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Summary  

Accurate lymphoma diagnosis, prognosis and therapy still require additional markers. 

Additionally, some aspects of lymphoma pathogenesis are still partially unexplained.  

In this work the potential relevance of microRNA (miRNA) expression in a large series of cases 

that included all major B-cell lymphoma types has been investigated.  

First, a series of 147 fresh frozen lymphomas and 15 controls were inspected for their miRNA 

expression profile. This analysis yielded a signature of 128 miRNAs that enabled the 

characterization of the different B-cell lymphoma types. Then a second series of cases was 

used to corroborate the differential expression of selected miRNAs vs. non-tumour controls.  

The viability of using miRNAs as additional markers for differential diagnosis has been 

investigated by comparing Burkitt Lymphoma (BL) vs. Diffuse Large B-cell Lymphoma (DLBCL) 

and resulted in the identification of 19 significant miRNAs (False Discovery Rate < 0.05). 

Not only: the correlation between miRNA expression profiles, gene expression profiles and 

pathway activation was examined in Mantle Cell Lymphoma (MCL), suggesting the implication 

of different miRNAs in pathway regulation. In particular, loss of miR-26a may contribute to NF-

kB pathway activation. 

Furthermore the clinical prognostic value of miRNAs has been examined in MCL cases, where 

miR-20b was identified as a good candidate for overall survival stratification of the patients.  

Finally, selected miRNAs were sequenced to test the presence and the relevance of miRNA 

sequence variation in a series of 95 DLBCL cases.  

In summary this work identifies good candidate miRNAs that might be used to better recognise 

the different B-cell lymphoma types (especially BL and DLBCL), and other miRNAs that could 

contribute to lymphoma pathogenesis elucidation. 
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Resumen 

Introducción 

El diagnóstico de los linfomas si bien está claramente establecido por la Organización mundial 

de la salud (WHO), está sujeto a continuas revisiones debidas a nuevos descubrimientos y a la 

mayor disponibilidad de técnicas que puedan ayudar a definir con precisión los distintos tipos 

tumorales. 

Uno de los descubrimientos más valorados en los últimos años es la existencia de los 

microRNAs (miRNAs): secuencias cortas de RNA cuya actividad es la represión de la expresión 

de proteínas. 

El papel de los miRNAs en el desarrollo de distintas enfermedades incluyendo el cáncer ya ha 

sido demostrado, y su expresión anómala ha sido relacionada con un número cada día mas 

alto de enfermedades complejas. Además, la expresión diferencial de los miRNAs ha sido 

demostrada en distintos tipos de tumores, pero mucho queda por investigar dado que los 

miRNAs son un grupo de moléculas que se han empezado a estudiar de forma sistemática hace 

solo una decena de años. 

En este trabajo serán estudiados los principales tipos de linfomas de células B: linfoma de 

Burkitt (BL), leucemia linfática crónica (CLL), Linfoma B difuso de célula grande (DLBCL), 

linfoma folicular (FL), linfoma de células del manto (MCL), linfomas del tejido linfoide asociado 

a mucosas (MALT), linfoma ganglionar de zona marginal (NMZL) y linfoma esplénico de la zona 

marginal (SMZL). Los controles utilizados serán ganglios reactivos, amígdalas y bazos, además 

de células purificadas procedentes de la zona del manto en el análisis específico de los casos 

de linfoma de células del manto. 

Objetivos 

Este trabajo se propone:  

• Analizar el perfil de expresión de miRNAs en una serie de  linfomas B y controles 

• Investigar la utilidad de los miRNAs como marcadores para diagnóstico diferencial y 

supervivencia global  

• Evaluar el papel de los miRNAs en el desarrollo del linfoma de células del manto 

• Buscar la existencia de variaciones en la secuencia nucleotídica de algunos miRNAs 
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Materiales y métodos 

En primer lugar se han evaluado los niveles de expresión de los miRNAs de 147 linfomas B, 15 

tejidos de control, 8 líneas celulares y 3 muestras no tumorales de células específicas de la 

zona del manto, mediante hibridación de arrays de expresión de miRNAs de un color, 

incluyendo 470 miRNA humanos. 

Para validar la expresión de los miRNAs seleccionados se efectuó PCR cuantitativa en muestras 

de tejido congelado o parafinado. 

En el caso de los linfomas de células del manto, se estudió también su perfil de expresión 

génica mediante arrays de expresión. 

Los datos fueron normalizados mediante un script desarrollado por el grupo de bioinformática 

del CNIO con el programa R (http://www.r-project.org/). 

La evaluación de los datos de arrays de miRNAs se efectuó mediante el programa significance 

analysis of microarray (SAM) y el algoritmo K-nearest neighbour (KNN) 

(http://tnasas.bioinfo.cnio.es/). Los datos de PCR cuantitativa se analizaron mediante t-test 

(http://pomelo2.bioinfo.cnio.es/) y comparando directamente los –ΔCT. El análisis de 

supervivencia se realizó con el programa SPSS. 

Resultados 

El análisis de los 147 casos procedentes de los distintos tipos de linfomas permitió detectar, 

mediante el programa SAM, 128 miRNAs significativos (FDR<0.01); mientras el algoritmo KNN 

identificó 120 miRNAs cuya expresión facilita la correcta clasificación del 86,4% de las 

muestras. 

Las mismas 147 muestras fueron evaluadas también en conjunto frente a tejido no tumoral de 

ganglios reactivos y amígdalas (bazos para los SMZL). Una serie de miRNAs resultaron 

significativos y algunos de ellos se validaron en una segunda serie de 66 linfomas de células B 

(incluyendo todos los tipos de linfomas de la serie inicial) y 8 controles (4 ganglios reactivos, 3 

amígdalas y un bazo). Los miRNAs que mejor se validaron fueron: miR-31 y miR-133a (perdidos 

en los tumores) y el miR-513 (ganado en los tumores). 

Para evaluar la hipótesis de que los miRNAs pueden ser utilizados para discriminar entre dos 

tipos de linfomas se compararon también BL y DLBCL. Este análisis identificó 43 miRNAs 
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significativos, que fueron investigados en una segunda serie de 71 muestras. Diecinueve 

miRNAs fueron validados, entre ellos: miR-146a, miR-155, miR29b y miR-17-3p. 

En la serie de casos de linfomas de células del manto analizada, se han identificado 117 

miRNAs significativamente ganados o perdidos en los tumores (FDR<0.05) con respecto a los 

controles. La correlación de estos datos con datos de expresión de genes ayudó a identificar 

una serie de miRNAs potencialmente relevantes en la activación de rutas celulares relevantes. 

Entre ellos miR-26a, que también resultó perdido en las líneas celulares. Experimentos 

funcionales en las líneas celulares demostraron que la reintroducción de miR-26a obstaculiza 

la activación de la ruta de NF-kB, confirmando la hipótesis de que los miRNA pueden tener 

relevancia no solo sobre la expresión de proteínas, sino también en la activación de rutas 

biológicas. 

La correlación de los miRNAs con la supervivencia fue inicialmente evaluada en 22 casos de los 

linfomas de células del manto utilizando los datos de los arrays de miRNAs. Los resultados 

fueron validados en una segunda serie de 54 casos procedentes de tejido parafinado. La 

expresión de miR-20b se encontró relacionada con la supervivencia global. La sobre-expresión 

de ese miRNA fue relacionada con un peor pronóstico. 

Por último se secuenciaron 14 miRNAs en una serie de 95 casos de DLBCL. Este análisis 

identificó la existencia de diversos polimorfismos ya conocidos y también la existencia de 

variantes en miR-588 y miR-650 que en este momento aún no se encontraban descritas en las 

bases de datos del National Center for Biotechnology Information (NCBI) y Ensembl. 

Discusión 

El papel de los miRNAs en el desarrollo del cáncer ha sido demostrado numerosas veces. Este 

trabajo está dirigido por un lado a la identificación de miRNAs que puedan ayudar con el 

diagnóstico  diferencial y con la evaluación del pronóstico, por otro lado a la identificación de 

miRNAs que tengan un papel en la patogénesis de los linfomas.  

Algunos de los miRNAs encontrados diferencialmente expresados están probablemente 

relacionados con las características de cada tipo de linfoma, como por ejemplo la sobre-

expresión de los miRNAs del cluster miR-17-92 y la sobrexpresión de MYC, especialmente en 

BL.  
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Algunos de los miRNAs relevantes en el diagnóstico diferencial entre BL y DLBCL han sido 

también encontrados en otra serie independiente, reforzando la hipótesis de que esta técnica 

es reproducible y que estos miRNAs son realmente útiles en el diagnóstico  diferencial. 

Una de las novedades introducidas en este trabajo es la correlación entre la expresión de los 

miRNAs con la activación de las rutas celulares. El miR-26a, cuya perdida en los casos de 

linfomas de células del manto se ha demostrado relacionada con la activación de NF-kB en 

líneas celulares, es uno de los pocos miRNAs que se estudiaron también in vivo y que quizás 

podría ser un buen candidato para desarrollar algún ensayo clínico. 

Finalmente, la evaluación de la relevancia de variantes en la secuencia de los miRNAs es de 

difícil estimación debido a que aun hay pocos estudios sobre este tema y por la forma de 

actuar propia de los miRNAs.  
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BAX BCL2-associated X protein 

BCL2 B-cell CLL/lymphoma 2 

BCL6 B-cell CLL/lymphoma 6  

BLIMP see PRDM1 

BMI1 polycomb ring finger oncogene 

BSA Bovine Serum Albumin 

CCND1 cyclin D1 

CCNE2 Cyclin E2 

CD Cluster of Differentiation 

CDKN1A cyclin-dependent kinase inhibitor 1A, also called p21 

CDKN1B cyclin-dependent kinase inhibitor 1B, also called p27 

CDKN2A cyclin-dependent kinase inhibitor 2A, also called p16 or ARF 

CDKN2B cyclin-dependent kinase inhibitor 2B, also called p15,  

CDK4  cyclin-dependent kinase 4  
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DLBCL Diffuse Large B Cell Lymphoma 

DMEM Dulbecco's Modified Eagle Medium 
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DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen 

DTT Dithiothreitol 

EBV Epstein Barr Virus 

EZH2 enhancer of zeste homologue 2 

FAM 6-carboxyfluorescein 

FBS Fetal Bovine Serum 

FC Fold change 
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FE Feature extraction 

FF Fresh frozen 

FFPE Formalin fixed paraffin embedded 

FISH Fluorescent In Situ Hybridization 

FL Follicular Lymphoma 

FSCN1 fascin homolog 1, actin-bundling protein 

FUS1 see TUSC2 

GC Germinal Center 

GCET2 germinal center expressed transcript 2 

GEP Gene expression profile 

GEPAS Gene expression profile analysis suite 

GSEA Gene set enrichment analysis 

h hours 

H&E Haematoxylin and Eosin 

HL Hodgkin lymphomas 

HR Hazard Ratio 

hsa-miR- Homo sapiens miRNA (Since most of the miRNA here described are of human origin 

“hsa” been generally omitted) 

IARC International Agency for Research on Cancer 

Ig Immunoglobulin 

IgH Ig Immunoglobulin heavy chain 

IgVH Ig Immunoglobulin variable heavy chain 
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Ki-67 Antigen identified by monoclonal antibody 

KNN K-nearest neighbour 

KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 

JAK Janus kinase 

LN Lymph Node 

LMO2 markers including LIM domain only 2 

LPL Lymphoplasmacytic Lymphoma  

MAPK mitogen-activated protein kinase 

MAP3K2 mitogen-activated protein kinase kinase kinase 2, also called MEEK2 

MAP3K14 mitogen-activated protein kinase kinase kinase 14, also called NIK 

MALT Mucosa Associated Lymphoid Tissue 

MCL Mantle Cell Lymphoma 

MCL-1 myeloid cell leukemia sequence 1 (BCL2-related) 

MEKK2 see MAP3K2  
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NK Natural Killer 

NMZL Nodal Marginal Zone Lymphoma 
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PAX5 target paired box 5 
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PcG DNA-binding Polycomb-group family 

PCR Polymerase Chain Reaction 

PRDM1 PR domain containing 1, with ZNF domain, also called BLIMP1 
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Pri-B-Cell Primitive B Cell 
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PTEN phosphatase and tensin homolog  

PUMA P53 Up-regulated Modulator of Apoptosis 
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OS Overall survival 
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1.1. Lymphomas 

1.1.1. Basic features of lymphomas distinction 

Lymphomas constitute a large group of neoplasms derived from B, T or NK cells, or their 

progenitor cells. The first distinction to address among lymphomas is between Hodgkin 

Lymphomas (HL) and non-Hodgkin Lymphomas (NHL). The former type accounts for about 13% 

of lymphomas and its major recognizing feature is the presence of Reed Stemberg cells. The 

latter type, NHL, is a larger group of heterogeneous neoplasms accounting for the resting 87% 

of Lymphomas. Only a small fraction of NHL are derived from T and NK lymphocytes (about 

10%), while the rest of NHL are derived from B-Cells (90%). B-cell lymphomas still represent a 

group of diseases that includes more than 20 neoplasms, some of them rare, but all of them 

sharing the common background of B-cell origin (Swerdlow et al., 2008). 

1.1.2. Epidemiology 

One of the most important organisms that take care about epidemiology of cancer in USA is 

the National Cancer Institute (http://seer.cancer.gov). According to their data, NHL represents 

about 4-5% of new diagnosed cancers. The incidence B-cell lymphomas is 16.5 out of 100.000 

people per year. Survival rate is of about 70.4% at five years. The median age of diagnosis is 67 

years. Lifetime risk is assessed at 2.12%, it means that about 1 person out of 47 will probably 

be diagnosed for a NHL during his (or her) lifetime. 

In Europe there are about 88000 new cases per year of NHL and in Spain they are about 6300 

as reported by the International Agency for Research on Cancer (AIRC) in collaboration with 

the World Health Organization (WHO) (http://globocan.iarc.fr). More information about 

cancer incidence in Spain is available at the National Statistical institute of Spain web site: INE 

at www.ine.es.  

Lymphomas epidemiology data can be slightly different depending on the specific type of B-

cell lymphoma, the age and geographic region of the group of study (Swerdlow et al., 2008). 

Figure 1 summarizes the frequencies of the most common B-cell lymphoma types (Armitage 

and Weisenburger, 1998). In general, Diffuse large B-cell lymphoma (DLBCL), followed by 

Follicular Lymphoma (FL) are the most frequently detected. 

http://www.who.int/entity/ionizing_radiation/research/iarc/en/index.html
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Figure 1. Relative frequencies of each B-cell lymphoma type (Armitage and Weisenburger, 1998).   

 

1.2. B-cell lymphomas 

The WHO establishes lymphoid tumour classification mainly according to the clinical history of 

the patient, the histopathological morphology of the tumour, the immunophenotype and 

chromosomal alterations. Their guidelines are collected in the book: “WHO classification of 

Tumours of Haematopoietic and Lymphoid Tissues” (Swerdlow et al., 2008). Moreover, B-cell 

lymphoma characteristics have been reviewed in many manuscripts (Jaffe, 2009; Kuppers, 

2005; Lenz and Staudt, 2010). Principal details of the B-Cell lymphomas neoplasms included in 

this study are summarized in Table 1 according with WHO description (Swerdlow et al., 2008). 

Diagnosis, prognosis and relapse may vary according to the specific lymphoma type (Swerdlow 

et al., 2008).  

Even if their classification and therapy protocols are already established, revision of these 

criteria is undertaken continuously.  
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Table 1. Summary of the main characteristics of the lymphoma types used in this work according whit WHO criteria 
(Swerdlow et al., 2008). 

 

 

1.2.1. B-cell lymphoma cell of origin 

It is believed that the different lymphoma types have their origin at different stage of B-cell 

development. It is documented by somatic hypermutation status and surface marker 

expression of tumour cells (Alizadeh et al., 2000; Chapman et al., 1996; Chiorazzi et al., 2005; 

Hummel et al., 1994; Pascual et al., 1994; Swerdlow et al., 2008; Zhu et al., 1995). 

The origin of the lymphoma types studied in this thesis is summarized in Figure 2 (Kuppers, 

2005; Swerdlow et al., 2008). 

Lymphoma 
Type

Principal site of 
involvement

Principal 
alterations

Prognosis/OS Differential 
diagnosis

Immunophenotype 

BL Lymph node, 
Centra l  nervous  
system poss ible 
involvement 
(sporadic form)

MYC trans location 
t(8:14)(q24;q32) or                      
t(8;22)(q24 ;q11) or 
t(8;2)(q24;p12)

Aggress ive, good 
response to 
treatment.

Pos i tive for: CD19, CD20, CD22, 
CD10, BCL6, CD38, CD77, CD43, 
IgM (with l ight cha in 
restriction), Ki67. Negative for: 
BCL2,TdT

Medium s ized cel l s  whit di ffuse 
growth pattern and "s tarry sky" 
pattern. High prol i feration and 
apoptos is  fraction

CLL Periphera l  blood, 
bone marrow,  
lymph node, 
spleen, l iver

13q14.3del  in 50% of 
the cases ,                      
tri somy 12 i s  frequent.                           
11q22-23del  (ATM)                 
17p13del  (TP53), 
6q21del

Sometimes  
indolent curse. 
There i s  an 
aggress ive variant.

With MCL Pos i tive for: IgM, IgD, CD20, 
CD22, CD5, CD19, CD79a, CD23, 
CD43, CD11c (week). Negative 
for CD10 and Cycl inD1. 

Prol i feration centres . Smal l  
lymphocyte, clumped chromatin, 
round nucleus , low mitotic activi ty. 
Some cases  have plasmacytoid 
di fferentiation

DLBCL Lymph node, 
gastro intestina l  
tract, bone 
marrow 

ABC subtype:                                                   
ga in 3q, 18q21-q22,                               
loss  6q21-q22.                                
GCB subtype:                              
ga in 12q12 BCL2, BCL6               
and MYC 
rearrangement

Heterogeneous . 
GCB subtype show 
better cl inica l  
outcome, 60% of 
treated patients  
survive more than 
5 years

Wth BL and 
blastoid MCL

Pos i tive for: CD19, CD 20+, 
CD22+, CD79a, Ki67, 
IgM>IgG>IgA. Note: CD10+ in 
60%, BCL6+ in  80%,  P53+ in 50%

Prol i feration of large lymphoid cel l s . 
Partia l  nodal  involvement. Di fferent 
DLBCL subtypes .

FL Lymph node,  
bone marrow, 
periphera l  blood, 
spleen,  gastro 
intestina l  tract, 
skin

Up to 90%                              
t(14;18)(q32;q21)             
BCL2 rearrangements .               
5-15% 3q27 and or 
BCL6 rearrangement

Long term surviva l  
up to 8 years

With DLBCL. 
Progress ion 
to DLBCL i s  
a lso 
poss ible

Pos i tive for: Slg+, CD19, CD20, 
CD22, CD79a, BCL2, BCL6, CD10. 
Negative for: CD5, CD43, 
IRF4/MUM1. Note: (IgM+/-, IgD, 
IgG, or rarely IgA)

Neoplastic fol l i cles  are often poorly 
defined and usual ly have attenuated 
or absent mantle zones . Centroblasts  
and centrocytes  lost thei r  normal  
dis tribution (polarization)

MALT Gastro intestina l  
tract, sa l ivary 
gland, head and 
neck, ocular 
adnexa, skin, 
thyroid, breast

t(11;18)(q21;q21)                
(API2-MALT1) 
t(1;14)(p22;q32) (BCL10) 
t(14;18)(q32;q21) 
(MALT1) 
t(3;14)(p14.1;q32) 
(FOXP1)

Frequent indolent 
course and s low 
dissemination. 
Long disease free 
interva ls

With H. 
pylori  
infection, FL, 
MCL, CLL,  
Progress ion 
to DLBCL  

Pos i tive for: IgM, (less  
frequently for IgA or IgG) CD20, 
CD79a, CD21 and CD35. Negative 
for: CD5, CD10, CD23.  Note: Light 
cha in restriction,  CD43+/- 
(weak) and CD11c+/- (weak). No 
speci fic marker so far

Smal l  tumoral  lymphocytes  infi l trates  
around the B-cel l  fol l i cles , external  to 
fol l i cle mantle. Large cel l s  
resembl ing centroblast or 
immunoblast are usual ly present. 
Lymphoepithel ia l  les ions .

MCL Lymph node. 
Spleen,  
periphera l  blood. 
gastro intestina l  
tract. 

Cycl inD1 a l teration 
t(11;14)(q13;q32)

3-4 years . 
Aggress ive forms  
whit worse course 
are identi fed as  
blastic

MZL Pos i tive for: IgM/IgD, CD5, CD43, 
Cycl inD1. Negative for: CD10, 
CD23, BCL6

Monomorphic lymphoid prol i feration 
in the mantle zone area. Cel l s  are 
from smal l  to medium s ize. Nuclei  
can be i rregular

NMZL Lymph node Trisomies  3,18 and 7 Genera l ly low 
aggress ivi ty: about 
70% of patients  
survive longer that 
5 years

Progress ion 
to DLBCL

Pos i tive for: pan-B-cel l  markers , 
CD43 in 50% of the cases , BCL2. 
Negative for: CD5, CD23, CD10, 
BCL6, Clycl inD1. Note: IgD+ 
sometimes

Tumor cel l s  surround reactive 
fol l i cles  and expand into the 
interfol l i cular areas . Tumor cel l s  are 
composed of  variable numbers  of 
margina l  zone (centrocyte-l ike and 
monocytoid) B-cel l s , plasma cel l s  and 
scattered transformed B-cel l s

SMZL Spleen 7q31-32del  in 40% 
cases . 7q21 (CDK6) 
deregulation.            
Tri somy 3q

Slow progress ion. 
Sometimes  
indolent course,  
Aggress ive only in 
some cases .

With 
CLL,MCL,FL,    
LPL

Pos i tive for: IgM, IgD, CD20, 
CD79a. Negative for: CD5, CD10, 
CD23, CD43,annexinA1, Cycl inD1, 
CD103 usual ly neg. 

Lymphocytes  replace splenic withe 
pulp or reactive germinal  center with 
effacement of fol l i cle mantle.  
Infi l tration of red pulp. Plasma cel l s  
can be found in the center of white 
pulp nodules

Principal morphology features
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Figure 2. The different maturation steps of B-cell are here illustrated together with the hypothetical lymphomas 
which may derive from these cells. MCL=Mantle Cell Lymphoma, BL= Burkitt Lymphoma, FL=Follicular Lymphoma, 
CLL=Chronic Lymphocytic Leukemia, MZL=Marginal Zone Lymphoma, MALT=Mucosa Associated Lymphoid Tissue, 
NMZL=Nodal marginal zone lymphoma, SMZL=Splenic Marginal Zone Lymphoma, DLBCL=Diffuse large B-cell 
lymphoma, GC=Germinal Center, ABC=Activated B-Cell. 

 

1.2.2. Lymphoma Treatment 

Treatment scheme in NHL varies according to the lymphoma type, the extent of the tumour, 

the stage, the score of International Prognostic Index (IPI), the site of involvement and the 

expression of specific markers which account for their aggressiveness. 

The web site of American Cancer Society (www.cancer.org) offers a general, and updated, view 

of different cancer treatments. 

A description of the three B-cell lymphomas types investigated more in depth in this work 

(MCL, BL and DLBCL) is provided as follows. 
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1.2.3. Mantle Cell Lymphoma (MCL) 

1.2.3.1. General features 

Mantle cell lymphoma is a tumour accounting for 6-7% of non-Hodgkin lymphomas (Armitage 

and Weisenburger, 1998). The median age of presentation is about 63 years and high rate of 

male prevalence, unfortunately it is frequently diagnosed at stage III-IV (Armitage and 

Weisenburger, 1998).  

The hallmark of this tumour is the overexpression of MCL cyclin D1 (CCND1) (de Boer et al., 

1993), the other main characteristics of MCL are listed in Table 1.  

Besides the classical high-grade, small B-cell form of MCL, other subtypes are described. 

Among them the blastoid variant is the most common, and is generally more aggressive (Raty 

et al., 2003). 

Additional heterogeneity is documented inside this disease, and a further stratification has 

been proposed according to DNA abnormalities (Thelander and Rosenquist, 2008). 

1.2.3.2. Molecular characteristics 

MCL probably originates from follicular mantle zone cells (Hummel et al., 1994; Swerdlow et 

al., 2008), therefore the majority of MCL patients do not show hypersomatic mutations and 

expresses high levels of IgM and IgD (Jares et al., 2007). Nevertheless up to 40% of MCL cases 

may carry somatic hypermutation of IgVH genes, suggesting  a different origin of this subset of 

tumour that is probably derived from cells that underwent germinal center reaction (Camacho 

et al., 2003; Kienle et al., 2003; Orchard et al., 2003; Welzel et al., 2001).  

Overexpression of cyclin D1 can be detected in virtually all patient and is caused principally by 

the translocation t(11;14)(q13;q32) that brings the CCND1 gene under the control of the 

promoter of immunoglobulin heavy chain (IgH) (Jares et al., 2007; Raffeld and Jaffe, 1991).  

The consequence of overexpression of Cyclin D1 is the deregulation of the cell cycle at the 

transition G1/S. In fact Cyclin D1 participates in the control of the G1 phase by binding the 

cyclin-dependent kinase 4 (CDK4). These complexes phosphorylate and inactivate 

retinoblastoma 1 (RB1), abrogating its suppressor effect on cell cycle progression (Ewen et al., 

1993).   
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There is a minor percentage of patients in which the classical genetic alteration of CCND1 is 

not detected. It has been proposed that in these subjects overexpression of Cyclin D2 (CCND2) 

and Cyclin D3 (CCND3) may drive similar effects of CCND1 alteration (Fu et al., 2005).  

Nevertheless, MCL pathogenesis is yet to be fully explained, since genetic changes so far 

identified cannot account for all of the main features of the tumour cells. In fact, in vivo 

experiments, showed that cyclin D1 overexpression alone does not fully justify tumour 

development (Bodrug et al., 1994). 

Indeed, there are still various MCL oncogenic features that are not explained by the alterations 

so far identified. 

Other recurrent chromosomal alterations can be found in MCL samples.  

These alterations affect the expression of several proteins involved in the regulation of cell 

cycle, such as the cyclin-dependent kinase 4 (CDK4) on Chr 12q13, the cyclin-dependent kinase 

inhibitor 2A (CDKN2A, also called p16 or ARF), which is on Chr 9p21 and MYC on Chr 8q21.  

Other alterations affect the genes involved in apoptosis, for instance the B-cell CLL/lymphoma 

2 (BCL2) on chr 18q21.3 and BCL2-like 11 (BCL2L11, also called BIM) on Chr 2q13.  

DNA damage repair components are affected too, for instance the ataxia telangiectasia 

mutated (ATM) on chr 11q22, and the tumour protein p53 (TP53) on chr 17p13.3 (Bea et al., 

1999; Bea et al., 2009; Camacho et al., 2002; Pinyol et al., 1997). 

Additional deregulated pathways has been also described, among them NF-kB activation 

(Martinez et al., 2003). The most important deregulated pathways are showed in Figure 3 

(Jares et al., 2007). 
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Figure 3. Chief deregulated pathways in MCL (Jares et al., 2007). The boxes outline deregulated pathways. 

 

1.2.3.3. Prognosis, treatment and survival of MCL 

The median survival of the patients is of about 4 years, even if a small percentage of cases (up 

to 15%) show longer survival period (Meusers et al., 1997; Weigert et al., 2009). In fact, clinical 

behaviour, as well as survival, can consistently vary from patient to patient  (Fernandez et al., 

2010; Jares et al., 2007; Meusers et al., 1997; Orchard et al., 2003; Rosenwald et al., 2003). 

Blastoid form is generally associated with more aggressive disease and poorer outcome (Raty 

et al., 2003), while IgVH somatic mutation is associated with good prognosis (Orchard et al., 

2003). 

MCL treatment is still heterogeneous, but generally consists of high dose chemotherapy, 

combined with rituximab (Dreyling et al., 2005; Romaguera et al., 2005). 
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Resistance to chemotherapy can occur and is associated with poor outcome (Alinari et al., 

2012). Additionally, a subgroup of patients presents a rapid relapse (Rosenwald et al., 2003).  

Efforts have been done to correlate the relapse to expression of specific markers and some 

results were found for CCND1, Sox11 and Ki-67 (Brizova et al., 2008; Klapper et al., 2009; 

Rosenwald et al., 2003; Wang et al., 2008) and IgVH somatic mutation (Kienle et al., 2003). 

High tumour cell proliferation is also a factor that has been associated to poor prognosis 

(Argatoff et al., 1997; Bosch et al., 1998).   

Identification at time of diagnosis of non-responders at the first line therapy or of poor-

outcome cases is crucial for deciding between alternative treatment schemes; thus, new 

markers are required for better stratification of patients. 

1.2.4. Diffuse Large B-Cell Lymphomas (DLBCL) 

1.2.4.1. General features 

Diffuse large B cell lymphoma represent about 30-40% of non-Hodgkin lymphomas, being thus 

the most common B-cell lymphoma type in adults (see Figure 1). The median age of 

presentation is around 64 years (Armitage and Weisenburger, 1998): further details are shown 

in Table 1.  

The existence of different subtypes of DLBCL has been broadly debated, and three main type 

of DLBCL lymphomas have been recognized: germinal center B-like DLBCL (GCB or GC DLBCL), 

activated B-like DLBCL (ABC DLBCL) and primary mediastinal B cell lymphoma (PMBL)  

(Alizadeh et al., 2000; Lenz et al., 2008b; Wright et al., 2003), which is the less frequent form.   

The cases studied in this work belong mainly to GC or ABC subtype. 

1.2.4.2. Molecular characteristics 

Diffuse large B cell lymphoma is a heterogeneous disease (Gurbuxani et al., 2009). It is 

considered a high-grade large cell lymphoma, characterized by the proliferation of B cells that 

can have different origins and belonging to different developmental stage (see paragraph 

1.2.4.3.).  

Despite the heterogeneity typical of this disease, common chromosomal abnormalities can be 

identified. For instance translocation and consequent overexpression of B-cell CLL/lymphoma 
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6 (BCL6) (Chr 3q27) occurs in about 35% of the cases (Pasqualucci et al., 2003) and may lead to 

deregulation of B cell differentiation (Klein and Dalla-Favera, 2008). Another additional 

alteration is MYC translocation that can be found in about 10% of the cases (Hummel et al., 

2006).  

1.2.4.3. DLBCL sub-classification 

In 2000 a study pointed out the existence of different subgroups of DLBCL (Alizadeh et al., 

2000), the ABC and GC subtypes. These two sub-groups were proposed to derive from a 

different cell of origin; in particular GC subtype is thought to arise from germinal-center B cells 

whereas the ABC subtype may arise from post-germinal center B cells that are blocked during 

plasmacytic differentiation.  

Some alterations have been found in association with the different DLBCL subtypes (see Table 

1), for instance the gain in 3q, 6q21-22 and 18q21-q22 (that mediate BCL2 overexpression) in 

ABC subtype, and translocation of BCL2 in GC subtype (Lenz et al., 2008b; Rosenwald et al., 

2002). 

Due to these findings DLBCL is considered a heterogeneous group of tumours. This 

heterogeneity guides to a complex outcome prediction based on clinical and/or molecular 

parameters. 

1.2.4.4. Prognosis, treatment and survival of DLBCL 

Even if the International Prognostic Index (IPI) is broadly used for patient stratification, it has 

been reported an unusual heterogeneity and inadequate patient stratification in DLBCL 

disease. The addiction of further criteria of evaluation improved significantly the correct 

recognition of patients (Wright et al., 2003).  

A variety of genetic abnormalities and clinical features, have been proposed to classify 

responses to treatment and prognosis prediction (Lossos and Morgensztern, 2006).  

Anyway a significant contribution to adequate patient stratification has been achieved 

accordingly to the molecular subtype of DLBCL (Rosenwald et al., 2002). The ABC subtype is 

frequently associated with a shorter overall survival (Lenz et al., 2008a). 

In general DLBCL is considered a potentially curable disease, the first line treatment is CHOP 

regimen (cyclophosphamide, doxorubicin, vincristine -also called Oncovin- and prednisone) 
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(Fisher et al., 1993). Furthermore, the addition of the monoclonal antibody, rituximab to CHOP 

regimen (R-CHOP) increases significantly the survival rate of patients and is now the standard 

treatment (Coiffier et al., 2002; Sehn et al., 2005). Nowadays, about 75% of patients achieve 

complete remission and half of the treated patients show 3- to 5-years of progression free 

survival (PFS) (Sehn et al., 2007).  

1.2.5. Burkitt Lymphoma 

1.2.5.1. General features 

Burkitt Lymphoma is a germinal center originated lymphoma; highly aggressive, with fast 

proliferation. It was firstly described by Dennis Burkitt in 1958 (Burkitt, 1958) and recognized 

since then as a specific entity.  

Three different types of BL are described: Endemic (frequent in Africa and in children), 

sporadic (more common in western countries and in the rest of the word) and 

immunodeficiency-associated (found in association mainly with HIV and EBV infections) 

(Swerdlow et al., 2008). To note also that BL can present differences depending on the age of 

occurrence, so that it is possible to refer to BL also as children or adult BL variant. 

This study includes sporadic BL from both children and adults. 

The incidence of BL in the sporadic form is about 1-2% of lymphomas found in adults where 

median age of presentation is 30 years. On the other hand sporadic BL has a really high 

incidence in children and young adults accounting for about 40% of children lymphomas 

(Swerdlow et al., 2008).  

1.2.5.2. Molecular characteristics 

The hallmark of BL is the Myc deregulation secondary to t(8;14). MYC is a transcription factor 

located at chromosome 8q24 and it is commonly translocated t(8;14)(q24;q32) on the IgH 

promoter in BL cases (more than 80% of BL cases) (Hecht and Aster, 2000; Magrath, 1990). 

Another 10-15% of the cases show translocations involving MYC on chromosome 2: 

t(2;8)(p12;q24) and 22: t(14;22)(q24;q11) (Gerbitz et al., 1999; Neri et al., 1988) (see also Table 

1). There are a small percentage of cases where MYC translocation is not detected by 

Fluorescent In Situ Hybridization (FISH): for these cases the mechanism for MYC 

overexpression is not known. Additional mutation on MYC may enhance its tumorigenesis 
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(Yano et al., 1993). Other alterations at genetic level are also reported in CDKN2A, TP53, BCL2-

associated X protein (BAX), BCL6 (Bellan et al., 2003; Klangby et al., 1998; Sanchez-Beato et al., 

2001). 

1.2.5.3. Prognosis, treatment and survival of BL 

The tumour is highly aggressive and it grows very fast; thus, rapid decision and administration 

of specific therapy regimen is particularly important. Overall survival can have significant 

variations depending on the specific treatment. At present 5 years overall survival is achieved 

in about 70% of the cases (Perkins and Friedberg, 2008). An intensive combination 

chemotherapy regimen like CODOX-M/IVAC regimen (cyclophosphamide, vincristine, 

doxorubicin, and high-dose methotrexate alternating with ifosfamide, etoposide and high dose 

cytarabine, along with intrathecal methotrexate and cytarabine) results in cure rates up to 90% 

(Mead et al., 2002). Children generally respond better to therapy. New lines of treatment 

include rituximab administration (Meinhardt et al., 2010; Swerdlow et al., 2008). 

Relapses are seen in a short period of time probably due to the high-growth fraction of BL that 

favours re-entry of remaining viable malignant cells into the cell cycle and rapid growth 

between chemotherapy cycles with subsequent development of resistance and fast growth in 

the remission phase. It occurs frequently within the first year and it is a very bad prognostic 

factor (Blum et al., 2004; Swerdlow et al., 2008). Regrettably at this point the optimal strategy 

is not well defined. 

Unfortunately, reliability on clinical trials is limited to the fact that diagnostic criteria for BL are 

undergoing revision specially along the last years (Perkins and Friedberg, 2008) in which 

special attention has been given to MYC negative cases bringing additional genetic alterations. 

One of the most recent works is the definition of molecular BL based on gene expression data 

(Hummel et al., 2006). This explains why new markers are required for better BL classification 

and differential diagnosis. 

1.2.6. An additional issue of differential diagnosis: intermediate BL/DLBCL cases 

B-cell lymphoma, unclassifiable, with features intermediate between BL and DLBCL 

(Intermediate BL/DLBCL) is a relatively new described group of lymphoma. Even if it is not 

recognized as a separate entity so far, it is important to note that it includes cases that cannot 

be clearly assigned to neither BL nor DLBCL. It is defined as an aggressive lymphoma that has 
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morphological and genetic features of both BL and DLBCL (Swerdlow et al., 2008) as 

summarized in Table 2 (Thomas et al., 2011). This group also includes those BL previously 

known as Burkitt like lymphomas or the so called double hit BL.  

This group of lymphoma shows low frequency, in part due to the underestimation derived 

from their difficult recognition. Immunoglobulin clonal rearrangement can be found, 

accounting thus for GC origin. About 50% of the cases present MYC translocation; BCL2 and 

BCL6 translocations are also frequent. 

Some studies suggest the possibility that some of the cases defined as intermediate BL/DLBCL 

are effectively not well classified, and the creation of one algorithm based on gene expression 

profile data has been developed to facilitate their recognition (Dave et al., 2006). 

 

Table 2. Summary of the characteristics of BL, BLBCL, and intermediate DLBCL/BL (Thomas et al., 2011). Features in 
common between the entities were underlined in the table. (a)Morphologically typical DLBCL with MYC 
rearrangement or otherwise typical BL without MYC rearrangement should not be classified in the intermediate 
category. (b)Can be associated with transformation of antecedent follicular center cell lymphoma EBV Epstein-Barr 
virus; GC germinal center. 

 

Parameter Burkitt Lymphoma (BL) Intermediate BL/DLBCL(a) Diffuse large B-cell lymphoma  (DLBCL)
Age of presentation Younger Older Older
Histology
Cell size Medium Medium Large
Nuclei Round Round to oval, irregular Round to oval, irregular
Nucleoli Prominent, multiple Prominent, single Prominent
Cytoplasm Basophilic whit vacuoles Basophilic whit vacuoles Less basophulic
Mitotic activity Very high Very high Lower
Starry sky pattern Nearly all Yes Less common
Derivation Early germinal center Early germinal center Germinal center
Ki-67 proliferative index >95% <95% <90%
Immunophenotype
B-cell CD19+, CD20+, CD22+, 

CD79a+, slgM+
CD19+, CD20+, CD22+, 
CD79a+

CD19+, CD20+

GC markers CD10+, BCL6+, TCL1+, 
MUM1-, CD44-, CD138-

CD10±, BCL6±, MUM1- CD10±, BCL6±, TCL1-, MUM1+, CD44+, 
CD 138±

Karotypes Simple Complex Complex
t(8;14)(q24;q32) t(14;18)(q32;q21)(b) t(14;18)(q32;q21)
t(2;8)(p11-12;q24)
t(8;22)(q24;q11)

Oncogenes BCL2- BCL2+ BCL2+
Ig-MYC rearrangement Ig-MYC  rearrangement Nearly all MYC- negative

Non Ig-MYC rearrangement BCL6 rearrangement
MYC+BCL2 rearrangement BCL2 rearrangement

EBV-encoded RNAs (EBER) LMP1- Variable LMP1+
EBNA2- LMP2+
EBNA1+ EBNA2+
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Unfortunately the most suitable approach for their therapy has not been yet identified 

(Swerdlow et al., 2008), and some heterogeneity in the response to treatment has been 

already described (Corazzelli et al., 2012; Li et al., 2012a; Macpherson et al., 1999). 

1.2.6.1. Other B-cell lymphomas included in the series of cases 

The other B-cells lymphomas here included, but not studied in depth are CLL, FL and the 3 

types of Marginal zone Lymphomas: MALT, NMZL and SMZL. Their principal characteristics are 

included in Table 1.  

 

1.3. MicroRNAs (miRNAs): new players in cell biology 

miRNAs are short non-coding single strand RNA molecules of 19 to 25 nucleotides. They were 

firstly described in 1993 in C. Elegans (Lee et al., 1993; Wightman et al., 1993). Since their first 

appearance many efforts have been done to understand miRNAs biology and importance. At 

present, Sanger database contains data for more than 1500 human miRNAs 

(www.mirbase.org) (Basso et al., 2009; Bentwich et al., 2005; Berezikov et al., 2006). They are 

evolutionary conserved and their expression is temporarily regulated during development 

(Pasquinelli et al., 2000). More difficult and of big interest is understanding the role of these 

miRNAs (Krutzfeldt et al., 2006; Yousef et al., 2009). They have a big impact on protein 

expression (Baek et al., 2008) and it was possible to describe some role in cell biology for many 

of them, but much is left do discover. miRNAs have been shown to regulate quite different 

functions (Niwa and Slack, 2007) such as cell and tissue development (Ambros, 2004; Chen et 

al., 2004; Krichevsky et al., 2003), cell proliferation and death (Brennecke et al., 2003), and 

metabolism (Boehm and Slack, 2006). Many miRNAs are tissue specific, highlighting their role 

in the development and differentiation (Reynolds and Ruohola-Baker, 2008). Last but not least, 

miRNAs are described to be important players in many diseases: a web site that summarizes 

the existing information is available at www.mir2disease.org. miRNAs can be found in about 

any part of the DNA including introns (Ying and Lin, 2005), exons of coding genes, in repeated 

or imprinted sequences, in unstable genomic regions (Huppi et al., 2008) and regions 

frequently targeted by DNA breaks or Copy number alteration (Zhang et al., 2006). 

Their mechanisms of transcription, maturation and action have been studied, and summarized 

in many publications (Bartel, 2004; Garzon et al., 2006; Miska, 2005) and here illustrated in 
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Figure 4. In brief: miRNAs are transcribed in the nucleus as long transcripts of variable length 

or cluster of miRNAs (pri-miRNAs) by RNA polymerase II (Lee et al., 2004), capped and 

polyadenilated (Cai et al., 2004). At this point they are individually cleaved by Drosha (Han et 

al., 2004), forming the so called pre-miRNAs structure, that have a length of 60 to 70 

nucleotides and present a steam loop. Their export to the cytoplasm is operated by exportin 5 

(Bohnsack et al., 2004). The dicer 1, ribonuclease type III (DICER) is then in charge of cutting 

the pre-miRNAs (Chendrimada et al., 2005) and the resulting double strand miRNAs undergo 

separation. In the majority of the cases only one strand is functional and it is the 5’UTR strand 

of the pre-miRNA, although this is not a fixed scheme. The RNA-induced gene silencing 

complex (RISC) binds the single strand miRNA to help it with finding its complementary 

sequence that is generally located at 3’UTR of a messenger RNA and brings them into physical 

interaction (Maroney et al., 2006).  

It is believed that complementarity to mRNA is driven by a short sequence of 6 nucleotides 

generally in position 2 to 7 of the miRNA, the so called seed region, with a mechanism that is 

probably redundant (Lim et al., 2005). Interactions with regions other than 3’ UTR of the 

messanger RNA are not excluded (Orom et al., 2008). Many prediction programs are available 

to predict the gene bounded by each miRNA, among them: miRanda (www.mirbase.org) 

(Griffiths-Jones et al., 2006), targetscan (www.targetscan.org) (Grimson et al., 2007) and 

microT available at DIANALAB web site (http://diana.cslab.ece.ntua.gr/) (Maragkakis et al., 

2009) that also provides information about validated target and pathways potentially altered 

by miRNAs expression. Each of these programs gives as output a long list of potential targeted 

genes, but they have a high rate of false positive prediction (Rajewsky, 2006). 

At the moment most of the predicted targets are not yet in vitro validated. 

It is important to add some notes about miRNAs annotation. The initial three letters refer to 

the organism: for instance “hsa-miR-100” refers to human species (Homo sapiens) miR-100, 

while mmu-miR-100 refers to murine (Mus musculus) miR-100. Here, whenever omitted here 

the initial three letters, the miRNA has to be considered of human origin (for instance: miR-100 

refers to hsa-miR-100). In many cases two mature miRNAs derive from a pre-miRNA (see 

Figure 4). To distinguish them, the less abundant miRNA product receives the same name of 

the primary product with the addition of the symbol “*”: for instance miR-100*. When the 

data are not satisfactory to define which sequence is the predominant, the nomenclature 
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adopted is: miR-100-5p (from the 5' arm of the pri-miRNA) and miR-100-3p (from the 3' arm of 

the pri-miRNA). More details are available at www.mirbase.org/help/nomenclature.shtml.  

 

 

Figure 4. miRNA maturation process (Nana-Sinkam and Croce, 2010). Depending on the specific miRNA, after the 
step of unwinding, one strand or both of them can be functional.  
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miRNA-mRNA binding results in the modulation of expression of the correspondent protein 

through RNA degradation (Lim et al., 2005) (a mechanism that is probably similar to sh-si-RNA) 

or blocking/inhibition/degradation of protein translation (Eulalio et al., 2008; Pillai et al., 

2007). The biologic significance of miRNAs resides here. 

Moreover, in the complex miRNAs word it is necessary to consider that miRNAs may affect a 

protein only in a certain cell type, and may have a different role/target in another cell type. 

This is suggested by their fine regulation, in fact they are also regulated at post-transcriptional 

level (Thomson et al., 2006), and their expression is submitted to the same role of other genes, 

like transcription factor stimulation (O'Donnell et al., 2005) and methylation (Iorio et al., 2007; 

Lujambio and Esteller, 2007). They also may regulate their expression by themselves (Kai and 

Pasquinelli, 2010; Tuccoli et al., 2006). Finally it is interesting that miRNAs can affect pathways 

activation (Yamagishi et al., 2012). 

1.3.1.   miRNAs in lymphomas 

In addition to the above-mentioned roles, miRNAs have been also implicated in several 

diseases including cancer.  

When talking about cancer, a general classification according to miRNAs function and targets 

has been suggested: oncomirs for those miRNAs that target a tumour suppressor gene and 

stimulate cancer development, and tumour suppressor miRNAs for those miRNAs that target 

oncogenes thus blocking tumour development (Hammond, 2006; Hammond, 2007; Kent and 

Mendell, 2006). This definition is obviously strictly restricted to the disease and tissue we are 

talking about. 

The first evidence of the role of miRNAs in cancer came from a study in lymphomas, on B-cell 

chronic lymphocytic leukemia where miR-15 and miR-16 were downregulated due to 

chromosomal deletion at 13q14 (Calin et al., 2002), which is found in about 50% of CLL cases. 

More findings in B-cell lymphomas have been recently reviewed (Auer, 2011; Sandhu et al., 

2011). 

Another important evidence was the finding that miRNAs have specific expression pattern 

depending on tissue type and type of cancer (Lu et al., 2005).  
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The fact that several miRNA loci reside on chromosomal fragile sites is of particular interest in 

cancer and lymphomas also. For instance, the miR-15a/16 cluster mentioned for CLL is also 

deleted in pituitary adenomas (Bottoni et al., 2005). Another example is the miR-17-92 cluster 

at chromosome 13q31, composed by miR-17, miR-18a, mir-19a, miR-19b, miR-20a and miR-92, 

which is found amplified in some B-cell lymphomas (He et al., 2005; Ota et al., 2004) and lung 

cancers (Hayashita et al., 2005) and also miR143-145 that are located in the 5q33 deleted in 

lung cancer (Hosoe, 1996) and relevant in lymphomas (Akao et al., 2007). 

Correlation of miRNA expression with DNA changes has been also investigated, for example in 

MCL and BL (Schiffman et al., 2011; Schraders et al., 2008). 

Also oncogenic viruses can express miRNAs (Cullen, 2006; Pfeffer et al., 2005; Pfeffer et al., 

2004), for instance EBV, whose infection is described in about 20% of BL and 10% of DLBCL, 

expresses about 25 miRNAs (www.mirbase.org). The role of the majority of viral miRNA and 

their impact on protein expression is still unknown, although some of these viral miRNAs has 

been demonstrated to promote survival of the host cell (Choy et al., 2008). 

1.3.2. Expression profile investigation of miRNAs in lymphomas  

During the last years several papers that describe miRNA expression profiles or their 

significance in lymphomas have been published, a nice review of the findings is from Sandhu 

and co-workers (Sandhu et al., 2011).  

Table 3 tries to summarize major miRNA expression profile studies on B-cell lymphomas 

comparing different series of cases with non-tumour controls. To note that for BL studies were 

more prone to investigate differences between MYC positive and MYC negative cases (Onnis et 

al., 2010) rather than control lymph node.  
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Table 3. miRNAs found differentially expressed between B-cell lymphomas and controls. The table was originally 
taken from Sandhu and colleagues (Sandhu et al., 2011), changed and completed with additional lymphoma types. 
BL with MYC translocation have been also compared vs. BL without MYC translocation. LN = lymph node, T = tonsil, 
PBMC = peripheral-blood mononuclear cells. 

 

 

Lymphoma Number of cases/controls Upregulated miRNAs Downregulated miRNAs Reference

BL 10 BL Myc pos vs 9 BL Myc neg miR-17-5p, miR-20a miR-9*, miR34b Onnis et al., 2010

25 BL vs 9 non-tumoral controls miR-155 Kluiver et al., 2006
(LN, T, PBMC)

miR-34a, miR-141, miR-449, miR-565,
CLL 50 CLL vs 14 normal B-cells miR-598, miR-451, miR-139, miR-582,

 miR-660, miR-155 miR-107, miR-369-3p, 
 miR-148a, miR-424, miR-143,

miR-126, miR-368, Pallasch et al., 2009
miR-199a*, miR-130a,
miR-326, miR-199a,
miR-126*, miR-584,
miR-125a, miR-181a,
miR-181b

56 CLL vs pool of CD19+ cells miR-21, miR-150, miR-92, miR-222, Fulci et al., 2007
miR-155 miR-29, miR-181

miR-100, miR-10b, miR-150, miR-181a,
DLBCL 98 DLBCL vs miR-125b, miR-143, miR-189, miR-223,

12 normal lymphocyte miR-145, miR-155, miR-361, miR-363, Lawrie et al., 2009
population miR-21, miR-34a, miR-495, miR-584,

miR-451, miR-9 miR-625, miR-768-5p

58 DLBCL vs 7 LN miR-210, miR-155, miR-150, miR-145,
miR-106a, miR-17-5p miR-328, miR-139,

miR-99a, miR-10a, Roehle et al., 2008
miR-95, miR-149,
miR-320, miR-151,
miR-let-7e

miR-9, miR-9*, miR-320, miR-149,
FL 46 FL vs 7 LN miR-301, miR-213, miR-139

miR-330, miR-106a, Roehle et al., 2008
miR-338, miR-155,
miR-210

miR-124a, miR-155, miR-29a/b/c
MCL 30 MCL vs 5 CD19+ cells miR-328, miR-326, miR-142-3p/5p, Zaho et al., 2010

miR-302c, miR-345, miR-150, miR-15a/b
miR-373*, miR-210

MALT 14 MALT vs adiacent miR-150, miR-155 miR-184, miR-200a/b/c, Cai  et al., 2011
non-tumour tissue miR-205 

NMZL 15 NMZL  vs 8 LN miR-221, miR-223, miR-494 Arribas et al., 2012
let-7a

SMZL 20 SMZL vs 5 Spleens miR-29a, miR29b-1 Ruiz-Ballesteros et al., 2007
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1.3.3. miRNA targets in lymphomas 

Once a miRNA expression profile is defined or one miRNA is found to be significantly gained or 

lost, one obvious question is: what is this miRNA doing? 

Therefore, validation studies on miRNA targets and miRNAs significance have been performed 

by many groups. A list of miRNA validated targets can be found at DIANA labs web site 

(http://diana.cslab.ece.ntua.gr/tarbase/) (Sethupathy et al., 2006). According to this database 

about 1000 targets have been validated so far. 

Among the more outstanding validated targets in lymphomas can be found:  

miR-16/15a that targets BCL2 (Cimmino et al., 2005), miR-29 and miR-181 that regulates T-cell 

leukemia/lymphoma 1A (TCL1A, also called TCL1) expression (Pekarsky et al., 2006), miR-155 

and miR-34a effect on the v-myb myeloblastosis viral oncogene homolog (MYB) and miR-155 

modulate the suppressor of cytokine signaling 1 (SOCS1) (di Iasio et al., 2012; Zauli et al., 

2011): all of them validated in CLL. 

In FL miR-20a and miR-20b were found to be correlated with the expression of the cell cycle 

inhibitor CDKN1A and miR-194 was reversely correlated with the expression of the suppressor 

of cytokine signaling 2 (SOCS2) (Wang et al., 2011). 

Interesting, it has been found that, in MCL, CCND1  is regulated by miR-16-1 (Chen et al., 2008) 

and the oncomiR-1 (Deshpande et al., 2009). 

In MALT, it was demonstrated that miR-200a,b and c downregulate Cyclin E2 (CCNE2) alone or 

in combination (Cai et al., 2011). 

miR-127 has been found to target BCL6 (Saito et al., 2006), a protein deregulated in about 30% 

of DLBCL cases.  

The web site www.mir2disease.org stores most of the generated information and provides 

also information about the disease in which miRNAs has been investigated, thus it can be an 

additional useful tool to explore this issue more in depth. 

1.3.4. miRNA lymphoma studies in mouse models 

In order to study miRNAs role in vivo, a few mouse models accounting for the most commonly 

described and best known miRNAs, have been generated. 



INTRODUCTION 

21 

 

Models are available for miR-155 (Costinean et al., 2006) and oncomiR-1 (He et al., 2005; 

Ventura et al., 2008). 

More recently a model of miR-21 has been used to investigate the correlation between this 

miRNA and  lymphadenopathy and other lymphoid phenotypes (Medina et al., 2010). 

Finally another model has been used to investigate the relevance of miR-15a/16 loss of in CLL 

(Klein et al., 2010; Raveche et al., 2007).  

The availability of this mouse models has been also of great help because it was possible to 

study and show that the recovery of miR-15a/16 cluster increases drug sensitivity (Nutlin and 

Genistein): a really important finding for evaluation of personalized treatment therapy 

(Salerno et al., 2009).  

1.3.5. miRNA correlation with patients outcome  

The International Prognostic Index (IPI) is the primary clinical tool for predicting the outcome 

of patients with aggressive NHL (1993). Many adjustments and corrections have been done 

since 1993, especially in some specific lymphoma types. 

miRNA expression revealed correlation with patients’ outcome in different type of cancers 

including lymphomas.  

While only a few findings are available in FL (Wang et al., 2011) and MCL  (Jiang et al., 2010; 

Zhao et al., 2010), many studies have been done in DLBCL and CLL. 

For instance, in DLBCL the first results point at miR-127 as one of the most significant miRNAs, 

whose low expression was associated with poor outcome (Roehle et al., 2008). In later studies 

low expression of miR-222 was found associated with better OS and better PFS (Malumbres et 

al., 2009). In another study the expression of miR-302, miR-608 and miR-637 were associated 

with poor prognosis, whereas high expression of a group of 9 miRNAs was associated with 

better outcome (Lawrie et al., 2009). miRNA expression profile has been also correlated with 

response to R-CHOP therapy and clinical outcome in DLBCL (Alencar et al., 2011; Montes-

Moreno et al., 2011). 

A series of miRNAs that are related to response to therapy has been distinguished also in CLL 

(Ferracin et al., 2010; Rossi et al., 2010; Zenz et al., 2009), while correlation with OS was 
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documented for: miR-29c and miR-223, miR-21, miR-650 (Mraz et al., 2012; Rossi et al., 2010; 

Stamatopoulos et al., 2010; Stamatopoulos et al., 2009). 

miR-29c and miR-223 where proposed in association with IgVH unmutated status and  ZAP70+ 

survival studies (Li et al., 2011), underlining the existence of some heterogeneity also inside  

CLLs. 

Finally miR-181b was proposed as a biomarker of disease progression in CLL (Visone et al., 

2011). 

1.3.6. miRNAs and therapy 

Despite the fact that potential utility or miRNAs in cancer therapy is generally recognized 

(Garzon et al., 2010; Kota and Balasubramanian, 2010), there are no trials involving 

miRNAs/anti-miRNAs delivery for cancer therapy at the web site http://clinicaltrials.gov/ of 

clinical trials. It demonstrates the difficulties that pass between an important discovery and 

use it in the practice. 

Nevertheless, good results have been achieved in the preclinical stage. Principle advances are 

described in colon carcinoma with miR-145 and miR-33a (Ibrahim et al., 2011) in 

hepatocellular carcinoma with miR-26a (Kota et al., 2009). Interesting reports are also about 

metastasis inhibition with anti-miR-10b treatment (Ma et al., 2010a). Recently a couple of 

promising findings in lymphomas therapy have been reported: with miR-21 (Medina et al., 

2010), miR-150 (Lachmann et al., 2011) and miR-15a/16-1 (Salerno et al., 2009) in mouse 

lymphoma models. 

miR-122, which gave promising results in primates even if it was not a cancer model, (Elmen et 

al., 2008), is now one of the few anti-miRNA in clinical trial, but for hepatitis C treatment. 

1.3.7. miRNA variants 

The majority of miRNAs studies nowadays are more focalized on miRNAs expression levels. 

However the possibility that a miRNA-polymorphism could affect the expression of multiple 

genes involved in the same pathway activation, development, metabolism, cell cycle 

progression, drug resistance, patients outcome and risk to disease development came out 

recently (Mishra and Bertino, 2009), and thus the studies also dedicated their attention on 

miRNAs sequencing in order to describe miRNAs sequence alterations. 
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In fact, it is reasonable that miRNAs changes, especially in the seed region may affect miRNA-

mRNA interaction and here in depth miRNAs can be affected into two ways: by losing their 

downregulation properties or by reaching a new target protein (Mishra and Bertino, 2009), 

another possibility is that or that miRNA variants may affect miRNAs maturation process  

(Duan et al., 2007; Han et al., 2006; Harnprasopwat et al., 2010).  

The study of miRNAs polymorphisms are particularly complex, and probably the main difficulty 

so far is that variants in miRNAs are rarely found (Iwai and Naraba, 2005; Yazici et al., 2009). 

Right now there are only a few manuscripts that describe miRNAs carrying some variations 

correlated to some phenotype: some of them also in cancer (Zorc et al., 2012). For instance 

results are reported in breast/ovarian cancer and gastric cancer where the miRNAs involved 

are miR-146a (Shen et al., 2008; Xu et al., 2008) and miR-27a (Sun et al., 2010).  

The fact that only few changes in miRNA sequence have been described (Zorc et al., 2012), 

may be consistent with the observation that mistaken miRNAs are depleted by the cell as also 

happens with mRNA that shows premature truncation or other types of defects, and it could 

mean that small changes in miRNAs are not acceptable and thus, somehow, eliminated. 

Nevertheless, some miRNAs polymorphisms can be found with relatively high frequency in the 

population (Saunders et al., 2007). This observation offers the possibility that the presence of 

some variants in miRNAs sequence may not have the expected striking effects (Zeng and 

Cullen, 2003) afore-mentioned. It is possible that due to the fact that miRNAs protein 

regulation is a redundant mechanism and miRNAs belonging to the same family/cluster can 

target the same protein (Cai et al., 2011; Kojima et al., 2012; Ventura et al., 2008). In fact, the 

sequence of some miRNAs that belongs to the same family differs only in one nucleotide. This 

rationale can be further confirmed by searching in any target predictor website for two 

miRNAs that share all but a few nucleotides sequence. 

Another interesting proposal that is giving nice results is that miRNAs polymorphisms may help 

patients stratification and may correlate to patients outcome or tumour developing risk, as 

found for miR-146a (Xu et al., 2010), miR-196a (Hu et al., 2008), miR-499 (George et al., 2011)  

and others (Hu et al., 2009b; Okubo et al., 2010). 
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In the specific case of B-cell lymphoma, benefits derived from miRNAs 

investigation/knowledge can be accounted at different levels, such as: 

-Molecular knowledge of lymphomas  

-Use of miRNAs as diagnostic markers   

-Use of miRNAs as survival markers 

2.1. General purpose of the study 

The main objective of this study is to perform a general description and characterization of 

miRNA profile in B-cell lymphomas. 

For this purpose, 3 independent specific projects have been developed. 

2.1.1. Project1: miRNA expression profile in B-cell lymphomas 

The objective is to establish a miRNA expression profile for B-cell lymphomas that could be 

useful for differential diagnosis. The work was carried on a large series of B-cell lymphomas 

and comparing the different lymphoma types to each other and normal tissue. A practical 

application is offered comparing DLBCL and BL. 

2.1.2. Project2: miRNAs deregulation and role in Mantle Cell Lymphoma 

As an example of miRNAs importance in lymphomas, MCL has been investigated in depth to 

describe: 

- miRNA expression profile in MCL 

- Correlation between miRNA expression profile and Gene Expression Profile (GEP) 

- Implication of miRNAs in pathways deregulation  

- Correlation between miRNAs expression and Overall Survival 

 2.1.3. Project 3: Investigation of changes in miRNAs sequence 

To investigate nucleotide changes in miRNAs from DLBCL patients and their possible role in 

lymphomagenesis. 
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3.1. Tissue Samples and cell lines 

This work includes a big number of samples from lymphoma patients. Non-tumour controls 

and cell lines are also included. 

3.1.1. Samples included in the study 

All samples were collected at diagnostic step in collaboration with several Spanish and 

international Hospitals, and with the help of Spanish National Tumour Bank Network (CNIO), 

Madrid, Spain; or with the help of Addenbrooke’s Hospital, Cambridge, UK. Diagnosis of all 

cases was reviewed according to the current World Health Organization criteria (Swerdlow et 

al., 2008). Table 4, Table 5 and Table 6 summarize the cases used in each project.  

 

Table 4. Samples used in the project 1, collected at CNIO, Madrid. * Lymph node-involved CLL cases. FFPE=Formalin 
fixed paraffin embedded. 

 

 

A fresh frozen cut of the samples verified that the blocks were representative tumours and 

that contained at least 80% of tumour cells.  

All samples derived from lymph nodes. Only SMZL samples derived from spleen specimens, 

and MALT samples derived from skin, breast, stomach, lymph nodes, endometria, thyroid and 

lung specimens. 

Lymphoma type Fresh Frozen samples FFPE samples
BL 12 28
CLL* 18 8
DLCBL 29 43
FL 23 9
MALT 15 8
MCL 22 8
NMZL 11 8
SMZL 17 5
Intermediate-BL-DLBCL - 20
TOTAL tumour samples 147 137
Tonsils 4 4
Reactive lymph nodes 7 3
Spleens 4 1
TOTAL control samples 15 8



MATERIAL AND METHODS 

31 

 

Table 5. Samples used in project 2, collected at CNIO, Madrid. FFPE=Formalin fixed paraffin embedded. 

 

Twenty-two out of 23 MCL cases, all the reactive lymph nodes and all the tonsils included in 

the second project correspond to the samples included in the first project. 

Table 6. Samples used in project 3, collected at Addenbrooke’s Hospital, Cambridge, UK. Normal counterpart 
corresponds to bone marrow. FFPE=Formalin fixed paraffin embedded. 

 

 

Human MCL Cell lines were grown at 37°C in a humidified atmosphere at 37°C and 5 % CO2 

using Roswell Park Memorial Institute medium (RPMI) 1640 medium (LONZA) supplemented 

with 10% of Fetal Bovine Serum (FBS) and 1% Pen/Strep antibiotics (both from Gibco). Only 

GRANTA cell line was grown in Dulbecco's Modified Eagle Medium (DMEM) supported with 

20% of FBS and 1% of Pen/Strep. REC-1, GRANTA and JEKO-1 were purchased from DSMZ 

(www.dsmz.de), UPN1, UPN2, MINO, Z138 and HBL2 were kindly provided by Dr. Martínez-

Climent (Center for Applied Medical Research, University of Navarra, Pamplona, Spain). 

3.1.2. Isolation of mantle B cells  

Fresh tonsils derived from routine tonsillectomy were obtained with the collaboration of 

hospitals Gregorio Marañon, La Paz and Ramon y Cajal, Madrid. Cell suspensions were 

obtained by mincing and filtering the tissue in ice-cold culture medium (RPMI). Mononuclear 

cells were isolated by Ficoll-Paque Plus (Amersham Pharmacia Biotech AB, Uppsala, Sweden). 

Suspensions with about 50x106 tonsil single-cells were incubated with 10µl of CD19 (PE-Cy™7 

Mouse Anti-Human CD19 antibody, BD biosciences, Franklin Lakes, NJ, USA), 25µl of IgD (FITC 

Mouse Anti-Human IgD antibody, BD) and 20µl of CD27 (APC Mouse anti-Human CD27 

antibody, BD) antibodies in 300µl of PBS solution for 25 minutes at room temperature with 

shaking. CD19+/IgD+/CD27- cells were sorted, yielding a purity of at least 95%. Separation of 

Lymphoma type Fresh Frozen samples FFPE samples
MCL 23 54
Tonsils 4
Reactive lymph nodes 7
Cell lines 8
Sorted cells CD19+/IgD+/CD27- 3

Lymphoma type FFPE samples
DLBCL 95
Normal counterpart tissue 3
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other cell subpopulation, like CD19+CD10+ (10µl of APC Mouse anti-Human CD10 antibody, BD) 

following the same protocol was also performed. All isolations were performed using the FACS 

Aria Sorter (BD), and analyzed with the Diva software (BD). An example of sorting selection is 

illustrated in Figure 5. 

 

Figure 5. Different cell subpopulations sorted by FACS. CD19+/IgD+/CD27- (correspondent to B- cell mantle zone) 
and CD19+CD10+ (correspondent to GC B-cells). 

 

3.2. RNA extraction 

3.2.1. From fresh frozen samples 

Twenty tissue sections of 20 µm thickness were disaggregated by Tri-reagent (1ml, SIGMA-

ALDRICH, Steinheim, Germany) using a 1ml syringe and a needle (23G). The suspension was 

kept 10 minutes at room temperature and then, 200µl of chloroform were added. Samples 

were mixed thoroughly for 15 seconds and maintained 10 additional minutes at room 

temperature.  After 15 minutes of centrifugation at 8000g (4°C), the aqueous phase was 

recovered in a fresh tube. The same volume of isopropanol was added and samples were kept 

at -20°C overnight. The day after, samples were centrifuged at 12000g, 15 minutes, at 4°C. 

Pellets were washed with 70% cold ethanol and resuspended in 30 µl of RNase free water.  
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RNA was quantified using the NanoDrop ND-1000 spectrophotometer device (Thermos 

scientific, Wilmington, DE, USA) and visualized on a 1% agarose gel. 

For Gene Expression experiments, a higher purity of RNA was achieved by the RNeasy® Mini Kit 

from Qiagen (Hilden, Germany) following manufacturer’s instructions, and including the DNase 

treatment (Qiagen). Finally, RNA was resuspended in 20-35µl. 

The majority of RNAs also underwent bioanalyzer analysis (Agilent Technologies) to check RNA 

quality. 

3.2.2. From formalin fixed paraffin embedded (FFPE) samples  

Total RNA was extracted from 10 FFPE sections of 10μm. Deparaffinization was achieved by 

adding 1 ml of xylene and 10 minutes incubation at 65°C with shaking. Samples were 

centrifuged at 10000 rpm at room temperature for 15 minutes and then, the supernatant was 

removed. Ethanol wash was performed, afterwards tissue pellets were dried and incubated 

overnight at 65°C in 400 μl of tissue lysis buffer (Tissue & Cell Lysis Solution, Epicentre) + 4µl of 

proteinase K (50 µg/µl, epicentre). The day after, 480 µl of isoamilic-phenol-chloroform was 

added; samples were incubated 5 minutes and then centrifuged at 10000rpm for 5 minutes. 

Supernatant was then passed into a new tube, where, the same volume of isoamilic-

chloroform was added and samples were incubated again for 5 minutes. After centrifugation 

(10000rmp for 5 minutes) the supernatant was recovered and precipitation was performed 

over night at –20°C, in an equal volume of isopropanol, supplemented with 1μl of linear 

acrylamide (Ambion, Austin, TX). On the following day a centrifugation at 4°C during 40 

minutes was performed. Pellets were washed in 70% cold ethanol and resuspended in 30 µl of 

RNase-free water.  

RNA concentration and purity (A260/A280 and A260/A230 ratios) were measured using a 

NanoDrop ND-1000 spectrophotometer device (Thermos scientific). RNA quality was 

considered good enough when 260/280>1,8 and 260/230 >1,5.  

3.2.3. DNA extraction 

DNA of FFPE tissues were collected at Addenbroke’s Hospital using the QIAamp DNA Micro Kit 

(QIAGEN) following manufacturer instructions. 
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A general view of all the Methods used is summarized in Figure 6. 

 

Figure 6. Summary of the methods used in this work. GEP=Gene Expression Profile, OS= Overall Survival. All images 
are available at www.appliedbiosystems.com, www.labplanet.com, www.agilent.com, www.invitrogen.com. 
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3.3. Hybridizations 

3.3.1. miRNA Arrays 

For miRNA profiling experiments, 100 ng of total RNA were hybridized on an Agilent 8x15K 

Human miRNA Microarray Kit (G4470A, one colour technique, Agilent Technologies, Inc., Santa 

Clara, CA) for the detection of 470 human and 64 viral miRNAs, following the manufacturer’s 

instructions (Agilent Technologies) (Ach et al., 2008; Wang et al., 2007). Dephosphorylation 

step was performed for 30 min at 37°C by adding 4μl of RNA (concentration: 25ng/μl) to 3μl of 

Alkaline Phosphatase (CIP) master mix, prepared as follows: 0,7 μl of 10X Alkaline Phosphatase 

(CIP) Buffer (supplied with CIP enzyme) + 0,7μl Calf Intestine Alkaline Phosphatase (CIP, 16 

U/μl) (GE- Healthcare, Amersham Place, Little Chalfont, UK) + 1.6μl of RNase free water. 

Denaturalization was accomplished by adding 5μl of DMSO to the samples, for 5 min at 100°C. 

All the following steps were undertaken in a minimum light environment. Samples were 

rapidly cooled on ice, and labelled with cyanine 3-CTP (Cy3) using the miRNA Labelling Reagent 

and Hybridization Kit (Agilent). For the labelling step, T4 ligase (GE Healthcare) working 

concentration (15 U/μl) was achieved by adding the correct amount of dilution buffer to the 

enzyme (1μl of 10X T4 ligase buffer, 1μl of BSA 0,1% and 8μl of RNase free water). The reaction 

mixture was composed by 2μl of 10X T4 ligase buffer, 2μl of 0.1% BSA, 3μl of Cy3 and 1μl of T4 

ligase enzyme (15U/μl). Samples were incubated for 2 h at 16°C, purified with Bio-spin 6 

columns (BioRad, Hercules, CA, USA) and dried in a speed vacuum at 45°C for 15 minutes.  

Labelled RNA was resuspended in a total volume of 45µl using the hybridization mix containing  

4,5μl of blocking agent, 22,5μl of hybridization buffer (Agilent) and 18μl RNase free water, 

incubated for 5 min at 100°C, quickly cooled on ice and placed in the 8x gasket (Agilent) 

previously positioned in a hybridization chamber (G2534A). Gaskets were covered with Agilent 

8x15K human miRNA V1 slides (G4470A) and the chamber covers were secured. Incubation 

took place overnight in an Agilent oven at 55°C for 20h at 20rpm. 

Washing steps were performed using the corresponding buffers provided from Agilent: Wash 

Buffer 1 at room temperature (Agilent) and Wash Buffer 2 at 37°C (Agilent) during 5 minutes in 

an ozone-free environment with shaking. Finally, the array was submerged in acetonitrile for 1 

minute to help the drying process. Scanning was carried out immediately using the Microarray 

Scanner System (Agilent Technologies G2565AA). 
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3.3.2. Gene Expression Arrays 

60-mer Agilent 4X 44K Human Whole Genome oligonucleotide microarrays (competitive two 

colour technique) and the correspondent hybridization kit were used (Agilent). 500ng of RNA 

were used for hybridization of each sample, and 500ng of a commercial pool of RNA from cell 

lines was used as a reference (Universal Human Reference RNA from Stratagene, La Jolla, CA). 

Spike-in controls (Agilent) were added to the samples (1µl of the commercial already diluted 
mixture).  

 0.8µl of T7 promoter primer were added (total volume: 5.8µl). Template and primer were 

denatured for 10 minutes at 65°C and subsequently cooled on ice for 5 minutes. 

The cDNA Master Mix was prepared (2µl of 5x First Strand Buffer + 1µl of 0,1M DTT + 0,5µl of 

10mM dNTP mix + 0,6µl of MMLV-RT enzyme + 0,3µl of RNaseOUT) and then 4,4µl were added 

to each sample and incubated for 2 hours at 40°C. The enzyme was inactivated at 65°C for 15 

minutes and the samples were immediately placed on ice for 5 minutes. 

Dyes (0.5µl Cy3-CTP & 0.5µl Cy5-CTP) were added to Reference and Sample cDNA respectively 

and then 14.5 µl of the Transcription Master Mix, prepared as follows, were added to each 

sample:  3.83 µl of Nuclease-free water + 5 µl of 4x transcription Buffer + 1,5µl of 0,1 M DTT + 

2µl NTP Mix + 1,6µl of 50% PEG + 0,12µl of RNaseOUT + 0,15µl of Inorganic Pyrophosphatase + 

0,3µl of T7 RNA Polymerase. Samples were incubated for 2 h at 40°C. 

The resulting cRNA was purified with Qiagen RNeasy kit columns and a total volume of 45µl 

(containing 1,1µg of labeled cRNA derived from patient and reference pool), was reached with 

Nuclease free water. For hybridization, 4µl of 10x control targets + 1,8µl of 25x fragmentation 

buffer were added. Incubation took place for 30 minutes at 60°C.  

Finally, 45µl of 2x HRPM hybridization buffer were added to the mixture (90µl total) and 

quickly loaded into a 4X gasket slide positioned into a hybridization chamber, covered with a 

60-mer Agilent 4X 44K Human Whole Genome oligonucleotide microarrays (G4112F, Agilent), 

locked and hybridized at 65°C for 17h at 10rpm. 

The day after, washings were conducted as previously described for miRNA hybridizations with 

incubations of 1 minute (see paragraph 3.3.1.). 
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3.4. Real Time quantitative PCR (RT-qPCR) 

3.4.1. Retrotranscription step 

The expression of mature form of miRNA was validated by RT-qPCR with Applied Biosystems 

technology. Complementary DNA (cDNA) synthesis was carried out with a specific primer for 

each miRNA. These primers contain a specific loop that helps the binding only to the mature 

form of the miRNA and makes more difficult the annealing with immature forms and genomic 

DNA due to steric impairment.  

The manufacturer’s protocol was followed. Retrotranscription was carried out using the 

TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). 

Approximately 2ng of RNA were used for each miRNA retrotranscription reaction. 0,5µl of 

Reverse Transciption Buffer + 0,33µl of MultiScribe Reverse Transciptase + 0,05µl of 100mM 

dNTPs mix + 0,05µl of of RNase inhibitor + 1µl of specific miRNA primer (or endogenous 

control, see Table 9, Table 10, Table 11 and Table 12 for details) + RNase free water until final 

reaction volume of 5 µl.  

Whenever possible, after discussion with the technical department of Applied Biosystems and 

protocols optimization, pools containing a maximum of 15 primers were used in the retro 

transcription step. 

In this case 200 ng of RNA was mixed with 0,2 μl of 100mM dNTPs, 1,33μl of 50U/μ MultiScribe 

Reverse Transciptase, 2μl of Reverse Transciption Buffer, 0,25μl of RNase inhibitor and 1μl of 

each one of the specific RT primers (mixed in a pool) in a final reaction volume of 20μl.  

For retrotranscription step, samples were placed in a thermo cycler to undertake the program 

of Table 7.  

Table 7. RT conditions used for cDNA synthesis. 

 

 

Program Temperature (°C) Time (minutes)
Hold 16 30
Hold 42 30
Hold 85 5
Hold 4 Forever
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3.4.2. Amplification step 

Triplicates were performed in 10µl of total volume in 384-well plates (Applied Biosystems). 

Each well contained 5µl of Master Mix (Amperase free) + 0,5µl of Taqman probe. The amount 

of cDNA depended on the specific experiment and varied from 0,4µl (if the RT was done with 

the pool of primers) to 0,66µl (if a single RT primer was used in the RT step); volume 

adjustment up to 10µl were done with RNase free water.  

To make the experiments and plates comparable to each other, at least two endogenous 

controls for relative quantification were always introduced in the plates.  

The reactions were performed in the ABI PRISM HT 7900 Real-Time Sequence detection 

system (Applied Biosystems) using the conditions of Table 8. 

 

Table 8. Program used for amplification reaction. Min= minutes, Sec= seconds. 

 

 

Table 9 and Table 10 summarize the list of all miRNAs and endogenous controls used in the 

different series of cases and experiments performed.  

 

 

 

 

 

 

 

 

Program Temperature  (°C)     Time
Hold 95 10 min

40 cycles 95 15 sec
60 60 sec
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Table 9. Primers used in the project 1 for the validation of BL v.s DLBCL miRNAs expression profile. NA*= Not 
Available; miR-560 is no longer considered a miRNA (www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0003566). 

 

miRNA Assy ID Analysed as
1 hsa-let-7f 000382 Target
2 hsa-miR-125b 000449 Target
3 hsa-miR-126* 000451 Target
4 hsa-miR-146a 000468 Target
5 hsa-miR-146b 001097 Target
6 hsa-miR-155 000479 Target
7 hsa-miR-17-3p 000392 Target
8 hsa-miR-182 000597 Target
9 hsa-miR-191 000490 Target

10 hsa-miR-196b 000496 Target
11 hsa-miR-197 000497 Target
12 hsa-miR-199a* 000499 Target
13 hsa-miR-221 000524 Target
14 hsa-miR-223 000526 Target
15 hsa-miR-26b 000406 Target
16 hsa-miR-29b 000413 Target
17 hsa-miR-30b 000602 Target
18 hsa-miR-328 000543 Target
19 hsa-miR-34b 000427 Target
20 hsa-miR-365 001020 Target
21 hsa-miR-374 000563 Target
22 hsa-miR-451 001105 Target
23 hsa-miR-453 002318 Target
24 hsa-miR-483 001275 Target
25 hsa-miR-485-3p 001277 Target
26 hsa-miR-516-3p 001149 Target
27 hsa-miR-520c 001117 Target
28 hsa-miR-520d 001118 Target
29 hsa-miR-520f 001120 Target
30 hsa-miR-560 NA* Target
31 hsa-miR-573 001615 Target
32 hsa-miR-574-3p 002349 Target
33 hsa-miR-582-3p 002399 Target
34 hsa-miR-595 001987 Target
35 hsa-miR-609 001573 Target
36 hsa-miR-615 001588 Target
37 hsa-miR-629 001562 Target
38 hsa-miR-660 001515 Target
39 hsa-miR-663 002857 Target
40 hsa-miR-9 000583 Target
41 hsa-miR-9* 002231 Target
42 hsa-miR-92 000430 Target
43 hsa-miR-98 000577 Target
44 RNU44 001094 Endogenous control
45 RNU6B 001093 Endogenous control
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Table 10. Primers used in the project 1 for validation of B-cell lymphomas vs. non-tumour controls miRNAs 
expression profile. 

 

Table 11. Primers used in the project 2 for validation of MCL vs. non-tumour controls miRNAs expression profile of 
array paired fresh frozen samples. 

 

 miRNA Assy ID Analysed as
1 hsa-let-7a 000377 Target
2 hsa-let-7c 000379 Target
3 hsa-let-7d 000380 Target
4 hsa-let-7e 000381 Target
5 hsa-miR-10b 000388 Target
6 hsa-miR-133a 000458 Target
7 hsa-miR-200a 000502 Target
8 hsa-miR-212 000515 Target
9 hsa-miR-23b 000400 Target

10 hsa-miR-31 001100 Target
11 hsa-miR-487b 001285 Target
12 hsa-miR-513 001146 Target
13 hsa-miR-770-5p 002002 Target
14 hsa-miR-9 000583 Target
15 RNU44 001094 Endogenous control
16 RNU6B 001093 Endogenous control

miRNA Assy ID Analysed as
1 hsa-miR-1 000385 Target
2 hsa-miR-106b 000442 Target
3 hsa-miR-126 000450 Target
4 hsa-miR-132 000457 Target
5 hsa-miR-150 000473 Target
6 hsa-miR-181c 000482 Target
7 hsa-miR-182 000597 Target
8 hsa-miR-198 000581 Target
9 hsa-miR-200b 001800 Target

10 hsa-miR-203 000507 Target
11 hsa-miR-24 000402 Target
12 hsa-miR-26a 000404 Target
13 hsa-miR-31 001100 Target
14 hsa-miR-320 000536 Target
15 hsa-miR-335 000546 Target
16 hsa-miR-363 001271 Target
17 hsa-miR-370 000558 Target
18 hsa-miR-497 001043 Target
19 hsa-miR-617 001591 Target
20 hsa-miR-7 000386 Target
21 hsa-let-7a 000377 Endogenous control
22 hsa-let-7d 000380 Endogenous control
23 RNU-44 001094 Endogenous control
24 RNU-48 001006 Endogenous control
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Table 12. Primers used in the project 2 for validation of candidates miRNAs in Overall Survival study of MCL cases. 

 

 

3.5. miRNA electroporation  

miR-26a (pre-miR-26a, Applied Biosystems) and negative controls (NC) (pre-miR-negative 

control 1 which is a random sequence suggested by the manufacturer, Applied Biosystems) 

were electroporated at 60nM concentration using the Neon Transfection System with the 

corresponding buffer (Invitrogen, Carlsbad, CA, USA) in UPN-1, MINO and REC-1 cell lines.  

Cells were grown without FBS 24h before electroporation. One million cells, were loaded in 

gold tips (100µl capacity), submerged in the microporation buffer (E2) and one pulse of 40ms 

and 1000V was applied. Electroporation efficiency using these conditions was about 90%. 

Cells were then plated in 1ml of growth medium and recovered after 24, 48, 72 and 96 h of 

electroporation. 

3.6. Protein expression  

3.6.1. Protein extraction 

About 106 UPN-1 cells were lysed by addition of 50µl of RIPA buffer (150mM NaCl, 50mM Tris, 

1% IGEPAL CA-630, 0,5% sodium deoxycholate, 0,1% SDS) for 30 minutes on ice followed by 30 

minutes centrifugation at 13200rmp at 4°C . Proteins were quantified using the BioRad protein 

miRNA Assy ID Analysed as
1 hsa-miR-130b 000456 Target
2 hsa-miR-181c 000482 Target
3 hsa-miR-198 000581 Target
4 hsa-miR-20b 001014 Target
5 hsa-miR-362 001273 Target
6 hsa-miR-363 001271 Target
7 hsa-miR-454 002323 Target
8 hsa-miR-532 001518 Target
9 hsa-miR-625 002431 Target

10 hsa-miR-660 001515 Target
11 hsa-miR-7 000386 Target
12 hsa-miR-99b 000436 Target
13 hsa-let-7a 000377 Endogenous control
14 hsa-let-7d 000380 Endogenous control
15 RNU-44 001094 Endogenous control
16 RNU-48 001006 Endogenous control
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assay (BioRad) following the manufacturer’s instructions and using bovine seroalbumin (BSA) 

to create a standard curve.  

Protein concentration was measured at a wavelength of 750nm in the SynergyHT (Bio-TEK: 

BioTek Instruments, Inc. Winooski, VT, United States). 

3.6.2. Western Blot 

For Western blot, 30 µg of protein extracts in Laemmli buffer (5X composition: Tris-HCl 60mM, 

glycerol 25%, SDS 2%, 2-mercaptoethanol 14,4mM, bromophenol blue 0,1%) were subjected 

to electrophoresis on 12% sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gels using the 

Mini-Protean 3 system (BioRad) in the corresponding electrophoresis buffer (5X 

electrophoresis buffer composition: Tris-HCl 0,13M, glycine 0,95M, SDS 0,5%). 

Afterwards, the proteins were transferred to a nitrocellulose membrane (Hybond ECL; 

Amersham) using the Mini Trans-blot Cell system (BioRad). Transference conditions were 300 

mA for 2 hours at 4°C in the appropriate transference buffer, supplemented with 20% of 

methanol (10X transference buffer composition: Tris-HCl 0,025M, glycine 0,2M). 

Membranes were blocked in PBS-Tween (phosphate-buffered saline with 0.1% Tween-20) 

supported with 5% BSA for 1 hour with continuous shaking and then incubated over night at 

4°C with MEKK2 rabbit-anti human primary antibody (EP626Y, Abcam Inc. Cambridge, MA, 

USA), at a dilution: 1:1000 (MEKK2 is also known as MAP3K2). 

Primary antibody detection was carried out using fluorescent-labeled secondary antibodies 

(Alexa 680, Rockland, Gilbertsville, PA, USA) and images where taken by an Odyssey Infrared 

System Scanner (LI-COR Biosciences, Lincoln, NE, USA).  

Tubulin mouse anti-human primary antibody, (Anti-α-Tubulin, T6074, Sigma-Aldrich Co., Saint 

Louis, Missouri, USA) was incubated for 30 minutes at room temperature (dilution: 1:10000) 

and protein expression was evaluated on the same membrane with a different secondary 

antibody (Alexa 800), as reference protein to evaluate differential expression of MEKK2.  

3.7. Immunofluorescence  

After recovering, electroporated cells were passed onto a slide by cytospin (Shandon Cytosin 4, 

Thermo electronic corporation) with the following conditions: 1000rpm for 1 minute; fixed and 

permeabilized with 100% acetone (10 minutes at room temperature). PBS supplemented with 
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10% FBS was applied for 30 minutes as blocking step. Incubations were performed in a 

humidified chamber to avoid sample drying.  

RelA (p65) mouse anti-human antibody 1:100 (Santa Cruz Biotechnology, Santa Cruz, CA, USA; 

SC-8008) in PBS solution supplemented with 5% of FBS for 1h was used for primary staining. 

Slides were washed 2 times with PBS. Secondary antibody staining was carried out with anti-

mouse 1:200 (Invitrogen, Alexa Fluor 488) for 1h in PBS solution supplemented with 5% of FBS. 

Covers were then loaded using a loading solution (Vectashield mounting medium for 

fluorescence with DAPI, H-1200; Vectro Laboratories) containing 4,6-diamidino-2-phenylindole 

(DAPI) for nuclei visualization.  

Images were obtained by a Leica TCS-SP2 (AOBS) confocal microscope (Leica Microsystems, 

Germany) with LCS v. 2.61 software (Leica Microsystems). Merged images were also collected. 

3.8. Data analysis 

Microarray images were processed using feature extraction software, 9.5 version (Agilent 

Technologies). The grid used in the feature extraction for miRNA microarrays (and thus, also 

the results described) is in accordance with Sanger database nomenclature version 9.1. It is to 

note that according to the specific version of miRBase release, miRNA description may slightly 

vary. 

3.8.1. Microarray of miRNAs 

Microarray background subtraction and data normalization was performed using an analysis 

script developed in collaboration with CNIO bioinformatics group. Between-array median 

normalization was carried out to render miRNA expression data sets comparable. Significantly 

deregulated miRNAs between two groups of samples were computed using Significance 

Analysis of Microarray analysis (SAM, which is a program that provides q-values directly) 

(Saeed et al., 2003; Tusher et al., 2001). The q-value corresponds to the false discovery rate 

(FDR) (Storey, 2002), which is an adjusted p-value corrected by multiple hypothesis testing. In 

terms of use, FDR=0.05 is more restrictive than p-value=0.05. The groups compared vary 

depending on the project and are described in the results section. 
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3.8.2. Microarrays of GEP 

Microarray background subtraction and normalization of dataset were done also using a script 

developed in collaboration with CNIO bioinformatics group. Normalization was performed by 

loess within-array and quantile between-array normalizations. Differentially expressed genes 

were identified using the limma package (Ritchie et al., 2007). p-values were adjusted into a 

FDR values using the Benjamini & Hochberg correction. Those genes with FDR<0.05 were 

defined as being differentially expressed between controls and tumours.  

3.8.3. Fold change 

Fold change calculation refers to direct comparison of data when subtracting log2 values 

between the defined group of samples, controls or different subgroups of samples. It can be 

used both for array data (GEP and miRNA expression profile) and RT-qPCR data. 

3.8.4. miRNA target searching 

A variety of web resources and algorithms to investigate potential miRNA targets were used: 

miRanda (www.mirbase.org; Faculty of Life Sciences, University of Manchester), microRNA 

mirSVR score (www.microrna.org), Targetscan (www.targetscan.org; Whitehead Institute for 

Biomedical Research) and Diana-mir-Path (http://diana.cslab.ece.ntua.gr). Multiple searches 

can be achieved by the web page (http://gencomp.bio.unipd.it/magia/query/).  

Usage of the specific algorithm or web page is detailed in the independent searches.  

3.8.5. Association between miRNAs, GEP and biological pathways 

In order to correlate miRNA expression profile to GEP, a contingency table connecting the 

miRNA and its predicted target genes whose probe was included in gene expression platform 

(Agilent) was constructed for each differentially expressed miRNA.  

In this case the prediction softwares used were miRBase Targets Release v. 5.0 

(www.mirbase.org; miRBase Targets Release uses an algorithm called miRanda) and 

TargetScan v. 5.1 including conserved and non-conserved target sites predictions 

(www.targetscan.org). 

Fisher’s exact test was used to evaluate statistical non-casual correlation between upregulated 

miRNAs with downregulated targets and vice versa: those miRNAs with a FDR<0.05 in the 
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Fisher’s exact test result, were selected for further analysis on the basis of their non-random 

association with the gene expression signature of interest (Creighton et al., 2008). 

For biological pathway correlation, targets were evaluated for their annotation into relevant 

biological pathways, especially those ones related with lymphomas, using Gene set enrichment 

analysis (GSEA, www.broad.mit.edu/gsea) (Subramanian et al., 2005). Pathways gene lists 

were taken from a curated version of the Biocarta (www.biocarta.com), and KEGG 

(www.genome.jp/kegg) with minor modifications (Aggarwal et al., 2009). Pathways were 

particularly curated for lymphomas neoplasm genes. 

Significant associations between differentially expressed miRNAs (both Significant Analysis of 

Microarray and Fisher’s exact test FDR<0.05) and enriched pathways resulted from GSEA, were 

investigated building a ranked list that included only the targets predicted of the significant 

miRNAs. The ranked list contained the genes and their correspondent moderated t-statistic 

values (that were included automatically in the GEP results output). 

Downregulated miRNAs were tested for their association with upregulated genes, whereas 

upregulated miRNAs were tested for their association with downregulated genes. The ranked 

target list was subjected to gene set enrichment analysis (GSEA).  

GSEA analysis was carried out independently using miRBase and TargetScan targets. Only 

miRNAs pathways with significant associations identified by both miRBase and TargetScan 

predictions were finally considered.  

Figure 7 provides a flowchart of the entire data analytical approach for miRNA target 

identification. 
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Figure 7. Work flow of data evaluation to compare miRNAs expression with pathway activation. DEm=differentially 
expressed miRNAs, DEg=differentially expressed mRNAs (genes), GSE= gene set enrichment method (GSEA) 
FDR=False Discovery rate. The association of each differentially expressed miRNA (DEm) with its differentially 
expressed predicted targets (DEg) was evaluated by Fisher’s exact test (downregulated miRNAs were tested for 
upregulated predicted targets and upregulated miRNAs were tested for downregulated predicted targets). The 
resulting significant miRNAs were selected to investigate their statistically significant associations with enriched 
pathways: the gene set enrichment analysis (GSE) was applied using the list of predicted genes included in the gene 
expression array. Gene target predictions for human miRNAs were obtained by miRBase and TargetScan. 

 

3.8.6. RT-qPCR analysis 

Quantitative RT-PCR (RT-qPCR) data were processed and exported using the SDS software (SDS 

2.2, Applied Biosystems). Data were analysed with Real-Time StatMiner program 

(INTEGROMICSTM; www.Integromics.com) using the ΔCT method. All assays were performed 

in triplicate. Reproducibility of triplicated curves was evaluated: inconsistent replicates were 

omitted.  

Since the eligibility of the most stable endogenous gene depends on the samples analysed, and 

conventional endogenous genes (like 18S or GAPDH) are not recommended in small RNA RT-

qPCR studies, different endogenous genes were investigated. Normalizations were done 

according to the most stable small RNA endogenous gene identified by StatMiner program. -

ΔCT values were calculated with the following formula: -(Ct value of miRNA of interest – 

median Ct value for endogenous gene). -ΔCT were considered for further statistical analysis by 

http://www.integromics.com/
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using a t-test corrected for multiple hypothesis testing, available at 

http://pomelo2.bioinfo.cnio.es, or by using SPSS program for survival studies. 

3.8.7. Survival analysis 

Correlation between miRNAs expression and overall survival was investigated in an initial 

series of 22 MCL patients. Gene Spring software v. 9.0 (Agilent Technologies Inc) was used to 

normalize miRNA intra-array data at the 75th percentile, as recommended by the 

manufacturer (Ach et al., 2008). Next, a Random Forests algorithm (Abba et al., 2007; 

Bienkowska et al., 2009; Hothorn et al., 2006), available from the SIGNS website 

http://signs.bioinfo.cnio.es, was used to select a set of 12 miRNAs related to patient survival 

(Table 12). These miRNAs were validated by RT-qPCR in a new set of 54 paraffin-embedded 

cases. Univariate Cox regression, available in SPSS v.15.0, (SPSS Inc, Chicago, IL, USA) was used 

to analyse the confirmation data set for the expression of the 12 miRNAs (Hoster et al., 2008). 

Overall survival curves were plotted with Kaplan–Meier method, stratifying the samples into 

low- and high-risk groups according to the median value of the miR-20b expression. Curves 

were compared by a log-rank test. 

3.8.8. Class recognition analysis 

miRNA espression data were tested for their reliability of grouping into different tumour types. 

The K-nearest neighbour (KNN) algorithm was used for class recognition using the Tnasas  web 

tool that provides an internal cross-validation step (http://tnasas.bioinfo.cnio.es/). 

3.8.9. Results visualization 

miRNAs clusters were computed using the web resource: Gene Expression Profile Analysis 

Suite, GEPAS v.4.0 (www.gepas.org). The heatmap of GEP significant genes was created using 

Stanford Cluster software (complete linkage clustering for genes and arrays) and visualized 

with tree-view program (http://rana.lbl.gov/EisenSoftware.htm). 

Interaction networks between pathways and miRNAs were depicted using Cytoscape 

bioinformatics software (http://www.cytoscape.org).  

Kaplan-Meir curves were represented by overall survival was plotted by GraphPad Prism 

software v.5 (GraphPad Software Inc, v. 5, La Jolla, CA, USA). 

 

http://tnasas.bioinfo.cnio.es/
http://www.gepas.org/
http://rana.lbl.gov/EisenSoftware.htm
http://www.cytoscape.org/
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3.9. miRNA sequencing 

Fourteen miRNAs were selected based on literature findings (Table 13). 

Table 13. Selected miRNAs for sequence evaluation. 

 

miRNAs sequences were downloaded from Ensembl database (www.ensembl.org/index.html). 

Primers used for amplification were selected using Primer3 program (available at the web 

site: http://frodo.wi.mit.edu/) and purchased from Thermo Electron (Thermo Electron 

Corporation, Ulm, Germany). Primers sequences are described in Table 14.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

miRNA Location Why has been studied Reference
1 hsa-miR-650 22q11.22 Lost in CGH (Li et al., 2009)
2 hsa-miR-31 9p21.3 Lost in CGH (Li et al., 2009)
3 hsa-miR-588 6q22.32 Lost in CGH (Li et al., 2009)
4 hsa-miR-548a-1 6p22 Lost in CGH (Li et al., 2009)
5 hsa-miR-570 3q29 Lost in CGH (Li et al., 2009)
6 hsa-miR-16-1 13q14.2 Lost in CGH (Li et al., 2009)
7 hsa-miR-15a 13q14.2 Lost in CGH (Li et al., 2009)
8 hsa-miR-596 8p23.3 Lost in CGH (Li et al., 2009)
9 hsa-miR-587 6q21 Lost in CGH (Li et al., 2009)

10 hsa-miR-491 9p21.3 Lost in CGH (Li et al., 2009)
11 hsa-miR-124-2 8q12.3 Lost in CGH (Li et al., 2009)
12 hsa-miR-34b 11q23.1 Expression regulated by  MYC (Leucci et al., 2008)
13 hsa-miR-145 5q32 Expression regulated by  MYC (Chen et al., 2010)
14 hsa-let-7a 9q22.32 Expression regulated by  MYC (Sampson et al., 2007)

http://frodo.wi.mit.edu/
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Table 14. Primers used for the PCR of the miRNAs. 

 

3.9.1. Polymerase chain reaction (PCR) 

PCR was performed as follows: 2,5µl of DNA (that accounts for 12,5ng of DNA) + 5µl of 

AmpliTaq 360 Master mix (Applied Biosystems) + 0,5µl of Forward and Reverse primers 

(10mM) + water until 10µl of total volume. PCR reactions took place in a GeneAmp® PCR 

System 9700 (Applied Biosystems). The termocycler program is shown in Table 15. 

 

Table 15. PCR program. Min= minutes, Sec= seconds. 

 
  

Presence, integrity and length of amplified products were checked on a 1,5 % agarose gel. 

miRNA investigated Primer name Primer sequence Fragment length
1 hsa-miR-650 miR_650_F1 AGGAGCTCAGGATGCAGATT 213

miR_650_R1 ATCAGCCCAGAGGTCCCTGT
2 hsa-miR-31 miR_31_F1 GGTGAAAGGAAAAATTTTGGAA 192

miR_31_R1 CACAGCAATACACGAAGGACTG
3 hsa-miR-588 miR_588_F1 AGTCTCTGCTGGTCGTCC 221

miR_588_R1 CCAGGGCAGGTCTAGAAATTCC
4 hsa-miR-570 miR_570_F1 GTGGGCCAAGTGTCCTGGG 222

miR_570_R1 TGGCTTTTGCAAACATAGA
5 hsa-miR-15a miR_15a_F2 CGTGCTGCTAAGGCACTGCTG 197

miR_15a_R2 TTTAGGCGCGAATGTGTGTTTAA
6 hsa-miR-16 miR_16_F1 ATTGTGCTGCCTCAAAAATACA 245

miR_16_R2 CTGAAAAGACTATCAATAAAACTG
7 hsa-miR-596 miR_596_F2 AGTTCTGAGGAACGCATAGCAG 168

miR_596_R1 AAGGACAGTGACCTAGACAGCA
8 hsa-miR-587 miR_587_F2 CCTTGCTAAGAGGAGAGGT 310

miR_587_R2 GACTCAGACCCCCTGAAGAGGC
9 hsa-miR-491 miR_491_F2 AGCTAACAGACCAGCAGAAGC 224

miR_491_R1 GCCTTCATCTTCTTCTTCATGG
10 hsa-miR-124 miR_124_2_F1 CGCAGTGGGTCTTATACTTTCC 188

miR_124_2_R1 TAAATTCCCTGCAATTGCTTTT
11 hsa-miR-145 miR_145_F2 TGCTACAGATGGGGCTGGATGC 215

miR_145_R1 CTGTGAAACCATGACCTCAAGA
12 hsa-let-7a Let_7a_F1 TGTGATTCCTTTTCACCATTCA 150

Let_7a_R1 GCCTGGATGCAGACTTTTCTAT
Let_7a_F2 CAGCATAGATTATGCATGTAGC 348

13 hsa-miR-34b miR_34b_F2 TTGCGCCCAGCCATGGTAG 344
miR_34b_R1 AGAAACCGCGGGTTTCCTCG

14 hsa-miR-548a miR_548a_3p_F3 CCTACTGAATAAGTTATTGGAA 224
miR_548a_3p_R2 GCTAACAGAAGGAAATTGCACC

PCR cycles Temperature (°C) Time
Hold 95 10 min

95 30 sec
35 cycles 55 30 sec

72 1 min
Hold 72 10 min
Hold 4 Forever



MATERIAL AND METHODS 

50 

 

3.9.2. PCR product purification and sequencing reaction 

PCR amplified products (2µl) were purified by adding 1 µl of exosap enzyme (GE-heatcare) in 

10xPCR buffer (Applied Biosystems) plus water until a total volume of 5µl using the program 

shown in Table 16. 

Table 16. Exosap reaction program.  

 

Big Dye terminator sequence method was used as follows: 5µl of purified PCR product + 0,35µl 

BigDye terminator (Appied Biosystems) + 1,75µl of corresponding 5x buffer (supplied with 

BigDyes) + 2µl of Forward or Reverse primer (2mM) + water up to a total volume of 10µl were 

used with the conditions of Table 17.  

Table 17. BigDyes terminators reaction program. Min= minutes, Sec= seconds. 

 

 

Forward primer was always used for sequencing. When necessary, also Reverse primer was 

used.  

Products were purified by Dynabeads (Invitrogen) using DynaMag Sequencing Clean-up 

magnetic microbeads (Invitrogen); resuspended in 25µl of water and loaded into ABI3730 

sequencer (Appied Biosystems). 

3.9.3. Sequence evaluation 

Fully annotated reference sequences were downloaded from the National Center for 

Biotechnology Information (NCBI) web site: www.ncbi.nlm.nih.gov.  

Sequences were visualized by SeqScape program v2.5.0 (Appied Biosystems). 

PCR cycles Temperature (°C) Time  (minutes)
Hold 37 20 min
Hold 80 20 min
Hold 4 Forever

PCR cycles Temperature (°C) Time
Hold 96 1 min

96 20 sec
25 cycles 50 15 sec

60 1 min
Hold 4 Forever
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Previously reported variants were inspected at Ensembl genome browser (www.ensembl.org), 

NCBI for short genetic variation database (dbSNP, www.ncbi.nlm.nih.gov/projects/SNP/), and 

at a single nucleotide polymorphism (SNP) database specific for miRNA 

(www.bioguo.org/miRNASNP/) (Gong et al., 2012). 

BibiServ web resource (Zuker and Stiegler, 1981) (http://bibiserv.techfak.uni-

bielefeld.de/rnafold/submission.html) was used to evaluate miRNA secondary folding. Results 

were visualized by RNA StrAT web resource (Blin et al., 2010) (www-

lbit.iro.umontreal.ca/rnastrat/?p=tools&p2=render). 
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4.1. Project 1: miRNA expression in non-Hodgkin B-cell lymphomas 

Three main parts of the project can be distinguished:  

• Comparison of the different lymphoma types 

• Comparison between lymphomas and non-tumour samples 

• Differential diagnosis of BL vs. DLBCL 

The work flow of this study is summarized in Figure 8.  

 

 

Figure 8. Summary of the samples and procedures used in the first project. 
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4.1.1. Comparison of the different lymphoma types 

A series of 147 fresh–frozen samples of B-cell lymphomas including 12 BL, 29 DLBCL, 22 MCL, 

17 SMZL, 18 CLL, 23 FL, 11 NMZL and 15 MZL/MALT (see Materials and Methods, Table 4) has 

been investigated.  

To select a lymphoma miRNAs signature, data from all tumour samples, without prior 

normalization to non-tumour controls, were studied.  

Each lymphoma type were compared towards the entire set of samples by SAM analysis; an 

approach that has been already used for meticulous description of lymphomas subtypes 

(Aggarwal et al., 2009). 

miRNAs with a false discovery rate (FDR) <0.01 and a fold change >1.5 (log2), were considered 

to be significantly up- or down-regulated between the different lymphoma types.  

According to these criteria 128 miRNAs were considered to be significant in one or more 

lymphoma types. These miRNAs are listed in Table 18 and the heatmap of the 128 significant 

miRNAs is represented in Figure 9. 
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Table 18. Differentially expressed miRNAs in each type of lymphoma compared to the rest of the samples. Numbers 
in red and green correspond to significant miRNAs fold change (log2). In red are shown gained miRNAs and in green 
loss miRNAs. miRNAs that are labeled in blue were also significant in KNN predictor for class recognition (see 
paragraph 4.1.1.1.). 

 

  y p     yp   y p  p      p  ( ;  g   g ) 
miRNA BL CLL DLBCL FL MALT MCL NMZL SMZL miRNA BL CLL DLBCL FL MALT MCL NMZL SMZL

1 hsa-let-7a -1.54 -2.24 - - - - 2.23 - 65 hsa-miR-218 - -2.63 - - - - 1.64 -

2 hsa-let-7c - - - - - - 1.86 - 66 hsa-miR-221 - - - - - - 1.63 -

3 hsa-let-7d -1.53 -2.16 - - - - 1.87 - 67 hsa-miR-223 - -1.62 - - - - 2.19 -

4 hsa-let-7e -1.70 -2.07 - - - - 1.84 - 68 hsa-miR-224 - -1.77 - - - - 1.55 -

5 hsa-let-7f -1.67 -2.70 - - - - 2.48 - 69 hsa-miR-26a -1.54 - - - - - 2.08 -

6 hsa-let-7g -1.90 -2.01 - - - - 2.55 - 70 hsa-miR-26b -1.92 -2.11 - - - - 2.81 -

7 hsa-let-7i - - - - - - 1.63 - 71 hsa-miR-29a -1.64 - - - - - 1.89 -

8 hsa-miR-1 - - - - - - 1.96 - 72 hsa-miR-29b -1.74 - - - - - 1.63 -

9 hsa-miR-100 - -2.02 - - - - 2.07 - 73 hsa-miR-29c -2.72 - - - - - - -

10 hsa-miR-106a - -1.53 - - - - - - 74 hsa-miR-30b - - - - - - 1.66 -

11hsa-miR-107 - -1.53 - - - - - - 75 hsa-miR-30e-3p - - - - - - 1.95 -

12 hsa-miR-10a -1.62 -2.58 - - - - 1.91 - 76 hsa-miR-30e-5p -1.82 - - - - - 1.69 -

13 hsa-miR-10b -1.67 -2.11 - - - - 2.60 - 77 hsa-miR-31 - - - - - - 1.83 -

14 hsa-miR-125a - -1.68 - - - - 1.69 - 78 hsa-miR-328 - 1.51 - - - - - -

15 hsa-miR-125b - - - - - - 1.82 - 79 hsa-miR-335 - - - - - - 1.56 -

16 hsa-miR-126 - -2.27 - - - - 2.33 - 80 hsa-miR-338 - -1.67 - - - 1.71 - -

17 hsa-miR-126* - -1.51 - - -1.58 -2.26 2.53 1.79 81 hsa-miR-340 - - - - - - 1.54 -

18 hsa-miR-127 - - - - - - - 1.56 82 hsa-miR-34a - -1.54 - - - - - -

19 hsa-miR-128b - - - - - - 1.52 - 83 hsa-miR-34b - - - - - - 1.50 -

20 hsa-miR-130b 1.61 - - - - - - - 84 hsa-miR-363 -2.12 -2.59 - - - 3.26 - -

21 hsa-miR-133a - - - - - - 1.59 - 85 hsa-miR-365 - -1.79 - - - - 2.11 -

22 hsa-miR-133b - - - - - - 1.55 - 86 hsa-miR-370 - 1.89 - - - - -1.83 -

23 hsa-miR-136 - - - - - - - 2.00 87 hsa-miR-373* 1.73 - - - - - - -

24 hsa-miR-138 - - - 2.07 - - - - 88 hsa-miR-374 - -2.14 - - - - 2.18 -

25 hsa-miR-139 - - - - - - 1.62 2.94 89 hsa-miR-377 - -1.62 - - - - - -

26 hsa-miR-141 - - - - 1.54 - - -1.83 90 hsa-miR-409-3p - - - - - - - 2.11

27 hsa-miR-143 - -1.75 - - - - - - 91 hsa-miR-421 - - - - - - - 1.99

28 hsa-miR-144 - - - - - - - 3.22 92 hsa-miR-424 - -2.68 - - - - - -

29 hsa-miR-146a -1.79 -1.67 - - - - - - 93 hsa-miR-429 - - - - 2.16 - - -

30 hsa-miR-146b - - - - - - 1.74 - 94 hsa-miR-432 - 1.97 - - - - - 1.89

31 hsa-miR-148a - -1.56 - - 1.51 - - - 95 hsa-miR-451 -1.71 -2.18 - - - - 2.06 4.06

32 hsa-miR-148b - - - - - - 1.64 - 96 hsa-miR-453 - 1.55 - - - - - -

33 hsa-miR-150 -2.98 - - - - - 2.86 - 97 hsa-miR-454-3p - -1.54 - - - - 1.65 -

34 hsa-miR-152 - - - - - - 1.57 - 98 hsa-miR-455 - - - - - - 1.76 -

35 hsa-miR-155 -2.12 - - - - - 1.59 - 99 hsa-miR-483 - 2.29 - - - - - -

36 hsa-miR-15b - -1.80 - - - - 1.84 - 100hsa-miR-485-3p - 2.39 - - - - - -

37 hsa-miR-16 - -1.76 - - - - 1.88 - 101hsa-miR-486 - - - - - - - 1.56

38 hsa-miR-17-3p 1.66 - - - - - - - 102hsa-miR-487a - - - - - - - 1.71

39 hsa-miR-17-5p - -1.55 - - - - - - 103hsa-miR-487b - - - - - - - 1.99

40 hsa-miR-181c - - - - - 1.60 - - 104hsa-miR-513 - - - - - - -1.83 -

41 hsa-miR-182 - -2.90 - - - 1.71 - - 105hsa-miR-520d - 2.00 - - - - - -

42 hsa-miR-183 - - - - - 1.61 - - 106hsa-miR-520d* - - - - - - - 1.77

43 hsa-miR-18a 1.90 - - - - - - - 107hsa-miR-542-3p - - - - - - - 1.89

44 hsa-miR-18a* 1.66 - - - - - - - 108hsa-miR-557 1.66 - - - - - - -

45 hsa-miR-191 - - - - - - 1.70 - 109hsa-miR-560 2.02 - - - - - - -

46 hsa-miR-192 - -1.55 - - - - 2.00 - 110hsa-miR-574 1.76 2.83 - - - - - 1.53

47 hsa-miR-193b - -1.96 - - - - - - 111hsa-miR-595 - 2.59 - - - - - 1.95

48 hsa-miR-195 -1.69 -2.00 - - - - 1.86 - 112hsa-miR-609 - 1.51 - - - - - -

49 hsa-miR-197 1.81 2.93 - - - - - - 113hsa-miR-625 - -2.82 - - - - 2.52 -

50 hsa-miR-199a* - -2.81 - - - - 2.19 - 114hsa-miR-629 2.51 - - - - - - -

51 hsa-miR-199b - -2.55 - - 1.69 - 1.85 -2.12 115hsa-miR-647 - 1.53 - - - - - -

52 hsa-miR-19a 2.05 - - - - - - - 116hsa-miR-650 - - - - - - - 2.05

53 hsa-miR-19b 1.69 - - - - - - - 117hsa-miR-654 - - - - - 1.67 - -

54 hsa-miR-200a - - - - 2.66 - 1.55 - 118hsa-miR-663 3.32 - - - - - - -1.62

55 hsa-miR-200b - - - - 2.68 - 1.91 - 119hsa-miR-7 - -2.40 - - - - - -

56 hsa-miR-200c - - - - 2.02 1.50 - -1.64 120hsa-miR-766 - 1.58 - - - - - -

57 hsa-miR-203 - - - - 1.75 - - - 121hsa-miR-768-3p -1.71 - - - - - 1.95 -

58 hsa-miR-204 - - - - - - - 2.02 122hsa-miR-768-5p -1.77 - - - - 2.00 - -

59 hsa-miR-206 - 1.81 - - - - - - 123hsa-miR-9 - -2.00 - 1.67 - - - -

60 hsa-miR-20a - -2.12 - - - - - - 124hsa-miR-9* - -2.69 - 1.87 - - - -

61 hsa-miR-20b - -2.08 - - - - - - 125hsa-miR-92 1.52 - - - - - - -

62 hsa-miR-210 - - - - - - - -1.90 126hsa-miR-95 - -2.05 - - - - 2.22 2.64

63 hsa-miR-212 - - - - - - - 1.53 127hsa-miR-98 - -2.24 - - - - 2.09 -

64 hsa-miR-215 - - - - - - 1.85 - 128hsa-miR-99a - - - - - - 2.56 -2.19
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For heatmap visualization, data obtained from the tumours were normalized towards non-

tumour controls: lymph nodes and tonsils (spleens were used only for SMZL cases 

normalization).  

In the Figure 9 it is possible to appreciate the differences between miRNA expression levels 

found in the different B-cell lymphomas type and also whether these miRNAs are loss or 

gained in relationship with non-tumour controls (see also appendix figure). 

 

 

Figure 9. Heatmap of the significant miRNAs normalized with non-tumour controls. Red denotes high expression 
while blue denotes low expression. A higher resolution figure is provided in the appendix. 

 

The miRNA signature found by SAM analysis for each lymphoma type is described more in 

detail below. 

Burkitt lymphoma 

Thirty-five (14 upregulated, 21 downregulated) miRNAs were deregulated in BL compared to 

the other B-cell lymphomas. The majority of BL (11 out of 12) showed MYC translocation. 

BL

CLL

DLBCL 

FL

MALT

MCL

NMZL

SMZL
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Some of the members of the miR-17-92 cluster (miR-17-3p, miR-18a, mir-19a, miR-19b, and 

miR-92) were upregulated in BL as expected since these miRNAs are targeted by MYC 

transcription factor (Chang et al., 2008; O'Donnell et al., 2005; Robertus et al., 2010). The most 

upregulated miRNA was miR-663 and among the upregulated miRNAs, we can find also miR-

130b as already described (Robertus et al., 2010). Inside the group of downregulated miRNAs, 

we found the let-7 family miRNAs and in particular let-7a downregulated in this series of BL, a 

data that is in line with the fact that let-7a is able to downregulate MYC expression (Sampson 

et al., 2007), so that let-7a loss might help with further MYC overexpression in BL cases. Other 

miRNAs were downregulated, for instance miR-150, miR-155 and miR-146a that were already 

described as lost in BL (Kluiver et al., 2006; Robertus et al., 2010). 

Chronic lymphocytic leukemia 

Sixty miRNA were deregulated: 14 miRNAs were upregulated and 46 downregulated in CLL 

samples.  Several members of let-7 family were downregulated. Interestingly, miR-218, whose 

loss of expression might be related with the activation of NF-kB pathway (Gao et al., 2010) was 

downregulated. miR-106a and miR-363, which belongs to the same miRNA cluster in Xq26.2, 

where both lost.  

Among the upregulated miRNAs found here, the most highly expressed miRNA was miR-197, 

which regulates the tumour suppressor candidate 2 (TUSC2, also known as FUS1: tumour 

suppressor gene) (Du et al., 2009a), and may somehow contribute to tumour phenotype.  

Numerous works already focused their attention on loss of 13q14 region in CLL (which is found 

in about 50% of CLL cases) since this change may explain many features of this lymphoma. 

However it is still to consider that there is a group of cases that does not bring loss of 13q14. 

The findings here shown consider CLL as only one group and do not focus on the alterations 

that loss of 13q14 region may promote. Nevertheless, loss of miR-16, already described in CLL 

with 13q14del (Calin et al., 2002), can still be detected in this series of cases. 

Diffuse large B-cell lymphoma 

SAM analysis yielded no significant differential miRNA expression in this type of lymphoma. 

This result could be the consequence of the intrinsic heterogeneity of DLBCL cases as an entity, 

which probably dilutes the miRNA expression differences with other types of lymphomas. This 
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heterogeneity is also reflected by the Tnasas web resource class predictor analysis, where the 

DLBCL group presented the highest error rate (27%) (for more details, see paragraph 4.1.1.1. 

Table 19 and Table 20). Indeed, DLBCL lymphomas can be further divided into GC and ABC 

group with documented differences in gene expression profile (Alizadeh et al., 2000) and 

response to therapy (Dunleavy et al., 2009; Wright et al., 2003). The series of DLBCL cases here 

studied reflects this heterogeneity with a 60% of ABC type cases and 40% of GC type. Indeed, 

miRNA signatures related with the molecularly defined subgroups of DLBCL based on the cell 

of origin (GC or ABC) have been found by different groups (Culpin et al., 2010; Jima et al., 2010; 

Malumbres et al., 2009). Therefore, it is not surprising that DLBCL had the most heterogeneous 

miRNA signature of all the lymphoma types analysed, and that differences between this two 

DLBCL sub-groups may add some noise to the analysis. 

Follicular lymphoma 

This group is the one that showed the lowest number of significant miRNAs. Only three 

significantly upregulated miRNAs were found: miR-138, miR-9 and miR-9*; while no 

downregulated miRNAs were identifierd.  

Increased expression of miR-9 was previously described in FL samples (Roehle et al., 2008). 

Overexpression of miR-9 reduces the PR domain containing 1, with ZNF domain (PRDM1, also 

called BLIMP1) levels (Nie et al., 2008), a finding of potential interest in FL cases, characterized 

by the tightly regulated expression of BCL6 and PRDM1. Most FL cases here studied carry on 

the translocation t(14;18) and gain of miR-138, consistently with their GC (Leich et al., 2011). 

Mucosa Associated Lymphoid Tissue / Marginal zone lymphoma 

The series of MALT here included are representative of different anatomic region localized 

MALT: skin, breast, stomach, lymph nodes, endometria, thyroid and lung. This choice was 

taken because the attention was focused more on the characteristic shared by all MALT 

tumors rather than to the features of the local tissue. Only one miRNA was found to be lost in 

MALT samples: miR-126* (corresponding to miR-126-5p), while eight miRNAs were 

significantly upregulated. Three of these upregulated miRNAs are components of miR-200 

family: miR-200a, miR-200b and miR-200c. Interesting, these miRNAs are located into two 

clusters: miR-200a/200b/429 on chromosome 1p36.33, and miR-200c/141 on chromosome 
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12p13.31. It is to note that the others miRNAs located in these clusters, miR-429 and miR-141, 

were also upregulated.  

Mantle cell lymphoma  

Nine miRNAs were deregulated in MCL: only miR-126* was downregulated, while eight 

miRNAs were upregulated. The most upregulated miRNA was miR-363, that belongs to the 

cluster miR-106-363, which has similar miRNAs and functions of cluster miR-17-92 (Ventura et 

al., 2008), and whose overexpression has been associated with aggressive phenotypes (Rao et 

al., 2011). Upregulation of both miR-183 and miR-182 is not surprising since they belong to the 

same cluster located in 7q32.2. 

Nodal marginal zone lymphoma 

While only two miRNAs, miR-370 and miR-513, were downregulated in NMZL cases, a high 

number of upregulated miRNAs (sixty-one) relative to the whole series of samples has been 

identified. The most highly expressed miRNA in this series was miR-150, followed by miR-26b 

and miR-10b. miR-150 (here overexpressed in NMZL) regulates the expression of the 

transcription factor C-MYB, and plays a key role in B-cell differentiation (Xiao et al., 2007). miR-

221, miR-223 and let-7f which were found upregulated, have been recently described as 

upregulated in NMZL in others studies too (Arribas et al., 2012). 

The seven members of the let-7 family of miRNAs, which are commonly lost in tumours, were 

significantly overexpressed in NMZL cases compared with the other lymphoma types, which 

could be dependent of the controls here used. 

Splenic marginal zone lymphoma 

Twenty-six miRNAs (20 upregulated and 6 downregulated) were differentially expressed in 

SMZLs. The two most upregulated miRNAs belong to the cluster miR-144/451 on chromosome 

17q11.2. These two miRNAs are described to be erythropoiesis regulators (Patrick et al., 2010; 

Rasmussen et al., 2010), which is a finding that may be related to the splenic 

microenvironment.  
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miR-141 and miR-200c (here downregulated), also belong to the same cluster located at 

chromosome 12q24.32. In this case their downregulation could be due to DNA methylation, as 

it was found in breast cancer cell lines (Neves et al., 2010). miR-127 which was upregulated is 

known to regulate BCL6 expression (Saito et al., 2006), a finding that is consistent with the 

observation that SMZL cases frequently lack BCL6 expression  (Swerdlow et al., 2008).  

4.1.1.1. Class recognition by miRNAs 

In order to further evaluate whether the group of 128 miRNAs identified by the previous 

approach could be useful for class recognition, data were submitted to the KNN classifier 

algorithm to test whether B-cell lymphomas could be correctly classified by miRNAs expression 

level.  

A group of 120 out of 470 miRNAs classified the eight sub-classes of lymphomas with a global 

correct classification rate of 86,4%.  

The groups that were best classified were BL, CLL and SMZL. For these lymphomas subtypes 

only one case was incorrectly classified; while DLBCL was the group that showed the higher 

rate of error, and it is probably due to DLBCL heterogeneity (Gurbuxani et al., 2009), followed 

by NMZL.  

In total 127 out of 147 tumour samples were properly classified. Results are shown in Table 19 

and Table 20. 

 

Table 19. The table shows correct and incorrect predictions of each group of lymphoma and the error rate 
associated with each class by using the 120 miRNAs identified by the KNN algorithm. Cases correctly classified are 
labelled in green, while wrong tumour samples predictions are labelled in dark red. 

 

 

 

Class BL CLL DLBCL FL MALT MCL NMZL SMZL Error Per Class  % Error Per Class
Observed BL 11 1 0 0 0 0 0 0 1/12 8.3%
Observed CLL 0 17 0 1 0 0 0 0 1/18 5.6%
Observed DLBCL 0 0 21 6 1 0 1 0 8/29 27.6%
Observed FL 0 0 1 21 0 0 1 0 2/23 8.7%
Observed MALT 0 0 0 1 13 1 0 0 2/15 13.3%
Observed MCL 0 0 0 2 0 20 0 0 2/22 9.1%
Observed NMZL 0 0 2 1 0 0 8 0 3/11 27.2%
Observed SMZL 0 0 0 0 0 0 1 16 1/17 5.9%
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Table 20. Estimated error found for each group of lymphoma by KNN algorithm. 

 

 

Interestingly, 95 out of 120 miRNAs found in KNN analysis overlapped with the significant 

miRNAs identified by SAM analysis, these miRNAs labelled in blue in the previous Table 18.  

 

4.1.2. Comparison between lymphomas and non-tumour samples 

4.1.2.1. B-cell lymphoma miRNA expression compared vs. non-tumour controls 

The same series of 147 fresh frozen samples of B-cell lymphoma (12 BL, 29 DLBCL, 22 MCL, 17 

SMZL, 18 CLL, 23 FL, 11 NMZL and 15 MZL/MALT) was here compared with 15 non-tumour 

samples including reactive lymph nodes, tonsils and spleens (see table Table 4 in the Materials 

and Methods section), thus the expression profile of B-cell lymphomas considered as only one 

single group against non-tumour controls has been investigated.  

As general consideration, B-cell lymphoma miRNA expression compared with non-tumour 

controls reveals a larger set of downregulated miRNAs, whereas the upregulated miRNAs have 

a more heterogeneous pattern that varies with the lymphoma type.  

Downregulated miRNAs included miR-31, several members of let-7 family, miR-200 family 

(miR-200a and miR-200b), and miR-10 family (miR-10a and miR-10b) even though inside the 

same miRNAs family the significance of each different member may vary. Interestingly, both 

let-7 family and miR-200a/b are described as a key regulator of cell differentiation, whose loss 

is proposed to be associated with increased stemness capacity (Peter, 2009). miR-10 family (a 

and b) is situated within the Hox cluster that regulates development (Lund, 2010), and is 

downregulated in other myeloproliferative disorders (Agirre et al., 2008).  

Class Total Error 
BL 0.007
CLL 0.007
DLBCL 0.054
FL 0.014
MALT 0.014
MCL 0.014
NMZL 0.020
SMZL 0.007
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miR-31 was among the most downregulated miRNAs. One important finding on miR-31 has 

been recently published, where this miRNA seems to be connected to NF-kB pathway 

activation (Yamagishi et al., 2012), a feature frequently seen in lymphomas (Pham et al., 2011; 

Rosebeck et al., 2011). 

miR-155, which is involved in the immune response and germinal center development, and is 

upregulated in HL (Kluiver et al., 2005), was highly downregulated in the BL cases as already 

described (Kluiver et al., 2006). 

miR-15a and miR-16, were already known to be downregulated in 13q14 deleted CLL cases 

(Calin et al., 2002) and here they are also downregulated in the majority of CLL cases.  

The most strongly upregulated miRNAs compared with non-tumour controls were miR-212, 

and miR-513, but little information are available about these miRNAs. 

4.1.2.2. Validation of B-cell lymphoma miRNA expression compared to non-tumour 

controls 

To confirm miRNAs differential expression of B-cell lymphomas compared with non-tumour 

controls and evaluate the reliability of microarray miRNA platform coupled with the methods 

used for analysis, a selection of 14 deregulated miRNAs (5 upregulated and 9 downregulated) 

was analysed by RT-qPCR in an independent series of 66 FFPE lymphoma samples (8 BL, 8 CLL, 

12 DLBCL, 9 FL, 8 MZL/MALT, 8 MCL, 8 NMZL and 5 SMZL) and 8 controls (4 reactive lymph 

nodes, 3 tonsils and 1 spleen). The endogenous gene that showed minor changes according to 

StatMiner program was RNU6B, which as a consequence was used as endogenous control for 

data evaluation. 

These miRNAs were picked up due to different reasons: for their loss or gain in the majority of 

the samples independently on the lymphoma type (miR-513 and miR-133a), for their high 

differential expression as found in fold change (miR-212, miR-31 and miR-200b) and/or FDR 

values (miR-770-5p and miR-23b,) or because they cluterized together with the other chosen 

miRNAs (miR-487b, that clustered together with miR-212 and miR-770-5p) or for their 

relevance in the already published literature (let 7 family: let-7a,l et-7c, let-7d and let-7e) (Barh 

et al., 2010; Johnson et al., 2007; Johnson et al., 2005; Lee and Dutta, 2007; Leucci et al., 2008; 

Sampson et al., 2007; Tokumaru et al., 2008). Some of them were also chosen to test less 
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significant miRNAs (up: miR-9; down: miR-10b) to see whether even less significant results 

identified in this analysis are reliable. 

Tendency of all miRNAs to be lost or gained compared to non-tumour controls was confirmed 

for all of them even when miR-487b, miR-212 and miR-770-5p presented a slight variability 

among the different lymphoma types: especially SMZL and MZL/MALT, as shown in Figure 10. 

This variability may be explained by the different localization of SMZL lymphomas and 

MZL/MALT, since SMZL are localized in the spleen and MZL/MALT lymphoma are localized in a 

variety of different tissues (in this series: breast, eye, skin, salivary gland and intestine).  

 

Figure 10. Expression level of 14 miRNAs deregulated in B-cell lymphomas measured by RT-qPCR. miRNA expression 
for each type of lymphoma is represented by the average expression of the cases (av). mRNA values (-ΔCt) are 
normalized with normal tissue (3 tonsils and 4 lymph nodes; spleen only for SMZL) and represented in log2 scale. 
av=average. 

 

miR-31 is the miRNA that gave the highest rate of loss together with miR-133a, while miR-9 

and miR-513 are the best confirmed up-regulated miRNAs.  

Even miR-10b, which was less significant in the microarray results, confirms its tendency of 

being lost. 

The potential targets of these miRNA were investigated by different algorithms. Predictions 

revealed interesting miRNA/gene interactions that could give some light on how 

lymphomagenesis takes place. For instance, according to miRanda algorithm and miRSVR 

scoring (downloaded at www.microrna.org/microrna/getDownloads.do), miR-133a and miR-

23b, which are lost in this series of lymphomas, were predicted to target the paired box 5 
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(PAX5), a gene that is involved in lymphocyte development and whose upregulation is related 

to the development of different B-cell lymphoma types (O'Brien et al., 2011). 

miR-31, which was the most strongly lost miRNAs in this series, was submitted to Diana Lab 

target prediction program (http://diana.cslab.ece.ntua.gr/pathways/) and it was predicted to 

regulate the expression of the B-cell receptor pathway together with MAPK pathway and JAK-

STAT pathway. Not only recently a work in T cell lymphomas asses for miR-31 role in NF-kB 

pathway activation (Yamagishi et al., 2012), this miRNAs is among the most interesting 

candidate for further functional studies. 

Finally, target prediction tools showed some interesting genes that are commonly lost in 

different B-cell lymphoma types, and could be targeted by miRNAs upregulated in our series. 

Therefore, with the help of a multiple searcher of miRNAs target 

(http://gencomp.bio.unipd.it/magia/query/), miR-9 and miR-513 were found to have as 

potential target PRDM1, and for miR-9 experimental target validation is also available (Huang 

et al., 2011), while miR-770-5p and miR-212, where predicted to target the tumour necrosis 

factor, alpha-induced protein 3 (TNFAIP3, also known as A20) that has been described as a 

tumour suppressor gene frequently loss or inactivated in NHL (Honma et al., 2009; Kato et al., 

2009). 

4.1.3. Differential diagnosis in BL vs. DLBCL 

4.1.3.1 miRNAs differentially expressed between BL and DLBCL 

As mentioned in the introduction, differential diagnosis between BL and DLBCL is sometimes 

difficult, as recently reviewed by de Leval and Hasserjian (de Leval and Hasserjian, 2009). 

In order to test whether this miRNAs microarrays data expression might be useful for 

diagnosis, the differential expression of miRNAs in BL and DLBCL was further investigated.  

To this aim microarray data from fresh frozen specimens of 12 BL were directly compared with 

29 DLBCL cases by SAM analysis. Forty-three miRNAs were considered significantly differential 

expressed (FDR<0.01 and fold change > 1.5(log2)) between BL and DLBCL. These miRNAs 

(Figure 11) were further investigated by RT-qPCR in an additional series of 28 BL and 43 DLBCL 

FFPE specimens. In the second series of FFPE samples, FISH analysis confirmed MYC 

translocation in 20 out of 28 cases of BL, and in 31.7% (13 out of 41) cases of DLBCL.  

http://diana.cslab.ece.ntua.gr/pathways/
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Figure 11. miRNAs differentially expressed in SAM analysis comparing microarray data of 12 BL vs. 29 DLBCL 
(FDR<0.01 and FC>1.5). Red denotes high expression while blue denotes low expression. 

 

Differential expression was confirmed in 19 miRNAs (in blue in Table 21) by a t-test corrected 

for multivariant hypothesis (FDR<0.05). Thirteen additional miRNAs showed the same 

tendency as observed in microarray analysis, but with less significance. Two miRNAs were 

significantly expressed but oppositely with respect to the microarray. Six of the miRNAs had 

low-efficiency RT-qPCR amplification, and were excluded from further analysis. Inefficient 

amplification could be due to the low quality of the RNA (extracted from FFPE samples), or to 

the miRNA low expression level.  So in total, 32 out of 37 miRNAs followed the array tendency. 

In terms of fold change miR-155 was the most significantly lost miRNA in BL, confirming 

previous findings (Kluiver et al., 2006; Kluiver et al., 2005), followed by miR-29b and miR-146a, 

whereas the most significantly lost miRNAs in DLBCL were miR-595, miR-573 and miR-17-3p. 

Only one miRNA belonging to these ones regulated by MYC was upregulated in BL: miR-17-3p. 
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Table 21. miRNAs used in qPCR to validate BL/DLBCL miRNA differential expression. miRNAs in blue have been 
confirmed and showed a significant FDR (FDR<0.05). ND = No data.  

 

 

miRNA FC arrays FC qPCR Upregulated in
1 hsa-let-7f 2.030 0.668 DLBCL
2 hsa-miR-125b 1.909 0.146 DLBCL
3 hsa-miR-126* 2.198 0.218 DLBCL
4 hsa-miR-146a 2.486 1.968 DLBCL
5 hsa-miR-146b 2.011 0.477 DLBCL
6 hsa-miR-155 2.549 2.671 DLBCL
7 hsa-miR-17-3p 1.605 1.679 BL
8 hsa-miR-182 2.048 0.213 DLBCL
9 hsa-miR-191 1.999 0.332 DLBCL

10 hsa-miR-196b 1.741 0.943 DLBCL
11 hsa-miR-197 2.643 0.380 Not confirmed
12 hsa-miR-199a* 1.742 0.575 DLBCL
13 hsa-miR-221 1.798 0.398 Not confirmed
14 hsa-miR-223 1.692 0.458 DLBCL
15 hsa-miR-26b 2.054 0.835 DLBCL
16 hsa-miR-29b 1.979 2.331 DLBCL
17 hsa-miR-30b 1.898 1.209 DLBCL
18 hsa-miR-328 1.931 1.682 Not confirmed
19 hsa-miR-34b 1.889 0.804 DLBCL
20 hsa-miR-365 1.797 1.588 DLBCL
21 hsa-miR-374 1.897 0.696 DLBCL
22 hsa-miR-451 2.209 0.618 DLBCL
23 hsa-miR-453 1.846 ND ND
24 hsa-miR-483 2.466 ND ND
25 hsa-miR-485-3p 2.012 ND ND
26 hsa-miR-516-3p 1.655 0.828 BL
27 hsa-miR-520c 1.809 ND ND
28 hsa-miR-520d 1.814 1.566 BL
29 hsa-miR-520f 1.642 1.201 BL
30 hsa-miR-560 1.750 ND ND
31 hsa-miR-573 1.638 1.728 BL
32 hsa-miR-574 3.069 0.815 Not confirmed
33 hsa-miR-582 2.014 0.436 Not confirmed
34 hsa-miR-595 1.940 2.785 BL
35 hsa-miR-609 2.120 ND ND
36 hsa-miR-615 1.810 0.644 BL
37 hsa-miR-629 1.927 0.881 BL
38 hsa-miR-660 1.879 0.406 DLBCL
39 hsa-miR-663 2.504 1.173 BL
40 hsa-miR-9 2.577 1.028 DLBCL
41 hsa-miR-9* 2.060 1.011 DLBCL
42 hsa-miR-92 1.897 1.273 BL
43 hsa-miR-98 2.076 0.090 DLBCL
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The 19 confirmed significant miRNAs were submitted to the Self-Organizing Tree Algorithm 

(SOTA) (Herrero et al., 2001; Wang et al., 1998) algorithm for samples unsupervised clustering 

(Figure 12). Only four DLBCL and one BL (five samples in total) out of 71 cases were misplaced 

(corresponding to 7%).  

DLBCL cases that cluster with BL do not show any common feature in terms of GC/ABC type, 

MYC translocation or Bcl2 immunohistochemical expression, even though two of the cases 

carry on a MYC translocation. The BL case that clustered with DLBCL cases shows MYC 

translocation. Therefore, the cluster shown demonstrates that these cases do not cluster 

depending on MYC translocation status. 

 

 

Figure 12. Unsupervised cluster of 28BL and 43DLBCL cases using –ΔCt values of the 19 miRNAs confirmed in RT-
qPCR experiments. DLBCL subtype classification was done according to Hans’ algorithm (Blood, 2004), and MYC and 
BCL2 status are annotated. Red denotes high expression while blue denotes low expression. 

 

From t-test investigation, the most significant miRNAs lost in BL cases was miR-155 (FDR<10-7), 

followed by miR-29b (FDR=3x10-7) and miR-146a (FDR=2.3x10-6), while the most significant 

miRNA lost in DLBCL cases was miR-17-3p (FDR=2.3x10-6), as also showed in the box plot of 

Figure 13. 

Among the most interesting downregulated miRNAs in BL cases we found miR-29b, which 

regulates TCL-1 expression (Pekarsky et al., 2006), a protein that is aberrantly expressed in this 

type of lymphoma and has been proposed as a diagnostic marker (Harris and Horning, 2006). 
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This miRNA is also negatively correlated with myeloid cell leukaemia sequence 1 (MCL-1) 

expression (Mott et al., 2007), an anti-apoptotic protein whose expression is commonly seen in 

lymphoid neoplasms with a high proliferation index (Soini et al., 1998) as BL. 

 

 

Figure 13. Results of RT-qPCR expression in BL and DLBCL cases of two of the most significant miRNAs: miR-155 and 
miR-17-3p. BL are represented by yellow boxes while DLBCL are represented by blue boxes. 

 

miR-146a was already known to play an important role in inflammatory reactions and cancer 

(Li et al., 2010c). miR-34b, that was downregulated in BL, is targeted by p53, and is involved in 

maintaining self-renewal of pancreatic cancer stem cells, possibly by directly modulating BCL2 

and NOTCH (Ji et al., 2009). 

4.1.4. The issue of Intermediate BL/DLBCL cases   

The scenario is even more complex if we consider the problem of unclassifiable BL, with 

features intermediate between BL and DLBCL cases (intermediate BL-DLBCL), an issue that 

demands deeper investigation because of the clinical implications of these diagnosis.  For this 

reason a series of 20 B-cell lymphoma, Intermediate BL/DLBC, classified according to WHO 

criteria (Swerdlow et al., 2008), were added to BL and DLBCL cases.  

Intermediate BL-DLBCL cases were investigated for the same miRNAs as DLBCL and BL. 
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Data were submitted to SOTA algorithm as before, and as expected in this investigation, 

samples clustering shows that the majority of the intermediate cases lay between BL and 

DLBCL, a finding that is in accordance with the existence of a distinguishable lymphoma entity, 

but still, a number of cases (eight) clearly segregates with DLBCL or BL.  

 

 

Figure 14. Unsupervised cluster of BL, DLBCL and intermediate BL/DLBCL cases. –ΔCt values were used. Red denotes 
high expression while blue denotes low expression. 

 

These findings put the basis for a bigger project aimed to better characterize intermediate 

BL/DLBCL lymphoma subgroup. 
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4.2. Project 2: miRNA relevance in lymphomas: the example of MCL 

MCL cases were studied more in depth and miRNAs expression profile was investigated in this 

type of tumour together with GEP. These data were integrated to explore miRNAs role in 

pathway deregulation and finally, since prognosis can be significantly different among MCL 

cases, the relevance of miRNAs expression was explored in relationship with patients OS.  

4.2.1. miRNA microarray results in MCL cases vs. controls 

Twenty-three MCL cases were compared to 11 non-tumour controls (7 reactive lymph nodes 

and 4 tonsils) by SAM analysis to define a miRNA expression signature that characterizes MCL 

tumour. All these samples proceeded from fresh frozen tissue. Cutoff for significant miRNAs 

was established at FDR<0.05 (Flavin et al., 2008).  

117 miRNAs resulted significantly deregulated: 85 of them were downregulated and 32 were 

upregulated. FDR values are shown in Table 22 and Table 23. 

The majority of significant miRNAs found by SAM analysis also showed a fold change higher 

than 1 (log2): it means that the loss of expression of these miRNAs was of at least the 50%, and 

for the upregulated miRNAs it means that miRNAs were expressed at least the double 

compared to controls. These 72 miRNAs with a fold change higher than 1(log2) and FDR<0.05 

were used to build the heatmap of Figure 15 with GEPAS web resource. This heatmap is a 

useful tool to describe the results, in fact it is easy to visualize miRNAs that are lost (in blue) or 

gained (in red) in MCL cases compared with controls. A yellow line in the figure helps with their 

distinction. 

Interestingly, lost miRNAs were more numerous than these ones gained by the tumour. A bit 

of heterogeneity in the expression levels of non-tumour controls can be observed for lost 

miRNAs whereas gained miRNAs showed a more homogeneous pattern.   

The heterogeneity observed between tonsils and reactive lymph node was expected due to a 

mayor epithelial component and probably periodic antigen stimulation of the tonsils. Both of 

them were used as controls for a better evaluation of the results. 

 

 



RESULTS 

72 

 

Table 22. Results of SAM analysis between MCL cases and non-tumour controls: dowregulated miRNAs in MCL cases 
compared with non-tumour samples. 

 

Gene ID Agilent FDR Gene ID Agilent FDR

1 hsa-miR-31 <0.001 44 hsa-miR-376a <0.001
2 hsa-miR-148a <0.001 45 hsa-let-7f <0.001
3 hsa-miR-27b <0.001 46 hsa-miR-151 <0.001
4 hsa-miR-199b <0.001 47 hsa-miR-454-3p <0.001
5 hsa-miR-224 <0.001 48 hsa-miR-199a <0.001
6 hsa-miR-23a <0.001 49 hsa-miR-650 <0.001
7 hsa-miR-27a <0.001 50 hsa-miR-365 <0.001
8 hsa-miR-99a <0.001 51 hsa-miR-204 <0.001
9 hsa-miR-424 <0.001 52 hsa-miR-335 <0.001

10 hsa-miR-7 <0.001 53 hsa-miR-223 <0.001
11 hsa-miR-23b <0.001 54 hsa-miR-504 <0.001
12 hsa-miR-152 <0.001 55 hsa-miR-125a <0.001
13 hsa-miR-200b <0.001 56 hsa-miR-30a-3p 0.007
14 hsa-miR-199a* <0.001 57 hsa-miR-196a 0.007
15 hsa-miR-181a* <0.001 58 hsa-miR-629 0.007
16 hsa-miR-126 <0.001 59 hsa-miR-139 0.007
17 hsa-miR-200a <0.001 60 hsa-let-7c 0.007
18 hsa-miR-1 <0.001 61 hsa-miR-143 0.007
19 hsa-miR-98 <0.001 62 hsa-miR-30e-3p 0.007
20 hsa-miR-133b <0.001 63 hsa-miR-128a 0.007
21 hsa-miR-378 <0.001 64 hsa-miR-422b 0.007
22 hsa-miR-95 <0.001 65 hsa-miR-218 0.007
23 hsa-miR-146b <0.001 66 hsa-miR-450 0.007

24 hsa-miR-125b <0.001 67 hsa-miR-145 0.007
25 hsa-miR-150 <0.001 68 hsa-let-7g 0.007
26 hsa-miR-126* <0.001 69 hsa-miR-323 0.012
27 hsa-miR-342 <0.001 70 hsa-miR-99b 0.012
28 hsa-miR-148b <0.001 71 hsa-miR-582 0.012
29 hsa-miR-100 <0.001 72 hsa-miR-340 0.017
30 hsa-miR-149 <0.001 73 hsa-miR-30b 0.017
31 hsa-miR-10b <0.001 74 hsa-miR-128b 0.017
32 hsa-miR-196b <0.001 75 hsa-miR-136 0.026
33 hsa-miR-222 <0.001 76 hsa-miR-132 0.026
34 hsa-miR-203 <0.001 77 hsa-miR-26a 0.026
35 hsa-miR-502 <0.001 78 hsa-miR-22 0.026
36 hsa-miR-497 <0.001 79 hsa-miR-33 0.028
37 hsa-miR-21 <0.001 80 hsa-miR-532 0.028
38 hsa-miR-565 <0.001 81 hsa-miR-377 0.028
39 hsa-miR-133a <0.001 82 hsa-miR-491 0.034
40 hsa-miR-221 <0.001 83 hsa-let-7e 0.034
41 hsa-miR-26b <0.001 84 hsa-miR-660 0.034
42 hsa-miR-205 <0.001 85 hsa-miR-103 0.034
43 hsa-miR-24 <0.001
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Table 23. Results of SAM analysis between MCL cases and non-tumour controls: upregulated miRNAs in MCL cases  
compared with non-tumour samples. 

 

 

The most significant miRNAs that were lost in all cases were miR-31, miR-148a and miR-27b, 

whereas the list of upregulated miRNAs was headed by miR-617, miR-370 and miR-654. 

MCL cases displayed increased expression of the miRNAs miR-106b, miR-93 and miR-25 (these 

two with less significance) located at 7q22, which are functionally homologous to the 17-92 

polycistron, known as oncomir-1 (Tanzer and Stadler, 2004; Ventura et al., 2008) located on 

chromosome 13q31.3. Its amplification in lymphoma and other tumour types has been linked 

to an accelerated Myc-induced tumour development by suppression of the expression of the 

tumour suppressor PTEN (Poliseno et al., 2010; Xiao et al., 2008) and the proapoptotic protein 

BCL2L11 (also called Bim) (Kan et al., 2009).  

The gain of function of the miR-106b cluster has been described to promote cell-cycle 

progression by silencing the cyclin-dependent kinase inhibitor (CDKN1A), a direct target of 

miR-106b overrides a doxorubicin-induced DNA damage checkpoint (Ivanovska et al., 2008).   

 

Gene ID Agilent FDR Gene ID Agilent FDR

1 hsa-miR-617 <0.001 17 hsa-miR-372 0.006
2 hsa-miR-370 <0.001 18 hsa-miR-509 0.006
3 hsa-miR-654 <0.001 19 hsa-miR-124a 0.006
4 hsa-miR-494 <0.001 20 hsa-miR-202 0.006
5 hsa-miR-768-5p <0.001 21 hsa-miR-182 0.006
6 hsa-miR-662 <0.001 22 hsa-miR-513 0.017
7 hsa-miR-765 <0.001 23 hsa-miR-525* 0.017
8 hsa-miR-610 <0.001 24 hsa-miR-563 0.017
9 hsa-miR-801 <0.001 25 hsa-miR-181c 0.017

10 hsa-miR-106b <0.001 26 hsa-miR-606 0.026
11 hsa-miR-345 <0.001 27 hsa-miR-373 0.026
12 hsa-miR-636 <0.001 28 hsa-miR-627 0.026
13 hsa-miR-501 <0.001 29 hsa-miR-373* 0.026
14 hsa-miR-363 <0.001 30 hsa-miR-597 0.026
15 hsa-miR-198 <0.001 31 hsa-miR-134 0.026
16 hsa-miR-188 0.006 32 hsa-miR-216 0.026
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Figure 15. Heatmap of significant miRNAs between MCL and non-tumour controls (FDR<0.05 and FC>1). Red 
denotes high expression while Blue denotes low expression 
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4.2.1.1. RT-qPCR validation of array data 

Nineteen miRNAs were selected to confirm their expression by RT-qPCR in all 23 MCL cases 

and in all the controls (7 reactive lymph nodes and 4 tonsils) on the basis of their statistical 

significance, and/or their potential role in MCL pathogenesis (Table 24). 

Five miRNAs (RNU44, RNU48, let-7a, hsa-let7d and hsa-miR-320) were tested as endogenous 

controls. Let-7a, let-7d and miR-320, were selected because they presented minor variations in 

the arrays of the series studied (Davoren et al., 2008). Two additional small endogenous RNAs 

(RNU44 and RNU48) were used following the manufacturer’s recommendations.  

The most appropriate endogenous controls, according to StatMiner program were the 

combination of RNU44, RNU48 and let-7a, so the average of these three endogenous genes 

was selected for normalization. 

Three out of the 19 miRNAs analysed (miR-198, miR-370 and miR-617) did not amplify 

efficiently, probably because of their low basal expression.  

A t-test corrected for multivariant hypothesis was performed on -ΔCT values to compare MCL 

cases towards non-tumour controls. miRNAs with FDR<0.05 were considered significant (Flavin 

et al., 2008). 

The significance of 13 miRNAs was confirmed (FDR<0.05). The remaining three miRNAs 

showed a similar tendency to that obtained in the microarray analysis, but their results were 

not statistically significant.  

Thus, the majority of the results obtained from the array were confirmed by RT-qPCR (Table 

24).  

Some of these results overlap with other recently published findings in MCL, such as the loss of 

miR-150 together with the increased expression of miR-124a, miR-302c, miR-373* (Zhao et al., 

2010) and miR-345 (Navarro et al., 2009). 

miR-31 confirmed to be highly lost in MCL cases while miR-363 resulted the best validated up-

regulated miRNA. 
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Table 24. miRNAs used for MCL expression profile validation in the same series of MCL cases. ND=No Data. 

 

 

 

4.2.3. MCL gene expression profiling 

Gene expression microarrays of the same 23 MCL cases were also performed to define the 

gene expression signature of paired MCL cases. A t-test corrected for multivariate hypothesis 

showed significance of about 5000 genes (FDR<0.05). 

Results confirmed the pathological features of this lymphoma, with the distinctive signature 

including CCND1, SOX11, BMI1 and CDK4 overexpression, together with downregulation of a 

set of germinal center (GC) markers including LIM domain only 2 (LMO2), germinal center 

expressed transcript 2 (GCET2), membrane metallo-endopeptidase (MME, known also as 

CD10), BCL6 and others.  

De-regulated miRNAs FDR qPCR FDR array

Down

1 hsa-miR-31 <0.001 <0.001

2 hsa-miR-150 <0.001 <0.001

3 hsa-miR-24 0.004 <0.001

4 hsa-miR-26a 0.008 0.027

5 hsa-miR-200b 0.009 <0.001

6 hsa-miR-203 0.009 <0.001

7 hsa-miR-7 0.032 <0.001

8 hsa-miR-126 0.038 <0.001

9 hsa-miR-1 0.038 <0.001

10 hsa-miR-335 0.059 <0.001

11 hsa-miR-132 0.071 0.027

12 hsa-miR-497 0.118 <0.001

UP

13 hsa-miR-363 <0.001 <0.001

14 hsa-miR-106b <0.001 <0.001

15 hsa-miR-182 0.002 0.007

16 hsa-miR-181c 0.032 0.017

17 hsa-miR-198 ND <0.001

18 hsa-miR-370 ND <0.001

19 hsa-miR-617 ND <0.001
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Results are shown in Figure 16, where for representation tumour samples have been 

previously normalized with controls.  

 

Figure 16. Gene expression profile of MCL cases. Heatmap of significant genes (FDR<0.05). Genes downregulated 
and upregulated with respect to reactive lymph nodes and tonsils are represented in green and red, respectively. 
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4.2.4. Association between miRNAs and mRNA signature genes and pathways 

4.2.4.1. miRNA and mRNA association 

The GEP profile of MCL itself does not confer any new piece of information, but the novelty in 

this study is that GEP has been correlated with miRNA signature. Data from 23 MCL samples 

and 11 controls (7 lymph nodes and 4 tonsils) were used. 

All 117 significant miRNAs (FDR<0.05) were submitted to miRBase and TargetScan software to 

obtain a list of their predicted targets.  

Then, significant genes resulted from GEP analysis (FDR<0.01) were selected for the following 

step.  

As miRNAs function as gene repressors, a gain in miRNAs should be associated with the 

downregulation of the target mRNA or protein, whereas miRNAs loss should be associated 

with upregulation of the mRNA or protein target (Garzon et al., 2006).  

Thus, a Fisher’s exact test was applied to investigate the correlation between:  

1) up-regulated miRNAs and their predicted targets (mRNA) that were down-regulated in GEP 

results (correlation investigated for miRBase and TargetScan predictions separately);  

2) down-regulated miRNAs and their predicted targets (mRNA) that were up-regulated in GEP 

results (correlation investigated for miRBase and TargetScan predictions separately). 

Twenty-one downregulated and four upregulated significant miRNAs were obtained 

(FDR<0.05) on the basis of a results of Fisher’s exact tests for both Targetscan and miRBase.  

4.2.1.2. miRNA and pathwas association 

A further step to evaluate miRNA correlation to pathways activation has been done: 

connections between the miRNA signatures and the MCL-deregulated pathways were tested 

using GSEA.  

For the analysis, two independent tables were built for the two predictors programs (miRBase 

and Targetscan) containing the statistic expression values (a so called ranked list for GSEA 

program) of significant mRNAs in Fisher’s exact test.  
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Then, these two tables were further separated into down-regulated genes (mRNA) and up-

regulated genes (mRNA). Each table contained the adjusted expression value of the listed 

genes. 

A total of 4 tables were obtained: 

-miRbase downregulated predicted targets (537 genes)                   

-miRbase upregulated predicted targets (3712 genes)                   

-Targetscan downregulated predicted targets (1951 genes)                  

-Targetscan upregulated predicted targets (3861 genes) 

All these tables were separately submitted to GSEA together with a curated list of about 3000 

genes involved in relevant pathways previously prepared that includes annotations from 

Biocarta, KEGG and gene ontology web resource. 

The significant resulting pathways, significant miRNAs and significant predicted target genes, 

are listed in Table 25. 
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Table 25. The table shows the enrichment pathways linked to differentially expressed genes and differentially 
expressed miRNAs. 

 

 

The most remarkable up-regulated pathways associated with losses of miRNAs targeting the 

genes included in the corresponding pathway were those of the CD40, NF-kB and mitogen-

activated protein kinase (MAPK) pathways. Pathways and miRNAs correlation are represented 

in Figure 17. 

Significant relations were not found between upregulated miRNAs and downregulated 

pathways. 

 

Gene included in the 
annoted pathways miRNAs GeneSet (Pathway)

FDR of GSEA analysis 
(miRanda prediction)

FDR of GSEA analysis 
(targetscan prediction)

CCDC50 hsa-miR-103 Bcells: IgMIgDCD27+ 0.15 0.16
CCDC50 hsa-miR-203 Bcells: IgMIgDCD27+ 0.15 0.16
CD1D hsa-miR-377 Bcells: IgMIgDCD27+ 0.15 0.16
FCRL2 hsa-miR-27a Bcells: IgMIgDCD27+ 0.15 0.16
GPX7 hsa-miR-204 Bcells: IgMIgDCD27+ 0.15 0.16
GPX7 hsa-miR-335 Bcells: IgMIgDCD27+ 0.15 0.16
IGF2R hsa-miR-143 Bcells: IgMIgDCD27+ 0.15 0.16
IGF2R hsa-miR-532-5p Bcells: IgMIgDCD27+ 0.15 0.16
BTK hsa-miR-21 Blimp1 targets 0.12 0.21
CHKA hsa-miR-143 Blimp1 targets 0.12 0.21
FTH1 hsa-miR-532-5p Blimp1 targets 0.12 0.21
LYN hsa-miR-376a Blimp1 targets 0.12 0.21
MCM7 hsa-miR-103 Blimp1 targets 0.12 0.21
MYBL2 hsa-miR-143 Blimp1 targets 0.12 0.21
MYO1E hsa-miR-143 Blimp1 targets 0.12 0.21
PHKG2 hsa-miR-103 Blimp1 targets 0.12 0.21
PRKDC hsa-miR-203 Blimp1 targets 0.12 0.21
FCRL2 hsa-miR-27a Blood Pan Bcell 0.08 0.19
OSBPL10 hsa-miR-21 Blood Pan Bcell 0.08 0.19
CHD1 hsa-miR-103 CD40 signalling during GC development 0.22 0.01
KCNN4 hsa-miR-103 CD40 signalling during GC development 0.22 0.01
LYN hsa-miR-376a CD40 signalling during GC development 0.22 0.01
NCKAP1L hsa-miR-377 CD40 signalling during GC development 0.22 0.01
PHACTR1 hsa-miR-377 CD40 signalling during GC development 0.22 0.01
TCF3 hsa-miR-378 CD40 signalling during GC development 0.22 0.01
IKBKB hsa-miR-203 MAPK PATHWAY 0.26 0.14
MAP2K3 hsa-miR-103 MAPK PATHWAY 0.26 0.14
MAP2K5 hsa-miR-103 MAPK PATHWAY 0.26 0.14
MAP3K2 hsa-miR-136 MAPK PATHWAY 0.26 0.14
MAP3K2 hsa-miR-26a MAPK PATHWAY 0.26 0.14
ANXA6 hsa-miR-203 NFKB total PATHWAY 0.24 0.16
BTK hsa-miR-21 NFKB total PATHWAY 0.24 0.16
IKBKB hsa-miR-203 NFKB total PATHWAY 0.24 0.16
IL10RA hsa-miR-136 NFKB total PATHWAY 0.24 0.16
IL10RA hsa-miR-204 NFKB total PATHWAY 0.24 0.16
IL10RA hsa-miR-660 NFKB total PATHWAY 0.24 0.16
LYN hsa-miR-376a NFKB total PATHWAY 0.24 0.16
NFATC1 hsa-miR-143 NFKB total PATHWAY 0.24 0.16
PLCG2 hsa-miR-340 NFKB total PATHWAY 0.24 0.16
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Figure 17. Downregulated miRNAs with connections to upregulated pathways. miRNAs are indicated by triangles, 
while pathways are represented by circles. Their size is proportional to their degree of connectivity. Red and green 
nodes represent, respectively, upregulated and downregulated elements. All the connections represent significant 
relations between the downregulated miRNAs and upregulated pathways targeted by the miRNAs 

 

At this point validation of some targets/pathways was investigated in cell lines. 

4.2.5. miRNAs profile in MCL-derived cell lines 

miRNAs expression profile was evaluated also in 8 MCL cell lines and 3 samples of CD19+/IgD+/ 

CD27- lymph node-sorted B cells, which corresponds to the cells derived from the mantle zone 

(Jares et al., 2007; Klein et al., 1998; Martinez et al., 2003). 

SAM analysis revealed a miRNA signature (FDR<0.05) identified in MCL cell lines that included 

15 miRNAs (Figure 18): all of them showing a fold change above 1 (log2). Only one miRNA was 

upregulated: miR-182, and was also significantly upregulated in MCL cases. Fourteen miRNAs 

were found downregulated in MCL cell lines, six of which were also lost in MCL cases: miR-26a, 

miR-151, miR-150, miR-223, miR-146b and miR-222.   
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Figure 18. miRNA differentially expressed between MCL cell lines and mantle zone  non-tumour cells. Red denotes 
high expression while blue denotes low expression. 

 

 

Some of the MCL cell lines (for instance Jeko1) showed gain of oncomir-1 (17-92 polycistron), 

confirming previous observations (Rinaldi et al., 2007; Tagawa and Seto, 2005), even though 

oncomir overexpression was not statistically significant. 

Among the down regulated miRNAs, miR-26a was of particular interest because it was 

downregulated in MCL cases and in the cell lines, and it was significant in Fisher’s exact test. 

All these facts made miR-26a a good candidate for further studies of functional validation. 

To further support the idea that miR-26a loss in MCL cases has some correlation with disease 

development/maintenance, miR-26a expression in normal mantle/naive cells has confirmed by 

other groups (Basso et al., 2009), and was already known to play a role in other types of cancer 

(Kota et al., 2009; Visone et al., 2007). 
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4.2.6. miR-26a target validation  

One of the most interesting pathways activated in MCL is NF-kB, but its mechanism of 

activation is still essentially unknown.  

Apparently, miR-26a, was not correlated in our analysis with NF-kB pathway, but a 

bibliography search brought to our attention a study where MAP3K2 (mitogen-activated 

protein kinase kinase kinase 2, also called MEKK2)  was described as a NF-kB pathway-

activating kinase, correlated to the delayed and persistent NF-kB activation (Schmidt et al., 

2003; Winsauer et al., 2008). 

Since MAP3K2 was upregulated in our analysis (FDR=0.0018), and is a predicted target of miR-

26a both in miRanda and Targetscan predictors, miR-26a was chosen for functional studies on 

NF-kB patway activation in MCL cell lines.  

First miR-26a was investigated for its capacity of modulate MAP3K2 expression. 

MCL cells were electroporated with miR-26a and negative control (NC). 

MAP3K2 regulation by miR-26a was evaluated by western blot 24h after electroporation in 

UPN1 cell line (Figure 19); its expression resulted lower than control, therefore MAP3K2 could 

be reasonably a potential target of miR-26a. 

 

 

Figure 19. Evaluation of MAP3K2 expression after miR-26a reintroduction. 

 

Correlation with NF-kB activation was then evaluated.  
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4.2.7. miR-26a relevance in NF-kB activation 

Pathways activation is a complex end point to evaluate. Since one of the events directly 

correlated to NF-kB activation is the translocation of the v-rel reticuloendotheliosis viral 

oncogene homolog A (RELA, also known as p65) to the nucleus (see introduction Figure 3), 

sub-cellular location of RelA after electroporation of miR-26a was examined. 

The MINO and REC-1 MCL cell lines resulted to be the best models for validation because they 

have low levels of miR-26a expression coupled with NF-kB activation, as demonstrated by RelA 

(p65) nuclear translocation. 

Therefore, these cells where investigated for RelA sub-cellular location after miR-26a or 

negative control (NC) electroporation. Results are shown in Figure 20.  

At 96h and 72h after miR-26a electroporation in MINO cell lines and REC-1 cell lines 

respectively, a smaller quantity of RelA compared with controls could be found in the nucleus. 

This means that the induced expression of miR-26a abrogated the nuclear translocation of 

RelA, and thus the activation of NF-kB pathway was impaired. 
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Figure 20. Immunofluorecence images of cell lines alone or after electroporation with negative control (NC) or miR-
26a. RelA nuclear translocation is shown by Alexa Fluor 488 staining. Nuclei are stained with DAPI. 
 
 

4.2.8. miRNA correlation with patients survival 

Finally, in order to identify miRNAs of potential clinical prognostic value, miRNAs expression 

was investigated for their correlation with patient survival. Follow-up was obtained for 22 out 

of 23 MCL cases.  

DAPI MergeRelA

26a

NC
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miRNA microarray data of 22 MCL cases were analysed with the Random Forest algorithm 

(Abba et al., 2007; Bienkowska et al., 2009; Hothorn et al., 2006) available at the SIGNS 

website http://signs.bioinfo.cnio.es/ (Diaz-Uriarte, 2008). This analysis yielded a set of miRNAs 

that described a Kaplan-Meier survival curve (log-rank p<0.001) in which 12 miRNAs were 

statistically significant (p<0.05). These miRNAs (see also Table 12 in materials and methods) 

were selected to confirm their expression in a second independent group of 54 FFPE cases by 

quantitative RT-qPCR. All the samples were recovered at the time of diagnosis. miR-198 was 

excluded from the analysis because it had a low efficiency of amplification by RT-qPCR.  

After endogenous control normalization (RNU44 and RNU48), –ΔCt values were used for 

overall survival analysis by Cox regression analysis using SPSS programme. The significance of 

miR-20b as a prognostic marker was confirmed by univariate Cox regression analysis (p=0.013) 

(Table 26).  

Table 26. Significance of the miRNAs investigated in OS studies. Univariate Cox regression analysis results. HR = 
hazard ratio. 

 

Samples were divided into two risk groups according to their median expression of miR-20b 

and results were plotted in a Kaplan-Meier survival curve (log-rank p=0.032) (Figure 21). At 60 

months the cases expressing miR-20b below the median value had a survival probability of 

56% whereas the patients expressing miR-20b levels above the median value only had a 

survival probability of 33%. So, the high-risk group of patients includes these ones that showed 

higher level of expression of miR-20b. This means that expression of miR-20b is an unfavorable 

marker. 

 miRNA p-value HR
miR-130b 0.222 1.150
miR-454 0.239 1.154
miR-99b 0.756 0.964
miR-7 0.63 1.057
miR-181c 0.828 0.979
miR-532 0.88 0.986
miR-362 0.999 1.000
miR-363 0.3 1.149
miR-625 0.3 1.112
miR-20b 0.013 1.388
miR-660 0.527 1.065

http://signs.bioinfo.cnio.es/
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Figure 21. Kaplan-Maier distribution of survival results of MCL validation series of cases. 
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4.3. Project 3: miRNAs sequence 

Fourteen miRNAs were sequenced in ninety-five cases of DLBCL. Samples were collected and 

selected at Addenbrooke’s Hospital. Diagnoses were revised at Addenbrooke’s Hospital too. 

4.3.1. miRNAs selection and sequences achieved 

The study was conducted to search for new miRNAs variants in DLBCL that may help with case 

stratification and/or pathogenesis elucidation. 

In fact, some variability inside DLBCL has been already documented by GEP (Wright et al., 

2003) and Comparative Genomic Hybridization (CGH) studies (Chen et al., 2006; Heyning et al., 

2010; Robledo et al., 2009). Differential outcome and overall survival variability also have been 

documented (Lossos and Morgensztern, 2006).  Thus, additional markers are required for 

better stratification of DLBCL patients and some variants in miRNAs may help with their 

recognition. 

For miRNAs selection, the attention was focused on the genomic region lost in DLBCL 

previously identified for their relationship with miRNAs loss (Li et al., 2009). Not only: since 

about 10 % of DLBCL cases show MYC overexpression (Ladanyi et al., 1991; Swerdlow et al., 

2008), also miRNAs that have been demonstrated to target MYC were chosen (Chen et al., 

2010; Leucci et al., 2008; Sampson et al., 2007). According to the above mentioned criteria, a 

list of 14 miRNAs was identified for the analysis (see materials and methods table Table 13 or 

results Table 27).  

After protocol optimization, PCR and sequence reaction of 95 DLBCL cases were achieved. All 

cases were sequenced at least for the Forward primer. Reverse primer sequence was 

performed for doubtful cases. In all cases the sequences included the mature miRNAs 

nucleotides, and also the pre-miR-sequence was evaluable in the majority of the cases. 

Sequences were aligned to the reference sequences downloaded from the NCBI web-site and 

evaluated using SeqScape program. The quality of the sequences were generally good and only 

in a few cases the sequence was not readable.   

Some of the variants found were discarded because of their uncertain reproducibility both in 

Forward and Reverse primer sequences, so that were not considered in the results. A summary 

of miRNAs and sequences read are in Table 27. 
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Nine miRNA variants were found in the analysis accounting for the sequence of six miRNAs: 

miR-650, miR-548a-1, miR-570, miR-596, miR-16-1 and miR-588. All the miRNAs showed the 

presence of only one variant, while miR-650 showed the presence of four variants. 

Table 27. miRNA sequenced in DLBCL cases. 

 

 

4.3.2. Evaluation of already know variants 

At this point Ensembl, dbSNP and a miRNA annotated variants database (miRNA-SNP) (Gong et 

al., 2012) were used to verify the existence of already known polymorphisms in the above 

mentioned miRNAs. 

The variants found in miR-548a-1, miR-570, miR-596, miR-16-1 and one of the four variants 

found in miR-650 were already described (Table 28).  

Table 28. Variants found that were already described. 

 

miRNA 
Sequences obtained 
out of 95 cases Why has been studied Variants found

1 hsa-miR-650 94 Lost in CGH C>G, C>A, C>T, G>A
2 hsa-miR-31 94 Lost in CGH No variant found
3 hsa-miR-588 92 Lost in CGH T>G
4 hsa-miR-548a-1 95 Lost in CGH T>G
5 hsa-miR-570 93 Lost in CGH T>C
6 hsa-miR-16-1 95 Lost in CGH T>C
7 hsa-miR-15a 95 Lost in CGH No variant found
8 hsa-miR-596 94 Lost in CGH T>C
9 hsa-miR-587 85 Lost in CGH No variant found

10 hsa-miR-491 94 Lost in CGH No variant found
11 hsa-miR-124-2 93 Lost in CGH No variant found
12 hsa-miR-34b 85 Expression regulated by MYC No variant found
13 hsa-miR-145 95 Expression regulated by MYC No variant found
14 hsa-let-7a 95 Expression regulated by MYC No variant found

Selected miRNA
Cases 

sequenced Alredy known polimorfisms Control tissue

hsa-miR-650 94 71C>G Not investigated

hsa-miR-596 94 29T>C Not investigated

hsa-miR-548a-1 95 42T>G Not investigated

hsa-miR-570 93 34T>C Not investigated

hsa-miR-16-1 95 55T>C Not investigated
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Some of the polymorphisms were pretty frequent, such as the polymorphisms in miR-570 and 

miR-650, while the variant found in miR-16-1 is really rare.  

 

4.3.3. Evaluation of not yet described variants 

Four variants found in this study were not included in Ensembl, dbSNP and miRNA-SNP 

databases (last check on April 20th 2012), so probably they have been identified in this study 

for the first time. Findings are listed in Table 29. 

Table 29. Variants found not yet described. Codes refer to the different DLBCL patients. 

 

 

All the variants found were confirmed by a fresh PCR and sub-sequent sequencing.  

The not yet described variants here identified in miR-650 (CA, GA, and CT) and miR-588 

(TG) were not included in the mature miRNA sequence. Their positions in relationship with 

the pre-miRNA bidimentional folding are illustrated in Figure 22 and Figure 23. 

4.3.3.1. miR-588 

The variant TG (54T>G) found in the pre-miR-588 (which is codified in chromosome 6q22.32) 

is part of the complementary miRNAs sequence. It was found only in one patient. 

Selected 
miRNA

Cases 
sequencied

New variant found Control tissue

hsa-miR-650 94
L0027(C/A) L0032(C/T) 
L0032(G/A)L0037(C/A) 
L0078(C/A)   L0121(C/A)

2 cases availables: 
L0027 and L0078

hsa-miR-588 92 L0050 (T/G) available
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Figure 22. Location of the not yet described variant found in pre-miR-588. 

 

4.3.3.2. miR-650 

Three not yet described variants were identified on pre-miR-650 which is codified at 

chromosome 22q11.22. 

The variant CA is localized in the complementary miR-650 sequence (64C>A variant) while 

the other two: CT and GA were found at 3’ and 5’ end of the pre-miR-650 sequence 

respectively (6C>T and 86G>A variants) (Figure 23). 

The 64C>A variant was described in 4 cases, while the other two (6C>T and 86G>A variants) 

were found in the same case. 

 

Figure 23. Location of the not yet described variants found in pre-miR-650. 
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It is particularly noteworthy that 6C>T and 86G>A variants rely exactly onto two nucleotides 

that are folded to form an overlapping structure and they are found in the same patient 

(Figure 23 and Figure 24). Whether it has a specific meaning cannot be said so far, but 

probably the variants G and C as well as the variants A and T may be found in the same allele; 

this way the complementarity would be conserved and the folding of the miRNA would not be 

impaired. 

 

Figure 24. Sequence or miR-650: variants GA and CT. 

 

4.3.4. Control tissues 

For three out of six cases in which these variants were found, normal counterpart DNA 

proceeding from bone marrow tissue from paired patients was available in the laboratory, so 

that, PCRs and sequences were performed also in control tissue to investigate the presence of 

the variants. 

Sequencing of the normal tissue counterpart of miR-588 showed the presence of only one 

peak at the site were the variant was described in the tumour and it was a T nucleotide (the 

wild type) (Figure 25). This finding accounts for the possibility that it could be a somatic 

alteration related to tumour development, even if its significance and validation is still to be 

fully demonstrated. 
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Figure 25. The first 2 sequences correspond to the case variant and the confirmation PCR respectively. The third 
sequence belongs to tissue control. 

 

PCR and sequencing of the normal tissue counterpart DNA of miR-650 was possible only into 

two out of four cases in which the 64C>A variant was found (Figure 26). 

In one patient only C variant (the wild type) was found in normal tissue DNA (Figure 26A, on 

the left), while both C and A nucleotides were shown in Sanger sequencing in normal tissue 

counterpart of the second case (Figure 26B, on the right). 
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Figure 26. One case is shown on the left and another case is shown on the right. The first 2 sequences correspond to 
the case variant and to the confirmation PCR respectively. The third sequence belongs to tissue control. 

 

The fact that in one case the normal counterpart tissue only presents the wild type sequence 

may account for a somatic alteration related to tumour development, but the finding that it 

can be found also in non-tumour control do not support this hypothesis. Data available so far 

are not sufficient to establish a reliable conclusion. 

4.3.5. Investigation of the significance of the not yet described variants 

It is interesting to note that two of the not yet described variants here identified (miR-650 

64C>A, and miR-588 54T>G) are part of the complementary sequence of the miRNA. 

Frequently only one strand undergoes complete maturation (Hu et al., 2009a; Martinez et al., 

2002), but there are many cases in which the complementary strand also undergoes 
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maturation and has a biological activity. The secondary mature strand is generally described in 

the miRBase with the same name as the miR- plus the symbol asterisk (*). In the case of miR-

650 and miR-588, according to miRBase, the complementary strand of these two miRNAs is 

not reported so far. Nevertheless, it does not necessary mean that the complementary strand 

has no biological function. Moreover it has been proposed that the specific folding of pre-

miRNA can influence the action Dicer during the maturation process and may alter whether 

the 3’ or 5’ arm of the pre-miRNA undergoes maturation (Schwarz et al., 2003).  

Furthermore it is to note that new polymorphism data are continuously appearing. For 

instance, by the time of the work was done (July 2011) no data could be found about the 

polymorphism on miR-16-1. 

To evaluate the importance that these nucleotides changes could have and their potential 

effects on pre-miRNA, the wild type sequences, and the other variant were submitted to 

BibiServ web resource that evaluates miRNA secondary folding changes.  

In the case of pre-miR-588 only a minor change can be observed in the predicted folding 

(Figure 27). 

 

Figure 27. Change in the folder prediction in pre-miR-588 that results from TG substitution. The blue box 
indicates the predicted change in the structure. 

 

While in the case of pre-miR-650 the variant CA predicts a large change in bidimentional 

pre-miRNA structure (Figure 28). 



RESULTS 

96 

 

 

Figure 28. Change in the folder prediction in pre-miR-650 that results from CA substitution. The blue box 
indicates the position of nucleotide substitution. 

 

Even if an important change can occur in the pre-miR-650 folding, the value of the variants 

here found still need to be investigated, and so far a reliable significance cannot be assessed.  

Data regarding the new variants and already known polymorphisms has been stored at 

Addenbrooke’s Hospital database together with the other information concerning the series of 

DLBCL cases whit the aim of evaluate them in conjunction with the rest of the data for survival 

analysis, response to therapy and other features. 
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As detailed in the guidelines of the WHO, lymphoma diagnosis is based on the integration of 

data proceeding from clinical history of the patient, histopathological aspect of the tumour, 

tumoural marker expression, chromosomal alterations and gene (or protein) expression data 

(Swerdlow et al., 2008). 

Even if specific features for diagnosis are assigned to each lymphoma type, classification is 

continuously under review. Thus, additional markers for differential diagnosis and accurate 

prediction of response to therapy are still needed.  

In this study the comparison of specific lymphoma type towards the entire series of 

lymphomas or non-tumour samples yielded a number of miRNAs whose expression was 

significantly altered suggesting new markers for differential diagnosis and patient 

stratification.  

Additionally, some of the alterations found in lymphomas are not completely understood so 

far. For instance, pathway deregulation, as happens in MCL or in ABC subtype of DLBCL; 

variations in GEP and protein expression whose alterations are not yet elucidated, as happens 

in MYC translocation negative cases that however express high levels of MYC; and recurrent 

losses or gain in genomic regions that do not apparently codify for important genes. 

miRNAs constitute promising candidates to enlighten these grey areas of lymphoma 

understanding, mainly due to their predicted impact on regulation of protein expression, 

indeed aberrant variations in miRNAs expression account for an undisputed role in alteration 

of cellular equilibrium and thus in cancer development. 

Many of the miRNAs here identified have been already proven to be correlated to B-cell 

maturation and cancer development, while others are good candidates for clarification of the 

unexplained alterations in lymphomas. 

Finally, efforts have been done to elucidate de origins of miRNA expression/function alteration 

by sequencing a selection of miRNAs and the role of copy number variantion (CNV) is also 

discussed.  
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5.1. Project 1: miRNA expression profile in lymphomas 

Results yielded from the first project can be divided into three sections: the comparison of all 

lymphomas vs. non-tumour controls, the comparison of each lymphoma vs. the whole series of 

B-Cell lymphoma samples and the validation of a differential miRNA expression profile 

between BL and DLBCL: discussion is provided for all of them. 

5.1.1. Comparison of all lymphomas vs. non-tumour controls 

miRNA expression was investigated in the whole series of 147 B-cell lymphoma samples and 

compared with non-tumour controls (four tonsils, seven lymph nodes and four spleens),  and a 

selection of these miRNAs was validated in a second series of 66 lymphoma cases. A number of 

miRNAs were broadly lost across the entire series of lymphomas: among them the ones that 

were more significant were miR-133a and miR-31. Upregulated miRNAs were less significant, 

but also some of them were upregulated in the whole series of cases; such as miR-513 and 

miR-9. 

These data account for a potential important role of these miRNAs in B-cell lymphomas 

pathogenesis. Numerous works are available on miR-31. This miRNA has been found lost in 

gastric cancer (Zhang et al., 2010), its loss has been connected to metastasis development 

(Valastyan et al., 2009) and it has been also described as a tumour suppressor miRNA in 

malignant mesothelioma (Ivanov et al., 2010) due to its ability to inhibit proliferation, 

migration and invasion (further discussion about miR-31 can be found in section 5.4.1.). A role 

for miR-133a has been described in the regulation of lymph node metastasis of breast cancer 

(Wu et al., 2012) where, miR-133a, can suppress tumour cell invasion and migration probably 

by modulating the expression of fascin homolog 1, actin-bundling protein (FSCN1) (a regulator 

of cell mobility), which is a gene overexpressed in Reed-Sternberg Hodgkin's lymphoma cells 

(Kluiver et al., 2007), but not in non-Hodgkin lymphomas.  

Another downregulated miRNA here identified, miR-23b, was found also to be lost in human 

colon cancer where in vitro experiments conferred to miR-23b impaired expression a role in 

attenuation of apoptosis and stimulation of cell proliferation, migration and invasion mediated 

by its action on different proteins involved in JNK, ERK and NF-kB pathway. Some of the targets 

identified for miR-23b are the mitogen-activated protein kinase kinase kinase 1, E3 ubiquitin 

protein ligase (MAP3K1), the p21 protein activated kinase 2 (PAK2) and the related RAS viral 

oncogene homolog 2 (RRAS2)  (Zhang et al., 2011b).  
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Among the upregulated miRNAs, high expression of miR-9 was found correlated to metastasis 

development in breast cancer (Ma et al., 2010b) and in PDRM1 downregulation (Huang et al., 

2011). Not only: miR-9 has been described as a DICER repressor and its inhibition in a HL 

xenograft model  decreased tumour growth (Leucci et al., 2012). 

Overexpression of miR-212 has been described in pancreatic cancer, where the retinoblastoma 

tumor suppressor (Rb1) was shown to be one of its targets (Park et al., 2011b), and in non-

small cell lung cancer (NSCLC). In this last study the overexpression of miR-212 contributed 

to cell cycle progression (Li et al., 2012b). 

Less published information is available for miR-513, since its overexpression was only 

described in retinoblastoma (Zhao et al., 2009). 

The expression of miRNAs has been shown to be tissue-dependent (Lu et al., 2005), 

accordingly we have tried to select tissue-specific controls for each tumor type, thus avoiding a 

bias for the B-cell lymphomas subtypes typically localized outside the lymph nodes: MALT and 

SMZL lymphomas. This may explain some of the discrepancies of our findings with previous 

studies.  

For instance, we have found upregulation of miR-200a compared with non-tumour controls 

(reactive lymph nodes and tonsils) both in the first and in the validation series of cases, while 

another group described the loss of miR-200a in conjunctival MALT compared with pared non-

tumour conjunctival samples (Cai et al., 2011). Interestingly, only one MALT lymphoma in our 

validation series was derived from conjuntival tissue, and it was the case with the lowest 

expression level of miR-200a. This finding is in line with the evidence that miRNAs are 

specifically expressed in different tissue and that can have different role according to the 

tissues in which they are expressed. A similar approach in a study of gastric MALT has been 

done where matched adjacent normal gastric material from the same patients was used as 

non-tumour control (Craig et al., 2011). It is not surprising that MALT lymphomas express 

different miRNAs compared to the adjacent tissue since MALT lymphomas are derived from B-

cells, while the adjacent tissue probably belongs to a completely different kind of tissue, 

mostly epithelial. Since the aim of this study was to compare the different tumours for 

lymphoma differential diagnosis, and a small amount of adjacent non-tumour tissue is always 

detectable in biopsies, MALT samples were selected from different anatomic localization to 

avoid that their expression profile could resemble the tumour location, thus making possible 



                                                       DISCUSSION 

103 

 

the identification of miRNAs strictly correlated to MALT lymphoma independently of tumour 

anatomic localization, thus being a more useful approach for identifying markers for 

differential diagnosis. 

The same problem had easier solution in SMZL cases, where the analysed samples were mostly 

infiltrated spleens. According to SMZL definition, these tumours are mainly localized in the 

spleens (Swerdlow et al., 2008), and in fact, we found that SMZL can be better normalized 

using spleens as non-tumour counterpart rather than lymph node and/or tonsil samples. For 

this reason, SMZL cases have been evaluated comparing them to normal spleens and not to 

lymph nodes, an approach shared also by others groups (Bouteloup et al., 2012; Ruiz-

Ballesteros et al., 2007).  

5.1.2. miRNAs differential expression among the different B-cell lymphoma types  

Besides the finding that the expression profile of some miRNAs can differentiate all the B-cell 

lymphoma types here investigated from non-tumour controls; the potential value of the 

miRNAs expression has been investigated for differential diagnosis and pathogenesis 

elucidation of the different B-cell lymphoma types.  

The initial analysis done by SAM software identified 128 miRNAs potentially useful for specific 

B-cell lymphoma type recognition. KNN analysis of the same 147 fresh frozen samples correctly 

classified 86,4% of the cases by using 120 miRNAs. Ninety-five miRNAs were significant both in 

SAM and KNN analysis (accounting for about the 3/4 of the significant miRNAs), confirming 

and enforcing thus the relevance of the miRNAs commonly identified by the two algorithms.  

The group of cases poorer classified was DLBCL, a result somehow expected due to the already 

known DLBCL heterogeneity (Wright et al., 2003). Indeed, it is not a case that the error rate of 

DLBCL class recognition accounts alone for 5,4%, which represent more than 1/3 of the total 

error. It is interesting to note that 6 out of 8 of the misplaced DLBCL cases were classified as FL 

(see Table 19), confirming that differential diagnosis between these two lymphomas type is 

sometimes unclear. miRNA capacity of distinguish between FL and DLBCL has been 

investigated by other groups (Lawrie et al., 2009; Roehle et al., 2008) finding that miRNAs are 

able to distinguish between these two lymphomas with a confidence of 98%.  

The rate of correct classification of this analysis could be even higher if more cases were 

introduced. In fact the more cases are used in predictor programs the more accurate the 
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results are, but unfortunately the availability of fresh frozen tissues is limited. Though this 

results can help with the selection of candidate miRNAs for further validation in a larger series 

of FFPE samples. It is also to consider that here eight different types of lymphomas are 

considered, so the difficulties of a correct classification are higher than classification just 

between two different tumour types. 

Not only, the value of these results goes beyond lymphoma classification, since, as it has been 

shown in this work, some miRNAs identified by KNN algorithm and SAM analysis could be 

involved in the pathogenesis of each specific lymphoma type. Nevertheless, a role for many 

miRNAs has not been assigned so far and experimental validation of these markers still 

remains to be explored. 

Moreover, a number of distinctive features, specific of each lymphoma type, may help to 

understand the implications and the rational of miRNAs expression in B-cell lymphomas 

pathogenesis and are discussed as follows.  

One of the master regulators that may affect (and be affected by) miRNA expression is Myc 

protein. It is overexpressed in many B-cell lymphomas and particularly in BL. There is a vast 

group of miRNAs regulated by Myc (Robertus et al., 2010), and here, high expression of some 

of them: miR-17-3p, miR-18a, miR-19a, miR-92 and miR-130b, were found in BL after 

comparing to other B-cell lymphoma cases; while miRNAs that are supposed to be repressed 

by Myc were also downregulated in BL cases, such as miR-29 family (Mott et al., 2010) and 

miR-26a (Chang et al., 2008). Finally miRNAs that are demonstrated to downregulate MYC 

were lost in BL compared to other NHL cases (let-7 family) (Robertus et al., 2010; Sampson et 

al., 2007), a circumstance that may promote even higher expression of MYC.  

Loss of miR-155 in BL, confirms the previous findings (Kluiver et al., 2006), and is consistent 

with the evidence that MYC translocation on IgH chain depends also on the expression of 

activation-induced cytidine deaminase (AID), an enzyme that promotes somatic hypermutation 

of immunoglobulin genes (Muramatsu et al., 2000), and whose expression is regulated by miR-

155 (Dorsett et al., 2008). 

In CLL cases, loss of miR-16 was found, as already described in this tumour (Calin et al., 2002; 

Fulci et al., 2007). Until date, the majority of the studies conducted on CLL cases examine CLL 

samples derived from peripheral blood, and compare them with peripheral blood or tonsil 

purified cell suspension controls (Calin et al., 2002; Fulci et al., 2007), while CLL samples and 
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controls of this study proceeded from fresh frozen tissues. Additional miRNAs were here 

identified to be significantly lost in CLL cells; for instance it is to note the loss of both the miR-

126 and miR-126* (both deriving from the same pre-miRNA) as already documented (Pallasch 

et al., 2009). The role of loss of both these miRNAs in cancer has been already reviewed 

(Meister and Schmidt, 2010) and they have been shown to be able to inhibit metastasis 

formation in vivo using breast cancer cell lines  (Tavazoie et al., 2008). miR-199a* (loss in CLL) 

has been described to be a pro-apoptotic miRNA (Kim et al., 2008). Finally it is remarkable that 

miR-143 (also lost in CLL cases) is a regulator of v-Ki-ras2 Kirsten rat sarcoma viral oncogene 

homolog (KRAS) (Chen et al., 2009). KRAS overexpression (or activation) frequently occurs 

during cancer transformation events (Der and Cooper, 1983), and its overexpression has been 

described also in CLL (Gahrton et al., 1987). 

MALT lymphoma cases overexpress all the members of miR-200 family: so thus, it could be 

possible that their redundancy have a specific role in this lymphoma type. Overexpression of 

miR-141 and miR-200a have been correlated with tumorigenesis in ovarian cancer (Mateescu 

et al., 2011), while upregulation of miR-200a and miR-200b has been connected to 

development and high serum levels in pancreatic cancer probably due to their 

hypomethylation (Li et al., 2010a).  

In particular, miR-200c, was overexpressed in MALT and also in MCL cases. Upregulation of this 

miRNA has been correlated to chemoresistance and AKT pathway activation (Hamano et al., 

2011): a feature commonly found in MCL cases (Rudelius et al., 2006), especially in MCL 

aggressive subtypes. 

MCL cases also overexpress miR-183, an already described oncomiR (Sarver et al., 2010), 

whose upregulation regulates resistance to apoptosis, as shown in hepatocellular carcinoma, 

where this miRNA has been correlated to down regulation of the Programmed cell death 4 

(PDCD4) and resistance to apoptosis induced by Transforming Growth Factor-beta1 (TGF-β1) 

(Li et al., 2010b). Additionally, miR-182 and miR-183, both upregulated in MCL, are located in 

the same cluster on chromosome 7q32.2.  Upregulation of this cluster was correlated to the 

alteration of multiple pathways in medulloblatoma, driving cell survival and proliferation 

(Weeraratne et al., 2012).   

SMZL cases showed loss of the cluster miR-141/200c on chromosome 12p13.31 which has 

been described also in renal carcinoma (Nakada et al., 2008) and in particular, loss of miR-141 
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has been connected to higher cell proliferation (Du et al., 2009b). Another miRNA loss in SMZL 

cases was miR-210: a miRNA that has been correlated with tumour proliferation and 

aggressiveness (Rothe et al., 2011), whose dowregulation in SMZL cases may be ascribable to 

lower aggressively of this type of lymphoma compared with the others included in the analysis. 

A further interesting observation is that B-cells at different stages of maturation show specific 

miRNA signatures (Kuchen et al., 2010), thus the differential expression of miRNAs between 

different lymphoma types may reflect distinct miRNA profiles of the cell of origin as described 

in the introduction Table 1 and Figure 2.  

In this study the eight B-cell lymphoma types that were included, derive from distinct B-cell of 

origin (see introduction Figure 2): MCL derive from mantle zone B-cells; BL, FL and DLBCL are 

mainly derived from GC cells (at least DLBCL CG subtype), while three of them are derived from 

the marginal zone: MALT, NMZL, SMZL, which accounts for post-GC cells origin and CLL derives 

from memory B-cells. 

The analyses of the different lymphoma types reflect partially this cell of origin. This is the case 

of FL, a lymphoma derived from GC cells, where miR-138 and miR-9 are found to be  

upregulated as expected in GC cells (Basso et al., 2009; Jima et al., 2010; Zhang et al., 2009). 

miR-9 is also involved in PRDM1 down-regulation (Huang et al., 2011; Zhang et al., 2009): a 

finding observed in reactive and neoplastic Germinal center B -cells (Garcia et al., 2006). 

Cells deriving from GC cells are described also to show upregulation of miR-130b (Basso et al., 

2009; Jima et al., 2010) as can be observed in our BL series. 

At the same time, miR-29c is downregulated in BL, again in accordance with the finding that 

this miRNA is lost in GC cells (Basso et al., 2009; Jima et al., 2010). 

Another miRNA that may suggest a relationship with the expression pattern of the cell of origin 

is miR-223, which is strongly expressed in NMZL cases. This miRNA has been shown to inhibit 

LMO2 expression (Malumbres et al., 2009), a protein strongly expressed in the GC (Natkunam 

et al., 2007).  Upregulation of this miRNA in NMZL cases is consistent with the observation that 

this tumour does not express LMO2 or other GC markers.  
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5.1.3. miRNAs differential expression between BL and DLBCL 

Despite the characteristic association between MYC translocation and the diagnosis of BL, a 

discrete number of DLBCL cases may carry the MYC translocation (Ladanyi et al., 1991; 

Swerdlow et al., 2008), and the existence of a gray zone between these two entities has been 

already described (Bellan et al., 2009). Thus, the requirement of new approaches and markers 

for differential diagnosis has been a classical topic for research (Bellan et al., 2009; Dave et al., 

2006; Harris and Horning, 2006; Hummel et al., 2006). miRNAs data were explored to test 

whether they could contribute to the differential diagnosis of BL and DLBCL and whether they 

could also set the basis of a more comprehensive understanding of the pathogenesis. 

The analysis of 41 cases (12 BL and 29 DLBCL) by microarrays conducted on fresh frozen 

samples yielded to the selection of 43 candidate miRNAs that could significantly differentiate 

BL from DLBCL. Nineteen of these miRNAs were confirmed in a second series of 71 samples. 

The results here found comparing BL vs. DLBCL show that a few miRNAs could help in their 

differential diagnosis. A model including all 19 significant miRNAs or only the most significant 

ones may increase the accuracy of the BL diagnosis since the unsupervised cluster correctly 

classified 93% of the samples.  

The use of miRNAs for BL-DLBCL differential diagnosis was recently covered by another totally 

independent similar study conducted in parallel (Lenze et al., 2011) with the work here 

described. Even if not all significant miRNAs were coincident, a number of miRNAs were 

identified by both investigations. These miRNAs are: miR-146a, miR-155, miR-29b, and also 

others but less significantly like miR-26b miR-34b. A central finding in both studies is the loss of 

miR-155 that was the most significant miRNA in this work and one of the most important 

miRNA in the Lenze work.  

Interestingly miR-34b was found to downregulate MYC expression (Leucci et al., 2008), while 

miR-26b was found to be downregulated by MYC expression (Chang et al., 2008; Koh et al., 

2011): two findings that perfectly fits with their lost in BL cases. 

miR-146a (here downregulated in BL compared with DLBCL) has been shown to be an 

apoptosis inhibitor and a suppressor of tumour growth in other types of cancers (Hou et al., 

2011; Xu et al., 2011), an observation that is consistent with the observation that BL is the 

lymphoma with highest cell duplication rate (Swerdlow et al., 2008). miR-155 has been 
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described for its importance in B-cell maturation and its loss can be correlated with a blockade 

in immunoglobulin switching (Dorsett et al., 2008; Teng et al., 2008; Vigorito et al., 2007). 

miR-155 is probably the most investigated miRNA among them, and here also probably the 

most promising miRNA for BL/DLBCL recognition. miR-155 high expression in DLBCL (Kluiver et 

al., 2005) and lack in BL have been two of the first discoveries in lymphomas (Kluiver et al., 

2006), but its use for differential diagnosis was investigated until now. 

Improvements in differential diagnosis in this case may have a clear clinical application in  

treatment decision, since standard doses of chemotherapy utilized for DLBCL such as CHOP are 

inadequate for treating Burkitt lymphoma and most of intermediate BL/DLBCL cases  (Smeland 

et al., 2004). 

5.1.3.1. miRNAs in the practice of differential diagnosis between BL and DLBCL  

Usage of FFPE samples for RT-qPCR has been controversial in the last few years because results 

were considered less reliable than results obtained by fresh frozen samples. It is obvious that 

the RNA quality is lower if compared with fresh frozen tissue derived RNA, but still good 

enough for RT-qPCR studies as long as the investigated regions are not too extense. In the case 

of mature miRNAs the sequence to be amplified is only 20-30 nucleotides length. Here we 

have followed an approach based on using an initial relatively small series of fresh frozen 

samples with a comprehensive platform and select a reduced number of miRNAs to validate in 

a second group of FFPE samples. This approach has been used successfully for gene expression 

data (Sanchez-Espiridion et al., 2009) as well as for miRNAs investigation  (Alencar et al., 2011; 

Laios et al., 2008; Montes-Moreno et al., 2011) where the addition of miRNAs to the diagnostic 

and prognostic algorithms have been demonstrated to be feasible. Thus, the evaluation of the 

expression levels of some miRNAs may provide additional criteria for a demanding differential 

diagnosis. Among the miRNAs that showed highest potential for differential diagnosis we 

found miR-155, miR-146a, miR-26b, miR-29b, miR-34b and some miRNAs included in the 

cluster 17-92, such as miR-17-3p and miR-92.  
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5.2. Project 2: miRNAs significance in pathway regulation and survival 

studies 

Behind the description of a miRNA signature in MCL cases, the big novelty of the work done in 

MCL relies on the investigation of a correlation between miRNA expression profile, GEP and 

pathway activation. Gene expression profiling studies of MCL have revealed increased survival 

signalling (Jares et al., 2007; Martinez et al., 2003; Salaverria et al., 2007), but have not 

identified the mechanisms responsible for them. Thus the finding that miRNAs expression may 

be correlated to deregulation of MCL pathways such as CD40 activated signalling, MAPK and 

NF-kB (Basso et al., 2004; Homig-Holzel et al., 2008; Rosenwald et al., 2003) constitutes a 

stimulating step forward, because numerous works focused their attention on direct effects of 

miRNAs on their target protein, but did not investigated miRNAs role in pathways activation. 

Since NF-kB pathway is of particular interest in MCL pathogenesis, miRNAs impact on this 

pathway was investigated. The finding that miR-26a restoration is able to obstacle NF-kB 

pathway activation, mainly through MAP3K2 protein modulation, consists in an additional 

elucidation of MCL pathogenesis.  

It is important to remember that the approach followed here, looks at the association of 

miRNAs with mRNA expression and it accounts for only a part of the miRNAs’ ability to 

modulate protein expression, since miRNA also regulates mRNA translation (Baek et al., 2008). 

We cannot exclude that additional findings could be found at investigating miRNA correlation 

with protein expression profile. However, mRNA destabilization still accounts for a big part of 

miRNA biological effects (Baek et al., 2008) and the same approach has been used to 

investigate others malignancies.  

Later on other works confirmed the miRNAs importance in pathway activation (Bueno et al., 

2011; Paik et al., 2011), for instance the role of miR-22 (here lost in MCL cases) in NF-kB 

activation was shown by a different group (Takata et al., 2011). Of great importance is the 

finding that  miR-31 downregulation (a miRNA here lost in MCL cases) was associated to NF-kB 

pathway activation in T-cell lymphomas (Yamagishi et al., 2012).  

Even if the majority of the significant changes have been detected in MCL cases and MCL cell 

lines, some minor variations can be observed among them. MCL cell lines are more 

representative of the blastoid form than of classic MCL, so we may hypothesize that the 
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aggressive transformation to blastoid form may include changes also in the expression of the 

miRNAs including the 17-92 polycistron (Rinaldi et al., 2007) that has been found upregultated 

in some cell line but not in classic MCL cases.  

Some of our findings in MCL have been confirmed by a recent work, comparing CD19+ purified 

tumoural lymph node cells with CD19+ peripheral blood cells (Zhao et al., 2010). Some of the 

confirmed miRNAs in both series were miR-27a, miR-27b miR-21, miR-150, miR-30b, miR-26b 

and more interestingly, miR-26a (the miRNA that has been chosen here for functional studies), 

while among the significantly gained miRNA in both works there are: miR-345, miR-124a, miR-

372 and miR-373*. 

The study conducted on MCL series of cases also identifies a potential new prognostic marker. 

MCL response to therapy is not uniformly unfavourable, and some MCL cases follow a 

relatively indolent clinical course. Interestingly, weak expression of miR-20b can be useful for 

predicting clinical behaviour, enabling a group of MCL patients with higher survival probability 

to be distinguished. miR-20b expression has been found to have a role in other type of 

cancers, where its high level of expression was associated with worse prognosis (Katada et al., 

2009; Landais et al., 2007; Sun et al., 2008), as we also found in MCL. It is of interest that miR-

20b shares 21 out of 23 nucleotides with miR-20a, which is a member of oncomir-1 cluster. It is 

possible that miR-20b and miR-20a share also some common targets and it may have 

significance since as already discussed overexpression of the members of oncomir-1 cluster 

may have some correlation with additional aggressive features. 

 

5.3. Project 3: variants in miRNAs sequence 

miRNA sequence was evaluated in 95 cases of DLBCL. Nine variants were found in a total of six 

miRNAs. According with NCBI and Ensebl databases, five variants are already described, while 

the resting four variants, one on pre-miR-588 and three on pre-miR-650, are not described so 

far.  

Even if a report in CLL affirms the possible existence of a germ line variant in tumour samples 

that may be relevant in the disease (Calin et al., 2005), miRNAs discoveries argument more for 

the relevance of alterations in miRNAs expression level, rather than miRNAs nucleotide 

changes. 
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Since the bidimentional conformation of pre-miRNAs is the result of the interaction between 

the entire sequence of pre-miRNA nucleotides, the potential effects of these changes on the 

pre-miRNA structure has been investigated by a predictor programme to evaluate wheatear 

these changes may disturb the pre-miRNAs structure. In the case of CA variation on miR-

650, the predicted structure of the pre-miRNA resulted deeply changed (Figure 28). 

Pre-miRNA structure is considered of fundamental importance for miRNA maturation (Lund 

and Dahlberg, 2006; Starega-Roslan et al., 2011). For this reason a modification of the pre-

miRNA conformation may alter the process of miRNA maturation as proposed by 

computational and biochemical analyses (Han et al., 2006), and in particular, it may perturb 

Dicer activity (Park et al., 2011a). Consequently, a lower-grade of mature miRNA expression 

would be expected (Duan et al., 2007; Harnprasopwat et al., 2010; Zhang and Zeng, 2010), as 

proposed for instance for miR-125a (Duan et al., 2007).  

In this scenario a change in miRNAs sequence can be relevant and may have some effects on 

the regulation of the main cellular pathways. It might be reasonable to hypothesize that 

miRNAs variants may alter miRNA maturation, thus leading to a deregulation of the expression 

level of the miRNAs. These changes would be added to others caused by CNV in chromosome 

sites containing miRNAs.  

Variants have been here identified for miR-588 and miR-650. Functional studies or validated 

targets are not available for miR-588, which makes the evaluation of these results even more 

difficult, while a recent publication arguments for miR-650 importance in CLL: lower expression 

of this miRNA was correlated to worse course of the disease, and higher rate of in vitro cell 

proliferation (Mraz et al., 2012). 

So far the variants here described are not listed in Ensembl and dbSNP database. We cannot 

exclude the possibility that they could be found in the future in the healthy population, but still 

the importance of miRNAs polymorphism cannot be excluded as in all the rest of single 

nucleotide polymorphism (SNP) studies, since the importance of miRNAs variants may also rely 

on their correlation with patients’ outcome, overall survival, response to therapy (Boni et al., 

2011; Mishra et al., 2008; Mishra and Bertino, 2009)  and assessment of cancer risk (Gao et al., 

2011; Pastrello et al., 2010; Zeng et al., 2010).  
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5.4. Further developments and perspectives 

5.4.1. Good candidates for further studies 

It is interesting to note that some results on one single miRNA, miR-31, are recurrent in this 

work. It was downregulated when comparing MCL vs. normal controls and also after 

comparing the whole series of B-cell lymphomas vs. normal controls. miR-31 is predicted to be 

a regulator of the mitogen-activated protein kinase kinase kinase 14 (MAP3K14, also called 

NIK) expression, a gene that besides its obvious correlation to MAPK pathway, is also essential 

for the activation of the alternative NF-kB pathway (Sasaki et al., 2008) as demonstrated 

recently in T cell lymphomas (Yamagishi et al., 2012). Interestingly, NIK is a protein that is up-

regulated in many lymphomas (Annunziata et al., 2007; Pham et al., 2011; Rosebeck et al., 

2011; Saitoh et al., 2008). Moreover, the region in which miR-31 is located has been found lost 

in DLBCL, and correlation between this loss and miR-31 expression has been published (Li et 

al., 2009). All these observations make miR-31 a good candidate for further functional studies 

in MCL and the others B-cell lymphomas. 

Another promising miRNA is miR-26a. It has been found able to regulate NF-kB activation: a 

pathway that is abnormal active in MCL and many other cancer types, including other 

lymphoma types. This miRNA has been found lost in many types of cancers, including 

hepatocellular carcinoma (Chen et al., 2011), nasopharyngeal carcinoma (Lu et al., 2011) and 

lung cancer (Dang et al., 2012). In these works restoration of miR-26a expression has been 

correlated with inhibition of cell proliferation, blockage in G1/S phase transition, induced 

apoptosis, inhibition of cell metastasis and in vitro inhibition of invasion (Dang et al., 2012), 

and suppression of cell proliferation and colony formation (Lu et al., 2011). 

Additionally miR-26a downregulates a member of PcG complex: EZH2 (Lu et al., 2011; Zhang et 

al., 2011a), whose expression is important for histone methylation and regulation of different 

tumour suppressor gene expression. 

Taken into account all these considerations, the restoration of miR-26a might confer a clinical 

advantage for the patients. A promising in vivo study describes the effects of reintroduction of 

miR-26a in a murine liver cancer model (Kota et al., 2009), where the restoration of miR-26a 

expression inhibited cancer cell proliferation and  induced tumour cell specific apoptosis, cell 

cycle arrest, and protection from disease progression without toxicity. These findings make for 

miR-26a as a good candidate for future drug developments studies. 
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5.4.2. Causes of miRNA losses and gains: an issue that requires further investigation 

The biological importance of miRNAs losses and gains is an element broadly recognised, and 

the effects of miRNAs deregulation have been largely investigated in normal and disease 

conditions.  

Less information is available about the causes of miRNAs deregulation, in fact in most of the 

cases it is not known why changes in miRNAs expression level occur.  

Efforts have been done also to correlate CGH data to miRNA expression profile. Good results 

are reported in CLL (Visone et al., 2009), DLBCL  (Li et al., 2009) and other type of cancers 

(Nymark et al., 2011; Selcuklu et al., 2009; Tatarano et al., 2011). Among the miRNAs here 

found deregulated the miR-17-92 cluster that was found significantly related to gain at 13q31 

region in lymphomas, particularly in MCL (Navarro et al., 2009; Rinaldi et al., 2007) In this 

series of MCL cases loss of the 9p21 and 17p13.1 cytobands, were miR-31 and miR-497 are 

located respectively was found (not published), but still CGH alone does not seem to explain 

the majority of miRNAs deregulation. 

The possibility of epigenetic alterations has been also investigated in many studies and some 

of the miRNAs here deregulated have been found epigenetically controlled, for instance with 

miR-203 (Chim et al., 2011). Interestingly miR-141/200c cluster was found downregulated in 

our series of SMZL, and DNA methylation has been documented as one reason of its loss 

(Neves et al., 2010; Vrba et al., 2010).   

Correlation between miRNAs overexpression and DNA hypomethylation has been also 

described (Li et al., 2010a), in specific for miR-200a and miR-200b: both upregulated in MALT 

and NMZL cases. 

Not only, since miRNAs have a promoter and regulatory region like every other gene, 

conventional transcription factors are also able to induce miRNA expression. The most 

interesting case in B-cell lymphoma that has been documented is the regulation of oncomiR-1 

by Myc (Chang et al., 2008; Robertus et al., 2010).  

Other possibilities have been recently explored: for instance the alternative routes of miRNAs 

maturation as a mechanism that could determine the mature amount of miRNAs in the cells 

has been taken under consideration (Cheloufi et al., 2010; Yang et al., 2012).  
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Finally, changes in miRNAs sequence may impair the maturation of miRNAs, and confer 

another mechanism that may bring to miRNAs expression level reduction, as proposed for 

miR-125a (Duan et al., 2007) and miR-126 (Harnprasopwat et al., 2010), two miRNAs that here 

are lost in CLL cases compared with the rest of the lymphomas and in MCL cases compared vs. 

non-tumour controls. Due to the possibility that the maturation process could be affected by 

the changes in the sequence of miRNAs (Sun et al., 2010), the variant here reported on pre-

miR-650 could be a good candidate to examine more in depth their effects on mature miRNA 

expression level. 
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1. B cell lymphomas have a specific miRNA signature common to all types of lymphomas 

here studied, and different to non-tumour controls. 

2. At the same time, the different types of lymphoma show distinct miRNA signatures, 

which confirm the importance of miRNAs in tumour development, and remark their 

potential use as diagnostic markers. 

3. A signature of 19 miRNAs differentially expressed between BL and DLBCL could be 

used for differential diagnosis. Among them the most reliable are: miR-155, miR-29b, 

miR-146a and miR-17-3p. 

4. The analysis of miRNA and gene expression profiles in MCL permitted to correlate 

miRNAs deregulation with gene pathways alterations. In particular, the loss of miR-26a 

was correlated to NF-kB pathway activation as shown in cell lines. 

5. miRNAs relevance as potential prognostic markers was demonstrated in MCL, where 

high expression of miR-20b was found associated with a shorter overall survival 

6. Sequence variations in miRNAs are a rare event and the significance of them needs to 

be fully investigated 
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1. Los linfomas de células B poseen un perfil de expresión de miRNAs común y diferente 

de los controles no tumorales. 

2. Al mismo tiempo, los distintos tipos de linfoma B poseen un perfil de expresión de 

miRNAs específico, que confirma la importancia de los mismos en el desarrollo de cada 

linfoma y sugiere su uso para el diagnóstico  diferencial. 

3. Un perfil de expresión de 19 miRNAs diferencialmente expresados entre BL y DLBCL 

podría ser usado para el diagnóstico diferencial. Entre ellos, los miRNA más 

prometedores son miR-155, miR-29b, miR-146a y miR-17-3p. 

4. El análisis de la expresión de los miRNAs y de los genes en linfoma de manto permitió    

relacionar la expresión de los miRNAs con las rutas biológicas alteradas. La perdida del 

miR-26a fue relacionada con la activación ruta de Nf-kB. 

5. La relevancia de la expresión de los miRNAs en el pronóstico de los linfomas de manto 

ha sido demostrada tras la identificación de miR-20b, cuya expresión se encontró 

asociada a una peor expectativa de supervivencia. 

6. Las alteraciones de las secuencias parecen ser un evento raro en los miRNAs, y sus 

relevancia en la célula requiere una mayor investigación 
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Figure 9. Heatmap of the significant miRNAs normalized with non-tumour controls. 
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ORIGINAL ARTICLE

MicroRNA signatures in B-cell lymphomas
L Di Lisio1,2, M Sánchez-Beato2, G Gómez-López3, ME Rodrı́guez1,2, S Montes-Moreno1,2, M Mollejo4, J Menárguez5, MA Martı́nez6,
FJ Alves7, DG Pisano3, MA Piris1,2,8 and N Martı́nez1,2,8

Accurate lymphoma diagnosis, prognosis and therapy still require additional markers. We explore the potential relevance of
microRNA (miRNA) expression in a large series that included all major B-cell non-Hodgkin lymphoma (NHL) types. The data
generated were also used to identify miRNAs differentially expressed in Burkitt lymphoma (BL) and diffuse large B-cell
lymphoma (DLBCL) samples. A series of 147 NHL samples and 15 controls were hybridized on a human miRNA one-color
platform containing probes for 470 human miRNAs. Each lymphoma type was compared against the entire set of NHLs. BL was
also directly compared with DLBCL, and 43 preselected miRNAs were analyzed in a new series of routinely processed samples
of 28 BLs and 43 DLBCLs using quantitative reverse transcription-polymerase chain reaction. A signature of 128 miRNAs
enabled the characterization of lymphoma neoplasms, reflecting the lymphoma type, cell of origin and/or discrete oncogene
alterations. Comparative analysis of BL and DLBCL yielded 19 differentially expressed miRNAs, which were confirmed in a
second confirmation series of 71 paraffin-embedded samples. The set of differentially expressed miRNAs found here expands
the range of potential diagnostic markers for lymphoma diagnosis, especially when differential diagnosis of BL and DLBCL
is required.
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INTRODUCTION
B-cell non-Hodgkin lymphomas (NHLs) are a group of lympho-
proliferative B-cell disorders that include Burkitt lymphoma (BL),
chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma
(DLBCL), mantle cell lymphoma (MCL), follicular lymphoma (FL),
marginal zone lymphoma/mucosa-associated lymphoid tissue
lymphoma (MZL/MALT), nodal marginal zone B-cell lymphoma
(NMZL), splenic marginal zone lymphoma (SMZL) and various less
frequent entities.1 These definitions are based on a combination of
clinical data and morphological, phenotypic and cytogenetic
features. The use of surrogate markers for gene and chromosomal
alterations specific to the different B-cell lymphoma types1 is also
useful at diagnosis.

Nevertheless, the distinctions between these disorders are
somewhat blurred and most exhibit significant clinical and
molecular heterogeneity.1,2 New, consistent markers continue to
be required to improve the accuracy of lymphoma diagnosis and
therapy selection. An area of particular interest is the interface
between BL and DLBCL,3,4 two different lymphoma types that
require different treatment. Previous studies have demonstrated
the value of C-MYC translocations3 and gene expression profiling
data4 for this purpose, but new markers are needed to delineate
the boundaries between these two entities and to use this
knowledge to identify diagnostic markers.

In recent years, the study of a new type of non-coding small
RNA, microRNA (miRNA), has given renewed impetus to cell
differentiation and cancer pathogenesis studies.5 MiRNAs
post-transcriptionally regulate the expression of thousands of
genes, including key genes in cell differentiation and cancer

pathogenesis.6 Since evidence of the relationship between
miRNAs and cancer first emerged, with the description of the
loss of miR-15/16 in CLL cases,7 an increasing number of specific
miRNA changes have been identified in many tumor types.5 The
diagnostic potential of miRNAs is linked to their role in cellular
differentiation, as demonstrated in hematopoietic cells and,
for instance, by miR-150, in B-cell differentiation.8 The potential
of using miRNAs for differential diagnosis of tumors and
hematopoietic malignancies has been recognized, for example,
in acute lymphoblastic and myeloid leukemias, where the
expression signatures of at least two of four miRNAs (miR-128a,
miR-128b, miR-223 and let-7b) distinguished the two tumor types
with about 95% accuracy.9 Altered miRNA expression has a role in
lymphoma development and potential diagnosis. MiRNA changes
are associated with CLL (loss of miR-15a/16)7 and SMZL (loss of
miR-29a and miR-29b-1),10 among others, and in both cases these
miRNAs were located in frequently lost chromosomal regions:
13q14 and 7q32, respectively. There are differential signatures
between the expression signature of patients with different
lymphoma types, such as DLBCL and FL.11 Furthermore, in DLBCL,
miRNAs are differentially expressed in the germinal center (GC)
and activated B-cell-like (ABC) subtypes; in particular, miR-21,
miR-155 and miR-221 were found to be upregulated in the ABC
subgroup.12,13

The purpose of this study is to test whether different B-cell
lymphoma types have specific miRNA signatures, and to apply this
knowledge to identify potential markers for distinguishing BL and
DLBCL. In addition, the markers described here could be
therapeutic targets in the treatment of B-cell lymphomas.
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MATERIALS AND METHODS
Sample selection
A series of 147 fresh -- frozen samples of NHL, including 12 BL, 29 DLBCL, 22
MCL, 17 SMZL, 18 CLL, 23 FL, 11 NMZL and 15 MZL/MALT, and 15 non-
tumoral samples (7 reactive lymph nodes, 4 tonsils and 4 spleens) were
collected. A formalin-fixed, paraffin-embedded (FFPE) series of 28 sporadic
BL and 43 DLBCL samples were also investigated. Finally, an independent
series of FFPE samples corresponding to 66 lymphomas (8 BL, 8 CLL,
12 DLBCL, 9 FL, 8 MZL/MALT, 8 MCL, 8 NMZL and 5 SMZL) and 8 controls
(4 reactive lymph nodes, 3 tonsils and 1 spleen) was examined by
quantitative real-time-polymerase chain reaction (qRT-PCR) for miRNA
validation. CLL samples correspond to lymph node-involved CLL cases to
facilitate comparison with the other lymphoma types. All cases were
reviewed by a panel of three hematopathologists (SMRP, MAP, SMM)
according to the current World Health Organization criteria.1 All samples
were diagnostic, taken before the patient received therapy. The project
was approved by the ethics committee of the Instituto de Salud Carlos III
(ISCIII). The majority of the BL cases (11/12 frozen cases; 20/28 FFPE cases)
presented C-MYC translocation by FISH, whereas 31.7% (13/41) of DLBCL
FFPE cases were positive for C-MYC translocation. On the other hand, 60%
(15/25) and 40% (10/25) of DLBCL frozen samples were classified as
ABC and GC type, respectively, according to the classifier of Wright et al.14

based on gene expression profiling data, with four cases considered as not
evaluable. FFPE samples of these cases permitted classification in 44% non-
GC (11/25) and 56% GC (14/25)15 based on Hans immunohistochemical
classifier.16 Finally, FFPE series of DLBCL used for qRT-PCR were classified as
54.76% non-GC (23/42) and 45.24% GC (19/42) (one case was not
evaluable).

MiRNA detection
RNA from fresh -- frozen tissues was extracted with Trizol reagent
(Invitrogen, Carlsbad, CA, USA). Quality was assessed using a bioanalyzer
(Agilent Technologies Inc., Santa Clara, CA, USA), and 100 ng of total RNA
were hybridized on an Agilent 8� 15K Human miRNA one-color platform
(Agilent Technologies Inc.) containing probes for 470 human miRNAs
according to the manufacturer’s guidelines.17 Data were extracted by
Feature Extraction software (Agilent Technologies).

For FFPE samples, RNA was extracted by phenol -- chloroform standard
protocol after a deparaffinization step. RNA quality was assessed taking
into account 260/280 ratio and 260/230 ratio. QRT-PCR was performed
for 60 selected miRNAs according to the manufacturer’s protocol (Applied
Biosystems, Foster City, CA, USA).

Statistical methods
Between-array median normalization was carried out and significantly
deregulated miRNAs were computed using the Significant Analysis
of Microarray (SAM; http://www-stat.stanford.edu/~tibs/SAM/) method.

Each lymphoma type was compared against the whole set of samples.18

BL was also directly compared with DLBCL. MiRNAs with a false discovery
rate (FDR) o0.01 and a 41.5-fold (log2) change were considered to be
significantly up- or downregulated between lymphoma types.

MiRNA target prediction was performed using the software analysis
tools included into the following websites: http://gencomp.bio.unipd.it/
magia/start (Magia), http://www.targetscan.org (targetscan) and http://
diana.cslab.ece.ntua.gr/pathways (Diana Lab).

The K-nearest neighbors method was also used for class recognition
(http://tnasas.bioinfo.cnio.es) to test whether these lymphomas were
classified correctly with the selected miRNAs.

Quantitative RT-PCR data were processed using the SDS 2.2 and Real-
Time StatMiner (Integromics, Granada, Spain) programs, and normalized
according to the most stable endogenous small RNA tested (RNU6B). �DCt
values of BL and DLBCL were compared using a t-test (limma; available
at http://pomelo2.bioinfo.cnio.es). MiRNAs with an FDR o0.05 were
considered differentially expressed in the two groups. All clusters
were computed using the web resource GEPAS 4.0 (www.gepas.es). The
workflow is shown in Figure 1.

RESULTS
MiRNA signature of B-cell NHLs
MiRNA expression profiles of 147 NHL samples were studied.
A general view of the B-cell lymphoma miRNA signature is shown
in Supplementary Figure S1 comparing miRNA expression in
tumor samples with non-tumoral controls (tonsils and lymph

470 miRNAs; 8 types of B-cell NHL; 147 samples (Fresh Frozen)
(12BL, 18CLL, 29DLBCL, 23FL, 15MALT, 22MCL, 11NMZL, 17SMZL)

120 miRNAs classify
127 out of 147 cases

(86.4% accuracy)

128 significant
miRNAs

43 significant
miRNAs

95 miRNAs in common

Tnasas class prediction
model builder

Each lymphoma type
vs. the entire series

12BL vs. 29DLBCL

19 miRNAs confirmed

All samples
KNN. K=1 SAM

(FDR<0.01, FC>1.5)
SAM

(FDR<0.01, FC>1.5)

Confirmation in a second series
of 28BL vs. 43DLBCL (FFPE)

SAM (FDR<0.05)

Figure 1. Workflow. The samples were analyzed first by SAM, comparing each lymphoma type against the whole series. In parallel, a class
predictor model was investigated for the 147 samples. Also, BL and DLBCL samples were compared by SAM, and then significant miRNAs
were analyzed in a second series of BL and DLBCL samples.
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nodes or spleens). The heatmap reveals a fairly homogeneous
expression pattern with a larger set of downregulated miRNAs in
tumor cells. The upregulated miRNAs have a more heterogeneous
pattern that varies with the lymphoma diagnosis.

The most strongly upregulated miRNAs compared with
non-tumoral controls were miR-212, miR-487b, miR-513 and
miR-770-5p, a set of miRNAs about which relatively little is known.
On the other hand, downregulated miRNAs were more frequently
observed. There was notable downregulation of let-7 family
miRNAs, which are downregulated in various types of cancer, and
key regulators of cell differentiation and apoptosis.19 Interestingly,
let-7a and let-7c loss participates in the genesis and maintenance
of the lymphoma phenotype in BL cells through C-MYC
regulation.20 On the other hand, miR-23b was reported to be
downregulated by C-MYC, playing a role in the MYC regulation of
glutamine metabolism, and energy and reactive oxygen species
homeostasis.21 The miR-200 family is another large family down-
regulated in this B-cell lymphoma series. MiR-200 has been
described, along with the let-7 family, as a key regulator of cell
differentiation, whose loss is associated with increased stemness
capacity.19 MiR-10 (a and b) was also downregulated. This family is
situated within the Hox cluster, and is also downregulated
in myeloproliferative disorders.22 MiR-15 and miR-16, already
described to be downregulated in CLL,7 were found to be
downregulated in the CLL cases in this study. MiR-155, which is
involved in the immune response and GC development, and is
upregulated in Hodgkin lymphoma,23 was found downregulated
here in the BL cases.

A selection of 14 deregulated miRNAs (9 downregulated and 5
upregulated) was analyzed by qRT-PCR to validate the microarray
data further. For this purpose, an independent series containing
66 lymphoma samples (8 CLL, 8BL, 12 DLBCL, 9 FL, 8 MZL/MALT,
8MCL, 8NMZL and 5 SMZL) and 8 controls (4 lymph nodes,
3 tonsils and 1 spleen) was used.

The miRNA expression observed by microarrays was confirmed
by qRT-PCR (see Supplementary Figure S4). Nevertheless,
miR-487b, miR-212 and miR-770-5p presented a slight variability
among the different lymphoma types, especially SMZL and MZL/
MALT. This variability can be explained by the different localization
of SMZL lymphomas and NMZL, as SMZLs are localized in the
spleen and MZL/MALT lymphomas are localized in a variety of
different tissues (in this series: breast, eye, skin, salivary gland and
intestine).

To select a lymphoma miRNA signature, data from all tumor
samples, without previous normalization to controls, were studied.
SAM analysis enabled comparison of each lymphoma type with
the entire set of samples. A set of 128 miRNAs was considered
to be significantly deregulated (FDR o0.01; 41.5-fold change in
log2) in one or more lymphoma types (Table 1). The heatmap of
the 128 significant miRNAs is shown in Figure 2.

MiRNA capacity for class recognition was tested with the
K-nearest neighbors algorithm. Thus, 120 out of 470 miRNAs were
identified that classified the eight subclasses of lymphomas
(correct classification rate: 86.4%) (Supplementary Table S1). In all,
95 of these miRNAs coincide with those identified as significantly
differentially expressed by SAM analysis (in blue in Table 1).

The miRNA signatures found by SAM analysis for each
lymphoma type are described in more detail below.

Burkitt lymphoma. In all, 12 BL cases were analyzed. The majority
of them (11/12) showed C-MYC translocation. A total of 35
(14 upregulated, 21 downregulated) miRNAs were deregulated in
BL compared with the other NHLs. Interestingly, members of the
miR-17--92 cluster (miR-17-3p, miR-18a, mir-19a, miR-19b and miR-
92) were upregulated in BL. Among the downregulated miRNAs, we
found the let-7 family miRNAs that are commonly lost in different
neoplasias,20 miR-155, miR-146a and others already described as lost
in BL24 and the miR-29 family (a, b and c), which regulates p53.25

Chronic lymphocytic leukemia. In all, 14 miRNAs were upregulated
and 46 downregulated in CLL samples. MiR-197, which regulates the
tumor suppressor gene FUS1,26 was the most highly expressed miRNA
in these samples. MiR-595 and miR-483 were also upregulated, as has
been noted in Wilm’s tumor.27 Among the downregulated miRNAs,
we found miR-15a and miR-16, already described in CLL, where the
loss of the 13q14 minimally deleted region induces a clonal lympho-
proliferative disorder that recapitulates the spectrum of CLL-associated
phenotypes observed in humans.7 Other downregulated miRNAs were
miR-182, miR-199a*(5p), the let-7 family, miR-424, miR-10a, miR-7,
mir-126 and miR-218, whose loss of expression is related with the
activation of multiple survival pathways in various cancer models.28

Diffuse large B-cell lymphoma. No significant differential miRNA
expression was found in this type of lymphoma by SAM analysis.
This could be due to the intrinsic heterogeneity of DLBCL cases as
an entity, which probably dilutes the miRNA expression differ-
ences with other types of lymphomas. This heterogeneity is
reflected by the Tnasas web resource class predictor analysis
results, where the DLBCL group has the highest error rate (27%;
Supplementary Table S1). Indeed, gene expression profiling data
in the series of DLBCL confirm this heterogeneity, revealing that
60 and 40% of the cases are ABC type and GC type, respectively,
according to the classifier of Wright et al.14 two DLBCL subtypes
with specific miRNA signatures categories.13,29

Follicular lymphoma. Two significantly upregulated miRNAs,
miR-138 and miR-9 (5p and 3p), were found. Increased expression
of miR-9 was previously described in FL samples.11 MiR-9, which is
activated by MYC, has been shown to regulate nuclear factor-kB.30

Overexpression of miR-9 or let-7a reduces PRDM1/BLIMP1 levels,31

a finding of potential interest in FL cases, characterized by the
tightly regulated expression of BCL6 and PRDM1/BLIMP1.

Marginal zone lymphoma/MALT. Three out of eight miRNAs
significantly upregulated in MALT lymphoma cases studied belong
to the miR-200 family (miR-200a, b and c). These miRNAs are
components of two clusters, miR-200a/200b/429 on chromosome
1p36.33 and miR-200c/141 on chromosome 12p13.31. The other
miRNAs located in these clusters, miR-429 and miR-141, were also
upregulated. The miR-200 family inhibits the initiating step of
metastasis, the epithelial -- mesenchymal transition (EMT), by
maintaining the epithelial phenotype through directly targeting
the transcriptional repressors of E-cadherin, ZEB1 and ZEB2.32 The
only miRNA in MALT lymphoma cases downregulated relative to
the other types was miR-126* (corresponding to miR-126-5p), an
miRNA whose expression distinguishes acute myeloid leukemia
cases with common translocations.33

Mantle cell lymphoma. Only miR-126* was downregulated, as in
the case of MALT. Conversely, there were eight upregulated
miRNAs, for example, miR-182 and miR-183, which are upregu-
lated in colorectal cancer,34 and miR-200c, which was also
upregulated in MALT lymphoma cases. Downregulation of
miR-126* and upregulation of miR-181c, miR-182, miR-363,
miR-654 and miR-768-5p were also found in our previous study
after comparing MCL cases with non-tumoral controls (tonsils and
lymph nodes). In the same study, miR-182 was also upregulated in
MCL cell lines compared with mantle cell controls.17

Nodal marginal zone lymphoma. Two miRNAs, miR-370 and miR-
513, were downregulated in NMZL cases. MiR-370 has been shown
to be downregulated in gastrointestinal stromal tumors with 14q
loss35 and upregulated in acute myeloid leukemia patients with
t(15;17).36 In all, 61 miRNAs were upregulated relative to the whole
series. The most highly expressed miRNA in this series was
miR-150, followed by miR-26b. MiR-150 regulates the expression
of the transcription factor c-myb, and plays a key role in B-cell
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Table 1. Differentially expressed miRNAs in each type of lymphoma compared with the rest of samples

miRNA BL CLL DLBCL FL MALT MCL NMZL SMZL miRNA BL CLL DLBCL FL MALT MCL NMZL SMZL

1 hsa-let-7a -1.54 -2.24 - - - - 2.23 56- hsa-miR-218 - -2.63 - - - - 1.64 -

2 hsa-let-7c - - - - - - 1.86 66- hsa-miR-221 - - - - - - 1.63 -

3 hsa-let-7d -1.53 -2.16 - - - - 1.87 76- hsa-miR-223 - -1.62 - - - - 2.19 -

4 hsa-let-7e -1.70 -2.07 - - - - 1.84 -422-Rim-ash86- -1.77 - - - - 1.55 -

5 hsa-let-7f -1.67 -2.70 - - - - 2.48 96- hsa-miR-26a -1.54 - - - - - 2.08 -

6 hsa-let-7g -1.90 -2.01 - - - - 2.55 07- hsa-miR-26b -1.92 -2.11 - - - - 2.81 -

7 hsa-let-7i - - - - - - 1.63 17- hsa-miR-29a -1.64 - - - - - 1.89 -

8 hsa-miR-1 - - - - - - 1.96 27- hsa-miR-29b -1.74 - - - - - 1.63 -

9 hsa-miR-100 - -2.02 - - - - 2.07 37- hsa-miR-29c -2.72 - - - - - - -

10 hsa-miR-106a - -1.53 47------ hsa-miR-30b - - - - - - 1.66 -

11 hsa-miR-107 - -1.53 57------ hsa-miR-30e-3p - - - - - - 1.95 -

12 hsa-miR-10a -1.62 -2.58 - - - - 1.91 67- hsa-miR-30e-5p -1.82 - - - - - 1.69 -

13 hsa-miR-10b -1.67 -2.11 - - - - 2.60 ------13-Rim-ash77- 1.83 -

14 hsa-miR-125a - -1.68 - - - - 1.69 87- hsa-miR-328 - 1.51 - - - - - -

15 hsa-miR-125b - - - - - - 1.82 ------533-Rim-ash97- 1.56 -

16 hsa-miR-126 - -2.27 - - - - 2.33 08- hsa-miR-338 - -1.67 - - - 1.71 - -

17 hsa-miR-126* - -1.51 - - -1.58 -2.26 2.53 1.79 81 hsa-miR-340 - - - - - - 1.54 -

18 hsa-miR-127 - - - - - - - 1.56 82 hsa-miR-34a - -1.54 - - - - - -

19 hsa-miR-128b - - - - - - 1.52 ------b43-Rim-ash38- 1.50 -

20 hsa-miR-130b 1.61 48------- hsa-miR-363 -2.12 -2.59 - - - 3.26 - -

21 hsa-miR-133a - - - - - - 1.59 58- hsa-miR-365 - -1.79 - - - - 2.11 -

22 hsa-miR-133b - - - - - - 1.55 68- hsa-miR-370 - 1.89 - - - - -1.83 -

23 hsa-miR-136 - - - - - - - 2.00 87 hsa-miR-373* 1.73 - - - - - - -

24 hsa-miR-138 - - - 2.07 88---- hsa-miR-374 - -2.14 - - - - 2.18 -

25 hsa-miR-139 - - - - - - 1.62 2.94 89 hsa-miR-377 - -1.62 - - - - - -

26 hsa-miR-141 - - - - 1.54 - - -1.83 90 hsa-miR-409-3p - - - - - - - 2.11

27 hsa-miR-143 - -1.75 19------ hsa-miR-421 - - - - - - - 1.99

28 hsa-miR-144 - - - - - - - 3.22 92 hsa-miR-424 - -2.68 - - - - - -

29 hsa-miR-146a -1.79 -1.67 ----924-Rim-ash39------ 2.16 - - -

30 hsa-miR-146b - - - - - - 1.74 49- hsa-miR-432 - 1.97 - - - - - 1.89

31 hsa-miR-148a - -1.56 - - 1.51 59--- hsa-miR-451 -1.71 -2.18 - - - - 2.06 4.06

32 hsa-miR-148b - - - - - - 1.64 69- hsa-miR-453 - 1.55 - - - - - -

33 hsa-miR-150 -2.98 - - - - - 2.86 -p3-454-Rim-ash79- -1.54 - - - - 1.65 -

34 hsa-miR-152 - - - - - - 1.57 ------554-Rim-ash89- 1.76 -

35 hsa-miR-155 -2.12 - - - - - 1.59 99- hsa-miR-483 - 2.29 - - - - - -

36 hsa-miR-15b - -1.80 - - - - 1.84 001- hsa-miR-485-3p - 2.39 - - - - - -

37 hsa-miR-16 - -1.76 - - - - 1.88 101- hsa-miR-486 - - - - - - - 1.56

38 hsa-miR-17-3p 1.66 201------- hsa-miR-487a - - - - - - - 1.71

39 hsa-miR-17-5p - -1.55 301------ hsa-miR-487b - - - - - - - 1.99

40 hsa-miR-181c - - - - - 1.60 ------315-Rim-ash401-- -1.83 -

41 hsa-miR-182 - -2.90 - - - 1.71 501-- hsa-miR-520d - 2.00 - - - - - -

42 hsa-miR-183 - - - - - 1.61 601-- hsa-miR-520d* - - - - - - - 1.77

43 hsa-miR-18a 1.90 701------- hsa-miR-542-3p - - - - - - - 1.89

44 hsa-miR-18a* 1.66 755-Rim-ash801------- 1.66 - - - - - - -

45 hsa-miR-191 - - - - - - 1.70 901- hsa-miR-560 2.02 - - - - - - -

46 hsa-miR-192 - -1.55 - - - - 2.00 011- hsa-miR-574 1.76 2.83 - - - - - 1.53

47 hsa-miR-193b - -1.96 111------ hsa-miR-595 - 2.59 - - - - - 1.95

48 hsa-miR-195 -1.69 -2.00 - - - - 1.86 211- hsa-miR-609 - 1.51 - - - - - -

49 hsa-miR-197 1.81 2.93 311------ hsa-miR-625 - -2.82 - - - - 2.52 -

50 hsa-miR-199a* - -2.81 - - - - 2.19 411- hsa-miR-629 2.51 - - - - - - -

51 hsa-miR-199b - -2.55 - - 1.69 - 1.85 -2.12 115 hsa-miR-647 - 1.53 - - - - - -

52 hsa-miR-19a 2.05 -------056-Rim-ash611------- 2.05

53 hsa-miR-19b 1.69 711------- hsa-miR-654 - - - - - 1.67 - -

54 hsa-miR-200a - - - - 2.66 - 1.55 811- hsa-miR-663 3.32 - - - - - - -1.62

55 hsa-miR-200b - - - - 2.68 - 1.91 911- hsa-miR-7 - -2.40 - - - - - -

56 hsa-miR-200c - - - - 2.02 1.50 - -1.64 120 hsa-miR-766 - 1.58 - - - - - -

57 hsa-miR-203 - - - - 1.75 121--- hsa-miR-768-3p -1.71 - - - - - 1.95 -

58 hsa-miR-204 - - - - - - - 2.02 122 hsa-miR-768-5p -1.77 - - - - 2.00 - -

59 hsa-miR-206 - 1.81 321------ hsa-miR-9 - -2.00 - 1.67 - - - -

60 hsa-miR-20a - -2.12 421------ hsa-miR-9* - -2.69 - 1.87 - - - -

61 hsa-miR-20b - -2.08 521------ hsa-miR-92 1.52 - - - - - - -

62 hsa-miR-210 - - - - - - - -1.90 126 hsa-miR-95 - -2.05 - - - - 2.22 2.64

63 hsa-miR-212 - - - - - - - 1.53 127 hsa-miR-98 - -2.24 - - - - 2.09 -

64 hsa-miR-215 - - - - - - 1.85 821- hsa-miR-99a - - - - - - 2.56 -2.19

Abbreviations: BL, Burkitt lymphoma; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; FC, fold change; FDR, false discovery rate; FL,
follicular lymphoma; KNN, K-nearest neighbors; MALT, mucosa-associated lymphoid tissue lymphoma; MCL, mantle cell lymphoma; miRNA, microRNA; NMZL,
nodal marginal zone B-cell lymphoma; SMZL, splenic marginal zone lymphoma. MiRNAs differentially expressed in the different non-Hodgkin lymphoma
types. FC in log2 is listed for all miRNAs with FDR o0.01 and FC 41.5. Numbers in red and green refer to upregulated and downregulated miRNAs,
respectively. MiRNAs in blue are those also identified by KNN class prediction.
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differentiation.8 Interestingly, seven members of the let-7 family of
miRNAs, which are commonly lost in tumors, were significantly
overexpressed relative to the other lymphoma types.

Splenic marginal zone lymphoma. In all, 26 miRNAs (20 upre-
gulated and 6 downregulated) were differentially expressed
in SMZLs. The cluster miR-144/451 is highly overexpressed in
SMZL. These two miRNAs are erythropoiesis regulators,37 a finding
that may be related to the splenic microenvironment. Among the
downregulated miRNAs, we found the miR-200c/141 cluster,
which was upregulated in other types of B-cell lymphomas in
this series (MALT and MCL).

Identification of miRNAs differentially expressed in BL vs DLBCL
As a practical application of the data generated here, we
compared the DLBCL and BL miRNA signatures. Microarray data
from 12 frozen specimens of BL were compared with 29 DLBCL
cases using SAM (details of the series, such as C-MYC translocation,
ABC, GC, subgroups are described in Material and Methods
section). In all, 43 miRNAs had a 41.5-fold in log2 differential
expression and an FDR o0.01 (Figure 3). These miRNAs were
investigated further by qRT-PCR in an additional series of 28 BL
and 43 DLBCL FFPE samples.

Six of the miRNAs had low-efficiency qRT-PCR amplification, and
were excluded from further analysis. Inefficient amplification could
be due to the low quality of the RNA (extracted from FFPE
samples), or to their generally low expression level.

Differential expression (FDR o0.05) was confirmed in 19
miRNAs (Table 2 and Figure 4). Thirteen additional miRNAs had
the same tendency as observed in microarray analysis, but less
significantly. Two miRNAs were significantly expressed, but

oppositely with respect to the microarray. So, 32 of 37 miRNAs
followed the array tendency (Supplementary Table S2).

MiR-155 was the most significantly lost miRNA in BL, confirming
previous findings,23 followed by miR-29b and miR-146a, whereas
the most significantly lost miRNAs in DLBCL were miR-17-3p,
miR-595 and miR-663.

MiR-29b, which is downregulated in BL cases, regulates TCL-1
expression,38 a protein that is aberrantly expressed in this type of
lymphoma and has been proposed as a diagnostic marker.18,39

This miRNA is also negatively correlated with MCL-1 expression,40

a key antiapoptotic protein of the BCL2 family, that is over-
expressed in high-grade lymphoid neoplasms.

MiR-146a was already known to play an important role in
inflammatory reaction and cancer.41 MiR-34b that was down-
regulated in BL is targeted by p53, and is involved in maintaining
self-renewal of pancreatic cancer stem cells, possibly by directly
modulating the downstream targets BCL2 and NOTCH.42

The 19 significant miRNAs were submitted to the SOTA
algorithm for samples unsupervised clustering. Only 5 of 71 cases
were misplaced (7%): 4 DLBCL and 1 BL. As it is shown in
Supplementary Figure S2, DLBCL cases that cluster with BL do not
show any common feature in terms of GC/ABC type, C-MYC
translocation or BCL2 immunohistochemical expression, although
two of the cases carry on a C-MYC translocation. As some of the BL
cases in this study do not carry C-MYC translocation, we analyzed
C-MYC mRNA and protein expression levels. As shown in
Supplementary Figure S3 and Supplementary Table S3 in Supple-
mentary Information, C-MYC expression level does not significantly
differ between BL cases with and without C-MYC translocation.
On the other hand, the cluster shown in Supplementary Figure S2
demonstrates that these cases do not cluster depending on C-MYC
translocation status or C-MYC expression level.

Figure 2. Differentially expressed miRNAs in B-cell lymphomas. In all, 128 miRNAs were differentially expressed in the series (FDR o0.01 and
fold change (FC) 41.5) of 147 samples. For representation, data were normalized with non-tumoral controls (tonsils, reactive lymph nodes or
spleens).
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DISCUSSION

Lymphoma diagnosis is based on the integration of clinical and
histopathological data with chromosomal alterations and gene, or
protein, expression data. In recent years, there have been many
significant advances in lymphoma classification; nevertheless,
additional molecular markers enabling a better distinction of

specific lymphoma types and a more accurate prediction of
response to therapy are still needed. The addition of miRNAs to
the diagnostic algorithms is viable, given that qRT-PCR for miRNA
expression is feasible in paraffin-embedded tissues, and it has been
shown that the miRNA data generated in FFPE samples reproduce
the data generated in frozen specimens.13 In addition, the
identification of miRNAs differentially expressed among lymphoma
types could improve our understanding of lymphoma pathogenesis,
ultimately enabling recognition of new therapeutic targets.

miRNA target prediction revealed interesting miRNA/gene
interactions that could give some light on how lymphomagenesis
takes place. For example, miR-133a and miR-23b, which are
lost in our series of lymphomas, target PAX5, a gene involved in
lymphocyte development and whose upregulation is related
to the development of different B-cell lymphoma types reviewed
by O’Brien et al.43

One of the most strongly lost miRNAs in our series, miR-31, is
predicted to regulate the expression of the B-cell receptor
pathway together with MAPK and JAK-STAT pathways.

Finally, target prediction tools showed some interesting genes
that are commonly lost in different B-cell lymphoma types, and
could be targeted by miRNAs upregulated in our series. Therefore,
miR-9 and miR-513 are predicted to target PRDM1, and miR-770-
5p and miR-212, whose predicted target gene is TNFAIP3.44,45

The expression of some of the miRNAs identified here
reflects their role in B-cell differentiation, as has been shown for
miR-17-5p, miR-20b, miR-223,46 miR-150(ref.8) and miR-9.46 In fact,
the transcription factors LMO2 (GC marker) and PRDM1/BLIMP1
(plasma cell marker), which have a key role orchestrating B-cell
differentiation, are found to be targets of some of these
miRNAs,46,47 which may suggest that the follicular lymphoma GC
phenotype may be dependent on the concerted action of multiple
miRNAs. Thus, miR-9, which is upregulated in FL cases, is involved
in PRDM1/BLIMP1 downregulation,46 which is consistent with the
downregulation of PRDM1/BLIMP1 observed in reactive and

Figure 3. MiRNAs differentially expressed between BL and DLBCL. In all, 43 miRNAs were significantly (FDR o0.01 and fold change (FC) 41.5)
differentially expressed in a SAM analysis comparing microarray data of 12 BL vs 29 DLBCL.

Table 2. Confirmation of miRNA expression by qRT-PCR

MiRNA FDR Average FC Upregulated in

hsa-miR-155 o1.00E-07 2.67 DLBCL
hsa-miR-29b 3.00E-07 2.33 DLBCL
hsa-miR-146a 2.30E-06 1.97 DLBCL
hsa-miR-17-3p 2.30E-06 1.68 BL
hsa-miR-365 1.75E-05 1.59 DLBCL
hsa-miR-30b 2.92E-05 1.21 DLBCL
hsa-miR-595 3.74E-05 2.79 BL
hsa-miR-663 3.74E-05 1.17 BL
hsa-miR-573 0.0003 1.73 BL
hsa-miR-26b 0.0005 0.83 DLBCL
hsa-miR-374 0.0037 0.70 DLBCL
hsa-miR-520d 0.0037 1.57 BL
hsa-miR-92 0.0037 1.27 BL
hsa-let7f 0.0076 0.67 DLBCL
hsa-miR-516-3p 0.0096 0.83 BL
hsa-miR-9 0.0096 1.03 DLBCL
hsa-miR-629 0.0170 0.88 BL
hsa-miR-9* 0.0170 1.01 DLBCL
hsa-miR-34b 0.0502 0.80 DLBCL

Abbreviations: BL, Burkitt lymphoma; DLBCL, diffuse large B-cell
lymphoma; FC, fold change; FDR, false discovery rate; miRNA, microRNA;
qRT-PCR, quantitative real-time-polymerase chain reaction. List of 19
miRNAs differentially expressed between BL and DLBCL, confirmed by
qRT-PCR: FDR o0.05. FC is expressed in log2.
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neoplastic GC B cells,48 thus pointing to a possible cooperation of
BCL6 and miR-9 in regulating terminal B-cell differentiation.46 MiR-
223 has been shown to inhibit LMO2 expression,47 an observation
that correlates with the strong expression of miR-223 in NMZL
cases, a tumor that does not express LMO2 or other GC markers.
Interestingly, miR-155 expression is downregulated in CLL and
upregulated in NMZL cases, which probably reflects the observa-
tion that B cells lacking miR-155 generate reduced extrafollicular
and GC responses and fail to produce high-affinity immunoglo-
bulin G1 antibodies,49 which is consistent with the data showing
that MZL cells have a striking capacity for colonizing GCs and
differentiating to become GC cells.

RAG1, BCL6 and PRDM1/BLIMP1 are genes regulated by multiple
miRNAs: at least eight miRNAs are predicted to target their
30-UTRs, thereby emphasizing the need for the tight regulation
of the expression of these transcription factors. MiR-127 is one
of the miRNAs already known to regulate BCL6 expression.50 Here,
it was found to be upregulated in SMZL cases, a tumor that lacks
BCL6 expression.1 Normal B-cell differentiation and neoplastic
B-cell phenotypes seem to be partially determined by the
reciprocal antagonism between BCL6 and PRDM1/BLIMP1 expres-
sion,51 which seems to be at least partially orchestrated through
the interaction of multiple miRNAs.

MiR-182, overexpressed in MCL cases, was recently found to
be overexpressed in MCL cell lines,17 where a role as regulator of
FOXO1, a putative tumor suppressor gene downregulated in
breast cancer, has been proposed.52

Some of the changes detected here reflect the already
established heterogeneity of several tumor types. Thus, DLBCL
had the most heterogeneous miRNA signature of all the
lymphoma types analyzed, extending previous observations.47 In
fact, heterogeneity of DLBCL has been characterized at the gene

expression level, where the distinction between GC GC) type,
ABC type and primary mediastinal large B-cell lymphoma
has demonstrable biological, prognostic and therapeutic implica-
tions.53 The series of DLBCL cases studied here reflects this
heterogeneity with a 60% of ABC-type cases and 40% of GC-type
cases in the series used for miRNA profiling. In fact, miRNA
signatures related with the molecularly defined subgroups of
DLBCL based on the cell of origin have been found by different
groups.13,29

The heterogeneity is also reflected in C-MYC status; 32.5%
(13/40) of FFPE series used for qRT-PCR were positive for C-MYC
translocation. This uncommon high percentage of C-MYC translo-
cated DLBCL is due to the fact that this series of DLBCL is a
selection of DLBCL cases phenotypically similar to BL (44% non-GC
(11/25) and 56% GC (14/25), as the source of the cases was a
collection of DLBCL cases with features mimicking BL submitted
for reference diagnosis.

The causes of these miRNA expression gains and losses are still
to be investigated in many cases, although some can be attributed
to changes in DNA copy numbers in the chromosomal regions
where they are located. For instance, analysis of a deletion at
13q14.3 prompted the discovery of two physically linked miRNAs,
miR-15a and miR-16-1, which were targets of these deletions,7

and shown here to be lost in CLL. NMZL cases exhibited a gain of
miR-191 located at chromosome 3p21.31, an area of known gains
in NMZL.54

The data generated here could have a practical diagnostic
value. We have explored whether miRNA data could contribute to
the differential diagnosis of BL and DLBCL, a controversial issue
that requires new approaches.3,4,39 Despite the characteristic
association between C-MYC translocation and the diagnosis
of BL, a discrete number of DLBCL cases may carry the C-MYC
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translocation.1 Furthermore, a group of cases with typical
histology of BL may lack the C-MYC translocation55 and some
association with the expression of selected miRNAs has been
described.56 Our results show that a few miRNAs could be of
diagnostic value. For example, BL cases show loss of miR-155 and
gain of multiple miRNAs belonging to clusters 17 -- 92. Some of the
miRNAs that characterize BL cases are probably C-MYC targets, as
has been shown for the clusters 17 -- 92 and other miRNAs.24,57

In this study, miRNAs upregulated by C-MYC were upregulated in
BL relative to other NHL cases (miR-17-3p, miR-18a, miR-19a, miR-
92 and miR-130b) and specifically when compared with DLBCL
(miR-17-3p). Other miRNAs downregulated by C-MYC were lost in
BL compared with other NHL cases (let-7 family, miR-146a and
miR-29 family), and some were confirmed when BL was compared
with DLBCL (miR-29b and miR-146a). The expression of miR-155 in
BL has been controversial, but recent reports agree that BL lacks
miR-155 expression,24 as confirmed here. In our study, it was the
most significantly differentially expressed miRNA in BL compared
with DLBCL, with a substantial 2.67-fold (log2) change, meaning
that expression in DLBCL was around six times stronger than in BL.
This confirms miR-155 downregulation in BL, making it one of the
most suitable markers for differential diagnosis. Nevertheless, a
model including all 19 significant miRNAs or the most significant
ones may increase the accuracy of the BL diagnosis as the
unsupervised cluster failed to classify only 7% of the samples, and
it can also form the basis of a better understanding of BL
pathogenesis. These data facilitate a next level of analysis, where
an independent series of BL, DLBCL and intermediate BL/DLBCL is
currently being studied to obtain a signature with a lower number
of miRNAs, which could potentially be used for diagnosis. Further-
more, a recently published paper by Lenze et al.58 defines a
signature of miRNAs that differentiates BL from DLBCL. Five of the
miRNAs described in that paper, expressed in DLBCL, are
confirmed by the work presented here, supporting the potential
relevance of miRNAs in diagnosis.

Differences in miRNA signatures for different lymphoma types
may have multiple causes. As B cells at different stages of
maturation show specific miRNA signatures,59 the differential
expression of miRNAs between different lymphomas types may
reflect distinct miRNA profiles of the cell of origin, the normal
counterpart for each lymphoproliferative disorder. Alternatively,
these differences could be due to the presence of some acquired
recurrent genetic alteration of the specific lymphoma type, for
example, miRNAs contained in frequently lost chromosomal
regions, such as 13q14 deletion in CLL or 7q21 lost in SMZL.
In addition, some of the changes observed here could depend
on oncogenic changes in genes regulating the expression of
multiple miRNAs, as demonstrated for C-MYC and BCL6.

In the initial series of 147 samples, K-nearest neighbors analysis
correctly classified 86.4% of the samples. This rate might be even
higher if more cases were introduced. Even though miRNA
involvement in the pathogenesis of each specific lymphoma type
still needs to be explored, and validation in an independent series
of samples is recommended, the miRNA expression signatures
described here could be a useful additional tool enabling a more
accurate B-cell NHL diagnosis, in particular when BL vs DLBCL
differential diagnosis is required, and a better understanding of
B-cell lymphoma pathogenesis.
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Epstein-Barr virus microRNAs repress BCL6 expression in diffuse large B-cell
lymphoma

Leukemia (2012) 26, 180–183; doi:10.1038/leu.2011.189;
published online 26 July 2011

Diffuse large B-cell lymphoma (DLBCL) is the most common
form of lymphoma, accounting for 30–40% of all newly
diagnosed lymphomas. DLBCL is considered a heterogeneous
disease, with some specific clinicopathological variants of
DLBCLs being associated with the presence of the EBV.1 EBV
is a lymphotropic virus that has been implicated in the
development of several lymphoid malignancies, mainly Burkitt
lymphoma (BL) and Hodgkin’s lymphoma and with low
prevalence in DLBCL.1 BCL6 is a key transcriptional repressor
during normal B-cell differentiation that has been shown to
repress NF-kB in some DLBCLs.2 In some B-cell lymphomas,
BCL6 expression was inversely correlated with LMP1 expres-
sion, and some evidences suggest that LMP1 can cause
downregulation of BCL6(ref. 3), but other possible mechanisms
have not been studied. We have found a strong inverse
correlation between BCL6 protein expression and EBV infection
(Po0.001, Figures 1a and b) in a series of 149 DLBCL samples,
where only one out of 34 EBV-positive cases (2.94%) expressed
BCL6, although 87 out of 115 EBV-negative cases expressed
BCL6 (75.65%). However, this correlation was independent
of LMP1 because 54% of EBER-positive samples were
LMP1-negative (Spearman, P-value: 0.18). Little is known about
the mechanisms that cause the absence of BCL6 in EBV-
positive DLBCL; however, the possibility that EBV-encoded
miRNAs could contribute to BCL6 repression has never been
explored.

We have studied the miRNA expression profile in 36 DLBCL
samples using miRNA microarrays. Prevalence of EBV in this
series (33 EBV-negative and 3 EBV-positive) was close to normal
prevalence in DLBCL.1 Twenty-two out of thirty-two analysed
viral miRNAs were significantly upregulated in EBV-positive
samples (4two-fold change; t-test corrected P-valueo0.05,
Figure 1c, Supplementary table 2 and Supplementary table 3).
None of the miRNAs belonged to the BHRF1 cluster, a finding
that confirms previous results suggesting that the highest levels
of these miRNAs are reached during the lytic cycle.4 To test the
hypothesis that some of these miRNAs can potentially down-
regulate BCL6, we made a bioinformatic prediction using the
miRanda algorithm. This prediction indentified 21 binding
sites in the 30 UTR of BCL6 for 18 EBV-encoded miRNAs
(Supplementary table 1). More than 70% of these predictions
were also found with other algorithms (Supplementary Figure 1).
Ten of these miRNAs were also differentially expressed between
EBV-positive and EBV-negative DLBCL cases. This high propor-
tion of miRNAs potentially targeting BCL6 suggests a physio-
logical mechanism of the virus to reduce the amount of BCL6.
Consequently, we selected four EBV-encoded miRNAs for
further validation. These miRNAs were selected according to
the following parameters: 1) attainment of a high score from
miRanda and 2) differential expression in the EBV-positive
DLBCL cases. In this way, we selected ebv-miR-BART3,
ebv-miR-BART9 and ebv-miR-BART17-5p. We also selected
ebv-miR-BART7 because, although it does not achieve one of
the highest scores from miRanda, the program predicts two
binding sites for the miRNA in the 30 UTR of BCL6, increasing

the probability of it being a bona fide regulator of BCL6
(Supplementary Figure 2). To analyse these miRNAs in a larger
series of cases, we selected 40 cases (15 EBV-positive and
25 EBV-negative) from the 149-patients series to check their
expression by RT–PCR. The mean of the viral miRNAs
expression among EBER-positive patients was 10- to 100-fold
higher compared with EBER-negative patients (Figure 1d). We
also analysed EBV-encoded miRNA levels by RT–PCR in BL and
DLBCL-derived cell lines and observed a correlation between
BCL6 protein and miRNA levels (Figures 1e and f). These results
indicate that a relatively low level of expression of these
miRNAs could enable the high level of expression of BCL6
observed in EBV-positive BL,5 thus explaining the differences
between BL and DLBCL.

Therefore, to validate the putative BCL6-regulatory role of
these miRNAs, we transfected synthetic miRNAs and measured
the luciferase activity in a reporter system in which we cloned
the 30UTR of BCL6 (Supplementary Materials & methods). With
this approach, we noted a significant reduction in luciferase
signal for three of the four viral miRNAs assayed (Figure 2a)
when compared with either the reporter transfected with a
miRNA mimic negative control sequence or the vector without
the 30 UTR of BCL6. Ebv-miR-BART3, ebv-miR-BART9 and ebv-
miR-BART17-5p reduced the luciferase signal by at least 60%.
The effect of these miRNAs on the endogenous BCL6 protein
was investigated in lymphoid EBV-negative BCL6-expressing
cell lines. We used three DLBCL-derived cell lines (DB, SU-
DHL-4 and SU-DHL-6) and one BL-derived cell line (Ramos) to
test the effect of these miRNAs in different lymphoid models. In
DLBCL-derived cell lines transfection of the viral miRNAs ebv-
miR-BART3, ebv-miR-BART9 and ebv-miR-BART17-5p led to a
reduction in the levels of BCL6 protein ranging from 25 to 72%,
48 h after transfection (Figure 2b). In contrast, ebv-miR-BART7
was able to reduce BCL6 protein expression only in SU-DHL-4
and SU-DHL-6 whereas it had little or no effect in DB. In Ramos
cell line, transfection of the miRNAs led to a significant
reduction of BCL6 protein levels in the case of ebv-miR-BART7,
ebv-miR-BART9 and ebv-miR-BART17-5p, whereas the cells
showed no response to ebv-miR-BART3. This may reflect a cell
context-dependent phenomenon that could be related to target-
site accessibility. Moreover, we used EBV-positive DLBCL-
derived cell lines to allow inhibition of endogenous EBV-
encoded miRNAs by miRNA inhibitors. Inhibition of ebv-miR-
BART9 and ebv-miR-BART17-5p, led to a moderate increase in
the expression of BCL6 in the Farage cell line but not in the
DoHH-2 cell line, which expressed the highest levels of EBV-
encoded miRNAs (Figure 2c).

EBV is more frequently found in tumors with a plasmablastic
phenotype in which other factors (for example, expression of
BLIMP1) could be repressing BCL6 at the transcriptional level.6

Our data support a role of EBV microRNAs that could help to
diminish BCL6 expression facilitating BCL6 transcriptional
repression by BCL6 targets such as BLIMP1.7 However, the
reason by which EBV downregulates BCL6 in DLBCL remains
unknown. It is known that several EBV-driven lymphomas rely
on the activation of the NF-kB pathway8 as well as ABC-type
DLBCL.9 Viral proteins such as LMP1 and LMP2A can activate
the NF-kB pathway directly or indirectly to promote the survival
of the host cell.8,10–12 Because BCL6 represses NF-kB under
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normal and pathogenic conditions,2 BCL6 downregulation may
be necessary to promote survival of the EBV-positive neoplastic
cells in some DLBCLs. EBV does not repress BCL6 in Burkitt

lymphoma; however, in this tumor type, activation of the NF-kB
pathway has been shown to induce apoptosis,13 and so the role
of the virus might be different in this disease.
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Figure 1 (a) Immunohistochemical staining of two cases of DLBCL showing an opposite pattern of BCL6 expression and EBV presence.
(b) Graphic representation and statistical analysis by w2-test of the immunohistochemical results in a series of 149 DLBCL patients.
(c) Gene clustering reveals the pattern of expression of EBV-encoded miRNAs in EBV-positive DLBCL patients. (d) RT–PCR was carried out on
40 DLBCL samples using probes for five miRNAs. Black bars indicate standard deviation. (e) RT–PCR analysis of five EBV-encoded miRNAs
in DLBCL and BL cell lines. Expression data is represented in a logarithmic scale and has been normalized using the Ramos EBV-negative cell
line as the background signal. (f) Levels of BCL6 protein expression in the same cell lines show an inverse correlation with the levels of
EBV-encoded miRNAs.
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Obesity and the risk of chronic myelogenous leukemia: is this another example
of the neoplastic effects of increased body fat?

Leukemia (2012) 26, 183–184; doi:10.1038/leu.2011.190;
published online 22 July 2011

The risk of cancers of varied tissues is increased in persons
who are overweight or obese.1–4 The increased relative risk (RR)
of cancer in overweight and obese subjects has also included
the hematological malignancies, although the major types of
leukemia and lymphoma have not been stratified in several
of these large epidemiological studies.1,2,5–7 Myeloma also has
been associated with overweight and obesity as has its ante-
cedent, essential monoclonal gammopathy.8,9 The evidence for
an increased risk of leukemia in the aggregate1,2,5–7 and of the
four major types of leukemia is noteworthy.10 Given the broad
range of tissues for which a risk of neoplasia is increased in
overweight and obese persons, there appears to be a global
effect of the metabolic, endocrinologic and inflammatory
changes resulting from obesity on either the induction of
neoplastic clones, or the selection and enhanced growth and
survival of preexisting, dormant transformed clones.

BCR-ABL-positive chronic myelogenous leukemia is a very
uncommon secondary leukemia. Unlike secondary acute
myelogenous leukemia, which can occur as a result of exposure
to high-dose ionizing radiation, certain types of chemotherapy
(especially, alkylating agents and topoisomerase inhibitors),
prolonged inhalation of tobacco smoke or higher-dose pro-
longed exposure to benzene, only ionizing radiation is an
established cause of secondary chronic myelogenous leuke-
mia.11 In addition, there is little evidence that either a familial
predisposition gene (non-syndromic) or an inherited predispos-
ing disorder (syndromic predisposition gene) is associated with
chronic myelogenous leukemia, as it is with acute myelogenous
leukemia.11 Although a proportion of the healthy population
carries low copy numbers of the BCR-ABL oncogene in its
blood cells, it is not known whether these clones are susceptible
to clonal evolution to a clinically overt neoplasm, either
spontaneously or under provocation. The apparent effect of
increased fat mass on an increased RR of chronic myelogenous
leukemia should be of research interest to students of
carcinogenesis and leukemogenesis. The relationship of over-
weight to cancer is a major challenge to the practice of
preventive medicine and the soft (cajoling) and hard (pharmaco-
therapy) science of behavior modification.

In a search of the literature, I have identified eight studies that
have examined the relationship of overweight or obesity to the
risk of chronic myelogenous leukemia, either as a primary
research effort or as a meta-analysis of prior studies. In these
studies, the body mass index (BMI) was used as a measure of fat
tissue mass. The World Health Organization and the United
States Public Health Service considers a BMI of o18 kg/m2 as
underweight, 18–24.9 kg/m2 as a normal body fat mass, 25 to

29.9 kg/m2 as overweight and 429.9 kg/m2 as obesity. Obesity
may be stratified into Class I (BMI¼ 30–34.9 kg/m2), Class II
(BMI¼ 35–39.9 kg/m2), Class III (BMIX40 kg/m2).

In 2005, investigators in Melbourne, Victoria, Australia found
a five-fold increase in the hazard ratio (HR) for myeloid
leukemias (acute and chronic myelogenous leukemia) in over-
weight, HR¼ 5.3 (95% confidence interval (CI), 1.9–15.2),
and obese, HR¼ 5.0 (95% CI, 1.6–15.5), persons as compared
with those with a normal BMI (o25.0 kg/m2). The HR was
higher for chronic than acute myelogenous leukemia, but the
number of cases of chronic myelogenous leukemia was not
sufficient to apply statistical tests of homogeneity between the
two leukemias.12

In a study of 2 000 611 Norwegian men and women, reported
in 2006, the trend of RR of chronic myelogenous leukemia
using a normal range of BMI of 18.5–24.9 kg/m2 as the referent
value (1.0), and studying degrees of BMI from underweight, to
normal, to overweight, to obese, to massively obese, found a
significant trend for increased risk of chronic myelogenous
leukemia from RR¼ 0.78 in underweight (BMIo18.5 kg/m2) to
RR¼ 1.65 in obese men (BMIX30.0 kg/m2).13 In women, the
same significant trend was observed ranging from RR¼ 0.85 in
underweight women to a RR¼ 1.89 in women with Class III
obesity (BMIX40 kg/m2). The results were ambiguous in that the
trends by BMI were highly significant and the RR of chronic
myelogenous leukemia increased generally with increased BMI;
however, the increased RR at each level of increased BMI was
not statistically significant in several cases.

Three reports between 2004 and 2007 found an increased RR
of chronic myelogenous leukemia in overweight or obese men
of European or African descent,14 and in men and women,13,15

but the RR (1.15 to 1.65) was either not significant or just missed
statistical significance. However, a meta-analysis, published
in 2008, of the three studies,13–15 which included five popula-
tions, found a significantly increased meta-relative risk (MRR)
of chronic myelogenous leukemia (MRR¼ 1.26 (95% CI,
1.09–1.46)) in the obese study subjects as compared with those
with a normal BMI.10

In a population-based case–control study conducted in eight
Canadian provinces, published in 2005, an association was
found with increased BMI and an increased RR of chronic
myelogenous leukemia with a significant dose-response
relationship; the increment in risk for chronic myelogenous
leukemia from normal to overweight (odds ratio (OR)¼ 1.4;
95% CI, 1.0–2.0) and from normal to obese (OR¼ 2.3; 95% CI,
1.5–3.4) subjects was highly significant.16

Overweight and obesity and the risk of hematological malig-
nancies were studied in a cohort of Swedish and Finnish twins
(70 067 persons), who were followed prospectively. An increased
RR of chronic myelogenous leukemia was observed in those who
were overweight or obese (RR¼ 2.5 95% CI, 1.0–6.2).17
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Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway
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Many mammalian transcripts contain target
sites for multiple miRNAs, although it is not
clear to what extent miRNAs may coordi-
nately regulate single genes. We have
mapped the interactions between down-
regulated miRNAs and overexpressed tar-
get protein-coding genes in murine and hu-
man lymphomas. Myc, one of the hallmark
oncogenes in these lymphomas, stands out

as the up-regulated gene with the highest
number of genetic interactions with down-
regulated miRNAs in mouse lymphomas.
The regulation of Myc by several of these
miRNAs is confirmed by cellular and re-
porter assays. The same approach iden-
tifies MYC and multiple Myc targets as a
preferential target of down-regulated
miRNAs in human Burkitt lymphoma, a pa-

thology characterized by translocated MYC
oncogenes. These results indicate that sev-
eral miRNAs must be coordinately down-
regulated to enhance critical oncogenes,
such as Myc. Some of these Myc-targeting
miRNAs are repressed by Myc, suggesting
that these tumors are a consequence of the
unbalanced activity of Myc versus miRNAs.
(Blood. 2011;117(23):6255-6266)

Introduction

Tumor development is accompanied by a variety of genetic and
epigenetic alterations in protein-coding genes and small, non-
coding RNA genes. miRNAs are a diverse family of small RNAs
that regulate the stability and translational efficiency of partially
complementary target mRNAs.1,2 By regulating specific onco-
genes or tumor-suppressor molecules, these small RNAs may
have profound effects in tumor development.3 A few target genes
have been validated for some miRNAs indicating that each
individual miRNA can target a few, or possibly, multiple genes
and participate in diverse physiologic or pathologic functions.
Thus, the miR-15a–miR-16–1 cluster controls prostate cancer
by targeting proliferation, survival, and invasion regulators.4

Let-7 miRNAs act as tumor suppressors by modulating major
oncogenes, such as Ras or Myc, among many other targets.5 On the
other hand, each human gene can be modulated putatively by
several miRNAs. However, the relevance of this multiplicity in
tumorigenesis is not clear.

In this work, we have investigated the relationship between the
expression of miRNAs and their putative targets in murine and
human lymphomas. The pioneer molecular studies on !-irradiation-
induced lymphomas led to the identification of N-ras and K-ras as
critical oncogenes in these tumors.6,7 Additional cytogenetic stud-
ies demonstrated recurrent chromosomal alterations, such as spe-
cific translocations and trisomy of mouse chromosome 15 where
the Myc oncogene is located.8 In addition to Ras and Myc
oncogenes, other tumor-promoting or tumor-suppresing genes,
such as Notch1, p53, pRb, cyclin D, p16INK4a and p15INK4b, p19ARF,
Pten, or Ikaros, have been suggested to play a significant role in the
development of these malignancies.9-15 Many of these oncogenic

events are common to high proliferative lymphomas in humans.
Burkitt lymphoma (BL) is a unique hematologic malignancy
remarkable for its biologic characteristics, including its highly
aggressive nature and its requirement for intensive treatment
regimens.16 Human BLs possess chromosomal rearrangements of
the MYC oncogene (a genetic hallmark of these neoplasms), which
contributes to lymphomagenesis through alterations in cell cycle
regulation, cellular differentiation, apoptosis, cellular adhesion,
and metabolism.17

In this work, we initially identified a panel of 41 miRNAs
consistently down-regulated in !-irradiation-induced lymphomas.
Although some of these miRNAs, such as mir-203, mir-134, or
mir-154, map to a region that suffers frequent DNA losses, most
repressed miRNAs map to regions without DNA alterations. A few
of these miRNAs, such as miR-203, are silenced by aberrant
hypermethylation of the promoter region,18 whereas other miRNAs
may be repressed by Myc.19 Interestingly, our data suggest that
miRNAs may have a combinatorial effect to suppress the activity
of relevant oncogenes. Indeed, Myc is predicted to be the major
target of the miRNAs silenced in these malignancies. The regula-
tion of Myc by several miRNAs is validated by reporter and
cellular assays. A similar analysis also identifies MYC as a major
target for the panel of miRNAs down-regulated in human BLs. The
down-regulation of multiple miRNAs in these malignancies is
predicted to favor not only the overexpression of Myc but also the
up-regulation of multiple Myc targets involved in proliferation or
differentiation, thus suggesting that the balance between Myc and
miRNAs is critical for lymphomagenesis and may be further
explored for therapy of these neoplasms.
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Methods

Mouse and human tumors

C57BL/6J and RF/J F1 hybrid mice and pure C57BL/6J animals were
maintained in our animal facilities following the appropriate ethical
recommendations from our institutions. For tumor induction, 4-week-old
mice of both sexes were exposed to 4 weekly doses of 1.75 Gy/dose of
ionizing !-radiation.6 Treated mice were observed daily until moribund and
then killed and autopsied. Retroviral mutagenesis was performed as
published previously.20 In short, newborn mice were injected intraperitone-
ally with 105 infectious units of murine leukemia virus, and animals were
monitored in time for the development of tumors. Moribund mice were
killed and tumors isolated. Tumor and normal (age-matched) tissues were
processed for histologic analysis (paraffin embedding and hematoxilin and
eosin staining) following standard protocols. DNA, RNA, and proteins
were isolated from these samples as described previously.18

All human BLs were obtained from the Spanish Tumor Bank Network
of the Spanish National Cancer Research Center (Centro Nacional de
Investigaciones Oncológicas [CNIO]). Institutional review board approval
was obtained for these studies, and all participants provided written
informed consent in accordance with the Declaration of Helsinki.

Transcriptional profiles, comparative genome
hybridization, and statistical analysis

Comparative genome hybridization, cDNA, and miRNA array experi-
ments were performed essentially as described previously on mouse
!-irradiation-induced lymphomas18 or BLs.21 Differentially expressed
cDNAs were obtained using Pomelo tool (www.pomelo2.bioinfo.cnio.es),
which implements the limma t test using the limma package22 from
Bioconductor project. The estimated significance level (P value) was
corrected to account for multiple hypotheses testing using Benjamini
and Hochberg False Discovery Rate (FDR) adjustment. Genes with FDR
less than or equal to 0.01 were selected as differentially expressed between
controls and tumors. Gene set enrichment analyses (GSEA) were applied
using annotations from Biocarta, KEGG, and GeneMAPP pathway data-
bases. Those miRNAs showing 3"-untranslated region (UTR) binding sites
in human MYC were tested as a whole gene set using GSEA. We used
FDR # 0.25 as significance threshold for the identification of biologically
relevant gene sets.23 Data were also analyzed through the use of Ingenuity
Pathways Analysis (Ingenuity Systems, www.ingenuity.com). Those path-
ways showing FDR # 0.25, which is a well-established cut-off for the
identification of biologically relevant gene sets,23 were considered enriched
in tumors. Myc targets were obtained from the Myc Cancer Gene Database
(www.myccancergene.org/site/mycTargetDB.asp),24 and only those targets
characterized in mammals were used for statistical analysis. Significantly
deregulated miRNAs were computed using the Significant Analysis of
Microarray analysis from the TM4 pathway25 and the limma package.
Precomputed miRNA targets were obtained from miRBase Targets Data-
base, Version 5 (www.microrna.sanger.ac.uk). For miRNA studies in these
samples, median between-array normalization was applied to make microar-
rays comparable. Statistical significance was analyzed using the Fisher
exact or $2 tests and Prism v 5.01 (GraphPad) software, and networks of
interactions were represented using Cytoscape (www.cytoscape.org). Addi-
tional details on the statistical analysis of expression data and miRNA-
target networks are provided as supplemental Data (available on the Blood
Web site; see the Supplemental Materials link at the top of the online
article). All microarray data are available on the Gene Expression Omnibus
under accession numbers GSE10861 and GSE23026.

Validation of coding-gene and miRNA expression by
quantitative reverse-transcribed polymerase
chain reaction and protein analysis

To validate miRNA or cDNA expression data, real-time quantitative
reverse-transcribed polymerase chain reaction was performed in triplicate

using the TaqMan MicroRNA assays kit (Applied Biosystems) according to
the manufacturer’s instructions in an Applied Biosystems 7900HT Fast
Real-Time polymerase chain reaction apparatus. To normalize for differ-
ences in the amount of total input DNA, amplification at a reference
protein-coding gene (Actin) was performed once per plate in triplicate for
each individual DNA. Amplification of RNU19 was used for normalization
of miRNA expression. The data analysis was done using the SDS (Sequence
Detection Systems), Version 2.2.2 program (Applied Biosystems). Addi-
tional primer sets (TaqMan probes; Applied Biosystems) were used to
amplify deregulated mRNAs or miRNAs in triplicate on the ABI 7900HT
instrument (Applied Biosystems). Differences in gene expression were
estimated using Student t tests.

Protein lysates were obtained as reported previously.18 Proteins were
transferred to nitrocellulose membranes (Bio-Rad) and probed with anti-
bodies against the following proteins: Myc (Sigma-Aldrich), Mcm2 and
Mcm4 (a gift of Juan Méndez, CNIO), Rcc1 (Nventa Biopharmaceuticals),
p27Kip1 (BD Biosciences), Mad2 (Marine Biologica Laboratory), and
Bcl2, cyclin B1, and Cdk4 (Santa Cruz Biotechnology). In addition,
antiactin or antitubulin antibodies (Sigma-Aldrich) were used as a loading
control. After washing, blots were incubated with the appropriate secondary
antibodies coupled to AlexaFluor 680 and 800 (Invitrogen). Subsequently,
the membrane was scanned in Odyssey Infrared Imaging System (Li-Cor
Biosciences).

Cell culture, transfections, and reporter assays

Jurkat and MOLT-4 (T-cell lymphoblastic lymphoma) and Raji (BL) cells
were obtained from the ATCC. These cells were transfected using the
Amaxa nucleofection apparatus following the manufacturer’s recommenda-
tions. Luciferase assays were performed as described previously.18 The
Renilla luciferase, green fluorescent protein, or small RNAs labeled with
red fluorescent protein (sigloRed; Dharmacon RNA Technologies) were
used to normalize the expression values among different transfections. The
3"-UTRs of mouse and human Myc were cloned in pGL vectors down-
stream of the luciferase gene. Several mutants to alter the miRNA target
sites were obtained using the mutagenesis kit from Stratagene. Most
mutants were designed to alter 3 positions in the seed sequence of the target
site (mutant sequences and oligonucleotides are available on request).
miRNA genes were expressed using the pMirVec vector.26

Results

mRNA and miRNA expression profiles in murine lymphomas

To understand the molecular alterations underlying lymphoma
development in !-irradiated mice, we first analyzed mRNA
expression profiles in 15 of these tumors (supplemental Data).
Mouse !-irradiation-induced lymphomas overexpress critical
oncogenes, such as Myc, as well as growth factor and chemo-
kine signaling molecules, cell cycle regulatory proteins, DNA
replication markers, mitotic proteins, translation initiation factors,
and ribosomal genes (Figure 1A, supplemental Figure 1; supple-
mental Table 1). Down-regulated molecules include histocom-
patibility proteins and lymphocyte differentiation proteins, as
well as cell cycle inhibitory proteins and apoptotic markers. Some
of these genes are targets of master transcription factors de-
regulated in these tumors. Thus, whereas Myc targets represent
6.8% (923 of 13 763) of the genes in the array, 98 (17.6%) of the
556 significantly up-regulated transcripts are bona-fide Myc tar-
gets, as defined by Zeller et al,24 suggesting a significant enrich-
ment (P # .0001) of up-regulated Myc targets in these !-irradiated
lymphomas. The deregulation of Myc (both at the mRNA and
protein levels; Figure 1 and supplemental Figure 1) and Myc
targets is a predominant hallmark in the transcriptional alterations
in proliferative, apoptotic, and lymphocyte differentiation path-
ways (Figure 1A; supplemental Data).
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We then analyzed the miRNA transcriptional profile in these
!-irradiation-induced lymphomas. Forty-one miRNA genes dis-
played a significant reduction in their expression levels in these
tumors (FDR # 0.01; Figure 1B). No miRNA was found over-
expressed in these tumors under similar statistical significance. The

expression of several of these down-regulated miRNAs was
validated using real-time quantitative reverse-transcribed poly-
merase chain reaction (supplemental Figure 1). Some of these
miRNAs have been reported to have tumor suppressor activity.
Thus, the let-7 family down-regulates Ras,27 a major oncogene
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Figure 1. General overview of the transcriptional and genetic alterations in !-irradiation-induced lymphomas. (A) Myc is a central node in the molecular interactions
between up-regulated (red) or down-regulated (blue) proteins, including cell cycle regulators (Cdk or Ran pathways), protein synthesis molecules (Rpl and Rps proteins), and
other signaling cascades. (See also supplemental Data for further details.) (B) Transcriptional profiling of miRNAs in normal thymuses (H1, H2, M1, and M3) or T-cell
lymphomas. Unsupervised clustering of these data clearly discriminates normal thymuses vs tumor samples. Only significantly deregulated miRNA genes are shown. Blue
shadows in miRNA names indicate the presence of a CpG island upstream of the corresponding human or mouse miRNA genes. Green shadows indicate that the CpG island is
only present in the mouse sequence. (C) Summary from the comparative genome hybridization analysis of !-irradiation-induced T-cell lymphomas showing the chromosomal
position of down-regulated miRNA genes. Major DNA losses (green bars) and gains (red bars) are indicated to the right of the corresponding chromosomes. The location of
Myc in chromosome 15 is also indicated.
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in this malignancy, and miR-203 suppresses lymphomas and
leukemias by inhibiting Abl1.18 miR-223 negatively regulates
proliferation of hematopoietic progenitors,28 and it is repressed
in hepatocellular carcinomas.29 A translocation in specific leu-
kemias is likely to inactivate miR-125b-1, suggesting its tumor
suppressor function.30

Genetic and transcriptional alteration of miRNAs

We first analyzed DNA copy number (by comparative genome
hybridization in 12 tumor samples) to test whether miRNA
down-regulation could be the result of specific chromosomal
aberrations. Trisomy of chromosome 15 or amplification of the
Myc locus in this chromosome occurs in 7 samples (58% of
!-irradiated tumors; Figure 1C). Consistent DNA losses were
observed in the centromeric region of chromosome 11 (6 samples;
50% of !-irradiated tumors) and the telomeric end of chromo-
some 12 (5 tumors; 42%). Some of these chromosome alterations
are in agreement with previous results.31 Although some candi-
date genes have been suggested, the major target genes in these
regions are mostly unknown. A combined analysis of comparative
genome hybridization and cDNA expression patterns suggest
that Znfn1a1 (also known as Ikaros) may be a candidate gene in
the chromosome 11 deletion because it is the only gene down-
regulated in this region (data not shown). The target gene in the
deleted telomeric region in chromosome 12 is less obvious as
3 different genes in this region, Bcl11B, Siva, and Crip2, are
down-regulated at the mRNA level. However, none of these genes
is silenced by promoter hypermethylation (data not shown), and
the molecular mechanism behind the decreased expression of these
genes is unknown at present. This region also contains a high
density of miRNA genes, and we have recently reported that one
of them, mir-203, is methylated in several mouse and human
leukemias and behaves as a tumor suppressor miRNA in these
malignancies.18 Apart from the chromosome 12 miRNAs, all the
other miRNAs down-regulated in these lymphomas are not prefer-
entially located to DNA regions with frequent loss of heterozy-
gosity (Figure 1C).

Although the transcriptional control of miRNAs is not well
understood yet, a few transcription factors, such as E2F1,3, may
modulate miRNA expression.32,33 In addition, Myc has been shown
to induce the oncogenic mir-17–92 cluster34 and results in the
repression of a significant number of miRNAs.19 Indeed, some
known Myc target miRNAs, such as miR-125b or miR-150, are
down-regulated in K562 leukemic cells expressing a Myc-ER fusion
gene inducible by tamoxifen (supplemental Figure 2), confirming
that some of the miRNAs down-regulated in mouse and human
lymphomas are Myc targets. Because Myc is highly overexpressed
in these lymphomas, the observed down-regulation of several
Myc targets, including mir-150, mir-22, mir-26a-1, and mir-26b,
and the miRNA clusters mir-100–125b-1, mir-99a-125b-2, and
mir-29b-2–29c, is likely to be a consequence of increased Myc
signaling in these tumors. All together, these observations suggest
that a combination of genetic or epigenetic alterations may mediate
the loss of certain miRNAs, such as miR-203,18 and many other
miRNAs may be repressed by specific oncogenic transcription
factors, such as Myc.

Correlation between miRNA down-regulation and
target gene overexpression

Because each miRNA can target multiple genes in the genome,
we reasoned that the down-regulation of these 41 miRNA genes

in T-cell lymphomas might have important consequences in
tumor transcriptional profiles. With a few exceptions (miR-200b,
miR-203, miR-429, and miR-205), the set of targets of each
individual miRNA was not significantly enriched in overexpressed
genes. However, the set of 41 miRNA genes silenced, when
considered as a whole, displayed a more dramatic effect on the
transcriptome of T-cell lymphomas because the targets of these
miRNAs were significantly over-represented in up-regulated genes
(supplemental Table 2). Whereas 40.6% of the genes in the array
(4997 of 12 322) are putative targets of the 41 miRNAs down-
regulated, these targets represent 46.3% (258 of 557) in the subset
of overexpressed genes (P % .0001).

We next analyzed which genes were most likely to benefit
from the combined down-regulation of several miRNA genes. All
the putative genetic interactions (GIs; number of tumor-down-
regulated miRNA genes that can potentially target specific se-
quences in the 3"-UTRs of the protein-coding gene indicated)
between the 557 up-regulated genes and the 41 down-regulated
miRNA genes were obtained from the miRBase Targets, Version
5 database. Several up-regulated genes were predicted to be
targeted by more than one of these miRNAs. Interestingly, Myc was
the gene with the highest number of target sites for different
down-regulated miRNA genes (Figure 2). Despite its relatively
small size, the 3"-UTR of the murine Myc transcript (453 nt;
approximately half of the average 3"-UTR size in the genome) is
potentially targeted by 13 different miRNA genes silenced in these
T-cell lymphomas (32% of the down-regulated miRNA genes). In
addition to Myc, additional overexpressed genes controlled by
multiple miRNA genes included Ncor2 (11 GI), Fkbp3 (10 GI),
Cad, Grwd1, and Rrp12 (9 GI), as well as other genes with a
reduced number (! 8 GI) of mRNA-miRNA gene interactions.

Individual and combinatorial effects of miRNAs on
Myc expression

To directly evaluate the regulation of Myc by miRNAs, we tested
the ability of several of the down-regulated miRNAs to repress
Myc. The regulation of Myc by miR-145 has been reported in detail
previously35 and is not further analyzed here. Twelve different
additional miRNAs putatively targeting Myc were used to analyze
their effect on Myc sequences (Figure 3). In addition, we also used
the mir-148b gene, which is not silenced in these tumors but
expresses a miR-148b mature sequence highly similar to that of
miR-148a but with one mismatch. As additional controls, we used
2 miRNA genes, mir-200c and mir-101, which are not predicted
to target the murine Myc sequence and are down-regulated or
unaltered, respectively, in the T-cell tumors analyzed.

We first studied the effect of these miRNAs using the
murine Myc 3"-UTR cloned downstream of a luciferase reporter.
As shown in Figure 3B, 5 miRNA genes, including mir-132, mir-
125b-1, let-7e, let-7a, and mir-154, were highly efficient down-
regulating luciferase expression in the luc-Myc-3"-UTR construct.
Because let-7 miRNAs have been previously reported to target
Myc,36,37 we consider the miRNAs in this group (group 1) as
highly efficient down-regulators of Myc. In addition, mir-301a,
mir-148a, and mir-134 (group 2) displayed an intermediate but
consistent effect, whereas mir-150 (Figure 3B), mir-26b, mir-207,
and mir-223 (not shown) did not have any significant effect.
Similarly, the control vectors expressing mir-148b, mir-200c, or
mir-101 did not have any effect on the luciferase signal. To
additionally test the effect of these miRNAs on Myc expression,
the Myc protein levels were quantified by immunoblotting after
transient expression of the individual miRNAs. As shown in
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Figure 3C, several of these miRNA genes, including mir-132,
mir-125b-1, and mir-154, were able to significantly down-regulate
Myc expression even stronger than the validated let-7 miRNAs.
The reduction in Myc protein levels correlated with a significant
decrease in the proliferation rate of Jurkat cells, suggesting a tumor
suppressor activity for many of these miRNAs in leukemia cells
(supplemental Figure 3). Some miRNAs displayed a dramatic
antiproliferative effect despite its minimal effect of Myc protein
levels, suggesting additional critical targets for its antiproliferative
function. In general, the down-regulation of Myc by miRNAs
(mostly group 1) correlated with the down-regulation of Myc target
genes, such as Mcm4 or Cyclin B1 (Figure 3C), in agreement with
a functional inactivation of Myc transcriptional targets in response
to these miRNAs.

To further validate the direct control of Myc by group 1
miRNAs, we performed individual mutagenesis of miRNA target
sites in the Myc 3"-UTR. The predicted miR-132, let-7, and
miR-154 target sites were mutated by substituting 3 different
nucleotides in each corresponding seed sequences. In addition, a
double miR-125b mutant was obtained by mutating the 2 predicted
target sites for this miRNA. As indicated in Figure 3D, expression
of individual group 1 miRNAs reduced luciferase activity in
wild-type Myc 3"-UTR but not on mutation of the corresponding
target sites, suggesting direct down-regulation by miRNAs through
these sequences.

We also went to analyze the combined effect of several of these
miRNAs in controlling luciferase expression or Myc protein
levels. Different pools of miRNAs belonging to group 1 (efficient
targeting), group 2 (intermediate effect), and group 3 (miRNAs
with no effect on Myc) were prepared. Cotransfection with the
group 1 pool resulted in a slightly stronger reduction of luciferase
activity (Figure 3E) and Myc protein levels (Figure 3F), although
this effect may be limited by technical constraints of these assays
(transfection efficiency or saturation of overexpressed miRNAs).
Group 2 pools also displayed a stronger effect than individual
group 2 miRNAs both in the luciferase assays and in the levels of
Myc proteins. No effect was observed in the group 3 pools in
agreement with the lack of effect of these individual miRNAs on
Myc expression.

Combined down-regulation of MYC-targeting miRNAs in
human BL

To validate the strong correlation between deregulation of Myc and
miRNAs levels in humans, we studied cDNA and miRNA expres-
sion profiles in BL, a human pathology mediated by specific
genetic translocations that lead to overexpression of MYC. In most
BL cases, a reciprocal translocation has moved the proto-oncogene
MYC from its normal position on chromosome 8 to a location

GI
11

Figure 2. GIs between overexpressed genes and down-regulated miRNA genes. GIs are defined as the number of down-regulated miRNA genes that can potentially
target specific sequences in all possible 3"-UTRs of the overexpressed gene indicated. (See supplemental Data for further details.) Myc is the overexpressed gene with the
highest number of GIs in !-irradiation-induced T-cell lymphomas. Thirteen of the 41 miRNA genes down-regulated in these tumors can potentially target the Myc 3"-UTR. Other
genes potentially targeted by multiple miRNAs, such as Ncor2 (11 GI) and Kkbp3 (10 GI), are indicated in the figure. Only genes up-regulated in irradiation-induced lymphomas
with more than or equal to 7 GI are represented.
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downstream to the enhancers of the antibody heavy chain genes on
chromosome 14. These translocated MYC oncogenes maintain the
endogenous MYC 3"-UTR and are therefore sensitive to miRNAs.
Because the expression of miRNAs has not been reported in detail
in these tumors, we analyzed the expression profiles of protein-
coding genes and miRNAs in the same 12 BL samples compared
with normal lymph nodes (Figure 4; supplemental Figure 4) or
normal CD10&CD19& B cells (supplemental Figure 5). These BL
samples displayed the t(8;14)(q24;q32) translocation (data not
shown) that is likely to enhance the transcription of MYC. Gene
expression profiling analysis confirmed a significant up-regulation
of MYC (FDR # 0.01) in these BL samples (data not shown). In

addition, 43 miRNAs were deregulated (FDR # 0.01) in these BLs
compared with normal lymph nodes, including 26 up-regulated
(including the known oncogenic cluster mir-17–92; supple-
mental Figure 4) and 17 down-regulated miRNAs (Figure 4A).
We then applied GSEA using MYC-targeting miRNAs list (as
predicted by miRBase) as a gene set. GSEA revealed a signifi-
cant enrichment (FDR # 0.085) of the MYC-targeting miRNAs in
control samples compared with BLs (Figure 4B), thus suggesting a
BL-specific down-regulation of miRNAs that can potentially target
the MYC mRNA.

We then mapped GI between up-regulated protein-coding genes
(1219 genes) and down-regulated miRNAs (17 miRNAs) in the
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Figure 3. Control of Myc expression by miRNAs. (A) Potential
target sites for mature miRNAs in the mouse Myc 3"-UTR. Only
mature miRNAs produced by miRNA genes down-regulated in
!-irradiation-induced lymphomas are shown in this scheme. Gene
nomenclature is also indicated when different from the mature
form (eg, mir-125b-1 is the gene that generates miR-125–3p).
(B) Luciferase activity of a reporter construct carrying the Myc
3"-UTR downstream of the luciferase gene. The construct was
cotransfected with a vector expressing each of the indicated
miRNA precursors. All data are normalized versus the luciferase
levels generated by scramble sequences. (C) Effect of miRNA
genes on Myc protein levels. Transfection with miRNA genes was
performed as described earlier in the Figure 3 legend, but cells
were processed for immunoblot analysis for Myc or 2 different
Myc targets, Mcm4 and Cyclin B1. A vertical line has been
inserted to indicate repositioned gel lanes. The relative levels of
Myc proteins were normalized using '-tubulin ('-tub.) as a loading
control. (D) Luciferase activity of wild-type (wt) or mutant (mut)
Myc 3"-UTRs in the presence of scrambled sequences (S) or
the corresponding miRNAs. wt, indicates wild-type Myc 3"-UTR
sequence; mut, single mutants for the indicated miRNA; and
mut2, double mutant for the miR-125b-3p target sites. (E) Lu-
ciferase assays of wild-type Myc 3"-UTRs in the presence of
pools of group 1 (G1; mir-132, mir-125b-1, let-7e, let-7-a, and
mir-154), group 2 (G2; mir-301a, mir-148a, and mir-134), or group
3 (G3; mir-26b, mir-150, mir-207, and mir-223) miRNAs. In these
pools, the sum of all miRNA vectors also equals 10 (g as in the
scramble vectors or the previous assays. (F) Effect of G1–3 pools
on Myc protein levels. Transfection with miRNA genes was
performed as described earlier in the Figure 3 legend, but cells
were processed for immunoblot analysis for Myc. The relative
levels of Myc proteins were normalized using '-tubulin ('-tub.) as
a loading control.
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same 12 BL samples. As shown in Figure 4C, MYC was one of
the most common targets (7 GI) of down-regulated miRNAs in
these tumors, along other overexpressed genes, such as DDX31
(11 GI), MAP9 (9 GI), and TFR2 (8 GI), or the replication protein
MCM5 (8 GI). Other genes with multiple target sites for silenced
miRNAs included CDC34, an ubiquitin-conjugating enzyme known
to be modulated by let-7.38 We also compared the expression of
miRNAs of BLs versus normal B cells expressing CD19 and
CD10, 2 markers of the normal germinal centers that are also
expressed in BL.39,40 A total of 33 miRNAs were deregulated in
BLs using a comparison similar to CD19&CD10& cells, includ-
ing 11 up-regulated and 22 down-regulated miRNAs (supple-
mental Figure 5). Common targets of these down-regulated miRNAs
also included DDX31 and MAP9 (8 GI), MCM5 (6 GI), or
MYC (5 GI), among other overexpressed genes (supplemental
Figure 5). These findings indicate that preferential down-regulation

of MYC-targeting miRNAs probably supports the high expression
levels of MYC transcripts as a consequence of genetic transloca-
tion in human BL.

Because the human MYC 3"-UTR only displays a moderate
conservation with the mouse sequence, we then validated the
control of human MYC by miRNAs down-regulated in BLs.
Figure 5A shows the localization of target sites for BL-specific
down-regulated miRNAs in the human MYC 3"-UTR. As shown
in Figure 5B, all these miRNAs, with the only exception of
miR-155, were able to down-regulate the MYC 3"-UTR in
reporter assays. In all these 6 cases, a specific mutation in the
miRNA target site rescued this repression, suggesting the
specificity in this interaction (Figure 5C). Moreover, all these 6
miRNAs were able to down-regulate MYC transcripts when
overexpressed in the human BL cell line Raji. This down-
regulation is even stronger when a pool of these 6 miRNAs
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Figure 4. Genetic interactions between protein-
coding genes and miRNAs in BL. (A) Heat map of
significantly down-regulated miRNAs in BL compared
with normal lymph nodes. (B) GSEA for down-regulated
miRNAs targeting the MYC 3"-UTR. (C) Genetic interac-
tions (GI) between up-regulated protein-coding genes
and down-regulated miRNAs in BL. Only protein-coding
genes with GI " 6 are shown.
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(using a total amount of miRNA DNA similar to the individual
transfections) was used (Figure 5D).

The Myc pathway is a significant target of miRNAs
down-regulated in lymphomas

The combined effect of down-regulated miRNAs on Myc activity
can contribute to the induction of Myc targets and the correspond-
ing downstream pathways in murine and human lymphomas. In
both murine and human tumors, there is a significant enrichment
of Myc targets among up-regulated genes. As reported in the first
section of the “Results,” Myc targets were overrepresented among

up-regulated genes in !-irradiation-induced tumors. Similarly,
135 Myc targets were included among the 1219 up-regulated genes
(11.1%) in BLs versus 949 Myc targets in the 16 203 genes (5.8%)
represented in the array (P # .0001). In addition, the set of
up-regulated Myc targets was significantly enriched in target sites
for down-regulated miRNAs. In murine tumors, 75 of 98 up-
regulated Myc target genes (76.5%) can be potentially down-
regulated by the silenced miRNA genes (Figure 6A), whereas the
corresponding frequency for up-regulated non-Myc targets is
43.9% (207 of 481; P # .0001). Similarly, 63.7% (86 of 135) of
up-regulated Myc targets were predicted targets of silenced
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Figure 5. Control of human MYC by multiple miRNAs.
(A) Schematic representation of the human MYC 3"-UTR and the
localization of target sites for the miRNAs down-regulated in BLs.
(B) Luciferase reporter assays to test the effect of the indicated
miRNAs in the MYC 3"-UTR. Vectors expressing scrambled
sequences (S) or mir-22 (not predicted to target MYC) were used
as controls. (C) Mutagenesis of miRNA target sites in the human
MYC 3"-UTR. Luciferase activity in the presence of the wild-type
(wt) or a mutated (mut) MYC 3"-UTR in which 3 positions of the
seed sequence have been mutated for each specific miRNA
target site indicated. These constructs were assayed in the
presence of vectors expressing the indicated miRNAs or
scrambled sequences. (D) Effect of the indicated miRNAs in the
protein levels of MYC in Raji BL cells. The pool contains an
equimolar mixture of all indicated miRNAs in which the sum of all
these miRNAs equals 10 (g as in the scramble vectors or the
previous assays.
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miRNAs in BLs versus 39.9% (433 of 1084) of non-Myc targets
(P # .0001; Figure 6B). As an example, mouse Cad, Snrp,
Slc25a3, Aldh9a1, as well as human MCM5, CCT3, BAX, or RCC1
were among the Myc target genes with a highest number of
predicted target sites for down-regulated miRNAs (supplemental
Table 3). Thus, the combined effect of Myc overexpression and
amplification (Figure 1), down-regulation of miRNAs that control
Myc levels in mouse (Figures 2-3) and humans (Figures 4-5;
supplemental Figure 5), and down-regulation of miRNAs that
control Myc target levels (Figure 6) is likely to have a significant
effect in the Myc oncogenic pathways in murine !-irradiation-
induced or human BLs.

Discussion

In mammals, miRNAs are predicted to control the activity of a
significant fraction of all protein-coding genes.41,42 The sets of
41 miRNAs down-regulated in !-irradiation-induced lymphomas
(Figure 1) and 17 miRNAs down-regulated in BLs (Figure 4) are
predicted to target approximately 46% (256 of 556) or 43% (519 of
1219), respectively, of the up-regulated genes in these lymphomas,
suggesting that miRNA deregulation may have a significant impact
in tumor transcription profiles. The analysis of the major targets
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Figure 6. Significant effect of mouse or human down-
regulated miRNAs on Myc targets. (A) GIs between Myc target
genes and down-regulated miRNA genes in mouse irradiation-
induced lymphomas. Peripheral yellow nodes represent down-
regulated miRNA genes (as in Figure 2), whereas Myc targets are
distributed as a circle around Myc (the interaction between Myc
and Myc targets is not shown for clarity). A total of 72 Myc targets
are potentially targeted by down-regulated miRNA genes, and
only genes with more than or equal to 3 GI are shown. A complete
list of these interactions is provided in the Supplemental data.
(B) Similar analysis of the GI between MYC target genes and
down-regulated miRNAs in BLs. Peripheral yellow nodes repre-
sent down-regulated miRNA genes (as in Figure 7), whereas
MYC targets are distributed as a circle around MYC.
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of these miRNAs indicates that some genes may be repeatedly
targeted by several different miRNAs. Interestingly, Myc, a major
oncogene in these tumors,8,17 stands up as the gene in which lack
of expression of miRNAs may have the highest influence in
!-irradiation-induced tumors and one of the major targets in BLs.
Thus, the silencing of approximately one-third of the miRNA genes
down-regulated in these murine or human tumors may help to
accumulate Myc proteins. Whereas the sets of miRNA targets may
vary using different algorithms, the enrichment of target sequences
for down-regulated miRNAs is commonly found in different
algorithms, and several of these target sequences have been
validated through reporter and mutagenesis assays. Several of
these miRNAs, including miR-132, miR-125b-1, let-7 family, and
miR-154 are able to decrease Myc levels and the proliferative
potential of tumor cells.

Because tumor samples were compared with normal age-
matched thymuses or lymph nodes, these results may also indicate
that these miRNAs help to maintain low levels of Myc proteins
in adult quiescent differentiated cells compared with other prolif-
erative stages. In any case, given the major role of the Myc
transcription factor in driving leukemogenesis,43 it is not surprising
that tumors select cells with inactivation of several of the miRNAs
that may decrease Myc levels. In addition, proliferating cells
frequently express mRNAs with shortened 3"-UTRs and fewer
miRNA sites, suggesting the relevance of avoiding miRNA func-
tion in cell proliferation.44 We have failed to detect point mutations
in the MYC 3"-UTR of human lymphoma patients (N % 38; data
not shown). However, given the number of miRNA target sites in
that sequence, it is possible that a single point mutation does not
confer enough resistance to the combined effect of all miRNAs
targeting MYC in these cells. Thus, tumor cells preferentially
down-regulate inhibitory miRNAs instead of selecting individual
or multiple mutations in the MYC 3"-UTR.

Myc up-regulates many molecular routes crucial for malignant
transformation, including cell survival, proliferation, and transla-
tion pathways.24 Myc is also known to specifically induce the
oncogenic mir-17–92 cluster,34 and several miRNAs expressed in
this cluster are up-regulated in BL (supplemental Figure 4). How-
ever, the predominant consequence of Myc activation in miRNA
biology is thought to be a widespread miRNA repression as
recently reported.19,45 In !-irradiation-induced or BLs, several
silenced miRNAs, including miR-15a, miR-22, miR-23b, miR-
125b, miR-150*, miR-26a, or miR-26b, miR-29a, and miR-29b,
and several let-7 family members may be repressed as a conse-
quence of Myc signaling.19,45 Interestingly, some of the silenced
miRNAs also have the potential to target the Myc transcript,
suggesting regulatory loops between Myc and miRNAs (supple-
mental Figure 6). It has been also previously reported that
let-7a down-regulates Myc and reverts Myc-induced growth in
BL cells.36 Thus, the inactivation of several of these miRNAs
enhances Myc overexpression, which in some cases is originated
by trisomy of chromosome 15 (mouse lymphomas) or specific
translocations (human neoplasias). Tumor-suppressor miRNAs that
are not the target of chromosomal deletions or epigenetic modifica-
tions may be directly repressed by Myc in a feedback loop that
enhances Myc protein levels and favors malignant transformation
(Figure 7). Because a threshold level of c-Myc expression is
required to maintain the neoplastic state in Myc-driven tumors,46

these regulatory loops suggest a bidirectional mechanism to
regulate the balance between the Myc pathway and miRNA
regulation in normal and tumor cells.

Despite the relevant oncogenic function of Myc in several
malignancies and the therapeutic value observed in genetic mod-
els,47 its complex function as a transcription factor has made it
difficult to design therapeutic approaches to inhibit its activity in
human tumors.48,49 The control of Myc by miRNAs may therefore
add some new possibilities for the therapeutic inhibition of Myc in
tumors either by reexpressing endogenous miRNAs (eg, through
epigenetic drugs that restore the expression of hypermethylated
miRNAs) or by introducing exogenous small RNAs that target the
Myc transcript.
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Tumorigenesis and Neoplastic Progression
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Protein SUZ12 Target Genes Characterizes Mantle
Cell Lymphoma
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Polycomb proteins are known to be of great impor-
tance in human cancer pathogenesis. SUZ12 is a com-
ponent of the Polycomb PRC2 complex that, along
with EZH2, is involved in embryonic stem cell differ-
entiation. EZH2 plays an essential role in many can-
cer types, but an equivalent involvement of SUZ12 has
not been as thoroughly demonstrated. Here we show
that SUZ12 is anomalously expressed in human pri-
mary tumors, especially in mantle cell lymphoma
(MCL), pulmonary carcinomas and melanoma, and is
associated with gene locus amplification in some
cases. Using MCL as a model, functional and genomic
studies demonstrate that SUZ12 loss compromises cell
viability, increases apoptosis , and targets genes in-
volved in central oncogenic pathways associated
with MCL pathogenesis. Our results support the hy-
pothesis that the abnormal expression of SUZ12
accounts for some of the unexplained features of
MCL, such as abnormal DNA repair and increased
resistance to apoptosis. (Am J Pathol 2010, 177:930–942;
DOI: 10.2353/ajpath.2010.090769)

The Polycomb group of proteins (PcG) are transcriptional
repressors essential for regulation of embryogenesis, tissue
development, stem cell self-renewal, and preservation of
cell identity (reviewed in1). PcG proteins modify histone tails
to repress gene expression. Two major PcG complexes
have been described in humans: the polycomb repressive

complex 1 (PRC1), which contains BMI1, MEL18, RING1,
RNF2, HPC1, and others, and the polycomb repressive
complex 2 (PRC2), which typically contains EZH2, SUZ12
and various isoforms of EED.2 PRC2 has histone methyl-
transferase (HMTase) activity that allows the complex to
trimethylate chromatin specifically at lysine 27 of histone H3.
PRC1 recognizes this mark and recruits the machinery nec-
essary to remodel chromatin structure.3–6

There is mounting evidence of the pathogenic role of
PcG in human cancer.7–10 This is the case for murine
Bmi1, which collaborates with c-Myc in transforming lym-
phoid cells.11,12 Human BMI1 has been found to be dereg-
ulated in mantle cell lymphoma (MCL) and in Hodgkin’s and
diffuse large B-cell lymphomas.10,13–16 EZH2 is involved in
progression in prostate cancer and in neoplastic transfor-
mation of breast epithelial cells.17,18 This member of the
PRC2 complex has HMTase activity and is therefore essen-
tial for gene transcription regulation. SUZ12, another impor-
tant member of this complex, in conjunction with EED and
RBAP48, is up-regulated in colon and breast tumors,19 but
its specific function in human cancer is unknown. SUZ12 is
a zinc finger protein that has been found at the breakpoints
of a recurrent chromosomal translocation in endometrial
stromal sarcoma.20 SUZ12 is essential in mouse devel-
opment and is required for the proliferation of cultured
cells.21 Within the PRC2 complex, SUZ12 is required for
the HMTase activity of the complex.21,22
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MCL is a lymphoid malignancy with an aggressive
clinical behavior, whose study has critically improved our
understanding of the pathogenic role of multiple onco-
genes and survival pathways.23–25 It accounts for around
5% to 8% of non-Hodgkin’s lymphomas, and is associ-
ated with a chromosomal translocation t(11;14)(q13;q32)
that puts the CCND1 gene under the control of the immu-
noglobulin heavy chain locus regulatory elements.23

However, this characteristic molecular event does not
explain fully the clinical and biological features of the
tumor and is not sufficient for tumoral transformation, as
has been demonstrated in experimental models.26 Sev-
eral studies suggest that other molecular events play a
pathogenic role in MCL pathogenesis, such as ATM loss
or nuclear factor �B pathway activation.24,27 Neverthe-
less, there are still various MCL oncogenic features that
are not explained by the alterations so far identified.

In this study we have investigated the expression pat-
tern of SUZ12 and EZH2 in a large cohort of human
normal tissues and tumors in search of patterns associ-
ated with transformation events. We demonstrate that
SUZ12 is anomalously expressed in several human pri-
mary tumors, and that it is especially relevant in specific
tumors such as MCL, melanoma and pulmonary carcino-
mas, where it is associated with gene amplification in
some cases. The use of an integrated approach combin-
ing genome-wide location assays, functional studies, and
gene expression profiling, leads us to conclude that
SUZ12 may be involved in MCL pathogenesis.

Materials and Methods

Production of SUZ12 Monoclonal Antibody

A cDNA encoding the full-length human SUZ12 protein
was obtained from the laboratory of Dr Yi Zhang (pGEX-
KG-SUZ12). The human SUZ12 gene was amplified by
polymerase chain reaction (PCR) and introduced into the
pDEST-TH1 expression vector (Invitrogen, Carlsbad, CA)
by means of Gateway technology. The MBP-SUZ12 fu-
sion protein was then expressed in Escherichia coli strain
BL21 (DE3) with 0.4 mmol/L IPTG overnight at 30°C. The
bacteria were lysed with BugBuster reagent (Novagen,
Madison, WI). The soluble fraction was purified with amy-
lase resin (New England Biolabs, Ipswich, MA), and the
joined protein was eluted with 10 mmol/L maltose. The
protein-containing fractions were concentrated by Vivaspin
ultrafiltration (Sartorius Stedim Biotech, Aubagne, France)
and used as an immunogen.

Three BALB/c mice were injected intraperitoneally
(three times at 14-day intervals) with 100 �g 6 � MBP-
SUZ12 fusion protein and Freund’s adjuvant. A 150-�g
booster of the recombinant SUZ12 protein was injected
intraperitoneally, and fused three days later, as de-
scribed previously.28,29 Hybridoma supernatants were
screened by enzyme-linked immunosorbent assay. The
mouse mAb raised against SUZ12 (220A/A3) was cloned
by the limiting dilution technique. Animal experiments
were performed under the experimental protocol ap-

proved by the Institutional Committee for Care and Use of
Animals, CEUCA no. 001/02.

To confirm that 220A/A3 mAb recognized the human
SUZ12 protein, immunohistochemistry on frozen cytospin
preparations of V5-tagged human SUZ12 expressed in
HEK-293T cells was performed. Labeling with the an-
ti-V5 mAb confirmed the efficiency of transfection. A
cytospin preparation of V5-tagged human SOX4 pro-
tein was used as a negative control (Supplemental
Figure 1 at http://ajp.amjpathol.org).

Tissue Microarrays and Immunostaining
Techniques

Immunohistochemical expression of SUZ12 and EZH2
were assessed using tissue microarray (TMA) technol-
ogy for 150 normal and 569 tumoral samples. To this
end, we used a tissue array device (Beecher Instru-
ments, Sun Prairie, WI), as previously described.13,30

An additional TMA including 76 MCL cases was also
used.31 Immunohistochemical staining was performed on
these TMA sections using the following antibodies: McAb
SUZ12 (220A/A3) and EZH2 polyclonal antibody (Zymed,
San Francisco, CA).32,33 Proliferation indices in MCL
cases were evaluated by means of Ki-67 expression
using MIB1 monoclonal antibody by DAKO (DAKO,
Glostrup, Denmark). M.S.-B. and E.S. evaluated the staining
of TMA sections for SUZ12, EZH2, and Ki-67 proteins using
uniform criteria. Discrepancies in the scoring of cases were
resolved after joint examination on a multiheaded micro-
scope. To ensure the reproducibility of this method, we
used straightforward, clear-cut criteria, and cases were
scored as positive (1) or negative (0) for SUZ12 and EZH2
antibodies. The threshold was 5% of positive cells for both
antibodies. For Ki-67, the values were scored as nega-
tive (0) for fewer than 5% of proliferating cells, positive
(1) for 5% to 25%, and strongly positive (2) if more than
25% of cells were positive for Ki-67.13 Whole-tissue
sections from reactive lymph node, thymus, spleen,
and tonsillectomy specimens were used for the exam-
ination of benign lymphocyte subpopulations.

FISH

Fluorescence in situ hybridization (FISH) was used to
detect SUZ12 copy number changes, as previously re-
ported.34 To study SUZ12 amplification we used the bac-
terial artificial chromosome clones RP11-290N17 and
RP11-640N20 from the BACPAC resources center (Chil-
dren’s Hospital Oakland Research Institute, Oakland,
CA), which spans the entire 17q11.2 genomic region,
and a commercial centromeric probe for chromosome 17
(Vysis Inc., Downers Grove, IL), which was used as a
control for the ploidy level of chromosome 17.

FISH evaluation was performed by J.S. with no previ-
ous knowledge of other genetic, clinical, or immunohis-
tochemical results. Fluorescence signals were scored in
each sample by counting the number of single-copy
gene and centromeric signals in an average of 130 (60–
210) well-defined nuclei. SUZ12 amplification was recog-
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nized if the SUZ12/chromosome 17 ratio was greater than
2 in at least 20% of tumor cells. A sample was considered
to feature a SUZ12 gene gain if the SUZ12/chromosome
17 ratio was greater than 1.5 but less than 2.35,36

Cell Lines

Human cell lines derived from MCL patients Jeko-1 and
Z138 were kindly provided by Dr. Martínez-Climent and
cultured in RPMI 1640 medium supplemented with 1%
L-glutamine, 10% fetal bovine serum (Invitrogen), 0.5%
penicillin/streptomycin, and 0.1% Fungizone. Cells were
maintained at 37°C in a humidified 5% CO2 incubator.

The HEK293T cell line was obtained from the American
Type Culture Collection and was cultured in Dulbecco’s
modified Eagle’s medium supplemented with 1% L-glu-
tamine, 10% fetal bovine serum (Invitrogen), 0.5% peni-
cillin/streptomycin and 0.1% Fungizone. Cells were main-
tained at 37°C in a humidified 5% CO2 incubator.

Virus Production and Cell Line Infection

Viruses were produced by transient transfection in the
HEK293T cell line. Plasmids were produced in the TOP10
E. coli strain (Invitrogen) and grown in low-salt Luria Bertani
medium. Plasmids were isolated using Qiagen EndoFree
Plasmid Maxi Kit (Qiagen, Venlo, The Netherlands).

For co-transfection, plasmids pCMVdeltaR8.91 (de-
rived from pCMVR8.937), pMD.G and the lentiviral vector
pA179.Helix38 containing the shRNAi sequences were
used. Plasmids were co-transfected using FuGene 6
(Roche, Basel, Switzerland) following the manufacturer’s
recommendations. Target cells (5 � 105) were trans-
duced by spinoculation using the viral supernatant.

Vectors and shRNA Design

Different shRNAs were designed using the SIDE program
(http://side.bioinfo.cipf.es, last accessed December 4,
2008). The shRNAs were designed within the ORF se-
quence of SUZ12 to avoid off-target effects associated
with imperfect matching in the 3� UTR of the target gene.
shRNAs were cloned as previously described.39 shRNA
sequences used for control and SUZ12 knockdown were
as follows: Scramble: (5�-GAGGAACCAAACCATAACA-
3�); shSUZ12.783: (5�-GGATGTAAGTTGTCCAATA-3�);
shSUZ12.2076: (5�-GCTGACAATCAAATGAATCAT-3�).

Cell Competition Assays

GFP expression was analyzed by FACS 72 hours after
infection of the cell lines with lentivirus carrying either the
empty vector, or a scrambled control or either of the two
shRNAs against SUZ12. This was done every 2 to 4 days.
The evolution of GFP expression was compared with the
third day using the following formula:

% initial ratio �
Ratio GFP�/GFPday n

�

Ratio GFP�/GFPday 3
� � 100

Cell Growth and Apoptosis

Cell growth was assessed by counting cells in a
Neubauer chamber and using trypan blue dye to exclude
dead cells. For cell cycle analysis, 106 cells were washed
with PBS and fixed with chilled 70% ethanol added drop
by drop and incubated in the cold for at least 1 hour. The
cells were then washed again with PBS and resuspended
in 500 �l of PBS. RNase A was added at a final concen-
tration of 200 ng/�l and incubated for 30 minutes. Cells
were stained with 10 �l propidium iodide (1 mg/ml) be-
fore acquisition in the cytometer.

Cell death was quantitated by annexin V–APC (BD
PharMingen, Franklin Lakes, NJ) staining according to the
manufacturer’s protocol. Briefly, cells were washed in PBS,
resuspended in 500 �l of binding buffer (BD PharMingen)
containing 0.5 �g/ml annexin V-APC and 25 �g/ml
propidium iodide, and then analyzed by flow cytom-
etry. Cell cycle and apoptosis assays were analyzed
with a FACSCalibur flow cytometer (BD PharMingen).

Histone Extraction

Histones were isolated by acidic extraction in 0.25 mol/L
HCl and precipitation with acetone. Briefly, 106 cells were
harvested and incubated overnight in 200 �l of 0.25
mol/L HCl at 4°C with shaking. For histone precipitation,
8 volumes of acetone were added to the supernatant,
and histones were pelleted by centrifugation and washed
with acetone. Histones were air-dried and resuspended
in 0.25 mol/L HCl for subsequent immunoblot analysis.

Western Blot Analysis

Total protein extracts were prepared using radioimmuno-
precipitation assay lysis buffer supplemented with protease
inhibitors. Antibody detection was performed using fluores-
cent-labeled secondary antibodies (Alexa 680 and Alexa
800, Rockland, Gilbertsville, PA) and an Odyssey infrared
system scanner (LI-COR Biosciences, Lincoln, NE).

Antibodies for immunoblot analysis included mouse
anti-SUZ12 mAb (clone 220A/A3), rabbit anti-histone H3
trimethylated at lysine 27 (07-499, Upstate Biotechnol-
ogy, Lake Placid, NY), mouse anti-H3 mAb (clone 6.6.2,
Upstate Biotechnology), mouse anti-PARP (P248, Sigma-
Aldrich Inc., St. Louis, MO), and mouse anti-�-tubulin
(clone DM1A, Sigma-Aldrich). Band intensities were
quantified using ImageJ 1.34S software (National Insti-
tutes of Health, Bethesda, MD).

ChIP-on-Chip

Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) was assayed
using the ChIP assay kit (Upstate Biotechnology, Billerica,
MA) following the manufacturer’s recommendations. The
antibodies used here were specific for SUZ12 (220A/A3
and Upstate, 07-379), histone H3 trimethylated at lysine 27,
and IgG (Upstate Biotechnology).
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For ChIP-on-chip experiments, three biological repli-
cates were amplified using the GenomePlex whole ge-
nome amplification kit (Sigma-Aldrich) following the pro-
tocol provided by the manufacturer. The same quantity of
each replicate was mixed in a single tube. Input material
and samples were labeled with Cy3 and Cy5, respec-
tively, and hybridized onto the human promoter ChIP-on-
chip microarray set (Agilent Technologies Inc., Santa
Clara, CA).

DNA Microarray Analysis ChIP-on-Chip

The human promoter ChIP-on-chip microarray set cov-
ers �5.5 kb upstream to �2.5 kb downstream of the
transcriptional start sites with a total of 487,008 probes.
Agilent’s ChIP analytics program (v. 1.3.1) was used for
the analyses.

A whole-chip error model was used to calculate con-
fidence values from the enrichment ratio and the signal
intensity of each probe (probe P value) and of each set of
three neighboring probes (probe set P value). Probe sets
with significant probe set P values (P � 0.001) and sig-
nificant individual probe P values (P � 0.01) were judged
to be bound. Bound regions were assigned to genes if
they were within 1 kb of the transcription start site regis-
tered in at least one of five genomic databases.

PCR of Immunoprecipitated Material

Original sequences for primer design were extracted from the
March 2006 human reference sequence (NCBI Build 36.1).
Immunoprecipitated DNA was subjected to semiquantita-
tive PCR using the following primers: ATM: sense strand
5�-GTTGTGCAAAGGGGTCAACT-3�, antisense strand 5�-
TTGGCGGAACTGAAAGAAG-3�; BCOR: sense strand 5�-
GCAAAAGACAGGCGAGCAAG-3�, antisense strand 5�-
ACCCCCAGAAAGACCAGGAA-3�; BIRC2: sense strand
5�-CCCAGGTGCATTTTTGGAAG-3�, antisense strand 5�-
TGCCTGCCAGTCAGTCACAG-3�; CBX2: sense strand
5�-TTCTCCCCGCTGTAACCTGA-3�, antisense strand 5�-
GCCCGAGATCCAGAACAATG-3�; E2F5: sense strand 5�-
TGGATTGCAGTGGCAGGA-3�, antisense strand 5�-GG-
CGTGGTAGTGCACACTTG-3�; GADD45G: sense strand
5�-GTGCCAGCGTGTATGGTCAA-3�, antisense strand 5�-
CGAGTAAGGGCTGCAAAACG-3�; H2AFZ: sense strand
5�-AGGGCCTGGGAGTTTTCTTG-3�, antisense strand 5�-
CTGTGTACAGCGCAGCCATC-3�; HDAC2: sense strand
5�-CTGGAGAAGGAGGCCGTTTC-3�, antisense strand 5�-
GCAGACCTGAGGGGGAGAAC-3�; JMJD2D: sense strand
5�-AAATATGTACGGGGCAACCA-3�, antisense strand 5�-
TGACATCTCCCCTCCCACTA-3�; VAV3: sense strand 5�-
GCTCAGCGCACCTAGACGTT-3�, antisense strand 5�-
GGCTCAGGTGTTCGACCTTG-3�.

Functional Gene Classification with Ingenuity
Pathways Analysis

We identified functions/pathways classification terms en-
riched for SUZ12-bound genes using Ingenuity Pathways

analysis (Redwood City, CA). The probability associated
with a biological process is a measure of its statistical
significance with respect to the functions/pathways/lists
eligible molecules for the dataset and a reference set of
molecules that defines the molecules that could pos-
sibly have been functions/pathways/lists eligible. The
probability is that associated with a right-tailed Fisher’s
exact test.

Gene Expression Profile

For gene expression profiling, total RNA was extracted
from cell lines and MCL frozen tumoral samples using the
Qiagen RNeasy kit (Qiagen). 500 ng of RNA were labeled
with cyanine 5-conjugated dUTP (Cy5) and hybridized
onto the Agilent 44K whole genome microarray chip (Agi-
lent Technologies) against a universal human reference
RNA (Stratagene, La Jolla, CA) previously labeled with
cyanine 3-conjugated dUTP (Cy3). Slides were scanned
in an Agilent G2565AA microarray scanner system and
data were extracted with feature extraction software (Agi-
lent Technologies).39

Statistical Analysis

To validate ChIP-on-chip results functionally in MCL tumoral
samples, Pearson correlations between identified SUZ12
target genes and SUZ12 expression were calculated using
the T-Rex program included in the Gene Expression Pattern
Analysis Suite (http://www.gepas.org/).40

Gene Set Enrichment Analysis

The gene set enrichment analysis (GSEA) tool (http://
www.broad.mit.edu/gsea, last accessed April 7, 2008)41,42

was used to explore functional gene sets, allowing the in-
terpretation of complete gene expression data in relation to
SUZ12 expression. The gene sets co-regulated with SUZ12
expression were identified using Pearson correlation, with a
minimum of 10 and a maximum of 500 genes in a gene set
being required to qualify them for further analysis. The se-
lected gene sets corresponded to Biocarta pathways
(http://www.biocarta.com, last accessed April 7, 2008), ex-
cluding those that were not relevant to either lymphoid cell
biology or cancer. Gene sets with an false discovery rate of
less than 0.25 were considered significant.

Results

SUZ12 Protein Expression Is Restricted to
Proliferating Cells in Normal Human Tissues

To screen for potential abnormalities in the expression of
SUZ12, we compared expression patterns in tumoral
samples with those in normal tissues. To this end, we first
generated a monoclonal antibody (mAb) against SUZ12
protein (clone 220A/A3; described in Materials and Meth-
ods). Demonstration of 220A/A3 mAb specificity against
SUZ12 in cytospin preparations can be found in the
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supplementary information (Supplemental Figure 1 at
http://ajp.amjpathol.org). These results were confirmed by
Western blot using cell lysate of SUZ12 and SOX4-trans-
fected cells (data not shown). The specificity of the mAb
generated is also demonstrated in the shRNA experi-
ments described below. The antibody was found to be
suitable for immunohistochemistry, immunofluorescence
(data not shown), Western blot detection, and chromatin
immunoprecipitation.

With this mAb, we characterized the expression of
SUZ12 in a large cohort of non-tumoral human tissues
using a TMA containing a panel of around 50 different
normal tissues.13 As SUZ12 binds to EZH2 in PRC2 com-
plex, we also characterized EZH2 protein expression in
these same tissues. Surprisingly, we found that whereas
EZH2 protein is widely detected in a large proportion of
tissues, with few exceptions, SUZ12 expression is re-
stricted to proliferating cells in reactive lymphoid tissue,
germinal cells in the testis, and the epithelium of various
organs (Figure 1,A–D, and Supplemental Table 1 and
Supplemental Figure 2 at http://ajp.amjpathol.org).

SUZ12 Is Overexpressed in a Subset of Human
Tumors

We also studied SUZ12 and EZH2 expression in TMAs
containing representative paraffin sections from 569
cases of multiple (up to 69) human tumor types.13 EZH2
and SUZ12 expression patterns were also different in
tumoral samples and we found no significant association
between these two proteins. While EZH2 protein was
almost ubiquitously expressed in most tumors (489 out of
521, 94%, were positive) although with different intensi-
ties, SUZ12 was more restricted to lymphoid, lung, vas-
cular, germinal ,and skin tumors (250 out of 497, 50.3%,
had detectable expression). Therefore, those cases
positive for SUZ12 are usually EZH2-positive, but not
vice versa. We also observed a small fraction of tumors

of different types (16/497, 3.2%) in which we could
detect SUZ12 but not EZH2. Results are summarized in
Supplemental Table 2 and Supplemental Figure 2 at
http://ajp.amjpathol.org.

Essentially, SUZ12 expression was more frequent in
lymphomas (91%) (notably in MCL); germinal cell-de-
rived tumors (70%) (seminomas, teratocarcinomas, and
embryonal carcinomas); skin tumors (88%) (melanomas
and skin carcinomas); vascular tumors (83%); and pulmo-
nary neuroendocrine small-cell carcinomas (70%) (Supple-
mental Table 2, A and B, and Supplemental Figure 2 at
http://ajp.amjpathol.org). Therefore, SUZ12 was expressed
in tumors characterized by a high growth fraction.

SUZ12 Overexpression Is Associated with Gene
Locus Amplification

SUZ12 gene is located at the 17q11.2 locus, which is
frequently found to be translocated in endometrial stro-
mal tumors.20 Other cytogenetic alterations have been
described at this locus in various types of tumor, such as
additions, deletions and translocations,43–47 meaning
that these cytogenetic alterations could be related to
tumorigenesis.

To determine whether SUZ12 is amplified in primary
human tumors, we used FISH analysis in TMA paraffin
sections. 17q11.2 amplification or gain was analyzed in
the same TMAs as were used for IHQ analysis. Five
cases showed gene amplification as determined by the
standard criterion35,36 (SUZ12/centromeric 17 ratio �2.0)
and two cases showed increased gene copy number
(ratio � 1.5) distributed in several tumoral types such as
mesothelioma (amplification in 1/10), melanoma (amplifi-
cation in 1/10), skin basal cell carcinoma (gain in 1/10),
thyroid follicular carcinoma (amplification in 1/8), leiomy-
osarcoma (gain in 1/6), MCL (amplification in 1/10), and
ovary serous cystoadenocarcinoma (amplification in 1/6).
The results are summarized in Supplemental Table 2, A
and B, at http://ajp.amjpathol.org.

Although not exclusive to MCL, the findings of the
anomalous expression of SUZ12 in most MCL cases
(9/10) compared with its absence in non-tumoral mantle
zone cells, and the detection of SUZ12 locus amplifica-
tion associated with strong SUZ12 expression prompted
us to extend the study to a larger cohort of cases for
further validation.

Additionally, comparing SUZ12 expression in MCL
with that in other lymphoma types, it was detected in
those lymphomas with a high growth fraction and that are
derived from germinal center B cells (diffuse large B-cell
and Burkitt lymphomas), or was restricted to proliferating
cells in chronic lymphocytic leukemia, follicular lym-
phoma, and splenic marginal zone lymphoma cases (Fig-
ure 2A). However, in MCL, a tumor characterized by
lower or intermediate proliferation, we observed a high
level of expression of SUZ12 in most (9/10) cases, in
contrast with the absence of SUZ12 from the mantle zone
cells in reactive lymphoid tissue, which is the normal
counterpart of this tumor type (Figure 2B and Supple-
mental Figure 2 at http://ajp.amjpathol.org).

Figure 1. Expression of SUZ12 in non-tumoral human tissues: SUZ12 pro-
tein is preferentially detected in proliferating cells in various non-tumoral
human tissues such as proliferating cells in tonsil germinal center (M, mantle
zone; GC, germinal center) (A); proliferating cells in tonsil epithelium (B);
germinal cells of the testis (C); and the hair follicle (D). Objective, �100,
immersion).
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SUZ12 in Mantle Cell Lymphomas

Therefore, we checked SUZ12 expression and gene lo-
cus alterations in an additional group of 76 MCL cases
(Supplemental Table 2C at http://ajp.amjpathol.org). In
total, 46 out of 81 (56%) MCL cases (10 in the general
multitumor TMA and 71 new evaluable cases in MCL-
specific TMA) showed SUZ12 protein expression.

Sixty-seven new MCL samples gave valuable results in
the FISH study. In total, three MCL samples (the previous
one and two cases in the new TMA) showed gene am-
plification (Figure 2C) and four cases had a high gene
copy number (Supplemental Table 2, B and C at http://
ajp.amjpathol.org). The three cases with 17q11.2 locus
amplification showed SUZ12 expression in more than
80% of tumoral cells and, remarkably, two of these cases
were diagnosed as aggressive (blastoid) MCL cases.
These data indicate that around 9% of MCL cases had
cytogenetic alterations at the SUZ12 locus. Additionally,
polysomy of chromosome 17 was found in 12 MCL
samples.

SUZ12 Silencing by shRNA Compromises
Cellular Viability

To further assess the significance of SUZ12 overexpres-
sion in MCL we performed an RNAi analysis using a
lentiviral (HIV)-based RNA interference vector in two

MCL-derived cell lines: Jeko-1 and Z138. The vector
contains EGFP as a selection marker.

Two sequences (shSUZ12.783 and shSUZ12.2076)
correctly induced SUZ12 silencing with a residual ex-
pression of less than 20% (Figure 3A). Specificity of the
shRNAs was also assessed by measuring trimethylation
levels at lysine 27 of histone H3 (H3K27me3), a hallmark
of PRC2 activity. Levels of H3K27me3 were significantly
lower 72 hours after infection with the lentivirus carrying
shRNAs against SUZ12 compared with controls (Figure
3B). To determine whether SUZ12 inhibition had any
effect on cell survival or cell growth we designed a strat-
egy based on competitive proliferation similar to that
previously described (see Materials and Methods).48

Thus, we infected Jeko-1 and Z138 cells and a slight but
constant decrease in GFP� cell number was observed,
specifically in those cells transduced with lentivirus car-
rying any of the shRNAs against SUZ12 (Figure 3C).

Additionally, to assess the effect of SUZ12 silencing on
cell growth directly, we sorted the GFP� fraction in each
case and measured cell number by trypan blue exclusion
counting. Results showed that cells expressing shRNAs
against SUZ12 grew less than cells either expressing a
scramble control or infected with the empty vector (Fig-
ure 3D). Cell cycle analysis by FACS in these GFP�-
sorted cells only showed subtle differences: either a
slight decrease in G2/M or an increase in SubG1 phase in
cells deficient in SUZ12 (data not shown). Levels of ap-

Figure 2. SUZ12 in B-cell lymphomas. A: SUZ12 and Ki-67 expression in different types of B-cell lymphoma, showing the correlation between the strength of
SUZ12 expression and proliferation index. B: However, in samples of MCL, a tumor with a relatively low proliferation index, some cases showed increased SUZ12
expression, in contrast to the absence of its expression from normal mantle zone cells (Figure 1A), which are the benign counterpart of MCL. C: SUZ12 gene
amplification detected by FISH in an SUZ12-positive MCL case. Several copies of SUZ12 (in red) are detected, compared with only two centromeric copies for
chromosome 17 (green). (Objective, �100, immersion).

SUZ12 Deregulation in MCL 935
AJP August 2010, Vol. 177, No. 2



optosis were augmented on silencing of SUZ12 as dem-
onstrated by specific annexin V staining and cleavage of
PARP (Figure 3, E and F). One of the hairpins was more
efficient in killing the cells, and this was associated with
the levels of H3K27me3 demethylation. In fact, we were
not able to detect PARP cleavage in Jeko-1 with one of
the hairpins, probably because of the sensitivity of the
antibody, since we could still detect a mild increment in
apoptosis with annexin V staining.

Identification and Functional Classification of
SUZ12 Genomic Target Genes in MCL

To look for potential targets that could explain the role of
SUZ12 in MCL we performed ChIP and subsequent hy-
bridization on Agilent’s human promoter microarray
(ChIP-on-chip) with the Z138 MCL-derived cell line. We
found 17,605 (3.6%) bound probes (peak P � 0.01)
corresponding to 1806 genes. Those probes with a nor-
malized log2 ratio �1 were considered to be potential
SUZ12 targets (1424 genes including known SUZ12 tar-
get genes such as CDKN2A, GADD45G, BMP2, and
WNT49–51).

To determine the accuracy of SUZ12 target gene dis-
covery, single-locus semiquantitative PCR was per-

formed on the immunoprecipitated material with SUZ12
and H3K27me3 antibodies on 18 candidate SUZ12 target
genes, including genes known to be relevant in MCL or
lymphoma pathogenesis (ATM, BCOR, VAV), in the con-
trol of significant processes such as apoptosis and DNA
repair (BIRC2, GADD45), and transcriptional regulation
(JMJD2). GADD45G (a previously described target)49

was used as the positive control (Figure 4). Eleven of 18
were validated for SUZ12 and H3K27me3 antibodies,
including ATM, CBX2, VAV3, JMJD2, and BIRC2.

To determine which relevant pathways could be al-
tered by SUZ12 overexpression, we examined the func-
tions of SUZ12 target genes using the Ingenuity Pathway
Analysis program. Of 1424 genes identified by ChIP-on-
chip, 658 have annotated functions in the Ingenuity Path-
way Analysis database and were functionally classified.
The results showed significant enrichment of genes con-
trolling gene expression, cell cycle and proliferation, DNA
replication and repair, and development (Figure 5), con-
sistent with the findings of other studies.49,50

The group of SUZ12 target genes controlling gene
expression includes transcription factors and regulators,
such as E2F5, POU domain proteins, and SUV39H1, and
enzymes regulating transcription and translation, such as
DNA and RNA polymerases, jumonji domain (JMJD) pro-

Figure 3. Effects of SUZ12 depletion in MCL cell lines. A: Left, anti-SUZ12 immunoblot of Jeko-1 and Z138 cell lines transduced either with the empty vector,
a scrambled sequence or with two different hairpins against SUZ12. Band signals were normalized with tubulin as a loading control (right). B: Depletion of SUZ12
affects the function of the PRC2 complex as assessed by immunoblot using an antibody against histone H3 trimethylation at lysine 27 (left). Total histone H3 was
used to normalize band signals (right). Cropped blots are shown. C–F: SUZ12 knockdown compromises cell viability: C: Expression of EGFP that marks
transduced cells was tracked over time to observe differences in viability between cells transduced either with the empty vector or with a scramble control and
cells transduced with two different hairpins against SUZ12. D: GFP�-sorted Jeko1 and Z138 proliferation was assessed by counting viable cells using trypan blue
exclusion along the time. Mean and SD are shown. E: Immunoblot showing specific cleavage of poly (ADP-ribose) polymerase (cPARP) in SUZ12-deficient cells
after sorting. F: Flow cytometric analysis of apoptosis using double staining of Annexin V and propidium iodide after cell sorting.
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teins, and several eukaryotic translation initiation factors.
Development regulators have also been found among
SUZ12 targets in MCL, some of which have been previously
published as SUZ12 targets in embryonic cells, such as
SOX and FOX family genes, POU domain transcription fac-
tors, and BMP2. Another relevant finding is the detection of
SUZ12 in the promoter region of several miRs genes, two of
which have been identified as SUZ12 targets (hsa-mir-124a
and hsa-mir-18349,52) (identified genes listed in Supple-
mental Table 3 at http://ajp.amjpathol.org).

However, the most noteworthy finding was that there
were significant genes among the top SUZ12 targets that
are known to be involved in MCL pathogenesis, some of
which were not previously known to be SUZ12 targets.
These included those regulating cell cycle (CDKN2A and
other INK4 family genes, cyclins, CDKs, CHEK1, MAD2L1,
and BUB3); DNA damage and repair genes (ATM,
GADD45, several DNA polymerases and topoisomer-
ases, MLH1, XRCC family genes, and ERCC family
genes); apoptosis regulators (BCL2 and BCL2 regulator
proteins, BID, several BIRC family members, and others);
and we also found members of nuclear factor �B pathway
(BCL10, NFKB2, and IKBKG) to be regulated by SUZ12.

SUZ12 Target Gene Expression in Silenced
SUZ12 MCL-Derived Cell Lines and MCL
Tumoral Samples

To validate functionally and elucidate the relevance of
these ChIP-on-chip findings, we looked at the changes in
expression of the targets associated with SUZ12 expres-
sion in both Z138 cell line after SUZ12 silencing and in
tumoral samples from MCL cases using whole genome
expression microarrays.

SUZ12 Targets in SUZ12-Silenced Z138 Cell
Line

We first analyzed the expression of SUZ12 targets in
SUZ12-silenced cells, comparing the expression profile
of SUZ12-depleted cells with those infected with the con-
trol vector. After SUZ12 silencing in the Z138 cell line,
some SUZ12 targets were actually unrepressed. 140
transcripts showed an up-regulation or down-regulation
of at least 0.6 (log2 scale) and were considered to be
significantly deregulated after SUZ12 silencing. These
included, among others, CDKN2A, GADD45G, genes in-
volved in development, such as BMP2, several GATA
binding proteins or differentiation factors like MLLT3 and
CBX2 (Figure 6A).

SUZ12 Targets in MCL Samples

We also examined, in MCL tumoral samples, the relation
between SUZ12 expression and that of genes identified
by ChIP-on-chip. This analysis revealed that 188 of 642
known genes suitable for the analysis (30%) were signif-
icantly correlated with SUZ12 expression (Pearson R �
�0.4, false discovery rate �0.15). Many of the SUZ12
targets were actually down-regulated in SUZ12-positive
MCL samples (126 inversely correlated with SUZ12
expression versus 62 with a direct correlation) (Figure
6, B and C).

Pathways Co-Regulated with SUZ12 in MCL

Finally, we wanted to determine which characteristics of
tumors were associated with changes in SUZ12 levels,
identifying functional pathways co-regulated with the ex-

Figure 4. Validation of SUZ12 target genes by semiquantitative ChIP. Single-
locus semiquantitative PCR on ChIP samples was performed on several
SUZ12 candidate target genes, with SUZ12 and H3K27me3 antibodies. Mouse
IgG was used as a negative control.

Figure 5. Functional classification of SUZ12-targeted genes. Functions of
SUZ12 target genes were analyzed using the Ingenuity Pathway Analysis
program. Of 1424 genes identified by ChIP-on-chip, 658 have annotated
functions in the Ingenuity Pathway Analysis database. The number of genes
identified as belonging to each category is included. The probability is that
associated with a right-tailed Fisher’s exact test.
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pression of SUZ12. To this end we performed a gene set
enrichment analysis of SUZ12 expression with all of the
genes in MCL tumoral samples, not restricted to SUZ12
targets identified by ChIP, using GSEA software (http://
www.broad.mit.edu/gsea/). This analysis revealed a direct
correlation with pathways associated with proliferation,

such as cell cycle and caspase-apoptosis pathways and an
inverse correlation with the proteasome pathway (Table 1).
We also found an inverse correlation with the MAPK path-
way, but some specific genes included in this pathway such
as JUN, FOS, MAPK4, MAPK7, and BRAF showed stronger
expression in SUZ12-expressing tumors.

Figure 6. SUZ12 target gene expression was affected in SUZ12-
silenced cell lines and MCL cases. A: Gene expression profiling
was performed in duplicate 3 and 5 days after SUZ12 depletion in
Z138, with two different shRNAs (2076 and 783) versus empty
vector. The heat map represents expression levels for each sam-
ple. A total of 140 significant genes [log2 (Cy5/Cy3) cut-off � �0.6
in at least three samples] were ranked by Euclidean squared
distance. B: Relative expression levels of 126 inversely correlated
SUZ12 genes in MCL tumoral samples (false discovery rate �
0.15). C: Relative expression levels of 62 directly correlated
SUZ12 genes in MCL tumoral samples (false discovery rate �
0.15). Pearson correlation coefficients between identified
SUZ12 target genes and SUZ12 expression were calculated
using the T-Rex program available from the GEPAS site (v. 3.1).
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Discussion

SUZ12 is a core component of the Polycomb PRC2-
HMTase complex that has been shown to be involved in
stem cell maintenance and development. Although some
studies have demonstrated overexpression of SUZ12 in
colon and breast tumors,19,53 its real relevance in human
cancer is yet to be established.

In this study, we first explored EZH2 and SUZ12 protein
expression in non-tumoral samples. While EZH2 was widely
detected in almost every tissue analyzed, SUZ12 was re-
stricted mainly to those tissue compartments with prolifer-
ating cells, such as germinal centers in reactive lymphoid
tissue, thymic cortex, epithelial basal cells and germinal
cells in the testis. All these tissues are characterized by their
regenerative capacity, suggesting a role for SUZ12 in tissue
homeostasis and in cell cycle and proliferation.

Analysis of tumoral human samples revealed that
EZH2 and SUZ12 are not always expressed simulta-
neously. Actually, those cases positive for SUZ12 are
usually EZH2-positive, but not vice versa. We also ob-
served a small fraction of cases in which we could detect
SUZ12 but not EZH2. In these cases we cannot rule out
the possibility that SUZ12 might have additional EZH2-
independent functions.

There was a high level of expression of SUZ12 in a
subset of tumoral samples including germinal cell-de-
rived tumors, melanomas, skin basal cell carcinomas,
lung neuroendocrine small-cell carcinoma, pituitary and

parathyroid adenomas, and lymphomas, most remark-
ably in MCL, where the high expression of SUZ12 con-
trasts with its absence in the non-tumoral mantle zone
cells in reactive lymph node. Therefore, our results ex-
tend previous observations of the strong expression of
SUZ12 in human tumors.19,53

SUZ12 locus (17q11.2) has been found amplified, as-
sociated with protein overexpression in a small subset of
tumors. This finding is especially relevant in MCL, where
it seems to be more frequent in blastoid MCL, the ag-
gressive variant of this type of lymphoma, since two of
four blastoid-MCL cases showed this amplification.
Therefore, our finding of SUZ12 amplification in MCL or
melanoma among others types of tumors, along with the
presence of SUZ12 translocations in endometrial sarco-
mas of the cervix,20,54 supports the hypothesis that
SUZ12 has an oncogenic function and contributes to
tumor formation and maintenance. The findings de-
scribed here for SUZ12, and the previous results for
EZH2,7,17,18 suggest that alteration of the PRC2 complex
is a frequent event in human carcinogenesis.

Given the anomalous expression of SUZ12 in MCL
tumoral cells compared with the lack of expression in
their normal counterparts and the amplification associ-
ated with high levels of expression, we decided to per-
form functional analysis in MCL cell lines as a model to
depict SUZ12 role in tumorigenesis. To this end, we
silenced SUZ12 expression by RNAi in MCL-derived cell

Table 1. Pathways Co-Regulated with SUZ12 Expression in MCL

Name Size
Enrichment

score
Normalized

enrichment score P
False discovery

rate

Gene sets positively correlated
with SUZ12 expression

Mitochondria pathway 21 0.5952 2.4673 0.0000 0.0053
Cell cycle pathway 21 0.5622 2.3809 0.0000 0.0075
ARAP pathway 19 0.5528 2.1412 0.0020 0.0283
Caspase pathway 21 0.5233 2.1399 0.0040 0.0213
CA2� CAM pathway 12 0.6362 1.9820 0.0043 0.0513
D4GDI pathway 11 0.6060 1.8114 0.0169 0.1118

Gene sets negatively correlated
with SUZ12 expression

MAPK pathway 83 �0.4378 �3.4409 0.0000 0.0000
Proteasome pathway 19 �0.7375 �2.8678 0.0000 0.0000
GH pathway 26 �0.4999 �2.2277 0.0000 0.0395
IL1R pathway 29 �0.4244 �2.0417 0.0080 0.0779
CHREBP pathway 15 �0.5951 �2.0912 0.0038 0.0832
CK1 pathway 12 �0.6534 �2.0431 0.0056 0.0916
ARF pathway 16 �0.5428 �1.9669 0.0056 0.1074
RARRXR pathway 14 �0.5157 �1.7385 0.0177 0.1367
RAB pathway 10 �0.5956 �1.7550 0.0220 0.1392
ERK pathway 30 �0.3620 �1.7652 0.0203 0.1402
AKAP-centrosome pathway 10 �0.6027 �1.7413 0.0198 0.1413
TPO pathway 22 �0.4373 �1.8955 0.0096 0.1444
PPARA pathway 51 �0.2753 �1.7689 0.0249 0.1465
Cytokine pathway 15 �0.5077 �1.7904 0.0183 0.1473
PDGF pathway 26 �0.3973 �1.7772 0.0149 0.1479
VEGF pathway 26 �0.3992 �1.7929 0.0135 0.1557
TOLL pathway 32 �0.3657 �1.8513 0.0134 0.1642
GATA3 pathway 13 �0.5419 �1.7935 0.0080 0.1678
TOB1 pathway 16 �0.4963 �1.7958 0.0189 0.1797
P38MAPK pathway 37 �0.3407 �1.8065 0.0132 0.1876

GSEA reporting on statistically significant functionally relevant pathways (P � 0.05, false discovery rate � 0.25) and on positive and negative
Pearson correlation coefficients with a high level of SUZ12 expression. P, nominal probability.
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lines, and evaluated its effect on levels of H3K27me3, cell
proliferation, apoptosis, and cell survival. A clear de-
crease in H3K27me3 was detected after SUZ12 silencing,
demonstrating the interference with PRC2 activity due to the
lower levels of SUZ12 in accordance with previous re-
ports.21 SUZ12 knockdown resulted in an increased apo-
ptosis, as demonstrated by annexin V and PARP cleavage
analysis. When we studied the SUZ12 silencing effect over
time, we observed that loss of SUZ12 compromised cell
viability, as demonstrated by cell counting and competition
assays. These results suggest that SUZ12 expression con-
tributes to cell survival in MCL cell lines, avoiding apoptosis
and increasing cell proliferation.

SUZ12 is known to exert its function through the direct
repression of many target genes. Other studies have
shown that SUZ12 targets vary among developmental
states, tissues, and cell types.55 Therefore, we decided
to identify SUZ12 targets that could mediate the effect on
MCL-derived cell line viability and explain their role in
MCL pathogenesis. We identified a group of SUZ12 tar-
gets with functions in apoptosis (BIRC family genes,
BCL2, BID, and cFLIP); cell proliferation (several INK4
family genes, cyclins, and CDKs) and checkpoint regu-
lators (CHK1, BUB3, MADL2, GADD45, and CDK6); DNA
damage and repair genes (ATM, GMNN, and MLHL1);
gene expression; and cell development. Several of these
targets are genes of relevance in MCL (Figure 7). For
instance, CDKN2A, ATM, BCL10, and RBL1, identified
here as being SUZ12 targets, are frequently deleted or

lost in MCL.23 SUZ12 could collaborate to inactivate
these genes by epigenetic means. Other molecules,
members of pathways of relevance in MCL, are also
targets of SUZ12. For example, nuclear factor �B path-
way components (BLIMP1, IKBKG, and NFKB2) and pro-
teasomal pathway members have been found to be tar-
gets of SUZ12. Some of these targets have been
previously found in other cell lines (such as BMP2,
CDKN2A, SOX3, and GADD45G) but others have not
been described before and could be MCL-specific. This
is the case for several of the top identified targets such as
ATM, BIRC family genes, BTK, BUB3, MAD2L1, and
RBL1, among others, some of which have also been
demonstrated with classic ChIP (Figure 4), suggesting
that they are bona fide SUZ12 targets, and possibly
specific to MCL cells. We also found that SUZ12 targets
several microRNAs, some of which, for example, hsa-
miR-148a56 and hsa-miR-223,57 were already known to
be involved in cancer and differentiation.

Many of these target genes were inversely correlated
with SUZ12 expression levels in tumoral samples from
MCL patients (Figure 6B), such as BIRC2, TMBIM4,
XRCC6, JMJD2D, MAD2L1 and BUB3, among others.
Additionally, validation in SUZ12-depleted cell lines re-
vealed that several target genes were re-expressed after
SUZ12 silencing (Figure 6A). The fact that some of the
SUZ12 targets remained unaltered after SUZ12 depletion
has several possible explanations. For instance, many
SUZ12 targets may require not only the depletion of

Figure 7. SUZ12 regulates the expression or function of multiple important pathways controlling MCL pathogenesis. Genes identified as SUZ12 targets by
ChIP-on-chip in red. Genes marked with an asterisk suffer translocation or overexpression in MCL cases. Genes underlined are frequently deleted in MCL.
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SUZ12 but also additional events like DNA demethylation
or the presence of an activator to be expressed again.1,50

All these findings indicate that SUZ12 could collaborate
in deregulating the expression of many important pathways
controlling MCL pathogenesis (Figure 7). We propose that
the abnormal expression of SUZ12 may account for some of
the still unexplained features of MCL, including abnormal
DNA repair and increased resistance to apoptosis.

Interestingly, recent publications have described the ca-
pacity of several drugs to block the HMTase activity of
PRC2 complexes.58,59 In fact, LBH589 has proved to be
effective in acute myelogenous leukemia cells. Patients suf-
fering from other tumors, like MCL and pulmonary neuroen-
docrine small-cell carcinoma, in which PRC2 alterations are
detected, might also benefit from this therapy.
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Mantle cell lymphoma (MCL) pathogenesis is still partially
unexplained. We investigate the importance of microRNA
(miRNA) expression as an additional feature that influences
MCL pathway deregulation and may be useful for predicting
patient outcome. Twenty-three MCL samples, eight cell lines
and appropriate controls were screened for their miRNAs and
gene expression profiles and DNA copy-number changes. MCL
patients exhibit a characteristic signature that includes 117
miRNA (false discovery rate o0.05). Combined analysis of
miRNAs and the gene expression profile, paired with bioinfor-
matics target prediction (miRBase and TargetScan), revealed a
series of genes and pathways potentially targeted by a small
number of miRNAs, including essential pathways for lymphoma
survival such as CD40, mitogen-activated protein kinase and
NF-jB. Functional validation in MCL cell lines demonstrated
NF-jB subunit nuclear translocation to be regulated by the
expression of miR-26a. The expression of 12 selected miRNAs
was studied by quantitative PCR in an additional series of 54
MCL cases. Univariate analysis identified a single miRNA, miR-
20b, whose lack of expression distinguished cases with a
survival probability of 56% at 60 months. In summary, using a
novel bioinformatics approach, this study identified miRNA
changes that contribute to MCL pathogenesis and markers of
potential utility in MCL diagnosis and clinical prognostication.
Leukemia (2010) 24, 1335–1342; doi:10.1038/leu.2010.91;
published online 20 May 2010
Keywords: MCL; miRNA; integrative genomic analysis

Introduction

Mantle cell lymphoma (MCL), a tumor accounting for 6–7%
of non-Hodgkin’s lymphomas, is distinguished by its resistance
to chemotherapy and poor outcome. It originates from folli-
cular mantle zone cells and is characterized by deregulation
of multiple survival signaling pathways.1–3 It is recognized by
the t(11;14)(q13;q32) translocation, which results in cyclin D1
(CCND1) overexpression.4–6 Other alterations have been
identified,2 nevertheless, MCL pathogenesis has yet to be fully
explained, as the genetic changes so far identified cannot account
for the increased survival signaling that characterizes this tumor.3

In this context, a group of post-transcriptional regulators, the
microRNAs (miRNAs), has been proposed as candidates that

could complete our understanding of tumor pathogenesis. They
are small, noncoding RNAs that regulate the expression of
multiple mRNAs7,8 and have a key role in the control of the
various biological processes involved in cancer pathogenesis.9–11

Specific miRNA signatures have been identified for some tumor
types,12–15 and they are thought to function as metastasis
regulators.16,17 Altered miRNA expression is also known to have
a role in hematopoietic malignancies such as chronic lympho-
cytic leukemia (miR-15a, miR-16)18,19 and diffuse large B-cell
lymphoma.20 Moreover, a recent study has shown that miRNA
losses and gains could have a significant role in MCL by
regulating CCND1 mRNA expression.21

In this study, we have explored whether miRNA losses and
gains can help explain MCL pathogenesis. We profiled miRNA
and mRNA expression in a series of MCL patients and cell lines.
miRNAs making up the MCL signature were then related to the
MCL mRNA signature through the computational prediction
of miRNA targets. Correlation between miRNA expression and
patient outcome was also investigated.

Materials and methods

Patients, cell lines and control tissues
The series included 23 frozen MCL lymph nodes (which contain
at least 80% of tumoral cells) and 11 reactive lymph nodes
(seven) or tonsils (four) for control purposes. Follow-up was
obtained for 22 cases. An independent set of 54 formalin-fixed
paraffin-embedded MCL diagnostic samples was analyzed for
confirmation of survival studies.22 All the samples were
recovered at the time of diagnosis, and MCL diagnosis was
performed according to the World Health Organization
criteria.23 The study was carried out under the supervision of
the corresponding local ethics committees.

The study also included eight MCL cell lines (REC-1,
Jeko, UPN1, UPN2, Granta, Z138, MINO and Hbl2). Sorted
mantle-zone B cells (CD19þ /IgDþ /CD27")2,3,24 from three
routine tonsillectomy samples were used as controls (procedure
described in Supplementary text).

Microarray procedures
For miRNA hybridization, 100 ng of total RNA was hybridized
on an Agilent 8# 15K human miRNA one-color microarray
for detecting 470 human and 64 viral miRNAs, following
the manufacturer’s instructions (Agilent Technologies Inc,
Santa Clara, CA, USA).25
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Gene expression was carried out with Agilent Technology
microarrays.26,27 RNA extraction, details of microarray and
hybridization procedures, and gene expression profiling are
described in the Supplementary text.

miRNA expression profiling. Between-array median
normalization was carried out to render miRNA expression
data sets comparable. Significantly deregulated miRNAs were
computed using Significant Analysis of Microarray analysis
(an Excel macro, in this case, that provides q-values
directly).28,29 The q-value corresponds to the false discovery
rate (FDR).30 miRNAs with FDR o0.05 were taken as being
differentially expressed in controls and tumors.

Significant miRNAs (FDR o0.05 and more than twofold
up- or downregulation) were represented by a heatmap using
SOTArray (http://www.gepas.es).

Associations between miRNAs, gene expression signa-
tures and biological pathways. For each differentially
expressed miRNA, a contingency table relating the miRNA
and its predicted gene targets (whose probe was included in
GE platform, Agilent Technologies Inc) was produced using
miRBase Targets Release v. 5.0 (http://www.mirbase.org/;
Faculty of Life Sciences, University of Manchester) and
TargetScan v. 5.1 (http://www.targetscan.org/; Whitehead
Institute for Biomedical Research) (including conserved and
nonconserved target sites predictions), taking into account
whether these targets were included in a consistent gene
expression signature (downregulated targets for upregulated
miRNAs and vice versa).

Fisher’s exact test was used in the miRBase and TargetScan
analyses. Those miRNAs whose Fisher’s exact test result
indicated an FDR o0.05 were selected for further analysis on
the basis of their nonrandom association with the gene
expression signature of interest.31

To identify statistically significant associations between
differentially expressed miRNAs (both Significant Analysis of
Microarray and Fisher’s exact test FDR o0.05) and enriched
pathways (FDR o0.26), a ranked list was built that included
only the targets predicted for significant miRNAs using the gene
expression profiling statistic value obtained from the microarray
data. As miRNAs function as repressors, a gain in miRNAs is
usually associated with the downregulation of the target RNA or
protein, whereas miRNA loss is associated with upregulation of
the RNA or protein target.32 Thus, downregulated miRNAs were
tested for their association with upregulated genes, whereas
upregulated miRNAs were tested for their association with
downregulated genes. The ranked target list was subjected to
gene set enrichment analysis (GSEA).33 Annotations were taken
from a curated version of the Biocarta, KEGG and CCG pathway
databases34 with minor modifications (Supplementary Table S1).
The analysis was carried out independently using miRBase and
TargetScan. Only miRNA pathways with significant associations
identified by both miRBase and TargetScan predictions were
finally considered.

Interaction networks were depicted using Cytoscape bioinfor-
matics software (http://www.cytoscape.org). Figure 1 provides a
flowchart of the entire data analytical approach.

Survival analysis
In the first set of 22 patients, Gene Spring software v. 9.0 (Agilent
Technologies Inc) was used to normalize miRNA intra-array
data at the 75th percentile, as recommended by the manufac-
turer.25 Next, a Random Forests algorithm (available from the

SIGNS website http://signs.bioinfo.cnio.es/)26,35 was used to
select a set of 12 miRNAs related to patient survival, which were
analyzed in a new set of 54 paraffin-embedded cases for the
confirmation step using reverse transcriptase PCR.36–38

Univariate Cox regression, available in SPSS v.15.0, (SPSS Inc,
Chicago, IL, USA) was used to analyze the confirmation data set.
Samples were evaluated for the expression of the 12 miRNAs
and other standard clinical features (age, performance status,
gender, stage at diagnosis and proliferation activity of the
tumor).39 The comparison of the variables was considered
worthwhile in those groups with at least five patients in each
category.

Overall survival was plotted by GrapPad Prism software
(GraphPad Software, Inc, v. 5, La Jolla, CA, USA) for the
Kaplan–Meier method, stratifying the samples into low- and
high-risk groups according to the median value of the miR-20b
expression. Curves were compared by a log-rank test.

Reverse transcriptase PCR
The expression of 19 selected miRNAs (Supplementary
Table S2) was validated in frozen MCL tissues by quantitative
PCR (qPCR) (ABI PRISM HT 7900 Real-Time Sequence detection
system; Applied Biosystems, Foster City, CA, USA), according to
the manufacturer’s protocol (see Supplementary text for details).
qPCR of 12 selected miRNAs (Supplementary Table S2) was
tested in 54 formalin-fixed paraffin-embedded samples and
"DC t values were used for survival analyses.

miRNA electroporation and immunofluorescence
Electroporation. miR-26a and controls (pre-miR-26a and
pre-miR-negative control 1, Applied Biosystems) were electro-
porated at 60 nM concentration using the Neon Transfection
System (Invitrogen, Carlsbad, CA, USA) in the MINO and
REC-1 cell lines, using the following settings: 1 pulse, 40ms,
1000V. Cells were recovered after 24, 48, 72 and 96 h of
electroporation.

Immunofluorescence. Cells were fixed and permeabilized
with 100% acetone. p65 (RelA) mouse antibody 1:100 (Santa
Cruz Biotechnology, Santa Cruz, CA, USA; SC-8008) was used
for primary staining. Secondary antibody staining was carried
out with anti-mouse 1:200 (Invitrogen, Alexa Fluor 488). Nuclei
were stained with 4,6-diamidino-2-phenylindole (DAPI). Images
were obtained by Leica TCS-SP2 (AOBS) confocal microscopy
(Leica Microsystems, Germany) with LCS v. 2.61 software (Leica
Microsystems).

Results

miRNA profile in MCL cases and MCL-derived cell lines
An miRNA signature for MCL, including all the miRNAs
differentially expressed in the 23 MCL cases compared with
the 11 reactive lymphoid tissues (FDR o0.05), was identified
(Supplementary Table S3). It includes 117 human miRNAs:
85 downregulated and 32 upregulated; 56 out of 85 were
downregulated (4twofold) and 16 out of 32 were upregulated
(4twofold) (Figure 2). The most significant miRNAs that were
lost in all cases were miR-31, miR-148a and miR-27b (FDR
o0.001), whereas the list of upregulated miRNAs was headed
by miR-617, miR-370 and miR-654 (FDR o0.001).

Nineteen selected miRNAs were analyzed by qPCR to
validate the microarray data further (see Supplementary text).
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Eight MCL cell lines were also investigated by comparing
their miRNA expression signature with that of CD19þ /IgDþ /
CD27" lymph node-sorted B cells. The miRNA signature (FDR
o0.05) identified in MCL cell lines included one upregulated
miRNA (4twofold), miR-182, which was also significantly
upregulated in MCL cases, and 14 downregulated miRNAs
(4twofold) (Supplementary Table S4), six of which were also
lost in MCL cases, among them miR-26a and miR-150 as already
described (Figure 3).
With less significant FDRs, several components of the let-7

family (f, c, g, e), which are known to regulate multiple stem
cell-like properties by silencing multiples targets, including
RAS and HMGA2,40 were downregulated in MCL cases and
cell lines. Interestingly, miR-29a and miR-29c, which regulate
TCL1A41 (upregulated in MCL), were lost in the MCL cell lines.
MiR-31, which showed one of the greatest losses of all the
miRNAs in this series, is predicted to be a regulator ofMAP3K14
(NIK) expression, a gene essential for the activation of the
alternative NF-kB pathway.42

A cluster of miRNAs made up of miR-106b, miR-93 and
miR-25, and located in 7q22, were significantly upregulated
in our MCL series. This cluster functionally overlaps with the
mir-17-92 polycistron,43,44 known as oncomir-1. Its amplification

in lymphoma and other tumor types has been linked to accelerated
c-Myc-induced tumor development by suppression of the expres-
sion of the tumor suppressor PTEN and the proapoptotic protein
Bim.45 The gain of function of the miR-106b cluster promotes
cell-cycle progression by silencing the cyclin-dependent kinase
inhibitor p21/CDKN1A, a direct target of miR-106b. Interestingly,
miR-106b overrides a doxorubicin-induced DNA damage check-
point.46 Consistent with this finding, many of the MCL cell lines
showed stronger expression of the mir-17-92 polycistron.

The series of MCL patients also showed increased expression
of miR-372 and miR-373, which are both involved in promoting
proliferation and tumorigenesis in primary human cells that
harbor active wild-type p53,47 as found in most MCLs.2 Finally,
miR-210 has been shown to be induced by hypoxia in various
tumor types.48

Association between miRNAs and mRNA signature
genes and pathways
To identify statistically significant associations between differen-
tially expressed miRNAs and gene expression signatures, we
investigated whether predicted miRNA (FDR o0.05)–mRNA
(FDR o0.01) targeting pairs were consistent with the pair

Figure 1 Bioinformatics approach to association analyses between miRNAs, mRNA signatures and molecular pathways. To identify statistically
significant associations between differentially expressed miRNAs (DEm, FDRo0.05) and gene expression signatures (DEg, FDRo0.05), we tested
whether predicted miRNA–mRNA targeting pairs were randomly associated or not. Thus, for each differentially expressed miRNA, we produced a
contingency table relating every miRNA and its predicted gene targets, taking into account whether these targets were included in a consistent
gene expression signature (downregulated targets for upregulated miRNAs and vice versa). Those miRNAs found to be significant on the basis of
the Fisher’s exact test (DEm FDR o0.05, but also Fisher’s test, FDR o0.05) were selected on the basis of their nonrandom association with the
gene expression signature of interest (DEg, FDR o0.01). Gene target predictions for human miRNAs were obtained using miRBase Targets Release
v5.0 and TargetScan v5.1. To find statistically significant associations between differentially expressed miRNAs and enriched pathways, we
compiled a ranked list including only the targets predicted for significant miRNAs (DEm FDRo0.05, Fisher’s exact test FDRo0.05) using the gene
expression profiling statistic value (limma moderated t-statistic) obtained from differential expression analysis. Next, a gene set enrichment
method (GSE, for example, GSEA) was applied using the ranked target list. Thus, pathways enriched in targets of the selected miRNAs are revealed
(GSE, FDR o0.26). Using this approach, the experimental microarray gene expression data are inferred to predict the effects of miRNA expression
on the global behavior of the biological pathways.
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component inverse regulation, and whether the consistent pairs
were nonrandomly associated. Gene expression results proceed-
ing from the hybridization of 23 MCL samples and 11 controls
(lymph nodes and tonsils) are reported in Supplementary text
and Supplementary Table S5.

Target genes predicted with miRBase and TargetScan software
were listed and Fisher’s exact test was applied to signi-
ficant miRNAs. miRBase and TargetScan jointly identified 21
downregulated and 4 upregulated miRNAs with FDR o0.05
on the basis of a significant results of Fisher’s exact tests
(Results in Supplementary Tables S6–S8 and Supplementary
text).

At this point, connections between the miRNA signatures and
the MCL-deregulated pathways were also examined using
GSEA. Thus, miRNAs found to be significant by Fisher’s exact
test were matched with the target genes predicted by miRBase
and TargetScan and grouped by significantly enriched GSEA
pathways (FDR o0.26). A ranked list containing 3712
nonredundant upregulated genes predicted by miRanda (http://
www.mirbase.org; Faculty of Life Sciences, University of
Manchester) as targets for the downregulated miRNAs was
used. The same approach was adopted for TargetScan predic-
tions using a preranked list of 3861 nonredundant upregulated
genes. While using GSEA with upregulated miRNAs, we
followed the inverse approach, building a ranked list of
predicted downregulated targets (537 miRanda targets and
1951 TargetScan targets).

Results are included in Table 1, Supplementary Table S9 and
illustrated in Figure 4. The most remarkable upregulated
pathways associated with losses of miRNAs targeting the genes
included in the corresponding pathway were those of the CD40,
NF-kB and mitogen-activated protein kinase (MAPK) pathways
(and Supplementary Figure S1). We also performed GSEA using
the whole gene expression list instead of target-oriented lists.
We identified up to 23 significant gene sets related to MCLs,
including three out of six gene sets whose expression seems to
be closer to miRNA activity.

Interestingly, differentially expressed miRNAs that were signi-
ficantly associated with gene expression profiles, as revealed by
Fisher’s exact test, were also capable of targeting more than one
gene included in these pathways, which suggests a direct
regulatory role in the aforementioned pathways.

No significant relations were found between upregulated
miRNAs and downregulated pathways.

miRNA functional validation
MiR-26a was downregulated in MCL cases and cell lines. It was
also significant in Fisher’s exact test and in pathway analysis,
thus it was chosen for functional validation. One of its predicted
targets of greatest interest was MAP3K2. This was found to be
upregulated in our samples and is already known as an NF-kB
pathway-activating kinase.49 NF-kB activation is a common and
important finding in MCL cells, but the mechanism of activation
is still essentially unknown.

The MINO and REC-1 MCL cell lines proved to be the best
model for validation experiments because they have very low
levels of miR-26a expression coupled with NF-kB activation, as
demonstrated by RelA (p65) nuclear translocation: a finding
commonly observed in MCL cases. MiR-26a and negative control

Figure 2 miRNA expression heatmap of 23 MCL samples and 11
control tissues. Significant miRNAs (FDR o0.05 and 4twofold
change) are illustrated: downregulated in blue, upregulated in red.
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miRNA were electroporated at 60nM concentration and RelA
translocation to the nucleus was checked at 24, 48, 72 and 96h
after electroporation. Induced expression of miR-26a abrogated
the nuclear translocation of RelA at 72 and 96h after treatment in
the MINO cell line and at 72h in the REC-1 cell line (Figure 5).

Clinical variability
To identify miRNAs of potential clinical prognostic value,
miRNA microarray data of 22 MCL cases were analyzed with
the Random Forest predictor.36–38 The analysis yielded a set of
miRNAs that gave a Kaplan–Meier survival curve (log-rank
Po0.001) in which 12 miRNAs were statistically significant
(Po0.05) (Supplementary Table S10). These miRNA were
selected to confirm their expression in a second group of
54 formalin-fixed paraffin-embedded cases by quantitative
reverse transcriptase PCR. MiR-198 was excluded from the
analysis because it had a low efficiency of amplification in
qPCR. After endogenous normalization, "DC t values were used
for overall survival analysis by Cox regression using SPSS v.

Table 1 GSEA contingency table

Number of genes
included in the
annotated pathways

Number of miRNAs
targeting the selected

gene sets

Gene set FDR of GSEA analysis
using miRanda

prediction

FDR of GSEA analysis
using TargetScan

prediction

8 8 Bcells_IgMIgDCd27plus 0.15 0.16
9 7 Blimp1.targets 0.12 0.21
2 2 Blood.PanBcell 0.08 0.19
6 4 CD40.signalling.during.GC.dev 0.22 0.01
5 4 MAPKPATHWAY 0.26 0.14
9 8 NFKBtotalPATHWAY 0.24 0.16

Abbreviations: FDR, false discovery rate; GSEA, gene set enrichment analysis, miRNA, microRNA.
Pathway enrichment results (FDR o0.26) linked to differentially expressed genes (FDR o0.01) and differentially expressed miRNAs (FDR o0.05
and Fisher’s exact test FDR o0.05).

Figure 4 Downregulated miRNAs with connections to upregulated
pathways. miRNAs are indicated by triangles, whereas pathways are
represented by circles. Their size is proportional to their degree of
connectivity. Red and green nodes represent upregulated and down-
regulated elements, respectively. All the connections represent
significant relationships between the downregulated miRNAs and
upregulated pathways targeted by the miRNAs.
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Figure 5 NF-kB pathway activation. RelA (p65) NF-kB subunit
nuclear translocation after miR-26a, negative control miR micro-
poration (60 nM) or untreated Mino cells at 72 and 96h, Rec-1 cells at
72 h. RelA nuclear translocation is shown by Alexa Fluor 488 staining.
Nuclei are stained with 4,6-diamidino-2-phenylindole (DAPI). Res-
toration of miR-26a reduces RelA nuclear translocation at 72 and 96 h
after treatment.
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15.0. Univariate Cox regression analysis confirmed the signi-
ficance of miR-20b as a prognostic marker (P¼ 0.013) (Table 2),
whereas other clinical variables (age o60 years, P¼ 0.499;
gender, P¼ 0.592; performance status, P¼ 0.916; clinical stage
at diagnosis, P¼ 0.743; and proliferation activity of the tumor,
P¼ 0.317) were found not to be the significant prognostic
markers for survival in this group. Results were plotted in a
Kaplan–Meier survival curve (log-rank P¼ 0.032) (Figure 6),
dividing the samples into two risk groups according to their
median miR-20b expression. Cases lacking miR-20b expression
had a survival probability of 56% at 60 months, whereas only
33% of patients included in the high-risk group (high level of
expression of miR-20b) survived for 460 months.

Discussion

Gene expression profiling studies of MCL have revealed
increased survival signaling,2,3,50 but have not identified the
mechanisms responsible. miRNA profiling identifies additional
genes whose deregulation may enable us to explain MCL
pathogenesis more fully, as indicated by the gene pathways

targeted by the deregulated miRNAs. CD40, MAPK and
NF-kB are among the most significantly deregulated path-
ways whose increased expression is known to be relevant
in MCL pathogenesis.1 In addition, MCL has a downregulated
GC signature (including BCL6, LMO2, SERPIN9 and GCET2
genes) coupled with increased expression of the miRNAs
targeting these genes. This suggests that absence of GC
differentiation by MCL cells could depend on changes in
the expression of multiple miRNAs that regulate the GC
signature.

The most essential pathways and genes identified here
are potentially targeted simultaneously by multiple miRNAs,
suggesting that transcriptional regulation by miRNAs in MCL is
the result of the concurrent deregulation of multiple miRNAs
with similar targets. This is consistent with what is known about
the role of miRNAs as fine-tuning regulators.51

Deregulation of the MAPK pathway is one of the cardinal
findings in MCL, presumably in relation to CD40 signaling, as
shown by this gene expression analysis and other functional
studies.3,52 These findings indicate that constitutive CD40
signaling in B cells selectively activates the noncanonical NF-kB
pathway53 and theMAP kinases, JNK and ERK. The data presented
here show that the miRNAs deregulated in MCL characteristically
target the CD40 signaling pathway and MAPK genes.

Most of these changes have been detected in MCL cases and
MCL cell lines, although there are some intriguing minor
variations. MCL cell lines showed gain of oncomir-1 (17–92
polycistron), confirming previous observations in the Jeko1 cell
line.54 In contrast, MCL cases showed increased expression
of the miRNAs miR-106b, miR-93 and miR-25, which are
functionally homologous to the 17-92 polycistron, known as
oncomir-1.55 MCL cell lines are more representative of the
blastoid form than of classic MCL, thus we may hypothesize that
aggressive transformation is accompanied by changes in the
expression of the miRNAs included in the 17-92 polycistron.

Some of these results coincide with other recently published
findings in MCL, such as the increased expression of miR-124a,
miR-155, miR-302c, miR-345, miR-373* and miR-210, together
with loss of miR-150 and miR-142-3p (the latter with a less
significant FDR).56,57

Selected results have been functionally validated. Thus, the
restoration of miR-26a expression in the Mino and Rec-1 cell
lines inhibited RelA nuclear translocation at 72 and/or 96 h,
which is consistent with there being an indirect effect of the
MAPK pathway and, in particular, of MAP3K2 protein on NF-kB
activation. Interestingly, miR-26a, whose expression in normal
mantle cells is confirmed by other groups,58 is already known
to have a role in other types of cancer.59,60

These data also identify potential new diagnostic and
prognostic markers. MCL diagnosis requires some additional
tools to enable CCND1-negative forms and blastic variants to
be better recognized. In addition, MCL response to therapy is
not uniformly unfavorable, and some MCL cases follow a
relatively indolent clinical course. Interestingly, weak miR-20b
expression can be useful for predicting clinical behavior,
enabling a group of MCLs with higher survival probability to
be distinguished. MiR-20b expression has been found to have a
role in other type of cancers,61–63 in which its high level of
expression was associated with a worse prognosis, as is the case
for what we found in MCL. It should be noted that miR-20b is
localized in a cluster (X chromosome) that shares some
similarities with oncomir-1, which is already known to be
strongly expressed in MCL cell lines, and is homologous at
21 out of 23 nucleotides with miR-20a, a member of the
aforementioned cluster.

Table 2 Survival analysis by Cox regression

miRNA Univariate model

P-value HR

miR-130b 0.222 1.150
miR-454 0.239 1.154
miR-99b 0.756 0.964
miR-7 0.630 1.057
miR-181c 0.828 0.979
miR-532 0.880 0.986
miR-362 0.999 1.000
miR-363 0.300 1.149
miR-625 0.300 1.112
miR-20b 0.013 1.388
miR-660 0.527 1.065

Abbreviations: HR, hazard ratio; miRNA, microRNA.
Cox regression models: validation group, 54 samples. Individual results
of Cox univariate regression models using the 11 miRNAs are shown,
including P-value and HRs. Only miR-20b was significant (P¼ 0.013).

Figure 6 Correlation between miR20b expression and overall
survival: confirmation group of 54 cases. Cox regression model was
derived from the univariate analysis. The Kaplan–Meier survival curve
(log-rank P¼ 0.032) was calculated by stratifying the 54 samples into
two subgroups according to median expression of the miR-20b. This
function estimated a 56% survival rate at 60 months.
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The miRNA changes detected here can be explained only in a
few cases by chromosomal gains and losses such as the loss
of miR-31 (9p21), although the results were not significant
(data not shown). Other researchers have already demonstrated
that only the levels of miRs included in the miR-17-92 cluster
were significantly related to genetic alterations at 13q31.56 It is
therefore likely that most of the changes require other expla-
nations, such as epigenetic regulation or oncogene targeting.
These results are in accordance with those showing that

individual and miRNA clusters regulate gene expression with
overlapping patterns.64 It is important to emphasize that the
approach followed here, looking at the association of mRNA
and miRNA expression, accounts for only a part of the ability of
miRNA to modulate protein expression; as miRNA also regulates
mRNA translation. However, these findings are consistent with
others showing that mRNA destabilization is usually the main
component of repression in more highly regulated targets64 and
the same approach can be used to investigate others malig-
nancies. These results also identify miRNAs that could be
targeted in future therapeutic experiments and suggest miR-20b
as an important component in MCL survival to investigate more
in depth.
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