing their length. In order

to �lter spurious errors in the detection of the tracked point when it is static (for gesture IO),

this normalization is only applied when the magnitude of the translation of the POI between

consecutive frames is over the third of the maximum one within the gesture execution. This

de�nes an enough wide range of speeds for the proposed gestures which are intuitively executed

in an homogenous way. The presented normalization makes the system independent to variations

in the distance to the camera, in the angle of view, in the heigth of the user and in the size of

the arm.

Once the synthetic (see Section 5.4.2) and captured motion patterns (see Section 5.4.5) are

normalized, they are compared. The Dynamic Time Warping (DTW) distance has shown good

performance when comparing temporal patterns executed at di�erent speeds, concretely it has
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been widely applied to speech recognition problems [Sakoe and Chiba, 1978]. An example of its

application to hand gesture recognition can be found in [Wenjun et al., 2010]. Notice that each

new captured motion pattern has four translation vectors, which describe the hand trajectory for

�ve frames. It is then compared using DTW with each of the synthetic motion patterns present

in the collection described in Section 5.4.3. This way we obtain a histogram of incidence of the

closest synthetic patterns to this new captured motion pattern. The most common one gives us

the label to assign to the gesture capture. If there is a tie between labels, the label 'Unknow' is

the one assigned.

5.5 Experiments

5.5.1 Experimental setup

This section presents two di�erent evaluation scenarios, both of them user independent since the

learning process is performed using synthetic data and the evaluation is done with 11 di�erent

users (see Section 5.4.2):

1. 2.5D scenario: the tracked POI is the closest point to the camera and its depth coordinate

(apart from x and y coordinates) is used for modelling the trajectory.

2. 2D information scenario: this second scenario was set-up considering the input images as

binary masks as explained in Section 5.4.5. The depth information is implicitally used in

the set-up of the camera (see Section 5.4.2), resulting in a segmentation mask, but this

information is not used in the estimation of the hand trajectory. In this case, the tracked

POI is the geodesic center of the binary mask, obtained with an iterative algorithm process

[Molina et al., 2011]. Although the depth information is used for the calculation of this

mask, the z coordinate is not used in the comparison of the patterns.

The comparison of the results obtained for these two set-ups will permit to obtain conclusions

about the utility of using depth information in hand gesture recognition.

5.5.2 Results

This section compiles the results obtained for the two evaluation scenarios introduced in section

5.5.1:

1. 2.5D scenario: the resulting confussion matrix can be found in Table 5.1. The obtained

accuracy rate is 0.951.

2. 2D information scenario: The obtained accuracy rate is 0.780 (see Table 5.2).

From the results compiled in Table 5.1 there are several aspects to point out:
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� The label IO is the one assigned more times erroneously. It introduces 10 false negatives

for executions of other gestures. This is due to the fact that users tend to introduce the

hand in the interaction area (and move it away) with upward and downward trajectories.

These patterns are present in the de�nition of other gestures, apart from IO, producing

misclassi�cations.

� When the assigned labels within an execution results on the same score for 2 or more

gestures the assigned label is Unknown (U). This situation produces 7 misclassi�cations.

� Without taking into account the misclassi�cations produced by the inclusion of the IO

gesture (i.e. the only one which translation is fundamentally takes place in the depth

coordinate), the obtained accuracy rates are, 0.873 for the 2D scenario and 0.977 for the

2.5D one. So, the use of depth information improves the results even when the gestures

are apparently detectable using only 2D information.

Table 5.2 presents not such good results, mainly due to the instability of the geodesic center.

Since no depth information is considered, the representative point to be tracked needs to be

estimated on the basis of a segmentation which is noisy due to variation in its shape and size.

So, noisy translations are added to the real translations of the hand.

U N S W E SW NW SE NE IO

N 0 52 0 0 0 0 0 0 0 3
S 1 0 50 0 0 0 0 0 0 4
W 1 0 0 53 0 0 0 0 0 1
E 0 0 0 0 55 0 0 0 0 0
SW 0 0 0 0 0 55 0 0 0 0
NW 2 2 0 0 0 0 51 0 0 0
SE 2 0 0 0 0 0 0 51 0 2
NE 1 0 0 0 1 0 0 0 53 0
IO 0 1 0 2 0 0 0 0 1 51

Table 5.1: Confusion matrix for the 2.5D scenario. Gestures described in Section 5.4.2 and �U�
for Unknown.

No user-indepent evaluations performed for motion based gestures detection were found in

the State Of Art, consequently the evaluation �gures of some works in which the absence of

overlap between train and evaluation corpora is not ensured are enumerated. In [Wenjun et al.,

2010], a 0.97 accuracy rate is obtained in separating only two motion patterns. [Cheng et al.,
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U N S W E SW NW SE NE IO

N 0 51 0 0 0 0 0 0 0 4
S 1 0 26 0 0 1 0 0 0 27
W 1 0 0 37 0 0 16 0 0 1
E 0 0 0 0 38 0 0 6 9 2
SW 0 0 0 1 0 47 1 0 0 6
NW 2 4 0 2 0 0 44 1 0 2
SE 2 0 0 0 0 0 0 49 0 4
NE 1 2 0 0 0 0 0 0 51 1
IO 0 1 0 1 0 0 7 1 2 43

Table 5.2: Confusion matrix for the 2D scenario. Gestures described in Section 5.4.2 and �U� for
Unknown.

2010] presents results for an intrusive approach based on the use of an accelerometer: obtaining

0.93 for 5-fold cross validation and 0.98 for 10-fold cross validation, in the detection of 0 to 9

digits. [Kim et al., 2008] separates 6 gestures on the basis of the posture and motion of the hand,

obtaining an accuracy of 0.975 for the best setup. In [Yoon et al., 2001], the highest accuracy rate

in the detection of 26 gestures drawn to the air is 0.932. In [Molina et al., 2011] (i.e. Chapter 4),

two of the considered gestures were N and S, obtaining a mean recall of 0.938 in their detection.

So it can said that the proposed approach achieves results comparable to the ones of the State

Of Art, even when they do not present user-independent evaluations.

5.5.3 Computational cost

The computational cost can be expressed as a function depending on the number of translation

segments for each motion pattern, N , and the number of synthetical patterns, NSynPat, contained

in the collection described in section 5.4.3. It has been considered, as signi�cant, the periods

necessary for performing a sum, TS , a product, TP , and a square root Tsqrt. The di�erent stages

considered on this work will present the following computational times per frame:

1. POI sampling: In the case of the 2.5D scenario, this is the time needed to compute the

position of the closest pixel, for what is necessary to perform width×height−1 comparisons,

so TA−2.5D = (width × height − 1) × (N + 1) × TS . In the 2D scenario the time for

extracting the geodesic center of the binary mask as described in [Molina et al., 2011],

TA−2D = 4.311msec, has been taken into account

2. Trajectory computation: This is the time needed for calculating the trajectory vector on

the basis of the point coordinates, TB = 3×N × TS .

3. Trajectory Normalization: as described in section 5.4.6, TC = N×(5×TS +6×TP +Tsqrt).
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4. DTW computation: TD = N2 ×NSynPat × (5× TS + 3× TP + Tsqrt).

Current Float Point Units o�er a solution for the computation of arithmetic operations with

dedicated hardware, achieving computational times in the same order of magnitude for sum,

product and squared root. On the basis of Pentium speed tests5 the following relation between TS ,

TP and Tsqrt can be established, de�ning T0 as the reference computational time: TS w TP = T0

and Tsqrt = 2×T0. Doing so, and on the basis of the presented expressions, a total computational

time of T = TA + TB + TC + TD = TA + T0 ×N × (16 + 10×N ×NSynPat) is obtained. With

N = 4 and NSynPat = 54 T = TA + 8704× T0. A CPU performance test was run on an Intel(R)

Core(TM)2 Duo CPU E7500 @ 2.93Ghz with 2.98GB RAM, as in Molina et al. [2011], being the

obtained T0 below 1nsec. So T2.5D = TA−2.5D + 8704× T0 = 135419× T0 (T2.5D < 0.136msecs)

and T2D = TA−2D + 8704× T0 (T2D < 4.321msecs).

Scenario→ 2.5D 2D

Comp. Cost(msec/frame) < 0.136 < 4.321

Accuracy 0.951 0.780

Table 5.3: Computational Costs per frame and Accuracy for the two considered scenarios.

As shown in Table 5.3, the described approaches require much less than 1/25sec per frame,

enabling real-time HCI.

5.6 Conclusions

In this chapter a non intrusive motion-based hand gesture detection system using range data is

presented. It is able to work in real-time allowing the interaction between a user and a virtual

environment or computer menu. It is robust to the relative camera position and to the speed of

execution of the gestures. It is, as well, user-independent, being able to work with a collection

of gestures executed by users of di�erent heights and arm's sizes. A novel de�nition of the

motion patterns, based on human anatomy, is presented: the obtained results bear witness to its

remarkable representation capacity.

From the results, it can be concluded that the use of depth information for the hand trajectory

estimation implies a signi�cant increase in gesture recognition accuracy rate, even with no need

of segmentation algorithms apart from limitating the depth range of the capture (2.5D scenario).

As well, it can also be asserted that the use of the closest point as POI performs better than

the geodesic center of the hand mask, which is more computationally costly. The achieved

accuracy rate for the proposed dictionary, performing a user-independent evaluation , is 0.951,

a very promising value, as already mentioned, comparable to the results of the State Of Art.

5http://www.obliquity.com/computer/speedtest.html
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The experiments performed in this work also show that the 2.5D approach performs better that

the 2D, even without considering the only gesture with a clear translation just in the depth

coordinate, the IO gesture.
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Part IV

Conclusions
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Chapter 6

Conclusions and future work

6.1 Summary of achievements

The aim of the this thesis has been to produce contributions in the hand gesture recognition

scope. As already mentioned in the di�erent chapters of this document, the main contributions

are related with hand gesture usability, scalability and representatity.

Firstly, in Chapter 2 a corpus of hand depth images for benchmarking of hand gesture recog-

nition systems was presented. As well a set of novel critical factors was proposed and several

datasets of the SoA compared in terms of them. The dataset has real users recordings and

synthetically generated depth images (of the hand pose-based gestures) of several dictionaries

described in other papers as well as other novel ones. The compiled collection responds to a

taxonomy consisting of posed-based, motion-based, pose-motion based and compound gestures.

In terms of representativity, 11 di�erent users participated in the compilation of the collection.

Moreover, point of view variations can be introduced in the synthetic data, increasing the repre-

sentativeness of the collection. It is signi�cant that the proposed method for the generation of

synthetic range data images makes posible the recognition of new gestures with a simple design

process and with no need of training users. This constitutes an important advantage in terms of

scalability. The synthetic generation method has been validated with synthetic content training

schemes presenting promising results, which are close (for some dictionaries) to those obtained

by the the real users training scheme. In Chapter 3 the method for the generation of synthetic

hands range data is extended, introducing the concept of synthetic user. This approach is eval-

uated in terms of accuracy rate, with a training stage performed using synthetic data and an

evaluation with real users. This solution improves the previous gesture scalable approach as the

results show: this framework is able to work for some dictionaries as good as a system trained

with one real user.

Making use of the records associated to some of the dictionaries described in Chapter 2 two

recognition systems were developed and evaluated. A framework was proposed (see Chapter 4),
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with two main objectives, to be usable and to have a system able to work in a scenario with

real users. Gesture classi�cation is based on a descriptor which consists of crucial points of the

silhouette using the geodesic distance to the center of the segmented hand. These features have

proven to be more robust than features based on moments of the contour [Molina et al., 2011].

Three di�erent types of hand gestures are considered: simple, compound and based on motion

pattern. The system has been evaluated with a signi�cant number of users, obtaining user

independent results that improve the ones reported in the State Of Art for simple gestures. The

proposed system shows remarkable performance even when comparing to non user independent

systems. In terms of usability, the system properly works in real-time with a low response time,

allowing the interaction with application interfaces. In Chapter 5 a motion-based hand gesture

recognition system is presented. It is able to work in real-time allowing the interaction between

a user and a virtual environment or computer menu. It is robust to the relative camera position

and to the speed of execution of the gestures. It is, as well, user independent, being able to

work with a collection of gestures executed by users of di�erent heights and arm's sizes. A novel

de�nition of the motion patterns, based on human anatomy, is presented: the obtained results

bear witness to its remarkable representation capacity. From the results it can be con�rmed that

the use of depth information implies a signi�cant increase in gesture recognition accuracy rate.

The proposed approach (2.5D scenario) works without the need of applying any segmentation

algorithm or calculating the geodesic center of the hand mask, as in the 2D scenario, which means

a lower computation time. The achieved accuracy rate for the proposed dictionary, performing

a user-independent evaluation, is a very promising value comparable to the results of the State

Of Art.

6.2 Future work

In the light of the obtained results some future work lines are under consideration:

� In relation with the hand gesture scalability (see Chapter 3): Future work lines include

the variation of �xed hand parameters (i.e. scale and intra-hand proportions) and/or

the resolution of their grid in order to create di�erent synthetic user pro�les, increasing,

this way, the representativity of the synthetic collection. Future research lines could also

include the design of gesture detection approaches adapted to the nature of the gestures of

each dictionary. Another research line could be the testing of the proposed solution with

di�erent visual descriptors, more adapted to the particularities of each gesture collection

under consideration.

� In relation with the simple, compound and motion based gestures recognition framework

presented in Chapter 4: the improvement of the hand segmentation, which would also

be useful for solving the forearm elimination in the outermost areas of the screen; the
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improvement of the hand descriptor, to avoid the need of having �ngers pointing up to

obtain a proper description; and the integration of a Hidden Markov Model based solution

for making the system more robust to noisy SHPs recognition. As well, it could be of

utility the use of not only depth information but this registered with color information.

� In relation with the motion based gestures recognition framework presented in Chapter 5:

In the light of the obtained results, two main future work lines are considered: the use of a

Hidden Markov Model in order to manage the temporal sequence of detected labels, trying

to solve the misclasi�cation situations in which the order of the translation detections is

relevant; the use of color-depth registration approaches could improve the quality of the

hand motion estimation and make feasible the detection of more complex gestures.
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Appendix A: Confussion matrixes for

synthetic training schemes
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Confussion Matrixes for the Synthetic Training Scheme A with

200 POV

A B C D E F G H I J K L

A 761 0 1 0 0 0 1 0 0 1437 0 0

B 5 2194 0 0 0 0 0 0 0 0 1 0

C 8 1561 388 3 0 32 0 0 9 0 199 0

D 204 648 0 1348 0 0 0 0 0 0 0 0

E 617 0 0 1177 406 0 0 0 0 0 0 0

F 3 0 14 0 1 2122 0 0 0 0 0 60

G 71 0 417 0 0 0 303 0 58 1195 0 156

H 437 0 0 0 0 0 0 961 0 24 778 0

I 1 0 0 0 0 0 0 16 2022 13 148 0

J 6 0 26 0 0 0 16 0 60 2089 3 0

K 233 0 0 0 0 0 0 701 0 17 1088 161

L 10 0 100 0 1 0 509 19 5 118 97 1341

Table 6.1: Confussion matrix for dictionary described in [Kollorz et al., 2008] applying evaluation
scheme A(200).

Enum1 Enum2 Enum3 Enum4 Enum5 Stop Fist OkLeft OkRigth

Enum1 2150 0 0 0 0 27 5 11 7

Enum2 21 2128 3 0 0 39 3 2 4

Enum3 1 112 1982 29 4 52 11 3 6

Enum4 0 2 205 1940 41 6 3 0 3

Enum5 0 0 10 482 1705 0 2 0 1

Stop 19 0 3 0 0 2157 18 0 3

Fist 1 0 0 0 0 610 1186 3 400

OkLeft 2 17 0 0 0 23 12 2045 101

OkRigth 24 0 0 0 0 0 7 2 2167

Table 6.2: Confussion matrix for dictionary described in [Molina et al., 2011] applying evaluation
scheme A(200).
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a b c d e

a 1619 556 0 24 1

b 7 2132 0 2 59

c 5 85 2094 0 16

d 308 425 0 1418 49

e 348 191 0 12 1649

Table 6.3: Confussion matrix for dictionary described in [Soutschek et al., 2008] applying evalu-
ation scheme A(200).

m1 m2 m3 m4

m1 1730 378 0 92

m2 0 1941 3 256

m3 4 1296 570 330

m4 0 21 2 2177

Table 6.4: Confussion matrix for Miscellaneous pose-based dictionary applying evaluation scheme
A(200).
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Confussion Matrixes for the Synthetic Training Scheme B with 200

POV

A B C D E F G H I J K L

A 1512 0 0 0 0 0 1 0 4 682 0 1

B 238 1913 0 0 0 0 0 10 0 39 0 0

C 42 261 1477 0 0 2 0 97 9 6 306 0

D 985 644 0 549 0 0 0 10 0 3 9 0

E 756 0 0 743 685 0 0 1 0 1 0 14

F 4 0 30 0 1 2093 0 0 0 0 0 72

G 249 0 185 0 0 0 930 0 32 799 0 5

H 283 0 0 0 0 0 0 1008 0 58 832 19

I 14 0 0 0 0 0 0 358 1223 3 602 0

J 477 0 13 0 0 0 40 0 21 1649 0 0

K 3 0 0 0 0 0 7 664 0 458 826 242

L 72 0 0 0 1 1 1156 19 0 0 76 875

Table 6.6: Confussion matrix for dictionary described in [Kollorz et al., 2008] applying evaluation
scheme B(200).

Enum1 Enum2 Enum3 Enum4 Enum5 Stop Fist OkLeft OkRigth

Enum1 2172 0 1 0 0 12 3 8 4

Enum2 23 2164 0 0 0 4 3 3 3

Enum3 0 72 1955 29 4 103 11 23 3

Enum4 1 3 20 1696 39 436 2 1 2

Enum5 0 0 23 365 1705 104 2 0 1

Stop 0 7 0 0 0 2157 36 0 0

Fist 0 0 0 0 0 285 1233 8 674

OkLeft 3 0 0 0 0 1 11 2164 21

OkRigth 13 0 0 0 0 0 30 3 2154

Table 6.7: Confussion matrix for dictionary described in [Molina et al., 2011] applying evaluation
scheme B(200).
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a b c d e

a 2128 15 0 57 0

b 136 1993 0 1 70

c 0 611 1589 0 0

d 52 293 0 1815 40

e 240 137 0 72 1751

Table 6.8: Confussion matrix for dictionary described in [Soutschek et al., 2008] applying evalu-
ation scheme B(200).

m1 m2 m3 m4

m1 1731 428 2 39

m2 1 1283 193 723

m3 5 1246 715 234

m4 0 6 90 2104

Table 6.9: Confussion matrix for Miscellaneous pose-based dictionary applying evaluation scheme
B(200).
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Confussion Matrixes for the Synthetic Training Scheme C with 200

POV

A B C D E F G H I J K L

A 1462 0 0 0 0 0 1 0 6 730 0 1

B 48 1927 2 0 0 0 0 5 0 212 6 0

C 31 385 1286 0 0 2 0 0 9 9 478 0

D 836 834 0 518 0 0 0 6 0 5 1 0

E 744 0 0 779 659 0 0 0 0 0 0 18

F 4 0 28 0 1 2093 0 0 0 1 0 73

G 157 0 218 0 0 0 880 0 42 902 0 1

H 373 0 0 0 0 0 0 727 0 92 1002 6

I 20 0 0 0 0 1 0 291 1349 17 522 0

J 448 0 11 0 0 0 24 0 39 1678 0 0

K 0 0 0 0 0 0 0 433 0 511 1030 226

L 82 0 1 0 1 1 1087 15 0 7 80 926

Table 6.11: Confussion matrix for dictionary described in [Kollorz et al., 2008] applying evalua-
tion scheme C(200).

Enum1 Enum2 Enum3 Enum4 Enum5 Stop Fist OkLeft OkRigth

Enum1 2166 0 1 0 0 14 3 6 10

Enum2 27 2158 0 0 0 6 3 3 3

Enum3 0 85 1958 25 4 99 11 14 4

Enum4 0 3 33 1688 41 430 3 1 1

Enum5 0 0 20 396 1705 77 2 0 0

Stop 0 0 0 0 0 2172 28 0 0

Fist 0 0 0 0 0 323 1203 8 666

OkLeft 3 1 0 0 0 24 11 2047 114

OkRigth 12 0 0 0 0 0 26 2 2160

Table 6.12: Confussion matrix for dictionary described in [Molina et al., 2011] applying evaluation
scheme C(200).
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a b c d e

a 2150 10 0 40 0

b 138 1984 0 1 77

c 0 539 1661 0 0

d 69 291 0 1798 42

e 253 134 0 73 1740

Table 6.13: Confussion matrix for dictionary described in [Soutschek et al., 2008] applying eval-
uation scheme C(200).

m1 m2 m3 m4

m1 1730 417 6 47

m2 1 1458 168 573

m3 5 1170 769 256

m4 0 6 47 2147

Table 6.14: Confussion matrix for Miscellaneous pose-based dictionary applying evaluation
scheme C(200).
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Confussion Matrixes for the Synthetic Training Scheme D with

200 POV

A B C D E F G H I J K L

A 1133 0 0 0 0 0 0 0 0 1066 0 1

B 7 2192 0 0 0 0 0 0 0 0 1 0

C 3 1662 352 0 0 100 0 0 9 6 68 0

D 939 288 0 957 0 0 0 3 0 13 0 0

E 838 0 0 995 366 0 0 1 0 0 0 0

F 0 0 7 0 2 2112 44 0 0 15 0 20

G 551 0 286 0 0 0 143 0 53 1052 0 115

H 41 0 0 0 0 0 0 959 0 573 627 0

I 1 0 0 0 0 0 0 8 1931 32 228 0

J 123 0 15 0 0 0 4 0 22 2036 0 0

K 0 0 0 0 0 0 0 505 0 632 994 69

L 214 0 92 0 2 1 649 30 11 41 82 1078

Table 6.16: Confussion matrix for dictionary described in [Kollorz et al., 2008] applying evalua-
tion scheme D(200).

Enum1 Enum2 Enum3 Enum4 Enum5 Stop Fist OkLeft OkRigth

Enum1 2187 0 0 0 1 1 4 4 3

Enum2 2 2186 0 0 0 4 4 2 2

Enum3 1 119 1922 22 33 83 10 6 4

Enum4 0 10 48 1920 55 162 4 0 1

Enum5 0 0 33 370 1760 35 2 0 0

Stop 0 0 0 1 0 2185 4 0 10

Fist 0 0 0 0 0 664 1215 9 312

OkLeft 4 0 0 0 0 1 15 2165 15

OkRigth 27 0 0 0 0 0 6 2 2165

Table 6.17: Confussion matrix for dictionary described in [Molina et al., 2011] applying evaluation
scheme D(200).
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a b c d e

a 2149 38 1 12 0

b 60 2115 0 3 22

c 0 175 2025 0 0

d 242 755 0 1166 37

e 278 31 0 155 1736

Table 6.18: Confussion matrix for dictionary described in [Soutschek et al., 2008] applying eval-
uation scheme D(200).

m1 m2 m3 m4

m1 1730 423 1 46

m2 0 2030 1 169

m3 2 1523 386 289

m4 0 38 1 2161

Table 6.19: Confussion matrix for Miscellaneous pose-based dictionary applying evaluation
scheme D(200).
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Appendix B: Hand Descriptor1

Some global parameters that will be used both for extracting additional silhouette features and

for the gesture classi�cation are �rst computed. These parameters are the Geodesic Center (C)

of the hand, the length and orientation of the axes of the ellipse �tted to the hand silhouette

and the Minimum Depth Point. C is estimated by performing the ultimate erosion [Lantuejoul

and Maisonneuve, 1984] up to a point (see Figure 6.2.1). This is an approximation to the center

of gravity of the mask which is guaranteed to be within the mask. The ultimate erosion is used

to reduce the bias introduced by the �nger shapes in the estimation of this central point. The

depth of this Center is directly obtained from the TOF camera.

Figure 6.2.1: Computation to Geodesic Center of the hand silhouette.

The ellipse �tted to the contour (see Figure 6.2.2) provides global information about the

silhouette shape (the hand size and its orientation). The axis length and orientation of the ellipse

are computed as the eigenvalues and eigenvectors of the covariance matrix of the coordinates of

the silhouette.

The Minimum Depth Point corresponds to the nearest point to the camera, that is, the

brightest pixel.

1This appendix is based on: J. Molina, M. Escudero-Viñolo, A. Signoriello, M. Pardás, C- Ferrán, J. Bescós,
F. Marqués, and J. M. Martínez, �Real-time user independent hand gesture recognition from time-of-�ight camera
video using static and dynamic models�, Machine Vision and Applications, pp. 1-18, 2011 (on-line �rst). The de-
scribed descriptor was developed by The Image and Video Processing Group, Polytechnic University of Catalonia,
Barcelona, Spain.
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Figure 6.2.2: Description superimposed to the hand mask

Once the silhouette mask has been obtained and its global parameters computed, the shape

has to be analyzed in order to extract the additional features needed for its classi�cation. Di�er-

ent features can be use for this aim. For instance, shape descriptors such as Fourier descriptors

[Kuhl and Giardina, 1982], Zernike [Teh and Chin, 1988] or Hu moments [Hu, 1962]. Another

traditional shape analysis technique consists in modeling the skeleton of the silhouette. We have

chosen to extend the method used in [Hernandez et al., 2007] for searching the crucial points of

a 2D human body for pose estimation. One of the advantages of this approach is the possibility

to include semantic information in the feature extraction process, thus making the system more

robust to noise or spurious detections (corresponding for instance to the arm). In our case, the

presence of extended �ngers must be detected. This can be achieved analyzing the distance from

the Geodesic Center (C) to the silhouette border. We use a robust method to search for crucial

points based on the extraction of the points of the silhouette that represent the local geodesic

distance maxima with respect to C. Semantic information is included by selecting only those

maxima that accomplish certain conditions in the distance function related to the width and

length of the �ngers.

The geodesic distance from C to any point x in the silhouette S is de�ned as:

dS (C, x) = n⇔ x ∈ δnS (C) and x /∈ δn−1
S (C) (6.2.1)

where δnS(C) is the geodesic dilation of size n of C within S, which can be expressed as:

δnS (C) =

n times︷ ︸︸ ︷
δ
(
...
(
δ
(
δ (C)

⋂
S
)⋂

S
)
...
)⋂

S (6.2.2)

being δ the morphological dilation of minimal size.

A one-dimensional function f(p) linking each pixel position p in the silhouette border with its
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geodesic distance with respect to C is then computed. This function f(p) yields the local maxima

associated with the crucial points as well as other minor local maxima due to segmentation noise.

Noise peaks present lower intensities than peaks associated with crucial points. Therefore, they

are removed by applying a H-maxima operator [Soille, 2003].

This �ltering is obtained by applying an opening by reconstruction (γrec) to the function

f(p) that provides us with a function g(p):

g (p) = γrecf (f (p)−H) = δ∞f (f (p)−H) (6.2.3)

where γrec(f − H) is the unidimensional geodesic dilation of the function f − H within f

iterated until idempotence, and H is a constant value related to the estimated noise intensities.

In this way, local maxima that have a smaller intensity than H are eliminated. In Figure 6.2.3,

the function representing the geodesic distance evaluated on the silhouette is shown before (f(p))

and after (g(p)) the H-maxima. The removed local maxima are marked by circles and the selected

local maxima are selected by vertical lines.

Figure 6.2.3: Geodesic distance from Geodesic Center to silhouette border points before (in
green) and after (in blue) applying the H-maxima. Local maxima correspond to prominent hand
features (the �ngers).

111



Although the geodesic distance using (6.2.1) has a high computational cost, and due to the

fact that we only need the geodesic distance on the silhouette contour, in a limited computational

capacity context a simpli�ed calculation can be performed, as described in [Hernandez et al.,

2007].
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Appendix C: Glossary

HCI Human-Computer Interaction

TOF Time-Of-Flight

DOF Degreess Of Freedom

NT Natural Training

ST Synthetic Training

SHP Static Hand Posture

DHG Dynamic Hand Gesture

SVM Support Vectors Machine

FSM Finite State Machine

DTW Dynamic Time Warping
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Appendix D: Publications

The following publications have been produced in association with this thesis:

� Related with visual descriptors and classi�cation techniques:

J. Molina, E. Spyrou, N. Sofou, and J. M. Martínez, �On the selection of mpeg-7 visual descriptors

and their level of detail for nature disaster video sequences classi�cation,� in Proceedings of the

semantic and digital media technologies 2nd international conference on Semantic Multimedia,

SAMT'07, (Berlin, Heidelberg), pp. 70-73, Springer-Verlag, 2007.
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Appendix D: Conclusiones y trabajo

futuro

El objetivo de esta tesis es el de ofrecer contribuciones en el ambito de reconocimiento de gestos

manuales. Las principales contribuciones atienden a mejoras en usabilidad, escalabilidad y rep-

resentatividad.

En primer lugar, en el Capítulo 2 se presenta una colección de videos capturados y de imágenes

generadas sintéticamente, con información de profundidad. A su vez, se propone una novedosa

colección de factores críticos a tener en cuenta en el proceso de elaboración de una colección de

contenido asociado a gestos manuales. Distintas colecciones del Estado del Arte son analizadas en

relación a la cobertura de estos factores críticos. La colección recopilada presenta una taxonomía

en el tipo de gestos: basados en postura, basados en trayectoria, basados en postura y trayecto-

ria y por último, compuestos. En terminos de representatividad, 11 usuarios reales participaron

en la grabación de la colección. Además, variaciones del punto de vista son introducidas en el

contenido sintético, aumentando así tambien la representatividad de la colección. Es importante

destacar que el uso del metodo de generación sintética propuesto supone una importante mejora

en terminos de escalabilidad, permitiendo la introducción de nuevas colecciones de gestos sin

necesidad de grabar a usuarios reales. El sistema de generación de posturas sintéticas ha sido

validado mediante un esquema de evaluación en el que el sistema es entrenado con contenido

sintético mientras que la evaluación se realiza con usuarios reales. Los resultados son promete-

dores, alcanzando cifras comparables, para algunos diccionarios, a esquemas de entrenamiento

con usuarios reales. En el Capítulo 3 el método para la generación de contenido sintético es

extendido mediante el concepto de usuario sintético. Esta aproximación es evaluada en terminos

de tasa de acierto, entrenando con la colección sintética y evalunado con usuarios reales. Los

resultados mejoran en relación a la primera aproximación de generación sintética, alcanzando

resultados, para algunos de los diccionarios, mejores que con esquemas de entremaniento con un

solo usuario real.

Haciendo uso de algunos de los diccionarios presentados en el Capítulo2 dos sistemas de

reconocimiento de gestos manuales son presentados y evaluados. En el Capítulo 4 se presenta
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un sistema que premia la usabilidad, contemplando para ello gestos de distinta naturaleza. El

descriptor utilizado para llevar a cabo la clasi�cación está basado en la identi�cación de puntos

característicos dentro de la silueta de la mano, que es calculada usando el centro geodésico de la

misma. Este descriptor, como se puede comprobar en [Molina et al., 2011] mejora los resultados

obtenidos usando otros descriptores basados en información de contorno. Tres tipos de gestos

son considerados: basados en postura, basados en trayectoria y compuestos (i.e. secuencia de

posturas). El sistema ha sido evaluado con un número signi�cativo de usuarios, obteniendo

resultados independientes de usuario y comparables a los recogidos en el Estado del Arte. En

cuanto a la usabilidad el sistema es capaz de funcionar en tiempo real, permitiendo una correcta

interacción hombre-máquina. En el Capítulo 5 se presenta un segundo sistema de reconocimento

de gestos, en este caso basados en trayectoria. Además de ser capaz de funcionar en tiempo real,

es robusto a a variaciones en el punto de vista de la cámara y a la velocidad de ejecución de los

gestos. A su vez, ha demostrado un correcto funcionamiento independientemente del usuario,

habiendo sido realizada una evaluación con usuarios de distinta altura y distinto tamaño de brazo.

Se propone una novedosa de�nición de los patrones de trayectoria basados en un modelo de brazo

inspirado en la anatomía humana, los resultados tras una evaluación con usuarios reales acreditan

la capacidad de representación del modelo propuesto. Se concluye que el uso de información de

profunidad, además de mejorar computacionalemente la estimación de la trayectoria de la mano,

mejora los resultados de clasi�cación sobre el uso de solo información 2D. Los resultados son

comparables a los presentados en otros trabajos del Estado del Arte.

Como consecuencia de los resultados y conclusiones alcanzados en el desarollo de esta tesis

se proponen tres líneas de trabajo futuro:

� En cuanto a la escalabilidad (ver Capítulo 3) parece interesante la creación de nuevos

usuarios sintéticos, con distintas características en sus manos arti�ciales. Estas modi�ca-

ciones podrían introducirse variando el rango y la resolución con las que se muestrean las

parametros de con�guración de la mano (ver Sección 3.2.2). Otra opción consiste en la

variación de más parametros de la mano, por ejemplo, el grosor de los dedos.

� En cuanto al sistema de reconocimiento de gestos manuales genéricos descrito en el Capítulo

4 se pueden plantear varias líneas de mejora: el re�namiento de la segmentación de la mano,

por ejemplo, mediante la utilización de información de color; la mejora del descriptor

utilizado; la integración de un modelo de cadenas ocultas de Markov para procesar la

secuencia temporal de detecciones de posturas, para así hacer el sistema más robusto ante

detecciones erroneas.

� En relación al sistema de reconocimiento de gestos manuales basados en trayectoria pre-

sentado en el Capítulo 5: la integración de un modelo de cadenas ocultas de Markov para

procesar la secuencia temporal de detecciones de translaciones; la utilización de informa-
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ción de color y profundidad registrada que podría permitir el reconocimento de gestos más

complejos.
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