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1 
If you set out on a journey let it be long 
wandering that seems to have no aim groping your way blindly 
so you learn the roughness of the earth not only with your eyes 
but by touch 
so you confront the world with your whole skin  
 
(...) 
 
7 
Więc jeśli będzie podróż niech będzie to podróż długa  
powtórka świata elementarna podróż  
rozmowa z żywiołami pytanie bez odpowiedzi  
pakt wymuszony po walce  
 
wielkie pojednanie 

—Zbigniew Herbert, "Journey" („Podróż”)  



 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my beloved wife 

 



 
 



 
 

 

 

 

 

           Acknowledgements 



 
 

 



 
 

First of all, I would like to thank my thesis director Paco Real for his enormous support 

and patience during this time that I have spent in his laboratory: You were always there 

to help me with advice and motivation, but most of all I want to thank you for showing 

me how to find excitement in science.  

Moreover I would like to acknowledge the members of my my PhD thesis committee, Dr. 

Marisol Soengas, Dr. Amparo Cano and Dr. Ángel Nebreda for very important feedback 

during our meetings. 

I want to thank our collaborators:  

Julia Mayerle, Marcus Lerch and Matthias Sendler, for hosting me in their lab and for big 

help with experiments, 

Marta Cañamero and Antonio Salas for histological analyses.  

I am also very grateful to all members (current and former) of Epithelial Carcinogenesis 

Group that created a great atmosphere in the lab: Laia (for being the best bench 

neighbor ever), Marinela (for being warm-hearted and helpful from the first day in the 

lab until the last), Marta (for sharing sweets and for help and collaboration at the end of 

my project), Miriam (for filling our “fishtank” with joy and optimism), Natalia (por 

ayuda, energía y las broncas que si que las merecería), Yoli (por toda tu ayuda y 

paciencia), Jose María (for being  there when I needed help), Victor (for creating great 

atmosphere and helping me to push my project forward), Cristina (for Montoya-

evenings, massages and cold hands when I needed them), Luis (also for massages and 

for philosophic discussions), Xavi (por ser tu), Carme (per ser tu també), Francesc (“… 

for the music” and for being my biggest fan), Espe (por las horas de “Huesitos” and for 

being my second biggest fan), Lina (for our experiment jokes and weekends in the lab), 

Paola (for wise advices and for the smell of good coffee in the afternoons), Ariel (for 

tech-support and for reminding me I´m not young anymore), Andreia (for helping me 

adapting to the lab reality), Dani (for being so joyful and helpful), Julie (for your 

cheering laughter and coffee breaks). 

 

 

 



 
 

I want to acknowledge other people at CNIO that made my PhD life better and easier: 

 “La Caixas” from the first (and the best) La Caixa Fellowship call (Aga, Eva, Kerstin, 

Marta, Miljana, Sara, Silvia, Jarek and Maciek) for all the trips, parties, lunches, dinners 

and whatever else we did together to have some relax from work.  

All the members of our polish enclave at CNIO (Aga M., Jarek, Maciek, Aga Ch., Marta, 

Magda W., Magda Z.): Dzięki za sprawienie że czułem się w Madrycie jak w domu.  

Diego, Manu and Chimo for a lot of help with fascinating world of confocal microscopy 

and Marta Cañamero for showing me that the pancreas can be fun.  

To all other people from CNIO (that are too many to mention) who helped me somehow 

at work or simply shared with me the difficulties of everyday in science. 

Chciałbym ogromnie podziękować moim rodzicom i mojemu bratu za ich wsparcie, 

mimo tego że nie było mnie z nimi tak długo: Dziekuję, że we mnie wierzyliście i 

trzymaliście za mnie kciuki.   

Na koniec, brak mi słów żeby opisać jak bardzo dziękuję mojej żonie, Kasi, za okazaną 

cierpliwość, wsparcie w trudnych chwilach i wyrozumiałość: Bez Ciebie byłoby mi o 

wiele ciężej.  

  



 
 



 
 



 
 

 

 

 

 

           Table of contents 



 
 



Table of contents 

1 
 

TABLE OF CONTENTS 

SUMMARY ........................................................................................................................................................... 5 

RESUMEN ............................................................................................................................................................. 9 

ABBREVIATIONS ............................................................................................................................................ 15 

INTRODUCTION ............................................................................................................................................. 21 
1. PANCREAS BIOLOGY ...................................................................................................................................... 23 

1.1. Pancreas anatomy and physiology ........................................................................................................23 
1.1.1. General considerations ............................................................................................................................................................ 23 
1.1.2. The endocrine pancreas .......................................................................................................................................................... 23 
1.1.3. The exocrine pancreas ............................................................................................................................................................. 23 

1.2. Pancreas development in mouse ............................................................................................................24 
1.2.1. Mouse pancreas embryology ................................................................................................................................................ 24 
1.2.2. Pancreatic multipotent progenitor cells (MPCs) ......................................................................................................... 25 
1.2.3. Pancreatic cell type specification ....................................................................................................................................... 27 

1.3. Pancreatic acinar cell biology .................................................................................................................29 
1.3.1. Acinar cell function in food digestion ............................................................................................................................... 29 
1.3.2. Zymogen activation ................................................................................................................................................................... 30 
1.3.3. Plasticity of the acinar cell ..................................................................................................................................................... 30 
1.3.4. The acinar transcription program ...................................................................................................................................... 32 
1.3.5. Post-transcriptional regulation of protein biosynthesis in acinar cells ........................................................... 34 
1.3.6. Studies of pancreatic acinar cell biology in cells cultured in vitro ..................................................................... 35 

2. DISEASES OF EXOCRINE PANCREAS ....................................................................................................... 36 
2.1. Acute and chronic pancreatitis ...............................................................................................................36 

2.1.1. Factors involved in pancreatitis .......................................................................................................................................... 36 
2.1.2. Animal models of pancreatitis ............................................................................................................................................. 38 
2.1.3. Mechanisms of acute caerulein-induced pancreatitis in rodents ....................................................................... 40 

2.2. Tumors of the exocrine pancreas ...........................................................................................................42 
2.2.1. Classification ................................................................................................................................................................................. 42 
2.2.2. PDAC: pathology and treatment .......................................................................................................................................... 43 
2.2.3. PDAC etiology ............................................................................................................................................................................... 45 
2.2.4. PDAC progression model ........................................................................................................................................................ 45 
2.2.5. Mouse models of pancreatic cancer .................................................................................................................................. 47 

3. MNK KINASES ................................................................................................................................................... 49 
3.1. Mnk protein kinases (Mnks) .....................................................................................................................49 

3.1.1. Discovery of Mnks ...................................................................................................................................................................... 49 
3.1.2. Mnks: homology to other kinases and structural information............................................................................. 49 
3.1.3. Mnk isoforms and distribution of functional domains ............................................................................................. 51 
3.1.4. Mnk1/2 activity regulation.................................................................................................................................................... 51 

3.2. Mnk substrates ................................................................................................................................................52 
3.2.1. eIF4E ................................................................................................................................................................................................. 52 
3.2.2. Other Mnk substrates ............................................................................................................................................................... 54 

3.3. Cellular functions of Mnks .........................................................................................................................55 
3.3.1. Animal models to study Mnk1/2 cellular function .................................................................................................... 55 
3.3.2. Role of Mnks in cellular stress ............................................................................................................................................. 56 
3.3.3. Role of Mnks in inflammatory cells ................................................................................................................................... 56 
3.3.4. Role of Mnks in cell survival and cancer ......................................................................................................................... 57 

OBJECTIVES ..................................................................................................................................................... 61 

OBJETIVOS ....................................................................................................................................................... 65 

MATERIALS AND METHODS ...................................................................................................................... 69 
1. IN VIVO PROCEDURES ................................................................................................................................... 71 

1.1. Mouse strains ...................................................................................................................................................71 
1.2. Caerulein-induced acute pancreatitis ..................................................................................................71 
1.3. Caerulein-induced chronic pancreatitis..............................................................................................71 

2. HISTOLOGICAL ANALYSIS ........................................................................................................................... 72 



Table of contents 

2 
 

2.1. Histopathology................................................................................................................................................72 
2.2. Immunohistochemistry ...............................................................................................................................72 
2.3. Immunofluorescence ....................................................................................................................................73 

3. RNA ANALYSIS ................................................................................................................................................. 73 
3.1. RNA isolation ...................................................................................................................................................73 
3.2. Reverse transcriptase and quantitative PCR (RT-qPCR) ............................................................73 

4. PROTEIN ANALYSIS ....................................................................................................................................... 74 
4.1. Pancreatic protein lysate preparation ................................................................................................74 
4.2. SDS-PAGE-western blotting ......................................................................................................................75 
4.3. Chromatin Immunoprecipitation followed by quantitative PCR  (ChIP-qPCR)................76 

5. BIOCHEMICAL ASSAYS.................................................................................................................................. 77 
5.1. Assessment of pancreatic amylase activity .......................................................................................77 
5.2. Assessment of serum amylase activity .................................................................................................77 
5.3. Measurement of pancreatic trypsin activity .....................................................................................77 
5.4. Carboxypeptidase activation ...................................................................................................................77 
5.5. Protein content assessment ......................................................................................................................78 

6. ACINAR CELL ISOLATION AND FUNCTIONAL ANALYSIS ............................................................... 78 
6.1. Mouse pancreatic acini isolation and measurement of amylase release by acinar cells 
in vitro 78 
6.2. Measurement of trypsin and cathepsin B activity and cell death in acinar cells in vitro
 78 

7. CELL CULTURE ................................................................................................................................................. 79 
7.1. Cell lines 79 
7.2. Hydrogen peroxide (H2O2) treatment of 266-6 cells .....................................................................79 
7.3. Mnk1 interference in 266-6 cells using lentiviral vectors ...........................................................79 
7.4. Ectopic expression of KrasG12V in 266-6 cells using pBabe-puro retroviral vector ..........80 
7.5. Induction of KrasG12V expression in acinar cells of embryonic mouse pancreas ...............80 

8. STATISTICAL ANALYSES .............................................................................................................................. 80 

RESULTS ........................................................................................................................................................... 83 
1. MNK1 IS A NOVEL ACINAR-SPECIFIC STRESS RESPONSE KINASE IN THE PANCREAS ................................. 85 

1.1. Identification of Mnk1 as a gene highly expressed in the pancreas .......................................85 
1.2. Mnk1 is embedded in the acinar transcriptional program........................................................86 
1.3. Mnk1 expression and activation in mouse pancreas upon experimental caerulein-
induced acute pancreatitis ........................................................................................................................................88 

2. MNK1 IS DISPENSABLE FOR PANCREAS DEVELOPMENT BUT PLAYS A PROTECTIVE ROLE IN 

PANCREATITIS REGULATING SECRETORY RESPONSE ................................................................................................ 90 
2.1. The pancreas of Mnk1-/- mice has increased enzymatic content and decreased 
expression of p-eIF4E targets ...................................................................................................................................90 
2.2. Mnk1 is required for eIF4E phosphorylation and participates in the regulation of cell 
proliferation during acute pancreatitis. ..............................................................................................................92 
2.3. In response to caerulein, Mnk1-/-

 mice display a more severe acute pancreatitis ...........94 
2.4. Pancreatic enzymatic protein content in Mnk1-/- mouse is not properly down-
regulated during acute pancreatitis .....................................................................................................................97 
2.5. Mnk1 is required for subcellular redistribution of digestive enzymes upon caerulein-
induced acute pancreatitis ..................................................................................................................................... 100 
2.6. Mnk1-/- mouse acinar cells are less responsive to secretagogue stimulation in vitro 101 
2.7. Mnk1-/- mice display less ductal atrophy but reduced Ptf1a levels upon multiple 
episodes of acute pancreatitis ............................................................................................................................... 103 

3. MNK1 MODULATES ACINAR PHENOTYPE AND PANCREATIC CARCINOGENESIS UPON ONCOGENIC KRAS

 105 
3.1. Mnk1 interference destabilizes acinar phenotype of 266-6 cells ......................................... 105 
3.2. Mnk1 activation by Kras in acinar cells modulates Mnk1-eIF4E pathway ..................... 107 



Table of contents 

3 
 

3.3. During PDAC progression Mnk1 protein is downregulated in precursor lesions but 
detected in carcinomas ............................................................................................................................................. 109 
3.4. Mnk1-/- mice develop more PanINs and less tubular complexes in KrasG12V PDAC model
 112 

DISCUSSION ...................................................................................................................................................115 
1. IDENTIFICATION OF NOVEL GENES INVOLVED IN PANCREAS BIOLOGY ..................................................... 117 
2. MNK1 IS A NOVEL ACINAR CELL-SPECIFIC STRESS RESPONSE KINASE IN THE PANCREAS..................... 118 
3. MNK1-/- MICE DISPLAY ALTERED EXPRESSION OF ACINAR DIGESTIVE ENZYMES AND P-EIF4E TARGET 

PROTEINS IN THE PANCREAS ...................................................................................................................................... 121 
4. C-MYC EXPRESSION INDUCTION AND ACINAR CELL PROLIFERATION DURING CAERULEIN-INDUCED 

PANCREATITIS PARTIALLY DEPEND ON MNK1 ....................................................................................................... 123 
5. MNK1 IS REQUIRED FOR THE PHYSIOLOGICAL SECRETORY RESPONSE OF ACINAR CELLS AND FOR THE 

HOMEOSTATIC RESPONSE TO CAERULEIN ADMINISTRATION ............................................................................... 124 
6. DEPLETION OF MNK2 DOES NOT ENHANCE THE PHENOTYPE OF MNK1-/- MOUSE................................. 128 
7. MNK1 LOSS-OF-FUNCTION HAS A NEGATIVE EFFECT ON ACINAR TRANSCRIPTION PROGRAM UPON 

STRESS ........................................................................................................................................................................... 129 
8. MNK1 MAY SUPPRESS PDAC DEVELOPMENT THROUGH REGULATION OF ACINAR-TO-DUCTAL 

TRANSDIFFERENTIATION UPON KRAS SIGNALING .................................................................................................. 130 

CONCLUSIONS ...............................................................................................................................................135 

CONCLUSIONES ............................................................................................................................................139 

REFERENCES .................................................................................................................................................143 

 



 

 



 

 

 

 

 

 

                          Summary 



 

 



Summary 

7 
 

In this dissertation I describe the role of Mnk1 kinase in exocrine pancreas physiology, 

pancreatitis and pancreatic cancer. I show that this kinase is expressed at exceptionally 

high levels in the developing and adult mouse pancreas, where it is a specific marker of 

acinar cell lineage. Mnk1 is embedded in acinar cell transcription program as a direct 

PTF1 target. Owing to this, its expression is down-regulated similarly to that of other 

acinar markers upon caerulein-induced acute pancreatitis – a condition that also leads 

to phosphorylation of Mnk1 and of its substrate eIF4E. To address the role of Mnk1 in 

pancreatic acinar cell response to acute pancreatitis we used Mnk1-/- mice. Although 

pancreata of these mice display no histological abnormalities, they show higher 

expression of acinar gene transcripts and elevated digestive enzyme protein content. On 

the other hand, they have reduced basal levels of p-eIF4E and decreased expression of  

c-Myc and Ccnd1 proteins, whose biosynthesis is known to be positively regulated by  

p-eIF4E.  Importantly, Mnk1-/- mice do not show eIF4E phosphorylation upon caerulein-

induced acute pancreatitis and have impaired induction of c-Myc protein expression. 

Consistently, upon induction of pancreatitis with caerulein, Mnk1-/- mice display 

elevated serum amylase levels, increased MPO+ inflammatory cell infiltration, stronger 

suppression of the acinar transcription program, and reduced acinar cell proliferation. 

These findings indicate that Mnk1 contributes to pancreatic regeneration during acute 

pancreatitis. The elevated severity of acute pancreatitis in Mnk1-/- mice can be explained 

by secretory defects that lead to impaired down-regulation of enzymatic protein content 

and accumulation of active carboxypeptidase A1 in acinar cells. In response to 

prolonged stress, such as multiple episodes of acute pancreatitis, Mnk1-/- mice show 

reduced levels of Ptf1a – a master regulator of acinar transcription program. 

Consistently, Mnk1 knock-down in 266-6 cells results in down-regulation of acinar gene 

expression, what is intensified upon H2O2 treatment. Moreover activity of this kinase is 

modulated by KrasG12V signaling in acinar cells. During PDAC development, Mnk1 

expression is down-regulated below detection upon acinar-to-ductal metaplasia but is 

detected at low levels in tumor cells. In the absence of Mnk1, Ptf1a+/Cre;Kras+/G12V mice 

develop more PDAC precursor lesions but less metaplastic tubular complexes. 

Collectively, these data suggest that Mnk1 is important for acinar cell homeostasis in 

response to pancreatitis or oncogenic signaling, playing a suppressory role in early steps 

of PDAC development.   
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En este trabajo se describe la función de la quinasa Mnk1 en la fisiología exocrina del 

páncreas, durante pancreatitis y en cáncer de páncreas. Los niveles de esta quinasa son 

excepcionalmente elevados tanto en desarrollo como en páncreas adulto, siendo un 

marcador específico de células acinares. Mnk1 pertenece al programa transcripcional de 

las células acinares, y está regulado directamente por PTF1. De esta manera, su 

expresión disminuye de manera similar a otros marcadores acinares en respuesta a 

pancreatitis aguda producida por tratamiento con ceruleína – situación que tiene como 

resultado la fosforilación de Mnk1 y de su diana eIF4E. Con el objetivo de estudiar el 

papel de Mnk1 en la respuesta de células acinares a pancreatitis aguda utilizamos 

ratones Mnk1-/-. Aunque el páncreas de estos ratones no presenta alteraciones 

histológicas, se observan mayores niveles de transcripción de genes acinares y mayor 

contenido de enzimas digestivas a nivel proteico. Por el contrario, se detectan niveles 

basales inferiores de fosforilación en eIF4E y menor expresión de c-Myc y Ccnd1, cuya 

biosíntesis está regulada positivamente por p-eIF4E. Es importante destacar que tras 

pancreatitis aguda con ceruleína, los ratones Mnk1-/- no presentan fosforilación de eIF4E 

y la inducción de c-Myc está impedida. Consistente con este resultado, tras inducción de 

pancreatitis con ceruleína, los ratones Mnk1-/- presentan mayores niveles de amilasa en 

suero, aumento de infiltrados inflamatorios MPO+, mayor supresión del programa 

transcripcional acinar, y menor proliferación celular acinar. Estos resultados indican 

que Mnk1 contribuye a la regeneración del páncreas durante pancreatitis aguda. La 

mayor severidad de la pancreatitis aguda en ratones Mnk1-/- podría explicarse por los 

defectos en secreción que conllevan alteraciones en la reducción de los niveles 

enzimáticos y la acumulación de la forma activa de carboxipeptidasa A1 en células 

acinares. En respuesta a estrés prolongado, como son múltiples episodios de 

pancreatitis aguda, los ratones Mnk1-/- presentan menores niveles de Ptf1a – elemento 

fundamental en la regulación del programa transcripcional acinar. De manera similar, el 

silenciamiento de Mnk1 en las células 266-6 da como resultado una disminución en la 

expresión de genes acinares, que se ve agravado por tratamiento con H2O2. Asimismo, la 

ruta de señalización de KrasG12V regula la actividad de esta quinasa en células acinares. 

Durante el desarrollo de PDAC, la expresión de Mnk1 disminuye de manera que los 

niveles son indetectables en la metaplasia acino-ductal, aunque sí se observa expresión 

en células tumorales. En ausencia de Mnk1, ratones Ptf1a+/Cre;Kras+/G12V desarrollan más 
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lesiones precursoras de PDAC aunque se observan menos complejos tubulares 

metaplásticos. En conjunto, estos datos sugieren que Mnk1 es importante para la 

homeostasis de las células acinares en respuesta a pancreatitis o señalización 

oncogénica, teniendo un papel supresor en las etapas iniciales de desarrollo de PDAC.  
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1. PANCREAS BIOLOGY 

1.1. Pancreas anatomy and physiology 

1.1.1. General considerations 

The pancreas is a retroperitoneal secretory organ. Its name is derived from Greek 

words: “pan” – meaning “all” and “creas” – meaning “flesh”, reflecting its unusual 

composition – it does not contain any cartilage, bones nor hence (Buchler et al., 2002). It 

is localized in the abdomen between the spleen, stomach and small intestine (Fig. I1A) 

and has an elongated structure in which 4 parts are distinguished (from proximal to 

distal): head, neck, body and tail. This organization is well defined in humans and less 

apparent in smaller animals like rodents (Slack et al., 1995). In the pancreas two major 

compartments can be distinguished.  The endocrine compartment is responsible for 

production and secretion of metabolism regulating hormones, whereas the exocrine 

compartment produces digestive enzymes and secretes them into duodenum. 

1.1.2. The endocrine pancreas 

The endocrine component of the pancreas is organized into compact structures called 

islets of Langerhans (Fig. I1B) which are constituted by 5 types of hormone producing 

cells: α-cells (producing glucagon), β-cells (insulin), δ-cells (somatostatin), ε-cells 

(ghrelin) and PP-cells (pancreatic polypeptide) (Fig. I1C). Rodent islets of Langerhans 

are organized such that the core of each islet is formed by β cells (the most abundant), 

surrounded by the other cell types. This structure is similar but not so evident, in 

humans (Gittes, 2009). Islets of Langerhans are embedded in the parenchyma of 

exocrine tissue and constitute around 5% of total pancreas mass (Benitez, Goodyear and 

Kim, 2012).  

1.1.3. The exocrine pancreas 

The exocrine pancreas consists of 3 distinguishable epithelial cell types: acinar, 

constituting 85% of the whole organ, centroacinar (CAC) and ductal cells (Pandol, 2010) 

(Fig. I1B and D). An exocrine functional unit is composed by acinar cells forming a 

structure resembling a cluster of berries – acinus (term derived from Latin), and a 

ductule (Fig. I1D). Acinar cells produce a wide variety of digestive enzymes and secrete 

them into the lumen of the acinus. This drains into a ductule which extends into 
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interlobular ducts and further into the main pancreatic ductal system. These structures 

are lined with ciliated polarized cells of cuboidal shape that also secrete mucins and ions 

into the lumen which mix with the acinar enzymes and form pancreatic juice. The best 

known markers of ductal cells in the pancreas are cytokeratins Krt7 and Krt19. CACs 

reside at the distal end of acini (Fig. I1D) and have some ductal characteristics, like the 

expression of carbonic anhydrase that produces bicarbonate (Steward, Ishiguro and 

Case, 2005), but they also seem to have progenitor features and may give rise to other 

cell types in the adult pancreas (Rovira et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Pancreas development in mouse 

1.2.1. Mouse pancreas embryology 

Pancreas development has been very thoroughly studied in mice (Fig. I2A). 

Development of the mouse organ can be divided in 3 phases: primary transition – from 

Figure I1. Anatomy and hisology of the pancreas. (A) Cross-sectional anatomy of the 
pancreas. Adapted from Pandol, 2010. (B) Hematoxylin-eosin staining of pancreatic section 
showing endocrine (Islet of Langerhans) and exocrine (Duct and Acini) compartments. (C) 
Schematic representation of islet of Langerhans embedded in exocrine parenchyma. (D) 
Schematic representation of an acinus connected to a ductule. Adapted from Bardeesy and 
Depinho, 2002 
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embryonic day 9.5 (E9.5) to E12.5; secondary transition – from E12.5 to birth - and 

postnatal period. At E9.5, pancreas development starts from thickening of endoderm at 

duodenal region and evagination of a dorsal pancreatic bud. Soon after that (E9.75) the 

ventral bud forms (Benitez, Goodyear and Kim, 2012). Both parts grow towards each 

other and, while the progenitors proliferate, continuous tubular structures are formed 

(Kesavan et al., 2009; Villasenor et al., 2010), partially mediated by signaling through 

Cdc42 Rho-GTPase (Kesavan et al., 2009) and by activity of Pdx1 transcription factor 

(Wescott et al., 2009). Simultaneously, as the pancreas grows in a tree-resembling 

shape, the compartmentalization of pancreatic progenitors into “trunk” and “tip” 

domains occurs (Fig. I2A). Pancreatic multipotent progenitor cells (MPCs) reside at the 

periphery of the growing organ (in the “tips”) and proliferate outwards, giving rise to 

unipotent (acinar) precursors and bipotent (endocrine and ductal) that stay in the trunk 

domain. This continues until secondary transition when (at around E13) “tip” 

progenitors lose their multipotency and become strictly acinar precursors (Zhou et al., 

2007) (Fig. I2A and B). The progenitor specification is regulated by extrinsic signals 

from surrounding mesenchyme and penetrating blood vessels that crosstalk with 

intrinsic regulation of differentiation driven by pancreas specific transcription program 

(Puri et al., 2010; Magenheim et al., 2011).  

1.2.2. Pancreatic multipotent progenitor cells (MPCs) 

From pancreatic bud formation until the end of the primary transition, pancreatic 

multipotent progenitor cell identity is maintained by several crucial transcription 

factors, such as Pdx1, Ptf1a, Sox9, c-Myc, Hnf1β, Nkx6.1, Hes1 and others (Fig. I2B).  

Pdx1 is first found in prepancreatic endoderm domain at E8.5, thus before the 

formation of pancreatic buds starts, and is believed to initiate pancreas development, as 

inactivation of Pdx1 results in complete inhibition of pancreas formation (Offield et al., 

1996). After the secondary transition, Pdx1 is present at high levels only in endocrine 

precursors whereas it is less abundant in acinar and ductal precursors (Ohlsson et al., 

1993; Guz et al., 1995). One of the functions of Pdx1 in pancreas-committed progenitors 

is to initiate the expression of Ptf1a.  
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Ptf1a is a pancreas- and neural-specific class B bHLH transcription factor. In the 

pancreas it is expressed in MPCs from the beginning of the organ formation, however at 

later stages of development it is only present in acinar precursors and in mature acinar 

Figure I2. Pancreas development and cell type specification. (A) Sequential stages of 
pancreas development in mice. Adapted from Kim and MacDonald, 2002 (B) Shematic 
representation of mouse pancreatic cell type specification with emphasis on involvement of 
transcription factors and Notch signaling. (C) Rbpjl replaces Rbpj in the PTF1 complex during 
acinar cell maturation. Adapted from Masui et al., 2007.  
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cells (Krapp et al., 1996; Krapp et al., 1998). In its absence, the development of dorsal 

pancreatic bud is strongly impaired and only a rudimentary duct is formed whereas the 

formation of the ventral part is completely inhibited, because initially committed Pdx1 

expressing progenitors revert to the intestinal fate (Kawaguchi et al., 2002). Ptf1a is a 

member of the PTF1 heterotrimeric complex that in MPCs also contains one of the 

common class A bHLH proteins and Rbpj – a mammalian homologue of Drosophila 

melanogaster Suppressor of Hairless, a mediator of canonical Notch siganlling (Beres et 

al., 2006). During the primary transition, Rbpj-containing PTF1 complex (called PTF1-J) 

is required for growth and morphogenesis of pancreatic epithelium and Rbpj 

inactivation leads to pancreas agenesis, similar to Ptf1a inactivation (Masui et al., 2007). 

In addition, PTF1-J directly activates expression of some genes that, at later stages of 

pancreas development, become acinar-specific like Ptf1a itself (Masui et al., 2007) and 

some exocrine digestive enzymes. A good example is Carboxypeptidase A1 (Cpa1) that is 

regarded as a marker of MPCs (Zhou et al., 2007).  

Sox9 and c-Myc are not pancreas specific but are important for the maintenance of the 

progenitor pool during pancreas develepment. Inactivation of Sox9 results in a severe 

pancreatic hypoplasia (Seymour et al., 2007); however, c-Myc deletion has similar effect 

only on acinar and ductal lineages, not affecting to the same extent the endocrine cell 

growth (Nakhai et al., 2008).  

Much evidence has been gathered regarding the role of Notch signaling in multipotent 

progenitors. Its main downstream effector, the transcritptional repressor Hes1, is co-

expressed with Pdx1 in MPCs in the initial pancreatic buds and at the periphery of the 

pancreatic epithelium until E13 (Seymour et al., 2007) and it maintains the 

undifferentiated state of these cells by suppressing the expression of lineage-specific 

transcription factors (Jensen et al., 2000; Esni et al., 2004) (Fig. I2B). This ensures the 

expansion of multipotent progenitors before they specify for particular cell lineages.     

1.2.3. Pancreatic cell type specification 

In progenitors that commit to acinar fate (thus also in “tip” precursors during the 

secondary transition) PTF1-J binds and activates Rbpjl, an Rbpj paralogue (Masui et al., 

2010 (1)). As this protein accumulates, it replaces Rbpj in the complex now called  

PTF1-L (Fig. I2C). PTF1-L binds and activates the promoters of acinar specific genes, 
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including those that were regulated by the “J” complex, and supports acinar cell 

differentiation (Masui et al., 2010). In the acinar precursors, Ptf1a expression also 

increases due to an autoregulatory loop. These cells maintain lower levels of Pdx1 that is 

necessary for their differentiation (Hale et al., 2005) and c-Myc that is required for their 

proliferation and survival (Nakhai et al., 2008; Bonal et al., 2009). Inactivation of c-Myc 

during the secondary transition leads to impairment of exocrine pancreas development 

due to acinar cell atrophy and transdifferentiation into adipocytes. On the other hand 

acinar precursors lose the expression of Sox9 and Hnf1β transcription factors that are 

responsible for specification of other lineages.  

The bipotent endocrine/ductal precursors occupy the “trunk” domain of the pancreatic 

epithelium and express high levels of Nkx6.1, a transcription factor that antagonizes the 

proacinar function of Ptf1a by restraining its autoregulation driven overexpression 

(Schaffer et al., 2010). Owing to that, these cells maintain Sox9 and Hnf1 β expression 

and may commit either to endocrine or ductal lineages (Solar et al., 2010; Kopinke and 

Murtaugh, 2010). Nkx6.1 expression is sustained in both cell types and is detected in 

adult ducts and endocrine cells. Unipotent endocrine precursors arise scattered in the 

tubular epithelium and their differentiation is driven by transient expression of Ngn3 

transcription factor that activates a group of other transcriptional regulators (such as 

NeuroD, Isl1, Pax and others) governing further commitment to different types of 

endocrine cells and the formation of islets of Langerhans (Gu et al., 2002; Benitez, 

Goodyear and Kim, 2012). By contrast, no master regulator of ductal cell differentiation 

has so far been discovered and it is possible that the ductal phenotype results from a 

default setting of Sox9+, Hnf1β+, Nkx6.1+ cells that do not commit to acinar or endocrine 

fate by Ptf1a or Ngn3, respectively (MacDonald, Swift and Real, 2010). There is no 

conclusive evidence on how CACs arise, however as they have some ductal cell 

characteristics and express Hes1 it is possible that they originate from ductal precursors 

that maintain active Notch signaling. Another possibility is that they arise from acinar 

precursors that reactivated Notch (Rovira et al., 2010). 
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1.3. Pancreatic acinar cell biology 

1.3.1. Acinar cell function in food digestion 

Pancreatic acinar cells produce and secrete most of the digestive enzymes that are 

responsible for food digestion in the small intestine. To meet a high demand for these 

enzymes to match mammalian metabolism, acinar cells have the highest rate of protein 

synthesis of all mammalian cell types (Case, 1978). It is achieved owing to a very high 

rate of transcription of genes coding for digestive enzymes, a very abundant rough 

endoplasmic reticulum (ER) and a well designed system for storage and secretion  

(Fig. I3A).  

 

 

 

 

 

 

 

 

 

Digestive enzyme transcripts constitute around 80% of all acinar cell mRNAs 

(MacDonald, Swift and Real, 2010). Due to hydrophobic signal sequences on N-terminus 

the enzymes, when translated, are transported into the lumen of the ER where they are 

post-translationaly modified. Further modifications occur in the Golgi complex; 

subsequently, acinar enzymes also undergo concentration and packaging into highly 

specialized storage structures called zymogen granules (Farquhar and Palade, 1998) 

(Fig. I3A and B). Apart from being involved in protein synthesis, the ER is also a 

repository of Ca2+ ions whose flux into the cytoplasm mediates zymogen granule 

secretion (Petersen and Tepikin, 2008). Upon neurohumoral stimulation of receptors on 

Figure I3. Acinar cell morphology and zymogen production and activation.  
(A) Ultrastructure of pancreatic acinar cell showing prominent endoplasmic reticulum – ER, 
abundant zymogen granules – ZG and apical surface of the acinar cell that forms lumen – L. 
Adapted from Pandol, 2010. (B) Depiction of digestive enzyme transport between different 
subcellular compartments inside the acinar cell. (C) Schematic representation of zymogen 
activation cascade that occurs after digestive enzyme release into the duodenum. Adapted from 
Berg, Tymoczko and Stryer,  2002.  
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the surface of acinar cells, cytosolic Ca2+ concentration increases, leading to secretion of 

zymogen granules into the lumen and the pancreatic ductal system. This occurs through 

exocytosis whereby the actin-myosin system moves the granules to the apical surface 

where they fuse with plasma membrane.  

1.3.2. Zymogen activation  

Acinar cells contain proteolytic, amylolytic, lipolytic and nucleolytic digestive enzymes 

(Whitcomb and Lowe 2007). Some of them, as α-amylase or lipase, are present in cells in 

their active forms. However, the majority of the enzymes are proteases that are kept 

inactive as proenzymes, what is facilitated by the acidic pH of the zymogen granules. 

They are activated in the duodenum through a cascade of enzymatic reactions (Fig. I3C). 

First, enteropeptidase – a peptidase present in the duodenal lumen activates 

trypsinogen by hydrolysis yielding trypsin that catalyses the activation of other 

proenzymes (including remaining trypsinogen) such as procarboxypeptidase (to 

carboxypeptidase), chymotrypsynogen (to trypsinogen), proelastase (to elastase) and 

others (Whitcomb and Lowe 2007).  

1.3.3. Plasticity of the acinar cell 

Acinar cells display a significant plasticity (Puri et al., 2010) and depending on 

conditions they can acquire features of ductal cells, endocrine cells, adipocytes or 

hepatocytes (Fig. I4A). Human and rodent isolated acini cannot be kept in culture due to 

stress-induced cell death and transdifferentiation into cells with ductal features (Vila et 

al., 1994; Means et al., 2005; Houbracken et al., 2011). This switch from acinar to ductal 

differentiation program is also frequently observed in vivo (in human samples and 

animal models) in metaplastic ductal lesions (MDLs) that are found in pancreatitis and 

in pancreatic cancer specimens. These lesions can be flat duct-like tubular complexes 

(TCs) or mucinous metaplastic lesions (MMLs) (Fig. I4B). In humans, the origin of MDLs 

has not been firmly established. Using lineage tracing in mice, upon caerulein-induced 

acute and chronic pancreatitis, direct proof was provided that some of these lesions 

result from acinar-to-ductal transdifferentiation (Strobel et al., 2007). Moreover, in 

mouse models of pancreatic cancer over-activation of Kras signaling specifically in 

acinar cells leads to formation of TCs, MMLs as well as pretumoral lesions with ductal 

characteristics (Wagner et al., 1998; Guerra et al., 2007; Grippo and Sandgren 2012). 
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Metaplastic cells lose the expression of Ptf1a, Rbpjl and, as a result, of all the digestive 

enzymes.  

 

 

 

 

 

 

 

 

 

 

In some conditions, acinar cells can also transdifferentiate into other cell types: 

hepatocytes (in mice fed with copper deficient diet (Rao et al., 1988) and in vitro upon 

treatment with dexamethasone) (Lardon et al., 2004; Al-Adsani., 2010); endocrine as 

shown also in vitro (Baeyens et al., 2009) and in vivo (Zhou et al., 2005), or adipocytes 

upon c-Myc or Gata6 inactivation during pancreas development (Bonal et al., 2009; 

Martinelli et al., 2012) (Fig. I4A).  

There are situations in which, despite the stimuli that favor acinar-to-ductal 

transdifferentiation, the cells do not lose completely their original identity and partially 

retain the acinar transcription program. This is observed in human pancreatitis patients 

and in mouse models of acute and chronic pancreatitis where acinar cells have reduced 

expression of acinar-specific transcription factors and digestive enzymes and can 

recover the full acinar phenotype after the damage is over (Pinho et al., 2011; Molero et 

al., 2012). Partial downregulation of acinar gene expression without ductal 

transdifferentaition also may occur upon oncogenic signalling in acinar cell carcinoma 

Figure I4. Acinar cell plasticity. (A) Schematic representation of pancreatic acinar cell 
plasticity manifested by their ability to transdifferentiate in vitro or in vivo into ductal cells, 
endocrine cells, hepatocytes or adipocytes. (B) Hematoxylin-eosin staining of mouse pancreatic 
sections showing 2 types of metaplastic lesions that can arise as a result of acinar-to-ductal 
transdifferentiation: flat duct-like tubular complexes – TCs and mucinous metaplastic lesions – 
MMLs (arrowheads indicate mucin). Adapted from Strobel et al., 2007. 
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(ACC) (a rare human pancreatic tumor) and in acinar cells and tumors from Ela1-Myc 

mice (Sandgren et al., 1991).  

To sum up, acinar cells are plastic and depending on the context they can irreversibly 

transdifferentiate into several different cell types and reversibly downregulate their 

phenotype. Since digestive enzymes produced by acinar cells can be very harmful for 

pancreatic tissue and for other organs of the organism, in response to stress their 

production has to be rapidly downregulated and in the case of persisted insult 

completely shut down. This is probably the main reason for their plasticity. This 

regulation can occur at different levels: gene transcription, mRNA stability, mRNA 

translation, protein turnover and secretion.      

1.3.4. The acinar transcription program 

During cell type specification in the developing pancreas, acinar cells establish a specific 

transcription program that drives the exceptionally high expression of digestive 

enzymes and proteins involved in zymogen storage and secretion. It is turned on 

gradually during organ development and in the adult animal it is regulated upon 

alterations in dietary nutrients and suppressed in response to cellular stress.  

Acinar-specific genes contain in their promoters so called pancreas consensus elements 

(PCE) that are recognized by acinar specific transcription factors. As mentioned above 

(1.2.3), acinar cell differentiation is primarily induced by the “late” PTF1 complex, the 

main driver of acinar phenotype (Petrucco et al., 1990; Keller et al., 1990). Its 

components Ptf1a and Rbpjl bind to an E-box (CACCTG) and TC-box (TTTCCC), 

respectively (Beres et al., 2006) in the consensus elements  of genes coding for digestive 

enzymes, secretion machinery proteins and other transcription factors to potently 

induce their expression (Masui et al., 2010). They also bind to their own promoters, 

ensuring the robustness of the system (Masui et al., 2007; Masui et al., 2008). All acinar 

specific genes are transcriptional targets of Ptf1a, however Rbpjl can be replaced by 

Rbpj at some target sites (Masui et al., 2010). While Ptf1a is important for initiating the 

acinar phenotype, its cooperation with Rbpjl enhances mitochondrial metabolism and 

cytoplasmic energy stores, completes the apparatus for intracellular transport, 

packaging and regulated secretion and maximizes secretory protein synthesis (Masui et 
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al., 2010). A number of additional transcription factors important for full acinar cell 

maturation have been discovered, among others Mist1, Hnf1α and Nr5a2. 

Mist1 is a bHLH transcription factor that controls the expression of genes involved in 

secretion in different exocrine cell types including zymogenic cells of the stomach,  

Ig-secreting plasma cells, alveolar breast lobular cells and acinar cells of salivary glands 

and the pancreas. In pancreatic acinar cells, these genes regulate zymogen granule 

formation and transport, Ca2+ distribution and cell polarity. In Mist1-/- mice, pancreatic 

acini are disorganized with loss of apical-basal polarity and the cells have reduced 

amount of secretory proteins, defective calcium signaling and show secretory defects 

(Luo et al., 2005).  

Hnf1α is involved in regulation of expression of tissue specific genes in different 

epithelial cells for example in liver (Potonglio et al., 1996) where it regulates lipid and 

glucose metabolism. In acinar cells it positively regulates the acinar transcription 

programme and its absence in mice leads to reduced levels of Ptf1a protein and of its 

target transcripts. Moreover Hnf1a is important for pancreas organogenesis since  

Hnf1a-/- mice contain dispersed acinar cells with lower secretory capacity. However, 

Hnf1a does not regulate acinar genes directly and its effects are at least partially 

mediated by Nr5a2 that is its direct target (Molero et al., 2012).  

Nr5a2 was first shown to bind directly and positively regulate carboxyl-ester lipase 

(Cel) gene (Fayard et al., 2003); this was recently confirmed in a broader study that 

identified Cel among other direct targets of Nr5a2 in the mouse pancreas. These targets 

are genes coding for acinar specific transcription factors (as Rbpjl), acinar digestive 

enzymes and proteins involved in zymogen secretion and in mitochondrial metabolism 

(Holmstrom et al. 2011). Nr5a2 binds to its specific DNA sequences in the promoter of 

these genes and possibly interacts with PTF1-L complex. Upon conditional inactivation 

of Nr5a2 in adult mice, pancreatic acinar cells produce and secrete less digestive 

enzymes (Holmstrom et al. 2011).   

The above described transcription factors have been shown to be important for 

maintenance of acinar cell phenotype during development and in the adult upon stress. 

Together with the central regulators Ptf1a and Rbpjl, as well as with others not 
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described here, they lead to a highly organized transcription program. This organization 

allows for tight control of acinar gene transcription that is also important during its 

suppression upon stress. 

1.3.5. Post-transcriptional regulation of protein biosynthesis in acinar cells 

As opposed to transcriptional regulation, less is known about additional mechanisms of 

control on further levels of acinar specific gene expression. Very few studies have 

addressed transcript stability regulation in pancreatic acinar cells. The most direct 

analysis was performed in Actinomycin D-treated rats in which, under a protein-free 

diet, the half-life of mRNAs of anionic trypsinogen izozymes I and II (but not of cationic 

trypsinogen) was increased (Carreira et al., 1996). More is known about translational 

regulation in these cells. CCK stimulation in physiological range (Bragado et al., 2000; 

Crozier et al., 2006) and high protein diet (Hashimoto and Hara, 2003; Hashi et al., 

2005) lead to an overall increase in mRNA translation, whereas starvation (Sans et al., 

2004) or secretagogue-induced acute pancreatitis (Sans et al., 2003) lead to a decrease 

in translation. 

Regulation of enzymatic protein turnover in acinar cells has been addressed only in the 

case of Cel, that was shown to be ubiquitinated and degraded by proteasome in AR42J 

rat acinar cells upon stress induced by secretion inhibition (Le Petit-Thévenin et al., 

2001). On the other hand, zymogen degradation through autophagy has been studied 

more thoroughly (Vaccaro, 2012). In the work of Grasso and colleages a novel selective 

form of autophagy in acinar cells was identified and named zymophagy, as it was 

described as a process to specifically detect and degrade zymogen granules containing 

prematurely activated enzymes before they can harm the organ (Grasso et al., 2011).  

Digestive enzyme abundance in acinar cells is also affected by changes in zymogen 

secretion, which is stimulated by physiological levels of secretagogues like 

choleocystokinin (CCK) and acetylcholine (ACh) upon food intake (Williams, 2010a) and 

can be inhibited by acute supramaximal stimulation by CCK or its analogues (Saluja and 

Lerch, 2007). Considering that zymogen secretion is modulated by intracellular 

oscilation of Ca2+ and rapid changes of actin cytoskeleton, this might be the fastest mean 

of intracellular enzymatic protein regulation. Intake of food acts mainly via neural 

pathways regulating release of hormones; however, there is increasing evidence for a 
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direct regulatory role of some nutrients (Williams, 2010a). Molecular pathways involved 

in regulation of acinar enzyme secretion have been broadly investigated in vitro.  

1.3.6. Studies of pancreatic acinar cell biology in cells cultured in vitro 

As described above, acinar cells isolated from pancreas cannot be kept in culture due to 

cell death and loss of acinar phenotype. Thus it has not been possible to establish cell 

lines that would closely resemble normal pancreatic acinar cells. However, short term 

experiments can be performed on freshly isolated rodent acinar cells and this approach 

has been widely used to address the role of genes and pathways in acinar cell function. 

Additionally, there are a few cancer cell lines that retain some characteristics of 

pancreatic acinar cells, such as rat AR42J (Jessop et al., 1980) and mouse 266-6 (Ornitz 

et al., 1985) lines obtained from acinar tumors. They have been mainly used to study 

regulation of acinar cell differentiation, however the results of these studies cannot be 

easily extrapolated to normal acinar cells. 

Studies in isolated rodent acinar cells unveiled much about their physiology regarding 

zymogen secretion and stress-induced intracellular enzyme activation. A very common 

approach is to isolate functionally intact rodent acini and treat them with secretagogues. 

As observed already 4 decades ago, increasing concentrations of CCK and its analogues 

such as caerulein and pentagastrin result in a biphasic response in amylase release into 

the medium (Williams et al,. 1978). At first, increasing ligand concentration induces an 

increase in amylase release until the optimal concentration (for most secretagogues 

around 100 pM). Treatment with higher doses (so called supramaximal concentration) 

produces a submaximal release not involving changes in ATP levels or Ca2+ oscillations 

(Williams et al,. 1978) but rather reflecting actin cytoskeleton reorganisation that result 

in secretion blockage (Schäfer et al., 1998). In parallel, it leads to intracellular trypsin 

activation with linear dynamics, showing higher activation at supramaximal doses 

(Saluja et al., 1999). As shown by Schafer and colleagues supramaximal concentrations 

of CCK and its analogues, as well as osmotic stress (induced with sorbitol), activate p38 

MAP kinase pathway that partially regulates stress-induced acinar cell actin 

cytoskeleton reorganization (Schäfer et al., 1998).  
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2. DISEASES OF EXOCRINE PANCREAS 

The main diseases of exocrine pancreas are pancreatitis and pancreatic cancer. There is 

vast evidence that acinar cells play a central role in the pathogenesis of both disorders: 

in pancreatitis through the damage caused by intracellular activation of acinar digestive 

enzymes and in pancreatic cancer via acinar cell plasticity underlying ductal tumor 

formation.  

2.1. Acute and chronic pancreatitis 

Pancreatitis is a necroinflammatory disease that can manifest as an acute or chronic 

condition with a wide range of severity (Fig. I5). Histologically, acute pancreatitis (AP) 

is characterized by acinar cell necrosis and parenchymal infiltration by inflammatory 

cells. Although the disease is usually mild, in 10-15% cases it can be severe leading to 

multiorgan dysfunction and risk of death. Chronic pancreatitis (CP) is associated with 

broad acinar atrophy and fibrosis that can affect both exocrine and endocrine function. 

Similarly to acute pancreatitis, it is associated with alcohol abuse and can be caused by 

genetic factors. Although in the past they used to be described as two distinct conditions, 

it is now clear that repeated episodes of AP lead to chronic disease. This can occur due 

to genetic predisposition and/or persistence of pancreatitis-inducing environmental 

factors (Vonlaufen et al., 2008; Whitcomb, 2012).  

Most typical for CP is a high extent of fibrosis (Fig. I5A), the formation of which is 

believed to be mediated by pancreatic stellate cells (PSC) that are scattered in the 

pancreatic parenchyma (Apte et al., 2003; Phillips et al., 2003). In normal state, they are 

quiescent while in response to chronic injury and inflammation they become activated, 

acquire myofibroblast features, proliferate and secrete the extracellular matrix 

components. Moreover these cells produce matrix metalloproteinase-2 (MMP2) that 

degrades basement membrane and facilitates deposition of fibrillar collagen (Phillips et 

al., 2003).  

2.1.1. Factors involved in pancreatitis  

Different environmental, genetic and other factors have been shown to be involved in 

pancreatitis development and most of them have been proven to directly or indirectly 

lead to zymogen activation and inflammation, regardless of the etiology (Vonlaufen et 
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al., 2008). The intracellular enzyme activation is mainly catalyzed by cathepsin B from 

lysosomes that fuse with zymogen granules (Lerch et al., 1993). The most important 

non-genetic factors are gallstone migration, alcohol, and tobacco. The former leads to 

pancreatic duct obstruction that blocks digestive enzyme flux through the ductal system 

what is believed to impede acinar cell exocytosis and as a consequence to cause 

accumulation of zymogen granules and their fusion with lysosomes (Vonlaufen et al., 

2008). Alcohol also negatively affects acinar cell exocytosis, but through effects on 

cytoskeleton (Ponnappa et al., 1987; Siegmund et al., 2004) and destabilization of the 

membrane of zymogen granules, facilitating their interaction with lysosomal content 

(Wilson et al., 1990). Both gallstone migration and alcohol may cause AP that can 

progress to chronic disease. 

Although most cases of chronic pancreatitis are "sporadic", a rare syndrome of familial 

chronic pancreatitis has been described, that is inherited as an autosomal dominant 

trait, characterized by recurrent bouts of acute pancreatitis initiated during childhood. It 

is caused by mutations in genes coding for proteins involved in zymogen activation, 

namely trypsinogen (cationic – PRSS1 and anionic – PRSS2) leading to enzyme 

autoactivation (Whitcomb et al., 1996; Sahin-Toth et al., 2000; Teich et al., 2004) and in 

its intracellular inhibitor (serine peptidase inhibitor – SPINK1) that lead to lack of 

inhibitory activity towards trypsin, hence inability to block the activation cascade upon 

insult (Kume et al., 2006, Király et al., 2007). Moreover, pancreatitis has been associated 

with inactivating mutations in chymotrypsinogen C (CTRBC) (Rodendahl et al., 2008) – 

an enzyme that is known to degrade trypsin and is considered to be protective against 

pancreatic injury (Nemoda et al., 2006; Szmola et al., 2007). In addition chronic 

pancreatitis may evolve in patients suffering from cystic fibrosis (CF) which is a complex 

hereditary disease caused by mutation in CFTR gene. CFTR is a receptor that in the 

pancreas is found in ductal cells and regulates secretion of bicarbonate into the lumen 

(Sharer et al., 1998; Cohn et al., 2005).   
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2.1.2. Animal models of pancreatitis 

A significant improvement in our understanding of the molecular basis of acute 

pancreatitis has been provided by animal studies. Over the past 3 decades, acute or 

chronic pancreatitis have been induced in rodents by various factors including 

secretagogues, L-arginine, deoxycholate, alcohol, mechanical obstruction, and genetic 

modifications.  

Caerulein. As described above (1.3.6), choleocystokinin and its analogues induce 

premature trypsin activation and cellular damage in acini isolated in vitro. They are also 

potent inducers of acute pancreatitis in vivo in rodents (Adler, Kern and Scheele, 1986) 

(Fig. I5B). The classical protocol of caerulein administration in mouse (7 hourly doses of 

50µg/kg) leads to edema, leakage of pancreatic enzymes, inflammation and acinar cell 

necrosis as well as pulmonary inflammation. In this model, morphological changes in 

acinar cells resemble those observed in acute pancreatitis in humans (Willemer and 

Adler, 1989; Willemer et al., 1989), however the outcome is a mild, self-resolving, acute 

pancreatitis with low mortality (Su, Cuthbertson and Christophi, 2006). The simple and 

reproducible nature of caerulein-induced pancreatitis has made it the most "popular" 

experimental model used (see below). Additional variants of caerulein administration 

have been used (i.e. two inductions over two days) with distinct outcomes. 

Figure I5. Histological changes in the exocrine pancreas upon pancreatitis. (A-C) 
Hematoxylin-eosin staining of pancreatic sections showing: (A) CP in human – with high extent 
of fibrosis; (B) caerulein-induced AP in mouse – with edema; (C) PDL and deoxycholate induced 
AP in rat – with abundant TCs. 
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L-Arginine. L-arginine administration leads to a severe necrotizing pancreatitis with a 

2.5% of mortality in rats (Mizunuma et al., 1984; Hegyi et al., 2004). In contrast to 

caerulein, the mechanisms of L-arginine action on pancreas are poorly known. It has 

been proposed that L-arginine may induce free radicals (Czako et al., 1998) or a 

disarrangement of the rough endoplasmatic reticulum (Kishino and Kawamura, 1984) 

and produce ER stress (Kubisch et al., 2006) but no conclusive data have been gathered 

so far.  

Deoxycholate. When administered to rats through the pancreatic duct, deoxycholate 

induces a severe pancreatitis with inflammation and fibrosis and around 25% mortality 

rate (Kotani et al. 1999, Tu et al. 2012), but since the mechanism of damage induction is 

unknown this drug has not been commonly used to study acute pancreatitis.   

Obstructive pancreatitis. Closed duodenal loop (CDL) and pancreatic duct ligation 

(PDL) lead to an acute pancreatitis associated with systemic effects similar to those 

observed in the clinic resulting from obstruction of ductal secretory flow. The 

combination of mechanical and chemical methods can lead to a very severe acute 

pancreatitis (Kotani et al. 1999) (Fig. I5C).  

Alcohol. The effect of alcohol on pancreatitis identified in humans has been poorly 

modelled in rodents as very high doses are necesary for induction of damage (Pandol et 

al., 1999; Werner et al., 2002). On the other hand alcohol has been shown to greatly 

enhance the effect of secretagogues (Quon et al., 1992; Foitzik et al., 1994; Luten et al., 

1994). 

Prolonged or repetitive episodes of acute pancreatitis as described above can result in 

development of chronic lesions (Aghdassi et al., 2001). Repetitive caerulein-induced 

acute pancreatitis for several weeks or low dose daily caerulein administration leads to 

chronic inflammation and replacement of acinar parenchyma with tubular complexes 

(TCs) (Weaver et al., 1994); daily administration of L-arginine produces fibrotic tissue 

which replaces acinar cells that undergo necrosis (Lu et al., 2002).  However, these 

protocols do not fully reproduce the fibrogenic chronic pancreatitis observed in humans. 

Genetic modifiers of pancreatitis. Trypsin over-activation is a very early event in 

pancreatitis in animal models (Rao et al., 1988). Two studies addressed directly the 
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ability of trypsin to induce pancreatitis (Archer et al., 2006; Gaiser et al., 2011). Archer 

and colleagues generated a mouse expressing self-activating trypsin (PRSS1R122H) in 

pancreatic acinar cells under the control of the elastase promoter. The mice displayed 

early-onset acinar cell injury and pancreas inflammation (with activation of Jnk and Erk 

MAP kinase pathways) that progressed with age to develop chronic lesions with acinar 

cell dedifferentiation and extensive fibrosis. Since in this model trypsinogen is activated 

during embryonic development, it cannot serve to conclude about the role of trypsin 

upon acute stress. To address the role of acute trypsinogen activation, Gaiser and 

colleagues used an inducible system allowing to turn on the endogenous expression of 

PRSS1R122H in the acinar cells of adult mouse. Activating trypsin resulted in severe acute 

pancreatitis with caspase-3 mediated apoptosis that did not lead to chronic 

inflammation or fibrosis. The authors reasoned that trypsin-induced apoptosis 

facilitated resolution of acute inflammation rather than causing chronic damage (Gaiser 

et al., 2011).  

2.1.3. Mechanisms of acute caerulein-induced pancreatitis in rodents  

Secretagogue hyperstimulation (mainly by caerulein) is the most commonly used 

approach to investigate pancreatitis. In rats and bigger rodents it is generally performed 

as an intravenous infusion whereas in mice, which are too small for infusion, it is usually 

performed as 7 hourly intraperitoneal injections. There are some differences in 

dynamics and severerity of the response between rats and mice which might be due, in 

part, to different ways of drug administration. Pancreatic acinar cells are believed to be 

the initiation site of the pancreatitis in this model. After the initial injection, early events 

in acinar cells occur and they are potentiated by subsequent injections (or constant 

infusion) which induces further acinar cell response (Fig. I6). As a result, the repetitive 

injections lead to acinar cell damage that further leads to late events related to 

inflammation and systemic response (Saluja and Lerch, 2007). Early events include a 

blockade in zymogen secretion, co-localization of zymogen granules and lysosomes, 

activation of trypsinogen and other enzymes, and acinar injury. Late events are induced 

by chemokines and cytokines released by stressed acinar cells what attracts leukocytes. 

They in turn secrete cytokines that feedback to acinar cells and provoke more systemic 

symptoms.  
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Secretagogues can induce both, trypsinogen activation and secretion blockade; those 

that are unable to induce the latter (such as bombesin and CCK-JMV-180) fail to produce 

pancreatitis (Powers et al., 1993; Grady et al., 1996), pointing to its mechanistic 

relevance. Intracellular trypsinogen is activated by cathepsin B upon fusion of zymogen 

granules and lysosomes as early as 10 min after caerulein infusion in rats (Grady et al., 

1996) and 30-60 min in mice (Halangk et al., 2000). Trypsinogen activation can also be 

assessed by measuring free trypsinogen activation peptide (TAP), a cleavage product the 

increase of which is also detected very early (15 min of treatment in rats) (Grady et al., 

1996). It is generally assumed that trypsin and cathepsin B together activate other 

proenzymes; however, the extent of activation and its dynamics in vivo has not been 

studied so far. Acinar cell injury leads to leakage of acinar enzymes into the plasma. An 

increase in amylase serum activity (hyperamylasemia) is detected subsequent to 

trypsinogen activiation and cannot be detected in rats until 30 min later (Grady et al., 

1996). Multiple caerulein injections in mice lead to hyperamylasemia and the highest 

amylase leakage is reached 1 h after the last injection (Halangk et al., 2000). Similarly, 

other hallmarks of acinar cell damage follow trypsin activation and increase with time.  

First modest immune cell infiltration is observed as early as 1 h after the first caerulein 

injection (Mayerle et al., 2005). Early during acute pancreatitis, acinar cells release 

Figure I6. Pancreatitis induction by caerulein. Schematic representation of events underlying 
acinar cell damage and subsequent inflammatory and systemic response during caerulein-
induced acute pancreatitis in rodents.  



Introduction 

42 
 

cytokines, like tumor necrosis factor (TNF)-α, IL-6, IL-1β, MOB-1, MIP-2, and chemokine 

KC (Gukovskaya et al., 1997; Han et al., 1999; Grady et al., 1997) as a result of NF-κB 

activation (Gukovsky et al., 1998; Steine et al., 1999). These cytokines attract 

inflammatory cells, mainly neutrophils, amplifying injury and contributing to the 

severity of pancreatitis (Zaninovic et al., 2000).  

In the acute caerulein mouse model, acinar cell damage is associated with a rapid 

downregulation of acinar cell transcription programme (Molero et al., 2007; Molero et 

al., 2012) that is, in part, related to transient activation of the Notch pathway (Jensen et 

al., 2006; Siveke et al., 2008). Both in mice and rats, a downregulation of Ptf1a and Rbpjl 

expression is rapidly followed by downregulation of mRNA levels of digestive enzymes 

whose expression is lowest 1 day after pancreatitis and is gradually restored with 

histological recovery (Molero et al., 2012).  

Many of the above aspects are regulated through different signalling pathways activated 

very early by caerulein i.e. protein kinase C (PKC) that modulates the NF-κB signaling 

(Satoh et al., 2004; Ramnath et al., 2010); phosphatidylinositol 3-kinase – (PI3K) 

responsible for colocalisation of cathepsin B with zymogens (Singh et al,. 2011) and 

inhibition of translation via mTOR – 4E-BP – eIF4E pathway (Sans et al., 2003); JNK, ERK 

and p38 MAP kinases whose role in pancreatitis is complex and not fully understood 

(Dabrowski et al., 1996; Grady et al., 1996; Wagner et al., 1999; Mazzon et al., 2012). 

These pathways are important mediators in tumorigenesis and are most likely also 

activated in caerulein induced chronic pancreatitis that is an important cofactor in 

pancreatic ductal adenocarcinoma development (Guerra et al., 2007).  

2.2. Tumors of the exocrine pancreas 

2.2.1.  Classification 

A number of different neoplasms can arise in the exocrine pancreas and they are 

classified according to their morphological characteristics. The most common form, 

accounting for 85% of all pancreatic tumors is Pancreatic Ductal Adenocarcinoma 

(PDAC) (Hezel et al., 2006) which will be discussed in detail in following chapters. Other 

types are less frequent, exhibit an overall better prognosis and are not the main focus of 

discussion. Intraductal papillary mucious neoplasms (IPMNs) account for 1-3% of 



Introduction 

43 
 

pancreatic tumors but their incidence is increasing. They are formed by columnar, 

mucin-producing cells that grow inside the ductal system. IPMNs evolve from adenoma 

to dysplasia, carcinoma in situ and finaly to invasive carcinoma and they are often found 

associated with PDAC (Bassi et al., 2008). Other rare pancreatic tumors show 

characteristics of other pancreatic cell types. Acinar cell carcinomas (ACCs) and 

pancreatoblastomas are examples of tumors with acinar differentiation features. ACCs 

are solid, usually unifocal differentiated tumors that secrete acinar digestive enzymes 

(Lowery et al., 2011). A large fraction of these tumours arise as a result of genetic 

alterations in Wnt/β-catenin signaling pathway (Klimstra 2007). Pancreatoblastoma is 

rare and it is the most common pancreatic neoplasia in childhood. It is similar to ACC in 

terms of Wnt/β-catenin pathway activation; however, it has a distinct morphology 

(Mulkeen, Yoo and Cha, 2006). Solid pseudopapillary neoplasms (SPNs) do not have any 

type of pancreatic cellular differentiation and their cellular origin is unknown. They may 

be solid or cystic and in some cases they metastasize to liver or peritoneum what is 

associated with a better outcome and higher long-term survival (Martin et al., 2002).  

2.2.2.  PDAC: pathology and treatment 

PDAC is a devastating disease: five year survival rate of patients is <5% (Siegel et al., 

2013; Ferlay et al. 2013). During 2012, 39084 cases were diagnosed in the UE and 

38885 deaths were recorded (Ferlay et al.2013); this very high overall mortality has not 

changed in the last 50 years (Siegel et al., 2013). This situation persists despite the 

recent advances in our understanding of the biology of this cancer.  

Most PDACs (60%–70%) arise in the head or neck of the pancreas, leading to 

obstructive cholestasis and, less frequently, duodenal obstruction or gastrointestinal 

bleeding. It can also be accompanied by acute pancreatitis and dysglycemia (Hidalgo, 

2010). Patients generally present with deep upper abdominal pain and non-specific 

systemic manifestations such as asthenia, anorexia, and weight loss. These patients have 

a very poor prognosis, this being mainly due to prevalent local invasions and distal 

metastasis. Perineural, vascular or lymphatic invasions as well as lymph-node, liver, 

peritoneum or lung metastases are commonly observed (Stathis and Moore, 2010). In 

patients with resectable tumors, adjuvant chemotherapy increases the 5-year survival 

up to 20% and median survival is approximately 23 months, indicating that early 
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detection is the best way of improving the outcome of patients with PDAC (Stathis and 

Moore, 2010). However, as of now, most patients are diagnosed at a late stage and are 

not candidate for radical surgery. Moreover, tumor dissemination occurs early as the  

2-year survival of patients with a 2-cm tumor is only 20% (Hernández-Muñoz et al., 

2008).  

Predominantly, PDAC is found as an infiltrating ductal adenocarcinoma producing a 

firm, sclerotic mass with poorly defined boundaries that sometimes contains cystic 

features (Fig. I7A). Microscopically, it contains infiltrating ductal glands with an intense 

desmoplastic reaction. The stroma is so abundant that, often, only a minority of the cells 

in the tumor mass are neoplastic (Maitra and Hruban, 2008) (Fig. I7B). They can be 

identified by immunohistochemistry through the expression of keratins 7, 8, 13, 18, and 

19 (Hruban, Klimstra and Pitman, 2006), MUC1, MUC3, MUC4, and MUC5AC mucins, and 

CEA (Iacobuzio-Donahue et al., 2003).  

Advanced PDAC is currently uncurable. The main drugs used for the treatment of 

advanced disease are gemcitabine, erlotinib, Abraxane, and the combination therapy 

FOLFIRINOX (Saif et al., 2011). It has been proposed that the dense tumor stroma may 

severely hamper the accessibility of drugs to neoplastic cells, suggesting that targeting 

the stroma may be a useful therapeutic strategy (Maitra and Hruban, 2008). 

 

 

 

 

 

 

 

Figure I7. Pancreatic ductal adenocarcinoma (PDAC) macroscopic and microscopic 
aspect. (A) Resection specimen of undifferentiated pancreatic ductal adenocarcinoma showing  
cystic features with with hemorrhage indicated by white arrows. (B) Hematoxylin-eosin staining 
of human PDAC with very abundant fibrotic tissue. Adapted from Kosmahl et al., 2005. 
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2.2.3.  PDAC etiology  

The main risk factors associated with PDAC are advanced age, smoking (doubles the risk 

of PDAC), high meat and fat diet, obesity, diabetes mellitus and chronic pancreatitis 

(Raimondi, Maisonneuve and  Lowenfels 2009). Individuals with a family history of 

PDAC (around 10%) have an increased risk of developing PDAC and the risk increases 

with the number of affected relatives (Amundadottir et al., 2004; Klein et al., 2004). 

Germline mutations in BRCA1, BRCA2, and PALB2 (associated with breast, ovary and 

prostate cancers), P16/CDKN2A (melanoma), PRSS1 (autosomal dominant hereditary 

chronic pancreatitis), STK11/LKB1 (gastrointestinal tract and breast cancers), ATM, 

hMLH1 and hMSH2 have been associated with PDAC in the context of familial cancer 

syndromes (Maitra and Hruban, 2008; Roberts et al. 2012). Genome-wide association 

studies have recently identified new PDAC susceptibility loci in the vicinity of ABO 

(9q34), KLF5 and KLF12 (13q22.1), NR5A2 (1q32.1), TERT (5p15.33) and SBF2 

(11p15.4) (Amundadottir et al., 2009; Petersen et al., 2010; Wu et al., 2012).  

Association of PDAC with CP is particularly important from the clinical standpoint 

(Lowenfels et al., 1993; Malka et al., 2002) as this condition increases PDAC 

development by 14-fold (Lowenfels et al., 1993). This association is even stronger when 

only familial chronic pancreatitis patients are considered (Rebours et al., 2008).   

2.2.4. PDAC progression model 

PDAC is believed to arise from low grade precursor lesions of ductal characteristics 

called Pancreatic Intraepithelial Neoplasms (PanINs) (Fig. I8A). According to this model, 

normal duct cells evolve to PanIN-1A (hyperplastic epithelium with no dysplasia) that 

progresses to PanIN-1B (papillary hyperplasia) then to PanIN-2 (mild dysplasia) and 

finally to PanIN-3 (severe dysplasia with nuclear atypia), the latter being the direct 

precursor of invasive carcinoma. PanIN-1 lesions are often found in old people without 

PDAC whereas PanIN-3 lesions are almost exclusively detected in PDAC patients, 

suggesting that PanIN-2 is a turning point in the progression to carcinoma (Sipos et al., 

2009). Increasing grade of the lesions is paralleled by accumulation of genetic 

alterations like telomere shortening (Hong et al., 2010) and gene mutations (Hezel, 

Kimmelman, Stanger, Bardeesy and Depinho, 2006). Activating mutation in KRAS codons 

12/13 and inactivation of P16/CDKN2A are found in most PDAC (around 90% and 
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almost 100%, respectively). Less frequent are the inactivation of TP53 and SMAD4/DPC4 

(60-80% of tumors). Analysis of prevalence of these mutations suggested a 

chronological order of their occurrence whereby KRAS activation is an initial event that 

is followed by P16/CDKN2A and subsequent TP53 and SMAD4/DPC4 inactivations 

(Maitra and Hruban, 2008) (Fig. I8A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I8. PDAC progression. (A) Pancreatic Ductal Adenocarcinoma (PDAC) linear 
progression model according to which ductal cells that acquire KRAS activating mutations 
proliferate and form PanIN-1A lesions which due to mutations in tumor suppressors gradually 
progress into lesions of higher grade (PanIN-1B and PanIN-2 and PanIN-3) to finally form ductal 
adenocarcinoma. (B) An alternative model of PDAC progression suggesting that different types 
of PanIN lesions might arise directly from pancreatic epithelium and low grade lesions might 
arise through mechanisms independent from those leading to carcinoma formation. Adapted 
from Real, 2003 and Real et al., 2008. 
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Since the linear model was based on interpretation of cross-sectional data from human 

PDAC samples, it is likely an oversimplification (Rooman and Real, 2012). There is no 

formal direct evidence that PanIN-1 progresses to higher grade lesions and is not simply 

an independent event. It is also possible that different events may lead to carcinoma 

formation and that different precursor lesion characteristics are determined by the cell 

of origin (Fig. I8B). Similarly, no formal proof has been found to support the hypothesis 

that PDAC originates from ductal cells (Rooman and Real, 2012). This was an 

assumption based on the ductal phenotype of PanINs and carcinomas, made when there 

were no existing tools to address this issue experimentally. During the last decade, 

however, a lot of data from animal models of pancreatic cancer have been obtained that 

argue against this hypothesis. 

2.2.5.  Mouse models of pancreatic cancer 

Experiments with genetically engineered mice (GEM) have challenged the notion that 

ductal cells are the cell of origin of PDAC. Conditional expression of mutant KRasG12V in 

mouse pancreatic MPCs at the time of pancreas formation using Cre recombinase under 

the regulatory elements of Pdx1 or Ptf1a leads to the development of all the spectrum of 

PanINs as well as PDAC in the adult (Aguirre et al., 2003; Hingorani et al., 2003). This 

confirmed that Kras is a potent oncogene in the pancreas but these models did not allow 

answering the question of the cell of origin of PDAC. So far, it has not been possible to 

induce PDAC by targeting mutant Kras to ductal cells. Transgenic mice expressing active 

Kras under keratin 19 promoter (Krt19-KrasG12V) developed hyperplastic ductal lesions 

with periductal lymphocytic infiltration but no tumors (Brembeck et al., 2003) and 

conditional, tamoxifen inducible expression of KrasG12D using Krt19-CreERT resulted in 

development of PanIN-1A but no other lesions (Ray et al., 2011). Recently Kopp and 

colleagues proved that mutant Kras does not lead to PDAC development when expressed 

in both ductal and CACs using inducible Cre recombinase under the control of the Sox9 

promoter (Kopp et al., 2012). Conversely, activation of mutant Kras in acinar cells 

results in acinar-to-ductal mateplasia (ADM) and development of ductal tumors (Guerra 

et al., 2007), effects that are also observed in Ela1-Tgfα and Ela1-c-Myc transgenic mice 

(Sandgren et al., 1991; Wagner et al., 1998). To investigate in more detail the capacity of 

mutant Kras to induce ductal tumors from acinar cells, Guerra and colleagues applied an 

inducible system to temporally control KrasG12V expression from its endogenous locus 
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only in acinar cells using Cre recombinase regulated by doxycyclin from the Ela1 

promoter (Ela1-tTa/tetO-Cre;KrasLSLG12Vgeo) (Guerra et al., 2007). This approach allowed 

concluding that mutant Kras activation in embryonic, but not in adult, acinar cells leads 

to ADM, PanINs and PDAC. Interestingly, when Kras is activated in adult acinar cells and 

a concominant CP is induced, PDAC ensues. This was a very important finding as it 

pointed out that recurrent tissue damage creates a permissive context for the oncogenic 

effects of Kras in adult acini, in agreement with data from patients with CP. More 

recently the same group uncovered that the role of inflammation in this model is to 

suppress senescence induced in adult acini by oncogenic stress (Guerra et al., 2011).    

Other studies addressed the role of different tumor suppressor genes and inflammatory 

mediators in Kras-driven pancreatic tumorigenesis using compound mutant mice 

combining oncogenic Kras with inactivation of tumor suppressors in the epithelium: 

upon inactivation of p16Ink4a/p19Arf or Trp53, expression of dominant-negative forms of 

Trp53, or inactivation of Tgfbr2, tumor progression was faster and animals developed 

invasive and metastatic PDACs with some specific characteristics associated with each 

genotype (Aguirre et al., 2003; Bardeesy et al., 2006; Hingorani et al., 2005; Ijicji et al,. 

2006).  

The role of inflammation in PDAC progression has recently been a focus of many studies. 

Two groups reported simultaneously that Stat3 signalling is crucial for tumor formation 

(Fukuda et al., 2011; Lesina et al., 2011). Its activation supports inflammation and acinar 

cell proliferation as well as MMP-7 expression during neoplastic development (Fukuda 

et al., 2011). Moreover, it is an important mediator of IL-6 trans-signaling that promotes 

PanIN progression and PDAC formation (Lesina et al., 2011). Mice lacking Stat3, its 

phosphorylatable tyrosine (Stat3Y705), or either IL-6 or MMP7 genes had delayed tumor 

formation and reduced tumor burden in a Ptf1a+/Cre;Kras+/G12D background (Fukuda et 

al., 2011; Lesina et al., 2011). These data emphasize the importance of Stat3 

phosphorylation in pancreatic cells in response to inflammatory mediators such as IL-6 

that promote PDAC development. Meanwhile, other studies focused on cytokines 

produced by neoplastic cells such as Cxcr2 that is important for proper tumor-stroma 

interaction in tumors lacking Tgfrb2 and granulocyte-macrophage colony-stimulating 

factor (GM-CSF), the production of which by PanIN cells promotes progression to PDAC 
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(Ijicji et al,. 2011; Pylayeva-Gupta et al., 2012). Moreover, GM-CSF was shown to be 

responsible for recruitment of Gr1+;CD11b+ myeloid-derived suppressor cells (MDSCs) 

by KrasG12D-transformed pancreatic tumor cells in the early stages of tumor 

development (Bayne et al., 2012). This suppressed CD8+ T cell-mediated antitumor 

immune responses, thereby allowing for tumor growth. 

3. MNK KINASES 

3.1. Mnk protein kinases (Mnks) 

3.1.1. Discovery of Mnks 

Mnk (MAP kinase-interacting kinase or MAP kinase signal-integrating kinase) protein 

kinases were discovered independently by two research groups (Fukunaga and Hunter, 

1997; Waskiewicz et al., 1997) that applied different screening strategies searching for 

ERK-regulated proteins – bacterial expression libraries and yeast two-hybrid. These 

studies identified 2 novel kinases Mnk1 (Fukunaga and Hunter, 1997; Waskiewicz et al., 

1997) and Mnk2 (Waskiewicz et al., 1997) – products of Mknk1 and Mknk2 genes 

respectively – that were phosphorylated by ERK1/2 and p38 MAP α/β but not by JNK 

enzymes. The yeast two-hybrid approach allowed to show that Mnk1 strongly interacted 

with both ERK and p38 MAP kinase whereas Mnk2 bound stably only to ERK2 

(Waskiewicz et al., 1997). Moreover these studies described that stimulating ERK (with 

phorbol esters or serum) or p38 MAP kinase (with proinflammatory cytokines such as 

TNFα or IL-1β or hyperosmolarity) led to activation of Mnk1 which was blocked by the 

MEK inhibitor PD098059 or the p38 MAP kinase inhibitor SB202190 (Fukunaga and 

Hunter, 1997).  

3.1.2. Mnks: homology to other kinases and structural information 

At the amino acid level, Mnks are most closely related to other kinases that are 

substrates of MAP kinases, especially to calmodulin-dependent kinase subfamily like 

MK2 or pK3 and p90RSK (Fukunaga and Hunter, 1997). A common feature of these 

kinases is an activation loop domain, through which MAP kinase regulation occurs, that 

contains phosphorylatable Thr residues followed by Pro – the so called “T-loop”  

(Fig. I9A).  Mnks contain 2 such Thr in this domain and their mutation results in enzyme 

inactivation (Goto et al., 2009). There are two specific features in the amino acid 
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sequence of Mnks that distinguish them from other protein kinases. First, instead of a 

DFG motif located N-terminally from the T-loop, they contain a DFD sequence. Second, 

the activation loop in Mnks is flanked by 2 short insert sequences that are not found in 

other kinases from their subfamily (Buxade et al., 2008). When crystal structures of the 

catalytic domains of Mnk1 and Mnk2 were solved, it became apparent that in non-

phosphorylated form the activation loop of Mnks has an unusual open conformation and 

that G to D substitution in DFD motif may interfere with ATP binding (Jauch et al., 2005; 

Jauch et al., 2006) (Fig. I9B). These features imply a relatively low basal enzymatic 

activity of these kinases when not phosphorylated. In the case of Mnk1 the activation 

loop functions in an autoinhibitory fashion due to specific residues in the second insert 

sequence described above (Jauch et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I9. Mnk kinases domain organisation. (A) Sequence of the activation domain of Mnk1 
and Mnk2 containing the DFD motif, the two Mnk-specific inserts and the two Thr residues that 
are phosphorylated by MAP kinases. (B) Ribbon plot of Mnk1 showing its autoinhibitory 
conformation with disorganized activation segment and long C-terminus occluding catalytic site. 
(C) Differences in domain organization between Mnks: “b” isoforms are shorter and lack the NES 
and MAPK domains; Mnk2a has non-functional NES and aminoacid substitution contributing to 
stable binding to upstream kinases. Adapted fom Buxade et al., 2008 and Jauch et al., 2006 
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3.1.3. Mnk isoforms and distribution of functional domains 

Two splicing variants have been described for Mnk1 and Mnk2 yielding “a” and “b” 

isoforms of each protein (Fig. I9C). Mnk1a and Mnk2a are longer and contain all 

essential domains (from N- to C-terminus): polybasic region (PBR), catalytic domain, 

nuclear export signal domain (NES) and MAP kinase binding domain (Buxade et al., 

2008). The last domain, however, is only fully functional in Mnk1a. Mnk1b (O'Loghlen et 

al., 2004) and Mnk2b (Slentz-Kesler et al., 2000) proteins have shorter C-terminus – 

lacking the MAP kinase binding motif and the NES.  So far the existence of “b” isoforms 

has only been proven in human cells.  

The most N-terminal domain of all Mnk isoforms, PBR, is responsible for protein-protein 

interactions. Two proteins binding to Mnks through this region have been described: 

EIF4G, a scaffold protein for translation initiation factors (Waskiewicz et al., 1999; 

Pyronnet et al., 1999), and importin α (karyopherin), mediating nuclear import (Parra-

Palau et al., 2003). Interaction with importin α (through the nuclear localisation signal – 

NLS) allows these kinases to enter the nucleus and Mnk1b and Mnk2b are mainly 

nuclear (Parra-Palau et al., 2003; O'Loghlen et al., 2004). On the other hand Mnk1a is 

predominantly cytoplasmic, as it also contains C-terminal NES (Parra-Palau et al., 2003; 

Scheper et al., 2003). Mnk2a contains a non-functional NES-related sequence, however it 

is also mainly found in the cytoplasm due to its long C-terminal domain that interferes 

with binding of importin α to the NLS (Buxade et al., 2008; Goto et al., 2009).  

3.1.4. Mnk1/2 activity regulation 

Due to structural differences, Mnk isoforms have different activities. Mnk1a displays a 

low basal activity and is highly responsive to stimuli that activate ERK or p38 

(Waskiewicz et al., 1997; Waskiewicz et al., 1999) whereas Mnk2a has high basal 

activity which is poorly enhanced by stimulation (Scheper et al., 2001). Unlike Mnk1a, 

Mnk2a binds stably to phosphorylated ERK1/2 due to a single amino acid substitution in 

the MAP kinase binding domain (Fig. I9C). Moreover, Mnk2a stabilizes phosphorylated 

ERK (Parra et al., 2005). This implies that ERK inhibitors can block Mnk1a activation but 

have little effect on Mnk2a which is already associated with residual phosphorylated 

ERK (Waskiewicz et al., 1997). In this regard, Mnk1b, which as described above lacks 

MAP kinase binding domain, is more similar to Mnk2a than Mnk1a since it shows high 
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basal activity (O'Loghlen et al., 2004; O'Loghlen et al., 2007). Moreover Mnk1b does not 

require stimulation from MAP kinases and is affected neither by ERK nor by p38 

inhibitors, possibly due to its very short C-terminus that is not able to interfere with the 

catalytic domain (Waskiewicz et al., 1999), as normally occurs in longer Mnk isoforms 

(discussed below). Similarly to Mnk1b, Mnk2b (that also lacks MAP kinase binding 

domain) does not respond to ERK or p38 activating stimuli; however, it has very low 

basal activity (Scheper et al., 2003).  

Low basal activity of Mnk1a is a consequence of the unique properties of its long C-

terminus that occludes access to the catalytic domain (Parra et al., 2005; Goto et al., 

2009). However, upon interaction with upstream kinases Mnk1a acquires a different 

conformation and becomes active. In the case of Mnk2a, which contains a similar C-

terminus, this interference does not occur due to stable binding to ERK and to 

differences in the first insert of the catalytic domain (Parra et al., 2005). In both kinases 

the C-terminus also occludes T-loop whose phosphorylation occurs only upon binding to 

MAP kinases.  

Thr344 (the third phosphorylatable residue crucial for their activity) plays a very 

important role in the activation of “a” isoforms in response to upstream signaling (Goto 

et al., 2009). This residue is located in the C-terminus and modulates its conformation, 

controlling the access to the catalytic domain and T-loop (Goto et al., 2009). It has been 

shown to be phosphorylated by ERK1/2 and mutation of this residue to the 

phosphomimetic Asp in mouse cells yields a constitutively active kinases (O'Loghlen et 

al., 2004).  

3.2. Mnk substrates 

3.2.1. eIF4E 

The first Mnk1/2 substrate described was eukaryotic translation initiation factor 4E 

(eIF4E) (Waskiewicz et al., 1997), one of the subunits of eIF4F translation initiation 

complex (Fig. I10). eIF4E is a mRNA 5'-cap structure (m7GDP ) binding protein 

responsible for the association of eIF4F to mRNAs that are subject to cap-dependent 

translation. eIF4E is the least abundant translation initiation factor in the cytosol, 

making it a rate limiting factor in protein synthesis (Hiremath et al., 1985; Duncan et al., 
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1987). It binds to the eIF4F complex through eIF4G – a scaffold protein to which all 

other subunits bind. eIF4G also recruits Mnks that, upon activation, can phosphorylate 

eIF4E at Ser209 (Pyronnet et al., 1999). Studies with knockout mice have unequivocally 

shown that Mnk1 and Mnk2 are solely responsible for eIF4E phosphorylation (Ueda et 

al., 2004); however, they have not elucidated the functional significance of this process 

(For review see Scheper and Proud, 2002).  

 

 

 

 

 

 

 

 

 

Different biochemical and structural approaches were applied to address the role of 

eIF4E phosphorylation in translation initiation. Some reports provided data that 

phosphorylation increases the affinity of eIF4E for capped mRNA (Minich et al., 1994; 

Marcotrigiano  et al., 1997; Shibata et al., 1998) while others suggested the opposite 

(Scheper et al., 2002; Tomoo et al., 2002; Niedwiecka et al., 2002). On the other hand 

Mnk pharmacological inhibition in cellular systems does not affect overall translation 

(Knauf et al., 2001; Saghir et al., 2001). As suggested by Scheper and Proud eIF4E 

phosphorylation may induce disasembly of eIF4F complex from mRNAs the translation 

of which has already been initiated, allowing subsequent binding to the cap of the same 

or different mRNA (Scheper and Proud, 2002). The efficiency of this mechanism is 

dependent on the tertiary structure of the 5’ end of given mRNAs, implying that 

translation of different transcripts would be differentially affected by this 

Figure I10. Mnk substrates. Schematic depiction of confirmed and putative Mnk substrates 
indicating their roles in cellular processes. Question marks indicate that there is no formal 
evidence that Mnk1 is the kinase that phosphorylates cPLA2 or eIF4G. Adapted fom Buxade et al., 
2008 
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phosphorylation. The currently accepted hypothesis is that p-eIF4E increases the 

translation rate of mRNAs with long and complex 5’ UTR.  

Apart from effects on translation initiation, p-eIF4E also contributes to nuclear export of 

some mRNAs through the recognition of specific regions in 3’ end of these transcripts.  

3.2.2. Other Mnk substrates 

A number of additional proteins have been proposed to be Mnk substrates and most of 

them are also involved in mRNA biology (Fig. I10):  

- HnRNP A1 is a component of heterogeneous nuclear RNA-ribonucleoprotein 

complexes that shuttles between the nucleus and cytoplasm and is involved in mRNA 

splice site recognition, polyadenylation, cleavage, stability and transport. It binds to AU 

rich elements (ARE) present in 3’ end of cytokine or “immediate-early” gene transcripts.  

HnRNP A1 can be phosphorylated by Mnks resulting in a positive regulation of TNFα 

biosynthesis in T cells (Buxade et al., 2005) or in accumulation of this ribonucleoprotein 

in stress granules (SGs) – cytoplasmic domains that contain translationally arrested 

mRNAs (Guil et al., 2006). Thus, Mnk-HnRNP A1 pathway differentially regulates the 

translation of mRNAs coding for TNFα (and possibly other genes) vs. those mRNAs 

targeted to SGs.   

- PSF (polypyrimidine tract-binding protein-associated splicing factor) – was found in a 

proteomic approach aimed at identifying putative Mnk targets pulled-down together 

with mRNA cap (Buxade et al., 2007). Similarly to HnRNP A1, PSF is an ARE-binding 

protein and it regulates mRNA splicing and stability. It was identified by above 

mentioned approach as it was bound to 3’ ends of mRNAs pulled down together with 5’ 

cap. It can be phosphorylated by Mnks but the consequences of this modification are 

unknown (Buxade et al., 2007).  

- Sprouty 2 is the only non-mRNA-binding protein among confirmed Mnk targets and its 

Mnk-catalysed phosphorylation is not involved in the regulation of protein biosynthesis. 

Spry2 is a negative modulator of ERK signaling and is known to be subject to Tyr and Ser 

phosphorylation in response to growth factor stimulation (reviewed in Kim and Bar-

Sagi, 2004). Mnk1 phosphorylates Spry2 at Ser112 and Ser121, decreasing its 

phosphorylation at Tyr55 which targets it for c-Cbl mediated proteasome degradation, 
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thereby stabilizing the protein. Thus, Mnk1 increases the half-life of Spry2 providing a 

negative feedback mechanism that inhibits ERK signaling (Dasilva et al., 2006).  

- cPLA2 (cytoplasmic phospholipase A2) is a putative Mnk target, that is involved in 

production of eicosanoids which regulate immunity and inflammation. It can be 

phosphorylated at Ser505 and Ser727 via p38 MAP kinase α/β and this could be 

mediated, in part, by Mnk1 (Hefner et al., 2000). This study suggested that Mnk1 can 

phosphorylate cPLA2 (only at Ser727) in vitro; however, it is not known whether this 

kinase is responsible for in vivo cPLA2 phosphorylation.  

- eIF4G, as described above, structurally mediates the binding of Mnk1/2-eIF4E and it 

was also initially proposed to be a target of these kinases (Pyronnet et al., 1999). 

However, no direct evidence thereof has been provided. Mnk1 and Mnk2 

phosphorylation by MAP kinases allows their binding to eIF4G, preceding Mnk1-eIF4E 

interaction (Mayya Shveygert et al., 2010; Dobrikov et al., 2011). So far, only indirect 

regulation of its activity has been described for Mnk2 that has been reported to 

negatively affect eIF4G phosphorylation by mTOR (Shou-Ih et al., 2012).  

3.3. Cellular functions of Mnks 

3.3.1. Animal models to study Mnk1/2 cellular function 

Mnk proteins are mammalian homologues of Drosophila protein LK6 which was initially 

identified as a short lived serine/threonin kinase that associates with microtubules and 

centrosomes (Kidd and Raff, 1997). Excessive LK6 activity obtained through 

overexpression of an activated form of this kinase leads to microtubule abnormalities 

and is deleterious to fruitflies. Only recently a study has been carried out that addressed 

whether in mammalian cells Mnk proteins also associate with microtubules. Active 

human Mnk1 can localize to centrosomes, spindle microtubules and the midbody and be 

required for abscission after cell division: reduced Mnk1 activity resulted in formation 

of multinucleated cells (Rannou et al., 2012). LK6 has also been found in a genetic screen 

as a regulator of RAS-MEK-ERK pathway (Huang and Rubin, 2000). Given that Spry2 is a 

Mnk substrate, it is hypothesized that dSpry2 might contribute to this function. As Mnks, 

LK6 phosphorylates eIF4E in fruitflies at Ser251 (corresponding to Ser209 in mouse and 

human) (Parra-Palau et al., 2005) and its replacement by Ala has a negative effect on 
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growth and viability (Lachance et al., 2002). Further studies in Drosophila have shown 

that increased phosphorylation of eIF4E by active LK6 mutant increases cell size and 

number (Arquier et al., 2005). However, LK6 seems to be dispensable for normal growth 

and development and its loss has an effect only upon diet with reduced amino acid 

content or induction of oxidative stress, when it leads to decrease in cell number and 

size (Reiling et al., 2005).  

In contrast to findings in Drosophila, introduction of the S209A eIF4E mutation in 

mouse cells does not lead to an obvious growth phenotype (Furic et al., 2010). Ueda and 

colleages have developed Mnk1-/-, Mnk2-/- and Mnk1-/-;Mnk2-/-  mice and have shown  that 

these kinases are dispensable for mouse growth and development (Ueda et al., 2004). 

However, using Mnk1-/-, Mnk2-/- and double-deficient MEFs they have demonstrated that 

eIF4E phosphorylation is dependent on both kinases, Mnk2 being responsible for basal 

and Mnk1 for stimulated phosphorylation. Together, the in vivo data pointed out that 

the main physiological function of Mnk1/2 in eukaryotic cells is probably a response to 

stress conditions or oncogenic context.   

3.3.2. Role of Mnks in cellular stress  

The notion that LK6 might be involved in the response of cells to nutrition and oxidative 

stress was followed in mouse. Using MEFs from Mnk knock-out mice, it has been shown 

that H2O2 increases eIF4E phosphorylation through Mnk1 possibly regulating 

translation (Shenberger et al., 2007) and that Mnk1 and Mnk2 loss sensitizes cells to 

serum withdrawal and arsenic trioxide (As2O3)-induced apoptosis (Chrestensen et al., 

2007; Dolniak et al., 2008). 

3.3.3.   Role of Mnks in inflammatory cells  

As mentioned before, Mnk kinases are involved in TNFα production in T lymphocytes 

through the phosphorylation of ARE binding proteins (Buxade et al., 2005; Guil et al., 

2006). However, their role in different inflammatory cells is broader. In macrophages, 

they are involved in biosynthesis of proinflamatory cytokines (such as TNFα, IL-1β, IL-6, 

IL-8 and MCP-1) upon signaling from different TLR receptors (Andersson et al., 2006; 

Cherla et al., 2006; Rowlett et al., 2007). The importance of Mnk1 in macrophages has 

also been raised by Xu and colleagues who showed that the MAPKMnk1eIF4E signaling 
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cascade is activated by TLR4 to induce polarization towards M1macrophages (Xu et al., 

2012).  

Apart from being involved in upstream regulation of cytokine production, Mnks can also 

positively mediate cytokine-induced growth and differentiation signals. Mnk1 takes part 

in translation induction of IFN stimulated genes (Joshi et al. 2009; Joshi et al., 2011). 

Moreover, Mnk1 may participate in IL-2 an IL-15 induced activation of Ets1 

posttranscriptional expression in human natural killer (NK) cells (Grund et al., 2005).  

Together, these studies suggest an important role of Mnks (mainly Mnk1) in 

inflammatory responses both regulating cytokine production as well as the response to 

cytokine stimulation. Mice lacking these kinases have no obvious hematopoietic 

phenotype but it is conceivable that absence of Mnk1, Mnk2 or both may have a 

suppressor effect on immune response during inflammation. Indeed, a recent study has 

described that - while dispensable for T cell development - both Mnks are important for 

the response to experimental autoimmune encephalomyelitis (Gorentla et al. 2013).   

3.3.4. Role of Mnks in cell survival and cancer  

The best characterized Mnk substrate, eIF4E, is a downstream effector of PI3K-AKT-

mTOR pathway essential for cell growth (Sonenberg, 2008). It can be sequestered in the 

cytoplasm by its cellular inhibitors eIF4E binding proteins (4E-BPs), that compete with 

eIF4G in binding to this factor. 4E-BPs (mainly 4E-BP1) are among the most important 

targets of mTORC1 complex. Upon PI3K-Akt pathway activation, mTORC1 

phosphorylates 4E-BPs, inducing their dissociation from eIF4E, increasing its 

availability for eIF4F and - as a consequence - elevating global cap-dependent 

translation rate. A limitation in the robustness of this pathway is the abundance of eIF4E 

itself. It is elevated in many tumor types what have been proposed to be associated with 

worse prognosis and aggressive, poorly differentiated tumors (De Benedetti et al., 1999; 

Bjornsti and Houghton, 2004). Moreover, its overexpression - alone or in combination 

with c-Myc or E1A - is able to transform normal cells both in vitro and in vivo (Lazaris-

Karatzas et al., 1990; Lazaris-Karatzas et al., 1992; Ruggero et al., 2004; Wendel et al., 

2004).   
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Some of the oncogenic effects of eIF4E overexpression may be attributed to a general 

increase in translation. However, many studies have suggested that this is dependent on 

its activation by Mnks. Ser209 phosphorylation seems to exert its effect on eIF4E in 

three ways: 1), by increasing its affinity for long 5’ UTR containing transcripts such as 

Mcl-1 in the c-Myc driven mouse lymphoma model (Wendel et al., 2007), HIF-1 in a wide 

variety of human cancer cell lines (Jin et al., 2008), VEGF in MDA-MB-435 breast cancer 

cells (Korneeva et al., 2010), and SMAD2 in human gloglastoma cells (Grzmil et al., 

2011); 2)n by an IRES-dependent translation switch of some mRNAs such as ODC in 

KrasG12V transformed RIE-1 cells (Origanti and Schantz, 2007) and c-Myc in rapamycin-

treated multiple myeloma cells (Shi et al., 2012); 3 by stimulating the 3’ UTR mediated 

nuclear export of transcripts such as HDM2 (Phillips and Blaydes, 2008) and cyclin D1 

(CCND1) (Weater et al., 2010), both in human breast cancer cells. 

The eIF4F complex assembly, and hence the Mnk-eIF4E association, has been shown to 

be regulated during the cell cycle (Pyronnet et al., 2001). Wendel and colleagues pointed 

out that Mnk1 activity is necessary for eIF4E to promote c-Myc-driven lymphoma 

formation by increasing cap-dependent translation of Mcl-1 (Wendel et al., 2007). The 

most convincing data regarding tumor dependency on Mnk1 came from using 

genetically engineered mouse models. Mice expressing a non-phosphorylatable mutant 

of eIF4E (eIF4ES209A/S209A) are resistant to prostate cancer resulting from Pten loss (Furic 

et al., 2010) and Mnk1/2 double knockout mice show delayed tumor formation in a 

Pten-deficient lymphoma model (Ueda et al., 2010). 

Together, the above described studies suggest an important role of Mnks in cancer cell 

survival and proliferation and point to eIF4E as a crucial mediator in this process. It is 

thus not surprising that a substantial interest has been placed recently on the possible 

use of Mnk inhibitors in anti-cancer therapy (reviewed in Hou et al., 2012).  
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Unraveling the molecular mechanisms that control acinar phenotype in homeostasis and 

upon oncogenic signaling and injury could provide a better understanding of processes 

underlying Kras driven PDAC development. The main objective of this thesis was to 

describe the role of Mnk1 in pancreas biology, as this kinase could be involved therein.  

The specific goals for this thesis were: 

1. To investigate whether Mnk1 expression is restricted to specific pancreatic cell 

lineages in developing and adult pancreas and under which conditions this kinase 

is activated in the pancreas. 

2. To dissect the role of Mnk1 in the pancreas by analyzing the effect of its 

inactivation on mouse pancreas development, physiology and response to acute 

and chronic damage.  

3. To assess the relationship between Mnk1 and oncogenic Kras signaling in the 

pancreas and investigate the involvement of this kinase in pancreatic ductal 

adenocarcinoma formation.  
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La identificación de los mecanismos moleculares que controlan el fenotipo acinar en 

homeostasis, así como durante la señalización oncogénica y daño tisular, ayudaría a 

entender el desarrollo de PDAC dirigido por Kras. El objetivo principal de esta tesis 

doctoral fue investigar el papel de Mnk1 en la biología del páncreas, ya que esta quinasa 

podría estar involucrada en estos procesos.       

Los objetivos específicos planteados en esta tesis fueron: 

1.  Investigar si la expresión de Mnk1 está restringida a líneas celulares específicas 

en el páncreas tanto en desarrollo como en páncreas adulto, así como bajo qué 

circunstancias esta quinasa se activa en dicho tejido. 

2. Estudiar la función de Mnk1 en el páncreas mediante el análisis del efecto que su 

desaparición produce en un modelo murino durante desarrollo, en la fisiología 

pancreática y en respuesta a pancreatitis aguda y crónica.   

3. Describir la relación entre Mnk1 y la ruta de señalización oncogénica de Kras en 

el páncreas e investigar la participación de esta quinasa en la formación de 

adenocarcinoma pancreático ductal. 
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1. IN VIVO PROCEDURES 

1.1. Mouse strains  

Mouse strains used in the experiments were of C57BL/6 or mixed background with 

following genotypes: wild type, Mnk1-/-, Mnk1-/-;Mnk2-/-, Ptf1a+/CreERT2;Kras+/G12Vgeo, 

Ptf1a+/CreERT2;Kras+/G12Vge;Mnk1-/- and Ela1-Myc. Mnk1-/- and Mnk2-/- mice were obtained 

from Professor Christopher Proud, School for Biological Sciences, University of 

Southapmton. Other strains were available at CNIO. Mice were bred and maintained 

under sterile and pathogen-free conditions. Experiments were approved by the Animal 

Ethical Committee of Instituto de Salud Carlos III and performed following guidelines for 

Ethical Conduct in the Care and Use of Animals as stated in The International Guiding 

Principles for Biomedical Research involving Animals, developed by the Council for 

International Organizations of Medical Sciences.  

1.2. Caerulein-induced acute pancreatitis 

Acute pancreatitis was induced by seven hourly intraperitoneal injections of caerulein 

(Sigma)  (50μg/kg of mouse) and animals were sacrificed by cervical dislocation either 

during the treatment: at 0.5h, 4h, 8h after first injection (1, 4 and 8 injections 

respectively) or at 1 day, 2 days and 7 days after the treatment. The pancreas was 

quickly collected: one piece homogenized instantly (for RNA analysis), one piece snap-

frozen on liquid nitrogen and stored at -80°C (for protein analysis and quantification of 

pancreatic amylase and trypsin activity) and the rest of the pancreas was placed in 4% 

PBS-buffered formaldehyde (for histology). In all the cases blood was collected from live 

animal just before the euthanasia. In animals sacrificed 2 days and 7 days post-

treatment a single intraperitoneal injection of BrdU (20 mg/kg of animal) was 

performed 12h before sacrifice. A minimum of 3 mice were included for each genotype 

and experimental time point. 

1.3. Caerulein-induced chronic pancreatitis 

Chronic pancreatitis was induced by weekly induction of acute pancreatitis for 8 weeks. 

During the procedure, blood samples were collected from live animals at 4 weeks and 8 

weeks, each time 5 days after last acute pancreatitis. At 8 weeks (5 days after last acute 

pancreatitis) animals were sacrificed by cervical dislocation and the pancreas samples 
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for RNA, protein and histology analysis were collected as described in 1.2. A minimum of 

4 mice was included for each genotype. 

2. HISTOLOGICAL ANALYSIS 

2.1. Histopathology 

Mouse pancreatic tissues were fixed in 4% PBS-buffered formaldehyde, embedded in 

paraffin and serially sectioned (3μm). Chosen sections were deparaffinized and stained 

with hematoxylin-eosin.  

2.2. Immunohistochemistry 

Pancreatic tissue sections from Ela1-tTa/tetO-Cre;Kras+/LSLG12Vgeo;p16-/- and Ela1-

tTa/tetO-Cre;Kras+/LSLG12Vgeo; p53lox/lox mice were kindly provided by M. Barbacid and C. 

Guerra (CNIO). Other mouse tissue sections were prepared as follows. Paraffin 

embedded tissue sections were deparaffinized, rehydrated and boiled in 10mM Sodium 

Citrate Buffer (pH6.0) in a preheated steamer for 10 min to retrieve the antigens. Next, 

sections were washed in distilled water and incubated for 30 min with 3% hydrogen 

peroxide in methanol, after which they were washed again with water and blocked for 

30 min with 2% BSA in Phosphate Buffer Saline (PBS) with 0.5% Triton  

X-100. After blocking, the sections were incubated with primary antibodies in PBS with 

1% BSA and 0.1% Triton X-100 for 1h at room temperature. For detection of BrdU 

positive cells the incubation buffer also contained DNAse I and 4mM MgCl2. Antibody 

dilutions used: rabbit anti-Mnk1 (Cell Signaling #2195, 1:400), rabbit anti-Amy2 (Sigma-

Aldrich A8273, 1:200), rabbit anti-Cpa1 (AbD Serotec 1810-0006, 1:400), rabbit anti-

MPO (Dako A 0398, 1:1000), rabbit anti-Ki67 (Novocastra NCL-Ki67p, 1:1000), and 

mouse anti-BrdU (Developmental Studies Hybridoma Bank Ab-G3G4, 1:1000). Next, 

sections were washed in PBS with 0.1% Triton X-100 three times for 10min and 

incubated for 30min with EnVision+ HRP labeled secondary anti-rabbit antibodies 

(Dako). After this, sections were washed again and the signal was obtained using DAB+ 

Chromogen system (Dako). Finally, sections were rinsed with water, counterstained for 

2min with Carazzi´s Hematoxylin solution DC (Panreac), dehydrated with increasing 

concentrations of alcohol and with Xylol and mounted using DePeX mounting medium 

(Gurr).  
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2.3. Immunofluorescence 

Tissue sections were processed as described in previous paragraph, but without using 

hydrogen peroxide, and incubated with primary antibodies: rabbit anti-Mnk1 (Cell 

Signaling #2195, 1:200), goat anti-Cpa1 (RnD Systems AF2765, 1:100), rabbit anti-Cpa1 

(AbD Serotec 1810-0006, 1:200), rabbit anti-Try (Abcam ab6193, 1:3000),  rabbit anti-

Muc1 (CT-1, 1:500) (Pemberton et al., 1992), mouse anti-E-Cad (BD Laboratories 

610182, 1:1000). After washing, the sections were incubated with fluorescently labeled 

secondary antibodies (1:200): Cy3 anti-rabbit, Cy3 anti-mouse, Cy2 anti-goat (Jackson 

ImmunoResearch Laboratories, Inc.), Alexa 488 anti-rabbit (Invitrogen). Next, the 

sections were washed 2 times with PBS, incubated for 5min with DAPI (0.5ug/mL in 

PBS), washed again 1 time with PBS and mounted using ProLong® Gold Antifade 

Reagent (Life Technologies) 

3. RNA ANALYSIS 

3.1. RNA isolation  

From mouse tissue samples: 

Pieces of different mouse tissues were homogenized using T10 basic ULTRA-TURRAX 

homogenizer (IKA) in a guanidine thiocyanate buffer (4M Guanidine thiocyanate, 0.1M 

Tris-HCl, 1% 2-Mercaptoethanol, pH 7.5, prepared in a DEPC treated water) and total 

RNA was extracted using Phenol-Chloroform method. 

From cell lines:  

Total RNA from cultured cells was isolated using GenElute™ Mammalian Total RNA 

Miniprep Kit (Sigma-Aldrich). The material for isolation was collected either by cell 

trypsinisation and lysis of pelleted cells or by lysing the cells directly on the culture dish. 

3.2.  Reverse transcriptase and quantitative PCR (RT-qPCR) 

Samples after total RNA isolation were subjected to DNase treatment using DNA-free™ 

DNase Treatment & Removal Reagents (Ambion). mRNA was transcribed with 

TaqMan® Reverse Transcription Reagents kit (Invitrogen) using 20ng of total RNA per 

1ul of reaction mix. Quantitative PCRs were performed using SYBR® Green PCR Master 

Mix in the 7900 HT Real-Time PCR System (both Applied Biosystems). Expression of 

each mRNA was normalized with Hprt levels and calculated as fold change over control 

sample. Primers used to analyze mRNA expression levels are listed in Table 1.  
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Transcript Forward Reverse 

Hprt GGCCAGACTTTGTTGGATTTG TGCGCTCATCTTAGGCTTTGT 

Mnk1 GCAAATACGAGTTTCCTGAC AGAGAGTCAAGTCCATGGTG 

Mnk2 CTACTGACAGCTTCTCAGGC CTTGACAGCATATTCCTGGT 

eIF4E AATCCCCCACCTGCAGAAGA  CGAAGGTTTGCTTGCCAAGT 

hnRNPA1 GGCCGATGAAGGGAGGAAAC TAGCTACTGCTGCTGCTGGA 

Spry2 CCCAGCAGGTACACGTCTTG GGCAGACCGTGGAGTCTTTC 

Ptf1a ACAAGCCGCTAATGTGCGAGA TTGGAGAGGCGCTTTTCGT 

Rbpjl ATGCCAAGGTGGCTGAGAAAT CTTGGTCTTGCATTGGCTTCA 

Hnf1a TAATAGGGCGGAGTGCAT GGTCCGTTATAGGTGTCCAT 

Nr5a2 CTGCTGGACTACACGGTTTGC CTGCCTGCTTGCTGATTGC 

Mist1 AGGGAGTGATCTGGGCCTTC CTGGAGTCGTCCCTTAGCCA 

Amy2 TGGCGTCAAATCAGGAACATG AAAGTGGCTGACAAAGCCCAG 

Cpa1 TACACCCACAAAACGAATCGC GCCACGGTAAGTTTCTGAGCA 

Cel AAGTTGCCCGTGAAAAAGCAG ATGGTAGCAAATAGGTGGCCG 

Ela1 CGTGGTTGCAGGCTATGACAT TTGTTAGCCAGGATGGTTCCC 

Ctrb1 GCAAGACCAAATACAATGCCC TGCGCAGATCATCACATCG 

c-Myc CCTAGTGCTGCATGAGGAGAC CCTCATCTTCTTGCTCTTCTTCA 

Ccnd1 GCATCTACACTGACAACTCT GATGGTCTGCTTGTTCTCAT 

Krt7 CACGAACAAGGTGGAGTTGGA TGTCTGAGATCTGCGACTGCA 

Krt19 CCTCCCGAGATTACAACCACT GGCGAGCATTGTCAATCTGT 

 

 

4. PROTEIN ANALYSIS 

4.1. Pancreatic protein lysate preparation 

Pieces of mouse pancreata were collected immediately after animal scarification, snap 

frozen in dry ice or liquid nitrogen and stored at -80°C. The frozen samples were lysed 

with ice-cold modified RIPA buffer (50mM Tris-HCl pH 7.4, 150mM NaCl, 1mM EDTA, 

1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS) with cOmplete, Mini, EDTA-free 

Protease Inhibitor Cocktail (Roche), Phosphatase Inhibitor Cocktail 3 (Sigma-Aldrich)  

and 0.2mM orthovanadate. Next, they were sonicated with probe-type sonicator (30 

Table 1. List of primers used for RT-qPCR. 
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pulses), centrifuged 15min 15 000g and the supernatants were collected and stored at  

-80°C. Protein concentration in the supernatants was determined with Bradford method 

using BioRad Protein Assay Solution (BioRad).  

4.2. SDS-PAGE-western blotting 

Western blotting samples were prepared by mixing the homogenates with 5x 

concentrated sample buffer, boiled for 5min at 100°C. 50µg of total protein (or 2µg in 

case of Amy2, Cpa1 and Cel expression analysis) was separated on polyacrilamide gel 

(10-12%) and transferred to nitrocellulose membranes by electroblotting. The 

membranes were blocked with 5% milk in Tween-containing Tris-buffered Saline  

(TBS-Tween) (4mM Tris base, 100mM NaCl, Tween-20 0.1%, pH 7.5), washed in TBS-

Tween, incubated for 2h with the indicated primary antibodies (in TBS-Tween with 5% 

milk), washed again and incubated for 1h with HRP-labeled secondary antibody. Signal 

was revealed with the Amersham™ ECL™ Western Blotting Detection Reagents  

(GE Healthcare) and bands were visualized using Amersham™ Hyperfilm ECL™ (GE 

Healthcare). Identification of the band of interest was assessed by size as compared with 

Dual Color Precision Plus Protein™ Standard (BioRad) molecular weight marker. 

Quantitation of protein expression was determined by densitometry analysis of 

digitalized images using ImageJ software (NIH, Bethesda, MD,). Levels of analysed 

proteins were normalized against levels of actin or vinculin proteins and represented as 

relative fold change over levels in control samples.  

 

Antibodies used were: rabbit anti-Mnk1 (#2195, 1:1000), p-Mnk1 (#2111, 1:500), eIF4E 

(#9742 1:750), p-eIF4E (#9741, 1:500), Erk1/2 (#9101, 1:1000) and p-Erk1/2 (#9101, 

1:500) (Cell Signaling), rabbit anti-Ptf1a (B. Bréant, U. Paris VI, Paris, France, 1:400), 

mouse anti-Vinculin (V9131, 1:4000) and β-Actin (A2228, 1:4000) and rabbit anti-Amy2 

(A8273, 1:100) (Sigma-Aldrich), rabbit anti-Cpa1 (1810-0006, 1:1000) and mouse anti-

Ctrb1 (2100-0657, 1:1000) (AbD Serotec), rabbit anti-Cel (ab87431, 1:1000) (Abcam), 

rabbit anti-c-Myc (06-340, 1:400) and mouse anti-Ras (07-524, 1:2000) (Millipore), 

mouse anti-Ccnd1 (DCS-6, 1:500) (Thermo Scientific). 

 



Materials and Methods 

76 
 

4.3. Chromatin Immunoprecipitation followed by quantitative PCR  

(ChIP-qPCR) 

Chromatin Immunoprecipitation in pancreatic extracts was performed as described 

(Beres et al., 2006). Briefly Pancreas pieces were homogenized using Dounce 

homogenizer and intact nuclei were extracted by centrifugation in sucrose gradient. 

Next, chromatin was crosslinked to proteins with 1% formaldehyde for 10min at 30°C 

(the reaction was stopped by adding glycine to final concentration of 125mM). The 

crosslinked DNA was washed and sonicated using Biorupotr bath sonicator (Diagenode 

Inc.). Immunoprecipitation was performed at 4°C, over-night, with A agarose beads 

using around 100ug of chromatin per 1ug of anti-Ptf1a antibody. Precipitated protein-

DNA complexes were decrosslinked, DNA was purified using QIAquick PCR Purification 

Kit (QIAGEN) and quantitative PCRs were performed as described in 3.2 using primers 

listed in Table 2. 

Genomic region Forward Reverse 

Rbpjl prom  TGCTGGGTCTGGCTTCTACT  CCGATCCTCACACTGGATTT 

Ptf1a prom TGTGTTATGATTCCCACGGACT  GAGCCTAGAGATGGGCTGTG 

Ela1 prom  TTGACTTAAAATTTGTTCATTTGT  ACCCTCTTTATACGGCTCTT 

Cpa1 prom  CCATGGTCAAGGGTGAAAGC  TCTGGGGCCTTTTTAAACAC 

Ctrb1 prom  GCTGGCCACTACCAATGTTC  CTGAGGCTCTTTTATGTCCC 

R28S prom  CTGGGACATAGTGGGTGCTT  GAGCCTAGAGATGGGCTGTG 

Mknk1 -175bp  CGTTCTGGCTCGCAGAAGTAA CAGGCGTGGCATATCAGAGC 

Mknk1 +1kb  TGTTGACCACAGGCCTTGTG  CCCTTTAGAAGGCCCGAAGC 

Mknk1 +1.8kb  CATGGTACAGGACTGGCACAT  GGGCCCTCCTTAGCCATGAA 

Mknk1 +3.9kb  ATGCCTGCATGACCAGATTCC  TCCCCCAGTGTGCTATGCTC 

Mknk1 +5.6kb  GGGTTTCCCACACCTGTCTC  CCTTGCTTGCAACTCTTGCTG 

Mknk1 +8.6kb  AACAGCACCATGCCTACAGAA  GGGTAACAGTGCCAGCAAGA 

Mknk1 +9.9kb  TTGCCAGGCAGGTTTTCTGT  GTGGGGAGCAGGGGAAGAT 

Mknk1 +11.3kb  AGACAGTCCTCTGACGGAGC  AGGTGACAATCTCCTCCCGT 

                      

 

Table 2. List of primers used for ChIP-qPCR. 
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5. BIOCHEMICAL ASSAYS 

5.1. Assessment of pancreatic amylase activity 

Pancreas pieces were homogenized in ice-cold Sodium Phosphate Buffer (50mM 

NaH2PO4, 120mM NaCl, pH 7.3) with 0.01% Soybean trypsin inhibitor (Sigma) using T10 

basic ULTRA-TURRAX homogenizer (IKA). Next, Triton X-100 was added to final 

concentration of 0.2% and the homogenates were incubated for 20min at 37°C. Lysates 

were mixed, centrifuged 10sec at 15000g. Amylase activity was measured using 

Reflotron® Pancreatic Amylase system (Roche) in lysates diluted 1/200 in saline. 

Amylase activity was calculated as Units (U) related to DNA content, measured using 

Nanodrop (Thermo Scientific) in concentrated samples.  

5.2. Assessment of serum amylase activity 

Mouse blood samples (not more than 50ul) were collected from Jugular vein of non-

anesthetized animals, allowed to coagulate for 2h at room temperature and were 

centrifuged for 10min at 200g in order to separate serum from coagulates. Serum 

samples were transferred to separate tubes and amylase activity was measured using 

Reflotron® Pancreatic Amylase system (Roche). 

5.3. Measurement of pancreatic trypsin activity 

Pancreas pieces were homogenized using T10 basic ULTRA-TURRAX homogenizer (IKA) 

in ice-cold Calcum Chloride Buffer (5 mM CaCl2, pH 8), snap frozen on dry ice and sent 

frozen to the laboratory of Julia Mayerle, MD at the Department of Medicine A, Ernst-

Moritz-Arndt-University Greifswald, Geifswald, Germany where they were analyzed. The 

trypsin activity was measured by fluorometric enzyme kinetic over 1h at 37°C using 

rhodamine-110-Ile-Pro-Arg (Invitrogen) as a substrate and was related to protein 

content as assessed by Bradford assay (BioRad). 

5.4. Carboxypeptidase activation 

Procarboxypeptidase to carboxypeptidase activation was assessed using western 

blotting and band densitometry as described in 4.1 and 4.2 by measuring the abundance 

of cleaved form of this enzyme (clCpa1) represented by a band of a higher 

polyacrylamide gel mobility (35kDa as opposed to 47kDa of a precursor form) 

immunodetected with rabbit anti-Cpa1 antibody (1810-0006, 1:1000) (AbD Serotec) in 
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2ug of pancreatic extracts.  Levels of the cleaved form were normalized against levels of 

actin protein and represented as relative fold change over basal levels in control 

samples.  

5.5. Protein content assessment 

Protein concentration was quantitated using Bradford assay (BioRad) in lysates 

prepared for pancreatic amylase activity (see 5.1) and was calculated as mg of protein 

per mg of DNA which concentration in samples was assessed using Nanodrop (Thermo 

Scientific). 

6. ACINAR CELL ISOLATION AND FUNCTIONAL ANALYSIS 

6.1. Mouse pancreatic acini isolation and measurement of amylase release by 

acinar cells in vitro 

Amylase release by isolated mouse acini was analyzed using procedure described by 

John A. Williams (Williams, 2010b). Briefly, mouse pancreatic acini were isolated by 

NB8 collagenase (1mg/pancreas) (Serva) digestion  in DMEM medium (with high 

glucose, L-glutamine, pyruvate, 100μg/mL soybean trypsin inhibitor and 1% fetal 

bovine serum) (Sigma), preincubated for 30min at 37°C and treated with different 

concentrations of caerulein (Sigma) for 30min at 37°C. After the treatment acini were 

collected and centrifuged and the amylase activity was measured both in medium and in 

cell pellets using Phadebas® Amylase Test (Magle AB). Amylase release was quantitated 

as a percentage of total amylase in acinar cells.  

6.2. Measurement of trypsin and cathepsin B activity and cell death in acinar 

cells in vitro 

 Trypsin and cathepsin B activities were measured in isolated acinar cells by 

fluorometric enzyme kinetic as described in Sendler et al., 2012. Briefly, isolated acini 

were incubated with or without CCK (10nM) for maximum of 60min and were collected 

prior to the treatment and every 20 min during the treatment. Trypsin activity was 

measured using 10μM rhodamine-110-Ile-Pro-Arg and cathepsin B activity using 20μM 

AMC-Arg2 (Invitrogen). Cell death was quantified by propidium iodide (Sigma) 

exclusion as described in Wartmann et al., 2010. All parameters were normalized by 
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DNA content of live cells as assessed by propdium iodide exclusion after lysing the cells 

with 0.1% Triton X-100 for 30min at 37°C. 

7. CELL CULTURE 

7.1. Cell lines 

All the cells used in this work were cultured in Dulbecco´s modified Eagle´s medium, 

supplemented with 10% fetal bovine serum (Sigma), penicillin/streptomycin and 

sodium pyruvate (Gibco). The cell lines used were available in the Epithelial 

Carcinogenesis Group.  

7.2. Hydrogen peroxide (H2O2) treatment of 266-6 cells 

266-6 cells were seeded in 60mm culture dishes and allowed to grow until they reached 

70% of confluence. At this point, culture medium was replaced with fresh medium 

containing 1mM H2O2. After 30min the treatment medium was removed and fresh 

culture medium was added for further cell incubation. Cells were collected for protein 

analysis before or at different time-points (15min, 30min, 1h, 2h, 4h, 8h or 16h) after 

adding H2O2. Cell collection involved quick wash with PBS and lysis in 300μl of RIPA 

buffer (50mM TRIS-HCL pH8, 150mM NaCL, 5mM EDTA, 0,5% NP-40, 0,1% SDS) for 

5min on culture dishes after which the cells were scraped with 1.8cm-blade Cell 

Scrapers (BD Falcon) and transferred into 1.5 mL eppendorf tubes.  

7.3. Mnk1 interference in 266-6 cells using lentiviral vectors 

Mnk1 expression was interfered using MISSION® shRNA lentiviral constructs (Sigma): 

TRCN0000024433, targeting CAGAAGCGGAAGCACTTCAAT sequence (for the purpose of 

simplicity called “sh1”) and TRCN0000024430, targeting GAGATGCAAACCCATGTTT 

sequence (“sh2”). Control cells were transformed using scrambled vector (“shNT”). To 

prepare lentiviral particles HEK293-FT cells were used. Briefly, HEK cells were seeded 

in 150mm culture dishes, allowed to reach 70-80% of confluence and transfected with 

45μg of shNT, sh1 or sh2 plasmids together with 30μg of psPAX2 (packaging) and 10μg 

of pCMV-VSVG (envelope) helper plasmids. Transfection was performed using calcium 

phosphate for 16h, after which the culture medium was replaced with 14mL of fresh 

medium. After 2 days of virus production this medium was collected, filtered through 

0.45μm sterile filter and added to 266-6 cells growing in 10mm culture dishes (at 50-
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60% of confluence). After 2 days the infection medium was removed and fresh medium 

was added. After 1 day of recovery from the infection 266-6 cells were trypsinized and 

plated in fresh medium containing puromycin (2μg/ml) (Sigma-Aldrich) to select for the 

infected cells. After 2 days of selection the medium was replaced and the next day cells 

were trypsinized and divided into 2 tubes – for RNA and protein isolation. Total RNA 

was isolated and mRNA levels of genes of interest were assessed by quantitative RT-PCR 

as described in 3.2. Protein extracts were prepared by lysing the cells in RIPA buffer and 

protein expression was analyzed by western blotting as described in 4.2.  

7.4. Ectopic expression of KrasG12V in 266-6 cells using pBabe-puro retroviral 

vector  

266-6 cell retroviral infection was performed similarly to the described above lentiviral 

infection with the exception that HEK293-FT cells were transfected with 45μg of the 

pBabe-puro empty vector or pBabe-puro-KrasG12V plasmid together with 45μg of pCL-

ECO helper plasmid.  

7.5. Induction of KrasG12V expression in acinar cells of embryonic mouse 

pancreas  

KrasG12V expression from endogenous promoter specifically in embryonic pancreatic 

acinar cells was induced by intraperitoneal injection of 4-hydroxytamoxifen in pregnant 

Ptf1a+/CreERT2;Kras+/G12Vgeo mice at E17.5. The females were sacrificed 2 days later and 

embryonic pancreata were collected and processed for either RNA or protein extraction. 

RNA was extracted as described in 3.1 and quantitative PCR on genes of interest was 

performed as describe in 3.2. Protein extraction and western blotting were performed 

as described in 4.2.  

8. STATISTICAL ANALYSES 

Data are provided as mean±SEM. Statistical analyses were performed using two tailed 

Student’s test and p<0.05 was considered significant. For all statistical analyses 

VassarStat.net software was used.
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1. Mnk1 is a novel acinar-specific stress response kinase in the 

pancreas 

1.1. Identification of Mnk1 as a gene highly expressed in the pancreas  

Genes potentially involved in acinar cell biology were identified by screening the 

Genepaint server (www.genepaint.org) that provides online data of in situ hybridization 

performed on whole mouse embryo sections. After searching for genes expressed at 

high levels specifically in the embryonic pancreas, several candidates were found from 

which - after initial analyses - Mnk1 was chosen to be the focus of this thesis (see 

discussion). In situ hybridization images provided by Genepaint showed high expression 

of Mnk1 in the embryonic pancreas (Fig. 1A). To confirm high-level pancreatic 

expression, immunohistochemistry using anti-Mnk1 antibody was performed. Fig. 1B 

shows that, among mouse embryonic tissues, pancreas displayed the strongest Mnk1 

immunoreactivity.  

 

 

 

 

 

 

 

Next, Mnk1 expression in adult mouse tissues was investigated using RT-qPCR. Mnk1 

mRNA expression was 20-30 fold higher in the pancreas than in any other investigated 

tissue (Fig. 2A). In agreement with these data, Mnk1 protein was also most abundant in 

the pancreas among all organs tested (pancreas, lung, liver, lymph node, bladder, kidney, 

ovary) (Fig. 2B). The second strongest signal intensity was observed in the lymph node, 

however it was much lower than the signal detected in the pancreas. Transcripts coding 

for Mnk2 and for the known Mnk1/2 targets (eIF4E, Hnrnpa1, Spry2) were not 

overexpressed in the pancreas comparing to other tissues. Of interest, Mnk2 mRNA 

Figure 1. Mnk1 is highly expressed in mouse embryonic pancreas. Mnk1 expression in 
mouse embryo as shown by in situ hybridization at E14.5 stage (A) and immunohistochemistry 
at E18.5 stage (B). Squares show higher magnification pictures of embryonic pancreas. p, 
pancreas; s, stomach; i, intestine; l, liver. 

p 
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http://www.genepaint.org/
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levels were high in salivary glands and lymph nodes and they correlate with increased 

expression of eIF4E and Spry2 in these organs (Fig. 2C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Mnk1 is embedded in the acinar transcriptional program  

Mnk1 expression during mouse pancreas development was investigated in more detail. 

As shown in Fig. 3A, at E12.5 Mnk1 protein was detected in pancreatic multipotent 

precursors (Cpa1low and Amy2–); later, at E16.5, the signal was restricted to acinar 

precursors (Cpa1high and Amy2high). In the adult pancreas Mnk1 was detected exclusively 

in acinar cells and was absent from islets and ducts. To analyse Mnk1 mRNA expression 

dynamics during pancreas development, RT-qPCR was performed. Mnk1 mRNA 

Figure 2. Adult pancreas expresses exceptionally high levels of Mnk1. (A) Mnk1 expression 
in a panel of adult mouse tissues as assessed by RT-qPCR. (B) Immunohistochemistry showing 
Mnk1 expression in different mouse organs. (C) mRNA expression of Mnk2, eIF4E, hnRNPA1 and 
Spry2 in adult mouse tissues as assessed by RT-qPCR. mRNA expression represented as 
mean±SEM (n=3).   
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expression increased progressively following a pattern that was highly similar to that of 

the digestive enzyme transcripts (Fig. 3B). In contrast, Mnk2 mRNA levels remained 

essentially unchanged during mouse pancreas development.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fact that Mnk1 expression is highly restricted to acinar cells and follows a dynamics 

similar to that of digestive enzyme transcripts suggested that Mnk1 might be a PTF1 

target. To address this possibility, Ptf1a ChIP-seq data obtained by R. MacDonald were 

mined and several peaks were found within Mknk1; 7 high scoring putative PTF1 

binding sites (containing an E-box and a proximal TC-box) were located +1kb, +1.8kb, 

Figure 3. Mnk1 is a novel marker of acinar cells. (A) Amy2, Cpa1 and Mnk1 expression 
during mouse pancreas development as assessed by immunohistochemistry. a, acinar cells; d, 
duct;, i, islet of Langerhans. (B) Ela1, Mnk1 and Mnk2 mRNA expression during mouse pancreas 
development as assessed by RT-qPCR. mRNA expression presented as fold levels related to 
expression at E12.5 (n=3). (C) Ptf1a binding to E-boxes as assessed by ChIP-qPCR. Ptf1a 
enrichment was quantified in genomic regions of Ptf1a, Rbpjl, Ctrb1 and Ela1 (positive controls); 
R28S and Ncl (negative controls); and in putative Ptf1a binding sites localized at different 
positions from TSS of Mknk1. All graphs represent mean±SEM (n=3 mice), *p<0.05, **p<0.01, 
***p<0.001.   
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+3.9kb, +5.6kb, +8.6kb, +9.9kb, and +11.3kb downstream from transcription start site 

(TSS). As shown in Fig. 3C, Ptf1a occupancy of these sites was confirmed by ChIP-qPCR. 

The 3 sites with the strongest signal correspond to the 3 top-scoring ChIP-seq peaks. 

Canonical PTF1 binding sites have been reported to occur proximal to promoter regions 

up to 300bp upstream from TSS (Beres et al., 2006) and a weak signal at -175bp was 

also detected by ChIP-qPCR (Fig. 3C). 

In summary, Mnk1 is a direct PTF1 transcription target, expressed at exceptionally high 

levels in the pancreas and – therefore – it is a novel acinar cell marker.  

1.3. Mnk1 expression and activation in mouse pancreas upon experimental 

caerulein-induced acute pancreatitis 

Mnk1 has been described to be involved in different types of cellular stress response. 

However, its role in the pancreas has not been reported. Given its prominent expression 

in acinar cells, we analyzed expression and activation during acute, self-resolving, 

caerulein-induced pancreatitis. Consistent with published data, Ptf1a mRNA levels were 

down-regulated by 80% 8h after the first caerulein injection and were gradually 

restored during the recovery period (1, 3 and 5 days after treatment) (Fig. 4A). In 

agreement with this observation and prior reports (Molero et al., 2012), mRNA levels of 

acinar enzymes (Amy2, Cpa1) were also down-regulated reaching a nadir 1 day after the 

first caerulein injection. Mnk1 mRNA expression dynamics followed the same pattern as 

acinar enzyme mRNAs, consistent with the finding that Mnk1 is a PTF1 target.  

Mnk1 protein expression dynamics and activation in response to caerulein were 

assessed by western blotting (Fig. 4B). Total Mnk1 protein was first gradually down-

regulated (reaching the lowest level 1 day after treatment) and then completely 

restored by day 7. The MAPK-Mnk1-eIF4E pathway was activated in response to 

caerulein treatment: an increase in p-Erk1/2, p-Mnk1 and p-eIF4E was observed as 

early as 30 min after the first cerulein injection. Phosphorylation of these proteins was 

highest at 4h and was still relatively very high at 8h. At 24h, p-Erk1/2 signal had 

reversed to basal levels but increased phosphorylation of both Mnk1 and eIF4E could 

still be detected (Fig. 4B). Additionally, using antibodies specific for p-Mnk1, a strong 

increase in signal corresponding to a protein of approximately 39kDa was detected. This 

signal was highest at 30min and 4h and could still be detected at 8h, possibly reflecting 
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phosphorylation of the shorter isoform of Mnk1 – Mnk1b (O´Loghlen et al., 2004). 

Similarly to Mnk1, eIF4E protein levels were rapidly down-regulated and then restored 

during the recovery phase (Fig. 4B). Although the changes in Mnk1 protein levels can, at 

least in part, be a consequence of mRNA down-regulation, the same does not apply for 

eIF4E, since its transcript levels were unchanged during acute pancreatitis (data not 

shown). 

Caerulein administration also led to changes in the intracellular localization of Mnk1 

(Fig. 4C). In basal conditions, Mnk1 displayed a uniform cytoplasmic distribution; by 

contrast, 4h and 8h after the first caerulein injection, Mnk1 predominantly localized to 

the basolateral region of acinar cells. This localization was not observed 1 day after the 

treatment, when down-regulation of Mnk1 protein expression occurred. 2 days post-

pancreatitis a strong Mnk1 signal was detected in the perinuclear region of acinar cells. 

At 7 days, Mnk1 distribution in the cells was uniform, as it was prior to the treatment 

(Fig. 4C).  

 

 

 

 

 

 

 

 

 Figure 4. Mnk1 expression and activity are regulated upon caerulein-induced acute 
pancreatitis. (A) mRNA expression in mouse pancreas during experimental acute pancreatitis – 
AP as assessed by RT-qPCR. Data represented as mean±SEM (n=3 mice). (B) Immunoblot 
depicting pancreatic protein expression and phosphorylation upon AP in mouse. (C) 
Immunohistochemistry showing Mnk1 protein distribution in mouse pancreatic acinar cells 
during pancreatitis induction. 0h, 0.5h, 4h, 8h, 1d, 2d, 5d, 7d – experimental time-points (h – 
hours after first injection, d – days after the treatment). 
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2. Mnk1 is dispensable for pancreas development but plays a 

protective role in pancreatitis regulating secretory response 

2.1. The pancreas of Mnk1-/- mice has increased enzymatic content and 

decreased expression of p-eIF4E targets  

In order to investigate the role of Mnk1 in the pancreas, Mnk1-/- mice were analysed. 

Lack of Mnk1 expression in the pancreas was confirmed by immunohistochemical staing 

(Fig. 5A) and western blotting (Fig. 6A). In the absence of Mnk1, the pancreas developed 

normally and was histologically indistinguishable from that of wild type mice (Fig. 5B). 

However, as assessed by quantitative RT-PCR (Fig. 5C), Mnk1-/- pancreata showed 

increased  (1.5 to 2-fold) levels of mRNAs coding for transcription factors Ptf1a and 

Rbpjl, and Hnf1α and for digestive enzymes Amy2, Cpa1, Cel, Ela1, and Ctrb1. By 

contrast, the levels of Mist1 and Nr5a2 were unchanged.  

 

 

 

 

 

 

 

 

 

 

 

Protein levels of selected gene products were assessed by western blotting and 

densitometry (Fig. 6A and B). Although no significant difference in Ptf1a protein 

abundance was observed, levels of 3 analysed digestive enzymes were higher in the 

Figure 5. Mnk1-/- mouse pancreas has increased levels of acinar gene transcripts.  
(A) Immunodetection of Mnk1 in pancreatic sections from Mnk1+/+ (WT) and Mnk1-/- (KO) mice. 
(B) Hematoxylin-eosin staining of WT and KO mouse pancreatic sections. (C) mRNA expression 
of acinar transcription factors, digestive enzymes, c-Myc and Ccnd1 in pancreata of WT and KO 
mice as assessed by RT-qPCR. Data represented as mean±SEM (n=6 mice), *p<0.05, **p<0.01, 
***p<0.001.   
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pancreas of Mnk1-/- mouse (Cel, 170%; Cpa1, 140%; and Amy2, 125%). A similar 25% 

increase in amylase activity was observed in pancreatic lysates from independent group 

of mice (Fig. 6C). In order to assess whether the above described differences in protein 

expression affect pancreatic protein content in Mnk1-/- mouse pancreas, protein/DNA 

ratio was calculated. As shown in Fig. 6D, lack of Mnk1 did not affect total protein 

content levels.  

In normal conditions, low levels of pancreatic digestive enzymes are detected in plasma 

what is thought to reflect both their production in the pancreas and leakage from acinar 

cells. In order to assess whether basal pancreatic enzyme release to the plasma is 

affected by the absence of Mnk1, serum amylase activity was measured. As shown in Fig. 

6E, serum amylase activity was 15% lower in Mnk1-/- mice than in wild type controls, 

despite the higher amylase content.  

 

 

 

 

Figure 6. Mnk1-/- mouse pancreas has increased enzymatic content and decreased 
expression of p-Eif4e targets. (A) Immunoblot depicting pancreatic protein expression and 
phosphorylation in Mnk1+/+ (WT) and Mnk1-/- (KO) mice. (B) Cpa1, Cel, Amy2, Ptf1a, c-Myc and 
Ccnd1 expression in WT and KO mouse pancreata as assessed by western blotting band 
densitometry; related to WT. (C) Pancreatic amylase activity represented as U/mg of pancreatic 
DNA. (D) Relation between pancreatic protein and DNA content (n=5 for WT and 6 for KO). (E) 
Amylase activity in sera from WT and KO mice (n=14). Data represented as mean±SEM, *p<0.05, 
**p<0.01. 
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Given, that the best characterized Mnk1 substrate is eIF4E, its expression and 

phosphorylation in pancreata from Mnk1+/+ and Mnk1-/- mice was compared by western 

blotting (Fig. 6A). Total eIF4E protein levels were not affected by the lack of Mnk1 but 

its basal phosphorylation was lower in the KO pancreas. Next, abundance of c-Myc and 

Ccnd1, two proteins the biosynthesis of which is known to be regulated by p-eIF4E, was 

analysed. Consistently, the levels of both proteins were lower in the Mnk1 null mouse 

pancreas (Fig. 6A and B) while the abundance of their transcrips was not: mRNA levels 

of Ccnd1 were unchanged and of those of c-Myc were higher in Mnk1-/- mice.  

We conclude that Mnk1 positively regulates prosurvival proteins (p-eIF4E targets) such 

as c-Myc and Ccnd1 and negatively regulates acinar-specific digestive enzymes. 

2.2. Mnk1 is required for eIF4E phosphorylation and participates in the 

regulation of cell proliferation during acute pancreatitis.  

As shown above, pancreatitis-induced phosphorylation of Mnk1 was associated with 

strong eIF4E phosphorylation and no basal p-eIF4E was decreased in the absence of 

Mnk1. Thus, we analysed whether stress-related phosphorylation of eIF4E in the 

pancreas depends on Mnk1. Fig. 7 shows that in Mnk1-/- mouse pancreas, pancreatitis 

induced p-eIF4E increase was completely abrogated.  

 

 

 

 

 

 

 

Next, we assessed pancreatitis-associated expression regulation of two known p-eIF4E 

target proteins, c-Myc and Ccnd1.  As it was shown above, the levels of these proteins 

were lower in untreated Mnk1-/- mice. In wild type mice, acute pancreatitis led to 

increased c-Myc protein levels in the pancreas (5-fold at 8h and 4-fold at 1day); in 

Figure 7. Mnk1 is required for eIF4E phosphorylation upon acute pancreatitis. 
Immunoblot depicting pancreatic protein expression and phosphorylation in Mnk1+/+ (WT) and 
Mnk1-/- (KO) mice upon experimental acute pancreatitis (AP). 0h, 0.5h, 4h, 8h, 1d, 2d, 7d – 
experimental time-points (h – hours after first injection, d – days after the treatment).  
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contrast, Ccnd1 protein expression was progressively down-regulated (Fig. 8A and B). In 

the absence of Mnk1, the induction of c-Myc expression was markedly impaired  

(2.5-fold at 8h and 2-fold at 1day with respect to untreated). In the case of Ccnd1 there 

was no significant difference between Mnk1+/+ and Mnk1-/- mice at 8h. After 1day, 

regardless the strong decrease observed in wild type, Ccnd1 protein levels were 

significantly lower in pancreas of mice lacking Mnk1. Importantly, Mnk1+/+ and Mnk1-/- 

mouse pancreata had similar levels of c-Myc and Ccnd1 mRNA at 8h and 24h (Fig. 8C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Mnk1 is involved in induction of c-Myc upon upon acute pancreatitis. (A) 
Immunoblot showing protein levels in Mnk1+/+ (WT) and Mnk1-/- (KO) mice upon experimental 
acute pancreatitis (AP). (C-D) c-Myc and Ccnd1 protein and mRNA levels in WT and KO mice 
upon AP. (C) Western blotting band densitometry related to expression in WT at 0h. (D) RT-
qPCR (n=6). (E) Percentage of BrdU positive nuclei detected by immunohistochemistry in 
pancreatic sections from WT and KO mice at 1.5 (n=6 for WT, 5 for KO) and 7 days (n=5) after 
pancreatitis induction. 0h, 8h, 1d, 1.5d, 7d – experimental time-points (h – hours after first 
injection, d – days after the treatment). Data represented as mean±SEM, *p<0.05, **p<0.01. 
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It has been described that regeneration from the damage induced during acute 

pancreatitis is associated with the proliferation of a small fraction of acinar cells 

(Lechene de la Porte et al., 1991). Because the pancreas of Mnk1-/- mice had lower levels 

of pro-proliferatory proteins upon pancreatitis, we asked whether this could affect 

acinar cell proliferation rate during the recovery stage. As assessed by BrdU nuclear 

labeling, acinar cell proliferation was lower in the absence of Mnk1 (Fig. 8D). In wild 

type mouse pancreas, 3.2%+/-0.3 and 2.2%+/-0.6 BrdU+ cells were detected at 1.5 and 7 

days post-pancreatitis. Significantly less BrdU+ cells were found in Mnk1-/- mice 

pancreata at the same time points: 2.1%+/-0.2 (p=0.015) and 1.4%+/-1.5 (p=0.14)  

(Fig. 8D). 

Thus, during pancreatitis, Mnk1 regulates proliferation through p-eIF4E target protein 

translation.  

2.3. In response to caerulein, Mnk1-/- mice display a more severe acute 

pancreatitis 

Given that Mnk1 was highly phosphorylated as a consequence of IP caerulein 

administration, we investigated the effect of lack of Mnk1 on the severity of  

caerulein-induced acute pancreatitis.  

As it was mentioned before, a common strategy to assess the severity of pancreatitis is 

measurement of amylase activity in the serum. Consistent with published data (Saluja et 

al., 2007) serum amylase activity increased with subsequent caerulein injections  

(Fig. 9A). Wild type mice showed a 6-fold increase in amylase activity 8 h after the first 

injections, whereas in Mnk1-/- mice a much higher (12-fold) increase was observed  

(p value = 0.0023). After 1 day, amylase serum levels were still significantly higher  

(2-fold with respect to untreated animals) in Mnk1-/-  than in Mnk1+/+ animals (1.3-fold 

higher than controls) (p value = 0.002). This increase in amylase leakage in Mnk1-/- mice 

was transient and was not detected after 2 days, when amylase activity had returned to 

basal levels. At this stage, amylase levels were consistently slightly lower in Mnk1-/- than 

in Mnk1+/+ mice (Fig. 9A). 

In parallel, pancreatic injury and regeneration were assessed by histopathology. There 

were no major histological differences between the pancreata of Mnk1+/+ and Mnk1-/- 

mice (Fig. 9B and C). As measured by histological scoring, inflammation and edema were 
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present to similar extents during the acute phase (at 8h and 1 day) and during late 

recovery stage (7 days) in both mouse strains. However, after 2 days a significant 

increase in inflammatory cell infiltration (predominantly PMN cells) was detected in 

pancreata of Mnk1-/- mice. This result was confirmed by immunostaining and 

quantification of MPO+ cells (11.8+/- 1.6 cells/field in Mnk1-/- vs. 7.9+/-0.9 in Mnk1+/+ 

mice; p=0.038) (Fig. 9D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, the involvement of Mnk1 in pancreatitis-induced regulation of mRNAs coding for 

acinar transcription factors (Ptf1a, Rbpjl, Hnf1α, Mist1, Nr5a2) (Fig. 10A) and digestive 

enzymes (Amy2, Ela1, Cpa1, Ctrb1, and Cel) was analysed (Fig. 10B). Despite the fact 

Figure 9. Caerulein-induced acute pancreatitis is more severe in Mnk1-/- mice. (A) Serum 
amylase activity in Mnk1+/+ (WT) and Mnk1-/- (KO) mice during the course of experimental acute 
pancreatitis (AP) represented as U/mL of mouse serum (n=14 at 0h, n=4 at 0.5h, n=6 at 4h, n=6 
at 8h, n=6 at 1 day, n= 6 at 2days). (B) Hematoxylin-eosin staining of WT and KO pancreatic 
sections upon AP. (C) Histological score of inflammation and acinar cell edema in hematoxylin-
eosin-stained pancreatic sections from WT and KO mice upon AP (n=6 at 4h, n=3 at 8h, n=6 at 
1day, n=5 at 2days). (D) Number of MPO+ cells per field of view (100x) in sections of pancreata 
collected 2 days after AP induction (n=6 for WT and n=5 for KO). 0h, 0.5h, 4h, 8h, 1d, 2d, 7d – 
experimental time-points (h – hours after first injection, d – days after the treatment). Data 
represented as mean±SEM, *p<0.05, **p<0.01. 
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that basal levels of Ptf1a, Rbpjl, Hnf1α, Amy2, Ela1, Cpa1, Ctrb1, and Cel transcripts were 

higher in Mnk1-/- mice, during the early stages of acute pancreatitis (8h) mRNA 

expression of these genes was more rapidly down-regulated than in wild type mouse 

pancreas, reaching similar levels. At later time points, a more sluggish overall recovery 

of levels of these transcripts was observed in Mnk1-/- mice; in some cases the differences 

were statistically significant (Fig. 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This greater downregulation of the acinar transcription program is not associated with 

lower levels of Ptf1a transcription factor. Its pancreatic abundance is similar in Mnk1+/+ 

and Mnk1-/- mice during the course of acute pancreatitis (8h, 2 days and 7 days)  

(Fig. 11).

Figure 10. Mnk1-/- mice show stronger acute pancreatitis-associated down-regulation of 
acinar transcription program. Expression dynamics of (A) acinar transcription factors and  
(B) digestive enzymes in Mnk1+/+ (WT) and Mnk1-/- (KO) mouse pancreata during experimental 
acute pancreatitis as assessed by RT-qPCR. Data represented as mean±SEM (n=6 at 0h, n=4 at 
8h, n=3 at 1day, n= 3 at 2days, n=5 at 7days) *p<0.05.. 0h, 0.5h, 4h, 8h, 1d, 2d, 7d – experimental 
time-points (h – hours after first injection, d – days after the treatment). 
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Therefore, lack of Mnk1 leads to an increase in the severity of acute caerulein-induced 

pancreatitis, likely a reason for the stronger down-regulation of acinar specific 

transcription program. 

2.4. Pancreatic enzymatic protein content in Mnk1-/- mouse is not properly 

down-regulated during acute pancreatitis  

It has been described (Molero et al., 2012) that repeated IP caerulein administration 

leads to rapid down-regulation of amylase content in the mouse pancreas. Considering 

this and the greater decrease in levels of mRNA coding for the digestive enzymes in mice 

lacking Mnk1 during pancreatitis, we investigated the changes in pancreatic enzyme 

protein content upon caerulein treatment. Consistent with published results, Amy2, 

Cpa1 and Cel (0h, 8h and 1 day) were down-regulated by 30-40% in Mnk1+/+ mice upon 

induction of pancreatitis (Fig. 12A, B); similarly, intrapancreatic amylase activity was 

reduced (0h and 8h) (Fig. 12C). In contrast, this down-regulation was not observed at 8h 

in Mnk1-/- mice, both using western blotting and amylase activity measurement. At 1 day 

both, wild type and Mnk1-/-, mice showed highly reduced intrapancreatic enyzme levels. 

As shown in Fig. 12D the impaired reduction of digestive enzyme abundance in mice 

lacking Mnk1 at 8h was associated with higher protein/DNA ratio as compared to 

Mnk1+/+ animals.  

Figure 11. Lack of Mnk1 does not affect Ptf1a protein levels upon acute pancreatitis. Ptf1a 
expression in pancreata of Mnk1+/+ (WT) and Mnk1-/- (KO) mice at different time-points of acute 
pancreatitis depicted by immunoblot (top panel) and repressented as western blotting band 
densitometry related to expression in WT (graphs). 8h, 2d, 7d – experimental time-points  
(h – hours after first injection, d – days after the treatment). 
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Next, we analysed whether impaired down-regulation of enzymatic content in the 

absence of Mnk1 affected zymogen activation. Both Mnk1+/+ and Mnk1-/- showed similar 

pancreatic trypsinogen activation upon acute pancreatitis induction – elevated at 0.5h 

Figure 12. Down-regulation of enzymatic content upon acute pancreatitis is impaired in 
Mnk1-/- mouse. (A) Immunoblot depicting Cpa1, Cel, Amy2 and Actin protein levels in Mnk1+/+ 
(WT) and Mnk1-/- (KO) mice upon acute pancreatitis (AP). (B) Cpa1, Cel, Amy2 expression upon 
AP as assessed by western blotting band densitometry. (C) Pancreatic amylase activity upon AP 
represented as U/mg of pancreatic DNA. (D) Pancreatic protein content upon AP related to DNA 
content (n=5 for WT and n=6 for KO). 0h, 0.5h, 4h, 8h, 1d, 2d, 7d – experimental time-points  
(h – hours after first injection, d – days after the treatment). Data represented as mean±SEM, 
*p<0.05, **p<0.01. 
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after first injection,  lower at 4h and again slightly elevated at 8h (Fig. 13A). Zymogen 

activation can also be measured by analyzing processing of procarboxypeptidase A1 that 

is cleaved by trypsin yielding a product of around 35kDa (clCpa1) (Grady et al., 1998). In 

wild type mice, the levels of clCpa1 increased 30 min after the first administration of 

caerulein and then progressively decreased (Fig. 13B and C). By contrast, in Mnk1-/- mice 

elevated clCpa1 levels were detected until 8h (Fig. 13B and C). By 1 day both in Mnk1+/+ 

and Mnk1-/- pancreatic clCpa1 levels reached the baseline (data not shown).  

Figure 13. Caerulein induces pancreatic Cpa1 cleavage in mouse that is prolonged in the 
absence of Mnk1. (A) Trypsin activity in pancreata of Mnk1+/+ (WT) and Mnk1-/- (KO) mice upon 
acute pancreatitis (AP) represented as µU/mg of pancreatic protein (n=5 at 0h, n=4 at 0.5h, n=3 
at 4h, n=5 8h). (B) Pancreatic clCpa1 levels in WT and KO mice upon AP as assessed by western 
blotting band densitometry. (C) Immunoblot depicting clCpa1and Actin protein levels. 0h, 0.5h, 
4h, 8h – experimental time-points (h – hours after first injection). Data represented as 
mean±SEM, *p<0.05. 
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In summary, Mnk1 negatively regulates enzymatic protein content and in Mnk1-/- mice 

pancreata zymogen abundance reduction in response to serial caerulein injections is 

impaired. This might be a reason for the increased severity of acute pancreatitis, 

possibly in part caused by elevated Cpa1 cleavage. 

2.5. Mnk1 is required for subcellular redistribution of digestive enzymes upon 

caerulein-induced acute pancreatitis 

As it was described above, Mnk1 is redistributed to the basolateral membranes of acinar 

cells upon caerulein administration (Fig. 4C). As shown by double immunofluorescence, 

Mnk1 and Cpa1 had mutually exclusive expression patterns in wild type mice (Fig. 14A). 

Serial caerulein administration led to the accumulation of Cpa1 in larger granules 

located towards the lumen of acinar cells at 4h and 8h; a similar distribution of 

trypsinogen (Try) was observed at 8h. By contrast, the subcellular redistribution of 

these enzymes did not occur in Mnk1-/- mice (Fig. 14B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Pancreatitis associated subcellular distribution of pancreatic acinar enzymes is 
impaired in the absence of Mnk1. (A-C) Double immunofluorescence staining performed in 
Mnk1+/+ (WT) and Mnk1-/- (KO) mice pancreatic sections. Images show immunolocalisation of: 
(A) Mnk1 (red) and Cpa1 (green) in WT, (B) Try (red) and Cpa1 (green) in WT and KO and (C) 
Ecad (red) and Muc1 (green) (C) in WT and KO mouse acinar cells. 
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The differences between wild type and Mnk1-/- mice described above suggest that Mnk1 

is required for a physiological polarity response in acinar cells. Apical Muc1 and 

basolateral E-cad showed the expected distribution in untreated mice of both strains. In 

response to caerulein administration to wild type mice, Muc1 acquired a transient 

diffuse pattern (4h) with recovery of the normal apical distribution by 24h (Fig. 14C). In 

Mnk1-/- mice, these changes were less pronounced and showed a different kinetics: at 4h 

Muc1 staining pattern was less diffuse while at 8h it was more disorganized and 

partially associated with basolateral membranes marked by Ecad. By 24h, Muc1 

displayed the normal apical distribution in both mouse strains (Fig. 14C). We did not 

observe any difference in E-cadherin distribution between Mnk1+/+ and Mnk1-/- mice 

upon acute pancreatitis (Fig. 14C). 

Therefore, in the absence of Mnk1, regulation of acinar cell polarity in response to 

caerulein-induced acute pancreatitis is altered, what may be a reason for different 

distribution of zymogens.  

2.6. Mnk1-/- mouse acinar cells are less responsive to secretagogue stimulation 

in vitro  

The increased enzymatic content in the pancreas of Mnk1-/- mice and the decreased 

amylase serum levels and the abnormal pattern of expression of membrane proteins 

upon caerulein administration suggested a defect in secretion. We therefore assessed 

the response of acinar cells isolated from wild type and Mnk1-/- mice to caerulein.  

Isolation of acinar cells from Mnk1+/+ mice was associated with hyper-phosphorylation 

of Mnk1 and eIF4E (Fig. 15A). The increase in p-eIF4E levels did not occur in cells from 

Mnk1-/- mouse.  

In wild type cells, increasing caerulein concentrations resulted in a typical biphasic dose 

response curve with basal amylase release of approximatley 3.5%/30 min, optimal 

release for 100pM concentration (8%/30 min), and a fall of amylase secretion at 

supramaximal (1nM and 10nM) concentrations (Fig. 15B). Secretion by Mnk1-/- acinar 

cells yielded a similar dose-response but both basal (2.7%/30 min) and  

caerulein-induced (6.5%/30 min) secretion were significantly impaired  

(p value = 0.0303 and 0.0201 respectively). 
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Next, we analyzed whether lack of Mnk1 affected trypsinogen activation upon 

supramaximal secretagogue treatment (Fig. 15C). As reported (Sendler et al., 2013), 

incubation of wild type acini with 10nM CCK resulted in strong intracellular trypsinogen 

activation at 20 min which was gradually reduced at later time points. In Mnk1-/- acini, 

trypsinogen activation was significantly lower at 20 min (by 40%) and 40 min (by 30%); 

a similar trend was observed at 60 min. During the incubation there was no significant 

difference in trypsin activity between wild type and KO in non-stimulated cells. 

Trypsinogen activation in cultured acini is predominantly catalyzed by Cathepsin B, the 

activity of which increases upon treatment, but it is partially also a consequence of cell 

death. The lower trypsin activity in cells lacking Mnk1 cannot be explained by impaired 

intracellular CatB activation nor by decreased cell death because these parameters 

where similar in Mnk1+/+ and Mnk1-/- acini (Fig. 15D and E).  

Figure 15. Mnk1-/- mouse acinar cells display suboptimal secretion capacity.  
(A) Immunoblot depicting protein levels and phosphorylation in pancreas or isolated acini from 
Mnk1+/+ (WT) and Mnk1-/- (KO) mice. (B) Amylase release by isolated WT and KO mouse acinar 
cells upon stimulation with increasing concentrations of caerulein (0, 10pM, 100pM, 1nM and 
10nM) represented as percentage of total amylase. (C-E) Trypsin activity, cathepsin B activity 
and cell death in isolated WT and KO mouse acinar cells upon stimulation with 10nM CCK for 
different time intervals (0, 20, 40 and 60 minutes). Trypsin and cathepsin B activity represented 
as fold increase over non-treated cells. Cell death represented as percentage of all cells. All data 
represented as mean±SEM (n=5), *p<0.05   
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In, summary acinar cells lacking Mnk1 respond worse to secretagogues: they release 

less amylase and display lower intracellular trypsinogen activation. It is possible that 

the increased severity of acute pancreatitis after serial caerulein administration in vivo 

(showed in Fig. 6) is a consequence of improper response of acinar cells at the beginning 

of the treatment. For instance, the enzymatic protein accumulation inside the cells 

during caerulein injection (showed in Fig. 9) may result from secretory defects 

suggested by the result of amylase release experiment.  

2.7. Mnk1-/- mice display less ductal atrophy but reduced Ptf1a levels upon 

multiple episodes of acute pancreatitis   

The observed impaired recovery of acinar specific gene expression in pancreata of 

Mnk1-/- mice after acute pancreatitis led us to analyse the outcome of a repetitive (once a 

week for 8 weeks) induction of acute pancreatitis. The recurrent treatment led to 

development of a mild chronic pancreatitis (CP) characterized by chronic inflammation 

and presence of metaplastic tubular complexes (TCs).   

In Mnk1-/- mice, edema and inflammatory cell infiltration were not significantly different 

from Mnk1+/+ mice upon chronic damage (Fig. 16A). However, pancreata from animals 

lacking Mnk1 contained a lower number of TCs as assessed by histological score  

(Fig. 15A).  

Figure 16. Mice lacking Mnk1 develop less tubular complexes after multiple episodes of 
acute pancreatitis. (A) Histological score of inflammation and tubular complexes (TCs) in 
pancreatic sections from Mnk1+/+ (WT) and Mnk1-/- (KO) mice upon chronic pancreatitis (CP) 
stained with hematoxylin-eosin. (B) Serum amylase activity in WT and KO mice upon CP 
represented as U/mL. Data represented as mean±SEM (n=5 for WT and n=4 for KO), *p<0.05   
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Serum was collected after 4 weeks of treatment and at the time of sacrifice (ca. 9 weeks). 

In wild type animals no increase in serum amylase was observed (Fig. 16B). On the 

other hand, Mnk1-/- mice showed elevated (by 20%) levels of serum amylase with 

respect to untreated controls both at 4 and 8 weeks.  

Upon chronic stress induction in Mnk1+/+ mice, both Mnk1 and eIF4E were 

phosphorylated, unlike in Mnk1-/- mice (Fig. 17A). Interestingly, total eIF4E protein 

levels were 50% lower in pancreata of mice lacking Mnk1 than in those of wild type 

animals (Fig. 17A and B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Mnk1-/- mice express less Ptf1a protein upon mild chronic pancreatitis. (A) 
Immunoblot depicting protein expression and phosphorylation in pancreata Mnk1+/+ (WT) and 
Mnk1-/- (KO) mice upon mild chronic pancreatitis (CP). (B) Protein expression of eIF4E, Ptf1a, 
Cel and Amy2 in WT and KO mice upon CP as assessed by western blotting band densitometry 
related to WT. (C) mRNA levels of acinar transcription factors and digestive enzymes in WT and 
KO mouse pancreata upon CP as assessed by RT-qPCR related to WT. (D) Percentage of Ki67 
positive nuclei in pancreatic sections from WT and KO mice upon CP. Data represented as 
mean±SEM (n=5 for WT and n=4 for KO), *p<0.05, **p<0.01.   
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Next we assessed the pancreatic expression of acinar specific markers in Mnk1+/+ and 

Mnk1-/- mice upon CP. Importantly the levels of Ptf1a protein were 50% lower in the 

latter than in the former (Fig. 17A and B). This difference was probably due to lower 

abundance of Ptf1a transcripts (by 50%) (Fig. 17C). mRNA levels of some other acinar 

specific genes were also lower in Mnk1-/- mice with most apparent, statistically 

significant differences observed for Nr5a2, Cel and Ctrb1 (by 30% to 40%) (Fig. 17C). 

Interestingly protein levels of Cel and Amy2 (Fig. 17A and B) and Cpa1 (not shown) 

were unchanged (see discussion).   

In contrast to untreated animals and to mice challenged with acute pancreatitis in which 

Mnk1 loss was associated with lower expression of c-Myc and Ccnd1, upon CP no 

difference in protein levels of these genes was observed (data not shown). This is in 

agreement with a lack of differences in acinar cell proliferation (Fig. 17D).  

To conclude, upon multiple episodes of acute pancreatitis acinar cells from Mnk1-/- mice 

on one hand undergo less ductal atrophy, but on the other show stronger down-

regulation of acinar phenotype hallmarked by a reduction of Ptf1a protein.  

 

3. Mnk1 modulates acinar phenotype and pancreatic carcinogenesis 

upon oncogenic Kras 

3.1. Mnk1 interference destabilizes acinar phenotype of 266-6 cells  

To analyze in more detail whether Mnk1 is not only part of the acinar program but can 

also be involved in its regulation, we knocked-down Mnk1 in 266-6 cells – cancer cells 

that retain acinar features. We used two lentiviral shRNA constructs targeting Mnk1 and 

achieved 50% and 90% down-regulation of Mnk1 transcript levels without affecting 

Mnk2 expression (Fig. 18A). As a consequence, total Mnk1 protein levels as well as basal 

Mnk1 phosphorylation were decreased (Fig. 18B). The most effective construct (sh2) 

also led to a reduced basal eIF4E phosphorylation. Upon Mnk1 knockdown, 266-6 cells 

underwent morphological changes acquiring a flatter shape and abundant filopodia  

(Fig. 18C). Moreover, some extent of cell death (not quantified) was observed with both 

hairpins.  
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Both hairpins caused a reduction of mRNAs coding for Rbpjl and acinar enzymes  

(Fig. 18A). Consistently, Cpa1 and Ctrb1 protein levels were down-regulated (Fig. 18B). 

Interestingly, no changes in Ptf1a mRNA or protein levels were observed. On the other 

hand, Mnk1 knock-down led to an up-regulation of ductal keratins (Krt7 and Krt19)  

(Fig. 18A). The above results were reproduced in an independent experiment (data not 

shown).  

Next we analyzed the effect of Mnk1 interference on stress-induced down-regulation of 

acinar phenotype in 266-6 cells. Hydrogen peroxide (H2O2) treatment of 266-6 cells led 

to Mnk1 phosphorylation and concomitant down-regulation of Ptf1a and Cpa1 (Fig. 19A 

and B). Interestingly, it was not associated with p-eIF4E increase. To address whether 

Figure 18. Mnk1 knock-down in 266-6 cells reduces acinar gene expression. (A) mRNA 
expression of Mnks, acinar transcription factors, digestive enzymes and ductal keratins in 
control (shNT) and Mnk1-interfered (sh1, sh2) 266-6 cells as assessed by RT-qPCR; data 
represented as fold levels over expression in shNT cells (mean±SEM, n=3). (B) Immunoblot 
showing protein expression and phosphorylation in control and interfered 266-6 cells. (C) 
Microscopic pictures of control and interfered 266-6 cells. 
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Mnk1 activation upon stress is also important for acinar phenotype regulation, cells 

were treated with H2O2 after Mnk1 interference using sh2 construct. In Mnk1-interfered 

cells, H2O2 treatment induced only a mild Mnk1 phosphorylation and the decrease of 

Ptf1a and Cpa1 proteins was stronger than in control cells (Fig. 19A and B). This result 

was also reproduced in a separate experiment (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

Thus, acute depletion of Mnk1 in 266-6 cells leads to down-regulation of the acinar 

transcription program both in basal conditions and upon stress.   

3.2. Mnk1 activation by Kras in acinar cells modulates Mnk1-eIF4E pathway 

In order to determine whether mutant Kras is able to activate Mnk1 in acinar cells, 

KrasG12V was ectopically expressed in 266-6 cells (Fig. 20A). As expected, overexpression 

of an activated form of Kras led to very strong phosphorylation of Erk1 and Erk2 MAP 

kinases. By contrast there was only a minor increase of p-Mnk1 but antibodies against 

both p-Mnk1 and total Mnk1 detected additional higher band which presence has been 

associated with Mnk1 activation (Fukunaga and Hunter, 1997). Interestingly using 

Figure 19. Mnk1 interefered 266-6 cells respond with stronger reduction of Ptf1a and 
Cpa1 upon H2O2 treatment  (A and B) Mnk1, eIF4e, Ptf1a, Cpa1 and Vinculin protein expression 
and Mnk1 and eIF4E phosphorylation upon hydrogen peroxide (H2O2) treatment of 266-6 cells 
in normal culture conditions (A) and of control (shNT) and Mnk1-interfered (sh2) 266-6 cells 
(B). Top panels are immunoblots. Bottom panels are graphic representations of western blotting 
band densitometry for Mnk1, Ptf1a and Cpa1. -, 15´, 30´, 1h, 2h, 4h, 8h, 16h – experimental time-
points after H2O2 treatment, where “-“ represents untreated cells 
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phosphospecific antibodies an increased signal for a 39 kDa band which might represent 

p-Mnk1b was detected. In addition modest phosphorylation of eIF4E, Mnk1 substrate, 

was increased (with no changes in total eIF4E abundance) (Fig. 20A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interestingly, mutant Kras over-expression led to a loss of the epithelial morphology 

with acquisition of a more spindle-like or flattened cell shape (Fig. 20C) and to a strong 

repression of the acinar transcription program (Fig. 20B) manifested by marked down-

regulation of mRNA levels of Ptf1a and its target genes (Ela1, Ctrb1, Cpa1, Cel and Mnk1) 

and up-regulation of ductal markers – Krt7 (by 7-fold) and Krt19 (by 500-fold). Down-

regulation of expression seen on mRNA level for Ptf1a, Ctrb1 and Mnk1 was also 

confirmed at the protein level (Fig. 20A).  

To determine whether the effects observed in 266-6 cells also occur in vivo, activation of 

Mnk1 was investigated using Ptf1a+/CreERT2;Kras
 

+/LSLG12Vgeo mouse. In this model, 

expression of mutant Kras from its endogenous promoter was induced upon tamoxifen 

administration to pregnant females in E15.5 mouse embryos. The pancreas was 

Fig. 20 Ectopic expression of KrasG12V in 266-6 acinar cancer cells represses acinar 
program and activates Mnk1-Eif4e pathway (A) Immunoblot depicting Kras, Erk1/2, Mnk1, 
eIF4E, Ptf1a, Ctrb1 and Vinculin protein expression and Erk, Mnk1 and eIF4E phosphorylation in 
266-6 cells transfected with empty vector (pBP) and with vector containing KrasG12V cDNA. (B) 
mRNA levels of Ptf1a, Cpa1, Cel, Amy2, Ctrb1, Ela1, Mnk1, Krt7 and Krt19 in 266-6 cells 
transfected with pBP or pBP-Kras G12V vectors as assessed by RT-qPCR; data represented as 
fold levels over expression in pBP transfected cells (mean±SEM, n=3). (C) Microscopic pictures 
of control and Kras G12V overexpressing 266-6 cells. 
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collected at E18.5 and protein expression was analysed (Fig. 21A). The recombination 

efficiency was estimated by western blotting using anti-β-galactosidase antibodies (see 

Materials and Methods). β-galactosidase was undetectable in lysates from tamoxifen-

treated control Ptf1a+/CreERT2;Kras
 

+/+ a weak band in lysates from tamoxifen-treated 

Ptf1a+/CreERT2;Kras
 
+/LSLG12Vgeo embryos was detected. In these experiments, we obtained 

no evidence of Mnk1 phosphorylation or mobility shift (Fig. 21A); on the contrary, the 

levels of p-Mnk1 were down-regulated. Moreover no clear-cut change in 

phosphorylation status of eIF4E was observed. In this setting, neither mRNA nor protein 

levels of Ptf1a were affected however mRNA expression of some acinar specific genes 

was down-regulated (Mnk1, Amy2, Ctrb1, Cpa1, Cel) (Fig. 21B).  

 

 

 

 

 

 

 

 

To conclude, KrasG12V expression leads to Mnk1 pathway activation in 266-6 cells but to 

lower Mnk1 phosphorylation in embryonic pancreas. Although these results may seem 

contradictory, together they suggest that Mnk1 may be involved in Kras signaling in 

acinar cells. 

3.3. During PDAC progression Mnk1 protein is downregulated in precursor 

lesions but detected in carcinomas  

Mnk1 has been reported to be involved in cancer progression in several mouse models. 

Therefore, we analyzed Mnk1 expression in different mouse models of pancreatic cancer 

(Fig. 22) and in samples from human PDAC (Fig. 23).  

Fig. 21 Mnk1 phosphorylation is downregulated upon K-RasG12V activation in mouse 
embryonic pancreas. Immunoblot depicting protein levels of β-Gal, Mnk1, Ptf1a and Vinculin 
and phosphorylation of Mnk1 and eIF4E in pancreatic lysates from tamoxifen treated  
Ptf1a+/CreERT2; Kras

 
+/+ (WT) and Ptf1a+/CreERT2;Kras

 
+/LSLG12Vgeo (G12V) mouse E18.5 embryos; arrow 

indicates band corresponding to β-Gal. (B) mRNA expression of Ptf1a, Rbpjl, Cpa1, Cel, Amy2, 
Ctrb1, Mnk1, Krt7 and Krt19 in pancreata from WT and G12V mouse embryos as assessed by 
RT-qPCR; data represented as fold levels over expression in WT embryos (mean±SEM, n=2).   
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In Ela1-Myc mice, Mnk1 was detected in tumors with acinar differentiation but not in 

metaplastic ductal cells (n=6) (Fig. 22A). In Ptf1a+/Cre;Kras+/LSLG12Vgeo mice, Mnk1 was 

undetectable in cells that underwent acinar-to-ductal metaplasia, in PanINs and very 

seldom detected in tumours displaying ductal differentiation (1 out of 5 mice). Similarly 

in Ela1-tTa/tetO-Cre;Kras+/LSLG12Vgeo;p16-/- and Ela1-tTa/tetO-Cre;Kras+/LSLG12Vgeo; p53lox/lox 

models Mnk1 was absent from metaplastic ductal cells and PanINs. However, in these 

models the protein was detected at low to moderate level in tumour cell of ductal 

phenotype (in both cases 4 mice out of 5) (Fig. 22A and B).   

Figure 22. Mnk1 expression is downregulated upon metaplasia but detected in some 
tumor cells in mouse models of PDAC. (A) Immunohistochemistry showing Mnk1 expression 
in precursor lesions and carcinomas in pancreatic sections from different mouse models of 
pancreatic cancer (Ela1-Myc, Ptf1a+/Cre;Kras+/LSLG12Vgeo, Ela1-tTa/tetO-Cre;Kras+/LSLG12Vgeo;p16-/- and 
Ela1-tTa/tetO-Cre;Kras+/LSLG12Vgeo;p53lox/lox). (B) Table showing frequency of mice with Mnk1 
positive tumour cells in different Kras driven mouse tumours. (C) Immunoblot depicting protein 
expression and phosphorylation in different mouse cell lines: 266-6 (derived from acinar 
cancer), TD-2 (derived from TGFα driven ductal tumour), ATQ10, ATQ22 and ATQ109 (derived 
from ductal tumours from Ela1-tTa/tetO-Cre;Kras+/LSLG12Vgeo;p53lox/lox mice) and APL709 (derived 
from ductal tumour from Ela1-tTa/tetO-Cre;Kras+/LSLG12Vgeo;p16-/- mouse).  
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We used tissue microarrays (TMAs) to assess MNK1 expression in human PDAC. As 

shown in Fig. 23A, MNK1 expression in preneoplastic and neoplastic lesions from 

patients with PDAC was similar to that observed in mouse models: low-level expression 

in metaplastic ductal cells, mainly undetectable in PanINs, and variably expressed at low 

levels in tumour samples (in 10 out of 29 patients) with different levels of expression 

(weak in 4 and moderate in 6 patients) but always lower than in acinar cells (Fig. 23B). 

The only difference between human PDAC specimens and samples from mouse models 

of pancreatic cancer concerns the fact that in 4/29 samples, weak staining for MNK1 was 

observed in precursor lesions (Fig. 23A and B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Mnk1 protein is downregulated in precursor lesions but detected in some 
carcinoma cells of human PDAC. (A) Representative pictures showing Mnk1 expression in 
metaplastic events, PanINs and carcinomas from human PDAC TMA. (B) Table presenting 
frequency of Patients with Mnk1 positive PanINs and Carcinomas as well as distribution of 
expression intensity among carcinomas. (C) (top panel) Immunoblot depicting protein levels 
and phosphorylation in human PDAC (left) and colon (LS-174T, LOVO, HCT-116, HT-29), 
teratoma (TERRA-1), prostate (DU-145, PC-3), bladder (T24T, UM-UC-3, JON) and breast  
(MCF-7, T47D) (right); (bottom panel) Densitometry of bands from top panel western blotting 
presented as fold levels over average expression in PDAC cells (dashed line).  
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Subsequently, Mnk1 protein expression and activation in pancreatic cancer cell lines 

was investigated. Among murine lines, Mnk1 was expressed at highest levels in 266-6 

acinar cells and at lower - but detectable - levels in PDAC lines derived from acinar-

initiated tumors (Fig.  23C). Basal Mnk1 phosphorylation mirrored the total protein 

levels in these lines. Unlike Mnk1, its substrate – eIF4E was expressed at similar levels in 

all cell lines regardless of their differentiation phenotype; similar findings were made 

with p-eIF4E. Interestingly MNK1 protein was detected in all human PDAC cells and its 

levels were comparable to those in colon cancer cells (Fig. 23C). The same applies to 

EIF4E expression, while the levels of p-EIF4E are more variable among pancreatic and 

other cancer cell lines (Fig. 23C).   

Thus, during PDAC development Mnk1 expression is down-regulated along with the 

acinar transcription program but is expressed at lower levels in some ductal tumor cells, 

possibly in a PTF1-independent manner (see discussion).   

3.4. Mnk1-/- mice develop more PanINs and less tubular complexes in KrasG12V 

PDAC model 

To investigate the role of Mnk1 in Kras-driven PDAC development/progression, we 

crossed Mnk1-/- and Ptf1a+/Cre;Kras+/LSLG12Vgeo mice and analyzed precursor lesion 

abundance in this animals (Fig. 24). By 6 months, all control animals (n=11) 

(Ptf1a+/Cre;Kras+/LSLG12Vgeo;Mnk1+/+) had developed PanIN-1 lesions (9 lesions per mouse) 

(Fig. 24A). Few PanIN-2 lesions were observed at this time (4/11, 0.5 lesion per mouse) 

and only one mouse had PanIN-3. By contrast Ptf1a-Cre+/KI;Kras
 
+/LSLG12Vgeo;Mnk1-/- mice 

(n=8) had a higher total number of lesions (p=0.016). They had significantly more 1, 2 

and 3 PanINs (17, 2.5 and 0.75 lesions per mice respectively). Importantly, more 

animals contained PanIN-2 (7/8) and PanIN-3 (4/8) (Fig. 24A). Apart from PanINs wild 

type controls developed other ductal lesions – tubular complexes (TCs) and metaplastic 

mucinous metaplasias (MMLs). Interestingly although pancreata of mice lacking Mnk1 

showed similar number of MMLs they contained much less tubular complexes (Fig. 24B 

and C).  
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Figure 24. Mnk1-/- mice develop more PanINs and less TCs in Kras-driven PDAC model.  
(A) Number of different types of PanIN lesions (1A, 1B, 2 and 3 found in pancreatic sections from 
6 months old Ptf1a+/Cre;Kras+/LSLG12Vgeo;Mnk1+/+ (WT) and Ptf1a+/Cre;Kras+/LSLG12Vgeo;Mnk1-/- (KO) 
mice. (B) Histological score of tubular complexes (TCs) abundance in 6 month old WT and KO 
mice. (C) Hematoxylin-eosin staining of WT (top) and KO (bottom) sections showing TCs, more 
prominent in WT pancreata, and mucinous metaplastic lesions (MMLs) that are more prominent 
in KO pancreata.  
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Mortality rate of PDAC has not changed in 50 years, despite the progress that has been 

made over past 2 decades in understanding molecular mechanisms underlying its 

development (Siegel et al., 2013). One of the reasons for this is that we do not 

understand several important aspects of PDAC development. It is still under discussion 

what is the cell of origin of this cancer and even whether all PDACs develop from the 

same cell type or different tumors arise from different pancreatic cells. Evidences from 

mouse models show that acinar cells may acquire ductal characteristics and can give 

rise to adenocarcinomas and that it is facilitated by pancreatitis – a well established risk 

factor for this cancer in human (Guerra et al., 2007). However, molecular mechanisms 

triggering the phenotypic switch, from acinar to ductal, and underlying higher 

sensitivity to transdifferentiation upon stress are poorly understood.  

1. Identification of novel genes involved in pancreas biology 

In order to get more insight into biology of acinar cells we initially set out to describe 

novel genes that are expressed in developing mouse pancreas and could be involved in 

exocrine differentiation. We reasoned that functional characterization of such genes 

could shed more light on processes that regulate exocrine cell biology. In search for gene 

candidates we screened Genepaint database that provides in situ hybridization images 

for different genes in E14.5 whole mouse embryo sections, with annotations of the genes 

to the tissues in which they are expressed. The search criteria were: 1) selective 

expression in developing pancreas; 2) scattered or regional expression pattern in the 

pancreas that suggested lineage specificity; 3) known important function in controlling 

cellular processes i.e. signal transduction or gene expression regulation; 4) non-

described function in the pancreas. As a result of this approach, 5 genes candidates were 

chosen and subjected for initial analysis of their expression in the pancreas. The 

candidates were: Mknk1, c-Myb, Lhx1, Mdk, Nr2f6 (Fig. 25). Analyzing expression pattern 

in images provided by Genepaint and further expression analysis allowed us to draw 

conclusions about the specificity of these gene products for different pancreatic cell 

lineages (Fig. 25): Mnk1 (Mknk1 product) is expressed in MPCs, acinar precursors and 

adult acinar cells; c-Myb is detected transiently in acinar precursors; Lhx1 is present 

transiently in endocrine precursors; Mdk is expressed in bipotent precursors and in 

adult ductal cells; analysis of Nr2f6 expression did not yield any conclusion but basing 
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on similar to Mdk pattern in Genepaint image it is possible that it is involved in ductal or 

endocrine cell differentiation.  

 

 

 

 

 

 

 

 

 

 

 

 

2. Mnk1 is a novel acinar cell-specific stress response kinase in the 

pancreas 

For further analysis we chose Mnk1. The rationale was based on several facts: a) We 

found it to be highly expressed in pancreatic acinar cells and in their precursors, b) It is 

a stress kinase activated by Erk and p38 MAP kinases (Fukunaga and Hunter, 1997; 

Waskiewicz et al., 1997) which are implicated in two important aspects of pancreatic 

tumorigenesis: Kras signaling and inflammation, c)  Its function has not been described 

in the pancreas, d) Proper tools for studying Mnk1 were available –  good quality 

antibodies recognizing total and phosphorylated protein, Mnk1 knock-out mouse and 

lentiviral vectors with Mnk1 targeting shRNAs. 

Figure 25. Candidate genes identified after screening the Genepaint server. 
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There is only one report that mentions Mnk1 in the pancreas (O’Loghlen et al., 2004). In 

this work O'Loghlen and colleagues discovered the “b” isoform of Mnk1 and performed a 

simple semi-quantitative PCR-based analysis of Mnk1a and Mnk1b expression among 

different human tissues. They detected both isoforms in the pancreas, however, as the 

panel of tissues in this study was rather small and the technique used was not very 

accurate no reliable comparison of expression levels could be performed. In contrast, 

our data undoubtedly show that in mouse pancreas Mnk1 is expressed at very high level 

comparing to other tissues. Mnk1 expression pattern during pancreas development is 

similar to that of Cpa1 and Ptf1a (Zhou et al., 2007) as it is present in the whole 

pancreatic epithelium before secondary transition (in MPCs) and is restricted to acinar 

precursors in later stages of pancreas development. This suggested that Mnk1 might be 

a Ptf1a target in the pancreas what we demonstrate by chromatin immunoprecipitation. 

During mouse pancreas development some acinar specific markers, such as Cpa1, are 

found already in MPCs (which do not contain PTF1-L), as their expression is activated 

already by PTF1-J (Masui et al., 2010). It is thus likely that Mknk1 gene is also a target of 

both complexes. Although in our experiments we did not analyze binding of neither Rbpj 

nor Rbpjl to above described sites in Mknk1, most of the identified E-boxes were 

followed by TC-boxes what suggested possible binding of these factors.  

Typically, PTF1 binding sites in acinar specific genes are found proximal to TSS within 

300bp (Beres et al., 2006). Although in Mknk1 such putative site (E-box and TC-box) was 

detected at -175bp, Ptf1a binding to this region was relatively low. In contrast, stronger 

binding was detected in 7 sites that localize within 1st intron of the gene. Thus, as 

opposed to known acinar specific enzymes and transcription factors in which PTF1 

binding was described to occur upstream from TSS, Mknk1 gene is bound by this 

complex in intronic regions, although functional significance of this finding remains 

unknown. Mnk1 is known to be present in various cell types (among others in 

macrophages, T-cells, cardiomyocytes, mesangial cells and different cancer cells), 

however nothing has been reported on its expression levels in different tissues. We 

conclude that it has an exceptionally high abundance in pancreatic acinar cells and that 

this can be ascribed to the activity of PTF1 complex. As opposed to Mnk1, Mnk2 is not 

overrepresented in the pancreas and its expression is not regulated during development 

of this organ, hence it is not specific for exocrine lineage. In order to get some insight 
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into putative function of Mnk1 in the pancreas we analyzed the expression of various 

known Mnk targets in mouse tissues, however none of them was overrepresented in the 

pancreas.  

Results of acute pancreatitis experiment show that Mnk1 is an integral part of acinar 

transcription program also in the context of stress response. Upon injury its expression 

is regulated in the same way as that of other acinar markers. Importantly, to our 

knowledge it is the first acinar cell specific kinase to be described. We provide evidence 

that Mnk1 is activated in acinar cells upon stress: in acute and chronic pancreatitis, upon 

acini isolation and in response to oxidative damage in 266-6 cells. There are two 

hallmarks of Mnk1 activation: T-loop phosphorylation and the appearance of a higher 

band detected with western blotting (Fukunaga and Hunter, 1997) and both occur in 

these conditions. Moreover, Mnk1 activation can also be indirectly assessed by 

measuring the eIF4E phosphorylation which we observe to increase upon pancreatitis 

and acinar cell isolation in Mnk1 dependent manner. It has not been reported whether 

the T-loop phosphorylation contributes to observed change in gel mobility of the Mnk1 

protein. During the induction of acute pancreatitis in mouse, already first caerulein 

injection causes Mnk1 phosphorylation but at this time no total protein band shift is yet 

observed, what suggests an involvement of additional modifications. Apart from its 

activation caerulein treatment also leads to down-regulation of Mnk1 protein levels. 

They are the lowest 1 day after the treatment what coincides with the lowest abundance 

of its mRNA. Although pancreatitis-induced down-regulation of Mnk1 protein can be 

explained by PTF-1-dependent transcription regulation, it is possible that increased rate 

of protein degradation is also involved. This notion is suggested by the fact that possibly 

activated form of the protein (the higher band) is down-regulated faster. It is known that 

protein modifications can negatively affect their stability (Dasilva et al., 2006) however 

this issue has never been studied in the case of Mnk1.  

While Mnk1 activity has been associated with phosphorylation of this kinase and its 

substrates, little is known whether it affects cellular distribution of this protein. A recent 

report has described that Mnk1 in some contexts may localize to centrosomes and 

spindle microtubules, although this remains to be confirmed (Rannou et al., 2012). We 

report that activation of this kinase in acinar cells is associated with its transient 
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localization towards basolateral region. Considering, that the polarization of Mnk1 

distribution is the strongest at 4h when the highest p-Mnk1 levels are detected it is 

conceivable that it reflects its activation.  

The discussed above phosphorylation signal refers to Mnk1a isoform, however we also 

observe an additional lower band corresponding to 39kDa protein that can be detected 

in pancreata from caerulein treated wild type but not from Mnk1-/- mice. This likely 

reflects Mnk1b – the isoform that so far has only been described in human (O’loghlen et 

al., 2004). It is believed to be a nuclear protein, however its function is unknown 

(Buxade et al., 2008). Interestingly phosphorylation of this 39kDa protein occurs very 

early during the pancreatitis induction as the highest phospho-signal is detected at 30’ 

after first caerulein injection. If this was indeed the Mnk1b isoform this could suggest 

some early function of Mnk1 in acinar cell nucleus upon caerulein stimulation, however 

we do not detect any pancreatitis-associated Mnk1 nuclear localization.  

3. Mnk1-/- mice display altered expression of acinar digestive enzymes 

and p-eIF4E target proteins in the pancreas 

Ueda and colleagues (Eueda et al., 2004) reported that Mnk1 is dispensable for mouse 

development, however they did not examine in detail pancreata of mice lacking Mnk1. 

Consistent with accepted concept that this kinase is not essential for normal cell growth 

we do not observe any macroscopic or microscopic abnormalities in histology of Mnk1-/- 

mouse pancreas. Since we found Mnk1 to be expressed in acinar cells, we focused on 

whether its absence has an impact on acinar differentiation and found that pancreata of 

these mice have elevated protein levels of digestive enzymes such as Cpa1, Cel and 

Amy2. The increase in enzymatic protein in pancreas lacking Mnk1 is modest, however 

taking into account that protein synthesis rate in this organ is very high we would not 

expect that enzymatic protein content therein could be much elevated. On the other 

hand, pancreata of these mice contain less protein of c-Myc and Ccnd1 whose 

biosynthesis is known to be positively regulated by phosphorylated eIF4E. As in the 

absence of Mnk1, basal eIF4E phosphorylation is reduced and there is no decrease in c-

Myc and Ccnd1 mRNA levels it is likely that posttranscriptional p-eIF4E dependent 

regulation is involved.  
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These data suggest that in pancreatic acinar cells Mnk1 negatively affects abundance of 

digestive enzymes and at the same time positively regulates expression of prosurvival 

proteins. Although the second observation is not surprising, basing on the known role of 

Mnk1-eIF4E pathway, the first discovery is novel. Importantly, the above described 

changes seen in the absence of Mnk1 do not significantly affect total pancreatic protein 

content, what might be due to opposite effect on abundance of different groups of 

proteins. 

There are several mechanisms through which Mnk1 might regulate digestive enzyme 

abundance. As we observe elevated levels of their transcripts it might affect 

transcription or mRNA stability. So far no involvement of Mnk1 in gene transcription 

has been described. On the other hand this kinase has been shown to regulate transcript 

stability through activation of ARE binding proteins (Buxade et al., 2008), however 

mRNAs of acinar digestive enzymes have very short 3´ UTRs that essentially do not 

contain ARE elements (data not shown). Although it is possible that the increase in 

acinar gene protein expression is a consequence of elevated mRNA levels we do not 

prove that this is the case. On the contrary, we do not observe higher abundance of Ptf1a 

protein despite its elevated mRNA levels and it is possible that the enzymatic protein 

increase occurs through different mechanisms. For instance Mnk1-eIF4E-mediated 

translation regulation could also be involved. eIF4E, upon phosphorylation, has more 

affinity to mRNAs that code for prosurvival proteins, such as cMyc or Ccnd1 (Buxade et 

al., 2008). Possible scenario could be that binding to this subset of transcripts renders 

eIF4E less available for global translation. In this way eIF4E phosphorylation would 

simultaneously positively regulate biosynthesis of ones and negatively of other proteins. 

This is in line with the proposed hypothesis that eIF4E might be involved in a switch 

from global to cap-independent translation (Svitkin et al., 2005). Finally, another 

explanation could be that Mnk1 affects acinar cell exocytosis and that in the absence of 

this kinase, the enzymes are not properly secreted and as a consequence accumulate in 

the cytoplasm. This issue will be discussed below.  
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4. c-Myc expression induction and acinar cell proliferation during 

caerulein-induced pancreatitis partially depend on Mnk1 

Acute pancreatitis is associated with proliferation of a low fraction of acinar cells what is 

believed to be involved in organ regeneration after injury (Lechene de la Porte et al., 

1991) and to be at least partially driven by Insulin growth factor I (IGF-I) secreted by 

activated fibroblasts (Ludwig et al., 1999). Iovanna and colleagues showed that during 

taurocholate-induced pancreatitis in rats, acinar cells have increased levels of c-Myc and 

Hras proteins (Iovanna et al., 1992) however no such analysis was performed regarding 

caerulein treatment.  

We describe, that in mouse pancreas upon caerulein-induced pancreatitis, expression of 

c-Myc is induced what is primarily due to regulation of its transcript levels. However, 

the increase of c-Myc protein partially depends on post-transcriptional regulation by 

Mnk1, as it is lower in mice lacking this kinase with no differences in mRNA expression. 

It occurs possibly through described IRES-dependent regulation of c-Myc translation by 

Mnk1-eIF4E pathway (Shi et al., 2012) as pancreata of these mice do not show 

pancreatitis-induced eIF4E phosphorylation. Regulation of Ccnd1 expression upon 

pancreatitis has so far not been described. We observe that in contrast to c-Myc, the 

levels of this cyclin are down-regulated in response to caerulein injection, what is 

probably due to transient decrease of its mRNA abundance. It is conceivable that it 

levels the difference in Ccnd1 protein amount between pancreata of untreated Mnk1+/+ 

and Mnk1-/- mice, as Mnk1-eFI4E-dependent regulation of Ccnd1 mRNA nuclear export 

might have little effect when the transcript levels are low. This hypothesis is supported 

by the fact that 1 day post-pancreatitis, when Ccnd1 mRNA levels are reversed, Mnk1+/+ 

mice have significantly more pancreatic Ccnd1 protein.  

The impaired induction of c-Myc levels can partially explain lower acinar cell 

proliferation rate during recovery from AP observed in mice lacking Mnk1, as it is well 

establilshed that this transcription factor positively regulates cell cycle (Eilers and 

Eisenman, 2008). However, it is possible that there are also other p-eIF4E targets which 

induction upon AP is impaired in Mnk1-/- mice upon acute pancreatitis.   
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5. Mnk1 is required for the physiological secretory response of acinar 

cells and for the homeostatic response to caerulein administration  

Based on elevated serum amylase activity, increased neutrophil infiltration and stronger 

reduction of acinar transcription program we can conclude that lack of Mnk1 results in 

increased severity of experimentally-induced acute pancreatitis. A number of genes 

have been described, whose inactivation in mouse induces similar transient increase in 

pancreatitis severity, among others: Irmap1 and p8 and they are believed to play 

pancreatitis-protective roles in the acinar cells. Integral membrane-associated protein-1 

(Itmap1) is a member of CUB/ZP that regulates zymogen granule formation and  

Itmap1-/- mice upon caerulein administration display a modest increase in serum 

enzyme activity and acinar cell apoptosis (Imamura et al., 2002). p8 is a stress induced 

transcription coactivator and p8-/- mice have transiently elevated serum enzyme levels 

and pancreas inflammation (Vasseur et al., 2004).  

Mnk1 is known to be important for cytokine production and response in inflammatory 

cells. However, in our experiments the increase in inflammation is not strong and occurs 

2 days after the pancreatitis induction when, suggesting that elevated inflammation is 

rather a consequence of earlier events. Nevertheless it may be one of the reasons for 

impaired recovery of acinar transcription programme observed in mice lacking Mnk1. 

Given, that in our model Mnk1 is inactivated in all cells of the organism it is possible that 

its depletion affects inflammatory response to pancreatitisis. This kinase is known to 

modulate secretion of cytokines and response to inflammatory mediators in immune 

cells. We can thus speculate that macrophages and T-cells lacking Mnk1 may respond 

poorer to damage-induced chemokines and produce less inflammatory mediators or 

even that acinar cells themselves may release less cytokines in the absence of this 

protein. In such case Mnk1-/- mouse despite elevated acinar cell damage would have 

inadequate response of the inflammatory compartment. This hypothetic effect 

compensation could have a considerable impact on acute pancreatitis in this model. In 

order to rule out such possibility a conditional mouse model should be applied that 

would allow for Mnk1 inactivation specifically in the pancreas. 

There is no consensus on what is the regulation of digestive enzyme protein levels upon 

caerulein-induced acute pancreatitis. On one hand it has been shown that pancreatic 
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amylase activity is reduced upon serial caerulein injection (Dembinski et al., 2000; 

Molero et al. 2012) what is consistent with down-regulation of acinar transcription 

program. In contrast Halangk and colleagues reported that trypsinogen accumulates in 

mouse pancreata upon pancreatitis what is in line with the fact that caerulein induces 

secretion blockade in acinar cells (Halangk et al., 2000). The reason for this discrepancy 

between studies may be that abundance of different zymogens may be differentially 

regulated in the pancreas. We report, that caerulein injections lead to protein level 

down-regulation of Amy2, Cpa1 and Cel and that it is associated with modest reduction 

of pancreatic protein content observed at 8h of the trearment. Conversely, in mice 

lacking Mnk1 this downregulation is delayed as at 8h their pancreata have unchanged 

levels of analyzed digestive enzymes. This impaired reduction of zymogens might be 

implicated in observed increase in pancreatic protein content in these mice. 

It is conceivable that elevated enzyme load in Mnk1-/- mouse pancreata is the reason for 

increased severity of acute pancreatitis, as it is believed that accumulation of enzymes in 

acinar cells facilitate intracellular zymogen activation (Vonlaufen et al., 2008). As 

described, early after first caerulein injection two critical events occur, that together 

induce acinar cell damage: zymogen activation and blockade in secretion that keeps 

activated enzymes inside of the cells (Saluja and Lerch, 2007). The first zymogen that 

becomes activated is trypsinogen that is converted into trypsin which can activate other 

proteases and subsequently lead to acinar cell damage and apoptosis.  Interestingly 

pancreata of Mnk1-/- mice do not show more pancreatitis-associated trypsinogen 

activation than wild type controls. Moreover we do not observe histological changes that 

would suggest elevated pancreatic cell death in these mice. Consistent with no increase 

in trypsinogen activation in mouse we also do not observe higher trypsin activity in CCK 

stimulated isolated acini lacking Mnk1. In fact, the in vitro activation in cells from  

Mnk1-/- mice is even lower than in wild type mouse cells. As it has been shown, the 

increase in intracellular trypsinogen activation is not necessarily associated with greater 

acinar damage (Meister et al., 2010) and in Irmap1 defficient mice, acute pancreatitis is 

stronger despite lower pancreatic trypsin activity (Imamura et al., 2002). 

Among the enzymes that accumulate in the pancreas of Mnk1-/- mouse at 8h of 

pancreatitis is procarboxypeptidase A1 (Cpa1). As all acinar proteases, it is produced in 

an inactive form in which it is stored in zymogen granules. It has been described that 
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caerulein stimulation of acinar cells in vitro induces its intracellular conversion to active 

carboxypeptidase (clCpa1) what is associated with cellular injury (Grady et al., 1998). 

Moreover elevated levels of clCpa1 have been shown to increase during pancreatic 

damage caused by acinar specific disruption of Xbp1 gene (Hess et al., 2011). 

Importantly, we show the dynamics of procarboxypeptidase activation upon AP in 

mouse. Cpa1 conversion in pancreata of wild-type mice occurs already 0.5h after first 

caerulein injection, what coincides with trypsinogen activation, after which the levels of 

cleaved form gradually decrease. This downregulation is however impaired in Mnk1-/- 

mouse in which the elevated levels of clCpa1 are stable between 0.5h and 8h. The higher 

levels of cleaved Cpa1 in mice lacking Mnk1 can be explained twofold: either it reflects 

prolonged trypsin dependent procarboxypeptidase conversion, or improper release of 

cleaved form from acinar cells. Although we do not observe more trypsin activity upon 

caerulein treatment, the higher availability of the substrate (procarboxypeptidase) may 

increase the efficiency of the reaction. On the other hand higher abundance of Cpa1 may 

be partially a result of secretory defects of Mnk1-/- mice pancrata (discussed below) 

which could also lead to accumulation of its cleaved form. Both mechanisms are 

probable and they may occur simultaneously. 

Some pancreatic proteases (as trypsinogen) have damaging potential for the acinar cells 

but for instance chymotrypsinogen C is known to be protective against pancreatitis 

(Szmola and Sahin-Toth, 2007). There are no reports explaining the role of 

carboxypeptidase in this disease, however as its activation has been show to coincide 

with injury and in our experiments it is associated with elevated pancreatitis severity, 

we conclude that it might have a damaging effect on the pancreas. Thus, it is likely that 

in Mnk1-/- mice pancreata, accumulation of zymogens such as procarboxypeptidase leads 

to increase in concentration of their active forms what underlies elevated pancreatitis 

severity.   

While there are no consistent reports on zymogen subcellular localization upon stress, 

we observe apical localization of Cpa1 and Try proteins upon caerulein injections. These 

changes are associated with a transient relocalization of Muc1 that in polarized 

epithelial cells localizes to apical membranes (Pemberton, 1992). As both, enzyme and 

Muc1 redistribution are impaired in Mnk1-/- mice, we conclude that Mnk1 regulates 
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intracellular zymogen localization in response to caerulein injection probably through 

modulation of acinar cell polarity. Thus, higher digestive enzyme abundance in 

pancreata of Mnk1-/- mice upon pancreatitis could be a result of abnormal regulation of 

acinar cell polarity what can negatively affect exocytosis leading to zymogen 

accumulation. To address this hypothesis we performed functional studies in freshly 

isolated acinar cells. Consistent with other reports, treatment of wild type cells with 

different concentrations of caerulein yields a biphasic dose-response curve of amylase 

release (Halangk et al., 2000; Williams., 2010b). The hypothesis of secretory alterations 

in acini lacking Mnk1 is supported by the fact that these cells release less amylase into 

the medium, both without the stimulant and upon various concentrations of caerulein.  

To sum up, Mnk1 is involved in regulation of zymogen secretion and acinar cells lacking 

Mnk1 display a suboptimal capacity to secrete digestive enzymes. Likely this is at least 

partially responsible for the increased response to serial caerulein administration in 

vivo, as it leads to accumulation of digestive enzymes in the cells. However, as discussed 

above it is also possible that Mnk1 affects the acinar enzyme abundance through p-

eIF4E-mediated translation regulation. eIF4E has been reported to be phosphorylated in 

the pancreas upon stimulation with CCK that increases pancreatic mRNA translation, but 

it has not been proven to be responsible for this process (Bragado et al., 2000). On the 

other hand cytoplasmic phospholipase A2 (cPLA2) that is a putative Mnk substrate has 

been shown to regulate acinar cell polarity and zymogen secretion (Tsuonda and 

Owyang, 1995; Mizuno et al., 2000). Thus, this protein is a strong candidate to mediate 

Mnk1 dependent regulation of zymogen secretion. Moreover, Mnk homologue in 

drosophila – LK6 has been identified as a protein associated with microtubules (Kidd 

and Raff, 1997), hence Mnk1 may be also involved in regulation of microtubule 

organization that is known to be important for acinar cell exocytosis (Schnekenburger et 

al., 2009). We did not however address these hypotheses and they remain to be 

investigated.  
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Final conclusion is that in the pancreas Mnk1 is an acinar specific, stress-activated 

kinase that is invlolved in acute pancreatitis response through regulation of acinar cell 

proliferation, and protein content (Fig. 26). It mediates biosynthesis of prosurvival 

proteins, most likely via eIF4E phosphorylation and zymogen load at least partially 

through its effect on exocrine secretion.  

6. Depletion of Mnk2 does not enhance the phenotype of Mnk1-/- 

mouse 

Although Mnk2 can also activate eIF4E, it has been proven to be responsible only for 

basal phosphorylation of this translation factor and we observe that in the pancreas, 

stimuli-induced eIF4E phosphorylation fully depends on Mnk1. These kinases share 

some other downstream targets and in the case of cell proliferation and survival have 

additive functions (Buxade et al., 2008), although Mnk2 has additional role in regulation 

of Pi3K-mTOR signaling (Hu et al., 2012). We show that Mnk2 is not over-expressed in 

mouse pancreas and that its expression does not change in this organ in the absence of 

Mnk1 (data not shown). Nevertheless, we investigated whether depletion of Mnk2 could 

enhance the effect of Mnk1 loss in the pancreas (data not shown). Mnk1-/-;Mnk2-/- mouse 

pancreas develops normally and has no apparent abnormalities. p-eIF4E that is barely 

detected in Mnk1-/- animals is further down-regulated, below detection, in  

Mnk1-/-;Mnk2-/- mouse pancreas. Similarly to Mnk1-/- mice, animals deficient for both 

kinases have elevated pancreatic and reduced serum amylase activity in normal 

condition. They also show an excessive amylase leakage at 8h of caerulein-induced acute 

pancreatitis and increased inflammation at 2 days post-treatment.  

Figure 26. A model summarizing involvement of Mnk1 in regulation of acinar enzyme 
protein abundance and cell proliferation. 
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In summary Mnk1-/-;Mnk2-/- mouse recapitulate most of the effects seen in Mnk1-/-, both 

in normal pancreas and upon pancreatitis, thus we can conclude that Mnk1 has 

pancreas-specific functions that are not shared by Mnk2. 

7. Mnk1 loss-of-function has a negative effect on acinar transcription 

program upon stress 

Both, Mnk1 deficiency in mouse pancreas as well as its knock-down in 266-6 cells lead 

to stronger down-regulation of acinar transcription program upon stress. Pancreata of 

Mnk1-/- mice have reduced transcript levels of some acinar-specific genes during the 

recovery from acute pancreatitis (AP) and after multiple episodes of injury that lead to 

chronic pancreatitis (CP). In contrast to AP, the chronic treatment leads to marked 

reduction of Ptf1a levels what is not due to increased tissue damage as we do not 

observe elevated CP severity in mice lacking Mnk1.  

To address the hypothesis that Mnk1 might be important for maintenance of acinar cell 

phenotype we used 266-6 cell line that has been shown to be useful to analyze digestive 

enzyme gene promoter regions (Kruse et al., 1988) or to assess the effect of Notch 

signaling on acinar cell differentiation (Siveke et al., 2008). These cells have been 

derived from an acinar tumour, driven by SV40 T antigen and although they are rather 

poorly differentiated they retain acinar features, such as expression of Ptf1a and 

digestive enzymes (Ornitz et al., 1985). We show that they express Mnk1 at higher levels 

than mouse ductal cancer cells and that this kinase is highly phosphorylated in these 

cells upon treatment with hydrogen peroxide (H2O2) that induces oxidative stress 

known to be involved in acinar damage during pancreatitis (Gukovskaya and Gukovsky, 

2011). 

Mnk1 interference in the 266-6 cells leads to down-regulation of expression of many 

acinar specific genes. Interestingly, it does not affect Ptf1a expression in normal culture 

conditions, however protein levels of this transcription factor upon H2O2 treatment are 

reduced to greater extent in interfered than in control cells. In contrast to normal 

pancreatic acinar cells, the 266-6 are cancer cells that are subjected to culture stress. 

Thus it is possible that observed decrease in acinar gene expression upon Mnk1 knock-
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down reflects partial requirement of this kinase for maintaining acinar phenotype in 

culture conditions.   

Altogether the above discussed data show, that inactivation of Mnk1 results in higher 

susceptibility of acinar cells to stress-related acinar program repression and depending 

on the context it may or may not involve reduction of Ptf1a levels. The reason for this 

might be that, as discussed in previous sections, Mnk1 takes part in acinar cell response 

to stress by controlling zymogen load, cell polarity and eIF4E activity and improper 

regulation of these processes upon Mnk1 loss of function may lead to stronger 

repression of acinar transcription program.  

8. Mnk1 may suppress PDAC development through regulation of 

acinar-to-ductal transdifferentiation upon Kras signaling 

KRAS mutations are found in more than 90% of PDAC cases (Maitra and Hruban, 2008). 

In cancer cells, KRAS signals mainly via MAPK and Pi3K signaling pathways, however it 

has been proposed that in PDAC, ERK signaling is the most crucial (Neuzillet et al., 2012 

Hoffman et al.). Less is known, whether this oncogene activates p38 MAP kinase 

pathway in PDAC cells. In vitro studies using PANC-1 cell line showed that KRASG12V 

over-expression enhanced the activity of p38 what was crucial for cell migration 

(Dreissigacker et al., 2006) but nothing has been described in this regard in acinar cells. 

Although Mnk kinases are activated by Erk1/2 and p38 MAP kinases, very few studies 

have linked these kinases to particular oncogenes. Mnk activity has been shown to 

mediate KrasG12V-induced IRES-dependent translation in rat RIE-1 cells, however this 

study was based on pharmacologic inhibition of both Mnks and did not provide evidence 

of phosphorylation of either of them (Origanti and Schantz, 2007). Thus it is essentially 

not proven that mutant Kras activates Mnk1.  

In order to analyze whether in pancreatic acinar cells Kras signaling leads to activation 

of Mnk1 we ectopically expressed KrasG12V in 266-6 cells what induced strong 

phosphorylation of Erk1/2. Interestingly, although we observe that Kras signaling leads 

to phosphorylation of the 39kDa protein that, as discussed above (2), is likely the Mnk1b 

isoform we do not detect an increase in p-Mnk1a phosphorylation. However, it is 

possible that Mnk1a phosphorylation in response to KrasG12V is an early event, as it 
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happens upon H2O2 treatment. As analyzed cells were collected 3 days after retroviral 

infection that mediated Kras overexpression, it is possible that it was too late to see the 

effect. Nevertheless, appearance of a higher band, that is also a halmark of Mnk1 

activation and increase in eIF4E phosphorylation in transfected cells suggests that the 

Mnk1-eIF4E pathway is activited by KrasG12V in these cells. Although eIF4E 

phoshporylation can also be mediated by Mnk2, we did not observe increase in p-Mnk2 

(data not shown). Interestingly, the KrasG12V-induced Mnk-eIF4E activation is associated 

with strong repression of acinar transcription programe and concomitant up-regulation 

of ductal keratins what suggests partial acinar-to-ductal metaplasia.   

In contrast to what occurs in 266-6 cells, we do not observe Mnk1 activation in mouse 

embryonic pancreas after tamoxifen-induced activation of KrasG12V expression. As 

assessed by Taqman based quantitative PCR assay tamoxifen injection led to 

recombination only in around 20% of embryonic pancreatic cells (data not shown), 

nevertheless we observed modest down-regulation of mRNA levels of several acinar 

markers including Mnk1. Surprisingly Mnk1 phosphorylation in embryo pancreata upon 

Kras signaling induction is reduced and there is no consistent change in eIF4E 

phosphorylation status. The discrepancy between the results obtained using cell line 

and the ones from in vivo experiments might be due to fact that the dynamics of events 

that lead to acinar-to-ductal metaplasia in mouse pancreas is different from that in  

266-6 cells. 

As Mnk1 has been shown to be crucial for oncogenic transformation (Wendel et al., 

2007) and to promote tumorigenesis in mouse (Ueda et al., 2010; Furic et al., 2010), we 

set out to analyze its role in PDAC formation. It was particularly important to 

investigate, given the unusually high expression of Mnk1 in mouse acinar cells that may 

be at the origin of this tumour. Consistent with the fact that Mnk1 is an acinar specific 

gene in the pancreas, we observe its rapid downregulation during acinar-to-ductal 

metaplasia both in mouse and in human samples. Moreover it is essentially undetected 

in tubular complexes and PanINs, however it is found in some tumour cells at lower 

levels than in acini. There is a general acceptance in PDAC research that these tumours 

as opposed to acinar cell carcinomas (ACC) do not express Ptf1a and digestive enzymes 

(Adell et al., 2000). Consistent, in our study the tumour cells in which we detected Mnk1 
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did not express Ptf1a or other acinar specific genes (data not shown). Furthermore, 

Mnk1 is present in all PDAC cell lines, which do not express detectable levels of acinar 

markers (Adell et al., 2000; Collisson et al., 2011). Hence, Mnk1 expression in these 

tumor cells is driven by a PTF1-independent mechanism which is not surprising, given 

the fact that this kinase is found at relatively low levels in a variety of non-pancreatic 

cells.  

Based on the observations from mouse and human samples we can propose 2 

alternative theories regarding Mnk1 expression during PDAC development : 1) Mnk1 is 

down-regulated in neoplastic cells along with the whole acinar transcription program 

and is not necessary for PanIN cell growth, however it is reexpressed in carcinoma cells 

when tumour specific transcription mechanisms are activated; 2) Despite the 

disappearance of the acinar phenotype, Mnk1 expression is maintained at low levels in 

some metaplastic cells, which give rise to Mnk1 positive PanINs and carcinomas. Both 

scenarios are probable and it is possible that both may occur.  

Since during PDAC development Mnk1 is expressed in acinar cells and in developed 

tumours, it is possible that it might play two roles: early – in response of acinar cells to 

oncogenic signalling and late – in adencarcinoma cell proliferation and survival. We 

decided to address its role in acinar cells. In this regard, we investigated the effect of 

Mnk1 depletion on precursor lesion formation in Ptf1a+/Cre;Kras+/LSLG12Vgeo mouse model, 

analyzing mice of age of 6 months when, as we observe, tumours are not yet formed. 

Surprisingly, mice lacking Mnk1 develop more lesions than wild type controls. They not 

only have higher amount of PanIN-1 and PanIN-2 lesions but they also very often (50% 

of animals) present PanIN3 which is carcinoma in situ.  

Ptf1a+/Cre;Kras+/LSLG12Vgeo mice, apart from the whole spectrum of PanINs, develop other 

ductal lesions: mucinous metaplastic lesions (MMLs) and tubular complexes (TCs). 

Ptf1a+/Cre;Kras+/LSLG12Vgeo;Mnk1-/- animals also present MMLs, but interestingly have very 

few TCs. Thus, on one hand lack of Mnk1 increases number of PanINs and on the other 

decreases tubular complex formation. It is consistent with the finding that upon chronic 

pancreatitis (CP) Mnk1-/- mice develop less TCs while they express less pancreatic Ptf1a. 

It is therefore possible that upon Kras signaling Mnk1 favours development of tubular 

complexes and suppresses PanIN formation. What exact molecular mechanisms underlie 
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tumour suppressing function of Mnk1 remains unknown. We can speculate that Kras 

signaling induces stress in acinar cells which turns on mechanisms of acinar phenotype 

repression but in the absence of Mnk1 their response is altered what leads to 

preferential PanIN formation over tubular complexes. It is conceivable that the impact of 

Mnk1 deficiency in acinar cells on PanIN formation could be even stronger upon 

concomitant induction of CP. However, this should be investigated using mice in which 

Mnk1 is inactivated specifically in acinar cells to avoid the effect of its deficiency on 

inflammatory compartment. 

Our finding that lack of Mnk1 increases PanIN formation in mouse is surprising, given 

that this kinase has so far been regarded as pro-oncogenic. In mouse, concomitant 

depletion of Mnk1 and Mnk2 delays lymphoma formation (Ueda et al., 2010) and similar 

impact on prostate cancer development has abrogation of eIF4E phosphorylation (Furic 

et al., 2010). However, the effect seen in these models is due to lack of eIF4E 

phosphorylation in neoplastic cells. In contrast, our observations concern the effect of 

Mnk1 depletion in acinar cells which first have to transdifferentiate in order to initiate 

PDAC formation. Nevertheless, it remains to be investigated whether observed 

increased amount of precursor lesions in the absence of Mnk1 accelerates 

adenocarcinoma formation and leads to elevated tumor burden in older mice.  
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Conclusions for objective #1 

1. Mnk1, but not Mnk2, is expressed at exceptionally high levels in the pancreas 

where it is a novel marker of acinar cell lineage, being a direct target of 

pancreatic transcription factor 1 complex (PTF1). 

2. In pancreatic acinar cells, the Mnk1-eIF4E pathway is activated while Mnk1 

expression is down-regulated upon caerulein-induced pancreatitis and stress in 

vitro. 

Conclusions for objective #2 

3. In the absence of Mnk1, mouse pancreas develops normally. In the adult, the 

pancreas has an increased enzymatic protein load and decreased expression of  

p-eIF4E targets such as c-Myc and Ccnd1.  

4. Mnk1 is involved in normal secretory response of pancreatic acinar cells and 

plays a protective role in caerulein-induced acute pancreatitis as it is involved in 

down-regulation of enzymatic protein content. 

5. Pancreata from Mnk1-/- mice upon multiple episodes of pancreatitis show 

reduced Ptf1a expression, however form less tubular complexes.   

Conclusions for objective #3 

6. Mnk1 knock-down in acinar cancer cells results in down-regulation of acinar 

gene expression what is potentiated upon stress induction. 

7. During PDAC development Mnk1 is strongly down-regulated in cells that undergo 

acinar-to-ductal metaplasia and is seldom detected in precursor lesions. 

Nevertheless it is expressed in some tumor cells in vivo and in all PDAC cell lines. 

8. Mnk1 plays a suppressory role in early steps of PDAC development possibly 

through its impact on acinar-to-ductal metaplasia.  
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Conclusiones para el objetivo #1 

1. Mnk1, pero no Mnk2, está expresado a niveles excepcionalmente altos en el 

páncreas donde es un nuevo marcador de células acinares y está regulado 

directamente por el complejo PTF1 (pancreatic transcription factor 1). 

2.  En células acinares de páncreas, la ruta Mnk1-eIF4E se activa mientras que la 

expresión de Mnk1 disminuye tras la inducción de pancreatitis aguda con 

ceruleína y estrés in vitro.  

Conclusiones para el objetivo #2  

3. En ausencia de Mnk1 en ratón, el páncreas se desarrolla de manera normal. En el 

adulto, se detecta un aumento en el contenido enzimático del páncreas y una 

disminución en la expresión de las dianas de p-eIF4E, como son c-Myc y Ccnd1.  

4. Mnk1 está involucrado en el mantenimiento de la respuesta secretora en células 

acinares pancreáticas y tiene un papel protector en pancreatitis aguda inducida 

por ceruleína relacionado con la disminución del contenido proteico enzimático. 

5. El páncreas de ratones Mnk1-/- muestran niveles bajos de expresión de Ptf1a tras 

múltiples episodios de pancreatitis, a pesar de ello se detectan un número menor 

de complejos tubulares.   

Conclusiones para objetivo #3 

6. El silenciamiento de Mnk1 en células acinares tumorales provoca una 

disminución en la expresión de genes acinares que se potencia tras inducción de 

estrés.  

7. Durante el desarrollo de PDAC, los niveles de Mnk1 disminuyen drasticamente en 

las células en las que se observa metaplasia acino-ductal y es difícilmente 

detectable en las lesiones precursoras. Sin embargo, se expresa en algunas 

células tumorales in vivo y en todas las líneas tumorales derivadas de PDAC 

analizadas. 

8.  Mnk1 tiene un papel supresor en las fases iniciales de desarrollo de PDAC  

probablemente por su impacto en la metaplasia acino-ductal.  
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