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ABSTRACT  

 

G protein–coupled receptor kinase 2 (GRK2) is emerging as a key integrative 

node in cell migration control. In addition to its canonical role in the desensitization of 

G protein-coupled receptors involved in chemotaxis, novel recently identified GRK2 

substrates and interacting partners appear to mediate the GRK2-dependent modulation 

of diverse molecular processes involved in motility, such as gradient sensing, cell 

polarity or cytoskeletal reorganization. We have recently identified an interaction 

between GRK2 and histone deacetylase 6 (HDAC6), a major cytoplasmic α-tubulin 

deacetylase involved in cell motility and adhesion. GRK2 dynamically associates with 

and phosphorylates HDAC6 to stimulate its α-tubulin deacetylase activity at specific 

cellular localizations such as the leading edge of migrating cells, thus promoting local 

tubulin deacetylation and enhanced motility. This GRK2-HDAC6 functional interaction 

may have important implications in pathological contexts related to aberrant epithelial 

cell migration. 



 

 

Many cell types are able to undergo molecular and morphological polarization 

and to trigger motion in response to chemotactic gradients. Such oriented migration or 

chemotaxis is a fundamental process in embryogenesis, immunity and wound healing. 

However, it also contributes to pathological conditions such as cancer or inflammatory 

diseases 1 2. Directional sensing involves the detection of asymmetric extracellular cues 

by different membrane receptors, many of them chemokine receptors belonging to the G 

protein-coupled receptors superfamily (GPCR). In turn, stimulated chemotactic 

receptors generate localized activation of intracellular signaling effectors, leading to cell 

polarization (i.e. the establishment of distinct functionally and morphological 

specialized domains at the front and the rear of the cell body), membrane protrusion and 

the generation of forces required to move the cell towards the chemotactic stimuli 3,4. 

 Receptor desensitization and internalization have been considered to play an 

important role in chemotaxis, since these processes modulate the intensity and duration 

of agonist stimulation 5,6. GPCR desensitization initiates with the phosphorylation of 

ligand-bound receptors by a group of seven serine/threonine kinases termed G protein-

coupled receptor kinases (GRKs), of which GRK2 is the most ubiquitous member. This 

phosphorylation event enables the association of arrestins, which leads to receptor 

uncoupling from G proteins (i.e. desensitization). Arrestins also engage endocytic 

adaptors to trigger transient internalization of receptors, which then may be recycled 

back to the membrane (re-sensitization) or targeted for degradation7,8. Consistent with 

such canonical negative role, enhanced expression of GRK2 has been shown to inhibit 

the chemotactic response of “professional” migratory cells of the immune system (at 

least to some chemokines, Fig 1).  

However, how receptor desensitization participates in the different processes 

underpinning chemotactic movement has not been fully deciphered. Importantly, once 

oriented movement is initiated, locomotion needs to be maintained until cells reach 

destination. A recent work proposed that GRK2 levels are important for defining the 

stop signal of migration. Chemotaxis usually displays a biphasic dose-dependent 

behaviour in response to chemoattractants, with inhibition appearing at higher doses of 

these compounds. The threshold for such inhibition could be dictated by GRK2 

expression levels and the related extent of receptor desensitization and internalization. 



Therefore, in the absence of this kinase cessation of migration would not be achieved 

properly, what might result in sustained stimulated locomotion 9.  

Remarkably, emerging evidence indicate that the impact of GRK2 on cell 

migration is highly dependent on the stimuli and/or cell type considered, even leading to 

outcomes opposed to those aforementioned 10. For instance, while genetic deletion of 

GRK2 enhanced chemotactic responses of both T and B cells to sphingosine-1-

phosphate (S1P), oriented migration of these cells toward CCL21 was decreased11. On 

the other hand, we have reported a positive role for GRK2 in the migration of epithelial 

cells and fibroblasts12. How can these discrepancies be explained on the basis of the 

conventional “GPCR-desensitizing role” of GRK2? It is now known that tumour or 

immune cells are not in permanent locomotion during the migratory process13,14,  but 

rather alternate periods of motility with stationary intervals or breaks that can vary in 

length and frequency in a cell type-specific or stimuli-dependent way. Such breaks may 

serve to build new pseudopodia and to re-evaluate the external chemotactic gradient, 

what would require the presence of fully active receptors at the cell surface. In this 

context, it is possible that enhanced GRK2 functionality could contribute to reduce the 

extent/frequency of such breaks (as this kinase also initiates receptor re-sensitization), 

thus facilitating “processivity” of motion in some stimuli-specific contexts. 

Alternatively, there is now compelling evidence that different chemokine receptors, as 

well as the same receptor in different cell types, can engage distinct signal transduction 

routes to promote motility, which could be positively influenced by GRKs in a 

desensitization-independent manner. In this regard, novel substrates and interacting 

partners that might underlie the positive contribution of GRK2 in cell migration have 

been identified 15. For instance, phosphorylation of ezrin 16 and radixin 17 by GRK2 

results in membrane ruffling as well as membrane protrusion and motility of epithelial 

cells. Besides such phosphorylation-dependent events, we have described that GRK2 

positively regulates migration of epithelial cells and fibroblasts in a kinase-independent 

manner. Such effect involves the GRK2-dependent stimulation of the scaffold function 

of GIT1 in the activation of the Rac/PAK/MEK/ERK1/2 pathway 12. Dynamic 

GRK2/GIT1 association in response to integrin and S1P receptor-mediated stimuli 

promotes cortical F-actin rearrangement and focal adhesion turnover, both critical 

events for efficient protrusion and locomotion.  

 



A novel GRK2/HDAC6 interaction regulates the microtubule cytoskeletal 

network during cell migration  

We have recently unveiled that another important process influenced by GRK2 

is the establishment and maintenance of cell polarity by means of the regulation of 

microtubules (MTs). During cell migration, the microtubule cytoskeleton is also 

polarized, displaying different dynamics, posttranslational modifications and distinct 

sets of associated proteins between protruding and retracting regions of the cell 18,19. 

These asymmetries contribute to deliver cell-intrinsic cues from MTs necessary to 

reinforce and maintain cortical polarity, as well as to reduce adhesiveness by 

disassembly of focal adhesions and to remodel focal contacts at the rear and at the 

leading edge of the cell 20. Regarding posttranslational modifications, tubulin subunits 

become acetylated in the stable subset of MTs arranged in the lamella region, while 

highly dynamic, “pioneer” MTs facing the lamellipodium are de-acetylated 21, 26.  The 

extent of tubulin acetylation in such different MT subsets has been suggested to be 

involved in the regulation of MTs dynamics and migration 22, although the underlying 

molecular mechanism has not been convincingly defined. Tubulin deacetylation is 

actively carried out by HDAC6, a class IIa cytoplasmic histone deacetylase, which over-

expression stimulates the migration of different cell types in response to a variety of 

signals 23-25. 

Our group has recently identified a novel pathway by which GRK2 regulates 

HDAC6 activity during chemotactic migration and cell spreading 26. This finding adds a 

new, GPCR-independent component to the relevant GRK2 interactome involved in 

epithelial cell migration, and also strengthens the functional link between tubulin 

acetylation and migration. We have found that GRK2 directly interacts with and 

phosphorylates HDAC6 at defined serine residues. This phosphorylation enhances both 

the extent and kinetics of HDAC6-mediated α-tubulin deacetylation, and is required for 

full HDAC6-tubulin deacetylase activity in situ. Moreover, expression of HDAC6 

mutants with impaired phosphorylation by GRK2 fails to mimic the enhanced 

chemotactic motility promoted by wild type HDAC6 in cells migrating toward 

fibronectin, similar to the effect of a tubulin-deacetylase inactive mutant. These data 

strongly suggest that HDAC6 phosphorylation by GRK2 plays a relevant role in the 

positive modulation of cell motility by these proteins.  

In turn, the modulatory effect of GRK2 on HDAC6 is dynamically regulated by 

the phosphorylation status at serine 670 of GRK2 itself, which is rapidly up-regulated in 



response to pro-migratory stimuli in parallel to tubulin de-acetylation. Particularly 

interesting is our observation that GRK2-S670A (a mutant defective in phosphorylation 

at this regulatory site) showed a reduced ability to phosphorylate HDAC6 compared to 

wt-GRK2, despite phosphorylation of other canonical substrates (GPCR or tubulin) and 

binding to HDAC6 were not significantly affected. Therefore, this modification of 

GRK2 acts as key switch that specifically modulates the ability of GRK2 to catalyze the 

phosphorylation of HDAC6. Interestingly, both phospho-S670-GRK2 and HDAC6 are 

specifically co-recruited to chemoattractant-induced pseudopodia and both proteins co-

localize in the leading edge of polarized, motile epithelial cells, a region that is devoid 

of acetylated MTs. Thus, we propose that the dynamic GRK2 phosphorylation at the 

leading edge triggered by different pro-migratory stimuli would translate into dynamic, 

local HDAC6-mediated de-acetylation of tubulin at the plus-ends of MTs, thus helping 

to maintain the cortical polarization underlying pseudopodia extension and directed 

migration.  

In addition to tubulin, HDAC6 is also able to trigger de-acetylation of cortactin 

and Hsp90 in order to modulate cell migration 27, 28. Unexpectedly, GRK2 does not 

stimulate the capacity of HDCA6 to de-acetylate cortactin, being the positive HDAC6-

mediated effect of GRK2 in migration independent of the acetylation status of cortactin 
26. These data suggest that tubulin is the relevant target of HDAC6 underlying the 

effects of GRK2 in migration. However, it remains an open question whether de-

acetylation of other HDAC6 substrates such as Hsp90, a chaperone known to interact 

with GRK2 29 and that promotes actin remodeling during cell migration 28, or even 

catalytic-independent functions of HDAC6 involved in motility 30, could also be altered 

by GRK2 in a kinase- or scaffold-dependent manner.   

A better understanding of  how different substrate/partners of HDAC6 contribute 

to migration in a given cellular context, as well as of the impact of regulatory factors 

able to modulate precise HDAC6 activities, may have important implications in 

pathological contexts (see below). Interestingly, while in certain cell types such as 

fibroblasts or epithelial cells the control of cell motility by HDAC6 clearly relies on the 

regulation of tubulin acetylation and actin remodelling by inducing deacetylation of 

cortactin 27 and Hsp90 28,31 in endothelial cells tubulin deacetylation doesn’t seem to 

play a role 32 (Fig. 1). Remarkably, we have observed that in the later cell type enhanced 

GRK2 expression does not support migration in response to a variety of chemotactic 

stimuli (unpublished data). Therefore, our data suggest that the positive role of GRK2 in 



the migration of adherent cell types would depend on the relevant HDAC6 interactome 

involved in a given cell type or physiological situation.  

On top of that, an important question to be addressed is how GRK2-mediated 

regulation of HDAC6 intertwines with that of GIT-1 in order to orchestrate cell polarity 

and adhesion dynamics in different cell types. Since the relative extent of actin- and 

microtubule-rich regions varies with cell type, it is reasonable to assume that their 

contribution to the migration machinery will also be different19. For instance, 

microtubules have no role in the protrusion activity of kerotinocytes, whereas they are 

prominently involved in the migration of astrocytes. In the context of such 

“locomotion” heterogeneity, the contribution of the regulatory actions of GRK2 

mediated by GIT and HDAC6 on actin cytoskeleton and MT, respectively, might be 

differently balanced according to the migratory stimuli and protrusion forces involved 

(i.e. interplay between actin polymerization and microtubule dynamics). In this regard, 

we have recently observed that concurrent regulation of GIT-1 and HDAC6-dependent 

activities by GRK2 takes place in the migration of Hela cells towards fibronectin. By 

using  specific inhibitors of HDAC6-mediated tubulin deacetylation and the over-

expression of a GIT-1 mutant unable to mediate the stimulatory effects of GRK2 on 

chemotactic signalling, we have estimated that GIT-1 and HDAC6 components account 

in an additive manner for 30-40% and 35-45%, respectively, of the overall positive 

effect of GRK2 in the migration of this particular cell type 26. Consistently, migration is 

reduced circa 60-70% when both GRK2-mediated migratory components (GIT-1 and 

HDAC6/tubulin) are simultaneously downplayed by silencing GRK2 expression12. 

Based on these observations, we propose a model to integrate these different pro-

migratory functions of GRK2 (Fig. 1). Upon chemotactic receptor activation, GRK2 

would be recruited in a Gβγ-dependent manner to the lamellipodium plasma membrane. 

At such specific locations, chemokine receptor stimulation would promote the transient 

interaction of GRK2 with GIT-1 in a phosphorylation-regulated manner. An initial c-

Src-mediated tyrosine phosphorylation of GRK2 enhances its binding to GIT-1, 

whereas subsequent phosphorylation at S670 by MAPK disrupts this interaction 12. In 

turn, MAPK phosphorylation switches on the ability of GRK2 to phosphorylate 

HDAC6 co-localized at the lamellipodium, what would result in a higher local HDAC6 

de-acetylase activity toward tubulin26. The presence of hipo-acetylated MTs at the 

lamellipodium together with functional GIT-1 signalosomes would stimulate cortical 



Rac and F-actin polymerization, as well as dynamic focal adhesion turnover in order to 

favour cell migration.  

 

HDAC6 and GRK2 as new potential pharmacological targets to halt cell 

migration: two is better than one 

In sum, both GRK2 and HDAC6 seem to modulate diverse molecular processes 

involved in motility (gradient sensing, adhesion, polarity, cytoskeletal reorganization) in 

a multifaceted way, by engaging in a variety of signalling routes and through the 

regulation of different partners, with the involvement of both their catalytic and 

scaffolding activities. Therefore, it is likely that altered activity/expression of these 

proteins might critically contribute to deregulate cell migration in relevant pathologies 

such as chronic inflammation or cancer. In line with this notion, over-expression of 

HDAC6 has been reported in ovarian carcinomas, breast tumors, oral squamous 

carcinomas and primary acute myeloid leukaemia 33, while altered levels of GRK2 have 

been found in rheumatoid arthritis, multiple sclerosis and diverse neoplastic diseases as 

human granulosa cell tumors, thyroid and prostate cancer or some breast tumors 34. One 

of the more life-threatening aspects of cancer is the invasive migration and metastasis of 

malignant cells. Therefore, it is tempting to speculate that the reported interplay of 

GRK2 and HDAC6 might also be implicated in invasive migration. In this regard, 

GRK2 was found up-regulated in different malignant mammary cell lines that display 

aberrant migration compared to normal cells 35, and GRK2 inhibition by expression of a 

peptide derived from the carboxyl-terminus of GRK2 (GRK2ct or βARK1ct), 

suppressed both tumour formation and growth 36 as well as invasive migration of 

tumour breast cells 37.  

Overall, these data suggest that concurrent HDAC6 and GRK2 up-regulation in 

human tumour malignancies may favour migration and invasion, and point to HDAC6 

and GRK2 as new potential therapeutic targets for suppressing cancer growth and 

metastasis. In fact, several inhibitors with different profiles of selectivity towards 

distinct classes of HDACs are already in early phase clinical trials for a broad range of 

liquid and solid tumors 38. The hydroxamic acids tubacin and tubastatin-A 25,39 and the 

naphthoquinone analogue NQN-1 40 have been described to elicit a potent and selective 

HDAC6 inhibition. Interestingly, some of these compounds seem to act as "partial" 

HDAC6 inhibitors, blocking deacetylation of only some substrates. While NQN-1 

induces hyper-acetylation of Hsp90 and tubulin 40, tubacin and tubastatin-A only 



prevent tubulin-deacetylation, without altering the extent of cortactin 26 or Hsp90 

acetylation 41, 40. Such biased inhibition of HDAC6 must be taken into account when 

used as a tool to investigate the involvement of HDAC6 in a given cellular response. On 

the other hand, it should be possible to take therapeutic advantage of the specificity of 

these HDAC6’s inhibitors. For instance, it could be predicted that HDAC6 inhibitors 

similar to tubacin would be less effective than NQN-1-like compounds in inhibiting 

angiogenesis, since HDAC6 preferentially de-acetylates cortactin in migrating 

endothelial cells 32. 

On the contrary, the identification of specific GRK2 pharmacological inhibitors 

with sufficient potency/selectivity has not been reported to date. Most of kinase 

inhibitors target the ATP-binding site, which is highly conserved among different GRKs 

subfamilies and very similar to other kinases of the AGC family. The catalytic domain 

of GRK2 is in contact with the two other domains of the kinase, the N-terminal RH 

domain and the C-terminal PH domain 42. Interestingly, structural analysis of different 

kinases in complex with balanol, a general AGC kinase inhibitor, reveals that banalol 

recognized-conformations could differ in different GRK isoforms and these divergences 

could be exploited to develop more selective inhibitors 43. A recent study showing that 

the heterocyclic compounds CMPD103A and CMPD101 display higher selectivity to 

inhibit GRK2/3 versus GRK1 and GRK4 subfamilies by binding to a unique inactive 

conformation of GRK2 further support this concept 44. Such unique kinase domain 

conformation might be influenced by differential intra-molecular interactions of the N-

terminal RH domain with the small and large lobes of the kinase domain. When GRK2 

is activated by the binding of substrates, lipids or Gβγ subunits, the RH domain has 

been proposed to act as an allosteric transducer domain by altering the relative 

orientation of the kinase small and large lobes42. Allosteric communication has also 

been suggested to take place between the C-tail PH domain and the RH domain of 

GRK2. Therefore, it is theoretically possible that structural alterations caused by 

covalent modifications at the C-terminus could be transmitted to the catalytic domain, 

resulting in a different inactive conformation and/or conformational closure/activation 

of the kinase domain. Our data show that phosphorylation at S670 causes a switch in the 

repertoire of GRK2 substrates 26. This phosphorylation could promote the acquisition of 

a distinctive competent conformation at the active site (and not in docking sites) that 

would allow phosphorylation of HDAC6. It has been speculated that different substrates 

could drive a different kinase domain closure and stabilization of the GRK2’s active site 



through unique pathways, with the involvement of different allosteric changes 43. In this 

scenario, GRK2pS670 could channel a particular route of allosteric activation driven by 

a specific subset of substrates. Whether such phosphorylation is also mandatory for 

other substrates of GRK2 remains to be established, but this new finding supports the 

provocative concept that the design of “biased inhibitors” of GRK2 might be possible, 

leading to the preferential switch-off of phosphorylation of particular substrates, without 

altering the overall cellular kinase activity (Figure 2).  

In sum, since the functional interaction of GRK2 and HDAC6 triggers more 

potent chemotactic responses in epithelial cells, it is tempting to suggest that treatment 

of certain types of cancer (and of other diseases related to aberrant cell migration) 

would benefit from the combined inhibition of these proteins. Moreover, the possibility 

of developing “substrate-conditioned” inhibitors for both HDAC6 and GRK2 would 

allow to select á la carte the more suitable and effective combinations of these 

inhibitors to tackle aberrant migration, taking into account the specific partners of 

HDAC6 or GRK2 implicated in each one of the pathological contexts. 
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Figure legend 

Figure 1. A) Schematic representation of the relevant molecular partners/substrates of 

GRK2 and HDAC6 involved in the migration of different cell types.  The overall effect 

of GRK2 and HDAC6 on cell migration (either positive or negative), as well as the 

relative contribution of their catalytic or scaffolding-dependent activities, will be 

dependent on the cell type and the signaling context. See main text for details. B) Model 

depicting the intertwinement of GRK2-mediated regulation of GIT-1 scaffolding 

functions and of HDAC6’s tubulin-deacetylase activity in directed cell motility. In the 

lamellipodium, GRK2 would be recruited in a Gβγ-dependent manner to sites of the 

plasma membrane wherein chemotactic activation is taking place. At such specific 

locations, the dynamic association of GRK2 to the GIT1 scaffold (enhanced upon 

tyrosine phosphorylation of GRK2 and decreased upon phosphorylation by ERK at 

S670), would facilitate the localized activation of the Rac/PAK/MEK/ERK pathway, 

leading to increased focal contact turnover and cortical F-actin polymerization. 

Concomitantly, phosphorylation of GRK2 at S670 by MAPK would switch on the 

ability of GRK2 to phosphorylate co-localized HDAC6. Phosphorylated HDAC6 would 

display a higher deacetylase activity towards tubulin, contributing to keep down the 

acetylation of pioneer, highly dynamic MTs specifically at the lamellipodium. The 

presence of hypoacetylated MTs would stimulate cortical F-actin polymerization by 

helping to recruit at their plus-ends different Rac activators, such as IQGAP1 via the 

MT-interacting +TIP protein CLIP-170 or other small G proteins-GEF activities 49. In 

addition, targeting of focal contacts by dynamic cortical MTs at the lamellipodium 

prevents their maturation into focal adhesions. Theses contacting MTs release 

“relaxing” signals that trigger dissolution of focal contacts, probably as result of the 

local, +TIP protein-mediated  down-regulation of RhoA 50. The concerted action of 

hypoacetylated MTs and GIT-1 signalosomes at the leading edge of migrating cells 

could contribute to generate/reinforce cortical polarity and cellular protrusion. 

Figure 2. A) Proposed model for the potential occurrence of different active/inactive 

conformers at the GRK2 kinase domain.  The full kinase domain closure induced by the 

presence of ATP and the substrate is needed to render GRK2 catalytically competent. 

Inactive GRK2 adopts an open conformation with a disordered N-terminus (indicated 

by dotted shapes) and poor arrangement of the AST (active site tether) region that 



passes over the small and large kinase lobes. Both regions become increasingly ordered 

as GRK2 approaches its active/closed conformation. Moreover, kinase closure is 

allosterically induced/ influenced by the binding of a variety of substrates (GPCRs, 

cytosolic proteins) that would establish specific contacts with GRK2.  In addition, the 

C-terminal PH domain might participate in the allosteric activation of GRK2 due to its 

interaction with the RH domain, and this interface can be altered by the docking of 

phospholipids, Gβγ subunits or posttranslational modifications. We hypothesize that the 

extent of GRK2 phosphorylation at Ser670 may alter the allosteric communication 

relayed by the PH-RH axis, what might route the activation process through slightly 

different conformations of the active site, resulting in distinct substrate selectivity and 

potential differential inhibitor sensitivity (see text for details). (B) Crystallographic 

analysis of several GRK2-inhibitor complexes compared to the GRK2-ATP complex 

(apoGRK2) indicate that selective inhibitors could “freeze” the kinase at different 

unique inactive conformations that might arise during closure of the kinase domain. It 

must be note that for crystallization purposes, a mutant Ser670→Ala670 variant of GRK2 

has been routinely used in these studies.      
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