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Abstract

The study of the clustering techniques has become an interesting machine
learning and data mining fields. These techniques have grown since the
introduction of new algorithms based on the continuity of the data, such
as Spectral Clustering. This technique uses graph theory to generate the
clusters through the spectrum of the graph created by a similarity function
between the elements of the analysis. Based on this idea, this study uses
genetic algorithms to select the groups using the same similarity graph made
by the Spectral Clustering method. The goal is to create a new algorithm
which improves the robustness of the Spectral Clustering algorithm and re-
duce the dependency of the similarity metric parameters. To achieve these
goals, different fitness functions inspired in Complex Network analysis (which
also uses graph representations) and Graph Theory have been designed and
tested. Finally, different synthetic and real datasets have been applied to
test the Genetic Graph-based Clustering (GGC) algorithm and the differ-
ent fitness which could be applied and the results have been compared with
classical clustering methods.



1 Introduction

The unsupervised learning methods are mainly based on clustering tech-
niques [14]. These techniques were designed to find hidden information or
patterns in a dataset grouping the data with similar properties in clusters.
The different methods are divided in three main categories[38]:

e Partitional [52]: consists in a disjoint division of the data where each
element belongs only to a single cluster.

e Overlapping [9] (or non-exclusive): allows each element to belong to
multiple clusters.

e Hierarchical [47]: nests the clusters formed through a partitional clus-
tering method creating bigger partitions, grouping the clusters by hi-
erarchical levels.

This work is focused on the first category: partitional clustering. If the
dataset is defined as {z,...,x,} where z; is a piece of information, then
the partitional clustering algorithm assigns each x; only to one cluster Cj.
The set of all clusters is the partition, represented by C' = {C,...,Cy}.
Partitional clustering have three main approximations|[14]:

e Parametric or Model-based clustering [14]: consists on an estimator
based on a mixture of probabilities whose parameters are estimated.
This estimation fixes the model to the dataset.

e Non-Parametric clustering[74]: there is not an initial probability model
or estimator.

e Semiparametric method [14]: a combination of parametric and non-
parametric methods.

This work is based on Non-Parametric Partitional Clustering. It is based
on the Spectral Clustering algorithm introduced by Ng et al. [61] in 2001.
This algorithm is divided in three main steps:

1. A similarity function is applied over an original dataset to construct a
Similarity Graph amongst the information.

2. The Spectrum of the Similarity Graph is extracted to study the eigen-
vectors generated.

3. K-means (or other partitional clustering technique) is applied to the
matrix formed by the k-first eigenvectors to discriminate the informa-
tion and assign the final clusters.



The main problem related to the Spectral Graph is its sensibility to the
definition of the similarity function. It produces several problems when there
is noisy information as Chang and Yeung exposed in [13]. Some solutions to
this problem were based on the improvements of the parameters selection for
the similarity function [13]. Other solutions are focused on the selection of
the partitional clustering algorithm for the third step of SC [76]. This work
develops a new algorithm based on Genetic Algorithms (GA) to improve the
robustness of the clusters selection taking the Similarity Graph as a starting
point. It looks for new solutions that could aid to manage this problem.

Genetic algorithms have been traditionally used in optimization prob-
lems. The complexity of the algorithm depends on the codification and the
operations that are used to reproduce, cross, mutate and select the different
individuals (chromosomes) of the population [17, 70]. This kind of algorithms
applies a fitness function which guides the search to find the best individual
of the population.

The fitness function is used as a metric to measure the quality of the clus-
ters. The fitness initially proposed in this work is based on Complex System
Analysis and Graph Theory Techniques [21, 58, 78]. Given a network which
is represented as a graph, these techniques analyses the different properties
of the network through various measures. The principal measures of these
systems are the Clustering Coefficient [21] and the Average Distance of the
elements. There are several variations of them, such as the Weighted Clus-
tering Coefficient [7], that are studied in this work.

On the one hand, one of the main problems of this kind of fitness function
is that it does not consider the continuity of the dataset which is important
in this kind of clustering approach. The continuity is the form defined by the
data, for example, the path defined by a user in a video-game. Therefore,
other different fitness functions based on well-known algorithm (such as K-
Nearest Neighbours [18] and Minimal Graph Cut [68]) have also been tested
and combined to improve the results.

On the other hand, the codification generates an important convergence
problem, specially to the clustering problem. Different approximations of ge-
netic codifications to the clustering problem were deeply studied by Hruschka
et al. in [38]. These methods are also divided in the type of clustering: para-
metric or non-parametric. Here, two different codifications are introduced
and analysed to compare their features.



This work presents a Genetic Graph-based Clustering (GGC) algorithm
which is inspired on the Spectral Clustering algorithm (it parts from the
same Similarity Graph) and improves the robustness of the solutions. The
algorithm is experimentally compared with Spectral Clustering, K-means [49]
and Expectation Maximization (EM) [49] to test its accuracy. The experi-
mental study is also focused in a comparison between the robustness of the
Spectral Clustering and GGC algorithms.

The rest of the work is structured as follows: Section 2 shows a description
of the state of art; Section 3 presents the Genetic Graph-based Algorithm
designed and developed; Section 4 shows the experimental results. Finally,
Section 5 gives the conclusions and future lines of work.



2 State of the Art

This section starts with a general introduction of the Data Mining and Ma-
chine Learning techniques. After this brief introduction, it presents the data
preprocessing and normalization techniques used in this work. Next, it is
focused on the clustering methods, specially in the Spectral Clustering al-
gorithm. Once the clustering methods have been introduced, it focusses the
attention on how genetic algorithms have been applied to clustering tech-
niques. Finally, the measures of graph theory and complex network are
introduced and defined.

2.1 Data Mining

Data Mining is “the process of discovering meaningful new correlations, pat-
terns and trends by sifting through large amounts of data stored in reposito-
ries, using pattern recognition technologies as well as statistical and mathe-
matical techniques” [49]. The Data Mining techniques are divided in 5 main
steps:

1. Data Extraction: The data extraction problem consists on obtain the
datasets which will be analysed. There are several public databases,
for example, those which are contained in the UCI Machine Learning
Repository [27], that have been widely used to test these techniques.

2. Data Preprocessing and Normalization: The data preprocessing
methods prepare the data to be analysed. There are three main steps
[49]: avoid misclassification, dimensionality reduce (through projec-
tions or feature selection techniques) and range normalization.

3. Model Generation: This is the most important part of the data anal-
ysis. The model is created to find the patterns in the data. It is usual
to use Machine Learning or other statistical techniques to generate the

model [49].

4. Model Validation: Depending on the type of model, the validation
process is different. This process gives the confidence of the model. It
is usual to use validation with classifiers [49], however, the clustering
validation is almost a blind process [80] (which is a consequence of the
clustering nature).

5. Model Application: The goal of the model is to be applied, for
example, to predict the behaviour of new inputs. For example, our
previous work was based on the application of clustering models to
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predict performance in team games [41], and in the FIFA World Cup
Championship [54].

This work is focused on the Model Generation methods. These methods
are based in Statistical Inference and Machine Learning techniques. Machine
Learning approaches are based on a “machine” which receives a sequence of
inputs, called data, and looks for patterns which can be used to predict or
explain the behaviour of new inputs. Some applications of these models can
be found in [80]: business, biology, music, human behaviour, games... These
techniques can be divided in four categories[11]:

o Supervised Learning: A sequence of desired outputs is also given with
the inputs. The goal of the machine is to learn to produce the correct
output given a new input. The output could be a class label (clas-
sification) or a real number (regression). Some examples of classical
classification methods are [49]: Decision Trees, Support Vector Ma-
chines and Neural Networks.

e Reinforcement Learning: The machine produces a set of actions which
affects the effect of an environment. These effects generates a reward
(or punishment) which must be maximized in the future though the
machine decisions.

e Game Theory Learning: It is a generalization of reinforcement learning.
In this case, the environment can contain other machines with the same
characteristics.

o Unsupervised Learning: The machine simple receives the input. Its
goal is to generate the labels of the input set. This work is focused
on generate a clustering algorithm for unsupervised learning though
genetics algorithms. the main clustering techniques considered in this
work will be described in Sections 2.3 and 2.4.

As it was explained in the Introduction, the most common unsupervised
data mining method is clustering. Another good example of unsupervised
learning is dimensionality reduction[11] which is the process of reducing the
number of random variables under consideration in a dataset analysis. These
techniques are also known as feature selection methods and are presented in
the following subsection.

2.2 Data Preprocessing and Normalization

Data Mining techniques need an intensive phase of data preprocessing. Ini-
tially the information must be analysed and stored in some kind of database



system, cleaned and separated. This preprocessing phase is used to avoid out-
liers, missclassifications and missing data. Methods such as histogram and
statistical correlation are used to clean the dataset and reduce the number
of variables [49]. Projections are also usual in dimension reduction, how-
ever, projection methods [22] such as PCA (Principal Component Analysis)
or LDA (Lineal Discriminant Analysis) do not offer a complete perspective
of the problem we are dealing with. These methods create new variables
which are estimated from principal components or lineal projection trying to
separate the data and reduce its dimension. Usually, these techniques lose
the original information of the features which is unrecoverable once it is pro-
jected. It produces a reduction of the human interpretation of Data Mining
techniques applied and, sometimes, it is preferable to avoid them.

There are several techniques which reduce the feature sets to avoid pro-
jections. These methods apply a guided search among the different attributes
looking for the most useful variables for the analysis. These methods are usu-
ally known as feature selection methods [45]. Curiel et al. [19] apply genetic
algorithms to simplify prognosis of endocarditis using a codification where
each individual of the population is based on a set of features. Blum and
Langley [10] show some examples of relevant features selections in different
datasets and applied them to different machine learning techniques. They
define different degrees of relevant features such as strong or weak relevant
features. They also study some methodologies such as heuristic search, fil-
ters and wrapper approaches which are automatic feature selection methods
usually validated by classification techniques. Some of these techniques usu-
ally introduced over-fitting to the model and are computationally expensive.
Roth and Lange [66] apply these techniques to the clustering problem. Our
previous work showed a new feature and simple selection methodology whose
goal is to make an intensive reduction of the attributes dimension oriented
to clustering analysis. It applies clustering methods to validate the chosen
feature set [55].

Finally, the last step is related to normalization. It allows to compare
data features with different kind of range of values. Z-Score [12] and Min-Max
[35] normalization methods are commonly used for preprocessing the data.
Both normalization algorithms takes the attribute records and they find a
standard range for them. Min-Max has a fixed range, [0,1] (it is sensitive
to outliers), while Z-Score depends on the mean and the standard deviation
(it approximates the distribution to a normal distribution, it is usually used
to avoid outliers). These algorithms obtain the normalized values from data
using the following equations:



e Min-max: It computes maximum and minimum values of the attributes

applying: »
, o r—min(X)

~ max(X) — min(X)

e 7-Score: It computes mean and standard deviation of the values ap-
plying:
,  x—mean(X)
r=————
SD(X)

Once the data is ready for the analysis, the model generation phase be-
gins. This work is focused on unsupervised learning techniques for model
generation, specially clustering techniques, that are presented in the follow-
ing section.

2.3 Clustering Techniques

Clustering techniques are frequently used in data mining and machine learn-
ing methods. A popular clustering technique is K-means. Given a fixed
number of clusters, K-means tries to find a division of the dataset [52] based
on a set of common features given by distances or metrics that are used to
determine how the cluster should be defined. Other approximations, such
as Expectation-Maximization (EM) [23], are applied when the number of
clusters is unknown. EM is an iterative optimization method that estimates
some unknown parameters computing probabilities of cluster membership
based on one or more probability distributions; its goal is to maximize the
overall probability or likelihood of the data being in the final clusters [59].

Since these techniques fixed the number of clusters a priori, there are
validation techniques such as cross-validation [44] which are used to improve
the number of clusters selection (through metrics such as the Minimum Sum-
of-Squares [56]).

Other research lines have tried to improve these algorithms. For example,
some online methods have been developed to avoid the K-means convergence
problem to local solutions which depend on the initial values [6]. These meth-
ods create the clusters adding a new data instance at each step and modifying
the cluster structure with this new information. Some other improvements
of K-means algorithm are related to deal the different kind of data repre-
sentation, for example, mixed numerical data [3] and categorical data [67] .
There are also some studies comparing methods with different datasets, for



example, Wang et al. [77] compare self-organizing maps, hierarchical clus-
tering and competitive learning where establishing molecular data models of
large size sets. Other approaches related to genetic algorithms, and directly
related to this work, will be described in subsection 2.5.

Machine learning techniques have also been improved through the k-
means algorithm, for example, reinforcement learning algorithms[5, 31]; or
using topological features of the data set [30, 31] which can also be helpful
for data visualization.

The following subsections introduces two of the most classical clustering
algorithms: Expectation-Maximization and K-means. The following section
presents the Spectral Clustering algorithm which inspired this work.

2.3.1 K-means

K-means [51] is a popular and well known partitional clustering algorithm.
It is a straightforward clustering guided method (usually by a heuristic or
directly by a human) to classify data in a predefined number of clusters. As
it was explained above, given a fixed number of clusters (k), K-means tries
to find a division of the dataset [52] based on a set of common features given
by distances or metrics that are used to determine what elements belong to
each cluster. K-means has also been improved though different techniques,
like genetic algorithms [8]. Algorithm 1 shows the pseudo-code for K-means
algorithm [49].

2.3.2 Expectation Maximization

Expectation Maximization (EM) [23] is used when the number of clusters
is unknown. Initially, it takes the likelihood and tries to maximize it. The
process consists on apply the two following steps iteratively until it converges:

e Expectation step: Fix a model (#) and estimate missing labels (y).

e Maximization step: Fix missing labels (y)(or a distribution over
missing labels) and find the model (¢) which maximizes the likelihood
function (L(0)) of the data.

The likelihood function is defined by:

L(9) = p(X,y|0) = Hp(xi,yilﬁ)

8



Algorithm 1 Pseudo-code for K-means algorithm
Input: A dataset of n elements X = {zy,...,z,} and a fix number of clus-
ters k.
Output: A set of clusters C' = {C, ..., Cy} which partitionate X
1: Assign k records to be the initial cluster centroids. We define the set of
centroids as Y = {y,...,yr} and Y/ =0
2: while Y #Y’ do
3 Set all C; = 0.
4: Y'+ Y.
)
6

for all x; € X do
Calculate the minimal distance centroid to x;. Let y; be the
minimal distance centroid to ;.
7: Introduce z; in Cj.
8: end for
9: Calculate the centroids of C' and set y; < centroid(C;).
10: end while
11: return C

K-means initially sets the centroids (line 1) and the elements are added to
the cluster whose centroid is closer to them (lines 5 to 7). After, it calculates
the new centroids position of the clusters (line 9) and again adds the elements
to the closer clusters (lines 5 to 7). It continues until the centroid position
converge to a fixed point (line 2).




Where 6 is a model defining how each instance x; is assigned to a label
y;. This algorithm begins with the definition of an initial model 6O and
constructs a sequence 6 9 9@ of models with increasing value of
likelihood. To simplify the calculation process, the logarithm of the likelihood
function is used:

1(0) = log L(0) = Zlogp(xz’7yi“9)

EM also used an auxiliary function, which depends on the model and the
distribution of missing labels, defined by:

Q(9|9(m)) = ZQZ-(GIQ(’”’) = Z Eyi|xi,0(m) [10gP(Xz‘,?/z‘|9)]

k
QB0 = Z Z P(y; = jlxi,60"™) log p(x;, 4il0) (1)
i =1
This function is used to increment the likelihood of the estimator 6 which is
taken as a maximum of this function. Algorithm 2 shows the pseudo-code
for EM algorithm.

2.4 Spectral Clustering

Spectral clustering methods are based on a straightforward interpretation of
weighted undirected graphs as can be seen in [4, 57, 61, 74]. The Spectral
Clustering approach is based on a Similarity Graph which can be formulated
in three different ways (all of them equivalent [74]) of graphs:

1. The e-neighbourhood graph: all the components whose pairwise
distance is smaller than € are connected.

2. The k-nearest neighbour graphs: the vertex v; is connected with
vertex v; if v; is among the k-nearest neighbours of v;.

3. The fully connected graph: all points with positive similarity are
connected with each other.

The main problem is how to compute the eigenvector and the eigenvalues
of the Laplacian matrix of this Similarity Graph. For example, when large
datasets are analysed, the Similarity Graph of the Spectral Clustering algo-
rithm takes too much memory, it makes difficult the eigenvalues and eigen-
vectors computation. Some works are focused on this problem: von Luxburg
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Algorithm 2 Expectation Maximization Pseudo-code [34]

Input: A dataset of n elements X = {xy,...,x,}. A convergence error
value §.
Output: A set of clusters C' = {C},..., Cy} which partitionate X
1: Fix a number of cluster k {thls value is estimated applying cross-
validation and repeating this algorithm with different values of k}
Choose the initial model §(©).
Compute the initial log-likelihood 1 ().
repeat
E-step: Calculate {,YZ(]m)} where v;; = P(y; = j|x;,0™). {For the
m iteration}
6: M-step: Calculate 6™ = argmax, (Q(0]60™)), where Q(0]6™) =
> Zle 71-(;71) log p(x;, y;|0). {Extracted from equation 1}
: Convergence check: Calculate {™+D (9(m+1)),
8: until [["FD) — (M| < §
9: Put x; in Cj if y;; = max({yig}h_,)
10: return C

The m-th iteration of the E-step (line 5) produces a guess of the n x k
membership-probabilities of the elements to the clusters {v;;} = P(y;, =
Flxi, 00™), where 7ij is the current guess of the probability that sample x;
came from the j-th cluster. The M-step (line 6) gives a closed-form solution
to the new estimates of the estimator . It converges if the increment of the
likelihood is lower than a value (&) given.

et al. [74] present the problem, Ng et al.[61] apply an approximation to a
specific case, and Nadler et al.[57] apply operators to get better results. The
classical algorithms can be found in [74].

The theoretical analysis of the observed good behaviour of SC is justified
using the perturbation theory [74, 57|, random walks and graph cut [74].
The perturbation theory explains, through the eigengap, the behaviour of
Spectral Clustering.

Some of the main problems of Spectral Clustering are related to the con-
sistency of the two classical methods used in the analysis: normalized and
un-normalized spectral clustering. A deep analysis about the theoretical ef-
fectiveness of normalized clustering over un-normalized can be found in (von

Luxburg, 2008)[75].
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Part of the present work is inspired by Spectral Clustering because we
use a clustering technique which analyse a Similarity Graph. Nevertheless, in
our case we are using different methods such as Genetic Algorithms, Graph
Theory and Complex Networks analysis to find the clusters, instead of the
Laplacian matrix extracted from the Similarity Graph.

2.4.1 The Spectral Clustering Algorithm

Spectral Clustering methods were introduced by Ng et al. in [61]. These
methods apply the knowledge extracted from graph spectral theory to clus-
tering techniques. These algorithms are divided in three main steps:

1. The algorithm constructs a graph using the data instance as nodes and
applying a similarity measure to define the edges weights (see algorithm
3 line 1). The different types of graphs are explained above. In this
work a fully connected graph is used. The measure used in this work
is the Radial Basis Function (RBF) Kernel (which is the most usual
approach taken in the literature) defined by:

s(ai,a) = el ©)
where ¢ is used to control the width of the neighbourhood.

2. It studies the graph spectrum calculating the Laplacian Matrix associ-
ated to the graph (see algorithm 3 lines 2 and 3) . There are different
definitions of the Laplacian Matrix. These definitions achieved differ-
ent results when they are applied to the Spectral Clustering algorithm.
They are used to categorize the Spectral Clustering techniques as fol-
lows [74]:

e Unnormalized Spectral Clustering It defines the Laplacian
matrix as:

L=D-W

e Normalized Spectral Clustering It defines the Laplacian ma-
trix as:

Lsym — D71/2LD71/2 —J - D71/2WD71/2

e Normalized Spectral Clustering (related to Random Walks)
It defines the Laplacian matrix as:

Lw=D'L=1—-—D"'W

12



In these formulas I is the identity matrix, D represents the diagonal
matrix whose (7,7)-element is the sum of the similarity matrix ith row
and W represents the Similarity Graph (see algorithm 3 line 2). Once
the Laplacian is calculated (in algorithm 3 the Normalized Spectral
Clustering algorithm is used, however, in this case, to simplify, the
eigenvalues which are calculated are 1—); instead of \;, the eigenvectors
do not change), its eigenvectors are extracted (see lines 4 and 5 of
algorithm 3).

. The eigenvectors of the Laplacian Matrix are considered as points and
a clustering algorithm, such as k-means, is applied over them to define
the clusters (see algorithm 3 lines 7 and 8).

The Spectral Clustering algorithm which is used in this work is the Nor-
malized Spectral Clustering Algorithm introduced by Ng [61] (see algorithm

3)

Algorithm 3 Normalized Spectral Clustering according to Ng et al.

(2001)[61]

Input: A dataset of n elements X = {z1,...,x,} and a fix number of clus-
ters k.

Output: A set of clusters C'= {CY, ..., Cy} which partitionate X

1:

Form the affinity matrix W € R™" defined by W;; = e llwimajll*/20% if
i # 7, and Wy; = 0.

Define D to be the diagonal matrix whose (7, )-element is the sum of the
i-th row of W.

Construct the matrix L = D~V2W D=1/,

Find vy,..., v, the k largest eigenvectors of L (chosen to be orthogonal
to each other in the case of repeated eigenvalues) and form the matrix
V = [v1vs ... v € R™F by stacking the eigenvectors in columns.

Form the matrix Y from V' by renormalizing each row of V' to have unit
length (i.e. Yi; = V;/(32; VHY2).

Apply K-means (or any other algorithm) treating each row of Y as a
point in RF.

Assign the points z; to cluster Cj if and only if the row ¢ of the matrix
Y was assigned to cluster j.

return C

13



2.4.2 Spectral Clustering Example

This section shows the application of the Spectral Clustering Algorithm. In
this case, the dataset is a 2-dimensional dataset composed by three clusters
generated by 50 instances o three different Gaussian distributions (Figure 1
shows the dataset):

1. The first Gaussian Distribution has a Mean of 0 and a Standard Devi-
ation of 0,3.

2. The first Gaussian Distribution has a Mean of 1 and a Standard Devi-
ation of 0,3.

3. The first Gaussian Distribution has a Mean of 2 and a Standard Devi-
ation of 0,3.

Data Example

-0.5 0.0 0.5 1.0 15 2.0 25

Figure 1: Dataset for the Spectral Clustering application example.

The first step is the generation of the similarity graph. The edge weights
of this graph represents the similarity between the points. In this example,
the similarity is related to the inverse of the distance between the points
(The metric used id the RBF kernel [42], see equation 2 in section 2.4.1).

The similarity graph is represented in figure 2 using a heat-map. The

heat-map rows and columns correspond with the adjacency matrix rows and
columns of the Similarity Graph. The colours are the similarity values from

14



red (low similarity) to yellow (high similarity). It shows that there are 3 sets
whose elements are closer between them.

Heatmap of the Similarity Graph

Figure 2: Heat-map of the Similarity Graph generated in the first step of the
Spectral Clustering example.

The second step is related to the study of the eigenvector of the Laplacian
Matrix of the Similarity Graph. The Laplacian Matrix has a maximum of 150
different eigenvectors. According to the leader eigenvalues (those eigenvalues
with the highest values) their associated eigenvectors are chosen. Since this
problem has three clusters, the 3 leader eigenvectors are chosen. These eigen-
vectors are shown in Figure 3. This figure shows the original eigenvectors
obtained from the Laplacian Graph (Figure 3(a)) and their normalization
(Figure 3(b)). The normalization reduces the distortion of the values.

The last step is the application of a clustering algorithm to the matrix
formed by the normalized eigenvectors considering each row of the matrix as
a point. Figure 4(a) shows the distribution of the data in the space generated
by the chosen eigenvector. In this case, each point could be interpreted as a
projection of the original points of Figure 1. The algorithm which is applied
is K-means. The results of the application of the algorithm to this data are
shown in Figure 4(b). The data in this space is easier to separate than in
the original space.
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(b) Normalized Eigenvectors: Y = y1y2ys (see algorithm 3 line 5)

Figure 3: Eigenvectors and Normalized eigenvectors obtained in the Spectral
Clustering example.

Finally, Figure 5 shows the results of the algorithm on the original space.
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(b) 3D representation of Y considering the clustering algorithm results

Figure 4: Representation of the points projection over the 3 eigenvectors

2.5 Genetic Algorithms for Clustering

Genetic algorithms have been traditionally used in optimization problems,
as was mentioned before. These algorithms have also been used for general
data and information extraction [28]. The operators of the genetic algorithms
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Spectral Clustering results
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Figure 5: Final results of the Spectral Clustering example

can also be modified. Some examples of these modifications can be found
in (Poli and Langdon, 2006)[63] where the algorithm is improved through
backward-chaining, creating and evaluating individuals recursively reducing
the computation time. Other applications of genetic clustering algorithms
can be found in swarm systems [48], software systems [24], file clustering [25]
and task optimization [62], amongst others.

The genetic clustering approximation tries to improve the results of the
clustering algorithm using different fitness functions to tune up the cluster
sets selection. In (Cole, 1998)[16], different approaches of the genetic cluster-
ing problem, especially focused in codification and clustering operations, can
be found. There is also a deep revision in (Hruschka et al., 2009)[38] which
provides a complete up to date state of the art in evolutionary algorithms
for clustering.

There are several methods using evolutionary approaches from different
perspectives, for example: (Aguilar, 2007)[2] modifies the fitness consider-
ing cluster asymmetry, coverage and specific information of the studied case;
(Tseng and Yang, 2001)[71] use a compact spherical cluster structure and
a heuristic strategy to find the optimal number of clusters; (Maulik and
Bandyopadhyay, 2000)[53] use the clustering algorithm for metric optimiza-
tion trying to improve the cluster centre positions; (Shi et al., 2011)[69] based
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the search of the genetic clustering algorithm in their Extend Classifier Sys-
tems which is a kind of Learning Classifier System, in which a fitness of the
classifier is determined by the measure of its prediction’s accuracy; (Das and
Abraham, 2008)[20] use Differential Evolution, a method that optimizes a
problem by iteratively trying to improve a candidate solution with regard to
a given measure of quality.

Some of those previous methods are based on K-means, for example:
(Krishna and Murty, 1999)[46] replace the crossover of the algorithm using
K-means as a search operator, and (Wojciech and Kwedlo, 2011)[79] also use
differential evolution combined with K-means, where it is used to tune up the
individuals obtained from mutation and crossover operators. Finally, other
general results of genetic algorithm approaches to clustering can be found in
(Adamska, 2005)[1]. There are also other complete studies for multi-objective
clustering in (Handl et al., 2004)[36] and for Nearest Neighbour Networks in
(Huttenhower et al., 2007)[39].

2.6 Graph Theory and Complex Networks

Graph theory has also proved to be an area of important contribution for
research in data analysis, especially in the last years with its application to
manifold reconstruction [33] using data distance and graph representation to
create a structure which can be considered as an Euclidean space (which is
the manifold).

Graph models are useful for diverse types of data representation. They
have become especially popular over the last years, being widely applied in
the social networks area. Graph models can be naturally used in these do-
mains, where each node or vertex can be used to represent an agent, and
each edge is used to represent their interactions. Later, algorithms, methods
and graph theory have been used to analyse different aspects of the network,
such as: structure, behaviour, stability or even community evolution inside
the graph [21, 26, 58, 78].

A complete roadmap to graph clustering can be found in Schaeffer[68]
where different clustering methods are described and compared using dif-
ferent kinds of graphs: weighted, directed, undirected. These methods are:
cutting, spectral analysis and degree connectivity (an exhaustive analysis
of connectivity methods can be found in Hartuv and Shamir[37]), amongst
others. This roadmap also provides an overview of computational complex-
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ity from a theoretical and experimental point of view of the studied methods.

From previously described graph clustering techniques, a recent and really
powerful ones are those based on Spectral Clustering which were previously
introduced. In this section, several definitions of Graph Theory and an in-
troduction of the Complex Network approach and the metric extracted from
this field are presented.

2.6.1 Basic Definitions from Graph Theory

Defining and selecting an appropriate fitness function is one of the most crit-
ical issues in any evolutionary algorithm. Our approach uses concepts and
metrics extracted from graph theory. For this reason, and before describing
it, some of those basic concepts are briefly introduced.

Definition 2.1 (Graph). A graph G = (V, E) is a set of vertices or nodes V'
denoted by {vy,...,v,} and a set of edges F where each edge is denoted by
e;; if there is a connection between the vertices v; and v;.

Graphs can be directed or undirected. If all edges satisfy the equality

Vi, J, €;; = €j;, the graph is said to be undirected.

In this work we will represent the graph through its adjacency matrix (the
most usual approach) which can be defined as:

Definition 2.2 (Adjacency Matrix). An adjacency matrix of G, Ag, is a
square n X n matrix where each coefficient satisfies:

(CL") - 1, if €ij € E
771 0, otherwise

When it is necessary to work with weighted in the edges, a new kind of
graph needs to be defined:

Definition 2.3 (Weighted Graph). G is a weighted graph if there is a func-
tion w : E — R which assigns a real value to each edge.

Any algorithm that works with the vertices of a graph needs to analyse
each node neighbours. The neighbourhood of a node is defined as follows:
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Definition 2.4 (Neighbourhood). If the edge e;; € E and ej; € E we say
that v; is a neighbour of v;. The neighbourhood of v; I',, is defined as
', = {vj | e;; € E and e;; € E}. Then, the number of neighbours of a
vertex v; is k; = [Ty,

Once the most general and simple concepts from graph theory are de-
fined, we can proceed with the definition of some basic measures related to
any node in a graph; the Clustering Coefficient (CC) and the Weighted Clus-
tering Coefficient (WCC).

Definition 2.5 (Local Clustering Coefficient (CC) [21]). Let G = (V, E)
be a graph where F is the set of edges and V' the set of vertices and A its
adjacency matrix with elements a;;. Let I',, be the neighbourhood of the
vertex v;. If k; is considered as the number of neighbours of a vertex, we can
define the clustering coefficient (CC) of a vertex as follows:

1
Ci = m th A ip Qi Aip Qi QAh;g

The Local CC measure provides values ranging from 1 to 0. Where 0
means that the node and its neighbours do not have clustering features, so
they do not share connections between them. Therefore, value 1 means that
they are completely connected. This definition of CC can be extended to
weighted graphs as follows:

Definition 2.6 (Local Weighted CC [7]). Following the same assumption
of Local Clustering Coefficient definition, let W be the weight matrix with
coefficients w;; and A be the adjacency matrix with coefficients a;;, if we

define:
V]

Si = Z al-jajiwij
j=1
Then, the Local Weighted Clustering Coefficient can be defined as:

w 1 (wij + win)
P = Sl — 1) ]Zh: ! 2 Ajh Qi Qi Qi Qg
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For this new definition, we are considering the connections between the
neighbours of a particular node, but now we add information about the
weights related to the original node. This new measure calculates the dis-
tribution of the weights of the node that we are analysing, and shows how
good the connections of that cluster are. The following theorem proves that
the weighted CC has the same value than the CC when all the weights are
set to the same value:

Theorem 2.1. Let G be a graph, A its adjacency matriz and W its weight
matriz. If we set w;; = w Vi, j, them C; = C°.

Proof. Following the definition of C}" we have:

w 1 2w
G = Sk =) > 5 Qi inQjithi

j,h
Where S; = le‘;'l a;jajw. Replacing S;, we have:

cw

7

1
= WaihQiiAipAiiAp;g
v E jhQijQinQj
> e aijagiw(k; — 1) 57

1
i Vv JhWigWip Ly Why
> asgagiki — 1) 45
We also know that following the neighbour definition and the adjacency ma-
trix definition: k; = ZL’Z|1 a;ja;; = |y, = |{v; | €i; € E and e;; € E}| And
finally:

w

w 1
i = Tk — 1) ]Zh jnijQinagiap; = Cj

Which proves theorem 1. O

As a corollary to this theorem, if C}" =1 = C; = 1.

Finally, if we want to study a general graph, we should study its Global CC:

Definition 2.7 (Global CC [21, 7]). The clustering coefficient of a graph
can be defined as:
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Where |V] is the number of vertices.

The Global Weighted Clustering Coefficient is:

V]

1
v — —_ N
772 ¢

The main difference between Local CC, Local Weighted CC and Global
CC is that, the first one can be used to represent how connected is a node
locally in a graph, the second one is used to calculate the density of these
connections using the edge weights, and the last one provides us with global
information about of the connectivity in a graph. In real complex problems
only the two initial measures can be used, whereas the third one is usually
estimated [72].

2.6.2 Complex Networks Analysis

In network analysis, is common to use a graph representation, especially for
the social network approach where users are connected by affinities or be-
haviours. This approximation has been studied in some of the small world
networks based on two main variables: the average distance between ele-
ments and the clustering coefficient of the graph [21, 58, 78§].

The present work is closed to the network approach because our algorithm
looks for sub-graphs in a graph whose elements share similar features. In an
initial study of the problem [8], an evolutionary approach was adopted based
on the K-means algorithm applied to community finding approach (which is
also a clustering problem applied to a graph representation).

Other similar approximations related to the finding-community problem
can be found in Reichardt and Bornholdt[65] where different statistical me-
chanics for community detection are used. Pons and Latapy[64] use random
walks to compute the communities. However, we decided to use genetic al-
gorithms because we are interested in optimization methods for tuning up
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the definition of our clusters, allowing to adapt the size and membership of
these clusters using metrics and features selected from graph characteristics.

Finally, another work based on metrics used to measure the quality of the
communities can be found in (Newman and Girvan, 2004)[60], and metrics
that can be used to find the structure of a community in very large networks
in (Clauset et al., 2004)[15]. Genetic algorithms have also been applied to
find communities or clusters through agglomerative genetic algorithms [50]
and multi-objective evolutionary algorithms [43] amongst others.
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3 The Genetic Graph-based Clustering (GGC)
Algorithm

This section introduces the Genetic Graph-based Clustering algorithm, that
is mainly based on Genetic Algorithms (GA) and Graph Theory.

In this approach it is necessary to feed the algorithm with an initial set of
individuals (clusters) like in Spectral Clustering or K-means algorithms. Our
technique searches the best sub-graphs which might define a clear partition
of the original graph. It is generated by a similarity function such as in the
Spectral Clustering algorithm. The population is a set of possible solutions
(partitions) which evolves until the best solution is found or a maximum
number of generations is reached. The fitness function is a metric which is
used to measure how close are the individuals to be the best solution. The
algorithm will maximize this metric.

3.1 The GGC Codifications

The genetic algorithm has been constructed using two different codifications.
The first codification is a simple vector codification while the second one is
based on set theory. These two codifications have been selected to compare
their computational effort in the experimental phase and choose the fastest
for the final experiments (the comparison is made in Section 4.1.1). They
provide different representations for the same valid individuals (this makes
them equivalent).

3.1.1 Vector-based Codification

This codification is a simple numerical, and straightforward, representation.
The set of nodes of the graph defines the length of the chromosome and the
numbers of the individuals represents the membership of each node to a de-
termined cluster. The following example illustrates this codification:

Ezample 3.1. Let n be the number of data instances (in this case, we set
n=9). Let k be the number of clusters (we set k = 3). The chromosomes of
Figure 6 shows three possible correct representations. The first chromosome
of Figure 6, represents the clusters selection shown in Figure 7.
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nodes
1 2 3 4 5 6 7 8 9

Chromosomel‘1‘1‘1‘2‘2‘2‘3‘3‘3‘

Chromosome?‘1‘2‘1‘2‘3‘2‘3‘3‘3‘

Chromosome 3 |2 [3[1][2[1][2]1]3]3]

Figure 6: Vector-based codification of the GGC algorithm

Clusters of data instance from 1to 9

0.3
w

0.2
|

0.1

-0.3 -0.2 -0.1
1

Figure 7: Representation of the clusters for the data instances of chromosome
1 of Figures 6 and 8

3.1.2 Set-based Codification

The second codification is based on sets. Each set represents a cluster and
the elements of the sets are the data instances which compose each cluster.

Example 3.2. The chromosomes of example 3.1 can be represented with this
new codification as in Figure 8.

3.1.3 Invalid elements

The operations (mutation and crossover) of the genetic algorithm can create
invalid elements. These elements are solutions where one or more clusters
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Cluster 1 Cluster 2 Cluster 3
Chromosome 1 {1,2,3}  {4,5,6}  {7,8,9}
Chromosome 2 {1,3} {2,4,6} {5,7,8,9}

Chromosome 3 {3,5,7}  {1,4,6}  {2,8,9}
Figure 8: Set-based codification of the GGC algorithm

could have no elements. In the partitional clustering problem these solutions
are not valid because the number of clusters is initially given. To avoid in-
valid elements, the fitness value assigned to these chromosomes is 0. This
value prevents that the elements pass to the next generation.

Some examples of invalid elements for each codification are shown in the
following example:

Example 3.3. Figure 9 shows two chromosomes which are invalid elements
for the vector-based codification while Figure 10 shows the same elements
using the set-based codification and an invalid element which can only be
generated using this codification (the chromosome 3). If £ = 3 and n = 9
the first individual has missed cluster 3 and the second cluster 1 (in both
figures). In partitional clustering, all the clusters need to have at least one
element. Chromosome 3 of Figure 10 repeats the assignation of one element
(1) omitting other element (2).

nodes
1 2 3 4 5 6 7 8 9

Chromosomel‘l‘l‘l‘1‘1‘2‘2‘2‘2‘

Chromosome 2 [2[2[2]3[3[3]2]2]2]

Figure 9: Invalid chromosomes of the vector-based codification

3.2 The GGC Operations

This section defines the operations which are used between the chromosomes
for each codification. The classical operations have been used. These opera-
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Cluster 1 Cluster 2 Cluster 3

Chromosome 1 {1,2,3,4,5} {6,7,8,9} 0
Chromosome 2 0 {1,2,3,7,8,9} {4,5,6}
Chromosome 3 {1,1,3,9} {4,5,6} {7,8}

Figure 10: Invalid chromosomes of the set-based codification

tions are: selection, reproduction, crossover and mutation.

3.2.1 Selection

For both codifications, the selection process selects a subset of the best in-
dividuals. These chromosomes are reproduced and also pass to the next
generation. It is called a (u + A) selection, where p represents those chromo-
somes which are chosen, and A the new chromosomes generated.

3.2.2 Reproduction

For both codifications, the reproduction randomly selects two individuals
(using the classical wheel algorithm), and apply the crossover operation to
them creating two new individuals.

First, this process calculates the fitness of each individual and the total
sum. Next, it calculates the reproduction probability of each chromosome
which is equal to its fitness value over the total sum. Finally, each chromo-
some is randomly selected to be reproduced depending on its reproduction
probability.

3.2.3 Crossover

The main problem of crossover is those individuals which have different rep-
resentation with respect to their codification but represents the same chromo-
some (see Figures 11 and 12, and the real representation of their chromosomes
in Figure 13). For these reason, it is recommendable to relabel the individ-
uals before the application of the crossover. The criteria followed for this
relabelling process is to maximize the similarity between the chromosomes
which are crossed. It also improves the convergence of the algorithm and
reduce the generation of invalid elements. The similarity measure is defined
as follows:
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nodes
1 2 3 4 5 6 7 8 9

Chromosomel‘1‘1‘1‘2‘2‘2‘3‘3‘3‘

Chromosom62‘2‘2‘2‘3‘3‘3‘1‘1‘1‘

Figure 11: These two chromosomes represent the same solution, but the
name of the clusters appears different using the vector-based codification.

Cluster 1 Cluster 2 Cluster 3
Chromosome 1 {1,2,3}  {4,5,6} {7,8,9}

Chromosome 2 {7,8,9}  {4,5,6} {1,2,3}

Figure 12: These two chromosomes represent the same solution, but the
name of the clusters appears different using the set-based codification.

Clusters of data instance from 1to 9

Chromosome 1: Cluster 1 49
< | Chromosome 2: Cluster 2 Chromosome 1: Cluster 2 /
© Chromosome 2: Cluster 3 /4/

/
~ //
S A Chromosome 1: Cluster 3
Chromosome 2:#Iuster 1
//
- //
e N //
o —_— /;//
N #
clj 1 ///
/
////
< [/
o ///
] /
7
/
© /
2?7 /

Figure 13: Cluster representation of chromosomes of Figures 11 and 12

Definition 3.1 (Cluster Similarity measure). Let {z1, ..., z,} be a set of ele-
ments, and C;, C; the clusters which are compared. Their similarity measure
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is defined by:

Sim(C’i, CJ) = 1 (

y 2221 dc; (24)0c, (2q) n EZ:I dc; (24)dc; (xq)> (3)

o |C5]

where |C;] is the number of elements of cluster C; and d¢;, () is the Kronecker
0 defined by:
dci(q) = { 1 if 2, € G

The relabelling process can be divided in three fundamental steps:

1. The similarities between the clusters are calculated.
2. The similarities are sorted (decremental order).

3. The second chromosome is relabelled maximizing the similarity with
the first chromosome.

Example 3.4 shows the application of this process for the chromosomes shown
in Figures 14 and 15. The crossover of the vector-based codification ex-
changes strings of numbers between two chromosomes (both strings have the
same length). In the set-based codification, it keeps the similar elements
of both chromosomes and the different elements are randomly distributed
amongst the clusters, creating two new elements. Example 3.5 shows the
crossover process for each codification.

FExample 3.4. This example shows the application of the relabelling process.
First, it takes two chromosomes (see Figure 14 for the vector-based codifi-
cation and Figure 15 for the set-based codification) and calculates the sim-
ilarities between the clusters. The results are shown in table 1. Once the
similarities are calculated, the clusters of chromosome 2 are relabelled from
the most similar cluster:

e Cluster 3 is relabelled to 2 (similarity of 83,33%).
e Cluster 1 is relabelled to 3 (similarity of 66,67%).
e Cluster 2 is relabelled to 1 (similarity of 58,33%).

See Figures 16 and 17 to see the results of the relabelling process applied
to
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nodes
1 2 3 4 5 6 7 8 9

Chromosomel‘1‘3‘1‘2‘1‘2‘3‘1‘3‘

Chromosom62‘2‘2‘2‘3‘3‘3‘1‘1‘1‘

Figure 14: Example of two chromosomes for the relabelling process using the
vector-based codification

Cluster 1  Cluster 2 Cluster 3
Chromosome 1 {1,3,5,8}  {4,6} {2,7,9}

Chromosome 2 {7,8,9}  {1,2,3} {4,5,6}

Figure 15: Example of two chromosomes for the relabelling process using the
set-based codification

Chromosome 1 | Chromosome 2 | Sim. Calculus | Sim. Percentage
Cluster 1 Cluster 1 % (i + %) = % 29,17%
Cluster 1 Cluster 2 % (% + %) = 1—72 58,33%
Cluster 1 Cluster 3 tE3+3)=o 29, 17%
Cluster 2 Cluster 1 10+ =0 0%

Cluster 2 Cluster 2 B+ =0 0%
Cluster 2 Cluster 3 2(3+2)=2 83,33%
Cluster 3 Cluster 1 % (% + %) = % 66,67%
Cluster 3 Cluster 2 % (% + %) = % 33, 33%
Cluster 3 Cluster 3 T3+ =0 0%

Table 1: Similarities from chromosomes shown in Figure 14

nodes
1 2 3 4 5 6 7 8 9

Chromosomel‘l‘?)‘1‘2‘1‘2‘3‘1‘3‘

ChromosomeQ‘l‘1‘1‘2‘2‘2‘3‘3‘3‘

Figure 16: Example of the two chromosomes of figure 14 after the relabelling
process applied to chromosome 2 using the vector-based codification
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Cluster 1  Cluster 2 Cluster 3
Chromosome 1 {1,3,5,8}  {4,6} {2,7,9}

Chromosome 2 {1,2,3}  {4,5,6} {7,8,9}

Figure 17: Example of the two chromosomes of figure 15 after the relabelling
process applied to chromosome 2 using the vector-based codification

FExample 3.5. Figures 18 and 19 shows the crossover process. The first figure
exemplifies the vector-based codification. In this example, the exchange is
between two sections of the chromosomes. This sections are randomly se-
lected. In this case, the interval is from 4 to 7 (both numbers included). The
second figure shows the crossover of the set-based codification. In this case,
the common parts of both chromosomes are kept and the rest of the data
instances are randomly distributed by all the clusters.

nodes
1 2 3 4 5 6 7 8 9

Chromosome 1 [1]1]1]2[2][2]3][3]3]

Chromosome 2 ‘1‘2‘1 2‘3‘2‘3 3‘3‘

NewChromosomel‘l‘l‘l 2‘3‘2‘3 3‘3‘

New Chromosome 2 | 1 [2]1]2[2]2]33]3]

Figure 18: Crossover using the vector-based codification after relabelling

3.2.4 Mutation

In this algorithm an adaptive mutation has been developed for both codifi-
cation. It works as follows:

1. For each chromosome, it randomly chooses if the mutation is applied
(the mutation probability is fixed at the beginning of the algorithm)-

2. When a chromosome is chosen, it decides the alleles which are mutated.
The decision considers the probability of the allele to belong to the clus-
ter which have assigned. If the probability is high, the allele has a low
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Clusters 1  Clusters 2 Clusters 3
Chromosome 1 {1,2,3} {4,5,6} {7.8,9}

Chromosome 2 {2,3} {5,6,7} {1,4,8,9}

Intersection {2,3} {5,6} {8,9}

New Chromosome 1 {2,3,4} {5,6,1} {8,9,7}

New Chromosome 2 {2,3,1,7} {5,6,4} {8,9}

Figure 19: Crossover using the set-based codification

probability of mutate and vice versa. In this algorithm, this probability
is calculated applying the metric defined in the fitness function to one
allele.

3. The alleles are mutated depending on the codification:

e The vector-based codification changes the allele value. The new
value is a random number between 1 and the number of clusters.

e The set-based codification moves the allele to other cluster. It
randomly chooses the new cluster which will contain the allele.

FExample 3.6. Figure 20 shows the mutation of the vector-based codification.
It is focused on a chromosome which have been selected to be mutated. The
first and seventh alleles have been randomly chosen to be changed. Figure
21 shows the same process applied to the set-based codification. In this case,
third and eighth alleles have been moved from first and third clusters to third
and second, respectively.

nodes

12 3 45 6 7 8 9

Chromosome ‘1‘1‘1‘2‘2‘2‘3‘3‘3‘

ChromosomeMutated‘Z‘l‘1‘2‘2‘2‘2‘3‘3‘

Figure 20: Mutation of two alleles in a chromosome using the vector-based
codification
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Cluster 1  Cluster 2 Cluster 3
Chromosome {1,2,3}  {4,5,6} {7,8,9}

Chromosome Mutated — {1,2}  {4,5,6,8} {7,9,3}

Figure 21: Mutation of two alleles in a chromosome using the set-based
codification

3.3 The GGC Fitness Functions

In this section, the two different fitness functions which have been designed
are described. Theoretical and experimental results which have been con-
cluded from the experiments with these fitness (for example, the weight clus-
tering coefficient fitness) are shown in the following section.

3.3.1 The Weighted Clustering Coefficient Fitness Function

The first fitness function is the measure of the Global Weight Clustering
Coefficient, previously described in section 2.6.1.

It uses the following metric which is applied to the Similarity Graph (we
suppose an undirected weight graph):

WijtWin o .
v — Zj,h 2 QijQinQjn

v Si(k; — 1)

where S; = > ;Wi and k; is the number of neighbours of the node .
This fitness looks for individuals which have high similarity with their neigh-
bours and whose neighbours also have high similarity between them.

3.3.2 KNN-Minimal Cut fitness

This fitness function is a combination of the classical K-Nearest Neighbour-
hood (KNN) [49] algorithm and the Minimal Cut measure [68]. KNN assigns
an element to a cluster if the neighbours are in the same cluster. It is useful to
guarantee the continuity condition which is frequent in the Spectral Cluster-
ing solutions. To control the separation between the elements of the clusters,
the Minimal Cut measure is used. It guarantees that those elements which
clearly belongs to different clusters are not assigned to the same cluster. The
K value for KNN is initially given.

Algortihm 4 shows the pseudo-code of the fitness: KNN covers all the
nodes and check if the K-closest elements are in the same cluster (lines 9 to
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12). The fitness value of this metric is the mean of the percentage of well-
classified neighbours of all the individuals in a cluster (lines 10 and 13). The
Minimal Cut measure calculates the average value edge weights which have
been removed (lines 11 and 14). The final value of the fitness if the product
of the KNN metric and the subtraction between one and the Minimal Cut
metric (line 16), both metrics have the same range: [0,1]. Therefore, the

algorithm maximizes the value of % X (1 - %) (line 16) where:

Wy
TotalMC = Z EW#
Yy

s ly ¢ Cu}l
Total KNN = ¥ Hyly € F|(Faf<)x/>\|y e C,}

zeC

In these formulas, C represents the set of clusters and I'(x) represents the
neighbourhood of the element x. It reduces the weight values of the edges
which are cut and improve the proximity of the neighbours.
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Algorithm 4 Pseudo-code of the KNN-Minimal Cut Fitness Function
Input: A n-vector of elements with values between 0 and k where k is the
number of clusters and a variable neighbours which represents the num-
ber of neighbours for the KNN measure.
Output: A value between 0 and 1 which corresponds with the fitness
achieved.
1: TotalKNN = 0.;
2: TotalMC = 0.;
3: Generate the set of k Clusters: C.
4: for all C, € C do
5 if C, = () then
6: return 0
7 end if
8
9

SumKNN = 0; SumMC = 0.
: for all ind € C, do
10: SumKNN += PofKN N (neighbours,ind) {It calculates the
percentage of neighbours for the individual ind which are as-
signed to the same cluster.}
11: SumMC += AvEdW Cut(ind) {It calculates the average value
of the edge weights which have been cut from ind.}
12: end for
13: TotalKNN += SumKNN / |C,|; {|C,| represents the number of
elements of C,.}
14: TotalMC += SumMC / |C,J;
15: end for

16: return

Total K NN % (1= TotalMC
] ]
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4 Experimentation

This section shows the different experiments which have been applied using
the GGC algorithm. These experiments are both synthetic and real-world
experiments. First, a comparison between the two codifications and the
fitness functions introduced in section 3 is presented. Second, the metrics
used in the experiments are explained. Third, the experiments analyse the
robustness of the GGC Algorithm. Next, the GGC Algorithm results are
compared with other algorithm (K-means, EM and Spectral Clustering) using
synthetic datasets. Finally, these algorithm are also tested with real datasets.

4.1 Comparison of Codifications and Fitness Functions

This section compares the advantages and disadvantages of the two codifica-
tions and the two fitness functions.

4.1.1 Codifications comparison

The two codifications are similar and can be applied to the problem with
the same results, because the fitness function is the responsible to guide
the algorithm to the best solutions. However, they presents the following
differences:

e Omitting the relabelling process, the vector-based crossover operation
is faster than the set-based crossover. In the vector-based case, the
crossover is O(n) because only one loop is necessary to swap the values
of two vectors. For the set-based case, the crossover is O(n?) because
two nested loops are necessary to find the common elements of two
sets.

e The mutation effort of the two algorithms is almost the same, although
the vector-based codification is the fastest. In the mutation of any kind
of chromosome, all of its alleles are visited in both cases, but in the
vector-based codification the value changes instantly when the muta-
tion is applied while in the set-based codification the value is extracted
from one set and introduced in another set.

e Both codifications can use the relabelling process, however the set-
based codification simplifies the similarity calculus with the intersection
operation.

e The algorithm has a probably to fall in a local maximum value of fitness
(which is a common problem when heuristic methods are used). This
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convergence problem has not been deeply study in the GGC algorithm,
however these problems depend on the operations of the genetic algo-
rithm. To compare the codifications convergence, the Spirals dataset
[42] has been tested with the two codifications. Figure 22 shows a
graphic of the average convergence velocity (for 50 runs of the algo-
rithm per codification) with the following parameters of the genetic
algorithm:

— Population: 200

— Generations: 2000

— Crossover probability: 0.3
— Mutation probability: 0.5 1

— Selection (¢ + A): The 50 best individual are selected from the
previous generation.

In this case the vector-based codification converges faster than the set-
based codification.

Owing to the facts that have been exposed above, the vector-based based
codification reduce the computation effort. Because of this, it has been chosen
to carry out the experiments.

4.1.2 Fitness Functions comparison

The experimental results show that the fitness function of the Weight Clus-
tering Coefficient in some cases obtains always the maximum value. The
analysis of this problem shows that it was when the Similarity Graph was
fully connected (it means that all the weights are bigger than 0). To under-
stand this situation, it has been mathematically proved that this problem is
a “metric mistake”. The following theorem shows the proof:

Theorem 4.1. Suppose that G is a graph (with 3 elements or more) and W
is the matrixz of the weights of the graph. If w;; > 0 Vi, j then CCW; = 1Vi.

!The mutation operation is adaptive (see Section 3.2.4), an allele only changes if it has
a low probability value to belong to the cluster which has been assigned for it. Hence, the
mutation helps the algorithm to converge faster, it is not a complete random process such
as in the classical Genetic Algorithms.
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Convergence of the Spirals dataset
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Figure 22: Convergence of the genetic algorithm. The convergence is pro-
duced in the 30 generation

Proof. We choose a random element ¢ which has n neighbours. Let x4, ..., x,
the weight values from the node 7 to its n neighbours. From the definition
of the C* we have:

wijtwiy
v _ Zj,h 2 QijQinQjn
=

If we calculate S; we have:
Si=x1+--+x,

In this case a;; = 1 Vi, j and k; = n, then:

Ttz
ov — D
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If we sort the sum elements we have the following:

0 + xl;xQ + :Blgl'g + 1’1;334 + + 33142’1'71
xg-;—l‘l T O + l‘2-5$3 + $2‘51'4 + + l‘2'f2‘$n
r3+T1 r3+To r3+T4 r3+Tn
mfm 4 omimo4 () 4 Zsbmog + Zatia
Ta+T1 T Ta+x2 + Ta+x3 4 0 + + Z3+Tn

2 2 2 2

o+ + 4 + ..+
Tntxy 4 Tat@y | Zatds g 4 EIntTno1 0

2 2 2 2

If we consider the symmetries of the sum, and we sum the elements which
are symmetric, then we have:

(w1 +@2) + (@1 + @3) + (@1 +24) + -+ + (21 + Tn)

(x2 +x3) + (T2 + 24) + (T2 + 25) + - + (T2 + 7p)
(w3 +24) + (3 +x4) + (23 +25) + - - + (23 + 24)

(n—Dxzy + xzo+4--+uz,
(n—2)xze + xz3+--+uz,
(n—3)as 4+ a4+ +a,

: + :
(l)xn,1 + (1)1'71
In this case, if we sum, for example, the xy that is left in the first sum to
(n — 2)zy we have (n — 1)z, if we do the same with the x3 left in the first

and second sum to (n — 3)xs we have (n — 1)zs. If we continue until x,, we
have (n — 1)z; Vi. Then:

($n,1 + zn)

o (=Dt
We know that S; = 2y + - - - + x,, then:

o Dt
e ey

O

Since the Similarity Graph construction that was chosen is the fully con-
nected graph (see section 2.4.1), the only fitness that has been applied in
the experiments is the KNN-Minimal Cut fitness (the other fitness always
achieves the maximum value for the fully connected graph because its weights
are always bigger than 0). The fully connected approximation was chosen
because the GGC algorithm tries to maximized the robustness of the cluster-
ing selection with respect to the metrics (which is explained in the following
subsection). If the e-neighbourhood graph or the k-nearest neighbour graph
are chosen (see section 2.4) the Similarity Graph increments the number of
zero similarities which is not desirable when all the elements could have a
non-zero similarity between them. It could reduce the robustness of the al-
gorithm and supposes a higher dependency to parameters (in this case, the
Similarity Graph generation parameters: the e value of the e-neighbourhood
graph and the k value of the k-nearest neighbour graph).
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4.2 Metrics

All the techniques use the metrics which have been mentioned before: K-
means and EM use the Euclidean Distance Metric and Spectral Clustering
and GGC use the Radian Basis Function (with the o parameter optimized in
the Spectral Clustering case). There are not applications with other metrics
or kernels because the goal of the GGC algorithm is to be robust enough to
separate the dataset without orders of magnitude problems. It tries to give
the same results if two different metrics give the same relative distance be-
tween the objects, that is, if there are, for example, three objects: 01, 09, 03,
and the distances between them are d%l, d%l, d%l, d%g, d%Q, d%Q where
M, and M, are the metrics and the two metric distances satisfies the same
order relationship:

dist < dbgt < d)y

diy < dyy? < diy?
Then the clustering results should be almost the same (except, for example,
when some of these distances are infinity or zero).

4.3 Comparing SC and GGC Robustness

An important problem of the Spectral Clustering algorithm is its dependency
to the parameters of the Similarity Function. The GGC algorithm has been
designed to avoid this problem. The KNN metric which is applied in the
fitness step provides a higher robustness to the algorithm compared to the
traditional Spectral Clustering algorithm. It does not depend on the order of
magnitude of the distances calculated by the metric. Figure 23 shows a clear
example. In this case, the Spectral Clustering algorithm (implemented in
the “kernlab” package of CRAN [42]) is compared with the GGC algorithm.
In the “kernlab” package, Karatzoglou et al. implements the Random Walks
Normalized Spectral Clustering algorithm. They use the Gaussian RBF Ker-
nel to set the similarity graph. It is defined by:

K;; = eollwi—z? (4)

Where K is the Similarity Graph, x;,z; are data instances, and o is the
parameter which changes the order of magnitude. The experimental results
show that the clustering technique clearly depends on the o parameter. Fig-
ure 23 shows the different clustering results of the Spectral Clustering and
the GGC algorithm modifying the o parameter.
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foroc =2
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(c) Spectral Clustering results of Spirals (d) GGC results of Spirals for ¢ = 500

for o = 500

—
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for o = 2000

Figure 23: Spectral Clustering and GGC results for the Spirals[42] dataset
with o = 2, 0 = 500, 0 = 2000, respectively
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4.4 Experiments on Synthetic data

In this section the different datasets which have been considered for the
experimentation are explained and analysed. These datasets have been ex-
tracted from different clustering works which study the behaviour of different
approaches similar to Spectral Clustering [13, 29, 32, 40, 73, 81]

4.4.1 Data description

K-means, EM and SC have been tested with different datasets. These
datasets are 2-Dimensional data which can be separated by human intu-
itions but are problematic for the classical clustering algorithms. We have
analysed the following datasets (figure 24 shows the original datasets):

e Aggregation[32]: This dataset is composed by 7 clusters, some of them
can be separated by parametric clustering.

e Compound[81]: There are 6 clusters which are only separable by non-
parametric methods (or special kernels if parametric clustering is ap-
plied).

e D31 [73]: This data has 31 clusters with a high level of noise.

e Flame [29]: This dataset have three ideal clusters: the first is the base
of the figure, the second is the top and the last are two outliers at the
top-left of the image.

e Jain [40]: This dataset is composed by two surfaces with different den-
sity and a clear separation.

e PathBased[13]: This dataset have 2 clusters which can be separated by
a parametric method and another cluster which can only be separated
by a non-parametric method. This example is problematic for algo-
rithms such as Spectral Clustering because this algorithm is sensitive
to the noisy points.

e R15: [73]: Similar to D31, this dataset is divided in 15 clusters which
are clearer separated.

e Spiral: [13]: In this case, there are 3 spirals close to each other.
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Figure 24: The original images of the synthetic datasets
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(g) Original R15 dataset
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(h) Ideal human separation for Spiral
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Figure 25: The ideal human separation of the synthetic datasets

(g) Ideal human separation for R15
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(g) SC results for R15

vz

vi

Vi

(h) SC results for Spiral

Figure 26: Spectral Clustering results for the synthetic datasets. The algo-
rithm has problems with Compound, D31, Flame, PathBased and R15
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Figure 27: K-means results for the synthetic datasets. The algorithm has

problems with all the datasets
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Figure 28: EM results for the synthetic datasets. The algorithm has problems
with all the datasets except R15

48



s
8
.| .
8
.
<
8
o
> 9 o
. .
o
3
.
.
o
25 30 35 40
Vi
g
8
2 |
8
o °°
&
~
8
e 4 s
ER ko 5 24 o o 3 N °
; it A oL
00 < g o © ° ° 0 © QQ ° °aco
%@?E ° R 1 ° o °o
5 B I8 © R S R
7 % o Boog &, 4 ° o o ° o oo o o
ol “ AN
0 4 ot 8 o 2 % o
<
5 10 15 20 25 30 [ 2 4 6 8 10 12 14
Vi Vi

(¢) GGC results for D31 (d) GGC results for Flame

v2

15 20 25
L L
o

10
L

16

12
L
®
20
L

950 o

V2
10
L
V2

15
L
o

10
L
o
o

T T T T T T T T u T
4 6 8 10 12 14 16 5 10 15 20 25 30

Vi Vi

(g) GGC results for R15 (h) GGC results for Spiral

Figure 29: GGC results for the synthetic datasets. The algorithm has prob-
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4.4.2 Results obtained from the clustering algorithms using syn-
thetic data

The selected clustering algorithms (Kmeans, Em using a Gaussian Mixture
model estimator, Spectral Clustering and the GGC algorithm) have been
applied to the previous described datasets. All the algorithms have been
executed 50 times and their best results have been selected. Figure 24 shows
the original datasets and Figure 25 the ideals clusters. The analysis of the
rest of figures shows different problems for the clustering techniques:

e Figure 26 shows the results of Spectral Clustering applying the algo-
rithm of Ng [61] to find the optimal o. The figure shows that Aggrega-
tion, Jain and Spirals are not problematic for the Spectral Clustering
algorithm. However, Compound, Flame, PathBased, D31 and R15 are
more problematic. Compound is difficult to classify for the Spectral
Clustering algorithm because the distribution of the data is highly het-
erogeneous. In the case of Flame, there is not a clear boundary between
the clusters. It makes difficult the application of the algorithm. D31
and PathBased have noisy information, it produces several desviations
for the SC algorithm. Finally, R15 has also noisy information in the
central clusters.

e Figure 27 shows the results of Kmeans using the euclidean distance
metric. It shows that K-means is useless for almost all the cases. It
is understandable since Kmeans is a parametric algorithm where the
parameter is a centroid whose position is optimized by the algorithm.
In the case of Compound, for example, the clusters of the top-left po-
sition of the image are well classified, however it is impossible, with
these conditions, that the algorithm classifies correctly the bottom-left
two clusters because one cluster surrounds the other. It hav the same
problem with Jain, Spirals, PathBased and Flame. In the case of Ag-
gregation, the worst misclassification is related to the three clusters of
the bottom-left. In this case, the different sizes of the clusters influence
in the selection. The D31 and R15 misclassification is a consequence
of a local minimum convergence of the algorithm caused by the noisy
information.

e Figure 28 shows the results of EM also using the Euclidean distance
metric. It shows that EM is better than K-means but is also useless
for theses cases. It has similar problems to Kmeans. It achieves better
results for R15 although the rest of the datasets are misclassified.
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e Figure 29 shows the results of the genetic algorithm. Table 2 shows the
fitness value achieved by the GGC algorithm for the results obtained in
each cluster selection. Table 2 also shows the parameters selection of
the genetic algorithm for each case. The results show that the genetic
algorithm only have problems with the noisy cases: Flame and Path-
Based. The reason is related to a boundary problem. It is difficult for
the algorithm determined the limit of the clusters when it is not clear.

Dataset Population Generations Crossover Mutation Selection Max. Fitness
Aggregation 100 2000 0.4 0.01 50 0.9928
Compound 200 2000 0.5 0.01 50 0.9552
Flame 100 2000 0.4 0.01 50 0.9828
Jain 100 500 0.4 0.2 50 1.0
Pathbased 100 2000 0.4 0.01 50 1.0
R15 200 2000 0.5 0.3 50 0.9850
Spiral 100 500 0.4 0.01 50 1.0
D31 200 5000 0.7 0.4 50 0.9445

Table 2: Best parameter selection found of the GGC algorithm for the differ-
ent synthetic datasets and the fitness achieved by the GGC algorithm. The
K value of the KNN-Minimal Cut fitness is always set to 2

4.5 Experiments on Real-World data

In this section the experiments are focused on real-world datasets which have
been previously classified by humans. Here, the accuracy of the algorithm is
tested.

4.5.1 Dataset Description

The experiments have been also applied on three real datasets extracted from
the UCI Machine Learning Repository [27]:

e Iris: This dataset is a well-know dataset. It has 150 instance of 3
different classes (50 in each class). Each class refers to a type of iris
plant. The classes are: Iris Setosa, Iris Versicolour and Iris Virginica.
Each instance has 4 attributes which are: Sepal length in cm, Sepal
width in cm, Petal length in cm and Petal width in cm. It does not
have missing values.

e Wine: This dataset has 178 instances. Each instance has 13 attributes
and can belongs to 1 of the three different classes. Each class refers to
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digit 0 digit 1 digit 2 digit 3 digit 4

00 02 04 06 08 10
00 02 04 06 08 10
00 02 04 06 08 10
00 02 04 06 08 10
00 02 04 06 08 10

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

digit 5 digit 6 digit 7 digit 8 digit 9

00 02 04 06 08 10
00 02 04 06 08 10
00 02 04 06 08 10
00 02 04 06 08 10
00 02 04 06 08 10

T T T T T T T T T T T T T T T T T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Figure 30: Example of the digits dataset

a type of wine. The first class has 59 instances, the second one has 71
and the third one has 48. It does not have missing values.

e Handwriting: This dataset is based on digits handwriting. It has
60000 train instance and 10000 of test instances. Each instance has
a vector of 784 elements which represents a 28x28 matrix where each
element is a pixel in grayscale ranged from 0 to 256. There is also
a column for the labels numbered from 0 to 9. Figure 30 shows an
example of 10 instances. It does not have missing values. In this
work only 6000 instances of this dataset have been analysed because
the Similarity Graph generated by the Spectral Clustering algorithm is
bigger than the memory available 2.

4.5.2 Preprocessing and Normalizing the Data

This first analysis prepares the datasets for the clustering analysis. The pre-
processing process is divided in two principal steps:

e The first step has been the study of the available variables through
histograms and correlation diagrams which were used for dimension

2The computer used has 4 Gbytes of RAM memory and 1 Gbytes of Virtual Memory, in
the generation of the Similarity Graph it is necessary to generate a matrix of 6000 x 6000
of double values. If a double variable requires 8 bytes, then the whole matrix requires
6000 x 6000 x 8 ~ 288 Mbytes. However, if the 60000 data instance are used, the memory
required is 60000 x 60000 x 8 ~ 28.8 Gbytes.
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Figure 31: Boxplot of the Iris Dataset. Petal-length and Petal-width are
the variables which better discriminates the three classes. Versicolour and
Virginica classes are more difficult to discriminate than Setosa class. The

number of outliers is low.

reduction. The information provided by this phase shows the values
which are useless because, for example, are constants or have a high
correlation (more than 0.8 if we consider that the correlation values
is in range [0,1]) with other variables. This means that they may
variate the clustering results, if they are not eliminated, with redundant

information.
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Figure 32: Histograms of the Iris Dataset. The three Gaussian functions
which represent the classes distribution are also clearer separated for Patel-
length and Petal-width variables. Versicolour and Virginica classes are too
close together.

e The second preprocessing phase consists on the normalization of the
variables. First, the attributes with outliers are recentralized. After,
the same range is applied for all. As was described in section 2.2, we
combine Z-score to recentralized the distribution and avoid outliers and
MinMax to fixed the range of all the values between 0 and 1.

o4



Dataset |Populati0n Generations Crossover Mutation Selection Max. Fitness

Iris 1000 2000 0.1 0.8 50 0.9946
Wine 100 20000 0.4 0.01 50 1
Handwriting 20 20000 0.9 0.2 ) 0.8995

Table 3: Best parameter selection found of the GGC algorithm for the differ-
ent real-world datasets and the fitness achieved by the GGC algorithm. The
K value of the KNN-Minimal Cut fitness is always set to 2

Figures 31 and 32 show the boxplots and histograms of the Iris dataset for
all its variables and classes. In the Iris and Wine datasets, there are a
few number of instances and attributes, it implies that the reduction is not
necessary. However, in the case of the handwriting dataset there are a lot of
attributes (pixels) which do not contribute to the analysis (those pixels which
have always the same value, for example). Also there are features which have
a high correlation between them. These attributes have been reduced in the
first step leaving 195 attributes for the analysis. All the attributes of the
datasets have been normalized applying the techniques of the second step.

4.5.3 Experiment Results

The experiments have followed the same procedure that they followed with
the synthetic datasets experiments (see Table 3 for the parameters selection).
The value of ¢ has been approximated to 100. Table 4 shows the accuracy
percentages of the different clustering algorithms. The results for the Iris
show that EM is the best classifier (with an accuracy of the 96,67 %) and the
GGC algorithm is the second (92%). The results for the Wine datasets show
that all the algorithm obtained high accuracy values (bigger than the 95 %),
and the GGC algorithm obtain a perfect classification with the maximum
fitness value (see Table 3). Finally, the results of the Handwriting show that
Spectral Clustering and GGC obtain the best classification results (73,55%
and 99%, respectively). These results are a consequence of the data distribu-
tion. Iris dataset has instances of different classes which are closed to each

Iris Wine | Handwriting
K-Means best classification 89.33% | 95.50 % 50.83 %
EM best classification 96.67% | 97.19% 35.43 %
Spectral Clustering best classification | 89.33% | 95.50% 73.55%
GGC best classification 92% 100% 99%

Table 4: Experimental results obtained using the UCI datasets

55



other, the GGC algorithm has problems to discriminate the boundary of the
clusters specially when there are intersections between the clusters. The fit-
ness value of the Iris is the highest that the algorithm has achieved, it shows
that there are instance which belongs to different cluster but are closed to
each other. In the case of the Wine dataset, the classes are clearer separated
(as the different clustering techniques show). It improves the results of the
GGC algorithm, because the boundaries are clearer. It must be also similar
in the Handwriting case, however, the value of the fitness shows that there
are some instances which are in the clusters boundary and are difficult to
assign to a determine cluster.
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Figure 33: Discrimination of the data obtained by the different algorithms
(from left to right and from top to bottom: The original Iris classification, the
results of EM, the results of Kmeans, the results of Spectral Clustering and
the results of the Genetic Algorithm) projected over 2 principal components
which explained the 95.81 % of the point variability
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5 Conclusions

This work presents a new clustering method inspired in the Spectral Clus-
tering algorithm and based on Genetic Algorithm. The GCC algorithm is
defined using simple codifications and traditional Genetic Algorithm opera-
tions. The main contribution of the algorithm is the fitness function. GGC
is based on KNN and Minimum Cut measures. It is applied to the Similarity
Graph which is generated in the first step of the Spectral Clustering algo-
rithm. The combination of these measures improves the robustness of the
algorithm giving a higher independence of the parameters of the Similarity
Function. The results of Section 4 (Experimentation) show that the new
algorithm obtains good results for both, synthetic and real-world datasets.
However there are several problems which will be studied in a future work:

e Large datasets, such as the whole Handwriting dataset, are problematic
because the Similarity Graph generated is computationally high. This
problem is inherit from the Spectral Clustering algorithm. It is neces-
sary to find other techniques to keep t he information of the Similarity
Graph.

e When the number of clusters is high, the algorithm converges slower to
the solution. It is also a problem which should be studied.

e When the boundary of the clusters is not clear, the algorithm also has
problems to define this section.

The future work will be focused on several improvements that could be
made to the GGC algorithm. The effects of noisy information could be
deeply analysed. The number of clusters could be automatically selected us-
ing strategies such as cross-validation. Finally, other fitness functions which
could improve the convergence, and the clusters quality, of the GGC algo-
rithm will be studied.
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6 Contributions

During the development of these work the following contributions have been
generated:

e G. Jiménez-Diaz, H. D. Menéndez, D. Camacho and P. A. Gonzalez-
Calero. Predicting performance in team games. In I. I. for sys-
tems, C. Technologies of Information, and Communication, editors,
ICAART 2011 - Proceedings of the 3ed International Conference on
Agents and Artificial Intelligence, volume Vol 1, pages pages 401 - 406,
2011.

e G. Bello, H. Menéndez and D. Camacho. Using the clustering co-
efficient to guide a genetic-based communities finding algo-
rithm. In H. Yin, W. Wang, and V. Rayward-Smith, editors, Intelli-
gent Data Engineering and Automated Learning - IDEAL 2011, volume
6936 of Lecture Notes in Computer Science, pages 160-169. Springer
Berlin / Heidelberg, 2011.

e Héctor Menéndez, Gema Bello Orgaz and David Camacho. Features
Selection from High-Dimensional Web Data using Clustering
Analysis. In Proceedings of the International Conference on Web In-
telligence, Mining and Semantics, WIMS ’12 (accepted).

e Héctor Menéndez, Gema Bello Orgaz and David Camacho.Extracting
Behavioural Models from 2010 FIFA World Cup. Journal of
Systems Science and Complexity, JSSC 2012 (sent).

e H. Menéndez and D. Camacho. A Genetic Graph-based Cluster-
ing Algorithm. In H. Yin, W. Wang, and V. Rayward-Smith, editors,
Intelligent Data Engineering and Automated Learning - IDEAL 2012,
(conditional accepted).
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