
Universidad Autónoma de Madrid
Escuela Politécnica Superior - Departamento de Ingenieŕıa Informática

Facultad de Ciencias - Departamento de Matemáticas

Deep Neural Networks

Master’s thesis presented to apply for the

Master in Computer Science and Telecommunication

Engineering
and the

Master in Mathematics and Applications

By

David Dı́az Vico
under the direction of

José Ramón Dorronsoro Ibero

Madrid, September 19, 2012

ii

Contents

Contents ii

1 Shallow neural networks 1
1.1 The Ramón y Cajal’s neuron and the McCulloch-Pitts neuron 1
1.2 The single layer perceptron . 2

1.2.1 Model . 2
1.2.2 Delta rule and Novikov’s Theorem 3

1.3 The multilayer perceptron . 5
1.3.1 Model . 5
1.3.2 Error minimization . 7
1.3.3 ADALINE . 8
1.3.4 Backpropagation . 8
1.3.5 Benefits and problems of the deep networks 10

1.4 Logistic and softmax perceptron . 11
1.4.1 Logistic perceptron . 11
1.4.2 Softmax perceptron . 13

2 Deep network components 15
2.1 Principal Component Analysis . 15

2.1.1 Variance maximization . 16
2.1.2 Squared error minimization 17
2.1.3 Applications . 20
2.1.4 Probabilistic PCA . 22

2.2 Independent Component Analysis . 26
2.2.1 Mutual information minimization 27
2.2.2 Non Gaussianity maximization 28
2.2.3 Maximum likelihood ICA . 28

2.3 Autoencoders . 29
2.3.1 Single hidden layer autoencoders 30
2.3.2 Multiple hidden layer autoencoders 33
2.3.3 Infomax principle . 33
2.3.4 Sparse autoencoders . 35
2.3.5 Denoising autoencoders . 37
2.3.6 Maximal activation pattern 38

2.4 Boltzmann machines . 39
2.4.1 Definition . 39
2.4.2 Learning . 41

iii

iv Contents

2.4.3 Difficulties . 43
2.4.4 Restricted Boltzmann machines 43

3 Deep networks 47
3.1 Deep multilayer perceptrons . 48

3.1.1 Cost function . 48
3.1.2 Activation function . 48
3.1.3 Initialization . 50

3.2 Deep belief networks and stacked autoencoders 54
3.3 Other models . 55

3.3.1 Convolutional networks . 55
3.3.2 Receptive fields . 57

4 Experiments 59
4.1 Datasets . 59
4.2 Software implementation . 60
4.3 Building blocks and overall architectures 62
4.4 Shallow networks experiments . 62
4.5 Deep networks experiments . 67

5 Conclusion 83
5.1 Further work . 83

A Information and entropy 85
A.1 Mutual information . 87

Bibliography 88

List of Figures

1.1.1 The biological neuron . 2
1.1.2 The artificial neuron . 3
1.3.1 XOR problem . 6
1.3.2 XOR perceptron . 6
1.3.3 Triangle problem . 6
1.3.4 Triangle perceptron . 7
1.4.1 Softmax perceptron . 14

2.3.1 Autoencoder . 30
2.4.1 Boltzmann machine . 40
2.4.2 Restricted Boltzmann machine . 44

3.1.1 Cost function . 49
3.1.2 Activation function 1 . 50
3.1.3 Activation function 2 . 50
3.1.4 Initialization 1 . 53
3.1.5 Initialization 2 . 54
3.2.1 Deep belief network or stacked autoencoder 55
3.3.1 Convolutional network . 56

4.4.1 Reconstruction with 100 units AE . 64
4.4.2 Reconstruction with 100 units DAE 65
4.4.3 Reconstruction with 100 units SAE 66
4.4.4 Reconstruction with 100 units SDAE 67
4.4.5 Reconstruction with 100 units RBM 68
4.4.6 Reconstruction with 256 units AE . 69
4.4.7 Reconstruction with 256 units DAE 70
4.4.8 Reconstruction with 256 units SAE 71
4.4.9 Reconstruction with 256 units SDAE 72
4.4.10Reconstruction with 256 units RBM 73
4.4.11Reconstruction errors . 74
4.5.1 Classification with 3 hidden layers of 49 units MLP 75
4.5.2 Classification with 3 hidden layers of 49 units AMLP 76
4.5.3 Classification with 2 layers of 49 units AE 77
4.5.4 Classification with 2 layers of 49 units AE 78
4.5.5 Classification with 2 layers of 49 units AE 79
4.5.6 Classification with 2 layers of 49 units AE 80

v

vi List of Figures

4.5.7 Classification with 2 layers of 49 units DBN 81
4.5.8 Classification errors for deep networks with 49 units per layer 82

Abstract

Composed of neuron channels that progressively transform a sensory perception
into a high level cognitive representation, deep neural networks are one of the most
recent computational paradigms at our disposal. These models have not attracted
much attention until recent times, mainly because they could not be successfully
trained with the standard backpropagation algorithms usually employed in tradi-
tional shallow feed-forward networks. Only in the few last years have some effective
greedy unsupervised algorithms been developed. That kind of algorithms are im-
portant for two reasons: first, they are unsupervised, which makes them closer to
the natural human learning process than supervised algorithms, and second, they
are computationally feasible and put the deep neural network in a state where it is
possible to use the backpropagation training efficiently. However, even now, deep
networks are not fully understood and many research lines remain open.

In this memoir, we will provide a brief summary of the models and techniques
considered classical neural networks and, from that point, we will present the cur-
rent state of the new deep networks, including different architectures and training
techniques, as well as some related statistical methods. Finally, we will present some
standard experiments and discuss the results obtained.

Overview

The main objective of this master thesis is to present the state of the art in deep
neural networks design. Composed of neuron channels that progressively transform
a sensory perception into a high level cognitive representation, deep neural networks
are one of the most recent computational paradigms at our disposal. These models
have not attracted much attention until recent times, mainly because they could
not be successfully trained with the standard backpropagation algorithms usually
employed in traditional shallow feed-forward networks. Only in the few last years
have some effective greedy unsupervised algorithms been developed. That kind of
algorithms are important for two reasons: first, they are unsupervised, which makes
them closer to the natural human learning process than supervised algorithms, and
second, they are computationally feasible and put the deep neural network in a state
where it is possible to use the backpropagation training efficiently. We present the
new advancements in the field following this general structure:

The first chapter will provide a brief summary of the models and techniques consid-
ered in classical neural networks. Using the basic components, the McCulloch-Pitts
artificial neurons, as building blocks, several networks will be developed: from the
simplest Rosenblatt’s perceptron to the more sophisticated multilayer perceptrons,
used to solve complicated classification problems. Concepts as forward propagation,
gradient descent or error backpropagation learning will be presented. We will see the
limitations of shallow networks and the necessity of developing deep architectures.

The second chapter presents the basic building blocks of a new deep layer-wise
architecture, partially inspired by the mammals visual cortex. These building blocks,
the autoencoders and the Boltzmann machines, are closely related to the principal
components analysis and independent component analysis techniques, that are also
discussed.

In the third chapter several approaches to deep networks are presented. First,
deep multilayer perceptrons can be efficiently trained if some precautions are taken.
Second, the stacking of layers of autoencoders or Boltzmann machines to create a
deep network with an unsupervised learning algorithm is explained. Third, other
deep networks models are presented: the convolutional networks and the receptive
fields.

Finally, the fourth chapter details the experiments performed. The experiments
compare several of the architectures described in the previous chapters, with special
attention to the stacked autoencoders and the deep belief networks, considered by
some the state of the art in artificial neural networks. There is no available software
that performs all the experiments found in the literature, so a simple deep neural
network library has been developed, also with the aim of having a building block for
further studies and experiments.

Chapter 1

Shallow neural networks

The human nervous system is the most powerful information processing system
known. It can parallelly perform many highly complex functions in a quite different
way from any present computer. We have already been able to express mathemati-
cally some of these functions, like classification and prediction, which enables us to
study neural systems from a mathematical point of view.

Although simple shallow neural networks can perform many pattern recognition
or regression tasks, we know that highly complex deep neural networks are needed
to achieve acceptable results in more advanced jobs.

The basic constituents of a neural network are the neurons. These cells connect
and communicate to each other and form the different parts of a nervous system.
Let’s start this study with an overview of the basic biological neuron and it’s artificial
counterpart.

1.1 The Ramón y Cajal’s neuron and the McCulloch-

Pitts neuron

The biological neuron is an electrically excitable cell that, typically, possesses a
cell body or soma, dendrites and an axon. The cell body frequently gives rise to
multiple dendrites, but only one axon. Usually, electric signals are sent from the
axon of a neuron to a dendrite of another.

It is estimated that the human brain has between 80 and 120 billion neurons,
and several million only in the primary visual cortex. The primary visual cortex in
mammals is a portion of the brain highly specialized for the processing of images,
static or moving, and pattern recognition. The number of neurons that compose the
primary visual cortex is estimated at around 140 million, and it is more powerful
and complex than any artificial neural network ever built.

The mathematical model of the biological neuron we will use is the McCullock-
Pitts electronic neuron ([3]). The artificial neuron receives weighted input signals

1

2 Chapter 1. Shallow neural networks

Figure 1.1.1: The biological neuron

(that represent the dendrite inputs), sums them, and transforms the sum with an
activation function to produce an output signal (representing the axon output signal).

In standard notation, we use xd, d = 0, . . . , D for the input signals, wd, d =
0, . . . , D for the weights, F or ϕ for the activation function, usually non-linear, and
y for the output signal. x0 is a special input typically assigned the value +1, and the
associated weight or bias, w0, is also denoted b. The bias term represent the effect
of an external current source I. So we have

y = F

(
D∑
d=0

wdxd

)
= F

(
D∑
d=1

wdxd + b

)

that, in a more compact matrix notation withX = (x0, . . . , xD)T andW = (w0, . . . , wD)T ,
is expressed as

y = F (W ·X) ,

or, if we prefer to use X = (x1, . . . , xD)T , W = (w1, . . . , wD)T and b,

y = F (W ·X + b) .

We will now take a look to the simplest feedforward neural networks, the percep-
trons.

1.2 The single layer perceptron

1.2.1 Model

The Rosenblatt’s perceptron ([4]) is the simplest single layer perceptron, and in
fact the simplest neural network. It can be trained to perform pattern classification
with two linearly separable classes. This perceptron consists of a single neuron with

1.2. The single layer perceptron 3

Figure 1.1.2: The artificial neuron

a sign activation function, that is, if the perceptron receives pattern Xn as input, it
assigns it a target value yn representing a class (+1 or −1)

D∑
d=0

WdX
n
d

{
> 0 yn ⇐ +1
< 0 yn ⇐ −1

What we would like is to obtain the weights and bias that give

D∑
d=1

WdX
n
d

{
> −b if yn = +1
< b if yn = −1

or, expressed in compact notation

yn
D∑
d=1

WdX
n
d ≡ ynW ·Xn > −b,

so the bias is chosen to model the noise, as the classes are only assigned out of the
interval [b,−b].

1.2.2 Delta rule and Novikov’s Theorem

The Rosenblatt’s perceptron is trained in a supervised way with the algorithm of
the delta rule:

The delta rule works as intended: let b = 0 for simplicity, then, if the perceptron
incorrectly classifies pattern n, we have

ynW n ·Xn = yn
(
W n−1 + ynXn

)
·Xn

= ynW n−1 ·Xn + yn (ynXn) ·Xn

= ynW n−1 ·Xn + ‖Xn‖2

> ynW n−1 ·Xn,

4 Chapter 1. Shallow neural networks

Algorithm 1 Delta rule

Initialize W 0

for n = 1 . . . N do
if ynW n−1 ·Xn > 0 then
W n ← W n−1

else
W n ← W n−1 + ynXn

end if
end for

so it improves classification for pattern n.

The Novikov’s Theorem ([5]) proves that the Rosenblatt’s perceptron learns if the
problem is solvable.

Theorem 1 (Novikov). If the classes are linearly separable, then in a finite number
of steps, the Rosenblatt’s perceptron will find a solution, given by vector W ∗.

To prove it, we need two inequalities. In what folows, let Xn represent only the
incorrectly classified patterns, and W n the weights after processing pattern Xn.

We have a first inequality

‖W n‖2 = W n ·W n

=
(
W n−1 + ynXn

)
·
(
W n−1 + ynXn

)
= W n−1 ·W n−1 +Xn ·Xn + 2ynW n−1 ·Xn

=
∥∥W n−1

∥∥2
+ ‖Xn‖2 + 2ynW n−1 ·Xn

≤
∥∥W n−1

∥∥2
+ ‖Xn‖2

≤
∥∥W n−2

∥∥2
+ ‖Xn‖2 +

∥∥Xn−1
∥∥2

. . .

≤
∥∥W 0

∥∥2
+ ‖Xn‖2 + · · ·+

∥∥X1
∥∥2
,

where we are free to chose W 0 = 0, and, if we call

R2 = max
{
‖Xn‖2} ,

we have that

‖W n‖2 ≤ nR2.

And, if the problem has a solution W ∗ with ‖W ∗‖ = 1, and

γ = min {ynW ∗ ·Xn}

1.3. The multilayer perceptron 5

that, being W ∗ a solution, will always be greater than 0, then we have a second
inequality

W n ·W ∗ =
(
W n−1 + ynXn

)
·W ∗

= W n−1 ·W ∗ + ynXn ·W ∗

≥ W n−1 ·W ∗ + γ

≥ W n−2 ·W ∗ + 2γ

. . .

≥ W 0 ·W ∗ + nγ,

so

W n ·W ∗ ≥ nγ

and so

‖W n‖ ≥ nγ.

Combining both inequalities we have

n2γ2 ≤ ‖W n‖2 ≤ nR2

so

n ≤ R2

γ2

which means that, in as much as R2

γ2
weight changes, we will reach a solution, and

the theorem is proved. Also, we deduce that, as R is fixed, if we have a big γ, also
called the margin of the problem, that is the minimum distance between the classes
of the sample, then the problem will be easy and we will need few weight changes.

1.3 The multilayer perceptron

1.3.1 Model

As we have proved, linearly separable problems can be solved by a single layer
perceptron. Examples include the OR and the AND problems. But to solve harder
problems, like the XOR problem, we need a more powerful model.

By combining several simple perceptrons we get what we know as multilayer per-
ceptron. Multilayer perceptrons have an input layer, one or more hidden layers, and
an output layer. They only have feed-forward connections, that is, there are no con-
nections between units of the same layer, between not consecutive layers, or feedback
to a previous layer.

It is easy to see that a multilayer perceptron will solve the XOR problem by feeding
the outputs of two simple perceptrons into another simple perceptron in a second
layer.

6 Chapter 1. Shallow neural networks

Figure 1.3.1: XOR problem

Figure 1.3.2: XOR perceptron

The multilayer perceptron can solve even more complicated problems ([2] chapter
6): by using three units, forming a first layer, and feeding their outputs to another
unit, forming the second layer, we can solve any triangular region. And, as any
polygon can be built by combining triangles, we can use several of these two-layer
perceptrons to detect triangles, and combine them with another unit, being the third
layer, which enables us to solve any polygonal region.

Figure 1.3.3: Triangle problem

1.3. The multilayer perceptron 7

Figure 1.3.4: Triangle perceptron

1.3.2 Error minimization

We have come to the conclusion that multiple layers of units are needed to solve
complex problems, but the delta rule is designed to train only single layer percep-
trons. To solve this we start by changing our objectives: from predicting a target, to
minimizing an error function (also called cost function) of the target and the output
of our perceptron with no hidden layers. That is, if tn is the target (the class) of
pattern n, where we wanted

yn = W ·Xn = tn ∀n,

we now want

yn = W ·Xn ≈ tn ∀n

and we do this by minimizing an error function, usually the mean squared error
function

E(W) =
1

2

1

N

N∑
n=1

(W ·Xn − tn)2 ,

where the 1
2

factor appears to simplify calculations. And if we consider that the
patterns follow a distribution p(X, t) then

E(W) =
1

2

∫
(W ·X − t)2p(X, t) dXdt =

1

2
Ep(X,t)

[
(W ·X − t)2] .

To minimize the function we perform a gradient descent, so we need the error
function to be differentiable, as is the case for the mean squared error. We have

E(W) =
1

2
Ep(X,t)

(D∑
d=1

WdXd − t

)2

8 Chapter 1. Shallow neural networks

and so

∂E(W)

∂Wd

=
1

2
Ep(X,t)

 ∂

∂Wd

(
D∑
d=1

WdXd − t

)2

= Ep(X,t) [(WdXd − t)Xd]

and
∇WE(W) = Ep(X,t) [(W ·X − t)X]

that has a closed solution, but we are not interested in a solution that involves
knowing all the patterns of the sample. We want an algorithm that makes our
perceptron learn progressively as it receives the patterns.

1.3.3 ADALINE

The solution to our problem is an adaptative learning algorithm that uses local
gradient descent. The adaptive linear element or adaptive linear neuron, ADALINE
([6]), is another single unit perceptron. The difference between ADALINE and the
Rosenblatt’s perceptron is the learning algorithm. In this case, a linear output
function like the identity is used, so

yn = W n ·Xn + bn

and, given each pair of input pattern and target, (Xn, tn), a local error is computed
to determine the goodness of the output for this particular pattern. We have

EL (W n) =
1

2
(yn − tn)2 .

The local error function is used to adjust the weights through a local gradient
descent method. That is, weights are changed in the direction where the local error
function decreases fastest, given by the local error function gradient for the selected
pattern

∇WEL (W n) = (yn − tn)Xn

and a learning rate constant, η, determines how much the weights change in each
step, so we have the learning rule

W n+1 = W n − η∇WEL (W n) .

So, ADALINE means adjusting the weights in a linear and adaptive way through
a local gradient descent. Widrow and Hoff (Widrow and Hoff, 1962) proved that, if
some conditions (stationarity, ergodicity, correct learning rate η and others) are met,
then the weights converge to its optimal value,

1.3.4 Backpropagation

With ADALINE we can properly train a unit when we know the local error, but
we need an algorithm to propagate backwards the error from the units in the output
layer to the units in preceding layers.

1.3. The multilayer perceptron 9

Given a training pattern and target, the perceptron will compute all the activations
from the input layer to the output layer, what we can call a forward pass. Once we
have the output values, we can calculate an error with the selected error function,
but that error can only be used to compute the gradient and the new weight values
for the output layer units. Backpropagation defines a kind of error associated to a
hidden unit as the weighted average of the errors of the units in the following layer.

Let i, j, k be the indices of units in three consecutive layers, wji the weight of the
connection from unit i to unit j, zi the output of unit i, sj =

∑
iwjizi the sum of

the weighted inputs of unit j, and δk the generalized error at unit k. Then we have
that

∂EL
∂wji

=
∂EL
∂sj

∂sj
∂wji

= δj
∂sj
∂wji

,

where

δj =
∑
k

∂EL
∂sk

∂sk
∂sj

=
∑
k

∂EL
∂sk

∂sk
∂zj

∂zj
∂sj

=

(∑
k

∂EL
∂sk

wkj

)
F ′(sj)

and
∂sj
∂wji

= zi,

so we have that, for the output layer, where we can calculate the error directly,

∂EL
∂wji

= δjzi

with

δj = yj − tj
and for the hidden layers

∂EL
∂wji

=

(∑
k

∂EL
∂sk

wkj

)
F ′(sj)zi =

(∑
k

δkwkj

)
F ′(sj)zi.

So, with backpropagation we compute the error of the output units, then the
general error of the units of the last hidden layer, and successively all the previous
hidden layers. This is the backward pass of the learning algorithm.

If we suppose that our multilayer perceptron has L layers, all off them with M
units, and use N training patterns, then the computational cost of backpropagation
is O (L×N3 ×N).

10 Chapter 1. Shallow neural networks

As we have seen, it is necessary to calculate the derivative of the activation func-
tion, so we need it to be differentiable. The most common activation functions are

• Linear (identity) activation:

F (x) = x.

• Logistic (sigmoid) activation:

F (x) =
1

1 + e−βx
.

• Hyperbolic tangent activation:

F (x) =
eβx − e−βx

eβx + e−βx
.

If, we want to solve regression instead of classification problems, we can use linear
activation functions instead of the sign function in the last layer ([2] chapter 6). Note,
however, that if we build a multilayer perceptron we shouldn’t use linear functions
in consecutive layers, as the composition of linear functions is also a linear function,
and a multilayer perceptron with linear activations in all its layers is equivalent
to a single layer perceptron. So, in regression problems, it is typical to use linear
activation functions in the output layer but not in the previous layers.

1.3.5 Benefits and problems of the deep networks

Let D ⊂ RD, a family of functions F is said to be a Universal Approximation
Family (UAF) if for every continuous function φ : D → R on compact subsets of Rn

and ∀ ε, then it exists F ∈ F that makes∫
D

(F (x)− φ(x))2 p(x) dx ≤ ε

with p(x) a density in D.

For instance, for D = [a, b], if F is continuous in [a, b], the Weierstrass Theorem
says that ∀ ε there is a polynomial P so that |F (x)− P (x)| ≤ ε, so the polynomials
in [a, b] are a FAU.

For D ⊂ Rn, multilayer perceptrons with one hidden layer and linear activations in
the output units also form a UAF (Cybenko, 1989, for sigmoid activations. Hornik,
1991), and, for our problems, perceptrons are more useful than polynomials, as we
want them to be of use not only for the approximation of the known cases, but also
for the unknown, and high order polynomials are not desirable.

1.4. Logistic and softmax perceptron 11

If perceptrons with one hidden layer are a UAF, why could we want deeper archi-
tectures? It is known that functions that require very large number of units to be
computed in a shallow architecture, can be computed with a very small number of
units in a deep architecture. The next theorem applies to monotone weighted thresh-
old circuits (see [8]), like perceptrons. If we have a function fk of N2k−2 variables,
that is defined by a k-level tree, then

Theorem 2 (Hastad and Goldmann). A monotone weighted threshold circuit com-
puting fk that is of depth k − 1 has size at least 2cN for some constant c > 0 and
N > N0.

That is, any function needs a minimum number of units to be computed, and if
we use a k − 1-level architecture instead of a k-level architecture, then the number
of units grows exponentially. For more details, see [8] and [9].

However, training a deep neural network has proved to be a very difficult task. The
traditional backpropagation algorithm fails to train networks with more than a couple
of layers. As can be seen in [10], the gradient vanishes when it is backpropagated
through several hidden layers if we don’t take the proper precautions. We will discuss
this in detail later.

1.4 Logistic and softmax perceptron

Let’s see now two of the most common perceptrons used in classification problems.

1.4.1 Logistic perceptron

When solving a two class problem with a perceptron, we can use a sigmoid ac-
tivation function instead of the sign or linear function we had before. As we have
seen, we need to calculate a gradient, so it is important to have a differentiable acti-
vation function, which makes the sigmoid function an interesting choice. Also, this
perceptron is equivalent to a well known model, the logistic regression.

The logistic regression is useful to obtain the probability of an event as a function
of some observed variables, called explanatory variables. The model takes a set of
0− 1 observations

{
y1, . . . , yN

}
of the event, each one of them following a Bernoulli

distribution, and a set of observations{(
x1

1, . . . , x
1
D

)T
, . . . ,

(
xN1 , . . . , x

N
D

)T} ≡ {X1, . . . , XN
}

of the explanatory variables, and estimates the probability of the event based on the
result of each test and the information in the explanatory variables, so

pn = E [yn = 1|Xn] .

12 Chapter 1. Shallow neural networks

We assume that the logit of this probability is a linear function of the explanatory
variables

logit (pn) = log
pn

1− pn
= w0 + w1x

n
1 + · · ·+ wDx

n
D

where the regression coefficients, wj, j = 1, . . . , D, represent the influence of each of
the variables in the outcome of the event.

With some simple operations we have

pn

1− pn
= ew0+w1xn1 +···+wDxnD

so

pn = ew0+w1xn1 +···+wDxnD − pnew0+w1xn1 +···+wDxnD

and so

pn(1 + ew0+w1xn1 +···+wDxnD) = ew0+w1xn1 +···+wDxnD

and, finally,

pn =
ew0+w1xn1 +···+wDxnD

1 + ew0+w1xn1 +···+wDxnD
,

and we get the usual logistic or sigmoid transformation

pn =
1

1 + e−(w0+w1xn1 +···+wDxnD)
,

that takes values between 0 and 1 and is monotonically increasing and differentiable
in every point. It is clear now that the logistic regression is the function computed
by a single unit perceptron with sigmoid activation function where the connection
weights are the regression coefficients (w0 being the bias) and that receives as input
X the vector with the values of the explanatory variables.

The regression coefficients are usually estimated with the maximum likelihood
method: to estimate a parameter θ and given that the observations X1, . . . , XN are
i.i.d. with density function p(Xn), the likelihood function is

L
(
θ|X1, . . . , XN

)
= p(X1, . . . , XN |θ)

=
N∏
i=1

p(Xn|θ)

To avoid deriving products, and knowing that the logarithm of a function will have
its maximum at the same point as the function will, we can use the log-likelihood
function

logL
(
θ|X1, . . . , XN

)
=

N∑
n=1

log p(Xn|θ)

1.4. Logistic and softmax perceptron 13

In our problem

L
(
w0, . . . , wD|

(
X1, y1

)
, . . . ,

(
XN , yN

))
= p

((
X1, y1

)
, . . . ,

(
XN , yN

)∣∣w0, . . . , wD
)

=
N∏
n=1

p ((Xn, yn)|w0, . . . , wD)

so we have the log-likelihood function

logL
(
w0, . . . , wD|

(
X1, y1

)
, . . . ,

(
XN , yN

))
=

N∑
n=1

log p ((Xn, yn)|w0, . . . , wD)

=
N∑
n=1

yn log pn + (1− yn) log (1− pn)

Knowing this, another way to obtain the regression coefficients, is using the labeled
observations-patterns {(X1, y1), . . . , (XN , yN)} to train the perceptron minimizing
the error function

E = − 1

N

N∑
n=1

yn log pn + (1− yn) log (1− pn).

It is clear that backpropagation can also be applied to this network, so it is possible
to build a logistic multilayer perceptron.

1.4.2 Softmax perceptron

The single unit perceptron or logistic regression can be generalized to solve classi-
fication problems with more than two classes. Instead of estimating the probability
of an event, we can estimate a vector with the probabilities of each of the multiple
possible outcomes. That is, if the event has K possible outcomes, {1, . . . , K}, the
softmax regression gives p (y = k|X) ∀k = 1, . . . , K so that

∑K
k=1 p (y = k|X) = 1,

so
p (yn = 1|Xn, w1,·)
p (yn = 2|Xn, w2,·)

...
p (yn = K|Xn, wK,·)

 =
1∑K

k=1 e
wk,0+wk,1x

n
1 +···+wk,DxnD

ew1,0+w1,1xn1 +···+w1,Dx

n
D

ew2,0+w2,1xn1 +···+w2,Dx
n
D

...
ewK,0+wK,1x

n
1 +···+wK,DxnD

the corresponding softmax perceptron will have an output layer of K units, all of
them connected to all the inputs.

For the implementation, we can use the cost function

E = − 1

N

(
N∑
n=1

K∑
k=1

1{yn=k} log
ewk,0+wk,1x

n
1 +···+wk,DxnD∑K

l=1 e
wl,0+wl,1x

n
1 +···+wl,DxnD

)
,

that is a generalization of the cost function used with the logistic regression.

14 Chapter 1. Shallow neural networks

Figure 1.4.1: Softmax perceptron

We don’t have a solution for the minimum of this cost function, but using an
iterative method we obtain this gradient

∇kE = − 1

N

N∑
n=1

(
Xn
(
1{yn=k} − p (yn = k|Xn;wk,·)

))
;

for more details, see [7] and [19].

In this case, the extension to multilayer perceptrons is also quite obvious.

Chapter 2

Deep network components

Some studies indicate that the primary visual cortex of mammals could be orga-
nized in layers of neurons that progressively transform a sensory perception into a
high level cognitive representation. Also, it appears that the functioning of this part
of the visual cortex is similar to that of a combination of Gabor filters, widely used
for edge detection.

It is also necessary to develop unsupervised or semi-unsupervised learning algo-
rithms for deep neural networks for mainly two reasons: the first comes from our
desire to, if possible, imitate human learning, that is in part unsupervised; the second
arises when we realise that it is practically impossible to obtain the large quantities
of labelled patterns necessary to properly train a deep neural network in a supervised
way.

All these observations inspire the development of deep artificial neural networks
formed by layers of autoencoders or Boltzmann machines, that are able to learn, with
an unsupervised learning algorithm, to operate like Gabor filters, and are appropriate
for stacking. In this section we will study these basic components of our proposed
deep neural network model and why they are similar to statistical methods like
principal component analysis or independent component analysis.

2.1 Principal Component Analysis

Principal component analysis (PCA) is a technique widely used to reduce the
dimension of a problem’s input data. There are two equivalent definitions of PCA:

• Orthogonal projection of the data to a lower-dimensional space, known as the
principal subspace, maximizing the projected data variance.

• Linear projection that minimizes the mean projection error, defined as the
mean squared distance between the data and the projections.

In what follows we will discuss these two approaches.

15

16 Chapter 2. Deep network components

2.1.1 Variance maximization

Let {Xn}, n = 1, . . . , N be a set of observations of a D-dimensional variable.
We want to project this data to a M -dimensional space, M < D, with M fixed,
maximizing the variance of the projected data.

We begin considering the projection to a 1-dimensional space (M = 1). We define
the direction of this space with the D-dimensional vector U1, that, for simplicity and
without loss of generality, will be an unitary vector so that U1 · U1 = 1. Each point
Xn is projected to this space as the scalar value U1 ·Xn. The projected data mean
is U1 ·X, where X is the sample mean of the data

X =
1

N

N∑
n=1

Xn

and the sample variance of the projected data is

1

N

N∑
n=1

(
U1 ·Xn − U1 ·X

)2
.

If S is the data covariance matrix, defined as

S =
1

N

N∑
n=1

(Xn −X)(Xn −X)T

we have that

1

N

N∑
n=1

(
U1 ·Xn − U1 ·X

)2
=

1

N

N∑
n=1

(
U1 ·

(
Xn −X

))2

=
1

N

N∑
n=1

U1 ·
(
Xn −X

) (
Xn −X

)T
U1

=
(
U1
)T
SU1 (2.1.1)

Now we maximize the variance (U1)
T
SU1 with respect to U1. This maximization

must be bounded to avoid ‖U1‖ → ∞, which is given by the normalization condition
U1 ·U1 = 1. To achieve this restricted maximization we use the Lagrange multiplier
λ1: (

U1
)T
SU1 − λ1

(
U1 · U1 − 1

)
,

whose derivative with respect to U1 is zero when

SU1 = λ1U
1,

that is, U1 is an eigenvector of S, with associated eigenvalue λ1 that we obtain using
that U1 · U1 = 1 and gives

λ1 =
(
U1
)T
SU1.

So, the variance will be maximized when U1 is the eigenvector with the largest
associated eigenvalue, λ1. This eigenvector is called the first principal component.

2.1. Principal Component Analysis 17

We can define additional principal components in an incremental way taking each
new direction as that which maximizes the global projected variance. In the case of
projecting to a M -dimensional space, the optimal linear projection that maximizes
the projected data variance is the one given by the M eigenvectors of the covariance
matrix S associated to the largest M eigenvalues. We prove next this fact.

Formally, if we project to a space of dimension M , the sample variance is

1

N

N∑
n=1

((
U1 ·Xn − U1 ·X

)2
+
(
U2 ·Xn − U2 ·X

)2
+ · · ·+

(
UM ·Xn − UM ·X

)2
)

that, using what we saw for the case M = 1 in 2.1.1, is(
U1
)T
SU1 +

(
U2
)T
SU2 + · · ·+

(
UM
)T
SUM .

To maximize this quantity it is necessary to impose bounds as we did before, so
we use the Lagrange multipliers λ1, . . . , λM :

M∑
i=1

((
U i
)T
SU i − λi

(
U i · U i − 1

))
;

computing the partial derivatives with respect to the U i and making them zero, we
get

SU i = λiU
i

that is, each U i is eigenvector of S with associated eigenvalue λi, and

λi =
(
U i
)T
SU i

for i = 1, . . . ,M , and so, the variance will be maximal when we project X using M
eigenvectors of S with the largest eigenvalues.

2.1.2 Squared error minimization

Let’s see now a definition of principal components based on the minimization of
the projection error. Let {U i}, i = 1, . . . , D be a D-dimensional orthonormal basis,
that is,

U i · U j = δij =

{
1 si i = j
0 si i 6= j

;

being a basis, therefore complete, each point can be represented in a unique way by
a linear combination of vectors from the basis

Xn =
D∑
i=1

αni U
i;

this corresponds to a rotation of the reference system to a new system defined by
the {U i}, with the original D components replaced by new ones. Projecting each
Xn over the new basis, we get αni = Xn · U i, and we can write

Xn =
D∑
i=1

(
Xn · U i

)
U i. (2.1.2)

18 Chapter 2. Deep network components

Our objective is, however, to approximate the points using a representation with
less variables, M < D, corresponding to a projection to a lower-dimensional sub-
space, with the smallest possible error. This linear M -dimensional subspace can be
represented without loss of generality with the first M vectors of the basis, so we
approximate each Xn with

X̃n =
M∑
i=1

zni U
i +

D∑
i=M+1

biU
i. (2.1.3)

We are free to select the {U i}, {zni } and {bi} so that the error introduced by
the dimension reduction is minimized. We choose the bi as constants that are the
same for all projected points, so that they lie in an M -dimensional subspace. As
error measure we will use the square distance between each original point Xn and
its approximation X̃n. So, the objective is to minimize

J =
1

N

N∑
n=1

∥∥∥Xn − X̃n
∥∥∥2

=
1

N

N∑
n=1

∥∥∥∥∥Xn −
M∑
i=1

zni U
i −

D∑
i=M+1

biU
i

∥∥∥∥∥
2

.

Let’s consider first the minimization with respect to {zni }. Deriving and using
orthonormality of the basis, for j = 1, . . . ,M , we have

∂J

∂znj
=

∂

∂znj

1

N

N∑
k=1

∥∥∥∥∥Xk −
M∑
i=1

zki U
i −

D∑
i=M+1

biU
i

∥∥∥∥∥
2

=
∂

∂znj

1

N

N∑
k=1

D∑
d=1

(
Xk
d −

M∑
i=1

zki U
i
d −

D∑
i=M+1

biU
i
d

)2

=
∂

∂znj

1

N

N∑
k=1

D∑
d=1

(
(Xk

d)2 − 2Xk
d ·

M∑
i=1

zki U
i
d − 2Xk

d ·
D∑

i=M+1

biU
i
d

+ 2

(
M∑
i=1

zki U
i
d

)(
D∑

i=M+1

biU
i
d

)
+

(
M∑
i=1

zki U
i
d

)2

+

(
D∑

i=M+1

biU
i
d

)2

=
1

N

D∑
d=1

(
−2Xn

d · U
j
d + 2U j

d ·
D∑

i=M+1

biU
i
d + 2

(
M∑
i=1

zni U
i
d

)
· U j

d

)

=
2

N

D∑
d=1

(
−Xn

d · U
j
d + znj U

j
d · U

j
d

)
=

2

N

(
−Xn · U j + znj

)
which is zero when

znj = Xn · U j. (2.1.4)

2.1. Principal Component Analysis 19

When minimizing with respect to bj, for j = M + 1, . . . , D, we get

∂J

∂bj
=

1

N

N∑
n=1

D∑
d=1

(
−2Xn

d · U
j
d + 2

M∑
i=1

zni U
i
d · U

j
d + 2

(
D∑

i=M+1

biU
i
d

)
· U j

d

)

=
2

N

N∑
n=1

(
−Xn · U j + bj

)
,

that is zero when
bj = X · U j. (2.1.5)

Using equations (2.1.2), (2.1.3), (2.1.4) and (2.1.5), we have

Xn − X̃n =
D∑
i=1

(
Xn · U i

)
U i −

M∑
i=1

zni U
i −

D∑
i=M+1

biU
i

=
D∑
i=1

(
Xn · U i

)
U i −

M∑
i=1

(
Xn · U i

)
U i −

D∑
i=M+1

(
X · U i

)
U i

=
D∑

i=M+1

((
Xn −X

)
· U i
)
· U i,

where it can be seen that the projection from Xn to X̃n is in the subspace orthogonal
to the principal subspace, as this projection is a linear combination of the {U i} for
i = M + 1, . . . , D, which is logical, as the minimal error is obtained by performing
an orthogonal projection.

We can express the error J as a function of {U i}

J =
1

N

N∑
n=1

∥∥∥∥∥
D∑

i=M+1

((
Xn −X

)
· U i
)
· U i

∥∥∥∥∥
2

=
1

N

N∑
n=1

D∑
i=M+1

(
Xn · U i −X · U i

)2

=
D∑

i=M+1

(
1

N

N∑
n=1

(
Xn · U i −X · U i

)2

)

=
D∑

i=M+1

(
U i
)T
SU i.

We still have to minimize J with respect to {U i}, where we will use the orthonor-
mality conditions to avoid U i = 0. Let’s suppose we have to choose the direction U i

that minimizes J , with the condition U i ·U i = 1. We will use the Lagrange multiplier
λi to satisfy the restriction, and so we have to minimize

J̃ =
D∑

i=M+1

((
U i
)T
SU i − λi

(
U i · U i − 1

))

20 Chapter 2. Deep network components

then, deriving with respect to U i and making it zero, we have that SU i = λiU
i, that

is, U i is an eigenvector of S with eigenvalue λi, for i = 1, . . . , D. J̃ will be minimal
when we take the eigenvectors associated to the smallest eigenvalues. and

J =
D∑

i=M+1

λi.

That is, to find the smallest value of J , we must choose the eigenvectors that
correspond to the largest eigenvalues, and the principal subspace, complement of
the subspace generated by the eigenvectors with smallest eigenvalues, will be that
generated by the eigenvectors of largest eigenvalues. All this agrees with what we saw
in the previous section, that consisted in projecting to the subspace that maximizes
the variance of the projected data.

2.1.3 Applications

Maybe the most immediate application of PCA is data compression. When we
do the transformation, the smaller the value of M , the greater the compression we
will achieve. Another application is data pre-processing. In this case we want to
standardize certain properties of the data set, for example when we have attributes
with different orders of magnitude. Also, PCA can decorrelate the variables, an
effect known as whitening or sphereing. For this purpose, we write the eigenvector
equation

SU = UL

or equivalently

UTSU = L,

where L is a D×D diagonal matrix with elements λi and U is a D×D orthonormal
matrix with the U i as columns. Then, for each point Xn we define its transformed
value as

Y n = L−1/2UT
(
Xn −X

)
with X the sample mean. It is easy to see that the {Y n} have zero mean and ther
covariance matrix is the identity

1

N

N∑
n=1

Y n(Y n)T =
1

N

N∑
n=1

L−1/2UT
(
Xn −X

) (
Xn −X

)T
UL−1/2

= L−1/2UT 1

N

N∑
n=1

(
Xn −X

) (
Xn −X

)T
UL−1/2

= L−1/2UTSUL−1/2

= L−1/2LL−1/2 = I,

where we have used that UTSU = L and L is diagonal.

2.1. Principal Component Analysis 21

A practical problem we may face when computing PCA is the computational cost
of calculating all the eigenvectors of a D×D matrix, that is O (D3) (see [11] chapter
12). If we only need the first M principal components, and so only need the first M
eigenvectors and eigenvalues, we can use some more efficient techniques that have
cost only O (MD2) (see [11] chapter 12).

In some cases (see [11] for more detailed examples), the number of points is much
smaller than the dimension of the space. We have this situation, for example, when
we use PCA over a set of hundreds of images where each one of them is a vector
of several millions of dimensions (three values of color per pixel, for each pixel in
the image). If in a D-dimensional space we have a set of N points, where N < D,
then the subspace these points form has, as much, dimension N − 1, and so there
is no point in using PCA for values of M larger than N − 1. In fact, if we perform
PCA, we will find that at least D −N + 1 eigenvalues are zero, as they are related
to eigenvectors for which the data set has variance zero.

To solve this problem, we define X as the (N × D)-dimensional matrix whose

n-th row is
(
Xn −X

)T
. The covariance matrix is S = 1

N
XTX, and its eigenvector

equation is
1

N
XTXU i = λiU

i.

If we now multiply each side by X, we have

1

N
XXT (XU i) = λi(XU

i),

and, if V i = XU i, we get
1

N
XXTV i = λiV

i,

that is the eigenvector equation of the N ×N matrix 1
N
XXT . We can see it has the

same N −1 eigenvalues λi as the original covariance matrix, but it does not have the
D −N + 1 zero eigenvalues. So, we can calculate the eigenvectors with cost O (N3)
instead of O (D3).

To find the eigenvectors {U i} we multiply both sides by XT to obtain(
1

N
XTX

)(
XTV i

)
= λi

(
XTV i

)
,

where we see that
(
XTV i

)
is an eigenvector of S with eigenvalue λi. Note that these

eigenvectors are not normalized, and if we normalize V i, then

XTV i = XTXU i = NλiU
i

with the vector XTV i having norm
√
Nλi, and U i = 1√

Nλi
XTV i.

22 Chapter 2. Deep network components

2.1.4 Probabilistic PCA

The definition of PCA seen before is based in a linear projection of the data
to a subspace of lower dimension than the original data space. Lets see now how
PCA can also be expressed as the solution of a problem of maximum likelihood in a
probabilistic model with latent variables.

We start introducing an explicit latent variable, Z, corresponding to the principal
component subspace. Then, we define a gaussian prior distribution over this latent
variable, p(Z), that has zero mean and unit covariance

p(Z) = N (0, I) .

We also assume a Gaussian distribution, conditioned by Z, over the observed
variable X, p(X|Z). X has as mean a linear function of Z controlled by the D×M
matrix W and the D-dimensional vector µ.

p(X|Z) = N
(
WZ + µ, σ2I

)
The columns of W generate a linear subspace in the space of the data that corre-

sponds to the principal subspace. The parameter σ2 determines the variance of the
conditional distribution. It is clear that there is no loss of generality if we assume
that p(Z) has zero mean and unit covariance.

The D-dimensional variable X is defined as a linear transformation of the M -
dimensional latent variable Z with Gaussian noise added, so

X = WZ + µ+ ε

with Z a Gaussian M -dimensional variable and ε a Gaussian D-dimensional variable
with zero mean and σ2I variance.

Now we want to determine the values of W , µ and σ2 using the maximum likeli-
hood method. We need an expression for the marginal distribution of the observed
variable, p(X), to build the likelihood function

p(X) =

∫
p(X|Z)p(Z) dZ.

The marginal distribution is also Gaussian (see [11] chapter 12 and [12] for more
details), with D-dimensional mean vector

E [X] = E [WZ + µ+ ε] = µ,

2.1. Principal Component Analysis 23

where we have used that Z ∼ N (0, I) and ε ∼ N (0, σ2I). And the D×D covariance
matrix can be derived as follows

C = Cov[X] = E
[
(WZ + ε)(WZ + ε)T

]
= E

[
(WZ + ε)(ZTW T + εT)

]
= E

[
WZZTW T +WZεT + εZTW T + εεT

]
= E

[
WZZTW T

]
+ E

[
εεT
]

= WW T + σ2I,

where we have used Z ∼ N (0, I), ε ∼ N (0, σ2I) and that Z and ε are independent.
Finally, we have that

p(X) = N (µ,C) .

Apart from the distribution p(X), we need the posterior distribution p(Z|X)

p(Z|X) = N
(
M−1W T (X − µ), σ−2M

)
,

where M = W TW + σ2I. For more detailed information on how to compute the
posterior, see [11] chapter 12 and [12].

Now we will find the model parameters by the method of maximum likelihood. In
our problem, Xn ∼ N (µ,C), and so the density function is

p(Xn) =
1√

(2π)D
1√
|C|

e−
1
2

(Xn−µ)TC−1(Xn−µ)

and so the log-likelihood is

logL
(
W,µ, σ2|X1, . . . , XN

)
=

N∑
n=1

log p(Xn|W,µ, σ2)

= −ND
2

log 2π − N

2
log |C| − 1

2

N∑
n=1

(Xn − µ)TC−1(Xn − µ).

To maximize with respect to µ, we derive the function with respect to µ and make
it zero

∂

∂µ
logL

(
W,µ, σ2|X1, . . . , XN

)
=

N∑
n=1

C−1(Xn − µ) = 0

and so
N∑
n=1

C−1Xn = NC−1µ,

and we have that

µML =
1

N

N∑
n=1

Xn = X

as we expected, and this maximum is unique because the log-likelihood is quadratic
with respect to µ.

24 Chapter 2. Deep network components

Maximization with respect to W is more complex, but also has a closed solution:

WML = UM(LM − σ2I)1/2R

where UM is a D × M matrix with any subset of size M of the eigenvectors of
S, the data covariance matrix, as columns, LM is the diagonal matrix with the
corresponding eigenvalues, and R is any M ×M orthogonal matrix. Again, for more
details, refer to [11] and [12].

We can see that

WMLW
T
ML = UM(LM − σ2I)1/2RRT (LM − σ2I)1/2UT

M

= UM(LM − σ2I)UT
M

= UMLMU
T
M − σ2I

= S̃ − σ2I,

with S̃ an estimation of S.

We can prove that the maximum likelihood is obtained choosing the M eigenvec-
tors with the larger eigenvalues. If we order the eigenvectors U i from the smallest
to the largest eigenvalue, we have that the ones that generate the principal subspace
(the columns of W) are U1, . . . , UM . The solution of σ2 that maximizes the likelihood
is

σ2
ML =

1

D −M

D∑
i=M+1

λi,

so σ2
ML is the mean variance associated to the discarded dimensions. The idea is to

capture the variance of the data along the principal directions, and approximating
the variance in the other directions with a mean value.

Once we have an exact and closed solution for the parameters with the method
of maximum likelihood, we may want an alternative, iterative method to find the
solution in high-dimensional spaces, where M << D, to reduce the computational
costs. The EM algorithm can be helpful, as it avoids the calculations to get the
covariance matrix and its eigenvectors and eigenvalues.

In the EM algorithm, in the M step we must first write the log-likelihood of the
data and calculate its expected value with respect to the posterior distribution of
the latent variable using the previous values of the parameters. Then, in the next
step, M, we will maximize this expected log-likelihood value to get then new values
of the parameters

Assuming the data are independent, and, as we already know

Z ∼ N (0, I) ,

2.1. Principal Component Analysis 25

p(Z) =
1√

(2π)D
e−

1
2
ZTZ

and
X|Z ∼ N(WZ + µ, σ2I),

p(X|Z) =
1√

(2πσ2)D
e−

1
2σ2

(X−WZ−µ)T (X−WZ−µ);

so, the log-likelihood is

log p(X,Z|µ,W, σ2) =
N∑
n=1

(
log p(Xn|Zn) + log p(Zn)

)
,

where X is the matrix that has Xn as its n-th row and Z is the matrix that has Zn

as its n-th row. It is convenient to substitute µ with X at this point.

In the M step, we calculate the expected value of the log-likelihood

φ = E
[
log p(X,Z|µ,W, σ2)

]
= −

N∑
n=1

(
D

2
log 2πσ2 +

1

2
Tr(E

[
Zn(Zn)T

]
)

+
1

2σ2
‖Xn − µ‖2 − 1

σ2
E [Zn]T W T (Xn − µ)

+
1

2σ2
Tr(E

[
Zn(Zn)T

]
W TW)

)
,

and we use that E
[
Zn(Zn)T

]
= Cov[Zn] + E [Zn]E [Zn]T to evaluate

E [Zn] = M−1W T (Xn −X),

E
[
Zn(Zn)T

]
= σ2M−1 + E [Zn]E [Zn]T ;

that is, we use first Wt and σt and then E
[
Zn(Zn)T

]
t

and E [Zn]t and we obtain
the expected value of the log-likelihood as a component explicitly dependent of Z
and a component implicitly dependent of Z through X (see [11] chapter 12 for more
details).

In the M step we maximize with respect to W and σ2

Wnew =

(
N∑
n=1

(Xn −X)E [Zn]T
)(

N∑
n=1

E
[
Zn(Zn)T

])−1

,

σ2
new =

1

ND

N∑
n=1

(
‖Xn −X‖2 − 2E [Zn]T W T

new(Xn −X) + Tr(E
[
Zn(Zn)T

]
W T
newWnew)

)
;

that is, in this step we maximize the function φ(W,σ,Wt, σt), obtained in the previous
step, to calculate the new values of the parameters, that we will use in the next
iteration of the algorithm.

26 Chapter 2. Deep network components

2.2 Independent Component Analysis

We will now discuss a technique related to principal component analysis and that
share some common ideas with the restricted Boltzmann machines, that we will
study later.

Imagine a situation where two people are talking at the same time, and we have
two microphones that record their voices. The amplitude of one of the voices is
not related to the amplitude of the other, so we can say they are independent. If we
ignore the delays or echoes, then the signals received by the microphones in an instant
will be linear combinations of the amplitudes of the two voices. The coefficients of
this combination will be constants, and if we can infer their values from the sampled
data, we will be able to revert the mixing process and obtain the two original signals.
This kind of problems are called blind source separation, as we only have the mixed
signals, not the sources or the mixing coefficients.

Consider now a model where the observed variables, Xn
d , d = 1, . . . , D, are linearly

related to the latent variables, Zn
m, m = 1, . . . ,M , and the latent variables do not

follow a Gaussian distribution. Independent component analysis tries to find latent
variables that are independent, so their distribution factorizes as

p(Zn) =
M∏
m=1

p(Zn
m).

We represent the set of the latent variables as

Z =
(
Z1 . . . ZN

)
=

 Z1
1 . . . ZN

1
...

. . .
...

Z1
M . . . ZN

M

 ;

we represent the observed variables as

X =
(
X1 . . . XN

)
=

 X1
1 . . . XN

1
...

. . .
...

X1
D . . . XN

D

 .

Each of the latent variables will contribute with a different coefficient to each of
the observed variables, that is, Xn

d =
∑M

m=1 ad,mZ
n
m, so we can represent the mixing

matrix as

A =

 a1,1 . . . a1,M
...

. . .
...

aD,1 . . . aD,M

and so X = AZ. Also, we can define the inverse of A,

A−1 =

 α1,1 . . . α1,D
...

. . .
...

αM,1 . . . αM,D

 ,

2.2. Independent Component Analysis 27

that, naturally, reverts the mixing and gives the latent variables from the observed
ones

Z = A−1X.

As we usually don’t know A, we cannot calculate the exact A−1, but just an
approximation, W , that will give us an approximation of the latent variables, Y =
WX

Y =
(
Y 1 . . . Y N

)
=

 Y 1
1 . . . Y N

1
...

. . .
...

Y 1
M . . . Y N

M

 .

It is important to note that ICA needs D ≥ M , and, usually, to simplify calcula-
tions by operating with square matrices, D = M .

The non-Gaussianity condition is necessary to have a unique solution to the ICA
problem. If we have Gaussian independent latent variables, then any orthogonal
transformation of them will be a feasible solution. That is, if R is an orthogonal
matrix (RRT = I), then Z ′ = RZ and A′ = ART give another solution to the
problem, with X = A′Z ′. The new latent variables are also uncorrelated

E
[
Z ′(Z ′)T

]
= E

[
RZZTRT

]
= RE

[
ZZT

]
RT = RIRT = I

and, in our case, having both a joint Gaussian distribution and being uncorrelated,
independent.

2.2.1 Mutual information minimization

Now we know what we are looking for, but working with statistical independence
is complex, as we would have to verify independence for every subset of the latent
variables. We can, however, use the mutual information to measure in some way
the independence between the variables. It can be proved (see Appendix A on
information and entropy) that the mutual information is non-negative, being zero
when the variables are independent. Also, we can generalize the mutual information
(see the Appendix)

I (X, Y) = H (X)−H (X|Y)

from two variables to M variables

I (Z1, . . . , ZM) =
M∑
m=1

H (Zm)−H (Z1, . . . , ZM)

and minimize the mutual information as a way of maximizing the independence
between the variables.

That said, we can try to find a transformation Y = WX that minimizes the mutual
information of the latent variables Y .

28 Chapter 2. Deep network components

2.2.2 Non Gaussianity maximization

Another approach consists in maximizing the non-Gaussianity of the Y variables.
Mixing at least two independent latent variables we get observed variables that are
not independent, as Y = WX = WAZ, and so

Ym =
D∑
d=1

M∑
i=1

Wm,dAd,iZi

By the Central Limit Theorem, we know that this variables, being a sum of the
hidden variables, will be ”more Gaussian” than, at least, one of the hidden variables,
and if we maximize the non-Gaussianity, we will find a linear combination that has
all but one of the coefficients as zero, so, we get an approximation of the latent
variables Zn.

What measure of Gaussianity can we use? One option is kurtosis. The kurtosis is 0
for Gaussian distributions, and maximizing its absolute value will somehow minimize
the distribution Gaussianity.

Another option comes from the observation that the Normal distribution has the
highest entropy of all the distributions with the same variance. If we maximize the
negentropy

J (Y n) = H (Y n
G)−H (Y n) ,

that is defined as the difference between the entropy of our variable, H (Y n), and the
entropy of a variable that follows the Gaussian distribution with the same variance
as our distribution, H (Y n

G), then we will be minimizing the Gaussianity. In practice,
only approximations of the entropy are used, as it is difficult to calculate the precise
value of the entropy.

2.2.3 Maximum likelihood ICA

We can perform ICA with the method of maximum likelihood. We build a like-
lihood function as a function of the linear combination coefficients, and then use it
to estimate the optimal matrix A−1 that maximizes the probability of obtaining the
mixtures from the sources. That is, we will search the matrix W that makes the
distribution of Y = WX as close as possible to the distribution of Z.

Let pX be the joint distribution function of the observed variables, and pZ that
of the latent variables. In our example, the number of latent variables and observed
variables is the same, so A−1 is a square matrix. Then

pX(X) = pZ(Z)|A−1|

where |A−1| = |δZ/δX| is the jacobian of Z with respect to X. This function gives
us the probability of getting X given A−1.

2.3. Autoencoders 29

We use this function to define our likelihood function

L (W |X) = pX(X|W) = pZ(WX)|W |

and, to simplify calculations when maximizing with respect to W , we use the log-
likelihood function

logL (W |X) =
N∑
n=1

log pZ(W TXn) +N log |W |

and the matrix W that maximizes this function will be the desired matrix A−1.

We have not assumed any distribution for the latent variables. In practice, some
common choices are

pZ(Y) = 1− tanh(Y)2

and

pZ(Y) =
1

πcosh(Y)
=

1

π(eY + e−Y)
;

see [11] chapter 12 and [14] for more details.

2.3 Autoencoders

It is possible to train neural networks in an unsupervised way, for example to
reduce the dimension of a problem. This can be achieved with a special type of
perceptron that has the same number of input and output units, and that optimizes
the weights to minimize the error between the input and its reconstruction at the
output.

Lets consider a single hidden layer perceptron, with an input layer of D units, an
output layer of D units, and M , M < D, hidden layer units. The targets used to
train it are the same input patterns, so the network will try to reconstruct each input
vector at the output. This kind of autoassociative perceptron is called autoencoder.

If we have less hidden units than input/output units then, in general, a perfect
reconstruction will be impossible, so the hidden layer will become some kind of
narrow channel that reduces the data dimension. The weights of the network will
be determined in the process of minimizing the error function that measures the
difference between the input vectors and their reconstructions at the output, and we
expect to have an optimal representation (of the given dimension) of these vectors
at the hidden layer.

We can also use autoencoders with broad hidden layers, even broader than the
input/output layers, but, as we will see, additional precautions are needed to avoid
training a useless network that simply copies the input to the hidden layer and then
to the output.

30 Chapter 2. Deep network components

Figure 2.3.1: Autoencoder

2.3.1 Single hidden layer autoencoders

If the input is the D-dimensional real vector Xn, n = 1, 2, . . . , N , the hidden layer
output will be the M -dimensional vector

Hn = F
(
W 1Xn +B1

)
where W 1 is the M ×D weight matrix from the input to the hidden units, and B1

is the M -vector of the hidden units biases. The function F can be non-linear, like a
sigmoid function. The corresponding output will be

Y n = W 2Hn +B2

where W 2 is the D×M weight matrix from the hidden to the output units, and B2

is the D-vector of the output units biases. Our objective is to find the matrices W 1,
W 2, and the vectors B1, B2 that minimize the mean squared error function

E =
N∑
n=1

‖Xn − Y n‖2

Let X =
[
X1, . . . , XN

]
be the D × N matrix formed with the N input vectors

of the training set, H =
[
H1, . . . , HN

]
the M × N matrix with the corresponding

hidden layer vectors, and Y =
[
Y 1, . . . , Y N

]
the D×N matrix of the corresponding

vectors at the output layer. The process to get Y from X is

H = F
(
W 1X +B1UT

)
Y = W 2H +B2UT

where U is a ones vector of the appropriate dimension. In this notation, the error
function is written

E = ‖X − Y ‖2 =
∥∥X −W 2H −B2UT

∥∥2

2.3. Autoencoders 31

with ‖·‖ the Frobenius norm ‖A‖ =
√∑

i

∑
j |aij|2, and using that ‖A‖2 = tr

(
AAT

)
we have

E = tr
[(
X −W 2H −B2UT

) (
XT −HT

(
W 2
)T − U (B2

)T)]
= tr

[
XXT −W 2HXT −B2UTXT −XHT

(
W 2
)T

+W 2HHT
(
W 2
)T

+B2UT HT
(
W 2
)T −XU (B2

)T
+W 2HU

(
B2
)T

+B2UTU
(
B2
)T]

≡ tr(ξ).

We will calculate the optimal B2 by minimizing E with respect to B2, using that

∂

∂B2
tr(ξ) = tr

(
∂

∂B2
ξ

)
and

∂

∂B2
ξ = −XU +W 2HU −XU +W 2HU + 2B2UTU

= −2XU + 2W 2HU + 2B2UTU

= −2XU + 2W 2HU + 2B2N,

wich is zero when

B2 =
1

N

(
X −W 2H

)
U, (2.3.1)

to get

E =
∥∥X −W 2H −B2UT

∥∥2

=

∥∥∥∥X −W 2H − 1

N

(
X −W 2H

)
UUT

∥∥∥∥2

=
∥∥X ′ −W 2H ′

∥∥2

where X ′ = X
(
I − UUT/N

)
y H ′ = H

(
I − UUT/N

)
. And, as W 2 has M rank or

smaller, we get that the W 2H ′ that minimizes E is the best M rank approximation
for X ′ with the Frobenius norm (see [15] for more details).

Lets consider the Singular Value Decomposition (SVD) of X ′, which is, precisely,
the best approximation of the matrix with respect to the Frobenius norm for a given
rank (see [15])

X ′ = UDΣDV
T
D ,

where UD is an unitary D ×D matrix with the X ′X ′T eigenvectors as columns and
VD a N × D matrix with orthonormal column vectors that are the eigenvectors of
X ′TX ′, with each eigenvector associated with the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λD,
and ΣD = diag[σ1, σ2, . . . , σn] the diagonal matrix with σi =

√
λi.

32 Chapter 2. Deep network components

Now, if we take ΣM as the submatrix of ΣD that has in its diagonal the M greater
σ, and UM and VM as the matrices formed with the first M columns of UD and VD,
respectively, we can express the best approximation of X ′ with rank M as

Ŵ 2Ĥ ′ = UMΣMV
T
M

and as a consequence, we can choose

Ŵ 2 = UMT
−1, (2.3.2)

Ĥ ′ = TΣMV
T
M ,

with T an arbitrary non-singular M ×M matrix. And we have obtained the expres-
sions of the optimal B2 and W 2 in (2.3.1) and (2.3.2).

We will now try to demonstrate the equivalence between PCA and the transforma-
tions performed in the hidden layer of such autoencoder. To this purpose, we must
prove that the covariance matrix of the hidden layer activations is the best M -rank
approximation of the original input data covariance matrix (see [15]).

Let µX be the mean of the training input vectors, X1, . . . , XN , that is, µX = 1
N
XU

and µH = 1
N
HU and µY = 1

N
Y U the mean of the respective hidden and output layer

vectors. Replacing the optimal biases vector, B̂2, in Y we have

µY =
1

N
Y U =

1

N

(
W 2H +B2UT

)
U

=
1

N

(
W 2H +

1

N

(
X −W 2H

)
UUT

)
U

=
1

N

(
W 2H +X −W 2H

)
U

=
1

N
XU = µX ;

that is, the mean input and output vectors are equal. Also we can rewrite X ′ =
X − µXUT and H ′ = H − µHUT , so that X ′ and H ′ represent the input and hidden
layer vectors after subtracting the means.

Finally, it is possible to prove that the output vector covariance matrix is the
best M rank approximation of the input vectors covariance matrix, and so, the
autoassociative multilayer perceptron is equivalent to PCA. We will use that VD is
unitary, so VDV

T
D = V T

D VD = I, then we have

CX = X ′X ′T = UDΣDV
T
D VDΣDU

T
D = UDΣ2

DU
T
D

2.3. Autoencoders 33

and therefore

CY =
(
Y − µYUT

) (
Y − µYUT

)T
=
(
Y − µXUT

) (
Y − µXUT

)T
=

(
Y − 1

N
XUUT

)(
Y − 1

N
XUUT

)T
= (Y −X +X ′) (Y −X +X ′)

T

=
(
W 2H +B2UT −X +X ′

) (
W 2H +B2UT −X +X ′

)T
=

(
W 2H +

1

N

(
X −W 2H

)
UUT −X +X ′

)(
W 2H +

1

N

(
X −W 2H

)
UUT −X +X ′

)T
=
(
W 2H ′ −X ′ +X ′

) (
W 2H ′ −X ′ +X ′

)T
=
(
W 2H ′

) (
W 2H ′

)T
= UMΣMV

T
MVMΣT

MU
T
M = UMΣ2

MU
T
M .

See [15] for more details.

2.3.2 Multiple hidden layer autoencoders

All the previously seen properties are independent of the hidden units activation
function F . If the hidden units have linear activation functions, it can be proved
that the error function has a unique global minimum. In the two hidden layers
perceptrons the situation is similar. However, this changes for three hidden layers
perceptrons (see [11]).

Consider a perceptron with a D linear unit input layer, a first hidden layer with
sigmoid units, a second hidden layer with M linear units, a third hidden layer with
sigmoid units, and an output layer with D linear units. The network is trained the
same way as before. This net can be seen as two successive correspondences F1 and
F2. F1 projects the original D dimensional vectors in a M -dimensional subspace
defined by the activations of the second hidden layer units. This correspondence
is non-linear because of the sigmoid activations of the first hidden layer units. In
the same way, F2 gives a correspondence between the M -dimensional space and the
D-dimensional original space.

The described network performs, in fact, a non-linear PCA, that contains linear
PCA as a particular case, but is not limited to linear transformations. The problem
is that now the error function is not a quadratic function of the network parameters,
which produces a more complex optimization problem possibly with local minima.

2.3.3 Infomax principle

Instead of minimizing the mean squared error, we can choose other reconstruction
criteria. One of them is the infomax principle, that consists in preserving at the
output as much information from the input as possible, or, in Information Theory
terms, maximize the mutual information I (X, Y) between the input random variable
X and its reconstruction Y .

34 Chapter 2. Deep network components

As is detailed in the Appendix, mutual information is defined as I (X, Y) = H (X)−
H (X|Y). Given that X follows a distribution q(X) that is unknown to us and is
not influenced by the autoencoder parameters, the infomax principle is reduced to
maximizing −H (X|Y):

argmaxW 1,B1,W 2,B2 [I (X, Y)] = argmaxW 1,B1,W 2,B2 [−H (X|Y)]

= argmaxW 1,B1,W 2,B2

[
Eq(X,Y) [log q(X|Y)]

]
.

The Kullback-Leibler divergence,

DKL (p||q) =
∑
k

pk log

(
pk
qk

)
,

also detailed in the Appendix, for two distributions p and q, has the property

DKL (q||p) ≥ 0

and, in particular,
DKL (q(X, Y)||p(X|Y)) ≥ 0.

Using it we have that

0 ≤ DKL (q(X, Y)||p(X|Y))

= Eq(X,Y)

[
log

q(X, Y)

p(X|Y)

]
= Eq(X,Y) [log q(X, Y)]− Eq(X,Y) [log p(X|Y)] ,

where Eq(X,Y) [·] is the expected value over the distribution q(X, Y), and so

Eq(X,Y) [log p(X|Y)] ≤ Eq(X,Y) [log q(X|Y)]

= −
∫ ∞
−∞

∫ ∞
−∞

q(X, Y) log q(X|Y) dx dy

= −
∫ ∞
−∞

∫ ∞
−∞

q(X|Y)q(Y) log q(X|Y) dx dy

= −
∫ ∞
−∞

q(Y)H (X|Y) dy

= −H (X|Y)

that is, maximizing Eq(X,Y) [log p(X|Y)] we are somehow maximizing a lower bound
on −H (X|Y) and so we maximize the mutual information. If there exist some
parameters Ŵ 1, B̂1, Ŵ 2, B̂2 that give p(X|Y, Ŵ 1, Ŵ 2, B̂1, B̂2) = q(X|Y), then we
can maximize the exact mutual information, writing the criterion as

maxŴ 1,B̂1,Ŵ 2,B̂2

[
Eq(X,Y,Ŵ 1,B̂1,Ŵ 2,B̂2)

[
log p

(
X|Y, Ŵ 1, B̂1, Ŵ 2, B̂2

)]]
or, as Y is determined by X, W 1, B1, W 2 and B2, we can write

maxŴ 1,B̂1,Ŵ 2,B̂2

[
Eq(X)

[
log p

(
X|Y, Ŵ 1, B̂1, Ŵ 2, B̂2

)]]

2.3. Autoencoders 35

Since we don’t know q(X), but have a sample, it is possible to use the sample
expected value as an estimator of the expected value. For instance, if input val-
ues X are in RD, we suppose that X|Y ∼ N (Y, σ2I), which leads us to minimize
the function E [‖X − Y ‖2], the mean squared error function traditionally used in
autoencoders (see [21] for more information).

2.3.4 Sparse autoencoders

Before, we assumed that M , the number of hidden units of the autoencoder, was
smaller than D, the number of units in the input and output layers. This is necessary
to force the autoencoder to find the underlying structure in the data, but we can
impose a sparsity condition ([18]) to force it to find this structure even when M > D.

If the hidden layer units use sigmoid activation functions, we will say that a unit
is active if its output is close to 1, and that it is inactive if its output is close to 0.
If we use an hyperbolic tangent function, the unit is inactive if its output is close
to −1. The sparsity condition is met when the units are inactive for most of the
patterns. If the activation vector of the hidden units for the pattern n is Hn then,
the mean activation for the hidden unit m over the training set is

ρ̂m =
1

N

N∑
n=1

Hn
m.

We would like that, for all the hidden units

ρ̂m ' ρ,

with ρ the sparsity parameter with a value close to zero, for example 0.05. To achieve
this we can add a penalty term to the global error function over all the training set
so it penalizes the ρ̂m that are far from ρ. There are many valid options for this
penalty term; one of them is

M∑
m=1

DKL (ρ||ρ̂m) =
M∑
m=1

(
ρ log

ρ

ρ̂m
+ (1− ρ) log

1− ρ
1− ρ̂m

)
where the Kullback-Leibler divergence, that indicates how different two distributions
are, operates in this case over a ρ mean Bernoulli and a ρ̂m mean Bernoulli.

This penalty has the property that DKL (ρ||ρ̂m) = 0 if ρ̂m = ρ, and increases
monotonically as ρ̂m and ρ move away, being ∞ when ρ̂m is 0 or 1. The penalty
term is usually applied with a weight factor.

The local error function for pattern n is

Elocal
(
W 1,W 2, B1, B2, Xn

)
=

1

2
‖Xn − Y n‖2

=
1

2

∥∥Xn −
(
W 2Hn +W 2

)∥∥2

=
1

2

∥∥Xn −
(
W 2F

(
W 1Xn +B1

)
+B2

)∥∥2
,

36 Chapter 2. Deep network components

from where we get the global error function

Eglobal
(
W 1,W 2, B1, B2

)
=

1

N

N∑
n=1

Elocal
(
W 1,W 2, B1, B2, Xn

)
,

to which we add a weight decay penalty term, so we get

Edecay
(
W 1,W 2, B1, B2, λ

)
= Eglobal

(
W 1,W 2, B1, B2

)
+
λ

2

M∑
m=1

(
‖W 1

m‖2 + ‖W 2
m‖2
)
,

that is the usual error function employed in a single hidden layer perceptron. We
can now add the new sparsity penalty term to get

Esparse
(
W 1,W 2, B1, B2, λ, ρ, β

)
= Edecay

(
W 1,W 2, B1, B2, λ

)
+ β

M∑
m=1

DKL (ρ||ρ̂m) .

Training the network with this error function requires previous knowledge of the
mean activations ρ̂m, so it is necessary to perform a previous processing of all the
training patterns to calculate these activations. The gradient descent method is
well known for non-sparse perceptrons, and in our case the only components of the
gradient affected by the sparsity term are the ones differentiated with respect to W 1

and B1, because the term does not depend on W 2 or B2. We get the component
differentiated with respect to W 1 as

∂Esparse
∂W 1

=
∂Edecay
∂W 1

+ β
M∑
m=1

∂DKL (ρ||ρ̂m)

∂W 1

=
∂Edecay
∂W 1

+ β
M∑
m=1

∂

∂W 1

(
ρ log

ρ

ρ̂m
+ (1− ρ) log

1− ρ
1− ρ̂m

)

=
∂Edecay
∂W 1

+ β
M∑
m=1

∂ρ̂m
∂W 1

(
−ρ
ρ̂m

+
1− ρ

1− ρ̂m

)
,

the component differentiated with respect to B1 as

∂Esparse
∂B1

=
∂Edecay
∂B1

+ β
M∑
m=1

∂DKL (ρ||ρ̂m)

∂B1

= . . .

=
∂Edecay
∂B1

+ β
M∑
m=1

∂ρ̂m
∂B1

(
−ρ
ρ̂m

+
1− ρ

1− ρ̂m

)
,

and the components not affected by the sparsity as

∂Esparse
∂W 2

=
∂Edecay
∂W 2

,

∂Esparse
∂B2

=
∂Edecay
∂B2

,

2.3. Autoencoders 37

finally

∂ρ̂m
∂W 1

=
1

N

N∑
n=1

∂Hn
m

∂W 1
=

1

N

N∑
n=1

∂

∂W 1
F
(
W 1
mX

n +B1
m

)
=

1

N

N∑
n=1

XnF ′
(
W 1
mX

n +B1
m

)
,

∂ρ̂m
∂B1

=
1

N

N∑
n=1

∂Hn
m

∂B1
=

1

N

N∑
n=1

∂

∂B1
F
(
W 1
mX

n +B1
m

)
=

1

N

N∑
n=1

F ′
(
W 1
mX

n +B1
m

)
.

2.3.5 Denoising autoencoders

We have other options to force a useful feature extraction from the data. One
of them is trying to reconstruct the original data from a corrupted version of them,
what, we hope, will force the autoencoder to learn a robust and stable representation
of the data, preserving the underlying structure and ignoring the noise.

To this purpose, we must corrupt each of the input data vectors Xn to get a vector
X̃n through a stochastic mapping, while the targets remain untouched. Then, we
will proceed like with the normal autoencoder, but having

Hn = F (W 1X̃n +B1)

instead of
Hn = F (W 1Xn +B1)

as we had before.

Examples of different data corruption processes are

• Gaussian noise: X̃n ∼ N (Xn, σ2I).

• Masking noise: change a fraction of vector Xn elements, randomly selected, to
0.

• Salt-pepper noise: change a fraction of vector Xn elements, randomly selected,
to the maximum or minimum possible values following a distribution B

(
1
2

)
.

The masking noise is specially interesting, as it can be understood as representing
data with the missing values and forcing the autoencoder to reconstruct the infor-
mation. Masking and salt-pepper noise can be useful to emphasize (or attenuate)
the missing values reconstruction function of the autoencoder. If the error function
used is the mean squared error, we can add some parameters α, for the corrupted
components, and β, for the intact ones, and modify the function so we get

Elocal =
α

2

∑
d∈J(X̃n)

(Xn
d − Y n

d)2 +
β

2

∑
d/∈J(X̃)

(Xn
d − Y n

d)2,

where J
(
X̃n
)

denotes the indices of the corrupted components of the transformed

pattern X̃n.

38 Chapter 2. Deep network components

The geometric interpretation of this process is the following: assume the data in
a high-dimensional space tend to be close to a non-linear low-dimensional subspace.
By corrupting the data, they will move away from this subspace, and the autoen-
coder will learn to move these uncommon corrupted data back to the vicinity of
the subspace, where the probability of finding data is higher. Thus, the denoising
autoencoder tries to define and learn a manifold and to give a representation of the
data that captures the main variations along the manifold. The result is that we
obtain a more robust representation of the data, which captures the useful struc-
ture of the input distribution, given that the obtained representation allows a good
reconstruction even when high levels of noise are present.

2.3.6 Maximal activation pattern

Once we have a trained autoencoder by any of the previous methods, we may
want to identify which pattern would produce a highest hidden unit activation. For
pattern n, hidden unit m calculates

Hn
m = F

(
W 1
mX

n +B1
m

)
.

We will obtain the function computed by the hidden unit, Hm, a function of W 1
m,

as a two-dimensional image, and will find the input X̃ that produces a maximum
activation in unit Hm. To have a non-trivial solution, we must impose a condition
to input X̃:

‖X̃‖2 =
D∑
d=1

X̃2
d ≤ 1

and maximizing with this condition, using the Lagrange multipliers method, we have
to find the critical point of

Λm = F
(
W 1
mX̃ +B1

m

)
+ λm

(
1− ‖X̃‖2

)
If we use a sigmoid activation function, that is close to linear around 0, we have

∂

∂X̃
Λm ' W 1

m − 2λmX̃,

that is 0 iff

X̃ =
W 1
m

2λm
.

Also
∂

∂λm
Λm = 1− ‖X̃‖2,

that is 0 iff

‖X̃‖2 = 1.

2.4. Boltzmann machines 39

And, using both conditions, we get

X̃ =
W 1
m

‖W 1
m‖

so the pattern that maximizes the hidden unit activation is that composed by the
unit normalized weights.

2.4 Boltzmann machines

An alternative to the autoencoders are the Boltzmann machines. Boltzmann ma-
chines ([25]) are stochastic recurrent neural networks that are capable to detect
complex patterns in the data and to solve complex combinatorial problems. These
machines are not much used in practice because of the high cost of their training,
but there exists a simplification, the restricted Boltzmann machines ([23], [26]), that
give good results in practice while making training more feasible computationally.

Depending on how we operate with the Boltzmann machine, it will solve a search
problem or a learning problem: if the weights between its units are fixed representing
a cost function, the machine will find those input patterns that have a low cost
according to this function; if the weights are left unclamped and change during
training, the machine will learn to generate patterns following the input pattern
distribution ([23]).

2.4.1 Definition

As was said before, the Boltzmann machine is a recurrent neural network, so all
the units are connected to each other. The weight of the link between unit i and unit
j is Wij. Two additional conditions of the Boltzmann machines are Wii = 0 ∀i (a
unit cannot be connected to itself) and Wij = Wji ∀i, j (connections are symmetric).
The weight matrix for the connections is denoted W . The bias for unit i is Bi and
the bias vector is B.

The Boltzmann machine units are divided in two groups, the visible units, that
we will denote with the vector V = {V1, . . . , VD}, and the hidden units, that we
will denote with the vector H = {H1, . . . , HM}. To simplify notation in following
calculations, we will use U = {V,H} = {V1, . . . , VD, H1, . . . , HM} = {U1, . . . , UD+M}
for the set of all the network units. The visible units are both the input and the
output of the Boltzmann machine, so, if we feed the input pattern X = {X1, . . . , XD}
to our network, we will have that, initially, V = X. Each unit can only take value 0
or 1 in a given instant.

We define now a function that maps each possible state of the network to an energy

E(U |W,B) = −
∑
i

∑
j 6=i

WijUiUj −
∑
i

BiUi;

40 Chapter 2. Deep network components

Figure 2.4.1: Boltzmann machine

if we suppose that the states follow a Boltzmann distribution with β = 1
KBT

, then
we have that the probability of a state U is given by

P (U |W,B) =
e−βE(U |W,B)∑
Ǔ e
−βE(Ǔ |W,B)

notice that we are dividing by a sum over all the possible states, 2M+D.

From this, we can calculate that the probability for a unit to take value 1 given
the values of the other units, Ui, is

P
(
Ui = 1|U i,W,B

)
=
P (Ui = 1, U i,W,B)

P (U i,W,B)

=
P (Ui = 1, U i|W,B)P (W,B)

P (U i|W,B)P (W,B)

=
P (Ui = 1, U i|W,B)

P (Ui = 1, U i|W,B) + P (Ui = 0, U i|W,B)

=
eβΞ

eβΞ + eβΞe−β(
∑
j 6=iWijUj+Bi)

=
1

1 + e−β(
∑
j 6=iWijUj+Bi)

,

where
Ξ =

∑
k 6=i

∑
j 6=i,k

WkjUkUj +
∑
k 6=i

BkUk +
∑
j 6=i

WijUj +Bi

and U i denotes the states of all units but Ui.

It can be proved that, when T = 0, and so β = ∞, the activation of the unit
becomes deterministic and the Boltzmann machine is reduced to its non-stochastic
version, a Hopfield network

T = 0⇒ P (Ui = 1|U i,W,B) =

{
1 if

∑
j 6=iWijUj +Bi > 0

0 if
∑

j 6=iWijUj +Bi < 0
;

see [23], [26] and [28] for more details.

2.4. Boltzmann machines 41

2.4.2 Learning

Given a set of independent training patterns, learning consists on finding the
weights and biases that make the patterns correspond to low energy states, or, in
other words, finding the weights and biases that define a distribution that make the
states induced by the training patterns the most probable ones.

We can learn the Boltzmann machine parameters from the training patterns using
the maximum likelihood method. Given a set of N training vectors, we have the
following likelihood function

L (W,B) =
N∏
n=1

P (V n|W,B) =
N∏
n=1

(∑
H

P (V n, H|W,B)

)
,

where we marginalize over the hidden units states, and the log-likelihood function

logL (W,B) =
N∑
n=1

logP (V n|W,B)

=
N∑
n=1

log
∑
H

P (V n, H|W,B)

=
N∑
n=1

log
∑
H

e−βE(V n,H|W,B)∑
V̌ e
−βE(V̌ ,H|W,B)

=
N∑
n=1

(
log
∑
H

e−βE(V n,H|W,B) − log
∑
H

∑
V̌

e−βE(V̌ ,H|W,B)

)
.

We get the gradient by differentiation of the log-likelihood function. The calcula-
tions for the derivative with respect to Wij are shown next, the process to get the

42 Chapter 2. Deep network components

derivative with respect to Bi is similar. We have

∂

∂Wij

logL (W,B) =
N∑
n=1

(
∂

∂Wij

log
∑
H

e−βE(V n,H|W,B) − ∂

∂Wij

log
∑
H

∑
V̌

e−βE(V̌ ,H|W,B)

)

=
N∑
n=1

(∑
H

∂
∂Wij

(−βE(V n, H|W,B)) e−βE(V n,H|W,B)∑
H e
−βE(V n,H|W,B)

−
∑

H

∑
V̌

∂
∂Wij

(
−βE(V̌ , H|W,B)

)
e−βE(V̌ ,H|W,B)∑

H

∑
V̌ e
−βE(V̌ ,H|W,B)

)

=
N∑
n=1

(∑
H

[
∂

∂Wij

(−βE(V n, H|W,B))

]
e−βE(V n,H|W,B)∑
H e
−βE(V n,H|W,B)

−
∑
H

∑
V̌

[
∂

∂Wij

(
−βE(V̌ , H|W,B)

)] e−βE(V̌ ,H|W,B)∑
H

∑
V̌ e
−βE(V̌ ,H|W,B)

)

=
N∑
n=1

(∑
H

[
∂

∂Wij

(−βE(V n, H|W,B))

]
P (H|{V n},W,B)

−
∑
H

∑
V̌

[
∂

∂Wij

(
−βE(V̌ , H|W,B)

)]
P (H, V̌ |W,B)

)

=
N∑
n=1

(〈
∂

∂Wij

(−βE(V n, H|W,B))

〉
d

−
〈

∂

∂Wij

(
−βE(V̌ , H|W,B)

)〉
m

)

and so

∂ logL (W,B)

∂Wij

=
N∑
n=1

−β (〈UiUj〉d − 〈UiUj〉m) ;

similarly, we have for the bias partials

∂ logL (W,B)

∂Bi

=
N∑
n=1

−β (〈Ui〉d − 〈Ui〉m)

where 〈·〉P is the expected value over distribution P , and d ≡ P (H|{V n},W,B),
m ≡ P (U |W,B), that represent the probability of the hidden units when the visible
units are clamped to the input pattern (we say then that the network is in positive
phase, using the data, hence the d), and the probability of all the units when none
of them is clamped (we say then that the network is in negative phase, using the
model, hence the m). See [23] for more details.

With the training, the machine is expected to reach an equilibrium as the state
distribution converges. The stochastic part of the Boltzmann machines, given by the
activation function of the units, is a way of escaping from local minima during the
gradient descent.

2.4. Boltzmann machines 43

It is possible to improve the learning algorithm using the temperature T in the
same way as in the simulated annealing method ([25]). Making the temperature
decrease progressively until the Boltzmann machine becomes a Hopfield network we
make big aleatory perturbations in the beginning, when we are far from the global
minimum, and small perturbations near the end of the process, when we expect to
be close to the global minimum.

Boltzmann machines can work only with visible units, but are more powerful when
they have hidden units that work as latent variables and allow the network to model
vector distributions that cannot be modelled only with interactions between pairs of
visible units.

2.4.3 Difficulties

We have a closed formula for the learning rule, but, in practice, it is impossi-
ble to calculate the gradient because of the normalization coefficient that appears
in P (U |W,B), that requires calculating a sum over all the possible configurations
of the machine, whose number grows exponentially with the number of units. As
an alternative to the exact calculations, Gibbs sampling is proposed to obtain an
estimation of the gradient.

The procedure consists in estimating the gradient using only a few samples selected
randomly, called the negative particles, instead of all the possible values. Usually,
the method works adequately even if only one sample is used per iteration.

Another observation is that learning with many hidden units is very slow, because
it is difficult to reach the equilibrium distribution, specially when it is multimodal,
which is usually the case when the visible units are unclamped.

A simplification of the model that reduces in some way all the problems, is the
restricted Boltzmann machine.

2.4.4 Restricted Boltzmann machines

The restricted Boltzmann machines are Boltzmann machines with one hidden layer
and one visible layer that have no connections between units of the same layer, that
is, they have no connections between two hidden units, or between two visible units.
With this conditions, hidden units are independent from each other when an input
pattern is clamped to the visible units.

The energy function is now

E(V,H|W,B) = −
D∑
i=1

M∑
j=1

Wi,jViHj −
D∑
i=1

BiVi −
M∑
j=1

Bj+DHj

44 Chapter 2. Deep network components

Figure 2.4.2: Restricted Boltzmann machine

and the probability for each state is

P (V,H|W,B) =
e−βE(V,H|W,B)∑
V̌ ,Ȟ e

−βE(V̌ ,Ȟ|W,B)
.

When the visible units are clamped to the input pattern, each hidden unit is
independent from the rest, and we can sum the probabilities in the hidden units to
get

P (V |W,B) =
M∏
j=1

(
P (V,Hj = 1|W,B) + P (V,Hj = 0|W,B)

)

=
eβ

∑D
i=1BiVi

∏M
j=1

(
1 + eβ(Bj+D+

∑D
i=1Wi,jVi)

)
∑

V̌ e
−βE(V̌ |W,B)

.

Arguing as done before, the gradient for the restricted Boltzmann machine is

∂ logL (W,B)

∂Wij

= 〈ViHj〉d − 〈ViHj〉m

∂ logL (W,B)

∂Bi

= 〈Ui〉d − 〈Ui〉m

The training algorithm for the restricted Boltzmann machines is called contrastive
divergence gradient ([26], [23]) and it consists in alternating phases where the hidden
units states are recalculated from the visible units states, and phases where the visible
units states are recalculated from the hidden units states. This method is biased,
but it produces acceptable results in practice, even when only one Gibbs sample is
used per iteration.

2.4. Boltzmann machines 45

Algorithm 2 Contrastive divergence gradient

for n = 1 . . . N do
Clamp the visible units to the n-th input pattern value, pvstates.
Calculate the activations of the hidden units, phstates.
Calculate the activations of the visible units, nvstates.
Calculate the activations of the hidden units, nhstates.
Update weights, the gradient is pvstates ∗ phstates− nvstates ∗ nhstates.

end for

46 Chapter 2. Deep network components

Chapter 3

Deep networks

As we saw previously, it is known ([8], [9]) that a deep neural network with many
hidden layers can perform, with a relatively small number of units per layer, functions
for which a shallow network would need a very high number of units per layer.

However, although deep networks are more powerful and expressive than shallow
networks, they have been almost totally ignored until only a few years ago. The
reason for that is, as we mentioned, apart from convolutional networks, that there is
no known efficient algorithm to train such networks, because the classical backprop-
agation algorithm with gradient descent losses all its effectiveness when the networks
has more than a couple of layers, and trains only the last layers, with the rest stuck
in a state close to the initial random initialization.

Apart from convolutional nets, that are like pruned multilayer perceptrons, all the
deep networks we will discuss have two components. The first one is a series of hidden
layers that are trained independently with a greedy unsupervised algorithm, and
whose function is to obtain a highly abstract and robust representation of the input
data, that gets better with each added layer. The second component is a shallow,
but possibly multilayer, perceptron that performs the classification or regression task
we want to solve, like, for example, a softmax perceptron, and that is connected to
the last of the hidden layers mentioned before.

It is also possible to use only the first component, the stack of hidden layers, with
another classifier, not necessarily based on neural networks, like a support vector
machine, and also get a significant improvement of the classifier results thanks to the
pre-processing of the stack of layers. Many experimental results show that classifiers
get better results when working with high level representations of the data like the
one generated by such stacks of hidden layers.

The training algorithm of such deep networks has two steps. The first is a greedy
unsupervised layer by layer pre-training that initializes the connection weights bet-
ter than the usual random initialization that, most probably, will put the network
in a state where it is easy get stuck in local minima of the error function. Apart

47

48 Chapter 3. Deep networks

from getting a better initialization, it is extremely interesting the fact that this pre-
training is totally unsupervised. The second step is performed after connecting the
final perceptron to the last layer of the stack, and consists in a traditional supervised
backpropagation training, called sometimes fine-tuning in this case, that configures
the perceptron to perform the desired task and also makes the final minor adjust-
ments to the hidden layers.

Although the combination of traditional deep multilayer perceptrons and back-
propagation may seem to be a bad choice, we will fist of all see in detail the reasons
for this bad performance and consider some alternatives that could make possible
the use of relatively deep perceptrons with a supervised backpropagation training.

3.1 Deep multilayer perceptrons

Before the development of new greedy pre-training algorithms (see [27]), it ap-
peared that deep neural networks could not be successfully trained. Now we know
that a greedy pre-training process after the random initialization will put the net-
work in a state where it will perform well, but, why a random initialization and
backpropagation are not just enough to properly train a deep network?

[10] studies the impact of the cost function, the activation functions of the hid-
den layers, and the weights initialization in the performance of the backpropagation
algorithm. Let’s take a closer look.

3.1.1 Cost function

As cost functions, we usually consider for multilayer perceptrons the traditional
quadratic cost function ‖Y −X‖2, where X is the input pattern and Y the output
target. As is mentioned in [10], the logistic regression or conditional log-likelihood
cost function − log p (Y |X) usually works better for classification tasks, as it seems
that the quadratic cost function is more prone to have plateaus that would make the
learning process much more difficult.

3.1.2 Activation function

On the activation function, we consider the sigmoid function 1
1+e−x

, the hyperbolic
tangent tanhx, and the softsign function x

1+|x| . The softsign is similar to the hyper-

bolic tangent but the tails converge quadratically (instead of exponentially) to the
asymptotes 1 and −1. The softsign is also differentiable, as

∂

∂x

x

1 + |x|
=

1

(1−x)2
→x→0− 1 if x < 0

1 if x = 0
1

(1+x)2
→x→0+ 1 if x > 0

,

and so it is suitable as activation function.

3.1. Deep multilayer perceptrons 49

Figure 3.1.1: Log-likelihood (black, surface on top) and quadratic (red, bottom surface)
cost as a function of two weights (one at each layer) of a network with two layers, W1

respectively on the first layer and W2 on the second, output layer. Source: [10]

As noted in [10], when training a deep network with sigmoid activation functions,
the activation values of the last hidden layer quickly saturate to 0, while other layers
take a mean activation value greater than 0.5 that increases as we go from the input
layer to the output layer. It seems that pushing the outputs to 0 puts them in a
saturation regime which prevents gradients to flow backward and cuts off the lower
layers learning. If the number of layers is small (around 2 or 3 layers), however, the
network may eventually escape from the saturation regime.

As we can see in figure 3.1.2, top row, being symmetric around 0, the hyperbolic
tangent does not have the saturation problems observed with the sigmoid function.
In this case the layers saturate sequentially starting from the first hidden layer and
ending with the last one. The behavior of the network is, apparently, better than
with the sigmoid function.

In figure 3.1.2, bottom row, we note that the softsign has smoother asymptotes
than the hyperbolic tangent, and the saturation does not occur sequentially, but
all layers move slowly together towards larger weights. The final activation values
obtained with this function are totally different from the ones obtained with the
hyperbolic tangent.

In figure 3.1.3, top row, we notice that, for hyperbolic tangent activation, the lower
layers have important saturation, while in the bottom row, with softsign activation,
their activation values are concentrated around (−0.6,−0.8) and (0.6, 0.8) and the
units do not saturate but are non-linear.

50 Chapter 3. Deep networks

Figure 3.1.2: Top: 98 percentiles (markers alone) and standard deviation (solid lines with
markers) of the distribution of the activation values for the hyperbolic tangent networks in
the course of learning. We see the first hidden layer saturating first, then the second, etc.
Bottom: 98 percentiles (markers alone) and standard deviation (solid lines with markers)
of the distribution of activation values for the softsing during learning. Here the different
layers saturate less and do so together. Source: [10]

Figure 3.1.3: Activation values normalized histogram at the end of learning, averaged
across units of the same layer and across 300 test examples. Top: activation function is
hyperbolic tangent, we see important saturation of the lower layers. Bottom: activation
function is softsing, we see many activation values around (−0.6,−0.8) and (0.6, 0.8) where
the units do not saturate but are non-linear. Source: [10]

3.1.3 Initialization

We usually initialize the biases to 0 and the weights Wji at each layer with the
widely used heuristic

Wji ∼ U
(
− 1√

M
,

1√
M

)
,

3.1. Deep multilayer perceptrons 51

where M is the size of the previous layer. However, as we will see, this initialization
creates some problems.

Given a multilayer perceptron with a symmetric activation function F with F ′(0) =
1 (e.g. hyperbolic tangent or softsign) and cost function E, we write Z l for the
activation vector and Sl for the argument vector of the activation function of layer
l, so that Sl = Z lW l +Bl and Z l+1 = F (Sl). Then we have

∂E

∂W l
ji

=
∂E

∂Slj
Z l
i ,

with

∂E

∂Slj
=
∑
k

∂E

∂Sl+1
k

∂Sl+1
k

∂Slj

=
∑
k

∂E

∂Sl+1
k

∂
(
Z l+1
k W l+1

kj +Bl+1
k

)
∂Slj

=
∑
k

∂E

∂Sl+1
k

∂
(
F (Slj)W

l+1
kj +Bl+1

k

)
∂Slj

=
∑
k

∂F (Slj)

∂Slj
W l+1
kj

∂E

∂Sl+1
k

.

Lets ignore the bias to simplify the following calculations. On the other side, if we
express the variances with respect to the input, output and weight initialization, we
have

V ar[Z l] = V ar[F (Z l−1W l−1)]

= V ar[F (F (Z l−2W l−2)W l−1]

= . . .

The hypothesis that we are in a linear regime, so F (X) ' X at initialization gives
us

V ar[Z l] ' V ar[Z0W 0W 1W 2 . . .]

and then, considering that the weights are initialized independently, the input data
variances are all V ar[X] ≡ V ar[Z0] and the means are zero, we have (see [10])

V ar[Z l] ' V ar[X]
l−1∏
l′=0

Ml′V ar[W
l′],

where V ar[W l′] is the shared scalar variance of all weights at layer l′, Ml is the width
of layer l and X is the network input.

52 Chapter 3. Deep networks

If the perceptron has L layers, then for the same reasons as before (see [10]),
moving from the output to the input layer, we have

V ar

[
∂E

∂Sl

]
' V ar

[
∂E

∂SL

] L∏
l′=l

Ml′+1V ar[W
l′]

and also, noting that E
[
∂F
∂Sl

]
' E

[
Z l
]
' 0,

V ar

[
∂E

∂W l

]
= V ar

[
∂E

∂Sl
Z l

]
= V ar

[
∂E

∂Sl

]
V ar[Z l]

' V ar

[
∂E

∂SL

] L−1∏
l′=l

Ml′+1V ar[W
l′]V ar[X]

l−1∏
l′=0

Ml′V ar[W
l′].

If we assume, for simplicity, that all layers have the same width, M , and we have
the same initialization for the weights then

V ar

[
∂E

∂Sl

]
= (MV ar[W])L−lV ar

[
∂E

∂SL

]
∀l,

V ar

[
∂E

∂W l

]
= (MV ar[W])LV ar[X]V ar

[
∂E

∂SL

]
∀l,

where we can see that the L and L − l exponents may drive the variance of the
back-propagated gradient to vanish or explode if we consider deep enough networks,
which is what happens with the usual random initialization of the weights.

The variance of a variable X ∼ U [A,B] is 1
12

(B−A)2, so the initialization described
before gives a variance with the property

MV ar[W] =
1

3
,

that, being smaller than 1, this will cause the variance of the back-propagated gra-
dient to vanish quickly. If we want information to keep flowing forward through the
network, we would like that

V ar[Z l] = V ar[Z l′] ∀l, l′,

which, in our case, is equivalent to

MlV ar[W
l] = 1 ∀l.

Similarly, if we want the error to back-propagate properly, we would like that

V ar

[
∂E

∂Sl

]
= V ar

[
∂E

∂Sl′

]
∀l, l′,

which is, in this case, equivalent to

Ml+1V ar[W
l] = 1 ∀l.

3.1. Deep multilayer perceptrons 53

Thus, we might want

V ar[W l] =
2

Ml +Ml+1

∀l

as a compromise between the two constraints.

It is important, then, to use an appropriate initialization procedure that maintains
stable back-propagated gradient variances. [10] suggests the following:

W ∼ U

[
−

√
6√

Ml +Ml+1

,

√
6√

Ml +Ml+1

]

In this case we have that

V ar[W] =
1

12

(
2
√

6√
Ml +Ml+1

)2

=
2

Ml +Ml+1

which is the compromise constraint seen before, and that induces

MlV ar[W] =
2

1 + Ml+1

Ml

wich is approximately 1 when Ml+1 ≈Ml.

Figure 3.1.4: Activation values normalized histograms with hyperbolic tangent activa-
tions, with standard (top) vs normalized initialization (bottom). Top: 0-peak increases of
higher layers. Source: [10]

Figures 3.1.4 and 3.1.5 illustrate how the activations and gradients vanish with
backpropagation if we use the standard weight initialization, but remain stable if the
normalized initialization is used.

54 Chapter 3. Deep networks

Figure 3.1.5: Back-propagated gradients normalized histograms with hyperbolic tangent
activation, with standard (top) vs normalized (bottom) initialization. Top: 0-peak de-
creases for higher layers. Source: [10]

3.2 Deep belief networks and stacked autoencoders

Previously, we mentioned that an unsupervised learning algorithm would be in-
teresting, first, because one of our aims is to emulate human learning, and second,
because working with huge data sets makes supervised algorithms impractical. The
original idea of Hinton, Osindero and Teh (see [27]) consists in training the network
layer by layer trying to preserve as much useful information as possible at each step.
The final result is a deep network that can be easily trained with backpropagation
to perform a classification or regression task.

Many authors (see [21], [20]) have built deep networks dedicated to solve classifi-
cation problems by stacking layers of restricted Boltzmann machines. The way those
layers are stacked is the following

Algorithm 3 Deep belief network

Train a RBM using the original data.
Use the hidden units of the RBM as the first hidden layer.
for l = 1 . . . L do

Train a new RBM clamping its visible units to the values P (Hi = 1|V,W,B) of
the Hi units of the last available hidden layer of the network.
Use the hidden units of the RBM as the next hidden layer.

end for
Connect a perceptron to the last hidden layer, train all the network with a super-
vised backpropagation algorithm.

That is, the greedy unsupervised pre-training phase builds the network by stacking
layers trained to reconstruct the data, then, in the final training phase, a perceptron

3.3. Other models 55

is attached to the last layer and the complete network is trained, now with a classical
supervised algorithm, to perform the desired task.

Recently, a new model of deep neural network has been developed by stacking
autoencoders instead of restricted Botlzmann machines. This networks have a com-
parable performance to the deep belief networks. If the autoencoders used are sparse
or denoising ones, the results might be even better than in deep belief networks. A
stacked autoencoder is built with the following procedure

Algorithm 4 Stacked autoencoder

Train an autoencoder using the original data.
Use the hidden units of the autoencoder as the first hidden layer.
for l = 1 . . . L do

Train a new autoencoder using as input the output values of the last available
hidden layer of the network.
Use the hidden units of the autoencoder as the next hidden layer.

end for
Connect a perceptron to the last hidden layer, train all the network with a super-
vised backpropagation algorithm.

Figure 3.2.1: Deep belief network or stacked autoencoder

3.3 Other models

3.3.1 Convolutional networks

The first working model of a deep neural network, specifically designed for image
processing, is the convolutional network (see [31]). Convolutional networks are multi-

56 Chapter 3. Deep networks

layer perceptrons where each unit is only connected to a fixed number of consecutive
units in the previous layer.

The reason this networks can be trained efficiently with backpropagation is that
all the units in each layer have the same number of connections with the previous
layer and the connections also have the same weight, that is, the weight of the i-th
connection of the m-th unit is the same that the weight of the i-th connection of the
m′-th unit of the same layer.

If the activation function is the hyperbolic tangent, the activations of each of this
groups of units of a layer that share weights are

H = tanh (W ∗X + b)

where ∗ is the convolution, that is usually defined as

f(n) ∗ g(n) =
∞∑

u=−∞

f(u)g(n− u) =
∞∑

u=−∞

f(n− u)g(u)

and that is also the operation that gives name to this model.

The reason for this structure is that, being a model specially designed for image
processing, it uses the stationary structure of natural images, where the character-
istics of a region of the image are statistically similar to those of other regions in
the same image. So, each region of the image is assigned a group of units, called
feature map, and it is possible to train all the different groups together, adding up
the gradients.

Figure 3.3.1: Convolutional network

As we will see now, this model is a particular case of the more general receptive
fields.

3.3. Other models 57

3.3.2 Receptive fields

An important concern when designing a deep neural network is to specify how the
units in a layer are connected to the units in the layer beneath. A fully connected
neural network will be difficult to represent, train and even to implement, considering
that some algorithms are difficult to generalize to large dimension domains. This
problem can be solved by limiting the number of connections between a high level
unit and lower level units. Ideally, a method that selects which connections are made
will be unsupervised and able to operate without prior knowledge of the problem and
the input data, so we can use it as part of our unsupervised training algorithm for
stacking restricted Boltzmann machines or autoencoders.

Usually, when designing networks for visual tasks as the previously mentioned
convolutional network, we connect a high level unit only to a small number of lower
level units called the feature map or receptive field. For each of the second layer
units, the selected lower level units will form a rectangular area within the complete
input image. Though there are still spatial relationships between the higher pairs of
layers, it is not clear how connections should be done, so typically every unit in a
higher level will be connected to a random subset of the previous level units.

A possible solution to this problem, proposed by Coates and Ng (see [32]), consists
in choosing receptive fields that group together lower-level features according to a
similarity metric. We will assume that we have a feature dataset X of vectors Xn,
n ∈ {1, . . . , N} with elements Xn

m, m ∈ {1, . . . ,M}. These vectors can be the input
data (for the first layer) or features generated by lower layers of the deep network.

We must now define a similarity metric between features. We should group to-
gether closely related features to allow their relationship to be modelled more finely
and because it makes sense to model seemingly independent features separately. Var-
ious metrics can be used to quantify similarity between features. A common choice
is the square correlation of feature responses. If features X are linearly uncorrelated
(whitening has been applied previously, so E [X] = 0 and E

[
XXT

]
= I) then we

can define the similarity between features Xj and Xk as the correlation between the

58 Chapter 3. Deep networks

squared responses:

S[Xj, Xk] = Corr
(
X2
j , X

2
k

)
=
Cov

(
X2
j , X

2
k

)
σX2

j
σX2

k

=
E
[(
X2
j − µX2

j

)(
X2
k − µX2

k

)]
σX2

j
σX2

k

=
E
[(
X2
j − µX2

j

)(
X2
k − µX2

k

)]
√

E
[(
X2
j − µX2

j

)2
]
E
[(
X2
k − µX2

k

)2
]

=
E
[
X2
jX

2
k −X2

j µX2
k
− µX2

j
X2
k + µX2

j
µX2

k

]
√

E
[
X2
j + µ2

X2
j
− 2X2

j µX2
j

]
E
[
X2
k + µ2

X2
k
− 2X2

kµX2
j

]
=

E
[
X2
jX

2
k − 1

]√
E
[
X4
j − 1

]
E [X4

k − 1]

Which is easy to compute if we first apply whitening to the data and then calculate
the pairwise similarities between all the features from a sample:

Sj,k ≡ SX [Xj, Xk] ≡
∑

n

(
Xn
j

)2
(Xn

k)2 − 1√∑
n

((
Xn
j

)4 − 1
) (

(Xn
k)4 − 1

)
Now that we have the matrix Sj,k we can construct the receptive fields Rm, m =

1, . . . ,M that will define the connections between the two selected layers. We want
each Rm to contain pairs of features with large values of Sj,k. We might achieve this
using an agglomerative or spectral clustering method, like k-means or similar, but
usually a simple greedy procedure works well:

1. We select M rows j1, . . . , jM of the matrix S randomly (the seed of each group).

2. We construct a receptive field Rm that contains the features Xk that have the
T top values of Sjm,k.

Upon completion, we have M possibly overlapping receptive fields Rm.

Computing the matrix Sj,k is practical for large numbers of features, but when
working with deep networks that use thousands of units per layer we will be unable
to compute the matrix directly. However, our greedy algorithm requires only pairs
of rows of the matrix, so, provided we can perform both pair-wise whitening and
pair-wise correlation between the selected pair of features, it is clear that Sj,k can be
computed for a pair of features, and we don’t need to store the entire matrix.

Chapter 4

Experiments

The experiments performed consist on reconstructions and classification of hand-
written digits from the MNIST database (http://yann.lecun.com/exdb/mnist/).
The high requirements of deep networks in terms of computational power, and
the limited resources at our disposal for the development of this master thesis,
force us to reduce the dimension of the MNIST database patterns, and excludes
completely any experiment with higher-dimensional image sets like CIFAR (http:
//www.cs.toronto.edu/~kriz/cifar.html). Our objective is to compare which ar-
chitectures perform better at each combination of number of units per hidden layer
in the case of reconstruction, and number of hidden layers, units per hidden layer,
and initialization algorithm in the case of classification.

We have performed two different kinds of experiments, the first, consists in recon-
structing patterns with autoencoders and restricted Boltzmann machines, to illus-
trate their reconstruction properties and to validate the models programmed. The
second consist on investigating the capacity of deep networks in a particular problem
of MNIST digit classification.

4.1 Datasets

The dataset used is a sample from MNIST, that is again a sample from NIST.
As it can be read in http://yann.lecun.com/exdb/mnist/, the original black and
white images from NIST were size normalized to fit in a 20 × 20 pixel box while
preserving their aspect ratio. The resulting images contain grey levels as a result
of the anti-aliasing technique used by the normalization algorithm. the images were
centered in a 28 × 28 image by computing the center of mass of the pixels, and
translating the image so as to position this point at the center of the 28× 28 field.

Our sample has 5000 training patterns and 1000 test patterns, and, for the purpose
of testing networks that have hidden layers both narrower and wider than the input
layer, we have reduced the dimension of the images from 28 × 28 to 14 × 14, and
so, we can study the effect of the width of the hidden layers with less computational
capacity. The transformation consists in dividing the original image in 2 × 2 pixel
sets, picking the mean value of each set and normalizing to [0, 1].

59

http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/

60 Chapter 4. Experiments

4.2 Software implementation

We have developed a basic Octave library for the construction and testing of au-
toencoders and its variants, and deep neural networks like deep perceptrons, stacked
autoencoders, and deep belief networks. The code has been tested on GNU Octave
3.2.4 for x86-64-pc-linux-gnu. The RBM code is based on the implementation of
RBMLib by Andrej Karpathy, available at http://code.google.com/p/matrbm/.

Functions have been separated into six categories: activation, image, neural, noise,
utilities and main.

• Activation:

– didentity: derivative of the identity function.

– dlogistic: derivative of the logistic function.

– dsoftsign: derivative of the softsign function.

– dtahyp: derivative of the hyperbolic tangent function.

– identity: identity function.

– logistic: logistic function.

– softsign: softsign function.

– tanhyp: hyperbolic tangent function.

• Image:

– reduceDataset: reduces the dimension of the images of a MNIST dataset.

– reduceDim: reduces the dimension of an image.

• Neural:

– advancedRandomInitialization: initializes the weigths and biases of a per-
ceptron with the advanced algorithm described in section 3.1.3.

– ensembleDeepNetwork: assembles a deep network by connecting the stacked
layers to the perceptron classifier.

– greedyPretraining: pre-trains the stack of autoencoders or rbms. It re-
ceives the data and the number of layers and hidden units and creates the
stack of hidden layers (autoencoders or restricted Boltzmann machines)
by the greedy pre-training algorithm. It uses mlpTrain if the layers are
autoencoders or rbmTrain if the layers are restricted Boltzmann machines.
Also, it uses the function propagate to pass the data from the input to
the layer that is being trained.

– labels2targets: gets the pattern targets from the pattern labels.

– mlpTrain: trains a multilayer perceptron, that can add noise to the inputs,
a sparsity condition, weight decay, etc. Autoencoders are MLPs trained
to reproduce the input data at the output. It uses the function propagate
during the forward pass.

http://code.google.com/p/matrbm/

4.2. Software implementation 61

– propagate: propagates through a perceptron.

– randomInitialization: initializes the weights and biases of a perceptron
randomly.

– rbmTrain: trains a restricted Boltzmann machine. It is a modification of
the function rbmFit of RBMLib by Andrej Karpathy.

– targets2labels: gets the pattern labels from the pattern targets.

– visualize: visualizes a vector as an image. Taken from RBMLib.

– visualizePropagation: visualizes the input data, internal representations
and learned weights of a perceptron during propagation.

– visualizeReconstruction: visualizes the input data, internal representa-
tions, learned weights and reconstructions of an autoencoder or rbm dur-
ing reconstruction.

• Noise:

– gaussian: adds gaussian noise to the data received in matrix form.

– masking: adds masking noise to the data received in matrix form.

– none: adds no noise to the data received in matrix form.

– saltPepper: adds salt and pepper noise to the data received in matrix
form.

• Utilities: several useful functions taken from RBMLib.

• Main: experimentsDeep and experimentsShallow, Octave scripts with the ex-
periments performed in this master thesis.

With the described functions, the following steps must be performed in order to
create a stacked autoencoder or a deep belief network classifier and to use it to
classify the test patterns:

1. Read the data.

2. Create the targets to train the classifier from the data labels.

3. Create the hidden layers stack with the greedy pre-training algorithm. This can
be done using the four autoencoder variants or restricted Boltzmann machines,
depending on the arguments passed to the greedy unsupervised pre-training
function.

4. Initialize the weights of a one hidden layer perceptron that will be used as clas-
sifier. Both the random initialization and the advanced random initialization
can be used.

5. Assemble the stack of hidden layers and the perceptron classifier to form the
deep network classifier.

62 Chapter 4. Experiments

6. Train the whole network with the supervised algorithm of function mlpTrain.
This function receives the training data and targets and the weights and biases
of the deep network classifier.

7. Classify the test patterns by propagating the test data through the deep net-
work classifier. The function propagate receives the test data and the weights
and biases of the classifier, and returns the predicted targets.

4.3 Building blocks and overall architectures

The building blocks tested are the four variants of autoencoders (normal, de-
noising, sparse and sparse-denoising) and the restricted Boltzmann machines. The
experiments on these blocks consist on training the network with the training set
and then reconstructing the test set. The results presented consist on a sample of
the original data and its reconstruction, and the visualization of the learned weights
and the sample’s internal representation. The reconstruction error computed for the
restricted Boltzmann machine cannot be compared against the reconstruction errors
of the different autencoders, as the first reconstructs a black and white image, while
the former give a grayscale image. However, we also present the restricted Boltzmann
machine reconstructions for visual inspection.

The autoencoders have logistic hidden units and linear output units, and the
restricted Boltzmann machines have logistic units both hidden and visible. The error
function used is the standard quadratic error function. The noise selected for the
denoising and sparse-denoising autoencoders is gaussian with mean 0 and standard
deviation 0.25, values which are selected based on the experiments performed in [21].
For the sparse and sparse-denoising autoencoders, the sparsity parameter and the
sparsity factor in the error function are both 0.2.

The overall architecture of the deep networks is formed by 1 to 4 layers of stacked
autoencoders or restricted Boltzmann machines, with a one hidden layer perceptron
on top. The perceptron is initialized using the advanced random initialization de-
scribed previously, to ensure the efficient training of the whole network as a classifier,
and the hidden layer has the same width as the stacked layers preceding it. We test
the deep networks both when the whole assembled network is fine-tuned with back-
propagation, and when only the classifier is trained with backpropagation, feeding
it with the outputs of the stacked layers. Also we compare these architectures with
traditional deep multilayer perceptrons, initialized both the usual way or with the
advanced random initialization.

4.4 Shallow networks experiments

The first set of experiments involves

• autoencoders (AE),

4.4. Shallow networks experiments 63

• denoising autoencoders (DAE),

• sparse autoencoders (SAE),

• sparse denoising autoencoders (SDAE),

• restricted Boltzmann machines (RBM).

The objective is to illustrate the reconstruction properties of these models, through
visual inspection and checking of the numeric error, and to validate them before
building a deep network of stacked autoencoders or restricted Boltzmann machines.
It is expected that the internal representation of the patterns will retain as much
information as possible from the input patterns. The learned weights are expected to
show some kind of structure, and they also represent the patterns that produce the
maximal activation of the hidden units, as we saw in the autoencoders visualization
section. The first 16 patterns of the test set will be used for visual inspection of the
input, internal, and output values.

The tests have been performed with 100(102), 144(122), 196(142) and 256(162)
hidden units. The reason to pick those numbers is that the Octave visualization
function is designed for squared images. We will observe two different regimes: one,
quite good, for networks that are narrow in their hidden layer, and other, not so
good, for networks that are wide in their hidden layer, with width similar or greater
than that of the input and output layers. Only the cases of 100 and 256 hidden units
are depicted, as the 144 units case gives similar results to the first, and the 196 units
case to the second. For the 100 unit nets, we can summarize our results as follows

• The autoencoder with 100 hidden units (figure 4.4.1) does a very good recon-
struction (bottom right) from the original data (bottom left). However, the
learned weights (top left) don’t show much structure and the internal repre-
sentation of the patterns (top right) is difficult to interpret, although some
similarities can be found between patterns of the same class, like the two 9s in
the bottom row.

• The denoising autoencoder with 100 hidden units (figure 4.4.2) also performs
a very good reconstruction (bottom right) of the original data (bottom left).
The learned weights (top left) have more complex structures than those of
the standard autoencoder, and the internal representations (top right) are also
quite different.

• The sparse autoencoder with 100 hidden units (figure 4.4.3) has similar learned
weights (top left) and internal representations, maybe more blurred (top right)
to those of the standard autoencoder. The reconstruction (bottom right) is
also good, but a bit fuzzier.

• The sparse denoising autoencoder with 100 units (figure 4.4.4) performs sim-
ilarly to the denoising autoencoder, with good reconstructions (bottom right)
and complex learned weights (top left). The internal representations are darker,
showing few light spots, due to the effect of the sparsity condition.

64 Chapter 4. Experiments

Figure 4.4.1: Reconstruction with 100 units AE: the original patterns (bottom left)
have a good reconstruction (bottom right), but the learned weights (top left) and internal
representations (top right) show little structure.

• The restricted Boltzmann machine with 100 hidden units (figure 4.4.5) does a
good black and white reconstruction (bottom right) of the data (bottom left).
The learned weights (top left) show much more structures than those of the
autoencoders, and the internal representations (top right) are similar to those
of the denoising autoencoder.

For the 256 unit networks, the summary of our results is as follows

• The 256 units autoencoder (figure 4.4.6) doesn’t seem to work very well. It
could be expected that the reconstruction (bottom right) would be almost
perfect, as the wider hidden layer can pass all the information from the input
to the output, but in this case the reconstruction is much worse than in the 100
units case, and the learned weights (top left) and internal representations (top
right) have a totally different appearance. Probably, an overfitting problem is
present.

• The denoising autoencoder with 256 units (figure 4.4.7) performs like the stan-
dard autoencoder. The reconstructions (bottom right) are a little better, but
the learned weights (top left) and internal representations (top right) are sim-
ilar. As with the standard autoencoder, we may have an overfitting problem.

4.4. Shallow networks experiments 65

Figure 4.4.2: Reconstruction with 100 units DAE: the original patterns (bottom left)
and their reconstructions (bottom right). Learned weights (top left) are complex, and
the internal representations (top right) show greater contrast than those of the standard
autoencoder.

• The sparse autoencoder with 256 units (figure 4.4.7) performs well, with recon-
structions (bottom right) almost as good as those of the 100 units case. The
learned weights (top left) show some structure, unlike those of the autoencoder
and denoising autoencoder of 256 units, and the internal representations (top
right) are similar to those of the 100 units case. The sparsity condition could
be controlling the possible overfitting problem seen in other variants.

• The 256 units sparse denosing autoencoder (figure 4.4.9) is also doing a good
reconstruction (bottom right). The learned weights (top left) and internal
representations (top right) are quite similar to those of the 100 units sparse
denoising autoencoder. As with the sparse autoencoder, it seems that the
possible overfitting issue is controlled in this case.

• The restricted Boltzmann machine with 256 hidden units (figure 4.4.10) seems
to be the only model that gets better results with high number of hidden units,
as the reconstructions (bottom right) are sharper and clearer. The learned
weights (top left) and internal representations (top right) are like those of the
100 hidden units case. The restricted Boltzmann machine is not affected by
the overfitting problem seen in the autoencoder and denoising autoencoder.

66 Chapter 4. Experiments

Figure 4.4.3: Reconstruction with 100 units SAE: original patterns (bottom left), their
reconstructions (bottom right), learned weights (top left) that are similar to those of the
standard autoencoder, and internal representations (top right) more blurred, which seems
reasonable because of the sparsity condition.

As a conclusion, with this first experiment, we observe that with 100 hidden units
all the models give fair reconstructions, although the internal representations and
learned weights differ notoriously between them. When using 144 hidden units, the
results are similar. However, when we try 196 and 256 units, the reconstructions
get worse for the standard and denoising autoencoders. We could expect them to
perform a nearly perfect reconstruction, given that having a hidden layer wider than
the input and output layers it is possible to transfer all the information through the
autoencoder, but in the experiments only the sparse and sparse-denoising autoen-
coder and the restricted Boltzmann machine give a good reconstruction of the data.
The small number of training patterns, combined with a high number of parameters
to determine when the hidden layer is wide, may be causing overfitting. The graphic
(figure 4.4.11) showing the reconstruction errors (euclidean distance between data
and reconstruction) for all the autoencoders, illustrates this observation.

We have not been able to find a similar test published to contrast our results. It
seems that, when using a wide (similar or wider than the input) hidden layer, the
autoencoder needs a sparsity condition to, not only improve, but also to maintain
the performance obtained with a narrow hidden layer. It is possible that, when using
a high number of hidden units, as the number of parameters is much larger than the
number of training patterns, overfitting appears and the results with the test set get

4.5. Deep networks experiments 67

Figure 4.4.4: Reconstruction with 100 units SDAE: original patterns (bottom left), re-
constructions (bottom right) and learned weights (top left) are similar to those of the
denoising autoencoder. The internal representations are darker, because of the sparsity
condition.

worse.

4.5 Deep networks experiments

The second experiment compares different types of deep networks: the standard
multilayer perceptron with random initialization (MLP) and advanced random ini-
tialization (AMLP), and stacked autoencoders (AE), denosing autoencoders (DAE),
sparse autoencoders (SAE), sparse-denoising autoencoders (SDAE) and restricted
Boltzmann machines (RBM), these five with both full fine-tuning (backpropagation
with the full network assembled) or just classifier fine-tuning (backpropagation only
through the classifer, keeping the stacked layers untouched). The objective is to
demonstrate the capabilities of the different types of deep network to solve classifi-
cation problems.

The number of training patterns, 5000, and the dimensions of the images, 14×14 =
196, can induce overfitting if we use hidden layers with a high number of units. Also,
we have observed in our first set of experiments that the reconstructions are better
when the number of hidden units is not very high. Therefore, we will use 7× 7 = 49
hidden units per hidden layer in our tests.

68 Chapter 4. Experiments

Figure 4.4.5: Reconstruction with 100 units RBM: the reconstruction (bottom right) is
now black and white. The learned weights (top left) show complex structures and the
internal representations (top right) are similar to those of the denoising autoencoder.

The number of stacked layers are 1 to 4, which means that, adding the two-layer
classifier, the networks have a depth of 3 to 7. We expect to see how the greedy layer-
wise pre-training performs versus the standard and advanced random initialization
and study the effect of the final fine-tuning. The images show a sample of 16 test
patterns, their internal representations through the different layers of the network,
and the weights learned at each layer. Only the images for 2 stacked layers (4 layers
in total) networks are shown, as the internal representations and weights are similar
for the other cases.

• The multilayer perceptron with 3 hidden layers of 49 units (figure 4.5.1) shows
some structure in the second layer weights and, specially, in the first layer
weights (middle row). The classification error is below 0.1, proving that back-
propagation works well for 3 hidden layers. We will see that this is not the
case for 4 or more hidden layers. The internal representations (bottom row)
look more faded in the last layers.

• The multilayer perceptron with 3 hidden layers of 49 units and advanced ini-
tialization (figure 4.5.2) also shows some structure in the first and second layer
weights (middle row). The classification error is lower than in the multilayer
perceptron with standard initialization. Also, the internal representations (bot-
tom row) look more faded in the last layers.

4.5. Deep networks experiments 69

Figure 4.4.6: Reconstruction with 256 units AE: not very good reconstructions (bottom
right), disorganized learned weights (top left) and internal representations (top right).

• The stacked autoencoder with 2 stacked layers (3 hidden layers in total) and 49
hidden units (figure 4.5.3) has learned weights similar to those of the standard
multilayer perceptrons. The activations also look more faded in the last layers.

• The stacked denoising autoencoder with 2 stacked layers (3 hidden layers in
total) and 49 hidden units (figure 4.5.4) has learned weights and internal rep-
resentations visually very similar to those of the multilayer perceptrons.

• The stacked sparse autoencoder with 2 stacked layers (3 hidden layers in total)
and 49 hidden units (figure 4.5.5) has learned weights and internal representa-
tions visually very similar to those of the multilayer perceptrons.

• The stacked sparse denoising autoencoder with 2 stacked layers (3 hidden layers
in total) and 49 hidden units (figure 4.5.6) has learned weights and internal
representations visually very similar to those of the multilayer perceptrons.

• The deep belief network with 2 stacked layers (3 hidden layers in total) and
49 hidden units (figure 4.5.7) has learned weights and internal representations
visually very similar to those of the multilayer perceptrons.

The tests (figure 4.5.8) show similar results both for networks with fine-tuning
and without it. As expected, the standard multilayer perceptron with random ini-

70 Chapter 4. Experiments

Figure 4.4.7: Reconstruction with 256 units DAE: the reconstructions (bottom right)
are a bit better than in the standard autoencoder, but the learned weights (top left) and
internal representations (top right) are similar.

tialization has a poor performance when the number of layers is greater than 3, but
the advanced initialization gives good results. All the stacked autoencoders and the
deep belief network have a good performance, confirming what was shown in [21] and
[10], but only the perceptron initialized with the advanced method and the stacked
standard autoencoder perform better with 4 hidden layers than with 3 hidden layers.
The stacked autoencoder achieves an error rate close to 0.05.

4.5. Deep networks experiments 71

Figure 4.4.8: Reconstruction with 256 units SAE: the sparse autoencoder doesn’t seem to
have worse performance when the number of hidden units increases, as the reconstructions
(bottom right) are quite good. The learned weights (top left) and internal representations
(top right) are also similar to the ones obtained with 100 units.

72 Chapter 4. Experiments

Figure 4.4.9: Reconstruction with 256 units SDAE: good reconstructions (bottom right)
and complex learned weights (top left) indicate that the sparse denoising autoencoder
performs well when the number of hidden units is high.

4.5. Deep networks experiments 73

Figure 4.4.10: Reconstruction with 256 units RBM: the reconstructions (bottom right)
are even better than with 100 units, and the learned weights (top left) and internal repre-
sentations (top right) are similar.

74 Chapter 4. Experiments

Figure 4.4.11: Reconstruction errors: the standard and denoising autoencoders behave
worse when using a broad hidden layer. The autoencoders with sparsity have good perfor-
mace in all cases. The restricted Boltzmann machine cannot be compared to them, as the
reconstruction it performs is in black and white.

4.5. Deep networks experiments 75

Figure 4.5.1: Classification with 3 hidden layers of 49 units MLP: the weights show some
structure for the first and second layers (middle row), the internal representations (bottom
row) look more faded in the last layers.

76 Chapter 4. Experiments

Figure 4.5.2: Classification with 3 hidden layers of 49 units AMLP: the weights show
some structure for the first and second layers (middle row), the internal representations
(bottom row) look more faded in the last layers.

4.5. Deep networks experiments 77

Figure 4.5.3: Classification with 2 layers of 49 units AE: only the first two layers show
visible structures in the learned weights.

78 Chapter 4. Experiments

Figure 4.5.4: Classification with 2 layers of 49 units DAE: visually similar results to those
of the multilayer perceptrons.

4.5. Deep networks experiments 79

Figure 4.5.5: Classification with 2 layers of 49 units SAE: visually similar results to those
of the multilayer perceptrons.

80 Chapter 4. Experiments

Figure 4.5.6: Classification with 2 layers of 49 units SDAE: visually similar results to
those of the multilayer perceptrons.

4.5. Deep networks experiments 81

Figure 4.5.7: Classification with 2 layers of 49 units DBN: visually similar results to those
of the multilayer perceptrons.

82 Chapter 4. Experiments

Figure 4.5.8: Classification errors for deep networks with 49 units per layer: The mul-
tilayer perceptron with standard initialization has bad performance when the number of
hidden layers is high. The other networks perform well, but only the AMLP and SAE get
better with more than 3 hidden layers.

Chapter 5

Conclusion

The objective of this master thesis was to present the state of the art in deep
neural networks design: understanding the need of deep architectures, discussing
related topics, and studying the most prevalent types of deep neural networks.

Also, we wanted to compare experimentally which architectures perform better at
each combination of number of units per hidden layer in the case of reconstruction,
and number of hidden layers, units per hidden layer, and initialization algorithm
in the case of classification. As we have seen, the advanced random initialization
for the multilayer perceptron gives good results, and is an interesting improvement
that has trivial computational cost and is easy to implement. The greedy layer-wise
pre-training algorithm, both using autoencoders and restricted Boltzmann machines,
seems a more complex alternative. However, it also gives good results and is inter-
esting from the theoretical point of view of being totally unsupervised and probably
related to the mechanisms employed in human learning.

The experiments performed in this master thesis are limited due to the lack of
hardware powerful enough to run a big network. The effect of a longer learning,
with more epochs and training patterns, and with higher dimensional data and wider
hidden layers remains unchecked, and possibly the results would be dramatically
affected by changes to these parameters.

5.1 Further work

As future work, the first objective is to develop an efficient implementation to deal
with large problems, like complete MNIST or CIFAR. We suggest an implementation
of the algorithms in a map-reduce form, which will give us the opportunity to run ex-
periments in computer clusters, with the consequent improvement in computational
power. Some advances have been made in the last months in terms of theory, scale
and complexity of the deep networks, as can be seen in [33] and [34].

Also, we could study the effect of combining the algorithm for the selection of the
connections in a receptive field with the greedy layer-wise pre-training used in stacked
autoencoders or deep belief networks, which could simplify the training complexity

83

84 Chapter 5. Conclusion

and is also interesting from the biological point of view as it evokes the columns
found in the visual cortex.

Another proposal is to use some evolutionary strategies like CMAES that could
be interesting to improve training, specially when the error function has many sub-
optimal solutions, or when the training algorithm is stochastic, like in Boltzmann
machines.

Apart from classification problems, the use of deep networks for other applications
like regression and modeling time series should be studied.

Appendix A

Information and entropy

Let X be a discrete random variable, that can take 2K + 1 values {Xk|k =
0,±1,±2, . . . ,±K}. The probability of the event X = Xk is pk = p(X = Xk)
and 0 ≤ pk ≤ 1,

∑K
k=−K pk = 1.

If we want to measure the information that we receive with each outcome of a
random variable realization, we must take some details into account: if the event
X = xk occurs with probability pk = 1, and so pi = 0 ∀i 6= k, then we don’t obtain
information with each realization, because we already know the result. On the other
side, if the probability pk is small, it is more surprising that X takes the value xk
and, if it does, we gain more information than when it takes a more probable value.
It is clear that the amount of information is related to the inverse of the probability
of the outcome.

Having this into account, we can define the quantity of information we obtain
observing the event X = xk, that has probability pk, as the function

I (xk) = log
1

pk
= − log pk

where, if the logarithm is natural, the information units are called nats, and, if the
logarithm is binary, bits.

The function has the following properties:

1. I (xk) = 0 when pk = 1.

2. I (xk) ≥ 0 when 0 ≤ pk ≤ 1.

3. I (xk) > I (xk′) when pk < pk′ .

The expected value of I (xk) over the rank of 2K + 1 possible values is known as
entropy because of the analogy with the thermodynamic entropy. From now on, we

85

86 Appendix A. Information and entropy

will take 0 log 0 = 0

H (X) = E [I (xk)]

=
K∑

k=−K

pkI (xk)

= −
K∑

k=−K

pk log pk

The entropy meets that 0 ≤ H (X) ≤ log (2K + 1). It is 0 if and only if pk = 1 for
a k and 0 for the rest, case that corresponds with the absence of uncertainty, and is
log (2K + 1) iff pk = 1

2K+1
∀k, case that corresponds with the maximal uncertainty.

The following definition and inequality are necessary to prove the upper bound and
other results.

Given two probability distributions pk and qk for a discrete random variable X,
then we define the Kullback-Leibler divergence or relative entropy

DKL (p||q) =
∑
k

pk log

(
pk
qk

)

that meets the following inequality

Theorem 3 (Fundamental information inequality).

DKL (p||q) ≥ 0

with the equality iff qk = pk ∀k.

To prove this property we use that lnx ≤ x− 1 and loga x = logb x
logb a

:

DKL (p||q) =
∑
k

pk log

(
pk
qk

)
= − 1

ln 2

∑
k

pk ln

(
qk
pk

)
≥ 1

ln 2

∑
k

pk

(
1− qk

pk

)

=
1

ln 2

(∑
k

pk −
∑
k

qk

)
= 0

A.1. Mutual information 87

To prove the upper bound of the entropy we can use Lagrange multipliers, but
with the previous inequality it is possible to do it directly, using the uniform density

1
2K+1

:

0 ≤ DKL (p||1/(2K + 1))

=
∑
k

pk log
pk

1/(2K + 1)

=
∑
k

pk log pk +
∑
k

pk log (2K + 1)

= −H (X) + log (2K + 1)

A.1 Mutual information

If we want to measure the relationship between, for example, the input and the
output of a system, in terms of information, we can use the mutual information.
Suppose that the input of the system is X, and the output Y , and that they only
take discrete values. H (X) measures the prior uncertainty of X. What will be the
posterior uncertainty of X, once we have observed Y ? To answer this question we
define the conditional entropy

H (X|Y) = H (X, Y)−H (Y)

where
H (X, Y) = −

∑
x

∑
y

p(x, y) log p(x, y)

is the joint entropy of X and Y , with p(x, y) the joint distribution function.

This quantities meet that 0 ≤ H (X|Y) ≤ H (X) ≤ H (X, Y). The first inequality
is clear. For the third, we just need to see that H (X, Y) = H (X)+H (Y |X), and for
the second we have that H (X|Y) = H (X, Y) − H (Y) ≤ H (X) + H (Y) − H (Y) =
H (X), that, for the positiveness of the relative entropy

H (X) + H (Y)−H (X, Y) = −
∑
x

∑
y

p(x, y) log p(x)−
∑
x

∑
y

p(x, y) log p(y)

+
∑
x

∑
y

p(x, y) log p(x, y)

= −
∑
x

∑
y

p(x, y) (log p(x) + log p(y)− log p(x, y))

= −
∑
x

∑
y

p(x, y) log

(
p(x)p(y)

p(x, y)

)
= DKL (p(x, y)||p(x)p(y))

≥ 0

that is a logical result, because the uncertainty over X cannot grow observing Y ,
and in general will decrease. It is easy to see that the equality is met only when the
variables are independent.

88 Appendix A. Information and entropy

The amount of uncertainty we resolve by watching Y is known as the mutual
information

I (X, Y) = H (X)−H (X|Y)

=
∑
x

∑
y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
= DKL (p(x, y)||p(x)p(y))

that is a generalization of the entropy, because H (X) = I (X,X).

The mutual information is symmetric, as I (Y,X) = I (X, Y), and, as was said
before, non negative.

Bibliography

[1] Simon Haykin, “Neural Networks: A Comprehensive Foundation”, Pearson Ed-
ucation.

[2] Richard O. Duda, Peter E. Hart, David G. Stork, “Pattern Classification”, John
Wiley & Sons, Inc.

[3] Warren S. McCulloch, Walter H. Pitts, ”A logical calculus of the ideas immanent
in nervous activity”, Bulletin of Mathematical Biophysics, 7:115-133, 1943.

[4] Frank Rosenblatt, “The Perceptron: A probabilistic model for information stor-
age and organization in the brain”, Psychological Review, 1958.

[5] A. B. Novikoff, “On convergence proofs on perceptrons”, Symposium on the
Mathematical Theory of Automata, 12, 615-622. Polytechnic Institute of Brook-
lyn, 1962.

[6] Bernard Widrow, Marcian E. Hoff, “Adaptive Switching Circuits”, Stanford
University, 1960.

[7] Scott A. Czepiel, “Maximum Likelihood Estimation of Logistic Regression Mod-
els: Theory and Implementation”.

[8] Johan Hastad, Mikael Goldmann, “On the power of small-depth threshold cir-
cuits”, 1991.

[9] Yoshua Bengio, “Learning Deep Architectures for AI”, Technical Report 1312,
Université de Montréal, 2011.

[10] Xavier Glorot, Yoshua Bengio, “Understanding the difficulty of training deep
feedforward neural networks”, Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics, 2010.

[11] Christopher M. Bishop. “Pattern Recognition and Machine Learning”, Springer,
2006.

[12] Michael E. Tipping, Christopher M. Bishop. “Probabilistic Principal Compo-
nent Analysis”, Journal of the Royal Statistical Society, Series B, 61, Part 3,
pp. 611-622.

[13] James V. Stone, “Independent Components Analysis”, Sheffield University.

89

90 Bibliography

[14] Aapo Hyvärinen, “Survey on Independent Component Analysis”, Helsinki Uni-
versity of Technology.

[15] H. Bourlard, Y. Kamp, “Auto-Association by Multilayer Perceptrons and Sin-
gular Value Decomposition”, Biological Cybernetics, 59, 291-294, 1988.

[16] H. Bourlard, Y. Kamp, “Auto-Association by Multilayer Perceptrons and Sin-
gular Value Decomposition”, IDIAP Research, 2000.

[17] Pierre Baldi, Kurt Hornik, “Neural Networks and Principal Component Analy-
sis: Learning from Examples Without Local Minima”, University of California,
San Diego, Neural Networks, Vol. 2, 53-58, 1989.

[18] Andrew Ng, “Sparse autoencoder”, Stanford University, CS294A Lecture notes.

[19] Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen, “Unsu-
pervised Feature Learning and Deep Learning Tutorial”, Stanford University,
2011.

[20] Theano Development Team, “Deep Learning Tutorial”, LISA lab.

[21] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine
Manzagol, “Stacked Denoising Autoencoders: Learning Useful Representations
in a Deep Network with a Local Denoising Criterion”, Journal of Machine Learn-
ing Research 1 I, 2010, 3371-3408.

[22] Mark M. Wilde, “From Classical to Quantum Shannon Theory”, McGill Uni-
versity, 2011.

[23] Kyung Hyun Cho, “Improved Learning Algorithms for Restricted Boltzmann
Machines”, Master Thesis, Aalto University, 2011.

[24] Hugo Larochelle, Yoshua Bengio, “Classification using Discriminative Restricted
Boltzmann Machines”, Proceedings of the 25th International Conference on
Machine Learning, 2008.

[25] David H. Ackley, Geoffrey E. Hinton, Terrence J. Sejnowski, ”A Learning Algo-
rithm for Boltzmann Machines”, Cognitive Science 9, 147-169, 1985.

[26] Geoffrey E. Hinton, “A Practical Guide to Training Restricted Boltzmann Ma-
chines”, University of Toronto, UTML TR 2010-003, 2010.

[27] Geoffrey E. Hinton, Simon Osindero, Yee-Whye Teh, “A Fast Learning Algo-
rithm for Deep Belief Nets”, Neural Computation 18, 1527-1554, 2006.

[28] John J. Hopfield, “Neural Networks and Physical Systems with Emergent Col-
lective Computational Abilities”, PNAS 79 2554, 1982.

[29] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, “Greedy Layer-
Wise Training of Deep Networks”, Université de Montréal.

http://ufldl.stanford.edu/wiki/index.php/Main_Page
http://ufldl.stanford.edu/wiki/index.php/Main_Page
http://deeplearning.net/tutorial/

Bibliography 91

[30] Athina Spiliopoulou, “Investigation of Deep CRBM Networks in modeling Se-
quential Data”, Master Thesis, University of Edinburgh, 2008.

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, “Gradient-Based
Learning Applied to Document Recognition”, Proc. of the IEEE, November
1998.

[32] Adam Coates, Andrew Y. Ng, “Selecting Receptive Fields in Deep Networks”.

[33] Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio,
Yann Dauphin, Xavier Glorot, “Higher Order Contractive Auto-Encoder”.

[34] Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen,
Greg S. Corrado, Jeff Dean, Andrew Y. Ng, ”Building high-level features using
large scale unsupervised learning”, arXiv:1112.6209, 2012.

	Contents
	Shallow neural networks
	The Ramón y Cajal's neuron and the McCulloch-Pitts neuron
	The single layer perceptron
	Model
	Delta rule and Novikov's Theorem

	The multilayer perceptron
	Model
	Error minimization
	ADALINE
	Backpropagation
	Benefits and problems of the deep networks

	Logistic and softmax perceptron
	Logistic perceptron
	Softmax perceptron

	Deep network components
	Principal Component Analysis
	Variance maximization
	Squared error minimization
	Applications
	Probabilistic PCA

	Independent Component Analysis
	Mutual information minimization
	Non Gaussianity maximization
	Maximum likelihood ICA

	Autoencoders
	Single hidden layer autoencoders
	Multiple hidden layer autoencoders
	Infomax principle
	Sparse autoencoders
	Denoising autoencoders
	Maximal activation pattern

	Boltzmann machines
	Definition
	Learning
	Difficulties
	Restricted Boltzmann machines

	Deep networks
	Deep multilayer perceptrons
	Cost function
	Activation function
	Initialization

	Deep belief networks and stacked autoencoders
	Other models
	Convolutional networks
	Receptive fields

	Experiments
	Datasets
	Software implementation
	Building blocks and overall architectures
	Shallow networks experiments
	Deep networks experiments

	Conclusion
	Further work

	Information and entropy
	Mutual information

	Bibliography

