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Abstract

In recent years, the number of applications that benefit from speech processing techniques has

grown significantly. This growth has been motivated fundamentally by two factors, the creation of

new speech-enabled services and the enhancement of speech processing techniques. Nevertheless,

while the recognition accuracy of state-of-the-art systems is satisfactory for a number of real-

world applications, the reduction of speech recognition error rates, especially in large vocabulary

continuous speech recognition systems, still stands as a major challenge.

Nowadays, a generative modeling approach based on the combination of Hidden Markov

Models (HMMs) and Gaussian Mixture Models (GMMs) has become a de facto standard for speech

recognition. HMMs allow to model the temporal dynamics of speech and GMMs are used to model

the probability of the observations (feature vectors extracted from the speech). The parameters of

HMMs can be estimated following a number of different criteria. While originally Maximum Like-

lihood Estimation (MLE) was the most widely adopted criterion, the fact that it relies exclusively

on a Empirical Risk Minimization (i.e. minimizing the errors on the training data) has caused the

flourishing of a variety of discriminative training criteria that allow a better generalization of the

models and a closer solution to the word error rate minimization problem.

At this point, one may argue: why bother learning the underlying distribution of the data

(i.e the probability of the observations) using generative models and then training them using a

discriminative training criterion if it is possible to learn directly the boundaries between samples

belonging to different classes using discriminative classifiers? This question has been formulated
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many times in the literature and some discriminative classifiers, being Artificial Neural Networks

the most prominent one, have been employed to build automatic speech recognition (ASR) hybrid-

systems that perform similarly to GMM/HMM state-of-the-art ones. However, a number of issues

have prevented those classifiers to replace the GMM/HMM paradigm as the standard modeling

approach for (ASR). Among other issues, traditional discriminative classifiers suffer from the same

lack of generalization ability that HMMs trained under MLE do, i.e. perform only an Empirical

Risk Minimization what typically results in poor generalization performance.

In the other hand, Support Vector Machines (SVMs) present clear advantages over tradi-

tional discriminative techniques. SVMs are a relatively recent supervised learning technique based

on recent advances in statistical learning theory. SVMs belong to the family of large-margin classi-

fiers and their main characteristic is that they simultaneously minimize the empirical classification

error (Empirical Risk Minimization) and maximize the geometric margin between samples of dif-

ferent classes (Structural Risk Minimization). This Structural Risk Minimization principle is based

on controlling the tradeoff between the complexity of the decision function (capacity of the model)

and the classification errors on the training data. For this reason, SVMs are a very successful

discriminative approach that have been effectively used in a number of pattern recognition tasks.

In the case of speech processing, SVMs have shown superior performance compared to al-

ternative discriminative techniques in a number of classification tasks like speaker verification or

phonetic classification. However, the potential of SVMs to be applied to continuous ASR, where

both classification and segmentation of lexical units need to be addressed simultaneously, is still

unclear. This thesis work is focused on exploring the applicability of SVMs to continuous speech

recognition in a stand-alone architecture. In this thesis, a method for utilizing SVMs as proba-

bilistic estimators of emission probabilities in a continuous ASR system is presented and evaluated.

While the utilization of SVMs for binary classification tasks is straightforward, in the case of ASR,

a large number of classes is involved and training on millions of feature vectors is required to attain

satisfactory recognition accuracy. In this thesis work a SVM/HMM speech decoding system is pro-

posed and implemented in which SVMs are used as emission probability estimators. Experimental

results show that the proposed system outperforms a comparable GMM/HMM decoder in terms

of word accuracy. However, this system still presents several disadvantages concerning the number
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of parameters and scalability. In this respect several techniques are proposed in order to minimize

those disadvantages. In one hand an algorithm is introduced that significantly reduces the number

of classifiers that need to be carried out during decoding with no impact in the recognition accu-

racy. In the other hand, techniques for reusing kernel evaluations across classifiers during decoding

and for reducing the storage requirements of the acoustic models are proposed and evaluated. Ad-

ditionally, it has been experimentally shown that SVM solvers recently proposed in the literature

exhibit training time asymptotically linear with the number of samples in the task of feature frames

classification. This is particularly interesting not only for scaling the proposed SVM/HMM system

to larger datasets but for a broad range of speech processing tasks in which SVMs are trained on

millions of samples.
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Abstract (Spanish)

En los últimos anõs, el número de aplicaciones que se benefician de técnicas de procesado

del habla ha crecido significativamente. Este crecimiento ha estado motivado fundamentalmente

por dos factores, la creación de nuevos servicios accesibles mediante la voz y el perfeccionamiento

de las técnicas de procesado del habla. Sin embargo, mientras que la precisión de reconocimiento

de sistemas del estado-del-arte es satisfactoria para numerosas aplicaciones en el mundo real, la

reducción de las tasas de error de reconocimiento, especialmente en sistemas de habla continua y

gran vocabulario aún permanece como un gran desaf́ıo.

Actualmente, un procedimiento de modelado generativo basado en la combinación de Mod-

elos Ocultos de Markov (MOM) y Modelos de Mezcla de Gausianas (MMG) se ha convertido en

el estándar de facto en reconocimiento de voz. Los MOM permiten modelar la dinámica temporal

de la voz mientras que los MMG son usados para modelar la probabilidad de las observaciones

(vectores de caracteŕısticas extraidos del habla). Los parámetros de los MOM pueden ser estima-

dos siguiendo numerosos criterios diferentes. Mientras que originalmente la Estimación basada en

Máxima Probabilidad (EMP) fue el criterio más ampliamente adoptado, el hecho de que se basa

exclusivamente en una Minimización del Error Emṕırico (MEE) (es decir, minimizar los errores

en los datos de entrenamiento) ha causado el florecimiento de una variedad de criterios de entre-

namiento discriminativo que permiten una mejor generalización de los modelos y una solución mas

cercana al problema de minimización de la tasa de error.
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En este punto, se podŕıa argumentar: ¿Por qué molestarse en aprender la distribución sub-

yacente de los datos (es decir, la probabilidad de las observaciones) utilizando modelos generativos

y luego entrenarlos utilizando un criterio de modelado discriminativo si es posible aprender di-

rectamente los limites entre muestras pertenecientes a clases diferentes? Esta pregunta ha sido

formulada muchas veces en la literatura y varios clasificadores discriminativos, siendo las Redes

Neuronales Artificiales (RNA) el más prominente, han sido empleados para construir sistemas de

reconocimiento automático del habla (RAH) que rinden de manera similar a sistemas MMG/MOM.

Sin embargo, numerosas cuestiones han evitado que esos clasificadores reemplacen al paradigma

MMG/MOM como el estandard de modelado en sistemas de RAH. Entre otras cuestiones, los

clasificadores discriminativos tradicionales sufren de la misma falta de habilidad de generalización

que tienen los MOM entrenados bajo EMP, es decir, producen sólo una Minimización del Error

Emṕırico, lo que t́ıpicamente resulta en una pobre generalización.

Por otro lado, las Maquinas de Soporte Vectorial (MSV) presentan claras ventajas respecto

a los clasificadores discriminativos tradicionales. Las MSV son una técnica reciente de apren-

dizaje supervisado basada en avances recientes en la teoŕıa del aprendizaje estad́ıstico. Las MSV

pertenecen a la familia de clasificadores de gran-margen y su principal caracteŕıstica es que min-

imizan simultáneamente el error de clasificación emṕırico (Minimización del Riesgo Emṕırico) y

maximizan el margen geométrico entre muestras de diferentes clases (Minimización del Riesgo Es-

tructural). La Minimización del Riesgo Estructural se basa en controlar el compromiso entre la

complejidad de la función de decisión (capacidad del modelo) y los errores de clasificación en los

datos de entrenamiento. Por esta razón, las MSV son un procedimiento discriminativo de gran

éxito que ha sido utilizado en numerosas tareas de reconocimiento de patrones.

En el caso del procesado del habla, las MSV han mostrado un rendimiento superior com-

parado con técnicas discriminativas alternativas en tareas de clasificación como verificación de

locutor y clasificación fonética. Sin embargo, el potencial de las MSV para ser aplicadas a re-

conocimiento automático de habla continua, donde la clasificación y segmentación de unidades

léxicas necesita realizarse simultáneamente, no esta claro. Este trabajo de tesis esta enfocado a

explorar la aplicabilidad de las MSV al reconocimiento de habla continua en una arquitectura

independiente. En esta tesis será presentado un método para utilizar las MSV como estimadores
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probabiĺısticos de las probabilidades de emisión en un sistema de reconocimiento de habla continua.

Mientras que la utilización de las MSV en tareas de clasificación binaria es simple y directa, en

el caso del RAH hay un gran número de clases involucradas y es necesario entrenar en millones

de vectores de caracteŕısticas para lograr una precisión de reconocimiento satisfactoria. En este

trabajo de tesis se ha propuesto e implementado un sistema de reconocimiento del habla bajo el

paradigma MSV/MOM en el que las MSV son utilizadas como estimadores de las probabilidades

de emisión. Resultados experimentales muestran que el sistema propuesto supera a un sistema

MMG/MOM comparable en terminos de precisión de reconocimiento. Sin embargo, este sistema

presenta varias desventajas relacionadas con el número de parámetros y la escalabilidad. A este

respecto, se han propuesto varias técnicas para minimizar dichas desventajas. Por un lado se ha

introducido un algoritmo que reduce significativamente el número de clasificadores que han de

evaluarse durante la decodificación sin que se haya causado impacto alguno en la precisión del

reconocimiento. Por otro lado, se han propuesto y evaluado varias técnicas para reutilizar evalu-

aciones del kernel entre clasificadores durante la decodificación y para reducir los requerimientos

de almacenamiento de los modelos acústicos. Adicionalmente, se ha mostrado experimentalmente

que tecnicas de resolución de MSV recientemente propuestas en la literatura, exhiben tiempo de

entrenamiento asintóticamente lineal con el número de muestras para la tarea de clasificación de

vectores de caracteŕısticas. Esto es particularmente interesante no sólo para escalar el sistema

MSV/MOM propuesto a conjuntos de datos más grandes, sino para un amplio rango de tareas de

procesado del habla en las que las MSV son entrenadas con millones de muestras.
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Chapter 1

Introduction

Speech processing technology started more than fifty years ago. Since then, the field has broaden

enormously and numerous techniques have been developed in a wide variety of speech related

topics. For example: speech coding, speech classification, speech recognition, speech synthesis,

speaker verification, etc. Among those, continuous speech recognition is probably the topic that

has received the greatest attention. This topic relates to the extraction of the textual content from

speech segments as they are uttered by the speaker.

Improving the quality of an automatic speech recognition system is not only a goal by itself

but a strong requirement for improving the quality of a great number of speech-enabled systems

like automatic inquiry systems and dialog systems. In such systems the goal is to thoroughly

understand and process the user request in the minimum number of turns. An accurate and

reliable text transcription of the speech query helps in the reduction of verification and repetition

turns, thus accelerating the interaction with the system and improving the user experience.

Nowadays, most state-of-the art continuous ASR systems make use of Gaussian Mixture

Models (GMMs) and Hidden Markov Models (HMMs) for the acoustic modeling. In this generative

approach, GMMs model the distribution of the input data (observations at each of the states of

the HMMs) and HMMs model the temporal dynamics of speech. HMMs are especially suitable for

continuous speech recognition because, thanks to the independence assumption between adjacent

feature frames, allow the application of dynamic programming techniques in which the computation

of the most likely sequence of states at time t is based on the most likely sequence of states at time t−
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1 and the feature vector observed at time t. Originally, the Maximum Likelihood Estimation (MLE)

was the most widely adopted criterion for training the HMMs parameters, however, nowadays a

wide variety of discriminative training criteria have replaced MLE. The discriminative training of

HMM parameters allows a better generalization of the models and a closer solution to the word

error rate minimization problem.

In the other hand, machine learning has made an enormous progress during the last decades.

One of the major results is the development of the Structural Risk Minimization (SRM) principle,

that allows a tradeoff between the complexity of the decision function (used to separate samples

from different classes) and the classification errors in the training data. This SRM principle plays

a fundamental role in the generalization capacity of the model and, thus, in the ability to predict

unseen samples. A proof of this excellent generalization ability is the vast number of pattern

recognition tasks that currently benefit from the use of Support Vector Machines (SVMs).

In the case of speech processing, SVMs have been successfully applied to a number of tasks

like phonetic classification, speaker verification, hypothesis rescoring, etc. However, the application

of SVMs to continuous speech recognition in a stand-alone system has not been fully explored yet.

While continuous speech recognition can be roughly viewed as a classification of variable-length

speech units, the fact that the starting and ending times of the lexical units under classification are

unknown, increases considerably the complexity of the problem. On top of that, speech recognition

involves a large number of different classes and training on very large datasets, which are some of the

weaknesses of SVMs. Nonetheless, the fact that SVMs are by nature a discriminative technique (in

contrast with the generative GMM/HMM approach) and their excellent generalization performance

(what is of the utmost importance in speech recognition) makes this technique very appealing from

the point of view of speech recognition.

This thesis is dedicated to explore the utilization of SVMs as probabilistic estimators of

emission probabilities for continuous speech recognition. The intention is to propose a stand-alone

SVM-based speech recognition system, to implement it and identify its weaknesses. Additionally

the recognition accuracy of the system will be compared to that of a conventional GMM/HMM

system.
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1.1 Thesis goals

• To explore the applicability of SVMs as probabilistic estimators for continuous automatic

speech recognition. This includes the selection of an adequate model topology and training

methodology as well as an study of the decoding framework.

• To implement a fully functional SVM-based continuous speech recognizer and compare its

performance to that of a conventional GMM-based one. The performance will be measured

in terms of word error rate. The comparison will be made on a very challenging corpora of

children’s speech.

• To identify the advantages and disadvantages of the proposed system and implement tech-

niques to address its weaknesses. This includes analyzing scalability issues related to the

training on very large datasets (millions of samples), which is a well known shortcoming of

SVMs.

• To study a technique for incorporating context-dependency into the proposed system. The

technique should be be based on a top-down strategy that allows the clustering of unseen

triphones.

• As an additional goal, and connected to the main topic of this thesis (SVM-based ASR) by

the use of SVMs as probabilistic estimators. It will be explored the application of SVM-based

features extracted from phone graphs to the task of pronunciation scoring. Pronunciation

scoring is the task of labeling word realizations as correctly/incorrectly pronounced.

1.2 Thesis overview

Chapter 2 of this thesis is devoted to, firstly, introduce the mathematical foundations of Support

Vector Machines and, secondly, discuss their utilization as probabilistic estimators and strategies

for dealing with multiclass classification tasks. The chapter is mainly a summarization of the state-

of-the-art in the application of SVMs to pattern recognition and probability estimation. However,

in addition to that, existing strategies are compared from different perspectives and their suitability
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for a particular task or another is analyzed. The intention is to make an entry point for the rest of

the chapters that will be focused in the application of SVMs to a particular task: speech processing.

This chapter will be referenced back from other chapters in this thesis when motivating some of

the decisions made.

Chapter 3 is dedicated to introduce the utilization of SVMs to speech processing. It starts

by making a comparison between SVMs and other discriminative methods (ANNs) that already

showed some success applied to speech processing tasks. Afterward, the problem of modeling

the temporal structure of speech is analyzed from the perspective of SVMs. Different techniques

are analyzed along with their advantages/disadvantages when applied to speech processing tasks

of different nature including continuous speech recognition. Finally, a novel application on the

utilization of SVM-based features for pronunciation scoring is presented.

In chapter 4 the application of SVMs as probabilistic estimators for continuous speech

recognition is explored. A stand-alone SVM/HMM based speech recognition system is proposed and

experimentally evaluated. The system makes use of SVMs as probabilistic estimators of emission

probabilities while sill utilizing HMMs to model the temporal dynamics of speech as in conventional

GMM/HMM systems.

Chapter 5 of this thesis addresses the problem of training pairwise SVM classifiers to separate

feature vectors of phonetically close classes.

Chapter 6 is devoted to explore some ideas on the incorporation of context-dependent mod-

eling into the proposed SVM/HMM system. A technique is proposed that finds clusters of triphones

which pairwise separability is maximized.

Chapter 7 is dedicated to address scalability issues that have been identified in the proposed

SVM/HMM system. Several techniques are introduced in order to reduce the training time, the

decoding time and the memory requirements of the acoustic models.

Finally, chapter 8 is dedicated to present the conclusions and major contributions of this

thesis work. In addition to that some lines of future research are proposed.
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Chapter 2

Support Vector Machines

Support Vector Machines (SVMs) [1] are a relatively recent supervised learning technique based on

recent advances in statistical learning theory. SVMs belong to the family of large-margin classifiers

and their main characteristic is that they simultaneously minimize the empirical classification error

and maximize the geometric margin between samples of different classes. One of the most ap-

pealing properties of SVMs is that besides performing empirical risk minimization, they carry out

a structural risk minimization by controlling the tradeoff between the complexity of the decision

function (capacity of the model) and the classification errors on the training data.

This chapter is dedicated to, first, outline the mathematical foundations of this technique

and, second, discuss several existing methods toward its application to multiclass-classification tasks

and probabilities estimation. The intent is to make a short overview of the state-of-the-art on these

issues, that will serve as the basis for the next chapters in which SVMs will be explored from the

point of view of speech processing, and particularly for continuous speech recognition.

2.1 Mathematical Foundations

SVMs are binary classifiers belonging to the group of large-margin classifiers, which have proven to

be effective in delivering high predictive accuracy. Given a training set composed of labeled vectors

{xi, yi}, i = 1, . . . , l,xi ∈ Rd are the d-dimensional feature vectors and yi ∈ {1,−1} are the labels.

A SVM finds (when existing, i.e. in the linearly separable case) the separating hyperplane that
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maximizes the margin between the samples belonging to both classes {1,−1}. This hyperplane not

only guarantees the best classification of the training samples but offers the maximum generalization

ability for unseen samples.

2.1.1 Linear Support Vector Machines

The linearly separable case

First, it will be considered the linearly separable case, i.e. there exists a separating hyperplane

that divides the feature space into two regions, each of both containing the training samples of one

class. If that hyperplane exists the following inequalities must be satisfied:

xi ·w + b ≥ +1 if yi = +1 (2.1)

xi ·w + b ≤ −1 if yi = −1 (2.2)

Where w is normal to the hyperplane and |b|
‖w‖ is the perpendicular distance from the hyperplane

to the origin. Inequalities 2.1 and 2.2 can be combined into the following expression:

yi(xi · w + b) − 1 ≥ 0 ∀i (2.3)

Considering the points for which equalities in 2.1 and 2.2 hold, it is possible to define two hyper-

planes H1 and H2 that are parallel (both have w as normal) and no training points fall between

them. Given that the perpendicular distances of H1 and H2 to the origin are |1−b|
‖w‖ and |−1−b|

‖w‖
respectively, the distance between these hyperplanes and the largest margin hyperplane is 1

‖w‖ .

Thus, the margin is 2
‖w‖ and it can be maximized by minimizing ‖w‖2. An interesting observation

is that, once the optimal hyperplanes H1 and H2 are found, the training points contained in them

are called support vectors and any other training points have no effect in the selection of these

hyperplanes.

A convenient representation method for the constraints present in 2.3 is the Lagrange mul-

tipliers. Using a positive Lagrange multiplier αi, i = 1, . . . , l for each inequality constrain the
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following Lagrangian is obtained:

LP ≡ 1
2
‖w‖2 −

l∑
i=1

αiyi(xi · w + b) +
l∑

i=1

αi (2.4)

Minimizing LP with respect to w and b consists of solving a quadratic programming problem, which

represents the goal of the training. When the number of training samples is large enough, solving

this quadratic problem directly can be computationally extremely expensive so many different

techniques have been proposed in the literature to find an approximate solution to this problem1.

This optimization problem can be converted into the dual form 2.5 subject to the conditions given

by 2.6 and 2.7. In this case the optimization problem consists of maximizing the dual problem LD

instead of minimizing the primal problem LP .

LD ≡
∑

i

αi − 1
2

∑
i,j

αiαjyiyjxi · yi (2.5)

0 ≤ αi (2.6)

∑
i

αiyi = 0 (2.7)

The dual form, in this case, simplifies the optimization problem by simplifying the constraints.

However, the major point for the dual formulation is that the training points only appear in the

form of dot products thus allowing the application of the kernel-trick when dealing with nonlinear

decision functions (see section 2.1.2).

Once the training of the SVM is complete, it is possible to classify an unseen input sample by

determining in which side of the largest margin hyperplane obtained the sample lies. Considering

that the possible classes are y ∈ {−1, 1}, the class label can be obtained as expressed in 2.8.

y = sgn(w · x + b) (2.8)
1Chapter 7 is dedicated to outline some of those techniques and to explore one of the most promising ones in the

case of a speech-processing classification task.
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The non linearly separable case

Now it will be considered the case when it is not possible to separate the data linearly, i.e. there

exist no hyperplane in the feature space that is able to separate all the positive examples from the

negative ones. In this case the quadratic problem has no solution and maximizing the objective

function 2.5 will result in arbitrarily large values. In order to cope with this problem, the constraints

expressed in 2.1 and 2.2 can be relaxed and reformulated as follows:

xi · w + b ≥ +1 − ξi if yi = +1 (2.9)

xi · w + b ≤ −1 + ξi if yi = −1 (2.10)

ξi ≥ 0 ∀i (2.11)

Accordingly, an extra cost for errors is introduced by changing the objective function to be min-

imized from ‖w‖
2 to ‖w‖

2 + C(
∑

i ξi)k where C is a regularization parameter selected by the user

(commonly referred as the error penalty or the cost) that allows to control the amount of overlap by

assigning different penalty to errors. Selecting k = 1 neither the ξi, nor their Lagrange multipliers

appear in the dual problem, which makes the expression to maximize simpler:

LD ≡
∑

i

αi − 1
2

∑
i,j

αiαjyiyjxi · yi (2.12)

subject to the following conditions:

0 ≤ αi ≤ C (2.13)

∑
i

αiyi = 0 (2.14)

Note that the only difference with respect to the case when the optimal separating hyperplane exists,

is that the αi now have an upper bound of C. This parameter is used to penalize classification errors,

so a high value of C reduces the number of misclassified training samples by fitting the decision

boundary to the training samples. Hence, a too high value of C may produce irregular decision

boundaries and it is prone to produce overfitting, which deteriorates the generalization ability of
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the classifier. In the other hand a too small value of C may make the training algorithm to find a

separating hyperplance with a too large margin, which may not produce satisfactory classification

results. The optimal value of C depends on the application, and it is typically estimated doing

cross-validation on the training data.

2.1.2 Nonlinear Support Vector Machines

For some separating tasks a decision function that is a linear function of the data may not be able to

make a satisfactory separation of the data. In these cases it is of particular interest using a decision

function that is not a linear function of the data. SVMs using this kind of decision functions are

called nonlinear SVMs and are based on the kernel-trick [2]. As it will be shown next, the essence

of the idea lies in the fact that the training samples xi only appear in the training equations in the

form of dot products xi ·xj (see equation 2.5). The first step consists of mapping the training data

from the feature space Rd, in which they live, to another (possibly infinite dimensional) Euclidean

space H using the mapping Φ as expressed in 2.15.

Φ : Rd �→ H (2.15)

Now, having a kernel function in the form of K(xi,xj) = Φ(xi) ·Φ(xj) it is possible to replace the

dot products xi ·xj in the training equations by K(xi,xj) thus avoiding the explicit computation of

Φ(xi) and Φ(xj) that lives in the potencially inifinite dimensional space H. Note that the kernels

K(xi,xj) that can be used must fulfill the Mercer’s condition [1].

Some of the most popular non linear kernels are the following:

K(x,y) = (x · y + 1)p (2.16)

K(x,y) = e−
1

2σ2 ‖x−y‖2

(2.17)

K(x,y) = tanh(κx · y − δ) (2.18)

Where 2.16 is a polynomial kernel of degree p, 2.17 is a Gaussian Radial Basis Function (RBF)

and 2.18 is the sigmoid kernel. These kernels present parameters which optimal value depends on
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the task and, thus, are typically estimated doing cross-validation on the training data. One of the

most appealing properties of kernel-based learning methods is that kernels are used as a similarity

measure between training samples and, hence, can be used to incorporate prior-knowledge from the

domain2 when it is available. However, in some cases this can be view as a shortcoming, given

that sometimes, specifying a suitable kernel for an application may not be straightforward.

The decision function of a non-linear SVM, used for classifying new samples, is expressed

in 2.19 and it is equivalent to expression 2.8 with the sole exception of replacing the dot product

between the input sample x and the support vectors si by a kernel evaluation K(si,x).

f(x) = sign

(
NS∑
i=1

αiyiK(si,x) + b

)
(2.19)

More details on the utilization of these kernels and a full review of SVMs and related

techniques can be found in [4].

2.2 Support Vector Machines as probabilistic estimators

When SVMs are used for classification tasks, the process of labeling an unseen input sample x ∈ X

as belonging to the class y = {−1, 1} is carried out using the expression 2.8. While for many

applications it is enough with having a prediction of the sample’s class, for some other applications

it is also desirable to have a class-posterior probability value p(y = +1|x) indicating the likelihood

of the sample to belong to the class. A classifier that produces probabilistic values can not only be

used for standard classification but as a statistical estimator.

The output of a SVM is a distance measure between a test pattern and the decision boundary

resulting from the training. Thus, the relationship between this uncalibrated value and the posterior

class probability p(y = +1|x) that the pattern x belongs to the class y = +1 is not clear. One

mechanism to cope with this problem consists of mapping the margin or distance SVMs produce

to a class-posterior probability. This can be carried out using a sigmoid [5] as expressed in 2.20),
2For example, in [3] the so-called even-polynomial kernel is introduced for classifying acoustic waveforms. This

kernel takes into account the fact that a speech waveform and its inverted version are perceived as being the same. In
[3], it is reported that a classification accuracy improvement can be achieved by incorporating this prior knowledge
into the kernel function.
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where the parameters A and B need to be estimated by cross-validation on the training data.

p(y = +1|x) = g(f(x), A,B) ≡ 1
1 + eAf(x)+B

(2.20)

Alternative methods for obtaining probability estimates from SVMs can be found in [6].

2.3 Multiclass classification

SVM classifiers are intended for binary classification so for K-class (K > 2) separation tasks3, sev-

eral strategies have been proposed in the literature. Attending to how the optimization formulation

is carried out, these strategies can be broadly divided in two categories:

• Considering all the classes at once and doing only one optimization formulation. Some of the

most popular techniques falling into this category are [7] and [8].

• Decomposing the multiclass classification problem into series of binary classification problems

for which a different optimization formulation is carried out. Among these techniques are the

well known one-versus-one and one-versus-rest techniques.

In practice, it has been found that techniques falling into the first category, although more

elegant, may lead to a very slow convergence resulting in very long training time. The reason is

that the optimal value for the cost parameter C is typically high. Details on this can be found

on [9], where a comparison between several multiclass classification techniques is done. For this

reason, and given that decomposition techniques are by far the most widespread, the rest of this

section will be entirely centered on them.

Decomposition techniques address two linked problems, firstly, decomposing the multiclass

classification problem into a series of binary classification subproblems for which a SVM classifier

is trained and, secondly, combining the output of those classifiers to make the final call. Both

decomposition and combination methods provide an answer to different questions:
3A vast number of real-world classification tasks indeed involve more than two classes. In the particular case of

speech processing, speaker identification or phonetic classification are two clear examples of tasks where multiclass
classification is required.
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• Decomposition: what is the most effective mechanism for grouping the training samples of

different classes to form the positive and negative subset of samples used for training each

SVM classifier?

• Combination: once the different classifiers have been trained, how can the output of these

classifiers be combined to make the final call of whether an unseen sample belongs to a class

or another?

In this section, the most widespread decomposition strategies for multi-class classification

using SVMs will be reviewed. For the sake of clarity these strategies are grouped attending to

both questions raised before. Note that, while the decomposition techniques are applied at the

training-stage, the combination techniques are applied in the classification-stage. Thus, for a given

decomposition technique, as it will be shown later on, usually several combination techniques may

be applied.

2.3.1 Decomposition methods for multiclass classification

One versus rest

According to the one-versus-rest strategy [10] one classifier is trained for each class ki to discriminate

it from the other classes. The training samples available for that class become the positive samples

while the negative samples are all the training samples belonging to the rest of the classes. This

method is characterized by the following properties:

• Reduced number of classifiers: the number of classifiers that need to be trained grows linearly

with the number of classes K.

• Large training sets: all the training samples are used for the training of each SVM. Hence,

even though the number of available samples for each class is not too high, when the number

of classes K is considerable, training on very large datasets is often required.

• Classifiers are trained on very unbalanced datasets: independently of how the training data

is distributed over the different classes, the one-versus-rest approach always produces very

unbalanced training sets. The reason is that the number of negative samples used to train any
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classifier is in average significantly higher than the number of positive ones. For example, in

the case of phonetic classification in the English language, it is clear that there are significantly

fewer training samples available for any given phonetic class than for the remaining ones.

However, in order to train on balanced datasets it is possible to carry out a sample selection

procedure on the negative set of samples with the intention of using as negative evidence only

the subsets of negative samples that are more informative. The problem is that it is not clear

how to determine an effective selection criterion.

One versus one

In the one-versus-one approach [11] one classifier is trained to separate each possible pair of classes

(ki, kj), being the positive training samples those of ki and the negative samples those belonging

to kj . Hence, if the total number of classes is K, the number of classifiers that need to be trained

is K(K − 1)/2. This decomposition strategy presents the following properties:

• Considerable number of classifiers: the number of pairwise classifiers that need to be trained,

(K(K − 1)/2), grows quadratically with the number of classes K.

• Relatively reduced training sets: each classifier is trained using only training samples be-

longing to a pair of classes, being the rest of the samples excluded from the training of that

classifier.

• Classifiers are trained on relatively balanced datasets: the degree of how balanced the datasets

are is relative to the distribution of the training samples across the different classes and is

independent of the total number of classes K.

Part versus part

This strategy, proposed in [12], goes one step further than the one-versus-one strategy by splitting

the two-class binary problems into smaller binary subproblems. The training samples belonging to

each of the classes involved in a binary classification problem are split into a number of disjoint

subsets (or clusters) which size is selected based on two criteria:
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• Number of samples of each class must be balanced. Thus, splitting a binary problem into

smaller subproblems will result in a larger number of subsets of the class for which more

training samples are available.

• Computational power available: the more limited the resources the smaller is the upper bound

of the number of samples that are taken from each class to train a classifier.

In [12], training samples belonging to a class are assigned randomly to different clusters. How-

ever, a clustering procedure based on samples similarity or prior knowledge (when available) may

potentially produce more homogeneous clusters at the expense of preprocessing time. This part-

versus-part decomposition strategy presents the following properties:

• Great number of classifiers (with respect to other strategies), which depends on the stopping

criterion used for the splitting.

• Classifiers are trained on very balanced and small datasets: this is clearly a desirable feature.

One of the interesting properties of a balanced dataset (other than the fact that the decision

function resulting from the training typically generalizes equally well for samples of both

classes) is that it allows an efficient parallelization of the training processes when multiple

processors are available.

• It is not clear how to determine the stopping criterion for the splitting4, which may depend

on the task.

Once all the required SVMs are trained, they can be combined to make the final call using a

min-max modular (M3) SVM.

2.3.2 Combination of classifiers

In the previous section, several strategies have been described that can be utilized to select the

set of classifiers that are trained for separating K classes in a multiclass classification task. In

this section, the most widespread methods for combining the output of those classifiers to label an

unseen sample are described.
4It can be done empirically, however it would suppress all the advantages of the method.
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Distance-based method

Maybe the simplest combination method consists in using directly the distances produced by the

SVM classifiers to make the final call. This method is typically used along with the one-versus-

rest scheme. Once the K classifiers have been trained and evaluated for a given input sample x,

the sample is classified as belonging to the class with the largest positive distance as described

in [13]. The underlying idea is that samples closer to the decision boundary are more likely to

be outliers. However, distances produced by SVMs are uncalibrated values so their direct usage

for classification, may not produce satisfactory results. Other, more interesting, strategies will be

discussed next.

Voting scheme

This method was initially proposed in [14] and applied to SVMs with excellent results in [15]. The

method consists of training pairwise classifiers as described in 2.3.1 and evaluating all of them so

each class receives a vote for each positive evaluation. Finally the class with more votes is selected

to label the input sample. The main advantage of this scheme if its simplicity, however it considers

the output of a SVM as a binary value −1, 1, and does not make use of the information that can

be potentially extracted from the distance values (i.e. large distances to the separating hyperplane

are typically indicators of more reliable predictions).

DDAGs

A Decision Directed Acyclic Graph (DDAG) [16] is a learning architecture that is used to combine

many binary classifiers into a multiclass classifier. The DDAG contains K(K−1)/2 internal nodes,

one for each pairwise classifier trained, and K leaves, where K is the total number of classes.

The nodes are arranged so there is a single root node in the top and each non-leaf node has two

descendants. To classify an input sample x belonging to the feature space X, the binary function

(SVM pairwise classifier trained as described in 2.3.1) in the root node is evaluated, depending on

the result {+1,−1} the input is evaluated using the binary function associated to the left or right

descendant node, thus excluding one class on each transition. Once a leaf node is reached, the

input is classified as belonging to the class associated to the leaf. In Figure 2.3.2 a Decision DAG
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Figure 2.1: Decision DAG for four-classes classification.

for four-classes classification is depicted. The internal nodes and the root are represented by ovals

tagged with the pairwise classifier attached to them while the leaves of the graph are the set of

classes and are represented by boxes.

A Decision DAG is a natural generalization of a class Decision Tree, however since a leaf is

reachable by more than one path in the graph, it is not a tree but a DAG. While the binary functions

at the nodes of the DAG are the equivalent as that of Decision Trees, the graph representation

presents both computational and learning-theoretical advantages [16]. DDAGs guarantee that every

time a pairwise classifier is evaluated a class ki is excluded so only K − 1 evaluations need to be

carried out to label an input sample. For this reason, this method is considerably faster than the

voting scheme, where all the K(K − 1)/2 classifiers need to be evaluated to predict the class of an

unlabeled input sample.

Probabilistic approaches

Both the voting scheme and DAGS have proven good performance for multiclass classification,

however, while these methods only predict a class label, in many scenarios like speech recognition,

a probabilistic estimate for each class ki given an input sample x is desired. Once a class-posterior

probability p(ki|x) is computed for each class as described in section 2.2, the classification method
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is as follows: given an input x ∈ X where X is the feature space, it is classified as belonging to the

class k which receives the highest probability value. This is expressed in 2.21.

k = argmax
ki,i∈[1,...,K]

p(ki|x) (2.21)

In this section several methods for estimating the individual class-posteriors p(ki|x) are

reviewed.

First, consider the case of having a set of SVMs trained following the one-versus-rest strategy.

In this case, class-posterior probabilities p(ki|x) can be obtained in a straightforward fashion by

mapping the distance obtained from each of the K classifiers to a probabilistic value using expression

2.20. However, note that
∑
i

p(ki|x) = 1 is not guaranteed, and in fact it is very unlikely, so a last

step of probabilities normalization is needed once all the class posteriors are computed.

Now, the case of obtaining class-posteriors from SVMs trained following the one-versus-one

strategy will be considered. In this case, a very simple method consists of applying the voting

scheme described in section 2.3.2 and for each class ki divide the total number of votes received by

the total number of pairwise classifiers K − 1 trained for that class. This is expressed in 2.22.

p(ki|x) =
#voteski

(K − 1)
(2.22)

Note that, again, these probabilities are unnormalized.

A more convenient method consists of mapping the distance produced by each pairwise clas-

sifier SV M(ki,kj) using expression 2.20 to produce a “pairwise probabilistic” value p(ki|kj or ki,x).

Several mechanisms have been proposed in the literature [17][18] for combining these pairwise

probabilities into a class-posterior probability p(ki|x). In [19], a comparison of these methods, in

addition to the probabilistic version of the voting scheme previously mentioned, is carried out.

Results show that, while the voting scheme usually produces unsatisfactory results, the other three

methods are very stable having the one proposed in [17] the simplest implementation. This method5
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is expressed in 2.23.

p(ki|x) =

⎡
⎣ K∑

j=1,j �=i

1
p(ki|kj or ki,x)

− (K − 2)

⎤
⎦
−1

(2.23)

Note that class-posteriors obtained from 2.23 are unnormalized so a normalization step is needed

to make the summation of probabilities across all the classes equal to one. However, as it will be

shown in chapter 4, these unnormalized probabilities can be directly used as scores for comparing

competing sequences of feature frames in the case of a speech recognition system.

An interesting characteristic of this one-vs-one scheme is that most of the pairwise classifiers

that take part in the calculation of the class-posterior p(ki|x) of an input sample x, have not been

trained with samples of the actual class of x. Note that this is not the case of, for example, the

one-vs-rest scheme, in which all the models are trained using training samples from all the classes.

Particularly, according to equation 2.23, K −1 pairwise classifiers need to be evaluated to compute

each of the K class-posteriors p(ki|x). Considering that p(ki|kj or ki,x) and p(kj |ki or kj ,x) are

obtained from the same classifier, K(K − 1)/2 classifiers need to be evaluated, i.e. the whole set of

classifiers trained. However, out of those K(K − 1)/2 classifiers, only K − 1 were trained using the

actual class of x so the decision function of the remaining evaluated classifiers is not suitable for

separating the sample x from other samples. This, ultimately means that for a given input sample

x, the posterior probabilities p(ki|x) of most of the classes are calculated using a big number

of pairwise-classifiers that produce somehow “unexpected” probabilistic values. Nevertheless, the

success of this approach resides in the fact that the class-posterior of the actual class of an input

sample x is indeed calculated using only pairwise classifiers trained using samples of the actual

class.

Finally, note that a probabilistic scheme based on DDAGS is also possible. Although under

that scheme only the probability of the winning class can be fully computed (using for example

expression 2.23). The reason is that the winning class is the only class for which all the pairwise

posteriors p(kj |ki or kj ,x) are estimated once the tree has been traversed.

5Due to its satisfactory performance and simplicity, it will be the method of choice in this thesis for multiclass
probability estimation for continuous speech recognition using SVMs (see chapter 4).
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2.3.3 Comparison between the different strategies

While both the one-versus-one and the one-versus-rest strategies are probably the most widely

used for multiclass classification, there are substantial differences between them that make either

of them more suitable for a particular task. For this reason, a comparison between these strategies

will be carried out next. Additionally, some comments on the use of the part-versus-part strategy

will be added. The comparison will be performed in terms of classification accuracy and training

and testing time.

Classification accuracy

Although both the one-versus-rest and one-versus-one strategies result in very good classification

accuracy, the later has been reported to have slightly superior classification performance in a

number of tasks [9] [20] [21]. Note that, for standard classification tasks (i.e. class posteriors are

not needed), both the voting scheme and DDAGs produce good accuracy results and are the most

used. In the case of speech processing, one-versus-one classifiers have shown superior performance

to that of one-versus-rest classifiers for phonetic classification [22]. In chapter 4 a comparison of

different strategies for multiclass classification will be carried out for the case of MFCC feature

vectors classification.

In case that probability estimates are required, if pairwise classifiers are the selected de-

composition scheme, the method expressed in equation 2.23 has shown very good results compared

to alternative, more complex, probabilistic methods [23]. An additional comparison of different

probabilistic methods for solving multiclass problems can be found in [24].

Finally, the part-versus-part approach [12] has shown comparable classification accuracy to

the one-versus-one approach when the number of resulting clusters is reduced.

Training time

There are two main factors that strongly influence the time required to train the SVM classifiers

involved in a multiclass classification task:

• Number of samples used to train each classifier: it is well known that a strong drawback of

SVMs when used along with non-linear kernels is the training time scalability. The training
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of a SVM requires the solution of a quadratic problem which time complexity is superlinear

with the number of samples. Lots of efforts have been made and described in the literature

in order to optimize the computation of the solution to the quadratic problem, however this

is still a big drawback of SVMs6.

• Number of classifiers that need to be trained: it is obvious that, assuming that the classifiers

are trained on datasets of similar size (and complexity), the training time grows linearly with

the number of classifiers that need to be trained.

Table 2.1 summarizes these properties for both strategies discussed, where N is the number of

training samples and K is the number of classes.

Training strategy Number of classifiers Number of training samples
one-versus-rest K N
one-versus-one K(K − 1)/2 2N/K 7

Table 2.1: Comparison between the one-versus-rest and the one-versus-one strategies in terms of
number of classifiers and training samples per classifier.

In [9] a comparison in terms of training time was reported for different datasets, showing that

the one-versus-one clearly outperforms the one-versus-rest approach. This difference is highlighted

in datasets for which the number of classes is considerable, which causes a bigger difference between

the size of the training sets obtained following either approach. Similar results have been reported

in other works, thus indicating that the superlinear complexity of solving the quadratic problem

on larger datasets dominates the training time. For this reason, the one-versus-one strategy is

more appealing when dealing with large datasets for which the training time of the one-versus-rest

classifiers can be either huge or just intractable.

Training time is one of the most appealing features of the part-versus-part decomposition

method. As reported in [12], and assuming that a multiprocessor machine is available for carrying

out the training (i.e. it is possible to train several classifier in parallel), the training time can be

considerably reduced as the subsets of samples decrease in size. Nevertheless, as reported in [12]
6This will be discussed in section 7.1 for the case of speech-processing and feature vectors classification.
7Note that, since the distribution of the data across different classes depends on the task, this is an expected

value.
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this can only be achieved at the expense of a reduction in the classification accuracy. This point

and the fact that it is not clear how to determine the stopping criterion for the splitting, may be

the reasons that have prevented this method from becoming more popular.

Testing time

When it comes to measuring the testing time of different approaches the first consideration is

that, in general, the testing time is dominated by the number of kernel evaluations K(x1,x2). In

particular, the testing time can be considered as linear with the number of unique support vectors

that need to be evaluated to classify a given input sample. Given that a support vector is always

a training sample, classifiers trained with samples from the same class can potentially share a big

number of support vectors. This circumstance can be exploited in order to reuse kernel predictions

during classification as well as other speed-ups as will be shown in section 7.3.1. It is for that reason

that the number of unique support vectors, and not the total number of support vectors obtained

from the training of the different classifiers, is what really determines the testing time. However, in

some scenarios (and that is the case of cepstral features classification as will be described in section

4), in order to obtain the best classification accuracy, pairwise classifiers need to be trained using

different kernel parameters what prevents a direct reuse of kernel evaluations.

For example, when the number of classes K is big, the one-versus-one strategy produces a

considerable higher number of support vectors compared to the one-versus-rest strategy, however

many of those support vectors are identical so only participate in a single kernel evaluation that is

reused across classifiers’ evaluations. In this scenario, and always under the assumption that a big

number of classes are involved, the number of Lagrange multipliers (which is linear with the total

number of support vectors disregarding repetitions across classifiers) also plays an important role

in the testing time.

In the case of one-versus-rest classifiers, disregarding the technique employed (i.e. using the

distance directly or mapping it to a probability value) all the classifiers need to be evaluated to

predict an input sample. However, in the case of one-versus-one, the utilization of DDAGs only

implies the evaluation of K−1 classifiers to label an input sample, thus resulting in a big reduction

of testing time. As reported in [9], this reduction becomes more significant for larger values of K.
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2.3.4 Summary and conclusions

The application of SVMs to multiclass classification tasks has received the focus of research effort

in recent years. As a consequence of that a good number of techniques have been developed and

evaluated in a wide range of scenarios. In this section some of the most important ones have

been analyzed from different perspectives: classification-accuracy, trainability and evaluation-time.

Decomposition techniques have shown very good performance in a number of tasks and are by far

the most utilized. While the one-vs-one technique presents trainability and classification accuracy

advantages, it produces a number of classifiers that is quadratic with the number of classes. In

the other hand, the one-vs-rest strategy exhibits slightly worse classification accuracy and serious

trainability issues when dealing with large datasets. However, it presents clear advantages in terms

of evaluation time. The suitability of both techniques is mostly task-dependent and will be discussed

in the next chapters.
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Chapter 3

SVMs for Speech Processing

Support Vector Machines (SVMs) [1] are a well-established machine learning technique that, due

to their remarkable generalization performance, have attracted much attention and gained exten-

sive application in many fields including speech processing. Unlike other traditional techniques

like Artificial Neural Networks (ANNs), SVMs perform both an empirical and a structural risk

minimization over the training set, resulting in better generalization.

The idea of modeling the acoustics of speech using discriminative classifiers already showed

very appealing results in the case of ANNs [25] [26]. Nevertheless, ANNs-based techniques, have

shown some limitations when applied to speech processing [27] [28] that have impeded their

widespread adoption and have made them fail to replace conventional GMM/HMM approaches.

Among their limitations are the following:

• ANNs tend to overfit the training data, which compromises their generalization ability. This

happens when the capacity of the network significantly exceeds the needed free parameters.

• Slow convergence during the learning. This is typically addressed by carefully selecting a big

enough gradient and an adequate network topology.

• Search space may present multiple local minima.

• The selection of an optimal network topology (number of layers and units) may not be easy

and may vary with the application.
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In the other hand, maximum margin classifiers, like SVMs have shown a very good general-

ization performance8 and only a few training parameters need to be selected (i.e. the error penalty

C and the kernel parameters). Additionally the training of SVMs guarantees to find the optimal

solution (see chapter 2). What also makes SVMs more appealing than ANNs is that the capacity

of the model is automatically determined during the training process and it depends only on one

parameter (the regularization parameter C) that controls the trade off between misclassification on

the training set and the complexity of the decision function. This parameter can be easily estimated

from the training material doing cross validation. In the other hand, while finding a convenient

neural network topology is not straightforward and typically is task-dependent, selecting a suitable

kernel in the case of SVMs may be seen as an analogous problem when no prior information of

the input data is available. Nevertheless, polynomial and gaussian kernels have shown very good

performance in most scenarios.

However, the connection between ANNs and SVMs is undeniable and, in fact, a nonlinear

SVM using a sigmoid kernel (see section 2.1.2) is completely equivalent to a two-layer neural

network in which the optimal number of units in both layers is automatically determined during

the training process. Nevertheless, SVMs still present some drawbacks, among which, the training

time scalability and the complexity of the decision function (that is expressed as a function of a

subset of the training samples) are maybe the most critical.

First applications of SVMs to speech processing were focused on simple classification tasks,

like phonetic classification [22] in which SVMs already showed very promising results. Afterward,

SVMs have also been successfully applied to other classification tasks like rejection [29] [30] or

speaker verification [31]. In recent years, several Automatic Speech Recognition (ASR) systems

have been proposed, in which SVMs are used as statistical estimators rather than just for standard

pattern classification. While some of these systems are just used for hypothesis rescoring on top of

a conventional GMM/HMM decoder [32] [33], other systems [34][35][36], make use of SVMs during

the decoding process to replace Gaussian Mixture Models (GMMs) in the calculation of emission

probabilities at each of the states of a given word-level or phone-level HMM. For example, in [35], a
8In recent years, motivated by the excellent generalization performance of large margin classifiers, very successful

discriminative training techniques to estimate the parameters of HMMs have arisen. This will be commented later
on in this chapter.
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hybrid system based on word-level HMMs is used for digit recognition under noisy speech showing

a superior performance compared to a conventional GMM/HMM paradigm.

This chapter is dedicated to outline the state-of-the-art on the application of SVMs to speech

processing as well as discussing the most promising techniques and their target scenarios.

3.1 Modeling the temporal structure of speech

One of the main difficulties that speech processing techniques face, and so is the case of SVMs,

is how to deal with the variable length of the speech units (phones, syllables, words, etc) under

consideration. Typical techniques used for speech parameterization (like MFCC, LPC or PLP) use

a fixed length window (of about 25ms) to extract feature vectors of fixed dimension. Consecutive

feature vectors are computed by shifting the window (typically at intervals of 10ms) until the end of

the parameterized utterance is reached. Given this parameterization scheme, it is clear that speech

units of different length result in variable length sequences of feature vectors. It is well known that

this problem, also present in other temporal pattern recognition tasks like handwriting or gesture

recognition, can be addressed using HMMs.

In the case of SVMs, which assume that the input samples are feature vectors of fixed

dimension, several techniques have been proposed to integrate them into the classification of variable

length sequences of feature vectors. This section is dedicated to outline some of the most relevant

techniques proposed to date and establish a comparison between them.

3.1.1 Normalization methods

These methods consist in normalizing the variable length sequence of feature vectors into a fixed

length feature vector that can be used as input for the SVMs. An example of normalization method

is the averaging method proposed in [32], that lies in the assumption made by the HMM modeling

that speech segments (phones in [32]) are composed of a fixed number of sections. Under this

assumption the idea consists in using the time-alignment information produced by a conventional

HMM/GMM Viterbi aligner to extract phone-level feature vectors. These vectors are obtained

by averaging the feature vectors (typically MFFC vectors) corresponding to time frames aligned
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to each of the HMM states, and concatenating these average vectors to create a composite vector

representing the phone. Note that, the resulting phone-level feature vectors have a dimensionality

n times larger than the original feature-vectors, where n is the number of HMM-states. While

this averaging approach results in a very compact representation of the training data, allowing

for a fast training of the SVM models, it can’t be decoupled from the GMM/HMM system that

produces the state alignments. Additionally, two systems need to be trained on the same data, a

GMM/HMM system and the set of SVMs. SVM-based systems like this, which work in conjunction

with a conventional GMM/HMM system, will be referred in the following as hybrid systems. A clear

drawback of hybrid systems is that they rely on the alignment made by a conventional GMM/HMM

system so errors resulting from a bad alignment can hardly be recovered by the SVM classifiers.

3.1.2 Fisher-kernels

A very popular technique for dealing with the variable length of speech sequences is the Fisher

Kernel [37]. This technique combines the advantages of generative statistical models (like the

Hidden Markov Models) and those of discriminative methods (like Support Vector Machines). The

Fisher Kernel approach has been successfully applied to speech signals in several tasks like audio

classification [38] or speaker verification [39] [31]. In the case of speech, the idea consists of using

GMMs to calculate emission probabilities as an intermediate step to generate fixed-length feature

vectors, which can be used as input for a SVM classifier. Given an utterance composed by the

sequence of feature vectors X = {x1, . . . ,xl} and assuming that each vector in the sequence is

independent and equally distributed, the Likelihood of the utterance can be defined as P (X|θ) =∏l
i=1 p(xi|θ), where each p(xi|θ) is obtained from the corresponding mixture of gaussians. The

procedure of mapping an utterance X (that can be a phone, word, sequence of words, etc) to a

fixed-length vector is carried out using the Fisher score, as expressed in 3.1.

UX = ∇θ log P (X|θ) (3.1)

Each of the parameters of the fixed length vector UX is the derivative of the log-likelihood of the

utterance X with respect to a given parameter of the generative model (mixture of gaussians).
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Once a fixed length feature vector has been obtained for each utterance using the Fisher score,

these vectors can be used to train a SVM classifier.

This procedure presents similar drawbacks to those of normalization methods, i.e. necessi-

tates the training of generative models in addition to the SVMs. Nevertheless it has shown very

good results on several tasks.

3.1.3 SVM/HMM approaches

A very natural technique to deal with variable-length feature vectors consists of using SVMs classi-

fiers as probabilistic estimators to compute class-conditional probabilities (also known as emission

probabilities) while preserving the utilization of HMMs to model the time-varying structure of

speech (i.e. SVMs are used as statistical estimators replacing the widely adopted mixture of Gaus-

sians). A complete procedure for the calculation of emission probabilities using SVMs will be

described in the next chapter.

This notion of using discriminative classifiers to estimate emission probabilities shares some

of the motivations of using discriminative training (and specifically large-margin discriminative

training (LMDT)) instead of Maximum Likelihood Estimation (MLE) for training the parameters

of HMMs. Some of these motivations are listed below:

1. GMMs trained following the Maximum Likelihood Estimation criterion do not provide optimal

speech classification because the real distribution of speech data is unknown.

2. MLE does not directly minimize word or phoneme recognition error rates and often does

not provide the decision boundaries in terms of minimizing the error rates. A discriminative

training criterion is, thus, more closely related to the recognition error rate.

Different discriminative training criteria have been adopted over the last decade to replace

the MLE criterion in the training of HMMs parameters for improved accuracy. While some of

these methods: Maximum Mutual Information [91], Minimum Classification Error [92] or Minimum

Phone Error [93] are based on the minimization of the classification error on the training set, recent

techniques based on large-margin discriminative training (LMDT) (see [94] for a complete review

of these techniques) allow better generalization on the test set. Given that SVMs are a very
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well known example of the excellent generalization performance resulting from large margin based

training, they seem to be very good candidates to work as probabilistic estimators for emission

probabilities.

3.1.4 Comparison between the different methods

Maybe the main advantage of the SVM/HMM approach is that it is especially suitable for continu-

ous speech recognition, where the starting and ending times of the units under recognition (words,

phones, etc) are unknown in advance. Since most state-of-the-art ASR systems are based on HMMs,

this point needs no further justification. In the other hand, note that normalization methods as

the one described in section 3.1.1 or the Fisher Kernel, can only be applied on a variable-length

sequence of feature vectors which starting and ending time frames are previously known. In such

a situation, building an ASR system using either of those techniques would require considering all

the hypothetical starting and ending times for a given sequence of feature-vectors without reusing

computations, which seems to be impractical. Summarizing, HMMs assume independence between

adjacent feature vectors, which allows the application of dynamic programming techniques and

thus reusing computations at the frame level, which is of major importance in continuous speech

recognition.

However, when it comes to classification tasks (like phonetic/audio classification or speaker

verification) the SVM/HMM approach is less appealing than Normalization approaches or the

Fisher Kernel. The reason is that a SVM/HMM system, as it is the case of a GMM/HMM system,

makes the assumption of conditional independence between adjacent feature vectors. In the other

hand, normalizations schemes or the Fisher kernel take advantage of the correlation of adjacent

feature frames.

3.2 An example on the utilization of SVMs for speech processing

In this section, in order to highlight the excellent performance of SVMs in speech processing tasks,

a novel application of SVMs to speech classification will be described. The application is based on a

novel method for automatic pronunciation error detection of childrens speech. The next subsections
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are dedicated to introduce the method proposed, describe the experimental setup, show the results

and finally, draw conclusions.

3.2.1 Introduction

Typical speech recognition systems tend to average across pronunciation variances in order to min-

imize the word error rate (WER). However, in some educational situations, reading and language

learning in particular, the pronunciation of a word may be of the utmost importance. For example,

if children are asked to say the opposite of the word “down”, their semantically different responses

should be easy to judge with current speech recognizers (e.g. “up,” “low,” “there”). But, if chil-

dren are asked to read the word “down,” their phonologically similar responses require a different

kind of system, a pronunciation error detection system that can discriminate the correct response

from phonologically close errors (e.g. “down,” “drown,” “dawn”). Work in our Center (Center for

Computational Language and EducAtion Research, (CLEAR)) in assessing and remedying reading

difficulties will benefit enormously from such a system [95]. A computer system can easily and

reliably score childrens word reading independently in forced-choice exercises where the program

pronounces a word, and the child chooses the correct item among carefully chosen distractors. How-

ever, reading recognition and reading production are different processes, and an assessment system

limited only to recognition would be an impoverished one. In the following it will be described

a pronunciation error detection technique in the context of a word reading task, whose goal is to

develop an Independent Comprehensive Adaptive Reading Evaluation called ICARE [96].

Previous work in pronunciation scoring [97][98] has shown that scores based on phone-level

posteriors outperform alternative scores that make use of normalized phone duration or Hidden

Markov Models (HMMs) log-likelihood. In [97] a measure for the quality of the pronunciation of a

phone, called GOP (Goodness Of Pronunciation) was introduced. As expressed in 3.2, this measure

consists of normalizing the logarithm of the phone-level posteriors by the phone duration. NF is

the phone duration in terms of the number of frames aligned to the phone.

GOP (ph|X) =
|logp(ph|X)|

NF (ph)
(3.2)

According to Bayes rule 3.3 phone posteriors p(ph|X) can be calculated from the acoustic
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scores p(X|ph), the phone prior probabilities p(ph) and the probability of the sequence of observa-

tions p(X).

p(ph|X) =
p(X|ph)p(ph)

p(X)
(3.3)

Unfortunately p(X) is unknown so in the case of pronunciation scoring [97][98] phone pos-

teriors are usually estimated normalizing the acoustic scores as expressed in 3.4. This procedure

consists of dividing the acoustic score of the target phone by the acoustic score of the competing

phones 3.3. P is the set of phonetic symbols.

p(phi|X) =
p(X|phi)p(phi)∑

phj∈P

p(X|phj)p(phj)
(3.4)

Given its proven good performance this measure has been selected as the baseline feature

for the system.

The pronunciation scoring system proposed here uses information contained in phone graphs

to calculate three different phone-level features, which are ultimately combined to produce word-

level pronunciation scores. The features are the following:

• Phone posteriors calculated over phone graphs using the forward-backward algorithm as de-

scribed in [44]. This is an alternative method to 3.4 for calculating phone posteriors using

HMM/GMM acoustic scores.

• Phone posteriors calculated using SVMs trained with segmental features (See section 3.1.1).

• Phone-level scores obtained from frame-level posteriors. Pairwise SVM models trained with

cepstral features are used at the frame-level to calculate the posteriors of each of the competing

phone classes in the graph.

These phone-level features, in addition to the GOP feature used as baseline, are ultimately used

by the scoring module to produce word-level pronunciation scores and make the final decision of

whether to accept or reject the word pronunciation. The system is divided into three modules: the

phone graph generation module, the features extraction module and the scoring and classification
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module. These modules are described in the following sections.

3.2.2 Generation of the phone graph

Generation of
the initial
graph of
phones

Search the
graph for
admissible

pronunciations

Force
alignment

Insert the
alignment into

the graph

Features
extraction

Figure 3.1: Block-diagram of the graph generation process.

For each audio file containing a word realization, a phone graph is generated containing

at least one admissible pronunciation (phonetic transcription) of the word to score in addition

to other sequences of phones that align with a high likelihood to the speech segment. Graphs

containing high likely competing sequences of phones allow the extraction of high quality features

as will be described in the next section. The block-diagram corresponding to the phone graph

generation process is depicted in figure 3.1. Initially, Sonic, the speech recognition system [41] is

used to generate a phone graph. Given that many phone sequences are not possible in the English

language, the search is slightly constrained using a discounted phone-based trigram language model.

The language model is trained using text corpora extracted from English text books and the

admissible pronunciations of the 138 target words included in the vocabulary. The acoustic models

are trained on a corpus of read children’s speech [42]. Given that the intention of the system is

to score children’s pronunciation quality with respect to children’s native pronunciation quality,

only native speakers are used to train the acoustic models. The graph of phones produced is

expected to contain admissible pronunciations of the word to score. However, disregarding the

quality of the pronunciation, the phone graph does not always include a phonetic transcription of

the word to score. Using a set of phonetic transcriptions selected by linguists to capture admissible

pronunciations of the word to score, a multiple pronunciation (MP) phone graph is built. By doing

a text alignment between the MP graph and the one generated by Sonic it is possible to check

if the later contains at least one admissible pronunciation of the word to score. The algorithm

used to perform the alignment is very similar to the one proposed in [43], however, since no edit
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errors are allowed, the algorithm performs very fast. In case no pronunciation of the target word

is found, a forced alignment between the audio segment and the graph of multiple pronunciations

is carried out using the align tool of Sonic. State alignment information and phone-level acoustic

scores resulting from the alignment are used to insert the alignment in the phone-graph.

Finally, note that this procedure allows the insertion of typical mispronunciations of a word

used as distractors that can be obtained using language specific rules or information extracted from

the training data.

3.2.3 Features extraction

Several features have been selected for scoring the word pronunciations. In this section it will be

discussed the process of extracting those features.

Phone-graph based posterior probabilities

Following the process described in [44] a posterior probability has been generated for each of the

phones contained in the graph. The posterior probability of a phone p([ph; s, e]|X) can be calculated

as expressed in 3.5 by summing up the posterior probabilities of all paths in the graph of length M

which contain the hypothesis [ph; s, e]. Where [ph; s, e] is the phone starting at time s and ending

at time e, and X = {x1, ..., xT } is the acoustic observation sequence against which it is aligned.

p([ph; s, e]|xT
1 ) =

∑
[ph;s,e]M1 :∃n∈{1,...,M}:

[phn;sn,en]=[ph;s,e]

M∏
m=1

p(xem
sm

|phm)αp(phm|phm−1)β

p(xT
1 )

(3.5)

In the following p([ph; s, e]|X) will be used as a phone-level feature referenced as Cm. While

the use of a phone-based language model helps in the lattice generation process given that many

phone sequences are not possible in the English language, the language model probability has not

been used for the calculation of the posteriors, so the scaling factor β in 3.5 receives a value of 0.
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SVM based phone posteriors

As introduced at the beginning of this chapter, previous work has shown that SVMs can be used

as reliable estimators of the posterior probability of a speech segment [45][46]. SVMs can be used

as probabilistic estimators by mapping the margin or distance they produce to a posterior class

probability using a sigmoid [47]. As previously mentioned in section 3.1, one of the main difficulties

when applying SVMs to speech classification is how to deal with the variable length of the speech

units under classification. Fisher Kernels have been proposed to address this problem using GMMs

as an intermediate step to generate fixed length feature vectors to be used as input for the SVM.

However, in the case of phones, a very straightforward technique has shown very good performance

[45]. This technique consists of averaging the feature vectors (typically cepstral features) aligned

to each of the states of a phone and then concatenating the average vectors to create a composite

vector. The resulting composite vector has a dimensionality three times larger than the original

vectors. For simplicity, the second strategy has been selected; it is expressed in 3.6.

psegments(ph|xT
1 ) = p(ph|composite(x)) (3.6)

SVMs are trained following a one-vs-rest approach so one SVM is trained for each of the

phonetic classes used.

SVM based frame level posteriors

In this case, SVMs have been used to estimate posteriors at the frame level using only frame-level

competing candidates in the graph. For each time frame, the phone classes aligned to that frame

in the phone graph are used to calculate the frame posteriors. According to the state alignment

information present in the graph, each time frame can be aligned to one out of K different classes

(that correspond to each of the HMM states of the phonetic symbols used). Given that for a given

time frame only a (typically small) subset K ′ of the K classes is present in the graph, a one-vs-one

strategy has been selected for training the SVMs. One-vs-one SVMs learn the decision boundary

between two classes, so a different model needs to be trained for each pair of classes. Thus, the

resulting number of SVMs is K(K − 1)/2. If ki is one of the K ′ classes, the posterior probability
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of ki given an observation x can be computed (as previously introduced in section 2.3.2) using

equation 3.7.

p(ki|x) =

⎡
⎣ K∑

j=1,j �=i

1
p(ki|kj or ki,x)

− (K ′ − 2)

⎤
⎦
−1

(3.7)

Finally, as expressed in 3.8, a confidence measure Cf is calculated for each phone by aver-

aging its frame level posteriors. S represents the number of states of the HMM.

Cf (ph|xT
1 ) =

S∑
s=1

ts∑
t=t1

p(kph,s|xt) (3.8)

3.2.4 Experimental procedure

Speech Material

The speech material used in the experiments is divided in two parts. The first part, used exclusively

for training purposes, consists of about 4 hours of read speech of first graders (171 different speakers)

from the CU Read and Summarized Story Corpus [42]. This corpus has been used to train the

HMM/GMM acoustic models used by Sonic to generate the phone graphs and to train the phone-

level and frame-level SVM classifiers described in sections 3.2.3 and 3.2.3 respectively.

The second part is a corpus of read words annotated for pronunciation scoring. It consists

of 2340 pronunciation instances of 138 unique words from 99 poor readers in Kindergarten through

5th grade. Readers ages ranged from 51/2 to 11 years old with average 7 years. There were 55 males

and 44 females.

The pronunciation instances were transcribed at the phone level with 1816 scored as correct

and 524 scored as incorrect by two experts. For the task, the 99 readers had been presented printed

words to read, one at a time, with no time limit, by the ICARE program. Words ranged from easy

monosyllabic letters and orthographically regular or high frequency words, to more challenging

multisyllabic and orthographically irregular ones. Children began with words estimated to be at

their reading level from another test [48], and then the program used a skipping algorithm that

established a basal of 5 letters or words in a row correct at the low end of the list, presented all

words in order in the middle, and continued until 5 of the last 7 words were missed to establish a
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ceiling level. Since this corpus may be considered too small to achieve reliable speaker-independent

results, we have used 5-fold cross-validation to artificially extend it, averaging the results afterward.

Particularly, we have divided the corpora into 5 balanced speaker-disjoint subsets. One different

subset is kept for testing in each fold, while the remaining ones are used to train the word-level

classifiers described in previous sections.

SVMs training

In this section, the training process of the phone-level and frame-level SVMs described in sections

3.2.3 and 3.2.3 respectively is briefly described. For every speech utterance present in the training

set, 39-dimensional feature vectors, consisting of 12 Mel Frequency Cepstral Coefficients and energy

plus first and second order derivatives, have been extracted. Using a Viterbi aligner, segmental

and frame level features have been extracted and used to train the SVMs. The SVM-library used

is LibSVM [49]. A radial basis function (RBF) kernel is used for which the parameters C (error

penalty) and γ are estimated on the training set following a “grid-search” process using 5-fold cross

validation.

Evaluation Metric

For each word, phone level features are extracted as described in section 3 and a classifier as

described in section 4 attaches a correctly pronounced tag if the word-level pronunciation score is

above the fixed threshold or an incorrectly pronounced tag otherwise. The metric used to evaluate

the performance of the system is the Detection Error Rate (DER), defined as the total number of

incorrectly assigned tags divided by the total number of scored words:

DER =
#incorrectly assigned tags

#scored words
(3.9)

Results

The experiment carried out evaluates the quality of the phone-level features proposed for pronunci-

ation scoring in terms of DER. Four sets of SVMs like the ones described in section 4 are trained to

produce word-level pronunciation scores using each one of the three phone-level features proposed
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Feature DER Relative error reduction
GOP (baseline) 0.2013

Cm 0.1987 1.29%
Cf 0.1772 11.97%

Psegments 0.1584 21.31%
Cf and Psegments combined 0.1552 22.90%

Table 3.1: Detection Error Rate for the system using each of the features proposed and the baseline
feature.

in section 3 plus the GOP feature. These SVMs are used to score each one of the 2340 words in

the test set following the cross-validation process described in section 4.1.1. Table 1 shows DER

results using each of the features separately.

As can be seen in Table 3.1, two of the proposed features clearly outperform the baseline.

However the Cm feature yields a very similar performance compared to the baseline. This is not

surprising since both of them are based on phone-level posteriors calculated doing a normalization

of HMM/GMM acoustic scores over competing phone candidates. On the other hand, the SVM-

based features (Cf and Psegments) clearly outperform the baseline with a 11.97% and 22.90% relative

error reduction, respectively. Figure 3.2 shows a Detection Error Tradeoff curve for each of the

features. This curve shows the percentage of false acceptations (mispronunciations tagged as correct

pronunciations) against the percentage of false rejections (correctly pronounced words tagged as

mispronunciations) for different values of the threshold. As can be seen the new proposed features

significantly increase the system operating range.

3.2.5 Conclusions

It has been introduced a novel technique for pronunciation error detection based on the combination

of several phone-level features extracted from phone-graphs. These features have been combined

using SVMs to produce word-level pronunciation scores that can be used to determine whether a

word has been correctly pronounced.

Pronunciation scores computed following these procedures have shown superior performance

compared to state-of-the-art ones. In particular, the combination of two of the features proposed

achieves a relative error reduction of 22.9%. From these results it can be concluded that phone-
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Figure 3.2: Detection-error-tradeoff curves for each of the features proposed and the baseline.

graphs are a suitable representation of competing sequences of phones for a given speech utterance,

that can be effectively used to extract high quality phone-level features to be used for pronunciation

scoring.

From the point of view of SVMs applied to speech processing, the proposed technique shows

that SVM-based features can be effectively utilized in a variety of speech classification tasks.

As far as the pronunciation error detection technique (as a whole) is concerned, future work

will aim to improve the detection rate and further detect not only whether a childs reading response

is correct, but also whether the error is among the most common error patterns. This information

can provide diagnostic information about common patterns such as sound reversals, additions,

deletions, or substitutions that can help guide instruction by teachers or programs.
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Chapter 4

SVMs for Continuous Speech

Recognition

4.1 Introduction

Although a growing number of speech processing applications have benefited from the use of SVMs

(especially for classification tasks) its effective application to continuous speech recognition in a

stand-alone system is still pending. In this chapter, a basic architecture for a SVM/HMM contin-

uous speech recognition system will be described. Additionally, experiments will be carried out in

order to evaluate this architecture and a discussion will take place in order to expose its advantages

and disadvantages respect to conventional GMM/HMM systems.

Nowadays, the vast majority of state-of-the-art Automatic Speech Recognition (ASR) sys-

tems model the acoustics of speech using GMM/HMM acoustic models. The speech signal, can

be viewed as a piecewise stationary signal or a short-time stationary signal, thus, it is possible to

assume that in a short period of time in the range of 10 milliseconds, speech can be approximated as

a stationary process. These small segments of speech can thus be encoded into real-valued feature

vectors of fixed dimension using a wide variety of techniques (MFCC, LPC, PLP, etc). Left-to

right HMMs (see figure 4.1) are then used to estimate the probability that a sequence of these

vectors is produced in the realization of the phonetic or lexical units (phones, syllables, words, etc)

used in the recognition. At each of the HMM-states, the probability of observing a feature vector
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... s1 s2 s3 ...

Figure 4.1: Three-state left-to-right Hidden Markov Model.

(emission probability) is typically calculated using a mixture of diagonal covariance Gaussians.

The probabilities of transitioning between HMM-states (transition probabilities) along with the

emission probabilities can be estimated using the Expectation Maximization Algorithm (EM) [50]

[51]. During decoding, the estimation of the probability of a sequence of phonetic or lexical units

is carried out concatenating the corresponding HMMs into a composite HMM.

As it was previously introduced in chapter 3, a natural mechanism for the application of

SVMs to continuous speech recognition consists in using them as statistical estimators of emission

probabilities instead of GMMs, which results in a SVM/HMM system. Based on that idea, a

hybrid SVM/HMM continuous speech recognition system was proposed in [36] in which GMMs

are replaced by SVMs in the computation of the emission probabilities of each of the states of

phone-level HMMs. While such system yields better recognition accuracy than a comparable9

GMM/HMM speech recognizer, it still presents several limitations:

1. It relies on the transition probabilities between HMM-states obtained from acoustic models

trained using a conventional GMM/HMM system. This connection with a GMM/HMM

system (that needs to be trained in advance) makes this system fall into the category of

hybrid systems.

2. It does not make use of phonological similarity information when training the classifiers.

3. The one-versus-one strategy that was selected for training the SVM classifiers, while outper-

forming other strategies in terms of word accuracy [52], it requires the evaluation of several

thousand pairwise classifiers at any given time frame during decoding.

4. Context dependency was not modeled, furthermore, no such attempt has ever made in the

literature in the case of SVMs and continuous speech decoding, so it is not clear how to

address this issue.
9The system proposed in [36] does not model context dependency so it was compared to a monophones conventional

system.
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In this chapter a stand-alone SVM/HMM system that overcomes some of the limitations10

of the system proposed in [36] will be described and evaluated. Some of the main characteristics

of the proposed system are the following:

• It does work as a stand-alone system. In fact, its only connection with a GMM/HMM system

is the state-alignment required in the segmentation of the training data used to train the

SVM classifiers. However this connection is not that because hand-labeled speech corpus like

TIMIT can potentially be used to generate a set of bootstrap models.

• It performs speech recognition and not hypothesis rescoring (in contrast with other systems

like [32]).

• It is a continuous speech recognition system (in contrast with isolated recognition approaches

like [34] or [35]).

• It does not make use of transition probabilities extracted from acoustic models trained using

a conventional GMM/HMM system (in contrast with the system proposed in [36]). For this

reason, it can not be considered a hybrid approach but an independent system.

4.2 System’s Description

The main difference between the SVM/HMM ASR system proposed in this chapter and a conven-

tional GMM/HMM one lies in how the acoustic modeling is carried out. This section is devoted

to describe the acoustic modeling in terms of how the emission probabilities p(x|ki) of each of the

HMM-states ki are calculated, how transition probabilities are modeled and what are the topologies

selected for the HMMs.

4.2.1 Emission probabilities computation

Calculating emission probabilities for HMM-states using SVMs comprises basically two steps. First,

given that SVMs are binary classifiers, a multiclass-classification strategy must be adopted to sepa-

rate samples belonging to different HMM-states (which number depends on the size of the phonetic
10Other limitations of that system, like the use of phonetic similarity, the training/decoding time scalability and

the context modeling, will be addressed in the following chapters.
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symbols set and is obviously higher than two). However, it is not enough with attaching a class

(HMM-state) label to a given sample x as in standard classification, but a class-posterior proba-

bility value p(ki|x) needs to be computed for each of the classes ki comprised in the classification

process (i.e. for each of the HMM-states that are active in the Viterbi search at time t). Once these

class-posteriors are computed, they need to be transformed into class-conditional probabilities (also

known as emission probabilities) p(x|ki), which constitutes the second step.

This section is dedicated to the description of both steps.

Multiclass classification using SVMs

SVM classifiers are binary classifiers so for K-class (K > 2) separation tasks, like separating samples

belonging to different HMM-states, several SVM classifiers need to be trained. In particular, having

a phonetic symbol set of size P and S states for each of their corresponding HMMs, K = PS classes

need to be discriminated. Note that only a subset K ′ of the K HMM-states are active at any given

time frame in the Viterbi search, however, for simplicity, this consideration will be ignored in this

explanation. As described in section 2.3 there exist several methods for multiclass-classification.

Among all of them, the one-vs-one method based on training a pairwise classifier for each pair of

classes ki and kj (i.e. a total number of K(K − 1) classifiers need to be trained) has been selected,

the reasons are the following:

1. Pairwise classifiers have shown superior or at least comparable classification performance in

comparison with alternative strategies (see section 2.3) in a number of pattern recognition

tasks.

2. The pairwise scheme produces classifiers that, unlike those produced by the one-vs-rest

scheme, are trained on only a fraction of the whole training dataset, which can be han-

dled considerably more efficiently. Recall from section 2 that SVMs require a training time

superlinear with the number of samples. However, as it will be explored in section 7.1, a very

recent SVMs’ training technique allows a very efficient training in very large datasets what

might make one-vs-rest classifiers more attractive in this respect.

3. Pairwise classifiers allow a flexible decoding process by facilitating the removal of some of the
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classifiers from the emission probability calculation process. As it will be detailed in the fol-

lowing chapters, this fact can be exploited for doing state-tying and for dynamically selecting

the pairwise classifiers that contribute to the emission probabilities calculation process.

4. One-vs-one classifiers have already shown very good performance in hybrid SVM/HMM ASR

systems [35].

SVMs as probabilistic estimators

Under the pairwise framework, given an input sample x, each of the pairwise classifiers trained is

used to obtain a pairwise class-posterior p(ki|kj or ki,x). The procedure of mapping the output of

the SVMs to these probabilistic values was described in section 2.2. Those pairwise probabilistic

values can then be used to calculate the posterior probability p(ki|x) of each of the K classes (HMM-

states). This will be carried out, as described in section 2.3.2, using the following expression:

p(ki|x) =

⎡
⎣ K∑

j=1,j �=i

1
p(ki|kj or ki,x)

− (K − 2)

⎤
⎦
−1

(4.1)

according which only the pairwise classifiers trained for a class ki contribute to the computation of

its class-posterior.

Moving from class-posteriors to class-conditioned probabilities

In a conventional GMM/HMM ASR system, a mixture of gaussians allow for a direct calculation

of the emission probabilities, this can be summed up in expression 4.2 for the case of continuous

mixture density HMMs, where bj denotes a single Gaussian density function and cj is the weight for

the jth mixture component subject to the constraint 4.3. All of those parameters along with the

transition probabilities between HMM-states can be efficiently calculated using the EM algorithm

[50] [51].

p(x|ki) =
M∑

j=1

cjbj(x) (4.2)

M∑
i=j

cj = 1 (4.3)
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In the case of discriminative classifiers, like ANNs or SVMs, the situation is a little bit more com-

plex since they estimate class-posteriors p(ki|x) that, although very useful for classification tasks,

need to be transformed into class-conditional probabilities to be used for speech recognition. A

straightforward method to carry out this transformation was reported in [25] in the case of Arti-

ficial Neural Networks. The idea consists of taking the network outputs g(x), that are considered

as estimates of class-posteriors, and transforming them into class-conditional probabilities using

Bayes’ rule (see equation 4.4). The class-priors p(ki) can be obtained from the training material

by counting the examples of each class ki (i.e. counting phone occurrences). However, as pointed

out in [53], class-priors can be adjusted during the test phase to compensate for training data with

class probabilities that are not representative of actual use or test conditions.

p(x|ki) =
p(ki|x)p(x)

p(ki)
(4.4)

For the particular case of speech decoding, the term p(x) is normally omitted. The reason is that

speech decoding consists in the comparison of competing sequences of words that start and end

at the same time positions so the accumulated probability of the sequence of observations p(xt
1) is

the same for all of the word sequences at any given time t. Thus, expression 4.4 can be simplified

into expression 4.5, which combined with expression 4.1 can be used to calculate the emission

probabilities of each of the HMM-states.

p(x|ki) ∝ p(ki|x)
p(ki)

(4.5)

4.2.2 HMMs topology

Once the procedure of calculating emission probabilities for HMM-states has been clarified, it is

necessary to select the topology of the HMMs that will be used during the recognition process.

State-of-the-art ASR systems doing acoustic modeling at the phone-level (as it is the case of the

ASR system under consideration) typically utilize HMMs with a number of states ranging from

three to five. A larger number of states is expected to model the temporal structure of a speech

unit better, however it typically requires more training data to reliably estimate the increased

number of parameters and will produce a slower decoding. In the other hand a too small number
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of states may not model adequately the temporal structure of a speech unit.

In the case of SVMs, and especially if pairwise classifiers are the strategy selected for dealing

with the multiclass classification, an increase in the number of HMM-states has a critical impact

in the number of classifiers that need to be trained. In particular, this number grows quadratically

with the number of HMM-states, while the number of samples available to train the classifiers

only decreases linearly. Recall from section 2.3.1 that, under the one-vs-one scheme it is necessary

to train K(K − 1)/2 pairwise classifiers to solve a multiclass classification problem comprising K

classes. In this case, the number of classes K corresponds to the sum of HMM-states across all the

HMM-models, and can be expressed as K = PS, where P is the number of phonetic classes11 and

S is the number of states at each HMM. The number of classifiers that would need to be trained

for different HMM-topologies is shown in table 4.1. As can be seen, the difference in the number of

classifiers needed for different topologies is substantial. Additionally, figure 4.2 shows the pairwise

classifiers needed to separate the HMM-states of two phone-models according to three different

HMM topologies. Where the HMM-states si are represented as circles and the pairwise classifiers

by bidirectional arrows.

After doing some informal experiments, one and three-state topologies were selected to build

the HMM-models. In those experiments it was observed that, although training a considerably

higher number of classifiers is expected to require considerably more training time, those classifiers

are trained on a smaller number of samples (a training sample either is aligned to a HMM-state or

another) and, given that SVMs require a training time that grows superlinearly with the number of

samples, the training of the whole set of classifiers is even faster. In the other hand, it was observed

that, the larger the number of pairwise classifiers used to separate the HMM-states of two classes,

the larger the overall summation of support vectors and Lagrange multipliers resulting from the

training of the classifiers. This has a negative impact in the calculation of emission probabilities

and thus in the decoding time 12.

Based on those conclusions, three-state HMM-models seem to be a very reasonable option.

It is a compromise between trainability and decoding time. However, in order to confirm the

conclusions that, remember, where drawn from informal experiments, a one-state topology was also
11Note that phones are the unit selected for building the recognition system.
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Number of HMM-states Classifiers needed Classifiers needed (N = 52)
One K(K − 1)/2 1326

Three 3K(3K − 1)/2 12090
Five 5K(5K − 1)/2 67340

Table 4.1: Number of pairwise SVM classifiers resulting from different HMM-topologies.

s1

s′1

s1 s2 s3

s′1 s′2 s′3

s1 s2 s3 s4 s5

s′1 s′2 s′3 s′4 s′5

Figure 4.2: Pairwise classifiers (represented by bidirectional arrows) needed to separate HMM-states
(represented by circles) of different HMM topologies (from left to right, one, three and five-state
topologies).

considered and evaluated (the five-states topology was discarded due to the great computational

cost that it would introduce in the Viterbi search). Speech recognition accuracies resulting from

the use of these topologies will be shown in the next section.

4.2.3 Transition probabilities

Transition probabilities in a HMM represent the probability of moving from one HMM-state to all

the allowed next HMM-states, which in a left-to-right HMM are the self-state and the state/states

on its right (continuous speech recognition is based on concatenating HMMs). These probabilities

can be efficiently estimated in a GMM/HMM system using the EM algorithm. In the case of a

SVM/HMM system like the one described in previous sections, and for which the acoustic models

are trained in a totally different fashion, it is not clear how to efficiently estimate the transition

probabilities. Hybrid SVM/HMM approaches like the one described in [35] make use of transition

probabilities obtained from the training of a GMM/HMM system, however such approach requires

the training of two systems.

Nonetheless, several works exist in the literature showing that transition probabilities have
12It may appear that too much emphasis has been put in training/decoding time related issues, however, as it will

be analyzed in section ??, it is believed that this is one of the main shortcomings in the applicability of SVMs to
speech processing.
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a marginal impact on recognition performance. In [54] it is mentioned that the state transition

probabilities have practically no effect on recognition performance. In [55], it is observed that it

is not the state transition probabilities that force the HMM to find the correct segmentation of

an observation sequence, but rather it is the emission probabilities that handle this. For these

reason, and given that some state-of-the-art systems actually ignore transition probabilities, they

have been removed from the SVM/HMM system proposed in this chapter and only a minimum

duration of three time-frames per HMM has been imposed to control the phones’ duration. In the

case of a three-state HMM this constraint is implicit in the model topology, while for a one-state

HMM the constraint must be set explicitly in the decoder.

4.3 System’s evaluation

With the intention of evaluating the recognition accuracy of the SVM/HMM decoder described in

previous sections, three different speech decoding systems have been used:

• A SVM/HMM system for which emission probabilities are computed as described in previous

sections and transition probabilities have been removed. This system does not make use of

context information for training the acoustic models13. Two variants of this system have been

trained, one using one-state HMMs and another one using three-state HMMs.

• A conventional GMM/HMM speech recognition system has been trained using Sonic [41]

that makes use of triphone-based acoustic modeling. This system have been used with the

intention of showing the word accuracy of a state-of-the-art HMM making use of context

dependency.

• Given that the available version of Sonic did not allow for the use of monophones (instead of

triphones) during decoding, and in order to build a comparable system, a monophones system

was also trained on the same corpora using HTK [56].

All these systems were trained in the same corpora and use a three-state HMM topology (a

one-state HMM topology was also trained for the SVM/HMM system).
13A context dependent SVM/HMM system based on this one will be introduced in chapter 6
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4.3.1 Experimental setup

The speech corpus used for the evaluation is the CU Read and Summarized Story Corpus [57]. This

corpus is composed exclusively of children read speech, and it has been selected because, due to the

great variability of children’s speech, this is a especially challenging task for which state-of-the-art

systems still failed to yield a good recognition performance. Thus, there is a larger margin for

improvement.

From that corpus, only speech belonging to first graders (6-7 years old students for a total

of 72 speakers) has been selected, and then partitioned into a training set containing 3 hours

of audio and a test set of about 1 hour of audio. For every speech utterance contained in the

training set, 39-dimensional feature vectors, consisting of 12 Mel Frequency Cepstral Coefficients

and energy plus first and second order derivatives, have been extracted. The total number of

feature vectors extracted is about 114400014 . Using the Sonic Speech Recognizer [41] we carried

out a forced alignment to obtain state-level labels for each of the feature vectors. Note that this is

the only connection of the SVM/HMM system proposed with a conventional GMM/HMM system.

For training the SVM/HMM system, 52 three-state HMMs are used (corresponding to each of the

phonetic labels used in the alignment).

For training the SVM classifiers a radial basis function (RBF) kernel is used, the optimal

values of the error penalty parameter C and the kernel parameter γ are estimated independently

for each classifier using a diluted subset of the training set. The parameters estimation is carried

out doing a grid-search process using 5-fold cross validation. The library used for the training is

LibSVM [58].

For decoding purposes an ad-hoc library it has been implemented that allows the evaluation

of the decision function associated to each SVM classifier on such a way that kernel evaluations are

reused across classifier’s evaluations (see section 7.2 for a clarification on this issue).
14The reason why only about 3 hours of audio from the corpus were selected for the training is that training SVMs

on datasets larger than about one million of samples results computationally extremely expensive.
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4.3.2 Classifiers accuracy

This experiment has been carried out to evaluate the classification accuracy of the SVM pairwise

classifiers trained for both, the one-state and the three-state HMM topologies. The number of

classifiers trained for each of the topologies is shown in table 4.1. The classification accuracy

has been measured on the test set described in the experimental setup. Classification results are

depicted in figure 4.3, in which it is depicted the models distribution over the classification accuracy.

Since the number of classifiers resulting from both (one-state and three-state) HMM architectures is

different (much higher in the case of three-state HMMs), percentage values have been taken so the

area below both curves is the same and they can be directly compared. Looking at the right-shift

of the three-state HMM classifiers’ curve, it is clear that those classifiers are considerable more

accurate. This is not surprising since it is well known that the temporal structure of a phone is

divided in at least three differentiated regions. In the next section it will be studied up to what

extent this difference in classification accuracy translates into a better recognition accuracy.

An interesting detail is that, on average, the number of support vectors of pairwise classifiers

is inversely proportional to their classification accuracy. This is shown in figure 4.4 in the case of

pairwise classifiers trained for the three-states HMMs architecture. This is not surprising since,

typically, a low classification accuracy is obtained as a consequence of separating very overlapping

sets of feature vectors, separation for which many support vectors are needed. The interesting point

is that, while high-accuracy classifiers are also fast to evaluate (have a reduced number of support

vectors15), low-accuracy classifiers not oly produce unsatisfactory results but are slow to evaluate

(have a considerable number of support vectors). For example, the pairwise classifier trained to

separate samples from the central HMM-state of the phonetic classes AA and AO consist of 9785

support vectors (what represents 55% of the training samples) while its accuracy is only 72%. In

the other hand the pairwise classifier trained for the very separable central HMM-state of AA and

S, presents a classification accuracy of almost 100% while having only 812 support vectors (less

than 3% of the training samples).
15Note that, since the distribution of the data across different classes depends on the task, this is an expected

value.
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Figure 4.3: Classification accuracy comparison between pairwise classifiers for one-state and three-
state HMMs.

4.3.3 Classifiers accuracy and position of the HMM-states in the model topol-

ogy

Is has been considered interesting to analyze the separability between HMM-states depending on

their position in the HMM-model to which they belong. For this reason, the classification accuracy

of the pairwise classifiers obtained in the previous experiment has been averaged across the 6

possible pairwise combinations of HMM-states. Table 4.2 shows the results. Two observations have

been made:

• Pairwise classifiers for which at least one of the classes is a central HMM-state present the

highest accuracy. In particular, pairwise classifiers trained to separate central states of dif-

ferent HMMs are the most accurate.

• Pairwise classifiers trained to separate initial and final HMM-states are the less accurate ones.
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Figure 4.4: Relationship between the classification accuracy of a classifier and the number of support
vectors for three-state HMMs.

These observations are not surprising given that the central state of a HMM is the most

stable one and feature vectors aligned to it are the most homogeneous ones across different realiza-

tions of the same phonetic class. For this reason, feature vectors aligned to the central state of an

HMM are expected to be more easily separable from feature vectors aligned to other states. In the

other hand features frames aligned with the initial and final state of a HMM are more influenced

by the realization of the preceding and seceding phones so are less homogeneous.

4.3.4 Recognition accuracy

In this experiment it has been compared the word error rate (WER) of the three ASR systems

described at the beginning of section 4.3. The systems have been compared using a uniform language

model (all the words in the lexicon receive the same probability) and a trigram. As can be observed
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HMM-state first state second state third state
first state 0.9564 0.9697 0.9614

second state 0.9712 0.9689
third state 0.9596

Table 4.2: Averaged classification accuracy of classifiers trained to separate HMM-states at different
positions.

in table 4.3 the SVM/HMM system significantly outperforms the GMM/HMM monophone system,

however the difference respect to the system making use of contextual information is considerable.

Next chapters will be focused on closing this gap by incorporating more information into the training

of the acoustic models.

System uniform trigram
GMM/HMM monophones (HTK) 41.47%

SVM/HMM monophones (baseline) 44.46% 55.45%
GMM/HMM triphones (Sonic) 55.07% 67.53%

Table 4.3: Word accuracy of the proposed SVM/HMM system respect to a comparable monophone
GMM/HMM system and a triphone system.

4.4 Conclusions

In this chapter a SVM/HMM based continuous speech recognition system has been introduced and

experimentally evaluated. Advantages of the proposed system over other applications of SVMs to

speech recognition have been presented and justified. In addition to that, implementation details of

the system have been provided. The proposed system makes use of SVMs as probabilistic estimators

of emission probabilities and attains a superior word error rate than a comparable GMM/HMM

system. However, despite these appealing results the application of SVMs to speech recognition

under the proposed framework still needs to face many challenges. In the next chapters it will be

explored a mechanism to incorporate contextual information into into the training. In addition to

that several scalability issues of the proposed system will be discussed.
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Chapter 5

Implicit State-Tying

When training pairwise classifiers as described in the previous chapter, it was found that those

trained to discriminate between some of the HMM-states of similar phonetic classes present a very

low cross-validation accuracy. For example, pairwise classifiers trained to discriminate between

the first state of AA, AH or AO, or pairwise classifiers trained to discriminate between the last

state of the closures BD, DD, GD, KD, PD or TD, present very poor discriminative performance.

This is not surprising since phones belonging to the same broad phonetic class are expected to be

significantly overlapping and thus pairwise classifiers trained to discriminate between their states are

expected to perform poorly. In these cases, a SVM trained for probability estimation would ideally

produce probability values close to 0.5, thus reflecting appropriately the low accuracy of the model.

However, it has been observed that the probability estimates obtained from pairwise classifiers

trained to discriminate between very overlapping classes are very unreliable, which significantly

deteriorates the overall emission probability computation process expressed described in section

4.2.1. The reason is that, usually, when a feature frame belonging to a broad phonetic class is

examined, pairwise classifiers trained to discriminate between phonetic classes belonging to that

broad class and the remaining classes produce probabilities very close to one. Ultimately, this causes

that the posterior probability of the best scoring class is strongly determined by the probabilities

obtained from the pairwise classifiers that discriminate between the classes included in the same

broad class.
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5.1 Tying procedure

5.1.1 Introduction

To cope with this problem, it has been proposed to remove from the posterior probability compu-

tation process expressed in 4.1 (and thus from the emission probability computation process) those

pairwise classifiers that are expected to produce unreliable posterior estimates. For example, while

SVMs trained to discriminate between the second or third HMM-state of AA and AY present a

cross-validation accuracy above 92%, the SVM trained to discriminate between the first state of

AA and AY presents a cross-validation accuracy below 70%. This suggests removing this classifier

from the posterior computation process of the first state of both classes AA and AY while still

using the pairwise classifiers trained to discriminate between the second and third state. Since the

emission probability of the first HMM-state of AA and AY will be calculated excluding the pairwise

classifier trained for both, this procedure can be considered an implicit tying of states.

Figure 5.1 shows the pairwise classifiers that need to be trained to separate HMM-states

from phonetic classes AA and AY according to the standard pairwise scheme. Circles in the figure

represent HMM-states (for example, the node AA1 represents the first state of the HMM model

of AA) while each bidirectional arrow denotes a pairwise classifier trained to separate the HMM-

states pointed to. The corresponding scheme once the first state of AA and AY are tied, can be

observed in figure 5.2. Note that, despite that only a pair of states have been tied (AA1 and AY1),

five pairwise classifiers have been removed, the reason is that, if two states are tied, they can be

considered (at least locally, and this will be clarified later on) as belonging to the same class, and,

it is not convenient to train pairwise classifiers to distinguish between HMM-states of the same

class.

Once the process of tying HMM-states locally (i.e. between two phonetic classes) has been

described, the question is that whether HMM-states tied locally should also be tied globally. For

example, if AA1 and AY1 are tied and considered the same HMM-state when training pairwise

classifiers between phonetic classes AA and AY, should these HMM-states also be merged globally

for training pairwise classifiers with HMM-states of other classes? The answer to that question is

not clear, however it has been observed that, while two HMM-states, let’s say s1 and s2 can be
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very similar to each other, each of both can present a very different degree of similarity respect to

a third HMM-state s3. For this reason, while it may be beneficial to tie s1 and s2 when calculating

the emission probabilities, it may be harmful to assume that s1 and s2 are exactly the same class

and only a single classifier needs to be trained to separate s1 and s2 from s3. For this reason, the

tying procedure only takes place at the decoding stage and not at the training stage.

AA1 AA2 AA3

AY1 AY2 AY3

Figure 5.1: Pairwise classifiers (represented by bidirectional arrows) trained to separate HMM-states
from the phonetic classes AA and AY before the tying process.

5.1.2 Tying method

The tying method proposed consists of doing 5-fold cross-validation on the training data (only 1/5

of the training samples are used in order to speed up the process 16) and obtaining a cross-validation

accuracy for each of the K(K−1)/2 pairwise classifiers. Using CVij as the cross-validation accuracy

of the pairwise classifier trained to discriminate the classes ki and kj , expression 5.1 substitutes

4.1 in the calculation of posterior probabilities. Where ν represents the minimum cross-validation

accuracy required to include a pairwise classifier in the computation.

p(ki|x) =

⎡
⎢⎢⎣

K∑
j=1,j �=i,
CVij≥ν

1
p(ki|kj or ki,x)

− (K − 2)

⎤
⎥⎥⎦
−1

(5.1)

16An important performance consideration is that the cross-validation accuracy of a classifier can be obtained from
the cross-validation process carried out to estimate the parameters of the probabilistic output (A and B parameters
in 2.20). Thus, no extra computations are needed. This is possible because computing the classification accuracy
does not require probability estimates.
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AA1 AA2 AA3

AY1 AY2 AY3

Figure 5.2: Pairwise classifiers (represented by bidirectional arrows) trained to separate HMM-states
from the phonetic classes AA and AY after the tying process.

Finally, it is important to note that when building each one of the 5 subsets of training samples,

contiguous feature vectors aligned with the same HMM-state must be placed into the same sub-

set. Otherwise the correlation of adjacent spectral features will produce unreliable cross-validation

results.

5.2 Experiments

An experiment has been carried out to evaluate the effect of the implicit state-tying method pro-

posed in the previous section on the recognition accuracy. Initially, a decoding process is done in

which the complete set of pairwise classifiers (12090) is used to compute the emission probabilities

(this is equivalent to the SVM/HMM system evaluated in section 4.3.4). Then, a 1:5 diluted set

of the training data (only one out of five feature vectors is used) is used to calculate the cross-

validation accuracy of each of the pairwise classifiers (The same cross-validation process is used to

estimate the parameters for the probabilistic output). A threshold ν is utilized to select the subset

of pairwise classifiers that will be used to calculate the emission probabilities following expressions

5.1 and 4.5.

Fig. 5.3 shows a comparison between the word accuracy of both systems. It can be observed

that as the value ν increases the word accuracy gets better with respect to the baseline. However

once the value of ν goes beyond a certain value (about 92% in the figure) the accuracy of the

system deteriorates significantly. This is not surprising since an elevated value of ν causes many

pairwise classifiers with an acceptable discriminative performance to be removed from the emission
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Figure 5.3: Word accuracy for different values of ν.

probability computation process. It is important to note that, for example, for a value of ν equal

to 90, about 19% of the pairwise classifiers may be removed from the training process. So the tying

approach not only improves accuracy but speeds up the training process. Table 1 shows the word

accuracy of the system with respect to the baseline and GMM/HMM systems trained with the

same corpus. It can be seen that the proposed state-tying system clearly outperforms comparable

monophone systems. Two probabilistic language models have been used for the evaluation, a

uniform language model (i.e. all the words in the lexicon are considered equally likely) and a

trigram.

System uniform trigram
GMM/HMM monophones (HTK) 41.47%

SVM/HMM monophones (baseline) 44.46% 55.45%
SVM/HMM monophones (state-tying) 48.71% 60.19%

GMM/HMM triphones (Sonic) 55.07% 67.53%

Table 5.1: Word accuracy of the proposed state-tying SVM/HMM system respect to comparable
monophone systems and a triphone system.
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5.3 Conclusions

Summarizing, removing unreliable pairwise classifiers from the emission probabilities computation

process presents the following advantages:

• Word accuracy improvement: The tying procedure proposed has shown to help in the re-

duction of the WER, indicating that training classifiers to separate very similar classes is

not recommended. However, although under a monophone perspective those classes are very

close, those classes are potentially very separable if context information would be used for

training the classifiers. Next chapter is dedicated to explore this issue.

• Faster decoding: fewer classifiers need to be evaluated at the frame level during the Viterbi

search, with the consequent reduction in computation.

• Faster training: after doing the cross-validation process those classifiers with an accuracy

below the threshold do not need to be trained. Recall that the cross-validation accuracy is

calculated on a diluted set so it is considerably faster than training the final classifiers on the

whole dataset.

• No extra computation is needed: the classification accuracy of each classifier can be obtained

from the standard cross-validation process required to compute the probabilistic output.

Finally note that the removal of a certain number of classifiers from the emission probabilities

computation process without compromising accuracy is in part possible thanks to the fact that

training 9 classifiers (recall figure 4.2) to separate each pair of phonetic classes, although presenting

several advantages as discussed in 4.2.2, is somehow redundant.
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Chapter 6

Context Dependency

6.1 Introduction

In the last chapters a SVM/HMM continuous speech recognition system was proposed and ex-

perimentally evaluated showing very promising results in terms of WER respect to comparable

GMM/HMM systems. In addition to that, in the last chapter it was found that some HMM-states

are very confusable and training SVM-classifiers to separate between them does not produce satis-

factory results. This is not surprising given that the system was based on monophones and it is very

well known that the realization of a phone is strongly influenced by the preceding and successive

phones. It is for this reason why most state-of-the-art systems make use of contextual information.

However it is not clear how such kind of information can be incorporated into the proposed system

or, in general, into a SVM-based speech decoding system. In particular there are two main issues

that need to be covered when dealing with contextual features and discriminative classifiers:

• Automatic identification of the contextual classes to model.

• Modeling of the contextual classes.

This chapter is dedicated to explore the utilization of contextual information for acoustic

modeling using SVMs and shed some light on those two issues.
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6.2 Motivation of context dependency

There are several reasons that make words the most natural unit for speech recognition, first,

determining the spoken sequence of words is the ultimate objective and, second, word models are

able to capture the within-word contextual effects so the inter-word variability of phones can be

effectively modeled. Consequently, when the vocabulary is limited and the training material is

sufficient, words usually show the best performance in comparison with subword units such as

syllables, or phones. However, in many real applications, for which the amount of training data is

limited and the vocabulary is large, word models may not be adequately trained given that there

may be not enough examples of each word. Another major inconvenience of a word-based system

is its rigidity, i.e. whenever a new word needs to be incorporated into the vocabulary the system

has to be retrained.

For these reasons, most state-of-the-art ASR systems use phones instead of words as the

modeling unit. For large or middle-size vocabulary tasks, the number of phones is typically very

reduced in comparison with the number of different words, which results in much fewer param-

eters to estimate and consequently in a more efficient training. However, a phone realization is

strongly affected by its preceding and successive phones, so training context-dependent models is

much needed in order to attain satisfactory recognition accuracy [59]. Context-dependent phone

models are a compromise between specificity (allow to model the phonetic co articulation) and

trainability (the total number of context-dependent models can be adjusted to meet the size of the

available training material). When the number of words is in relatively large (in the order of several

thousands) training context-dependent phone models requires the estimation of considerably fewer

parameters17.

When phone-level context-dependent training is carried out, the speech representation unit

selected is typically the triphone (although other units like diphones or quinphones have been

successfully applied, which feasibility mostly depends on the available training material), which

consists of a phone with its corresponding preceding and successive phones. A triphone is typically

denoted as phl-ph+phr, where phl and phr are, respectively, the phones acting as left and right
17If for example triphones (see next paragraph) are used for modeling the context, typically only few thousand

triphone models need to be estimated, of course this may vary from one corpora to another.
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context of the basephone ph.

The number of different triphones that may occur in a given language, like, for example,

English, is extremely high so training a different HMM-model for each of them would impose a great

demand of training material. This demand would be further accentuated if cross-word triphones are

considered (i.e. if context dependency is modeled not only within word boundaries but across word

boundaries). To cope with this problem, ASR systems have used over time a number of techniques

focused on improving the trainability of the context-dependent models. These techniques usually

fall in one of the three categories that are summarized next18:

• Parameters sharing: this technique, also known as tying parameters, consists of sharing some

of the parameters of different HMMs. In the case of triphones, it’s been observed that many

phonetic classes have the same or similar effect in the realization of a phone when preceding

or following it, thus it is possible to cluster them into broader classes for which a context

dependent model is trained. The procedure of clustering different triphones corresponding to

the same basephone is called triphone-clustering and can be carried out in a number of ways.

Next section is dedicated to outline some of the most widespread techniques for clustering

triphones in a conventional GMM/HMM system. Typically, parameters are shared across

different triphones belonging to the same basephone, however it is possible to tie parameters

across triphones of a different basephone [60].

The benefits of tying are the following:

– For a given training set, reducing the overall number of parameters leads to a more

robust estimation.

– A reduced number of parameters allows a faster training and has less storage require-

ments.

However, parameter sharing has a clear limitation and it is that each tying represents an

information loss, thus, it is of major importance to carefully select the parameters to be tied

so this loss is minimal. For example, in [61] it is concluded that under a certain occurrence

threshold (35 occurrences) state-tying results in a splitting of rarely seen training material
18State-of-the-art ASR systems typically use a combination of those techniques for improved recognition accuracy.

60



and leads to less robust, modeling. The tying of parameters can be carried out at multiple

levels, for example in [62] it is shown how parameters of context-dependent phone models can

be tied in a hierarchical fashion, from tying a whole HMM to tying states, mixtures, gaussians

or even means of gaussians.

• Backing-off: this technique consists of training specific models (triphone models) only when

enough training data is available for an effective estimation. Otherwise the models are backed

off to a less specific model for which enough training data is available. For example moving

from a triphone to its corresponding left or right biphone or even to the basephone model

if not enough data is available for a more specific training. As it will be shown later on,

backing-off is widely used in bottom-up clustering approaches.

• Smoothing: smoothing techniques aim to increase the robustness of the trained models and

consist in smoothing the parameters of more specific models with those of less specific models,

which have been trained on more data and, hence, are more reliable. Examples of smoothing

techniques can be found in [63] and [64],

6.3 A review of triphone-clustering techniques

Triphone-clustering is one of the most widespread techniques for parameter sharing. It consists

of finding subsets of triphones (composed of one ore more elements) that are phonetically similar

(hence, can be trained together) and at the same time have a sufficient number of occurrences in

the training material to be robustly trained. As it was mentioned in the previous section, there

exists a hierarchy between a basephone and its corresponding biphones and triphones, this hierarchy

goes from less specificity (the basephone) to more specificity (the biphones and then the triphones).

Clustering techniques are designed to take advantage of this hierarchical structure to find subsets of

triphones that are suitable for being trained together. Attending to how the hierarchical structure

(tree) is traced in the clustering, these techniques can be divided into two categories:

• Bottom-up: bottom-up approaches [65] initially create a cluster for every state19 in the train-

ing material and progressively merge clusters, for example selecting at each iteration the pair

of clusters which when combined form the smallest resultant cluster, until a compact set of
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clusters is obtained. The stopping criteria for the merging process is commonly based on two

parameters: a maximum cluster size and a minimum number of clusters. While bottom-up

techniques are very widespread they present a well known shortcoming, they do not deal with

unseen triphones, i.e. triphones for which there are no occurrences in the training material

and therefore no cluster was built for them. This problem becomes particularly serious when

cross-word context modeling is used and the system is evaluated on large corpora, in this sit-

uation the number of unseen triphones is usually significant. These situations are commonly

handled during decoding in two different ways:

1. Backing-off to a less specific model like a biphone or a monophone. The problem is that

this less-specific models also need to be trained [61], additionally the accuracy of the less

specific model deteriorates the recognition performance.

2. Mapping the unseen triphone to the closest cluster in the training data by means of a

similarity measure [66].

• Top-down: these approaches [67] aim to cope with the problem of unseen triphones by starting

from a single cluster containing all the states and iteratively splitting the clusters using a set of

binary rules until a certain stopping condition is met. This procedure is typically carried out

using a binary decision tree for which, once the process ends, terminal nodes become clusters

of states that will be modeled together. At the beginning the root node contains all the states

to be clustered, at each iteration a leaf of the tree is split using a set of binary phonetic rules

that is built using phonetic knowledge20, the rule that yields the best log-likelihood gain is

applied and the cluster is split into a left node containing the states satisfying the rule and

a right node with the remaining ones. A terminal node is no longer split when either the

log-likelihood gain21 of the best rule applicable or the number of training samples in the node

falls below a given threshold.

Some of the advantages of the top-down procedure over the bottom-up are listed next:
19Typically, the clustering is carried out across states of triphones belonging to the same basephone and that are

in the same position of the model topology.
20Other sources of information have also been successfully applied, like syllable structure [68] or speaking rate [69].
21Note that the log-likelihood, which is the most popular objective function used for clustering, always grows with

each split given that splits are trained and evaluated on the same training data.
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– It is possible to find a cluster, and thus an acoustic model, for every triphone observed

during decoding by simply tracing down the decision tree. Thus, no backing-off or

mapping techniques are needed.

– Prior knowledge extracted from different complementary sources can be incorporated

into the clustering procedure in a very elegant fashion.

– It allows to easily control the minimum number of samples of each cluster so the HMMs

can be robustly trained.

Nevertheless, the main shortcoming of this method is that, typically, the thresholds used as

the stopping criteria need to be estimated empirically. In general, finding the right balance

between the total number of parameters and the training data used to train them is a key

factor in any clustering technique.

6.4 Context dependent training in a SVM/HMM system

It is clear that context dependent training is mandatory to properly modeling phonetic coarticula-

tion in a phone-based speech recognizer. Although many techniques have proven excellent perfor-

mance to do such a modeling in a GMM/HMM system (see previous section) or an ANN/HMM

hybrid system [70] [71], to date, no such technique exists in the case of SVM-based speech recog-

nition. This section is focused on finding an effective technique to train context-dependency for a

stand-alone SVM/HMM system.

State-of-the-art GMM/HMM systems do context-dependent acoustic modeling by first, ap-

plying a triphone-clustering technique like the ones described in previous section and, second,

training an acoustic HMM for every cluster of triphones. In the case of an ANN/HMM hybrid

system, context modeling is typically carried out in two steps:

1. A GMM/HMM system is used to determine the phonetic contexts of a given phone label that

will be modeled separately.

2. A series of neural networks are trained to compute the class-posterior probabilities of each of

the phone’s clusters. This can be done, for example, doing a factorization of probabilities like
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in [70] or training a context specific network for each phone and each context class identified

[71].

When the acoustic modeling is carried out using SVM classifiers as described in chapter

4, the necessity of modeling context is quite clear. In fact, table 4.2 shows that the classification

accuracy of pairwise classifiers used to separate edge-states (i.e. states at the edges of the HMM-

topology) is significantly worse than that of the rest of classifiers. This confirms that the initial and

final regions of a phone are strongly influenced by the preceding and successive phones, so making

use of contextual information is much needed. As previously introduced, triphones are a very

successful approach for doing such a context modeling, however, none of the conventional triphone

clustering methods existing in the literature (which are designed for GMM/HMM systems) can be

directly applied in the case of SVMs pairwise context modeling. The reason is that SVM models

work on finding decision boundaries between classes and it is not clear what those classes would be

under a conventional clustering procedure nor how the clustering procedure itself would be carried

out.

Nonetheless, it would be desirable to design and implement a SVM-based triphone clustering

procedure that is inspired on traditional clustering methods and thus takes advantage of all the nice

properties that such procedures show. In order to get to that, several issues need to be addressed,

they are the following:

1. A technique is needed to identify the context classes for which SVM classifiers will be trained.

If triphones are the basic context unit, a triphone-clustering technique is needed to identify

the clusters of triphones for which SVMs will be trained. The idea consists of finding clusters

of triphones that are more compact and can potentially be more easily separable from the

other classes than the original context-independent set of models.

2. A multiclass-classification strategy must be selected for training the context-dependent models

of each cluster of triphones.

3. A procedure must be defined to compute the emission probabilities using the resulting context-

dependent classifiers.

Techniques to deal with these issues will be covered along the next sections.
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6.4.1 Introduction

In chapter 4 a SVM/HMM system making use of context-independent models was described and

evaluated. In such a system, samples belonging to a pair of classes ki and kj (HMM-states) are

separated using a pairwise classifier trained only with samples of both classes. These pairwise

classifiers (which outputs can be combined to compute emission probabilities) are the basic unit

for acoustic modeling and, thus, are the target for the application of context modeling. Having

the sets of triphones P and Q containing triphones of the HMM-states ki and kj respectively,

a straightforward mechanism for training context dependency would be breaking P and Q into

smaller non-overlapping subsets of triphones pi ∈ P = {p1, . . . , pLP
} and qj ∈ Q = {q1, . . . , qLQ

}
for which LP × LQ pairwise classifiers (pi, qj) can be trained. These context-dependent pairwise

classifiers (pi, qj) would be trained to separate more compact classes (each class is composed only

by phonetically close triphones) so can potentially attain superior classification accuracy than the

context independent classifier. Other properties that make this idea appealing, are listed next:

• The set of clusters into which the triphones of class ki are split can be different depending

on the class kj for which pairwise classifiers are being trained. This way, the resulting sets of

clusters could be designed to optimize the separability between samples of classes ki and kj .

In its turn, in order to separate triphones from classes ki and a third class kl, a new set of

clusters would be obtained from both classes to maximize the separability.

• While the number of pairwise classifiers (pi, qj) that need to be trained (LP × LQ) in the

context independent case grows quadratically with the number of clusters LP and LQ of classes

ki and kj , those classifiers are trained on much smaller datasets than the context independent

one, so the overall training time may be even smaller. Recall from chapter 2 that the training

time of SVMs scales superlinearly with the number of training samples. For example, one-

vs-one pairwise classifiers can be trained faster than one-versus-rest classifiers on the same

training material. Additionally, context dependent classifiers are trained on potentially more

separable data so the decision function resulting from the training is expected to comprise

only a reduced number of support vectors respect to the total number of training samples,

which is always a desirable property.
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• Only a percentage of all the pairwise classifiers trained are expected to be benefited from

context dependent training. The explanation for this is the following: given a HMM-state,

the pairwise classifiers that need to be evaluated to calculate its emission probability can be

roughly divided into two broad categories:

– Pairwise classifiers trained to separate phonetically close classes: for example, if the emis-

sion probability of the first state of the phonetic class AA is being calculated, pairwise

classifiers that fall into this category would be, among others, those trained to separate

the first state of AA from the first state of AO, AH or AY.

– Pairwise classifiers trained to separate phonetically far classes: are those that were

trained to separate easily separable classes like the first state of AA and the first state

of T, V, or P.

Although many pairwise classifiers fall in the middle of both categories, looking at figure

4.3 where the test accuracy of the pairwise SVM classifiers trained was shown, it is clear

that a big number of pairwise classifier present a discriminative accuracy that is already very

high and, thus, can hardly be improved. Those classifiers are not expected to be benefited

from context dependent training so simple context-independent classifiers will be enough to

perform a reliable discrimination. Note that, while contextual information is extremely useful

for resolving ambiguity, there are a number of pairs of HMM-states that are not confusable,

like for example UW and T. A pairwise modeling scheme is able to take full advantage of this

issue.

This idea is depicted in figure 6.1, where triphones belonging to the phonetic classes k1 and

k2 are split into three disjoint clusters of triphones. Following the clustering procedure, a context

independent pairwise classifier (denoted by a bidirectional arrow) is transformed into nine pairwise

context-dependent classifiers, each of them separating a different pair of clusters.

6.4.2 Preliminary experiments

In order to evaluate the viability of the previously described scheme for context dependent training,

a small-scale experiment was conducted using the experimental set-up described in section 4.3.1.
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Set of triphones
from class k1

Set of triphones
from class k2

(Clustering of triphones)

cluster 1.1 cluster 2.1

cluster 1.2 cluster 2.2

cluster 1.3 cluster 2.3

Figure 6.1: Transition from a context-independent classifier to context-dependent classifiers through
a process of triphone clustering.

In this experiment a context independent (CI) pairwise classifier was trained for the first state of

phonetic classes AA and AO. Additionally, with the intention of training context-dependent (CD)

classifiers, triphones from both states were clustered by hand using phonetic similarity rules. Given

that the first state of a HMM is usually more influenced by the left context, only that context was

taken into account for the hand-made clustering. Clusters were created so the number of training

samples in each of them was potentially enough to robustly train the classifiers. Finally, pairwise

classifiers were trained for all the combinations of clusters of both classes. In order to compare

the classification accuracy of the CD classifier respect to the CI ones, all the trained classifiers

were evaluated with feature vectors from the test partition of the corpora as described in the

experimental setup.

Table 6.1 shows the hand-made clusters for triphones belonging to the first state of classes

AA and AO. For each cluster it is shown the left context of the triphones clustered together and

the occupancy. It can be observed that the number of samples per cluster is quite balanced and is

always above 100. This means that every pairwise classifier will be trained on a relatively balanced
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Clusters of AA Clusters of AO
Cluster Left contexts # samples Cluster Left contexts # samples
1 SIL 737 1 S 623
2 N,NG 616 2 W 602
3 F 563 3 SIL 570
4 T 469 4 F 296
5 G,K 386 5 M,N 281
6 R 384 6 Y 249
7 D 352 7 AXR,R 223
8 W 249 8 HH,P,TS,V,Z 197
9 CH,JH,TS 224 9 TH 184
10 M 214 10 AY,EY,IY,OW,UW 174
11 P 201 11 DD,KD,TD 150
12 DD,KD,TD 189 12 D,T 129
13 IY,Y 182 13 G,K 109
14 HH 158 14 L 104
15 B 152
16 AW,AXR,OW,Z 131
17 S,SH 129
18 L 117
19 UW 113
20 AY,EY 105

Table 6.1: Hand-made triphone clusters for the first HMM-state of phonetic classes AA and AO.

dataset of at least 200 samples. This number of samples, which corresponds to only two seconds of

speech, may appear to be too few to robustly train a SVM classifier. However, it will be shown that,

if the classes are separable, very few number of training samples are required to attain satisfactory

results.

For each pair of clusters in table 6.1 a pairwise SVM classifier was trained using a Gaussian

RBF function. Then, a force-alignment was carried out between the speech utterances in the test

corpora and their corresponding transcriptions. Finally, samples aligned with the first HMM-state

of AA and AO were clustered22 into the clusters of table 6.1 and used to evaluate the classification

accuracy of the corresponding pairwise classifiers (each test sample is evaluated on a a number

of classifiers equal to the number of clusters of the complementary phonetic class). The resulting

classification accuracy is shown in table 6.2.

Looking at table 6.2, it can be observed that the classification accuracy of the context
22It should be mentioned that, given that the clustering procedure was made by hand, a small number of triphones

in the test set have no cluster to be clustered into so have no CD pairwise classifier to be evaluated with and thus
were not used for evaluation purposes.
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rows / cols = clusters of the first HMM-state of AA / AO.
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.95 0.99 0.59 0.99 0.91 1.00 0.97 0.87 0.94 0.92 0.79 0.94 0.97 0.94
2 0.85 0.94 0.85 0.99 0.85 0.95 0.87 0.87 0.89 0.84 0.84 0.91 0.94 0.91
3 0.94 0.87 0.94 0.95 0.89 0.97 0.81 0.85 0.90 0.96 0.90 0.90 0.88 0.91
4 0.71 0.91 0.98 0.97 0.96 0.85 0.68 0.88 0.73 0.91 0.88 0.75 0.87 0.78
5 0.84 0.92 0.95 0.99 0.99 0.96 0.81 0.83 0.85 0.97 0.91 0.79 0.77 0.92
6 0.88 0.86 0.96 0.90 0.83 0.95 0.60 0.86 0.87 0.92 0.93 0.79 0.91 0.87
7 0.72 0.97 0.95 0.96 0.87 0.74 0.91 0.87 0.79 0.91 0.83 0.44 0.83 0.88
8 0.99 0.75 0.98 0.95 0.84 0.99 0.96 0.97 0.99 1.00 0.93 0.96 0.95 0.72
9 0.80 0.92 0.92 0.91 0.85 0.83 0.82 0.85 0.84 0.84 0.70 0.73 0.90 0.83
10 0.85 0.94 0.68 0.86 0.63 0.96 0.87 0.74 0.92 0.68 0.67 0.88 0.91 0.75
11 0.91 0.93 0.87 0.94 0.90 0.95 0.83 0.66 0.86 0.91 0.85 0.89 0.86 0.85
12 0.94 0.99 0.79 0.99 0.83 0.95 0.92 0.78 0.91 0.83 0.60 0.80 0.95 0.90
13 0.94 0.98 0.97 1.00 0.90 0.78 0.85 0.88 0.93 0.74 0.66 0.78 0.98 0.90
14 0.93 0.92 0.84 0.91 0.82 0.90 0.85 0.74 0.85 0.84 0.80 0.85 0.59 0.73
15 0.87 0.84 0.86 0.82 0.78 0.91 0.69 0.73 0.89 0.78 0.82 0.84 0.89 0.84
16 0.92 0.95 0.72 0.95 0.76 0.90 0.76 0.72 0.81 0.54 0.59 0.79 0.87 0.77
17 0.83 0.94 0.69 0.97 0.75 0.89 0.63 0.65 0.85 0.45 0.59 0.83 0.80 0.93
18 0.93 0.89 0.80 0.97 0.76 0.99 0.83 0.77 0.91 0.68 0.73 0.89 0.89 0.73
19 0.96 0.95 0.81 0.93 0.84 0.86 0.84 0.85 0.87 0.71 0.70 0.89 0.86 0.91
20 0.96 0.96 0.81 0.96 0.84 0.83 0.85 0.82 0.90 0.62 0.68 0.90 0.99 0.78

Table 6.2: Classification accuracy over the test set of the context-dependent classifiers trained for
every pair of clusters of the first HMM-state of classes AA and AO.
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independent classifiers is very uneven. While some classifiers seem to be very accurate, others

present a very low classification accuracy that, in some cases, is very close to 0.5 (zero discriminative

power). The reason is that classifiers trained to separate samples of AA and AO with similar or

equal left context cant find a satisfactory decision function because the classes are just not separable.

In the other hand, classifiers trained to separate samples with very different left context usually

find very good decision functions, resulting in a very good generalization.

For example, the pairwise classifier trained to separate the 8th cluster of class AA from the

10th cluster of class AO has an accuracy of 1.00 (100% of the test samples are correctly classified),

this is not surprising since the 8th cluster of AA contains triphones with left context {W} and

the 10th of AO the left contexts {AY, EY, IY, OW, UW} that have a very different effect in the

realization of the phones AA and AO respectively and, thus, can be easily separated. In the other

hand, the classifier that separates the twelfth cluster of AA from the eleventh cluster of AO has

an accuracy of 0.60, again, this expected because both clusters are composed of triphones with the

same left contexts {DD, KD, TD} and, thus, can be barely separated.

Nevertheless, as it is shown in table 6.3, the accuracy of the context dependent classifiers

is substantially superior (on average) than that of the context independent classifier. While only

68% of the test samples are correctly classified using the context independent classifier, 87%23 of

the test samples are correctly classified using the context dependent ones.

In addition to that, on average, each context dependent pairwise classifier is comprised of

fewer support vectors than the context independent one. In particular, 6871 samples out of the

9562 total training samples become support vectors in the CD case, which represents a 72%. In the

CI case, only an average of 204 support vectors result from training on datasets of 562 samples on

average, which represents only a 36%. Once again, it is shown that when the percentage of support

vectors respect to the total number of training samples is very high, it is usually an indicator that

either not enough data is available to find a good decision function or the samples of both classes

are not easily separable. Anyhow, this results in poor classification accuracy.
23Making use of the whole set of pairwise CI classifiers, 32830 and 25460 sample evaluations were carried out using

the test samples from triphones of classes AA and AO. Out of those, 28645 and 21947 evaluations produced correct
classifications, so the class-dependent accuracy was 0.87 and 0.86 respectively.

24The number between parenthesis indicates the number of unique support vectors, that is always a lower bound
of the total number of training samples and, as will be discussed in chapter 7, is a very good indicator of the time
required to evaluate a set of SVMs trained on overlapping data.
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Context indep. classifier Context dep. classifiers
Classification accuracy 0.68 0.87

# training samples (total) 9562 9562
# training samples (per model) 9562(5671,3891) 562(284,278)

# support vectors (total) 6871 57185(8637)24

# support vectors (per model) 6871 204

Table 6.3: Classification accuracy for context independent and context dependent classifiers sepa-
rating the first HMM-state of phonetic classes AA and AO.

Despite that the small size of the experiment conducted prevent from drawing well-founded

conclusions, results are very encouraging. For this reason, and in order to build a context dependent

ASR system under this paradigm, an automated triphone clustering technique has been proposed.

This technique will be thoroughly described in the next sections.

6.4.3 SVM-based triphone clustering technique

In previous section, a technique for doing context-modeling using SVM pairwise classifiers was

proposed and partially evaluated showing promising results. However, the clustering procedure in

which that technique lied, was hand-made. In this section a completely automated technique for

clustering triphones will be detailed. This technique will allow to perform triphone clustering for

any pair of HMM-states so the context-dependent training can be fully automated.

Assuming a top-down approach (which allows an effective handling of unseen triphones),

triphone-clustering techniques start with a big cluster containing all the triphones of a given base-

phone and iteratively split the clusters at the lower level of the tree into disjoint subclusters so that

a function (for example, likelihood gain) is maximized on each split. If pairwise SVM classifiers

are used for acoustic modeling, triphones from two HMM-states need to be clustered in such a way

that the separability between samples of both classes is maximized. Therefore, it seems to make

sense to simultaneously cluster the triphones of both classes using a couple of decision trees that

are expanded alternatively. As in typical top-down approaches, a cluster can be split by evaluating

a set of phonetic rules and applying the one that maximizes a certain function. While for a conven-

tional GMM/HMM system this function is usually the log-likelihood, for a SVM/HMM system the

function could be the classification accuracy between terminal nodes in both trees. A straightfor-
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ward mechanism for computing the classification accuracy between terminal nodes is doing f-fold

cross-validation. This way, every time a cluster of triphones (terminal node in one of the trees)

is selected for split, the rule that maximizes the cross-validation classification accuracy (i.e. the

separability) between the resulting subnodes and the terminal nodes of the complementary tree, is

selected. A cluster is no longer split when either its occupancy or the “separability gain” resulting

from applying the best available rule falls below a given threshold.

The mechanism for calculating the so called “separability gain” and related concept defini-

tions required for the clustering process will be described in the next section.

Splitting gain and termination criterion

This section is dedicated to define a series of concepts needed for the application of the clustering

technique. Given a tree node n, its separability respect to the leave nodes in the complementary tree

is defined as expressed in 6.1. Where M is the number of terminal nodes mi in the complementary

tree of n, cn,mi is the number of correctly classified samples of node n using the pairwise classifier

trained to separate samples from nodes n and mi, and sa is the number of samples of node a.

The separability of a node is a value in the interval [0, 1] and it is obtained from the classification

accuracy of pairwise classifiers trained to separate that node from all the terminal nodes in the

complementary tree. A f-fold cross-validation process needs to be carried out to calculate the

classification accuracy of each of the M pairwise classifiers. During those processes, each sample

from node n is evaluated by M classifiers while each sample from the complementary clusters

is evaluated by only one classifier, for this reason the accumulated number of correctly classified

samples of node n needs to be normalized by M . Intuitively, this separability value corresponds to

the average classification accuracy of the classifiers that separate node n from the nodes mi in the

other tree.

separability(n) =

1
M

M∑
i=0

cn,mi +
M∑
i=0

cmi,n

sn +
M∑
i=0

smi

(6.1)

Figure 6.2 shows the pairwise classifiers that need to be trained to compute the separability

between a terminal node p2 and the terminal nodes in the complementary tree {q1, q2, q3}. Whenever
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P Q

p1 p2 q1

q2 q3

p2 vs q1

p2 vs q2

p2 vs q3

Figure 6.2: Pairwise classifiers (denoted by bidirectional arrows) needed to compute the separability
of triphones in node p2 from triphones in the terminal nodes of the complementary decision tree
{q1, q2, q3}.

P Q

p1 p2 q1

pl pr q2 q3

pl vs q1

pl vs q2

pl vs q3

pr vs q1

pr vs q2

pr vs q3

Figure 6.3: Pairwise classifiers (denoted by bidirectional arrows) needed to compute the split-
separability value resulting from the split of the node p2 into subnodes pl and pr.

a node n is selected for split, a split-separability value is computed as expressed in 6.2 for each

of the applicable phonetic rules r. To calculate this value, pairwise classifiers need to be trained

to separate samples from the resulting left and right subnodes (nleft and nright) and the terminal

nodes in the complementary tree mi.

Figure 6.3 shows the pairwise classifiers needed to compute the split-separability value re-

sulting from the split of the node p into subnodes pl and pr. In this case, the subnodes pl and pr,

need to be separated from the terminal nodes {q1, q2, q3} in the complementary tree.
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split-separability(n, r) =

1
M

M∑
i=0

(
cnleft,mi + cnright,mi

)
+

1
2

M∑
i=0

(
cmi,nleft

+ cmi,nright

)

sn +
M∑
i=0

smi

(6.2)

Once a split-separability value has been calculated for any applicable rule r, the rule that yields

the highest separability gain is applied25. The separability gain is defined as in 6.3 and it is the

ratio between the separability of the left and right nodes resulting from applying the rule and the

separability of the original node. Hence, the separability gain is bigger than 1 if the resulting

subnodes nleft and nright are more separable than the original node n.

separability-gain(n, r) =
split-separability(n, r)

separability(n)
(6.3)

The separability of the left and right nodes resulting from the split is calculated as expressed in 6.4

and 6.5 respectively.

separability(nright) =

1
M

M∑
i=0

cnright,mi +
M∑
i=0

cmi,nright

sn +
M∑
i=0

smi

(6.4)

separability(nleft) =

1
M

M∑
i=0

cnleft,mi +
M∑
i=0

cmi,nleft

sn +
M∑
i=0

smi

(6.5)

Construction of the decision trees

Once the clustering technique has been outlined and some related concepts have been defined, it

is time to describe step by step the clustering algorithm. As previously mentioned, the procedure

consists in building a couple of decision trees which nodes are expanded alternatively using the
25In practice, the best rule is applied only if its separability gain is greater than a certain threshold.
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HMM-state context to which the phonetic rules are applied
first state left context

central state full context
third state right context

Table 6.4: Contexts to which the phonetic rules are applied

separability between the terminal nodes in both trees (as previously defined) as the function to

maximize. The algorithm, which must be repeated for each pair of phonetic classes k1 and k2

(HMM-states), is detailed next:

1. Two empty lists Lactive(k1) and Lactive(k2) are created to keep the tree nodes (clusters of

triphones) that are considered for split at each iteration.

2. Two empty lists Lfinal(k1) and Lfinal(k2) are created to keep the tree nodes that are considered

final, i.e. will not be further split. Triphones contained into those nodes will be clustered

together.

3. Two root nodes n1 and n2 are created and the available training triphones of classes k1 and k2

are placed together in the corresponding node. Along with the triphones, the set of phonetic

rules that will be used for splitting are placed at each of the root nodes according to table

6.4 and the position of the HMM-states to which classes k1 and k2 refer26. Additionally, a

separability value between the whole set of triphones of classes k1 and k2 is calculated using

expression 6.1 and doing cross-validation27. Note that this separability value corresponds to

the classification-accuracy of the context independent classifier and that for the root nodes

separability(k1) = separability(k2). The resulting separability value is stored at each of the

root nodes and will be used as a reference for the evaluation of potential splits. Every

time a split is made, the new separability value for each of the subnodes is computed and

stored. Finally, the root nodes n1 and n2 are inserted into the lists Lactive(k1) and Lactive(k2)

respectively.
26In order to reduce the number of rules that need to be evaluated for a split and, hence, accelerating the clustering

procedure, full context is not always considered. For example, according to table 6.4, only the left context is considered
for clustering triphones relative to the initial state of a HMM. This is coherent with the assumption that the initial
region of a phone is mostly influenced by the preceding phone.

27Details about how the cross-validation is done can be found in section 6.4.3
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4. At each iteration, a tree node n is selected for split. With the intention of training SVM

classifiers on datasets as much balanced as possible, the node selected is the one containing

the greatest number of training samples. However, while in the first iteration that node is

selected considering nodes in lists Lactive(k1) and Lactive(k2), in subsequent iterations only the

nodes contained in one of the lists (which changes on each iteration) are considered. This

constraint is applied in order to guarantee that consecutive splits take place in complementary

decision trees. The reason is that it’s been observed that splits in one decision tree favor splits

in the complementary decision tree and sometimes the only way of successfully splitting a

node is by splitting first some of the nodes of the complementary tree. If the node selected

for split contains a number of samples below a given threshold μs the node is moved to the

list Lfinal(k), where k is the class of the node. In case both lists Lactive(k1) and Lactive(k2) are

empty, the algorithm proceeds to step 7.

5. In order to select the best split of node n into subnodes nleft and nright, all the phonetic rules

Rn available at node n are evaluated. For each phonetic rule r in Rn, the following steps are

carried out:

(a) Using the rule r (which, according to table 6.4, can be applied either to the left, right or

full context) the set of triphones in node n is split into two disjoint subsets of triphones

that are placed into nodes nleft and nright so triphones that meet the rule are placed in

nleft and the remaining ones are placed in nright. In case that the number of samples

in either nleft or nright falls below a given threshold μs, the rule is discarded and the

algorithm proceeds to the next rule. This threshold is used to establish a lower bound

on the number of samples used for training a SVM classifier so the classifier is trained

robustly.

(b) Being {mi}, i = 1, . . . ,M the terminal nodes28 in the decision tree of the complementary

class of node n, a classification accuracy value is obtained from classifiers separating

the following pairs of nodes (nleft,m1), . . . , (nleft,mM ) and (nright,m1), . . . , (nright,mM )

doing f -fold cross-validation. Once these classification-accuracy values are obtained, the

split-separability resulting from the split of the node n into subnodes nleft and nright

76



using the rule r can be calculated using the equation 6.2.

(c) Finally, a separability-gain value separability-gain(n, r) resulting from the application of

the rule r to split the node n is calculated using the expression 6.3.

6. Once all the available rules are evaluated, the rule rbest that produces the highest split-

separability is applied if separability-gain(n, rbest) ≥ μacc. In case the rule is applied, the

node n belonging to class k is removed from the list Lactive(k) and the subnodes nleft and

nright resulting from the split using rbest are inserted into that list, having each of them a

separability value calculated using expressions 6.4 and 6.5 respectively. The whole set of

rules in node n is copied into nodes nleft and nright with the sole exception of the rule rbest.

If there are no rules to copy, the subnodes nleft and nright are inserted into the list Lfinal(k)

instead of Lactive(k). In case no rule has been applied, the node n is inserted into the list

Lfinal(k) and discarded for further splitting attempts. At this point the selected node has

been processed and the algorithm proceeds to step 4.

7. At this point all the splits have been carried out and the final nodes in lists Lfinal(k1) and

Lfinal(k2) are the resulting clusters of triphones for which pairwise classifiers must be trained.

The decision tree can be recovered by tracing the tree down from the root and storing the

binary rules applied for each split.

Finally, note that the parameter μs (minimum number of samples in a node so it can be

considered for splitting) used as stopping criterion must be set so there are enough training samples

to train the classifiers. It’s been observed experimentally that a reasonable number is around 100.

In its turn, the parameter μacc, used to control the minimum separability gain of a split, must be

set experimentally.

Procedure for obtaining the cross-validation accuracy

An important drawback of using the classification accuracy of pairwise classifiers as the basis for

the computation of the separability-gain during the splitting procedure is that it is computationally

very expensive. In fact, doing a cross-validation procedure on the whole set of samples of each pair
28Note that the terminal nodes of a class k are Lactive(k) ∪ Lfinal(k).
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of terminal nodes would be intractable. For this reason, and in order to control the clustering time,

only a diluted set of training samples is used for training and evaluating the context-dependent SVM

classifiers required to perform the cross-validation. This exploits the property of SVMs according

which the training time can be kept low on small datasets.

Two parameters are used to control the training and evaluation time during the cross-

validation:

• ct: this parameter represents the maximum number of samples that are selected from each

cluster of triphones for training the classifiers. However, the classifiers are always trained on

balanced datasets so this parameter is only an upper-bound of the total number of samples

taken from each class. The reason is that the clustering procedure previously described, often

requires to compute the separability of very unbalanced clusters of triphones, which usually

produces decision boundaries biased toward the class with more representatives. Another

strategy would be using different error-penalties for each class.

• ce: this parameter represents the maximum number of samples that are selected from each

cluster of triphones for evaluation purposes. While the training is always carried out on

balanced datasets, the evaluation can be done in very unbalanced datasets. Note that this

parameter does not depend on the value of ct. While ct needs to be kept low given that the

training time grows superlinearly with the number of samples, the value of ce can be set more

flexibly because only impacts the evaluation time linearly.

In addition to the use of these thresholds, folds are built subject to two constraints29:

• Samples from each triphone are shared out among different folds in approximately equal

proportion. The intention is creating folds that are as much representative of the whole set

of clustered triphones as possible.

• Samples aligned with the same phone in the training material are kept in the same fold.

Otherwise, given the strong correlation between adjacent feature vectors, the cross-validation

results would be unreliable.

29In order to allow that these constraints can be met, the minimum number of training samples for each class ct

must be set appropriately.
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Optimizations of the SVM-based clutering technique.

In order to evaluate the previously proposed SVM-based clustering technique, some informal exper-

iments were conducted. The experiments consisted of clustering triphones belonging to a few pairs

of HMM-states and evaluate the separability of the resulting clusters. While the proposed technique

seemed to produce an effective clustering of triphones it showed to be computationally extremely

expensive. This is not surprising since for each split a set of rules needs to be evaluated requiring

each of them the training and evaluation of a number of SVM classifiers which increases as the

number of terminal nodes in both trees increases. For example, if a node n is selected for split into

nodes nleft and nright and there are 10 terminal nodes (clusters of triphones) in the complementary

tree, according to the clustering technique described and having 40 binary rules applicable at node

n, the total number of pairwise cross-validation processes needed is 10 × 2 × 40 = 800. If a 5-fold

cross-validation is used, 4000 classifiers need to be trained and evaluated just for computing the

split-separability of the node n. Although these classifiers can be trained and evaluated on diluted

sets of samples (as described in previous section), which requires only fractions of a second, the

whole clustering procedure remains still very slow.

In order to reduce the computational cost involved in building the decision trees, a mod-

ification has been introduced with the intention of reusing rule evaluations. The idea consists of

selecting multiple rules for splitting a node at each iteration. This way, after the set of applicable

rules are evaluated for splitting a cluster of triphones n (node in the tree) into clusters nleft and

nright and the best rule rbest (the one that yields the best separability-gain) is selected, the rest

of evaluated rules are analyzed and used for further splitting if it is convenient. To introduce this

optimization, the clustering procedure described previously needs to be modified at step 6, which

becomes:

6. Once all the available rules are evaluated, the rule rbest that produces the highest split-

separability is applied if separability-gain(n, rbest) ≥ μacc. In case the rule is applied, the

node n belonging to class k is removed from the list Lactive(k) and the subnode nleft resulting

from the split using rbest is inserted into that list, while the subnode nright will be used

for further splitting attempts. The separability value of both subnodes is calculated using

expressions 6.4 and 6.5 respectively. The set of rules in node n is copied into nodes nleft
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and nright with the exception of rbest. In case no rule has been applied, the node n is inserted

into the list Lfinal(k) and discarded for further splitting attempts. In this case the algorithm

proceeds to step 4.

At this point, a set of rules R′ = R−{rbest} containing all the rules R evaluated for splitting

the node n (except the best rule rbest already used to produce nleft and nright) with their

corresponding subclusters and separability-gain, is available resulting from step 5. These

rules are sorted in descending order of separability-gain and will be analyzed for splitting

the subnode nright. Triphones in this subnode are moved to a temporal cluster of triphones

(i.e. they are not inserted in any decision tree) called nrest that represent the triphones in

n that can be potentially reclustered within this iteration. Additionally, triphones in nleft

are copied into another temporal cluster called nclustered that represents the triphones that

are already clustered within this iteration. Note that both temporal clusters are disjoint

nclustered ∩ nrest = ∅ and that nclustered ∪ nrest = n is always guaranteed.

For any rule ri ∈ R′ that splits the node n into subnodes nleft,i and nright,i the following

checks are made:

• Triphones in nleft,i (i.e. triphones that satisfy the rule ri) do not overlap with the set of

triphones in nleft. This constraint is set to ensure that nleft,i and nleft are disjoint sets

of triphones and thus can coexist as terminal nodes.

• The separability-gain resulting of applying ri on node n is positive. This constraint is

set to avoid the reevaluation of unpromising phonetic rules.

In case those requirements are met, the rule ri is evaluated for splitting nrest into subnodes

nleft,i and nright′ with the advantage that the classification accuracy resulting from separating

the node nleft,i from the terminal nodes in the complementary tree {mi}, i = 1, . . . ,M was

already computed in step 5. Then, it is only necessary to compute the classification accuracy

resulting from separating the subnode nright′ from the {mi}. Note that this is the central point

of the optimization because it allows to do additional splits at half the computational cost

of evaluating a single rule. Once those classification accuracies are computed, if separability-

gain(nright, ri) ≥ μacc then the ri is applied and the node nleft,i is inserted into the list
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Lactive(k) having a separability value computed using 6.4. The last step prior to the evaluation

of the next ri consists of adding triphones in nleft,i to nclustered and replacing the triphones

in nrest by the triphones in nright′ . Note that nrest = nleft,i ∪ nright′ .

Finally , once all the rules in R′ are examined, the node nrest (which contains a fewer number

of triphones respect to the original nright in case that more than one rule has been applied)

is inserted into the list Lactive(k). At this point the selected node has been processed and the

algorithm proceeds to step 4.

Note that if only the best rule rbest is applied (i.e. a single split is carried out), this procedure

is completely equivalent to the non-optimized one. Additionally, it is important to observe that

the order in which the rules ri ∈ R′ are evaluated for further splitting does not guarantee that

the rule yielding the best separability-gain over nrest is applied first. Nevertheless, this procedure

is expected to produce a satisfactory clustering while consuming considerable less computational

resources than the original approach.

6.5 Emission probability calculation of a HMM-state using pair-

wise context-dependent SVM classifiers

Once the context-dependent SVM pairwise classifiers have been trained for each pair of HMM-states,

the calculation of the emission probability of a HMM-state given the feature vector x at time t

can be carried out in a similar fashion to that used for context-independent classifiers. Recall from

section 4.2.1 that the emission probability of a context-independent HMM-state ki is calculated

by evaluating all the pairwise classifiers trained to separate ki from the remaining HMM-states

(classes) kj, j �= i and then combining the probabilistic values obtained (p(ki|kj or ki,x)) using

expression 4.1. When context-dependent classifiers are used, if a is a cluster of triphones belonging

to the HMM-state ki for which the emission probability needs to be computed, the class-posterior

probability of cluster a can be computed as follows:

p(a ∈ ki|x) =

⎡
⎣ K∑

j=1,j �=i

1
p(a|kj or a,x)

− (K − 2)

⎤
⎦
−1

(6.6)
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Where the pairwise class-posterior of cluster a and a HMM-state kj , j �= i (compounded by a set

of clusters {bl} ∈ kj , l = 1, . . . , n) can be computed as follows:

p(a|kj or a,x) =

n∏
bl=1

p(a|bl or a,x)

n∏
bl=1

p(a|bl or a,x) +
n∏

bl=1

(1 − p(a|bl or a,x))

(6.7)

Finally the emission probability of the feature vector x given the cluster of triphones a can be

calculated dividing by the prior probability of the phone q to which the HMM-state ki is relative:

p(x|a) ∝ p(a|x)
p(q)

(6.8)

Comparing this procedure for calculating the emission probabilities with the procedure

described in section 4.2.1 for context-independent classifiers, the main difference is that, while

only one classifier was needed to calculate the pairwise class posterior p(ki|kj or ki,x), n classifiers

need to be evaluated now for calculating the analogous “cluster-posterior” p(a|kj or a,x). This is

depicted in figure 6.4. However, although according to this procedure typically a greater number

of classifiers needs to be evaluated30, those classifiers are expected to be considerably smaller (i.e.

are composed of considerable fewer support vectors) than the context-independent ones. This will

be experimentally shown in the next section.

6.5.1 Context-dependent pairwise classifiers by example

This section is dedicated to make a preliminary evaluation of the previously proposed approach for

training context-dependent pairwise classifiers. The experimental set-up is the same as in section

4.3.1 and the experiment consists of finding clusters of triphones for the phonetic classes EH and

UH so the separability between them is maximized.

Table 6.7 shows the classification accuracy and the resulting number of support vectors of

the 9 context-independent pairwise classifiers that separate HMM-states of classes EH and UH.

Accuracy values between parentheses correspond to the positive and negative samples used in the
30It depends on the number of resulting clusters

82



ki kj

b1

b2

a b3

. . .

bl

Figure 6.4: Pairwise classifiers (represented by bidirectional arrows) needed to calculate the pairwise
class-posterior for context-independent classifiers (on the left) and context-dependent classifiers (on
the right).

Classification accuracy Number of support vectors
HMM-state UH(1) UH(2) UH(3) UH(1) UH(2) UH(3)

EH(1) 0.96 (0.99,0.93) 0.95 (0.96,0.92) 0.95 (0.95,0.92) 1189 1018 1948
EH(2) 0.97 (0.97,0.97) 0.96 (0.96,0.95) 0.94 (0.94,0.89) 1219 1450 1869
EH(3) 0.98 (0.98,0.96) 0.95 (0.97,0.91) 0.91 (0.93,0.86) 732 1004 2591

Table 6.5: Context-independent models for 3-state HMM modeling

evaluation. Table 6.6 shows the number of clusters and support vectors resulting from the proposed

clustering technique. Finally, table 6.7 shows the classification accuracy of the context-independent

pairwise classifiers that separate between the corresponding clusters in table 6.6.

As can be seen in the tables the clustering procedure is able to find clusters with a pair-

wise separability that is considerable superior to the separability of the corresponding context-

independent classifier. An interesting point is that this procedure presents some similarities re-

spect to the part-versus-part strategy proposed in [12]. The main difference is that, in this case,

Number of classifiers trained #support vectors: average (total)
HMM-state UH(1) UH(2) UH(3) UH(1) UH(2) UH(3)

EH(1) 10 (2x5) 15 (3x5) 20 (4x5) 184 (1843) 161 (2418) 180 (3601)
EH(2) 6 (3x1) 15 (3x5) 20 (5x4) 290 (870) 143 (2151) 210 (4213)
EH(3) 2 (2x1) 15 (3x5) 45 (9x5) 396 (792) 163 (2619) 150 (6749)

Table 6.6: Analysis of the clustering and training results of context-dependent pairwise classifiers
for the phonetic classes EH and UH.
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Classification accuracy (averaged across triphones)
HMM-state UH(1) UH(2) UH(3)

EH(1) 0.97 (0.98,0.97) 0.98 (0.99,0.98) 0.98 (0.99,0.97)
EH(2) 0.99 (0.99,0.99) 0.98 (0.99,0.98) 0.98 (0.99,0.98)
EH(3) 0.99 (0.99,0.99) 0.98 (0.99,0.98) 0.98 (0.98,0.98)

Table 6.7: Context-dependent models for 3-state HMM modeling

the disjoint subsets of training samples (clusters of triphones) are selected using prior knowledge

(phonetic similarity rules) instead of randomly.

6.6 Conclusions

An automatic triphone clustering mechanism has been proposed that finds clusters of triphones

which pairwise separability is maximized. The algorithm has been evaluated on a “toy experiment”

that shows its potential. While the number of pairwise classifiers is increased, the context-dependent

classifiers are trained on smaller datasets, are more accurate and present a fewer number of support

vectors. Nevertheless, a much more detailed evaluation of the proposed technique would be required

before drawing conclusions. Considering the amount of effort that performing such evaluation would

require, further evaluations and enhancements of this technique as well as its full integration in a

SVM/HMM context-dependent system are left for future work.
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Chapter 7

Scalability

While the SVM-based speech recognition framework discussed in previous chapters has shown

very promising results in terms of WER, the computation of emission probabilities using pairwise

classifiers presents serious scalability issues. It is believed that the ability to properly overcome

such scalability shortcomings will play a fundamental role in the success of the proposed framework.

While the training time scalability appears to be the biggest concern when using nonlinear SVMs

for classification tasks in which training on large datasets is required, in the particular case of speech

decoding, in which all the acoustic models need to be loaded in main memory at once, the size

of the SVM classifiers trained becomes also of major importance. Additionally, existing methods

for obtaining class-posterior probability estimates in multi-class classification tasks, require the

evaluation of all the classifiers trained (or at least a big percentage of them as it will be shown later

on). In the case of speech decoding, which implies the separation of a big number of classes, the

computational cost resulting from evaluating the whole set of classifiers at any time frame (about

10ms in most state-of-the-art systems) is extremely high so methods to address this problem are

much needed.

This section is devoted to review different scalability problems that have been identified and

propose several methods with the intention of minimizing them. The proposed methods have been

incorporated into the SVM/HMM speech decoder described in previous sections and have been

evaluated resulting in considerable performance gains.
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7.1 Training time scalability

7.1.1 Introduction

SVMs that make use of non-linear kernels, and in particular Gaussian Radial Basis Function kernels,

have shown the best performance in a number of pattern recognition tasks and are used in a wide

variety of applications dealing with real-world data. According to previous work [22], this applies

to the case of cepstral features classification what represents the core of the proposed SVM/HMM

decoding system. However, as described in section 2.1 the training of a nonlinear SVM implies

solving the following quadratic programming (QP) problem:

Q(α) ≡
∑

i

αi − 1
2

n∑
i

n∑
j

αiαjyiyjK(xi,yi) (7.1)

Where n is the number of training samples. Solving this quadratic optimization problem implies the

computation of all the pairwise kernel evaluations K(xi,yi) what has a computational complexity

of O(n2). However, finding a solution to the problem may scale up to O(n3) and requires a storage

space of O(n2), which for large datasets is computationally extremely expensive. Note that for the

algorithm to perform at reasonable cost all the calculations must be carried out in main memory.

This is a very well know shortcoming of SVMs and several algorithms have been proposed

over time to reduce the computational complexity of solving the QP problem:

• Low-rank approximations on the kernel matrix: these approximations can be obtained in

a number of ways: using the Nystrom method [72], doing a greedy approximation [73], by

means of sampling [74] or by matrix decompositions [75]. However, when training on very

large datasets, the resulting rank of the kernel matrix may still be too high to be handled

efficiently.

• Chunking: this technique was introduced in [10] and consists of optimizing the Lagrangian on

an arbitrary subset of data. After the optimization, the set of nonzero Lagrange multipliers

(αi in equation 7.1) are retained while the other points in the subset are discarded. This

procedure is iterated until the Karush-Kuhn-Tucker (KKT) conditions are met and thus the

margin is maximized. However, the size of the subproblem tend to increase what, for large
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datasets, implies solving a QP on an increasing number of samples.

• Decomposition methods: these methods, firstly introduced in [76] present similarities with the

chunking methods and consist of breaking down the QP into a series of smaller subproblems

and then use a numeric QP optimizer to solve each of them. However, for large datasets

the size of these subproblems and consequently the computational cost of solving them may

become very high.

• Sequential minimal optimization (SMO): this is a particular case of decomposition taken to

the extreme, where the smallest possible optimization problem (containing only two variables)

is solved at each step [77]. This technique has gain increasing popularity and it is used by

state-of-the-art SVM libraries like LibSVM [78].

• Training SVMs on smaller datasets: this can be carried out, for example, selecting the input

samples doing active learning [79] or decomposing the original dataset into several fixed-size

subsets and training a different SVM for each of them, which outputs can be combined using

a neural-network [80]. Note that the later procedure guarantees a training time linear with

the number of samples by dividing the original dataset into fixed-size subsets. Clustering

techniques have also been used, consisting of applying a similarity measure for grouping the

training samples and then training a SVM with representatives of each cluster [81]. The main

shortcomings of these techniques is that require an initial step of preprocessing the training

samples and that some parameters are needed to control the samples selection, which best

values need to be estimated empirically.

• Core Vector Machines: this recent approach [82] combines techniques from computational

geometry with SVM training by reformulating the quadratic problem (QP) as a minimum

enclosing ball (MEB) problem. This technique has shown time complexity asymptotically lin-

ear with the number of samples and space complexity independent of the number of samples.

Experiments carried out on different datasets [82] showed that this technique produces clas-

sification accuracy comparable to state-of-the-art SVM training techniques while exhibiting

considerable less training time for very large datasets and reducing the complexity (number

of support vectors) of the classifiers produced.
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Core Vector Machines has shown a remarkable performance compared to other existing

techniques for training on large datasets, thus it would be interesting to explore the applicability

of this technique to the case of cespstral features classification for speech processing. Note that,

although this technique has been evaluated for several datasets [82], the nature of the features of

those datasets was very different to the nature of cepstral features. Cepstral features classification

is a especially difficult problem due to the usually large number of real-valued parameters of the

feature vectors.

The remaining of this section includes a brief description of this technique and an experi-

mental evaluation for cepstral features classification.

Core Vector Machines is based on reformulating the quadratic programming problem ex-

pressed in 7.1 as a minimum enclosing ball (MEB) problem for which a near optimal solution is

obtained by means of an iterative (1+ε)-approximation algorithm. The algorithm consists of main-

taining a core-set St, which is a subset of the training samples S in the feature space corresponding

to the kernel k, and its MEB (i.e. the smallest ball which contains all the points in St) at each

iteration t. The ball B(ct, Rt), where ct and Rt are respectively the center and radius of the MEB

at iteration t, is expanded at each iteration including a point falling outside B(ct, (1+ε)Rt) into the

core-set. The iterative process stops when all the points in S lie inside B(ct, (1 + ε)Rt). Once the

(1+ ε)-approximate solution is found, the primal variables associated to the SVM can be recovered

from c = [w′ b
√

Cξ′]. The iterative algorithm introduced in [82] for solving the MEB problem

involves the recomputation of the radius Rt and center ct of the ball at each iteration, while this

is considerably faster than solving the QP of conventional SVM training, it stills requires solving a

quadratic subproblem defined on the core-set (which for some datasets can be large). To cope with

this problem, a simplified algorithm was proposed in [83] where the radius of the MEB is fixed so

at each iteration only the center of the ball is recomputed.

In order to evaluate the performance of Core Vector Machines applied to speech processing,

a comparison will be carried out between CVMs and state-of-the-art SVM training for cepstral

features classification.
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7.1.2 Experimental setup

Core Vector Machines are especially suited to deal with large datasets and it is in this context

where they have shown considerable advantages respect to the use of conventional SVMs. For this

reason, Switchboard [84] that comprises tens of hours of speech, has been selected as the training

material31 while CallHome, another corpora comprised of telephone speech, has been selected for

evaluation purposes. .

The experiment consists of training a pairwise classifier to separate cepstral feature vectors

aligned to the central state of the phone AA from cesptral feature vectors aligned to the central

state of the phone HH. For this reason, Sonic [41] has been used to perform a forced aligned to

the data and obtained the state-alignment information. The phonetic classes AA and HH appear

with a similar frequency in the training material so produce a balanced training set. In addition,

based on the experiments done for children’s speech, these classes are expected to be relatively easy

separable thus allowing the training of traditional SVMs in a reasonable time span. An initial step

consisting of a Viterbi alignment between the audio and the transcriptions has been carried out

using Sonic [41]. The total number of training samples aligned to each class is 399761 and 503639

respectively. The resulting number of test samples available for both classes is 43268.

Using these data points, several diluted training sets have been created corresponding to

several diluting factors 1 : x. A diluting factor 1 : x means that 1 sample is selected out of X

consecutive samples in the original training set. This is a natural mechanism to obtain datasets

that contain only a percentage of the samples in the original dataset that can be used to evaluate

how the training complexity evolves as the number of training samples increases. For each diluted

set three classifiers have been trained:

• A state-of-the-art SVM classifier using the LibSVM library [58].

• A CVM classifier for which the MEB’s radio is recalculated on each iteration as described in

[82] . The library used is LibCVM [85].

• A CVM classifier for which the MEB’s radio is given in advance as described in [83], this
31Both the predefined training and test partitions of the Switchboard corpora have been combined and used as

training in order to have a dataset as big as possible
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classifier is referred as BVM. The library used is LibCVM [85].

These classifiers have been trained using a Gaussian Radial Basis Function. The parameters

C and γ have been selected doing a 5-fold cross validation process. The resulting optimal values are

C = 1 and γ = 0.125, which have been used to train all the classifiers. For the conventional SVM

classifiers a tolerance of termination criterion ε = 10−3 has been used. In the case of CVM and

BVM, values of ε up to 10−4 have been reported [83] to produce the best results for a wide variety

of datasets. However, it has been found that such a large value of ε does not produce satisfactory

results for cepstral features classification, so a smaller value of ε = 10−5 have been used at the

expense of increasing the training time.

Experiments have been carried out using a machine running the Windows XP operative

system with 1GB of main memory and 3.00 GHz. For all the experiments it has been made sure that

all the computations were conducted in main memory so no swapping was allowed. The classifiers

trained have been compared in terms of training time, number of support vectors generated and

classification accuracy.

7.1.3 Results

Table 7.1.3 and, graphically, figure 7.1 show the training time for the three different training

techniques and seven different diluting factors. As can be observed, for a number of training

samples up to 180680, disregarding the technique used, the training time grows nonlinearly with

the number of samples. However, once the number of samples goes beyond that value, the training

time of CVM and BVM classifiers becomes linear with the number of samples while the training

time of the SVM classifier remains non linear. So it is possible to see an asymptotic linear behavior

that is especially convenient for dealing with large datasets.

An analogous behavior is observed when analyzing the number of support vectors (see

table 7.1.3 and figure 7.2). In this case, for a number of samples up to 180680, the number of

support vectors grows linearly with the number of samples independently of the technique employed.

However, when training on the whole set of samples, the conventional SVM classifier still introduces

a considerable number of new support vectors, while both CVM and BVM only add a relatively

small number of them.
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Diluting factor #samples SVM CVM BVM
1000 903 0.079 0.16 0.34
500 1807 0.25 0.5 0.5
100 9034 6.7 6.95 5.36
50 18068 22.94 24.61 17.38
10 90340 504.41 2243 1184.05
5 180680 1888.38 8629 2443.06
1 903400 67342 10756 3665.38

Table 7.1: Training time for different training techniques.

The explanation is that, when the number of training samples is not big enough (below

200.000 in the experiments conducted), new training samples still bring in additional information

useful for classification, which makes the number of core vectors and thus the number of support

vectors and the training time grow as the number of training samples grow. However, once the

number of training samples used reaches some point (that it is believed is task dependent), if more

samples are added, only a very small percentage of them contribute to improve the classification,

so only a relatively small number of extra support vectors are needed. While both CVM and BVM

are able to exploit this situation in terms of training time and number of support vectors produced

(note that these concepts are strongly connected) by limiting the number of core-vectors contained

in the core-set, conventional SVMs training does not, thus producing a huge number of support

vectors that do not make a difference in the classification accuracy. This point is reflected in table

7.1.3, in which for the larger datasets, CVM and BVM techniques produce comparable classification

accuracy to conventional SVMs while considerably reducing the number of support vectors.

Based on these experiments for cepstral features classification, it can be concluded that,

although for small and middle size datasets the MEBs-based techniques do not show any advan-

tage respect to conventional SVM training (and in some cases may slightly deteriorate the perfor-

mance), their asymptotic linear behavior clearly makes them a better choice for training on very

large datasets. It would have been interesting to train on even larger datasets, however the main

memory limitations of the machine used prevented that possibility. Additionally, the training time

of conventional SVMs on the largest datasets would have made the process almost unfeasible.
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Figure 7.1: Training time as a function of the number of training samples (data corresponds to
table 7.1.3)

Diluting factor #samples SVM CVM BVM
1000 903 269 315 352
500 1807 482 621 657
100 9034 1367 2095 1773
50 18068 2320 3505 2844
10 90340 9494 10756 8323
5 180680 17486 14645 10805
1 903400 77293 15372 11962

Table 7.2: Resulting number of support vectors for different training techniques.

Diluting factor #samples SVM CVM BVM
1000 903 88.47 87.6 87.9
500 1807 89.44 88.24 88.37
100 9034 90.37 90.28 90.21
50 18068 90.64 91.07 90.47
10 90340 91.56 91.26 91.8
5 180680 91.84 92.05 92.61
1 903400 92.55 92.68 93.43

Table 7.3: Classification accuracy for different training techniques.
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Figure 7.2: Number of support vectors produced as a function of the number of training samples.
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Figure 7.3: Classification accuracy as a function of the number of training samples.
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7.1.4 Working with a preset number of support vectors

One interesting point of CVMs is that they allow to set in advance the maximum number of

support vectors the training produces by limiting the maximum number of core-vectors in the core-

set. Once the training is done, the resulting number of support vectors is a lower bound of the

preset number. This is a very interesting feature since, the evaluation of the decision function of

a SVM (which strongly influences the decoding time of the SVM/HMM system proposed) can be

considered as linear with the number of support vectors. However, it is unclear up to what extent

can the maximum number of support vectors be limited without compromising the classification

accuracy. In order to shed some light on this issue, some informal experiments have been carried

out, unfortunately it has been observed that no significant reduction in the number of SVs is

possible without deteriorating the classification accuracy. Nonetheless, an in depth analysis and a

more detailed set of experiments should be conducted to draw conclusion on this matter.

7.2 Decoding time scalability

In a conventional state-of-the-art speech recognition system, decoding time is mainly determined

by two factors:

• Viterbi beam-search: time necessary to build the search space and expand/prune it.

• Computation of the emission probabilities.

During a conventional Viterbi search, an emission probability needs to be computed for each

of the HMM-states that remain active at the current time frame. While the number of active HMM-

states depends on several factors like the size of the lexicon and the beam pruning, usually, the

emission probability of most of the HMM-states needs to be computed. In the case of a SVM/HMM

system with emission probabilities calculated using 4.1 and 4.5, this results in the evaluation of

most the pairwise SVM classifiers at any give time frame, which strongly deteriorates the real time

performance. For example, to estimate 4.1 using 52 phonetic classes and three-state HMMs, if an

average of 80% of the states are active, 11625 SVM classifiers need to be evaluated at any given time

frame. This represents 96% of the total pairwise models trained and is computationally extremely

94



expensive. It is believed that this is one of the most serious shortcomings in the applicability of

SVMs for speech decoding following this probabilistic scheme.

Given that the core of the problem is the time required to evaluate such a big number

of SVM classifiers during the computation of the emission probabilities, improving the real time

performance of the decoder can be carried out in two complementary ways:

• Reducing the evaluation time of the individual SVM classifiers.

• Reducing the number of classifiers that need to be evaluated at the frame level.

This section is devoted to explore solutions from both perspectives in order to improve the decoding

time scalability.

7.2.1 Reducing the evaluation time of the individual SVM classifiers.

As introduced in 2.3.3, the time-complexity of evaluating a SVM classifier for a given input sample

x is dominated by the number of kernel evaluations. Particularly, the time-complexity is linear

with the number of kernel evaluations required to classify the input sample. While in the case of

binary classification the number of kernel evaluations corresponds to the number of support vectors

of the classifier, in a multiclass classification problem for which several binary classifiers contribute

to the final call, the number of kernel evaluations is proportional to the number of unique support

vectors across classifiers. As introduced in 2.3.3, the justification is that kernel evaluations K(si,x)

between the input sample x and multiple occurrences of the same support vector si, can be cached

and reused.

In the case of a SVM/HMM speech recognition system, the number of different classes (recall

the correspondence between classes and HMM-states) that intervene in the multiclass classification

is very high. Assuming that the one-versus-one strategy has been selected, the number of pairwise

classifiers trained for each class is consequently high as well. Thus, the number of times a support

vector may appear in different classifiers is potentially high, and so it is the number of kernel

predictions that can be reused.

Now, this circumstance will be explored for the experimental setup described in 4.3.1. Table

7.4 shows a comparison between the number of support vectors and the corresponding unique
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support vectors for two HMM architectures. As can be seen, in the case of a one-state HMM

architecture, the number of support vectors (total number of support vectors across the 1326

classifiers trained) is 11.16 times higher that the total number of unique support vectors. Thus,

an impressive overall reduction in the time required for computing the emission probabilities of

91% can be potencially attained by reusing kernel evaluations at the frame level. In the case of a

three-state HMM architecture an even higher reduction of about 96% can be obtained motivated

by the higher number of classifiers trained for each class.

Parameter one-state HMMs three-state HMMs
Number of phonetic classes 52 52

Number of classes 52 156
Number of classifiers trained 1326 12090
Number of classifiers per class 51 155

Number of support vectors 8912183 21567545
Number of unique support vectors 798787 850565

Duplication ratio 11.16 25.37

Table 7.4: Comparison of the number of support vectors and unique support vectors for two HMM
architectures.

However, in practice, it is not possible to reach these impressive reduction factors when

computing the emission probabilities. The reasons are the following:

First, besides the kernel evaluations, there are other less costly operations that still need to

be carried out to evaluate the decision function linked to a SVM. To illustrate this point, equation

7.2 shows the SVM decision function, which sign is used to classify an input sample x. Recall from

section 2.1 that NS is the total number of support vectors, si are the support vectors and αi are

the Lagrange multipliers.

f(x) =
NS∑
i=1

αiyiK(si,x) + b (7.2)

As can be seen, even reusing a big percentage of the kernel predictions across classifiers, all the

products with the Lagrange multipliers still need to be carried out to evaluate the decision function

of each classifier.

Second, the computation of emission probabilities implies a set of operations on top of the

decision function evaluations:
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• In order to obtain a class-posterior probability p(ki|ki or kj ,x) from each pairwise classifier, it

is necessary to map the distance obtained from the SVM to a probabilistic value using 2.20.

• Pairwise probabilities p(ki|ki or kj ,x) obtained from each pairwise classifier SV M(ki,kj) need

to be combined to obtain the final class posteriors p(ki|x) using 4.1 and then, the emission

probabilities p(x|ki) using 4.5.

Finally, it is important to consider that if two classifiers share a support vector si but are

trained with different kernel parameters (for example, a different value of γ in the case of the

Gaussian kernel), kernel predictions K(si,x) for the support vector si and an input sample x can

not be directly reused. In this case, however, a simple trick allows the reuse of kernel predictions

by introducing only an extra operation. Let be SV M(ki,kj) a classifier trained to separate classes

ki and kj that was trained using a Gaussian Radial Basis Function K1(x,y) = e−γ1‖x−y‖2
. Let

be SV M(ki,kl) a classifier trained to separate classes ki and kl that was trained using a Gaussian

Radial Basis Function K2(x,y) = e−γ2‖x−y‖2
. Let be s a training sample from class ki that is

support vector in both classifiers, and x an input sample to classify. In this case K2(s,x) can be

easily obtained from K1(s,x) as expressed in 7.3.

K2(s,x) = e−γ2‖s−x‖2

=
(
e−γ2‖s−x‖2

)γ1
γ1 =

(
e−γ1‖s−x‖2

)γ2
γ1 = K1(s,x)

γ2
γ1 (7.3)

As can be seen, only an additional exponentiation is needed to reuse kernel predictions

across classifiers that make use of a different γ parameter in the Gaussian kernel.

7.2.2 Reducing the number of classifiers that need to be evaluated at the frame

level.

In this section it will be described an algorithmic method to dynamically select the order in which

the pairwise classifiers are used in the computation of the emission probabilities so that at any given

time frame only a reduced subset of the total classifiers trained is used. The idea is to perform the

computation globally using a greedy strategy in which the pairwise classifiers that are expected

to be the most discriminative are evaluated first. This procedure is expected to rapidly assign a

very low probability to unlikely HMM-states by evaluating first the pairwise classifiers of the best
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scoring HMM-states. During the process, once the partial emission probability computation of

an HMM-state drops below a certain value (relative to the probability of the best scoring HMM-

state), no more pairwise classifiers need to be evaluated for that state and it can be pruned from

the computation process at an early stage.

1. Create a list Lactive with pairs (ki, μi) where ki represents each of the classes (i.e. HMM-

states of the different phone classes) that remain active in the Viterbi search at the current

time frame, and μi (initialized to 0) will be used to keep a partial summation of pairwise

probabilities for the class ki.

2. Create an empty list Lfinal to keep the classes that will be used do the final computation of

probabilities. Another empty list Lpruned is created to store the classes that are pruned from

the global computation of probabilities.

3. Initialize (kb, μb) with the pair (ki, μi) with smallest value of μi. In the first iteration (i.e.

when all the μi are 0) kb is initialized with the best scoring class from the previous time frame

(this is the class that has the highest expected probability value for the current time frame).

kb will be used to keep the class with the best partial probability estimation.

4. For each pair (ki, μi)i�=b in Lactive do the following:

(a) compute p(kb|kb or ki,x) using the corresponding pairwise classifier. If no more pairwise

classifiers are left to evaluate for kb, move (kb, μb) to Lfinal and go to step 5.

(b) μi = μi + 1
1−p(kb|kb or ki,x) − 1

(c) μb = μb + 1
p(kb|kb or ki,x) − 1

(d) if p(kb|kb or ki,x) < 0.5 then (kb, μb) = (ki, μi)

5. If Lactive contains less than two elements move them to Lfinal and go to step 8.

6. Sort the elements of Lactive in ascending order of μi. Note that μi represents part of the

overall summation of pairwise probabilities that is done in the right term of expression 4.1

for calculating the posterior of ki. Thus, μi + 1 can be considered as the inverse of a partial

estimation of the posterior of ki.
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7. For each element ki in Lactive if μi+1
μb+1 > λ move the element to Lpruned. Go to step 3.

8. For each element (ki, μi) in Lpruned approximate the posterior probability p(ki|x) of ki as

a minimum value relative to 1
μb+1 (that represents the best partial probability estimation).

This is expressed in (5).

p(ki|x) =
1

(μb + 1)λ
(7.4)

9. For each element (ki, μi) in Lfinal compute the posterior probability p(ki|x) of ki using only

the pairwise classifiers of the classes contained in Lfinal. This is expressed in (6), where F

represents the number of elements in Lfinal.

p(ki|x) =

⎡
⎢⎢⎣ ∑

j �=i,
j∈Lfinal

1
p(ki|kj or ki,x)

− (F − 2)

⎤
⎥⎥⎦
−1

(7.5)

10. According to 4.5 a final step of normalizing the posteriors by the phone priors is necessary.

Note that using a high enough value of λ this algorithm is completely equivalent to the conventional

calculation using 4.1 and 4.5 for every active HMM-state. Another interesting point is that, as

described in the step 9 of the algorithm, the posterior probabilities of the “surviving candidates”

(ki ∈ Lactive) are computed using only pairwise classifiers of the classes contained in Lfinal. There

are two reasons for that:

• It allows a more homogeneous computation of probabilities since at step 9 the number of

pairwise classifiers already evaluated for classes in Lfinal vary from one class to another.

• Probabilistic values from pairwise classifiers that separate more likely classes (those contained

in Lfinal) are expected to be more reliable.

Experiments

Experiments have been carried out to evaluate the effectiveness of the algorithm previously proposed

to reduce the number of pairwise classifiers that need to be estimated at each time frame during
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Figure 7.4: Word accuracy for different values of λ

decoding. The SVM/HMM system used here is the one described in section 4.3.1, making use of

state-tying as described in chapter 5. In this system, the emission probabilities of each HMM-state

are globally calculated according to the agorithm previously described. Different decoding processes

have been carried out for which different values of λ have been used. As can be seen in Fig. 7.4 the

value of λ can be set at 105 with no loss in recognition accuracy. In particular, for such a value of

λ only an average of 14% of the pairwise models that, according to expressions 4.1 and 4.5 would

be evaluated, are used at each time frame. However, significantly higher values of λ still allow a

large reduction in the number of pairwise classifiers. For example if λ is set to 108 only an average

of 38% of the pairwise models are used.

From these results it is possible to conclude that the proposed algorithm dramatically reduces

the number of pairwise classifiers that need to be evaluated at the frame level while preserving the

recognition accuracy.

Similarities with the DDAGs method

It is interesting to mention that this algorithm presents some similarities respect to the DDAGs

method for multiclass classification [86]. In fact, it can be seen that there is an implicit graph struc-

ture that is built as the pairwise classifiers are evaluated. The DDAGs method can be considered
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as a particular case of the algorithm proposed in which the computation of the probability p(ki|x)

of a class ki is stopped once it falls below 0.5.

The main differences between the proposed method and DDAGs are listed below:

• Pairwise classifiers of a given class ki are evaluated until the probability of that class falls

below a given threshold, which is relative to the most likely class in the partial computation.

In the DDAGs method, only a pairwise classifier of each class is evaluated, with the exception

of the winning class for which all the pairwise classifiers are evaluated. It is for this reason that

DDAGs are not suitable for computing class-level posteriors other than that of the winning

class.

• In opposition to the DDAGs method in which the graph is built in advance, at each iteration

there are multiple pairwise classifiers that can be evaluated (those of all the active classes

ki in the list Lactive, for this reason a criterion needs to be established to select the next

pairwise classifier to evaluate. In the proposed algorithm the criterion consists of evaluating

first pairwise classifiers of the most likely class in the partial computation.

Finally, note that while this algorithm has been proposed for emission probabilities compu-

tation it can be directly applied to any multiclass classification problem in which class-posteriors

are required and SVM pairwise classifiers are selected as the classification strategy.

7.3 Models’ size

Whenever a system that performs a large number of computations is expected to work in real time,

and that is the case of a speech decoder, it is of foremost importance that the core of the system

is able to work in main memory. In the case of a decoding system, three main factors govern the

memory requirements:

• Acoustic models’ size: a conventional GMM/HMM system requires the storage in memory of

roughly 2000 triphone models, while the size of these models depends mainly on the model

topology, the number of mixtures used and the strategy selected for tying parameters across

triphones, their memory requirements are nowadays not a big issue. However, in the case
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of a SVM/HMM decoder like the one introduced in section X in which the one-versus-one

strategy is selected for multiclass classification, a very large number of SVM classifiers need to

be trained and be present in main memory at any given time frame during decoding. Given

that the size of a SVM classifier is proportional to the number of support vectors and this

number is, as will be shown later on, relatively large, a compression mechanism is needed to

limit the main memory necessary to store the classifiers.

• Language models’ size: depending on the application, and especially if a n-gram of third or

superior order is applied, a large vocabulary continuous speech recognizer (LVCSR) may need

considerable space to store the probabilities of all the possible n-grams.

• Search space size: the search space size is typically determined by the size of the lexicon,

the probabilistic language model utilized and the pruning strategy and beam width selected.

State-of-the-art GMM/HMM decoders apply different techniques during the Viterbi search,

like language model or phoneme look-ahead, aiming for a reduction of the search space thus

accelerating the decoding process. Analogous techniques can be successfully incorporated

into the proposed SVM/GMM system so in this respect no significant differences have been

observed between both systems in term of memory usage.

It’s clear that it is the first of these factors the one that requires a careful study in the

proposed system.

7.3.1 Compression method

It has been observed in previous sections that the total number of support vectors resulting from

the training of all the one-versus-one classifiers for a given class (HMM-state) is considerably higher

than the total number of training samples available for that class. Given that a support vector

is by definition a training sample, it is clear that many training samples become support vectors

of different classifiers so there is a high degree of redundancy of support vectors across pairwise

classifiers trained for the same class.

A compression method has been proposed that consists of extracting the support vectors

contained inside each SVM classifier, unifying duplicated support vectors, and storing them alto-
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gether in a shared repository. Following this procedure, each support vector resulting from the

training of a classifier is replaced by a pointer to the exact same support vector in the repository.

The benefit of this compression method obviously lies in the much smaller space needed to store

a pointer (an index in disk) than a support vector (39 floating point coefficients). Since most

of the models have a great number of support vectors in common, a big decrease in the storage

requirements (both in disk and in main memory) is expected by storing each support vector only

once. Following this approach, the maximum number of support vectors that need to be stored for

a given class will be at most the number of available samples for that class. However, as it will

be shown next, the total number of support vectors that need to be stored for each class is only a

percentage of the available ones.

Parameter Original models Compressed models
Number of phonetic classes 52 52

Number of models 1326 1326
Average number of samples per class 17498 17498

Average number of support vectors per class 171388 15361
Average model’s size 2.05MB 78.8KB

Total size 2720MB 102MB + 118.8MB

Table 7.5: Comparison of storage requirements between the original SVM models and those resulting
from the compression algorithm proposed.

7.3.2 Conclusions

In this chapter several scalability and real time performance issues have been discussed. In that

respect, the main weaknesses of the SVM/HMM speech recognition system proposed have been

identified and different techniques have been proposed to alleviate them. The following list sum-

marizes the topics discussed:

• Training time scalability: Core Vector Machines [82] and Ball Vector Machines [83] have

been explored as approximate SVM solvers that exhibit training time asymptotically linear

with the number of samples. Experiments carried out show that these techniques present

an excellent performance for feature frames classification in very large datasets. They show

comparable classification accuracy than standard SVM-training techniques while producing
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considerable fewer support vectors. Hence, they are good candidates for training SVM-based

acoustic models in large datasets.

• Decoding time scalability: the decision function of a SVM, and thus the SVM-acoustic models

proposed in this thesis work, is expressed as a function of a subset of the training samples

called support vectors. As the training material increases the number of support vectors tend

to increase what strongly deteriorates the real time performance. This problem has been

successfully addressed from two different perspectives:

1. Reusing kernel predictions across classifier evaluations.

2. Reducing the number of classifiers that need to be evaluated at the frame level using an

heuristic approach. This heuristic approach not only reduces dramatically the number of

classifiers that need to be evaluated but can be potentially to any multi-class classification

problem that requires probability estimates for the most likely classes.

• Models’ size: it’s been taken advantage of the redundancy of support vectors across classifiers

to store them in a unique repository that can be accessed through pointers. This procedure

limits the models’ size to the total number of unique support vectors, which strongly reduce

the storage requirements.
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Chapter 8

Summary, Conclusions and Future

Work

This thesis is focused on exploring the applicability of Support Vector Machines to the task of

continuous ASR. While there exist in the literature a number of successful applications of SVMs to

different speech processing tasks, their application to continuous speech recognition is still a quite

unexplored issue.

8.1 Summary of results

This thesis work starts making an introduction to the mathematical foundations of SVMs and to

different strategies proposed in the literature for dealing with probabilities estimation and multiclass

classification. These issues are particularly interesting from the point of view of speech recognition,

in which the number of classes (HMM-states) is quite large and probabilistic values, and not just

class labels, are much needed. Different techniques are discussed and compared from several angles.

Finally, the one-versus-one strategy has been selected for dealing with multiclass classification.

This technique presents both superior accuracy and trainability advantages respect to competing

techniques. In the other hand, while this technique results in a very large number of classifiers

(especially if the number of classes is large, and that is the case of speech recognition), it allows

a dynamic selection of pairwise classifiers during decoding. Chapters 5 and 7 show, respectively,
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that an appropriate dynamic selection of pairwise classifiers leads to a better recognition accuracy

and a dramatic reduction in the decoding time.

In chapter 3, a review on the state-of-the-art of SVM-based speech processing techniques is

carried out, in which the main challenges in the application of SVMs to continuous speech recog-

nition are outlined. Also in that chapter, a novel technique for pronunciation scoring using SVMs

as probabilistic estimators and phone-graphs is introduced. The proposed technique significantly

outperforms state-of-the-art techniques, hence showing the potential of SVMs as probabilistic esti-

mators.

Chapter 4 is dedicated to introduce a novel SVM/HMM stand-alone speech recognition

system and to evaluate it experimentally. This system has shown superior recognition accuracy

than a comparable GMM/HMM system. In the other hand, the proposed system makes use of a

much bigger number of parameters, which compromises its real-time performance and scalability.

In this respect, chapter 7 is dedicated to, first, identify the system’s scalability problems and,

second, address them from three different perspectives: training time, decoding time and models’

memory requirements.

8.2 Contributions

This section summarizes the main contributions of this thesis work.

• A stand-alone SVM/HMM continuous speech recognition system has been proposed and fully

implemented showing superior word accuracy to a conventional GMM/HMM in the experi-

mental framework under consideration. The proposed system, published in [87], presents the

following properties:

– It does work as a stand-alone system. In fact, its only connection with a GMM/HMM

system is the state-alignment required in the segmentation of the training data used

to train the SVM classifiers. However this connection is not that because hand-labeled

speech corpus like TIMIT can potentially be used to generate a set of bootstrap models.

– It performs speech recognition and not hypothesis rescoring (in contrast with other

systems like [32]).
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– It is a continuous speech recognition system (in contrast with isolated recognition ap-

proaches like [34] or [35]).

– It does not make use of transition probabilities extracted from acoustic models trained

using a conventional GMM/HMM system (in contrast with the system proposed in [36]).

For this reason, it can not be considered a hybrid approach but an independent system.

While the SVM/HMM system proposed shows superior word-recognition performance than

a conventional GMM/HMM system it presents some disadvantages in terms of real time per-

formance and scalability (both motivated by the large number of parameters). The proposed

system is not intended to replace conventional GMM-based speech recognition systems but

to take a step forward toward the application of SVMs to continuous speech recognition.

• A procedure for implicit state-tying of pairwise classifiers during decoding has been proposed

with the intention of removing unreliable pairwise classifiers from the computation of emission

probabilities. This procedure presents the following advantages:

– Word accuracy improvement: The tying procedure helps to reduce the WER, indicating

that training classifiers to separate very similar classes is not recommended.

– Faster decoding: fewer classifiers need to be evaluated at the frame level during the

Viterbi search, with the consequent reduction in computation.

– Faster training: after doing the cross-validation process those classifiers with an accuracy

below the threshold do not need to be trained.

• It has been carried out a study on the integration of context-dependency modeling into

the proposed SVM/HMM decoder. A SVM-based triphone clustering method based on the

alternative expansion of two binary trees using phonetic rules has been described and exper-

imentally evaluated. The proposed method is able to effectively identify clusters of triphones

which pairwise separability is clearly superior than that of the corresponding context indepen-

dent classifier. However its feasibility for continuous speech decoding has not been evaluated

and it has been left for future work.
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• It has been presented an algorithm that allows the computation of posterior probabilities

for each of the classes involved in a multiclass classifications task. This technique has been

experimentally evaluated in the task of emission probabilities computation showing that the

probabilities produced are as accurate as those computed using state-of-the-art alternative

techniques while dramatically reducing the number of pairwise classifiers that need to be

evaluated. The algorithm proposed, although evaluated in the case of emission probabilities

computation, can be potentially applied to any multiclass classification problem involving a

large number of classes and pairwise classifiers.

• Several scalability issues have been identified in the SVM/HMM recognition system. These

issues have been addressed from different angles:

– Training time scalability: two approximate SVM solvers [82] [83] have been explored for

feature frames classification on large datasets. They both show comparable classification

accuracy than standard SVM-training techniques while producing considerable fewer

support vectors. Hence, they are good candidates for training SVM-based acoustic

models in large datasets, which represents one of the main concerns in the application

of SVMs to speech processing tasks.

– Decoding time scalability: this problem has been successfully addressed from two differ-

ent perspectives:

1. Reusing kernel predictions across classifier evaluations.

2. Reducing the number of classifiers that need to be evaluated at the frame level using

an heuristic approach.

– Models’ size: a repository is utilized to uniquely store support vectors shared across

different classifiers.

Note that these scalability issues are not specific to the proposed SVM/HMM speech decoding

system but to a much wider range of speech applications that make use of feature frames

classification under the pairwise-coupling framework.

• It has been presented a successful application of SVMs to pronunciation scoring in the context
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of a children’s word reading task. The idea consists in extracting phone-level and frame-

level SVM-based posterior probabilities from a phone graph and combine them to obtain

pronunciation scores. The proposed technique and features shows a 22.9% relative error

reduction respect to conventional log-likelihood based techniques. This application has been

published in [88].

8.3 Future work

• Reducing the number of parameters: it is believed that the main shortcoming of the proposed

SVM/HMM system is the number of parameters. SVMs are a non parametric modeling tech-

nique which solution (decision function) is expressed using a subset of the training samples

called support vectors. For complex classification problems, like speech features classification,

typically a complex decision function and thus a great number of support vectors are required

to attain satisfactory classification results. The one-versus-one technique has been selected

across this thesis work as the strategy for dealing with multiclass classification. While the

application of this technique results in small classifiers that can be trained faster and are as

accurate as those resulting from the one-versus-rest strategy, the total number of resulting

classifiers is in the order of several thousands. Several techniques have been proposed in this

thesis work to deal with this issue when computing the emission probabilities, like caching

kernel evaluations and dynamic selection of classifiers. As shown in chapter 7.2, these tech-

nique have shown to dramatically reduce the cost of computing the emission probabilities.

Nevertheless, it would be interesting how the real time performance scales as the size of the

training material increases (for example, in larger corpora of tens of hours of speech or more).

• Context-dependency: a method for context-dependent acoustic modeling using SVMs has

been proposed in the chapter 6 of this thesis. While this method has been partially evaluated

and, thus, its feasibility has been partially proven. A complete evaluation of that method (i.e.

recognition accuracy compared to the equivalent context-independent SVM/HMM system

and/or to a context-dependent GMM/HMM system) has not been carried out because it

would require too much effort by itself to be included as part of this thesis work. Doing such
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work is left for future research.

• Mismatched conditions: it is well known that the accuracy of speech recognition systems

rapidly degrades when deployed in acoustical environments different than those used in train-

ing [89][90]. For example using a speech recognition system from the cellphone introduces a

great acoustic variability because the noise in the network itself, the background noise, etc. In

these cases, the conditions in which the system is used may enormously differ from in which

the acoustic models are trained, which may make the system unusable. While there exist a

number of technique to deal with the problem of mismatched conditions, which can be broadly

divided into two main categories, feature and model adaptation, there are situation in which

the environment conditions vary very rapidly and, thus, those adaptation techniques have a

limited effect. In these cases the robustness of the original model and its ability to generalize

is of major importance. In this respect, one of the most appealing properties of SVMs is their

generalization capability, it is for this reason that SVM-based acoustic modeling seems very

promising for dealing with mismatched conditions.

• Comparison with a conventional GMM/HMM system which acoustic models are trained us-

ing a discriminative criterion: as it was mentioned in chapter 4, the utilization of SVMs for

acoustic modeling in a SVM/HMM system shares some of the motivations of using discrim-

inative training criteria for the training of GMM/HMM acoustic models. For this reason, it

would be interesting to carry out a comparison between such systems and not restrict the

comparison to a system trained under Maximum Likelihood. This is left for future work.

• Conditional Random Fields: conditional random fields (CRF) are discriminative models that,

unlike HMMs, do not attempt to model the probability distribution of the input data (the

acoustic observations) but the probability of sequences of labels. Conditional Random Fields

allow the computation of the posterior probability P (Y |X) of a sequence of class labels Y

given a sequence of input samples X and their attributes. For this reason, CRFs seem to be

a more suitable mechanism to integrate frame-level posteriors (which are the natural output

of SVMs) into the acoustic modeling than HMMs. Recall from section 4.2.1 that SVM-based

frame-level posteriors p(y|x) are transformed to class conditional probabilities dividing by
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class priors. Although this mechanism has been previously used in the literature in the case

of hybrid ANN/HMM systems [70], it seems less convenient. For example, in [99] CRFs are

used for integrating local discriminative classifiers.

8.4 Main publications

The following list contains the most relevant publications made during this thesis work:

• D. Bolanos and W. H. Ward, “Implicit State-Tying for Support Vector Machines Based Speech

Recognition”. In Proceedings of Interspeech 2008, September 22-26. Brisbane, Australia.

• D. Bolanos, W.H. Ward, B. Wise and S. Van Vuuren, “Pronunciation Error Detection Tech-

niques for Childrens Speech”. In Proceedings of Interspeech 2008, September 22-26. Brisbane,

Australia.

• D. Bolanos, W.H. Ward, Sarel Van Vuuren and Javier Garrido, “Syllable lattices as a basis

for a Children’s Speech Reading Tracker”, In Proceedings of Interspeech 2007, August 27-31.

Antwerp, Belgium.

• D. Bolanos and W.H. Ward, “Posterior Probability Based Confidence Measures Applied to a

Children’s Speech Reading Tracking System”, In Proceedings of NODALIDA 2007, the 16th

Nordic Conference of Computational Linguistics. May 25-26 2007. Tartu, Estonia.

• D. Bolanos and W. H. Ward, “SVM-based Posterior Probabilities for Syllable Confidence

Annotation”, In proceedings of V Jornadas en Tecnologa del Habla. November 12-14 2008.

Bilbao, Spain.
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