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Abstract

This dissertation presents the work done in the past year towards the creation of a methodology or frame-

work for the design of multiagent systems. The main goal is to use complexity science to shed some light in

the design process of multiagent systems and swarms. The results presented here are from the initial phase

of the project, the methodology is yet to be developed. In chapter 1, the four fields that this work cover are

presented: Multiagent Systems, Swarm Intelligence, Constraint Satisfaction Problems and Complex Systems.

After that, in chapter 2, a first approach to multiagent systems is presented with a system built to solve a univer-

sity scheduling problem. As one of the goals is to build very light systems, chapter 3 presents a first step in the

simplification using a swarm of agents based on memory and message discrimanation to solve a CSP bench-

mark problem, the N–Queen problem. Chapter 4 proposes a possible analysis using a complexity science

approach to both systems. Finally, chapter 5 concludes and suggests future directions for the research.
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Resumen

Este documento presenta el trabajo realizado el pasado año en la creación de una metodología o marco de

trabajo para el diseño de sistemas multiagente. El objetivo principal es usar la ciencia de la complejidad para

arrojar algo de luz sobre el proceso de diseño de sistemas multiagente y enjambres de agentes. Los resultados

presentados aquí proceden de la etapa inicial del proyecto, todavía se ha de desarrollar una metodología. En

el capítulo 1 se presentan los cuatro campos que abarca este trabajo: Sistemas Multiagente, Inteligencia

Enjambre, Problemas de Satisfacción de Restricciones y Sistemas Complejos. Tras esto, en el capítulo 2,

se presenta una primera aproximación a los sistemas multiagente con un sistema construido para resolver

un problema de planificación en la universidad. Cómo una de las metas del trabajo es construir agentes

muy ligeros, el capítulo 3 presenta el primer paso hacia esta simplificación usando un enjambre de agentes

basados en memoria y discriminación de mensajes para resolver un problema de satisfacción de restricciones

usado de referencia, el problema de las N Reinas. El capítulo 4 propone un posible análisis usando una

aproximación de sistemas complejos en los dos sistemas. Finalmente, el capítulo 5 concluye y sugiere futuras

direcciones para la investigación
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1
Introduction

The main objective of this dissertation is to establish the foundations for a future doctoral thesis on the use of

complexity science in the design and evaluation of multiagent systems. This thesis is still on an early state and

the current dissertation only presents the key ideas to be developed for the doctoral dissertation and a swarm

system that is based on these ideas. Before introducing the system, its characteristics and some initial results,

we will describe some fundamental ideas and a previous work on negotiating agents to understand what is

being done and why.

1.1 Multiagent Systems

Since its inception in the early ages of computers, artificial intelligence (AI) has been a quest for the design in

software of an intelligent entity. As this goal seemed very ambitious and some walls were encountered along

the way, AI has been redefining itself from the goal of creating a single entity that had all the traits we expect

from an intelligent being [1] to try to recreate one of those traits in isolation [2,3], from trying to imitate human

intelligence to improve results of problem solving software with “intelligence” [4].

Nowadays, AI researchers are working on multiagent systems (MAS). The definition of agent is a very

discussed topic as every researcher in the field has his own definition [5–7], but for this paper we will understand

an agent as an autonomous entity that has some capabilities for interaction (usually expressed as inputs and

outputs), some intentions or goals and the ability to move towards that goal. Multiagent systems, then, are

defined as systems comprised of multiple interacting agents. This definitions of agent and multiagent system

are very relaxed, a precise definition is impossible in practice. Also, both definitions can refer to software or

natural and social systems. A market, an ant colony and an ecosystem are examples of multiagent systems.

This is the reason why many models of natural and social systems are built using this approximation, reducing

its components to simple, well-defined agent representations.

When referring to software agents or systems, we should differentiate between Agent Oriented Program-

ming (AOP) and Agent Based Models (ABM) [8], depending on what kind of software system approach we are

using. AOP is considered the next paradigm after Object Oriented Programming (OOP), where the key ele-

ments of the systems are considered agents. This approach has more to do with Software Engineering than

with AI as it determines some guidelines when designing a software system with multiple interacting elements

and it’s not focused on the capabilities (i.e. reasoning, learning, etc) of the agents. ABM is also a methodology,

but one oriented to the design of models and simulations of systems. Each agent represents an element of the

system studied, for example in a social system each agent would be a person or in an ecosystem each agent

would represent some species, and each agent is programmed with some behavior or a set of capabilities.

Once the agents are modeled, the simulation is run with a group of them and this way the experimenter can

extract some conclusions about the system. The artificial intelligence approach to multiagent systems stands
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in a middle ground. AI researchers focus on the design of agents that can perform adequatly in a multiagent

environment [7] or in the design of a whole system with some desired properties based on the cooperation

and/or competition between agents [5].

A multiagent system can, for example, be applied to problem solving. In this case, the role of the researcher

is the design of a MAS where the agents give a solution to a problem. This approach was a response to the

increasing availability of clusters and grids and to the observation that natural and social systems also uses

a distributed approach to problem solving. Some examples of distributed problem solving in the natural and

social world can be seen in markets, where different sellers adjust prices and make pacts to increase the

benefits or cut loses [9], or in the ants foraging and defense behavior [10].

When designing agents, we can recognize two types named heavy agents and light agents. Heavy agents

are agents that have some abilities as reasoning, learning, negotiation or complicated communication mecha-

nisms. The use of heavy agents can be understood as motivated by the idea that cooperation or competition

are achieved through a reasoning process. This branch of multiagent systems heavily relies on ideas from

game theory, mathematical logic and psychology [7]. On the other hand, light agents are simple reactive

agents with none of the previous mentioned abilites and with a simple communication mechanism if any. This

kind of agents can be seen in natural systems, neurons, ants and cells are examples, and this is the inspiration

behind the use of this agents.

In the next chapters we will discuss some systems built following both approaches, heavy (although not

so heavy) and light agents, but before introducing them there are three concepts that need to be explained:

Constraint Satisfaction Problems, Swarm Intelligence and Complex Systems.

1.2 Constraint Satisfaction Problems

A constraint satisfaction problem is a problem where we have a set of variables with different possible values

and we need to assign to each variable a value that doesn’t interfere with the other variable’s values. This

intereferences are given as a set of constraints and a solution to the problem is a set of assignments where

each constraint is satisfied [11].

An easy to understand example of this kind of problem is the map coloring problem. In this problem we

have map with different countries or regions and the goal is to color each region with a color different from

the colors of its neighbors. Here the variables are the regions, the domains for each variable are the colors

available and the constraints are for each variable to be different from the neighboring variables. We can

represent this as a graph where each node is a region and each link represents a contraint (fig. 1.1).

In the figure, X1, X2 and X3 are the variables and C1, C2 and C3 are the constraints. For this to be a

complete definition of a CSP we need to define a domain for each variable. The domains don’t need to be

the same, we can have problems where the domains are completely different and even problems where the

variables don’t represent the same thing. To illustrate this we will consider the domains to be

D(X1) = D(X2) = {Red,Green,Blue}

D(X3) = {Red,Green}

Pág. 2 Juan I. Cano Núñez



1.2. Constraint Satisfaction Problems

Figure 1.1: The map coloring problem with three regions represented as a graph. Each node represents a region
and the links represents a constraint.

and the contraints

C1 = < X1 6= X2 >

C2 = < X2 6= X3 >

C3 = < X1 6= X3 >

With this we have completely defined a CSP, we have a set of variables X = {X1, X2, X3}, a set of domains

D = {D(X1), D(X2), D(X3)} and a set of constraints C = {C1, C2, C3}.

The first attempts to solve CSP used Backtracking algorithms: values are assigned to each variable until

a variable has no available value, then we go back one step and try to assign a different value to the previous

variable. At each step, the domains of the unassigned variables are updated to contain only values that can

satisfy the constraints. Following the alphabetical order for the variables and the order afore written for the

domains (Red then Green and then Blue), applying this algorithm to our toy problem problem we have the

following trace:

(1) Assign Red to X1 and update D(X2) and D(X3)

X1 = Red ; D(X2) = {Green,Blue}, D(X3) = {Green}

(2) Assign Green to X2 and update D(X3)

X1 = Red, X2 = Green ; D(X3) = {}

(3) Rollback, D(X3) is empty

X1 = Red ; D(X2) = {Green,Blue}, D(X3) = {Green}

(4) Assign Blue to X2 and update D(X3)

X1 = Red, X2 = Blue ; D(X3) = {Green}

(5) Assign Green to X3 and we have a solution

X1 = Red, X2 = Blue, X3 = Green

This algorithms are very expensive computationally and they were improved using heuristics before better

algorithms were developed [12]. For example, ordering the variables by the number of constraints they have

or the size of their domains can improve the results. This family of algorithms are costful not only because

the size of the search, but also because checking the constraints, sorting the variables (in the case of using

Juan I. Cano Núñez Pág. 3
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heuristics) and some other side operations can be very expensive computationally. Some improvements of

the backtracking algorithm and heuristics are the backmarking algorithm [13], backjumping [14], the use of

look-ahead [15] and constraint learning [16].

Using concepts of local consistency some algorithms have been developed that can solve the problem,

simplify it or verify its satisfiability. This family of algorithms are commonly known as Constraint Propagation

algorithms. Local consistency implies that constraints taken in a local context are satisfied. The most typical

local consistency conditions are node consistency (the unary constraints are satisfied by all values in the

domain), arc consistency (taking pairs of variables, their domains only contain values that satisfy a binary

constraint between them) and path consistency (similar to arc consistency but considering three variables).

Constraint propagation techniques are commonly used to clean up the domains of a CSP before applying

another algorithm to solve the problem. The implementation of these algorithms are usually based on cascad-

ing effects: after one domain is altered, all the related variables are also updated until no domain is changed.

These techniques are very useful for large problems where the time taken in this domain clean up is less than

the time taken to solve the system without any change, and sometimes this preparation step doesn’t improve

significantly the overall time to solve the problem. On the other hand, using a constraint propagation algorithm

can simplify a lot the problem and even solve it or mark it as unsolvable.

Finally, local search can be used to solve this kind of problems, but they don’t guarantee to find a solution

even if there is one [17]. There are also distributed techniques used to solve this problems and they will be

discussed in the next chapter when we discuss the negotiating agents’ approach to a CSP.

1.3 Swarm Intelligence

Swarm Intelligence is the term used to describe systems where an optimal state is achieved through the

interaction of a group of simple agents. The term originated in the late 1980s to refer to cellular robotics

and was coined by Gerardo Beni and Jing Wang [18]. Although this was the initial use of the term, swarm

intelligence has being used in the context of modeling and simulation of software and natural systems. Among

the most famous examples of swarm intelligence we remark Ant Colony Optimization (ACO) [19], Particle

Swarm Optimization (PSO) [20] and Bees algorithm [21] in the domain of optimization and some models

of birds flocking [22] and schools of fish [23] in the domain of simulation. As we are interested in swarm

intelligence for problem solving, we will focus on the first three examples.

Ant Colony Optimization is a family of algorithms that can be applied to any problem that can be trans-

formed into finding an optimal path in a graph. These algorithms are based on the foraging behavior of

ant colonies. Briefly, ants start in a node and follow links to other nodes, marking the links they visit with

pheromones. These pheromones alter the probability of choosing a path, giving the links in the shortest paths

a higher chance to be selected. There are several versions of the original algorithm, given by Marco Dorigo

in his PhD thesis in 1992, each of them specify some rules for the ants, the pheromone trails or the way they

are distributed in the graph. The convergence of these algorithms, their ability to find a global optimum in

finite time) cannot be proved for all the variations and all the situations, and the time needed to find one of

these solutions cannot be easily estimated if at all, but this is a general problem of algorithms based on swarm

intelligence.

Pág. 4 Juan I. Cano Núñez



1.4. Complex Systems and Self–organization

In Particle Swarm Intelligence a set of agents, called particles, move around a problem space selecting the

points that improve they’re fitness function. This kind of local search allows the optimization of a function without

calculating the gradient (the direction of the greatest increase) which is usually very costful. The population

of particles fly over the space keeping track of the best position each particle has found so far and a global

best position. Each particle move and steer following the direction of the best point it has found and the best

position found by the swarm. As with the previous method, and also the Bees algorithm discussed next, the

convergence to the best solution cannot be guaranteed in all situations, although the three methods prove to

make very acceptable approximations in case the optimum is not found.

If the ant colony optimization was based on the foraging behavior of ants, the Bees Algorithm is based on

the behavior of foraging bees. The algorithm starts with a group of scout bees randomly distributed across the

problem space. The fitness of each bee is evaluated and the best ones are chosen for a neighborhood search

where some more bees are assigned to search the space around the spots found by the scout bees. From

these neighborhood searchs the best bees are chosen and the remaining bees start searching again in other

places and the process is repeated.

A formal proof of the convergence for the Bees Algorithm has not yet been found but in the case of ACO

and PSO it’s been proved that under certain circumstances the global optima is found [24]. The variations

of these algorithms have not been so thoroughly studied so there’s no proof of convergence, even to a local

optima, for many of these variations.

Broadly speaking, we can say that swarm intelligence are multiagent systems where the agents are ex-

tremely light and the resulting behavior can be seen as an act of intelligence. There are other examples of

SI algorithm, for example based on social insects’ labor division [25] and the artificial inmune system [26].

There’s usually a biological inspiration associated with the algorithms that fall under this label, but there are

some techniques that are inspired by social phenomena (e.g. PSO), physical phenomena (e.g. Gravitational

Search Algorithm (GSA) [27]) and others.

1.4 Complex Systems and Self–organization

There’s been a lot of buzz around the word complex. Complex Systems or Complexity Science are commonly

mentioned in articles ranging from physics to sociology and economics. Although there are a lot of articles

dealing with complexity there is not a general agreement about what systems are complex or even what makes

something complex. There is a general feeling that something is complex if it cannot be easily understandable.

The word comes from latin complexus: com- (“together”) and plectere (“to weave, braid”). If we refer to its

etimology, something complex should have at least two elements and have some intricate relationship between

its elements. Thus, a complex system should be a system with different elements and a mesh of relationships

among them.

With this idea in mind there’s been two well-defined postures, one where complex systems are just a type

of systems [28] and another where complexity is taken as a basic property of the universe [29,30]. If complexity

is a basic property of the universe the classical thinking in science is broken as four key points of its method

aren’t valid anymore [31]:

1.– Reductionism: a system cannot be decomposed to its constituent elements as the relationship between
them would be broken.
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2.– Determinism: relations between elements of the system can create feedback loops making the system
sensitive to initial conditions, a feature of chaos.

3.– Correspondence theory of knowledge: simply by observation we cannot gather complete knowledge of the
system, we can just build models that represents some aspects of the system.

4.– Dualism: as we can only observe parts of the system we reach a point where a dualism (i.e. something
belonging to two exclusive categories) is necessary to explain phenomena (matter-mind, wave-particle)

Even considering complex systems as a kind of system, the previous points can be applied to their study

confirming that a new method is needed. Following this view, that complex systems are just a type of system,

we can enumerate some properties commonly agreed:

1.– Two or more elements interrelated

2.– Behavior in the edge of chaos (between order and disorder)

3.– Elements not completely dependent nor independent

4.– Emergent properties: local interactions develop a global behavior that cannot be explained by reduction

To this properties we can add self–organization. As everything that has anything to do with complex sys-

tems, there’s no general consensus about how to describe or measure self–organization. A common property

used to characterize self-organization is the creation of order, understood as the negative of entropy, without

the intervention of an external agent. The process of self–organization is considered a collective effort of its

elements, which act in parallel and in a distributed manner creating a robust and resistant organization [32].

To measure self–organization in physics and related areas we can use the thermodynamical concept of

entropy, as stated by its second law: an isolated system tends to evolve to a state of maximum entropy, its

thermodynamical equilibrium. In other areas where we can define probabilities over the state space we can

use the statistical entropy, defined by:

H(P ) = −
∑
s∈S

P (s) logP (s)

where H is the entropy, P (s) is the probability of the system of being in state s from the set of all its possible

states S. Using this definition of entropy in the second law of thermodynamics, we can say that a system tends

to its most probable state as the maximum statistical entropy is achieved with higher values of P (s)

Some argue that self–organization is just a point of view and that any system can thought of as self–

organizing [33]. The role of the observer can be emphasized with an example by Stafford Beer (as quoted by

Carlos Gershenson in [34]): When ice cream is taken from a freezer, and put at room temperature, we can say

that the ice cream disorganizes, since it loses its purpose of having an icy consistency. But from a physical

point of view, it becomes more ordered by achieving equilibrium with the room, as it had done with the freezer.

It is clear that multiagent systems and by extension swarms are complex systems. Depending on the

way we understand complex systems (type of system vs. worldview), we can argue that some MAS are not

complex, but the MAS we are going to deal with fall under this label as they are composed by several agents

and different relations between them. As stated before, a new approach is needed to understand these systems

and what we are going to develop, starting with this dissertation, is a way to design simple swarms to solve

some optimization problems based on theories and methods from complexity science.

Pág. 6 Juan I. Cano Núñez



2
Negotiating Agents

The first step in this research was the use of very light agents to solve a Resource Allocation Problem [35,36],

from the family of Constraint Satisfaction Problems. In a resource allocation problem we have a set of resources

that need to be assigned to a series of agents, as for example the allocation of processing time to the users of

a mainframe [37] or the assignment of runways to planes in an airport [38].

In general, in a resource allocation problem we have a set of resources that are limited and a set of agents

that need these resources in some specific way. The nature and characteristics of these resources are very

important when deciding a solution as they define part of the constraints to take into account. The rest of the

constraints are defined by the agents or are imposed externally. A solution of the problem is found when we

can make a feasible allocation (every agent has a resource assigned) or we find the optimal allocation. In the

latter case we must decide on a way to measure the optimality of a solution. Also, there are cases where there

is no possible solution.

This kind of problems have been treated in many different ways [39,40]. One approach recently developed

is MultiAgent Resource Allocation (MARA) [41], which uses multiagent systems to solve the allocation problem.

This approach comes very natural as instead of programming an abstract algorithm we design a model of the

problem, create some behavior for the agents and let system evolve to a solution. The key of this method is to

capture the relevant aspects of the problem and define some utility function for the agents.

In the first section of this chapter there is a precise description of the problem, starting with an overview of

the problem and then dealing with the relevant details to build the solution. In the second section we explain

the design of the system built and why some decisions were made based on the description of the problem.

Finally, we will show some results and conclusions, and how this system could be improved.

2.1 Description of the Problem

The problem to be solved was chosen for its familiarity and difficulty. Every year, in our university, the students

enroll in some courses, usually five per term. The majority of this courses have two parts, one theoretical and

one practical. The theoretical part of the courses are usually not a problem when allocating students, there are

enough teachers and classrooms for the lectures, but for the practical part of the courses the laboratory space

is limited. Even if there were huge computer labs, the relation between student and teacher is crucial for this

part.

The practical sessions take place once a week. At the beginning of each term, the coordinator of the

practical sessions for each course defines the number of groups, who is going to teach each of them and

when the practical session for each group takes place. The group size is limited by space available in the lab.

Students can join any of these groups, but once they choose a group they are required, unless there’s a good



Negotiating Agents

reason, to attend to that group until the end of the term. This creates some conflict and competition among

the students as they have time restrictions and preferences over the teachers (see fig. 2.1), and the group size

limit makes that not every student is satisfied with her assigned groups.

Figure 2.1: Student preferences in a course with three groups. The whole square represent the course, the vertical
divisions the groups. White dots are available places, black dots are occupied seats. The student
in this figure preferes the first group, cannot assist to sessions in the third group and shows herself
indifferent about the second group.

This gets even more complicated as they have more than one course, usually five as mentioned earlier

(see fig. 2.2). A student cannot join groups that overlap in time and this adds a dynamic restriction to the

problem: once a student is assigned to a group, the time slot when the sessions take place are no longer

available for other course’s groups. This is a big problem from a CSP point of view, what once was a feasible

solution or even an optimal solution can change after one assignment and become a terrible solution, and the

other way around, what once was a terrible solution can become an optimal solution.

Figure 2.2: A student’s global situation. Each RS (Resource Set) represents a course, and each course is divided
as explained in fig. 2.1. The values between curly brackets represent the preferences of the student.
For example, {P,I,F} means that the student prefers the first group (P), is indifferent about the
second group (I) and cannot assist to the third group (F).

Once explained the problem in general terms, we can analyse it precisely to build a solution. In the following

description we are going to use Resource Set (RS) for courses and Educational Resource (ER) for the groups.

This way ER1 will be the course number one and RS1,1 will be the first group of the first course. To address

correctly the problem, it will be described by a set of properties and characteristics (resource types, preference

representation, social welfare, allocation procedures, complexity, and simulation) from [41], which can be used
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to characterize MARA systems and applications.

• Resource Type

◦ Discrete vs Continuous: The ER are discrete, they cannot be represented with real numbers nor it
can be divided.

◦ Divisible or not: The ER are not divisible

◦ Sharable or not: Each ER can be assigned to more than one agent at the same time, but they have
limits (seats/places).

◦ Static or not: The ERs doesn’t change during the negotiation, they’re not consumable nor perish-
able.

◦ Single–unit vs Multi–unit: Each ER is unique, it can’t be confused with another ER.

◦ Resource vs Task: The ER is assigned as a resource, not as a task.

• Preference Representation

◦ Preference structure: Although our model distinguishes between three different choices (Preferred
(P), Indifferent (I), Forbidden (F)) of a particular educational item, and we could construct an ordinal
preference structure (where P > I > F ), we use an evaluation function that translates the agent
preference into an integer which is used later to obtain a quantitative value, so a cardinal preference
structure is the structure used.

◦ Quantitative preferences: A utility function is used to map the bundle of resources assigned to an
agent into a quantitative value, which will be later maximized.

◦ Ordinal preferences: Not applicable.

• Social Welfare
Our approach is based on Collective Utility Function (CUF) because the aim is to maximize the average value
of individual agent welfares [42]. In the egalitarian social welfare, the aim is to improve the agent with the lowest
welfare and in the utilitarian social welfare the aim is to improve the sum of all welfares, whereas in our approach
the global state of the whole agent society by means of the average welfare is the aim of optimisation. Among
the different possibilities (pareto optimality, collective utility function (CUF), leximin ordering, generalisations,
normalised utility or envy–freeness) a CUF has been selected that defines the utilitarian social welfare as the
total sum of agent cardinal values divided by the total number of agents.

• Allocation Procedures

◦ Centralized vs Distributed: Our approach is fully distributed, since the solution is reached by means
of a local negotiation amongst agents and there is not a global perspective of the ERA problem.
An aggregation of individual preferences is used and the agent preferences are used to assess the
quality of the global resource allocation.

◦ Auction protocols: No auction algorithm is considered.

◦ Negotiation protocols: A simplified version of the Concurrent Contract–Net Protocol (CCNP) has
been implemented, where each agent can act as a manager and a bidder in the simulation step [43].

◦ Convergence properties: Our negotiation algorithm needs a multilateral deal, where any interested
agent in a particular educational item can negotiate with the manager (in our approach the agent
who is trying to obtain a specific allocation).

• Complexity
Analysis of the models and assumptions, or the computational vs. communication complexity, used in our
approach is not relevant for this dissertation.

• Simulation
A Multi–Agent Simulation Toolkit (MASON) has been used to deploy and test our proposed solution [44] [45].

To summarize the restrictions of this problem, we have that each student must have one, and only one,

group assigned for each course with practical sessions. The students have preferences over the groups and

are limited by other courses they are assisting, so the solution should maximize the student’s happiness and

can’t assign to a student groups that overlaps in time. To these preferences we add that the groups must be

evenly distributed and, by our institution requirement, courses from higher levels must have preference over

the rest.
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2.2 The design of the system

The main objective of this work was to design a light system capable of solving this problem efficiently. Another

objective was to use ideas and concepts that comes natural with the problem described. The multiagent

approach let’s the researcher use the problem terminology when constructing solution and the system built can

be said to be socially inspired.

While building the solution, we created a model of how students interact between themselves when en-

rolling into groups. We observed that when signing into a group’s list, students negotiate between them ex-

changing positions they have for the ones they want to have. This process is very local as they only contact

friends and usually limit themselves to one subject or one group. In the model created, students negotiate with

every other student that have something to offer. The exact negotiation process will be explained bellow.

Before explaining the negotiation, we need to understand how the students perceive their status and eval-

uate the proposals. We define the student’s happiness or utility function as a function that increases with the

number of groups assigned that they deem preferred. We have to maintain the groups balanced as this is

good for the students as it is for the teachers, so the student happiness also varies with the occupation of the

group in relation with the occupation of the other groups of this course. The happiness function would have the

following form:

H(ai) =

∑n
i=1(f1(RSi(a)) + f2(q,RSi(a)))

n

In this equation we have RSi(a) that returns the group assigned to student a in the RSi, q is the group’s

ocupation, f1 maps the student preference to an integer value, f2 represents how the student perceive the

balance of the group and n is the number of subjects the student has.

As explained in the above section, each student can assign one of three preference categories to each

subject: P for Preferred, I for Indifferent and F for Forbidden. The values of f1 for each preference category is

5 for P, 3 for I and 1 for F. We chose this values so that P > I + F and F is better than not assigning a group.

The f2 function assigns a value between 1 and 5 to the group occupation. The maximum value is achieved

when the group occupation is exactly the same as the mean occupation of the groups, that is the number of

students in a course divided by the number of groups that course has. To enroll in an empty group is always

better than a full group, so full groups receive the minimum value. The shape of the f2 function can be seen in

fig 2.3.

This is the general version of the happiness function, during the execution of the system there are some

variations. The first variation is that, to enforce the assignment of groups for the last year’s courses (as required

by the institution), when calculating the mean happiness this groups are valued double, we multiply the values

of f1 and f2 by two. The other variation is that, when negotiating the students can ask once and again for

the same group (we will see this later). To avoid this situation, each time a student cannot get a group in a

negotiation, the happiness this group gives her will be reduced by a 10%.

The negotiation algorithm employed is a simplification of the Contract-Net Protocol [43]. The negotiation

only takes place when a student wants to enter a group that is already full. In that case, the student interested

in the group, let’s call her the initiator, sends a list of groups she was already assigned to the students in that

group, whom we will call the receivers. The list of groups sent only includes the groups that, if changed for the
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Figure 2.3: Shape of the function that assigns a value to the occupation of a group. q1 and q2 are mean occupation
of the course, N is the total number of students in the course. The slope of the function varies,
depending on the number of students a course has.

group the initiator is interested in, doesn’t decrease her current level of happiness. The first receiver interested

in an offered group, that is, his happiness is not reduced, swaps places with the initiator. A pseudocode of the

algorithm can be seen below in code 2.1.

Code 2.1: Negotiation algorithm

1 o f f e r ← AssignedGroups ( I n i t i a t o r )
2 F i l t e r ( o f f e r )
3
4 for a l l Receiver in Group do
5 i f Receiver i s i n t e r e s t e d in ERx ∈ o f f e r then
6 Swap places
7 return true
8 end i f
9 end for

10 return fa lse

Before starting a negotiation, the student evaluates where would she be better. With the list of courses

and groups she has assigned, she evaluates which group assignment can be improved. If changing one group

for another can be done, that is, the new group has enough space, the student swaps there directly. If the new

group is already full, the student starts a negotiation with the students enrolled in that group. If there’s no one

to negotiate with or there’s no group we can offer because any change would decrease the happiness, a desist

factor is applied to that group. The happiness that group contributes to the student happiness is reduced by a

10% and at some point the student will start asking for a different group, possibly in a different course.

To find a solution for the problem, we let this model evolve until an equilibrium state is achieved. This

equilibrium state is the state where no student wants to swap places with another student. The students

start with no groups assigned and have complete freedom to enroll any group that is not full. As we stated

before, MARA let’s the designer use terminology and ideas from the problem to be solved with little abstractions

needed.
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2.3 Experimental Setup and Results

Once the system was built it needed to be tested. This section will detail the datasets employed and how the

system built responded. To deepen in the study, the system was compared with a traditional CSP approach,

as described in [36].

2.3.1 Data Sets

Several data sets, with incremental constraint-based complexity, have been considered. They have been

generated by using real statistical information from the Technical School at Universidad Autónoma de Madrid

(UAM). For each course, the number of laboratories available, students registered for each course, capacity of

labs, and time tables, has been considered. These data have been used to generate a probability distribution

of students/course and the number/capacity of labs that students need to attend. A four year degree has

been considered (it corresponds to the current degree in Computer Engineering at UAM). Table 2.1 shows the

student enrollment distributions by course (only those courses with laboratories are considered), the number

of courses for which students have enrolled and the distribution of students with this number of courses.

Table 2.1: Distribution of labs by course.

Year No. Courses Percentage of Students
1st 2 100%
2nd 2 - 3 - 4 20% - 50% - 30%
3rd 4 - 5 - 6 15% - 70% - 15%
4th 4 - 5 - 6 15% - 70% - 15%

Table 2.1 assumes that students from any year has at least one course from that year and no courses

from higher years. This means that a third year student has at least one third year course and no fourht year

courses. This also can also mean that a third year students can be enrolled in first and second year courses.

To simplify the tests, we limited this so that a student can only have courses from one year and the immediatly

below. The first and second year has a total number of 2 courses with practical sessions, we don’t take into

account theoretical-only courses, while third and fourth year have 5 courses with practical sessions.

As an example of how to read the table, the second row represents the second year students. This students

can have 2, 3 or 4 courses, and some of them can be from the first year, up to 2 as there are only 2 courses in

the first year. From the total number of second year students, a 20% have 2 courses, 50% have 3 courses and

30% have 4 courses.

As mentioned above, students can have courses from one year below the current year. In the second year,

students with only 2 courses have both from second year, students with 3 have 1 course from first year and

students with 4 have 2 from first year. In Table 2.2 the fraction of courses from another year are shown for

the third and fourth years. The table shows the distribution of courses of different years for each student. By

examining the real data, it can be noted that the number of students with at least one course from another

year is higher than the number of students that have courses only of their own year. In addition, the number

students with 6 courses of the same year are very low.

Based on the previous information, six data sets of 1000 students were generated. The synthetic restric-

tions for each student were also randomly generated by using some historic data related to previous years.
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Table 2.2: Distribution of labs for 3rd and 4th year courses.

No. enrolled All the same One course Two courses Three courses
courses year (%) from one from one from one (%)

year back (%) year back (%) year back (%)
4 20 60 20 0
5 10 40 50 0
6 5 40 40 15

Table 2 summarizes the basic features for each data set, where Ds0 considers only one Preferred group per

ER and StudentAgent (e.g. 〈〈P, I, I〉, 〈P, I, I〉〉), whereas Ds5 considers that 30% of ERs are marked as

Preferred and the rest (70%) are Forbidden. For example, 〈〈P, F, F 〉, 〈P, F, F 〉, 〈P, F, F 〉〉 makes a 30–70 dis-

tribution. The number of Forbidden and Preferred constraints has been adjusted along different datasets to

cover different complexity situations.

Table 2.3: Student datasets

Data Set Preferred groups (P) Forbidden groups (F)
Test 100% 0%
Ds0 1P/(RS,agent) 0%
Ds1 30% 0%
Ds2 1P/(RS,agent) 20%
Ds3 30% 20%
Ds4 1P/(RS,agent) 50%
Ds5 30% 50%
Ds6 1P/(RS,agent) 70%
Ds7 30% 70%

The difference between the percentage of P and F is the precentage of I. This way, the most restrictive

datasets are DS6 and DS7 because the number of I is reduced and in some cases, many cases, there will be

no I in the student preferences.

2.3.2 Results

Two systems were tested using these datasets, a CSP [36] and the multiagent system described in the previous

section. Tables 3 and 4 show the results obtained for both systems. Since the happiness functions were

obtained by using different preference values, they are not comparable across systems but they give a good

estimation of their performance with different restrictions. The key values for the comparison are the percentage

of P, I, and F in the final allocation.

As seen in Table 2.4, the CSP gives a good result for the first datasets, but when the restrictions are in-

creased the overall happiness decreases and the percentage of F assigned is very high. Altough the execution

time was not registered, it was comparatively high when comparing with the MARA approach. While MARA

took only a few seconds, the CSP approach need hours to do the assignment. For datasets 3 and 4, it took so

long that it was stopped before completion, after 6 hours of execution.

The results obtained for the MAS model are shown in Table 2.5. This method is able, by using the

negotiation-based approach, to maintain the global happiness of the solutions found. Although “happiness”
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Table 2.4: CSP experimental results for datasets considered.

Data Mean Happiness Mean Distribution P’s I’s F’s
Set Happiness Deviation Distribution Deviation (%) (%) (%)
Test 9.85 0.07 81.5 0,66 100 0 0
Ds0 9.69 0.15 81.3 21.8 86.9 13.1 0
Ds1 9.78 0.1 81.2 15,2 94.2 5.8 0
Ds2 9.32 0.25 81 17.7 89.8 1.07 9.19
Ds5 7.82 1.09 80.6 17.9 61.3 15.6 23.1
Ds6 7.03 1.12 80.8 15.8 66 8.2 25.8
Ds7 6.02 1.59 80.9 19.5 71.9 0 28.1

Table 2.5: MAS experimental results for datasets considered.

Data Mean Happiness Mean Distribution P’s I’s F’s
Set Happiness Deviation Distribution Deviation (%) (%) (%)
Test 9.85 0.07 81.5 0,66 100 0 0
Ds0 9.3 0.29 81.3 4.21 85.3 14.7 0
Ds1 9.7 0.14 81.4 0.64 94 6 0
Ds2 9.4 0.24 81.1 4.36 86.9 12.75 0.35
Ds3 9.8 0.12 80.4 2.04 95.8 3.67 0.49
Ds4 9.2 0.33 80.8 6.94 85.7 12.5 1.8
Ds5 9.7 0.19 81.0 0.89 95.5 2.42 2.05
Ds6 9.1 0.43 81.0 5.92 86.0 11.1 2.9
Ds7 9.7 0.29 80.9 0.91 95.8 0 4.2

values cannot be directly compared between CSP and MAS solutions (because their equations are different),

the percentage of allocated F can be compared. In the worst situation (DS7) only the 4% of the students needs

to be assigned to a forbidden ER (F), and the 95% of student teams are satisfactory allocated. Finally, the

low variation of the happiness among the different datasets can be remarked compared to the variation of this

value for the CSP solutions. This is due to the facility (given by the Multi-agent approach) to change preference

values, or to exchange the current ER allocation with other agent in the system.

2.4 Conclusion

This first approach to building a light multiagent system was successful. The goal of the whole work was to

find ways to build very simple agents that are capable of solving some problems. The agents in this system

were very simple as they didn’t use some reasoning mechanism, neither they have some complete world

representation or any characteristic of heavy agents. Even though, these agents can be simplified more, for

example, by eliminating the negotiation mechanism and building pure reactive agents. This can be an arduous

task as we can say that each agent here is represented in multiple planes, one plane for each RS she is

enrolled into. The next step, described in the next chapter, would be to use simple reactive agents to solve a

problem on a single plane.

We will review this system again in chapter 4, were it will be explained using Complexity Science terminol-

ogy.
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In the previous chapter we defined a multiagent system to solve a complicated problem. The main objective of

the present dissertation is to explore the intricacies of building such systems and find concepts and ideas that

can be used to facilitate the creation of multiagent systems to solve problems. As could be seen in the results

of the previously described system, it is possible to build very simple systems to solve complicated problems

with very good results. This encourages the question: How simple can be an agent and still be capable of

solving a problem?

It is very important to simplify the agents in a multiagent system. Two fundamental problems when building

multiagent systems is the processing needs of the agents and the load of the communication channels. In the

student system defined earlier, the agents were very simple, but their communication needs were very high.

Each student needed to communicate with a complete group when they needed to negotiate. This means

that in a worst case scenario, in a situation with 1000 students and a mean group size of 25, around 25000

messages will be sent and this messages need to be processed and answered.

The problem of allocating groups to students is very difficult to solve, and simplifying the agents will prove

to be very hard. When undertaking a difficult task as this one, it is best to start from small simple things. As the

first step trying to build very light agents capable of solving an allocation problem, we will build simple agents

capable of solving a classical benchmark problem: the N–Queen problem.

3.1 Ideas behind the design

When designing the system to solve the student–group allocation problem we stated that it was inspired by the

interactions of students. Generally, copying natural or social systems is a good starting point when building this

kind of systems. Natural and social systems are complex and, in some way, solve problems with the interactions

of its elements. In nature there are systems where a huge number of individuals have to cooperate, allocate

roles or some other tasks requiring a lot of effort by the individuals or a lot of message passing. There are

some ideas that can be borrowed from them.

Two mechanisms from natural systems can help to reduce the channels’ load and the computational costs:

memory and message discrimination. Examples of this mechanisms can be found in the neural systems. The

main memory mechanism in neurons is the voltage accumulation. A neuron can fire in response to a train of

spikes depending on the excitation level generated. Also, recent studies on neuroscience show the importance

of neural signatures on information processing [46]. This signature reading capability enables each neuron to

recognise the origin of a message and change its behavior based on the origin. In self-organizing groups of

neurons, the signatures are essential to maintain the order [47].

This two characteristics are not only found in neuroscience. In mirmecology, the science that studies ant’s

behavior, it is known that ant foraging is a result of local interaction where ants become foragers based on the
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information extracted from a pheromone trail: direction and intensity (discrimination) and number of ants seen

following the trail (memory) [10].

Using this two mechanisms, memory and message discrimination, and taking into account the topology

or structure of the system, it is possible to build multiagent systems keeping the agents simple and reducing

the message loads. Having identified this two mechanisms, we can propose a framework or methodology that,

based on establishing simple methods for memory and communication, gives way to the design of simpler

multiagent systems.

3.2 Key concepts of the model proposed

The ideas described in the introduction are loosely defined and can be applied in different ways. For example,

these biologically inspired mechanisms has been used in artificial neural networks as in [48]. Before dis-

cussing the implementation of the system in the practical case, the N–Queen problem, there are some general

characteristics of the system that can be abstracted as a framework and used in other problems.

As in any other multiagent system, there is a set of agents with its own properties and possible actions.

Here, the agents are fixed, they cannot move, and the only actions possible are: send messages locally,

process messages and change state. Depending on the problem, the agents can have diferent states and they

change from one state to another according to the messages received.

The effect of the messages is accumulated in a variable that we call “tension”. It works as a memory of the

messages received. The tension is altered by two mechanisms, it is reinforced by the messages received and

relaxed some fixed amount at each time step. The amount the tension increases with a message depends on

its properties, the agents must have some message discrimination mechanism.

It is important to mention that the message passing capability of the agents is local and thus it prevents the

saturation of the channels. The agents can only send messages to its neighbours, limiting this way the use of

the communication channels, although the topology of the network of agents is defined by the problem and it

can be the case that it requires the agents to broadcast their messages.

To sum up, the system proposed is based on simple static agents with different states. The state of an

agent depends on a tension variable, which changes as a result of the local message passing. The solution to

the problem is the arrangement of the agents in the topology, taking into account the states of the agents.

There are several decisions to be made to solve a problem using this approach, in the next section we use

a practical case study to illustrate how to make them.

3.3 An application to the N–Queen Problem

The N–Queen problem was originally proposed by a chess player, Max Bezzel, in 1848. The goal is to find

an arrangement of N queens in a chess board of N × N , where no queen attacks the others following the

chess rules. Altough the problem is solved in [49], it has been used as a search algorithm benchmark in AI

and combinatorial optimization.

The typical solution of this problem is using depth first search (DFS) [50]. This search can be optimized
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by using heuristics [51], but the branching factor and the number of backtracks and memory needed increases

exponentially with the size of the board.

In 1990, an approach that finds solutions in polynomial time was published [52], based on permutations

and randomness. Current research involves the use of multiagent systems [53], artificial life [54] and genetic

algorithms [55] to find solutions to this problem.

The system is built based on the ideas of the previous section. The agents are fixed and can only exchange

messages and change their state. As the problem to solve is the N–Queen problem, the topology is a N ×N
board where each square is an agent.

The agents have two states, “queen” and “empty”. We can see a solution to the N–Queen problem in figure

3.1. Each square has an agent and the agents in queen state don’t attack each other. An attack is defined

here as receiving a message from another queen. It’s important to notice that in any moment an agent can be

in any state, this means that there can be more (or less) than N queens on the board.

Figure 3.1: A solution of the problem in terms of the agent system defined. The empty circles are agents in the
empty state and the circles with a queen are agents in the queen state.

An agent is in queen state can initiate messages, passing the message to the adjacent squares. On the

other hand, on empty state it can only propagate the messages received in the opposite direction it received

the message, that is, a message received from the left is propagated to the right and a message received

from the upper–left corner is propagated to the bottom-right corner. The queen agents don’t propagate the

messages received, they just modify their tension and, if necessary, change state.

The messages only have two fields, direction and distance, with this two parameters any agent can identify

its procedence. The agent receiving a message, either a queen or an empty square, modify its tension variable

according to the distance and the procedence. If the message was originated near the agent the impact on its

tension will be greater, as can be seen in figure 3.2.

The equation that rules over the tension takes into account the messages the agent receives increasing

the tension and, to reduce the effect of this increase, a relax factor is discounted every step. The increment

of tension depends not only on the distance but also on the insistence of the agent sending it, identified by

direction and distance. This means that the first message from an agent will produce less tension than the

subsequent messages. The equation for the tension increment is as follows:
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Swarm of Static Agents

Figure 3.2: Message influence attenuation. The queen agent sends a message (grey circles) in all directions and
its influence diminishes, illustrated by the size and intensity of the dot, as the message is propagated.

∆T = −R+
∑
∀m

I(m) · [1− (dist(m)− 1) · S]

Where R is the relax factor, m is the message, I(m) is the number of times the agent received a message

with the same origin, dist(m) represents the distance and S is the amount the message reduces its effects

on the tension for each distance step. The maximum increment a single message can produce is 1, before

multiplying by the insistence I(m). This increment is applied when the message originated in an adjacent cell,

that is, the distance is 1. At distance 2, the message can produce an increment of 1 − S, and so on. The

minimum increment for a message is, therefore, 1− (N − 2) · S.

In figure 3.3 is represented an example of how the tension varies after processing a message. The empty

state agent modifies its T only by -R as it does not receive any message. The other two agents, in queen state,

both receive just one message and their tension is increased the same amount: ∆T = −R + (1− S). Taking

R = 0.07, I(m) = 1 for both agents and S = 0.33 we have that both agents increase their tension by 0.65.

Two thresholds are defined for the state change. When the tension increases above the upper threshold

the agent changes its state to “empty” and when it decreases below the lower threshold the agent changes its

state to “queen”. For tension values between the upper and the lower limit, the agent stays in the same state.

In physics this is called a hysteresis process and here it is used to avoid oscillation: small fluctuations on the

tension will not change the state repeatedly. Also in figure 3.3, it’s represented 3 possible cases of this change

of state. The diagrams represents a simplified board situation, where the agents are only influenced by the

agents drawn.

There are going to be five parameters: the board size, the relax factor, the tension step and the thresholds.

Each of these parameters are analysed in this section. Also, to reduce the message load of the system,

the queen agents send the messages with a fixed probability. The optimal parameters cannot be extracted

without previous study, after all this is a complex system, but for the experiments we are going to run we use

some values trying to avoid extremes and looking for some symmetry. The only value that varies between

experiments with different board sizes is the relax factor and it is chosen through a trial and error process.

Table 3.1 summarizes the values used in the experiments. The slightest change in the parameters can change
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Figure 3.3: Three possible change of state, only considering the agents depicted. The dotted line represents a
message passing through the agent between the queens. The numbers on the boxes are the values
of the tension for that agent. When a message increases the tension over the upper threshold (0.8
in the example) the agent changes to empty state. If the relax factor substracted brings the tension
below the lower threshold (0.2), the agent changes to the queen state. In any other case the agent
remains in the same state.

completely the behavior of the system. By testing some values, we couldn’t find out a direct relation between

the parameters and some system properties as oscillation, convergence speed or messages passed until a

stable state is found. As the main objective of this work was to evaluate the feasibility of a system with these

characteristics, it is left for future experiments to determine this relations or a method to set the parameters’ to

optimal or near optimal values.

Table 3.1: Parameters used to solve the N–Queen problem.

Parameter Value
Lower threshold 0.2
Upper threshold 0.8
Sending probability 0.5
Minimum tension per message 0.01
Maximum tension per message 1

In figure 3.4 can be seen that the time needed to solve the problem increases exponentially with the size

of the board. This result is not necessarily bad as the growth is very slow and the times are reasonable, it is

a good result for a system that is completely autonomous. Also, it must be noticed that the time is anotated

when the system is stable in a solution but in the process the system can find solutions that are unstable.

A problem that arises from a self-organizing system is when to consider that a global state is a stable

solution. For this purpose it is always needed a supervisor, some agent or process that analyses the whole

system and checks if the solution has been found. This must not be confused as some kind of central authority,

the role of this supervisor is only to stop the simulation when the system doesn’t leave a state for some number

of simulation steps. It has no control over the agents’ behavior and, after the parameters are tested and a

solution is proved to be found, the system can be used without this supervisor.

In the case of these experiments, the agents in queen state report to the supervisor when they have not
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Figure 3.4: Mean time taken to get to a stable state. 50 measures for each size.

received any messages in a step of the simulation. A state of the board is considered a stable solution when

the number of queens reporting is the number of queens needed for a solution (8 for an 8x8 board, 20 for a

20x20 board, ...) and this number doesn’t change for a number of steps equal to the length of the board. This

criterium is taken because the maximum number of steps for a message to reach another queen or the end of

the board is exactly the length of the board minus one, as the message propagates one square on each step

and this is the time taken for a message to go from one corner to another.

One of the goals of this system is to reduce the message load and this is achieved in two ways. First, the

message is very small, only two integers, so if we are using a computer network the contents can be passed

on a single packet. On the other hand, the message sending is randomly distributed with a probability of 0.5.

The sending probability could be reduced further if needed, but as the rate decreases the system becomes

more unstable and an adjustment to the other parameters is necessary.

The relax factor, the only free parameter in these experiments, follows a negative exponential curve, as

seen on table 3.5. A small change in this value for a given board size made the system behave irregularly,

sometimes increasing the convergence time and other times making the system look completely random.

This information about the relax factor makes clear two things. First, the system is really a complex system

as a slight variation of a parameter makes the system behavior different. Second, as the minimum tension a

message produces is 0.01, the relax factor can’t decrease below that value. This means that the relax factor

is not the only value relevant for the system behavior, for big board lengths the exponential curve goes below

that value.

3.4 Conclusions

In this chapter we presented a possible way of simplifying multiagent systems. Concentrating on two mech-

anisms of the system, memory and message processing, and trying to make them as simple as possible we
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Figure 3.5: The relax factor used for the different board length follows a decreasing exponential curve.

were able to build a solution for a simple problem. The results obtained were not optimal because the system

was not fine tuned. Fine tuning the system would be a difficult task and to find the correct parameters we would

need to use some method, as genetic algorithms or neural networks. As the main goal of the work was to find

a simple way to build multiagent systems to find solutions to some problems, the optimization step was not yet

taken.

The mechanisms proposed for the system were memory by accumulation and processing a message by

its distance and direction. The biggest simulation done with this system was a 100x100 board, a total number

of 10,000 agents. This simulation took a little more than 10 minutes to get to a solution on a single processor

computer. Using a distributed environmet would probably throw some better results as in our simulations the

agents action were executed sequentially, one step at a time.

As repeated throughout this dissertation, this a first step towards obtaining a methodology for building

multiagent systems based on complexity science. By now we haven’t mentioned much the complex approach,

but it is clear that both systems built are complex by our definition on the introduction. On the next section we

will try to see both systems under the light of complexity science.
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4
A Complexity Science Approach

In the previous chapters we discussed two systems built to solve optimization problems. The first approach,

the negotiating agents system, tried to find an allocation of the students in groups, maximising their happiness

and balancing each group. Although it was succesful finding an allocation and it used very simple agents,

the communication load could increase as the groups grow bigger and the number of courses and groups

augmented. Also, depending on the happiness function, the processing needs of the agents can make the

system expensive computationally.

With the second system we established a base to start a process of simplification. The agents were very

light and the messages passed were small. It can also be said that the agents may need to send bigger

messages or greater processing needs, but what was proposed was not that precise system but to center the

attention on those two mechanisms, memory and message discrimination, in order to simplify the system. The

results show that it is possible to build systems with simple memory mechanisms and message processing

capabilities that are capable of solving problems.

In this chapter, we will try to describe the systems or parts of them using the complexity science terminol-

ogy. This will help us to further analyse the built systems and get some notions of why did they work and some

intuition on how it could be improved. The analysis is based on the definitions found in [29,32,34].

4.1 Complex systems and self–organization revisited

In the introduction we gave a brief overview of concepts and ideas from complexity science and why this

approach was necessary for a better understanding of swarm intelligence and multiagent systems. Now, in this

section, these concepts will be expanded so we can later identify them in the systems developed.

As stated before, we will label a system as complex if it is a system composed by different agents with

some relations between them that cannot be reduced to its parts to analyse. The behavior of the whole system

is different from the sum of its parts, the relations play a big role in the system as they can change the behavior

of the agents or modulate the effect of one agent over another. This interactions are local and can vary through

the systems evolution, but the effect they achieve is global.

There are some characteristics associated with complex systems, some positive and some negative. As

negative characteristics we have that they are unpredictable and uncontrollable. At most, and only in some

systems, we can find statistical regularities or understand some qualitative behavior. As positive characteristics,

we have that these systems are flexible, autonomous and robust. The positive characteristics are desirable for

any system we build, but the negative ones makes these systems inappropiate as we can’t say a priori if it will

achieve the goal we have in mind and we can’t direct the system toward that goal.

In complex systems we can identify positive and negative feedback. The positive feedback amplifies the

effect on the system of some changes while the negative feedback reduces its effect. This makes the system
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to be non–linear: the effects are not proportional to the causes. The positive feedback makes the system more

unstable and unpredictable, small changes in the initial conditions can be amplified so the equilibrium state

of the system is completly different from the equilibrium achieved before. This is one of the characteristics

of chaos. On the other hand we have negative feedback, that makes the system stable. Negative feedback

reduces the effect of a change in the initial conditions, gradually suppressing them.

Systems with positive feedback can be controlled in some measure as introducing a change in it we can

move the system from its state, but these systems are very unpredictable as small differences can produce

different outcomes. With negative feedback we have the opposite case, the systems are very predictable as

perturbations barely affects them but they cannot be controlled as our efforts will be suppressed by the system.

Everything said above is present in our systems, we will go through it in the next section. As both systems

try to find an optimal solution we need to dive into self–organized systems. In the introduction we stated that

self–organization depends on the observer as a definition of “organized” is needed. In both of the systems we

will say that the systems are organized if they are in a solution state, the further they are from this solution the

more disorganized they are.

In a self–organized system we have that the global order is achieved by local interactions, there is no agent

in charge and agents don’t have a representation of the global state. Thus, the system is robust and resilient

as there’s not a single point of failure. One thing that can be remarked here, as a cause or consequence of this

distributed control, is that the agents coevolve, they adapt to each other. The agents have preferences over

the possible states of the system, at least over the limited view they have of the system, and this coevolution

process let’s them converge to a state where every agent is satisfied.

Self–organizing complex systems have very desirable properties for any engineering project. We can

summarize them has follows:

• Flexibility

• Adaptivity

• Autonomy

• Robustness

• Resilience

• Distributed control

But these properties have two inconvinients, these systems are uncontrollable and unpredictable. Finding

a way to improve the control or the predictability we could build systems that benefit from these properties. In

the case of systems that cannot be redisigned, it has been proposed the use of a mediator [34]. This mediator

is not a central authority. Sometimes it is an agent that mediates between agents in the system, other times

are properties of the agents or restrictions on the system. The function of a mediator is to reduce the “friction”

in the system. When designing a system from scratch, we can say one of two things: (1) there is no mediator

because every property comes from the system by itself or (2) that we introduce this mediator in the design to

achieve more control.

In any case, to achieve a better control and predictability in the system we need to look for a balance

between positive and negative feedback. As we told before, positive feedback makes the system more control-

lable while the negative feedback makes it more predictable. Identifying both feedbacks in a system could lead

to a better understanding of it and how to make it more controllable or predictable.
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Full control or precise predictions of a system like this is impossible as the system can evolve and respond

differently to inputs introduced in a previous time. With this conclusion we arrive to the paradox that to have

a system fully under control, the controller need to contain a copy of the system it is controlling [56]. This

is similar to the solution given to the halting problem: to know if a system will halt we need to let it run for

infinite time and see if it does. As we are not trying to build a controller for a system but the system itself this

consideration will not affect this work, it just reinforces the idea that a good design is needed because it is

harder to build a control mechanism afterwards.

In the next sections we will identify this concepts in our systems and explain how they were taken care of.

This chapter will be used as a foundation for further experiments and future development of a methodology

based on complexity science.

4.2 The complexity of the negotiating agents

In the case of negotiating agents we can identify two sources of complexity. On one hand we have the problem

itself. The courses and groups are related to each other, and also are the students. The relationships between

the different parts of the problem makes it a complex environment and if we introduce some change in it, e.g.

change a group’s time slot or the student preference, the reaction is unpredictable as we can’t determine how

other students will react or how the constraints will change during a simulation, among other things.

On the other hand we have the built system. As cyberneticists say, the best way to deal with a complex

system is with another complex system. The built system is completely based on the problem, each part of it

is a model of some aspect or aspects of the problem. This makes the built system to be adaptive and flexible:

after a solution is found, we can translate any change in the original environment into the system and let it find

a new solution. This adativity and flexibility is not available in other methods as, for example, backtracking.

If we want to introduce a change in the problem, we would need to run the backtracking algorithm from the

begining because some branches that where not useful before can lead to solutions now.

The built system is composed of different agents, each one of them can be differentiated from the others

by the courses they have and the preferences over the groups in each course. The interaction between the

agents is local, they can only communicate with a limited part of the system. At most, an agent can establish

communication with other agents in the same courses it has, but normally they will communicate with only a

subset of these agents. Although this communication is local, we have a global situation that the agents are

not aware of.

The outcome of the system, the stable state, cannot be traced back to its agents. We can say that agent

X enrolled in a group she can’t attend, i.e. has an F for that group in her preference vector, because the group

she wanted was full and no one there is interested in other groups she has. But then we need to go back and

see why nobody is interested or why she couldn’t enter the group in the first place because everyone had an

equal chance to get into it. This causal chain is long, complicated and full of suppositions and, although we

could find some probabilities over the links, we cannot fully explain why the resulting state is the one it is.

Before we said that complex self–organizing systems have feedback mechanisms. Feedback mechanisms

defines how outputs are related to inputs. Before defining inputs and outputs we must define where are the

borders of the system, in other words, what is part of the system and what is part of the environment. As

Juan I. Cano Núñez Pág. 25
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we don’t expect changes in the courses or groups, we define the system as the group of agents and the

environment as the courses and groups. This way we have that the problem defines an environment with the

following variables:

• List of courses

• Number of groups for each course

• Size of the groups

• Groups’ hours

• Number of agents

• Enrolled courses for each agent

• Preference vectors for each agent

This variables can be understood as how the agent models its environment and its goals, they belong

to both, the environment and the system, but they are not fed into the system nor they are extracted from

it. Previously we discussed the adaptivity of this kind of systems and how we could change the environment

while the system is running. This stays true after this separation, what changes is how we introduce these

modifications.

The rest of variables depends directly on the agents and they can modify them as they wish. From this

variables we will define as an output, i.e. variables that the system shows to its environment, the assigned

groups for each agent and the only input would be the distribution of students in groups. To define the state

of an agent we use the list assigned groups, the number of time it has attempted to enter a group and its

happiness.

To recapitulate, we have that the problem is defined by variables that determine the courses and groups

and their relationship with the agents. We can consider this variables as immutable and part of the agents’

internal representation of the world. The list of groups assigned, the number of times an agent has attempted

to enter a group and its happiness are the only variables necessary to determine the agents state. The system

constantly receives information about the state of the groups, meaning that it knows what students are already

in a group or if a group is full. In exchange, the system informs about changes it makes in the groups.

We can see clearly that there is a feedback loop, the state of the groups is fed to the agents and the agents

inform about any changes in them. This loop doesn’t determine by itself if it is a positive or negative feedback,

it depends on how the system treats this information. In our case, this loop is managed in two ways: with the

insistence factor and the f2 function, both in the happiness equation (see section 2.2).

The insistence factor is applied when the agents try to enter any group more than once without any success.

The relation with the feedback is a little difficult to see, first the agent receives the status of the groups for the

courses it has enrolled. The agent evaluates if there is a group that would increase its happiness and, if the

group is full, it tries to negotiate with other student to enter. It is possible that the list of groups an agent receives

doesn’t change from one attempt to the next and the agent finds that the group that improves it happiness is the

same full group each turn. To dissuade the agents, the insistence factor is applied. This makes the feedback

loop negative as it turns the output to be, after some time, the same as the input, whatever the input is, and the

agents to stop trying to change groups.

For the other way to manage feedback, the f2 function, it is clearer that it affects the feedback, but wether

it does in a positive or negative way is hard to decide. When a group is below what was defined as the optimal
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occupancy this function encourages the agents to enroll this group. Once this quota is filled, the function

dissuades agents from entering and sending them to other groups that are less full by reducing very fast the

happiness this group can provide.

The value for the insistince factor and the shape of the f2 function must be chosen carefully and with a

goal in mind. This two mechanisms reduce the agent activity and drives the system to a stable state. The

insistence factor is negative in nature as it forces the students to stop their activity. The f2 can have a positive

and negative effect, depending if the occupancy of the group is below the optimal or over it. This function also

increases the variety of options, as agents does not only search for preferred group but also for groups that are

not overcrowded.

As we can see, the built system is complex and self–organizes. This gives great flexibility when finding a

solution, but makes the system hard to control. By introducing mechanisms to control the feedback we can

ensure that the system will come to an equilibrium where the agents would stop searching, but a fine tuning of

the system or proving that it will find the optimal solution are very difficult tasks if not impossible.

4.3 A complex swarm

The swarm system is complex as is the system discussed before. It benefits from the same positive charac-

teristics and suffers from the negative ones, the swarm is flexible, adaptive, autonomous, robust and resilient,

but also uncontrollable and unpredictable. Being the agents so simple, the system is based more on the

interactions between the agents than on the agents themselves.

In the previous system it was clear that the agents were trying to maximize their happiness. To have a

better understanding of how the swarm agents behave, we can model them as maximizers of the following

function:

U(ai) = δ(1− si)(1− T ) + δ(si)T

U is the utility function of the agent, δ is the Kronecker delta that returns 1 if the argument is null and 0

otherwise, si is the state of the agent and T is the tension. The value of si is 1 for queen state and 0 for

empty state. Thus, we have that the agents on the board try to minimize the tension when in queen state and

maximize it when in empty state. If we define more states we must have clear what they are trying to maximize

in each state, supposing we are following the architecture defined in section 3.2.

Having this clear we have to define, as in the previous case, the boundaries of the system. The environment

in this case is the board and the only properties it has is its size. The agents come with its properties already

assigned: thresholds, sending rate and relax factor. We will suppose that the agents communicate through

the environment, each agent places the messages in the square next to itself and reads messages from the

square they are in. This way we have that the input and output of the system are the messages. The state of

the system is defined by the state and the tension of each agent.

Again, there is a clear feedback as input and output coincide. As before, we can’t determine if the feedback

is positive or negative if we don’t look at how this feedback is processed by the agents. The only sources of

messages are the agents in queen state, the other agents just propagate the messages until the messages
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reach the agents in the sides and the corners. If there were no messages, all agents would be in queen state

as the messages are source of tension. We then can measure the activity of the system as the number of

messages moving around the board.

Having messages that do not increase the tension of its receiver, the system would be very active as every

agent would be sending messages in queen state. On the other hand, if the messages increase the tension

to its maximum value we would have an oscillating system that goes through phases where a lot of agents,

if not every agent, would be sending messages and inmediatly turning to empty state because of a received

message. The oscillating behavior would depend heavily on how the message is propagated.

The system needs to stay in a middle ground, where the agents can increase the tension from others but

without forcing them to change their state. This can only be achieved controlling how the message is processed.

As was told in the first section of this chapter, to achieve an equilibrium we need a balance between positive

and negative feedback. We have that the system by itself, without considering the effect of the messages in

the tension, tends to be very active so we need a way to reduce this activity. We need the messages to act as

a negative feedback to keep agent from activating constantly.

The decisions on how this negative feedback works depends on how we want the system to behave.

Different choices of parameters will produce different behaviors. If we choose a constant value for the amount

of tension a message increases instead of a decaying value, we would not be considering the delay of the

message as the source agent maybe in empty state once the message reaches the border, and different

values for maximum and minimum values for this increment will make it possible to have more than one agent

in a line of attack.

In any case, as we are in control of the everything, system and environment, we can control other variables

as the relax factor or the thresholds. This values affect the behavior of the system and must be chosen

carefully. For example, if we make the agents less prone to turn to queen state, if we reduce its relax factor, the

convergence of the system will be very slow. If we choose thresholds very close to each other, or even just one

threshold, the system will oscillate more as little variations in the tension could be triggering the queen state

on and off continually.

The adjustment of these parameters is very complicated, further tests are needed to determine the effect

of thes parameters on some qualitative aspects of the system and how they relate to each other, but being a

complex system with 6 free parameters it maybe impossible to build a complete map of values–behavior.

4.4 Conclusions

Using terminology and ideas from complexity science we improved our understanding of the systems. Although

the analysis presented was only superficial, only identifying concepts and ideas in the systems, we could

explain why some of the behaviors of the agents in both systems lead the system to a stable state.

The analysis consisted on four steps. First, system and environment were delimited, establishing what

was part of the system and what was part of the environment. The delimitation was made considering only

the simulation elements. After identifying the elements, tha variables of both, system and environment, were

divided as problem variables, the system’s inputs and outputs and the state variables.
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With the inputs and outputs identifyed we can see the relations between them, finding the feedback loops.

These feedback loops are essential in a complex system as they make the system non–linear. Finally, the key

components of the systems were found by looking at how the system dealt with the feedback.

In both cases, the feedback loop was easily identifiable because the inputs were equal to the outputs, and

both systems had mechanisms to transform the feedback into a positive and negative feedback. The balance

between positive and negative feedback makes the system complex, the positive feedback amplifies the input

and increases the activity of the agents while the negative feedback reduces the effect of an input and stabilizes

the agents.

This analysis is very shallow but was useful. Using more techniques and ideas from complexity science

will give a better understanding of the inner workings of both systems and the relations between its parts and

between the parameters and the resulting behavior.
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The idea behind this work is to create a framework or methodology for the creation of multiagent systems,

understanding that these systems are complex and that they should be studied using complexity science. The

development of a methodology or framework is very complicated and it should be done in small steps.

First, before making assumptions and false steps, it is necessary to be familiar with the systems we are

going to work with and this was the first stage of the development. We took a complicated enough problem, the

student–class allocation problem, so we could understand how these systems are built and what problems may

arise. Once we found a solution, instead of finding improvements or deploying the system in a real environment

we started the process of simplification.

For the simplification process we used a simple problem because the student–class allocation problem

was very complicated to identify the relevant parts of the system. The problem chosen, the N–Queen problem,

was simple and we could relate both problems as we can define both, this problem and a regular scheduling

problem as “structural” problems. With “structural” we mean that solutions for both problems can be seen as

layouts of elements in a grid, in this case a board and in scheduling problems a timetable.

The results for both systems were satisfactory and an initial analysis of them was made. This analysis will

be useful for further study and development, we can base the next steps in the research on these results.

From here, the next logical step would be to apply the second system, the swarm, to a more complicated

problem. This problem can be a completely different one or some related problem. For example, we could

apply the swarm to a multidimensional N–Queen problem, which is closer to the initial problem of student–

class allocation, or we could use the system to solve the map coloring problem or the traveling salesman

problem.

There are open spots in this work that could be reinforced in case that the application of the swarm to new

problems fail or if the results were not interesting. The optimization of both systems is still open, they can be

improved, and also we could run more experiments in both of them to find, for example, the relation between

the variables and behaviors in the swarm or how the agents of the first system would react to changes in the

environment.

In the case that there is some interest in the swarm, we propose two experiments. The first one is to use

heterogeneous agents in the swarm, each agent having thresholds and other parameters that don’t need to be

the same for every agent. This, based on the law of requisite variety [56], should give us better results than

using homogeneous agents, but to prove this point will be hard.

The other experiment we propose, or rather, set of experiements, is to study the behavior of the swarm on

three different aspects: message passing, oscillation and convergence speed. This set of experiment will be

needed sooner or later if the methodology is to be complete. These three aspects represents characteristics



Next Steps in the Research

that are desirable for an engineer deploying this solution in a real environment. This engineer could have some

restriction to the use of communication channels, could need to find a solution fast no matter how or could

need a system that don’t oscillate as the machines the agents represent are very sensitive. Usually, the needs

of the engineer would be a mix of these requirements.

After all this and some other work is done the results could be gathered together into a final framework or

methodology for the design of multiagent systems, more precisely swarms, applied to the solution of different

problems.
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