
Universidad Autónoma de Madrid
Escuela Politécnica Superior

Work to obtain master degree in
Computer and Telecommunication

Engineering
by Universidad Autónoma de Madrid

Master thesis advisor:
Dr. Francisco Javier Gómez Arribas

Development and evaluation of a low-cost scalable
architecture for network traffic capture and storage for

10Gbps networks

Víctor Moreno Martínez

This work was presented on 2012
Tribunal:

Dr. Francisco Javier Gómez Arribas
Dr. Iván González Martínez

Dr. Jorge E. López de Vergara

All rights reserved.

No reproduction in any form of this book, in whole or in part
(except for brief quotation in critical articles or reviews),
may be made without written authorization from the publisher.

© 2012 by UNIVERSIDAD AUTÓNOMA DE MADRID
Francisco Tomás y Valiente, no 1
Madrid, 28049
Spain

Víctor Moreno Martínez

Development and evaluation of a low-cost scalable architecture for network tra�c capture and

storage for 10Gbps networks

Víctor Moreno Martínez

Escuela Politécnica Superior. High Performance Computing and Networking Group

IMPRESO EN ESPAÑA � PRINTED IN SPAIN

Final Master’s Thesis evaluators:

Dr. Francisco Javier Gómez Arribas
(Chairman)

Dr. Iván González Martínez Dr. Jorge E. López de Vergara

Reviewer:

Dr. Francisco Javier Gómez Arribas

Table of Contents

1 Introduction 1

2 State of the art 3
2.1 The Intel 82599 NIC . 3
2.2 Novel I/O engines . 7

3 HPCAP probe description 11
3.1 Kernel polling thread . 11
3.2 Multiple listeners . 14
3.3 User-level API . 15
3.4 HPCAP packet reception scheme . 16

4 Storage performance evaluation 19
4.1 Validation of HPCAP . 19
4.2 Optimizing non-volatile write performance . 22
4.3 HPCAP write performance . 26

5 Timestamp accuracy evaluation 29
5.1 The packet timestamping problem . 29
5.2 Proposed Solutions . 32
5.3 Accuracy evaluation . 35
5.4 Conclusion . 37

6 Conclusions and future work 39

A Architecture overview 53

B How to run HPCAP 55

C RAID0 write tests 57
C.1 RAID scalability . 57
C.2 Optimal block size . 58
C.3 Cyclic throughput variation . 59

Acknowlegments

To my family:

To my mother Teresa for fighting to be here today and, with my father Fernando and my
brother Fernando, for supporting me all those years and being always there. A special ac-
knowledge to my grandparents Teresa, Víctor, María and José who are no longer here. I also
want to thank all my uncles, aunts and cousins. I wouldn’t be the one I am without any of them.

To professor Francisco J. Gómez Arribas:

for guiding and enlightening my work all those years. I really appreciate his knowledge,
patience, time and valuable comments. I have learned a lot working with him all those years.

To the people of the C113 lab:

Javier Ramos, Pedro Santiago, Jaime Garnica, José Luis García, Felipe Mata, David Mue-
las, David Madrigal, Marco Forconesi, Pedro Gómez, Álvaro García, Miguel Cubillo, for their
help and for making the C113 lab a nice place to work at. Thanks as well to the former mem-
bers of the lab: Diego Sánchez, Jaime Fullaondo, Víctor López, Rubén Nieto, . . .

To the High Performance Computing and Networking Group from UAM:

for giving me the chance to work with them four years from now. Thanks to all of the senior
researchers of the group for their teachings and valuable comments along those years: Javier
Aracil, Francisco Gómez, Iván González, Sergio López, Gustavo Sutter, Jorge E. López and
Luis de Pedro.

To my friends:

for helping me laugh and clearing my mind.

To the Spanish Ministry of Education:

as this work has been partially financed by the FPU Scholarship from this organism.

To Eloy Anguiano Rey:

for this document’s LATEX format.

vii

Abstract

The last years have witnessed an undoubtedly explosion of the Internet users’ demands
for bandwidth. To manage such new demand and, especially, provide the adequate quality of
service, ISPs have understood the importance of accurately monitoring their traffic, investing a
great deal of effort in terms of funds and time. Novel packet I/O engines allow capturing traffic at
multi-10Gbps using only-software and commodity hardware systems. This is achieved thanks
to the application of techniques such as batch processing.

Nevertheless, such novel I/O engines focus on packet processing throughput while shifting
to the background the ability of recording the incoming packets in non-volatile storage systems.
In this work the storage capabilities of novel I/O engines will be evaluated, and a scalable
solution to this problem will be developed.

Moreover, the use of batch processing involves degradation in the timestamp accuracy,
which may be relevant for monitoring purposes. Two different approaches are proposed in
this work to mitigate such effect: a simple algorithm to distribute inter-batch time among the
packets composing a batch, and a driver modification to poll NIC buffers avoiding batch pro-
cessing. Experimental results, using both synthetic and real traffic, show that our proposals
allow capturing accurately timestamped traffic for monitoring purposes at multi-10Gbps rates.

ix

1
Introduction

The Internet users’ demands for bandwidth are drastically increased every year. To man-
age such growing demands, ISPs require new tools and systems allowing to accurately monitor
their traffic in order to provide the adequate quality of service. Few years ago, traffic monitoring
at rates ranging from 100 Mbps to 1 Gbps was considered a challenge, whereas contempo-
rary commercial routers feature 10 Gbps interfaces, reaching aggregated rates as high as 100
Tbps [1]. As a consequence, specialized hardware-based solutions such as NetFPGA or En-
dace DAG cards, as well as other ad-hoc solutions, have been used to such a challenging
task.

Alternatively, in recent years, the research community has started to explore the use of
commodity hardware together with only-software solutions as a more flexible and economical
choice. This interest has been strengthened by multiple examples of real-world successful
implementations of high performance capturing systems over commodity hardware [2–4]. Such
approaches have shown that the keys to achieve high performance are the efficient memory
management and low-level hardware interaction. However, modern operating systems are not
designed with this in mind but optimized for general purpose tasks such as Web browsing or
hosting. Studies about Linux network stack performance, as [5], have shown that the major
flaws of standard network stack consists in:

• per-packet resource (de)allocation and

• multiple data copies across the network stack.

At the same time, modern NICs implement novel hardware architectures such as RSS
(Receive Side Scaling). Such architectures provides a mechanism for dispatching incoming
packets to different receive queues which allows the parallelization of the capture process. In
this light, novel capture engines take advantage of the parallelism capacities of modern NICs
and have been designed to overcome the above mentioned deficiencies. That is, these capture
engines have tuned the standard network stack and drivers to implement three improvements:

• per-packet memory pre-allocation,

• packet-level batch processing and

• zero-copy accesses between kernel and user space.

The use of novel I/O packet engines focuses on obtaining high throughput in terms of
packet processing. Nevertheless, many kinds of monitoring applications, e.g. forensic analysis
or traffic classification, need access to a traffic trace history. Thus, recording the incoming traffic
into non-volatile storage systems becomes a capital importance task for such systems. Works
such as [6] have paid attention to the packet capturing and storing problem using commodity
hardware together with standard software. Such solutions have only succeeded in capturing
packet rates below 1 Mpps (Millions of packets per second).

INTRODUCTION

While the improvements introduced by novel packet I/O (Input/Output) engines boost up
the packet capture performance, surprisingly, packet timestamp capabilities have been shifted
to the background, despite their importance in monitoring tasks. Typically, passive network
monitoring requires not only capturing packets but also labelling them with their arrival times-
tamps. Moreover, the use of packet batches as a mechanism to capture traffic causes the
addition of a source of inaccuracy in the process of packet timestamping.

1.0.1 Goals of this work

This work studies the two major issues of both traditional and novel I/O packet engines just
mentioned.

With regard to the packet capture and storage problem, this work focuses on:

• studying how can the use of novel I/O engines can outperform the packet capture through-
put of traditional approaches,

• proposing a new capture approach to achieve a scalable capture rates to work at 10Gbps
(Gigabit per second) rate, and

• assessing our approach’s capabilities for non-volatile packet storage.

Regarding the packet timestamp issue, this work does:

• study the timestamping accuracy of batch-oriented packet capture engines, and

• propose several techniques to overcome the novel I/O packet engines accuracy problem.

1.0.2 Document structure

This document is structured as follows: chapter 2 contains an overview of the state-of-the-
art regarding how do several packet capture engines work, focusing on both their strengths and
weaknesses. The development of our proposed packet capture engine is exposed in chapter 3.

In chapter 4 we focus on the analysis of the packet capture and storage problem, while
chapter 5 focuses on the timestamp accuracy problem.

Finally, conclusions and future work are included in chapter 6.

2 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

2
State of the art
2.1 The Intel 82599 NIC

The Intel 82599 [7] is a 10 Gbps capable NIC. Novel I/O packet engines [2–4] make use of
such general-purpose NIC. This section describes how this network card works in conjunction
with. Most of the concepts that will be exposed along this sections are valid for other NICs.

2.1.1 Descriptor rings and memory transfers

The NIC has a set of ”rings” used to store both incoming and transferred packets, consisting
on a circular buffer of data structures called descriptors. Each descriptor contains information
regarding the state of the packets and a pointer to a memory area. Note that, as shown in
Fig. 2.1, consecutive descriptors can have pointers to non-consecutive memory

Intel 82599 NIC Host Memory

RX
RING

Figure 2.1: Intel® 82599 descriptor ring

When a new packet arrives from the network to the NIC, the hardware will probe the corre-
sponding RX-ring for free descriptors. If there is any descriptor available, the incoming packet
will be copied from the NIC to the host memory via a DMA transfer and then the NIC will update
the flags of the descriptor involved.

Reversely, when the host is to send a packet through the network it will probe the TX-ring
for available descriptors. If there is any descriptor available, the outgoing packet will be copied
from the network stack to the host memory area pointed by the TX descriptor and then the
corresponding flags will be updated by the host process. Once those flags have been updated,
the packet will be transferred to the NIC via a DMA transfer and then sent through the network.

STATE OF THE ART

2.1.2 Multi-queue capabilities

In order to achieve high bit rates throughput, advanced NICs allow information exchange
between host and network using multiple queues. Each RX/TX instantiates an isolated de-
scriptor ring. This way, a MP (Multiprocessor) system could exploit parallelism by mapping
each queue to a different processing core, thus improving the overall network throughput.

With the aim of maximizing parallelism the total amount of traffic has to be distributed
amongst the different queues. Techniques such as RSS [8] allow distributing the traffic based
on a hash value calculated from the packets five-tuple1 as shown in Fig. 2.2.

Intel 82599 NIC

RX
RING

0

RX
RING

1

RX
RING
N-1

RSS dispatcher / Flow
Director

Incoming packets

Figure 2.2: Incoming packet balancing at the Intel 82599

The Intel 82599 NIC [7] RSS policy guarantees that packets belonging to the same flow
will be dispatched to the same queue. However, this may not be suitable for all kind of upper
level applications, specifically, applications needing to keep track and correlate traffic related
to a bi-directional connection. In such case, the uplink and downlink flow have a permuted
five-tuple and thus could be delivered to different queues. If this happens, packet reordering
could appear when collecting the traffic from different queues [9] and unfriendly situations could
appear: the ACK message of a TCP connection establishment could be processed before the
corresponding SYN message, · · ·

Nevertheless, Intel 82599 NIC provides and advanced mechanism called Flow Director
that allows tying flow five-tuples to queues. Under some throughput constraints, this technique
allows that applications working with bi-directional traffic to exploit multi-queue capabilities.
Studies such as [10] propose an architecture in which a software hash function is applied to
the incoming packets guaranteeing that both uplink and downlink flows are delivered to the
same software queue.

1IP source and destination addresses, IP protocol field and TCP/UDP source and destination ports

4 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

2.1. THE INTEL 82599 NIC

2.1.3 Traditional packet receiving scheme

Fig. 2.3 shows how does the traditional packet receiving scheme work in a Linux system,
which is true not only for the Intel 82599 but for most NICs. When a packet DMA transfer has
finished, the host system will be notified via an interrupt so the driver in charge can carry out
the corresponding action. At this point, the network driver fulfils a sk_buff (standing for socket
buffer) data structure with the information of the incoming packet. As soon as the sk_buff
structure is filled, the data structure is pushed into the network stack by means of the netif_rx
function. This means that an interrupt needs to be risen for processing each of the incoming
packets, whose processing overhead turns into the system bottleneck.

In order to reduce the amount of required interrupts, modern NICs follow the NAPI (New
API) [11, 12] model. NAPI reduces the amount of interrupts needed to process all incoming
packets at high rates by changing the driver I/O mechanism from interrupt-driven to polling.
When the first packet arrives, the NIC (Network Interface Card) raises an interrupt in which
such packet is processed and then polls the NIC rings to check whether there are more packets
to be processed. If a poll check fails, the polling process stops and the next incoming packet
will launch a new interrupt.

Regardless the use of NAPI, when the incoming packet is introduced into the network
stack, its content will be copied every time it traverses a network layer. Finally, packet is kept in
a queue until reclaimed by an application via a socket recv() call, or until the packet is deleted
due to inactivity.

2.1.4 Linux network stack’s performance flaws

Packet capture at multi-Gb/s rates making use of commodity hardware and only-software
solutions is a challenging task. Standard drivers and operating system network stacks are
unable to make the most of such capacity because they are not designed for this purpose but
optimized for common desktop or server tasks (e.g., Web browsing or hosting). Studies about
Linux network stack performance, as [2, 5, 13], have shown that the major flaws of standard
network stack are: Mainly, the limitations of the network stack and default drivers are:

• per-packet memory operations: once a packet DMA transfer from/to the NIC finishes,
the driver will free the memory area associated to the corresponding descriptor, just to
allocate and map a new piece of memory. This means that the driver will be constantly
allocating new DMA-capable memory regions, which are costly operations.

• multiple copies through the stack: as stated before, when a packet is pushed into the
network stack, a new copy of that packet will be made every time it traverses a new
network layer.

Those features give the network stack a high degree of isolation and robustness, but turn
into a bottleneck when working at gigabit rates.

Vı́ctor Moreno Martı́nez 5

STATE OF THE ART

Ph
ys

ic
al

 li
nk

In
te

l 8
25

99
 N

IC

R
X

R
IN

G

Pa
ck

et
 a

rri
va

l

H
os

t m
em

or
y

D
M

A
pa

ck
et

 tr
an

sf
er

En
d

of
 c

op
y

IR
Q

N
et

w
or

k
st

ac
k

U
se

r a
pp

lic
at

io
n

ne
tif

_r
x(

)
pu

sh
 in

bu
ffe

r

so
ck

_r
ec

v(
)

po
p

fro
m

bu
ffe

r

m
em

cp
y(

)

Figure 2.3: Traditional packet receiving scheme

6 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

2.2. NOVEL I/O ENGINES

2.2 Novel I/O engines

To overcome the Linux network stack deficiencies, novel packet I/O engines have been
proposed [2, 14, 15] in the recent years. Such capture engines have modified the standard
network stack and drivers to implement three enhancements, namely:

• memory pre-allocation: a pool of memory buffers is allocated when the driver is wo-
ken up, instead of freeing such buffers and allocating new ones every time a packet is
received, the driver will reuse the previously existing buffers.

• packet-level batch processing: differently from traditional network stacks, incoming pack-
ets will be fed to upper level application in batches. This way, the overhead due to the
required call chain is minimized.

• zero-copy: direct access between the application and the driver

Thanks to these modifications along with a careful tuning of the software design and criti-
cal hardware parameters, existing overheads in standard operating system network stack are
removed, allowing packet sniffing up to 40 times faster [15], achieving wire-speed capturing,
i.e., up to 10 Gb/s and more than 14 Mpps per interface.

Fig. 2.4 shows how does PacketShader [2] work in contrast to the behaviour of traditional
network stacks shown in Fig. 2.3. Firstly, packets are copied into host memory via DMA trans-
fers the same way as in a traditional system. The big difference is that no interrupt process
will process the incoming packets, it will be the user level application the one that will ask for
packets by calling the ps_recv() function from the PacketShader API. When issuing such call,
the driver will poll the RX descriptor ring looking for packets that have already been copied into
host memory. If there any packets available, all of them will be copied to a memory buffer that
has been mapped by the user-level application thus acceding them in a zero-copy basis.

In order to achieve peak performance, both CPU and memory affinity issues must be
taken into account. The user level application must be scheduled in the same NUMA node in
which the memory buffer where the incoming packets will be copied at their arrival. Otherwise,
memory access latency could damage capture performance.

Note that the RX descriptors won’t be reused until their corresponding packet has been
copied as a consequence of a ps_recv() request from the upper level application. This way,
the system packet capture performance depends on how fast the users’ applications are able
of consuming the incoming packets in order to leave space for the new ones. If needed,
packet capture performance can be improved by using several RX queues: different application
threads/processes would ask for packets on their corresponding RX queue. In that case, affinity
issues become even more relevant: the different capture threads must be scheduled in different
cores, always keeping in mind that the core each thread/process is mapped to resides in the
same NUMA node as its associated RX queue.

Netmap [15] is a different packet capture engine following a similar approach to Packet-
Shader. Both solutions follow the same principles and provide a particular API for user-level
applications. They are both capable of line-rate packet capture in 10 Gb/s network using just
one RX queue [2,15].

Vı́ctor Moreno Martı́nez 7

STATE OF THE ART

Ph
ys

ic
al

 li
nk

In
te

l 8
25

99
 N

IC

R
X

R
IN

G

Pa
ck

et
 a

rri
va

l

H
os

t m
em

or
y

DM
A

pa
ck

et
 tr

an
sf

er

Pa
ck

et
Sh

ad
er

dr

iv
er

U
se

r a
pp

lic
at

io
n

ps
_r

ec
v(

)

co
py

_r
x_

pa
ck

et
s(

)

ch
ec

k
if

th
er

e
ar

e
pa

ck
et

s
av

ai
la

bl
e

Figure 2.4: PacketShader packet reception scheme

8 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

2.2. NOVEL I/O ENGINES

Other existing approaches such as PFQ [4] or DashCap [10] bet for a socket-alike interface.
Thus, those solutions provide a more user friendly interface then PacketShader or Netmap.
Nevertheless, such approaches are not capable of achieving comparable performance than
PacketShader or Netmap: Dashcap works at 1 Gb/s [10], while PFQ needs using more than
10 RX queues in order to achieve 10 Gb/s line-rate capture [4].

While novel I/O engines improvements boost up the performance of packet capture en-
gines, surprisingly, packet timestamp capabilities have been shifted to the background, despite
their importance in monitoring tasks. Typically, passive network monitoring requires not only
capturing packets but also labelling them with their arrival timestamps. In fact, the packet times-
tamp accuracy is relevant to the majority of monitoring applications but it is essential in those
services that follow a temporal pattern. As an example, in a VoIP monitoring system, signaling
must be tracked prior to the voice stream.

In this light, there are two features that an ideal packet capture engine should meet,
namely:

• with the aim of avoiding reordering effects [9], it should achieve line-rate packet capture
using just one RX queue;

• it should emboss incoming packets with an as accurate as possible timestamp.

Up to date, none of the existing commodity hardware based capture engines do simulta-
neously meet both requirements. This work proposes a new packet capture mechanism that
meets both two.

Vı́ctor Moreno Martı́nez 9

3
HPCAP probe description

In this chapter we describe the implementation details of HPCAP (High-performance Packet
CAPture): our packet capture proposal. HPCAP is designed with the aim of meeting the two
features that an ideal packet capture engine should meet, as mentioned in section 2.2, namely:

• it should achieve line-rate packet capture using just one RX queue;

• it should associate incoming packets with an as accurate as possible timestamp.

Moreover, many kinds of monitoring applications, e.g. forensic analysis or traffic classifica-
tion, need access to a traffic trace history. Thus, recording the incoming traffic into non-volatile
storage systems becomes a capital importance task for such systems. In this light, there is one
more feature than an ideal packet capture engine should meet:

• it should be able to store all the incoming packets in non-volatile volumes.

Up to date, none of the existing commodity hardware based capture engines do simulta-
neously meet the first two requirements, and none of them have paid attention to non-volatile
traffic storage problems. This work proposes a new packet capture mechanism that meets all
of the three previously explained features.

Although our goal is a capture solution working with just one RX queue, the system archi-
tecture has been designed so that more than one queue can be used. HPCAP architecture is
depicted in Fig. 3.1. Three main blocks can be distinguished inside HPCAP:

• the Intel 82599 NIC interface: this block enables the communication between the HPCAP
driver, and the NIC. It is comprised by the source C code files from the opensource
ixgbe (Intel’s 10 Gigabit Ethernet Linux driver).

• the HPCAP driver: this block consists on a set of C source code files that are compiled
together with the ixgbe driver files to generate a new driver.

• user level applications: a user-level application using the HPCAP API, which consumes
the incoming packets.

3.1 Kernel polling thread

A basic technique when trying to exploit your system’s performance is the ability to overlap
data copies and processing. With the aim of maximizing, we instantiate a kernel-level buffer
in which incoming packets will be copied once they have been transferred to host memory via
DMA (see Fig. 3.1).

Other capture engines, such as PacketShader [2] or Netmap [15], do copy incoming pack-

HPCAP PROBE DESCRIPTION

Host system

User-level

Kernel-level

Intel 82599 NIC

RX
RING

0

RX
RING

1

RX
RING
n-1

RSS dispatcher / Flow
Director

Incoming packets

Host Memory Host Memory Host Memory

Listener
0,0

DMA DMA DMA

Poll thread
n-1

Poll thread
1

Poll thread
0

Buffer 0 Buffer 1 Buffer n-1

Listener
0,m0

Listener
1,0

Listener
1,m1

Listener
n-1,0

Listener
n-1, mn-1

Figure 3.1: HPCAP kernel packet buffer

12 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

3.1. KERNEL POLLING THREAD

ets to an intermediate buffer. Nevertheless, this copy is made when the user-level application
asks for new packets. This philosophy has two main drawbacks:

• as the incoming packets are copied to the intermediate buffer when the application asks
for them, there is no copy and process overlap, thus limiting the capture performance,

• if the capture engine was to timestamp incoming packets, it could only be done when
they are copied from RX ring memory to the intermediate buffer. As packets are not
copied until the user asks for them, its timestamp accuracy is damaged. Whatsmore,
packets copied due to the same user-level request would have a nearly equal timestamp
value. A full discussion about that matter is included in chapter 5.

In order to overcome such problems, HPCAP creates a KPT (Kernel-level Polling Thread)
per each RX queue. Those threads will be constantly polling their corresponding RX descriptor
rings, reading the first descriptor in the queue’s flags to check whether it has already been
copied into host memory via DMA. If the poll thread detects that there are any packets available
at the RX ring, they will be copied to the poll thread’s attached circular buffer. Just before this
packet copy is made, the poll thread will probe for the system time by means of the Linux kernel
getnstimeofday() function, whose accuracy will be evaluated in chapter 5.

All the incoming packets are copied into the buffer in a raw data format (see Fig. 3.2):
first, the packet timestamp is copied (32-bit for the seconds field and other 32-bit field for the
nanoseconds), after it, the packet’s length (a 16-bit bit field), and in the last place the packet
data (with a variable length).

Kernel raw data buffer

Packet K Packet K+1

...

...

Packet data (variable length)Timestamp (8B) Packet length (2B)

Figure 3.2: HPCAP kernel packet buffer

This raw buffer format gives a higher level of abstraction than the typical packet structure
used by PCAP-lib or PacketShader, so upper level applications can efficiently access the data
in both a packet oriented or a byte-stream basis. This byte-stream oriented access to the
network allows using standard non-volatile storage applications like the Linux dd tool [16], thus
benefiting incoming packet storage performance.

Vı́ctor Moreno Martı́nez 13

HPCAP PROBE DESCRIPTION

3.2 Multiple listeners

As shown in Fig. 3.1, HPCAP supports multiple applications, referred as listeners, to fetch
packets from the same RX queue in a SPMC (Single Producer, Multiple Consumer) basis. This
is achieved by keeping an array of structures (one for each listener thread/application plus a
”global listener”) keeping track of how much data has each listener fetched from the common
buffer. In order to keep data consistency, the packet read throughput will be set by the slowest
listener.

Each listener structure consists of four fields, namely:

• a listener identifier: a field used to identify the different active listeners for each RX
queue. This field is needed to keep consistency between different packet requests com-
ing from the same listener. The listener identifier field is filled when a new listener opens
an HPCAP session, and cleared when this session is closed.

• a read pointer: this field is used to know the beginning of the buffer memory where the
copy to user space transfer must be made when a user application issues a read request.
When a new listener is registered for an HPCAP queue, this field is set to value set in the
global listener field, guaranteeing that all the data residing in the buffer from this moment
on will be accessible by this listener. After that, this field is only reader and updated by
the listener application when it reads a new block of bytes, so no concurrency-proven
mechanism must be applied to that field.

• a write pointer: this field tells the kernel-level poll thread, where a new incoming packet
must be copied. Thus, this field is only read and updated by the kernel poll thread and
again no concurrency-proven mechanism needs to be applied.
atomic operations
• an available byte counter: this counter indicates the amount of data(in terms of bytes)

currently available in each RX queue buffer. This value is increased by the kernel poll
thread, and decreased by the slowest listener thread. Thus, concurrency-proven tech-
niques must be applied to avoid inconsistency in this data field [17]. We have chosen to
use the Linux atomic API.

This feature allows monitoring application to focus on packet processing, while a different
application stores them into non-volatile volumes, thus overlapping data storing and processing
and exploiting maximum performance.

14 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

3.3. USER-LEVEL API

3.3 User-level API

The "everything is a file" Linux kernel philosophy, provides a simple way to communicate
user-level applications with the HPCAP driver. Following that philosophy, HPCAP instantiates a
different character device [18] node in the /dev/ filesystem for each to the different RX queues
belonging to each of the different available interfaces. This way, a system holding N network
interfaces with M RX queues each would see the following devices in its /dev/ directory:

...
/dev/hpcap_xge0_0
/dev/hpcap_xge0_1

...
/dev/hpcap_xge0_<M−1>
/dev/hpcap_xge1_0
/dev/hpcap_xge1_1

...
/dev/hpcap_xge1_<M−1>
...
/dev/hpcap_xge<N−1>_0
/dev/hpcap_xge<N−1>_1

...
/dev/hpcap_xge<N−1>_<M−1>
...

Code 3.1: Contents of the /dev/ directory in a system running HPCAP

A user level application that wants to capture the packets arriving to queue X of interface
xgeY does only need to execute an operating system open() call over the character device
file /dev/hpcap xgeY X. Once the application has opened such file, it can read the incoming
packets by performing standard read() call over the previously opened file. This way, the user
level application will be copied as much bytes as desired of the contents of the corresponding
kernel buffer, as shown in Fig. 3.3. When the application wants to stop reading from the
kernel buffer, it just has to execute a close() call over the character device file, and its
corresponding listener will be untied from the listeners pool. Such an interface, allows the
execution of programs over HPCAP that will read the incoming packets from the corresponding
buffer, but it also allows using standard tools such as Linux’s dd to massively and efficiently
move the data to non-volatile storage volumes.

Vı́ctor Moreno Martı́nez 15

HPCAP PROBE DESCRIPTION

Figure 3.3: Character driver reading. Image taken from [18]

3.4 HPCAP packet reception scheme

Fig. 3.4 shows HPCAP’s packet reception scheme, in contrast with the schemes regarding
the packet capture engine of a traditional NIC and PacketShader, shown in Fig. 2.3 and Fig. 2.4
respectively.

As in PacketShader, the packet reception process no longer depends on the use of inter-
rupts as the mechanism to communicate the hardware and the network driver. Instead, the
already mentioned kernel poll thread will constantly copy (and timestamp) the available pack-
ets into its corresponding buffer. Note that this approach is different from PacketShader’s, as
the packet copies are not made when a user application asks for more packets, but always
there are available packets.

Note that, just as mentioned in section 2.2, in order to achieve peak performance both
the kernel poll thread and its associated listeners must be mapped to be executed in the same
NUMA node. HPCAP kernel poll threads’ core affinity is set via a driver load time parameter.
Regarding listener applications, a single-threaded application can be easily mapped to a core
by means of the Linux taskset tool [19]. Multithreaded application can make use of the
pthread (POSIX Threads) library in order to map each thread to its corresponding core [20].

16 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

3.4. HPCAP PACKET RECEPTION SCHEME

U
se

r a
pp

lic
at

io
n

H
PC

A
P

dr
iv

er
H

os
t m

em
or

y
In

te
l 8

25
99

 N
IC

Ph
ys

ic
al

 li
nk

R
X

R
IN

G

Pa
ck

et
 a

rri
va

l
DM

A
pa

ck
et

 tr
an

sf
er

hp
ca

p_
po

ll(
)

ch
ec

k
if

th
er

e
ar

e
pa

ck
et

s
av

ai
la

bl
e

co
py

 in
to

 b
uf

fe
r

hp
ca

p_
po

ll(
)

co
py

 in
to

 b
uf

fe
r

re
ad

()

Figure 3.4: HPCAP packet reception scheme

Vı́ctor Moreno Martı́nez 17

4
Storage performance evaluation

As explained in chapter 3, one of the requirements of our approach was achieving full-rate
packet storage in non-volatile volumes. Along this chapter, the validation and performance
evaluation process regarding this issue will be exposed. All experiments described in this
chapter have been carried out using just one queue of the Intel 82599 NIC, and taking the
affinity issues mentioned in section 2.2 into account.

4.1 Validation of HPCAP

First of all, HPCAP’s capture correctness has been verified. To accomplish such task, a
FPGA-based traffic generator has been used, specifically, a HitechGlobal HTG-V5TXT-PCIe
card which containing a Xilinx Virtex-5 FPGA (XC5VTX240) and four 10GbE SFP+ ports [21].
This card contains a VHDL design allowing to load PCAP network traffic traces into the device,
and then sending such traffic both at the trace’s original speed or at the link’s maximum speed.
On the receiver side, a two six-core Intel Xeon E52630 processors running at 2.30 GHz with
124 GB of DDR3 RAM machine, running a Ubuntu 12.04 LTS with a 3.2.0-23-generic kernel,
was used.

This infrastructure has been used to validate HPCAP’s packet reception of real traffic from
a Tier-1 link (i.e., a CAIDA OC192 trace [22]), both sent at the trace’s original speed and at
the link’s maximum speed. Details about the installation an launch of HPCAP are explained in
appendix B.

Once HPCAP’s packet capture correctness was validated, an analysis regarding its packet
capture throughput was carried out. This analysis involves network traffic capture and copy
into system memory. We have tested our capture system by sending constant-size packets
at the maximum link’s speed using the previously mentioned FPGA sender. Those tests can
be easily carried using the following command,in which the Linux dd tool copies the incoming
data into memory, and then writes them into the null device (a null write):

dd if=/dev/hpcap_xge0_0 of=/dev/null bs=12M count=10000000

Code 4.1: Command used to check HPCAP’s memory packet capture
performance

HPCAP’s buffer size is a key point, the bigger the available buffer is, the more robust will
be the capture when network or disk write performance peaks appear. The maximum buffer
size that the Linux 3.2.0-23-generic kernel allows to allocate in 1 Gbyte. It must be pointed out
that this buffer allocation has not been dynamically achieved (i.e. by means of the kmalloc()
function), but statically (i.e. by declaring a buffer[BUFF SIZE] object in the driver’s code).

STORAGE PERFORMANCE EVALUATION

The reason is that kmalloc() does not allow to get bigger buffers than 32 Mbyte unless a
full kernel tuning and recompilation is made. This modification is highly not recommended by
the the kernel developing experts, as low-level factors like memory page size and others must
be taken into account. Thus, the size of the HPCAP’s buffer used along all the experiments is
1 Gbyte.

Table 4.1 shows the results of those experiments with a 500 seconds duration each. For
each packet size, we have tested the system’s packet capture performance with both the times-
tamp mechanism on and off. Note that when the packet size is small enough, disabling packet
timestamping turns into a throughput improvement.

Pack. size(bytes) Tstamp Mpps sent Mpps Captured Gbps Captured %Lost

60 (min)
off

14.88
14.88 7.14 0

on 14.23 6.83 4.58

120
off

8.69
8.69 8.33 0

on 8.69 8.33 0

500
off

2.39
2.39 9.54 0

on 2.39 9.54 0

1000
off

1.22
1.22 9.77 0

on 1.22 9.77 0

1500
off

0.82
0.82 9.84 0

on 0.82 9.84 0

Table 4.1: HPCAP packet capture to system memory throughput (2.30 Ghz ma-
chine)

In the light of such results, it can be inferred that when the incoming packets are very small,
the per-packet process and copy procedure becomes the system’s bottleneck. This hypothesis
has been confirmed by carrying out equivalent experiments in a faster machine, specifically in a
Intel Xeon X5660 running at 2.80 Ghz. In table 4.2 the results of running HPCAP in such faster
machine are exposed, showing a three orders of magnitude decrease in packet loss rate. Such
table shows as well a lossless capture scheme for minimum sized packets due to the reduction
of the total number of timestamp requests. Some results regarding how this partial timestamp
policy affect accuracy are explained in chapter 5.

Pack. size(bytes) Tstamp Mpps sent Mpps Captured Gbps Captured %Lost

60 (min)
off

14.88
14.88 7.14 0

half 14.88 7.14 0
on 14.88 7.14 4.88 · 10−3

1500
off

0.82
0.82 9.84 0

on 0.82 9.84 0

Table 4.2: HPCAP packet capture to system memory throughput (2.80 Ghz ma-
chine)

Table 4.3 shows the results for equivalent experiments carried out using the PacketShader
I/O engine. It must remarked that PacketShader does not timestamp the incoming packets,
so a code modification have been made in order to include packet timestamping inside the

20 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

4.1. VALIDATION OF HPCAP

PacketShader. This code modification has been added at the most ”natural” point: the packet
is timestamped at the same moment that it is copied from the RX descriptor ring memory
to the host’s memory. The application used to carry such experiments is the rxdump tool
provided within the PacketShader source code [23], with a slight modification in order to avoid
performance penalties due to printing the incoming packets into an output file.

Pack. size(bytes) Tstamp Mpps sent Mpps Captured Gbps Captured %Lost

60 (min)
off

14.88
14.63 7.03 1.63

on 14.13 6.78 5.06

120
off

8.69
8.69 8.33 0

on 8.66 8.33 0.25

500
off

2.39
2.39 9.54 0

on 2.39 9.54 0

1000
off

1.22
1.22 9.77 0

on 1.22 9.77 0

1500
off

0.82
0.82 9.84 0

on 0.82 9.84 0

Table 4.3: PacketShader packet capture to system memory throughput

Comparison between tables 4.1 and 4.3 shows that HPCAP slightly outperforms Packet-
Shader when it comes to capturing the incoming packets into system memory. When it comes
to capturing incoming packets without an associated timestamp, HPCAP can achieve line-rate
capture regardless packet size. If minimum-sized packet timestamp is required, HPCAP is only
capable of capturing 95% of the incoming packets, just as PacketShader does. Nevertheless,
not as PacketShader, the use of HPCAP allows line-rate packet timestamp and capture if the
packets are greater than 120 bytes.

Vı́ctor Moreno Martı́nez 21

STORAGE PERFORMANCE EVALUATION

4.2 Optimizing non-volatile write performance

The amount of data that our system needs to keep is huge, specifically 10 Gb/s means
4.5 Terabyte per hour, and thus 108 Terabyte of data per each day of capture. Those figures
limits the usage of high-throughput storage volumes such as SSD (Solid-Sate Drive), due to
the economical cost that the amount of such disks would mean in order to store not even a full
day data, but a couple of hours. We have used instead a set of HDD, whose characteristics
are detailed in table 4.4.

Vendor: Hitachi
Model number: HUA723030ALA640 (0F12456)
Interface: SATA 6Gb/s
Capacity: 3TB
Max. sustained sequential transfer: 152 MB/s

Table 4.4: Hard disk drives specifications

We have checked the write throughput that such disks offer, by means of the following
command:

dd if=/dev/zero of=<HDD mount point>/testXX.zeros o�ag=direct bs=1M
count=1000000

Code 4.2: Command used to test a HDD’s write throughput

In that terms, we have obtained an average 112 MB/s throughput. Thus, we estimate
that at least 12 of such disks would be needed with the aim of creating an storage system
capable of consuming incoming packets at a 10 Gb/s rate1. This number of disks is precisely
the maximum amount of storage drives that the host chassis can handle. Further than 12 disks
have been temporary mounted in such chassis in order to carry the experiments described in
this section.

As our aim is maximizing the storage volume’s write throughput and capacity, we have
joined the amount of HDDs into a RAID 0 volume. In order to choose the right file system to be
mounted over the RAID volume, several options have been taken into account: etx4, JFS and
XFS. Those three file systems where taken into account as a result of being the best choices
according a file system performance study that members of the HPCN group carried out under
the MAINS European project [24]. Nevertheless, the already proven scalability and support for
both large files and large number of files of the XFS file system [25,26] made us choose such
file system. Moreover, by means of the logdev mount-time parameter, XFS supports sending
all the fyle system journalling information to an external device, which improves the overall file
system performance.

To create such a RAID volume, two different RAID controller cards were available, whose
characteristics are included in table 4.5 and 4.6.

1 10Gb/s
152MB/s = 1.25GB/s

112MB/s = 11.16

22 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

4.2. OPTIMIZING NON-VOLATILE WRITE PERFORMANCE

Vendor: Intel
Model number: RS25DB080
Cache memory: 1GB 800 MHz ECC DDR3
Max. internal ports: 8
Interface: PCIe 2.0 x8

Table 4.5: Intel’s RAID controller card specifications

Vendor: Adaptec
Model number: 6405
Cache memory: 512MB 667 MHz DDR2
Max. internal ports: 1
Interface: PCIe 2.0 x8

Table 4.6: Adaptec’s RAID controller card specifications

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

W
ri
te

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

Time (s)

1d Adaptec 4d Adaptec 8d Adaptec 12d Adaptec 1d Intel 4d Intel 8d Intel 12d Intel

Figure 4.1: Write throughput for the Intel and Adaptec RAID controllers

Vı́ctor Moreno Martı́nez 23

STORAGE PERFORMANCE EVALUATION

The performance profile for both RAID controller cards has been tested. To accomplish
such task, the previously described dd based command to write several have been repeated
over time, writing the results into different files. Some of those results are shown in Fig. 4.1, for
detailed results see appendix C. Such results in conjunction with the ones shown in Fig. 4.3(a)
expose that the Adaptec RAID controller suffers from a channel limitation of 1.2GB/s. Intel
RAID controller offers better write performance, and thus is the one chosen to be included
in the final system. Consequently, the rest of the write performance experiments have been
carried out using the Intel RAID controller card.

Additionally, Fig. 4.1 shows a periodic behaviour for both controller cards. The writing pro-
cess throughput begins at its maximum level and then this throughput is successively reduced
until reaching its minimum value. Once this minimum throughput is reached, the system goes
back to the maximum and then this cycle is indefinitely repeated.

On appendix C it is explained that several experiments have been carried out in order to
mitigate such spurious effect, those experiments reveal that this spurious effect may be due to
some file system configuration parameter. A better understanding of this effect is left as future
work. Mounting and umounting the file system every time a number of files is written (e.g. 4)
has proven to mitigate such variation. Fig.4.2 shows the effect of such action in the system’s
write throughput over time. Moreover, in Fig. 4.3(b) and 4.3(c) the oscillation reduction in the
write throughput due to the application of such mount/umount technique is shown.

0 100 200 300 400 500 600 700 800 900 1000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

W
ri
te

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

Time (s)

8 Disks 12 Disks 16 Disks 8 Disks mount 12 Disks mount

Figure 4.2: Effect of mounting the filesystem every 4 written files

We have found no evidence of this spurious effect in the related bibliography. However,
we consider that such effect is quite relevant and should be taken into account in any write
throughput oriented system. We believe that the use of some premium features offered by the
Intel RAID controller, such using SSD drives as intermediate cache, may help to mitigate this
effect. Nevertheless, the lack of resources has not allowed us to carry such experiments.

24 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

4.2. OPTIMIZING NON-VOLATILE WRITE PERFORMANCE

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
ri
te

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of disks in RAID 0

Maximum
minimum

(a) Adaptec controller write throughput

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

W
ri
te

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of disks in RAID 0

Maximum

minimum

(b) Intel controller write throughput

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

W
ri
te

 t
h
ro

u
g
h
p
u
t
(G

B
/s

)

Number of disks in RAID 0

Maximum
minimum

(c) Intel controller write throughput mounting the FS every 4 files

Figure 4.3: Maximum and minimum write throughput for the Intel RAID card
running an XFS file system

Vı́ctor Moreno Martı́nez 25

STORAGE PERFORMANCE EVALUATION

4.3 HPCAP write performance

Once both the RAID and file system configurations have been established as in the previ-
ous section, we proceed to experiment the full system’s capture throughput. The infrastructure
used to carry such experiments is the same as described is section 4.1

Firstly, the packet capture and storage performance of PacketShader has been tested.
Tables 4.7 and 4.8 show the results of experiments with a duration of 500 seconds. For ta-
ble 4.7 we have tested the capture performance of the system storing all the captured traffic
in a standard PCAP file format. The results shown in table 4.8 refer to the system capture
performance when storing the incoming traffic in a raw file format (similar to the one used by
HPCAP, explained in section 3.1).

Pack. size(bytes) Tstamp Mpps sent Mpps Captured Gbps Captured %Lost

60 (min)
off

14.88
7.26 3.48 51.22

on 7.04 3.37 52.68

120
off

8.69
5.41 5.19 37.66

on 5.38 5.15 38.17

500
off

2.39
20.01 8.06 15.54

on 1.99 7.99 16.27

1000
off

1.22
1.09 8.76 10.28

on 1.09 8.72 10.73

1500
off

0.82
0.74 8.98 8.84

on 0.74 8.99 8.82

Table 4.7: PacketShader packet capture to RAID0 (12 disks) in PCAP format

Pack. size(bytes) Tstamp Mpps sent Mpps Captured Gbps Captured %Lost

60 (min)
off

14.88
11.71 5.62 21.29

on 11.51 5.53 22.56

120
off

8.69
7.18 6.89 17.26

on 7.13 6.84 17.88

500
off

2.39
2.23 8.94 6.32

on 2.21 8.83 7.44

1000
off

1.22
1.17 9.28 4.4

on 1.16 9.22 4.91

1500
off

0.82
0.78 9.26 4.5

on 0.77 9.21 6.1

Table 4.8: PacketShader packet capture to RAID0 (12 disks) in RAW format

Those figures show the improvement experienced due to the usage of a raw file format in
comparison with the standard PCAP file. In order to be able to process the stored traffic with
standard tools, a raw to PCAP file conversion may be needed. However, we consider that this
should not be a common situation, as those traces should only be retrieved when a monitoring
application pops an alarm event.

26 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

4.3. HPCAP WRITE PERFORMANCE

In addition to the performance boost experienced due to the use of a raw file format, there
is another key flaw that the PCAP file format suffers from: it does not support timestamp
accuracy below one microsecond. This point is of capital relevance in 10 Gbps networks, in
which a packet can be transferred in between 67.2 and 1230 ns (see Eq. 5.2).

Table 4.9 shows the write performance results obtained under the same conditions by
HPCAP.

Pack. size(bytes) Tstamp Mpps sent Mpps Captured Gbps Captured %Lost

60 (min)
off

14.88
14.76 7.08 0.73

on 1.34 6.43 9.91

120
off

8.69
8.49 8.15 2.15

on 8.47 8.14 2.33

500
off

2.39
2.30 9.18 3.76

on 2.28 9.15 3.9

1000
off

1.22
1.17 9.33 4.34

on 1.17 9.33 4.41

1500
off

0.82
0.79 9.40 4.52

on 0.79 9.36 4.93

Table 4.9: HPCAP packet capture to RAID0 (12 disks)

Results show once again that HPCAP slightly improves the performance profile given by a
PacketShader application writing in a raw file format. Nevertheless, it must me noticed that the
packet loss experienced by HPCAP present a bursty behaviour. That is, all the packets lost by
HPCAP are lost contiguously.

It is worth remarking the non-intuitive behaviour that HPCAP’s capture presents as the
packet size grows. The bigger the incoming packets are, the bigger the packet loss rate is.
Notice that this effect did not appeared when fetching the incoming packets into system mem-
ory (see Table. 4.1), so now the RAID writing becomes the system bottleneck. The reason for
which this effects is more evident as the packet size increases, is that the bigger the packets
are, the more bandwidth demanding the write process will be in terms of bytes per second.

We consider that a bigger driver-level buffer would help to protect the capture system from
packet loss when the write throughput falls. As explained in section 4.1, Linux does not allow
to allocate a buffer bigger thab 1GB. We propose the addition of ram-based file system as
intermediate storage solution to behave as a virtually bigger memory buffer an thus reduce
packet loss. Some preliminary results of such approach using a TMPFS file system [27] are
exposed in table 4.10, showing a decrease in the packet loss rate up the level shown by the
packet capture to system memory.

Vı́ctor Moreno Martı́nez 27

STORAGE PERFORMANCE EVALUATION

Pack. size(bytes) Tstamp Mpps sent Mpps Captured Gbps Captured %Lost

60 (min)
off

14.88
14.88 7.14 0

on 14.23 6.83 4.58

1500
off

0.82
0.82 9.84 0

on 0.82 9.84 0

Table 4.10: HPCAP packet capture to RAID0 (12 disks) using a in intermediate
TMPFS storage

28 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

5
Timestamp accuracy evaluation

As it has been stated in the previous chapters, Novel I/O capture engines try to overcome
the flaws of general-purpose network stacks by applying techniques such as:

• per-packet memory pre-allocation,

• packet-level batch processing and

• zero-copy accesses between kernel and user space.

While these improvements boost up the performance of packet capture engines, surpris-
ingly, packet timestamp capabilities have been shifted to the background, despite their impor-
tance in monitoring tasks. Typically, passive network monitoring requires not only capturing
packets but also labelling them with their arrival timestamps. In fact, the packet timestamp ac-
curacy is relevant to the majority of monitoring applications but it is essential in those services
that follow a temporal pattern. As an example, in a VoIP monitoring system, signalling must be
tracked prior to the voice stream. Moreover, the use of packet batches as a mechanism to cap-
ture traffic causes the addition of a source of inaccuracy in the process of packet timestamping.
Essentially, when a high-level layer asks for packets the driver stores and forwards them to the
requestor at once. Therefore, all the packets of a given batch have nearby timestamps whereas
inter-batch times are huge, not representing real interarrival times. This phenomenon has not
received attention to date.

Consequently, this chapter assesses the timestamp accuracy of novel packet capture
engines and proposes two different approaches to mitigate the impact of batch processing.
Specifically,

• two simple algorithms to distribute inter-batch time among the packets composing a
batch (UDTS/WDTS), and

• a driver modification using a kernel-level thread which constantly polls NIC packet buffers
and avoids batch processing (KPT).

Finally, our results, using both synthetic traffic and real traces, highlight the significant times-
tamping inaccuracy added by novel packet I/O engines, and show how our proposals overcome
such limitation, allowing us to capture correctly timestamped traffic for monitoring purposes at
multi-10Gbps rates.

5.1 The packet timestamping problem

Dealing with high-speed networks claims for advanced timing mechanisms. For instance,
at 10 Gbps a 60-byte sized packet is transferred in 67.2 ns (see Eq. 5.1 and 5.2), whereas a
1514-byte packet in 1230.4 ns. In the light of such demanding figures, packet capture engines

TIMESTAMP ACCURACY EVALUATION

should implement timestamping policies as accurately as possible.

TXtime =
(Preamble+ Packetsize + CRC + Inter_Frame_Gap)

Linkrate
(5.1)

TXtime =
(8 + 60 + 4 + 12) bytes

packet
× 8 bits

byte

1010 bits
second

= 67.2× 10−9 seconds

packet
(5.2)

All capture engines suffer from timestamp inaccuracy due to kernel scheduling policy be-
cause other higher priority processes make use of CPU resources. Such problem becomes
more dramatic when batch timestamping is applied. In that case, although incoming packets
are copied into kernel memory and timestamped in a 1-by-1 fashion, this copy-and-timestamp
process is scheduled in time quanta whose length is proportional to the batch size. Thus, pack-
ets received within the same batch will have an equal or very similar timestamp. In Fig. 5.1 this
effect is exposed for a 100%-loaded 10 Gbps link in which 60-byte packets are being received
using PacketShader [2], i.e., a new packet arrives every 67.2 ns (black dashed line). As shown,
packets received within the same batch do have very little interarrival time (corresponding to
the copy-and-timestamp duration), whereas there is a huge interarrival time between packets
from different batches. Therefore, the measured interarrival times are far from the real values.
We notice that PFQ [4] does not use batch processing at driver-level and this source of inac-
curacy does not affect its timestamping. However, timestamp inaccuracy may be added due to
the per-packet processing latency.

At the same time, other sources of inaccuracy appear when using more than one hard-
ware queue and trying to correlate the traffic dispatched by different queues. On the one hand,
interarrival times may even be negative due to packet reordering as shown in [9]. On the other
hand, the lack of low-level synchronism among different queues must be taken into account
as different cores of the same machine cannot concurrently read the timestamp counter regis-
ter [28]. PFQ suffers from these effects because it must use multiple queues in order to achieve
line-rate packet capture. However, batch-oriented drivers, such as PacketShader, are able to
capture wire-speed traffic using just one hardware queue.

Although Linux can timestamp packets with sub-microsecond precision by means of kernel
getnstimeofday function, drift correction mechanisms must be used in order to guarantee
long-term synchronization. This is out of the scope of this chapter as it has already been
solved by methods like NTP (Network Time Protocol), LinuxPPS or PTP (Precision Time Pro-
tocol) [29].

30 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

5.1. THE PACKET TIMESTAMPING PROBLEM

0
20

40
60

80
10

0
12

0
0

50
0

10
00

15
00

Inter−packet timestamp [ns]

Pa
ck

et
 n

um
be

r

0
20

40
60

80
10

0
12

00246

Chunk number

Th
eo

re
tic

al
 In

te
r−

pa
ck

et
 T

S
M

ea
su

re
d

In
te

r−
pa

ck
et

 T
S

C
hu

nk
 n

um
be

r

Figure 5.1: Batch timestamping

Vı́ctor Moreno Martı́nez 31

TIMESTAMP ACCURACY EVALUATION

5.2 Proposed Solutions

To overcome the problem of batch timestamping, we propose three approaches. The first
two ones are based on distributing the inter-batch time among the different packets composing
a batch. The third approach adopts a packet-oriented paradigm in order to remove batch
processing without degrading the capture performance.

5.2.1 UDTS: Uniform Distribution of TimeStamp

The simplest technique to reduce the huge time gap between batches is to uniformly dis-
tribute inter-batch time among the packets of a batch. Equation 5.3 shows the timestamp
estimation of the i-th packet in the (k + 1)-th batch, where t

(j)
m is the timestamp of the m-th

packet in the j-th batch and nj is the number of packets in batch j.

τ
(k+1)
i = t(k)nk

+
(
t(k+1)
nk+1

− t(k)nk

)
· i

nk+1

∀i ∈ {1, . . . , nk+1} (5.3)

As shown in Fig. 5.2a, this algorithm performs correctly when the incoming packets of a
given batch have the same size. A drawback of this solution is that all packets of a given
batch have the same inter-arrival time regardless of their size (see Fig. 5.2b). Note that the
inter-packet gap is proportional to the packet size when transmitting packets at maximum rate.

5.2.2 WDTS: Weighted Distribution of TimeStamp

To overcome the disadvantage of previous solution, we propose to distribute time among
packets proportionally to the packet size. Equation 5.4 shows the timestamp estimation using
this approach, where s(k+1)

j is the size of the j-th packet in the (k + 1)-th batch.

τ
(k+1)
i = t(k)nk

+
(
t(k+1)
nk+1

− t(k)nk

)
·
∑i

j=1 s
(k+1)
j∑nk+1

j=1 s
(k+1)
j

∀i ∈ {1, . . . , nk+1} (5.4)

WDTS is especially accurate when the link is completely loaded because there are no inter-
packet gaps (excluding transmission time), regardless the packet size is variable, as shown in
Fig. 5.2b. However, when the link load is lower, both UDTS and WDTS present poorer results
as they distribute real inter-packet gaps among all the packets in the batch (see Fig. 5.2c).
That is, the lower the inter-packet gap is, the higher the accuracy is.

5.2.3 KPT: Kernel-level Polling Thread

Towards a timestamping approach that performs properly regardless the link load, we pro-
pose a redesign of the network driver architecture. Novel packet capture engines fetch packets

32 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

5.2. PROPOSED SOLUTIONS

nk(k) 1(k+1) 2(k+1) 3(k+1) 4(k+1) 1(k+2)

UDTS
𝜏1(k+1) t4(k+1)

UDTS
𝜏2(k+1)

UDTS
𝜏3(k+1)tnk

(k)

WDTS
𝜏1(k+1)

WDTS
𝜏2(k+1)

WDTS
𝜏3(k+1)

(a) Full-saturated link with constant packet size.

nk(k) 1(k+1) 2(k+1) 3(k+1) 4(k+1) 1(k+2)

UDTS
𝜏1(k+1) t4(k+1)

UDTS
𝜏2(k+1)

UDTS
𝜏3(k+1)tnk

(k)

WDTS
𝜏1(k+1)

WDTS
𝜏2(k+1)

WDTS
𝜏3(k+1)

(b) Full-saturated link with variable packet size.

nk(k) 1(k+1) 2(k+1) 3(k+1) 1(k+2)

UDTS
𝜏1(k+1) t3(k+1)

UDTS
𝜏2(k+1)tnk

(k)

WDTS
𝜏1(k+1)

WDTS
𝜏2(k+1)

(c) Not full-saturated link with variable packet size.

Figure 5.2: Inter-packet gap distribution

Vı́ctor Moreno Martı́nez 33

TIMESTAMP ACCURACY EVALUATION

from the NIC rings only when a high-level layer polls for packets, then they build a new batch
of packets and forward it to the requestor. This architecture does not guarantee when will
the fetcher thread be scheduled and consequently, a source of uncertainty is added to the
timestamping mechanism.

As explained in chapter 3, our proposal is to implement a kernel-level thread which con-
stantly polls the NIC rings for new incoming packets and then timestamps and copies them into
a kernel buffer. A high-level application will request the packets stored in the kernel buffer, but
the timestamping process will no longer be dependent on when applications poll for new pack-
ets. This approach reduces the scheduling uncertainty as the thread will only leave execution
when there are no new incoming packets or a higher priority kernel task needs to be executed.
KPT causes a higher CPU load due to its busy waiting approach, but it does not degrade the
performance to the point that packets are lost.

34 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

5.3. ACCURACY EVALUATION

5.3 Accuracy evaluation

Our setup consists of two servers (one for traffic generation and the other for receiving
traffic) directly connected through a 10 Gbps fiber-based link. The receiver has two six-core
Intel Xeon E52630 processors running at 2.30 GHz with 124 GB of DDR3 RAM. The server
is equipped with a 10GbE Intel NIC based on 82599 chip, which is configured with a single
RSS queue to avoid multi-queue side-effects, such as reordering or parallel timestamping. The
sender uses a HitechGlobal HTG-V5TXT-PCIe card which contains a Xilinx Virtex-5 FPGA
(XC5VTX240) and four 10GbE SFP+ ports [21]. Using a hardware-based sender guarantees
accurate timestamping in the source. For traffic generation, two custom designs have been
loaded allowing: (i) the generation of tunable-size Ethernet packets at a given rate, and, (ii) the
replay of PCAP traces at variable rates.

As first experiment, we assess the timestamp accuracy sending traffic at maximum con-
stant rate. Particularly, we send 1514-byte sized packets at 10 Gbps, i.e., 812,744 packets per
second and measure the interarrival times in the receiver side. Table 5.1 shows the error of
the measured timestamp (i.e., the difference between the original and the observed interarrival
times), in terms of mean and standard deviation, for a 1-second experiment (to make sure no
packets are lost) for the different reviewed methods. Note that the lower the standard deviation
is, the more accurate the timestamping technique is. The first two rows show the results for
PacketShader, chosen as a representative of batch-based capture engines. We tested with
different batch sizes and different timestamping points: at user-level or at driver-level. PFQ
results are shown in the following row whereas the three last ones show the results of our pro-
posed solutions. It can be observed that timestamping error grows with batch size. Even using
one-packet batches, the error is greater than the one observed using our proposals. UDTS
and WDTS methods enhance the accuracy, decreasing the standard deviation of the times-
tamp error below 200 ns. Both methods present similar results because all packets have the
same size in this experiment. KPT technique reduces the standard deviation of the error up
to ∼600 ns. Despite timestamping packet-by-packet, PFQ shows a timestamp standard error
greater than 13 µs.

Solution Batch size µ̄± σ̄ [ns]

User-level batch TS
1 2± 1765
32 2± 3719

Driver-level batch TS
1 2± 1742
32 2± 3400

PFQ - 2± 13558
UDTS 32 2± 167
WDTS 32 2± 170
KPT - 2± 612

Table 5.1: Experimental timestamp error (mean and standard deviation). Syn-
thetic traffic: 1514-bytes packets

In the next experiments, we evaluate the different techniques using real traffic from a Tier-1
link (i.e., a CAIDA OC192 trace [22]). We perform two experiments: in the first one, the trace is
replayed at wire speed (that is, at 10 Gbps), and then, we replay the trace at the original speed

Vı́ctor Moreno Martı́nez 35

TIMESTAMP ACCURACY EVALUATION

(i.e., at 564 Mbps, respecting inter-packet gaps). Due to storage limitation in the FPGA sender,
we are able to send only the first 5,500 packets of the trace. Table 5.2 shows the comparison
of the results for our proposals and the driver-level batch timestamping. We have used a batch
size of 32 packets because 1-packet batches do not allow achieving line-rate performance for
all packet sizes. In wire-speed experiments, WDTS obtains better results than UDTS due to
different sized packets in a given batch. When packets are sent at original speed, WDTS is
worse than KPT because WDTS distributes inter-packet gap among all packets. This effect
does not appear at wire-speed because there is no inter-packet gap (excluding transmission
time). In any case, driver-level batch timestamping presents the worst results, even in one
order of magnitude.

Solution Wire-Speed Original Speed
µ̄± σ̄ [ns] µ̄± σ̄ [ns]

Driver-level batch TS 13± 3171 −26± 19399
UDTS 12± 608 −40± 13671
WDTS 5± 111 −42± 14893
KPT −1± 418 −43± 1093

Table 5.2: Experimental timestamp error (mean and standard deviation). Real
traffic: Wire-speed and Original speed

36 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

5.4. CONCLUSION

5.4 Conclusion

Batch processing enhances the capture performance of I/O engines at the expense of
packet timestamping accuracy. We have proposed two approaches to mitigate timestamping
degradation:

• UDTS/WDTS algorithms that distribute the inter-batch time gap among the different pack-
ets composing a batch and

• a redesign of the network driver, KPT, to implement a kernel-level thread which constantly
polls the NIC buffers for incoming packets and then timestamps and copies them into a
kernel buffer one-by-one.

In fact, we propose to combine both solutions according to the link load, i.e., using WDTS when
the link is near to be saturated distributing timestamp in groups of packets and, otherwise, using
KPT timestamping packet-by-packet. We have stress tested the proposed techniques, using
both synthetic and real traffic, and compared them with other alternatives achieving the best
results (standard error of 1 µs or below).

To summarize, we alert research community to timestamping inaccuracy introduced by
novel high-performance packet I/O engines, and proposed two techniques to overcome or
mitigate such issue.

Vı́ctor Moreno Martı́nez 37

6
Conclusions and future work

This work has presented how do standard NICs, such as the Intel 82599, work and how
some novel I/O capture engines exploit some of their characteristics in order to obtain high
packet capture performance. None of those existing capture engines meet all the features that
we consider a good packet capture engine should do. This has motivated the development of
HPCAP, a new packet capture engine that meets all those requirements.

A performance study has been made regarding the packet storage in non-volatile volumes
of HPCAP, taking into account several configuration details that affects throughput. Preliminary
results obtained running the HPCAP capture system in faster machines (2.80 Ghz against 2.30
Ghz of the machine used along this work) conform our hypothesis of a bottleneck in the packet
processing scheme. As future work, HPCAP capture performance could be improved by means
of applying techniques regarding user application directly mapping kernel memory to allow
zero-copy access from the user to the network data, thus allowing the upper level applications
to run heavier processes over the incoming packets without packet loss. Jumboframe support
has also been left as future work.

In addition, the timestamp quality of our approach has been evaluated, a key point that
had not received attention up to date. We show that HPCAP timestamp capabilities greatly
outperform the existing solutions ones. However, HPCAP timestamp accuracy could still be
improved by combining its timestamping procedure with techniques such as WDTS (Weighted
Distribution of TimeStamp). Note that the application of such techniques would also reduce the
processing requirements of the system and thus improve packet capture performance. This is
left as future work.

HPCAP is a solution that is being currently used for traffic monitoring in industrial environ-
ments such as Telefonica, British Telecom and Produban (enterprise that belongs to ”Grupo
Santander”) Data Centers.

Moreover, this work has lead to the creation of the following works:

• "Batch to the Future: Analyzing Timestamp Accuracy of High-Performance Packet I/O
Engines". Sent to the "IEEE Communications Letters" magazine in June 2012.

• "On VoIP data retention and monitoring at multi-Gb/s rates using commodity hardware".
Sent to the "Journal of Network and Computer Applications" in July 2012.

Bibliography

[1] Cisco, “Cisco carrier routing system.” http://cisco.com/en/US/products/
ps5763/index.html. 1

[2] S. Han, K. Jang, K. S. Park, and S. Moon, “PacketShader: a GPU-accelerated software
router,” ACM SIGCOMM Computer Communication Review, vol. 40, no. 4, pp. 195–206,
2010. 1, 2.1, 2.1.4, 2.2, 2.2, 3.1, 5.1

[3] L. Rizzo, M. Carbone, and G. Catalli, “Transparent acceleration of software packet for-
warding using netmap,” in Proceedings of IEEE INFOCOM, 2012. 1, 2.1

[4] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi, “On multi-gigabit packet capturing
with multi-core commodity hardware,” in Proceedings of Passive and Active Measurement
Conference, 2012. 1, 2.1, 2.2, 5.1

[5] G. Liao, X. Znu, and L. Bnuyan, “A new server I/O architecture for high speed networks,”
in Proceedings of IEEE Symposium on High-Performance Computer Architecture, 2011.
1, 2.1.4

[6] F. Schneider, J. Wallerich, and A. Feldmann, “Packet capture in 10-gigabit ethernet envi-
ronments using contemporary commodity hardware,” in Proceedings of the 8th Interna-
tional Conference on Passive and Active Network Measurement, vol. 4427, (New York,
NY, USA), p. 207–217, Springer-Verlag Berlin Heidelberg, April 2007. 1

[7] Intel, “Intel ® 82599 10 GbE Controller Datasheet,” October, no. December, 2010. 2.1,
2.1.2

[8] M. Corporation, “ Receive-Side Scaling Enhancements in Windows Server 2008,” 2008.
2.1.2

[9] W. Wu, P. DeMar, and M. Crawford, “Why can some advanced Ethernet NICs cause packet
reordering?,” IEEE Communications Letters, vol. 15, no. 2, pp. 253–255, 2011. 2.1.2, 2.2,
5.1

[10] M. Dashtbozorgi and M. Abdollahi Azgomi, “A scalable multi-core aware software ar-
chitecture for high-performance network monitoring,” in Proceedings of the 2nd interna-
tional conference on Security of information and networks, SIN ’09, (New York, NY, USA),
pp. 117–122, ACM, 2009. 2.1.2, 2.2

[11] The Linux Foundation, “Napi.” http://www.linuxfoundation.org/
collaborate/workgroups/networking/napi. 2.1.3

[12] C. Benvenuti, Understanding Linux Network Internals. O’Reilly, 2005. 2.1.3

http://cisco.com/en/US/products/ps5763/index.html
http://cisco.com/en/US/products/ps5763/index.html
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi

BIBLIOGRAPHY

[13] W. Wu, M. Crawford, and M. Bowden, “The performance analysis of linux networking -
packet receiving,” Comput. Commun., vol. 30, pp. 1044–1057, Mar. 2007. 2.1.4

[14] L. Braun, A. Didebulidze, N. Kammenhuber, and G. Carle, “Comparing and improving cur-
rent packet capturing solutions based on commodity hardware,” in Proceedings of Internet
Measurement Conference, (Melbourne, Australia), pp. 206–217, Nov. 2010. 2.2

[15] L. Rizzo, “Revisiting network I/O APIs: the netmap framework,” Communications of the
ACM, vol. 55, pp. 45–51, Mar. 2012. 2.2, 2.2, 3.1

[16] The Single UNIX Specification, “dd: convert and copy a file.” http://www.gnu.org/
software/coreutils/manual/html_node/dd-invocation.html. 3.1

[17] R. Love, “Kernel Locking Techniques.” http://james.bond.edu.au/courses/
inft73626@033/Assigs/Papers/kernel_locking_techniques.html. 3.2

[18] G. K.-H. Jonathan Corbet, Alessandro Rubini, Linux Device Drivers 3rd Edition. O’Reilly,
2005. 3.3, 3.3, 6

[19] littledaemons.org, “CPU Affinity and taskset.” http://littledaemons.
wordpress.com/2009/01/22/cpu-affinity-and-taskset/. 3.4

[20] L. P. Manual, “PTHREAD_SETAFFINITY_NP.” http://www.kernel.org/doc/
man-pages/online/pages/man3/pthread_setaffinity_np.3.html. 3.4

[21] H. Global, “NetFPGA10G.” http://www.hitechglobal.com/boards/
PCIExpress_SFP+.htm. 4.1, 5.3

[22] C. Walsworth, E. Aben, k. claffy, and D. Andersen, “The CAIDA anonymized 2009 Internet
traces.” http://www.caida.org/data/passive/passive_2009_dataset.
xml. 4.1, 5.3

[23] S. Han, K. Jang, K. S. Park, and S. Moon, “Packet I/O Engine.” http://shader.
kaist.edu/packetshader/io_engine/index.html. 4.1

[24] T. M. Project, “Metro Architectures enablINg Sub-wavelengths.” http://www.
ist-mains.eu/. 4.2

[25] R. Wang and T. Anderson, “xfs: a wide area mass storage file system,” in Workstation
Operating Systems, 1993. Proceedings., Fourth Workshop on, pp. 71 –78, oct 1993. 4.2

[26] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck, “Scalability
in the xfs file system,” in Proceedings of the 1996 annual conference on USENIX Annual
Technical Conference, ATEC ’96, (Berkeley, CA, USA), pp. 1–1, USENIX Association,
1996. 4.2

[27] P. Snyder, “tmpfs: A virtual memory file system,” in In Proceedings of the Autumn 1990
European UNIX Users’ Group Conference, pp. 241–248, 1990. 4.3

42 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

http://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html
http://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html
http://james.bond.edu.au/courses/inft73626@033/Assigs/Papers/kernel_locking_techniques.html
http://james.bond.edu.au/courses/inft73626@033/Assigs/Papers/kernel_locking_techniques.html
http://littledaemons.wordpress.com/2009/01/22/cpu-affinity-and-taskset/
http://littledaemons.wordpress.com/2009/01/22/cpu-affinity-and-taskset/
http://www.kernel.org/doc/man-pages/online/pages/man3/pthread_setaffinity_np.3.html
http://www.kernel.org/doc/man-pages/online/pages/man3/pthread_setaffinity_np.3.html
http://www.hitechglobal.com/boards/PCIExpress_SFP+.htm
http://www.hitechglobal.com/boards/PCIExpress_SFP+.htm
http://www.caida.org/data/passive/passive_2009_dataset.xml
http://www.caida.org/data/passive/passive_2009_dataset.xml
http://shader.kaist.edu/packetshader/io_engine/index.html
http://shader.kaist.edu/packetshader/io_engine/index.html
http://www.ist-mains.eu/
http://www.ist-mains.eu/

BIBLIOGRAPHY

[28] T. Broomhead, J. Ridoux, and D. Veitch, “Counter availability and characteristics for feed-
forward based synchronization,” in Proceedings of IEEE Symposium on Precision Clock
Synchronization for Measurement Control and Communication, 2009. 5.1

[29] M. Laner, S. Caban, P. Svoboda, and M. Rupp, “Time synchronization performance of
desktop computers,” in Proceedings of IEEE Symposium on Precision Clock Synchro-
nization for Measurement Control and Communication, 2011. 5.1

[30] SuperMicro, “X9DR3-F.” http://www.supermicro.com/products/
motherboard/xeon/c600/x9dr3-f.cfm. A

Vı́ctor Moreno Martı́nez 43

http://www.supermicro.com/products/motherboard/xeon/c600/x9dr3-f.cfm
http://www.supermicro.com/products/motherboard/xeon/c600/x9dr3-f.cfm

Lists

List of equations
5.1 Packet transfer time for in a 10 Gbps network . 30
5.2 Packet transfer time for 60 byte packets in a 10 Gbps network 30
5.3 Uniform Distribution of TimeStamp . 32
5.4 Weighted Distribution of TimeStamp . 32

LISTS

List of figures
2.1 Intel® 82599 descriptor ring . 3
2.2 Incoming packet balancing at the Intel 82599 . 4
2.3 Traditional packet receiving scheme . 6
2.4 PacketShader packet reception scheme . 8

3.1 HPCAP kernel packet buffer . 12
3.2 HPCAP kernel packet buffer . 13
3.3 Character driver reading. Image taken from [18] . 16
3.4 HPCAP packet reception scheme . 17

4.1 Write throughput for the Intel and Adaptec RAID controllers 23
4.2 Effect of mounting the filesystem every 4 written files 24
4.3 Maximum and minimum write throughput for the Intel RAID card running an

XFS file system . 25

5.1 Batch timestamping . 31
5.2 Inter-packet gap distribution . 33

A.1 Supermicro X9DR3-F motherboard . 53
A.2 Supermicro X9DR3-F’s block diagram . 54

C.1 Adaptec RAID0 write scalability . 57
C.2 Intel RAID0 write scalability . 58
C.3 Effect of the block size on write performance . 58
C.4 Effect of the written file size on the write cycle . 59
C.5 Effect of the written file size on the write cycle . 60
C.6 Intel RAID0 write scalability(mounting the filesystem every 4 files) 61

46 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

List of tables
4.1 HPCAP packet capture to system memory throughput (2.30 Ghz machine) 20
4.2 HPCAP packet capture to system memory throughput (2.80 Ghz machine) 20
4.3 PacketShader packet capture to system memory throughput 21
4.4 Hard disk drives specifications . 22
4.5 Intel’s RAID controller card specifications . 23
4.6 Adaptec’s RAID controller card specifications . 23
4.7 PacketShader packet capture to RAID0 (12 disks) in PCAP format 26
4.8 PacketShader packet capture to RAID0 (12 disks) in RAW format 26
4.9 HPCAP packet capture to RAID0 (12 disks) . 27
4.10 HPCAP packet capture to RAID0 (12 disks) using a in intermediate TMPFS

storage . 28

5.1 Experimental timestamp error (mean and standard deviation). Synthetic traf-
fic: 1514-bytes packets . 35

5.2 Experimental timestamp error (mean and standard deviation). Real traffic:
Wire-speed and Original speed . 36

Vı́ctor Moreno Martı́nez 47

Acronyms

API Application Program Interface

CPU. Central Processing Unit

DMA Direct Memory Access

FPGA Field Programmable Gate Array

Gbps Gigabit per second

HDD Hard-Disk Drive

HPCAP. High-performance Packet CAPture

I/O Input/Output

IP Internet Protocol

ISP Internet Service Provider

ixgbe Intel’s 10 Gigabit Ethernet Linux driver

KPT Kernel-level Polling Thread

Mbps Megabit per second

MP Multiprocessor

Mpps Millions of packets per second

NAPI New API

NIC Network Interface Card

NTP Network Time Protocol

NUMA. Non Uniform Memory Access

PCAP Packet Capture API

PCIe Peripheral Component Interconnect Express

PTP Precision Time Protocol

RSS. Receive Side Scaling

RX Reception

SMART. Self-Monitoring, Analysis and Reporting Technology

ACRONYMS

SPMC Single Producer, Multiple Consumer

SSD. Solid-Sate Drive

Tbps Terabit per second

TCP Transmission Control Protocol

TS. Timestamp

TX. Transmission

UDP. User Datagram Protocol

UDTS Uniform Distribution of TimeStamp

VHDL Virtual Hardware Description Language

VoIP Voice over IP

WDTS. Weighted Distribution of TimeStamp

50 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

Terminology

batch processing
Processing together a group of packets, thus reducing the overhead of performing a
system call for each packet in the batch.

commodity hardware
”Commodity” hardware is hardware that is easily and affordably available. A device that
is said to use ”commodity hardware” is one that uses components that were previously
available or designed and are thus not necessarily unique to that device.

flow
Cisco standard NetFlow version 5 defines a flow as an unidirectional sequence of pack-
ets that all share of the following 7 values: ingress interface, source and destination
IP addresses, IP protocol, source and destination ports for UDP or TCP (or 0 for other
protocols) and IP Type of Service (ToS).

zero-copy
”Zero-copy” describes computer operations in which the CPU does not perform the task
of copying data from one memory area to another. For example, a user-space appli-
cation that maps a kernel memory buffer can the data stored in such without explicitly
copying its content into its memory address-space, thus reducing the access overhead
and improving its memory accesses efficiency.

A
Architecture overview

All the experiments described in this work have been carried out using a SuperMicro ma-
chine with a X9DR3-F motherboard [30]. Details about such motherboard can be found in
Fig. A.1 and A.2.

Information provided by such diagrams must be taken into account in order to achieve peak
performance: the network card must be plugged in a PCIe slot attached to the CPU where the
HPCAP driver will be later on executed (or vice-versa).

Figure A.1: Supermicro X9DR3-F motherboard

ARCHITECTURE OVERVIEW

As an example, during our experiments we plugged our Intel 82599 NIC in the CPU1-slot2
PCIe port, and thus mapped our capture systems into the CPU1’s cores (seen by operating
system as cores from 0 to 5).

Figure A.2: Supermicro X9DR3-F’s block diagram

54 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

B
How to run HPCAP

The installation of HPCAP follows a straightforward procedure: it only requires the user to
copy the HPCAP folder into the host system. Once such folder has been copied, the user has to
access to it (older contents are shown below) and execute the install hpcap.bash script.

...
copy.bash
data
hpcap_ixgbe−3.7.17_bu�er

driver
samples

install_hpcap.bash
params.cfg
...

Code B.1: Contents of the HPCAP folder

The previously mentioned installation script will compile the driver if required, and load into
the system. Note that the following packets must be installed in your system in order to run
HPCAP:

• numactl
• libnuma-dev
• libnuma1
• linux-libc-dev
• make

Some configuration parameters can be modified by means of writing into de params.cfg
file (the interfaces to be used, number of queues per interface, core affinities, link speed,...).
Before the installation script is launched, the user must make sure that the corresponding
filesystem is created in the desired output mount point, and that this mount point is specified
inside the params.cfg file.

The default behaviour of the installation script is launching an instance of the copy.bash
script per each NIC’s hardware queue.

C
RAID0 write tests
C.1 RAID scalability

Fig. C.2 and C.1 show the results carried out to test the write scalability of a XFS RAID0 vol-
ume when adding disks to it. Those test contrast the results obtained for both the Adaptec and
the Intel controller cards, whose characteristics have been already detailed in tables table 4.6
and 4.5 respectively. Those test expose the channel limitation that the Apactec controller
suffers from. They furthermore expose a cyclic behaviour in terms of the write throughput.
Section C.3 takes a deeper look to such effect.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
ri
te

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

Time (s)

 1 Disk 2 Disks 3 Disks 4 Disks 5 Disks 6 Disks 8 Disks 9 Disks 12 Disks 16 Disks

Figure C.1: Adaptec RAID0 write scalability

RAID0 WRITE TESTS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

W
ri
te

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

Time (s)

 1 Disk 2 Disks 3 Disks 4 Disks 6 Disks 8 Disks 12 Disks 16 Disks

Figure C.2: Intel RAID0 write scalability

C.2 Optimal block size

Some tests have been carried out as well regarding the effect of the size of the written
block (one of the arguments of the dd tool used in conjunction with HPCAP). Fig. C.3 shows
the results of such experiments.

0 50 100 150 200 250

0.8

1

1.2

1.4

1.6

1.8

2

W
ri
te

 t
h
ro

u
g
h
p
u
t
(G

B
/s

)

Time (s)

 bs= 128k bs= 256k bs= 512k bs = 1M bs= 6M bs= 12M

Figure C.3: Effect of the block size on write performance

Results show that best performance is obtained with a block size above 512KB. We have
thus chosen a block size of 12MB to carry the rest of our experiments. This choice’s justification
is to keep both the RAID0 strips and the written block aligned (keep in mind that we have as
12 disks RAID0 volume, with a block size of 1MB and thus a strip size of 12MB).

58 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

C.3. CYCLIC THROUGHPUT VARIATION

C.3 Cyclic throughput variation

We have tried to eliminate the RAID write throughput periodic behaviour shown in Figs. 4.1,
C.2 and C.1, by means of tuning the following configuration parameters of both the RAID
controller and the file system:

• Rebuild rate: This field allows the user to determine the priority for the RAID rebuild
operation. This option selects the amount of system resources devoted to rebuilding
failed disk drives. A higher percentage rate rebuilds drives faster, but can degrade the
system performance. Setting the rebuild rate to 0 will prevent the array from rebuilding.
Its default value is 30.

• SMART (Self-Monitoring, Analysis and Reporting Technology) poll interval: A SMART
drive monitors the internal performance of the motors, media, heads, and electronics of
the drive, while a software layer monitors the overall reliability status of the drive. The
reliability status is determined through the analysis of the drive’s internal performance
level and the comparison of internal performance levels to predetermined threshold limits.
A smaller poll interval means that the disks will prioritize application I/O over SMART
diagnostics. Its default value is 300 seconds.

• Additionally, the ability of the XFS file system to mount the journalling data to a ”ramdisk”
has been tested.

Nevertheless, the modification of those configuration parameters had no effect on the write
throughput variation. We have carried out a further analysis on this effect, obtaining how the
write throughput varies regarding the size of the files written. The results of these tests, shown
in Figs. C.4 and C.5. Note that the writing of each file is marked as a circle in Fig. C.4.

0 100 200 300 400 500 600
0.5

1
1.5

2
Ficheros de 3GB

0 100 200 300 400 500 600
0.5

1
1.5

2
Ficheros de 6GB

0 100 200 300 400 500 600
0.5

1
1.5

2

W
ri
te

 t
h
ro

u
g
h
p
u
t
(G

B
/s

)

Ficheros de 9GB

0 100 200 300 400 500 600
0.5

1
1.5

2
Ficheros de 15GB

0 100 200 300 400 500 600
0.5

1
1.5

2

Time (s)

Ficheros de 30GB

Figure C.4: Effect of the written file size on the write cycle

Fig.C.4 shows the write performance profile observer when writing different-sized files into
our file systems. All those experiments have been made with a fixed block size of 12Mb over a

Vı́ctor Moreno Martı́nez 59

RAID0 WRITE TESTS

12-disk RAID 0 volume. Those results show that the performance oscillation does not follow a
periodical pattern in terms of time elapsed, but in terms of number of files written. This effect
can be easily appreciated in Fig. C.5, where the write throughput is painted versus the number
of file being written. This graphic shows that regardless of the size of the files being written,
the volume’s write throughput experiences a cycle every 30 files.

0 10 20 30 40 50 60 70 80 90 100
0.8

1

1.2

1.4

1.6

1.8

2

W
ri
te

 t
h

ro
u

g
h

p
u

t
(G

B
/s

)

Numero de fichero

3GB 6GB 9GB 15GB 30GB

Figure C.5: Effect of the written file size on the write cycle

In the light of such results, we hypothesize that this effect is produced by some kind of
reset/refresh in the XFS file system. We have only been able to mitigate that problem by
means of forcing an file system mounts every time a certain number of files are written (see
Fig. C.6).

Consequently, HPCAP writing experiments carried out along section 4.3 have taken this
effect into account and applied the mount/umount measure in order to optimize overall perfor-
mance.

60 Low-cost scalable architecture for network traffic capture and storage at 10Gbps

C.3. CYCLIC THROUGHPUT VARIATION

0 500 1000 1500
0

0.5

1

1.5

2

2.5

W
ri
te

 t
h
ro

u
g

h
p
u

t
(G

B
/s

)

Time (s)

 1 Disk 2 Disks 3 Disks 4 Disks 6 Disks 8 Disks 12 Disks 16 Disks

Figure C.6: Intel RAID0 write scalability(mounting the filesystem every 4 files)

Vı́ctor Moreno Martı́nez 61

Index

— —
, 14

— A —
affinity, 8, 16, 19

— B —
buffer, 13

— D —
descriptor, 3

— I —
Intel

82599, 3
Flow Director, 4

interrupt, 5

— K —
KPT, 11, 32

— N —
NAPI, 5

— P —
performance, 20, 24, 26
polling, 5, 11, 32

— Q —
queue, 4, 19

— R —
RSS, 4

— U —
UDTS, 32

— W —
WDTS, 32

62

	Introduction
	State of the art
	The Intel 82599 NIC
	Novel I/O engines

	HPCAP probe description
	Kernel polling thread
	Multiple listeners
	User-level API
	HPCAP packet reception scheme

	Storage performance evaluation
	Validation of HPCAP
	Optimizing non-volatile write performance
	HPCAP write performance

	Timestamp accuracy evaluation
	The packet timestamping problem
	Proposed Solutions
	Accuracy evaluation
	Conclusion

	Conclusions and future work
	Architecture overview
	How to run HPCAP
	RAID0 write tests
	RAID scalability
	Optimal block size
	Cyclic throughput variation

