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Abstract

The weak and strong laws of large numbers and the central limit theorem describe the
asymptotic convergence of sums of random variables in the limit of large samples. For small
samples, empirical estimates of expected values can exhibit a behavior that strongly deviates
from what is predicted by these theorems. In particular, the mean and the mode of the sample
average could be very far apart. As a consequence, typical values of this average could be very
different from its expected value. To analyze the convergence of the typical to the expected
behavior, we propose to use the bias of the logarithm of the estimator. This bias is non-negative
and decreases monotonically with the size of the sample.

In the literature, one finds different kinds of analysis of the convergence of sample averages
to expected values as a function of sample size. Kagan and Nagaev (2001) propose a criterion
to determine the largest moment order that can be consistently estimated from a sample of
size M . The requirement of consistency is very stringent and leads to extremely low bounds.
As an alternative, we extend the analysis of the random energy model (Derrida,1981) to the
convergence of sample averages. The REM is a simplified model of disordered systems, whose
energy levels are independent random variables sampled from a Gaussian distribution. The
quantity of interest is the partition function. In the standard variant of REM, the partition
function is the sum of M lognormal random variables whose shape parameter is proportional
to the temperature and to logM . From the partition function, one can define a quenched free
energy. This quantity exhibits a second order phase transition as a function of temperature.
Since the derivations of the REM are not entirely formal, we also review Large Deviation
Theory (LDT), a branch of statistics that studies the probability of rare events. This theory
can be used to provide rigorous derivations of the results of the REM analysis.

The main contribution of the current investigation is the application of the REM and
LDT analysis to the problem of estimating the moment of order q from a sample of size M .
In particular, we have analyzed the convergence of the sample moments of the lognormal,
log-exponential-power-law, folded normal, Weibull and Chi-squared distributions. In all these
cases, the moment estimator exhibits a phase transition in the limit of large samples (M →
∞) and large moment orders (q → ∞) with logM/q → constant. This means that for a
given moment order, q, there is a a threshold Mc(q) that marks an abrupt transition in the
behavior of the empirical moment estimator. For small samples (M < Mc(q)), the logarithm
of the estimator is biased. For samples whose size is larger than Mc(q), the estimator is
asymptotically unbiased. We also analyze the Pareto distribution, which is out of the scope
of REM-LDT. In this case, the logarithm of the empirical moment estimator does not exhibit
a phase transition and is always biased. Yet, the dependence of this bias with the size of the
sample can be accurately approximated using right-censored moments with an appropriate
choice of the truncation threshold (e.g. the mode or the mean of the sample maximum).
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Finally, the validity of the analysis performed is illustrated with the results of extensive Monte
Carlo simulations.
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Chapter 1

Introduction

Monte Carlo (MC) methods are a family of numerical techniques that make use of random
numbers to obtain the solution of problems of different nature. Even though the generation of
random numbers is the defining characteristic of these methods, the problems addressed need
not be stochastic. An attractive feature of MC algorithms is that they are general methods that
can provide accurate approximations when analytical or deterministic numerical approaches
fail or are difficult to implement. Furthermore, they take can be adapted to advantage of
the large processing capacity of current computational systems to address problems in a wide
range of areas of application. For instance, in the health field, MC has been applied to model
stochastic processes in nuclear medicine [1]; in engineering, MC techniques have been used
for the analysis of industrial processes [2]; in finance, they have been used to value financial
options and derivatives [3, 4]; they have been also applied to problems in protein folding [5]; in
chemistry, to model molecular dynamics [6]; and in physics they have been used for studying
phase transitions [7].

A common step in most of applications of MC methods is the estimation of expected
values of functions of random variables. Consider the random variable X, characterized by the
probability density function fX(x). The expected value of g(x) with respect to this distribution
is

(1.1) E[g(X)] =

∫
g(x)fX(x)dx.

Given X1, ..., XM a random sample distributed as X, the sample average

(1.2) ZM [g] =
1

M

M∑
i=1

g(Xi).

is an empirical estimator of the expected value E[g(X)]. This estimator is unbiased for any
value of M

E [ZM [g]] =
1

M

M∑
i=1

E[g(Xi)] = E [g(X)](1.3)

because of the linearity of the expected value operator. Note that it is not necessary to assume
independence to derive this property. Therefore, estimates obtained using Markov Chain Monte
Carlo (MCMC) are also unbiased [8].
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CHAPTER 1. INTRODUCTION

MC methods can also be used to approximate numerical quadratures. Consider the quadra-
ture

(1.4) I =

∫ b

a
g(x)dx.

The key of the application of MC techniques to the numerical estimation of I is to transform
this quadrature into an expected value over a particular probability density function as in (1.1).
In particular, multiplying and dividing by the length of the integration interval, one obtains

(1.5) I =

∫ b

a
g(x)dx = (b− a)

∫ b

a

1

b− a
g(x)dx.

Making the observation that the factor fX(x) = 1/(b − a) inside the quadrature can be in-
terpreted as the density of U [a, b], the uniform distribution in [a, b], the quadrature (1.4) is
approximated by

(1.6) Î =
b− a
M

M∑
i=1

g(xi)

where {xi} is a random sample of M values that are uniformly distributed in [a, b]. Taking the
expected value of this expression, one obtains

E[Î] =
b− a
M

M∑
i=1

E [g(xi)] =
i.d.

(b− a)E [g(x)] =

= (b− a)

∫ b

a
g(x)

1

b− a
dx =

∫ b

a
g(x)dx,

which is the quantity that we are after.
Moment estimation, which is one of the objects of our analysis, is a particular case of (1.1)

when g(x) = xq . Let Z
(q)
M be the MC estimate of the qth moment from a sample of size M

ZM [g]
g(x)=xq

≡ Z
(q)
M =

1

M

M∑
i=1

Xq
i(1.7)

Despite the fact that estimator is unbiased, as demonstrated in (1.3), nothing is said about
how the MC average converges to the actual mean. The asymptotic convergence of the esti-
mator to its expected value is described by the laws of Large Numbers:

Theorem 1.0.1 (Weak Law of Large Numbers, WLLN) Let {Xi}Mi=1 be a sequence of inde-

pendent identically distributed (i.i.d.) random variables as X. We define ZM =
1

M

M∑
i=1

Xi,

then

lim
M→∞

P (|ZM − E[X]| > δ) = 0⇐⇒
def

ZM
P−→ E[X]

for any δ > 0
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The weak Law states that the probability of the event |ZM − E[X]| > δ decreases to zero
as the sample size increases. However, for a sample of finite size, this property need not hold
with a non-vanishing probability. Since it is desirable to ensure that the error is bound for
samples of size greater than a finite value M0, a more restrictive type convergence is needed.
The strong law of large numbers is a translation of this more stringent requirement.

Theorem 1.0.2 (The strong law of large numbers, SLLN) Let {Xi}Mi=1 be a sequence of
independent identically distributed (i.i.d.) random variables distributed as fX(x). Define

ZM =
1

M

M∑
i=1

Xi. Using these definitions, the strong law of large numbers states

P
(

lim
M→∞

ZM = E[X]

)
= 1⇐⇒

def
ZM

a.s.−→ E[X]

This type of convergence means that |ZM −E[X]| > δ only happens a finite number of times.
That is, there exists an M0 such that |ZM − E[X]| < δ,∀M > M0 with probability 1.

Both the weak and the strong laws of large numbers are statements about the limit of
sums of random variables. However, they do not provide any information on the distribution
of ZM in the limit M →∞. For this, one needs the central limit theorem, which describes the
asymptotic form of the distribution of ZM for random variables whose variance is finite.

Theorem 1.0.3 (The central limit theorem (CLT)) Let {X1, ..., XM} be a sequence of M i.i.d.
random variables with a finite expected value µ <∞ and a finite variance σ2 <∞.

Define ZM =
1

M

M∑
i=1

Xi. The central limit theorem states

ZM
d−→ N

(
µ,
σ2

M

)
(1.8)

where convergence in distribution is equivalent to convergence of the cdf of the random variables,
that is,

lim
M→∞

FZM (x) = Φ(x;µ, σ2)(1.9)

in the points where FZM (x) is continuous and Φ(x;µ, σ2) is the cdf of the Gaussian distribution
with mean µ and variance σ2.

Some observations can be made from this statement:

(i) the average of a sample of i.i.d. random variables tends to the distribution mean,

(ii) the variance tends to zero as the number of samples increases and

(iii) the convergence to a normal is independent of the distribution, provided that the variance
is finite.
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CHAPTER 1. INTRODUCTION

Since the CLT describes the asymptotic distribution of the sum of random variables, it is
reasonable to ask the question of how many samples are necessary for the normal distribution
that appears in this theorem to be an accurate approximation of the distribution of the MC
average.

In spite of the general asymptotic validity of the CLT for sums of independent random
variables of finite variance, the rate of convergence to the normal asymptotic behavior is distri-
bution dependent. In his study on the convergence of MC averages of power-law distributions
[9], Crovella identifies convergence patterns in averages of heavy-tailed data that are qualita-
tively different from the asymptotic regime described by the CLT, even when both the mean
of the variance of the individual samples are finite (figure 1.1). For heavy-tailed distributions,
such as the Pareto and the lognormal distributions, and for samples of small sizes, the mode of
the empirical average is shifted with respect to the limiting value. By contrast, for distributions
with exponentially decaying tails, such as the Gaussian or the exponential distribution, the
mode of the MC estimate is close to the actual average even for relatively small samples. All
these observations lead us to believe that there are regimes in which the finite size effects, such
as the asymmetry of the distribution or shift of the mode with respect to the mean, cannot be
accounted for by the CLT.
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Figure 1.1: Distribution of the mean estimator as a function of sample size for different types
of distributions.

The observed behavior does not depend on the bias of the estimate because, as shown
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earlier, this bias is zero regardless of the distribution. From these observations, it is clear the
CLT is not an accurate description for small samples. Specifically, the distribution of the sum
of random variables is asymmetric. Furthermore, unlike for the Gaussian distribution, the
mode does not coincide with the mean. Note that this discrepancy does not depend on the
shape or the support of the probability distribution of the random variables in the sum. It
seems to be a consequence solely of the tail properties of the probability distribution.

One might expect that there is a smooth transition between a small sample regime, in which
finite size effects such as those observed in sums of heavy-tailed random variables, are dominant
and, an asymptotic (large sample) regime in which the CLT provides an accurate approximation
to the distribution of the empirical averages. In this work we show that for sufficiently heavy-
tailed data, the transition is rather abrupt and can be approximately described in a certain
limit as a second order phase transition in the bias of the logarithm of the estimator. In this
limit this bias exhibits a discontinuous transition at a critical sample size Mc from a region of
non-zero bias (small samples, M < Mc), to a regime in which it is unbiased (large samples,
M > Mc) that is similar to the second order phase transition in the quenched free energy in the
Random Energy Model [10]. The transition does not take place when the decay is algebraic:
the bias of the logarithm of the estimator is different from zero for any sample size. The
existence of an abrupt change in the behavior of the logarithm of the estimator as a function
of sample is quite different from the smooth asymptotic decrease of the variance predicted by
the CLT.

1.1 Mathematical formulation

In this section, we set up a framework to analyze the convergence of the MC estimator of the
mean of non-negative random variables as a function of the size of the sample. We propose to
use the bias of the logarithm of the estimator as a measure of the quality of the estimate. In the
limit of large samples this bias is a measure of the discrepancy between the mode and the mean
of the sample estimate. Since the mode represents the most probable value of the empirical
estimator, this quantity quantifies how different are the typical and the expected values of the
sample average. The expected value of this bias is shown to be monotonically decreasing with
the sample size. Furthermore, for non-algebraically decaying heavy-tailed distributions, this
expected value exhibits a second order phase transition similar to the one exhibited by the
quenched free energy in the random energy model, a simplified model for glasses [10].

Consider a random variable X whose distribution function (cdf) is FX(x). The correspond-
ing probability density function (pdf) is fX(x). The expected value of X is

(1.10) E[X] =

∫
A
xfX(x)dx

where A = {x ∈ R : fX(x) 6= 0}. We focus on positive random variables, A ⊆ R+. By (1.3),

ZM =
1

M

M∑
i=1

Xi is an unbiased estimator of E[X]. However non-linear functions of ZM will in

general be biased. In particular, consider bias of the logarithm of ZM

(1.11) BM = logE[X]− logZM

5



CHAPTER 1. INTRODUCTION

BM is a random variable whose distribution depends on the sample size M . It is finite because
the random variables {Xi} are non-negative and the event Xi = 0 has measure zero.

The expected value of BM is a measure of how different the typical and the average values
of ZM are, for large M . To understand why this is the case, let fM (z) the density function of
ZM . As M increases fM (z) becomes more concentrated around its mode z∗M . Since log z varies
only smoothly in the region where fM (z) is peaked , in the limit M →∞, the expectation of
logZM is approximately

(1.12) E [logZM ] =

∫
dzfM (z) log z ≈ log z∗M

Therefore,

(1.13) E[BM ] = logE[X]− E[logZM ] ≈ logE[X]− log z∗M ,

which is a measure of the difference between the mode and the mean of fM (z).

We now state some properties of BM . The first one is that it converges to zero as the sample
size increases. The second one is that the convergence of its average to zero is monotonic.

Proposition 1.1.1 The estimator logZM converges almost surely, in probability and in dis-
tribution to logE[X].

Proof: This property is a direct application of the continuous mapping theorem [11].

Theorem 1.1.2 Let {ZM} defined on a metric space. If h is a function from this metric space
S and the set of points of discontinuity has zero measure then

1. ZM
d−→ Z ⇒ h(ZM )

d−→ h(Z)

2. ZM
P−→ Z ⇒ h(ZM )

P−→ h(Z)

3. ZM
as−→ Z ⇒ h(ZM )

as−→ h(Z)

By application of the Strong Law of Large Numbers we have almost sure convergence of
ZM to E[X]. Then, using the continuous mapping theorem, we have almost-sure convergence
of logZM to logE[X]. Note that almost-sure convergence implies convergence in probability.
Finally, convergence in probability implies convergence in distribution, which completes the
proof. 2

Theorem 1.1.3 The expectation of the bias of the logarithm is a monotonically decreasing
function of M

E[BM ] ≥ E[BM+1]

Proof: The derivation makes use of a theorem whose proof is given in appendix F. Before
formulating the theorem, we define the quenched average as

〈Y 〉Mg = E

[
g−1

(
1

M

M∑
i=1

g(Yi)

)]
(1.14)

where g is a convex function.
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Theorem 1.1.4 For a sequence of iid random variables {Y1, Y2, . . . , YM , YM+1, . . .}

〈Y 〉gM+1 ≥ 〈Y 〉
g
M(1.15)

In our investigation we choose g(x) = ex. Making the change of variables Xi = eYi in

ZM =
1

M

M∑
i=1

Xi (which can be done because Xi > 0, a.s.) and applying theorem 1.1.4,

〈Y 〉gM+1 − 〈Y 〉
g
M ≥ 0

E[logZM+1]− E[logZM ] = E[logZM+1]− E[logZM ]± log (E[X]) =

= (log (E[X])− E[logZM ])− (log (E[X])− E[logZM+1]) =

= E[BM ]− E[BM+1] ≥ 0

2

Finally one can also derive the following result for the convergence of the expectation of
the estimator

Proposition 1.1.5

lim
M→∞

E[logZM ] = logE[X]

Proof: Note that, by virtue of the Strong Law of Large Numbers, we have

lim
M→∞

ZM = E[X] a.s.(1.16)

If it were possible interchange the expected value and the limit in the left-side of the proposition
the result would be true.
As we have seen in the previous property E[BM ] ≥ E[BM+1]. Therefore,

E [logZM+1] ≥ E [logZM ]

Finally

lim
M→∞

E[logZM ] = E
[

lim
M→∞

logZM

]
= E[logE[X]] = logE[X]

2

Since E[BM ] is a monotonic decreasing function in M , E[B1] ≥ E[BM ] ∀M ≥ 1. Therefore
the maximum expected bias of the logarithm of the estimator is

(1.17) Bmax = E[B1] = logE[X]− E[logX]

Finally, we can define the normalized bias of the logarithm of ZM

B̂M = BM/Bmax(1.18)

where 0 ≤ E[B̂M ] ≤ 1.
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The study of the convergence of sample averages can be useful to identify different regimes.
Namely, a regime in which neither the sample mean nor the sample variance have converged;
a regime in which the mean has converged but the variance has not and, finally a regime in
which both quantities have converged. In fact, the analysis in terms of the bias BM can be
extended to an arbitrary moment of the distribution by considering the mean of a random
variable Y = Xq,

FY (y) = P(Y < y) = P(X < y1/q) = FX(y1/q)(1.19)

fY (y) =
1

q
fX(y1/q)y

1−q
q(1.20)

Figure 1.2 illustrates the convergence of the simulated Z
(q)
M and logZ

(q)
M with E[Xq] and

logE[Xq] respectively, for q = 2, 4, where X is a lognormal random variable with µ = 0 and
σ = 1. The monotonicity of the expected value of the bias logarithm of the sample average,
proved in 1.1.4, is observed in this figure for both moments. By contrast, the bias of ZM has
a very irregular behavior with large jumps followed by a smoother decay.

On the other hand, while in figure 1.2b the difference between logZ
(2)
M and logE[X2] be-

comes vanishingly small around a critical point logM ≈ 7. For the fourth order moment
(figure 1.2d) this critical point is not reached yet. This illustrates the different properties of
the empirical estimates of the moments of a random variable and the dependence of the rate
of convergence on the order of the moment. This dependence is reasonable because increasing
the the order of the moment makes the extreme values more dominant in the sample average
sum. Thus, larger sample sizes are required for convergence. Our main goal is to derive what
is the minimal number of samples, Mc(q), above which, for a given order of the moment (q),
the bias of the logarithm of the sample moment estimator becomes approximately unbiased in
the limit of large samples and large q.

The report is organized as follows: In chapter 2 we review previous studies of the conver-
gence of averages of random variables. First, we describe an approach based on the consistency
of the sample moment estimator. A different approach, developed in the area of statistical me-
chanics is described for the specific case of sums of iid lognormal random variables made in the
random energy model [10]. Large Deviation Theory provides a formal mathematical framework
for the results of the REM analysis. The application of the REM and LDT analysis to different
types of distributions (Gaussian, Exponential, Chi-Squared and Exponential distributions) is
made in chapter 3. LDT can only be applied when the distributions have non-algebraic decay.
A separate analysis is required for Pareto distribution, because of the power-law form of its tail
decay. Since sums of random variables appear in a great number of scientific areas, the results
presented in this report can be applied in different contexts. The conclusions, results and
perspectives of the investigation, together with possible applications in the areas of telecom-
munications, statistics and machine learning are presented in chapter 4. Detailed derivations
of the results for the distributions considered are given in appendices A to D. Appendix E re-
views the saddle point method for the asymptotic evaluation of integrals. This method is used
repeatedly in the analysis developed. Finally, a generalization of Jensen’s inequality, which is
necessary to deduce the monotonicity of BM , is proved in appendix F.
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Chapter 2

Previous work

As illustrated in the introduction the laws of large numbers and the Central Limit Theorem
cannot be used to describe, even in an approximate manner, the behavior of averages in small
samples. The purpose of this chapter is to review published studies that also analyze these
limitations. Most of the investigations in the literature address the problem of how many
moments can be estimated from a sample of finite size M . The goal is to find a critical value
qc(M) such that lower moments E[Xq], whose order is below this critical value (q < qc(M))
can be estimated with a certain accuracy, whereas higher-order moments (q > qc(M)) cannot.

Kagan and Nagaev [12] define this critical value by requiring that the moment estimator
be consistent for moments q ≤ qc(M). The condition for consistency is that the probability of
the expected value of the finite sample estimator being arbitrarily close to E [Xq] converges to
one for q ≤ qc(M).

This result they obtain is

qc(M) =
logM

2 log logM

for distributions that satisfy the Bernstein’s condition (see 2.11). For these types of distribu-
tions if M = 106, the critical order moment is qc(M = 106) = 2.63. This result indicates that
the requirement of consistency is probably too stringent to be useful in practical applications.

The statistical properties of Z
(q)
M can be analyzed using a different approach. Specifically,

one can use the techniques developed in statistical physics to investigate the properties of sys-
tems whose energy levels are random variables. The random energy model was first introduced
by Derrida in [10] as a simplified model of disordered systems. The quantity of interest is the
partition function of the system. Assume that {Ei}Mi=1, the set of energy levels of the disor-
dered system are iidrv’s with density fE(e). In the original version of REM fE(e) is a normal
distribution

(2.1) fE(e) =
1√
πK

exp

[
−e

2

K

]
, e ∈ (−∞,∞)

Nonetheless, the analysis is not restricted to this type of distribution. The partition function
at temperature β−1 is defined as

(2.2) ZM (β) =

M∑
i=1

e−βEi .
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From this partition function one can define a quenched free energy [13]

(2.3) FM,q(β) = − 1

β
E [logZM (β)]

The annealed free energy is

(2.4) FM,a(β) = − 1

β
logE [ZM (β)]

Below a critical temperature (β−1 < β−1c (M)) the values of the quenched and the annealed
free energy differ. As the temperature increases FM,q(β) approaches ≤ FM,a(β) from below.
Above certain threshold (β−1c (M) < β−1) both free energies coincide. The system is said to be
self-averaging. In the limit M →∞, this change of regime is a second-order phase transition in
terms of the entropy function. For the standard REM, in which the energy levels are sampled
from a normal distribution

(2.5) sa(y) = log 2− y2

It is a second order phase transition because the second derivative of the free energy is discon-
tinuous at the transition temperature.

Derrida’s model can be understood in terms of Large Deviation Theory (LDT), a branch
of statistics that deals with the probability of large deviations in stochastic processes. In this
theory, one assumes that the density function of the random variable can be approximated
as the exponential of another function (an entropy in statistical physics, or a rate function in
statistics) in the limit that a certain parameter (the system size, in statistical physics) is large.
LDT provides the conditions under which the rate function (entropy) exists and the techniques
to construct it explicitly.

As mentioned earlier, LDT can only be applied to certain types of distributions. For other
cases, it is possible to use an approach based on truncated moments. The estimate of the qth
moment in a finite sample {Xi}Mi=1 should be close to the truncated estimate

Z
(q)
M ≈

∫ U(M)

0
xqfX(x)dx(2.6)

where U(M) is such as the probability of observing samples in {xi} greater than U(M) is
sufficiently small. It seems reasonable to choose U(M) as a statistic of the maximum of
the sample, such as the mean of the mode. In some cases, when closed-form expressions of
these statistics are not available, one can approximate the distribution of the maximum using
Extreme Value Theory [14]. In this case, U(M) is chosen as the mean or the mode of the limit
distribution of the sample maximum.

2.1 Convergence of moment estimators based on their consis-
tency

In this section we review the investigation of A. Kagan and S. Nagaev [12]. These authors
consider the problem of the simultaneous estimation of q moments from a sample of iidrv’s of

12



size M . They determine a threshold qc(M), such that the sample estimator of the moment of
order q becomes inconsistent for q > qc(M).

By the law of large numbers the sample average

(2.7) Z
(q)
M =

1

M

M∑
i=1

Xq
i

is a strongly consistent estimator of E [Xq]. This means that for any given ε > 0

P
(
|Z(q)
M − E [Xq] | > ε

)
−→
M→∞

0(2.8)

From this condition it follows that for any fixed integer q > 0 and ε > 0

P
(

max
1≤j≤q

|Z(j)
M − E

[
Xj
]
| > ε

)
≤

q∑
j=1

P
(
|Z(j)
M − E

[
Xj
]
| > ε

)
−→
M→∞

0(2.9)

Therefore, there must exist qc(M), dependent on the sample size M , such that

P
(

max
1≤j≤qc(M)

|Z(j)
M − E

[
Xj
]
| > ε

)
≤

qc(M)∑
j=1

P
(
|Z(j)
M − E

[
Xj
]
| > ε

)
−→
M→∞

0(2.10)

and limM→∞ qc(M) =∞.

Consider distributions that satisfy Bernstein’s conditions

|E [Xq] | ≤ q!Hq, H ≥ 0(2.11)

where H is a positive constant. This condition is equivalent to imposing analyticity of the

characteristic function of the distribution in the interval

(
− 1

H
,

1

H

)
. Some common distribu-

tions, such as the normal distribution, satisfy this condition. Other distributions, such as the
lognormal, does not satisfy (2.11) because their characteristic function is not analytic at zero.

For these types of distributions, we can formulate the following theorem

Theorem 2.1.1 Let Z
(j)
M be the estimate of E

[
Xj
]

made in a sample of size M

lim
M→∞

P

(
max

1≤j≤q−c (M ;δ)
|Z(j)
M − E

[
Xj
]
| < ε

)
= 1,(2.12)

for any ε > 0, where q−c (M ; δ) =
(1− δ) logM

2 log logM
(1 + o(1)) for some δ ≥ 0.

This theorem establishes the consistency to order qc(M) ≡ q−c (M ; δ = 0). The following
theorem describes the behavior of the sample estimator for orders q > qc(M).

13
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Theorem 2.1.2 In the same conditions as the previous theorem,

lim
M→∞

P

(
max

1≤j≤q+c (M ;δ)
|Z(j)
M − E

[
Xj
]
| > C

)
= 1(2.13)

for any C > 0, and q+c (M ; δ) =
(1 + δ) logM

2 log logM
(1 + o(1)).

As a consequence of these two theorems,

(2.14) qc(M) =
logM

2 log logM

establishes that the maximum number of moments that can be estimated consistently from a
sample of size M for M →∞. Even though

(2.15) lim
M→∞

qc(M) =∞,

the growth of qc(M) with M is rather slow, as shown in Figure 2.1a.

1 2 3 4 5 6 7 8 9 10
log10M
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1.5

2.0

2.5

3.0

3.5

4.0

q M

(a)

3 4 5 6 7 8 9 10
q

5

10

15

20

25

30

35

40

lo
g 1

0∆
M

q−
1
→
q

(b)

Figure 2.1: (a) Order of moments that can be estimated as a function of the sample size.
(b) Differences of the required sample size between q − 1 and q.

For instance, with a sample of M = 106 the highest moment order that can be estimated
is qc(106) = 2.63. The slow growth of the critical order as the sample size increases seems
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to be too restrictive to consider qc(M) a useful bound in practical applications. In the next
section, we introduce the analysis of the random energy model, a model of disordered systems
that exhibits a phase transition as a function of temperature in the appropriate scaling limit.
The relevance of the analysis of REM to the current investigation is that it can be adapted to
describe a phase transition in the sample estimator of moments of random variables.

2.2 The random energy model

The random energy model (REM) was introduced by Derrida in the area of statistical
mechanics to describe the thermodynamic properties of disordered systems [10]. Consider a
system with M = 2K configurations. The energy of the ith configuration is Ei. In the REM,
we assume that the energy levels {Ei}Mi=1 are iidrv’s distributed following the pdf fE(e).

The partition function at temperature β−1 for a particular realization of the system is
defined as

ZM (β) =

M∑
i=1

e−βEi .(2.16)

Thermodynamic quantities of the system such as average energy, energy fluctuations, heat
capacity, etc. can be obtained from this quantity by taking derivatives with respect to the
temperature [13]. Note that the partition function corresponds to the empirical estimate of
the moment-generating function from the sample {Ei}Mi=1.

For the subsequent derivations, it is useful to define the following relation.

Definition: Let AM and BM be two sequences of random variables

AM
.
= BM ⇔ lim

M→∞

1

M
logAM = lim

M→∞

1

M
logBM(2.17)

This definition is also valid when the variables are indexed K = logM/ log 2 and the limit
M →∞ is taken.

Let N(ε, ε + δ) be the number of configurations in the interval I = [Kε,K(ε + δ)]. This
quantity is a binomial random variable whose first two moments are

E [N(ε, ε+ δ)] = 2KPI (ε, ε+ δ)

V ar [N(ε, ε+ δ)] = 2KPI (ε, ε+ δ) (1− PI (ε, ε+ δ))(2.18)

where

PI(ε, ε+ δ) =

∫ K(ε+δ)

Kε
fE(e)de =

∫ ε+δ

ε
K exp [KgE(z)] dz

.
= exp

[
K max

z∈[ε,ε+δ]
{gE(z)}

]
.

(2.19)

and gE(z) is a non-positive function. This last expression is obtained by saddle point integra-
tion (see appendix E).
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The microcanonical entropy density function (in this work, to simplify the terminology, the
entropy function) is defined as

lim
M→∞

1

M
logN(ε, ε+ δ) = max

y∈[ε,ε+δ]
sa(y)(2.20)

N(ε, ε+ δ)
.
= exp

[
K max

y∈[ε,ε+δ]
sa(y)

]
(2.21)

sa(y) is named.

Using expression (2.18), in the leading exponential order,

sa(y) = log 2− gE(z)(2.22)

The following proposition allows us to establish a relationship between the partition func-
tions and the entropy functions.

Proposition 2.2.1 If sa(y) exists and the limit in (2.20) is uniform then

ZM (β)
.
= exp

[
K max

y
{sa(y)− βy}

]

In the original formulation of the random energy model [10], the energy levels are assumed
to be normally distributed N (0,K/2)

fE(e) =
1√
πK

exp

[
−e

2

K

]
, e ∈ (−∞,∞)(2.23)

For this particular model

PI(ε, ε+ δ) =

∫ K(ε+δ)

Kε

1√
πK

exp

[
−e

2

K

]
de =

√
K

π

∫ ε+δ

ε
exp

[
K(−y2)

]
dy(2.24)

Therefore, the entropy function is

sa(y) = log 2− y2(2.25)

Applying proposition (2.2.1),

ZM (β)
.
= exp

[
K max

y∈[yl,yu]

{
log 2− y2 − βy

}]
(2.26)

because sa(y) ≥ 0, y ∈ [yl, yu], where yl = −
√

log 2 and yu =
√

log 2]. For β > 2
√

log 2 (low
temperature), the exponent (2.26) does not have any local maximum in [yl, yu]. In this case,
the maximum of the exponent is reached at yl

ZM (β)
.
= exp

[
K
√

log 2β
]

(2.27)
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For β < 2
√

log 2 (high temperature), the exponent of (2.26) has a local maximum at y∗ =
−β/2 ∈ [yl, 0]

ZM (β)
.
= exp

[
K

(
log 2 +

β2

4

)]
(2.28)

Therefore, there is a phase transition in ZM (β), as a function of β

lim
K→∞

1

K
logZM (β) =

{√
log 2β, β > βc (low temperature)

log 2 + β2

4 , β < βc (high temperature)
(2.29)

for βc = 2
√

log 2.
The transition is second order because there is a discontinuity in the second derivative of

ZM (β) at the transition point βc = 2
√

log 2,

d

dβ

(
lim
K→∞

1

K
logZM (β)

) ∣∣∣∣
β=βc

=
√

log 2(2.30)

d2

d2β

(
lim
K→∞

1

K
logZM (β)

) ∣∣∣∣
β=βc

=

{
0, β > βc
1
2 , β < βc

(2.31)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

β
0.5

1.0

1.5

2.0
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Z
M

(β
)

REM
βc

Figure 2.2: Illustration of the phase transition between the linear regime and the quadratic
one.

The analysis made in the random energy model can be directly applied to the problem of
estimating moments from a sample. Le X be a positive random variable whose pdf is fX(x).
Consider the estimator of the qth moment from the sample of iidrv’s {Xi}Mi=1

(2.32) Z
(q)
M =

1

M

M∑
i=1

Xq
i .

Define the random variable Y = logX.

Z
(q)
M =

1

M

M∑
i=1

Xq
i =

1

M

M∑
i=1

eqYi(2.33)
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where the pdf of the random variables Yi is

fY (y) = fX(ey)ey, y ∈ (−∞,∞)(2.34)

The discontinuity that marks the phase transition for the random energy model appears
only in the thermodynamic limit (the number of energy levels approaches infinity). For the
moment estimation problem the scaling limit is taken in terms of the two parameters that
appear in the problem: M , the sample size, and q, the order of the moment

M →∞, q →∞ and
logM

h(q)
= 1(2.35)

where h(q) is a monotonic increasing function of the order of the moment q.

2.2.1 Large Deviation Theory

Large Deviation Theory is a branch of statistics that studies the properties of the distri-
butions of rare events, whose probability is assumed to decay exponentially with their size.
This theory provides formal support to the analysis carried out in the Random Energy Model.
In particular, it specifies the conditions under which the entropy function (in LDT terminol-
ogy, the rate function) exists. The relationship between REM and LDT has been explored in
[15, 16].

Definition: Let {ZM} be a sequence of random variables. The quantity P(ZM ∈ A)
satisfies a Large Deviation Principle with rate function IA(y) if the limit

(2.36) − lim
M→∞

1

M
logP(ZM ∈ A) = IA(y)

P(ZM ∈ A) = exp [−MIA + o(M)](2.37)

for large M .

In the case of discrete random variables, the rate function is defined as

− lim
M→∞

1

M
logP (ZM = z) = I(z).(2.38)

For continuous random variables, one needs to carry out an auxiliary step and define the
density

P (ZM ∈ [z, z + dz]) = fZM (z)dz(2.39)

in the limit dz → 0 and M →∞. By the definition of the rate function (2.36),

− lim
M→∞

1

M
log fZM (z)− lim

M→∞

1

M
log dz = I(z).

Therefore,

fZM (z) = exp [−MI(z) + o(M)](2.40)
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where the second term is an arbitrary non-zero infinitesimal value that can be neglected in the
exponential leading order.

In the limit M →∞ the expected values of g(ZM )

E [g(ZM )] =

∫
g(z)fZM (z)dz

.
=

∫
g(z) exp(−MI(z))dy(2.41)

can be approximated asymptotically using saddle point integration techniques (appendix E,
[17]).

However, ensuring the existence of a rate function is not a trivial question. To formulate
these conditions, we need the following definition:

Definition: Given a sequence of random variables {ZM} we define the scaled cumulant
generating function as the limit

λ(k) = lim
M→∞

1

M
logE [exp [kMZM ]](2.42)

Next, we formulate the Gärtner-Ellis theorem. This theorem specifies the conditions under
which the probability distribution can be expressed in terms of a rate function

Theorem 2.2.2 If λ(k) exists and is differentiable ∀k ∈ R, then ZM satisfies a Large Devia-
tion Principle. The rate function is

I(z) = L(λ) = sup
k∈R
{kz − λ(k)}(2.43)

The functional applied on λ(k) is called the Legendre-Fenchel transform. The formula
for the rate function I(z) can be derived from λ(k) by first approximating 〈exp [kMZM ]〉 as
M → ∞ using saddle point estimation and then noting Legendre-Fenchel transform is self-
inverse, that is, L (L(λ(k))) = λ(k).

For the sample average ZM =
1

M

M∑
i=1

Xi the computation of the rate function is particularly

simple

λ(k) = lim
M→∞

1

M
E [exp [kMZM ]] = lim

M→∞

1

M
logE

[
M∏
i=1

exp [kXi]

]
=(2.44)

= lim
M→∞

1

M
log

M∏
i=1

E [exp [kXi]] = logE [exp [kX]](2.45)

Therefore, to compute λ(k) for sums of random variables, one only needs to calculate the
cumulant generating function. The differentiability condition in the Gärtner-Ellis theorem
is satisfied because the Laplace transform (i.e. the moment generating function) is always
differentiable when it is defined.
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Example: Let X be a normal random variable of mean µ and variance σ2. Let ZM =

1

M

M∑
i=1

Xi,

λ(k) = µk +
1

2
σ2k2(2.46)

λ(k) is infinitely differentiable therefore we can compute the rate function by applying the

Gärtner-Ellis theorem and we obtain I(z) =
(z − µ)2

2σ2
.

Since the Laplace transform is always differentiable where it is defined, we can apply
the Gärtner-Ellis theorem and compute the rate function for distributions whose cumulant
generating function is only partially defined; that is, if it is not defined ∀k ∈ R.

Example: Let X be a exponential random variable with scale parameter 1,

λ(k) = − log(1− k)(2.47)

and by just computing the maximum in (2.43), I(z) = z − 1− log z.

Important cases, such as the power-law distribution, are out of the scope of Large Deviation
Theory.

Example: Let X be a Pareto random variable. Its moment generating function is

M(k) = E[ekX ] =

∫ ∞
1

αx−α−1ekxdx(2.48)

Note M(k) <∞ only if k ≤ 0. In this case

λ(k) < λ(k + δ) ∀δ > 0(2.49)

because ekx < e(k+δ)x and αx−1−α is positive in [1,∞). Using this observation and M(0) = 1,
the maximum in (2.43) is reached at k = 0,

I(y) = 0 ∀y ∈ [1,∞)(2.50)

Therefore, for distributions with an algebraic tail decay, zero rate functions are obtained.
The reason is that the tails of the distribution decays slower than any exponential function of
M [15].

Finally, we state Varadhan’s Theorem, which is a generalization of the Gärtner-Ellis The-
orem. Given a continuous function g, we define

λ(g) = lim
M→∞

1

M
logE [exp [Mg(ZM )]] .(2.51)
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The rate function I(y) is obtained by taking the Legendre-Transform of g,

λ(g) = sup
y
{g(y)− I(y)}(2.52)

This theorem will be useful in the derivation of the random energy model results from LDT.
We now detail how the random energy model can be formulated using large deviation

theory [18, 16]. The partition function of the random energy model is

ZM (β) =

M∑
i=1

exp [−βEi] , M = 2K ,(2.53)

where Ei are Gaussian random variables whose pdf is

fE(e) =
1√
πK

exp

[
−e

2

K

]
(2.54)

Given a random sample {Ei}, we can construct a probability distribution FK as

FK(x) =
|
{
i : EiK ≤ x

}
|

2K
i = 1, . . . , 2K .(2.55)

Note that FK is a discontinuous distribution defined on R. It has jumps at the points {Ei}. If
X is the random variable with cdf FK(x)

P
(
X ∈

[
Ei
K
,
Ei+1

K

))
= 0(2.56)

P
(
X ∈

[
Ei
K
,
Ei+1

K

])
=

1

2K
(2.57)

Taking the expected value of h(x) = e−βKx, we obtain

E [h(x)] =

∫ ∞
−∞

h(x)dFK(x) =

2K∑
i=1

h

(
Ei
K

)
1

2K
(2.58)

=
1

2K

M∑
i=1

e−βEi =
1

2K
ZM (β)

Therefore, ZM can be expressed in terms of the expected value with respect to a a probability
distribution that depends on K

ZM (β) = 2K
∫ ∞
−∞

e−βKxdFK(x) = 2KE
[
e−βKx

]
(2.59)

Theorem 2.2.3 With probability 1, the measure induced by FK satisfies a Large Deviation
Principle with index K and rate function

I(z) =

{
z2, if |z| ≤

√
2 log 2

∞, if |z| >
√

2 log 2
(2.60)
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}
}

. . .

Ei/k Ei+1/k

1/2k

1/2k

i/2k

(a)

Figure 2.3: Measure of probability dFK

From the definition of λ(g) and taking g(z) = −βz,

λ(g) = lim
K→∞

1

K
logE [exp [K(−βX)]](2.61)

Applying Varadhan’s Theorem,

lim
K→∞

1

K
logE [exp [K(−βX)]] = sup

z

{
−z2 − βz

}
(2.62)

Finally,

lim
K→∞

1

K
logZM = sup

y

{
log 2− x2 − βx

}
(2.63)

which is the result derived earlier (2.33). In the next sections the methods developed to analyze
the random energy model are applied to the problem of estimation of moments from a finite
sample.
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Chapter 3

Convergence of Monte Carlo
averages

In the previous section, we studied how the analysis of the partition function in the
Random Energy Model reveals the existence of a phase transition as a function of the system
temperature. In this chapter we extend and adapt this analysis to the estimation of the moment
of order q from a sample of finite size {Xi}Mi=1

Z
(q)
M =

1

M

M∑
i=1

Xq
i =

1

M

M∑
i=1

eqYi ,(3.1)

where the change of variables Xi = eYi has been made in the last step. Note this way of writing

the estimator Z
(q)
M brings out the similarity between a sample moment estimator and the REM

partition function in 2.16. As argued in the previous sections, the convergence of Z
(q)
M to its

infinite sample limit E[Xq] can be analyzed in terms of the bias of the logarithm of (3.1)

(3.2) E[B
(q)
M ] = logE[Xq]− E[logZ

(q)
M ].

Formally, if one chooses q = −β and Yi ∼ N (0,K/2) where K = logM/ log 2, the moment
estimator (3.1) becomes the partition function of the random energy model. However, in
the general context of moment estimation, the parameters of the distribution are fixed and
do not depend on the sample size. Nonetheless, it is possible to make a derivation that is
parallel to the analysis of the random energy model and define an entropy function, which
could depend in a complicated manner on K. Even though, in this case, it is sometimes
not possible to derive closed-form expressions as in the standard REM, the interval [yl, yu] in
which the entropy function is positive can always be estimated numerically. Once this interval
has been computed, one can carry out a derivation similar to REM and find an exponential
approximation to the sample estimate of the qth moment

Z
(q)
M

.
=

1

M
exp

[
K max

y∈[yl,yu]
{sa(y) + qy}

]
(3.3)

For a fixed value of q, depending on the sample size, the maximum of the exponent could be
either inside the interval or at yu:
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1. If M < Mc(q), the main contribution to (3.3) comes from the upper bound of the interval

yu. In this case E[B
(q)
M ] > 0 and the typical values of Z

(q)
M are a poor estimation of E[Xq].

2. If Mc(q) < M , the dominance corresponds to y∗, the local maximum of the exponent.

In this case Z
(q)
M is well approximated by the asymptotic form obtained by saddle point

estimation. In this asymptotic limit the bias of the logarithm of the estimator disappears

E[B
(q)
M ] = 0, which means that typical values of Z

(q)
M are a good estimation of E[Xq].

In the limit of large q, there is an abrupt change of behavior in the estimator as a function of
the sample size.

In this chapter this analysis is carried out for different types of distributions. In section
3.1 we consider X ∼ log−N (0, σ), that is, the random variable Y is Gaussian with zero mean
and variance σ2. As in the REM case, the interval of definition for the entropy function can be
explicitly computed and, following the same reasonings, the phase transition in the estimator
can be described with expressions in closed form.

A generalization of the lognormal case is constructed in section 3.6 for exponential-power-
law distributions [19]. The family of distributions considered in this section is a generalization
of the lognormal case because the pdf of the random variable Y is

fY (y) = ρL′(y)yρ−1 exp [−L(y)yρ](3.4)

where L(y) is a slow varying function; that is, it behaves asymptotically as if it were a constant.
The lognormal case is retrieved with ρ = 2 (see [19]). We also compare the exponential-power-
law approach to the results obtained in section 3.1.

In sections 3.3, 3.4 and 3.5 we analyze the Normal, Weibull and Chi-Squared cases, respec-
tively. It is interesting to analyze the Gaussian case because of the central role played by the
Gaussian distribution in the convergence of sums of independent random variables, as stated in
the Central Limit Theorem. On the other hand, the Weibull distribution is the distribution of
the powers of exponential random variables. Finally, the Chi-Squared distribution with d de-
grees of freedom is related to Normal distribution: sum of d squared normal random variables
is distributed as a Chi-Squared random variable. For these three cases explicit expressions for
the bounds of the interval in which the entropy function is positive ([yl, yu]) cannot be found.
The reason is that the equation for the zeros of the entropy function

sa(y) = log 2− ga(y) + ξy,(3.5)

where ga(y) is an exponential function of y, cannot be solved explicitly. Nonetheless, approxi-
mate solutions of (3.5) can be obtained using numerical methods. Alternatively, approximate
closed-form solutions can be derived by balancing the two dominant terms in (3.5),

log 2 + ξŷl = 0⇒ ŷl = − log 2/ξ(3.6)

log 2− ga(ŷu) = 0⇒ ŷu = g−1a (log 2)(3.7)
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By applying equation (3.3), as in the explicit lognormal case, using the approximated ŷl and
ŷu closed-form expressions of the bias (3.2) on both sides of phase transition are obtained.

As discussed in section 2.2.1 an analysis similar to REM, or more generally, based on large
deviation theory, cannot be applied to distributions with algebraic tails. The reason is that
the entropy function is linear. Therefore, the maximum in (3.3) always corresponds to the

lower bound yl. To model B
(q)
M in the Pareto distribution, we propose to use a method based

on approximating the sample estimate of the qth moment by the truncated moment

Z
(q)
M ≈

∫ UM

0
xqfX(x)dx(3.8)

where UM is such that P(max
i
{Xi}Mi=1 > UM ) is sufficiently small. It seems reasonable to make

the choice in terms of the maximum of the sequence of random variables, GM = max
i
{Xi}Mi=1.

The probability density function (pdf) of this maximum is

(3.9) fM (x) = Mf(x) [F (x)]M−1

where F (x) is the probability distribution of X and f(x) the corresponding density.
In the limit of large samples, Extreme Value Theory [14] provides accurate approximations

to the distribution of GM in terms of three different types of distributions. Specifically, the
Extreme Value Theorem states that in the M → ∞ the distribution of GM approaches one
of these three functional forms: (i) the Weibull distribution, (ii) the Gumbel distribution and
(iii) the Fréchet distribution (see theorem 3.7.1). In section 3.7 the sample average of Pareto
iid random variables are considered. EVT states that the asymptotic behaviour of GM is of
the Fréchet from when X is a Pareto random variable. We compare three models depending
how the value of UM is chosen: (a) the mode of the exact distribution of GM , (b) the mode of
the Fréchet distribution and (c) the mean of the Fréchet distribution.

3.1 The lognormal distribution

Since the partition function in the Random Energy Model (2.16) is, basically, the sum
of lognormal random variables whose variance depends on the number of energy levels, it is
natural to consider the estimator of the moments of lognormal random variables with fixed
parameters.

A random variable X is said to be lognormal random variable of parameters (µ, σ) if
Y = logX so that Y is a Normal random variable N (µ, σ2).

The parameter µ only appears in the scale factor eµ. Therefore, one can assume µ = 0
without loss of generality. Furthermore, if X is lognormal with parameters (µ = 0, σ) , Xq =
exp [qσY ] is also lognormal with parameters (µ = 0, σq). For this reason, it is sufficient to
analyze the estimator of the moment of a lognormal with parameters log−N (µ = 0, σ),

Z
(σ)
M =

1

M

M∑
i=1

Xi =
1

M

M∑
i=1

exp [Yi] , Yi ∼ N (0, σ2)(3.10)
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as a function of σ and M .

The framework developed for the random energy model can also be applied to the analysis
of the sample average (3.10), provided that we make the appropriate parameter identifications.
However, in contrast to REM, the parameters of the corresponding normal random variable
are independent of M . Therefore one has to consider an appropriate asymptotic limit, which
is defined as σ → ∞ and M → ∞ with logM/σ2 → constant. To carry out the analysis in
this limit, one first computes the probability of finding samples in the interval [Kε,K(ε + δ)]
to the exponential leading order. Using (2.22), the entropy function is

sa(y) = log 2− Ky2

2σ2
(3.11)

Since, by definition, the entropy function sa(y) is non negative, the range of y is restricted to

the interval |y| ≤
√

2σ2 log 2
K . Depending on the location of the maximum of the exponent in

(2.2.1) we can distinguish two regimes: The first one appears for small samples M < Mc(σ),
where Mc(σ) = eσ

2/2. Asymptotically, the dominant contribution to the estimator (3.10) comes

from the upper bound of the interval yu =
√

2σ2 log 2
K . The second regime corresponds to large

samples M > Mc(σ), in which the dominant contribution comes from the local maximum of

the exponent y∗ =
σ2

K
. In this regime, and in the limit of large M and σ, the sample average

is close to the saddle point estimate of the moment.

The change of behavior in y∗ = yu corresponds to a second order phase transition in the

asymptotic behavior of Z
(σ)
M

Z
(σ)
M

.
=


exp

[
σ2

2

]
, λ(M,σ) > 1

exp
[√

2σ2 logM − logM
]
, λ(M,σ) < 1

(3.12)

where λ(M,σ) =
2 logM

σ2
. The transition is marked by a discontinuity in the second derivative

of E [logZM ] at the transition point in the limit σ → ∞ and M → ∞ with logM/σ2 →
constant. There is no discontinuity for finite M and σ. Nevertheless, the approximation (3.12)
is still accurate for sufficiently large values of these parameters. In particular, for a sample of
size M , there is a critical value σc(M) =

√
2 logM , such that, for values of σ > σc(M) the

sample average ceases to be an accurate approximation of the expected value of the lognormal

random variable. Alternatively for a fixed value σ, the critical sample size is Mc(σ) = e
σ2

2 .

To validate this analysis, we compare the asymptotic formulas for with simulations in terms

of B
(σ)
M /B

(σ)
max.

Note also that an exact expression can be obtained for B
(σ)
max,

B(σ)
max = E[B1] = logE [X]− E[logX] =

1

2
σ2(3.13)
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Table 3.1: Critical sample size Mc for some values of σ

Shape parameter σ Critical size (Mc)

2 7.38

4 2.98× 103

8 7.89× 1013

16 3.88× 1055

since E[X] = exp
[
1
2σ

2
]

and E[logX] = 0 by observing logX is a Normal random variable with
zero mean and standard deviation σ. Using equation (3.13) and by definition of BM (3.2),

B̂
(σ)
M =

B
(σ)
M

B
(σ)
max

=


0, λ > 1

2
(√

2σ2 logM − logM
)

σ2
, λ < 1

(3.14)

In table 3.1 some values of Mc as a function are showed. It can be observed that critical
sample sizes are smaller than those predicted by Kagan and Nagaev (see section 2.1).

As we can observe in figure 3.1, the model is more accurate when σ increases. Even though
it is not necessary to have large values of σ to obtain accurate models, it can be observed that
the theoretical transition point is far from the empirical one for low values of σ.
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Figure 3.1: Comparison of the theoretical model to simulations for lognormal distribution.

A generalization of the results of the Random Energy Model has been developed in order
to study the estimators of the moments of lognormal distributions. As well as in the REM a
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phase transition was obtained in the behaviour of the partition function (2.29), we have also

obtained a phase transition in the limit M → ∞, σ → ∞ in the estimator Z
(σ)
M . In the next

sections, we generalize this analysis to different distributions.

3.2 The Log-Exponential-Power-Law distribution

In this section we deal with the analysis of Z
(q)
M by reviewing the study of the family of

Log-Exponential-Power-Law distributions presented in [19]. The results of this section can be
compared to those of the previous section because the lognormal distribution is a particular
case of a Log-Exponential-Power-Law distribution.

We say X is a Log-Exponential-Power-Law random variable if the cdf of Y = logX satisfies

1− FY (y) = exp [−h(y)](3.15)

where the function h(y) = L(y)yρ, with ρ > 1 and d L(y) is a slowly varying function, i.e.

lim
y→∞

L(ty)

L(y)
= 1, ∀t ∈ R.

We also impose a condition on the derivatives of h(y),

lim
y→∞

h′′(y)

h′(y)
= 0(3.16)

Under these assumptions, the pdf of the random variable Y is given by

fY (y) = h′(y) exp[−h(y)]

and the qth moment can be written as

E[Xq] = E[eyq] =

∫ ∞
−∞

exp
[
qy − yρL(y) + log h′(y)

]
dy(3.17)

Using the saddle point method to approximate quadratures (see appendix E)

E[Xq]
.
= exp

[
qy∗ − y∗ρL(y∗) + log h′(y∗)

]
(3.18)

where y∗ is the maximum of the argument of the exponential in the integrand. By the condition
of local maximum and using (3.16)

q − h′(y∗) +
h′′(y∗)

h′(y∗)
= 0⇒ h′(y∗) ≈ q(3.19)

We can approximate y∗ by neglecting the slowly varying function L(y),

y∗ ≈
(
q

ρ

)1/(ρ−1)
(3.20)
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This result provides a way to approximate y∗ using only the derivative of h(y).

Since this result is valid only asymptotically, when the sample size is large, the next step
is to analyze the finite size effects in the moment estimate. The probability of the maximum
of a sequence of random variables is given by

P
(

max
i
{Yi}Mi=1 < y

)
= P

(
{Yi}Mi=1 < y, ∀i

)
= P(Y < y)M

because of independence. Consider now a threshold y+τ such that the probability of observing
values that are larger than this threshold is sufficiently small. This quantity can be defined in
terms of the distribution of the maximum,

P
(

max
i
{Yi}Mi=1 < y+τ

)
= e−τ(3.21)

Then,

1− P
(

max {Yi}Mi=1 < y+τ

)
= 1− P

(
Y < y+τ

)M
= 1− e−τ

The complementary of the cdf evaluated at the threshold is

1− FY (y+τ ) = 1− exp
[
− τ

M

]
=

τ

M
+ o

(
1

M

)
,

where the exponential has been approximated using its Taylor series truncated to first order.
By definition of the class of random variables we are considering,

h(y+τ ) = logM − log τ + o (1)

Noting h(y) ∼ yρ and h(y+1 ) ≈ logM , by taking the quotient between y+τ and y+1 ,

y+τ ∼
(

1 +
log τ

logM

)1/ρ

y+1

h(y+τ ) ∼
(

1 +
log τ

logM

)
logM ≈ logM +O(τ)

Therefore h(y+τ ) behaves like logM with a small correction that tends to zero with logM .
Then, it is natural to require

h(y+(M)) = logM(3.22)

Note that y+τ becomes closer to y+1 as the sample size increases. This fact allows us to remove
the dependency in τ since for any τ O(1), y+τ is only a small correction of y+1 . Proceeding as
in equation (3.20),

y+(M) ≈ (logM)1/ρ(3.23)
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For a fixed q and as a function of sample size, the boundary between the two regimes is
defined in terms of a critical sample size Mc(q, ρ)

y+(Mc(q, ρ)) = y∗.(3.24)

Using approximations from (3.20) and (3.23), the phase transition occurs in the limit M →∞,
q →∞ and

λ(M, q, ρ) = ρρ/(ρ−1)
logM

qρ/(ρ−1)
−→ constant(3.25)

When the sample is larger than Mc(q, ρ), the empirical moment estimator is dominated by
(3.18). For small samples we can use the estimation based on truncated moments

T
(q)
M =

∫ y+(M)

−∞
exp

[
qy − h(y) + log h′(y)

]
dy

.
=(3.26)

.
= exp

[
qy+(M)− h(y+(M)) + log h′(y+(M))

]
The convergence to leading exponential order of T

(q)
M to Z

(q)
M is proved in [19].

In summary, for a fixed q, the sample average has a sharp change of behavior

ZM
.
=

{
exp [qy+(M)− h(y+(M)) + log h′(y+(M))] , M < Mc(q, ρ)

exp [qy∗(M)− h(y∗(M)) + log h′(y∗(M))] , M ≥Mc(q, ρ)
(3.27)

This change of behavior leads to a discontinuity in the second derivative of E [ZM ] in the limit

M →∞, q →∞ and
logM

qρ/(ρ−1)
→ constant.

As mentioned earlier, the lognormal distribution is a particular case of the Log-Exponential-
Power-Law distribution with ρ = 2. In the lognormal case, Y is a Gaussian random variable
whose cdf satisfies

FY (y) =
1

2
+

1

2
erf

[
y√
2

]
exp [−h(y)] = 1− FY (Y ) =

1

2
− 1

2
erf

[
y√
2

]
=

1

2
erfc

[
y√
2

]
h(y) = log 2− log erfc

[
y√
2

]
(3.28)

where erf is the error function and erfc the complementary error function. Using the asymptotic
approximation for the complementary error function

erfc(y) −→
y→∞

exp(−y2)√
2πy

(3.29)

and by (3.28) becomes,

h(y) ∼ log 2 +
y2

2
+ log(

√
πy)(3.30)
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Figure 3.2: Comparison of the Log-Exponential-Power-Law model and the REM to simulations.

We use this approximation to h(y) in conditions (3.19) and (3.22) to define y∗ and y+, respec-
tively. In figure 3.2 we compare this model to the one in 3.1 and simulations.

We observe in figure 3.2 the approach of this section (green curve) achieves similar accuracy
to section 3.1 model (red curve). A significant difference between both models is LEPL model
overestimates the normalized bias where as REM approach underestimates it.

3.3 The Folded-Normal distribution

The analysis of the convergence of the empirical moments of the normal distribution is
of particular interest because of the central role this distribution plays in statistics. In this
section, we carry out an analysis parallel to section 3.1 to study the behaviour of the estimator

Z
(q)
M .

Since the analysis presented is valid only for non-negative random variables, we consider the
problem of estimating the moments of a folded normal random variables X = |Z|, Z ∼ N (0, 1)
from a sample of size M . Note that the even moments of X coincide with those of a standard
normal variable. From X, we define the random variable Y = logX, whose pdf is

fY (y) =
2√
2π

exp

[
−e

2y

2
+ y

]
, y ∈ (−∞,∞)(3.31)
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Following (2.22), the entropy function sa(y),

sa(y) = log 2− e2Ky

2K
+ y(3.32)

with K = log 2/ logM . The entropy function is non-negative by definition. Therefore, it
is non-zero only in a bounded interval [yl, yu]. In contrast to the lognormal and the log-
exponential-power-law cases, no closed-form expressions can be given for the bounds of this
interval. Nonetheless, numerical algorithms for finding zeros of nonlinear functions can be
used to estimate them. Alternatively, approximate closed-form expressions can be obtained by
balancing the two dominant terms in the equation sa(y) = 0,

log 2 + ŷl = 0⇒ ŷl = − log 2

log 2− e2Kŷu

2K
= 0⇒ ŷu =

log (2K log 2)

2K
(3.33)

We show in appendix B that these closed-form approximations become more accurate as the
sample size increases. In particular, the error of approximating the upper bound by ŷu ap-

proaches zero as
log logM

logM
in the limit M →∞.

The maximum of the exponent in equation (3.3) is reached at y∗ =
log(q + 1)

2K
. When

M > Mc(q), y
∗ ∈ [yl, yu] and the estimator coincides with the saddle point approximation of

the expected value. Otherwise, the estimate is dominated by yu.

In summary there is an abrupt change in the behavior of Z
(q)
M ,

Z
(q)
M

.
=

{
exp

[
(q+1)

2 ( log(q + 1)− 1 )
]
, λ(M, q) ≥ 1

exp [Kqyu −K log 2] , λ(M, q) ≤ 1
≈

yu≈ŷu
(3.34)

≈

{
exp

[
(q+1)

2 ( log(q + 1)− 1 )
]
, λ̂(M, q) ≥ 1

exp
[ q
2 log (2 logM)− logM

]
, λ̂(M, q) ≤ 1

(3.35)

where λ(M, q) needs to be computed by numerical methods. A closed-form expression using

the approximation ŷu is λ̂(M, q) =
2 logM

q + 1
.

An approximate closed-form expression for the maximum biasB(q)
max = logE [Xq]−qE [logX]

can also be given by computing

E [logX] =
1

2
(−γ − log 2)(3.36)

E [Xq] =
2q/2Γ

(
q+1
2

)
√
π

(3.37)

B(q)
max =

qγ

2
+ log

Γ
(
q+1
2

)
√
π

(3.38)
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where γ is the Euler-Mascheroni constant and Γ is the gamma function.
Some values of Mc as a function of the order of the moment q are shown in table 3.2. It

can be observed that critical sizes are much smaller than in lognormal case.

Table 3.2: Critical sample size Mc for some values of q

Shape parameter σ Critical size (Mc)

2 1.21

4 12, 18

8 90.01

16 4914.76

Finally, the validity of the analysis carried out is illustrated by comparing the asymptotic

results and simulations in terms of B
(q)
M /B

(q)
max (figure 3.3). It can be observed that the closed-

form approximation derived in the perturbative analysis models the estimator behaviour more
accurately than the numerical approximation.
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Figure 3.3: Comparison of the described models for Normal case to simulations.

For low orders, q = 2, 4, both models produce large errors whereas for higher orders the
accuracy increases significantly. In contrast to the lognormal and Log-Exponential-Power-Law
distributions, the transition point is reached even for vales of q as large as q = 16. One can also
concludes from the results of the simulations that the results obtained from the balancing of
the dominant terms in the solution of sa(y) = 0 yields a better approximation than the exact
numerical solution of this equation.
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3.4 The Weibull distribution

In this section we consider the Weibull distribution, also known as the stretched exponential
distribution [20]. The Weibull distribution has been used in different contexts: for example, to
model the distribution of wind speeds [21] or in survival analysis [22]. It is also the distribution
of powers of exponential random variables.

Let Z be an exponential random variable of parameter λ = 1. The probability density
function is

fZ(z) = e−z, z ∈ [0,∞).(3.39)

Define the random variable X = Zq. The corresponding density is

fX(x) =
1

q
x

1
q
−1

exp
[
−x1/q

]
, x ∈ [0,∞)(3.40)

Therefore, X is a Weibull random variable with parameter 1/q. The other usual parameter in
the Weibull distribution is not present because, without loss of generality, the scale parameter
in the exponential distribution has been fixed to λ = 1. The moments of exponential random
variables are simply the mean of a Weibull random variable with shape parameter 1/q. Consider
now Y = logX. For this new random variable

fY (y) =
1

q
exp

[
−ey/q +

y

q

]
, y ∈ (−∞,∞)(3.41)

The corresponding entropy function,

sa(y) = log 2− eKy/q

K
+
y

q
,(3.42)

with K = log 2/ logM . Since the entropy function is non-negative, it is only defined for
y ∈ [yl, yu]. However, sa(y) = 0 is an implicit equation for these bounds. Therefore closed
formulas for yl and yu cannot be obtained. A solution is the numerical approximation of the
boundaries. Another possibility is to make a perturbative analysis based on balancing the
leading terms of the equation as M →∞

log 2 +
ŷl
q

= 0⇒ ŷl = −q log 2(3.43)

log−e
Kŷu/q

K
= 0⇒ ŷu =

q log (K log 2)

K
(3.44)

The error in ŷu tends to zero as
log logM

logM
(see appendix C) as in the folded normal case. By

proposition 2.2.1, we can distinguish two regimes, depending on the location of the maximum of
the exponent y∗ = q log(q+1)

K . When y∗ ∈ (yl, yu), ZM behaves as the asymptotic approximation
from saddle point method. If yu < y∗, the estimator is dominated by yu and finite size sampling
effects are important.
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The presence of these regimes manifests itself in the sharp change in the behavior of ZM
as a function of sample size

ZM
.
=

{
exp [−(q + 1)] (q + 1)q+1, λ ≥ 1

exp
[
− exp

[
Kyu
q

]
+Kyu

(
q+1
q

)]
, λ ≤ 1

≈
yu≈ŷu

(3.45)

≈

{
exp [−(q + 1)] (q + 1)q+1, λ̂ ≥ 1

exp [− logM + (q + 1) log logM ] , λ̂ ≤ 1
(3.46)

where λ̂(M, q) =
logM

q + 1
is an approximation of the exact function λ(M, q). Hence, a second

order phase transition in B
(q)
M appears in the limit M →∞, q →∞ and logM

q → constant.

The maximum value of the bias B
(q)
max can be explicitly computed,

E [logX] = −qγ(3.47)

E [X] = q!(3.48)

B(q)
max = log q! + qγ(3.49)

Some values of Mc(q) as a function of the order of the moment q are given in table 3.3.

Table 3.3: Critical sample size Mc for some values of q

Shape parameter σ Critical size (Mc)

2 20.08

4 148.41

8 8103.08

16 2.41× 107

Finally, the validity of this analysis is illustrated in simulation experiments. The depen-
dence of the bias of logZM as a function of the size of the sample is displayed in figure 3.4 for
different values of q.

It can be observed that both models produce, in general, smaller errors than in Folded-
Normal case (figure 3.3). As in previous we obtain the perturbative analysis provides a more
accurate approximation. Eventually, note that transition point is not reached for q = 16.
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Figure 3.4: Comparison of the described models for the Weibull distribution and the results
of simulations.

3.5 The Chi-Squared distribution

As in previous cases, we are going to carry out a similar analysis for the Chi-Squared
distribution. The Chi-Squared distribution is commonly used is statistical tests in goodness-
of-fit and independence tests [23]. It is also the distribution of sums of squared Normal random
variables,

X =
d∑
i=1

Z2
i , Zi ∼ N (0, 1), X ∼ χ(d).(3.50)

The pdf of a Chi-squared random variable with d degrees of freedom (X ∼ χ(d)) is

fX(x) =
1

2d/2Γ(d/2)
xd/2−1 exp [−x/2] , x ∈ [0,∞), d ∈ N+(3.51)

Consider now the random variable Y = logX, whose probability density function is

fY (y) = Cd exp

[
−e

y

2
+
d

2
y

]
, y ∈ (−∞,∞)(3.52)

In this case, the entropy function is

sa(y) = log 2− eKy

2K
+
d

2
y,(3.53)
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in the region in which this expression is non-negative. The value of the entropy is zero ev-
erywhere except in the interval [yl, yu], where yl and yu are defined as the solutions of the
nonlinear equation

(3.54) sa(yl) = 0, sa(yu) = 0, yl < yu.

As in the cases of a folded Gaussian and of the Weibull distribution, it is not possible to give
exact expressions for the bounds of the interval in which the entropy is non-zero. Nonetheless,
the values of yl and yu can be estimated using numerical algorithms. Alternatively, closed-form
approximate expressions can be obtained by balancing the two leading terms in the nonlinear
equation

log 2 +
d

2
ŷl = 0⇒ ŷl = −2

d
log 2(3.55)

log 2− eKŷu

2K
= 0⇒ ŷu =

log(2K log 2)

K
(3.56)

The difference between ŷu and yu approaches zero as
log logM

logM
when M →∞.

An abrupt change of behavior in Z
(q)
M can be found depending on the location of the local

maximum of the exponent in proposition 2.2.1. For small samples (M < Mc(d, q)) the local
maximum is beyond the interval [yl, yu] and the maximum in the relevant interval [yl, yu] is
y∗ = yu. In this regime, effects related to the size of the sample are dominant in the average.
For large samples, if M > Mc(d, q), the dominant contribution comes from the maximum y∗

and the estimator is well approximated by the result of saddle point integration.

By computing the maximum in (2.2.1) the empirical moment estimator is to exponential
leading order

Z
(q)
M

.
=

{
exp

[
−
(
d
2 + q

)
+
(
d
2 + q

)
log (d+ 2q)

]
, λ(M,d, q) ≥ 1

exp
[
eKyu
2 +K

(
d
2 + q

)
yu

]
, λ(M,d, q) ≤ 1

≈
yu≈ŷu

(3.57)

≈

{
exp

[
−
(
d
2 + q

)
+
(
d
2 + q

)
log (d+ 2q)

]
, λ̂(M,d, q) ≥ 1

exp
[
− logM + log (2 logM)

(
d
2 + q

)]
, λ̂(M,d, q) ≤ 1,

(3.58)

where λ̂(M,d, q) =
2 logM

d+ 2q
is the function that determines where the transition occurs.

Note that using the approximate value ŷu, one recovers the results for the normal distribu-
tion with q = 2 using the results for the Chi-Squared distribution with d = 1, q = 1

λ̂Chi-squared(d = 1, q = 1) = λ̂Normal(q = 2) =
2 logM

3
.(3.59)

As we did in previous cases, the following table contains some values of Mc as a function
of the order of the moment q.
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Table 3.4: Critical sample size Mc for some values of q with 5 degrees of freedom

Shape parameter σ Critical size (Mc)

2 90.01

4 665.14

8 36315.5

16 1.08× 108

An explicit expression can be obtained for the maximum bias
B(q)
max = logE [Xq]− qE [logX],

E[Xq] = 2q
Γ
(
q + d

2

)
Γ
(
d
2

)(3.60)

E[logX] = ψ

(
d

2

)
+ log 2(3.61)

B(q)
max = log

(
Γ
(
q + d

2

)
Γ
(
d
2

) )
− qψ

(
d

2

)
(3.62)

where ψ(x) and Γ(x) are the gamma and the digamma functions respectively.
The validity of this analysis is illustrated using simulations. The dependence of the nor-

malized bias of logZ
(q)
M as a function of M , the sample size, is depicted in figure 3.5. The most

striking feature of these plots is the extremely accurate approximation that results from using
ŷu instead of the exact yu.
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Figure 3.5: Comparison of the described models for Chi-Squared distribution to simulations,
d = 5.

3.6 Critical sample size
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Figure 3.6: Critical sizes for analyzed cases.

In this section we compare the critical sizes for the moment estimators for different dis-
tributions that have been computed in previous sections. The results of this comparison are
compiled in Table 3.5 and depicted in Figure 3.6. From this figure, it is apparent that the
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Table 3.5: Lambda functions for the analyzed distributions

Distribution λ(M, q) Mc(q = 2) Mc(q = 4)

Folded Normal µ = 0, σ = 1
2 logM

q + 1
4.48 12.18

Chi-Squared (d)
2 logM

2q + d
12.18 90.01

Weibull
logM

q + 1
20.08 148.41

lognormal, µ = 0, σ = 1
2 logM

q2
7.39 2980.95

Log-Exponential-Power-Law, ρ = 2 ∼ logM

qρ/(ρ−1)
=

logM

q2
54.59 8.88× 106

Consistency-based method
logM

2q log logM
5503.66 2.14× 1011

value Mc(q) strongly depends on the probability distribution considered. In particular, the
lognormal distribution has higher critical sizes than the other distributions. This is consistent
with the fact that the tails of the lognormal distribution are heavier. The estimates of the
critical sample size based on requiring consistency (see section 2.1) are exceedingly high.

It is interesting to note that, for large q and M , λ(M, q) = constant
logM

qn
for different

values of n > 0.

The results of the empirical analysis presented in this section illustrate that the approx-
imations obtained for the critical size Mc(q) work well for sufficiently heavy-tailed different
distributions. Poor estimations are obtained for low-order moments of random variables with
exponential decay, as illustrated by the results of simulations presented in figure 3.7.

Our hypothesis is the developed analysis are only applicable for heavy-tailed distributions
that do not have algebraic decay. Note that even if the distribution of the original variable
is not heavy-tailed, powers of the original variable will eventually be heavy-tailed. These
observations imply that the change in regime observed in the sample estimator appears in very
general situations.

Note also that the lambda function of the Log-Exponential-Power-Law distributions

λ(M, q, ρ) ∼ logM

qρ/(ρ−1)
(3.63)

interpolates between different cases:

1. As we mentioned in section 3.2, the lognormal case is recovered for ρ = 2.

2. If ρ −→∞,

λ(M, q, ρ) ∼ constant
logM

q
(3.64)
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which is, neglecting the constants, the same λ function as for the Folded-Normal, Chi-
Squared and Weibull cases.

3. If ρ −→ 1+,

logMc(q, ρ) ∼ qρ/(ρ−1) −→∞(3.65)

that is, we cannot reach the asymptotic regime since Mc(q, ρ) increases to infinity. This
situation is found in the analysis of Pareto distributions (see next section).
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Figure 3.7: Low order moments modelization.
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3.7 The Pareto distribution

The Pareto distribution appears in many different contexts. It is the distribution of degrees
of nodes in scale-free networks [24], the distribution of the frequency of words in texts [25], the
time between large earthquakes [26], etc. In all these cases, averages of random samples are
needed and it is reasonable to try a similar approach as in the previous cases.

Let X be a random variable that follows a Pareto distribution

fX(x) = αx−α+1, x ∈ [1,∞)(3.66)

The pdf of the random variable Y = logX is

fY (y) = α exp [−αy] , y ∈ [0,∞)(3.67)

Solving the equation (2.22) for this pdf,

sa(y) = log 2− αy(3.68)

From the functional form of the entropy function it is possible to see that the maximum of the
exponent in (2.26) is yl = 0, the lower bound of the interval, in which the entropy is non-zero.
Therefore, the entropy (rate in LDT) function is zero to leading exponential order, and

ZM
.
= exp [0] .(3.69)

Since a phase transition cannot be obtained, the asymptotic regime is never reached.

Based on the ideas in [19], we can use a truncated moments approach,

ZM ≈
∫ UM

0
x fX(x)dx(3.70)

where UM , the truncation value, depends on M , the sample size.

A first approach is to use a statistic of GM , the maximum of the sample of size M. The
probability distribution and corresponding density are

FGM (u) = P (GM < u) = (P(X < u))M = FX(u)M

fGM (u) = MFX(u)M−1fX(u).

For a Pareto distribution, the quadrature (3.70) can be performed explicitly

ZM ≈
∫ UM

1
αx−αdx =

α

α− 1

(
1− U−α+1

M

)
(3.71)

We are going to note as U
(i)
M , i = 1, 2, 3 each choice of the truncation value. A reasonable trun-

cation value could be U
(1)
M as the mode of the distribution of the maximum. For a continuous

distribution, the mode is the maximum of the pdf,

f ′GM (U
(1)
M ) = 0⇔ (M − 1)fX(U

(1)
M )2 + FX(U

(1)
M )f ′X(U

(1)
M ) = 0(3.72)
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In case of the Pareto distribution,

(M − 1)αU
(1)
M

−α
− (1− x−α)(α+ 1) = 0 ⇒ U

(1)
M =

(
α+ 1

Mα+ 1

)−1/α
(3.73)

For other types of distributions, this value may need to be estimated numerically. Alterna-
tively, to obtain closed-form expressions, one can approximate the distribution of the maximum
by using Extreme Value Theory (EVT) [14]. The Fisher-Tippett-Gnedenko [27, 28] theorem
states that the distribution of the maximum of any distribution behaves asymptotically as
either a Gumbel distribution, a Weibull distribution or a Fréchet distribution. This theorem
can be expressed in a compact way using Hξ(x), the Generalized Extreme Value Distribution
(GEV).

Theorem 3.7.1 Let {Xi} be a sequence of i.i.d random variables and GM = maxi {Xi}. There
exist norming constants bM and cM such as

lim
M→∞

P
(
GM − bM

cM
< x

)
= Hξ(x) =

{
exp

[
−(1 + ξx)−1/ξ

]
, ξ 6= 0,

exp [−e−x] , ξ = 0
(3.74)

Choosing the parameter ξ, Hξ(x) takes the form of one of the three distributions mentioned
before. Applying

FGM−bM/cM (u) = FGM (CMu+ bM )(3.75)

we will have a closed-form for the asymptotic distribution of the maximum.

Depending on the distribution of X, the distribution of the sample maximum approaches
one of these three distributions as the size of the sample increases. In every case, the mode and
the mean have closed formulas thus, even in complicated distributions, we can have closed-form
approximations. In particular, for Pareto random variables, the distribution of the maximum
belongs to the domain of attraction of the Fréchet distribution

c−1M GM
d→ Φα(3.76)

with cM = M1/α and Φα(x) = exp [−x−α] the cdf of Fréchet distribution.
Computing the probability for the maximum of Pareto random samples,

P(GM < u) = exp

[
−x
−α

M

]
(3.77)

One can use the mean or the mode of the Fréchet distribution as truncation values in (3.71)

U
(2)
M = E[GM ] = MΓ

(
1− 1

α

)
(3.78)

U
(3)
M = mode[GM ] = M

(
α

1 + α

)1/α

(3.79)
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Evaluating in every of the three given solutions,

U
(1)
M (Mode of the distribution of the maximum) ⇒ ZM ≈

α

α− 1

(
1−

(
α+ 1

Mα+ 1

)α−1
α

)(3.80)

U
(2)
M (Mean of the EVT limit distribution) ⇒ ZM ≈

α

α− 1

(
1−

[
MΓ

(
1− 1

α

)]1−α)(3.81)

U
(3)
M (Mode of the EVT limit distribution) ⇒ ZM ≈

α

α− 1

(
1−M1−α

(
α

α+ 1

)1−α/α
)(3.82)

We test the validity of the three different choices for Pareto distribution in figure 3.8. It can
be observed that the approximation by choosing UM as the mode of the explicit distribution of
the maximum is the most accurate of the three options. This figure illustrates that considering
the explicit distribution of the maximum is better than the asymptotic one. However, this
approach might not be used in all the cases and EVT could be applied to model the estimator
behaviour.
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Figure 3.8: Bias modelization for each of the three approaches for Pareto distribution. EVT
mean and EVT mode models match almost perfectly for the graphics with α > 4.
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Chapter 4

Conclusions and further work

Conclusions

In this work we have analyzed the convergence of sample averages to the actual value of
mean, which, according to the law of large numbers, is the asymptotic limit of this quantity
as the sample size increases. The estimator is unbiased, because the expected value of the
sample average coincides with the mean for any sample size. However, the distribution of
this estimator for small samples can in general be very skewed. Specifically, its maximum,
which corresponds to typical values of the estimator, can be quite different from its mean.
This difference between typical and average behavior means that, in practice, the estimator,
in spite of being unbiased, is not accurate for small samples. As the sample size increases the
typical values of the estimator approach the expected vale. Asymptotically, for distributions
of finite variance, the estimator has a normal distribution, centered around the actual value
of the mean and a variance that is inversely proportional to the sample size. To describe
how this transition takes place, we have performed an analysis in terms of the bias of the
logarithm of the empirical estimator. As shown in the introduction, this quantity has some
desirable properties such as monotonicity and asymptotic convergence (see propositions (1.1.3)
and (1.1.1) respectively). These properties make the bias of the logarithm of the estimator a
useful tool to analyze the behavior of the estimator as a function of the sample size.

The analysis of the logarithm bias of the estimator is inspired by the analysis of the partition
function in models of disordered systems in the area of statistical physics. Specifically, we
have made extensive use of the analysis made in of the random energy model [10]. The
partition function in the random energy model is a sum of exponentials of minus β, the inverse
temperature, times a normal random variable whose variance scales with the number of energy
levels (the sample size in our problem). The quenched free energy is proportional to the
expectation of the logarithm of the system’s partition function Under these conditions one
finds a phase transition as a function of temperature β−1 (2.29). For low temperatures β > βc,
the sample free energy is different from its asymptotic value. As the temperature of the system
increases, in the limit in which the number of energy levels approaches infinity (limit of large
samples), the bias in the quenched free energy decreases, and, above a transition temperature
β−1c , becomes exactly zero. The transition is marked by a discontinuity in the second derivative
of the quenched free energy. The analysis made in REM is not completely formal. Nonetheless,
it is possible to provide a more rigorous derivations of REM’s results within the mathematical
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framework of Large Deviation Theory.

In chapter 3 the tools employed in the REM are applied to the analysis of the convergence
of averages of independent identically distributed random variables sampled from different
distributions. The main difference with the analysis performed in REM is that the parameters
of this distributions do not depend on the size of the sample. For this reason, we focus on the
analysis of sample estimates of the qth moment. The main result of this analysis is that, for a
wide class of distributions, the logarithm of the empirical moment exhibits a phase transition
akin to the one found in REM in the limit of large samples M → ∞ and large q → ∞
with logM/qn finite for some n that depends on the particular distribution considered. The
analysis is made for sample estimates of the moments of lognormal, exponential, normal, Chi-
Squared and Weibull random variables. In all the studied cases, the analysis is validated using
Monte-Carlo simulations.

As discussed in section 2.2.1, the REM and LDT analysis can only be applied to certain
types of distributions. It cannot be applied to distributions whose tails decay algebraically,
such as the Pareto distribution. For these types of distributions, the entropy function is zero.
Therefore, for this case, the convergence of sample moment estimator is analyzed in terms of
estimations of truncated moments. The truncation threshold is chosen as a statistic (the mode
or the mean) of the distribution of the sample maximum 3.7. In contrast to the previous case,
there is no phase transition: one is always in the small sample regime. Monte Carlo simulations
are used to illustrate the results of the analysis performed.

Further work

As shown in section 2.2.1, Large Deviation Theory provides a formal framework for the
random energy model analysis. One of the lines of future research is to provide the theoretical
justification of the results shown in chapter 3 using the LDT framework. In particular, one can
apply the Large Deviation Principle to the measure (2.55) associated with different distribu-
tions and then use Varadhan’s Theorem to obtain corresponding rate function. The truncated
moments estimate developed for the Pareto distribution in section 3.7 could also prove a useful
tool for analysis of the other distributions.

In the random energy model there is a second phase transition for the fluctuations around
the sample average [29]. Presumably, this second transition is also present for the distributions
studied in this work. One may expect the existence of three separate regimes: the first one
(small samples), in which where the logarithm of the sample average is a biased estimator of
the logarithm of the mean; a second regime in which the logarithm of the sample average is
unbiased but where the logarithm of the sample variance is a biased estimator of the logarithm
of the variance; finally, for large samples, a regime in which these two quantities have converged
and the CLT applies, so that the empirical average is approximately normal.

From the observations made in section 3.6, we hypothesize that the REM analysis is valid
only for subexponential distributions [30, 31] with non-algebraic tail decay. A random variable
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X is said to be subexponential if

P (X1 + ...+XM < x)

MP (X < x)
−→
x→∞

1(4.1)

It is worth investigating whether this is the relevant asymptotic regime for the analysis of finite
sample averages.

The quantity logZ
(q)
M is strongly related to cumulant generating function. To make this

connection apparent, define the random variable Y = logX

logZ
(q)
M =

1

M

M∑
i=1

exp [qY ] −→
M→∞

logE[eqY ] = g(q)(4.2)

where the g(q) is

g(q) =
∞∑
i=1

κi
qi

i!
(4.3)

and κi is the cumulant of order i.

Another possible approach to analyze the behavior of the sample moment estimator is to
study the convergence properties of the Edgeworth Series [32] of a given distribution. Let ZM
be the sum of standardized M random variables. The Central Limit Theorem states that

lim
M→∞

FZM (x) = Φ(x)(4.4)

where Φ(x) is the cdf of the Normal distribution. From this relation one obtains

FZM (x) = Φ(x) +

∞∑
j=1

Pj(−∂x)

M j/2
Φ(x),(4.5)

wher ∂x ≡ ∂
∂x is the derivative operator The summation in this formula indicates how far the

estimator is from the Normal distribution and the coefficients of the polynomials Pj(·) can be
written in terms of the cumulants. A line of research is the analysis of the convergence of the
sample estimates of cumulants and, as a result of this analysis, establish the conditions under
which the CLT is an accurate approximation for ZM .

The results for lognormal random variables can be applied to the field of telecommunica-
tions [33]. In particular, lognormal distribution has been used as a model in slow fading in
communications channels. The performance of wireless systems performance with interfering
stations can be studied in terms of sums of lognormal random variables. The goal of most
previous studies in this area [33, 34] is to approximate the distribution of these sums.

In statistics and machine learning sums of iid random variables are ubiquitous. For in-
stance, maximum likelihood estimators in model fitting are generally expressed in terms of
sample averages

Θ̂ML =
M∑
i=1

g(xi)(4.6)
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Analyzing the distribution of {g(xi)} it is possible to determine a critical size Mc such that, for
sufficiently large samples M > Mc, the maximum likelihood estimator (4.6) is accurate. For
instance, a maximum likelihood fit of the tail index of a Pareto distribution, α, from a sample
{xi}Mi=1, yields

α̂ = 1 +M

[
M∑
i=1

log xi

]−1
.(4.7)

α̂ is the so called Hill estimator [35].

In summary, the main contribution of this work is to propose a criterion for the convergence
of typical values of the sample average to the expected value in terms of the bias of the logarithm
of this estimator. Since sums of random variables appear in a vast number of scientific fields,
these results have a wide range of application. In particular, they open new lines of research
in computational statistics and in machine learning.

48



Appendix A

Lognormal distribution

The pdf of a lognormal random variable X is a lognormal random variable if and only if its
pdf is given by

(A.1) fX(x) =
1

x
√

2πσ2
exp

[
−(log x− µ)2

2σ2

]
, x ∈ (0,∞)

X can be expressed as the exponential of a normal random variable,

(A.2) X = eµ+σY , Y ∼ N (0, 1)

The parameter eµ is a scale parameter. Therefore one can set µ = 0 without loss of generality.
All the moments of the lognormal distribution are defined.

If X is lognormal with parameters µ = 0 and σ, Xq also follows a lognormal distribution
with parameters µ = 0 and σq. In consequence, one only needs to carry out the analysis for a
lognormal distribution with parameters µ = 0 and σ.

A direct and asymptotically exact estimate using the saddle point approximation can be
applied

E[eY ] =

∫ ∞
−∞

1√
2πσ2

exp

[
− y2

2σ2
+ y

]
dy

.
= exp

[
max

(−∞,∞)

{
− y2

2σ2
+ y

}]
.
= exp

[
σ2

2

]
(A.3)

Let’s assume we have a random sample of size M = 2K distributed as X. We can express
the probability of having a value of the sample in an interval [Kε,K(ε + δ)] in terms of the
entropy function sa(y)

P (Y ∈ [Kε,K(ε+ δ)]) =

∫ K(ε+δ)

Kε

1√
2πσ2

exp

[
−y2

2σ2

]
dy =

∫ ε+δ

ε

K√
2πσ2

exp

[
K

(
−Kz2

2σ2

)]
dz

.
=

.
= exp

[
K

(
max

y∈(ε,ε+δ)

{
−Ky

2

2σ2

})]
.
= exp

[
K

(
max

y∈(ε,ε+δ)
{sa(y)− log 2}

)]
where equations (2.18) and (2.20) have been combined. The entropy function is then given by

sa(y) = log 2− Ky2

2σ2
(A.4)

49



APPENDIX A. LOGNORMAL DISTRIBUTION

sa(y) is a non-negative function, so it is only defined for an interval of possible values of y,

|y| ≤
√

2σ2 log 2

K
. We will note as yl and yu the lower bound and the upper one respectively.

ZM ≈
1

M

∫ yu

yl

exp [K {sa(y) + y}] dy .
= exp

[
K max

[yl,yu]
{sa(y) + y − logM}

]
(A.5)

The maximum of the exponent is reached at y∗ = σ2

K and then the estimate is given by
evaluating the previous formula at y∗,

ZM ≈ exp

[
σ2

2

]
(A.6)

Note this approximation matches the saddle point estimate result. However, this point might
not lie in the interval [yl, yu]. If this occurs, the maximum of the exponent is reached at the
upper bound of the interval yu. Evaluating,

ZM ≈ exp
[√

2Kσ2 log 2−K log 2
]

= exp
[√

2σ2 logM − logM
]

(A.7)

Analyzing lognormal distribution we have found two cases with different behavior. First
one corresponds to M ≥Mc(σ), where the best estimate is given by the saddle point method.
The second case, Mc(σ) ≤ M depends on the sample size and is biased compared to saddle
point estimate. The critical point where phase transition occurs, y∗ = yu,

K =
σ2

2 log 2
⇔M = exp

[
σ2

2

]
(A.8)

From this result we can describe the phase transition in terms of the sample size

ZM
.
=


exp

[
σ2

2

]
, λ(M,σ) > 1

exp
[√

2σ2 logM − logM
]
, λ(M,σ) < 1

where λ(M,σ) = 2 logM
σ2
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Appendix B

Folded Normal distribution

The pdf of a folded normal (or folded Gaussian) random variable X is

fX(x) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]
+

1√
2πσ

exp

[
−(−x− µ)2

2σ2

]
, x ∈ [0,∞)(B.1)

where µ is a location parameter and σ a scale one. Without loss of generality, one can assume
µ = 0, σ = 1. The object we want to analyze is the estimator of the qth moment of the
distribution

Z
(q)
M =

1

M

M∑
i=1

Xq
i(B.2)

We define the random variable Y = logX whose pdf is

fY (y) =
2√
2π

exp

[
−e

2y

2
+ y

]
(B.3)

A direct saddle point estimation of the q-th moment is

E[eqY ] =

∫ ∞
−∞

2√
2π

eyq exp

[
−e

2y

2
+ y

]
dy

.
= exp

[
max

y∈(−∞,∞)

{
−e

2y

2
+ (q + 1)y

}]
=

= exp

[
(q + 1)

2
( log(q + 1)− 1 )

]
(B.4)

Given a interval [Kε,K(ε+ δ)], the probability of it can be estimated by,

P(Y ∈ [Kε,K(ε+ δ)]) =

∫ K(ε+δ)

Kε

2√
2π

exp

[
−e

2y

2
+ y

]
dy =

∫ ε+δ

ε

2K√
2π

exp

[
K

(
−e

2Kz

2K
+ z

)]
dz

.
=

.
= exp

[
K

(
max

y∈[ε,ε+δ]

{
−e

2Kz

2K
+ z

})]
.
= exp

[
K max

y∈[ε,ε+δ]
{sa(y)− log 2}

]
where the term log 2 is a result of the combination of equations (2.18) and (2.20). Solving the
equation we get the entropy function is expressed as

sa(y) = log 2− e2Ky

2K
+ y(B.5)
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We have to find the interval [yl, yu] where the entropy is positive. However, this can only
be made by numerical methods. Despite this fact, we can make a perturbative analysis by
assuming a balance between two dominant terms in the equation when M = 2K → ∞. For
the lower bound of the interval, log 2 + ŷl = 0,

ŷl = − log 2(B.6)

resŷl = −e
−2K log 2

2K
−→
K→∞

0(B.7)

and the error tends to zero exponentially fast with K.

For the upper bound of the integral, log 2− e2Kŷu

2K
= 0,

ŷu =
log(2K log 2)

2K
(B.8)

resŷu =
log(2K log 2)

2K
−→
K→∞

0(B.9)

and, in this case, the error tends much slower to zero, as
log logM

logM
.

We can model the behavior of the qth moment estimator by

Z
(q)
M ≈

∫ yu

yl

exp [K (sa(y) + qy)] dy
.
= exp

[
K max

y∈[yl,yu]
{sa(y) + qy}

]
(B.10)

The exponent has a maximum at y∗ =
log(q + 1)

2K
for sufficiently large sample size. In this

regime,

Z
(q)
M = exp

[
(q + 1)

2
( log(q + 1)− 1 )

]
(B.11)

as the saddle point estimation of the q-th moment. For small samples the maximum of the
exponent in equation (B.10) is reached at the upper bound of the interval,

Z
(q)
M = exp [Kqyu −K log 2] ≈

yu≈ŷu
exp

[
−K log 2 +

(q + 1)

2
log(2K log 2)

]
=

(2 logM)(q+1)/2

M

(B.12)

The critical size that is the border between both regimes is

y∗ = yu ⇔ Kc =
log(q + 1)

2yu
⇔Mc = exp

[
log(q + 1)

2yu

]
(B.13)

y∗ = ŷu ⇔ K̂c =
q + 1

2 log 2
⇔ M̂c = exp

[
q + 1

2

]
(B.14)
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by numerical and perturbative analysis respectively. Combining these results, the phase tran-
sition between the two regimes,

Z
(q)
M

.
=

{
exp

[
(q+1)

2 ( log(q + 1)− 1 )
]
, λ ≥ 1

exp [Kqyu −K log 2] , λ ≤ 1
≈

yu≈ŷu
(B.15)

≈

exp
[
(q+1)

2 ( log(q + 1)− 1 )
]
, λ̂ ≥ 1

(2 logM)(q+1)/2

M , λ̂ ≤ 1
(B.16)

where λ(M, q) can only be computed by numerical methods and λ̂(M, q) =
2 logM

q + 1
.
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Appendix C

Weibull distribution

The pdf of a Weibull random variable X is

fX(x) =
1

q
x

1
q
−1

exp
[
−x1/q

]
, x ∈ [0,∞)(C.1)

Without loss of generality, one can set the scale parameter to 1. The shape parameter, usually
noted as k, is changed to 1/q to emphasize the property of being the distribution of the moments
of an exponential random variable with scale parameter 1. So we only have to analyze the
mean of this variable to get the behavior of the moments of exponential random variables.

We define the random variable Y = logX whose pdf is

fY (y) =
1

q
exp

[
−ey/q +

1

q
y

]
, y ∈ (−∞,∞)(C.2)

As in the previous cases we can give an estimation of the average by saddle point method,

E[eY ] =
1

q

∫ ∞
−∞

exp

[
−ey/q +

1

q
y + y

]
dy

.
= exp

[
max
y

{
−ey/q +

q + 1

q
y

}]
=

= exp [−(q + 1)] (q + 1)q+1 .
= (q + 1)!(C.3)

where the last approximation is given by the Stirling’s approximation for the factorial.

Computing the probability of the interval [Kε,K(ε+ δ)],

P (Y ∈ [Kε,K(ε+ δ)]) =

∫ K(ε+δ)

Kε

1

q
exp

[
−ey/q +

1

q
y

]
dy =

=
K

q

∫ ε+δ

ε
expK

[
−e

Kz/q

K
+
z

q

]
dz

.
= exp

[
K max

y∈[ε,ε+δ]

{
−e

Kz/q

K
+
z

q

}]

= exp

[
K max

y∈(ε,ε+δ)
{sa(y)− log 2}

]
The entropy function for the Weibull distribution is given by

sa(y) = log 2− eKy/q

K
+
y

q
, y ∈ [yl, yu](C.4)
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The bounds of the interval in which the entropy is defined are obtained by setting sa(y) = 0.

Even though an exact formula for the zeros of sa(y) cannot be obtained, we can make a
perturbative analysis to get their asymptotic behavior by balancing the two dominant terms
sa(y) as M →∞ and analyzing the residual.

Let’s assume a balance of the form

log 2−
exp

[
Kŷu
q

]
K

= 0⇔ ŷu =
q log (K log 2)

K
(C.5)

resŷu(K) =
ŷu
q

=
log (K log 2)

K
−→
K→∞

0

The upper zero of the entropy function behaves as ŷu and the error produced by this estimation

tends to zero as a function of the sample size resŷu(M) ≈ log logM

logM
.

Another possible balance between terms of the equation could be

log 2 +
yl
q

= 0⇔ yl = −q log 2(C.6)

resŷl(K) = − 1

K
exp [−K log 2] −→

K→∞
0

In this balance the estimate yl does not depend on the sample size. Note the residual tends to

zero much faster than in previous case, resŷl(M) ≈ 1

M logM
.

An important observation is that ŷl underestimates yl and ŷu overestimates yu (their resid-
uals are negative and positive respectively). So the true range [yl, yu] is always contained in
[ŷl, ŷu].
Once we have made this analysis we can compute

ZM
.
=

∫ ŷu

ŷl

exp [K (sa(y) + y)] dy
.
= exp

[
K max

y∈[ŷl,ŷu]
{sa(y) + y}

]
(C.7)

For sufficiently large size, the maximum of the exponent is reached at y∗ = q log(q+1)
K and

ZM
.
= exp [−(q + 1)] (q + 1)q+1(C.8)

as we had estimated by saddle point.

If y∗ /∈ [yl, yu], the maximum of the exponent is reached at the upper bound of the interval
yu. As we mentioned before, yu can only be computed exactly by numerical methods but we
can make use the approximation in the perturbative analysis.

ZM
.
= exp

[
− exp

[
Kyu
q

]
+Kyu

(
q + 1

q

)]
≈

yu∼ŷu

(
log 2K

)q+1

2K
=

(logM)q+1

M
(C.9)

We can also estimate a critical sample size Mc between the two regimes by

ŷu = y∗ ⇔ K̂c =
q + 1

log 2
⇔ M̂c = exp [q + 1](C.10)
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Joining all the analysis we can describe the behavior of ZM ,

ZM
.
=

{
exp [−(q + 1)] (q + 1)q+1, λ ≥ 1

exp
[
− exp

[
Kyu
q

]
+Kyu

(
q+1
q

)]
, λ ≤ 1

≈
yu≈ŷu

(C.11)

≈

{
exp [−(q + 1)] (q + 1)q+1, λ̂ ≥ 1
(logM)q+1

M , λ̂ ≤ 1
(C.12)

where λ̂(M, q) =
logM

q + 1
.
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Appendix D

Chi-Squared distribution

The pdf of a Chi-Squared random variable X is

fX(x) =
1

2d/2Γ(d/2)
xd/2−1 exp [−x/2] , d ∈ N, x ∈ [0,∞)(D.1)

where d are the degrees of freedom of the distribution. We note X ∼ χ(d). Chi-squared
random variables are additive, that is if X1, ..., XM are distributed as Xi ∼ χ(di) then the
random variable H = X1 + ...+XM ∼ χ(d1 + ...+ dM ).

One can express the pdf of a random variable Y = logX as

fY (y) = Cd exp

[
−ey

2
+
d

2
y

]
, y ∈ (−∞,∞)(D.2)

A saddle point estimate of the q-th moment can be given by

E[eqY ] =

∫ ∞
−∞

Cd exp

[
−e

y

2
+

(
d

2
+ q

)
y

]
dy

.
= exp

[
max

y∈(−∞,∞)

{
−e

y

2
+

(
d

2
+ q

)
y

}]
=

= exp

[
−
(
d

2
+ q

)
+

(
d

2
+ q

)
log (d+ 2q)

](D.3)

The probability of a sample of being inside an interval [Kε,K(ε+ δ)] is

P (Y ∈ [Kε,K(ε+ δ)]) =

∫ K(ε+δ)

Kε
Cd exp

[
−e

y

2
+
d

2
y

]
dy

=

∫ ε+δ

ε
CdK exp

[
K

(
−eKz

2K
+
d

2
z

)]
dz

.
= exp

[
K max

y∈[ε,ε+δ]

{
−eKy

2K
+
d

2
y

}]
.
=

.
= exp

[
K max

y∈[ε,ε+δ]
{sa(y)− log 2}

]
The entropy function for Chi-Squared distribution is

sa(y) = log 2− eKy

2K
+
d

2
y, y ∈ [yl, yu](D.4)
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A perturbative analysis to solve sa(y) = 0 is carried out by balancing the two dominant
terms as M →∞,

log 2− eKŷu

2K
= 0⇔ ŷu =

log (2K log 2)

K
(D.5)

resŷu =
d

2

log (2K log 2)

K
−→
K→∞

0(D.6)

where the residual tends to zero like
log logM

logM
.

On the other hand,

log 2 +
d

2
ŷl = 0⇔ ŷl = −2

d
log 2(D.7)

resŷl = −
exp

[
−2K log 2

d

]
2K

−→
K→∞

0(D.8)

and in this case the residual tends to zero much faster than in the previous case, as
1

M logM
.

Z
(q)
M ≈

1

M

∫ yu

yl

exp [sa(y) + qy] dy
.
= exp

[
K max

y∈[yl,yu]
{sa(y) + qy}

]
=

= exp

[
K max

y∈[yl,yu]

{
log 2− eKy

2K
+

(
d

2
+ q

)
y

}]
(D.9)

For a sufficient sample size,the maximum is reached at y∗ =
log (d+ 2q)

K
and

Z
(q)
M

.
= exp

[
−
(
d

2
+ q

)
+

(
d

2
+ q

)
log (d+ 2q)

]
(D.10)

Note this estimate is exactly the same as saddle point one.
For small sizes, y∗ /∈ [yl, yu] and the maximum is reached at yu. Evaluating,

Z
(q)
M

.
= exp [Kqyu −K log 2] ≈

yu≈ŷu
exp

[
−K log 2 + log (2K log 2)

(
d

2
+ q

)]
(D.11)

One can set a critical size Mc imposing the border condition,

y∗ = yu ⇔
log (d+ 2q)

Kc
= yu

y∗ = ŷu ⇔ K̂c =
d+ 2q

2 log 2
⇔ M̂c = exp

[
d+ 2q

2

]
(D.12)

Joining all the previous results, the phase transition is described as

Z
(q)
M

.
=

{
exp

[
−
(
d
2 + q

)
+
(
d
2 + q

)
log (d+ 2q)

]
, λ ≥ 1

exp
[
eKyu
2 +K

(
d
2 + q

)
yu

]
, λ ≤ 1

≈
yu≈ŷu

(D.13)

≈

{
exp

[
−
(
d
2 + q

)
+
(
d
2 + q

)
log (d+ 2q)

]
, λ̂ ≥ 1

exp
[
−K log 2 + log (2K log 2)

(
d
2 + q

)]
, λ̂ ≤ 1

(D.14)
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where λ̂(M,d, q) =
2 logM

d+ 2q
is the function that controls the transition.
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Appendix E

Asymptotic evaluation of integrals

The theory of asymptotic evaluation of integrals can be placed in a more general context of
complex analysis. In particular, the study of holomorphic functions, differentiable complex-
valued functions, provides theorems to easily compute integrals on complex contours. One of
the most important theorems in complex analysis is Cauchy’s integral theorem. Basically, it
states that the integral of an holomorphic function over a closed contour is always zero. A
direct application of this theorem is that it doesn’t matter the path we choose, the integral of
a holomorphic function between two points is invariant.

γ

γ1

γ2

γ3
a

b
b

a

Figure E.1: Illustration of the Cauchy’s Integral Theorem. The union of paths γ1 and γ2
is exactly γ so the sum of the integrals over them has to be 0 which implies they are equal
(orientation of the paths changes the sign of the integral). Applying the same reasoning, the
integral over γ3 is equal to the previous ones.

Given a complex-valued function f(z) = u(z) + iv(z), we define the integral

I(K) =

∫ b

a
g(z) exp [K f(z)] dz,K >> 0(E.1)

Let’s assume f has an only maximum and it is analytic in the whole complex plane. Our
intention is to modify the integration countour in order to pass through the maximum (saddle

63



APPENDIX E. ASYMPTOTIC EVALUATION OF INTEGRALS

point) z0. We can approximate the function in a neighborhood of z0,

f(z) ≈ f(z0) +
1

2
f ′′(z0)(z − z0)2

and I(K) becomes

I(K) = g(z0) exp [Kf(z0)]

∫
exp

[
K

2
f ′′(z0)(z − z0)2

]
dz(E.2)

We can parametrize the integrand using the exponential form for complex numbers,

f ′′(z0) = |f ′′(z0)|eiθ, z − z0 = reiφ

I(K) ≈ g(z0) exp [Kf(z0)]

∫
exp

[
K

2
|f ′′(z0)|ei(θ+2φ)r2

]
eiθdr

Note θ is fixed, r is the integration variable and we can choose φ. Just by imposing θ+ 2φ = π
and extending the interval of integration from (−∞,∞),

I(K) ≈ g(z0) exp [Kf(z0) + iθ]

∫ ∞
−∞

exp

[
−K

2
|f ′′(z0)|r2

]
dr(E.3)

Finally applying the integration of a general Gaussian function∫ ∞
−∞

e−(x+b)
2/c2dx = c

√
π(E.4)

we get the saddle point estimation of the integral,

I(K) ≈ exp [Kf(z0) + iθ]

(
2π

K|f ′′(z0)|

)1/2

(E.5)

The Laplace’s method and the stationary phase one, that have been widely used through
this document, are particular cases of this general theory taking different values for φ (φ = 0
in Laplace’s method for considering only real functions and θ + 2φ = π/2 in the stationary
phase method).
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Appendix F

Monotonic decrease in the bias of
the logarithm of the empirical
estimator of the mean

The proof given in this section can be considered a generalization of the Jensen’s inequality
and it is constructed in [36]. First of all, we state this useful result.

Proposition F.0.2 Given a random variable X and g a convex function, then

g(E[X]) ≤ E[g(X)](F.1)

Let’s assume g is a increasing function, then g−1 is properly defined,

E[X] ≤ g−1 (E[g(X)])(F.2)

The left part of the inequality is a linear average whereas right part will be non-linear in
general.
We also define the sample expression of the right part of the inequality,

〈X〉Mg = E

[
g−1

(
1

M

M∑
i=1

g(Xi)

)]
=

∫
g−1

(
g(x1) + ...+ g(xM )

M

) M∏
i=1

fX(xi)dxi(F.3)

Now we can state the theorem we want to focus on.

Theorem F.0.3 Consider a sequence {Xi}Mi=1 of random variables. Then

〈X〉gM+1 ≥ 〈X〉
g
M(F.4)

Firstly, we can decrease the problem complexity to single-sample non-linear average of ar-
bitrary size M . Note we can consider that every n-sample is weighted by its probability
fX,M ({xi}) =

∏M
i=1 fX(xi) and we can construct samples of size M − 1 by removing one ele-

ment from the sample (we have M choices to remove) uniformly distributed from the M sized
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THE EMPIRICAL ESTIMATOR OF THE MEAN

sample. Let’s name {x̂i} a sample of size M − 1, then

fX,M−1({x̂i}) =
1

M

(∫
fX,M (x, x̂1, ..., x̂M−1) dx+

∫
fX,M (x̂1, x, ..., x̂M−1) dx+

+...+

∫
fX,M (x̂1, x̂2, ..., x) dx

)
=

M−1∏
i=1

fX(x̂i)

so the construction is consistent.

Let’s name

uM ({xi}) = g−1

(
1

M

M∑
i=1

g(xi)

)
(F.5)

Just by definition E [uM ({xi})] = 〈X〉gM . We can write the recently defined uM as

uM ({xi}) = g−1

 1

M

M∑
j=1

1

M − 1

∑
i 6=j

g(xi)

(F.6)

because every term i in the second summation appears M − 1 times (in every j 6= i). Let’s
name {xi}[j] the previous sample where we have removed the jth element. Rewriting uM ,

uM ({xi}) = g−1

 1

M

M∑
j=1

g(uM−1({xi}[j]))

(F.7)

because of definition of uM−1 in (F.5). Observing uM−1({xi}[j]) can be considered a random
variable of a discrete probability space of size M and applying the inequality (F.2),

uM ({xi}) = g−1
(
E
[
g
(
uM−1({xi}[j])

)])
≥ E

[
uM−1({xi}[j])

]
=

1

M

M∑
j=1

uM−1({xi}[j])(F.8)

Taking the expectation on the random sequence {xi}Mi=1 at both sides of the inequality and
using the observation about the construction of the samples of size M − 1 from one of size M ,

〈X〉gM = E{xi} [uM ({xi})] ≥ E{xi}

[
1

M

M∑
i=1

uM−1({xi}[j])

]
=

=
1

M

[∫
g−1

(
g(x2) + ...+ g(xM )

M − 1

)
fX,M (x, x2, ..., xM )dx dx2 ... dxM + ...

...+

∫
g−1

(
g(x1) + ...+ g(xM−1)

M − 1

)
fX,M (x1, ..., xM−1, x)dx1...dxM−1dxM

]
=

=
1

M

[
M

∫
g−1

(
x1 + ...+ xM−1

M − 1

)M−1∏
i=1

fX(xi)dxi

]
= 〈X〉gM−1

where we have used the factorizability of the probability density function. So we have obtained
〈X〉gM ≥ 〈X〉

g
M−1.

The proof of the monotonicity of the logarithm bias is just an application of this theorem
just by taking g(x) = ex.
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