
UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

Ph.D. Thesis

Internet Traffic Classification

for High-Performance and

Off-The-Shelf Systems

Author:
Pedro Maŕıa Santiago del Ŕıo

Supervisor:
Prof. Javier Aracil Rico

Madrid, 2013

DOCTORAL THESIS: Internet Traffic Classification
for High-Performance
and Off-The-Shelf Systems

AUTHOR: Pedro Maŕıa Santiago del Rı́o

SUPERVISOR: Prof. Javier Aracil Rico

The committee for the defense of this doctoral thesis is composed by:

PRESIDENT: Dr. Eduardo Magaña Lizarrondo

MEMBERS: Dr. Francesco Gringoli

Dr. Luigi Iannone

Dr. Mikel Izal Azcárate

SECRETARY: Dr. Jorge E. López de Vergara Méndez

A mis padres y a mi hermano.
A ti, pecosa.

Summary

Network traffic monitoring is of paramount importance for network opera-

tors due to the ever-increasing links’ speed and users’ bandwidth demand.

Thus, it has awakened the interest of the research community in the last

years. Particularly, traffic classification (i.e., to associate traffic with the

application that has generated it) is one of the most relevant monitoring

tasks, which provides crucial information to network managers. The hetero-

geneity and complexity of current networks along with the high link’s speeds

(typically ranging from 1 Gb/s to 40 Gb/s) make traffic monitoring more

difficult. This implies a significant investment on infrastructure, especially

on the large-scale networks that require multiple points of measurements,

given that traffic monitoring tasks are very demanding in terms of compu-

tational power. Undoubtedly, traffic classification has to be enough accurate

to achieve its expected usefulness for network management, even when traf-

fic is obfuscated, encrypted and uses arbitrary port numbers. Furthermore,

because of the constant evolution of networks, the proposed monitoring tools

must be definitively flexible, scalable and able to support higher throughput.

This study aims at analyzing the feasibility of a network traffic monitor-

ing system, and particularly, a traffic classification engine, which fulfills the

abovementioned challenges, namely: (i) high-performance, (ii) limited cost,

(iii) accuracy, and (iv) scalability. Off-The-Shelf (OTS) systems, based on

open-source software and commodity hardware, are presented as a great al-

ternative to specialized hardware, which has been traditionally used for such

tasks. Particularly, contemporary Non Uniform Memory Access (NUMA)

systems with multi-core architectures as well as modern Network Interface

Card (NIC)s with multi-queue capabilities, are shown with potential capac-

vii

viii Summary

ity to cope with accurate traffic classification for high-speed and limited-cost

systems. Thus, in this thesis, we thoroughly analyze each module of a typical

traffic classification engine (and, more generally, of a network traffic moni-

toring system), namely: packet sniffing, timestamping, flow handling and

classification.

First, we reviewed, evaluated and compared the different proposals for

packet sniffing (the first task of any monitoring system), highlighting their

similarities and differences as well as their pros and cons. Second, we analyzed

other low-level task of paramount importance in network traffic monitoring

(especially, in real-time services such as multimedia traffic): packet times-

tamping. We quantify the inaccuracy of packet timestamping by using novel

packet capture engines. We propose two approaches to overcome or mitigate

such accuracy limitations. Our proposal achieves the best results respect the

rest of solutions, even in several orders of magnitude.

Then, we proposed a statistical classification engine based on software-

only and commodity-hardware solutions. The proposal is able to on-line

classify at more than 14 Million packets per second (Mpps) and 2.8 Million

flows per second (Mfps) in a worst-case scenario and up to 20 Gb/s when

monitoring a real backbone link. Such astonishing results are possible thanks

to the use of an improved network driver, the use of lightweight statistical

classification technique; and an exhaustive tuning of critical parameters of

the hardware and the software application. Furthermore, we carefully an-

alyzed the flow handling module (which is a common module in the most

of monitoring system) and different Machine Learning (ML) tools as traffic

classifiers.

Due to its relevance and popularity, we focus on multimedia traffic clas-

sification and monitoring. Specifically, we propose two Voice over IP (VoIP)

monitoring systems, one for Session Initiation Protocol (SIP)-based VoIP

technology and the other one for Skype traffic, able to process and classify

traffic at line-rate in a 10 Gb/s link. Finally, the impact of packet sampling

(used to reduce the computational load) on traffic classification is analyzed.

Resumen

La monitorización de tráfico de red es de vital importancia para las opera-

doras debido a la creciente velocidad de los enlaces y demanda de ancho de

banda de los usuarios. Aśı, ha despertado el interés de la comunidad cient́ıfica

en los últimos años. En particular, la clasificación de tráfico (es decir, asociar

el tráfico con la aplicación que lo generó) es una de las tareas más relevante

de monitorización que da a los gestores de red gran información. La hetero-

geneidad y complejidad de las redes actuales junto con las altas velocidades

de los enlaces (t́ıpicamente, en el rango de 1 Gb/s a 40 Gb/s) hacen cada

vez más dif́ıcil su monitorización. Esto implica una significativa inversión en

infraestructura, especialmente en grandes redes que requieren múltiples pun-

tos de medida, dado que las tareas de monitorización son muy demandantes

en términos de potencia computacional. Sin duda, la clasificación de tráfico

tiene que ser suficientemente precisa para alcanzar su utilidad esperada para

la gestión de tráfico, incluso cuando el tráfico está ofuscado, cifrado y usa

puertos arbitrarios. Además, por la constante evolución de las redes, las he-

rramientas de monitorización propuestas tienen que ser claramente flexibles,

escalables y capaces de soportar tasas superiores.

El principal objetivo de este estudio es analizar la viabilidad de un sis-

tema de monitorización de tráfico de red, y, en particular, un motor de clasifi-

cación de tráfico, que cumpla los mencionados retos, esto es: (i) altas presta-

ciones, (ii) coste limitado, (iii) precisión y (iv) escalabilidad. Los sistemas de

propósito general, basados en software de código abierto y hardware de uso

extendido, se presentan como una gran alternativa al hardware especializado,

que ha sido usado tradicionalmente para estas tareas. En particular, los ac-

tuales sistemas con acceso a memoria no uniforme y arquitecturas multi-core

ix

x Resumen

además de las modernas tarjetas de red con múltiples colas, muestran ca-

pacidad potencial para enfrentarse con la clasificación de tráfico precisa en

sistemas de altas prestaciones y coste limitado. Aśı, en esta tesis, se ana-

liza detalladamente cada módulo de un motor de clasificación t́ıpico (y, más

generalmente, de un sistema de monitorización de tráfico de red), a saber:

captura de paquetes, marcado de tiempo, formación de flujos y clasificación.

Primero, se han revisado, evaluado y comparado las diferentes propuestas

para la captura de paquetes (la primera tarea de cualquier sistema de moni-

torización), destacando sus semejanzas y diferencias aśı como sus pros y sus

contras. En segundo lugar, se ha analizado otra tarea de bajo nivel de vital

importancia en la monitorización (especialmente, en los servicios de tiempo

real como el tráfico multimedia): el marcado de tiempo. Se ha cuantificado

la imprecisión del marcado temporal cuando se usan los nuevos motores de

captura. Proponemos dos soluciones para superar o mitigar tales limitaciones

en la precisión. Nuestra propuesta alcanza los mejores resultados respecto al

resto de soluciones, incluso en varios órdenes de magnitud.

Más adelante, proponemos un motor de clasificación estad́ıstica basado

en soluciones con sólo software y hardware de uso extendido. La propuesta

es capaz de clasificar en tiempo real a más de 14 millones de paquetes por

segundo y 2,8 millones de flujos por segundo en un escenario de caso peor y

hasta a 20 Gb/s monitorizando un enlace troncal real. Tales extraordinarios

resultados son posibles gracias al uso de un driver de red mejorado, al uso

de una técnica de clasificación estad́ıstica ligera y a un exhaustivo ajuste de

los parámetros cŕıticos del hardware y de la aplicación software. Además,

se ha analizado cuidadosamente el módulo de formación de flujos (el cual es

común en la mayoŕıa de sistemas de monitorización) y diferentes técnicas de

aprendizaje automático usadas como clasificadores de tráfico.

Debido a su relevancia y popularidad, nos centramos en la clasificación

y monitorización del tráfico multimedia. Espećıficamente, proponemos dos

sistemas de monitorización de Voz sobre IP, uno para SIP y otro para Skype,

capaces de procesar y clasificar tráfico a tasa de ĺınea en un enlace de 10 Gb/s.

Finalmente, se ha analizado el impacto del muestreo de paquetes (usado para

reducir la carga computacional) sobre la clasificación de tráfico.

Acknowledgments

First of all, I would like to thank my supervisor, Javier Aracil, for his close

collaboration, good advice and confidence with me. The fruitfulness of this

work is mainly your duty. Thank you for allowing me to start my researching

career here.

Likewise, a special acknowledgment is dedicated to my colleagues from

the Lab C113 (and former B209): Javier Ramos, Vı́ctor Moreno, José Luis

Garćıa, David Muelas; and those that are no longer here: Felipe Mata, José

Alberto Hernández, Vı́ctor Lopez, Jaime Garnica, David Madrigal, Bas Huis-

zoon, Alfredo Salvador, Diego Sánchez, Jaime Fullaondo, Walter Fuertes

and Pedro Gómez. Guys, don’t worry, the second place in HPCN Comunio

League is not so bad.

I would like to also thank my other colleagues from the High Perfor-

mance Computing and Networking Research Group: Jorge López de Vergara,

Paco Gómez, Sergio López, Iván González, Luis de Pedro, Gustavo Sutter,

Germán Retamosa, Marco Forconesi, Mario Poyato, Rafael Leira and, for

sure, irenerodriguez.ii.uam.es.

All my work would not have been possible without the support of the

Universidad Autónoma de Madrid and the Departamento de Tecnoloǵıa

Electrónica y de las Comunicaciones (former Departamento de Informática)

of the Escuela Politécnica Superior. In addition, I would also like to express

my gratitude to the Spanish Ministry of Education for funding this Ph.D.

under the F.P.U. fellowship program. I hope that such grant program and

other public fundings and investments will be continued in the next years,

to provide new scientists and people to achieve a better world.

I would like to show my gratefulness to Dario Rossi for hosting me in

xi

xii Acknowledgments

Paris. My internship in Paris was very productive. This stay helped me to

grow up, both as a researcher and as a person. Moreover, I learned a lot with

the discussions with Dario, and working side by side with him and the rest

of colleagues, who in addition helped me a lot to integrate in LINCS. Grazie!

This absolutely includes all the staff and other students, specially Claudio

Testa, Konstantinos Katsaros, Rim Kaddah, Rosa Vilardi, Giuseppe Rossini,

Chiara Chirichella and Rafaelle Chiocchetti. Although not in person, I also

had the chance to work with Francesco Gringoli during my stay in Paris.

Our achievements would not have been possible without his supporting.

Now, let me switch to Spanish in the following, for writing personal ac-

knowledgments:

• En primer lugar, quiero agradecer a mis padres, José Luis y Maribel,

por su apoyo y ayuda, por la educación en valores que me han pro-

porcionado. Que sepáis que gracias a vosotros he podido llegar hasta

aqúı.

• Quisiera agradecer a Toñi, por su paciencia y su comprensión, por estar

ah́ı en los malos y en los buenos momentos. Sin tu apoyo incondicional

(y tu sonrisa), esto hubiera sido mucho más dif́ıcil. Pecosa, tenemos

que celebrarlo! ;).

• Un especial agradecimiento a mi hermano José Luis, por aguantarme

durante tantos años, por sus consejos y por su apoyo. Sin ti, no seŕıa

la persona ni el cient́ıfico que soy.

• Quisiera aprovechar estas ĺıneas, para recordar a mis abuelas, Maŕıa

Pérez y Maŕıa Fernández, y a mi t́ıa Mercedes, que ya no están entre

nosotros.

• A mi amigo, desde tiempos pretéritos, Santi. Aunque la distancia hace

que no nos veamos tanto como quisiéramos, sé que he podido contar

contigo siempre que me hiciera falta.

• A mis amigos de la carrera, Sergio, Ignacio y Jesús. Sé que habéis

estado ah́ı (más cerca o más lejos).

Acknowledgments xiii

• Quiero dar las gracias a mis amigos del Instituto Ouróboros por sus

intensas y edificantes charlas y cafés.

• A mis compañeros de grada de Cordobamańıa y de la Sección Tifo. En

especial, a Manolo: si no me hubieras arreglado el cargador, no podŕıa

haber escrito estas ĺıneas ;).

• A familiares y amig@s que he olvidado mencionar. Seguro que sabréis

perdonarme. Una parte de este trabajo también es vuestra.

A todos vosotros, gracias de corazón! To all of you, sincerely thanks!

Contents

Title Page i

Summary vii

Resumen ix

Acknowledgments xi

Contents xix

List of Figures xxi

List of Tables xxv

Acronyms xxxii

1 Introduction 1

1.1 Overview and Motivation . 1

1.2 Objectives . 4

1.3 Thesis Structure . 5

2 State of the Art 9

2.1 Off-The-Shelf Systems: Commodity Hardware and Open-Source

Software . 9

2.1.1 Introduction . 9

2.1.2 Novel Network Interface Cards 10

2.1.3 Non Uniform Memory Access Systems 12

xv

xvi Contents

2.1.4 Operating System Network Stack 15

2.1.5 Conclusion . 17

2.2 High-Performance Traffic Processing Systems 19

2.2.1 Introduction . 19

2.2.2 Flow Matching . 20

2.2.3 Software Routers . 21

2.2.4 NIDS: Network Intrusion Detection Systems 22

2.2.5 Conclusion . 23

2.3 Internet Traffic Classification 24

2.3.1 Introduction . 24

2.3.2 Traffic Classifier Taxonomy 24

2.3.3 Port-based: Static and Dynamic 25

2.3.4 Payload-based: Deep Packet Inspection (DPI) and Stochas-

tic Inspection . 26

2.3.5 User-behavior-based 27

2.3.6 Statistical Classification 28

2.3.7 Conclusion . 28

3 High-Performance Packet Sniffing 29

3.1 Introduction . 29

3.2 Packet Sniffing Limitations: Wasting the Potential Performance 31

3.3 Proposed Techniques to Overcome Limitations 34

3.4 Novel Packet I/O Engines . 40

3.4.1 Routebricks/Click . 40

3.4.2 PF RING DNA . 42

3.4.3 PacketShader . 44

3.4.4 Netmap . 46

3.4.5 PFQ . 47

3.4.6 HPCAP . 49

3.5 Testbed . 51

3.5.1 Hardware and Software Setup 52

3.5.2 Test Traffic Dataset . 53

3.6 Performance Evaluation . 53

Contents xvii

3.6.1 A Worst-Case Scenario 54

3.6.2 Scalability Analysis . 54

3.6.3 A Stressful Real Scenario 58

3.6.4 Findings and Guidelines 59

3.7 Summary and Conclusions . 61

4 Analysis of Timestamp Accuracy of High-Performance Packet

I/O Engines 63

4.1 Introduction . 63

4.2 Problem Statement: Timestamp Accuracy Degradation Sources 64

4.3 Overcoming Batch Timestamping Issue 67

4.3.1 UDTS: Uniform Distribution of TimeStamp 67

4.3.2 WDTS: Weighted Distribution of TimeStamp 68

4.3.3 KPT: Kernel-level Polling Thread 69

4.4 Performance Evaluation . 70

4.4.1 Experimental Testbed 70

4.4.2 Synthetic Traffic . 71

4.4.3 Real Traffic . 72

4.5 Summary and Conclusions . 73

5 Real Traffic Monitoring Systems: Statistical Classification

and Anomaly Detection at Line-Rate 75

5.1 Introduction . 76

5.2 HPTRAC : Wire-Speed Early Traffic Classification Based on

Statistical Fingerprints . 77

5.2.1 Introduction . 77

5.2.2 System Architecture 79

5.2.3 System Configuration 82

5.2.4 Hardware and Software Setup 84

5.2.5 Stress Testing . 84

5.2.6 Performance Evaluation in a Real Scenario 89

5.2.7 Flow Manager Analysis 91

5.2.8 Classification Analysis 97

xviii Contents

5.2.9 Conclusion . 101

5.3 DetectPro: Flexible Passive Traffic Analysis and Anomaly De-

tection . 102

5.3.1 Introduction . 102

5.3.2 System Architecture 105

5.3.3 Applicability: a Sample 109

5.3.4 Experimental Setup . 110

5.3.5 Performance Evaluation Results 111

5.3.6 Conclusion . 114

5.4 Summary and Conclusions . 115

6 Multimedia Traffic Monitoring in a Very Demanding Sce-

nario 117

6.1 Introduction . 118

6.2 Multimedia Traffic Fundamentals 121

6.2.1 VoIP: Network Architecture and Traffic 121

6.2.2 Skype Traffic . 126

6.3 RTPTracker : Line-Rate VoIP Data Retention and Monitoring 130

6.3.1 Introduction . 130

6.3.2 System Architecture 131

6.3.3 Experimental Setup . 141

6.3.4 Performance Evaluation: a Stressing Scenario 142

6.3.5 Case Study . 146

6.3.6 Conclusion . 147

6.4 Skypeness : Multi-Gb/s Skype Traffic Detection 148

6.4.1 Introduction . 148

6.4.2 Detector Fundamentals 149

6.4.3 System Architecture 151

6.4.4 Dataset . 154

6.4.5 Identification Accuracy Analysis 155

6.4.6 Scalability Analysis: Achieving Multi-10Gb/s Process-

ing Rates . 156

6.4.7 Conclusion . 158

Contents xix

6.5 Packet Sampling Policies: Reducing Computational Complexity160

6.5.1 Introduction . 160

6.5.2 Packet Sampling Policies 160

6.5.3 Datasets . 161

6.5.4 Performance Evaluation 163

6.5.5 Conclusion . 165

6.6 Summary and Conclusions . 167

7 Conclusions 171

7.1 Main Contributions . 171

7.2 Industrial Applications . 178

7.3 Future Work . 179

Conclusiones 183

References 195

List of Publications 213

Index 217

List of Figures

1.1 General architecture of a network monitoring system 6

2.1 RSS architecture . 10

2.2 NUMA architectures . 14

2.3 Linux Network Stack RX scheme in kernels previous to 2.6 . . 16

2.4 Linux NAPI RX scheme . 18

3.1 Generic structure of a high-speed monitoring OTS system . . 30

3.2 Standard Linux Network Stack 34

3.3 Optimized Linux Network Stack 36

3.4 PF RING DNA RX scheme 44

3.5 PacketShader RX scheme . 45

3.6 Netmap data structure . 47

3.7 PFQ RX scheme . 49

3.8 HPCAP RX scheme . 50

3.9 Engines’ performance for 60 (+4 CRC) byte packets 55

3.10 PF RING DNA performance in terms of percentage of received

packet for different number of queues and constant packet sizes

for a full-saturated 10 Gb/s link 56

3.11 PacketShader performance in terms of percentage of received

packet for different number of queues and constant packet sizes

for a full-saturated 10 Gb/s link 57

3.12 PFQ performance in terms of percentage of received packet

for different number of queues and constant packet sizes for a

full-saturated 10 Gb/s link . 58

xxi

xxii List of Figures

3.13 HPCAP performance in terms of percentage of received packet

for different number of queues and constant packet sizes for a

full-saturated 10 Gb/s link . 59

3.14 Engines’ performance in a real scenario (CAIDA trace) 60

4.1 Batch timestamping . 66

4.2 Accuracy timestamp degradation with batch size 67

4.3 Full-saturated link with constant packet size 68

4.4 Full-saturated link with variable packet size 69

4.5 Non full-saturated link with variable packet size 71

5.1 HPTRAC modules . 79

5.2 Different architectural configurations of HPTRAC system . . . 82

5.3 Flow hash table list occupancy for different traffic pattern . . 85

5.4 HPTRAC performance. Worst-case scenario: synthetic traffic

64B packets, 5 packet/flow . 86

5.5 HPTRAC performance. Real scenario: CAIDA trace with

original packet length . 90

5.6 HPTRAC performance dependency on packet size. CAIDA

trace with capped packet length 91

5.7 HPTRAC flow manager sensitivity to hash function 93

5.8 HPTRAC flow manager performance with RedBlack trees . . . 94

5.9 HPTRAC flow manager. Performance comparison at the edge 97

5.10 Classification performance. Synthetic traffic 64-bytes sized

packets . 102

5.11 DetectPro System Architecture 105

5.12 Packet dumper module performance. Synthetic traffic 112

5.13 Performance evaluation of traffic sniffer according to the num-

ber of active listeners . 114

6.1 Message flow for a typical call: initialization, renegotiation

and ending phases . 123

6.2 SIP VoIP network architecture 124

6.3 Skype traffic identification scenario 129

List of Figures xxiii

6.4 RTPTracker architecture . 131

6.5 RTPTracker capture module scheme: interactions with the

NIC and detection module . 133

6.6 Data structures to store and handle calls information in the

SIP/RTP traffic detection module 136

6.7 IP reassembly data structures 138

6.8 TCP reassembly data structures 139

6.9 Testbed topology . 142

6.10 Active calls and new calls managed by RTPTracker during a

30-minute controlled experiment 143

6.11 RTPTracker insert and search times according to the number

of records . 145

6.12 Intrinsic Characteristics of a UDP Skype flow (audio conver-

sation) . 150

6.13 Hardware architecture of Skypeness 152

6.14 NUMA architecture of Skypeness 153

6.15 Skypeness Operation . 155

6.16 Skypeness processing time obtained in offline processing 159

6.17 Skypeness throughput obtained in offline processing 159

6.18 Packet sampling policies . 161

6.19 Empirical CDF for packet size and interarrival times in audio

Skype calls . 163

6.20 Skypeness (original and modified versions) accuracy (in bytes)

applying different sampling policies and varying sampling rate

over Trace 3A (audio calls) . 164

List of Tables

2.1 Summary of the performance and characteristics of a set of

typical high-performance network applications using commod-

ity hardware . 23

2.2 General taxonomy of traffic classification techniques 25

3.1 Qualitative comparison of the five proposed capture engines

(D=Driver, K=Kernel, K-U=Kernel-User interface) 41

4.1 Experimental timestamp error (mean and standard deviation).

Synthetic traffic: 1514-bytes packets 72

4.2 Experimental timestamp error (mean and standard deviation).

Real traffic: Wire-speed and Original speed 73

5.1 HPTRAC profiling: Top-5 most consuming-time functions . . 89

5.2 Performance comparison on CAIDA trace for different hash

functions and data structures 95

5.3 Flow and Byte Accuracy for Early Classification Techniques . 99

5.4 DetectPro performance evaluation datasets 111

6.1 Empirical conversion rates from raw to WAV format for G.711

(PCMU and PCMA) and G.729 codecs (the mean call dura-

tion is 120 seconds) . 146

6.2 Intervals and threshold values used by Skypeness detector . . 151

6.3 Skypeness NUMA nodes distance matrix 153

6.4 Skypeness Accuracy Results. (S=Skype, NS=Non-Skype, MP=Million

Packets, F=Flows) . 156

xxv

xxvi List of Tables

6.5 Skypeness performance results (per core) in packet, bit and

flow rate . 157

6.6 Datasets to evaluate the impact of packet sampling on Skype-

ness accuracy . 162

6.7 Accuracy (% of bytes) of Skypeness detector original version

(roman fonts) and modified version (italic fonts) applying sys-

tematic sampling . 166

6.8 Accuracy (% of bytes) of Skypeness detector original version

(roman fonts) and modified version (italic fonts) applying strat-

ified random sampling . 167

6.9 Accuracy (% of bytes) of Skypeness detector original version

(roman fonts) and modified version (italic fonts) applying sim-

ple random sampling . 168

Acronyms

ADSL Asymmetric Digital Subscriber Line. 128, 129

API Application Programming Interface. 38, 40, 43, 45, 46, 51, 59, 62, 84,

110

BLINC BLINd Classification. 27, 28

BPF Berkeley Packet Filter. 43

CAIDA The Cooperative Association for Internet Data Analysis. 72, 78,

89, 92, 96, 111, 113, 114

CAPEX Capital Expenditures. 2, 3

CDF Cumulative Distribution Function. 163

CPU Central Processing Unit. 10, 12, 14, 17, 20–22, 32, 33, 39, 43, 44,

50–53, 65, 70, 80, 83, 84, 86–88, 90, 93, 96, 100, 104, 106, 113, 115,

134, 148, 151, 152, 157, 174, 180, 192

CR Coral Reef. 92, 93, 95

CRC Cyclic Redundancy Check. 54, 125

CSIC Consejo Superior de Investigaciones Cient́ıficas. 190

DDR3 Double Data Rate type 3. 52, 70, 84, 110, 141, 151, 158

DMA Direct Memory Access. 15, 33, 38, 43, 47, 105, 132

xxvii

xxviii Acronyms

DNA Direct NIC Access. 42, 43, 54–56, 60

DPI Deep Packet Inspection. xvi, 3, 22, 24, 26, 27, 108, 115, 126, 136, 154,

193

DSL Digital Subscriber Line. 128

DSLAM Digital Subscriber Line Access Multiplexer. 96

FPGA Field-Programmable Gate Array. 2, 14, 26, 52, 73, 78

FTP File Transfer Protocol. 25, 126

FUAM Fundación de la Universidad Autónoma de Madrid. 179, 191

GbE Gigabit Ethernet. 3, 10, 11, 32, 52, 70, 71, 79, 84, 90, 103, 110, 125

GPL General Public License. 48

GPRS General Packet Radio Service. 119

GPU Graphic Processing Unit. 13, 14, 21–23, 26, 115, 180, 181, 193

HPCAP High-performance Packet CAPture. 49, 51, 54, 55, 57, 60–62, 70,

103, 106

HPTRAC High-Performance TRAffic Classifier. 77, 115

HW Hardware. 5, 12, 17, 18, 32, 35

I/O Input/Output. 6, 9, 15, 16, 45, 55, 63, 73, 74, 132, 171–173, 180

IOH I/O Hub. 13

IP Internet Protocol. 11, 14, 24, 37, 43, 80, 85, 92, 110, 121, 122, 125, 126,

128, 134, 135, 137, 138, 154, 177, 189

IPFIX IP Flow Information Export. 108, 109

Acronyms xxix

IPSec Internet Protocol Security. 21

IRQ Interrupt ReQuest. 53

ISP Internet Service Provider. 20, 53, 96

KISS Chi-Square Signatures. 27

KPT Kernel-level Polling Thread. 7, 69, 70, 72–74

LAN Local Area Network. 128, 129

LSB Least Significant Bits. 11

MAC Media Access Control. 107

Mfps Million flows per second. viii, 3, 78, 85, 87, 88, 100, 101, 103

ML Machine Learning. viii, 3, 75, 77, 126, 127, 158, 169, 175

Mpps Million packets per second. viii, 2, 3, 20, 32, 42, 54, 55, 59, 77–79,

85–88, 90–96, 99–101, 103, 104, 111, 112, 116, 125, 142, 175, 187

MRTG Multi Router Traffic Grapher. 108, 109

MTU Maximum Transmission Unit. 44

NAPI New API. 16, 17, 31, 32, 38, 43, 47

NAT Network Address Translation. 128

NDA Non-Disclosure Agreement. 96

NIC Network Interface Card. vii, 4, 7, 10, 11, 13, 15–17, 20, 22, 30, 32, 34,

36, 38, 39, 43, 45, 46, 49, 51–53, 55, 69, 70, 74, 79, 80, 83, 84, 103, 105,

106, 110, 115, 132, 141, 142, 147, 156, 169, 173, 174, 179–181

NIDS Network Intrusion Detection System. 19, 22, 23, 36, 76, 109

xxx Acronyms

NTP Network Time Protocol. 66

NUMA Non Uniform Memory Access. vii, 12, 13, 18, 33, 39, 42–44, 51, 53,

134, 151, 152, 157, 158, 180, 193

OPEX Operational Expenditures. 2, 3

OS Operating System. 140

OTS Off-The-Shelf. vii, 2, 4–7, 9, 17, 19, 23, 24, 28–31, 40, 64, 75–78, 97,

102, 106, 115, 117, 147–149, 169, 171–173, 176, 177, 179–181

P2P Peer-to-Peer. 3, 25, 155, 162

PCAP Packet Capture. 71, 107, 109, 110, 156, 158

PCI Peripheral Component Interconnect. 9, 13

PCIe PCI-Express. 13, 39, 51, 52, 80, 110, 151

PESQ Perceptual Evaluation of Speech Quality. 128

PoP Point of Presence. 146

POSIX Portable Operating System Interface. 39

PS PacketShader. 44, 45, 52, 84

PSTN Public Switch Telephony Network. 3, 117, 118, 122, 167

PTP Precision Time Protocol. 11, 12, 66, 180, 192

QoE Quality of Experience. 3, 118, 119, 125, 128, 139, 167

QoS Quality of Service. 3, 5, 24, 76, 118, 119, 127, 130, 132, 167

RAID Redundant Array of Independent Disks. 140, 141, 143, 147

RB Red Black. 94–96, 116, 175, 187

Acronyms xxxi

RSS Receive Side Scaling. 10, 11, 17, 32, 35, 37, 46, 52, 54, 61, 70, 79, 80,

82–84, 86–88, 91, 132, 179, 180, 192

RTP Real-time Transport Protocol. 25, 26, 36, 37, 122, 124, 125, 131, 132,

134, 135, 137, 140, 141, 143, 144, 147, 176, 177, 188, 189

RX Receiving. 15–17, 38

SBC Session Border Controller. 122, 124

SDP Session Description Protocol. 25, 122, 125, 134

SDRAM Synchronous Dynamic Random Access Memory. 52, 70, 84, 110,

141

SFP Small Form-factor Pluggable. 52, 71

SIP Session Initiation Protocol. viii, 25, 26, 36, 37, 120–122, 124–126, 131,

132, 134–139, 144, 176, 177, 188, 189

SMP Symmetric MultiProcessor. 12

SMTP Simple Mail Transfer Protocol. 25, 126

SPAN Switched Port Analyzer. 124, 142, 168

SVM Support Vector Machine. 78, 81, 97, 98, 100, 101, 127, 175

SW Software. 4, 12, 17, 23

TCP Transmission Control Protocol. 11, 25, 53, 84, 85, 107, 110, 125, 126,

137, 138, 142, 151, 157, 177, 189

TIWS Telefonica International Wholesale Services. 179, 191

ToS Type of Service. 11, 81

TX Transmission. 16

xxxii Acronyms

UAM Universidad Autónoma de Madrid. 178, 190

UDP User Datagram Protocol. 11, 12, 25, 27, 46, 125, 126, 137, 149, 151,

155, 157, 161, 162, 164

UDTS Uniform Distribution of TimeStamp. 6, 67, 69, 72, 73

UMTS Universal Mobile Telecommunications System. 128

UPNA Universidad Pública de Navarra. 178, 190

USB Universal Serial Bus. 13

VLAN Virtual Local Area Network. 11, 122

VoIP Voice over IP. viii, 3, 7, 25, 36, 37, 64, 117–122, 124, 125, 130–132,

135, 137, 141–144, 146–148, 167–169, 176, 177, 179, 188, 189, 191

WDTS Weighted Distribution of TimeStamp. 6, 68, 69, 72–74

WiMAX Worldwide Interoperability for Microwave Access. 128

WLAN Wireless Local Area Network. 128, 129

Chapter 1

Introduction

This chapter provides an overview of this Ph.D. thesis and introduces its mo-

tivation, presents its objectives, and finally describes its main contributions

outlining its organization.

1.1 Overview and Motivation

Leveraging on the widespread availability of broadband access, the Internet

has opened new avenues for information accessing and sharing in a vari-

ety of media formats. Such popularity has resulted in an increase of the

amount of resources consumed in backbone links, whose capacities have wit-

nessed numerous upgrades to cope with the ever-increasing demand for band-

width. In addition, the Internet customers have obtained a strong position

in the market, which has forced network operators to invest large amounts

of money in traffic monitoring on attempts to guarantee the satisfaction of

their customers—which may eventually imply a growth in operators’ market

share. Thus, network monitoring has undoubtedly become a key task for

network operators due to such ever-increasing users’ demand.

Nevertheless, keeping pace with such ever-increasing data transmission

rates is a very demanding task, even if the applications built on top of a

monitoring system solely capture to disk the headers of the traversing pack-

ets, without further processing them. For instance, traffic monitoring at

1

2 Chapter 1. Introduction

rates ranging from 100 Mb/s to 1 Gb/s was considered very challenging a

few years ago, whereas contemporary commercial routers typically feature

10 Gb/s interfaces, reaching line-rate capacities of up to Tb/s by means

of optical network technologies [SdRHA+10]. Thus, the heterogeneity and

high complexity of current networks entails a large number of different ap-

plications and protocols, aggregates of multi-10Gb/s worth of traffic, tens

of Million packets per second (Mpps) and millions of concurrent flows per

link [YZ10]. To cope with such constraints requires high-performance so-

lutions along with scalable and flexible designing that allows processing at

line-rate different network data and granularities (packet-level, flow-level,

aggregated statistics) with different purposes (e.g., anomaly detection and

traffic classification) simultaneously.

Off-The-Shelf (OTS) systems, which are based on commodity hardware

and open-source software, have been proven to be an actual alternative to

specialized hardware (such as Field-Programmable Gate Array (FPGA)s and

network processors), in high-performance computing [Ker12]. Particularly,

the research community has presented in the last few years several software

solutions based on commodity hardware to perform some specific network

traffic monitoring tasks with astonishing results [BDKC10]. Leveraging on

OTS systems to build network monitoring applications brings along several

advantages when compared to commercial solutions, among which overhang

the flexibility to adapt any network operation and management tasks (as well

as to make the network maintenance easier), and the economies of scale of

large-volume manufacturing in the PC-based ecosystem, ergo entailing large

reductions of the Operational Expenditures (OPEX) and Capital Expendi-

tures (CAPEX) investments, respectively. Furthermore, the utilization of

commodity hardware presents other advantages such as using energy-saving

policies already implemented in PCs [GDMnR+12], and better availability of

hardware/software updates that enhances extensibility [HJPM10].

Traffic classification technology has gained importance in the recent years,

as it has proven useful in tasks such as accounting, security, service differ-

entiation policies, network design and research [DPC12]. Since its inception

up to date, the research community has paid special attention to new ap-

1.1. Overview and Motivation 3

proaches to improve the accuracy of this technology, but it has not been

until recently when the evaluation of their performance has gained relevance.

Thus, some of the most accurate mechanisms have seen that their execution

on high-speed networks is barely improbable. This has increased the interest

on mechanisms to reduce the application burden that classifying requires.

Such mechanisms are essentially Deep Packet Inspection (DPI) and Machine

Learning (ML) tools [NA08], once port-based classification has been ruled

out because the widespread use of random port numbers by Peer-to-Peer

(P2P) and Voice over IP (VoIP) applications.

Among the diversity of services that travel through Internet, multimedia

traffic and, particularly, VoIP is worthy to be highlighted due to its rele-

vance and popularity. For this reason, it has received much attention by the

research community [KP09, BMPR10]. VoIP requires a detailed monitor-

ing of the users’ Quality of Service (QoS) and Quality of Experience (QoE)

to a greater extent than in traditional Public Switch Telephony Network

(PSTN)s. As previously shown, such monitoring process must be able to

track VoIP traffic in high speed networks, nowadays typically of multi-Gb/s

rates. In this case, recent government directives require that providers retain

certain information from their users’ calls [SGI08]. Similarly, the convergence

of data and voice services allows operator to provide new services such as full

data retention, in which users’ calls can be recorded for either quality assess-

ment (call-centers, QoE), or security purposes (lawful interception). This

implies a significant investment on infrastructure, especially on large-scale

networks that require multiple points of measurements, given that traffic

monitoring tasks are very demanding in terms of computational power.

Thus, we have to face the following challenges:

(i) High-performance: coping with line-rate in 10Gigabit Ethernet (GbE)

links involves processing speeds of up tens of Mpps and Million flows

per second (Mfps).

(ii) Limited Cost : guaranteeing large reductions of the OPEX and CAPEX

investments.

(iii) Accuracy : classifying and identifying network traffic with significant

4 Chapter 1. Introduction

precision and accuracy.

(iv) Scalability : making it the most of parallelism of OTS systems with

multi-core architectures and Network Interface Card (NIC)s.

(v) Flexibility : monitoring with different tasks simultaneously and process-

ing traffic from the same network in different granularities without ad-

ditional overhead (running on the same PC, processing data without

unnecessary copies).

Consequently, this Ph.D. thesis focuses on overcoming the abovemen-

tioned challenges.

1.2 Objectives

The main objective of our work is to show the feasibility of network traffic

monitoring tasks and, particularly, of Internet traffic classification, at line-

rate on 10 Gb/s links using OTS systems. That is, we should be able to

answer some questions, such as: Is an OTS system enough for traffic classifi-

cation in a highly utilized 10 Gb/s link? Which monitoring tasks are feasible

to be performed on an OTS system at wire-speed? Does it scale to 40 Gb/s?

Where are the limits of the different processes of a monitoring system: sniff-

ing, timestamping, flow handling, packet and flow classification, and data

retention?

Figure 1.1 shows the general architecture of a networking monitoring sys-

tem. First, the sniffing module captures traffic from the network, fetching the

packets from the NIC to the system memory. This “simple” task has become

a challenge due to the ever-increasing data rate of links. For instance, a 10

Gb/s link may carry more than 14 million packets per second. Chapter 3 is

devoted to evaluate this module: presentation of current limitations and the

general solutions to overcome them; and description, quantitative/qualitative

evaluation and comparison of the proposed capture engines.

Along with captured packets is desirable to get accurate timestamps—

i.e., the date and time of day when a packet was received. Software (SW)

1.3. Thesis Structure 5

timestamping requires system calls to obtain the corresponding timestamps

requesting to the system clock—whereas Hardware (HW) timestamping is

only possible using specialized HW. Note that monitoring a 10 Gb/s link

implies interarrival times less than 1 µs, and consequently, to achieve such

accuracy and precision of timestamp is actually a challenging task. In Chap-

ter 4, we thoroughly analyze timestamping issues.

Once a packet is received, the capture engine makes it available to upper

layers. Many networking applications work at flow-level (aggregation of pack-

ets which share determined characteristics, generally, the 5-tuple). Thus, an

intermediate flow manager is indispensable to subsequent monitoring tasks.

Such flow manager requires to match each packet to the correct flow bin.

Chapter 5 studies the performance of this module.

Finally, the different network monitoring functionalities are executed in

user application, which are fed by previous modules: either directly reading

packets from the capture engine or processing the output of flow manager.

One of the most important network monitoring applications is traffic clas-

sification, i.e., to associate traffic flows or packets with the corresponding

application (or with the application type) that generated them. Traffic clas-

sification technologies are used in service differentiation, e.g., to enforce QoS;

with security purposes, e.g., for legal interception or for intrusion detection;

and for many other uses, such as network design and management, account-

ing and billing. Especially, multimedia traffic classification and management

has awakened interest in both the research community and network opera-

tors. Thus, in Chapter 5 we propose and evaluate two architectures for traffic

classification and traffic monitoring, while Chapter 6 focuses on multimedia

traffic.

1.3 Thesis Structure

First, Chapter 2 describes the state of the art. The first section provides the

required background to understand the possibilities that contemporary com-

modity OTS systems provide for high-performance networking tasks, whereas

the second section presents the network monitoring proposals found in the

6 Chapter 1. Introduction

N
E
T
W
O
R
K

Sniffing Time
stamping

Flow
Manager

Monitoring
App.

Monitoring
App.

CAPTURE ENGINE

Figure 1.1: General architecture of a network monitoring system

literature built on the basis of OTS systems. The last section is devoted to

survey the different approaches proposed in the literature for Internet traffic

classification, providing a taxonomy for categorizing the surveyed techniques.

Chapter 3 and 4 analyze two essential aspects for every traffic monitor-

ing system, namely: packet sniffing and timestamping. On the one hand,

Chapter 3 presents the limitations of packet sniffing using OTS systems and

the general solutions proposed to overcome such limitations. Then, we thor-

oughly evaluate and compare the different Input/Output (I/O) packet cap-

ture engines available as open-source. Finally, we discuss the performance

evaluation results, highlight the advantages and drawbacks of each capture

engine and give guidelines to the research community in order to choose the

more suitable capture system.

On the other hand, Chapter 4 analyzes the accuracy on packet timestamp-

ing when using such novel packet I/O engines. We describe the impact of

batch processing (such technique is widely implemented in novel packet cap-

ture engines) and propose two different approaches to mitigate such impact:

(i) Uniform Distribution of TimeStamp (UDTS) and Weighted Distribution

of TimeStamp (WDTS) algorithms that distribute the inter-batch time gap

among the different packets composing a batch; (ii) a redesign of the net-

1.3. Thesis Structure 7

work driver, Kernel-level Polling Thread (KPT), to implement a kernel-level

thread which constantly polls the NIC buffers for incoming packets and then

timestamps and copies them into a kernel buffer one-by-one. Finally, we

quantify the timestamp accuracy of batch-based techniques and of the pro-

posed improvements through real experiments using both synthetic traffic

and real packet traces.

Chapter 5 evaluates the performance of higher-level modules, such as

a flow manager or a traffic classifier, and analyzes the feasibility of line-

rate traffic monitoring and classification using OTS systems. In the first

part of the chapter, we present an open-software-based traffic classification

engine running on commodity multi-core hardware. We perform a thorough

sensitivity analysis involving important aspects of the system, such as the use

of specific hash functions and efficient data structures for flow management,

as well as the use of multiple state-of-the-art machine learning tools. In

the second part of the chapter, we propose a modular architecture system,

which is able to obtain and process network traces from different levels and

granularities at wire-speed. To show the applicability of our system, we

present a network traffic monitoring tool, DetectPro, implemented over the

proposed architecture, which is able to monitor providing statistics, report

alarms and afterwards perform forensic analysis, based on packet-level traces,

flow-level registers and aggregate statistic logs.

Chapter 6 focuses on the analysis, management and classification of one

of the most popular traffic class on the Internet, namely, multimedia traffic.

First, we present an overview of multimedia traffic, particularly, VoIP and

Skype traffic. Then, we propose two different multimedia traffic manager

OTS systems. On the one hand, we present a system, called RTPTracker,

which is able to (i) capture traffic at multi-Gb/s rates, (ii) identify and track

of VoIP traffic, (iii) generate the statistics required to ensure users’ QoS as

well as in compliance with data retention directives and, (iv) reconstruct

and index the VoIP calls to provide novel services based on call recording.

On the other hand, we propose a Skype traffic classifier, called Skypeness,

based on three statistical characteristics of Skype traffic, namely, delimited

packet size, nearly constant packet interarrival times and bounded bitrate.

8 Chapter 1. Introduction

In addition, we assess the impact of packet sampling on traffic classification.

Such analysis shows that sampling is not a definitive drawback to identify

Skype traffic at multi-10Gb/s rates.

Finally, Chapter 7 concludes this thesis with the main contributions, as

well as the industrial applications of the results, and outlines future steps

continuing the work presented.

Chapter 2

State of the Art

This chapter provides the required background in the topics related with this

thesis. The organization of the chapter is as follows. Section 2.1 presents

the possibilities that OTS systems, based on commodity hardware and open-

source software, offer to develop network monitoring tasks, and particularly,

Internet traffic classification systems. Then, Section 2.2 shows the appli-

cability of OTS systems using as example a set of different network traffic

processing and monitoring systems proposed in the literature. Finally, Sec-

tion 2.3 describes the different techniques to classify and identify Internet

traffic, providing a taxonomy of them. In any case, a more detailed revi-

sion of the related work of these and different topics will be presented in the

corresponding chapters when required.

2.1 Off-The-Shelf Systems: Commodity Hard-

ware and Open-Source Software

2.1.1 Introduction

OTS systems are characterized by sharing a base instruction set and ar-

chitecture (memory, I/O map and expansion capability) common to many

different models, containing industry-standard Peripheral Component Inter-

connect (PCI) slots for expansion that enables a high degree of mechani-

9

10 Chapter 2. State of the Art

������������	�

���

����
���

���

�����

���

�������
���

�����

����

�������

����

�������

����

������

����

�����!

�

Figure 2.1: RSS architecture

cal compatibility, and whose software is widely available off-the-self. These

characteristics play a special role in the economies of scale of the commod-

ity computer ecosystem, allowing large-volume manufacturing with low costs

per unit. Furthermore, with the recent development of multi-core Central

Processing Unit (CPU)s and off-the-self NICs, these computers may be used

to capture and process network traffic at near wire-speed with little or no

packet losses in 10 GbE networks [HJPM10].

2.1.2 Novel Network Interface Cards

Modern NICs have evolved significantly in the recent years calling both for-

mer capturing paradigms and hardware designs into question. One example

of this evolution is Receive Side Scaling (RSS) technology developed by In-

tel [Int12] and Microsoft [Mic13]. RSS allows NICs to distribute the network

traffic load among different cores of a multi-core system, overcoming the

bottleneck produced by single-core based processing and optimizing cache

utilization. Specifically, RSS distributes traffic to different receive queues

by means of a hash value, calculated over certain configurable fields of re-

ceived packets and an indirection table. Each receive queue may be bound

to different cores, thus balancing load across system resources.

2.1. Off-The-Shelf Systems: Commodity Hardware and
Open-Source Software 11

Algorithm 1 Toeplitz standard algorithm

1: function ComputeHash(input[],K)
2: result = 0
3: for each bit b in input[] from left to right do
4: if b == 1 then
5: resultˆ= left-most 32 bits of K
6: shift K left 1 bit position

7: return result

As shown in Figure 2.1, the Least Significant Bits (LSB) from the calcu-

lated hash are used as a key to access to an indirection table position. Such

indirection table contains values used to assign the received data to a spe-

cific processing core. The standard hash function is a Toeplitz hash whose

pseudocode is showed in Algorithm 1. The inputs for the function are: an

array with the data to hash and a secret 40-byte key (K)—essentially a bit-

mask. The data array involves the following fields: IPv4/IPv6 source and

destination addresses; Transmission Control Protocol (TCP)/User Datagram

Protocol (UDP) source and destination ports; and, optionally, IPv6 exten-

sion headers. The default secret key produces a hash that distributes traffic

to each queue maintaining unidirectional flow-level coherency—packets con-

taining same source and destination addresses and source and destination

ports will be delivered to the same processing core. Modifying the secret

key to distribute traffic based on other features can change this behavior.

For example, in [WP12] a solution for maintaining bidirectional flow-level

(session-level) coherency is shown.

Modern NICs offer further features in addition to RSS technology. For ex-

ample, advanced hardware filters can be programmed in Intel 10 GbE cards to

distribute traffic to different cores based on rules. This functionality is called

Flow Director and allows the NIC to filter packets by: Source/destination

addresses and ports; Type of Service (ToS) value from Internet Protocol (IP)

header; Level 3 and 4 protocols; and, Virtual Local Area Network (VLAN)

value and Ethertype.

Another important functionality that Intel 10GbE cards offer is high pre-

cision hardware timestamping for its use in synchronization Precision Time

12 Chapter 2. State of the Art

Protocol (PTP) systems [IEE08]. This feature allows user-space synchroniza-

tion utilities to access to the value of accurate timestamps for a filtered set

of defined PTP packets by means of hardware register reads. The filtering

process takes into account the UDP packet port number and PTP message

identifier, and is programmed via register writes. Note that this feature does

not allow timestamping every packet—only certain PTP packets by default.

2.1.3 Non Uniform Memory Access Systems

The number of CPU cores within a single processor is continuously increas-

ing, and nowadays it is common to find quad-core processors in commodity

computers—and even several eight-core processors in commodity servers.

HW/SW interactions are also of paramount importance in commodity

hardware systems. For example, Non Uniform Memory Access (NUMA)

design has become the reference for multiprocessor architectures, and has

been extensively used in high-speed traffic capturing and processing. In

more detail, NUMA design splits available system memory between different

Symmetric MultiProcessor (SMP) assigning a memory chunk to each of them.

The combination of a processor and a memory chunk is called NUMA node.

Figure 2.2 shows some examples of NUMA architectures. NUMA memory

distribution boosts up systems’ performance as each processor can access

in parallel to its own chunk of memory, reducing the CPU data starvation

problem. Although NUMA architectures increase the performance in terms

of cache misses and memory accesses [DAR12], processes must be carefully

scheduled to use the memory owned by the core in which they are being

executed, avoiding accessing to other NUMA nodes.

Essentially, the accesses from a core to its corresponding memory chunk

results in a low data fetching latency, whereas accessing to other memory

chunk increases this latency. To explode NUMA architectures, the NUMA

node distribution must be previously known as it varies across different hard-

ware platforms. Using the numactl1 utility a NUMA node distance matrix

may be obtained. This matrix represents the distance from each NUMA node

1linux.die.net/man/8/numactl

linux.die.net/man/8/numactl

2.1. Off-The-Shelf Systems: Commodity Hardware and
Open-Source Software 13

memory bank to the others. Thus, the higher the distance is, the higher the

access latency to other NUMA nodes is. Other key aspect to get the most of

NUMA systems is the interconnection between the different devices and the

processors.

Generally, in a traffic capture scenario, NICs are connected to processors

by means of PCI-Express (PCIe) buses. Depending on the used motherboard

in the commodity hardware capture system, several interconnection patterns

are possible. Figure 2.2 shows the most likely to find schemes on actual

motherboards. Specifically, Figure 2.2(a) shows an asymmetric architecture

with all PCIe lines directly connected to a processor whereas Figure 2.2(b)

shows a symmetric scheme where PCIe lines are distributed among two pro-

cessors. Figures 2.2(c) and 2.2(d) show similar architectures with the differ-

ence of having their PCIe lines connected to one or several I/O Hub (IOH).

IOH not only connect PCIe buses but also Universal Serial Bus (USB) or

PCI buses as well as other devices with the consequent problem of shar-

ing the bus between the IO-hub and the processor among different devices.

All this aspects must be taken into account when setting up a capture sys-

tem. For example, when a NIC is connected to PCIe assigned to a NUMA

node, capturing threads must be executed on the corresponding cores of that

NUMA node. Assigning capture threads to another NUMA node implies

data transmission between processors using Processor Interconnection Bus

which leads to performance degradation. One important implication of this

fact is that having more capture threads than existing cores in a NUMA

node may be not a good approach as data transmission between processors

will exist. To obtain information about the assignment of a PCIe device to

a processor, the following command can be executed on Linux systems cat

/sys/bus/pci/devices/PCI ID/local cpulist where PCI ID is the device

identifier obtained by executing lspci2 command.

Recently new high-performance processing paradigms have arisen to the

commodity hardware scenario. One example of these technologies are the

Graphic Processing Unit (GPU)s. GPUs, traditionally used to render and

process images and video, are being used to process all types of data. GPUs

2linux.die.net/man/8/lspci

linux.die.net/man/8/lspci

14 Chapter 2. State of the Art

M
e

m
o

ry

C
h

u
n

k
 1

M
e

m
o

ry

C
h

u
n

k
 2

Processor

Interconnection

 Bus

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor 1

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor 2

PCIe Lines

(a) PCIe lines connected to one processor

M
e

m
o

ry

C
h

u
n

k
 1

M
e

m
o

ry

C
h

u
n

k
 2

Processor

Interconnection

 Bus

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor 1

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor 2

PCIe Lines PCIe Lines

(b) PCIe lines connected to two processors

M
e

m
o

ry

C
h

u
n

k
 1

M
e

m
o

ry

C
h

u
n

k
 2

Processor

Interconnection

 Bus

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor 1

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor 2

PCIe Lines

IOHUB PCIe Lines

(c) PCIe lines connected to one IOHUB

M
e

m
o

ry

C
h

u
n

k
 1

M
e

m
o

ry

C
h

u
n

k
 2

Processor

Interconnection

 Bus

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor 1

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor 2

PCIe Lines

IOHUB

PCIe Lines

IOHUB

(d) PCIe lines connected to two IOHUB

Figure 2.2: NUMA architectures

allow the processing of large amounts of data efficiently making parallel use

of numerous specialized cores. Such cores are simpler than traditional CPU

cores but are specialized on mathematical and logical operations executed

in parallel over a given set of data. Additionally, GPUs are equipped with

efficient memory hierarchies that assure low latency accesses and high per-

formance data transfers. Modern high-speed processing systems are taking

advantage of these characteristics combining traditional multi-core program-

ming with this new paradigm to speedup different applications. Specifically,

on the field of high-speed packet processing several approaches have used

GPUs to speedup tasks such as IP packets lookup/routing, packet encryp-

tion or traffic analysis [HJPM10, VPI11].

All the previously mentioned characteristics make modern commodity

computers highly attractive for high-speed network traffic monitoring, be-

cause their performance may be compared to today’s specialized hardware,

such as FPGAs (NetFPGA [Uni13], Endace DAG cards [End12]), network

2.1. Off-The-Shelf Systems: Commodity Hardware and
Open-Source Software 15

processors [AL13, LSI12, Int13] or commercial solutions provided by router

vendors [Cis09], but they can be obtained at significantly lower prices, thus

providing cost-aware solutions. Moreover, as the monitoring functionality

is developed at user-level, commodity hardware-based solutions are largely

flexible, which in addition to the mechanical compatibility, allows designing

scalable and extensible systems that are of paramount importance for the

monitoring of large-scale networks.

2.1.4 Operating System Network Stack

Nowadays, network hardware is rapidly evolving for high-speed packet cap-

turing but software is not following this trend. In fact, most commonly used

operating systems provide a general network stack that prioritizes compati-

bility rather than performance. Modern operating systems feature a complete

network stack that is in charge of providing a simple socket user-level inter-

face for sending/receiving data and handling a wide variety of protocols and

hardware. However, this interface does not perform optimally when trying

to capture traffic at high speed.

Specifically, Linux network stack in kernels previous to 2.6 followed an

interrupt-driven basis. Let us explain its behavior: each time a new packet

arrives into the corresponding NIC, this packet is attached to a descriptor in

a NIC’s Receiving (RX) queue. Such queues are typically circular and are

referred as rings. This packet descriptor contains information regarding the

memory region address where the incoming packet will be copied via a Direct

Memory Access (DMA) transfer. When it comes to packet transmission, the

DMA transfers are made in the opposite direction and the interrupt line is

raised once such transfer has been completed so new packets can be trans-

mitted. This mechanism is shared by all the different packet I/O existing

solutions using commodity hardware. The way in which the traditional Linux

network stack works is shown in Figure 2.3. Each time a packet RX interrupt

is raised, the corresponding interrupt software routine is launched and copies

the packet from the memory area in which the DMA transfer left the packet,

DMA-able memory region, into a local kernel sk buff structure—typically,

16 Chapter 2. State of the Art

Physical link Intel 82599 NIC

RX
RING

Packet arrival

DMA-able
memory region

DMA packet transfer

End of copy

IRQ

Kernel Packet
Buffer

User application

netif_rx()
push in
buffer

sock_recv()
pop from

buffer

memcpy()
(copy)

(copy)

Figure 2.3: Linux Network Stack RX scheme in kernels previous to 2.6

referred as packet kernel buffer. Once that copy is made, the corresponding

packet descriptor is released (then the NIC can use it to receive new packets)

and the sk buff structure with the just received packet data is pushed into

the system network stack so that user applications can feed from it. The key

point in such packet I/O scheme is the need to raise an interrupt every time

a packet is received or transferred, thus overloading the host system when

the network load is high [ZFP12].

With the aim of overcoming such problem, most current high-speed net-

work drivers make use of the New API (NAPI) approach [Fou12]. This

feature was incorporated in kernel 2.6 to improve packet processing on high-

speed environments. NAPI contributes to packet capture speedup following

two principles:

(i) Interrupt mitigation. Receiving traffic at high speed using the tra-

ditional scheme generates numerous interrupts per second. Handling

these interrupts might lead to a processor overload and therefore perfor-

mance degradation. To deal with this problem, when a packet RX/Transmission

(TX) interrupt arrives, the NAPI-aware driver interrupt routine is launched

but, differently from the traditional approach, instead of directly copy-

ing and queuing the packet the interrupt routine schedules the execu-

2.1. Off-The-Shelf Systems: Commodity Hardware and
Open-Source Software 17

tion of a poll() function, and disables future similar interrupts. Such

function will check if there are any packets available, and copies and

enqueues them into the network stack if ready, without waiting to an

interruption. After that, the same poll() function will reschedule itself

to be executed in a short future (that is, without waiting to an inter-

ruption) until no more packets are available. If such condition is met,

the corresponding packet interrupt is activated again. Polling mode

is more CPU consumer than interrupt-driven when the network load is

low, but its efficiency increases as speed grows. NAPI compliant drivers

adapt themselves to the network load to increase performance on each

situation dynamically. Such behavior is represented in Figure 2.4.

(ii) Packet throttling. Whenever high-speed traffic overwhelms the sys-

tem capacity, packets must be dropped. Previous non-NAPI drivers

dropped these packets in kernel-level, wasting efforts in communication

and copies between drivers and kernel. NAPI compliant drivers can

drop traffic in the network adapter by means of flow-control mecha-

nisms, avoiding unnecessary work.

From now on, the GNU Linux NAPI mechanism will be used as the lead-

ing example to illustrate the performance problems and limitations as it is a

widely used open-source operating system which makes performance analysis

easier and code instrumentation possible for timing statistics gathering. Fur-

thermore, the majority of the existing proposals in the literature are tailored

to different flavors of the GNU Linux distribution. Some of these proposals

have additionally paid attention to other operating systems, for example,

FreeBSD [Riz12a], but none of them have ignored GNU Linux.

2.1.5 Conclusion

The utilization of OTS systems, based on commodity HW and open-source

SW, may be a great alternative to specialized hardware, performing high-

performance computing and networking tasks. First, modern NICs have

different capabilities, such as RSS multi-queue packet RX, advanced packet

18 Chapter 2. State of the Art

Physical link Intel 82599 NIC

RX
RING

Packet arrival

DMA-able
memory region

DMA packet transfer

End of copy

IRQ

Kernel packet
buffer

User application

push in
buffer

sock_recv()
pop from

buffer

memcpy()

napi_schedule()

push in
buffer

memcpy()

(copy)

(copy)

(copy)

IRQ

Figure 2.4: Linux NAPI RX scheme

filtering and distributing and high precision HW packet timestamping. On

the other hand, current commodity hardware, thanks to the use of multi-

core processors and NUMA systems, may achieve high-performance at low

cost. Finally, modern operating systems are not following the rapid evolution

of network hardware for high-speed packet sniffing due to general-purpose-

aware (instead of high-performance-aware) design .

In Chapter 3, we identify the limitations of modern operating systems,

describe the proposed general improvements to overcome such limitations,

evaluate and compare each particular proposed capture engine. Chapter 4

analyzes another essential feature of a monitoring system when using such

novel packet capturing engines.

2.2. High-Performance Traffic Processing Systems 19

2.2 High-Performance Traffic Processing Sys-

tems

2.2.1 Introduction

In this section, we turn our attention to the challenges that network applica-

tion developers face when using OTS systems. Essentially, they face these two

challenges: contrary to traditional network applications, these new engines

potentially extend the capture data rates by several orders of magnitude.

This may imply that current networking software is not able to adequately

work at this speed. On the other hand, multi-core hardware opens a new

opportunity to develop applications taking advantage of the parallelism that

such engines allow, however current applications were developed in the pre-

multicore era. In this section, we present examples of the limitations and the

proposed solutions that networking application developers have suggested to

deal with these two challenges. For instance, complex and versatile monitor-

ing platforms have been proposed in the literature. One example of such a

network monitoring tool is Tstat [FMM+11]. Tstat is an open source tool

that gives researchers and network operators live and flexible monitoring in a

modular and versatile fashion. Tstat software runs on commodity hardware,

but only achieves Gb/s rates and it is not able to cope with current and

future high-speed networks of 10 Gb/s and beyond.

Nevertheless, in recent years, we have found in the literature examples

whose results are astonishing given the cost of the final systems. There are

several proposals that implement specific monitoring tasks such as traffic clas-

sification [GES12], Network Intrusion Detection System (NIDS) [JLM+12,

VPI11] or the implementation of software routers, which are able to process

traffic at 10Gb/s rates. However, such systems follow a monolithic approach

(do not allow being simultaneously executed along with other monitoring

application over the same interface) and lack of the required flexibility in a

high-speed network. That is, the possibility of network traffic monitoring

at different granularities (packet-level, flow-level, aggregated statistics) with

different purposes (e.g., anomaly detection and traffic classification) simulta-

20 Chapter 2. State of the Art

neously. Table 2.1 summarizes the performance and characteristics of some

of these applications.

2.2.2 Flow Matching

As second step, after sniffing packets, monitoring (at the flow level) requires

to match each packet to the correct flow bin. In software-based solutions

such as Tstat [RM06] or YAF [IT10] this is usually accomplished using hash-

based structures over the flow 5-tuple. To the best of our knowledge, however,

performance of flow matching code in complex monitoring systems is rarely

evaluated alone and extrapolating such data from overall measurements can

be tough or even misleading. For instance, [IT10] describes a flow manage-

ment module in detail, explaining how to optimize flow management using

slab allocator [Bon94] for fast recycling of expired flow records, but bench-

marks of the system performance are not publicly available. Otherwise, the

performance analysis for flow matching modules has been done either mon-

itoring real Internet Service Provider (ISP) deployments [FMM+11] or over

off-line traces [RM06, WXD11]. However, as real 10 Gb/s traffic is not by

itself a stress-test scenario, this calls for synthetic benchmarks.

Explicit performance are reported instead in [Der08] where a dual Xeon

box hosts a dedicate Endace DAG card which achieves matching of up to

6 Mpps. In [QXH+07] an Intel IXP2850 Network Processor is shown match-

ing 10 million concurrent flows at 10 Gb/s at full packet rate. Switching

to off-the-shelf setup, an application note from Intel [LK09] reports flow

matching of trains of 64 bytes packets at 17 Mpps out of 24 Mpps received

over 16× 1 Gb/s interfaces, where each NIC is tied to a different core of

an Intel multi-core CPU system (unfortunately the study does not report

the number of concurrent flows). A similar architecture [DDDS11] matches

up to 11 Mpps for 1 million concurrent flows at 10 Gb/s using “FastFlow”

algorithms spawned over 6 cores.

2.2. High-Performance Traffic Processing Systems 21

2.2.3 Software Routers

The use of commodity hardware to perform high-speed tasks started with the

significant increase in popularity that software routers have achieved in the

last years. Software routers present some interesting advantages with respect

to hardware-design routers—essentially cost and flexibility. This increase has

been strengthened by multiple examples of successful implementations, and

by the appearance of GPUs which multiply the parallelism between processes

while the cost remains low.

The authors in [HJPM10] developed a software router, called Packet-

Shader, able to work at multi-10Gb/s rates. To this end, they proposed

to move the routing process from the CPU to GPUs, where hundreds of

threads can be executed in parallel. As most software routers operate on

packet headers, the use of GPUs and parallel threads fits adequately. There-

fore, it is intuitive to bind each received packet to a thread in a GPU, which

multiplies the capacity of the router by the number of concurrent threads in

each GPU. The results are astonishing given the use of commodity hardware

and software solutions. Specifically, IPv4 forwarding achieves throughputs of

39 Gb/s with 64B packets, and even better results for larger packet sizes in

a unique machine. Specifically, this is based on two quad-core processors of

2.66 GHz, whose cost together with the rest of the required hardware is about

$7000 (in 2010). The results for IPv6 forwarding are only lightly below—38

Gb/s. In addition to a software router, the authors also evaluated the per-

formance of their approach working as an OpenFlow[MAB+08] Switch and

an Internet Protocol Security (IPSec) [FK11] gateway. The results show that

they are able to switch at 32 Gb/s, and they obtained a throughput of 10.2

Gb/s for IPSec overcoming commercial solutions.

Similarly to PacketShader’s approach, the authors in [RCC12] proposed

netmap. They evaluated the performance of a router software, specifically a

Click Modular Router developed years ago [KMC+00]. Conversely to Pack-

etShader system, they did not use GPUs to parallelize tasks, thus the perfor-

mance at application-level was lower, about 2 Gb/s at 64B packets, although

the capture engine showed similar behavior. However, the authors found a

22 Chapter 2. State of the Art

roadblock in their study that deserves to be remarked. Essentially, Click was

not developed to support such a data rate and it required to be optimized.

This was the second challenge that we pointed out at the beginning of this

section: old implementations must be reviewed to work properly with these

new capture systems. In this case, the authors pinpointed that the process

of allocating memory in the C++ code of Clicks was not ideal. In the orig-

inal version, two blocks of memory were reserved per packet—one for the

payload and another for its descriptor. However, this was not necessary as

the memory can be recycled inside the code, avoiding the allocation of new

one, and using fixed-size objects. The improvement ranges between 3x and

4x depending on the size of the batches, which represents a significant gain.

This result alerts us that some old implementations of popular networking

applications have been overtaken by the capture engines, which calls for a

review and subsequent optimization of such software. Specifically, from the

latter article we have identified that similarly to the case of lower levels,

the allocation of memory in a per-packet basis at application-level is neither

acceptable. Instead, pre-allocation of the required memory and some peri-

odically processes to increase or free (as a garbage collector) memory are

necessary to achieve high speed rates.

2.2.4 NIDS: Network Intrusion Detection Systems

Network intrusion detection is one of the most important tasks to be car-

ried out by monitoring systems, given its importance in network security.

Essentially, there are two approaches to implement NIDS: those based on

characteristics of the traffic and those related to DPI, which basically con-

sists in searching for a given signature in the traffic payload. While the former

typically allows the achievement of faster speeds, the use of DPI approaches

tends to be more accurate.

The authors in [VPI11] evaluated this latter option proposing a full soft-

ware implementation, called MIDeA, based on multi-core commodity hard-

ware and GPUs, similar to the previously explained PacketShader. In a

nutshell, they take advantage of the parallelism of current NICs and CPU

2.2. High-Performance Traffic Processing Systems 23

Table 2.1: Summary of the performance and characteristics of a set of typical
high-performance network applications using commodity hardware

System Name Application Throughput

PacketShader [HJPM10]

IPv4 forwarding 39 Gb/s
IPv6 forwarding 38 Gb/s

OpenFlow Switch 32 Gb/s
IPSec gateway 10.2 Gb/s

MIDeA [VPI11] NID system < 7.5 Gb/s

Traffic classification
Szabó et al. [SGV+10] (DPI, connection 6.7 Gb/s

pattern, port based)

cores, as well as GPUs. They present a prototype implementation of a NIDS

based on Snort [CR04], the de facto standard software for this purpose, which

includes more than 8,192 rules and 193,000 strings for string matching pur-

poses. The results show that their system, whose architecture is composed

of two processors of four cores each one at 2.27 GHz and with a value of

$2739 (in 2011), is able to achieve 7.22 Gb/s for synthetic traces in the ideal

scenario of packets of 1500 bytes. This represents an improvement of more

than 250% over traditional multi-core implementations. However, the perfor-

mance remains below 2 Gb/s in the case of packet sizes of 200 bytes. While

this presents a significant cut, it is worth noticing that the average Internet

packet size is clearly larger than such 200 bytes. In fact, when the system is

evaluated with real traces, it achieves rates of 5.7 Gb/s.

2.2.5 Conclusion

The utilization of OTS systems in high-performance tasks, previously re-

served to specialized hardware, has raised great expectation in the Internet

community, given the astonishing results that some approaches have attained

at low cost. We have shown a set of different applications, such as flow match-

ing, SW routing and NIDS, as cases of success in the use of OTS. This makes

this solution a promising technology at the present and future, although the

24 Chapter 2. State of the Art

proposed solutions usually follow a monolithic approach and may lack of

flexibility and scalability.

In Chapter 5, we analyze the feasibility of flexible network monitoring

and, particularly, Internet traffic classification, for high-performance and

OTS systems. Chapter 6 focuses on the case of multimedia traffic, taking as

example both VoIP tracking and Skype traffic identification.

2.3 Internet Traffic Classification

2.3.1 Introduction

One of the most relevant network monitoring task is traffic classification.

Thus, the ability to identify which application is generating every single traf-

fic session is recognized as a crucial building block of today IP networks

and unavoidable requisite for their evolution [DPC12]. Effective techniques

could open new possibilities for actual deployment of QoS, for enforcing user

traffic to comply with policies, for legal interception and intrusion detec-

tion [KCF+08].

The latest years have also seen a flurry of proposals exploiting different

“features” (in machine learning terms) to perform the classification [NA08].

Statistical techniques based on the size and directions of the first few pack-

ets of a flow [BTS06, CDGS07] emerged as especially appealing due to their

low complexity if compared to current state-of-the-art DPI approaches. Fur-

thermore, such techniques can be used when traffic is encrypted, while DPI

approaches simply cannot. However, most of the previous work on statis-

tical classification focused on assessing the accuracy of the different tech-

niques (that we take for granted given results in [BTS06, CDGS07, KCF+08,

LKJ+10]) without measuring their achievable classification rates.

2.3.2 Traffic Classifier Taxonomy

In this section, we provide an overview of the different traffic classification

techniques. Table 2.2 shows the general taxonomy of Internet traffic classi-

2.3. Internet Traffic Classification 25

Table 2.2: General taxonomy of traffic classification techniques

Category Subcategory Examples

Port-based
Static CoralReef [MKK+01]

Dynamic SIP/RTP Class.[AKA08]

User-behavior-based - BLINC [KPF05]

Payload-based
Signature Matching L7-filter [Lf09]

Stochastic Inspection KISS [FMMR10]

Flows-statistics-based - [BTS06, CDGS07, LKJ+10]

fiers. In the followings, we describe the different categories.

2.3.3 Port-based: Static and Dynamic

Traditional services and protocols, such as File Transfer Protocol (FTP),

web-browsing or Simple Mail Transfer Protocol (SMTP), are not difficult to

detect by simple matching to well-known transport layer (TCP/UDP) port

numbers. An example of usage of this technique is CoralReef [MKK+01,

CAI11]. Such tool provides a list that maps each port number (or range)

with an application or service. However, there are many applications, such

as P2P-based ones, that use random, unpredictable or obscure port num-

bers [KBB+04], and, conversely, there are other applications that may use

well-know ports of different services —such as Skype, which uses TCP ports

80 or 443 when the communication using UDP or other TCP ports is not

possible [BMM+08].

Other applications may be mapped into a given port number, but only

in a bounded time interval. That is the case of Real-time Transport Pro-

tocol (RTP). In a VoIP context, Session Initiation Protocol (SIP) proto-

col [RSC+02] uses plain-text messages in combination with Session Descrip-

tion Protocol (SDP) [HJ98] messages to establish and negotiate the param-

eters of the associated RTP streams, particularly the pot number to use.

26 Chapter 2. State of the Art

Thus, to indetify RTP packets, SIP packets (corresponding to the initializa-

tion phase) must be parsed for extracting the port numbers of the subsequent

RTP flows.

Consequently, classification systems must inspect other characteristics of

network traffic, such as packet payload or flow statistical features, to be able

to classify network traffic.

2.3.4 Payload-based: DPI and Stochastic Inspection

Classic techniques based on DPI have been thoroughly analyzed during the

years: though specialized hardware based on Network Processor [LXSL08]

and FPGAs [MNB07] have been considered, the emergence of multi-core

commodity hardware has gained increasing attention and exhaustive perfor-

mance analyses have been reported also for advanced systems using off-the-

shelf GPUs [SGV+10, LXSL08].

In this regard, the authors of [SGV+10] show a flow-traffic classification

system (in a PC with two dual-core processors at 2 GHz) whose throughput

achieves a rate of 6.7 Gb/s with real traces—packet sizes of approximately

500 B. They apply DPI, connection patterns (i.e., analyzing the interaction

in terms of number of connections or ports that the communication between

hosts involves) and port-based classification. Again, they take advantage of

the parallelism that GPUs provide to improve performance. In this case, the

authors pay significant attention to the especial architecture of the GPUs,

and design the software bearing this in mind. Specifically, the GPU fast

cached memory tends to be too small to allocate the state machines that a

traffic classification system requires. Thus, the authors propose to implement

such state machines using the Zobrist hashing algorithm [Zob70]. Basically,

it reduces the memory requirements of state machines, which enable their

allocation in cached memory. One more time, they show that adapting ap-

plications to the new capacities of the hardware, in this case GPUs, is an

essential step to obtain the best performance. Similarly, [LXSL08] achieves

3.5 Gb/s of aggregated traffic rate, corresponding to less than 2 Mpps.

Thus, despite the powerfulness of the underlying hardware none of afore-

2.3. Internet Traffic Classification 27

mentioned approaches is able to actually sustain a 10 Gb/s throughput.

In any case, unfortunately, DPI-based techniques applicability is lim-

ited [NA08]. Applications that use encryption algorithms to obfuscate their

packets’ payload cannot be classified by DPI-based tools. Additionally, gov-

ernments and legal authorities may prohibit inspecting payload by third par-

ties for privacy issues. On the other hand, DPI techniques require to know

the syntax of packet payload and maintain updated the corresponding sig-

natures, which is a difficult task in the ever-changing Internet context.

Stochastic Inspection

With the aim of reducing the tedious and difficult work of building and

updating DPI signatures, the authors of [FMMR10] propose a method, called

Chi-Square Signatures (KISS), which is able to automatically identify the

protocol format using statistical packet inspection. The idea behind of KISS

is that the very first bytes of an UDP packet probably carry some application

layer protocol fields such as counters, constant values or random identifiers.

Thanks to apply a Pearson’s Chi-Square test on the payload, we can extract

the format and characterize the different application protocols.

KISS may be used only over UDP traffic and is ineffective when the packet

payload is encrypted . Additionally, KISS may present similar computational

limitations as DPI-based method.

2.3.5 User-behavior-based

As an alternative to DPI and port-based techniques, the authors of [KPF05]

propose a classification engine, called BLINd Classification (BLINC), based

on behavior patterns of the hosts at transport layer. Thus, BLINC is able to

classify traffic without inspecting the packet payload and without knowing

the used port number for the sessions. Such restrictions fulfill privacy and

practical concerns. BLINC analyzes connections in three level, namely: (i)

social aspects, which measures popularity of nodes and clusters them into

group/communities of clients or servers; (ii) functional level, which identifies

producers or consumers (or hosts playing both roles) in the network; and

28 Chapter 2. State of the Art

(iii) application level, which exploits other flow characteristics (such as the

average packet size) to refine the classification algorithm.

BLINC accuracy depends on the topological location of the probe (edge

vs. backbone). In this light, BLINC presents poor accuracy results when is

monitoring a backbone link, even less than 50% [KCF+08].

2.3.6 Statistical Classification

Statistical techniques, unlike previous classifiers, observe basic properties,

such as packet length and interarrival times, to classify traffic and have been

celebrated for their accuracy and speed [NA08]. However, while the former

has been experimentally demonstrated [KCF+08, LKJ+10] on actual traffic

traces, the latter is far from being assessed. As a result, the classification rates

and scalability of these new algorithms are either unknown or really far from

those needed for real world deployment [DPC12]: e.g., [BTS06, CDGS07]

merely discuss the complexity of the classification technique, while the most

recent performance analysis in [LKJ+10] reports as few as 30·103 classification

per seconds with Näıve-Bayes. These methods will be throughly analyzed in

Chapters 5 and 6. Thus, a more detailed revision of the related work of these

techniques will be presented in the corresponding chapters when required.

2.3.7 Conclusion

Classification accuracy has been widely studied by the research commu-

nity [NA08, KCF+08, LKJ+10], but not is the case of computational per-

formance of such classification techniques. Consequently, Chapters 5 and 6

focus on analyzing the feasibility of these machine learning techniques for

on-line classification of network traffic at 10 Gb/s rates using OTS systems.

Chapter 3

High-Performance Packet

Sniffing

The first step of any network monitoring system is to sniff packets from

the network. This “simple” task has become a challenge due to the ever-

increasing data rate of links. For instance, a 10 Gb/s link may carry more

than 14 million packets per second. In spite of the great evolution in com-

modity hardware capabilities, thanks to multi-core processors and multi-queue

network cards among other features, networking stacks and drivers of current

operating systems are not be able to keep pace with such commodity hardware

and waste its potential performance. In this chapter, we detail the limita-

tions of current operating systems for packet sniffing, and describe both the

general solutions to overcome such limitations and the particular capture en-

gines proposed in the literature. Then, we thoroughly evaluate and compare

such proposals and provide practitioners and researchers with a road map to

implement high-performance networking systems in OTS systems.

3.1 Introduction

Nowadays, if we want to analyze traffic from a backbone link, we must be

able to perform all tasks of the system (i.e., capturing, timestamping, flow

processing, traffic classification and analysis) at 10 Gb/s, or even more 40-

29

30 Chapter 3. High-Performance Packet Sniffing

NIC

Driver

Framework

Application

Kernel

User

Figure 3.1: Generic structure of a high-speed monitoring OTS system

100 Gb/s in the near future. Particularly, in this chapter, we focus on this

first module—essential in any monitoring system.

Figure 3.1 shows the structure of a high-speed monitoring system using

commodity hardware, essentially, a 4-layer stack. The first level is the NIC,

then, a driver accesses to the NIC and put data at disposal of the operat-

ing system kernel (second level). The third level is a set of functions or a

framework which enables to applications of user-level access to data, e.g. the

de facto packet capture framework libpcap [PCA10]. In general, the combi-

nation of a driver and a framework could be called capture engine. Finally,

the fourth level is the application level, where the different functionalities are

implemented, in our case, monitoring tasks. However, this 4-level structure

could change because of certain tools propose taking load from a given level

to a lower level with performance purposes.

Thus, to develop a network monitoring solution using commodity OTS

systems, the first step is to optimize the default NIC driver to guarantee that

the high-speed incoming packet stream is captured lossless. The main prob-

3.2. Packet Sniffing Limitations: Wasting the Potential
Performance 31

lem, the receive live-lock, was studied and solved several years ago, as shown

in 2.1.4. The problem appears when, due to heavy network load, the system

collapses because all its resources are destined to serve the per packet inter-

rupts. The solution, which mitigates the interrupts in case of heavy network

load, is now implemented in modern operating systems (Section 2.1.4), and

specifically in the GNU Linux distribution, which we take in this chapter as

the leading example. However, such solution is not enough to cope with 10

Gb/s. Thus, in recent years, several research works have been conducted on

this topic. Different particular high-speed packet sniffing solutions have been

proposed, which improves the default driver and operating system network

stack. In this chapter, we describe the limitations of such default configu-

ration (driver and operating system networking stack), present the general

techniques applied to overcome such limitations and compare the different

proposed capture engines.

The rest of the chapter is organized as follows: Section 3.2 is devoted

to present the limitations of current operating systems for packet sniffing

which wastes the potential performance that could be obtained using modern

OTS systems. In Section 3.3, we describe the general proposed techniques

to overcome the previously shown limitations, whereas in Section 3.4, we

detail the different packet capture engines proposed in the literature and

qualitatively compare them. Section 3.5 shows the experimental testbed

where the performance evaluation analysis of the packet capture engines,

presented in Section 3.6, was carried out. Finally, Section 3.7 summarizes

the chapter and highlights the main findings and conclusions.

3.2 Packet Sniffing Limitations: Wasting the

Potential Performance

NAPI technique by itself is not enough to overcome the challenging task of

very high-speed traffic capturing since other architectural inherent problems

degrades the performance. After extensive code analysis and performance

tests, several main problems have been identified [HJPM10, Riz12a, LZB11,

32 Chapter 3. High-Performance Packet Sniffing

PVA+12]:

(i) Per-packet allocation and deallocation of resources. Every time a packet

arrives to a NIC, a packet descriptor is allocated to store packet’s infor-

mation and header. Whenever the packet has been delivered to user-

level, its descriptor is released. This process of allocation and deal-

location generates a significant overhead in terms of time especially

when receiving at high packet rates—as high as 14.88 Mpps in 10 GbE.

Additionally, the sk buff data structure is large because it comprises

information from many protocols in several layers, when the most of

such information is not necessary for numerous networking tasks. As

shown in [LZB11], sk buff conversion and allocation consume near

1200 CPU cycles per packet, while buffer release needs 1100 cycles. In-

deed, sk buff-related operations consume 63% of the CPU usage in the

reception process of a single 64B sized packet [HJPM10].

(ii) Serialized access to traffic. Modern NICs include multiple HW RSS

queues that can distribute the traffic using a hardware-based hash func-

tion applied to the packet 5-tuple (Section 2.1.2). Using this technology,

the capture process may be parallelized since each RSS queue can be

mapped to a specific core, and as a result the corresponding NAPI

thread, which is core-bound, gathers the packets. At this point all the

capture process has been parallelized. The problem comes at the up-

per layers, as the GNU Linux network stack merges all packets at a

single point at network and transport layers for their analysis. Fig-

ure 3.2 shows the architecture of the standard GNU Linux network

stack. Therefore, there are two problems caused by this fact that de-

grade the system’s performance: first, all traffic is merged in a single

point, creating a bottleneck; second, a user process is not able to receive

traffic from a single RSS queue. Thus, we cannot make the most of par-

allel capabilities of modern NICs delivered to a specific queue associated

with a socket descriptor. This process of serialization when distribut-

ing traffic at user-level degrades the system’s performance, since the

obtained speedup at driver-level is lost. Additionally, merging traffic

3.2. Packet Sniffing Limitations: Wasting the Potential
Performance 33

from different queues may entail packet disordering [WDC11].

(iii) Multiple data copies from driver to user-level. Since packets are trans-

ferred by a DMA transaction until they are received from an applica-

tion in user-level, it turns out that packets are copied several times,

at least twice: from the DMA-able memory region in the driver to a

packet buffer in kernel-level, and from the kernel packet buffer to the

application in user-level. For instance, a single data copy consumes

between 500 and 2000 cycles depending on the packet length [LZB11].

Another important idea related to data copy is the fact that copying

data packet-by-packet is not efficient, so much the worse when packets

are small. This is caused by the constant overhead inserted on each

copy operation, giving advantage to large data copies.

(iv) Kernel-to-userspace context switching. From the monitoring application

in user-level is needed to perform a system call for each packet reception.

Each system call implies a context switch, from user-level to kernel-

level and vice versa, and the consequent CPU time consumption. Such

system calls and context switches may consume up to 1000 CPU cycles

per-packet [LZB11].

(v) No exploitation of memory locality. The first access to a DMA-able

memory region implies cache misses because DMA transactions inval-

idate cache lines. Such cache misses represent 13.8% out of the total

CPU cycles consumed in the reception of a single 64B packet [HJPM10].

Additionally, as previously explained, in a NUMA-based system the la-

tency of a memory access depends on the memory node accessed. Thus,

an inefficient memory location may entail performance degradation due

to cache misses and greater memory access latencies.

34 Chapter 3. High-Performance Packet Sniffing

N RSS queues

. . .

N Packet Rings

. . .

 DMA transfer DMA transfer

1 Packet copy 1 Packet copy

OS Network Stack

Driver

Application

User-Space

Kernel-Space

NIC

1 Packet copy

Figure 3.2: Standard Linux Network Stack

3.3 Proposed Techniques to Overcome Limi-

tations

In Section 2.1.2, we have shown that modern NICs are a great alternative to

specialized hardware for network traffic processing tasks at high speed. How-

ever, as shown in Section 3.2, both the networking stack of current operating

systems and applications at user-level do not properly exploit these new fea-

tures. In this section, we present several proposed techniques to overcome the

previous described limitations in the default operating systems’ networking

stack.

Such techniques may be applied either at driver-level, kernel-level or be-

tween kernel-level and user-level, specifically applied at the data they ex-

3.3. Proposed Techniques to Overcome Limitations 35

change, as will be explained.

(i) Pre-allocation and re-use of memory resources. This technique consists

in allocating all memory resources required to store incoming packets,

i.e., data and metadata (packet descriptors), before starting packet re-

ception. Particularly, N rings of descriptors (one per HW queue and

device) are allocated when the network driver is loaded. Note that some

extra time is needed at driver loading time but per-packet allocation

overhead is substantially reduced. Likewise, when a packet has been

transferred to user-space, its corresponding packet descriptor is not re-

leased to the system, but it is re-used to store new incoming packets.

Thanks to this strategy, the bottleneck produced by per-packet allo-

cation/deallocation is removed. Additionally, sk buff data structures

may be simplified reducing memory requirements. These techniques

must be applied at driver-level.

(ii) Parallel direct paths. To solve serialization in the access to traffic, di-

rect parallel paths between RSS queues and applications are required.

This method, shown in Figure 3.3, achieves the best performance when

a specific core is assigned both for taking packets from RSS queues and

forwarding them to the user-level. This architecture also increases the

scalability, because new parallel paths may be created on driver mod-

ule insertion as the number of cores and RSS queues grows. In order

to obtain parallel direct paths, we have to modify the data exchange

mechanism between kernel-level and user-level.

In the downside, such technique mainly entails three drawbacks. First,

it requires the use of several cores for capturing purposes, cores that

otherwise may be used for other tasks. Second, packets may arrive po-

tentially out-of-order at user-level, which may affect some kind of appli-

cations [WDC11]. Third, RSS distributes traffic to each receive queue

by means of a hash function. When there is no interaction between

flows, they can be analyzed independently, which allows taking the

most of the parallelism by creating and linking one or several instances

of a process to each capture core. As shown in Section 2.2, applications

36 Chapter 3. High-Performance Packet Sniffing

N RSS queues

. . .

N Packet Rings

. . .

 DMA transfer DMA transfer

1 Packet copy 1 Packet copy

Mapped memory region
(M Packets)

Mapped memory region
(M Packets)

OS Network Stack

Driver

Application

User-Space

Kernel-Space

NIC

Figure 3.3: Optimized Linux Network Stack

such as software routers [HJPM10], and some NIDSs [VPI11, JLM+12],

perfectly fit in this category. However, there are monitoring tasks that

require analyzing different flows. One evident example is monitoring

applications that inspect sessions instead of flows. A session is a couple

of unidirectional flows that comprise the outgoing and incoming traffic,

respectively, of a connection. As port numbers and IP addresses are in-

verted in these two flows, the current hash function developed in NICs

forwards each of these flows to different queues. Another example is

a VoIP monitoring system (as it will be shown in Chapter 6): assum-

ing that such a system is based on the SIP protocol, it requires not

only to monitor the signaling traffic (i.e., SIP packets) but also calls

themselves—typically RTP traffic. SIP and RTP flows do not share

3.3. Proposed Techniques to Overcome Limitations 37

the 5-tuple that use the hash functions to assign packet to each queue,

hence they are allocated to different queues and cores.

To face this, may be used two approaches, although both of them imply

their own drawbacks. The simplest approach is that applications only

receive traffic from a single core bound to a single RSS queue through-

out its execution. Hence, applications are able to monitor those flows

that require some interaction between them because it reads all the

packets. This approach wastes the multi-core capacity of the systems

but still take advantage of the rest of driver optimizations. That is,

with respect to the traditional per-packet process, the system is able

to capture and forward the traffic at high-rates to be processed at user

space. However, the downside is that applications must be developed

carefully to be fast enough to deal with these traffic rates, because

parallelism in user-level is lost. The second option is that the cap-

ture system performs by itself some aggregation task. The idea is that

each RSS queue is linked to a specific core to increase the CPU affin-

ity. But before that, some block of the capture system must aggregate

the traffic according to a given metric, and forward the traffic to user

space—for example, to a socket queue. Then, applications must read

from these socket queues, which aggregate the traffic that a given appli-

cation expects. That is, this traffic includes all those flows that require

interaction between them. For instance, if the application were track-

ing sessions, it would read both incoming and outgoing flows from the

same socket. This is relatively simple for some tasks, for example the

mentioned generation of sessions by applying symmetric (in terms of

5-tuple) hash functions [WP12]. However other tasks require more so-

phisticated modifications. Consider a VoIP monitoring system, as we

have previously described. It requires to aggregate SIP and RTP flows

of a given call, which use potentially different IP addresses and port

number. This would require capture system to inspect SIP packets to

identify their associated RTP flows, which is a challenge at high-speed

rates. In any case, both approaches circumvent this problem at the

expense of performance.

38 Chapter 3. High-Performance Packet Sniffing

(iii) Memory mapping. Using this method, a standard application can map

kernel memory regions, reading and writing them without intermediate

copies. In this manner, we may map the DMA-able memory region

where the NIC directly accesses. In such case, this technique is called

zero-copy. As an inconvenient, exposing NIC rings and registers may

entail risks for the stability of the system [Riz12a]. However, this is con-

sidered a minor issue as typically the provided Application Program-

ming Interface (API)s protect NIC from incorrect accesses. In fact, all

video boards use equivalent memory mapping techniques without major

concerns. Another alternative is mapping the kernel packet memory re-

gion where driver copies packets from RX rings, to user-level, thus user

applications access to packets without this additional copy. Such alter-

native removes one out of two copies in the default network stack. This

technique is implemented on current GNU Linux as a standard raw

socket with RX RING/TX RING socket option. Applying this method

requires either driver-level or kernel-level modifications and in the data

exchange mechanism between kernel-level and user-level.

(iv) Batch processing. To gain performance and avoid the degradation re-

lated with per-packet copies, batch packet processing may be applied.

This solution groups packets into a buffer and copies them to ker-

nel/user memory in groups called batches. Applying this technique

permits to reduce the number of system calls and the consequent con-

text switchings, and mitigates the number of copies. Thus, the overhead

of processing and copying packets individually is removed. According

to NAPI architecture, there are intuitively two points to use batches,

first if packets are being asked in a polling policy, the engines may

ask for more than one packet per request. Alternatively, if the packet

fetcher works on an interrupt-driven basis, one intermediate buffer may

serve to collect traffic until applications ask for it. The major problem

of batching techniques is the increase of latency and jitter, and times-

tamp inaccuracy on received packets because packets have to wait until

a batch is full or a timer expires [MSdRR+12], as it will be thoroughly

3.3. Proposed Techniques to Overcome Limitations 39

analyzed in Chapter 4. In order to implement batch processing, we

must modify the data exchange between kernel-level and user-level.

(v) Affinity and prefetching. To increase performance and exploit memory

locality, a process must allocate memory in a chunk assigned to the

processor in which it is executing. This technique is called memory

affinity. Other software considerations are CPU and interrupt affini-

ties. CPU affinity is a technique that allows fixing the execution lo-

calization in terms of processors and cores of a given process (pro-

cess affinity) or thread (thread affinity). The former action may be

performed using Linux taskset1 utility, and the latter by means of

pthread setaffinity np2 function of the Portable Operating System

Interface (POSIX) pthread library. At kernel and driver levels, software

and hardware interrupts can be handled by specific cores or proces-

sors using this same approach. This is known as interrupt affinity and

may be accomplished writing a binary mask to /proc/irq/IRQ#/smp

affinity. The importance of setting capture threads and interrupts

to the same core lies in the exploitation of cache data and load distri-

bution across cores. Whenever a thread wants to access to the received

data, it is more likely to find them in a local cache if previously these

data have been received by an interrupt handler assigned to the same

core. This feature in combination with the previously commented mem-

ory locality optimizes data reception, making the most of the available

resources of a system. Another affinity issue that must be taken into

account is to map the capture threads to the NUMA node attached to

the PCIe slot where the NIC has been plugged. To accomplish such

task, the system information provided by the sysctl interface (shown

in Section 2.1.3) may result useful.

Additionally, in order to eliminate the inherent cache misses, the driver

may prefetch the next packet (both packet data and packet descriptor)

while the current packet is being processed. The idea behind prefetch-

1linux.die.net/man/1/taskset
2linux.die.net/man/3/pthread_setaffinity_np

linux.die.net/man/1/taskset
linux.die.net/man/3/pthread_setaffinity_np

40 Chapter 3. High-Performance Packet Sniffing

ing is to load the memory locations that will be potentially used in a

near future in processor’s cache in order to access them faster when

required. Some drivers, such as Intel ixgbe, apply several prefetching

strategies to improve performance. Thus, any capture engine making

use of such vanilla driver will see its performance benefited from the use

of prefetching. Further studies such as [HJPM10, SZTG12] have shown

that more aggressive prefetching and caching strategies may boost net-

work throughput performance.

3.4 Novel Packet I/O Engines

In what follows, we present five capture engine proposals, namely: PF RING

DNA [RDC12], PacketShader [HJPM10], Netmap [Riz12a], PFQ [BDPGP12]

and HPCAP [MSdRR+12], which have achieved significant performance. For

each engine, we describe the system architecture (remarking differences with

the other proposals), the abovementioned techniques that applies, what API

is provided for clients to develop applications, and what additional function-

ality it offers. Table 3.1 shows a summary of the comparison of the proposals

under study. We do not include some capture engines, previously proposed in

the literature, because they are obsolete or unable to be installed in current

kernel versions (Routebricks [DEA+09], UIO-IXGBE [Kra09]) or there is a

new version of such proposals (PF RING TNAPI [FD10]). Nevertheless, we

start describing the fundamentals of one of them, Routebricks [DEA+09], as

a precursor of this kind of systems.

3.4.1 Routebricks/Click

Although Routebricks may be obsolete, it is worthy to be explained be-

cause was one of the precursors of packet capturing using OTS systems.

Routebricks [DEA+09] is an hybrid capturing/processing engine based on

Click [KMC+00] modular router architecture. Click is a modular software

for building routers. It is based on the concept of elements interconnected

via a graph. Each element receives packets from an input port, processes

3.4. Novel Packet I/O Engines 41
T

ab
le

3.
1:

Q
u
al

it
at

iv
e

co
m

p
ar

is
on

of
th

e
fi
ve

p
ro

p
os

ed
ca

p
tu

re
en

gi
n
es

(D
=

D
ri

ve
r,

K
=

K
er

n
el

,
K

-U
=

K
er

n
el

-U
se

r
in

te
rf

ac
e)

F
e
a
tu

re
s/

P
F

R
IN

G
P

S
n
e
tm

a
p

P
F

Q
H

P
C

A
P

T
e
ch

n
iq

u
e
s

D
N

A

M
em

or
y

P
re

-a
ll
o
c.

X
X

X
×

/X
X

an
d

re
-u

se

P
ar

al
le

l
d
ir

ec
t

p
at

h
s

X
X

X
X

X

M
em

or
y

m
ap

p
in

g
X

X
X

X
X

Z
er

o-
co

p
y

X
×

×
×

×

B
at

ch
p
ro

ce
ss

in
g

×
X

X
X

×

C
P

U
an

d
in

te
rr

u
p
t

X
X

X
X

X
affi

n
it

y

M
em

or
y

affi
n
it

y
X

X
×

X
X

A
gg

re
ss

iv
e

P
re

fe
tc

h
in

g
×

X
×

×
X

L
ev

el
D

,K
,

D
,

D
,K

,
D

(m
in

im
al

),
D

,
m

o
d
ifi

ca
ti

on
s

K
-U

K
-U

K
-U

K
,K

-U
K

-U

A
P

I
L

ib
p

ca
p
-l

ik
e

C
u
st

om
S
ta

n
d
ar

d
S
o
ck

et
-l

ik
e

C
u
st

om
li
b

c

42 Chapter 3. High-Performance Packet Sniffing

the packets and forwards them to the next interconnected element using an

output port. Packets may be discarded or routed inside a processing element.

Click code is located at kernel level and it is attached to Linux packet re-

ceive/send queues. Routebricks adds some new functionalities at both packet

capturing and Click processing points. This capture engine modifies standard

Intel 1/10 Gb/s drivers adding some new features to improve packet capture

performance. The main ideas behind Routebricks driver modification are

multi-queue support and batch processing.

Routebricks is able to reach 18.96 Mpps forwarding 64-byte packets, using

four interfaces. This gives an approximate rate of 4.74 Mpps per interface. In

spite of improving the performance of the standard driver and the operating

system networking stack, Routebricks is not able to capture the maximum

packet rate—14.88 Mpps per interface. The hardware setup used for perfor-

mance evaluation experiments consists of one server with two Intel i7 (with

Nehalem architecture [VM11]) processors each with four cores running at 2.8

GHz. Each processor has a memory module, following a NUMA architec-

ture. Regarding connectivity, the server is equipped with two dual-port Intel

10Gb/s NICs.

One hint given by this capture engine is the fact that data placement on

multi-processor system is not relevant at high-speed capture environments.

This conclusion could be only applied taking into account capture rates ob-

tained by this capture engine. As shown in [HJPM10] and previously ex-

plained in this chapter, increasing parallelism in memory access speeds up

the performance of packet capture at high speed environments. Routebricks

system may be easily build in a general-purpose server following the detailed

instructions in its webpage [ACE09] . The release includes a Linux kernel

configuration file, a patched version of Intel 10 Gb/s driver for Linux and the

Click elements needed for using multiple reception/transmission queues.

3.4.2 PF RING DNA

PF RING Direct NIC Access (DNA) is a framework and engine to cap-

ture packets based on Intel 1/10 Gb/s cards. This engine implements pre-

3.4. Novel Packet I/O Engines 43

allocation and re-use of memory in all its processes, both RX and PF RING

queue allocations. PF RING DNA also allows building parallel paths from

hardware receive queues to user processes, that is, it allows to assign a CPU

core to each received queue whose memory can be allocated observing NUMA

nodes, permitting the exploitation of memory affinity techniques.

Differently from the other proposals, it implements full zero-copy, that is,

PF RING DNA maps user-space memory into the DMA-able memory region

of the driver allowing users’ applications to directly access to card registers

and data in a DNA fashion. In such a way, it avoids the intermediation of

the kernel packet buffer reducing the number of copies. However, as previ-

ously noted, this is at the expense of a slight weakness to errors from users’

applications that occasionally do not follow the PF RING DNA API (which

explicitly does not allow incorrect memory accesses), which may potentially

imply system crashes. In the rest of the proposals, direct accesses to the NIC

are protected. PF RING DNA behavior is shown in Figure 3.4, where some

NAPI steps have been replaced by a zero-copy technique.

PF RING DNA API provides a set of functions for opening devices to

capture packets. It works as follows: first, the application must be reg-

istered with pfring set application name() and before receiving pack-

ets, the reception socket can be configured with several functions, such as,

pfring set direction(), pfring set socket mode() or pfring set poll

duration(). Once the socket is configured, it is enabled for reception with

pfring enable ring(). After the initialization process, each time a user

wants to receive data pfring recv() function is called. Finally, when the

user finishes capturing traffic pfring shutdown() and pfring close() func-

tions are called. This process is replicated for each receive queue.

As one of the major advantages of this solution, PF RING API comes

with a wrapping to the abovementioned functions, which provides large flex-

ibility and ease of use, essentially following the de facto standard of the

libpcap library. Additionally, the API provides functions for applying filter-

ing rules, e.g., Berkeley Packet Filter (BPF) filters, network bridging, and

IP reassembly. PF RING DNA and a user library for packet processing are

free-available for the research community [DC12].

44 Chapter 3. High-Performance Packet Sniffing

Physical link Intel 82599 NIC

RX
RING

Packet arrival

DMA-able
memory region

DMA packet transfer

User application

pfring_recv()

check if there
are packets

available

(No copy)

Figure 3.4: PF RING DNA RX scheme

3.4.3 PacketShader

The authors of PacketShader (PS) developed their own capture engine to

highly optimize the traffic capture module as a first step in the process of

developing a software router able to work at multi-10Gb/s rates. However,

all their efforts are applicable to any generic task that involves capturing and

processing packets. They apply memory pre-allocation and re-use, specifi-

cally, two memory regions are allocated—one for the packet data, and an-

other for its metadata. Each buffer has fixed-size cells corresponding to one

packet. The size for each cell of packet data is aligned to 2048 bytes, which

corresponds to the next highest power of two for the standard Ethernet Max-

imum Transmission Unit (MTU). Metadata structures are compacted from

208 bytes to only 8 bytes (96%) removing unnecessary fields for many net-

working tasks.

Additionally, PS implements memory mapping, thus allowing users to

access to the local kernel packet buffers avoiding unnecessary copies. In this

regard, the authors highlight the importance of NUMA-aware data placement

in the performance of its engine. Similarly, it provides parallelism to packet

processing at user-level, which balances CPU load and gives scalability in

3.4. Novel Packet I/O Engines 45

Physical link Intel 82599 NIC

RX
RING

Packet arrival

DMA-able
memory region

DMA packet transfer

Kernel packet
buffer

User application

ps_recv()

copy_rx_packets()

check if there
are packets

available

(No copy)
(copy)

Figure 3.5: PacketShader RX scheme

the number of cores and queues.

To reduce the per-packet processing overhead, batching techniques are

utilized in user-level. For each batch request, the driver copies data from

the huge packet buffer to a consecutive mapped memory region, which is

accessed from user-level. In order to eliminate the inherent cache misses,

the modified device driver prefetches the next packet (both packet data and

packet descriptor) while the current packet is being processed.

PS API works as follows: (i) user application opens a char device to

communicate with the driver, ps init handle(), (ii) attaches to a given re-

ception device (queue) with an ioctl(), ps attach rx device(), and (iii)

allocates and maps a memory region, between the kernel and user levels to

exchange data with the driver, ps alloc chunk(). Then, when a user appli-

cation requests for packets by means of an ioctl(), ps recv chunk(), PS

driver copies a batch of them, if available, to the kernel packet buffer. PS in-

teraction with users’ applications during the reception process is summarized

in Figure 3.5.

PS I/O engine is available for the community [HJPM12]. Along with the

modified Linux driver for Intel 82598/82599-based NICs network interface

cards, a user library is released in order to ease the usage of the driver.

46 Chapter 3. High-Performance Packet Sniffing

The release also includes several sample applications, namely: a simplified

version of tcpdump [PCA10], an echo application which sends back all traffic

received by one interface, and a packet generator which is able to generate

UDP packets with different 5-tuple combinations at maximum speed.

3.4.4 Netmap

Netmap proposal shares most of the characteristics of PacketShader’s archi-

tecture. That is, it applies memory pre-allocation during the initialization

phase, buffers of fixed sizes (also of 2048 bytes), batch processing and par-

allel direct paths. It also implements memory mapping techniques to allow

users’ application to access to kernel packet buffers (direct access to NIC is

protected) with a simple and optimized metadata representation.

Such simple metadata is named netmap memory ring (Figure 3.6), and its

structure contains information such as the ring size, a pointer to the current

position of the buffer (cur), the number of received packets in the buffer or

the number of empty slots in the buffer, in reception and transmission buffers

respectively (avail), flags about the status, the memory offset of the packet

buffer, and the array of metadata information; it has also one slot per packet

which includes the length of the packet, the index in the packet buffer and

some flags. Note that there is one netmap ring for each RSS queue, reception

and transmission, which allows implementing parallel direct paths.

Netmap API usage is intuitive: first, a user process opens a netmap de-

vice with an ioctl(). To receive packets, users ask the system the number of

available packets with another ioctl(), and then, the lengths and payloads

of the packets are available for reading in the slots of the netmap ring. This

reading mode is able to process multiple packets in each operation. Note

that netmap supports blocking mode through standard system calls, such

as poll() or select(), passing the corresponding netmap file descriptors.

In addition to this, netmap comes with a library that maps libpcap func-

tions into own netmap ones, which facilitates its operation. As a distinguish

characteristic, Netmap works in an extensive set of hardware solutions: Intel

10 Gb/s adapters and several 1Gb/s adapters—Intel, RealTek and nVidia.

3.4. Novel Packet I/O Engines 47

Shared memory region

netmap_if

num_rings
ring_offset []

netmap rings

ring_size
cur
avail

NIC ring

pkt_buf

pkt_buf

pkt_buf

flags/len/index

flags/len/index

phy_addr / len

phy_addr / len

.

.

.

.

.

.

.

.

.

packet buffer

Figure 3.6: Netmap data structure

Netmap presents other additional functionalities as, for example, packet for-

warding.

Netmap framework is available for FreeBSD (HEAD, stable/9 and sta-

ble/8) and for Linux [Riz12b]. The current netmap version consists of 2000

lines for driver modifications and system calls, as well as a C header file of 200

lines to help developers to use netmap’s framework from user applications.

3.4.5 PFQ

PFQ is a novel packet capture engine that allows packet sniffing in user ap-

plications with a tunable degree of parallelism. The approach of PFQ is

different from the previous studies. Instead of carrying out major modifi-

cations to the driver in order to skip the interrupt scheme of NAPI or map

DMA-able memory and kernel packet buffers to user-space, PFQ is a general

architecture that allows using both modified and vanilla drivers.

PFQ follows NAPI to fetch packets but implements two novel modifi-

cations once packets arrive at the kernel packet buffer with respect to the

48 Chapter 3. High-Performance Packet Sniffing

standard networking stack. First, PFQ uses an additional buffer (referred as

batching queue) in which packets are copied once the kernel packet buffer

is full, those packets are copied in a single batch that reduces concurrency

and increases memory locality. This modification may be classified both as

a batching and memory affinity technique. As a second modification, PFQ

makes the most of the parallel paths technique at kernel level, that is, all its

functionalities execute in parallel and in a distributed fashion across the sys-

tem’s cores, which has proven to minimize the overhead. In fact, PFQ is able

to implement a new layer, named Packet Steering Block, in between user-level

and batching queues, providing some interesting functionalities. Such layer

distributes the traffic across different receive sockets (without limitation on

the number of queues than can receive a given packet). These distribution

tasks are carried out by means of memory mapping techniques to avoid ad-

ditional copies between such sockets and the user level. The Packet Steering

Block allows a capture thread to move a packet into several sockets, thus a

socket may receive traffic from different capture threads. This functionality

circumvents one of the drawbacks of using the parallel paths technique, that

is, scenarios where packets of different flows or sessions must be analyzed

by different applications—as explained in Section 3.3. Figure 3.7 shows a

temporal scheme of the process of requesting a packet in this engine.

It is worth remarking that, as stated before, PFQ obtains good perfor-

mance with vanilla drivers, but using a patched driver with minimal modifi-

cations (a dozen lines of code) improves such performance. The driver change

is to implement memory pre-allocation and re-use techniques.

PFQ is an open-source package that consists of a Linux kernel module and

a user-level library written in C++, available under General Public License

(GPL) license [BDPP13]. PFQ API defines a pfq class, which contains meth-

ods for initialization and packet reception. Whenever a user wants to capture

traffic: (i) a pfq object must be created using the provided C++ constructor,

(ii) devices must be added to the object calling its add device() method,

(iii) timestamping must be enabled using toggle time stamp() method, and

(iv) capturing must be enable using enable() method. After the initializa-

tion, each time a user wants to read a group of packets, the read() method

3.4. Novel Packet I/O Engines 49

Physical link Intel 82599 NIC

RX
RING

Packet arrival

DMA-able
memory region

DMA packet transfer

End of copy

IRQ

Kernel packet
buffer

Packet steering
block

push in
buffer

IF buffer IS filled

memcpy()

napi_schedule()

push in
buffer

memcpy()

User application

recv()
(copy)

(No copy)

(copy)

(copy)

Figure 3.7: PFQ RX scheme

is called. Using a custom C++ iterator provides by PFQ, the user can read

each packet of the received group. When a user-level application finishes pfq

object is destroyed by means of its defined C++ destructor. To get statistics

about the received traffic stats() method can be called.

3.4.6 HPCAP

High-performance Packet CAPture (HPCAP) is a packet sniffing solution

based on similar principles as previous engines, but with some significant

differences, namely: (i) accurate packet timestamping, and (ii) overlapping

capture and different processing tasks.

HPCAP is implemented on a kernel-level thread—one per each NIC’s

receiving queue. Such thread is constantly polling its corresponding receive

descriptor ring for new incoming packets. If a new packet is detected, the

sniffing thread copies the packet to its corresponding packet buffer. Figure 3.8

50 Chapter 3. High-Performance Packet Sniffing

User applicationHPCAP driverHost memoryIntel 82599 NICPhysical link

RX
RING

Packet arrival
DMA packet transfer

hpcap_poll()

check if there
are packets

available

copy into buffer

hpcap_poll()
copy into buffer

read()

Figure 3.8: HPCAP RX scheme

illustrates such process.

Packets are timestamped before being copied and, consequently, times-

tamping is more accurate than with other capture engines. This improvement

on timestamping accuracy is at expense of CPU load. Packet timestamping

process will be thoroughly analyzed in Chapter 4.

The packet buffer is circular and its memory is previously allocated (be-

fore starting to capture) avoiding per-packet dynamic allocations. Its length

may be configured and its default value is 1 GB. Due to kernel memory lim-

itations, all threads of the modules must share such 1 GB of memory. For

instance, if we have one interface with 4 queues, the buffer length of each

queue is 256 MB. Each position of the buffer contains a packet header includ-

ing packet timestamp (second and nanosecond), capture length (packets may

be capped) and actual length. The packet buffer is also mapped. Thus, user-

level threads and processes are able to read in this memory region without

intermediate copies.

The system supports multiple listeners (threads or process) to fetch pack-

ets from the same packet buffer in a single-producer/multiple-consumer basis.

That is, the packet buffer has one write pointer (where traffic sniffer copies

3.5. Testbed 51

packets) and multiple read pointers (where each listener reads packets). In

order to keep data consistency, the packet read throughput would be set by

the slowest listener. In order to achieve peak performance both traffic snif-

fer thread and the multiple listeners must be executed in the same NUMA

node [HJPM10]. Additionally, such NUMA node must be the assigned to

the PCIe slot where the NIC has been connected. This distinguishing fea-

ture allows monitoring application to focus on packet processing, while, for

example, a different application stores them into non-volatile volumes, thus

overlapping data storing and processing and exploiting parallelism, which

entails better performance.

HPCAP API workflow is similar as previous explained engines, such as

PacketShader or netmap: user application opens a char device to commu-

nicate with the driver and attaches to a given reception queue with an

ioctl(), hpcap init open(). Then, HPCAP allows two reading mode.

On the one hand, user application may directly access to the packet buffer

by means of the standard read() function (e.g., we may run a dd process

to dump packet buffer into disk). On the other hand, a user application

may map the corresponding packet buffer to exchange data with the driver,

hpcap map() and access to the packet kernel packet buffer by means of an

ioctl(): hpcap wait timeout(). With this function, we obtain the number

of available bytes in the buffer and acknowledge an amount of bytes already

processed. Note that this ACK mechanism is necessary to coordinate the

single polling thread with the multiple listeners. We can configure blocking

or non-blocking (with timeout expiration) wait.

3.5 Testbed

Once we have detailed the main characteristics of the most prominent capture

engines in the literature, we turned our focus to their performance in terms of

percentage of packets correctly received. It is noteworthy that the comparison

between them, from a quantitative standpoint, is not an easy task for two

reasons: first, the hardware used by the different studies is not equivalent (in

terms of type and frequency of CPU, amount and frequency of main memory,

52 Chapter 3. High-Performance Packet Sniffing

server architecture and number of network cards); second, the performance

metrics used in the different studies are not the same, with differences in the

type of traffic, and measurement of the burden of CPU or memory. For such

reason, we have stress tested the engines described in the previous section,

on the same architecture.

3.5.1 Hardware and Software Setup

Our testbed setup consists of two machines (one for traffic generation pur-

poses and another for receiving traffic and evaluation) directly connected

through a 10 Gb/s fiber-based link. The receiver side is based on Intel Xeon

with two processor of 6 cores each running at 2.30 GHz, with 96 GB of

Double Data Rate type 3 (DDR3) Synchronous Dynamic Random Access

Memory (SDRAM) at 1333 MHz and equipped with a 10 GbE Intel NIC

based on 82599 chip. The server motherboard model is Supermicro X9DR3-

F with two processor sockets and three PCIe 3.0 slots per processor, directly

connected to each processor, following a similar scheme to that depicted in

Figure 2.2(b). The NIC is connected to a slot corresponding to the first

processor. The sender uses a HitechGlobal HTG-V5TXT-PCIe card which

contains a Xilinx Virtex-5 FPGA (XC5VTX240) and four 10 GbE Small

Form-factor Pluggable (SFP)+ ports. Using such a hardware-based sender

guarantees accurate packet interarrivals and 10 Gb/s throughput regardless

of packet sizes.

On software side, the receiver has installed a 12.04 Ubuntu with Linux

kernel 3.2.16. Now, let us describe the commands and applications used to

configure the driver and receive traffic, for each capture engine. In the case of

PF RING, we installed driver using the provided script load dna driver.sh,

changing the number of receive queues with the RSS parameter in the in-

sertion of the driver module. To receive traffic using multiple queues, we

executed the following command: pfcount multichannel -i dna0 -a -e

1 -g 0:1:...:n, where -i indicates the device name, -a enables active

waiting, -e sets reception mode and -g specifies the thread affinity for the

different queues. Regarding PS, we installed the driver using the provided

3.6. Performance Evaluation 53

script install.py and receive packets using a slightly modified version of

the provided application echo. Finally, in the case of PFQ, we installed the

driver using n reception queues, configured the receive interface, eth0, and set

the Interrupt ReQuest (IRQ) affinity with the followings commands:insmod

./ixgbe.ko RSS=n,n; ethtool -A eth0 autoneg off rx off tx off;

bash ./set irq affinity.sh eth0. To receive packets from eth0 using n

queues with the right CPU affinity, we ran: ./pfq-n-counters eth0:0:0

eth0:1:1 ... eth0:n:n.

Note that in all cases, we have paid attention to NUMA affinity by ex-

ecuting the capture threads in the processor that the NIC is connected, as

it has 6 cores, this is only possible when there are less than seven concur-

rent threads. In fact, ignoring NUMA affinity implies extremely significant

performance cuts, specifically in the case of the smallest packet sizes, this

may reduce performance by its half. Regarding PFQ, we evaluated its per-

formance installing the aware driver.

3.5.2 Test Traffic Dataset

To stress test the different capture engines, we have used both synthetic

traffic and real traces. On the one hand, synthetic traffic is composed by

fix-sized TCP packets with incremental IP addresses and port numbers. The

packet payload is randomly generated.

On the other hand, we use a real trace, which was sniffed at an OC192

(9953 Mb/s) backbone link of a Tier-1 ISP located between San Jose and Los

Angeles (both directions), available from CAIDA [WAcA09]. The average

packet size in the trace is 743 Bytes.

3.6 Performance Evaluation

In this section, we discuss the performance evaluation results, highlight the

advantages and drawbacks of each capture engine and give guidelines to the

research community in order to choose the more suitable capture system.

It is worth remarking that netmap does not appear in our comparison

54 Chapter 3. High-Performance Packet Sniffing

because its Linux version does not allow changing the number of receive

queues being this fixed at the number of cores. As our testbed machine has

12 cores, in this scenario netmap capture engine requires allocating memory

over the kernel limits, and netmap does not start. However, we note that

according to [Riz12a], its performance figures should be similar to those from

PacketShader.

3.6.1 A Worst-Case Scenario

In this first experiment, we aim to analyze the worst case scenario, i.e., a full-

saturated 10 Gb/s link with packets of constant minimum size of 60 bytes

(as in the following, excluding Ethernet Cyclic Redundancy Check (CRC))

for different number of queues—ranging from 1 to 12. Note that this repre-

sents an extremely demanding scenario, 14.88 Mpps, but probably not very

realistic given that the average Internet packet size is clearly larger [CAI12].

Results are shown in Figure 3.9.

In this scenario, PacketShader is able to handle nearly the total through-

put when the number of queues ranges between 1 and 4, being with this latter

figure when the performance peaks. Such relatively counterintuitive behav-

ior is shared by PF RING DNA system, which shows its best permanence,

a remarkable 100% packet received rate, with a few queues, whereas with

when number of queues is larger than 7, the performance dips. Conversely

to such behavior, PFQ increases its performance according to the number of

queues up to its maximum with nine queues, when such growth stalls. In the

case of HPCAP, the performance ranges between 75 and 90% out of the total

packets sent, achieving its maximum throughput with two queues. Note that

HPCAP is only able to use 6 queues in our testbed of 12 cores, because two

threads per RSS queue are necessary: one for polling in kernel-level and one

for sniffing in user-level.

3.6.2 Scalability Analysis

To further investigate the scalability phenomenon for each capture engine,

Figures 3.10, 3.11, 3.12 and 3.13 depict the results for PF RING DNA, Pack-

3.6. Performance Evaluation 55

0 2 4 6 8 10 12
0

20

40

60

80

100

#Queues

Pa
ck

et
s

re
ce

iv
ed

 (%
)

60+4 bytes sized packets

PFQ
PS
PF_RING
HPCAP

Figure 3.9: Engines’ performance for 60 (+4 CRC) byte packets

etShader, PFQ and HPCAP respectively, for different packets sizes (60, 64,

128, 256, 512, 1024, 1250 and 1500 bytes) and one, six and twelve queues.

PF RING DNA shows the best results with one and six queues. It does not

show packet losses for all scenarios but those with packet sizes of 64 bytes

and, even in this case, such figure is very low (about 4% with six queues

and lower than 0.5% with one). Surprisingly, increasing packet sizes from

60 to 64 bytes entails degradation of the PF RING DNA performance, al-

though beyond this packet size, the performance recovers 100% rates. Note

that larger packet sizes directly imply lower throughputs in Mpps. Accord-

ing to [Riz12a], investigation in this regard has shown that this behavior is

because of the design of NICs and I/O bridges that make certain packet sizes

to fit better with their architectures.

In a scenario in which one single user-level application is unable to handle

56 Chapter 3. High-Performance Packet Sniffing

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes)

P
a
c
k
e
ts

 r
e
c
e
iv

e
d
 (

%
)

PF_RING 1 queue

PF_RING 6 queues

PF_RING 12 queues

Figure 3.10: PF RING DNA performance in terms of percentage of received
packet for different number of queues and constant packet sizes for a full-
saturated 10 Gb/s link

all the received traffic, may result of interest to use more than one receive

queue (with one user-level application per queue). In our testbed and as-

suming twelve queues, PacketShader has shown comparatively the best re-

sult, although, as PF RING DNA, it performs better with a fewer number of

queues. Specifically, for packet sizes of 128 bytes and larger ones, it achieves

full packet received rates, regardless the number of queues. With the smallest

packets sizes, it gives loss ratios of 20% in its worst case of twelve queues,

7% with six, and about 4% with one queue.

Analyzing PFQ’s results, we note that such engine achieves also 100%

received packet rates, but conversely to the other approaches, it works better

with several queues. It requires at least six ones to achieve no losses with

3.6. Performance Evaluation 57

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes)

P
a
c
k
e
ts

 r
e
c
e
iv

e
d
 (

%
)

PS 1 queue

PS 6 queues

PS 12 queues

Figure 3.11: PacketShader performance in terms of percentage of received
packet for different number of queues and constant packet sizes for a full-
saturated 10 Gb/s link

packets of 128 bytes or more, whereas with one queue, packets must be larger

or equal to 1000 bytes to achieve full rates. This behavior was expected due

to the importance of parallelism in the implementation of PFQ.

HPCAP presents a similar behavior to PacketShader and PF RING. That

is, it achieves the maximum throughput (zero losses) with packet size greater

than 64 bytes, although the performance is below with minimum packet size.

We tested with 1, 3 an 6 queues because, as previously explained, we cannot

configure more than 6 out of 12 queues.

58 Chapter 3. High-Performance Packet Sniffing

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes)

P
a
c
k
e
ts

 r
e
c
e
iv

e
d
 (

%
)

PFQ 1 queue

PFQ 6 queues

PFQ 12 queues

Figure 3.12: PFQ performance in terms of percentage of received packet for
different number of queues and constant packet sizes for a full-saturated 10
Gb/s link

3.6.3 A Stressful Real Scenario

In this section, we assess each capture engine sending a real trace (described

in Section 3.5) at maximum speed (10 Gb/s) for different number of queues—

ranging from 1 to 12. Although this scenario is not realistic in terms of bitrate

(is unlikely to full-saturate a backbone link) but in this experiment the packet

size follows a real (empirical) distribution.

Figure 3.14 shows the obtained results. All capture engines in all con-

figurations (number of queues), except PFQ configured with one queue, are

able to receive 100% of packets without packet losses. This shows that the

different proposals are able to sniff traffic in a real scenario at line-rate.

3.6. Performance Evaluation 59

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes)

Pa
ck

et
s

re
ce

iv
ed

 (%
)

HPCAP 1 queue
HPCAP 3 queues
HPCAP 6 queues

Figure 3.13: HPCAP performance in terms of percentage of received packet
for different number of queues and constant packet sizes for a full-saturated
10 Gb/s link

3.6.4 Findings and Guidelines

We find that these engines may cover different scenarios, even the more

demanding ones. We state two types of them, whether we may assume the

availability of multiple cores or not, and whether the traffic intensity (in

Mpps) is extremely high or not (for example, packet size averages smaller

than 128 bytes, which is not very common). That is, if the number of queues

is not relevant, given that the capture machine has many available cores or

no other process is executing but the capture process itself, and the intensity

is relatively low (namely, some 8 Mpps), PFQ seems to be a suitable option.

It comprises a socket-like API, which is intuitive to use, as well as other

interesting functionalities, such as an intermediate layer to aggregate traffic,

60 Chapter 3. High-Performance Packet Sniffing

0 2 4 6 8 10 12
0

20

40

60

80

100

#Queues

Pa
ck

et
s

re
ce

iv
ed

 (%
)

PFQ
PS
PF_RING
HPCAP

Figure 3.14: Engines’ performance in a real scenario (CAIDA trace)

while it achieves full-received packet rates for twelve queues. On the other

hand, if traffic intensity is higher than the previous assumption, PacketShader

presents a good compromise between the number of queues and performance.

Nonetheless, often multi-queue scenarios are not adequate. For example,

packet disorder may be a significant inconvenient (according to the appli-

cation running on the top of the engine) [WDC11], or simply, it may be

interesting to save cores for other tasks. In this scenario, PF RING DNA

and PacketShader are clearly the best options, as it shows (almost) full rates

regardless packet sizes even with only one queue (thus, avoiding any draw-

backs due to parallel paths).

Finally, HPCAP is shown as the best choice when accurate timestamps

are necessary [MSdRR+12], achieving almost the same good results as PF RING

and PacketShader with only one queue, and flexibility is required (because

3.7. Summary and Conclusions 61

HPCAP allows us to process with multiple listeners and overlap capture and

processing).

3.7 Summary and Conclusions

The utilization of commodity hardware in high-performance tasks, previ-

ously reserved to specialized hardware, has raised great expectation in the

Internet community, given the astonishing results that some approaches have

attained at low cost. In this chapter we have first identified the limitations of

the default networking stack and shown the proposed solutions to circumvent

such limitations. In general, the keys to achieve high performance are effi-

cient memory management, low-level hardware interaction and programming

optimization. Unfortunately, this has transformed network monitoring into

a non-trivial process composed of a set of sub-tasks, each of which presents

complicated configuration details. The adequate tuning of such configuration

has proven of paramount importance given its strong impact on the overall

performance. In this light, this chapter has carefully reviewed and high-

lighted such significant details, providing practitioners and researchers with

a road map to implement high-performance networking systems in commod-

ity hardware. Additionally, we note that this effort of reviewing limitation

and bottlenecks and their respective solutions may be also useful for other

areas of research and not only for monitoring purposes or packet processing

(for example, virtualization).

This chapter has also reviewed and compared successful implementations

of packet capture engines. We have identified the solutions that each en-

gine implements as well as their pros and cons. Specifically, we have found

that each engine may be more adequate for a different scenario according to

the required throughput and availability of processing cores in the system.

Specifically:

(i) PF RING and Packetshader achieve wire-speed using a few cores (even

with only one RSS queue) but they may lack of flexibility.

(ii) HPCAP obtains similar results, although performance is degraded with

62 Chapter 3. High-Performance Packet Sniffing

the minimum packet length of 60 bytes) and one additional core is

needed for sniffing. However, HPCAP provides accurate timestamping

and greater parallelism capabilities for traffic processing.

(iii) PFQ needs a greater amount of queues and cores to achieve an accept-

able throughput but gives more flexibility and additional functionalities,

such as customized packet aggregation and a socket-like API.

As a conclusion, the performance results exhibited in this chapter, in

addition to the inherent flexibility and low cost of the systems based on com-

modity hardware, make this solution a promising technology at the present.

Finally, we highlight that the analysis and development of software based on

multi-core hardware is still an open issue. Problems such as the aggregation

of related flows, accurate packet timestamping, and packet disordering will

for sure receive more attention by the research community in the future. Par-

ticularly, packet timestamping issues will be analyzed in Chapter 4 whereas

flow matching will be studied in Chapter 5.

Chapter 4

Analysis of Timestamp

Accuracy of High-Performance

Packet I/O Engines

Along with captured packets is desirable to get accurate timestamps—i.e., the

date and time of day when a packet was received. Software timestamping re-

quires system calls to obtain the corresponding timestamps requesting to the

system clock—whereas hardware timestamping is only possible using special-

ized solutions. Note that monitoring a 10 Gb/s link entails interarrival times

less than 1 µs, and consequently, to achieve such accuracy and precision of

timestamp is actually a challenging task. In this chapter, we discover and

quantify the timestamping inaccuracy introduced by novel high-performance

packet I/O engines. Hence, we propose two techniques to overcome or miti-

gate such issue.

4.1 Introduction

While the improvements explained in Chapter 3 boost up the performance

of packet capture engines, surprisingly, packet timestamp capabilities have

been shifted to the background, despite their importance in monitoring tasks.

Typically, passive network monitoring requires not only capturing packets

63

64
Chapter 4. Analysis of Timestamp Accuracy of High-Performance

Packet I/O Engines

but also labeling them with their arrival timestamps. In fact, the packet

timestamp accuracy is relevant to the majority of monitoring applications

but it is essential in those services that follow a temporal pattern. As an

example, in a VoIP monitoring system, signaling must be tracked prior to

the voice stream. Moreover, the use of packet batches as a mechanism to

capture traffic causes the addition of a source of inaccuracy in the process

of packet timestamping. Essentially, when a high-level layer asks for packets

the driver stores and forwards them to the requestor at once. Therefore, all

the packets of a given batch have nearby timestamps whereas inter-batch

times are huge, not representing real interarrival times. This phenomenon

has not received attention to date. Consequently, in this chapter we assess

the timestamp accuracy of novel packet capture engines and propose two

different approaches to mitigate the impact of batch processing.

The rest of the chapter is organized as follows: Section 4.2 describes the

problem of timestamping when capturing with OTS systems, detailing the

different sources of accuracy and precision degradation, mainly, caused by

batch processing. In Section 4.3, we propose three techniques, which over-

come or mitigate the timestamp issue previously described. In Section 4.4,

we evaluate the timestamp accuracy of the proposed methods and give a com-

parison with previous solutions. Finally, Section 4.5 concludes the chapters

highlighting the main findings.

4.2 Problem Statement: Timestamp Accu-

racy Degradation Sources

Dealing with high-speed networks claims for advanced timing mechanisms.

For instance, at 10 Gb/s a 60-byte sized packet is transferred in 67.2 ns:

(60 + 4 (CRC) + 8 (Preamble) + 12 (Inter-Frame Gap)) · 8 · 10−10, whereas

a 1514-byte packet in 1230.4 ns. In the light of such demanding figures,

packet capture engines should implement timestamping policies as accurate

as possible.

All capture engines suffer from timestamp inaccuracy due to kernel schedul-

4.2. Problem Statement: Timestamp Accuracy Degradation
Sources 65

ing policy because other higher priority processes make use of CPU resources.

Such problem becomes more dramatic when batch timestamping is applied.

In that case, although incoming packets are copied into kernel memory and

timestamped in a 1-by-1 fashion, this copy-and-timestamp process is sched-

uled in time quanta whose length is proportional to the batch size. Thus,

packets received within the same batch will have an equal or very similar

timestamp. In Figure 4.1 this effect is exposed for a 100%-loaded 10 Gb/s link

in which 60-byte packets are being received using PacketShader [HJPM10],

i.e., a new packet arrives every 67.2 ns (black dashed line). As shown, packets

received within the same batch do have very little interarrival time (corre-

sponding to the copy-and-timestamp duration), whereas there is a huge inter-

arrival time between packets from different batches. Therefore, the measured

interarrival times are far from the real values.

Figure 4.2 shows the standard deviation of the observed timestamp error

after receiving 1514-byte sized packets for one second at maximum rate.

The timestamp accuracy is degraded with batch size. Note that when the

batch size is beyond 16 packets, the error tends to stall because the effective

batch size remains almost constant —although a given batch size is requested

to the driver, user applications will be only provided with the minimum

between the batch size and the number of available packets. We notice

that PFQ [BDPGP12] does not use batch processing at driver-level and this

source of inaccuracy does not affect its timestamping. However, timestamp

inaccuracy may be added due to the per-packet processing latency.

At the same time, other sources of inaccuracy appear when using more

than one hardware queue and trying to correlate the traffic dispatched by

different queues. On the one hand, interarrival times may even be negative

due to packet reordering, as shown in [WDC11]. On the other hand, the

lack of low-level synchronism among different queues must be taken into

account as different cores of the same machine cannot concurrently read the

timestamp counter register [BRV09]. PFQ suffers from these effects because

it must use multiple queues in order to achieve line-rate packet capture.

However, batch-oriented drivers, such as PacketShader, are able to capture

wire-speed traffic using just one hardware queue.

66
Chapter 4. Analysis of Timestamp Accuracy of High-Performance

Packet I/O Engines

0 20 40 60 80 100 120
0

500

1000

1500

In
te

r−
pa

ck
et

 ti
m

es
ta

m
p

[n
s]

Packet number

0 20 40 60 80 100 120
0

2

4

6

C
hu

nk
 n

um
be

r

Chunk number
Theoretical Inter−packet TS
Measured Inter−packet TS

Figure 4.1: Batch timestamping

Although Linux can timestamp packets with sub-microsecond precision

by means of kernel getnstimeofday function, drift correction mechanisms

must be used in order to guarantee long-term synchronization. This is out

of the scope of this chapter as it has already been solved by methods like

Network Time Protocol (NTP), LinuxPPS or PTP [LCSR11].

4.3. Overcoming Batch Timestamping Issue 67

1 2 4 8 16 32 64

2000

2500

3000

Batch size [Packets]

St
an

da
rd

 e
rro

r [
ns

]

Figure 4.2: Accuracy timestamp degradation with batch size

4.3 Overcoming Batch Timestamping Issue

To overcome the problem of batch timestamping, we propose three tech-

niques. The first two ones are based on distributing the inter-batch time

among the different packets composing a batch. The third approach adopts

a packet-oriented paradigm in order to remove batch processing without de-

grading the capture performance.

4.3.1 UDTS: Uniform Distribution of TimeStamp

The simplest technique to reduce the huge time gap between batches, called

UDTS, is to uniformly distribute inter-batch time among the packets of a

batch. Equation 4.1 shows the timestamp estimation of the i-th packet in

the (k + 1)-th batch, where t
(j)
m is the timestamp of the m-th packet in the

j-th batch and nj is the number of packets in batch j.

τ
(k+1)
i = t

(k)
nk +

(
t
(k+1)
nk+1 − t

(k)
nk

)
· i
nk+1

(4.1)

i ∈ {1, . . . , nk+1}

As shown in Figure 4.3, this algorithm performs correctly when the in-

68
Chapter 4. Analysis of Timestamp Accuracy of High-Performance

Packet I/O Engines

nk(k) 1(k+1) 2(k+1) 3(k+1) 4(k+1) 1(k+2)

UDTS
𝜏1(k+1) t4(k+1)

UDTS
𝜏2(k+1)

UDTS
𝜏3(k+1)tnk

(k)

WDTS
𝜏1(k+1)

WDTS
𝜏2(k+1)

WDTS
𝜏3(k+1)

Figure 4.3: Full-saturated link with constant packet size

coming packets of a given batch have the same size. A drawback of this

solution is that all packets of a given batch have the same inter-arrival time

regardless of their size (see Figure 4.4). Note that the inter-packet gap is

proportional to the packet size when transmitting packets at maximum rate.

4.3.2 WDTS: Weighted Distribution of TimeStamp

To overcome the disadvantage of the previous solution, we propose to dis-

tribute time among packets proportionally to the packet size. This technique

is called WDTS. Equation 4.2 shows the timestamp estimation using this ap-

proach, where s
(k+1)
j is the size of the j-th packet in the (k + 1)-th batch.

τ
(k+1)
i = t

(k)
nk +

(
t
(k+1)
nk+1 − t

(k)
nk

)
·

∑i
j=1 s

(k+1)
j∑nk+1

j=1 s
(k+1)
j

(4.2)

i ∈ {1, . . . , nk+1}

WDTS is especially accurate when the link is completely loaded because

4.3. Overcoming Batch Timestamping Issue 69

nk(k) 1(k+1) 2(k+1) 3(k+1) 4(k+1) 1(k+2)

UDTS
𝜏1(k+1) t4(k+1)

UDTS
𝜏2(k+1)

UDTS
𝜏3(k+1)tnk

(k)

WDTS
𝜏1(k+1)

WDTS
𝜏2(k+1)

WDTS
𝜏3(k+1)

Figure 4.4: Full-saturated link with variable packet size

there are no inter-packet gaps (excluding transmission time), regardless the

packet size is variable, as shown in Figure 4.4. However, when the link load

is lower, both UDTS and WDTS present poorer results as they distribute

real inter-packet gaps among all the packets in the batch (see Figure 4.5).

That is, the lower the inter-packet gap is, the higher the accuracy is.

4.3.3 KPT: Kernel-level Polling Thread

Towards a timestamping approach that performs properly regardless the link

load, we propose a redesign of the network driver architecture, called KPT.

Novel packet capture engines fetch packets from the NIC rings only when a

high-level layer polls for packets, then they build a new batch of packets and

forward it to the requestor. This architecture does not guarantee when will

the fetcher thread be scheduled and consequently, a source of uncertainty is

added to the timestamping mechanism.

Our proposal is to create a kernel thread per each NIC’s receive queue

that will be constantly polling their corresponding receive descriptor rings,

70
Chapter 4. Analysis of Timestamp Accuracy of High-Performance

Packet I/O Engines

reading the first available descriptor flags to check whether it has already

been copied into host memory. If the poll thread detects that there is one or

more available packets at the receive ring, they will be copied in a 1-by-1 basis

to the poll thread’s corresponding circular buffer. Just before each packet

copy is made, the poll thread will probe for the system time by means of the

Linux kernel getnstimeofday() function. KPT approach is implemented in

HPCAP engine, described in Section 3.4.6.

A high-level application will request the packets stored in the kernel buffer

by means of read calls over a character device file, but the timestamping pro-

cess will no longer be dependent on when applications poll for new packets.

This approach reduces the scheduling uncertainty as the thread will only

leave execution when there are no new incoming packets or a higher priority

kernel task needs to be executed. KPT causes a higher CPU burden (ac-

cording to the packet rate) due to its busy waiting approach, but it does

not degrade the performance to the point that packets are lost. Specifically,

when receiving a real Tier-1 trace at line-rate, KPT presents a CPU load

of 75% whereas the load is 40% with PacketShader [SdRRG+12]. Neverthe-

less, all capture engines fully occupy the CPU when receiving small sized

packets—e.g., 60-byte packets.

4.4 Performance Evaluation

In this section, we assess the timestamp accuracy of our three proposals and

compare them with previous approaches. Such evaluation is performed using

both synthetic traffic and real traces.

4.4.1 Experimental Testbed

Our setup consists of two servers (one for traffic generation and the other for

receiving traffic) directly connected through a 10 Gb/s fiber-based link. The

receiver has two six-core Intel Xeon E52630 processors running at 2.30 GHz

with 124 GB of DDR3 SDRAM. The server is equipped with a 10 GbE Intel

NIC based on 82599 chip, which is configured with a single RSS queue to

4.4. Performance Evaluation 71

nk(k) 1(k+1) 2(k+1) 3(k+1) 1(k+2)

UDTS
𝜏1(k+1) t3(k+1)

UDTS
𝜏2(k+1)tnk

(k)

WDTS
𝜏1(k+1)

WDTS
𝜏2(k+1)

Figure 4.5: Non full-saturated link with variable packet size

avoid multi-queue side-effects, such as reordering or parallel timestamping.

The sender uses a HitechGlobal HTG-V5TXT-PCIe card which contains a

Xilinx Virtex-5 FPGA (XC5VTX240) and four 10 GbE SFP+ ports. Using

a hardware-based sender guarantees accurate timestamping in the source.

For traffic generation, two custom designs have been loaded allowing: (i)

the generation of tunable-size Ethernet packets at a given rate, and, (ii) the

replay of Packet Capture (PCAP) traces at variable rates.

4.4.2 Synthetic Traffic

As first experiment, we assess the timestamp accuracy sending traffic at

maximum constant rate. Particularly, we send 1514-byte sized packets at

10 Gb/s, i.e., 812,744 packets per second and measure the interarrival times

in the receiver side. Table 4.1 shows the error of the measured timestamp

(i.e., the difference between the original and the observed interarrival times),

in terms of mean and standard deviation, for a 1-second experiment for the

different reviewed methods. Note that the lower the standard deviation is,

72
Chapter 4. Analysis of Timestamp Accuracy of High-Performance

Packet I/O Engines

Table 4.1: Experimental timestamp error (mean and standard deviation).
Synthetic traffic: 1514-bytes packets

Solution Batch size µ̄± σ̄ [ns]

User-level batch TS
1 1.77± 1765.37
32 1.76± 3719.82

Driver-level batch TS
1 1.77± 1742.09
32 1.77± 3400.72

PFQ - 1.68± 13, 558.65

UDTS 32 1.78± 167.00

WDTS 32 1.77± 170.95

KPT - 1.77± 612.72

the more accurate the timestamping technique is. The first two rows show

the results for PacketShader, chosen as a representative of batch-based cap-

ture engines. We tested with different batch sizes and different timestamping

points: at user-level or at driver-level. PFQ results are shown in the following

row whereas the three last ones show the results of our proposed solutions.

It can be observed that timestamping error grows with batch size, as shown

in Figure 4.2. However, even in the best case (using one-packet batches),

the error is greater than the one observed using our proposals. UDTS and

WDTS methods enhance the accuracy, decreasing the standard deviation

of the timestamp error below 200 ns. Both methods present similar results

because all packets have the same size in this experiment. KPT technique

reduces the standard deviation of the error up to ∼600 ns. Despite times-

tamping packet-by-packet, PFQ shows a timestamp standard error greater

than 13 µs.

4.4.3 Real Traffic

In the next experiments, we evaluate the different techniques using real traf-

fic from a Tier-1 link (i.e., a The Cooperative Association for Internet Data

Analysis (CAIDA) OC192 trace [WAcA09]). We perform two experiments:

4.5. Summary and Conclusions 73

Table 4.2: Experimental timestamp error (mean and standard deviation).
Real traffic: Wire-speed and Original speed

Solution
Wire-Speed Original Speed
µ̄± σ̄ [ns] µ̄± σ̄ [ns]

Driver-level batch TS 13.00± 3171.46 −25.95± 19, 399.08

UDTS 11.88± 608.75 −39.83± 13, 671.08

WDTS 5.31± 111.22 −41.77± 14, 893.97

KPT −1.43± 418.42 −43.44± 1093.16

in the first one, the trace is replayed at wire speed (that is, at 10 Gb/s), and

then, we replay the trace at the original speed (i.e., at 564 Mb/s, respecting

inter-packet gaps). Due to storage limitation in the FPGA sender, we are

able to send only the first 5,500 packets of the trace. Table 4.2 shows the

comparison of the results for our proposals and the driver-level batch times-

tamping. We have used a batch size of 32 packets because 1-packet batches do

not allow achieving line-rate performance for all packet sizes. In wire-speed

experiments, WDTS obtains better results than UDTS due to different sized

packets in a given batch. When packets are sent at original speed, WDTS

is worse than KPT because WDTS distributes inter-packet gap among all

packets. This effect does not appear at wire-speed because there is no inter-

packet gap (excluding transmission time). In any case, driver-level batch

timestamping presents the worst results, even in one order of magnitude.

4.5 Summary and Conclusions

Batch processing enhances the capture performance of I/O engines at the

expense of packet timestamping accuracy. We have proposed two approaches

to mitigate timestamping degradation:

(i) UDTS/WDTS algorithms that distribute the inter-batch time gap among

the different packets composing a batch

(ii) A redesign of the network driver, KPT, to implement a kernel-level

74
Chapter 4. Analysis of Timestamp Accuracy of High-Performance

Packet I/O Engines

thread which constantly polls the NIC buffers for incoming packets and

then timestamps and copies them into a kernel buffer one-by-one.

In fact, we propose to combine both solutions according to the link load, i.e.,

using WDTS when the link is near to be saturated distributing timestamp in

groups of packets and, otherwise, using KPT timestamping packet-by-packet.

We have stress tested the proposed techniques, using both synthetic and real

traffic, and compared them with other alternatives achieving the best results

(standard error of 1 µs or below). Our results, using both synthetic traffic

and real traces, highlight the significant timestamping inaccuracy added by

novel packet I/O engines, and show how our proposals overcome such lim-

itation. These proposals allow us to capture correctly timestamped traffic

for monitoring purposes at multi-10Gb/s rates by means of several 10 Gb/s

NICs or multi-queue processing for faster interfaces such as 40 Gb/s.

To summarize, we alert research community to timestamping inaccuracy

introduced by novel high-performance packet I/O engines, and proposed two

techniques to overcome or mitigate such issue.

Chapter 5

Real Traffic Monitoring

Systems: Statistical

Classification and Anomaly

Detection at Line-Rate

Previously, we showed that packet sniffing (Chapter 3) and accurate times-

tamping (Chapter 4) at 10 Gb/s on OTS systems is currently a fact. How-

ever, such challenges are devalued if upper applications are not able to process

all packets at such high rates. In this chapter, we assess (and, actually, show)

the feasibility of various monitoring tasks at high-speed rates using OTS sys-

tems. Traffic classification is our first goal. We present a statistical classi-

fication engine, able to process traffic at wire-speed. We thoroughly analyze

important aspects of the flow manager (e.g., hash functions and efficient data

structures), as well as the comparison of multiple state-of-the-art ML tools.

Once showed the feasibility of traffic classification, we consider the problem

of flexibility and scalability. That is, we wonder if it is feasible a modular

monitoring system able to obtain and process network traces from different

levels and granularities at line-rate. Thus, we propose an architecture as well

as a monitoring application implemented over the proposed system, able to

provide statistics, report alarms and afterwards perform forensic analysis.

75

76
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

5.1 Introduction

As shown in previous chapters, nowadays, OTS systems, based on open-

source software and commodity hardware, are able to sniff and accurately

timestamp packets at line-rate (10 Gb/s). The keys to achieve such high

performance are efficient memory management, low-level hardware interac-

tion and programming optimization. Unfortunately, this has transformed

network monitoring into a non-trivial process composed of a set of sub-tasks,

each of which presents complicated configuration details. The adequate tun-

ing of such configuration has proven of paramount importance given its strong

impact on the overall performance.

However, such capabilities (sniffing and timestamping) are not enough

to perform network monitoring. That is, upper-level applications (such as

a NIDS) must be able to process the captured and timestamped packets.

Thus, we turn our attention to the challenges that application developers

face by using this new paradigm in upper-level monitoring applications. The

discovered limitation and bottlenecks in packet capturing and their respective

solutions may be also useful for such upper layers.

Particularly, we focus on traffic classification. Traffic classification tech-

nology has gained importance in the recent years, as it has proven useful in

many tasks such as QoS enforcement, accounting and billing, security and

network management. We note that the most state of the art has focused on

providing accuracy only, regardless of the processing power that is required,

which may impair the practical applicability of the traffic classification algo-

rithm in a real-world, high-speed environment. In this chapter, in order to

show the feasibility of traffic classification on OTS, we present a classifica-

tion engine based on open-source software and commodity hardware, able to

process packets at line-rate.

Likewise, the heterogeneity and high complexity of current networks (large

number of different applications and protocols, aggregates of multi-Gb/s, mil-

lions of packets per second and millions of concurrent flows per link) call for

more flexible and scalable monitoring designs. Such designs must be capable

of processing network data at different granularities (packet-level, flow-level,

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 77

and aggregated statistics) with different purposes (e.g., anomaly detection

and traffic classification) at line-rate. Consequently, in this chapter, we pro-

pose a modular architecture to build high-performance OTS monitoring sys-

tems fulfilling flexibility and scalability requirements.

The rest of the chapter is organized as follows: on the one hand, Sec-

tion 5.2 is devoted to present and analyze our proposed classification engine.

Particularly, Sections 5.2.2 and 5.2.3 describe the system architecture and the

proposed configurations, respectively. In Section we stress test the proposal

in a worst-case scenario whereas in Section 5.2.6 evaluate it in a real sce-

nario. Finally, Sections 5.2.7 and 5.2.8 thoroughly analyze flow handling and

classification modules, respectively. On the other hand, Section 5.3 presents

a system architecture to overcome high-speed scalable network monitoring

and further provides a real sample, DetectPro, a line-rate flexible passive

probe. In particular, Section 5.3.2 describes the proposed architecture and

Section 5.3.3 shows the applicability of such proposal with a sample. In

Section 5.3.4 we detail the experimental procedure to assess our proposal

whereas the performance evaluation results are shown in Section 5.3.5.

5.2 HPTRAC : Wire-Speed Early Traffic Clas-

sification Based on Statistical Fingerprints

5.2.1 Introduction

In this Section, we present an open-software-based traffic classification en-

gine, called High-Performance TRAffic Classifier (HPTRAC), running on

commodity multi-core hardware, able to process in real-time aggregates of

up to 14.2 Mpps over a single 10 Gb/s interface – i.e., the maximum possible

packet rate over a 10 Gb/s Ethernet link given the frame size of 64 Bytes.

We perform a thorough sensitivity analysis involving important aspects of the

system, such as the use of specific hash functions and efficient data structures

for flow management, as well as the use of multiple state-of-the-art ML tools.

Hence, we argue that commodity multi-core hardware offers intrinsic scal-

78
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

ability at low cost, while providing the unbeatable flexibility of software-only

solutions. Hence, we take a different twist with respect to works employing

specialized hardware based on Network Processor or FPGAs: furthermore,

our software based solution is the first to achieve two important milestones.

First, using both real Tier-1 traces and synthetic traffic, we demonstrate that

multi-Gb/s statistical traffic classification is feasible with OTS systems. Sec-

ond, our solution is able to sustain higher classification rates than previous

work [SGV+10, LXSL08, VPI11, LKJ+10] with a sizeable gain in terms of

the maximum amount of classification actions per second and manageable

packet rates.

In more detail, our software can easily handle a real Tier-1 traffic aggre-

gate (i.e., a CAIDA OC192 trace [WAcA09]) replayed at 10 Gb/s, correspond-

ing to 1.6 Mpps and 58 thousand flow classifications per second (Kfps). Using

two interfaces, our system sustains classification rates of 20 Gb/s, 3.2 Mpps,

116 Kfps. Yet, the upper bound of the system performance is much higher,

as we manage to handle classification rates up to 14.2 Mpps and 2.8 Mfps

without any losses (benchmark with synthetic worst-case traffic scenario with

trains of 64B packets, 5 packets per flow, over a 10 Gb/s link).

Such astonishing performance follows the use of a lightweight classifica-

tion algorithm (which base their decisions upon the size of the first 4 packets

of every unidirectional flow [BTS06, CDGS07]), as well as of the most re-

cent advances in terms of packet processing techniques [HJPM10]. Yet, as

we will see in the following, engineering the system so that it sustains wire-

speed classification in the worst-case traffic scenario required investigation of

several delicate architectural trade-offs of the software, as well as the care-

ful tuning of hardware parameters. We believe the removal of all software

bottlenecks in the workflow to be another major contribution of this section.

This section brings many additional results, notably a thorough sensitiv-

ity analysis involving both important flow management aspects (such as the

use of specific hash functions and efficient data-structures for flow manage-

ment) in 5.2.7, as well as the use of multiple machine learning tools (e.g.,

Näıve-Bayes, C4.5, Support Vector Machine (SVM)) in 5.2.8. In addition,

we carried out an extensive and intensive stress test of the capture module,

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 79

CHUNK RING JOB RING

SNIFFING
MODULE

FLOW
HANDLING
MODULE

CLASS
MODULE

Figure 5.1: HPTRAC modules

i.e., receiving traffic at 14.2 Mpps for a 24-hour span, and a detailed profiling

of the whole system.

Finally, we note that to stress-test our system, we also had to develop

highly efficient traffic injection engines able to either generate infinite syn-

thetic traffic or replay very long real traces thus saturating 10 Gb/s links

for extended time window. As an additional contribution of this thesis, we

make the developed tools, both the classification engine and the traffic gen-

erator [Hrg12], available as open-source software as a research byproduct.

5.2.2 System Architecture

We report in Figure 5.1 the three main blocks that compose our classification

system: the two data ring structures for packet/flow queuing and the logical

connections that push information from left to right.

Sniffing module

We capture incoming packets with PacketShader [HJPM10], a customized

version of the Intel ixgbe driver that can fetch chunks of multiple frames

from the NIC to user-space, greatly reducing the I/O overhead and the per-

packet buffer allocation cost. Thanks to a native feature of the Intel 82599

10 GbE controller, incoming frames are partitioned in RSS queues according

to a hash function: one sniffing module (a thread running in user-space but

accessing with zero-copies to packets in kernel-space) can then be set up

to fetch frames only from a given RSS queue. Following such paradigm, we

carefully tune the system affinity. That is, interruptions of a given RSS queue

are handled by a specific core (interrupt affinity) and every capture thread is

80
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

tied to the same CPU core (thread affinity) so as to keep the data locally in

that CPU cache (hence limiting cache thrashing between processor sockets)

and to avoid context changes. This same feature extends parallelism from

the NIC to the user layer, as RSS queues feed different cores with multiple

chunks at the same time, pushing them through multiple lanes of the PCIe

bus and hence increasing the overall throughput with respect to a single core

solution. See Chapter 3 for more details.

Packets are then organized in a circular ring and made available to user-

space with zero-copy technology. Here a thread running on the same CPU

copies the chunks from the kernel ring and enqueues resulting data to a

Chunk Ring of Figure 5.1: if the ring is full, a chunk might be lost. We set

the chunk size to 128 packets.

Flow Handling module

A thread then dequeues packets from the Chunk Ring and performs lookup

into a Flow Table. A hash over the packet 5-tuple is used as a primary key to

access a hash table, while collisions are handled by chaining (a data structure

based on linked list of flow buckets). Once the bucket is found (or a new one

is appended if the flow was not already known), a new feature is added to

the flow structure, namely the length of the corresponding packet (read from

the IP header). Each flow is considered active within a timeout (default 15

seconds) after the reception of the last packet. When the timeout expires,

its position in the linked list can be reused by a new flow (no deallocation

overhead). Once a configurable number of packets for a given flow has been

seen (4 in this work), a new classification job is fired to the Job Ring of

Figure 5.1 if a position is available (otherwise, the job will likely be inserted

the next time a packet from that flow will be analyzed). We set the flow

hash table size to 54 millions.

We report an exhaustive sensitivity analysis of the flow manager (e.g.,

hash table size and hash functions) in Section 5.2.7.

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 81

Classification Module

Classification threads are able to run custom implementations of several sta-

tistical classifiers, such as Näıve-Bayes, C4.5 trees and SVM. Given the first

four packets of a flow have been received, the algorithm associates the flow to

the protocol whose model scores the maximum likelihood for the generation

of the flow. For each protocol model the algorithm uses the size of the pack-

ets as indexes into the four lookup tables that have been associated to that

protocol during the training phase: the values extracted are then summed

together, we optimize, in fact, the algorithm by storing the logarithms of

the table values to avoid products as reported in [RVV+08]. By comparing

the values obtained for each of the protocols for which a model is available,

the algorithm chooses the application and the classification of the flow ter-

minates: for more details please refer to [CDGS07]. Although classification

accuracy, in terms of packets correctly classified, is a key issue, it is not the

goal of this study because it has been already analyzed [NA08]. Once chosen

the classification technique, we evaluated its performance in terms of compu-

tational cost and the feasibility of its implementation on a real system (based

on commodity hardware and open software). Note that the computational

complexity, given a model, is not a function of accuracy.

To increase the speed at which Jobs are extracted from the Job Ring,

multiple threads can be spawned according also to the complexity of the

algorithm. Each thread extracts one job from the ring, processes the data,

and writes the classification verdict in the flow bucket inside the Flow Table.

New packet for that flow will be marked with this verdict in their ToS field

of the IPv4 header. By default, we set only one thread to classify: as we will

see in the experimental section, this is sufficient to classify all jobs generated

by the flow manager (for all machine learning algorithms, except SVM).

Hence, unless otherwise stated, we use a Näıve-Bayes classifier, and we defer

a detailed comparison of several state-of-the-art machine learning approaches

to Section 5.2.8.

82
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

Tag Interfaces (I) Queues (Q) Processes (P) CPU affinity

1I-1Q-1P xge0 FlowRx Class

Flow Class
Rx

1I-2Q-1P
Rx

Rx

Flow

Flow
Class

Flow Class
Rx

1I-2Q-2P

FlowRx Class

FlowRx Class

2I-1Q-2P

FlowRx
Flow Class
Rx

FlowRx Class Flow Class
Rx

Flow Class
Rx

Flow Class
Rx

Flow
Rx

xge0

xge0

xge0

xge1

Class

CPU1

CPU2

CPU1

CPU2

CPU1

CPU2

CPU1

CPU2

Figure 5.2: Different architectural configurations of HPTRAC system

5.2.3 System Configuration

While even the most simple module configuration is able to sustain the real

OC192 traffic replayed at 10 Gb/s, careful engineering is needed to achieve

the highest classification rates under worst-case traffic (i.e., smallest packets

and short flows). Configurations explored in this analysis are sketched in

Figure 5.2.

1I-1Q-1P

This is the simplest configuration: traffic received at the same RSS queue

of a single interface is captured by a thread, which in turn pushes packets

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 83

to one chunk ring in user-space. All packets are matched in the flow table

sequentially: one classification thread works on the single job ring. In this

case, though, some CPU cores are not utilized. Note that using a single RSS

queue may be preferable to multi-queue in some cases. Namely, whenever a

single CPU is enough to cope with line-rate processing, the lower CPU usage

translate into a lower power consumption and thus carbon footprint, not

to re-implement monitoring tools which have not been designed for parallel

processing, or to avoid packet reordering issues due to multi-queue [WDC11].

1I-2Q-1P

This configuration holds the single process model of the previous one but two

RSS queues are used: this means two threads for fetching packets chunks and

two separate flow matching modules. Each capturing flow is executed on a

different CPU, but only one hash table is used. Since a single job ring is

used, data coming from two different CPUs is merged again in a single data

flow. In this case, locking issues may arise on the flow table data structure.

1I-2Q-2P

Though similar to the previous configuration (two RSS queues, two threads

for capturing, bound to different CPUs), the two threads for flow-handling

residing in different processes, each on the same CPU of the corresponding

sniffer. This means that two separated flow tables are maintained and no

locking is required thanks to the hash function used at the NIC for dividing

packets into the two queues: each single flow lives on a single queue only (no

mixing). Moreover, the classification code (threads) and data structures (job

rings) are duplicated and fairly spread between the two CPUs with no data

flow merge. In this case, locking is solved at the price of doubling the amount

of memory.

2I-1Q-2P

The last configuration is exactly as the first one, but two NICs are used: for

each NIC a complete capture and classification chain is instantiated, each

84
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

complete chain lives on a separated CPU. Given the number of cores in our

system, we cannot explore other configurations when 2 interfaces are in use.

5.2.4 Hardware and Software Setup

First, let us describe our experimental testbed, covering hardware and soft-

ware details.

Hardware setup

Our setup consists of two general-purpose servers: one acts as traffic gen-

erator, the other receives and classifies the traffic. Both are equipped with

2x12 GB DDR3 SDRAM memory boards and features two Intel Xeon E5620

processors, counting four cores each (with hyper-threading capabilities dis-

abled to obtain actual parallelism among cores) working at 2.40 GHz. Con-

cerning connectivity, each server is equipped with one dual port 10 GbE Intel

X520-SR2 NIC, and servers are directly connected with a fiber link. This NIC

model is based on 82599 chipset, which allows multi-queue techniques, up to

16 RSS queues per interface and direction.

Software

Both servers have installed Ubuntu 10.04 server 64-bit version, using 2.6.35

Linux kernel. In order to send traffic we cannot utilize a generic tool such as

tcpreplay [Tcp12] (which allows to replay a packet-level trace) since it cannot

saturate 10 Gb/s links. For this reason, we have developed a tool that uses

PS API to send traffic at maximum rate. Particularly, our tool [Hrg12] is

able either to inject infinite synthetic traffic or to replay very long packet-level

traces.

5.2.5 Stress Testing

In this Section, we benchmark system performance in a worst-case scenario

(64B packets at maximum rate) in order to locate and solve system bot-

tlenecks using synthetic traffic. Synthetic traffic consists of TCP segments

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 85

0 2 4 6 8 10
x 107

0

5

10

15

20

25

Flow hash table size

M
ea

n
lis

t s
iz

e

Sequential
Sequential +=5
Sequential +=rand(1:5)
Random
Sequential reverse
CAIDA

Figure 5.3: Flow hash table list occupancy for different traffic pattern

encapsulated into 64B-size Ethernet frames, forged with incremental IP ad-

dresses and TCP ports. Incremental TCP and IP pattern may seem a best-

case pattern in terms of hash collision. However, we did several tests with

different patterns (sequential in various order, random, 5-tuples of real traces)

and the results were similar—Figure 5.3 shows the mean list size of flow hash

table entries after processing 840 M packets with a 30-second expiration time-

out. Note that 14.2 Mpps lling a 50 M sized hash table produces a sizeable

amount of collisions.

We stress once more that, though all packets have 64B-size, the packet

length features are extracted from the IPv4 header: hence, our benchmark

methodology do not affect the relevance of the classification results. For each

flow (5-tuple combination), we send 5 packets, since the 5-th packet will be

the first to have the chance to be classified (on the basis of the packet-length

features of the previous 4 packets) At a maximum rate of 14.2 Mpps for 64B

frames, this translates into 2.8 Mfps.

We first stress test the system in a worst-case scenario, i.e., using syn-

thetically generated 5-packets long flows, sending 64B frames at maximum

rate, i.e., 14.2 Mpps or 2.8 Mfps per interface. We measure the amount of

packets processed by each module during 60-second experiments. Note that

using two interfaces we only were able to send at ≈25 Mpps (instead of the

86
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

Sending Sniffing Flow handling Classification
0

0.5

1

1.5

2

2.5

3
x 10

7
P

ac
ke

ts
 p

er
 s

ec
on

d

1I−1Q−1P
1I−2Q−1P
1I−2Q−2P
2I−1Q−2P

100%

100%+100%
77%+78%

100%

100%+100% 43%

39%

87%+86% 46%+45%
100%+100% 42%+41%

100%+100%
X1%+X2% CPU Usage Thr1+Thr2

Figure 5.4: HPTRAC performance. Worst-case scenario: synthetic traffic
64B packets, 5 packet/flow

theoretic maximum 28.4 Mpps) due to limitations in the sender.

Figure 5.4 shows the performance obtained for each module (namely, sniff-

ing, flow handling and classification) for the different configurations. In the

parallel coordinates plot, a negative slope in the curves reflects a bottleneck:

i.e., a module that is not able to process all packets generated by the pre-

vious one. Curves in Figure 5.4 are annotated with the CPU usage of each

module; when the configuration has two threads in one module, CPU usage

is expressed like an addition of two terms. CPU usage is computed using

sysstat utilities [God12]. We obtained the CPU load per thread every 5

seconds and then we averaged. Background CPU usage (when there is no

classication systems running) and experimental variance are negligible.

The simplest configuration.

The simplest configuration 1I-1Q-1P sniffs traffic from one interface, uses

one RSS queue and one process. In this case, it can be observed that not all

packets sent can be sniffed using a single RSS queue, and therefore a single

core. Particularly, only 12.1 Mpps are sniffed out of the 14.2 Mpps sent: note

that sniffing module CPU usage is 100%, which pinpoints a processing power

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 87

bottleneck. Similarly, flow module is only able to process 7.9 Mpps out of

12.1 Mpps sniffed packets. As CPU utilization of flow handling module is also

100%, we have strong indication of a second processing bottleneck. Finally,

a slight negative slope can be observed in the classification module. This is

not due to a CPU bottleneck (39%), but rather to the fact that only flows

with 5 packets can be classified and there have been packet losses in previous

modules. The classification rates sustained by 1I-1Q-1P configuration are

thus 7.9 Mpps and 1.5 Mfps.

Using 2 RSS queues

In order to remove bottlenecks observed in the first configuration, we incre-

ment the number of RSS queues and the number of cores dedicated to packet

sniffing and flow management. Thus, we test two configurations, namely 1I-

2Q-1P and 1I-2Q-2P. As shown in Figure 5.2 and explained in Section 5.2.3,

the former configuration uses one process with two threads for sniffing, one

per queue, and two threads for flow handling, having a unique hash table

and a unique classification thread. Conversely, 1I-2Q-2P configuration uses

two processes, one per queue, which do not share neither data structures nor

processing cores. We can observe that the bottleneck in the sniffing module

is removed in both cases: i.e., two RSS queues are enough to receive and copy

to the chunk ring at a 14.2 Mpps rate. Besides, the 1I-2Q-2P configuration

with two processes consumes less CPU power.

Locking issue

The behavior of the flow handling module is different between 1I-2Q-1P and

1I-2Q-2P. Indeed, 1I-2Q-1P is not able to process all packets received by the

sniffing module, and performance even worse than in the case with only one

RSS queue. The bottleneck in this configuration is tied to the contention in

the access to shared data structures, such as the hash table and the job ring.

To arbitrate concurrent access to shared memory is necessary to perform

synchronization and locking operations, which cause a huge performance loss.

As in the first configuration, all flows generated by the flow handling module

88
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

can be classified. With 1I-2Q-1P configuration, the performance of the whole

system falls to 2.1 Mpps and 0.4 Mfps.

Wire-speed classification

Using two RSS queues and two independent processes, we remove both sniff-

ing bottleneck and flow management locking issues. With 1I-2Q-2P, the

system sniffs, process and classifies all packets sent at wire-speed without

packet losses. Notice further that not even a single CPU core is saturated

(sniffing 77%+78%, flow management 87%+86%, classification 45%+46%),

so that the remaining processing power could be useful to perform other tasks

(such as packet forwarding or statistics collection). This also means that the

processing capabilities of 1I-2Q-2P configuration exceed the maximum data

rate at 10 Gb/s., i.e., 14.2 Mpps and 2.8 Mfps.

Using 2 interfaces

The latest configuration, 2I-1Q-2P uses two interfaces to receive traffic, but

a single RSS queue per interface due to the limit in the number of cores. As

expected, behavior is similar to 1I-1Q-1P, with bottlenecks in both sniffing

(24.2 Mpps received out of 25.2 Mpps sent) and flow handling (15.2 Mpps

processed out of 24.2 Mpps received).

More extensive tests

As we observed in Figure 5.4 configuration 1I-2Q-2P is able to process all

packets sent at 14.2 Mpps without packet losses. However, the experiment

span is 60 second. To assure that our system is packet-loss-immune in the

long-term, we assess the sniffing module sending traffic for 24 hours. The

results show that it only dropped 60 thousand packets out of 1.2 trillion

packets sent during the whole experiment, corresponding to an average packet

loss rate of 4.6·10−8. To remove this almost negligible packet loss rate, we set

a higher priority for our system processes in the operating system scheduler.

Particularly, we set a −20 nice level, the highest priority level in a Linux

system. With such priority level, we obtained zero packet loss.

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 89

Table 5.1: HPTRAC profiling: Top-5 most consuming-time functions

Function Name Module Time (%)

processPkt Flow-handling 73.91
capture Sniffing 18.78

readPktFromChunkRing Flow-handling 3.65
flowHash Flow-handling 1.34
class Classification 1.28

Subtotal - 98.96

Profiling

In order to locate more precisely which are the most time consuming functions

and where we should tune our system to improve performance, we profiled

our system using gprof [FS93], for a 5-minute experiment. Table 5.1 shows

the percentage of time spent for each function. We do not consider initializa-

tion functions, e.g. hash table allocation. Only top-5 most time-consuming

functions of our system are shown, which correspond to 98.96% of the total

time. It can be observed that packet processing function in the flow man-

ager, which is mainly dedicated to hash lookups, spends almost 75% of the

time, whereas flow hash computation spends less than 1.5%. Previous results

suggest that flow manager is the potential bottleneck in our system. Thus,

we exhaustively assess data structures and hash functions in order to better

understand the behavior of the flow-handling module, in Section 5.2.7.

5.2.6 Performance Evaluation in a Real Scenario

In this Section, we assess our system in a real scenario, replaying traces from

a Tier-1 link over one or two 10 Gb/s interfaces. Real traffic consists of a

packet-level trace sniffed in 2009 at an OC192 (9953 Mb/s) backbone link

of a Tier-1 ISP located between San Jose and Los Angeles, available from

CAIDA [WAcA09]. All the packets in the trace are anonymized and captured

without payload, the average of the original packet size in the trace is 744

bytes and the average number of packets per flow is 49.

90
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

1I−1Q−1P 1I−2Q−1P 1I−2Q−2P 2I−1Q−2P
0

20

40

60

80

100
C

P
U

 U
sa

ge
 %

Sniffing
Flow handling
Classification

10Gbps
6GB

11.9%

20Gbps
12GB
29.5%

Class rate
Memory usage
Total CPU usage

10Gbps
6GB

16.1%

10Gbps
12GB
14.6%

Figure 5.5: HPTRAC performance. Real scenario: CAIDA trace with origi-
nal packet length

Original packet size

We now test performance on real Tier-1 traffic. We replay traces by sending

packets back-to-back at 10 Gb/s by filling payload with zeros. Using full

packet size in Fig5.5, all system configurations sustain maximum rate: i.e.,

1.6 Mpps and 58 Kfps on a single 10 GbE interface, or 3.2 Mpps and 116 Kfps

on two interfaces. CPU usage and memory occupancy report that cores are

far from being saturated and, thus, our system boundaries are even beyond

20 Gb/s in a realistic scenario. Note that the simplest configuration (only

three threads) is enough to classify all traffic with the smallest CPU load

(hence the lowest carbon footprint).

Capped packet size

Finally, in Figure 5.6 for each frame of size Si we control the maximum

amount of bytes sent on the wire as max(Si, L) with L the maximum frame

size, that we vary L ∈ [64, 1500]B to tune the flow and packets arrival rates

for a fixed datarate of 10 Gb/s – hence finding the packet and flow processing

rate bottleneck of each configuration. From the figure, we gather that the

simplest configuration 1I-1Q-1P, can sustain up to 3.8 Mpps and 103 Kfps

using only 3 cores. When maximum packet size is 750B (or above), the

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 91

0 64 200 500 750 1.500
0

5

10

15

20

Max. Packet size [Bytes]

C
la

ss
ifi

ca
tio

n
ra

te
 [G

bp
s]

1I−1Q−1P
1I−2Q−1P
1I−2Q−2P
2I−1Q−2P

2.8
85

1.6
58

3.8
103

7.4
154

14.2
284

Packet rate (per interface) [Mpps]
Flow rate (per interface) [Kfps]

Figure 5.6: HPTRAC performance dependency on packet size. CAIDA trace
with capped packet length

system is able to sustain line-rate.

5.2.7 Flow Manager Analysis

The main result from 5.2.5 was to determine the best configuration in terms

of (i) interfaces, (ii) queues per interface, (iii) number of processes and (iv)

threads for avoiding losses even in the worst case scenario (synthetic traffic

at maximum packet rate). It turned out that two “isolated” processes are

able to pick-up packets from two separated driver queues at 7.1 Mpps each.

Given that traffic classification does not impact on losses because of the Job

Ring filter mechanism, the bottom line is that two “isolated” processes are

required to match all the received packets in the flow table. We use “isolated”

to stress that the sets of flows seen by the two processes are disjoint thanks

to the hardware RSS mechanism.

In this section, we focus on the flow matching subsystem, aiming at im-

proving as much as possible the performance of each single process. To this

end, we run some off-line experiments to test different flow management ar-

chitectures, i.e., we change the hash function and the technique for handling

92
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

collisions in the hash table. For each experiment we pre-load IP tuples in

memory from the real traces and we measure the time needed to process

the packets they represent, i.e., to search the flow table, store the new tu-

ples and remove the old ones. To run very long tests and avoid to incur

in memory being swapped to disk, we break each experiment into batches,

so that tuples can be stored/analyzed in/from live memory: we then sum

up the overall time needed to process all the batches to draw the overall

performance figures.

Hash function

We report in Figure 5.7 results for the CAIDA trace when the flow ta-

ble is addressed by the hash function used in theCoral Reef (CR) software

suite [MKK+01, CAI11] (continuous lines) and by the Bob-Jenkins hash that

was included in the Linux Netfilter code in 2006 (dashed lines). In both cases

collisions are handled by linked lists. Though the main purpose of the hash

is to distribute the observed tuples uniformly across the flow table, every

hash function tends to collide some tuples into the same bucket and this

phenomenon can be really manifest when the number of rows in the table is

close to the number of elements to be managed.

To force this situation we start by considering a CR hash table with

4,999,999 rows 1 : the CAIDA trace we use for this test is, in fact, composed

of 150 Millions of packets belonging to approximately 4.3 M of flows. Despite

the small table size, the corresponding line with upward-pointing triangle

shaped markers displays better performance (8.5 Mpps on average) than the

configuration we previously used in Section 5.2.5, where we considered a

table with 54 M of rows—line with the square shaped markers, 7.1 Mpps on

average.

Notice further that length of the longest chain in the small table (L = 35)

exceeds that of the large table (L = 33), which follows from the fact that in

the small table 2.6 M out of 4.9 M rows are used (high collision rate) while

3.4 M out of 54 M rows are used with the second one (lower collision rate).

1We choose this number because it is prime

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 93

20 40 60 80 100 120 140
5

6

7

8

9

10

11

12

Processed packets [M]

Th
ro

ug
hp

ut
 [M

pp
s]

CR 4999999
CR 33554432
CR 53999989
CR 54M

Bob23
Bob25
Bob26

Figure 5.7: HPTRAC flow manager sensitivity to hash function

Since no swap is taking place during experiments, the only difference between

the two configurations is the table memory footprint. Hence, reasons of this

counter-intuitive result are likely tied to memory access issues (e.g., page

faults and complex memory cache mechanism of the Xeon CPU).

Performance does not improve even if we consider a huge table with a

prime number of rows (line with circle shaped markers, 7.4 Mpps on average,

longest chain is still 33 elements) while collapses if the number of rows of

the table is a power of two (line with downward-pointing triangles partially

displayed on the bottom left of the figure, 3.5 Mpps on average, longest chain

has thousands of elements). Overall, despite its low computational complex-

ity (few simple operations including XORs and only one integer product) the

CR hash leads to very frequent collisions.

The “Bob” Jenkins hash, instead, is known to never generate more colli-

sions than predicted by the analytical bound [HSZ09]. We considered three

Bob configurations, with increasing number of rows that for this hash func-

tion must be a power of two. More precisely, we consider Bob23 (223 = 8.4 M

rows), Bob25 (33.5 M) and Bob26 (67.1 M). Bob23 row exhibits the best per-

formance (8.7 Mpps on average, line with left-pointing triangles) even though

94
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

20 40 60 80 100 120 140
6

6.5

7

7.5

8

8.5

9

9.5

10

Processed Packets [M]

Th
ro

ug
hp

ut
 [M

pp
s]

CR 4999999
CR 33554432
CR 53999989
CR 54M

Bob23
Bob25
Bob26

Figure 5.8: HPTRAC flow manager performance with RedBlack trees

the improvement is modest with respect to best CR: for comparison, the

longest chain is 9 elements instead of 35. Again, while increasing the number

of rows decreases the chain length (maximum chain is 5 for to Bob25 and 4

for Bob26), the huge memory fingerprint of the corresponding tables seems

to play against performance (partially overlapping lines with right-pointing

triangle and diamond shaped markers, approximately 7.7 Mpps for both).

Collision management

To relief the flow management load due to chaining, we explore Red Black

(RB) trees for handling collisions in the hash table [GS78]. This data struc-

ture is known to be automatically balanced, thus guaranteeing all operations

to be O(log n). In particular searching is much more efficient than in the

linked list implementation, where this operation is O(n). To understand the

appeal of RB trees it is worth to say that in our experiments, at least a search

is performed for every observed packet.

We report in Figure 5.8 the performance of RB Tree alone for different

hash functions, hence repeating the same analysis of the previous case. De-

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 95

Table 5.2: Performance comparison on CAIDA trace for different hash func-
tions and data structures

Hash type
List Tree

Mpps Chain Mpps Chain

CR4999999 8.53 35 8.56 5.13
CR33554432 3.47 3000 6.85 11.55
CR53999989 7.42 33 8.29 5.04

CR54M 7.12 33 8.24 5.04

Bob23 8.67 9 8.82 3.17
Bob25 7.66 5 8.32 2.32
Bob26 7.71 4 8.12 2.00

tailed comparison with chaining is reported in Table 5.2. Some remarks are in

order. First, Figure 5.8 shows that after a very long transient (80 M packets)

switching to RB Trees compresses performance related to every hash func-

tion into a narrow region (between 8 Mpps and 8.5 Mpps). Chaining in fact,

is really similar in all cases as reported in the last column of Table 5.2: with

respect to the list case with the same hash function, a RB Tree structure will

face the same collision rate hence switching chaining from n to log n. This is

really evident in the CR33554432 case where the longest list with thousands

of elements is replaced with a tree of depth 12 (line with downward-pointing

triangles this time fit into the figure).

Second, Bob23 and CR4999999 are still top scorer. It is worth noting

however that Bob23 (after a promising start) behaves slightly worse than the

analogous list implementation: if on one hand the depth of the taller tree

is approximately 3 with respect to the longest list with 9 element, on the

other hand the complexity in handling the tree, especially the operations for

recycling old buckets, makes the list faster. With CR4999999 we observe the

opposite: in this case, in fact, we reduce chaining from longest list with 35

elements to taller tree with depth 5 which is enough to balance more complex

tree operations. Similar gains can be observed for the remaining CR hash

functions (and, in fact, chaining reduction is similar too), while change of

performance for Bob25 and Bob26 is not noticeable: very short list are, in

96
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

fact, replaced with very small tree and they are all so compact structures

that they do not impact on flow matching.

Finally, we confirm the same effect previously observed: that is, struc-

tures with less rows and a shorter memory footprint perform better than

larger structures. Overall, we conclude that simpler structures (i.e., list w.r.t

RB trees) and smaller tables (e.g., Bob23, CR4.9M) achieve higher flow man-

agement rates.

Router position

We finally explore how performance changes if we run the same test on a

complete different data set. We therefore compare the performance of core

vs edge traffic classification. To do so, we consider a daylong trace captured

at the Digital Subscriber Line Access Multiplexer (DSLAM) of an European

customer ISP, that we cannot disclose due to Non-Disclosure Agreement

(NDA). In reason of the previous section, we report in Figure 5.9 results for

Bob23, separating performance of incoming and outgoing. At a glance, it

can be seen that performance only slightly improve with respect to CAIDA

core traces: this means that the hash functions we use correctly handle both

traffic types. As for core traffic, Bob23 spreads heterogeneous tuples almost

uniformly over the table. The same goes for edge traffic, characterized by a

smaller tuple variability.

Conclusion

To summarize, state-of-the-art data structure (balanced RB tree) and hash

functions (Bob-Jenkins hash), are not enough to let a single process manage

traffic at 10 Gb/s in the worst case scenario of more than 14 Mpps on cur-

rent commodity hardware. Additionally, we see that complex structures for

collision management, such as RB trees, do not payoff, and that tables with

a smaller memory footprint and carefully chosen hash functions should be

preferred. If the trend in line rate vs. CPU speed will remain the same, this

result either:

(i) Calls for completely rethinking the data structures and the hashes or

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 97

10 20 30 40 50 60 70 80 908

9

10

11

12

13

Processed packets [M]

Th
ro

ug
hp

ut
 [M

pp
s]

In Bob23
Out Bob23
In CR 4999999
Out CR 4999999

Figure 5.9: HPTRAC flow manager. Performance comparison at the edge

more likely.

(ii) Confirms that the multi-core multi-process approach outlined in this

study shall be generalized to other high-performance traffic analysis

applications.

5.2.8 Classification Analysis

We have implemented, evaluated and compared three representative state-

of-the-art statistical classification methods, such as Näıve-Bayes, C4.5 Trees

and SVM whose accuracy has been previously showed as enough for traffic

classification purposes [NA08]. Once chosen the classification technique, we

evaluated its performance in terms of computational cost and the feasibility

of its implementation on a real OTS system (based on commodity hardware

and open software).

As of course the complexity of a classifier may strongly depend on its

accuracy, one might argue that we should report both to be fair. We want to

underline, however, that thanks to previous works we can completely skip the

accuracy evaluation: once, in fact, the validity of an algorithm is accepted,

98
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

one can also test its computational performance using fake feature vectors or

models, given that the number of features in each vector under testing and

the number of models remain the same. To better clarify, the computational

complexity will not change if one takes an award winning algorithm and

chooses different features (leading to different models) than those which im-

prove the accuracy: for instance, if an SVM–based classifier extracts for each

flow a feature vector made of the average length of all packets in the flow,

the destination port number, the inter-arrival time of the first two packets

and the third byte of the second packet payload (four features per vector),

its complexity in finding which one out of eight models better describes the

vector is exactly the same as in our system (which matches the first four

packet lengths against eight models).

This not only allowed us to avoid assessing the accuracy, it also helped

us in finding the system limits: we can, in fact, test worst case scenarios

by injecting worst case data (very short packets) to determine the maximum

throughput that our system can sustain. Though in this case accuracy would

be meaningless, nevertheless our system will cope with “slower” (less packets

per second) genuine traffic, for which instead accuracy will be as high as

found by previous works that tested the same algorithms.

By the way, testing both computational and accuracy performance could

be also tough: e.g., traces gathered at 10 Gb/s speed, like the one we use

to stress test our system, do not provide a labeled ground truth as they are

anonymized and have the payload stripped out. Conversely dataset [oB09]

for which we have ground truth was collected on a 100 Mb/s links, and could

not be representative of the traffic aggregate that shows up on a 10 Gb/s

router. Luckily, thanks to the aforementioned reason we can focus on com-

putational performance given that the accuracy of the algorithms that we

test here has already been proved: to this end we report such results in Ta-

ble 5.3. In particular, previous work [EGS09] reported in the fourth row of

Table 5.3, validates the accuracy of the classification technique we use in

this work (i.e., four packet lengths features in each flow-vector, with SVM

classification), reporting a 93% of correct classification on average. As a

general tendency, moreover, we note that accuracy constantly improved over

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 99

Table 5.3: Flow and Byte Accuracy for Early Classification Techniques

Flow Byte Datasets Year Ref

0.94 - Campus 2006 [BTS06]

0.94 - Unibs[oB09] 2007 [CDGS07]

0.93 - several 2008 [KCF+08]

0.97 - several 2010 [LKJ+10]

0.99 0.96 several, including[oB09] 2012 [ZLQ+12]

the years [KCF+08, LKJ+10, ZLQ+12], though it was already fairly high

even when the first techniques were introduced [BTS06, CDGS07]. Further-

more, while initial classification works used many different machine learning

techniques, ranging from simple Näıve-Bayes to complex SVM approaches,

later work [LKJ+10, ZLQ+12] agrees in identifying C4.5 as the best machine

learning tool in terms of classification accuracy.

Notice additionally that (i) results in [ZLQ+12] are gathered over the

dataset we publicly released [oB09], and (ii) in the following, we use an

improved version of our original proposal [CDGS07], which we fed to a C4.5

classification engine: in reason of the above discussion it is reasonable to

expect accuracy results in line with those presented in Table 5.3.

We train classifiers with 8 traffic classes, namely {Web, Encrypted, DNS,

Chat, Mail, Network Operation, P2P, Attacks}, additionally to “Unknown”

traffic. Note that the focus of this analysis is not the classification accuracy,

which has been widely studied by the research community [NA08, KCF+08,

LKJ+10], but the computational performance. That is, our focus in this

section is the feasibility of these machine learning techniques for on-line clas-

sification of network traffic at 10 Gb/s rates.

To gather classification complexity performance, we proceed as follows.

We perform a set of experiments by feeding the classification module with

classification jobs (i.e., the output of the flow-matching module), configuring

our system in the best configuration 1I-2Q-2P. We send synthetic traffic (64B

sized packets, five packets per flow) at 14.2 Mpps, which gives a flow rate

100
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

of 2.8 Mfps. The experiment span is 60 seconds. Figure 5.10 shows the

classification rate obtained for each classifier.

Näıve-Bayes

Classification threads run a custom implementation of Näıve Bayes with

Gaussian density estimation. Given the first four packets of a flow have

been received, the algorithm associates the flow to the protocol whose model

scores the maximum likelihood for the generation of the flow. For each pro-

tocol model the algorithm uses the size of the packets as indexes into the four

lookup tables that have been associated to that protocol during the training

phase: the values extracted are then summed together, we optimize, in fact,

the algorithm by storing the logarithms of the table values to avoid products

as reported in [RVV+08]. By comparing the values obtained for each of the

protocols for which a model is available, the algorithm chooses the applica-

tion and the classification of the flow terminates: for more details please refer

to [CDGS07].

As we can see in Figure 5.10, the Näıve-Bayes module is not a bottleneck

and it is able to process every flow produced by the flow-matching module,

i.e., up to 2.8 Mfps corresponding to the stressful scenario of 14.2 Mpps. De-

spite its good performance, Näıve-Bayes is not the best choice in terms of clas-

sification accuracy metrics (e.g. false positive and negative ratios) [KCF+08,

LKJ+10].

Support Vector Machine (SVM)

As a more accurate alternative we implement a SVM classifier, which was

found to have superior precision with respect to Näıve-Bayes [KCF+08]. Fig-

ure 5.10 shows that our system is only able to classify 2 ·104 flows per second

saturating the two CPU cores dedicated to classification purposes. As 1I-

2Q-2P configuration only occupies six cores, we can increment the number

of threads up to four, occupying all cores. With this change, the obtained

performance increases up to 4 · 104 flows classified per second saturating four

CPU cores devoted to classification (i.e., the performance increases linearly

5.2. HPTRAC : Wire-Speed Early Traffic Classification Based on
Statistical Fingerprints 101

with the number of cores).

Nevertheless, performance of SVM classifier is far from that obtained

using Näıve-Bayes (2.8 · 106). Additionally, as performance increases linearly

in the number of cores, this 2-orders of magnitude performance gap cannot

be simply filled by throwing more cores.

C4.5 Trees

To fulfill the line-rate requirements while achieving good classification accu-

racy at the same time, we implement a C4.5 tree classifier, which was found

to have the highest classification accuracy by [LKJ+10].

The C4.5 tree obtained after training phase has 185 nodes, of which 93

are leaves, and a depth of 13. As trees place the high-information features at

the top of the tree, they limit the tree depth, and so the number of branches.

This classifier can be easily encoded in native C using multiple if-then-else

branches, which only need to access to four variables – i.e., one for each

packet size of the first four ones of a given flow.

As a result, our C4.5 implementation is able to classify all flows in the

worst-case scenario of 2.8 Mfps, as it can be observed in Figure 5.10. How-

ever, in contrast to Näıve-Bayes-based classifiers, C4.5 trees also offer a good

accuracy. In fact, C4.5 performs the best when using the first few packets of

flows, because the algorithm discretizes input features during the classifica-

tion [LKJ+10].

To summarize, we have demonstrated the feasibility of wire-speed statis-

tical traffic classification using state-of-the-art machine learning techniques.

In more detail, both Näıve-Bayes and C4.5 trees achieve 2.8 M classifications

per second, corresponding to a 14.2 Mpps, while SVM is not suited in this

context due to its computational complexity.

5.2.9 Conclusion

We propose an all software solution for statistical traffic classification on

commodity hardware. Our system achieves a significant advance with respect

to the state-of-the-art in several ways. First, it demonstrates the feasibility

102
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

Flow handling Classification
104

105

106

107

Fl
ow

s
pe

r s
ec

on
d

Bayes 2 class. thread
SVM 2 class. threads
SVM 4 class. threads
C4.5 2 class. thread

Figure 5.10: Classification performance. Synthetic traffic 64-bytes sized
packets

of on-line statistical traffic classification, which was so far confined on off-

line analysis published in the literature. Second, it significantly outperforms

state-of-the-art classification techniques. Indeed, while the raw classification

throughput on real traffic aggregates is about 3× higher than [SGV+10]

and 4× higher than [VPI11], however our system is able to sustain flow

classification rates 93× higher than [LKJ+10] and 560× higher than [VPI11].

5.3 DetectPro: Flexible Passive Traffic Anal-

ysis and Anomaly Detection

5.3.1 Introduction

Network monitoring is undoubtedly a key task for network operators due to

the ever-increasing users’ demand. OTS systems present a more scalable and

economic choice than the traditionally used, such as specialized hardware

based solutions. The high complexity of current networks in terms of large

number of different applications and protocols, aggregates of multi-10Gb/s,

tens of million packets per second and millions of concurrent flows per link,

requires high-performance along with scalable and flexible designing which

5.3. DetectPro: Flexible Passive Traffic Analysis and Anomaly
Detection 103

allows processing different network data and granularities (packet-level, flow-

level, aggregated statistics) with different purposes (e.g., anomaly detection

and traffic classification) simultaneously.

Thus, we have to face the followings challenges:

• High-performance: coping with line-rate in 10 GbE links involves pro-

cessing speeds of up tens of Mpps and Mfps.

• Scalability : making it the most of parallelism architectures on common

servers and NICs.

• Flexibility : monitoring with different tasks simultaneously processing

traffic from the same network in different granularities without ad-

ditional overhead (running on the same PC, processing data without

unnecessary copies).

In the literature, we find several capture engines [HJPM10, FD10, Riz12c]

that are able to capture all packets received in a 10 GbE link but they do not

provide a framework in which easily integrate existing monitoring tools and

develop new applications. There are several specific tools [VPI11, GES12,

SdRRG+12, JLM+12] which use such capture engines but their purposes are

specific and its implementation is monolithic (i.e., it is no possible to simul-

taneously run with other monitoring applications). On the other hand, the

community has proposed and released modular and flexible monitoring plat-

forms, such as tstat[FMM+11], but these approaches, although very useful

and versatile, are not able to cope with wire-speed when monitoring 10 Gb/s

(and beyond) links.

To overcome all the challenges described above, unlike previous works, we

propose a modular architecture system, which is able to obtain and process

network traces from different levels and granularities at wire-speed. First,

making use of HPCAP capture engine (see Section 3.4.6), the sniffer mod-

ule is to capture packets from the NIC and copy them to a packet buffer at

wire-speed, i.e., more than 14 Mpps in a 10 GbE link. Second, the proposed

architecture allows reading packets at user-level with zero copy from differ-

ent processes and threads simultaneously. Particularly, we have implemented

104
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

two modules that generate and collect three essential network traces such

as packet-level traces, extended flow-level registers (including, if required,

packet payload) and aggregate statistic logs. On the one hand, a packet

dumper thread reads packets from the driver kernel-level packet buffer and

stores them into disk. On the other hand, a flow manager thread reads pack-

ets (concurrently with the packet dumper thread), builds its corresponding

flow registers using a hash table and generates fine-grained aggregate statis-

tics (such as throughput in bytes and packets and counting of active flows). A

flow exporter thread is implemented to dump flow registers into disk. On up-

per layers, we can implement different monitoring tasks that simultaneously

use the various traces provided by previous modules in a flexible fashion.

That is, each task (with its particular purposes and requirements) may be

fed with:

(i) Packet-level traces both directly from the driver packet buffer (online)

and from the traces generated by the packet dumper thread (offline).

(ii) Flow-level registers both in-memory registers generated by the flow

manager module (online) and in-disk registers stored by the flow ex-

porter thread (offline).

(iii) Fine-grained aggregate statistics generated by the flow manager module

(offline).

Note that each module may be executed in a different CPU core, thus, taking

advantage of parallel processing.

We have evaluated the different modules of the system in several stress

test scenarios on a general-purpose server. We checked that the sniffing mod-

ule is able to receive the maximum packet rate even with small packet size

(i.e. up to 14.2 Mpps with 64-byte sized packets). Then, we assessed the

different trace generator modules (namely, packet dumper, flow manager and

flow exporter) varying different parameters (e.g., packet size, number of pack-

ets per flow, number of concurrent flows, IP distribution). We additionally

reported the CPU and memory consumption of the proposed system, which

illustrates its scalability.

5.3. DetectPro: Flexible Passive Traffic Analysis and Anomaly
Detection 105

Traffic
Sniffer

Packet
Ring

Packet
Buffer

Packet
Dumper

Flow
Manager

Flow
Exporter

Packet-level
Traces

Flow-level
Traces

Agg.Stats
Traces

App. 1

App. N

Flow
Table

READ
WRITE

NON-VOLATILE
MEMORY

VOLATILE
MEMORY

KERNEL-LEVEL
PROCESSING

MODULE

Packet
Arrival

USER-LEVEL
PROCESSING

MODULE

Figure 5.11: DetectPro System Architecture

To show the applicability of our system, we present a network traffic mon-

itoring tool, DetectPro, implemented over the proposed architecture, which

is able to monitor providing statistics, report alarms and afterwards perform

forensic analysis, based on packet-level traces, flow-level registers and aggre-

gate statistic logs. DetectPro has been deployed in a commercial network

(from a large bank) and its performance evaluation results are presented in

this chapter.

5.3.2 System Architecture

Figure 5.11 shows the proposed architecture. The system consists of one

kernel-level module, traffic sniffer, responsible for capturing packets, three

basic user-level modules, packet dumper, flow manager and flow exporter,

and a variable number of modules, application layer, responsible for specific

monitoring tasks which are fed by the output from previous modules.

The workflow in the system is described as follows: each arriving packet

is transferred by the NIC via a DMA transaction to a kernel-level packet

ring; the packet sniffer module polls the ring for new packets and, if there is

106
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

one packet available, copies it in a larger kernel-level packet buffer, accessible

from user-level; the packet dumper module reads fix-sized blocks from the

packet buffer and writes them into a file in a non-volatile memory device

(e.g., a hard disk); the flow manager module reads packets one-by-one from

the packet buffer, processes the packet updating a flow table in (volatile)

memory and collecting fine-grained statistic logs into disk; the flow exporter

module checks the flow table, exporting the expired flow registers (including,

if required, the first bytes of payload) into disk; finally, one or more appli-

cation modules may process one or more previously generated information

sources with specific monitoring purposes. Note that the different tasks and

modules (sniffing, flow handling, statistics collecting, multiple level traces

dumping, specific monitoring) are simultaneously running in different CPU

cores, applying CPU affinity (i.e., the execution localization of each thread is

fixed on a given core). Consequently, the system makes the most of parallel

architectures on multi-core/multi-processors servers.

Traffic Sniffer

This module is devoted to fetch packets from the NIC to a kernel-level buffer,

which may be accessed with zero-copy from user-level. A thread running in

kernel-level constantly polls for new incoming packets. If a new packet is

available, the thread copies the packet to the kernel-level buffer. The module

is implemented using HPCAP driver (see Section 3.4.6 for more details).

Multiple listeners in user-level may read concurrently the packet buffer

while the kernel-level thread is writing packets in it. This operating mode

follows a single-producer/multiple consumer approach. Thus, such architec-

ture allows several applications to process the same traffic simultaneously,

exploiting parallelism of multi-core architectures of OTS systems, and con-

sequently, providing a scalable and flexible solution.

Packet Dumper

This module is responsible for generating packet-level traces in disk. Such

traces may be offline processed — e.g., with forensic analysis purposes. One

5.3. DetectPro: Flexible Passive Traffic Analysis and Anomaly
Detection 107

user-level thread implements a packet buffer listener. Such thread reads fix-

sized blocks of bytes (e.g., 1 MB) from packet buffer and writes them into

disk. To give more manageability and compatibility, packet traces are split

in fix-sized files (e.g., 2 GB) and may be trivially converted to PCAP format.

Flow Manager

This module is in charge of two tasks, namely: flow reconstruction and statis-

tic collection. A user-level thread reads packet-by-packet from the packet

buffer as a listener. For each packet, its corresponding flow information and

the aggregated counters are updated.

To store flows, this module uses a hash-based flow table. The flow table

has 224 rows. A hash over the 5-tuple is used as primary key and colli-

sions are handled with lists. Each table entry contains data about the flow,

namely: 5-tuple, Media Access Control (MAC) addresses, first/last packet

timestamps, counters of bytes and packets, average (as well as standard de-

viation, minimum and maximum) packet length and interarrival time, TCP

statistics (e.g., counters of flags), the first 10 packet lengths and interarrivals

and, if required, the first 200 bytes of payload.

A flow is marked as expired when it is not received any packet during

a given time interval (e.g., 30 seconds) or when is explicitly finished with

FIN/RST flags (only TCP flows). Note that timeout expiration process

requires a garbage-collector mechanism. Scanning the whole hash table is

not feasible in terms of computational cost. For this reason, we use a list of

active flows (each node has a pointer to the flow structure in the hash table).

This active flow list is sorted by the last packet timestamp in decreasing

order. To expire inactive flows, the garbage-collector only checks the n first

active flows (since a flow is checked as active, the rest do not have to be

scanned). When a flow is updated with the information of a new packet, the

corresponding node in the active list is moved to the end, keeping the list

sorted without additional work. Expired flows (for both timeout and flags)

are enqueued and will be exported for the next module.

All the memory used (structures, nodes, lists and hash-table) is pre-

108
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

allocated in a memory pool to reduce insertion/deletion times, avoiding dy-

namic allocation/release during the execution. That is, once a data structure

is no longer required, the memory is returned to the pool but not deallocated.

Then, such data structure can be reused without a new allocation process.

The module periodically (e.g., every second) writes the aggregated statis-

tics into disk. Particularly, generate Multi Router Traffic Grapher (MRTG)-

like files with 1-second granularity for three metrics: packets, bytes and ac-

tive flows. The format of the output file is the following: each line contains a

UNIX timestamp and the value of the corresponding counter—packets, bytes

or active flows.

Flow Exporter

This module is responsible for exporting flow registers into disk. Such flow-

level traces may be offline processed — e.g., with statistical classification

purposes. A user-level thread dequeues flows (expired by the previous mod-

ule) and dumps them to a file in disk. For the sake of manageability and

compatibility, flow traces are split in fix-sized files (e.g., 2 GB) and output

files may follow the IP Flow Information Export (IPFIX) format [TB11].

To avoid concurrent writing accesses to disk from packet dumper and flow

exporter modules (and the resulting potential performance degradation) is

advisable to have one independent device for each task.

Application Layer

The system functionality may be flexibly increased with different application

modules. The flexibility is obtained in two ways. On the one hand, a simple

module may simultaneously use different network data, generated by pre-

vious modules, with three different granularities from both live and offline

monitoring. For instance, we may implement a traffic classifier that uses

both packet-level traces for DPI purposes and flow-level traces for statistical

identification. As shown in Figure 5.11, application modules may read:

(i) Packets directly from packet buffer as a listener.

5.3. DetectPro: Flexible Passive Traffic Analysis and Anomaly
Detection 109

(ii) Packet-level traces in PCAP format from disk.

(iii) Flow information directly in memory.

(iv) IPFIX flow registers from disk.

(v) MRTG-like aggregated statistics in disk.

On the other hand, different modules may be concurrently executed, ac-

cessing to data from the same network. For example, we may simultaneously

run a NIDSs module and a traffic classifier over the same network traffic.

Each module is executed in a different thread. An application launcher cre-

ates a thread for running each module routine—as a function pointer in C.

5.3.3 Applicability: a Sample

As an application of the previously proposed system architecture, we have de-

veloped a passive network monitoring tool, called DetectPro, capable of pro-

cessing traffic with different aims, such as pattern based anomaly detection,

flow-level inspection, traffic trends analysis and selective packet trace collec-

tion. Particularly, DetectPro implements several modules in the application

layer which are fed with different grained traces—packet-level, flow-level and

aggregate.

One module reads aggregate statistics to diagnose both short-term and

long-term changes [MGDA12] and report the corresponding alarms to the

network manager. If an alarm is triggered, another module reads packet-

level traces for subsequent forensic analysis of the anomaly. Several modules

are responsible for inspecting flow registers and extract of them information

about the network structure—e.g. distribution of host/networks/services

with highest flow/packets/bytes counts. Thanks to the flexible architecture

of the proposal, new modules may be added, increasing functionality in a

scalable fashion. DetectPro has been deployed in a real network from a great

bank in Latin America.

110
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

5.3.4 Experimental Setup

In this section, we describe the experimental testbed, covering hardware,

software and traffic details.

Hardware

Our setup consists of two servers (one receiver and one sender) directly con-

nected with a fiber link. Both servers are based on a dual Intel Xeon E52630

at 2.30GHz with 96 GB of DDR3 SDRAM at 1333 MHz and equipped with

a 10 GbE Intel NIC based on 82599 chip. The motherboard model is Super-

micro X9DR3-F with two processor sockets and three PCIe 3.0 slots per pro-

cessor, directly connected to each processor. The NIC is connected to a slot

corresponding to the first processor. Regarding the system storage, 12 Serial

ATA-III disks conforming a RAID-0 controlled by a LSI Logic MegaRAID

SAS 2208 card have been used. These disks are Seagate ES2 Constellation.

Software

Ubuntu 12.04 server 64-bit version is installed with a 3.2.16 Linux kernel.

The used filesystem is xfs—preliminary experiments show that is the best

choice in terms of performance and scalability, especially when working with

large files.

In order to inject traffic, we have developed a tool on top of Packet-

Shader [HJPM10] API, which is able to: (i) generate tunable-size Ethernet

packets at maximum speed, and, (ii) replay PCAP traces at variable rates.

Traffic

For our experiments, we used both synthetic traffic and real traces. Synthetic

traffic consists of TCP segments encapsulated into 64B-size Ethernet frames,

forged with incremental IP addresses and TCP ports.

Real traffic dataset is composed by three packet-level traces. The first

trace, called Backbone, was sniffed at an OC192 (9953 Mb/s) backbone link

of a Tier-1 ISP located between San Jose and Los Angeles (both directions),

5.3. DetectPro: Flexible Passive Traffic Analysis and Anomaly
Detection 111

Table 5.4: DetectPro performance evaluation datasets

Trace #Pkts #Flows Avg. Pkt Size Avg. Pkts/Flow

Backbone 570 M 38 M 743 15

BankProxy1 228 M 7 M 661 32

BankProxy2 236 M 7 M 653 33

available from CAIDA [WAcA09]. The average packet size in the trace is 743

Bytes and the average number of packets per flow is 15. The second and third

trace, called BankProxy1 and BankProxy2, were captured two different days

in November 2012 at a network from a great bank of Latin America. Their

traffic corresponds to a proxy from all bank offices and employees—more

than 12 K. Table 5.4 shows the characteristics of the traces in detail.

5.3.5 Performance Evaluation Results

In this Section we assess the performance of each module of our system to

find its potential bounds.

Traffic Sniffer

Traffic sniffer performance is shown in Section 3.6. Particularly, traffic sniffer

is able to receive (using only one reception queue) all packets received for all

packet size, except for 60B packet size, when a rate of 12.60 (out of 14.88)

Mpps is achieved.

Packet Dumper

First, we evaluate the packet dumper module using synthetic traffic. Fig-

ure 5.12 shows the percentage of received packets (during a 60-second exper-

iment) for different packet sizes: {60, 64, 128, 256, 512, 1024, 1250,

1500}. Dumping packet traces does not significantly degrade the perfor-

mance of traffic sniffer, as long as the disk write throughput is enough. Note

that the global write throughput using a RAID-0 is bounded by the write

112
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

0 500 1000 1500
0

20

40

60

80

100

Packet Size [Bytes]

Pa
ck

et
s

re
ce

iv
ed

 [%
]

Figure 5.12: Packet dumper module performance. Synthetic traffic

throughput of a single disk multiplied by the number of disks. In our case,

as SATA-III disk provides a rate of 150 MB/s, we need, at least, nine disks.

Flow Manager

In order to evaluate the performance of this module, a key metric is the

number of concurrent flows rather than the throughput in packets or bytes.

Expiration timeout was configured to 30 seconds. We use synthetic traffic

and three different real traces with various 5-tuple distributions (Section 5.3.4

for more details). Replaying such three real traces at maximum achievable

speed, flow manager is able to process, with zero packet loss, 2.25, 0.38 and

0.42 million concurrent flows, respectively, corresponding to 1.65, 1.85 and

1.86 Mpps.

5.3. DetectPro: Flexible Passive Traffic Analysis and Anomaly
Detection 113

Flow Exporter

The last experiment evaluates the flow exporter module. Each flow register

comprises the information described in Section. 5.3.2. The achievable expor-

tation rate was 82, 46 and 52 Kfps (corresponding to 52, 31 and 35 MB/s

of disk throughput) using Backbone, BankProxy1 and BankProxy2 traces,

respectively. No packet loss was reported during the experiment.

Computational Resource Consumption

In this section, we evaluate CPU and memory consumption per system mod-

ule. The results are the average values obtained for a 60-second experiment

replaying the Backbone trace. Traffic sniffer occupies about 1 GB of memory

(due to the packet buffer) and 75% of one core CPU load (due to its “al-

most” constantly-polling mode). The memory occupancy of traffic dumper

is negligible respect the total of the system, whereas its CPU utilization is

near 100%. Flow manager consumes 16 GB of memory, mainly caused by the

flow table, and its average CPU load is almost 100%. Finally, the memory

consumption of flow exporter module, the same as packet dumper, is almost

zero, while the CPU utilization is 90%.

Scalability Analysis

In this section, we aim to assess the system scalability. That is, we evalu-

ate the potential degradation of the system performance due to interaction

among different listeners. To this end, we consider a system configuration

with one sniffer module and a variable number of listeners—up to the maxi-

mum of 11 listeners in our 12-core testbed.

Figure 5.13 shows the percentage of packets received for each configura-

tion. We have used three different datasets, namely: 60-byte and 64-byte

packets (synthetic traffic) and the previously described CAIDA trace. The

traffic is generated at wire-speed. In the worst-case scenario of 60-byte sized

packets, the performance is slightly degraded when the number of queues

goes from one to four listeners—linearly from 85% to 80%. The performance

remains almost constant when the number of listeners is greater than four. In

114
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

0 2 4 6 8 10 12
0

20

40

60

80

100

#Listeners

Pa
ck

et
s

re
ce

iv
ed

 (%
)

60−byte pkts.
64−byte pkts.
CAIDA trace

Figure 5.13: Performance evaluation of traffic sniffer according to the number
of active listeners

the rest of stressful scenarios (64-byte packets and CAIDA trace), the sniffer

module is able to receive all sent packets for all number of listeners.

5.3.6 Conclusion

We propose a flexible and scalable system architecture that is able to monitor

network traffic at multi-Gb/s on a general-purpose server. We have evalu-

ated its performance both in a stressing scenario and in several real scenarios

(backbone and large commercial network). In addition, we show a real mon-

itoring application, which uses the proposed architecture, which has been

successfully deployed in a commercial bank network.

5.4. Summary and Conclusions 115

5.4 Summary and Conclusions

Not only high-performance packet sniffing and timestamping is possible on

OTS systems, but also upper-level monitoring tasks, such as flow handling

and traffic classification, have been proved feasible.

Particularly, we present an open-source statistical classification engine,

HPTRAC, able to classify packets at line-rate using commodity hardware.

HPTRAC improves the performance of previous works, even in several orders

of magnitude. These significant advances with respect to the current state-

of-the-art in terms of achieved classification rates are made possible by:

(i) The use of an improved network driver, PacketShader, to efficiently

move batches of packets from the NIC to the main CPU.

(ii) The use of lightweight statistical classification techniques exploiting the

size of the first few packets of every observed flow.

(iii) A careful tuning of critical parameters of the hardware environment

and the software application itself.

Note that the above performance gap between HPTRAC and previous

works is hard to remove. Indeed:

(i) While GPUs in [VPI11] could in principle process 40 Gb/s equivalent

of traffic, this is forbidden by a bottleneck in the path from the NIC

to the GPU. That is, current approaches force to pass through main

memory, and waste processing time, to transfer data between the NIC

and the GPU creating a bottleneck — although there are preliminary

results which may avoid such limitation, they can be only used with

Infiniband technology yet [NVI12].

(ii) The statistical technique is anyway much more lightweight than DPI,

so that it would benefit more from a GPU. This gap is intrinsic to

the nature of the statistical classification process, that avoid transfer-

ring packet payload from the NIC to GPUs unlike DPI. Thus, statistical

approaches are unachievable for DPI, even making use of different hard-

ware, such as GPUs.

116
Chapter 5. Real Traffic Monitoring Systems: Statistical

Classification and Anomaly Detection at Line-Rate

Furthermore, We thoroughly analyze both classification and flow manage-

ment modules. On the one hand, the detailed comparison of several state-of-

the-art machine learning tools points out that C4.5 trees are the best choice

due to:

(i) Their known discriminative power [LKJ+10].

(ii) The fact that they can be very efficiently implemented as if-then-else

branches, supporting challenging scenarios such as 2.8 M classifications

per second.

On the other hand, our exhaustive study of flow management shows that

complex structures such as RB trees for collision management does not payoff,

and that tables with a smaller memory footprint and carefully chosen hash

functions should be preferred. Overall, we conclude that state-of-the-art

software structures (namely, balanced RB tree and the Bob-Jenkins hash),

are not enough to manage traffic at 10Gb/s in the worst case scenario of

14.8 Mpps on a single core.

This confirms that the multi-core multi-process approach outlined in this

study shall be generalized to other high-performance traffic analysis appli-

cations required to operate at line-rate. Indeed, we propose a flexible and

scalable architecture to develop traffic monitoring systems able to process

multi-granularity source of network data, namely, packet-level, flow-level and

aggregate from different threads (with different purposes) simultaneously.

To show its applicability, we provide a passive monitoring probe, DetectPro,

which detects network anomalies, inspects flow registers, analyzes trends and

selectively dump packet-level traces for afterwards forensic analysis. We as-

sess the proposed architecture with both synthetic traffic and real traces

(from a backbone link and a large commercial network).

Chapter 6

Multimedia Traffic Monitoring

in a Very Demanding Scenario

The last few years have witnessed multimedia applications gaining a tremen-

dous popularity. Particularly, different VoIP solutions are increasingly re-

placing the old PSTN technology. In this new scenario, there are several

challenges to overcome. On the one hand, such monitoring process must

be able to track VoIP traffic in high-speed networks, nowadays typically of

multi-Gb/s rates. On the other hand, recent government directives require

that providers retain certain information from their users’ calls with security

purposes (lawful interception). This implies a significant investment on in-

frastructure given that traffic monitoring tasks are very demanding in terms

of computational power. In this chapter, we propose two novel systems to

fulfill such challenges in the cases of: VoIP over SIP (Section 6.3) and Skype

(Section 6.4). Such solutions provide very high performance being able to

process traffic on-the-fly at high bitrates and with significant cost reduction

using OTS systems. To reduce the computational load of on-line traffic clas-

sification in high-speed networks, the research community has proposed mech-

anisms, such as packet sampling. However, the impact of these mechanisms

on traffic classification has been only marginally studied. In this chapter, we

address such study focusing on Skype application (Section 6.5). Particularly,

we have assessed its performance applying different packet sampling rates and

117

118
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

policies.

6.1 Introduction

VoIP has proven to be a mature technology that provides multiple advantages

for both telecom operators and users. On the one hand, it allows providers the

convergence of their voice and data services into a single network infrastruc-

ture. On the other hand, users typically enjoy lower invoices and extended

service offering. VoIP technology was developed more than a decade ago and

has received much attention by the research community [KP09]. However,

it is in the recent years, when VoIP has begun to gain ground to the old

PSTN, which still dominates in the voice traffic market. This increase has

been strengthened by multiples examples of successful implementations of

large-scale VoIP networks: KT Corporation, formerly Korea Telecom, has

2.1 million VoIP subscribers [CSK11]. As the authors in [BMPR10] show,

Fastweb, the Internet provider leader in Italy, which offers VoIP telephony

exclusively, as of today its number of customers is larger than 600,000. Sim-

ilarly, Telefónica, in Spain, offers VoIP services to its corporate clients at

reduced prices, while PSTN services are still dominant for residential users.

However, it is expected that the number of residential VoIP customers will

increase sharply in the near future.

In this exciting scenario, providers face some challenges for the successful

deployment of VoIP systems in large-scale environments. First, like any

other multimedia service, VoIP requires an exhaustive monitoring of the QoS

received by the users as well as their QoE in order to provide the same level

of quality than PSTN.

Second, such monitoring system must be able to track VoIP traffic in

high-speed networks. Currently and in the near future, there is a need for

traffic monitoring at 10 Gb/s, or even faster speeds, given the ever-increasing

growth of the data transmission capacity [YZ10]. Then, the system that

processes such traffic to evaluate its quality has to be fast enough to cope

with this data rate.

As a third challenge, we note that new data-retention directives are being

6.1. Introduction 119

developed in Europe [SGI08] as well as in the US and other countries. These

directives require providers to store certain information of the calls carried

out by their clients. Such information includes the identification of caller and

callee as well as the call start and end times. Such directives may be more

demanding in the future, and even include some details of the content due

to national security reasons.

Additionally, the entire VoIP call, and not only some descriptors, may be

stored in large-scale databases if proper indexing policies are designed and

with the consent of the customer. For example, providers can record users’

complaints and by-phone contracts of their clients. Similarly, this is useful

to evaluate the quality of subcontracted call centers, which are not under the

operator direct control, and are extremely popular nowadays. Furthermore,

businesses may be willing to record their calls for the evaluation of customer

satisfaction. Note that this is a novel monitoring service that can be offered

to the customers. In addition, operators can assess if the perceived QoE of a

given user is adequate by effectively contrasting the QoS and QoE once the

user conversation has been reconstructed.

In recent years, the usage of Skype application is becoming widespread.

It is estimated that Skype has over one half billion of users1 (over 22 million

users logged in simultaneously2) and it generated 185 million USD in the

third quarter of 20091.

The analysis, characterization, classification and detection of Skype traf-

fic are gaining considerable interest in the research community [BMM+07,

HB08, DCM10, BMMR09]. On the one hand, regulatory bodies are enforc-

ing operators to intercept communications for security reasons (among which

Skype calls). On the other hand, Skype’s usage from mobile devices (such as

smartphones or netbooks) using 3G or General Packet Radio Service (GPRS)

mobile networks, is becoming very popular. For these reasons, operators are

willing to detect Skype, either to provide differentiated quality of service or

to restrict it or with billing/accounting purposes, depending on the contract.

1www.techcrunch.com/2009/10/21/skype-hits-521-million-users-and-185-

million-in-quarterly-revenue
2skypejournal.com/2010/01/skype-dialtone-22-million-online.html

www.techcrunch.com/2009/10/21/skype-hits-521-million-users-and-185-million-in-quarterly-revenue
www.techcrunch.com/2009/10/21/skype-hits-521-million-users-and-185-million-in-quarterly-revenue
skypejournal.com/2010/01/skype-dialtone-22-million-online.html

120
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

In any case, the detection of Skype traffic is becoming a very important issue.

As data transmission speeds have increased dramatically in recent years,

the traffic classification applications are turning out to be a bottleneck for

network monitoring. However, the performance evaluation of traffic classifi-

cation algorithms in terms of processing time, and more specifically, Skype,

have received relative little attention.

In this light, this chapter propose two system, named RTPTracker and

Skypeness, to fulfill all the above introduced challenges in the case of: (i)

VoIP over SIP and (ii) Skype, respectively.

As previously shown, the ever-increasing data transmission rates have

become traffic classification in an exciting challenge. In multi-10Gb/s net-

works, very common nowadays, traffic classifiers have to be able to capture

and analyze up to several tens of millions of packets per second. In spite of

improvements on capture capabilities and efforts to optimize and relieve clas-

sification mechanisms of burden [NA08], to date many network monitoring

systems only deal with packet sampling data in an attempt to reduce such

burden. That is, traffic classification systems are not provided with all the

traffic but only a fraction of the packets are taken into account.

The relationship between traffic classification and packet sampling was

first pointed out in [CEBRCASP11]. In such work, the monitoring system

first sampled at packet level, then generated Netflow records, and finally

the records were classified using machine learning (ML) techniques [NA08]

(specifically, decision trees). Note that Netflow data records only comprise in-

formation about the source and destination IP addresses, port numbers, pro-

tocol and counters of bytes and packets. Similarly, the authors in [TVRP12]

proposed to use packet-sampled flow records that included a more exten-

sive set of features, e.g., RTT or number of ACKs. Both studies concluded

that sampling entails a significant impact on the classification performance,

especially, in terms of volume in bytes and packets.

Differently, we assume a monitoring system fed with a sample of the total

packets traversing the monitored link—instead of analyzing packet-sampled

flows. The advantages are twofold: the accuracy increases, and it is possible

to classify on-the-fly. Note that flow-based classifying requires that flows

6.2. Multimedia Traffic Fundamentals 121

end before being analyzed. This is unacceptable in VoIP applications where

operators have to apply measurements, such as accounting, improve quality

or, conversely, blocking if some VoIP applications are not allowed by contract,

while the call is in course, and not after its finalization.

Specifically, we turn our interest to Skype classification. Particularly, we

have evaluated the impact of sampling on the classification of Skype using

Skypeness over both synthetic and real traces from public repositories.

The rest of the chapter is organized as follows: First, Section 6.2 presents

multimedia traffic fundamentals, providing an overview of VoIP technology

over SIP protocol and Skype traffic. Then, we propose two multimedia traffic

monitoring systems. On the one hand, Section 6.3 describes a novel VoIP

monitoring system, called RTPTracker. Section 6.3.2 details each of the mod-

ules comprising RTPTracker whereas Section 6.3.4 shows the performance

evaluation of this proposal. On the other hand, in Section 6.4 we present

a Skype traffic identifier, called Skypenes. Sections 6.4.2 and 6.4.3 explain

the design of our proposed Skype detection technique, whereas Sections 6.4.5

and 6.4.6 provide a performance evaluation in terms of accuracy and through-

put, respectively. Finally, we evaluate the impact of packet sampling on

traffic classification in Section 6.5. Particularly, we assess Skypeness’s per-

formance applying different packet sampling rates and policies.

6.2 Multimedia Traffic Fundamentals

6.2.1 VoIP: Network Architecture and Traffic

VoIP is a group of technologies that provide mechanisms for voice trans-

mission over IP networks [Goo02]. VoIP brings together different signaling

protocols such as SIP or H.323. Proprietary signaling has been used in the

early stages of VoIP, however, the widespread deployment of VoIP demands

the interoperability of different VoIP equipment vendors in order to establish

end-to-end calls. In this scenario, SIP is emerging as the de facto standard

for VoIP signaling. As an example, it is being used by all the main US cable

operators that give VoIP services [ZR10]. In fact, we have been provided with

122
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

data from a popular VoIP operator that also uses SIP as signaling protocol.

The SIP protocol [RSC+02] uses plain-text messages in combination with

SDP [HJ98] messages to establish and negotiate the parameters of the asso-

ciated RTP streams (call-ID, available codecs, dynamic ports, etc.) across

different systems. Such RTP streams contain encoded voice as part of its

data as well as control information.

Figure 6.1 shows the SIP messages transmitted in a common VoIP call. In

the initialization phase, the caller sends an INVITE message that is answered

by the callee with several responses, finishing with a 200 OK response and

an ACK that establishes the call. These messages can also be exchanged

with proxies, which can act as either caller or callee. Once the call has

been established, caller and callee use the information contained in the SDP

received from the other end to send the RTP streams with the negotiated IP

addresses, port numbers and codecs. It is worth noting that several INVITE

messages can be sent during a call (the so called re-INVITEs), as SIP protocol

implements expiration timeouts and they must be refreshed to keep the call

alive. These messages can also be sent if the call is hold, or SDP parameters

are changed. To end a call a BYE message is sent, being answered again

with a 200 OK response.

The basic commercial SIP VoIP network architectures are based on three

elements: SIP Clients, Session Border Controller (SBC) and Media Gate-

ways. SIP clients initiate calls by sending messages to SBCs. Usually, these

clients are located behind a multimedia modem/router that separates VoIP

traffic from normal traffic. This division is often performed by operators us-

ing different VLANs to simplify traffic switching and routing across the access

network. SBCs are in charge of switching the signaling and media streams

present in SIP communications. Also SBCs act as SIP proxies redirecting SIP

calls either to the destination client or to another SBC. However, if a SIP call

must be transmitted to the PSTN network or the mobile network, signaling

and media stream are redirected to the Media Gateway. Media Gateways are

in charge of interconnecting VoIP networks with traditional telephone and

cellular networks by making the appropriate conversions between different

coding and transmission techniques. Figure 6.2 shows the basic setup of a

6.2. Multimedia Traffic Fundamentals 123

CALLER CALLEE

INVITE

100 TRYING [SDP]

180 RINGING

200 OK

ACK [SDP]

RTP

Initialization
Phase

BYE

200 OK

Ending
Phase

INVITE [SDP]

200 OK [SDP]

ACK

RTP

Renegotiation
Phase

Figure 6.1: Message flow for a typical call: initialization, renegotiation and
ending phases

124
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

C
on

ve
nt

io
na

l T
el

ep
ho

ne
s

1
2

Figure 6.2: SIP VoIP network architecture

commercial SIP VoIP architecture. Usually, this architecture is replicated

and spatially distributed to interconnect clients all over the coverage area.

This architecture allows the placement of VoIP monitoring probes in two

different locations, either by means of a Switched Port Analyzer (SPAN) port

or a tap. The first location is the router between the Access Network and

SBC, this provides some advantages as system transparency but increases

the capture rate needed as all the traffic is aggregated. The second possible

location is the Media Gateway. The advantage of this approach is that the

capture rate requirements decrease, because the Media Gateway does no

receive cross traffic but end-to-end VoIP calls are not captured.

VoIP makes use of different codecs to transmit voice samples [Goo02].

The most popular VoIP codecs are G.711 and G.729 [KP09]. G.711 provides

two different companding algorithms: µ-law (PCMU) and A-law (PCMA),

both of them produce data streams at 64 kb/s. G.729 produces lower rate

data streams, usually 8 kb/s, but it is based on patents and requires a license

to be used. In both cases, the default inter-packet gap is 20 ms, which gives

packets of 200 and 60 bytes at the network layer, respectively. Note that

the packet size of RTP streams is usually constant and clearly lower than

the mean packet length on the Internet, yielding a higher packet rate, which

increases the difficulty of capturing this traffic. For example, a full-saturated

6.2. Multimedia Traffic Fundamentals 125

10 GbE link (including inter-frame gap, preamble, Ethernet headers and

CRC) with G.711 calls gives a rate of 5.3 Mpps whereas G.729 gives a rate

of 12.8 Mpps.

The IP fragmentation and TCP segmentation

SIP protocol can be transported either on top of UDP or TCP, involving

fragmentation issues when monitoring the calls. In the case of UDP, frag-

mentation is done at the IP layer. Moreover, when using TCP as transport

layer, segmentation is additionally done by the operating system of the SIP

message issuer.

The TCP segmentation may cause a SIP message to be split into several

segments or even that parts of different messages are transmitted in a single

segment (e.g., the end of a message and the beginning of the next one). From

the findings of our traces, we have learned that it is very common that an

INVITE request starts in a segment and ends in the next one. It is also quite

usual that response messages such as 100 TRYING, 180 RINGING, or 200

OK are partially found in the same segment. Given that these messages

may contain a SDP description, keeping track of the segments and obtaining

each message separately are essential actions to correctly identify all the

signaling conversations and their associated RTP flows. These cases must be

considered since SIP over TCP is an extended choice in commercial networks

(in fact, this is the case of our traces): it provides additional reliability to

the signaling and allows to identify the end of a connection thanks to TCP

flags, which improves the QoE of the VoIP service and reduces keep-alive

messages.

We note that the problems that fragmentation/segmentation issue en-

tail by developing high-performance applications using commodity hardware

have not been previously analyzed in the literature. This issue undoubtedly

deserves the attention of the research community.

There are some other problems, namely, packet loss, duplicated packets

and packet reordering. Regarding packet loss, if it is produced during the cap-

ture process, lost fragments will not be retransmitted and, as a consequence,

126
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

the message will not be reassembled and the call will not be monitored. How-

ever, if that fragment is lost by a router or in the network, the sender will

issue it again after a timeout implemented by SIP or TCP. This situation

will be detected as out-of-order packets. Packet reordering can be resolved

using a buffer to recover the monitoring process if a packet or segment is

not received when expected. Duplicated packets must be detected to avoid

interpreting incorrectly redundant data (e.g., a duplicated INVITE message

as a second call). In this case, the 5-tuple {source address, source port, desti-

nation address, destination port, transport protocol} plus the TCP sequence

number can solve the problem. If the SIP messages are transported over

UDP, it can be necessary to use the SIP protocol fields (call-ID and CSeq

SIP sequence number) to know if it is a different message or not, because the

IP identifier field could be set to zero.

6.2.2 Skype Traffic

Traditional services and protocols (such as FTP, web-browsing or SMTP)

are not difficult to detect by simple matching to well-known ports. How-

ever, such techniques are not enough to detect Skype traffic, which is a

proprietary, obfuscated and encrypted protocol that uses per-session random

ports. Therefore, not even access to the packet payload is granted and, conse-

quently, well-known DPI [CCR11] approaches are not longer valid. Because

of this, the research community has proposed novel approaches based on the

use of statistical traffic characteristics (or intrinsic traffic characteristics) and

further applying, typically, ML techniques [NA08] to classify.

The authors in [BMM+07] presented a Skype traffic detection algorithm

based on two statistical techniques: First, they infer a probability distri-

bution of both packet length and inter-arrival time from audio and video

codecs used by Skype. Then, it is checked if the empirical distributions of

a given flow fit with the hypothesized ones, using a Bayesian classifier. Sec-

ond, as Skype traffic is encrypted, it is checked if the payload of a given flow

follows a uniform distribution, using Pearson’s Chi-Square estimator. The

algorithm is implemented as a module of Tstat [FMM+11]. However, Tstat

6.2. Multimedia Traffic Fundamentals 127

documentation explains that the Bayesian classifier configuration requires a

fine parameter configuration and significant computation load limiting its

applicability to multi-10Gb/s networks. The authors in [ACG+12] propose

Skype-hunter, a real-time Skype traffic classifier. Skype-hunter is able to

detect several Skype traffic classes, such as end-to-end (E2E) and end-to-out

(E2O) calls, file transfers and signaling traffic. The detection algorithm is

based on statistical characteristics and patterns of the traffic, such as number

of exchanged packets and bytes, Start of Message fields, inter-arrival time.

The code of Skype-hunter is not free-access but the pseudo-code is included

in the article.

The authors in [AZH08, AZH09] use ML techniques (such as AdaBoost,

classification trees C4.5 or SVM) to design a simple classifier based on rules,

starting from a large traffic trace. This classifier uses simple discriminants

such as flow duration, bit rate, packet rate, protocol, as well mean, variance,

minimum and maximum observed packet length. In addition, it is worth

noting the existence of a US patent [VGBR09], which claims the invention

of a system and a method to build Skype traffic models and to further apply

them to detect Skype traffic among other network traffic.

On other hand, due to the real-time nature of Skype (and other mul-

timedia services), with the QoS requirements which must be accomplished,

it is able to change its behavior to adapt to the changing conditions of the

network, namely: bandwidth reduction, delay, jitter or packet loss rate in-

crease. In this light, the authors of [DCMP07] study the congestion control

mechanism used by Skype. To this end, an experimental testbed with two

computers where the packet input is modified to add delays and shape avail-

able bandwidth. The same authors propose a mathematical model for such

congestion control mechanism for audio calls in [DCM10]. They conclude

that Skype does not implement a congestion control system that reacts to

delays but such mechanism is able to respond to packet losses and adapt

to the available bandwidth. Finally, in [DCMP08], the authors analyze the

bandwidth adjustment for video calls. The authors of [BMMR09] carry out

a detailed study of Skype traffic from both audio and video calls. Partic-

ularly, they analyze the impact of different network conditions (in terms of

128
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

available bandwidth, packet loss probability and end-to-end delay) on Skype

traffic. While previous works study how Skype adapts to changes in network

conditions (e.g., changing the used codec), they do not evaluate whether

Skype detection methods proposed in the literature, are also able to classify

Skype traffic when such network changes happen. For instance, when Skype

detects that the available bandwidth is smaller, the Skype packet length is

reduced. If such bandwidth reduction happens during a call, the statistical

characteristics of packet length (minimum, maximum mean and variance)

will be modified. As Skype detectors are based on these statistical features,

its identification accuracy may be decreased.

It is an undeniable fact that the Internet is becoming a heterogeneous

architecture with multiple access technologies—such as home broadband

Digital Subscriber Line (DSL) links, fiber to the home, mobile technolo-

gies 3G or Worldwide Interoperability for Microwave Access (WiMAX). Be-

cause of this, it is interesting to characterize Skype traffic in real environ-

ments: wired/wireless, fixed/mobile. In this light, several works [PV07,

CSMBMG07, HB08] analyze the behavior of Skype in different scenarios,

e.g., Local Area Network (LAN), Wireless Local Area Network (WLAN),

Asymmetric Digital Subscriber Line (ADSL), Universal Mobile Telecommu-

nications System (UMTS), from a QoE point of view. Particularly, the au-

thors of [CSMBMG07] study the Skype behavior in different network sce-

nario, evaluating the quality of calls, measured using Perceptual Evaluation

of Speech Quality (PESQ), in different connectivity scenarios. They also

assess the perceived QoE when (i) using different end terminals: a common

PC or a PDA and they analyze the effect of using a public IP address or

calling behind a Network Address Translation (NAT) router. They conclude

that the quality of calls made by using a PC is above an acceptable minimum

quality, whereas, conversely, the quality of mobile calls are unacceptable, due

to the worse computational performance of mobile phones.

As previously stated, none of previous works study Skype traffic detection

in mobile or wireless environments or analyze the identification accuracy of

proposed Skype classifiers in mobile or wireless networks. In [SHR+09] the

authors propose a detection method for 3G networks specifically. This mech-

6.2. Multimedia Traffic Fundamentals 129

SPAN PORT

1/10 Gb/s

2/20 Mpackets/s

100 Kflows/s

Flow 1

Flow 2

…

…

Flow n

NESS

Flow 1

Flow 2

…

…

Flow n

Figure 6.3: Skype traffic identification scenario

anism uses cross layer information available within 3G network as well as

packet inspection (such as Skype “header” and payload length). However,

such technique is useless with encrypted Skype versions. Therefore, it is

more interesting to find out methods based on intrinsic characteristics (e.g.,

packet length, interarrival times or bit rate) which are able to work with ac-

curacy in different environments both changing network state (e.g., available

bandwidth reduction or loss rate increase) and various access scenario—LAN,

WLAN, ADSL, 3G.

To the best of our knowledge, there is no state of the art in the per-

formance evaluation of Skype detection from a computational point of view.

The authors in [BHA09, DB09, ACG+09] claim that detection of Skype flows

is possible with the first 5 or 10 seconds of a given flow, with accuracy greater

than 98%. Nevertheless, when a link (or a whole network) is monitored to

detect Skype traffic, there are many different flows from other classes of traf-

fic and the authors do not evaluate if their proposed technique can effectively

discard non-Skype flows. That is, given a backbone link with many concur-

rent flows from many different services, the fast classification of Skype flows

implies also to discard non-Skype flows at fast rates (see Figure 6.3).

130
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

6.3 RTPTracker : Line-Rate VoIP Data Re-

tention and Monitoring

6.3.1 Introduction

In this section, we propose a system to fulfill all the above introduced chal-

lenges, which we have named RTPTracker. The system is composed of four

modules, which are in charge of:

(i) Capturing traffic at multi-Gb/s rates.

(ii) Identifying and tracking of VoIP traffic.

(iii) Generating the statistics required to ensure users’ QoS as well as in

compliance with data retention directives.

(iv) Reconstructing and indexing the VoIP calls to provide novel services

based on call recording.

As a distinguishing feature from the best-known vendors’ solutions [Cis09],

RTPTracker faces the deployment of monitoring and data retention of VoIP

networks from the point of view of the cost that such tasks imply. That is, in

large-scale networks many points of measurements are required which multi-

plies the infrastructure investment. Some studies [SGI08] have deemed such

cost at the range of several billion dollars. Therefore, providers should focus

on approaches that maximize their monitoring capacity but, at same time,

cut the investment down. While higher processing rates can be achieved with

specialized hardware, it typically lacks of the required flexibility to include

new traffic statistics or specialized analysis, and the cost is high. Thus, the

use of commodity hardware turns out to be an interesting option that com-

bines good performance and limited cost [BDKC10]. For example, the au-

thors in [Ker12] pinpoint the relevance that commodity hardware is gaining in

both governments and militaries for their computing needs. RTPTracker uses

commodity hardware to perform all its tasks. Similarly, another important

issue is the cost of the integration of the monitoring system in operational

6.3. RTPTracker : Line-Rate VoIP Data Retention and
Monitoring 131

II) Detector and tracker of
SIP/RTP traffic

III) Generator of VoIP
records and calls

IV) VoIP call
retention module

I) Traffic Capture
Module

SPAN
Port

RTPTracker

II’) TCP/IP packet reassembler

IP Network

Figure 6.4: RTPTracker architecture

VoIP networks. This calls for monitoring systems whose interference with

current VoIP architectures is minimal. This is the case of RTPTracker, which

only requires a probe fed with the traffic to monitor without any additional

network configuration.

6.3.2 System Architecture

In what follows, let us discuss the functionality of each of the RTPTracker

modules, which are shown and labeled in Figure 6.4. Then, performance

evaluation is presented in the next section. RTPTracker software is written

in C language over a Linux-based system running on a general-purpose server

(see Section 6.3.3 for more details about hardware and software setup).

Traffic capture module

RTPTracker requires to keep track and correlate both SIP and RTP data

flows but note that these flows do not share the same 5-tuple, and, however,

132
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

such tuples are used by RSS technology to distribute packets among different

receive queues at NIC and kernel level. Consequently, this prevents the ap-

plication of multiple receive queues, RSS technique, in SIP VoIP monitoring

as a SIP flow and its corresponding RTP flow may potentially end up to

different queues and cores. Moreover, the use of RSS produces the appear-

ance of undesirable side effects such as packet reordering [WDC11], which,

again, prevents its use. Some novel I/O capture engines achieve 10 Gb/s line-

rate packet capture thanks to the application of RSS but, as shown, it is not

possible for monitoring VoIP traffic. Additionally, we notice that several pro-

posed capture engines do not perform accurate packet timestamping, which

is crucial for monitoring purposes—e.g., to estimate QoS parameters such

as jitter. This encouraged us to use HPCAP driver (previously described

in Section 3.4.6) that using an only receive queue is capable of achieving 10

Gb/s line-rate packet capture and timestamping.

In this case, the detection module, labeled as II in Figure 6.4), accesses

to the driver packet buffer. Essentially, as detailed in Figure 6.5, the driver

receives traffic from the NIC by means of DMA transfers and the capture

module, running in a kernel-space thread, constantly polls the driver buffer

for new incoming packets. If so, the capture module copies the packets

to a given memory region that the detection module, is able to map, thus

accessing the incoming packets from user-space in a zero-copy basis. The

mapped memory region is a circular buffer with two pointers, one for writing

(used by the capture module from kernel-space) and another for reading

(used by the detection module from user-space). Packets are timestamped

when the capture thread copies them to the mapped memory. This is done

at kernel-level by means of getnstimeofday3 function, which provides sub-

microsecond precision.

While the optimization of I/O packet capture systems has received an

extensive study by the research community, the challenges that application

developers face by using these new paradigms have only recently arisen ex-

pectation. This work translates the principles that those novel I/O packet

capture systems apply to improve performance, to the development of a VoIP

3http://man.cx/getnstimeofday(9)

http://man.cx/getnstimeofday(9)

6.3. RTPTracker : Line-Rate VoIP Data Retention and
Monitoring 133

M
a

p
p

e
d

 m
e

m
o

ry

M
a

p
p

e
d

 m
e

m
o

ry

Capture module

Detection module

HW queue

Read pointer

Write pointer

NIC

Kernel-space

User-space

Figure 6.5: RTPTracker capture module scheme: interactions with the NIC
and detection module

134
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

monitoring system. Specifically, as shown in the following sections, we have

imitated memory management mechanisms, i.e., pre-allocation and reuse,

and thread and memory affinities.

Detector and tracker of SIP/RTP traffic module

Once a packet is received and timestamped, it can be accessed from this

second module, which is responsible for detecting and correlating the SIP and

RTP traffic. This second module is executed in a different thread, running

at user-space. To achieve peak performance such thread must be tied to

a different CPU core than the capture thread of the capture module but in

the same NUMA-node. Thus, both threads are running in parallel increasing

the power processing and, at the same time, memory affinity is kept reducing

memory access latency.

SIP packets contain information of interest to characterize a call such as

the call identifier (call-ID), caller and callee identifiers (from and to fields), as

well as information to establish the RTP session, essentially source/destination

IP addresses and port numbers (4-tuple) and codec of the RTP stream.

Typically, caller and callee exchange the RTP-stream information at the

beginning of a new call by means of a couple of SIP packets that comprise

in their bodies a SDP message (SIP-SDP) with this information. This step

is called initialization phase as was detailed in Section 6.2.1.

However, these SIP-SDP packets can be one of various types of SIP mes-

sages (e.g., INVITE, 200 OK, 100 TRYING, ACK) and not necessarily the

two first ones. Moreover, RTP 4-tuple can change during the course of a

given call, typically named as renegotiation phase (middle of Figure 6.1).

This forces to monitor any SIP packet throughout the whole call. Essen-

tially, such a renegotiation is initiated by a new INVITE message in a call

already in progress. Renegotiations are quite common in SIP. Renegotiation

happens periodically, as a mechanism to make sure that connections are still

alive, although in such a case, the parameters typically remain the same.

Moreover, it also appears when a call is forwarded to another SIP host. This

is very common in call centers and offices or due to answering machines.

6.3. RTPTracker : Line-Rate VoIP Data Retention and
Monitoring 135

This second module uses two hash-tables, as shown in Figure 6.6. The

first one, (T1), is indexed by SIP call-ID, which is useful when a call is up-

dated by a SIP packet; the second one, (T2), is indexed by RTP 4-tuple,

which is useful when a RTP packet is processed. Note that these two tables

are necessary because RTP packets do not have call-ID or other SIP infor-

mation, whereas SIP packets do not have the same IP addresses/ports as

RTP packets. Both hash-tables access to the same data structure by means

of pointers. Such structure, (S) in the figure, contains information about the

call and its corresponding RTP stream (4-tuple), as well as data about the

RTP traffic (that the following module needs to calculate RTP statistics),

and the payload of the RTP stream (i.e., call content in raw format).

In the early stages of the system, a VoIP call was marked as expired only

when a BYE packet is received. However, we observed that a number of calls

were not properly closed (e.g., errors in the SIP negotiation phase or mali-

cious traffic) and such calls remained in memory indefinitely. Therefore, it

was necessary to implement a garbage-collector mechanism based on timeout

expirations. Periodically, the calls in the tables are checked for expiration.

The frequency of this expiration considers calls with silence suppression when

the VoIP device does not transmit any RTP packet for a while. However,

scanning the whole hash-tables requires prohibitive computational costs. In-

stead, we use a list of active calls, (L), which is scanned to expire inactive

(or closed) calls/RTP streams. While the hash-tables are useful to insert and

update a call/RTP stream, the active call list is useful to remove them. The

nodes of this list have pointers to the structures they represent, and in turn,

such structures also comprise pointers to the corresponding SIP and RTP

entries in the hash-tables, see Figure 6.6. This makes it possible to remove

all the references of a call in both hash-tables by means of the active call list.

Such list is sorted in decreasing order by the last packet arrival time.

Thus, the garbage collector only examines the n first active calls up to the

first one that does not have to be expired given a threshold, the rest of the

calls do not have to be scanned. When a call is updated by accessing to one

of the hash-tables, the corresponding node in the active list is moved to the

end, keeping the list sorted without any additional work.

136
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

.

.

.

(T1)
Calls Hash table

Indexed by
Call-ID

.

.

.

(T2)
Calls Hash table

Indexed by
RTP 4-Tuple

(L)
Active Calls List

Sorted by
Last Packet
Time-stamp

Call-ID: 767684230@998sddh09
From: Alice <sip:alice@tlp.com>
To: Bob <sip:bob@tlp.com>

. . .

RTP IP src: 10.1.0.10
RTP IP dst: 10.2.0.10
RTP port src: 19540
RTP port dst: 30699

. . .

Last Packet Timestamp: 1355227200
(24/11/2011 12:00)
. . .
Payload: 23DE789C12321AF1…
. . .
RTP 4-tuple Hash-table pointer:
Active call pointer:

(S)
Call Information
Data Structure

Figure 6.6: Data structures to store and handle calls information in the
SIP/RTP traffic detection module

Finally, all the memory used in the application, structures, nodes, lists

and hash-tables are pre-allocated in a memory pool to reduce insertion/deletion

times, avoiding dynamic allocation/release during the execution. That is,

once a data structure is no longer required, the memory is returned to the

pool but not de-allocated. Then, such data structure can be reused without

a new allocation process. This action has resulted in a significant reduction

of the system computational cost.

Bearing in mind all these implementation details, let us summarize the

execution flow of this module according to the last received packet:

(i) SIP packets: These packets are easily identified because their source-

/destination port is the default port number (e.g., 5060), or other con-

figured port (e.g., 5065, 5070). Then, to classify SIP messages among

their different types, we use DPI methodologies. The INVITE mes-

sage is searched as an indication for a new call placement in the active

calls table or a renegotiation. In the former case, a new call is inserted

in the call hash-table, using the call-ID as key. Any subsequent SIP

packet with the same call-ID is examined to complete the rest of the

6.3. RTPTracker : Line-Rate VoIP Data Retention and
Monitoring 137

required fields. Essentially the IP addresses and port numbers of the

corresponding RTP stream but also any additional SIP field considered

useful (e.g., to/from). Once the IP addresses and port numbers fields

are fulfilled, and the connection confirmed by both sides, i.e., 200 OK

and ACK SIP messages with correct numbers of sequence, a new entry

in the RTP hash-table is created. Otherwise, the connection is ruled out

and the memory released. An INVITE message with a call-ID already

present in the call hash-table may indicate the first step of a renegoti-

ation phase. Once the renegotiation is confirmed by the pertinent SIP

packets, again 200 OK and ACK SIP messages, the 4-tuple that char-

acterized a RTP stream in the RTP hash-table is replaced by the new

one. This allows tracking the entire call despite changes on its RTP

parameters. Finally, a BYE message causes the call to be exported, as

explained in detail in the next section.

(ii) RTP packets: For each UDP packet arrival with even port numbers (i.e.,

a candidate to be a RTP packet [SCFJ]), the module checks among the

active call list entries if one call has been previously placed with the

same IP addresses and port numbers. In such a case, the payload is

stored and statistics of the calls are updated.

(iii) Remaining packets are discarded.

TCP/IP packet reassembler

As discussed previously, if SIP traffic is transmitted over TCP, an application

layer message (in our case, a SIP packet) may be split into several segments

or even several messages could be merged into one TCP segment. In fact,

this is the case of the real VoIP traces that we have been provided with.

Thus, prior to any analysis, SIP messages must be extracted as a unique

body from TCP streams and forwarded to the detection module (module

II) as shown in Figure 6.4. We have developed an additional module, named

TCP/IP packet reassembler (module II’), to deal with this potential problem.

Similarly, this module also copes with the IP fragmentation. To summarize, if

138
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

I

I

I

����

V���������	�
�

������	
���

���

����������

����������������

���������
������

���������
�����

�
��

V���������	�
�

V������	���

����������

������������

�	��������

��������� !��

����"����#��$�����

����"����#�%�������

�$�����

III

�����&�������

���

�����

�����"
�����

�
�
�'��$��$��

���

���

Figure 6.7: IP reassembly data structures

TCP segmentation or IP fragmentation are detected in the network, TCP/IP

packet reassembler module must be activated.

The case of IP reassembly is a well-known issue that has already been

solved by network stack but whose implementation is not able to deal with

high rate speeds. Consequently, we have followed the development principles

presented in the previous section. We have used a hash-table to track the

fragments of a unique IP packet (indexed by IP addresses and identifier, and

layer-4 protocol). Since packet loss may appear, we have again developed

a garbage collector as a list of active connections in the same way that the

ones explained in the previous section. That is, the hash-table is useful to

insert new fragments and the active list is used to rule out those packets that

cannot be completed. Figure 6.7 shows these structures. Once all fragments

of a given packet have been received, it is forwarded to the following module,

either the detection module or the TCP reassembly submodule if necessary.

Similarly, the TCP reassembly submodule uses a hash-table to track con-

nections but, this time, indexes segments by 4-tuple (IP addresses and port

numbers). In this case, we aggregate the TCP payloads in order according

to their sequence numbers. Then, we deem that a SIP message is completely

formed when we have its SIP header and the beginning of a following mes-

6.3. RTPTracker : Line-Rate VoIP Data Retention and
Monitoring 139

.

.

.

(B)
Fragment-With

Flows Hash‐Table
Indexed by

4‐tuple

(C)
Fragment-With

Flows List
Sorted by

Last Packet
Time-stamp

Out‐of‐order
segments list:

Assembling
Buffer:

Expected TCP
Seq Number: 2

...

Content‐Length: 270

...

Flow pointer:

(A)
Flow

Information
Data Structure

INVITE sip:1123@162.0.0.6:5060;transport=tcp SIP/2.0
From: <sip:558556753@192.0.0.4>;tag=94b20f8‐
28020104‐13c4‐50017‐25ff96‐3a38846c‐
25ff96;transport=tcp

Call‐ID: 9882bf0‐28020104‐13c4
CSeq: 1 INVITE

Via: SIP/2.0/TCP 192.0.0.4:5060;branch=z9hG4bK‐25ff96
Max‐Forwards: 70

. . .

Allow: INVITE,ACK,CANCEL,BYE
Contact: <sip:558556753@192.0.0.4;transport=tcp>

Content‐Type: application/sdp
Content‐Length: 270

Figure 6.8: TCP reassembly data structures

sage is identified. In this case, we forward the formed SIP message to the

detection module. Periodically, the active list is analyzed and those messages

that cannot be completed are ruled out. Figure 6.8 depicts these structures.

Generator of VoIP records and calls

When a call expires, it is deleted from the detection module’s active call

list and hash-tables, and redirected to this third module, which generates

all the required information about the call. This includes the information

required by the European Union directive 2006/24/EC [SGI08]: the ID of

both edges of the communication (from and to SIP fields), and the start

and end times of the call. Furthermore, the module includes several flow

parameters in a call record such as the used codecs, count of packets and

bytes, throughput, max/min/mean/standard deviation of both packet size

and inter-arrival time, round-trip-time, jitter and packet loss rate. It is worth

noting that these parameters are useful to assess the users’ QoE for a given

call. For a further explanation of the calculated parameters the reader is

referred to [Sch12].

This module is also able to dump to non-volatile storage the call content

in raw format. In addition to the abovementioned parameters, the call record

also includes pointers to two file names comprising the packet aggregation of

140
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

the RTP communication in both directions. The throughput of the system

could be limited in this step by the disk throughput [SWF07]. Several so-

lutions of storage devices can be found in the market, namely: Serial ATA

interfaces present a throughput of 1.5, 3 and 6 Gb/s in its versions I, II and

III respectively; in turn, the throughput of Serial Attached SCSI is 3, 6 and,

expected in a future, 12 Gb/s for its specification SAS-1, SAS-2 and SAS-3.

Additionally, the performance of all these storage solutions can be improved

using striping techniques, such as Redundant Array of Independent Disks

(RAID) 0.

To obtain better disk performance, two parameters shall be configured,

RAID strip size and the filesystem request queue size. The former may be

fixed using specific tools provided by RAID controller vendors. The latter

may be tuned in Linux by means of modifying the system configuration file

/sys/block/ < device > /nr requests: the lower the value contained in this

file is, the lower is the amount of petitions stored in the Operating System

(OS) queue, thus reducing the use of OS swap memory when writing data

into the RAID disk. Specifically, we obtained the best results, as shown in

Section 6.3.4, using sizes of 1 MB for the RAID-controller blocks and by

minimizing OS cache writings (by fixing nr requests to the minimum value,

4, into the mentioned file).

Moreover, it is not necessary to store all the internetwork traffic but only

the RTP payloads ignoring headers and cross traffic, which further reduces

the required throughput of the storage media. For instance, using G.711

codec, the worst-case scenario, the maximum required rate for call payload

storage in a 10 Gb/s link is 6.72 Gb/s (160 RTP payload bytes / 238 total

packet bytes · 10 Gb/s).

VoIP call retention module

Periodically, the output of the previous module, i.e., calls records and point-

ers to the RTP files (if such service is required) are dumped to a MySQL

database. The use of a database allows retrieving a call using a given key

(e.g., the caller/callee ID). As it turns out, the database size may be too

6.3. RTPTracker : Line-Rate VoIP Data Retention and
Monitoring 141

large to achieve acceptable search times. Thus, the database can be split

into several independent databases that can be accessed in parallel. We per-

formed extensive testing of the freeware database MySQL and concluded

that a database per day suffices to have a satisfactory search time (as shown

in the next section), while avoiding excessive fragmentation of the data set

in many databases.

If a system user is willing to listen a given conversation, the raw file must

be converted to an audible format, e.g., WAV format. To achieve this goal,

a script is created which uses open source tools such as sox [SoX13] and

Asterisk [Dig13] to convert from the two files that comprise unidirectional

raw RTP streams to a WAV file comprising both call directions. This script

works together with the SQL database to query and convert calls on-demand.

6.3.3 Experimental Setup

The proposed system is based on an Intel Xeon E5520 with four cores at 2.27

GHz with six modules of 4 GB DDR3 SDRAM equipped with an Intel X520-

SR2 10 Gigabit Ethernet NIC which is based on 82599 chipset. Regarding the

system storage, 12 Serial ATA-III disks conforming a RAID-0 controlled by a

LSI Logic MegaRAID SAS 2208 card have been used. These disks are Seagate

ES2 Constellation. On software side, the experiments were performed over a

Ubuntu 10.04 running a Linux kernel 2.6.32.

To evaluate the performance bounds of the modules II, II’ and III, we

have deployed the following controlled scenario. It comprises 12 computers

equipped with 1 Gb/s NICs generating VoIP calls at maximum rates by

means of Sipp [GJ13]. We note that Sipp application was not developed to

achieve a rate of 1 Gb/s, therefore we needed to aggregate traffic from several

machines as shown in Figure 6.9 to generate multi-Gb/s traffic. Sipp allows

us to generate VoIP traffic according to several traffic models and codecs.

More specifically, it allows modeling the call holding time with an extensive

set of distributions as well as the inter-arrivals time between two consecutive

calls. We have modeled the call arrival process by a Poisson process as shown

in [CSK11], and the call hold time with an inverse Gaussian distribution with

142
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

Cisco 2960S RTPTracker

Sipp Servers/Clients

Cross traffic
generator

Figure 6.9: Testbed topology

parameters µ = 117 and λ = 19 as proposed at [BMPR10]. Regarding the

codec, we have chosen G.711. In addition, we have used another machine

equipped with a 10 Gigabit Ethernet NIC to generate cross traffic. All this

traffic is aggregated by a 10 Gb/s switch, Cisco Catalyst 2960S, and then,

forwarded by its SPAN port to RTPTracker system. With this experimental

setup, we have generated VoIP traffic at 8.9 Gb/s, and the rest of the link

capacity with cross traffic.

6.3.4 Performance Evaluation: a Stressing Scenario

In this section, we assess the performance bounds of the proposed system,

RTPTracker, i.e., at what rates the system can work without dropping pack-

ets.

First of all, let us evaluate the performance of the traffic capture module.

Note that this module captures traffic regardless whether it is VoIP traffic

or not and its evaluation is valid for any other purpose. We have performed

the worst case scenario experiment, that is, synthetic traffic composed by

TCP packets with random payload and layer-2 size of 64 bytes at maximum

rate for 30 minutes, i.e., the capture module received more than 1.48 TB of

data at 14.2 Mpps, this gives roughly 25 billion packets. In this challenging

scenario, no packet loss was reported.

6.3. RTPTracker : Line-Rate VoIP Data Retention and
Monitoring 143

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6
x 10

4

Time

A
ct

iv
e

C
al

ls

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

C
al

l c
re

at
io

n
ra

te
 (

ca
lls

/s
)

Calls creation rate

Active calls (empirical)

Active calls (theoretical)

Figure 6.10: Active calls and new calls managed by RTPTracker during a
30-minute controlled experiment

Figure 6.10 shows the number of active calls during a 30-minute experi-

ment in this scenario as well as the call generation rate. The number of active

calls gives more than 52,000 concurrent calls with a rate of 442 new calls per

second in the stationary state, which yields the abovementioned VoIP rate

of 8.9 Gb/s.

Attending to storage, at least 6.72 Gb/s of disk write rate must be reached

for a full-saturated link with G.711-codec calls (RTP traffic without headers,

as detailed in Section 6.3.2). In the abovementioned scenario, this minimum

rate should be 5.98 Gb/s. Codec G.711 represents the worst-case scenario be-

cause the ratio between the RTP payload and packet size is the highest. Using

our experimental setup based on a 12 disk RAID-0 the maximum achieved

packet capture and write rate was 9.44 Gb/s, which exceeds the required

rate. This figure were obtained after configuring the RAID-controller-cache

blocks to have 1 MB and disabling the kernel’s cache that operating sys-

tems use when applications write in disk. No packet was lost throughout the

144
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

experiment. This supports the high performance capacity of the proposed

system, its validity to monitor large-scale VoIP network, and even suggests

that its bounds are beyond a 10 Gb/s link.

To quantify the impact of call insertion and the subsequent retrieval in

the MySQL database, that is module IV, we conducted the following ex-

periments. The first experiment measures the time devoted to insert call

records. The number of records varies between 100 and 10,000,000. Fig-

ure 6.11(a) shows a linear increment of the time as the number of records

grows. The second experiment measures the time needed to retrieve one

record in a database with a number of records varying between 100 and

10,000,000. The SQL query has been built as the worst-case scenario: the

statement uses a “WHERE” clause involving all the fields of a record. The

results in Figure 6.11(b) show a linear increase as the number of records

grows. For 10,000,000 records the insert process and the search process take

900 and 6 seconds, respectively. These numbers support the applicability of

this approach.

Note that we have two different sets of data, on the one hand the call

records, on the other hand the raw RTP streams. For the former, each call

record has variable length because the length of SIP caller and callee IDs are

also variable (e.g., a phone number or an email). The call records obtained

from real traffic traces comprising the fields previously explained show an

average call record length of 510 bytes. The average database size obtained

for 10,000,000 call records is 4.2 GB.

In the case of tracking RTP raw data, the storage becomes a significant

challenge. For the case of an average call of 117 seconds using G.711, 8

kB must be stored per call and direction every second, which gives 1.87

MB of disk space per call. Assuming 10,000,000 calls per day, for full data

retention near 18 TB must be stored. This approximation shows the worst-

case scenario. Conversely, the most optimistic scenario gives near 2.25 TB

per day using G.729.

Finally, Table 6.1 shows the conversion rates of a real trace provided by

a VoIP operator, into WAV files. It can be observed that G.711 codec calls

are converted faster than the ones from G.729 codec. In the three cases, the

6.3. RTPTracker : Line-Rate VoIP Data Retention and
Monitoring 145

101 102 103 104 105 106 107 108
10−2

10−1

100

101

102

103

Number of Records

T
im

e
(s

)

Call Records insert time

(a) Insert Time

101 102 103 104 105 106 107 108
103

104

105

106

107

Number of Records

T
im

e
(u

s)

Call Record search time

(b) Search Time

Figure 6.11: RTPTracker insert and search times according to the number
of records

146
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

Table 6.1: Empirical conversion rates from raw to WAV format for G.711
(PCMU and PCMA) and G.729 codecs (the mean call duration is 120 sec-
onds)

Codec Conversion rate (kB/s) Conversion rate (calls/s)

PCMU 13,149 6.85

PCMA 19,609 10.21

G.729 1,051 4.38

observed rates are not sufficient to support the throughput of the rest of the

system (larger than 400 calls/s). Nevertheless, note that it is not necessary

to convert all files. The conversion process can be performed on-demand

when the conversation is requested.

6.3.5 Case Study

To put these figures into perspective, we present the traffic intensity figures

of a VoIP operator. This operator has fifteen VoIP Point of Presence (PoP)s

across Spain as those shown in Figure 6.2. Each PoP serves between 60,000

and 100,000 calls during the busy hour whose mean call hold time is about

120 seconds, being the total number of calls per day a number ranging be-

tween 0.6 and 1 million calls per PoP. These results in a mean call arrival

rate during the busy hour that ranges between 17 and 28 calls per second

and between 2,040 and 3,360 simultaneous active calls. Given these specifi-

cations, in computational terms, RTPTracker is able to monitor and register

calls in each PoP of the VoIP operator previously described, and, even more,

it would support a growth of the number of users in, at least, one order of

magnitude. Similarly, the authors in [BMPR10] explain that Fastweb VoIP

network serves about 32,000 calls in a busy period of 30 minutes. This yields

a rate of 17 calls per second with a call duration average of 117 seconds and

about 2,000 simultaneous active calls, well below the RTPTracker capabili-

ties.

As stated before, the deployment cost is a major issue for network oper-

6.3. RTPTracker : Line-Rate VoIP Data Retention and
Monitoring 147

ators. RTPTracker is a cost-effective solution to monitor a VoIP large-scale

network. Indeed, the hardware cost of the system to run RTPTracker is esti-

mated in 3,800C (RAID controller and server), 1,100C (NIC) and, initially,

12 hard disks (as the ones used in the testbed) that cost, in total, about

3,000C . Concerning storage at long term, for sure all user call records must

be collected but RTP contents must be only stored when full data retention

is required. In this light, the system needs a disk capacity of 126 GB to

store all call records in one month. To implement full data retention, the

first step is to assess the percentage of users whose calls must be stored.

Assuming that 1% of the total calls must be recorded, 540 GB per month

would be required. In the worst and unlikely scenario in which all calls must

be stored, the amount of 54 TB is needed. It is worth noting that such enor-

mous amount of storage capacity is perfectly feasible to achieve with a single

4U storage chassis. Actually, there are chassis that allow aggregating tens

of hard disks and connecting to other chassis in a cascaded configuration to

make up a unique solution. In terms of monetary cost, assuming a price of

100C per TB, the cost of the storage can be estimated in 50C or 5,000C per

month, according to the percentage of stored calls (1% or 100%). We think

that storing more than two years worth of data is not necessary, and this

constitutes the limit for the storage capacity. Indeed, note that the data

retention directives typically require collecting data during a period between

six months and two years.

Finally, thanks to the minimal interference of RTPTracker with exist-

ing VoIP architectures, we consider the integration cost is basically reduced

to the hardware cost, which supports the applicability and viability of our

system.

6.3.6 Conclusion

This section shows a novel architecture and system to monitor VoIP traffic,

called RTPTracker. As distinguishing features, RTPTracker provides very

high performance being able to process VoIP traffic on-the-fly at high bit

rates, significant cost reduction using commodity OTS hardware, and mini-

148
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

mal interference with operational VoIP networks. The performance evalua-

tion shows that the system copes with the VoIP load of large operators. We

further evaluated the system performance at a 10 Gb/s link and no packet

loss was reported. This result demonstrates the scalability of OTS solutions

for very high data rates.

6.4 Skypeness: Multi-Gb/s Skype Traffic De-

tection

6.4.1 Introduction

As previously stated, the most state of the art has focused on providing ac-

curacy only, regardless of the processing power that is required, which may

impair the practical applicability of the traffic classification algorithm in a

real-world, high-speed environment. This section aims at filling this gap.

Specifically, we seek for Skype detection algorithms that are both accurate

and fast. Our analysis is focused on OTS systems, not specialized software.

As it turns out, all Skype traffic classifiers found in the literature run in

general-purpose servers. Actually, higher processing rates can be achieved

with specialized hardware; however, the hardware solution is less flexible to

incorporate changes to the algorithm and the cost is significantly higher. In

our case, we trade off complexity of the detection algorithm versus respon-

siveness for real-time detection purposes, all in an OTS system. We should

be able to answer some questions, such as “Which is the limit rate, per CPU

core, for detecting Skype traffic? Is a general-purpose server enough for traf-

fic classification in a highly utilized 1 Gb/s link? How about a 10 Gb/s link?”.

The answers of these questions are relevant for network operators with large

backbone links, which seek for traffic classification at the minimum expense

in monitoring equipment.

We have implemented a Skype detector, called Skypeness. Skypeness is

a commodity OTS system to Skype traffic detection at multi-10Gb/s rates

based on the functionality of Tstat Skype module [FMM+11] but conve-

6.4. Skypeness: Multi-Gb/s Skype Traffic Detection 149

niently tuned to satisfy its on-line execution in the current high-speed net-

work requirements. Then, we have evaluated its performance both in terms of

accuracy and processing time. Experimental results show that our approach

achieves similar results in terms of accuracy than previous work. Addition-

ally, the performance of our proposal, in terms of throughput, shows that

Skype traffic can be identified from a traffic aggregate of up to 3.7 Gb/s with

a single process, scaling up to 45 Gb/s rates on a four 8-core processors OTS

systems.

6.4.2 Detector Fundamentals

Skypeness test is based on the statistical techniques presented in [BMM+07].

We do not consider the Chi-Square estimator due to the high-performance

requirements (Chi-Square requires inspection of the packet payload). There-

fore, our detector uses three intrinsic characteristics of the Skype flows,

namely: packet length, interarrival and bitrate. Figure 6.12 shows the be-

havior of several audio UDP Skype flows in terms of these characteristics:

packet length is delimited between 30 and 200 bytes (top), interarrival is

nearly constant in multiple of 20 ms (middle) and bit rate is below 100 Kb/s

(bottom).

Flow information, such as timestamp (used to compute interrarivals) and

size for each packet, is passed to the detector module. In order to smooth

data, they are averaged in windows of 10 packets. It is worth noting that we

only focus on audio UDP Skype flows with more than 30 packets (3 windows)

because this is a validated trade-off threshold to detect Skype calls and ig-

nore control flows. The detector computes the proportion of packet windows

whose mean packet size, mean interarrival and mean bitrate are inside the

valid intervals. If these proportions are greater than the given thresholds,

the flow is classified as Skype. Table 6.2 shows the values for the intervals

and the thresholds. The interval values have been chosen with an exhaustive

study of Skype flows captured in several scenarios (wired and wireless con-

nection, real and emulated networks conditions). The used dataset will be

detailed in Section 6.4.4. The thresholds values have been optimized using

150
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

packet

P
ac

ke
t S

iz
e

[B
yt

es
]

(a) Packet Size

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

packet

In
te

ra
rr

iv
al

 P
ac

ke
t T

im
e

[s
]

(b) Interarrival

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

packet

B
it

ra
te

 [k
bp

s]

(c) Bitrate

Figure 6.12: Intrinsic Characteristics of a UDP Skype flow (audio conversa-
tion)

6.4. Skypeness: Multi-Gb/s Skype Traffic Detection 151

Table 6.2: Intervals and threshold values used by Skypeness detector

Media Characteristic Interval Threshold

Audio
Packet size [Bytes] [60, 200] 0.75

Interarrival [ms] [in−1 ± 15] 0.6
Bitrate [Kbps] [0, 150] 0.75

Video
Packet size [Bytes] [150, 1200] 0.19

Interarrival [ms] [in−1 ± 15] 0.6

File Transfer
[480, 540]∪

Packet size [Bytes] [950, 1050]∪ 0.44
[1310, 1380]

C4.5 trees, as in previous works [AZH08, AZH09].

TCP Skype flows are not detected by Skypeness. However, Skype typi-

cally uses only UDP as transport-layer because it is more suitable in real-time

applications. However, it is uncommon but possible that Skype shifts to TCP

in an attempt to evade firewalls or other similar restrictions. As we lever-

age on packet interarrivals assuming they are fairly constants, and TCP can

modify this depending on its configuration, we have focused on UDP traffic.

6.4.3 System Architecture

Skypeness software runs over a general-purpose server based on four AMD

Opteron 6128 processors working at 2 GHz. Each processor counts with eight

cores and the total memory is composed by 32x4 GB DDR3 memory boards

working at 1333 MHz, on a standard Supermicro H8QG6 motherboard. To

provide network connectivity one Intel 10 Gigabit CX4 Dual Port Server

Adapter is used. This PCIe 16x card uses an 82598EB controller that allows

multi-queue transmission and reception up to 16 queues per interface and

direction. Figure 6.13 represents the hardware architecture, including PCIe

connections.

This server features a NUMA architecture, whereby memory is split into

several groups, one per CPU, giving raise to the so-called NUMA nodes

(CPU+local memory). Clearly, better performance is achieved when the

152
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

CPU 3

CPU 1 CPU 2

CPU 4

NIC

RAM

RAMRAM

RAM
IO HUB

Figure 6.13: Hardware architecture of Skypeness

memory region of a process lies within the same NUMA node, such that the

CPU executing the process only access local memory. However, the use of

memory across different NUMA nodes increases access times and degrades

computing performance. Figure 6.14 shows the NUMA design for Skypeness

hardware obtained using hwloc utility [Pro13]. Following the rationale of

better performance when memory locality is exploited, given a NUMA node,

a distance vector to other NUMA nodes is defined. The lower the distance is,

the higher the performance obtained accessing other NUMA node resources.

Table 6.3 shows the NUMA distance matrix for Skypeness hardware obtained

using numactl utility.

On the software side, Skypeness runs over Ubuntu 10.04 Linux Server (64

bits) using 2.6.35 kernel. Skypeness is divided into three well-distinguished

modules. The first module is in charge of capturing and parsing incoming

packets. Once a packet is processed, it is redirected to the second module

6.4. Skypeness: Multi-Gb/s Skype Traffic Detection 153

Table 6.3: Skypeness NUMA nodes distance matrix

NUMA Node 0 1 2 3 4 5 6 7

0 10 16 16 22 16 22 16 22
1 16 10 22 16 22 16 22 16
2 16 22 10 16 16 22 16 22
3 22 16 16 10 22 16 22 16
4 16 22 16 22 10 16 16 22
5 22 16 22 16 16 10 22 16
6 16 22 16 22 16 22 10 16
7 22 16 22 16 22 16 16 10

Machine (127GB)
Socket P#0 (32GB)
NUMANode P#0 (16GB)
Core P#0
PU P#0

Core P#1
PU P#1

Core P#2
PU P#2

Core P#3
PU P#3

NUMANode P#1 (16GB)
Core P#0
PU P#4

Core P#1
PU P#5

Core P#2
PU P#6

Core P#3
PU P#7

Socket P#1 (32GB)
NUMANode P#2 (16GB)
Core P#0
PU P#8

Core P#1
PU P#9

Core P#2
PU P#10

Core P#3
PU P#11

NUMANode P#3 (16GB)
Core P#0
PU P#12

Core P#1
PU P#13

Core P#2
PU P#14

Core P#3
PU P#15

Socket P#2 (32GB)
NUMANode P#4 (16GB)
Core P#0
PU P#16

Core P#1
PU P#17

Core P#2
PU P#18

Core P#3
PU P#19

NUMANode P#5 (16GB)
Core P#0
PU P#20

Core P#1
PU P#21

Core P#2
PU P#22

Core P#3
PU P#23

Socket P#3 (31GB)
NUMANode P#6 (16GB)
Core P#0
PU P#24

Core P#1
PU P#25

Core P#2
PU P#26

Core P#3
PU P#27

NUMANode P#7 (15GB)
Core P#0
PU P#28

Core P#1
PU P#29

Core P#2
PU P#30

Core P#3
PU P#31

Figure 6.14: NUMA architecture of Skypeness

154
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

responsible of creating and updating a list of flows or sessions. From now

on, the analysis will focus on flows rather than sessions for simplicity but all

considerations could be applied as well to sessions. By flow, we mean a stream

of IP packets sharing the 5-tuple (IP source and destination addresses, source

and destination ports and protocol) and by session, we mean bidirectional

flows. This module handles a hash-based flow table in memory to reduce

access time to the bare minimum. All the memory used in the application

is pre-allocated in a memory pool to reduce insertion/deletion time of a flow

in the table.

Periodically, the active flows in the table are checked for expiration. To

avoid checking all the active flows in the list, flows are sorted in decreas-

ing order by last packet arrival time. Expiration time-slots happen every

15 seconds because it is the default expiration timeout specified by router

manufacturers [Sys12]. When a flow is marked as expired, it is deleted from

the active flow list and redirected to the third module that is in charge of

running Skype detection tests. If the flow passes all the tests, it is marked

as a Skype flow and it is written into a file.

Note that this is a modular architecture that is based on a two-step

treatment of flows, first flow extraction, and then, flow classification. In this

case, flow classification is Skype versus non-Skype but it could be other.

Actually, this software architecture gives flexibility and modularity to the

detection tool, making possible the addition of other tests—such as signature

based DPI. Figure 6.15 shows Skypeness operation.

6.4.4 Dataset

For the accuracy analysis, we have used three different traces. The first and

second traces, named as Trace 1 and Trace 2 in the following, contain Skype

traffic captured on the access link of Politecnico di Torino [dT06]. The set

of users of such a network are typically students, faculty and administration

staff. The measurement campaign duration was 96 hours in May/June 2006.

Trace 1 only contains end-to-end Skype voice and video calls whereas Trace

2 only contains Skype out calls. Trace 1 contains ∼40 M packets and Trace

6.4. Skypeness: Multi-Gb/s Skype Traffic Detection 155

Skype Test on expired flow

Hash based active flow table

Flow Creation/Update

Rx Module

IP TCP/UDP Header parsing

……..

Rx Queues

NIC

Figure 6.15: Skypeness Operation

2 contains ∼3 M packets. The last trace used, named as Trace 3 in the

following, is a trace captured in our laboratory at Universidad Autónoma

de Madrid. The trace contains ∼22 M packets of P2P traffic from several

applications, such as Emule and Bittorrent.

6.4.5 Identification Accuracy Analysis

Table 6.4 shows the false positives/negatives rates in the traces described

above. We only consider UDP flows with more than 30 packets, as stated in

Section 6.4.2. With traces 1 and 2 we only estimate the false negatives rate

(these traces only contain Skype traffic). However, with Trace 3 we estimate

the false positives rate (this trace does not contain Skype traffic). It can be

observed that the false negative rate is below 1% in Trace 1 and is around

156
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

Table 6.4: Skypeness Accuracy Results. (S=Skype, NS=Non-Skype,
MP=Million Packets, F=Flows)

Trace S NS Class. S Class. NS FP(%) FN (%)

1
GB 7.81 0 7.77 0.03 - 0.38
MP 39.46 0 39.15 0.31 - 0.79
F 1059 0 939 120 - 11.33

2
MB 220.54 0 207.57 12.97 - 5.88
MP 42.02 0 39.15 2.87 - 6.82
F 159 0 149 10 - 6.29

3
MB 0 1.05 0 1.05 0 -
P 0 5312 0 5312 0 -
F 0 52 0 52 0 -

6% in Trace 2. On the other hand, Trace 3 shows a false negative rate equal

to zero.

The obtained accuracy results are similar to the ones found in previous

works which use trace 1 and 2: [ACG+09] shows a false negative rate near

to 6% (in bytes) in the best case using only statistical classifiers (without

inspecting packet payload). In [BMM+07], it is obtained a false negative

rate greater than ours, when Naivë-Bayes classifier is used only.

6.4.6 Scalability Analysis: Achieving Multi-10Gb/s Pro-

cessing Rates

We have connected Skypeness to a server, which reproduces a PCAP file

using Tcpreplay [Tcp12]. This tool allows the transmission of pcap traces

at variable rate. The transmission rate is varied during the tests (100, 250,

500, 750 and 1000 Mb/s). We have found a limitation in the Tcpreplay

throughput to 1 Gb/s (i.e., we have not been able to send the PCAP file

faster than 1 Gb/s in spite of using 10 Gb/s NICs).

In this experimental setup, we have only set one reception queue and one

traffic classifier instance running in the server. That is, we only use two cores:

one for receiving packets and one for detecting Skype flows. Concerning

6.4. Skypeness: Multi-Gb/s Skype Traffic Detection 157

Table 6.5: Skypeness performance results (per core) in packet, bit and flow
rate

Bit Rate Packet Rate Max. Flow Rate Total Packet
[Mb/s] [Kpps] per second Loss Rate

100 30 26550 0

250 75 52800 0

500 150 90000 0

750 225 119000 0

1000 300 170000 0

NUMA affinity, we have set the CPU affinity of the reception queue to the

NUMA node 1 and the CPU affinity of the Skype detector to the NUMA

node 4—the worst case in terms of distance.

For our performance analysis (processing point of view), we have used

another trace, named as Trace 4 in the following. Trace 4 was captured

from a 3G access network of a Spanish provider. The full trace contains

traffic from residential households and small businesses. The trace contains

∼70M packets that correspond to ∼12M TCP/UDP flows captured during

∼18 hours in June 2009.

The results are shown in Table 6.5. For each speed step, we can see

the bit rate, the packet rate, the maximum number of flows expired (and

consequently analyzed) per second and the packet loss rate in the whole

trace. It can be observed that there is no packet loss. It is worth noting

that these results have been obtained using only two cores: one for receiving

packets and storing them in memory and one for traffic classification. By

using the technique proposed in [HJPM10], which assigns a reception queue

per socket, we would be able to set up to 16 reception queues and 16 detection

processes. In the following, we investigate if the use of this technique would

allow performance gains of 16x, which would enable 10 Gb/s Skype traffic

classification in a general-purpose server.

To tackle this issue, some offline experiments were made. These experi-

ments use a modified version of Skypeness software that obtains traffic from

158
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

a local PCAP trace instead of opening a socket for reception of frames. As

it turns out, the theoretical read/write throughput of our DDR3 memory is

170.6 Gb/s, which is by far larger than the bandwidth of an Internet backbone

link. To compute the hypothetical bandwidth that Skypeness can handle,

the program was executed 10 times and execution times were obtained using

Trace 4 as source. This methodology is repeated incrementing the number

of parallel instances of Skypeness process and obtaining the corresponding

execution times.

Taking into account the NUMA architecture described in Section 6.4.3

the experiments have been designed such that data source and Skypeness

software are located on different NUMA nodes and as far, in terms of NUMA

distance, as possible. Thus, Trace 4 was located at NUMA nodes 1 and 3 and

Skypeness processes were located at NUMA nodes 2 and 4. These conditions

set out a worst-case scenario.

Figures 6.16 and 6.17 show the execution time and the throughput versus

the number of concurrent instances of Skypeness. It can be observed that

the throughput of a single instance is 3.7 Gb/s, scaling linearly up to a

remarkable 45 Gb/s classification speed using 16 instances. Note that slope

is not 3.7 Gb/s but lower. This is because every NUMA node serializes access

to shared memory.

6.4.7 Conclusion

In this section, we develop one example of the use of ML to identify Skype

connections. First, some characteristics that Skype traffic shares at the flow-

level are first identified. It was found that the packet length, packet inter-

arrival times and bitrate permit to extract Skype from the traffic aggregate,

as such parameters for Skype traffic vary in relatively narrow ranges. The

performance of this proposal, called Skypeness, on a machine with four 2

GHz processors with eight cores each, is far from the capacity of reproducing

traffic with the tcpreplay [Tcp12] tool used. Therefore, we first evaluated

the capacity in a real scenario reproducing 3G traces and obtained that the

system was able to deal with tcpreplay’s maximum throughput, about 1

6.4. Skypeness: Multi-Gb/s Skype Traffic Detection 159

0 5 10 15 20
55

60

65

70

75

80

P
ro

ce
ss

in
g

tim
e

Skypeness instances

Figure 6.16: Skypeness processing time obtained in offline processing

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

T
hr

ou
gh

pu
t [

G
bp

s]

Skypeness instances

Figure 6.17: Skypeness throughput obtained in offline processing

160
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

Gb/s. To evaluate the application at higher rates, we measured the perfor-

mance after loading the trace in RAM memory. We obtained that a single

instance of the software was able to work at 3.7 Gb/s while, by using the

32 cores the system comprised, they achieved a remarkable throughput of 45

Gb/s.

6.5 Packet Sampling Policies: Reducing Com-

putational Complexity

6.5.1 Introduction

As previously explained, nowadays, traffic classification technology addresses

the exciting challenge of dealing with ever-increasing network speeds, which

implies more computational load especially when on-line classification is re-

quired, but avoiding to reduce classification accuracy. However, while the

research community has proposed mechanisms to reduce load, such as packet

sampling, the impact of these mechanisms on traffic classification has been

only marginally studied.

In this section, we do not analyze packet-sampled flows but assumes a

monitoring system fed with a sample of the total packets traversing the

monitored link. Thus, we have evaluated the impact of sampling on the

classification of Skype using Skypeness over both synthetic and real traces

from public repositories.

6.5.2 Packet Sampling Policies

Packet sampling techniques allows choosing a fraction of the total amount

of packets, following a given criterion to reduce the computational burden of

any subsequent analysis. Figure 6.18 shows the three main packet sampling

policies [CPB93], namely:

(i) Systematic: data are split in cycles of n packets and the first element

of each cycle is deterministically chosen.

6.5. Packet Sampling Policies: Reducing Computational
Complexity 161

(a) Systematic

(b) Stratified random

(c) Simple random

Figure 6.18: Packet sampling policies

(ii) Stratified random: data are also split in cycles of n packets but one

element of each cycle is randomly chosen.

(iii) Simple random: each packet is randomly chosen with a given probabil-

ity 1/n.

Sampling techniques can be implemented using mechanisms based on

either events or timer [CPB93]. That is, each cycle can be either an amount

of packets or a time interval. In our case, the cycle is an amount of packets

(equal to the inverse of the sampling rate) due to its better performance.

Other packet sampling policies could be applied, such as window-based

sampling (i.e., capturing packets during a given period, then, waiting dur-

ing another time interval without sniffing, and so forth). However, such

approaches require capturing all packets (zero losses) in the active period,

which is not often suitable in high-speed capturing context.

6.5.3 Datasets

We have made use of four different traces of UDP traffic, Table 6.6 shows an

overview of the datasets. The first and second traces, named as Trace 1 and

Trace 2 in the following, contain Skype traffic captured on the access link

of Politecnico di Torino [dT06]. The set of users are students, faculty and

administration staff. The capture duration is 96 hours in May/June 2006.

162
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

Table 6.6: Datasets to evaluate the impact of packet sampling on Skypeness
accuracy

Trace Skype Non-Skype Skype Media

Trace 1
Bytes 8,381,658,970 0

Packets 39,458,562 0 Audio and Video
Flows 1059 0

Trace 2
Bytes 231,257,652 0

Packets 3,049,148 0 Audio
Flows 159 0

Trace 3A
Bytes 30,950,000 0

Packets 230,100 0 Audio
Flows 44 0

Trace 3B
Bytes 108,700,000 0

Packets 217,300 0 Video
Flows 46 0

Trace 3C
Bytes 162,800,000 0

Packets 254,300 0 File transfer
Flows 46 0

Trace 4
Bytes 0 1,098,935

Packets 0 5312 -
Flows 0 52

Trace 1 only contains end-to-end Skype audio and video calls whereas Trace

2 only contains Skype end-to-out calls. Trace 1 and Trace 2 contain 40M and

3M packets respectively. The third trace, named as Trace 3, contains Skype

traffic generated in our laboratory at Universidad Autónoma de Madrid in

May 2010. The trace contains 700K packets from end-to-end Skype voice

(3A) and video (3B) calls, as well as file transfers (3C). The last trace used,

named as Trace 4, is a trace generated and captured in our laboratory that

contains 5K UDP packets of P2P traffic from several applications, such as

eMule and BitTorrent. With this in mind, traces 1, 2 and 3 are useful to

estimate accuracy in terms of FN ratio because such traces only contain

Skype traffic. TP ratio is estimated with Trace 4 as this trace does not

contain Skype traffic.

6.5. Packet Sampling Policies: Reducing Computational
Complexity 163

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Packet size [bytes]

EC
D

F

Non−Sampling
Sampling 1/8
Sampling 1/64

(a) Packet size

0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

Interarrival [s]

EC
D

F

Non−Sampling
Sampling 1/8
Sampling 1/64

(b) Interarrival time increments

Figure 6.19: Empirical CDF for packet size and interarrival times in audio
Skype calls

6.5.4 Performance Evaluation

To assess the effect of packet sampling on the accuracy of Skypeness detector,

we have applied the three sampling policies (see Figure 6.18), varying the

sampling rate between 1/20 (no sampling) and 1/210 over the four packet

traces. In the following, accuracy in the case of Skype traces means FN

ratio, whereas in the case of Non-Skype trace means FP ratio.

Figures 6.19(a) and 6.19(b) show the empirical Cumulative Distribution

Function (CDF) for the packet size and the interarrival time, respectively.

Although packet size is not affected by packet sampling (Figure 6.19(a)),

interarrival time is distorted when sampling is applied (Figure 6.19(b)) and,

therefore, the expected interval values are no longer valid. Thus, Skypeness

detection accuracy is reduced to nearly zero in presence of packet sampling.

As an example, Figure 6.20 shows the accuracy of Skypeness (continuous

164
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

100 101 102 103 1040

20

40

60

80

100

Sampling rate 1/x

A
cc

ur
ac

y

 F

Systematic (Orig.)
Stratified random (Orig.)
Simple random (Orig.)
Systematic (Modif.)
Stratified random (Modif.)
Simple Random (Modif.)

Figure 6.20: Skypeness (original and modified versions) accuracy (in bytes)
applying different sampling policies and varying sampling rate over Trace 3A
(audio calls)

line) for trace 3A, while Tables 6.7, 6.8 and 6.9 report the results for all traces

(roman fonts) applying systematic, stratified random and simple random

sampling, respectively. For the sake of simplicity, we only show the results

for the cases of sampling rates, s ∈ {1/8, 1/64, 1/128}. Note that in the

case of Trace 4 s ∈ {1/2, 1/4, 1/8}, because there is no enough packets when

greater sampling rates are applied (recall that we only consider UDP flows

with more than 30 packets).

The accuracy suffers a significant cut even when a sampling rate of only

1/8 is applied for both audio and video traces. This is because mean packet

interarrival times do no longer fall inside of the expected intervals assuming

unsampled traffic. That is, flows are not identified as Skype calls as packet

interarrival time is proportionally incremented with sampling rate, as shown

in Figure 6.19(b). Conversely, in the case of trace 3C (file transfer), packet

sampling does not have impact on the accuracy because, in this case, the

classifier is only based on packet sizes—and packet size distribution is not

6.5. Packet Sampling Policies: Reducing Computational
Complexity 165

affected by packet sampling, as shown in Figure 6.19(a).

In order to adapt the detector to packet sampling, we multiply the ob-

served interarrival times by the sampling rate, thus reducing their values up

to the expected intervals when no sampling is applied. Tables 6.7, 6.8 and 6.9

show the accuracy obtained by such modified version of Skypeness detector

(italic fonts) applying the different sampling policies. The detector is able to

correctly classify, applying systematic or stratified sampling over the Trace

1 (the best case), more than 90% of the traffic regardless the sampling rate.

Note that this implies that the detector is able to classify with only 1 out of

128 packets, indeed the results show that the detector after the modification

is practically insensitive to the sampling rate. The rest of the traces show

also significant accuracy (but the Trace 3A), such accuracy ranges between

73% and more than 95%. In the case of Trace 3A, its accuracy ranges be-

tween 54% and 95%, we are investigating on the reasons of this behavior. In

Figure 6.20, it is shown the accuracy of such trace in dashed lines. Note that

there is a spike in the accuracy when sampling rate is greater than 1/100.

This fact may be due to that high sampling rates reduce the number of seen

flows removing the more unstable (and difficult to identify) ones. Finally,

we observe that the false positive ratio, shown in Trace 4, presents also good

results, that is, only a moderate increase.

Thus, this analysis shows that sampling is not a definitive drawback to

identify Skype at multi-10Gb/s rates. Particularly, Skypeness would be able

to detect Skype traffic at more than 300 Gb/s with notable accuracy, given

a sampling rate of 1/8.

6.5.5 Conclusion

We have empirically studied the impact of packet sampling on the open-

source Skype traffic detector Skypeness, which is based on three statistical

features of Skype traffic: delimited packet sizes, nearly constant interarrival

times and bounded bitrates. We analyze the effect on the detector accuracy

of two packet sampling factors, namely: the sampling rate and the sampling

policy.

166
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

Table 6.7: Accuracy (% of bytes) of Skypeness detector original version (ro-
man fonts) and modified version (italic fonts) applying systematic sampling

Trace Non-Sampling
Systematic

1/8 1/64 1/128

Trace 1 99.59
3.87 0.15 0.04

90.72 95.02 95.53

Trace 2 94.22
35.24 0.54 0.00
75.32 85.36 90.86

Trace 3A 100
2.41 0.00 0.00

54.51 56.20 72.19

Trace 3B 81.38
5.96 0.00 2.68

84.48 81.97 82.75

Trace 3C 95.83 96.24 94.76 96.09

Non-Sampling
Systematic

1/2 1/4 1/8

Trace 4 100
100 100 100

83.00 95.67 100

Accuracy dramatically decreases when packet sampling is applied, even

with the smallest sampling rates (1/8) due to distortion on the observed

interarrival times. We have proposed a simple modification in the detector

(to multiply the observed interarrivals by the sampling rate), which lessens

the accuracy reduction, at the expense of a moderated increment on the

false positive ratio. Thus, this work shows that sampling is not a definitive

drawback to identify Skype at multi-10Gb/s rates. Particularly, Skypeness

would be able to detect Skype traffic at more than 300 Gb/s with notable

accuracy, given a sampling rate of 1/8 and its processing capacity of 45 Gb/s,

shown in Section 6.4. Furthermore, the behavior of Skypeness accuracy is

very similar when applying different sampling policies. Nevertheless, we can

observe that simple random sampling obtains the worst results. Thus, we

suggest to use systematic or stratified random as sampling policy.

6.6. Summary and Conclusions 167

Table 6.8: Accuracy (% of bytes) of Skypeness detector original version (ro-
man fonts) and modified version (italic fonts) applying stratified random
sampling

Trace Non-Sampling
Stratified Random
1/8 1/64 1/128

Trace 1 99.59
0.61 0.02 1.23

90.27 93.55 94.98

Trace 2 94.22
24.66 0.00 0.00
73.85 92.36 96.52

Trace 3A 100
0.00 0.00 0.00

63.02 63.99 94.75

Trace 3B 81.38
6.05 1.40 10.40

86.16 91.51 82.70

Trace 3C 95.83 96.29 95.29 94.99

Non-Sampling
Stratified Random
1/2 1/4 1/8

Trace 4 100
98.87 100 100
97.19 95.53 79.92

6.6 Summary and Conclusions

The last few years have witnessed multimedia applications gaining a tremen-

dous popularity. Particularly, a significant sample of this rise is VoIP tech-

nology. In this new scenario, there are several challenges for VoIP providers

and practitioners. First, VoIP requires a detailed monitoring of the users’

QoS and quality of experience QoE to a greater extent than in traditional

PSTNs. Second, such monitoring process must be able to track VoIP traffic

in high speed networks, nowadays typically of multi-Gb/s rates. Third, re-

cent government directives require that providers retain certain information

from their users’ calls. Similarly, the convergence of data and voice services

allows operator to provide new services such as full data retention, in which

users’ calls can be recorded for either quality assessment (call-centers, QoE),

or security purposes. This implies a significant investment on infrastructure

168
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

Table 6.9: Accuracy (% of bytes) of Skypeness detector original version (ro-
man fonts) and modified version (italic fonts) applying simple random sam-
pling

Trace Non-Sampling
Simple random

1/8 1/64 1/128

Trace 1 99.59
0.05 11.92 0.17

87.65 91.60 93.20

Trace 2 94.22
9.07 0.00 0.00

65.14 71.63 88.92

Trace 3A 100
0.00 0.00 0.00

56.35 58.30 78.49

Trace 3B 81.38
0.00 0.85 2.76

88.73 86.55 70.82

Trace 3C 95.83 95.98 95.64 96.69

Non-Sampling
Simple random

1/2 1/4 1/8

Trace 4 100
100 100 100

77.26 68.04 76.85

given that traffic monitoring tasks are very demanding in terms of computa-

tional power.

On the one hand, this chapter (Section 6.3) has described a practical sys-

tem to implement full data retention of VoIP traffic on high-speed network

scenarios using commodity hardware and the unexpected problems we have

encountered by dealing with real VoIP traffic. Our proposal, RTPTracker,

allows operators to monitor and provide novel services to their customers at

the same time that they fulfill current and future data retention directives at

reduced cost. Our approach analyzes the traffic on-the-fly to provide timely

information to operators and store the content of the calls. The system is

designed in such a practical way that minimizes interferences with existing

VoIP infrastructure. RTPTracker may be connected to a SPAN port of a

router traversed by VoIP traffic without any other interaction or configura-

tion, which, again, reduces cost. In addition, RTPTracker achieves 10 Gb/s

6.6. Summary and Conclusions 169

rate. Such performance has been observed by running experiments on a real

implementation and not by simulation. Specifically, our results combine real-

world traffic traces along with synthetically generated ones. Such results pave

the way for novel services and future scenarios in which, given the increasing

popularity of VoIP telephony and other bandwidth-hungry applications, the

computational requirements are expected to grow.

On the other hand, in this chapter (Section 6.4), we have proposed an

application for Skype traffic classification, named Skypeness, that works at

1 Gb/s and 3.7 Gb/s, reading from a NIC and from memory, respectively.

In addition, we have assessed such application in our four 8-core processors

platform, providing a total throughput of 45 Gb/s. From accuracy point of

view, we have obtained a percentage of false negatives of 6% in the worst

case whereas the false positive rate is zero, similar to related work. These

results show that identification of Skype traffic is feasible at the nowadays

high-speed networks, typically ranging from 10 to 40 Gb/s, using commodity

OTS hardware.

As previously shown, nowadays, traffic classification technology addresses

the exciting challenge of dealing with ever-increasing network speeds, which

implies more computational load especially when on-line classification is re-

quired, but avoiding to reduce classification accuracy. However, while the

research community has proposed mechanisms to reduce load, such as packet

sampling, the impact of these mechanisms on traffic classification has been

only marginally studied. Finally, in this chapter (Section 6.5), we address

such study focusing on Skype application given its tremendous popularity

and continuous expansion. Skype, unfortunately, is based on a proprietary

design, and typically uses encryption mechanisms, making the study of sta-

tistical traffic characteristics and the use of ML techniques the only possible

solution. Consequently, we have studied Skypeness, an open-source system

that allows detecting Skype at multi-10Gb/s rates applying such statistical

principles. We have assessed its performance applying different packet sam-

pling rates and policies concluding that classification accuracy is significantly

degraded when packet sampling is applied. Nevertheless, we propose a sim-

ple modification in Skypeness that lessens such degradation. This consists

170
Chapter 6. Multimedia Traffic Monitoring in a Very Demanding

Scenario

in scaling the measured packet interarrivals used to classify according to the

sampling rate, which has resulted in a significant gain. In particular, Skype-

ness would be able to achieve a classification rate of more than 300 Gb/s with

notable accuracy, given a sampling rate of 1/8 and its processing capacity of

45 Gb/s.

Chapter 7

Conclusions

This chapter is devoted to summarize the main results of this Ph.D. thesis

(Section 7.1), show the industrial applications where such results are cur-

rently utilized (Section 7.2) and outline the envisaged directions for future

work and new research lines for continuing the contributions presented in

this document (Section 7.3).

7.1 Main Contributions

This thesis addressed the problem of high-performance Internet traffic clas-

sification on Off-The-Shelf (OTS) systems. Such solutions are based on com-

modity hardware and open-source software. We study the feasibility of net-

work monitoring (in particular, traffic classification) at line-rate (10 Gb/s

and beyond) using OTS systems. To this end, we analyze each part com-

posing a traffic classification engine, and, in general, a network monitoring

system, namely: packet sniffing, packet timestamping, flow matching and

statistical classification. Furthermore, we devote a chapter to analyze mul-

timedia traffic due to its relevance and popularity in current networks. The

main conclusions from these contributions are presented at the end of their

respective chapters in this thesis. However, we outline them in the following

list.

(i) Novel Input/Output (I/O) packet engines proposed in the lit-

171

172 Chapter 7. Conclusions

erature are able to capture traffic at multi-Gb/s using OTS

systems. Chapter 3 showed that the utilization of commodity hard-

ware in high-performance tasks, previously reserved to specialized hard-

ware, allows packet sniffing at line-rate on OTS solutions. Thus, the

performance results exhibited in this chapter, in addition to the inherent

flexibility and low cost of the systems based on commodity hardware,

make this solution a promising technology at the present. We also high-

light that the analysis and development of software based on multi-core

hardware is still an open issue. Problems such as the aggregation of re-

lated flows, accurate packet timestamping, and packet disordering will

for sure receive more attention by the research community in the fu-

ture. Particularly, packet timestamping issues have been analyzed in

Chapter 4 whereas flow matching has been studied in Chapter 5. Other

contributions of this chapter are summarized in the following bullet list:

• The limitations of the default networking stack and drivers are

identified. Such limitations for packet sniffing of current operating

systems waste the potential performance that could be obtained

using modern OTS systems (Section 3.2).

• The proposed solutions to circumvent such limitations are de-

tailed. In general, the keys to achieve high performance are ef-

ficient memory management, low-level hardware interaction and

programming optimization. The adequate tuning of such config-

uration has proven of paramount importance given its strong im-

pact on the overall performance. Note that this effort of reviewing

limitation and bottlenecks and their respective solutions may be

also useful for other areas of research and not only for monitoring

purposes or packet processing (Section 3.3).

• The different packet capture engines proposed in the literature

are reviewed and qualitatively compared. We have identified the

solutions that each engine implements as well as their pros and

cons (Section 3.4).

• The different packet I/O engines are evaluated in the same OTS

7.1. Main Contributions 173

platform to analyze its achievable throughput and scalability. Specif-

ically, we have found that each engine may be more adequate for a

different scenario according to the required throughput and avail-

ability of processing cores in the system (Section 3.6).

Finally, the contributions in this chapter have led to the following pub-

lications (presented in chronological order):

- J. Fullaondo, Pedro M. Santiago del Ŕıo, Javier Ramos, J.L. Garćıa-

Dorado, and Javier Aracil, “AP-CAP framework: Monitorizando

a 10 Gb/s en hardware de propósito general”, in Actas de las X

Jornadas de Ingenieŕıa Telemática (JITEL), Santander (Spain),

September 2011.

- José L. Garćıa-Dorado, Felipe Mata, Javier Ramos,

Pedro M. Santiago del Ŕıo, Victor Moreno, and Javier Aracil, “Chap-

ter 2: High-Performance Network Monitoring Systems Using Com-

modity Hardware”, accepted for its publication in Data Traffic

Monitoring and Analysis; from measurement, classification and

anomaly detection to quality of experience, Springer, Series in Com-

puter Communications and Networks, editors: C. Callegari, M.

Matijasevic, E. Biersack, 2012.

(ii) Accurate packet timestamping is achievable for high-speed

and OTS systems. Chapter 4 demonstrated that techniques used

in novel packet I/O engines for enhancing capture performance, such

as batch processing, introduce inaccuracy in packet timestaping. We

propose three techniques, based on two different approaches, to miti-

gate or overcome such inaccuracy. On the one hand, we showed that

(uniformly or weightedly) distributing the inter-batch time among the

different packets composing a batch increase the accuracy of timestamp-

ing. On the other hand, a redesign of the network driver (to constantly

poll the Network Interface Card (NIC) buffers for incoming packets and

174 Chapter 7. Conclusions

then timestamp and copy them into a kernel buffer one-by-one), mit-

igates timestamping degradation. Other contributions of this chapter

are summarized in the following bullet list:

• The timestamping inaccuracy, introduced by novel packet capture

engines, is over tens of microseconds.

• The timestamping inaccuracy when using our proposals is sig-

nificantly reduced. Specifically, distributing-time-based methods

enhance the accuracy, decreasing the standard deviation of the

timestamp error below 200 ns with full-saturated links, whereas

polling-based method achieves a standard error of 1 microsecond

with a real trace.

• We propose to combine both solutions according to the link load,

i.e., when the link is near to be saturated distributing timestamp

in groups of packets and, otherwise, using polling-based times-

tamping packet-by-packet.

Finally, the contributions in this chapter have led to the following pub-

lications (presented in chronological order):

- V. Moreno, Pedro M. Santiago del Rı́o, Javier Ramos, Jaime J.

Garnica, José L. Garćıa-Dorado, “Batch to the Future: Analyzing

Timestamp Accuracy of High-Performance Packet I/O Engines”,

IEEE Communications Letters, 16 (11) (2012), pp. 1888–1891.

(iii) Wire-speed flexible traffic monitoring and statistical classifica-

tion are feasible using commodity-hardware-based and software-

only solutions. Chapter 5 showed that on-line traffic classification

based on statistical fingerprints is possible thanks to: the use of an im-

proved network driver to efficiently move batches of packets from the

NIC to the main Central Processing Unit (CPU); the use of lightweight

statistical classification techniques exploiting the size of the first few

packets of every observed flow; and a careful tuning of critical param-

eters of the hardware environment and the software application itself.

7.1. Main Contributions 175

Indeed, while the raw classification throughput on real traffic aggregates

is about 3× higher than [SGV+10] and 4× higher than [VPI11], how-

ever our system is able to sustain flow classification rates 93× higher

than [LKJ+10] and 560× higher than [VPI11]. More generally, the pro-

posed system architecture was proved flexible and scalable to develop

traffic monitoring systems able to process multi-granularity source of

network data, namely, packet-level, flow-level and aggregate, from dif-

ferent threads (with different purposes) simultaneously. Other contri-

butions of this chapter are summarized in the following bullet list:

• When using multi-queue and multi-core capabilities is preferable

to avoid contention in the access to shared data structures, such

as the hash table and the job ring. To arbitrate concurrent ac-

cess to shared memory is necessary to perform synchronization

and locking operations, which cause a huge performance loss (Sec-

tion 5.2.5).

• Complex structures such as Red Black (RB) trees for collision man-

agement do not payoff, but tables with a smaller memory footprint

and carefully chosen hash functions should be preferred. Over-

all, we conclude that state-of-the-art software structures (namely,

balanced RB tree and the Bob-Jenkins hash), are not enough to

manage traffic at 10Gb/s in the worst case scenario of 14.8 Million

packets per second (Mpps) on a single core (Section 5.2.7).

• The detailed comparison of several state-of-the-art machine learn-

ing tools points out that C4.5 trees are the best choice due to: its

known discriminative power, and the fact that they can be very

efficiently implemented as if-then-else branches, supporting chal-

lenging scenarios such as 2.8 M classifications per second. Other

Machine Learning (ML) tools are not advisable due to: its smaller

classification accuracy, e.g., Näıve-Bayes, or its enough through-

put, e.g., Support Vector Machine (SVM) (Section 5.2.8).

• We released the code of both the proposed classification engine and

the traffic injection engine used in the experimental testbed [Hrg12].

176 Chapter 7. Conclusions

Finally, the contributions in this chapter have led to the following pub-

lications (presented in chronological order):

- Pedro M. Santiago del Rı́o, Dario Rossi, Francesco Gringoli, Lorenzo

Nava, Luca Salgarelli, and Javier Aracil, “Wire-Speed Statistical

Classification of Network Traffic on Commodity Hardware”, in

Proceedings of ACM International Internet Measurement Confer-

ence (IMC), Boston, MA (USA), November 2012.

- Pedro M. Santiago del Rı́o, Dario Rossi, Francesco Gringoli, Lorenzo

Nava, Luca Salgarelli, and Javier Aracil, “Early traffic classifica-

tion beyond 10 Gbps using commodity hardware”, under review

in Computer Communications, Elsevier.

(iv) Full-data retention and monitoring of Voice over IP (VoIP)

(both over Session Initiation Protocol (SIP) and Skype) traffic

at multi-Gb/s rates is manageable by using only OTS systems.

Chapter 6 demonstrated that it is possible to fulfill the challenging re-

quirements entailed by multimedia traffic monitoring in current high-

speed networks (10 Gb/s and beyond). We propose two novel modular

systems, for the cases of VoIP over SIP (Section 6.3) and Skype (Sec-

tion 6.4) respectively, which provide very high performance being able

to process traffic on-the-fly at high bitrates and with significant cost

reduction using OTS systems. Other contributions of this chapter are

summarized in the following bullet list:

• It is not advisable to use multiple receive queues when is required

to keep track and correlate both SIP and Real-time Transport

Protocol (RTP) data flows because SIP flow and its corresponding

RTP flow may potentially end up to different queues and cores

(Section 6.3.2).

• Two independent tables (one for indexing SIP and the other one

for indexing RTP) are necessary to manage VoIP over SIP traffic

7.1. Main Contributions 177

because RTP packets do not have call-ID or other SIP information,

whereas SIP packets do not have the same Internet Protocol (IP)

addresses/ports as RTP packets (Section 6.3.2).

• If Transmission Control Protocol (TCP) segmentation or IP frag-

mentation are detected in the network, a TCP/IP packet reassem-

bler module must be implemented to be able to identify traffic

(Section 6.3.2).

• The audio conversion process (from raw to an audible format) must

be performed on-demand when the conversation is requested be-

cause the conversion rates are not sufficient to support the through-

put of the rest of the system in a 10 Gb/s network, larger than

400 calls/s (Section 6.3.4).

• The experimental results show that identification of Skype traffic

is feasible at the nowadays high-speed networks, typically ranging

from 10 to 40 Gb/s, using commodity OTS hardware. Specifically,

Skype traffic classification works at more than 3.5 Gb/s using only

one core. This process adequately scales, achieving a throughput

of 45 Gb/s using four 8-core OTS processors (Section 6.4).

• Packet sampling impacts on some traffic features, such as inter-

arrival time—while packet size distribution is almost unaltered.

Consequently, classification accuracy is significantly degraded when

packet sampling is applied (Section 6.5).

• Classification accuracy degradation may be mitigated by scaling

the measured packet interarrivals used to classify according to the

sampling rate. Thus, Skypeness would be able to achieve a classi-

fication rate of more than 300 Gb/s with notable accuracy, given a

sampling rate of 1/8 and its processing capacity of 45 Gb/s (Sec-

tion 6.5).

Finally, the contributions in this chapter have led to the following pub-

lications (presented in chronological order):

- Pedro M. Santiago del Rı́o, Javier Ramos, J.L. Garćıa-Dorado, Javier

178 Chapter 7. Conclusions

Aracil, Antonio Cuadra-Sánchez, and Mar Cutanda-Rodŕıguez,

“On the processing time for detection of Skype traffic,” in Pro-

ceedings of 7th International Wireless Communications and Mobile

Computing Conference (IWCMC), Istanbul (Turkey), July 2011.

- Pedro M. Santiago del Rı́o, Diego Corral, José L. Garćıa-Dorado,

and Javier Aracil, “On the Impact of Packet Sampling on Skype

Traffic Classification,” accepted for its publication in Proceedings

of IFIP/IEEE International Symposium on Integrated Network

Management (IM), Ghent (Belgium), May 2013.

- José L. Garćıa-Dorado, Pedro M. Santiago del Ŕıo, Javier Ramos,

David Muelas, Vı́ctor Moreno, Jorge E. López de Vergara, Javier

Aracil, “Low-cost and High-performance: the case of VoIP mon-

itoring using commodity hardware”, under review in Journal of

Network and Systems Management, Springer.

7.2 Industrial Applications

The results and applications of this thesis are being currently exploited by

Naudit HPCN [CN13]. Naudit is a technology-based startup created as a

spin-off from two universities: Universidad Autónoma de Madrid (UAM)1

and Universidad Pública de Navarra (UPNA), and it is part of its Campus of

International Excellence2. Its shareholders include both universities as well

as Spanish National Research Council (CSIC) by way of Madrid Science Park

(Parque Cient́ıfico de Madrid).

Naudit along with Fundación de la Universidad Autónoma de Madrid

(FUAM)3 have carried out several innovation and technology transfer projects.

Among Naudit clients, there are public organisms like Spanish Industry Min-

1http://www.uam.es/ss/Satellite/es/1242657608103/listadoCategorizado/

Spin-offs_de_la_UAM.htm
2http://campusexcelencia.uam-csic.es/
3www.fuam.es

http://www.uam.es/ss/Satellite/es/1242657608103/listadoCategorizado/Spin-offs_de_la_UAM.htm
http://www.uam.es/ss/Satellite/es/1242657608103/listadoCategorizado/Spin-offs_de_la_UAM.htm
http://campusexcelencia.uam-csic.es/
www.fuam.es

7.3. Future Work 179

istry, telecom operators like Movistar, multinational banking groups like

BBVA, industrial companies like Airbus or important energy producers.

Specifically, the followings results of this thesis are directly applied in the

industry:

(i) Traffic Analysis and Anomaly Detection: The flexible passive

monitoring probe (described in Section 5.3), DetectPro, is deployed

in the commercial bank networks from BBVA-Bancomer and Banc

Sabadell, in Latin America and Spain, respectively. For instance, BBVA-

Bancomer’s network contains the traffic of more than 12 thousand em-

ployees, 1,704 bank locations and 4,286 ATMs.

(ii) Multimedia Traffic: The VoIP traffic managers (described in Chap-

ter 6), RTPTracker and Skypeness, have been tested as pilot project in

Telefonica International Wholesale Services (TIWS)’s network.

7.3 Future Work

The results presented in this thesis open new research lines for future work

in high-performance traffic monitoring with OTS systems. In what follows,

we suggest some future research topics in this field:

• Towards 100 Gb/s and beyond: Although traffic monitoring of 10

Gb/s links at line-rate is considered very challenging nowadays and has

been thoroughly analyzed in this thesis, scalability issues are worthy to

be studied. Note that both links’ speed and users’ demand are rapidly

evolving.

• More advanced features of modern NICs: The packet sniffing

capabilities of contemporary NICs, such as Receive Side Scaling (RSS),

have been exhaustively studied in this thesis. However, there are other

features that may be still exploited. For instance, we could export to

upper layers the hash computed by the NIC to map packets to RSS

queues. Such operation should require only a simple modification to

the NIC driver. If such hardware-computed hash is available for the

180 Chapter 7. Conclusions

flow handling module, this will avoid to compute the hash in software,

consequently reducing the CPU burden. Furthermore, the hardware

filters (Flow Director) may be used to split traffic in different queues.

However, the scalability and performance issues of such filters have not

been analyzed.

• Analysis of other packet timestamping issues: This thesis has

analyzed the impact of novel packet I/O engines on packet timestamp-

ing accuracy in terms of mean and variance of the error. However, other

aspects of the problem have not been studied. For example, if there

is autocorrelation in the observed timestamping error. Furthermore,

modern NIC present some hardware timestamping capabilities. It is

possible to timestamp Precision Time Protocol (PTP) packets using

the NIC. However, we would like to answer the following questions: is

it possible to timestamp at line-rate? Which is the limit?

• High-performance active monitoring using novel OTS systems:

This thesis has thoroughly evaluated the performance of passive mon-

itoring tasks, such as traffic classification, for high-performance and

OTS systems. However, commodity hardware opens great possibilities

to active monitoring that should be studied. For instance, hardware-

based timestamping along with packet sniffing capabilities may be used

to develop bandwidth measurement tools for high-speed links.

• Using other OTS devices: Non Uniform Memory Access (NUMA)

systems with multi-core architectures, as well as modern multi-queue

NICs have been analyzed in this thesis. However, the utilization of

other commodity hardware, such as Graphic Processing Unit (GPU),

has not been evaluated. Current approaches force to pass through main

memory, and waste processing time, to transfer data between the NIC

and the GPU creating a bottleneck. There are preliminary results that

may avoid such limitation, which can be only used with Infiniband

technology yet [NVI12].

• Performance evaluation analysis of other classification meth-

7.3. Future Work 181

ods and monitoring tasks on OTS systems: Although we have

thoroughly analyzed traffic classification (focusing on statistical meth-

ods and multimedia traffic) for high-performance and OTS systems,

there are many other monitoring tasks and classification methods whose

performance is worthy to be studied.

• Evaluation of the impact of sampling and packet loss of other

classification tools and classes of traffic: This thesis assessed the

impact of packet sampling on statistical Skype classification. Nev-

ertheless, a similar study may be performed over other classification

techniques and classes of traffic. For example, the analysis the impact

of packet sampling on DPI-based classification techniques as well as

the different effect according to the class of traffic may be relevant.

Conclusiones

Este caṕıtulo está dedicado a resumir los principales resultados de esta tesis,

a mostrar las aplicaciones industriales donde actualmente se usan tales resul-

tados, y a dar una visión general de las direcciones previstas para el trabajo

futuro para continuar con las contribuciones presentadas en este documento.

Contribuciones Principales

Esta tesis trata el problema de la clasificación de tráfico de Internet a altas

prestaciones en sistemas de propósito general. Tales soluciones están basadas

en hardware de uso extendido y software de código abierto. En este trabajo

se estudia la viabilidad de la monitorización de red (en particular, de la

clasificación de tráfico) a tasa de ĺınea (10 Gb/s e incluso superiores) usando

sistemas de propósito general. Con este fin, se analiza cada una de las partes

que componen motor de clasificación de tráfico y, en general, un sistema de

monitorización de red, a saber: captura de paquetes, marcado de tiempo,

formación de flujos y clasificación estad́ıstica. Además, se dedica un caṕıtulo

al análisis del tráfico multimedia debido a su relevancia y popularidad en las

redes actuales. Las principales conclusiones de estas contribuciones se han

presentado al final de sus respectivos caṕıtulos, sin embargo, se resumen a

continuación:

(i) Los nuevos motores de captura de paquetes propuestos en la

literatura son capaces de capturar tráfico a tasas de multi-

Gb/s usando sistemas de propósito general. El caṕıtulo 3 mostró

que la utilización de hardware de uso extendido en tareas de altas

183

184 Conclusiones

prestaciones, antes reservadas al hardware especializado, permite la

captura de paquetes a tasa de ĺınea en soluciones de propósito gene-

ral. De este modo, los resultados de rendimiento presentados en este

caṕıtulo, además de la inherente flexibilidad y bajo coste de los sis-

temas basados en hardware de uso extendido, hace esta solución una

tecnoloǵıa prometedora en la actualidad. También se destaca que el

análisis y desarrollo de software basado en hardware multi-núcleo es

aún un problema abierto. Problemas como la agregación de flujos rela-

cionados, el marcado de tiempo preciso y el desorden de paquetes seguro

recibirán más atención por parte de la comunidad cient́ıfica en el futuro.

En particular, el marcado de tiempo se ha analizado en el caṕıtulo 4

mientras que la formación de flujos se ha estudiado en el caṕıtulo 5.

Otras contribuciones de este caṕıtulo se resumen a continuación:

• Se han identificado las limitaciones de las pilas de red y los drivers

por defecto. Tales limitaciones para la captura de paquetes en

los actuales sistemas operativos, desaprovechan el rendimiento po-

tencial que podŕıa ser obtenido usando los modernos sistemas de

propósito general.

• Se han detallado las soluciones propuestas para superar tales li-

mitaciones. En general, las claves para alcanzar alto rendimiento

son la gestión eficiente de memoria, interacción con el hardware

a bajo nivel y optimización de la programación. Se ha probado

que el adecuado ajuste de la configuración es primordial dado el

fuerte impacto que tiene sobre el rendimiento global. Nótese que

este esfuerzo de revisar las limitaciones y cuellos de botella y sus

respectivas soluciones pueden ser útiles para otras áreas de inves-

tigación y no solamente para tareas de monitorización o procesado

de paquetes (Section 3.3).

• Se han revisado y comparado cualitativamente los diferentes mo-

tores de captura propuestos en la literatura. Se han identificado

las soluciones que cada motor implementa además de sus pros y

sus contras (Section 3.4).

Conclusiones 185

• Se han evaluado en la misma plataforma de propósito general los

diferentes motores de captura de paquetes para aśı analizar el

rendimiento que alcanzan y su escalabilidad. En particular, se

ha encontrado que cada motor puede ser más adecuado para un

escenario distinto, dependiendo del rendimiento requerido y de la

disponibilidad de núcleos de proceso en el sistema (Section 3.6).

Finalmente, las contribuciones de este caṕıtulo han dado lugar a las

siguientes publicaciones (presentadas en orden cronológico):

- J. Fullaondo, Pedro M. Santiago del Ŕıo, Javier Ramos, J.L. Garćıa-

Dorado, and Javier Aracil, “AP-CAP framework: Monitorizando

a 10 Gb/s en hardware de propósito general”, in Actas de las X

Jornadas de Ingenieŕıa Telemática (JITEL), Santander (Spain),

September 2011.

- José L. Garćıa-Dorado, Felipe Mata, Javier Ramos,

Pedro M. Santiago del Ŕıo, Victor Moreno, and Javier Aracil, “Chap-

ter 2: High-Performance Network Monitoring Systems Using Com-

modity Hardware”, accepted for its publication in Data Traffic

Monitoring and Analysis; from measurement, classification and

anomaly detection to quality of experience, Springer, Series in Com-

puter Communications and Networks, editors: C. Callegari, M.

Matijasevic, E. Biersack, 2012.

(ii) El marcado de tiempo preciso es viable a alta velocidad usando

sistemas de propósito general. El caṕıtulo 4 demostró que las

técnicas usadas en los nuevos motores de captura de paquetes para

mejorar el rendimiento, como el procesado en lotes, introducen impre-

cisión en el marcado de tiempo. Se proponen tres técnicas, basadas en

dos aproximaciones diferentes, para mitigar o superar tal imprecisión.

Por un lado, se demuestra que distribuir (uniformemente o ponderada-

mente) el tiempo entre lotes entre los distintos paquetes que forman un

lote, incrementa la precisión del marcado temporal. Por otro lado, un

rediseño del driver de red (para constantemente consultar los buffers de

186 Conclusiones

la tarjeta de red para ver si hay paquetes disponibles y luego marcarla

y copiarlos a otro buffer, uno a uno) mitiga la degradación en el mar-

cado de tiempos. Otras contribuciones de este caṕıtulo se resumen a

continuación:

• La imprecisión en el marcado temporal, que introducen los nuevos

motores de captura, está sobre las decenas de microsegundos.

• La imprecisión en el marcado temporal cuando se usan nuestras

propuestas se reduce significativamente. En particular, los métodos

basados en la distribución del tiempo mejoran la precisión, re-

duciendo la desviación estándar del error por debajo de de 200

nanosegundos cuando el enlace está cargado, mientras que el métodos

basados en consultar los buffer de la tarjeta de red alcanza un error

de 1 microsegundo con una traza real.

• Se propone combinar ambas soluciones dependiendo de la carga

del enlace, es decir, cuando el enlace está cerca de saturarse se

distribuye el tiempo en grupos de paquetes y, en caso contrario, se

marcan los paquetes uno a uno.

Finalmente, las contribuciones de este caṕıtulo han dado lugar a la

siguiente publicación (presentadas en orden cronológico):

- V. Moreno, Pedro M. Santiago del Rı́o, Javier Ramos, Jaime J.

Garnica, José L. Garćıa-Dorado, “Batch to the Future: Analyzing

Timestamp Accuracy of High-Performance Packet I/O Engines”,

IEEE Communications Letters, 16 (11) (2012), pp. 1888–1891.

(iii) La monitorización y la clasificación estad́ıstica de tráfico a tasa

de ĺınea son viables usando soluciones basadas sólo en software

y hardware de uso extendido. El caṕıtulo 5 mostró que la clasifi-

cación en tiempo real de tráfico basada en huellas estad́ısticas es posible

gracias: al uso de un driver de red mejorado que mueve eficientemente

grupos de paquetes desde la tarjeta de red a la memoria principal; al uso

de técnicas ligeras de clasificación estad́ıstica que explotan el tamaño de

Conclusiones 187

los primeros paquetes de cada flujo observado; y a un cuidadoso ajuste

de parámetros cŕıticos del entorno hardware y la propia aplicación soft-

ware. De hecho, mientras que la tasa de clasificación en trazas real es

sobre 3 veces mayor que [SGV+10] y 4 veces mayor que [VPI11], sin

embargo, nuestro sistema es capaz de sostener una tasa de flujos clasi-

ficados 93veces mayor que [LKJ+10] y 560 veces mayor que [VPI11].

Más generalmente, se ha probado que la arquitectura de sistema prop-

uesta es flexible y escalable para desarrollar sistemas de monitorización

de tráfico capaces de procesar fuentes de datos de red con múltiples

granularidades, a saber, a nivel de paquete de flujo y agregado, desde

distintos hilos (con distintos propósitos) simultáneamente. Otras con-

tribuciones de este caṕıtulo se resumen a continuación:

• Cuando usamos múltiples colas y núcleos es preferible evitar la

concurrencia en el acceso a estructuras de datos compartidas, como

la tabla has o el anillo de trabajos. Para arbitrar tales accesos con-

currente a la memoria compartida es necesario llevar a cabo opera-

ciones de sincronización y bloqueo, que causan una gran pérdida

de rendimiento (Section 5.2.5).

• Estructuras complejas como árboles RB para gestionar las coli-

siones no compensan, sino que es preferible una estructura que

ocupe menos memoria y funciones hash cuidadosamente elegidas.

En general, se puede concluir que estructuras software propuestas

en el estado del arte (a saber, árboles RB equilibrados o la función

hash Bon-Jenkins), no son suficientes para manejar tráfico a 10

Gb/s in el escenario de caso peor de 14,8 Mpps en un único núcleo

de proceso (Section 5.2.7).

• La detallada comparación de varios métodos de aprendizaje au-

tomático señala a los árboles C4.5 como la mejor opción debido:

a su conocido poder discriminatorio y al hecho de que pueden ser

implementados muy eficientemente con estructuras if-else, aguan-

tando el exigente escenario de hasta 2,8 millones de clasificaciones

por segundo. Otros métodos de aprendizaje automático no son

188 Conclusiones

aconsejables debido: a su menor precisión en la clasificación, como

por ejemplo Näıve-Bayes o por su insuficiente rendimiento, por

ejemplo SVM (Section 5.2.8).

• Se ha liberado el código del motor de clasificación propuesto y del

motor de inyección de tráfico usado en los experimentos [Hrg12].

Finalmente, las contribuciones de este caṕıtulo han dado lugar a las

siguientes publicaciones (presentadas en orden cronológico):

- Pedro M. Santiago del Rı́o, Dario Rossi, Francesco Gringoli, Lorenzo

Nava, Luca Salgarelli, and Javier Aracil, “Wire-Speed Statistical

Classification of Network Traffic on Commodity Hardware”, in

Proceedings of ACM International Internet Measurement Confer-

ence (IMC), Boston, MA (USA), November 2012.

- Pedro M. Santiago del Rı́o, Dario Rossi, Francesco Gringoli, Lorenzo

Nava, Luca Salgarelli, and Javier Aracil, “Early traffic classifica-

tion beyond 10 Gbps using commodity hardware”, under review

in Computer Communications, Elsevier.

(iv) La captura completa de los datos y la monitorización del tráfico

de VoIP (tanto sobre SIP como el tráfico Skype) a tasas de

multi-Gb/s es manejable usando sólo sistemas de propósito

general. El caṕıtulo 6 demostró que es posible cumplir con los exi-

gentes retos que conlleva la monitorización de tráfico multimedia en las

actuales redes de alta velocidad (10 Gb/s o incluso superior). Se pro-

ponen dos novedosos sistemas modulares, para los casos de VoIP sobre

SIP (Sec. 6.3) y de tráfico Skype (Sec. 6.4) respectivamente, los cuales

dan muy alto rendimiento, siendo capaces de procesar tráfico al vuelo a

altas tasas y con una significativa reducción del coste usando sistemas

de propósito general. Otras contribuciones de este caṕıtulo se resumen

a continuación:

• No es aconsejable usar múltiples colas de recepción cuando se re-

quiere correlar tanto los flujos SIP como los RTP porque un flujo

Conclusiones 189

SIP y su flujo RTP correspondiente pueden potencialmente termi-

nar en colas y núcleos distintos (Section 6.3.2).

• Se necesita dos tablas hash independientes (una para indexar el

tráfico SIP y la otra para indexar RTP) son necesarias para ges-

tionar el tráfico VoIP sobre SIP porque los paquetes RTP no tienen

el identificador de llamado ni otra información relativa al SIP,

mientras que los paquetes SIP no tienen las mismas direcciones IP

ni puertos que los paquetes RTP (Section 6.3.2).

• Si se detecta en la red segmentación TCP o fragmentación IP, un

módulo de reensamblado TCP/IP debe ser implementado para ser

capaz de identificar el tráfico (Section 6.3.2).

• El proceso de conversión de audio (de formato raw a formato au-

dible) se debe llevar a cabo bajo demanda cuando la conversación

es solicitada por el usuario porque las tasas de conversión no son

suficientes para soportar la tasa del resto del sistema en una red

de 10 Gb/s, mayor de 400 llamadas cada segundo (Section 6.3.4).

• Los resultados experimentales muestra que la identificación de

tráfico Skype es viable en las redes actuales de alta velocidad,

t́ıpicamente en el rango de 10 a 40 Gb/s, usando hardware de

propósito general. En particular, la clasificación de tráfico Skype

funciona a más de 3,5 Gb/s usando un único núcleo. Este pro-

ceso escala adecuadamente, alcanzando un rendimiento de 45 Gb/s

usando cuatro procesadores de 8 núcleos (Section 6.4).

• El muestreo de paquetes impacta sobre algunas caracteŕısticas

del tráfico como los tiempos entre llegadas, mientras que la dis-

tribución del tamaño de paquete permanece casi inalterada. Por

tanto, la precisión de la clasificación se degrada significativamente

cuando se aplica muestreo de paquetes (Section 6.5).

• Tal degradación en la clasificación de tráfico puede ser mitigada

escalando los tiempos entre llegadas que se miden, dependiendo

de la tasa de muestreo. De este modo, Skypeness seŕıa capaz de

clasificar a más de 300 Gb/s con una precisión destacable, dada

190 Conclusiones

una tasa de muestreo de 1/8 y su capacidad de proceso de 45 Gb/s

(Section 6.5).

Finalmente, las contribuciones de este caṕıtulo han dado lugar a las

siguientes publicaciones (presentadas en orden cronológico):

- Pedro M. Santiago del Rı́o, Javier Ramos, J.L. Garćıa-Dorado, Javier

Aracil, Antonio Cuadra-Sánchez, and Mar Cutanda-Rodŕıguez,

“On the processing time for detection of Skype traffic,” in Pro-

ceedings of 7th International Wireless Communications and Mobile

Computing Conference (IWCMC), Istanbul (Turkey), July 2011.

- Pedro M. Santiago del Rı́o, Diego Corral, José L. Garćıa-Dorado,

and Javier Aracil, “On the Impact of Packet Sampling on Skype

Traffic Classification,” accepted for its publication in Proceedings

of IFIP/IEEE International Symposium on Integrated Network

Management (IM), Ghent (Belgium), May 2013.

- José L. Garćıa-Dorado, Pedro M. Santiago del Ŕıo, Javier Ramos,

David Muelas, Vı́ctor Moreno, Jorge E. López de Vergara, Javier

Aracil, “Low-cost and High-performance: the case of VoIP mon-

itoring using commodity hardware”, under review in Journal of

Network and Systems Management, Springer.

Aplicaciones Industriales

Los resultados y aplicaciones de esta tesis están siendo actualmente explota-

dos por Naudit HPCN [CN13]. Naudit es una empresa de base tecnológica

creada por una spin-off de dos universidades: la UAM4 y la UPNA, y forma

parte de su Campus de Excelencia Internacional5. En su accionariado partici-

pan, además de ambas universidades, el Consejo Superior de Investigaciones

Cient́ıficas (CSIC), a través del parque cient́ıfico de Madrid.

4http://www.uam.es/ss/Satellite/es/1242657608103/listadoCategorizado/

Spin-offs_de_la_UAM.htm
5http://campusexcelencia.uam-csic.es/

http://www.uam.es/ss/Satellite/es/1242657608103/listadoCategorizado/Spin-offs_de_la_UAM.htm
http://www.uam.es/ss/Satellite/es/1242657608103/listadoCategorizado/Spin-offs_de_la_UAM.htm
http://campusexcelencia.uam-csic.es/

Conclusiones 191

Naudit junto con la FUAM6 han llevado a cabo varios proyectos de in-

novación y transferencia tecnológica. Entre los clientes de Naudit se encuen-

tran organismos públicos como el Ministerio de Industria del Gobierno de

España, operadoras de telecomunicaciones como Movistar, grupos bancarios

multinacionales como el BBVA, compañ́ıas del sector industrial como Airbus

o importantes grupos energéticos.

Concretamente, los siguientes resultados de la tesis son aplicados direc-

tamente en la industria:

(i) Análisis de tráfico y detección de anomaĺıas: La sonda flexible

de monitorización pasiva (descrita en la sección 5.3), DetectPro, está

desplegada en las redes bancarias comerciales de BBVA-Bancomer y

Banc Sabadell, en América Latina y España, respectivamente. Por

ejemplo, la red de BBVA-Bancomer contiene el tráfico de más de 12

mil empleados, 1.704 sucursales bancarias y 4.286 cajeros automáticos.

(ii) Tráfico multimedia: Los gestores de tráfico de VoIP (descritos en

el captulo 6), RTPTracker and Skypeness, han sido probados como

proyecto piloto en la red de TIWS (Telefonica International Wholesale

Services).

Trabajo Futuro

Los resultados presentados en esta tesis abren nuevas ĺıneas de investigación

para trabajo futuro en la monitorización de tráfico de altas prestaciones con

sistemas de propósito general. A continuación, se sugieren algunos temas de

investigación futura en este área:

• Hacia los 100 Gb/s y más allá: Aunque la monitorización de tráfico

de enlaces de 10 Gb/s a tasa de ĺınea es considerada un reto hoy d́ıa

y ha sido profundamente analizada en esta tesis, los problemas de

escalabilidad merecen ser estudiados. Nótese que tanto la velocidad

de los enlaces como la demanda de los usuarios están evolucionando

rápidamente.

6www.fuam.es

www.fuam.es

192 Conclusiones

• Más caracteŕısticas avanzadas de las tarjetas de red modernas:

Las capacidades de captura de paquetes de las tarjetas de red actuales,

tales como las colas RSS, han sido exhaustivamente estudiadas en esta

tesis. Sin embargo, existen otras caracteŕısticas que puede ser aún

explotadas. Por ejemplo, se podŕıa exportar a capas superiores el hash

calculado por la tarjeta de red para repartir paquetes en las distintas

colas. Tal operación debeŕıa requerir sólo una pequeña modificación

en el driver de la tarjeta. Si este hash calculado en hardware está

disponible para el módulo de formación de flujos, esto evitaŕıa calcular

el hash en software, y aśı, reduciŕıa la carga de CPU. Además, los filtros

hardware (llamados Flow Director) pueden ser usados para dividir el

tráfico en las diferentes colas. Sin embargo, los temas de escalabilidad

y rendimiento de tales filtros no han sido analizados.

• Análisis de otros aspectos del marcado de tiempos: Esta tesis

ha analizado el impacto de los nuevos motores de captura sobre la

precisión del marcado temporal en términos de media y varianza del

error. Sin embargo, otros aspectos del problema no han sido estudiados.

Por ejemplo, si hay autocorrelación en el error de marcado obeservado.

Además, las nuevas tarjetas de red presentan algunas capacidades para

el marcado temporal en hardware. Es posible marcar los paquetes

PTP usando la tarjeta de red. Sin embargo, nos gustaŕıa ser capaces

de responder las siguientes preguntas: ¿Es posible marcar los paquetes

a tasa de ĺınea? ¿cuál es el ĺımite?

• Monitorización activa de altas prestaciones usando modernos

sistemas de propósito general: Esta tesis ha evaluado profunda-

mente el rendimiento de tareas de monitorización pasiva, como la clasi-

ficación de tráfico, para sistemas de propósito general a altas presta-

ciones. Sin embargo, el hardware de uso extendido abre grandes posi-

bilidades para la monitorización activa que debeŕıan ser estudiadas.

Por ejemplo, el marcado de tiempos basado en hardware junto con las

capacidades de captura de paquetes pueden ser usados para desarrol-

lar herramientas de medida de ancho de banda para enlaces de alta

Conclusiones 193

velocidad.

• Usar otros dispositivos de propósito general: Los sistemas NUMA

con arquitecturas multi-núcleo, además de las tarjetas de red multi-

cola, han sido analizados en esta tesis. Sin embargo, la utilización de

otro hardware de uso extendido, como las GPUs, no ha sido evalu-

ada. Las actuales soluciones fuerza pasar por la memoria principal,

y gastar tiempo de proceso, para transferir datos entre la tarjeta de

red y la GPU, creando un cuello de botella. Hay estudios preliminares

que puede evitar tal limitación, los cuales pueden ser solo usados con

tecnoloǵıa Infiniband todav́ıa [NVI12].

• Análisis de evaluación de las prestaciones de otros métodos

y tareas de monitorización en sistemas de propósito general:

Aunque se ha analizado profundamente la clasificación de tráfico (cen-

trado en los métodos estad́ıstico y el tráfico multimedia) para sistemas

de propósito general a altas prestaciones, hay muchas otras tareas de

monitorización y métodos de clasificación de tráfico cuyo rendimiento

merece la pena ser estudiado.

• Evaluación del impacto del muestreo y la pérdida de paquetes

de otras herramientas de clasificación y clases de tráfico: Esta

tesis ha evaluado el impacto del muestreo de paquetes de la clasificación

estad́ıstica de tráfico Skype. No obstante, un estudio similar puede ser

llevado a cabo sobre otras técnicas de clasificación y otras clases de

tráfico. Por ejemplo, el análisis del impacto del muestreo de paquetes

sobre la clasificación basada en firmas (Deep Packet Inspection (DPI))

además del efecto dependiendo de la clase de tráfico puede ser relevante.

References

[ACE09] K. Argyraky, B. Chun, and N. Egi, RouteBRICKS, 2009,

http://routebricks.epfl.ch/. 42

[ACG+09] D. Adami, C. Callegari, S. Giordano, M. Pagano, and

T. Pepe, A real-time algorithm for skype traffic detec-

tion and classification, Proceedings of the 9th Interna-

tional Conference on Smart Spaces and Next Genera-

tion Wired/Wireless Networking and Second Conference on

Smart Spaces (St. Petersburg, Russia), NEW2AN ’09 and

ruSMART ’09, September 2009, pp. 168–179. 129, 156

[ACG+12] , Skype-hunter: A real-time system for the detection

and classification of skype traffic, International Journal of

Communication Systems 25 (2012), no. 3, 386–403. 127

[AKA08] A. Agrawal, K.R.P. Kumar, and G. Athithan, SIP/RTP

session analysis and tracking for VoIP logging, Proceedings

of the 16th IEEE International Conference on Networks

(New Delhi, India), ICON’08, December 2008, pp. 1–5. 25

[AL13] Alcatel-Lucent, FP3: breakthrough 400G network proces-

sor, 2013, http://www.alcatel-lucent.com/fp3/. 15

[AZH08] D. Angevine and A.N. Zincir-Heywood, A preliminary in-

vestigation of Skype traffic classification using a minimalist

feature set, Proceedings of the 3rd International Conference

195

http://routebricks.epfl.ch/
http://www.alcatel-lucent.com/fp3/

196 References

on Availability, Reliability and Security (Barcelona, Spain),

ARES’08, March 2008, pp. 1075–1079. 127, 151

[AZH09] R. Alshammari and A.N. Zincir-Heywood, Machine learn-

ing based encrypted traffic classification: Identifying SSH

and Skype, Proceedings of the 2nd IEEE Symposium on

Computational Intelligence for Security and Defense Appli-

cations (Ottawa, Canada), CISDA’09, July 2009, pp. 1–8.

127, 151

[BDKC10] L. Braun, A. Didebulidze, N. Kammenhuber, and G. Carle,

Comparing and improving current packet capturing solu-

tions based on commodity hardware, Proceedings of the

10th ACM SIGCOMM Conference on Internet Measure-

ment (Melbourne, Australia), IMC’10, November 2010,

pp. 206–217. 2, 130

[BDPGP12] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi,

On multi-gigabit packet capturing with multi-core commod-

ity hardware, Proceedings of the 13th International Confer-

ence on Passive and Active Network Measurement (Vienna,

Austria), PAM’12, March 2012, pp. 64–73. 40, 65

[BDPP13] N. Bonelli, A. Di Pietro, and G. Procissi, PFQ project, 2013,

https://github.com/pfq/PFQ. 48

[BHA09] P. A. Branch, A. Heyde, and G. J. Armitage, Rapid iden-

tification of Skype traffic flows, Proceedings of the 18th In-

ternational Workshop on Network and Operating Systems

Support for Digital Audio and Video (Williamsburg, VA,

USA), NOSSDAV’09, June 2009, pp. 91–96. 129

[BMM+07] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli,

Revealing Skype traffic: when randomness plays with you,

ACM SIGCOMM Computer Communication Review 37

(2007), no. 4, 37–48. 119, 126, 149, 156

https://github.com/pfq/PFQ

References 197

[BMM+08] D. Bonfiglio, M. Mellia, M. Meo, N. Ritacca, and D. Rossi,

Tracking down Skype traffic, Proceedings of the 27th IEEE

Conference on Computer Communications (Phoenix, AZ,

USA), INFOCOM’08, April 2008, pp. 261–265. 25

[BMMR09] D. Bonfiglio, M. Mellia, M. Meo, and D. Rossi, Detailed

analysis of Skype traffic, IEEE Transactions on Multimedia

11 (2009), no. 1, 117 –127. 119, 127

[BMPR10] R. Birke, M. Mellia, M. Petracca, and D. Rossi, Experiences

of VoIP traffic monitoring in a commercial ISP, Interna-

tional Journal of Network Management 20 (2010), no. 5,

339–359. 3, 118, 142, 146

[Bon94] J. Bonwick, The slab allocator: An object-caching kernel

memory allocator, Proceedings of the USENIX Summer

1994 Technical Conference (Boston, MA, USA), USTC’94,

June 1994, pp. 6–6. 20

[BRV09] T. Broomhead, J. Ridoux, and D. Veitch, Counter avail-

ability and characteristics for feed-forward based synchro-

nization, Proceedings of the 3rd IEEE Symposium on Pre-

cision Clock Synchronization for Measurement Control and

Communication (Brescia, Italy), ISPCS’09, October 2009,

pp. 1–6. 65

[BTS06] L. Bernaille, R. Teixeira, and K. Salamatian, Early applica-

tion identification, Proceedings of the 2nd ACM Conference

on Future Networking Experiments and Technologies (Lis-

bon, Portugal), CoNEXT’06, December 2006, pp. 6:1–6:12.

24, 25, 28, 78, 99

[CAI11] CAIDA, CoralReef, 2011, http://www.caida.org/tools/

measurement/coralreef/. 25, 92

[CAI12] CAIDA, Traffic analysis research, 2002-2012, http://www.

caida.org/data/passive/trace_stats/. 54

http://www.caida.org/tools/measurement/coralreef/
http://www.caida.org/tools/measurement/coralreef/
http://www.caida.org/data/passive/trace_stats/
http://www.caida.org/data/passive/trace_stats/

198 References

[CCR11] N. Cascarano, L. Ciminiera, and F. Risso, Optimizing deep

packet inspection for high-speed traffic analysis, Journal of

Network and Systems Management 19 (2011), no. 1, 7–31.

126

[CDGS07] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, Traffic

classification through simple statistical fingerprinting, ACM

SIGCOMM Computer Communication Review 37 (2007),

no. 1, 5–16. 24, 25, 28, 78, 81, 99, 100

[CEBRCASP11] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio,

and J. Sol-Pareta, Analysis of the impact of sampling

on Netflow traffic classification, Computer Networks 55

(2011), no. 5, 1083–1099. 120

[Cis09] Cisco, Monitoring VoIP with Cisco network analysis

module, October 2009, http://www.cisco.com/en/US/

prod/collateral/modules/ps2706/white_paper_c11-

520524_ps2706_Products_White_Paper.html. 15, 130

[CN13] Naudit High Performance Computing and Networking,

2013, http://www.naudit.es. 178, 190

[CPB93] K.C. Claffy, G.C. Polyzos, and H.-W. Braun, Application

of sampling methodologies to network traffic characteriza-

tion, ACM SIGCOMM Computer Communication Review

23 (1993), no. 4, 194–203. 160, 161

[CR04] B. Caswell and M. Roesch, Snort: The open source network

intrusion detection system, 2004. 23

[CSK11] Y. Choi, J. Silvester, and H.-C. Kim, Analyzing and mod-

eling workload characteristics in a multiservice IP network,

IEEE Internet Computing 15 (2011), no. 2, 35–42. 118,

141

http://www.cisco.com/en/US/prod/collateral/modules/ps2706/white_paper_c11-520524_ps2706_Products_White_Paper.html
http://www.cisco.com/en/US/prod/collateral/modules/ps2706/white_paper_c11-520524_ps2706_Products_White_Paper.html
http://www.cisco.com/en/US/prod/collateral/modules/ps2706/white_paper_c11-520524_ps2706_Products_White_Paper.html
http://www.naudit.es

References 199

[CSMBMG07] M. Cardenete-Suriol, J. Mangues-Bafalluy, A. Maso, and

M. Gorricho, Characterization and comparison of Skype be-

havior in wired and wireless network scenarios, Proceed-

ings of the 50th IEEE Global Communications Confer-

ence (Washington, D.C, USA), GLOBECOM’07, Novem-

ber 2007, pp. 2167–2172. 128

[DAR12] M. Dobrescu, K. Argyraki, and S. Ratnasamy, Toward

predictable performance in software packet-processing plat-

forms, Proceedings of 9th USENIX Conference on Net-

worked Systems Design and Implementation (San Jose, CA,

USA), NSDI’12, April 2012, pp. 11–11. 12

[DB09] L.H. Do and P. Branch, Real time VoIP traffic classifi-

cation, Tech. Report 090914A, Centre for Advanced In-

ternet Architectures, Swinburne University of Technology,

Melbourne, Australia, 2009, http://caia.swin.edu.au/

reports/090914A/CAIA-TR-090914A.pdf. 129

[DC12] L. Deri and A. Cardigliano, libzero for PF RING

DNA, 2012, http://www.ntop.org/products/pf_ring/

libzero-for-dna/. 43

[DCM10] L. De Cicco and S. Mascolo, A mathematical model of the

Skype VoIP congestion control algorithm, IEEE Transac-

tions on Automatic Control 55 (2010), no. 3, 790 –795.

119, 127

[DCMP07] L. De Cicco, S. Mascolo, and V. Palmisano, An experimen-

tal investigation of the congestion control used by Skype

VoIP, Proceedings of the 5th international conference on

Wired/Wireless Internet Communications (Coimbra, Por-

tugal), WWIC’07, May 2007, pp. 153–164. 127

[DCMP08] , Skype video responsiveness to bandwidth variations,

Proceedings of the 18th ACM International Workshop on

http://caia.swin.edu.au/reports/090914A/CAIA-TR-090914A.pdf
http://caia.swin.edu.au/reports/090914A/CAIA-TR-090914A.pdf
http://www.ntop.org/products/pf_ring/libzero-for-dna/
http://www.ntop.org/products/pf_ring/libzero-for-dna/

200 References

Network and Operating Systems Support for Digital Audio

and Video (Braunschweig, Germany), NOSSDAV’08, May

2008, pp. 81–86. 127

[DDDS11] M. Danelutto, L. Deri, and D. De Sensi, Network monitor-

ing on multicores with algorithmic skeletons, Proceedings

of the 30th International Conference on Parallel Comput-

ing (Ghent, Belgium), PARCO’11, August 2011. 20

[DEA+09] M. Dobrescu, N. Egi, K. Argyraki, B-G. Chun, K. Fall,

G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy,

Routebricks: exploiting parallelism to scale software routers,

Proceedings of the 22nd ACM SIGOPS Symposium on Op-

erating Systems Principles (Big Sky, MT, USA), SOSP’09,

October 2009, pp. 15–28. 40

[Der08] L. Deri, IP traffic monitoring at 10 Gbit and above,

2008, http://www.terena.org/activities/ngn-

ws/ws2/deri-10g.pdf. 20

[Dig13] Digium, Asterisk, 2013, http://www.asterisk.org. 141

[DPC12] A. Dainotti, A. Pescapè, and K.C. Claffy, Issues and future

directions in traffic classification, IEEE Network 26 (2012),

no. 1, 35 –40. 2, 24, 28

[dT06] Telecommunication Networks Group Politecnico di Torino,

Skype traces: Traces from real internet traffic, 2006,

http://tstat.tlc.polito.it/tracce/Polito/2006/

11_01_29_May_SKYPE_UDP_E2E.dump.anonim.gz. 154,

161

[EGS09] Alice Este, Francesco Gringoli, and Luca Salgarelli, Sup-

port vector machines for TCP traffic classification, Elsevier

Computer Networks 53 (2009), no. 14, 2476–2490. 98

http://www.terena.org/activities/ngn-ws/ws2/deri-10g.pdf
http://www.terena.org/activities/ngn-ws/ws2/deri-10g.pdf
http://www.asterisk.org
http://tstat.tlc.polito.it/tracce/Polito/2006/11_01_29_May_SKYPE_UDP_E2E.dump.anonim.gz
http://tstat.tlc.polito.it/tracce/Polito/2006/11_01_29_May_SKYPE_UDP_E2E.dump.anonim.gz

References 201

[End12] Endace, DAG cards: network traffic recording, 2012, http:

//www.endace.com. 14

[FD10] F. Fusco and L. Deri, High speed network traffic analy-

sis with commodity multi-core systems, Proceedings of the

10th ACM SIGCOMM Conference on Internet Measure-

ment (Melbourne, Australia), IMC’10, November 2010,

pp. 218–224. 40, 103

[FK11] S. Frankel and S. Krishnan, RFC 6071: IP security (IPSec)

and internet key exchange (IKE) document roadmap, 2011.

21

[FMM+11] A. Finamore, M. Mellia, M. Meo, M.M. Munafò, and

D. Rossi, Experiences of Internet traffic monitoring with

Tstat, IEEE Network 25 (2011), no. 3, 8 –14. 19, 20, 103,

126, 148

[FMMR10] A. Finamore, M. Mellia, M. Meo, and D. Rossi, KISS:

Stochastic packet inspection classifier for UDP traffic,

IEEE/ACM Transactions on Networking 18 (2010), no. 5,

1505–1515. 25, 27

[Fou12] Linux Foundation, NAPI: The New API, 2012,

http://www.linuxfoundation.org/collaborate/

workgroups/networking/napi. 16

[FS93] J. Fenlason and R. Stallman, Gnu gprof: The GNU profiler,

1993, http://www.cs.utah.edu/dept/old/texinfo/as/

gprof_toc.html. 89

[GDMnR+12] J.L. Garćıa-Dorado, E. Magaña, P. Reviriego, M. Izal,

D. Morató, J.A. Maestro, J. Aracil, and J.E. López de

Vergara, Network monitoring for energy efficiency in large-

scale networks: the case of the spanish academic network,

The Journal of Supercomputing 62 (2012), 1284–1304. 2

http://www.endace.com
http://www.endace.com
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html

202 References

[GES12] F. Gringoli, A. Este, and L. Salgarelli, MTCLASS: Traf-

fic classification on high-speed links with commodity hard-

ware, Proceedings of the IEEE International Conference

on Communications (Ottawa, Canada), ICC’12, June 2012,

pp. 1177 –1182. 19, 103

[GJ13] R. Gayraud and O. Jacques, SIPp, 2013, http://sipp.

sourceforge.net/. 141

[God12] S. Godard, Sysstat, 2012, http://sebastien.godard.

pagesperso-orange.fr/. 86

[Goo02] B. Goode, Voice over Internet protocol (VoIP), Proceedings

of the IEEE 90 (2002), no. 9, 1495–1517. 121, 124

[GS78] L.J. Guibas and R. Sedgewick, A dichromatic framework

for balanced trees, Proceedings of the 19th Annual Sympo-

sium on Foundations of Computer Science (Ann Arbor, MI,

USA), FOCS’78, October 1978, pp. 8–21. 94

[HB08] T. Hossfeld and A. Binzenhofer, Analysis of Skype VoIP

traffic in UMTS: End-to-end QoS and QoE measurements,

Computer Networks 52 (2008), no. 3, 650 – 666. 119, 128

[HJ98] M. Handley and V. Jacobson, RFC 2327: SDP: Session

description protocol, 1998. 25, 122

[HJPM10] S. Han, K. Jang, K. Park, and S. Moon, PacketShader: a

GPU-accelerated software router, ACM SIGCOMM Com-

puter Communication Review 40 (2010), 195–206. 2, 10,

14, 21, 23, 32, 33, 36, 40, 42, 51, 65, 78, 79, 103, 110, 157

[HJPM12] , Packetshader I/O engine, 2012, http://shader.

kaist.edu/packetshader/io_engine/index.html. 45

[Hrg12] Universidad Autónoma de Madrid HPCN research group,

HPTRAC: High Performance TRAffic Classifier, 2012,

http://sipp.sourceforge.net/
http://sipp.sourceforge.net/
http://sebastien.godard.pagesperso-orange.fr/
http://sebastien.godard.pagesperso-orange.fr/
http://shader.kaist.edu/packetshader/io_engine/index.html
http://shader.kaist.edu/packetshader/io_engine/index.html

References 203

http://www.eps.uam.es/~psantiago/hptrac.html. 79,

84, 175, 188

[HSZ09] C. Henke, C. Schmoll, and T. Zseby, Empirical evaluation

of hash functions for PacketID generation in sampled multi-

point measurements, Proceedings of the 10th International

Conference on Passive and Active Network Measurement

(Seoul, South Korea), PAM’09, April 2009, pp. 197–206.

93

[IEE08] IEEE Instrumentation and Measurement Society, IEEE

Standard for a precision clock synchronization protocol for

networked measurement and control systems, 2008. 12

[Int12] Intel, 82599 10 Gbe controller datasheet, 2012,

http://www.intel.com/content/www/us/en/ethernet-

controllers/82599-10-gbe-controller-datasheet.

html. 10

[Int13] , Ixp4xx product line of network processors,

2013, http://www.intel.com/p/en_US/embedded/hwsw/

hardware/ixp-4xx. 15

[IT10] C.M. Inacio and B. Trammell, YAF: yet another flowmeter,

Proceedings of the 24th USENIX International conference

on Large installation system administration (San Jose, CA,

USA), LISA’10, November 2010, pp. 1–16. 20

[JLM+12] M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee,

Y. Yi, and K.S. Park, Kargus: a highly-scalable software-

based intrusion detection system, Proceedings of the 19th

ACM Conference on Computer and Communications Secu-

rity (Raleigh, NC, USA), CCS’12, October 2012, pp. 317–

328. 19, 36, 103

http://www.eps.uam.es/~psantiago/hptrac.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/p/en_US/embedded/hwsw/hardware/ixp-4xx
http://www.intel.com/p/en_US/embedded/hwsw/hardware/ixp-4xx

204 References

[KBB+04] T. Karagiannis, A. Broido, N. Brownlee, K.C. Claffy, and

M. Faloutsos, Is P2P dying or just hiding? [P2P traf-

fic measurement], Proceedings of the 47th IEEE Global

Communications Conference (Dallas, TX, USA), GLOBE-

COM’04, November 2004, pp. 1532–1538. 25

[KCF+08] H. Kim, K.C. Claffy, M. Fomenkov, D. Barman, M. Falout-

sos, and K.Y. Lee, Internet traffic classification demystified:

myths, caveats, and the best practices, Proceedings of the

4th ACM Conference on Future Networking Experiments

and Technologies (Madrid, Spain), CoNEXT’08, December

2008, pp. 11:1–11:12. 24, 28, 99, 100

[Ker12] A.D. Keromytis, A comprehensive survey of voice over IP

security research, IEEE Communications Surveys & Tuto-

rials 14 (2012), no. 2, 514 –537. 2, 130

[KMC+00] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F.

Kaashoek, The Click modular router, ACM Transactions

on Computer Systems 18 (2000), no. 3, 263–297. 21, 40

[KP09] S. Karapantazis and F.N. Pavlidou, VoIP: A comprehensive

survey on a promising technology, Computer Networks 53

(2009), no. 12, 2050–2090. 3, 118, 124

[KPF05] T. Karagiannis, K. Papagiannaki, and M. Faloutsos,

BLINC: multilevel traffic classification in the dark, ACM

SIGCOMM Computer Communication Review 35 (2005),

no. 4, 229–240. 25, 27

[Kra09] M. Krasnyansky, UIO-IXGBE, 2009, https:

//opensource.qualcomm.com/wiki/UIO-IXGBE. 40

[LCSR11] M. Laner, S. Caban, P. Svoboda, and M. Rupp, Time syn-

chronization performance of desktop computers, Proceed-

ings of the 5th IEEE Symposium on Precision Clock Syn-

chronization for Measurement Control and Communication

https://opensource.qualcomm.com/wiki/UIO-IXGBE
https://opensource.qualcomm.com/wiki/UIO-IXGBE

References 205

(Munich, Germany), ISPCS’11, September 2011, pp. 75–80.

66

[Lf09] L7-filter, Application layer packet classifier for linux, 2009,

http://l7-filter.sourceforge.net. 25

[LK09] A.B. Lim and R. Kinsella, Data plane packet processing

on embedded intel architecture platforms, 2009, http:

//www.intel.com/content/www/us/en/intelligent-

systems/wireless-infrastructure/ia-data-plane-

packet-processing-paper.html. 20

[LKJ+10] Y. Lim, H. Kim, J. Jeong, C. Kim, T.T. Kwon, and Y. Choi,

Internet traffic classification demystified: on the sources

of the discriminative power, Proceedings of the 6th ACM

Conference on Future Networking Experiments and Tech-

nologies (Philadelphia, PA, USA), CoNEXT’10, November

2010, pp. 9:1–9:12. 24, 25, 28, 78, 99, 100, 101, 102, 116,

175, 187

[LSI12] LSI: Storage, Networking, Accelerated, Network

processors, 2012, http://www.lsi.com/products/

networkingcomponents/Pages/networkprocessors.

aspx. 15

[LXSL08] Y. Liu, D. Xu, L. Sun, and D. Liu, Accurate traffic classi-

fication with multi-threaded processors, Proceedings of the

IEEE International Symposium on Knowledge Acquisition

and Modeling Workshop (Wuhan, China), KAM’08, De-

cember 2008, pp. 478–481. 26, 78

[LZB11] G. Liao, X. Znu, and L. Bnuyan, A new server I/O architec-

ture for high speed networks, Proceedings of the 17th Sym-

posium on High-Performance Computer Architecture (San

Antonio, TX, USA), HPCA’11, February 2011, pp. 255–

265. 32, 33

http://l7-filter.sourceforge.net
http://www.intel.com/content/www/us/en/intelligent-systems/wireless-infrastructure/ia-data-plane-packet-processing-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/wireless-infrastructure/ia-data-plane-packet-processing-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/wireless-infrastructure/ia-data-plane-packet-processing-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/wireless-infrastructure/ia-data-plane-packet-processing-paper.html
http://www.lsi.com/products/networkingcomponents/Pages/networkprocessors.aspx
http://www.lsi.com/products/networkingcomponents/Pages/networkprocessors.aspx
http://www.lsi.com/products/networkingcomponents/Pages/networkprocessors.aspx

206 References

[MAB+08] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner,

Openflow: enabling innovation in campus networks, ACM

SIGCOMM Computer Communication Review 38 (2008),

no. 2, 69–74. 21

[MGDA12] F. Mata, J.L. Garćıa-Dorado, and J. Aracil, Detection of

traffic changes in large-scale backbone networks: The case

of the spanish academic network, Computer Networks 56

(2012), no. 2, 686 – 702. 109

[Mic13] Microsoft, Receive Side Scaling, 2013, http:

//msdn.microsoft.com/en-us/library/windows/

hardware/ff567236(v=vs.85).aspx. 10

[MKK+01] D. Moore, K. Keys, R. Koga, E. Lagache, and K.C. Claffy,

The CoralReef software suite as a tool for system and net-

work administrators, Proceedings of the 15th USENIX In-

ternational conference on Large installation system admin-

istration (San Diego, CA, USA), LISA’01, December 2001,

pp. 133–144. 25, 92

[MNB07] A. Mitra, W. Najjar, and L. Bhuyan, Compiling PCRE

to FPGA for accelerating SNORT IDS, Proceedings of

the 3rd ACM/IEEE Symposium on Architecture for net-

working and communications systems (Orlando, FL, USA),

ANCS’07, December 2007, pp. 127–136. 26

[MSdRR+12] V. Moreno, P.M. Santiago del Rı́o, J. Ramos, J.J. Gar-

nica, and J.L. Garćıa-Dorado, Batch to the future: Ana-

lyzing timestamp accuracy of high-performance packet I/O

engines, IEEE Communications Letters 16 (2012), no. 11,

1888–1891. 38, 40, 60

[NA08] T.T.T. Nguyen and G. Armitage, A survey of techniques for

Internet traffic classification using machine learning, IEEE

http://msdn.microsoft.com/en-us/library/windows/hardware/ff567236(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567236(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567236(v=vs.85).aspx

References 207

Communications Surveys & Tutorials 10 (2008), no. 4, 56–

76. 3, 24, 27, 28, 81, 97, 99, 120, 126

[NVI12] NVIDIA Corporation, NVIDIA GPUDirect Technol-

ogy, 2012, http://developer.download.nvidia.

com/devzone//devcenter/cuda/docs/GPUDirect_

Technology_Overview.pdf. 115, 180, 193

[oB09] Telecommunication Networks Group University of Brescia,

UNIBS: data sharing, 2009, http://www.ing.unibs.it/

ntw/tools/traces. 98, 99

[PCA10] PCAP, tcpdump & libpcap, 2010, http://www.tcpdump.

org/. 30, 46

[Pro13] Open MPI Project, Portable hardware locality (hwloc),

2013, http://www.open-mpi.org/projects/hwloc/. 152

[PV07] P. Perälä and M. Varela, Some experiences with VoIP over

converging networks, Proceedings of the Measurement of

Speech, Audio and Video Quality in Networks workshop

(Prague, Czech Republic), MESAQIN’07, June 2007. 128

[PVA+12] A. Papadogiannakis, G. Vasiliadis, D. Antoniades, M. Poly-

chronakis, and E.P. Markatos, Improving the performance

of passive network monitoring applications with mem-

ory locality enhancements, Computer Communications 35

(2012), no. 1, 129–140. 32

[QXH+07] Y. Qi, B. Xu, F. He, B. Yang, J. Yu, and J. Li, Towards

high-performance flow-level packet processing on multi-core

network processors, Proceedings of the 3rd ACM/IEEE

Symposium on Architecture for networking and communi-

cations systems (Orlando, FL, USA), ANCS’07, December

2007, pp. 17–26. 20

http://developer.download.nvidia.com/devzone//devcenter/cuda/docs/GPUDirect_Technology_Overview.pdf
http://developer.download.nvidia.com/devzone//devcenter/cuda/docs/GPUDirect_Technology_Overview.pdf
http://developer.download.nvidia.com/devzone//devcenter/cuda/docs/GPUDirect_Technology_Overview.pdf
http://www.ing.unibs.it/ntw/tools/traces
http://www.ing.unibs.it/ntw/tools/traces
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.open-mpi.org/projects/hwloc/

208 References

[RCC12] L. Rizzo, M. Carbone, and G. Catalli, Transparent acceler-

ation of software packet forwarding using netmap, Proceed-

ings of the 31th IEEE Conference on Computer Communi-

cations (Orlando, FL, USA), INFOCOM’12, March 2012,

pp. 2471–2479. 21

[RDC12] L. Rizzo, L. Deri, and A. Cardigliano, 10 Gbit/s line rate

packet processing using commodity hardware: survey and

new proposals, 2012, http://luca.ntop.org/10g.pdf. 40

[Riz12a] L. Rizzo, netmap: a novel framework for fast packet I/O,

Proceedings of the 2012 USENIX conference on Annual

Technical Conference (Boston, MA, USA), ATC’12, jun

2012, pp. 101–112. 17, 32, 38, 40, 54, 55

[Riz12b] , netmap project, 2012, http://info.iet.unipi.

it/~luigi/netmap/. 47

[Riz12c] , Revisiting network I/O APIs: the netmap frame-

work, Communications of the ACM 55 (2012), no. 3, 45–51.

103

[RM06] D. Rossi and M. Mellia, Real-time TCP/IP analysis with

common hardware, Proceedings of the IEEE Interna-

tional Conference on Communications (Istanbul, Turkey),

ICC’06, June 2006, pp. 729–735. 20

[RSC+02] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,

J. Peterson, R. Sparks, M. Handley, and E. Schooler, RFC

3261: SIP: Session initiation protocol, 2002. 25, 122

[RVV+08] D. Rossi, S. Valenti, P. Veglia, D. Bonfiglio, M. Mellia,

and M. Meo, Pictures from the Skype, ACM SIGMETRICS

Performance Evaluation Review 36 (2008), no. 2, 83–86.

81, 100

http://luca.ntop.org/10g.pdf
http://info.iet.unipi.it/~luigi/netmap/
http://info.iet.unipi.it/~luigi/netmap/

References 209

[SCFJ] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,

RFC 3550: RTP: A transport protocol for real-time appli-

cations. 137

[Sch12] H. Scholz, IETF Internet-Draft: RTP stream information

export using IPFIX, 2012. 139

[SdRHA+10] P.M. Santiago del Ŕıo, J.A. Hernández, J. Aracil, J.E.

López de Vergara, J. Domzal, R. Wójcik, P. Cholda, K. Wa-

jda, J.P. Fernández Palacios, Á. González de Dios, and

R. Duque, A reliability analysis of Double-Ring topologies

with Dual Attachment using p-cycles for optical metro net-

works, Computer Networks 54 (2010), no. 8, 1328 – 1341.

2

[SdRRG+12] P.M. Santiago del Ŕıo, D. Rossi, F. Gringoli, L. Nava,

L. Salgarelli, and J. Aracil, Wire-speed statistical classifi-

cation of network traffic on commodity hardware, Proceed-

ings of the 12th ACM conference on Internet measurement

conference (Boston, MA, USA), IMC ’12, November 2012,

pp. 65–72. 70, 103

[SGI08] G. Stampfel, W. N. Gansterer, and M. Ilger, Implications of

the EU data retention directive 2006/24/EC, Proceedings

of Sicherheit (Saarbrucken, Germany), April 2008, pp. 45–

58. 3, 119, 130, 139

[SGV+10] G. Szabó, I. Gódor, A. Veres, S. Malomsoky, and S. Molnár,

Traffic classification over Gbit speed with commodity hard-

ware, IEEE Journal of Communications Software and Sys-

tems 5 (2010), no. 3. 23, 26, 78, 102, 175, 187

[SHR+09] P. Svoboda, E. Hyytiä, F. Ricciato, M. Rupp, and

M. Karner, Detection and tracking of Skype by exploiting

cross layer information in a live 3G network, Proceedings

of the First International Workshop on Traffic Monitoring

210 References

and Analysis (Aachen, Germany), TMA ’09, May 2009,

pp. 93–100. 128

[SoX13] SoX, Sound eXchange, 2013, http://sox.sourceforge.

net/. 141

[SWF07] F. Schneider, J. Wallerich, and A. Feldmann, Packet cap-

ture in 10-Gigabit Ethernet environments using contempo-

rary commodity hardware, Proceedings of the 8th Interna-

tional Conference on Passive and Active Measurement Con-

ference (Louvain-la-neuve, Belgium), PAM’07, April 2007,

pp. 207–217. 140

[Sys12] Cisco Systems, Introduction to Cisco IOS Netflow - a

technical overview, 2012, http://www.cisco.com/en/US/

prod/collateral/iosswrel/ps6537/ps6555/ps6601/

prod_white_paper0900aecd80406232.pdf. 154

[SZTG12] W. Su, L. Zhang, D. Tang, and X. Gao, Using direct cache

access combined with integrated NIC architecture to acceler-

ate network processing, Proceedings of the 14th IEEE Con-

ference on High Performance Computing and Communica-

tions and the 9th IEEE Conference on Embedded Software

and Systems (Liverpool, UK), HPCC-ICESS’12, June 2012,

pp. 509–515. 40

[TB11] B. Trammell and E. Boschi, An introduction to IP flow

information export (IPFIX), IEEE Communications Mag-

azine 49 (2011), no. 4, 89 –95. 108

[Tcp12] Tcpreplay, Pcap editing & replay tools for *NIX, 2012,

http://tcpreplay.synfin.net/. 84, 156, 158

[TVRP12] D. Tammaro, S. Valenti, D. Rossi, and A. Pescapè, Ex-

ploiting packet-sampling measurements for traffic charac-

terization and classification, International Journal of Net-

work Management 22 (2012), no. 6, 451–476. 120

http://sox.sourceforge.net/
http://sox.sourceforge.net/
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6555/ps6601/prod_white_paper0900aecd80406232.pdf
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6555/ps6601/prod_white_paper0900aecd80406232.pdf
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6555/ps6601/prod_white_paper0900aecd80406232.pdf
http://tcpreplay.synfin.net/

References 211

[Uni13] Stanford University, NetFPGA, 2013, http://netfpga.

org. 14

[VGBR09] S. Varadarajan, S. Gopalan, V.S. Basavaraja, and

K.K. Rao, System and method for Skype traffic detec-

tion. U.S. patent 20090116394, May 2009, http://www.

freepatentsonline.com/y2009/0116394.html. 127

[VM11] N. Varis and J. Manner, In the network: Sandy Bridge ver-

sus Nehalem, ACM SIGMETRICS Performance Evaluation

Review 39 (2011), no. 2, 53–55. 42

[VPI11] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris

Ioannidis, MIDeA: a multi-parallel intrusion detection ar-

chitecture, Proceedings of the 18th ACM Conference on

Computer and Communications Security (Chicago, IL,

USA), CCS’11, October 2011, pp. 297–308. 14, 19, 22,

23, 36, 78, 102, 103, 115, 175, 187

[WAcA09] C. Walsworth, E. Aben, k.c. claffy, and D. Andersen,

The CAIDA anonymized 2009 Internet traces, 2009,

http://www.caida.org/data/passive/passive_2009_

dataset.xml. 53, 72, 78, 89, 111

[WDC11] W. Wu, P. DeMar, and M. Crawford, Why can some ad-

vanced Ethernet NICs cause packet reordering?, IEEE Com-

munications Letters 15 (2011), no. 2, 253–255. 33, 35, 60,

65, 83, 132

[WP12] S. Woo and K. Park, Scalable TCP session moni-

toring with Symmetric Receive-Side Scaling, Tech. re-

port, Department of Electrical Engineering, Korea Ad-

vanced Institute of Science and Technology (KAIST),

Seoul, South Korea, 2012, http://www.ndsl.kaist.edu/

~shinae/papers/TR-symRSS.pdf. 11, 37

http://netfpga.org
http://netfpga.org
http://www.freepatentsonline.com/y2009/0116394.html
http://www.freepatentsonline.com/y2009/0116394.html
http://www.caida.org/data/passive/passive_2009_dataset.xml
http://www.caida.org/data/passive/passive_2009_dataset.xml
http://www.ndsl.kaist.edu/~shinae/papers/TR-symRSS.pdf
http://www.ndsl.kaist.edu/~shinae/papers/TR-symRSS.pdf

212 References

[WXD11] D. Wang, Y. Xue, and Y. Dong, Memory-efficient hyper-

cube flow table for packet processing on multi-cores, Pro-

ceedings of the 54th IEEE Global Communications Con-

ference (Houston, TX, USA), GLOBECOM’11, December

2011, pp. 1–6. 20

[YZ10] J. Yu and X. Zhou, Ultra-high-capacity DWDM transmis-

sion system for 100G and beyond, IEEE Communications

Magazine 48 (2010), no. 3, S56–S64. 2, 118

[ZFP12] L. Zabala, A. Ferro, and A. Pineda, Modelling packet cap-

turing in a traffic monitoring system based on Linux, Pro-

ceedings of 2012 International Symposium on Performance

Evaluation of Computer and Telecommunication Systems

(Genoa, Italy), SPECTS’12, July 2012, pp. 1–6. 16

[ZLQ+12] H. Zhang, G. Lu, M.T. Qassrawi, Y. Zhang, and X. Yu,

Feature selection for optimizing traffic classification, Com-

puter Communications 35 (2012), no. 12, 1457–1471. 99

[Zob70] A.L. Zobrist, A new hashing method with application for

game playing, International Computer-Chess Association

Journal 13 (1970), no. 2, 69–73. 26

[ZR10] T. Zourzouvillys and E. Rescorla, An introduction to

standards-based VoIP: SIP, RTP, and friends, IEEE Inter-

net Computing 14 (2010), no. 2, 69 –73. 121

List of Publications

Publications Directly Related to this Thesis

1. Pedro M. Santiago del Rı́o, Javier Ramos, J.L. Garćıa-Dorado, Javier

Aracil, Antonio Cuadra-Sánchez, and Mar Cutanda-Rodŕıguez, “On

the processing time for detection of Skype traffic,” in Proceedings of 7th

International Wireless Communications and Mobile Computing Con-

ference (IWCMC), Istanbul (Turkey), July 2011.

Chapter 6 in this thesis.

2. J. Fullaondo, Pedro M. Santiago del Ŕıo, Javier Ramos, J.L. Garćıa-

Dorado, and Javier Aracil, ‘AP-CAP framework: Monitorizando a 10

Gb/s en hardware de propósito general,” in Actas de las X Jornadas de

Ingenieŕıa Telemática (JITEL), Santander (Spain), September 2011.

Chapter 3 in this thesis.

3. Pedro M. Santiago del Rı́o, Dario Rossi, Francesco Gringoli, Lorenzo

Nava, Luca Salgarelli, and Javier Aracil, “Wire-Speed Statistical Clas-

sification of Network Traffic on Commodity Hardware,” in Proceed-

ings of ACM International Internet Measurement Conference (IMC),

Boston, MA (USA), November 2012.

Chapter 5 in this thesis.

4. V. Moreno, Pedro M. Santiago del Ŕıo, Javier Ramos, Jaime J. Gar-

nica, José L. Garćıa-Dorado, “Batch to the Future: Analyzing Times-

tamp Accuracy of High-Performance Packet I/O Engines.,”’, IEEE

Communications Letters, 16 (11) (2012), pp. 1888–1891.

213

214 List of Publications

Chapter 4 in this thesis.

5. Pedro M. Santiago del Rı́o, Diego Corral, José L. Garćıa-Dorado, and

Javier Aracil, “On the Impact of Packet Sampling on Skype Traffic

Classification.,” accepted for its publication in Proceedings of IFIP/IEEE

International Symposium on Integrated Network Management (IM),

Ghent (Belgium), May 2013.

Chapter 6 in this thesis.

6. José L. Garćıa-Dorado, Felipe Mata, Javier Ramos,

Pedro M. Santiago del Ŕıo, Victor Moreno, and Javier Aracil, “Chap-

ter 2: High-Performance Network Monitoring Systems Using Commod-

ity Hardware,” accepted for its publication in Data Traffic Monitoring

and Analysis; from measurement, classification and anomaly detection

to quality of experience, Springer, Series in Computer Communications

and Networks, editors: C. Callegari, M. Matijasevic, E. Biersack, 2012.

Chapter 3 in this thesis.

7. Pedro M. Santiago del Rı́o, Dario Rossi, Francesco Gringoli, Lorenzo

Nava, Luca Salgarelli, and Javier Aracil, “Early traffic classification

beyond 10 Gbps using commodity hardware”, under review in Com-

puter Communications, Elsevier.

Chapter 5 in this thesis.

8. José L. Garćıa-Dorado, Pedro M. Santiago del Rı́o, Javier Ramos, David

Muelas, Vı́ctor Moreno, Jorge E. López de Vergara, Javier Aracil,

“Low-cost and High-performance: the case of VoIP monitoring using

commodity hardware”, under review in Journal of Network and Sys-

tems Management, Springer.

Chapter 6 in this thesis.

Publications in Topics Related to this Thesis

1. Javier Ramos, Pedro M. Santiago del Rı́o, Javier Aracil, and Jorge E.

López de Vergara, “On the effect of concurrent applications in band-

List of Publications 215

width measurement speedometers,”’, Computer Networks, 55 (6) (2011),

pp. 1435–1453.

2. Pedro M. Santiago del Rı́o, José A. Hernández, Javier Aracil, Jorge

E. López de Vergara, Jerzy Domzal, Robert Wojcik, Piotr Cholda,

Krzysztof Wajda, Juan P. Fernández-Palacios, Óscar González de Dios,

and Raúl Duque, “A reliability analysis of Double-Ring topologies with

Dual Attachment using p-cycles for optical metro networks,”’, Com-

puter Networks, 54 (8) (2010), pp. 1328–1341.

3. Pedro M. Santiago del Rı́o, Javier Ramos, Alfredo Salvador, Jorge E.

López de Vergara, Javier Aracil, Antonio Cuadra-Sánchez, and Mar

Cutanda-Rodŕıguez, “Application of Internet Traffic Characterization

to All-Optical Networks,” in Proceedings of 12th International Confer-

ence on Transparent Optical Networks (ICTON), Munich (Germany),

June 2010.

4. Javier Aracil, Javier Ramos, Pedro M. Santiago del Rı́o, Jorge E. López

de Vergara, Luis de Pedro, Sergio López-Buedo, Iván González, and

Francisco J. Gómez-Arribas, “Método para estimar los parámetros de

un elemento de control de tipo Tocken-Bucket (METHOD FOR ESTI-

MATING THE PARAMETERS OF A CONTROL ELEMENT SUCH

AS A TOKEN BUCKET),” Patent ES 2372213 A1, Spain, 09/04/2010.

5. Pedro M. Santiago del Rı́o, José A. Hernández, Vı́ctor López, Javier

Aracil, and Bas Huiszoon, “On the feasibility of transmission schedul-

ing in a code-based transparent passive optical network architecture,”

in Proceedings of 14th European Conference on Networks and Optical

Communications (NOC), Valladolid (Spain), June 2009.

Index

Affinity, 39

Batch processing, 38, 42, 45, 64

Click, 40

Deep Packet Inspection, 26

DetectPro, 102, 109

Flow Matching, 20, 91, 107, 112

HPCAP, 49, 69, 106

HPTRAC, 77, 115

Kernel-level Polling Thread, KPT,

69

NAPI, 16, 31

netmap, 46

Network Interface Cards, 10

Network Intrusion Detection Sys-

tems, NIDS, 22

Non Uniform Memory Access,

NUMA, 12, 39, 151

Off-the-shelf systems, 2, 9

Packet Sampling, 160

PacketShader, 44

PF RING, 42

PFQ, 47

Prefetching, 39, 45

Receive Side Scaling, 10, 82

Routebricks, 40

RTPTracker, 130

Scalability, 77, 88, 113, 156

Skypeness, 148, 160

Timestamping, 63

Traffic Classification, 24, 81, 97,

149, 155

Uniform Distribution of Times-

tamp, UDTS, 67

Weighted Distribution of Times-

tamp, WDTS, 68

217

	Portada

	Índice

	Introducción

	Capítulo II

	Capítulo III

	Capítulo IV

	Capítulo V

	Capítulo VI

	Capítulo VII

	Conclusiones
	Bibliografía

