Dinámica de ORC6 durante el ciclo celular en

Arabidopsis thaliana

Memoria presentada por Pablo Castillejo Pons,
Licenciado en Bioquímica, para optar al grado de Doctor

Director:

Crisanto Gutiérrez Armenta

Co-Directora:

Bénédicte Desv oyes

Tutor:

César de Haro

Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC)
Dinámica de ORC6 durante el ciclo celular en

Arabidopsis thaliana

Tesis Doctoral

Pablo Castillejo Pons

Madrid, 2008
ÍNDICE

Summary ... 3

1. INTRODUCCIÓN .. 5
 1.1. CICLO CELULAR EN EUCARIOTAS ... 7
 1.1.1. Iniciación de la replicación ... 9
 1.2. PUNTOS DE CONTROL EN EL CICLO CELULAR .. 15
 1.3. PROTEASOMA Y CICLO CELULAR EN PLantas ... 18
 1.3.1. Proteasoma y daño en el DNA ... 21
 1.3.2. Proteasoma y hormonas de plantas ... 21
 1.4. ARABIDOPSIS COMO ORGANISMO MODELO PARA EL ESTUDIO DEL CICLO CELULAR EN PLANTAS .. 24

2. OBJETIVOS ... 25

3. MATERIALES .. 29
 3.1. OLIGONUCLEÓTIDOS UTILIZADOS ... 31
 3.2. CEPAS DE BACTERIAS Y LEVADURAS .. 32
 3.3. ECOTIPO DE PLANTAS Y CULTIVOS CELULARES ... 32
 3.4 MEDIOS DE CULTIVO DE PLANTAS ... 33
 3.5 TABLA 5. LÍNEAS DE PLANTAS TRANSGÉNICAS ... 33

4. MÉTODOS .. 35
 4.1. TÉCNICAS DE BIOLOGÍA MOLECULAR ... 37
 4.1.1. Extracción de DNA genómico .. 37
 4.1.2. Extracción de RNA total .. 37
 4.1.3. Reacción de transcripción reversa (RT) .. 37
 4.1.4. PCR cuantitativa (PCRq) .. 37
 4.1.5. Clonajes Gateway .. 38
 4.1.6. Expresión de proteína recombinante .. 38
 4.1.7. Ensayos de interacción in vitro ... 39
 4.1.8. Inmunoprecipitación de la cromatina ... 39
 4.1.9. Análisis del retraso de la movilidad electroforética en gel de poliacrilamida 40
 4.1.10. Ensayos de degradación in vitro ... 40
 4.1.11. Ensayos de interacción in vivo ... 40
 4.1.12. Ensayos de fosforilación ... 41
 4.2. TÉCNICAS DE BIOLOGÍA CELULAR ... 41
 4.2.1. Generación de plantas transgénicas .. 41
 4.2.2. Tinciones histoquímicas .. 41
 4.2.3. Inmunolocalizaciones de proteínas ... 42
 4.2.4. Cuantificación de actividad GUS mediante fluorometría ... 42
 4.2.5. Análisis de citometría de flujo ... 43
 4.2.6. Sincronización de células de Arabidopsis .. 43
 4.2.7. Sinronización del periciclo ... 43

5. RESULTADOS ... 45
 5.1. ESTUDIO DE LA DEGRADACIÓN DE ORC6 ... 47
 5.1.1. ORC6 se degrada por el proteasoma .. 47
 5.1.2. ORC6 interacciona con componentes del APC ... 49
 5.1.3. ORC6 interacciona con componentes del SCF .. 53
 5.1.4. Expresión de ORC6 durante el ciclo celular in planta .. 58
 5.2. ESTUDIO DE LA DEGRADACIÓN DE ORC6 FREnte A DAÑO ... 62
 5.3. ESTUDIO DE LA DEGRADACIÓN DE ORC6 FREnte A HORMONAS 65
 5.4. ESTUDIO DE LA FUNCIÓN DE ORC6 .. 71
 5.4.1. Efecto de ORC6 en la ploidia .. 72
 5.4.2. Efectos de los niveles de ORC6 en el fenotipo de hojas y raíz 73
 5.4.3. Respuesta de ORC6 frente a daño .. 78
 5.4.4. Respuesta de ORC6 frente a hormonas .. 80
 5.4.5. Interacción de ORC6 con el DNA ... 84
5.4.6. Interacción de ORC6 con CDC6

6. DISCUSIÓN

6.1. DINÁMICA DE ORC6 DURANTE EL CICLO CELULAR

6.1.1. ORC6 está presente desde G1/S hasta G2/M en Arabidopsis

6.1.2. Interacción de ORC6 con el DNA

6.1.3. ORC6, endorreplicación y daño

6.1.4. ORC6 y división celular

6.2. ORC6 Y LA RUTA DE SEÑALIZACIÓN DE ETILENO Y AUXINA

6.2.1. Efectos del etileno y la auxina sobre la estabilidad y distribución de ORC6

6.2.2. Fenotipo de mutantes de la ruta de etileno y auxinas vs mutantes orc6

6.3. PROTEASOMA, HORMONAS, DAÑO Y ORC6

7. CONCLUSIONES

8. BIBLIOGRAFÍA
Abreviaturas y siglas

ABA: Abscisic acid: ácido abscísico
ACC: 1-carboxilato de aminociclopropano
APC: Anaphase promoting complex: complejo promotor de la anafase
ARS: Autonomously replicating sequence: secuencia de replicación autónoma
ATM: Ataxia-telangiectasia-mutated: ataxia-telangiectasia mutada
ATP: Adenosina trifosfato
ATR: ATM and Rad3-related: quinasa relacionada con ATM y RAD3
AVG: Aminoetoxivinilglycina
AXR: Auxin resistant: resistente a auxina
BRCA1: Breast Cancer susceptibility protein: proteína de susceptibilidad al cáncer de mama.
CDC6: Cell division cycle: ciclo de división celular 6
CDK: Ciklyn dependent kinase: quinasas dependientes de ciclina
CDT1: Cdc10 dependent transcript: transcrito dependiente de Cdc10
ChiP: Chromatin immuno precipitation: inmunoprecipitación de cromatina
CHK: Checkpoint kinase: quinasa de puntos de control celular
CIM: Callus induction media: medio inductor de callos
CK: Casein kinase: quinasa de caseína
CYC: Ciclina
D-Box: Destruction box: caja de destrucción
DNA: Desoxyribonucleic acid
dNTP: Desoxynucleotide triphosphate
DTT: 2,4-ditiotreitol
EDTA: Ácido etilen-diaminetetraacético
EIN3: Ethylene insensitive 3: Insensible a etileno 3
EMSA: Ensayo de retardo de la movilidad electroforética
G1: Gap1
G2: Gap2
GA: Giberelina
GFP: Green fluorescent protein: proteína fluorescente verde
GST: Gutation-S- transferase: S-glutation transferasa
GTP: Guanina trifosfato
GUS: Beta-glucuronidasa
HP: Heterochromatine protein: proteína de la heterocromatina
HR: Homologous recombination: recombinación homóloga
IAA: Indol acetic acid: ácido indolacético
JA: Jasmonic acid: ácido jasmónico
KIN: Kinetina
KO: Knock out
M: Mitosis
MCM: Mantenimiento de los minicromosomas
MG132: N- benzyloxy carbonyl-leucyl-leucyl-leucinal
MMEJ: Micro-homology mediated end joining: recombinación mediada por microhomología
mRNA: RNA mensajero
NAA: Naphtalenacetic acid: ácido naftalenacético
NHEJ: Non homologous end joining: recombinación no homóloga
NPA: Naphthylphthalamic acid
OE: Over expressor: sobre-expresor
ORC: Origin recognition complex: complejo reconocedor de orígenes
PARP1: Poly (ADP-riboosylation) protein
qPCR: PCR cuantitativa
pb: Pares de bases
PBS: Tampón fosfato salino
PCNA: Proliferating Cell Nuclear Antigen
Aclaraciones puntuales sobre la nomenclatura utilizada en este trabajo aplicable a todos los genes y proteínas citados en la tesis:

ORC6: subunidad menor del complejo multiproteico ORC de Arabidopsis, *Drosophila* y *Xenopus*.

Orc6: subunidad menor del complejo multiprotéico ORC de levaduras y humanos.

ORC6: gen codificante de la subunidad menor del complejo multiprotéico ORC de Arabidopsis, *Drosophila* y *Xenopus*.

Orc6: gen codificante de la subunidad menor del complejo multiprotéico ORC de levaduras y humanos.

orc6: mutante del gen codificante de la subunidad menor del complejo multiprotéico ORC de Arabidopsis, *Drosophila*, *Xenopus*, levaduras y humanos.
Summary

Initiation of genome replication in eukaryotes is a highly regulated process that occurs at specific regions of the DNA (the origins of replication). The assembly of pre-replicative complexes (pre-RC) at these origins is the first step for the initiation process. The origin recognition complex (ORC) is a pre-RC component that acts as a landing pad for the rest of pre-RC proteins. ORC6 is the smallest subunit of ORC. In Arabidopsis, ORC6 is not essential for plant viability as we demonstrate analyzing knock-down plant lines. We have studied the dynamics of Arabidopsis ORC6 during the cell cycle using a GFP-tagged ORC6 genomic construct. We found that ORC6 is present in the nucleus during the S phase of the cell cycle but it disappear late in G2 and during mitosis. We also show that ORC6 levels are regulated by the ubiquitin-proteasome system (UPS). We can rule out the possibility that CDK phosphorylation is implicated because Arabidopsis ORC6 does not contain any CDK consensus sites. Experiments using a dominant negative version of one subunit of casein kinase 2 (CK2) suggest that it might be involved in ORC6 phosphorylation. ORC6 is also subjected to proteasome-dependent degradation in response to other stimuli. One is in response to DNA damage, in particular to double strand breaks (DSB), but not to DNA replication stress, such as hydroxyurea treatment. ORC6 degradation after DSB is associated with increased expression of G2 checkpoint marker genes (RAD51 and PARP1) and requires ATR, but not ATM. Another is in response to the hormone ethylene which induces a rapid degradation of ORC6 that occurs upstream of EIN3. We suggest that ORC6 may link these two processes. This hypothesis is supported by the phenotype observed in orc6 mutant plants which show an ethylene constitutive response phenotype and a constitutive up-regulation of genes involved in the G2 checkpoint in response to DSB. Furthermore, the Arabidopsis ctr1 mutant with a constitutive ethylene phenotype also has increased levels of the same G2 checkpoint genes. Reduced levels of ORC6 induce the switch to the endocycle at early stages of leaf development as well as increased cell division in the root meristem. As an ORC component that participates in DNA replication we have been also able to show that it can be detected at sites where other ORC components, such as ORC1, bind, e.g. the CDT1 promoter, strongly suggesting that an origin of DNA replication may exist in this genomic location.
1. Introducción
1.1. Ciclo celular en eucariotas

El ciclo celular es un proceso complejo mediante el cual una célula es capaz de producir dos células hijas y, en organismos multicelulares, tiene importantes implicaciones en el desarrollo. En la progresión del ciclo celular participan numerosas proteínas de regulación que dirigen la célula a través de una sucesión de eventos que culminan en la mitosis generando dos células hijas. El ciclo celular puede dividirse morfológicamente en dos fases: mitosis e interfase. La mitosis, fase M, se subdivide en profase, metafase, anafase y telofase. La interfase se divide en G1, S y G2. G1 y G2 (del inglés gap) son los periodos comprendidos entre la síntesis de DNA (fase S), donde se lleva a cabo la duplicación exacta del material genético, y la mitosis (Figura 1). En G1, la célula se prepara para sintetizar el DNA y en G2 la célula se prepara para la mitosis durante la cual se distribuye de forma igualitaria el DNA y los orgánulos citoplasmáticos (Howard, 1953). El evento final de la mitosis es la citoquinesis, cuando las dos células recién formadas se separan físicamente. Por último, el término G0 se utiliza para las células que temporal o definitivamente han abandonado el ciclo celular (Muller et al., 1993).

Figura 1. Fases del ciclo celular en eucariotas. Las flechas verdes muestran la salida de ciclo desde G2 sin que ocurra la mitosis, por lo que el contenido genético de las futuras células tendrá 2ª copias del genoma, dependiendo del número de ciclos de endorréplicación (EndoR). Las flechas grises indican la salida del ciclo celular para dar lugar a la diferenciación y desarrollo una vez se ha llevado a cabo la mitosis y, por otro lado, la reentrada en el ciclo celular. El resto de flechas representan las diferentes fases del ciclo celular: G1, fase de síntesis (S), G2 y mitosis (M).
La maquinaria que controla la progresión del ciclo celular está muy conservada en eucariotas, tanto en levaduras como en mamíferos y plantas (revisado en (De Veylder et al., 2007). La progresión del ciclo celular se determina en gran parte por el estado de fosforilación de las proteínas implicadas. Las quinasas dependientes de ciclinas, CDK, y las ciclinas son las proteínas que regulan la progresión de la célula a lo largo de las diferentes fases del ciclo celular (De Veylder et al., 2007). Las CDKs son serin/treonin quinasas indispensables durante todas las fases del ciclo y su inactivación impide que la mitosis se lleve a cabo (van den Heuvel y Harlow, 1993). Estas quinasas se activan en puntos específicos del ciclo celular siendo reguladas a su vez por otras quinasas y por fosfatatasas que regulan su estado de fosforilación teniendo efectos inhibidores y estimuladores respectivamente, de su actividad catalítica. Las ciclinas son también necesarias para la activación de las CDKs. Estas proteínas se llamaron así por su expresión cíclica a lo largo del ciclo celular (Evans et al., 1983). La variación en su concentración es debida a la degradación de estas proteínas en un punto determinado del ciclo por la ruta ubiquitina-proteasoma (Nakayama y Nakayama, 2005). Los CKI (CDK inhibitors) interaccionan con las CDKs para inhibir su actividad.

La proteína retinoblastoma, RB, es una de las dianas de los complejos CDK/ciclinas. La RB hipofosforilada se une a los factores de transcripción E2F que regulan la expresión de sus genes diana, impidiendo su transcripción. Durante el tránsito G1/S, la fosforilación de RB provoca la disociación de los complejos RB/E2F y permite la activación de los genes necesarios para la entrada en fase S (Stevaux y Dyson, 2002).

Las estrategias básicas del ciclo celular son comunes para todos los eucariotas, aunque existen características específicas del ciclo celular de las plantas que merecen una consideración especial. En Arabidopsis, las CDKs forman una compleja familia de 12 miembros, aunque no todas funcionan en el ciclo celular (Vandepoele et al., 2002) y se han identificado más de 40 ciclinas diferentes (Vandepoele et al., 2002; Wang et al., 2004), muchas más que en cualquier otro eucariota. Las plantas también usan la vía E2F/RB como un mecanismo de control de la regulación de la transición G1/S. Arabidopsis contiene sólo un gen de la familia RB, Retinoblastoma-Related Protein, (RBR) y seis E2F (E2Fa, E2Fb, E2Fc, E2Fd/DEL2, E2Fe/DEL1, y E2Ff/DEL3). E2Fa y E2Fb actúan como activadores transcripcionales en contraste con E2Fc, que opera como un regulador negativo (del Pozo et al., 2002a; Ramirez-Parra et al., 2004; Inzé y De Veylder, 2006). Para unirse al DNA, los E2Fa-c, necesitan formar un heterodímero.
con las proteínas DP, de las que existen dos formas en Arabidopsis, DPa y DPb. Los E2Fd-f se unen al DNA sin necesidad de heterodimerizar con DP.

La citoquinesis difiere entre células vegetales y animales al mantenerse las células unidas entre sí por pared celular rígida. En vez de formar un anillo contráctil, las células vegetales forman una nueva pared entre las dos células hijas (revisado en (Jürgens, 2005). El material de la nueva pared se concentra en el plano medio de la célula en vesículas mediante un sistema de microtúbulos formando el fragmoplasto, un orgánulo complejo que consiste tanto en microtúbulos como en filamentos de actina (Backues et al., 2007).

Existe una variante del ciclo celular en el que la célula no se divide pero continúa replicando su DNA. Este ciclo tiene lugar en una gran variedad de tipos celulares de artrópodos y mamíferos, pero es especialmente común en dicotiledóneas (Kondorosi et al., 2000; Edgara y Orr-Weaver, 2001; Caro et al., 2008). En este ciclo, el material genético duplicado no se transmite a dos células hijas, sino que se mantiene en la célula madre. La ausencia de citoquinesis entre rondas de replicación del DNA resulta en la duplicación exponencial del contenido de DNA de la célula: 2C, 4C, 8C, 16C... El papel funcional de la endorreuplicación en plantas es aún poco conocido, así como sus mecanismos moleculares, pero se ha relacionado con procesos tales como la diferenciación, la expansión celular, la actividad metabólica y la respuesta a daño. La endorreuplicación también contribuye a la formación de células especializadas como los tricomas que son células epidermicas a las que se le supone una función defensiva, el endospermo que es un tejido de reserva del que se alimenta el embrión, o el tejido carnoso que conforma la fruta (Sugimoto-Shirasu y Roberts, 2003; Leiva-Neto et al., 2004; Barow, 2006; De Veylder et al., 2007; Ramírez-Parra y Gutierrez, 2007; Caro et al., 2008).

1.1.1. Iniciación de la replicación

La iniciación y conclusión de la replicación del DNA define el principio y el final de la fase S (revisado en (Takeda y Dutta, 2005). En procariotas, la replicación empieza en un solo sitio y continúa hasta que se ha terminado el genoma. Si los eucariotas tuvieran que utilizar la misma estrategia tardarían días en conseguir replicar el genoma en su totalidad dado su mayor tamaño. Por ello, las células eucariotas inician la replicación desde múltiples localizaciones conocidas como orígenes de replicación
Durante las dos últimas décadas se han identificado más de veinte proteínas implicadas en el proceso de la iniciación de la replicación, lo que ilustra la complejidad de coordinar la iniciación desde cientos o miles de orígenes de replicación (Bell y Dutta, 2002; Mendez y Stillman, 2003). En cada origen, la replicación comienza con el ensamblaje de un complejo multiproteico denominado complejo prerrepliativo, pre-RC, cuya formación se inicia a partir de seis proteínas que conforman el Origin Recognition Complex (ORC). Estas proteínas están conservadas en eucariotas, pero el mecanismo por el que se dirigen a los orígenes de replicación varía entre los diferentes organismos (Gilbert, 2001). En la levadura de gemación Saccharomyces cerevisiae, el ORC reconoce secuencias de once pares de bases incluidas dentro de una secuencia conocida como autonomously replicating sequence (ARS). Sin embargo, en otros eucariotas no se han podido identificar secuencias ARS, lo que sugiere que los orígenes no están definidos exclusivamente por la secuencia del DNA (Takeda et al., 2005b). En Drosophila melanogaster se ha demostrado que el lugar donde ocurre la iniciación de la replicación está influenciado por la acetilación de la histona H4 (Danis et al., 2004) indicando que la estructura de la cromatina es determinante para la localización de los orígenes. Todos estos datos apoyan la existencia de factores epigenéticos que juegan un papel importante a la hora de definir un origen de replicación.

ORC recluta los factores de iniciación Cdc6 y Cdt1 a los orígenes. Cdc6 modula la unión de ORC incrementando su estabilidad de unión a la cromatina (Mizushima et al., 2000) y Cdt1 es importante para evitar la reiniciación de la replicación en el mismo ciclo (Chen et al., 2007). Ambos se necesitan para incorporar el complejo Mcm2-7, que podría funcionar como una helicasa abriendo el DNA durante la fase S (Labib et al., 2000). Una vez que los complejos Mcm se incorporan a la cromatina, los otros componentes del pre-RC son dispensables para la iniciación de la replicación (Harvey y Newport, 2003).

1.1.1.1. Componentes del pre-RC

1.1.1.1.1. ORC

El complejo heterohexamérico ORC fue aislado por primera vez en S. cerevisiae como un complejo de seis proteínas que se unía específicamente a los orígenes de replicación de levaduras en una forma dependiente de ATP (Bell y Stillman, 1992). Se numeró a cada proteína del complejo de acuerdo con su tamaño decreciente, siendo
ORC1 la de mayor tamaño (104 KDa) y ORC6 la menor (50 KDa). Desde entonces se han identificado homólogos de las seis unidades en todos los eucariotas examinados (revisado en (Sasaki y Gilbert, 2007). El sitio de unión de ORC en los orígenes de replicación de levaduras coincide con la región donde dichos orígenes son hipersensibles a la digestión de la cromatina por nucleasas durante S y G2, mientras que están relativamente protegidos durante el periodo G1 (Diffley et al., 1994).

En S. cerevisiae, todas las subunidades están unidas a la cromatina durante todo el ciclo celular regulándose el complejo por modificaciones postraduccionales (Vas et al., 2001; Wilmes et al., 2004). Estudios en mamíferos sugieren que el complejo ORC no se mantiene fuertemente unido durante el ciclo celular. Al contrario de lo que ocurre en Drosophila, S. cerevisiae o Xenopus laevis, el complejo ORC es muy difícil de aislar de forma estable en humanos (Thome et al., 2000) donde Orc2 se encuentra unido constitutivamente a la cromatina mientras que Orc1 se separa en fase S y vuelve a unirse en la re-entrada en fase S (Kreitz et al., 2001).

En Arabidopsis existen dos subunidades de ORC1: ORC1a y ORC1b. Ambas proteínas están conservadas >80% a nivel de la secuencia aminoacídica, pero las secuencias de sus promotores no están relacionadas. La expresión de los genes que codifican ORC es dependiente de ciclo teniendo un pico máximo en G1/S cuando se transcriben de forma regulada por los factores E2F, exceptuando ORC5 que carece de sitio de unión a E2F en su promotor. ORC2-5 interactúan in vitro, siendo más débil la interacción de éstos con ORC1b y ORC6 (Diaz-Trivino et al., 2005).

Además de su función en replicación, el complejo ORC interviene en otros procesos (Figura 2) como el silenciamiento y la regulación transcripcional (revisado en (Sasaki y Gilbert, 2007). En levaduras se identificaron mutantes de ORC que eran activos sólo en replicación o sólo en silenciamiento, demostrando así que estas funciones están mediadas por diferentes dominios dentro de la misma proteína (Bell, 2002). El extremo amino-terminal de ORC1 se une a la proteína silenciadora Sir1 en levaduras (Triolo y Sternglanz, 1996; Hou et al., 2005) y en Drosophila y humanos se une a la proteína de la heterocromatina HP1 (Pak et al., 1997; Lidonnici et al., 2004). En Schizosaccharomyces pombe, ORC media la represión de promotores específicos, como es el caso de la represión del grupo de genes inducidos por el ayuno (Ramachandran et al., 2006).
Otro de los procesos donde interviene ORC es en la regulación de los puntos de control (checkpoints) en fase S, aunque la mayoría de artículos que describen implicaciones de ORC en la activación del checkpoint en fase S parecen apuntar a un defecto en su papel de ensamblaje del pre-RC más que en una respuesta específica de la ruta de daño mediada por ORC. También ha sido implicado en biogénesis de ribosomas en *S. pombe* (Du y Stillman, 2002) y en el desarrollo dendrítico de las neuronas postmitóticas (Huang *et al.*, 2005).

Orc1 y Orc4 en *S. pombe* co-immunoprecipitan con el cinetocoro en ausencia de Mcm6 (Hayashi *et al.*, 2007). Orc2 de humanos se localiza en el centrómero durante todo el ciclo, en el cinetocoro desde la fase S (Prasanth *et al.*, 2004) y ORC6 en el cinetocoro durante la mitosis (Prasanth *et al.*, 2002). Además, en *Drosophila*, defectos en ORC 2, 4 y 5 originan condensación anómala de los cromosomas (Loupard *et al.*, 2000; Pfllumm y Botchan, 2001), lo que apunta a un posible papel de ORC en el ensamblaje de los cromosomas durante la mitosis.

Tanto en *Drosophila* como en mamíferos, ORC6 está implicado en la citoquinesis y la segregación cromosómica de forma independiente del resto del complejo (revisado en (Sasaki y Gilbert, 2007). En *Drosophila*, ORC6 se localiza en la membrana celular (Chesnokov *et al.*, 2001), trasladándose al surco citoquinético al final de la mitosis. La pérdida de función de ORC6 en humanos y *Drosophila* provoca la reducción de la síntesis de DNA, pero también provoca la aparición de células multinucleadas debido a su incapacidad para llevar a cabo la citoquinesis. ORC6 de *Drosophila* se une directamente al DNA y es imprescindible para la replicación (Balasov *et al.*, 2007). Sin embargo, la subunidad Orc6 parece ser prescindible para la unión al DNA de ORC en levaduras (Lee y Bell, 1997) aunque es esencial para su viabilidad (Li y Herskowitz,
Otros estudios en levaduras que expresan niveles bajos de Orc6 indican que juega un papel en la asociación de Mem2-7 a la cromatina (Semple et al., 2006) (Da-Silva y Duncker, 2007). Estas observaciones sugieren que Orc6 actúa posteriormente a la unión del complejo ORC al DNA, posiblemente reclutando otros componentes del complejo replicativo (revisado en (Chen et al., 2007). Por todo lo descrito anteriormente en el párrafo anterior, ORC6 se nos presenta como una de las proteínas clave para entender el papel de ORC como regulador del ciclo celular y sus implicaciones más allá de la iniciación de la replicación. Es por ello que se ha elegido a la subunidad más pequeña del complejo ORC, la única que no está relacionada con la familia de ATPasas AAA+ (Speck et al., 2005; Erzberger y Berger, 2006), como objeto de estudio para esta tesis. El gen codificante de ORC6 en Arabidopsis, At1g26840, está organizado en nueve exones, teniendo una homología con Orc6 de humanos del 26.6% y sólo de un 10% con levaduras (Diaz-Trivino et al., 2005). ORC6 contiene tres dominios muy conservados, siendo el del extremo carboxilo homólogo al dominio conservado en Orc6 de Drosophila y humano que interviene en la citoquinesis (Díaz-Triviño, 2005) (Figura 3).

Figura 3. ORC6 en Arabidopsis. Esquema del gen ORC6 (At1g26840) localizado en el cromosoma I de Arabidopsis thaliana, en la posición 16965 pares de bases del BAC F13M22. Se muestra el CLUSTALW de tres regiones conservadas de esta proteína en diferentes eucariotas superiores en Arabidopsis (A. thaliana), maíz (Z. mais), arroz (O. sativa), Solanum demissum (S. demissum), ratón (M. musculus), perro (C. familiaris), pez cebra (D. rerio), mosca del vinagre (D. melanogaster), díptero (A. gambiae).
En Arabidopsis, *ORC6* se expresa en G1 y en G2. Su expresión se circunscribe a los meristemos radicular y apical y a los primordios florales. A nivel celular, la proteína ORC6 se localiza en el núcleo (Díaz-Triviño, 2005).

1.1.1.1.2. Cdc6

Cdc6 es un miembro de la familia de las ATPasas AAA+ muy relacionado con Orc1 y, en menor grado, con Orc4, Orc5, y las proteínas Mcm2-7. Cdc6 juega un papel crucial en el ensamblaje del pre-RC una vez formado el complejo ORC y antes de cargar a las proteínas Mcm. Por ello, la regulación de Cdc6 es fundamental para la formación del pre-RC (Bell y Dutta, 2002). Cdc6 requiere ORC para asociarse con la cromatina. Se ha demostrado que se une directamente a orígenes de replicación en levaduras (Tanaka *et al.*, 1997) y estudios genéticos en levaduras concluyen que Cdc6 se requiere para la asociación de Mcm 2-7 con los orígenes de replicación (Aparicio *et al.*, 1997). Las mutaciones en los dominios ATPasa bloquean la formación del pre-RC y el ensamblaje de las MCMs en el DNA (Cook *et al.*, 2002). En Arabidopsis existen dos genes que codifican proteínas homólogas de Cdc6 designadas como CDC6a y CDC6b (Castellano *et al.*, 2001).

1.1.1.1.3. Cdt1

Cdt1 se identificó en *S. pombe* como un factor regulado por Cdc10, cuya síntesis ocurría en la transición G1/S. Se ha demostrado su participación en el ensamblaje del complejo MCM en *Xenopus, Drosophila, S. cerevisiae* y *S. pombe* (Maiorano *et al.*, 2000; Nishitani *et al.*, 2000; Tanaka y Diffley, 2002) y en el correcto acoplamiento entre Cdc6 y el complejo MCM (revisado en (Kelly y Brown, 2000). Una vez comenzada la replicación, Cdt1 se libera del pre-RC y, en *Xenopus* y en humanos se degrada para prevenir la reiniciación de la replicación (Li *et al.*, 2003; Arias y Walter, 2005; Takeda *et al.*, 2005a). En vertebrados, Cdt1 se inhibe por medio de una proteína llamada geminina que se degrada cuando las células salen de metafase (McGarry y Kirschner, 1998).

En Arabidopsis existen dos genes que codifican proteínas muy conservadas entre sí: CDT1a y CDT1b. Ambos se expresan tanto en tejidos endorreparativos como en proliferantes (Castellano *et al.*, 2004).
1.1.1.1.4. MCM

En cada origen de replicación se reclutan varios complejos MCM para la formación del pre-RC durante el final de la mitosis (Pape et al., 2003) (Figura 4). El complejo MCM consta de seis proteínas (MCM2-7) que se asocian entre sí para constituir un heterohexámero. Su función parece ser la de reclutar en el origen de replicación la maquinaria replicativa, desplazándose con la horquilla de replicación una vez iniciada ésta (Shechter y Gautier, 2004) (Figura 4). Otros detalles de su estructura llevan a pensar que podría actuar como una helicasa desplazando el DNA por su canal central y eliminando histonas para relajar la doble hélice antes de proceder a su desenrollamiento por la maquinaria replicativa (Liu et al., 2008). También se han identificado dos miembros de la familia MCM, MCM8 y MCM9, que no están presentes en levaduras y no se asocian a MCM2-7 por lo que aún no está claro su papel en replicación. En Arabidopsis existen homólogos de MCM2-9 (Lutzmann et al., 2005).

![Figura 4. Esquema de los componentes del pre-RC ensamblados en el DNA.](image)

1.2. Puntos de control en el ciclo celular

Los puntos de control (checkpoints) se han definido tradicionalmente como cascadas moleculares de señalización que provocan un retraso o una parada de ciclo como respuesta al daño en el DNA, proporcionando así más tiempo para su reparación y asegurando que los eventos previos del ciclo celular hayan ocurrido correctamente antes de proceder a la siguiente fase (Hartwell y Weinert, 1989). El daño en el DNA durante G1 por ejemplo, inhibe la entrada en fase S y con ello impide la replicación del DNA dañado. Si el estrés genotóxico ocurre durante la replicación del DNA, la célula sufre un retraso en fase S y, si el daño no es reparado, la célula sale de fase S y tiene una parada de ciclo en G2. La maquinaria implicada en los checkpoints integra diversos procesos como la reparación del DNA, la remodelación de la cromatina, la modulación transcripcional o la muerte celular (Bartek et al., 2004). Por ello, las células con
defectos en algún punto de las rutas que conforman los checkpoints son más sensibles a daño y estrés. También hay proteínas que participan en rutas de estos puntos de control que son necesarias para la viabilidad en ausencia de daño exógeno, lo que indica que los checkpoints son requeridos también para combatir el estrés endógeno durante la proliferación celular normal (Takeda y Dutta, 2005).

En levaduras de fisión, mamíferos y plantas, las lesiones en el DNA desencadenan la activación de miembros de la familia de quinasas PIKK (phosphoinositide-3-kinase-related protein kinase) ATM (ataxia-telangiectasia-mutated) y ATR (ATM and Rad3-related) que constituyen los primeros transductores de la cascada de la señal que provoca la parada del ciclo celular y activan los complejos reparadores de daño (Kurz y Lees-Miller, 2004; Su y Zhu, 2006). ATM activa la señal de daño por la rotura del DNA principalmente, mientras que ATR la activa tanto por daño en el DNA como por estrés replicativo por problemas en la progresión de la horquilla de replicación (Abraham, 2001; Garcia et al., 2003) (Figura 5).

Figura 5. Esquema de las dos rutas principales de respuesta a daño en eucariotas. La zeocina y las radiaciones ionizantes producen roturas de doble cadena del DNA (DSB) que a través de ATM y ATR activan genes de respuesta a daño provocando una parada en G1 y G2 respectivamente y activan los mecanismos de recombinación no homóloga (NHEJ) y homóloga (HR). Otros agentes como la afidicolina (aph), la hidroxiurea (HU) o los rayos ultravioletas (UV) producen un estrés replicativo que, a través de ATR producen una parada en G2.
Ambas kinasas activan finalmente vías paralelas y solapantes (Takeda y Dutta, 2005) transduciendo la señal de estrés a las kinasas CHK1 y CHK2 (del inglés checkpoint kinase), que modulan directamente la actividad de los complejos CDK/ciclina (Sancar et al., 2004) y de sus reguladores Cdc25 y WEE1 (Michael y Newport, 1998)(Figura 5).

De las numerosas alteraciones que sufre el material genético, una de las más comunes y peligrosas es la rotura de la doble cadena (DSB) (Bleuyard et al., 2006). Tanto es así que la presencia de un único DSB puede desencadenar la muerte celular (Bennett et al., 1993; Bennett et al., 1996). Para llevar acabo la reparación de esta rotura existen dos estrategias principales: la recombinación homóloga (HR) que utiliza secuencias homólogas de DNA como molde para la reparación y la recombinación no homóloga (NHEJ) que simplemente actúa uniendo los extremos de ambas cadenas y es por ello menos conservadora (Bleuyard et al., 2006). En la NHEJ de mamíferos y levaduras participa el heterodímero Ku, compuesto por las subunidades Ku70 y Ku80, de los que existen homólogos en Arabidopsis. La inactivación de Ku70 y Ku80 confiere a la planta un fenotipo de hipersensibilidad a agentes que producen daño de doble cadena (Tamura et al., 2002; van Attikum et al., 2003). Existe un mecanismo independiente de Ku en levaduras llevado a cabo por Mre, Rad50, Rad1 y Dnl4 en el que la reparación se lleva a cabo con cierto grado de recombinación homóloga (Ma et al., 2003) y es por ello llamado Micro-homology mediated end joining (MMEJ). En otros trabajos también implican a BRCA1 (Breast Cancer susceptibility protein) y PARP1 (Poly (ADP-riboseylation) protein) en MMEJ (Audebert et al., 2004).

Se han propuesto diferentes modelos para explicar la existencia de gran diversidad de eventos en la naturaleza de la HR (Paques y Haber, 1999). En S. cerevisiae se han identificado muchas de las proteínas implicadas en la HR en escrutinios de mutantes hipersensibles a radiación ionizante: Rad51, Rad52, Rad54, Rad55, Rad57, Rad59, y el complejo Mxr que consta de Rad50, Mre11 y Xrs (Bleuyard et al., 2006). BRCA1 participa en la respuesta a daño por recombinación homóloga a través de la regulación de Rad51, entre otros mecanismos (Cousineau et al., 2005). En vertebrados se ha descrito también la implicación de PARP1 en la recombinación homóloga (Hochegger et al., 2006). En Arabidopsis se han identificado ortólogos de Rad50, Mre11 y Rad51 de los que se han obtenido mutantes KO que manifiestan hipersensibilidad a daño pero, en contraste con los vertebrados, Drosophila o C. elegans, son viables (Gallego et al., 2001; Bundock et al., 2002; Li et al., 2004). Por estudios de homología de secuencia in
silico se han identificado también en homólogos de PARP1 y BRCAI en Arabidopsis (Ramirez-Parra y Gutierrez, 2007).

En plantas existen homólogos de ATM y ATR de los que se disponen alelos mutantes descritos en la literatura (Garcia et al., 2003; Culligan et al., 2004) que han sido utilizados en esta tesis doctoral. El mutante atm con pérdida total de función es parcialmente estéril produciendo un 10% de semillas con respecto al silvestre, aunque todas las semillas son viables. La floración es más profusa y más duradera con respecto al fenotipo silvestre, lo que es característico de todos los fenotipos estériles. Los mutantes atm son además hipersensibles a daño por radiaciones ionizantes y metilmetano-sulfonato, pero no a radiación ultravioleta (Garcia et al., 2003). El mutante atr con pérdida total de función es hipersensible a los agentes que bloquean la progresión de la horquilla de replicación (Culligan et al., 2004). La afidicolina induce la muerte celular en estos mutantes, aunque no ocurre lo mismo con la hidroxiurea (Culligan et al., 2004). El doble mutante atm/atr es completamente estéril (Culligan et al., 2006).

1.3. Proteasoma y ciclo celular en plantas.

La proteolisis de reguladores de ciclo celular asegura una progresión unidireccional (Sumara et al., 2008). Esta degradación la lleva a cabo el sistema ubiquitina-proteasoma (UPS), donde la ubiquitina es usada para marcar las proteínas que son diana para la degradación por el proteasoma 26S. La ubiquitinación requiere la generación de cadenas de poliubiquitina en las proteínas diana (Figura 6). Las enzimas activadoras de ubiquitina (E1) donan la ubiquitina a enzimas transportadoras de ubiquitina (E2) y las ligasas de proteínas (E3) catalizan la ubiquitinación desde la E2 a la proteína diana. Las E3 son las enzimas que actúan específicamente sobre un substrato determinado y se clasifican en tres clases según el tipo de dominio de interacción con E2 que posean. Así, tenemos el tipo HECT (E6-Associated Carboxy-terminus), el tipo U-box y el tipo RING (Really Interesting New Gene) (revisado en (Stone y Callis, 2007). Los dos grupos principales son el tipo HECT, que generan un enlace tioéster con la ubiquitina antes de ligarla al substrato y el tipo RING, que, en lugar de generar un enlace covalente previo, catalizan la unión de ubiquitina directamente con la proteína diana.
Existen dos complejos multiprotéicos que conforman dos E3 tipo RING bien caracterizados y que están implicados en el ciclo celular: el APC, (del inglés *anaphase promoting complex*) también llamado ciclosoma y el complejo SCF, acrónimo de las tres principales proteínas que lo componen, Skp1/Cullin/F-box, también llamado CRL, acrónimo de *Cullin RING ligases* (Vodermaier, 2004) (Figura 7).

El APC se caracteriza por su capacidad para degradar ciclinas mitóticas tanto en levaduras como en vertebrados (Sudakin *et al.*, 1995; Tugendreich *et al.*, 1995). Existen otras muchas proteínas de ciclo degradadas por este complejo. La securina, una proteína que bloquea la transición de metafase a anafase, es otra de las dianas para el APC en mamíferos y levaduras (Cohen-Fix *et al.*, 1996; Shirayama *et al.*, 1999). En algunas ocasiones, la degradación de una proteína dada llevada a cabo por el APC en un
organismo es diana para el SCF en otro, como es el caso de Cdc6, que es degradado por el APC en mamíferos y por el SCF en levaduras (Thornton et al., 2006).

Aunque aún no se ha conseguido resolver la estructura cristalina del APC, diversos análisis han proporcionado datos estructurales del complejo (Carroll y Morgan, 2005; Herzog y Peters, 2005). Éste consta de cuatro partes: un núcleo central (Apc1/Apc4/Apc5), un brazo catalítico que contiene sitios de unión a E2 (Apc2/APc11/Doc1), un brazo TPR (tetrastricopeptide repeat arm) que une los adaptadores (Cdc23/Cdc16/Cdc27/Cdc26/Swm1), y los adaptadores que se unen a la proteína diana (Cdc20/Cdh1/Ama1). El APC sin los adaptadores se denomina el core del APC (Thornton et al., 2006). El brazo TPR se ha diversificado durante la evolución, probablemente por duplicación de una misma proteína ancestral (Thornton et al., 2006). Así en vertebrados existe una subunidad adicional, Apc7 y, en plantas, una versión especializada de Cdc27 llamada HOBBIT (Blilou et al., 2002). Las proteínas adaptadoras Cdc20, Cdh1 y Ama1 se unen al TPR a través de dos dominios específicos, C-box e IR. Cdh1 y Cdc20 reconocen secuencias específicas en sus sustratos. Existen dos bien descritas: la D-box (Destruction Box) y la KEN box. La D-Box es una secuencia pobremente conservada: RXXL (Glotzer et al., 1991; Choi et al., 2008) mientras que la KEN box está algo más definida, KENXXXE/D/N (Pfleger y Kirschner, 2000). Se han descrito otros dominios menos caracterizados como la A-box (Littlepage y Ruderman, 2002) y el motivo GXEN (Castro et al., 2003).

Mientras que el APC tiene una regulación sobre la actividad de la misma enzima, el SCF ubiquitina las proteínas diana después de que estas son modificadas por las kinasas, en la mayoría de los casos (Thornton et al., 2006). En el complejo SCF, la proteína central es la culina que interacciona por su extremo amino-terminal con SKP1 y por el amino con una proteína RING denominada Roc/Rbx1 que une específicamente una E2-Ubiquitina. Las proteínas F-box interactúan con SKP1 y confieren especificidad de substrato al complejo. Existen tres tipos de proteínas F-box según el dominio de unión que posean: dominio WD40 (Fbw), secuencias ricas en leucina (Fbl) y las Fbx, que no contienen ni repeticiones WD ni son ricas en leucina (Yoshida, 2007). La mayoría de sustratos diana han de estar fosforilados para ser reconocidos (Borlado y Mendez, 2008). Otras veces requieren una glicosilación como es el caso de la proteína F-Box Fbs1, que requiere el reconocimiento de oligosacáridos ricos en manosa para formar el complejo ubiquitín ligasa tipo SCF (Yoshida, 2007).
1.3.1. Proteasoma y daño en el DNA

La regulación de la respuesta a daño ocurre a diferentes niveles, desde el control de la transcripción a modificaciones post-traduccionales. El sistema ubiquitina-proteasoma interviene también en la modulación de la actividad de los factores de respuesta a daño en el DNA.

Probablemente la ubiquitinación dependiente de daño al DNA mejor estudiada sea la modificación de PCNA, un cofactor de la DNA polimerasa \(\delta \) que rodea al DNA permitiendo el deslizamiento de la maquinaria replicativa a lo largo de la cadena. En levaduras, la PCNA poli-ubiquitinada funciona en la replicación sin daño mientras que la mono-ubiquitinada está implicada en la síntesis a través de lesiones, un mecanismo de reparación mutagénico (Hoege et al., 2002). Cdt1 posee un motivo de interacción con PCNA en el dominio N terminal de la proteína, caja PIP (PCNA-Interacting-Protein box: Qxxhxaaa) (Warbrick, 2000; Maga y Hubscher, 2003), que se encuentra conservado de C. elegans a mamíferos (Arias y Walter, 2006) pero no en Arabidopsis (Caro, 2008). La unión de PCNA con Cdt1 es esencial para la degradación de éste frente a daño por el sistema ubiquitina-proteasoma a través del complejo Cul4-DDB1-Roc1 (Hu et al., 2004; Senga et al., 2006). En levaduras, un bloqueo prolongado de la progresión de la horquilla de replicación induce la ubiquitinación y posterior degradación de la subunidad Rpb1 de la RNA polimerasa II (Woudstra et al., 2002). También la ubiquitinación de histonas está implicada en la respuesta al daño en el DNA. Las levaduras que expresan la histona H2B mutada en un residuo de lisina de unión a ubiquitina carecen de la fosforilación inducida por radiación ultravioleta de la kinasa Rad53 (Giannattasio et al., 2004).

1.3.2. Proteasoma y hormonas de plantas

La conexión entre síntesis y percepción de hormonas con la ruta ubiquitina-proteasoma en plantas ha sido ampliamente demostrada. Las hormonas actúan como integradoras de señales endógenas y exógenas modulando la ruta ubiquitina-proteasoma (Stone y Callis, 2007) y el proteasoma juega un papel fundamental respondiendo a las diferentes necesidades ambientales.

La auxina (indole-3-acetic acid, IAA) tiene un papel crucial en la regulación del crecimiento celular, la división y diferenciación, la elongación de raíz, la dominancia
apical y otros procesos del desarrollo de la planta (Davies, 1988). En el centro de la respuesta a auxina está la familia de proteínas AUX/IAA (auxin/indole-3-acetic acid) que inhiben la actividad de los factores de respuesta a auxina (ARFs), un grupo de factores transcripcionales activadores de los genes de respuesta a auxina (Liscum y Reed, 2002). Las AUX/IAA son proteínas de vida corta y su degradación se acelera con auxina. Esta hormona estimula la unión de las AUX/IAA a la proteína F-box TIR1 que actúa como receptor de la hormona mediantando la ubiquitinación de las AUX/IAA (Figura 8) (Dharmasiri et al., 2005; Kepinski y Leyser, 2005). El mutante axr1 de arabidopsis tiene una respuesta reducida a auxina debido a la atenuación de la función de SCF^{TIR} (Haber, 1998).

La respuesta a jasmonato (JA) está regulada por la familia de represores transcripcionales JAZ (jasmonate zim-domain). La degradación de una de estas proteínas, JAZ1, requiere la interacción con la F-box COI1 (Figura 8) (Coronatine-Insensitive1) que es una proteína central en la respuesta a JA (Xu et al., 2002; Chini et al., 2007).

Las giberelinas (GA) son hormonas que estimulan el crecimiento de la semilla y su germinación, la elongación del tallo y la raíz y el desarrollo floral (Fleet y Sun, 2005). Como en la ruta de señalización de la auxina, la giberelina induce cambios en la transcripción de genes. Los genes de respuesta a GA están reprimidos por las proteínas DELLA de forma constitutiva. La GA incrementa la degradación de estas proteínas induciendo la ubiquitinación por algún tipo de SCF, ya que se ha observado sensibilidad a GA y acumulación de proteínas DELLA en mutantes de F-box ortólogas de Arabidopsis y arroz como son el sleepy1 (sly1) y dwarf2 (gid2) (Dill et al., 2004; Ueguchi-Tanaka et al., 2005) (Figura 8). Sin embargo, GA no se une directamente a ninguna proteína F-Box sino a GID1, una proteína homóloga a lipasas sensibles a hormonas (Ueguchi-Tanaka et al., 2005).

El ácido abscísico (ABA) interviene en la maduración de la semilla, la germinación y las respuestas a estrés abiótico. Dos ligasas E3 tipo RING llamadas AIP2 (ABI3 INTERACTING PROTEIN) y KEG (KEEP ON GOING) se requieren en la planta para una respuesta normal a ABA. Estas dos E3 regulan la abundancia de factores de transcripción de respuesta a ABA, en concreto los factores ABI3 y ABI5 (ABA-INSENSITIVE 3, 5) (Zhang et al., 2005; Stone et al., 2006) (Figura 8).

El etileno está implicado en el crecimiento de la raíz, la formación de pelos en la raíz y la maduración del fruto, entre otros, además de modular respuestas a estrés...
El factor de transcripción EIN3 (ETHYLENE INSENSITIVE 3) se requiere para la transcripción de los genes de respuesta a etileno ERF (ETHYLENE RESPONSE FACTORS). Los niveles constitutivos de EIN3 son bajos y se incrementan con la aparición del etileno que inhibe su degradación (Solano et al., 1998). Estudios genéticos asocian la abundancia de EIN3 a la presencia de una proteína F-box llamada EBF1 (EIN3-BINDING F-BOX1), que reduce los niveles de EIN3 en ausencia de etileno. La proteína homóloga EBF2 actúa degradando EIN3 para evitar una acumulación excesiva (Guo y Ecker, 2003; Potuschak et al., 2003; Binder et al., 2007). Plantas mutantes ein3 (Roman et al., 1995) han sido utilizadas también en experimentos descritos en esta tesis.

Sin embargo, además de las rutas individuales descritas en los párrafos anteriores, existen complejas interacciones entre las diferentes rutas hormonales que son de gran importancia para el resultado final del desarrollo de la planta (Ruzicka et al., 2007). Por ejemplo, se han descrito efectos sinérgicos entre la auxina y el etileno en la regulación del crecimiento del hipocotilo (Smalle et al., 1997; Vandenbussche et al., 2003). Además, la auxina induce la síntesis de etileno estimulando la 1-aminocyclopropane-1-carboxylate (ACC) sintasa, la enzima clave en la síntesis de etileno (Abel et al., 1995). Asimismo, el etileno regula la expresión de genes que codifican enzimas implicadas en la síntesis de triptófano, un precursor de la auxina (Stepanova et al., 2005), aunque existen otras rutas metabólicas independientes de este aminoácido (Woodward y Bartel, 2005), y también altera la síntesis de flavonoides que se consideran los principales reguladores del transporte de auxina (Buer et al., 2006) modulando así la actividad de ésta. La auxina, además, modula la respuesta celular de la giberelina. Otro ejemplo de interacción entre diferentes funciones de hormonas lo tenemos en el estoma: la

Figura 8. Regulación de la respuesta a hormonas por la ruta ubiquitina-proteasoma. Esquema de la señalización por auxinas, ácido jasmónico (JA), giberelina (GA), ácido abscisico (ABA) y etileno.
citoquinina y la auxina inhiben el cierre del estoma inducido por ABA a través del incremento de la producción de etileno en Arabidopsis (Tanaka et al., 2006).

El promotor de ORC6 tiene secuencias de unión a factores de transcripción inducidos por etileno, auxina y ácido abscísico (Díaz-Triviño, 2005). En esta memoria de tesis se intenta dilucidar el papel de éstas y otras hormonas sobre ORC6 tanto a nivel transcripcional como postraduccional.

1.4. Arabidopsis como organismo modelo para el estudio del ciclo celular en plantas

En este trabajo se ha abordado el estudio de ORC6 en relación con la progresión del ciclo celular, su regulación por hormonas y frente a estrés en el organismo modelo Arabidopsis thaliana.

Las plantas y animales han elaborado estrategias de desarrollo muy diferentes. En animales, la organogénesis se lleva a cabo durante la embriogénesis, mientras que en plantas la organogénesis es un proceso post-embrionario continuo durante toda la vida del organismo. Por ello, los sistemas vegetales son muy atractivos para el estudio de este tipo de procesos, ya que permiten el estudio in vivo del ciclo celular a nivel de organismo completo y durante su desarrollo, siendo Arabidopsis un organismo de estudio modelo por la disponibilidad de herramientas genéticas y genómicas (http://www.arabidopsis.org) y por su corto ciclo de vida (Gutierrez, 2005) (Ramírez-Parra et al., 2005).
2. Objetivos
Los objetivos propuestos para la realización de esta tesis están dirigidos a:

- El estudio de la dinámica de ORC6 de *Arabidopsis thaliana* durante el ciclo celular.

- Análisis de los mecanismos reguladores de la degradación específica de ORC6.

- Determinar la relevancia de ORC6 durante el desarrollo.
3. Materiales
3.1. Oligonucleótidos utilizados

Tabla 1. Oligonucleótidos para los clonajes de ORC en el vector pDONR221 de GATEWAY. El clonaje de ORC6 y de los genes que codifican las proteínas truncadas derivadas de ORC6 se llevaron a cabo en el vector pDONR con dos PCRs consecutivas, siendo la primera específica de ORC6 y la segunda llevada a cabo por los oligos ATTB sentido y antisentido. Este último fragmento se clonó en el pDONR utilizando la enzima “BP clonase” (Invitrogen).

<table>
<thead>
<tr>
<th>Oligos</th>
<th>Sentido</th>
<th>Antisentido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attb</td>
<td>ACAAGTTTGTACAAAAAAGCAGGCT</td>
<td>CCAGCTTTTCTGTACAAGGTGT</td>
</tr>
<tr>
<td>ORC6GW</td>
<td>GGAGATAGAACCATGGATATCTCCGACATA</td>
<td>CAAGAAAGCTGGTGCTGAATCAACTTGCAA</td>
</tr>
</tbody>
</table>

Tabla 2. Oligonucleótidos utilizados para generar las delecciones de ORC6. Las PCRs se llevaron a cabo con oligos con bases solapantes. Una vez generados los diferentes fragmentos solapantes de ORC6 truncado, se amplificó la construcción total con los oligos ORC6GW sentido y antisentido descritos en la tabla 1.

<table>
<thead>
<tr>
<th>oligos</th>
<th>Sentido</th>
<th>Antisentido</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORC6∆DB</td>
<td>CGTTAAAGGAAACGATGTGTGTTAC</td>
<td>GTAACACATCGTTTCTCTTAACG</td>
</tr>
<tr>
<td>ORC6∆1</td>
<td>TGCTCAGTTCGATTTCCATCCACTAGGTTGCA</td>
<td>GAATATAATCTGCAACCTAGTGGATGAAATC</td>
</tr>
<tr>
<td>ORC6∆2</td>
<td>GTGAGAGCGGCTAATTTGCTAAGAAGGA</td>
<td>CTCTGCTTTCTTAGCAACATAGGCCCTGCT</td>
</tr>
<tr>
<td>ORC6∆3</td>
<td>CACAAGAAGATGGAAGAAAGAATCCAGAG</td>
<td>GTTCTTTTCTGGATTCTGCTCTCCATATCC</td>
</tr>
</tbody>
</table>

Tabla 3. Oligonucleótidos para los ensayos de inmunoprecipitación de la cromatina y ensayos de retraso electroforético en gel de poliacrilamida.

<table>
<thead>
<tr>
<th>oligos</th>
<th>Sentido</th>
<th>Antisentido</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TTCTCGTGGTCTCTGTCGTTC</td>
<td>CCAGCGGCTTGAGAATTTCCTT</td>
</tr>
<tr>
<td>2</td>
<td>ACTGAACAGAGCAGCATAAAAAC</td>
<td>AAGACGACGGGAGAGAGAAGA</td>
</tr>
<tr>
<td>3</td>
<td>TCAAGCAGAAGGATAGGTTGGT</td>
<td>CACAATGCAAATCACCTAATG</td>
</tr>
</tbody>
</table>
Tabla 4. Oligonucleótidos para PCR cuantitativa. En esta tabla se especifican los oligonucleótidos utilizados para la amplificación específica de un fragmento de cDNA. Como control se utilizaron los oligos que amplifican el cDNA de la actina (At1G01140). Los oligos han sido diseñados de tal forma que al menos uno de ellos comprenda una secuencia entre dos exones consecutivos para eliminar la posibilidad de amplificar DNA genómico.

<table>
<thead>
<tr>
<th>oligo</th>
<th>Sentido</th>
<th>Antisentido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actina</td>
<td>ACCTAACATTGTGCTCAGTG GTGG</td>
<td>TTGGAGATCCACATTTGCTGGAATG</td>
</tr>
<tr>
<td>ORC6q (A)</td>
<td>TGGAGGTCAGACACAAGAGAAT</td>
<td>TGGAGGTCAGACACAAGAGAAT</td>
</tr>
<tr>
<td>ORC6q2(B)</td>
<td>GACTGTGGATAGTCTTACTAGGA</td>
<td>CTCTCTTACTTTTCTCTCTG</td>
</tr>
<tr>
<td>EIN3q</td>
<td>GGATTTCCTCAGCAAGGCC</td>
<td>CGTTTGATTTGCTGGAATG</td>
</tr>
<tr>
<td>KNOLLeq</td>
<td>GAAGCTGGAAGATTTGGAATA</td>
<td>ACAGCCTATTCAGAAACACT</td>
</tr>
<tr>
<td>PARPq</td>
<td>TGGTTGAGACATTGAGTTGAGA</td>
<td>TCTGCAAGCTTTGGAATATAAA</td>
</tr>
<tr>
<td>KU70q</td>
<td>TTTCAGATTTATCTATTGCTCA</td>
<td>TCCGCTGATGTCAGTGATAGC</td>
</tr>
<tr>
<td>RAD51q</td>
<td>TAAACTAAAAATGAGGAGGAT</td>
<td>AATGGCGAAGATTTGGAATG</td>
</tr>
<tr>
<td>CYCB1q</td>
<td>TCTCTAAACCACCTAATATC</td>
<td>CTGAAGTTTCCTCTCTTCTT</td>
</tr>
<tr>
<td>BRCA1q</td>
<td>GTGACGAGCATAACACCTCTG</td>
<td>ATGAAATGGAATACGAAGAAA</td>
</tr>
</tbody>
</table>

3.2. Cepas de bacterias y levaduras

Bacterias: Para realizar los clonajes se utilizó la cepa DH5α de *Escherichia coli*, para la expresión de proteínas la cepa BL21 pLys Rosetta, para la propagación de vectores GATEWAY se usó la cepa DB3.1 mientras que para la infección de plantas se usó *Agrobacterium tumefaciens* de la cepa C58C1.

Para los ensayos de doble híbrido se utilizó la cepa HF7c de *S. cerevisiae*.

3.3. Ecotipo de plantas y cultivos celulares

Se utilizó *Arabidopsis thaliana* ecotipo columbia (Col-0) para la generación de plantas transgénicas. Los cultivos in vitro se realizaron en un incubador mantenido a 22°C con un fotoperiodo de 16 h luz/8 h oscuridad en medio MS (Duchefa) con 10% de sacarosa (medio MSS). Los cultivos en tierra se realizaron en un incubador en las mismas condiciones de temperatura y luz.

Se usó un cultivo celular de *Arabidopsis* MM2d (Menges y Murray, 2002) para estudios de ciclo celular, obtenido de J. Murray (Institute of Biotechnology, Cambridge,
Reino Unido), que se mantuvieron en oscuridad, con agitación constante de 120 rpm a 26°C, diluyéndose el cultivo 1/20 cada siete días.

3.4 Medios de cultivo de plantas

Medio MSS; MS (Duchefa), 10% Sacarosa.
Medio inductor de callos (CIM): MSS, 2.3 µM 2,4-D (auxina sintética), 11.4 µM IAA, 3.2 µM BAP (citoquinina).
Medio inductor de raices (RIM): MSS, 0.54 µM NAA, 3.2 µM BAP.
Medio inductor de tallos (SIM): MSS, 0.54 µM NAA.

3.5 Tabla 5. Líneas de plantas transgénicas

<table>
<thead>
<tr>
<th>Línea</th>
<th>Inserto</th>
<th>Vector</th>
<th>Procedencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>pORC6:ORC6-GFP</td>
<td>1kb promotor+ORC6</td>
<td>pGWB4</td>
<td>Generada en nuestro laboratorio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Díaz-Triviño, 2005)</td>
</tr>
<tr>
<td>pORC6:ORC6-GUS</td>
<td>1kb promotor+ORC6</td>
<td>pGWB3</td>
<td>Generada en nuestro laboratorio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Díaz-Triviño, 2005)</td>
</tr>
<tr>
<td>ORC6(OE)</td>
<td>ORC6(cDNA)</td>
<td>pGWB17</td>
<td>Generada en nuestro laboratorio</td>
</tr>
<tr>
<td>orc6 (SAIL-1288-B07)</td>
<td>no</td>
<td>pROK</td>
<td>NASC: caracterizadas en nuestro laboratorio.</td>
</tr>
<tr>
<td>atm-2</td>
<td>no</td>
<td>pROK</td>
<td>(Garcia et al., 2003)</td>
</tr>
<tr>
<td>atr-2 (SALK_032841)</td>
<td>no</td>
<td>pROK</td>
<td>(Culligan et al., 2004)</td>
</tr>
<tr>
<td>ein3</td>
<td>no</td>
<td>pROK</td>
<td>(Chao et al., 1997)</td>
</tr>
<tr>
<td>skp2a (GABI_293D12)</td>
<td>no</td>
<td>pROK</td>
<td>(del Pozo et al., 2006)</td>
</tr>
<tr>
<td>ccs52b (SALK_098269)</td>
<td>no</td>
<td>pROK</td>
<td>Cedidas por Eva Kondorosi</td>
</tr>
<tr>
<td>atm x pORC6:ORC6:GUS</td>
<td>1kb promotor+ORC6</td>
<td>pROK/ pGWB3</td>
<td>Generada en nuestro laboratorio</td>
</tr>
<tr>
<td>atr x pORC6:ORC6:GUS</td>
<td>1kb promotor+ORC6</td>
<td>pROK/ pGWB3</td>
<td>Generada en nuestro laboratorio</td>
</tr>
<tr>
<td>ein3 x pORC6:ORC6:GUS</td>
<td>1kb promotor+ ORC6</td>
<td>pROK/ pGWB3</td>
<td>Generada en nuestro laboratorio</td>
</tr>
<tr>
<td>skp2a x pORC6:ORC6:GUS</td>
<td>1kb promotor+ ORC6</td>
<td>pROK/ pGWB3</td>
<td>Generada en nuestro laboratorio</td>
</tr>
<tr>
<td>ccs52b x pORC6:ORC6:GUS</td>
<td>1kb promotor+ ORC6</td>
<td>pROK/ pGWB3</td>
<td>Generada en nuestro laboratorio</td>
</tr>
<tr>
<td>skp2a x pORC6:ORC6:GFP</td>
<td>1kb promotor+ ORC6</td>
<td>pROK/ pGWB4</td>
<td>Generada en nuestro laboratorio</td>
</tr>
<tr>
<td>ccs52b x pORC6:ORC6:GFP</td>
<td>1kb promotor+ ORC6</td>
<td>pROK/ pGWB4</td>
<td>Generada en nuestro laboratorio</td>
</tr>
</tbody>
</table>
4. Métodos
4.1. Técnicas de biología molecular

4.1.1. Extracción de DNA genómico

Plantas de 7 días (100 mg) se congelaron en N₂ líquido y se homogeneizaron mediante bolas de vidrio en el homogenizador Silamat S5. Se le añadió el tampón de extracción de DNA genómico (100 mM Tris-HCl pH8.0, 50 mM EDTA, 500 mM NaCl, 7 µM DTT, 1.4% SDS). Se incubó a 65°C durante 5 minutos, se centrifugó a 13000 rpm 10 minutos a 4°C en una microcentrífuga para recoger el sobrenadante y precipitar el DNA con isopropanol. Se resuspendió en TE 1x (10 mM Tris-HCl pH 8.0, 1 mM EDTA).

4.1.2. Extracción de RNA total

Plantas de 7 días (100 mg) se congelaron en N₂ líquido y se homogeneizaron mediante bolas de vidrio en el homogenizador Silamat S5 y se añadió 1 mL de TRIZOL (Invitrogen). Se dejaron 5 minutos a temperatura ambiente y se extrajeron con cloroformo. La precipitación se llevó a cabo con isopropanol y el RNA se lavó con etanol 75% antes de resuspender en agua filtrada y autoclavada.

4.1.3. Reacción de transcripción reversa (RT)

Las RT se llevaron a cabo a partir de 500 ng de RNA de distintos tejidos, usándose para la transcripción reversa el oligonucleótido dT que se incluye en el kit “Termo Script RT-PCR system” (Invitrogen). Se siguió el protocolo incluido por el fabricante en dicho kit para la RT. Los 20 µL de reacción se diluyen hasta los 40 µL con agua después de concluir la reacción.

4.1.4. PCR cuantitativa (PCRq)

La PCR cuantitativa se llevó a cabo con el kit “Light Cycler FastStrart DNA Master SYBR Green I” según el protocolo de Roche, usando 1 µL de muestra de cDNA obtenido según lo descrito en la sección 4.1.3.
4.1.5. Clonajes Gateway

Los cDNA de ORC6 y las proteínas truncadas derivadas fueron clonados en el pDONR por la reacción de recombinación llevada a cabo por la enzima BP (Invitrogen) con oligonucleótidos específicos (Tabla 1). A partir de este vector se llevaron a cabo recombinaciones con el GATEWAY LR Clonase Enzyme Mix (Invitrogen) en los siguientes vectores:

pDEST15: Vector de expresión bacteriana con fusión amino-terminal a la glutatión-S-transferasa (GST) suministrado por Invitrogen.

pDEST17: Vector de expresión bacteriana con fusión a un epítopo de 6 histidinas en el aminoterminal suministrado por Invitrogen.

pGW17: Vector de expresión en plantas con el promotor del virus del mosaico de la coliflor y con fusión en el carboxilo-terminal al epítopo myc en el carboxilo-terminal, suministrado por Tsuyoshi Nakawa (Research Institute of Molecular Genetics, Matsue, Japón)

pGBT8-GAD: Vector de expresión en levaduras para ensayos de doble híbrido que contiene el dominio de unión al DNA de GAL4, adaptado con el GATEWAY Cloning System Reading Frame Cassette con el cassette B en el sitio SmaI.

Otros dos clonajes gateway han sido ampliamente utilizados en este trabajo aunque no han sido elaborados durante el mismo. La construcción pORC6:ORC6 y pORC6 se clonaron en los vectores pGWB3 y pGWB4, vectores de expresión en plantas con fusión en el extremo 3’ a los genes reporteros GUS y GFP, respectivamente (Díaz-Triviño, 2005).

4.1.6. Expresión de proteína recombinante

Las proteínas fusionadas a GST se expresaron en la cepa BL21 rosetta de E. coli. La inducción de la expresión de la proteínas se realizó en cultivos en crecimiento exponencial con 0.4 mM IPTG durante 3 horas a 30ºC. La purificación se realizó según las instrucciones del kit de GST Gene fusion System (Amersham).
4.1.7. Ensayos de interacción in vitro

Se incubó la proteína recombinante His:CDC6, con GST:ORC6, GST:ORC6ΔDB, GST:ORC6Δ1, GST:ORC6Δ2, GST:ORC6Δ3 unidos a resina con glutation (Amersham) en tampón de unión (50 mM NaCl, 20 mM Tris-HCl, pH 7.5, 25% glicerol, 1.5 mM MgCl₂, 1 mM PMSF, 0.02% Triton X-100) durante 2 h a 4°C. La resina se lavó dos veces con 20 mM Tris-HCl pH 7.5, 300 mM NaCl y otras dos veces con 20 mM Tris-HCl pH 7.5, 500 mM NaCl. Las muestras se fraccionaron en geles de acrilamida y se analizaron por western blot.

4.1.8. Inmuno-precipitación de la cromatina

Plantas de 10 días se fijaron en tampón A (0.4 M sacarosa, 10 mM Tris-HCl pH 8.0, 1 mM EDTA, 1mM PMSF, 1% formaldehído) durante 25 minutos al vacío. Posteriormente las plantas fueron incubadas en tampón A con una concentración 0.1 M de glicina durante 10 minutos. Se congelaron 300 mg de material fresco en nitrógeno líquido y fueron resuspendidos y homogeneizados en 1 mL de tampón de lisis (50 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% deoxycholate, 0.1% SDS, 1mM PMSF, 10 mM butirato de sodio, protease inhibitor cocktail (Roche)). Se fragmentó el DNA hasta un tamaño aproximado de 500 a 1000 pares de bases mediante sonicación. Paralelamente se incubó 10 µL de una solución de proteína A unida a agarosa (tratada previamente con esperma de salmón) con 10 µL de 1mg/mL de anticuerpo α-myc (clon 4A6 de Upstate Biotechnology) durante 30 minutos a 4°C, para llevar a cabo la adsorción del anticuerpo. La incubación de sobrenadante y proteína A unida a α-myc con el sobrenadante se llevó a cabo durante 12 h y fueron lavados posteriormente con tampón de lisis (dos veces), dos veces con LDNET (0.25 M LiCl, 1% NP40, 1% Triton X-100, 1 mM EDTA, 10 mM Tris-HCl, pH 8.0) y tres veces con TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA). Los inmunocomplejos fueron eluidos de la matriz de agarosa con 300 µL de una solución de 1% SDS, 0.1 M NaHCO₃, 200 mM NaCl. Se añadió 10 µg de proteinasa K (en 10 mM EDTA, 40 mM Tris-HCl pH 8.0) a 45°C para degradar las proteínas residuales durante 12 h, y después se hicieron extracciones con fenol/cloroformo/isoamilo alcohol y se precipitó el DNA con isopropanol. El precipitado se lavó con 70% de etanol y se resuspendió en 40 µL de TE. El DNA fue amplificado con 35 ciclos de PCR usando la pareja de oligos 1, 2 y 3 descritos en la Tabla 3.
4.1.9. Análisis del retraso de la movilidad electroforética en gel de poliacrilamida

Los análisis de retraso en gel de oligonucleótidos de doble cadena unidos por las proteínas de fusión His-ORC6 y GST-ORC6 se llevaron a cabo según lo descrito previamente (del Pozo et al., 2002b).

4.1.10. Ensayos de degradación in vitro

Plantas de 7 días se homogeneizaron en tampón de degradación (50 mM Tris-HCl pH 7.5, 50 mM creatina fosfato, 0.1 U/mL de creatina quinasa), y el extracto resultante se diluyó hasta una concentración de 2 mg/mL. Se incubaron las proteínas recombinantes unidas a una matriz sólida en ausencia o presencia de inhibidores del proteasoma (100 μM MG132 de Biomol, 10 mM epoxomicina de Affinity) a 32°C. Ali cuotas de 50 μL fueron retiradas a diferentes tiempos y las proteínas desnaturalizadas a 100°C en el tampón de carga (65 mM Tris-HCl pH 6.8, 2% SDS, 10% de β-mercaptoetanol, 10% glicerol y 1.25% mg de azul de bromofenol (Sigma)). Se cargaron 15 μL de muestra en un gel del 10% de acrilamida y se transfirió a una membrana de polivinilileno (Millpore) que se reveló con anti-GST 1/2500 (Santa Cruz Biotechnology).

4.1.11. Ensayos de interacción in vivo.

Las plantas sobre-expresoras ORC6-myc de 7 días se homogeneizaron en tampón de extracción de proteínas (50 mM Tris-HCl pH 7.5, 50 mM NaCl, 0,2% NP40, 1 mM PMSF, inhibidores de proteasas de plantas (Sigma) y el extracto resultante se llevó a una concentración de 2 mg/mL. A esto se le añadió 1 μg de proteína recombinante (His-CCS52B) unida a una matriz de agarosa por cada mg de extracto y se incubó a 4°C durante 1 h en agitación suave. La resina se lavó una vez con tampón de extracción y tres veces con tampón de lavado (100 mM Tris-HCl pH 7.5, 150 mM NaCl, 0,5% NP40) para finalmente resuspender la matriz en tampón de carga (65 mM Tris-HCl pH 6.8, 2% SDS, 10% de β-mercaptoetanol, 10% glicerol y 1.25% mg de Azul de bromofenol (Sigma)). Se cargaron 15 μL de muestra en un gel del 10% de acrilamida y se transfirió a una membrana de polivinilileno (Millipore) que se reveló con α-myc 1/1000 (Upstate).
4.1.12. Ensayos de fosforilación

Se utilizaron extractos de plantas silvestres, plantas *ck2* sin inducir e inducidas a una concentración de 2 mg/mL, añadiendo posteriormente una cantidad de 20 μCi/ mL de ATP radiactivo, en el caso de las plantas silvestres, y GTP en el caso de las plantas *ck2* inducidas y sin inducir. Paralelamente se añadió 20 μg/mL de heparina, inhibidor de la CK2, al extracto de las plantas *ck2* sin inducir. La proteína recombinante GST-ORC6 unida a una matriz de sefarosa (50 μL) se incubó en cada uno de estos extractos, para ser después lavada con tampón de lavado (100 mM Tris-HCl pH 7.5, 150 mM NaCl, 0,5% NP40) y resuspendida y desnaturalizada a 100°C en el tampón de carga (Tris 65 mM pH 6.8, 2% SDS, 10% de β-mercaptoetanol, 10% glicerol y 1.25% mg de Azul de bromofenol (Sigma)). Se cargaron 15 μL de muestra en un gel del 10% de acrilamida y se le expuso una película de autorradiografía durante 7 días a -80°C.

4.2. **Técnicas de biología celular**

4.2.1. Generación de plantas transgénicas

Las plantas transgénicas se generaron por transformación mediada por *Agrobacterium tumefaciens* usando el método de inmersión floral (Clough y Bent, 1998).

4.2.2. Tinciones histoquímicas

Para los estudios de la actividad GUS se incubaron las plantas *pORC6:ORC6-GUS* y *pORC6:GUS* en el tampón X-Gluc (5 mM Na₂HPO₄/NaH₂PO₄, pH 7.0, 40 nM K₄Fe(CN)₆, 40 nM K₃Fe(CN)₆, 0.004% Tritón X-100, 5 μg/mL X-Gluc), que evita la difusión del producto de la reacción. Las incubaciones fueron de 2 h para los ensayos de actividad en raíz y la reacción se paró por incubación en etanol 70% como se describe en los ensayos de actividad de promotores (Jefferson *et al.*, 1987).

Para contabilizar las células de la columella se tiñeron los gránulos de almidón de las raíces de las plantas silvestres, *orc6* y ORC6⁰⁸ sumergiendo la raíz en una solución de 1% lugol (Merk) durante 1 min y lavadas y observadas en Cloralhidrato. Posteriormente se observaron al microscopio óptico vertical Axioskop2 plus acoplado a una cámara ccd color (Zeiss).
Para la tinción de las paredes de las células de raíz se realizó la inmersión de las raíces de las plantas **orc6** y **ORC6**OE así como los cruces de pORC6:ORC6-GFP con los mutantes **css52b** y **skp2a** en iodo de propidio y se observaron directamente mediante microscopia confocal del sistema Microradiance (BioRad) acoplado a un microscopio vertical Axioskop2 (Zeiss).

4.2.3. Inmunolocalizaciones de proteínas

Las inmunolocalizaciones se llevaron a cabo en plantas de 7 días crecidas en vertical (Lauber *et al.*, 1997). Las plantas se fijaron en 4% de paraformaldehído en tampón MTSB (50 mM PIPES pH 6.9, 5 mM EGTA, 5 mM MgSO₄) durante 1 h en vacío. Después de varios lavados, las raíces se colocaron en portaobjetos SuperFrost Plus de Menzer Glaser y se dejaron secar durante la noche. Después se utilizó PapPen de Sigma en cada portaobjeto, alrededor de las raíces, para crear una cámara de incubación. Las raíces se rehidrataron en MTSB y se permeabilizaron por digestión limitada de la pared mediante tratamiento con 2% driselasa (Sigma) en MTSB durante 45 minutos a 37°C y posteriormente con 10% DMSO, 3% NP40 en MTSB. A continuación se procedió a la saturación de las muestras con 5% BSA en PBS durante 2 h a 37°C, para después añadir los anticuerpos primario y secundario acoplado a un fluoróforo. Después de la inmunolocalización, las muestras se montaron con citofluor (AGAR Scientific) y se observaron mediante microscopia confocal del sistema Microradiance (BioRad) acoplado a un microscopio vertical Axioskop2 (Zeiss). Los anticuerpos primarios utilizados para la inmunolocalización fueron: α-KNOLLE generado en conejo a una dilución de 1/3000 (Lauber *et al.*, 1997), α-GFP generado en ratón dilución 1/500 (MBL, clon 1E4). Los anticuerpos secundarios usados fueron: Anti IgG de conejo conjugado a Cy3 (Molecular Probes, A-11032), anti IgG de conejo conjugado a FITC (Molecular Probes, A-11034) y anti IgG de ratón conjugado a FITC (Molecular Probes, A-11029), a una dilución de 1/500.

4.2.4. Cuantificación de actividad GUS mediante fluorometría

Las proteínas de plantas de 7 días se extrajeron con el tampón GUS (50 mM tampón fosfato, pH 7.0, 10 mM β-mercaptoetanol, 10 mM EDTA, 0.1% SDS, 0.1% Triton X-100). Las muestras se trataron con 1 mM de ácido 4-metilumbeliferil-β-D-
glucopiranosidurónico (MUG) (Sigma) a 37ºC durante 60 min y se paró la reacción con 0.2 M Na$_2$CO$_3$. La fluorescencia se midió con el espectrofotómetro de luminiscencia SLM-AMINCO (Aminco Bowman) y se normalizó con la cantidad total de proteína de cada muestra, por lo que la actividad de cada extracto se midió en pmol de MUG/min/µg de proteína.

4.2.5. Análisis de citometría de flujo

Los cotiledones y hojas de plantas silvestres, orc6 y ORCOE se cortaron en pequeños trozos en 600 µL de tampón Galbraith suplementado con 0.1% Triton X-100 (Galbraith et al., 1983). El producto resultante se filtró a través de un filtro de nylon de 48 µm y se tiñó con 50 µg/mL de ioduro de propidio (Sigma). El análisis se realizó con un citómetro FACSCalibur (BD Biosciences). Este mismo proceso se realizó con los cultivos celulares sincronizados.

4.2.6. Sincronización de células de Arabidopsis

La sincronización de un cultivo de 3 días de células MM2d se llevó a cabo mediante la eliminación de la sacarosa del medio durante 24 h (Menges y Murray, 2002), lo que sincroniza las células en G1.

4.2.7. Sincronización del periciclo

El experimento de sincronización del periciclo se llevó a cabo según lo descrito previamente (Himanen et al., 2002), pero con la variante de que las plantas fueron transferidas de NPA a NAA a las 96 h y no a las 72 h como se indica en el artículo.
5. Resultados
5.1. Estudio de la degradación de ORC6

El ciclo celular se regula a nivel transcripcional, traduccional y postraduccional (revisado en Frescas y Pagano, 2008). Los genes ORC de Arabidopsis están regulados a nivel transcripcional durante el ciclo celular: todas las subunidades, exceptuando ORC5, se expresan preferentemente en G1/S (Díaz-Triviño et al., 2005). En concreto, la expresión de ORC6 tiene un pico en G1/S, se reduce en fase S, y vuelve a haber un aumento de expresión en G2/M. También la proteína ORC6 se encuentra regulada a nivel postradecricional: ORC6 se degrada antes de entrar en mitosis, si bien no se pueden descartar cambios en los niveles de la proteína en otras fases del ciclo (Díaz- Triviño, 2005). Teniendo en cuenta que el mantenimiento y preservación de las distintas fases durante el ciclo celular se regula principalmente a través de la fosforilación por CDKs y degradación proteica por la vía ubiquitina-proteasoma (UPS), nuestro primer objetivo, dentro del proyecto del estudio de la dinámica de ORC6 a lo largo del ciclo celular, es averiguar si esta degradación específica de fase M es llevada a cabo por la vía UPS y concretar a través de qué componentes de la vía UPS. Además, se analiza el intervalo en el que la proteína ORC6 está presente en el ciclo celular, como consecuencia final de ambas regulaciones, transcripcional y postraduccional.

5.1.1. ORC6 se degrada por el proteasoma

Para comprobar que la degradación de ORC6 es llevada a cabo por el proteasoma se realizaron experimentos in vivo con las plantas transformadas con la construcción pORC6:ORC6-GUS. Esta construcción comprende el promotor de ORC6 (1000 pb hacia el extremo 5’ por encima del ATG), el gen de ORC6 genómico con sus intrones y exones (1949 pb) y el gen β-glucuronidasa (GUS: 1809 pares de bases) (Figura 9a). Por ello, estas plantas expresan la proteína de fusión ORC6:GUS. La β-glucuronidasa (GUS) es una enzima hidrolasa que se utiliza como gen reportero para localizar la expresión de un gen o la localización de la proteína a la que está fusionada.

La proteína de fusión ORC6:GUS se localiza preferentemente en los meristemos radicular y apical, así como en las flores (Díaz-Triviño, 2005). Dado que el meristema radicular es una estructura muy organizada decidimos estudiar en detalle en este lugar la expresión de ORC6:GUS. Las plantas pORC6:ORC6-GUS de 7 días se incubaron en...
medio MSS con cicloheximida que es un inhibidor de la biosíntesis de proteínas. En la Figura 10a se puede observar que ORC6:GUS disminuye de forma marcada a partir de la primera hora y casi ha desaparecido a las 4 h. Sin embargo, la proteína se estabiliza si a este mismo tratamiento le añadimos MG132, un inhibidor específico del proteasoma (Figura 10b).

Para discernir entre degradación de la proteína y pérdida de activación de la transcripción, se utilizaron plantas que expresan GUS bajo el promotor de ORC6 (Figura 9b). Estas plantas contienen una construcción denominada pORC6:GUS que comprende 1000 pb por encima del ATG del gen ORC6 directamente unida al gen β-glucuronidasa (Figura 9b). Por ello, la expresión de la enzima refleja el patrón de la expresión de ORC6, pero no sus modificaciones postraduccionales, ya que sólo el gen de la β-glucuronidasa es traducido. En la Figura 10c se muestran los meristemos de raíces de plantas pORC6:GUS tratadas con cicloheximida. Al cabo de 16h se sigue observando actividad GUS en las plántulas por lo que concluimos que la degradación de la proteína de fusión ORC6:GUS es específica de ORC6.

![Figura 9. Construcciones de ORC6 fusionadas al gen reportero GUS. a: construcción pORC6:ORC6-GUS con el promotor de ORC6 (1000pb) en blanco, el gen ORC6 que comprende los exones en amarillo y los intrones en gris (1949pb). En azul está representado el gen de la β-glucuronidasa (1809pb), b: contrucción pORC6:GUS con el promotor de ORC6 (1000pb) en blanco y el gen de la β-glucuronidasa en azul.](image-url)
La especificidad de sustrato de la vía UPS la confieren los complejos enzimáticos E3 ubiquitina-ligasa. Existen dos E3 que marcan con ubiquitina a diversas proteínas de una forma dependiente de ciclo: el APC y el SCF.

El estudio de la secuencia de la proteína ORC6 in silico predice una caja de degradación tipo D-box en la posición 204. Las D-box son secuencias reconocidas por el APC. Para ver si esta diana es funcional se llevaron a cabo ensayos de degradación con la proteína recombinante ORC6 unida a Glutation-S-transferasa (GST-ORC6) y ORC6 con la caja D-box truncada (GST-ORC6∆DB). Las proteínas recombinantes fueron incubadas con extractos de plantas suplementados con ATP para favorecer la fosforilación en caso de que fuese necesaria para que se lleve a cabo la degradación por el proteasoma. Paralelamente se llevó a cabo la incubación de las proteínas en estos

Figura 10. Degradoración de ORC6 in vivo. Fotos al microscopio óptico de raíces de plantas pORC6:ORC6-GUS a diferentes tiempos después de la adición de: a: cicloheximida (CHX) y b: cicloheximida y MG132; c: fotos al microscopio óptico de raíces de plantas pORC6.GUS a diferentes tiempos después de la adición de CHX. Barra = 1mm.

5.1.2. ORC6 interacciona con componentes del APC

La especificidad de sustrato de la vía UPS la confieren los complejos enzimáticos E3 ubiquitina-ligasa. Existen dos E3 que marcan con ubiquitina a diversas proteínas de una forma dependiente de ciclo: el APC y el SCF.
mismos extractos a los que se añadió MG132 y epoxomicina, ambos inhibidores específicos del proteasoma. La cantidad de GST-ORC6 disminuye al cabo de 1 h en extractos sin inhibidores del proteasoma. Con inhibidores del proteasoma, GST-ORC6 se estabiliza a lo largo de todo el experimento (Figura 11, izquierda). Sin embargo, la proteína truncada se estabiliza en extractos sin inhibidores del proteasoma (Figura 11, derecha). Estos datos apuntan a que el APC participa en la degradación de ORC6.

El siguiente paso fue averiguar si alguna de las subunidades que confieren especificidad de sustratos están implicadas en el reconocimiento de ORC6. Para ello se llevó a cabo un ensayo de interacción de doble híbrido en levaduras con los genes homólogos en Arabidopsis de las proteínas del APC adaptadoras Cdc20 y Cdh1, en colaboración con el laboratorio de Eva Kondorosi (Institut des Sciences du Vegetal CNRS Gif-sur-Yvette, Francia). El ensayo se realizó tanto con ORC6 silvestre como con ORC6ΔDB. Los resultados nos muestra una débil interacción de ORC6ΔDB y la subunidad CCS52B (Figura 12a, flecha blanca), que pertenece al grupo de proteínas homólogas a Cdh1 (Cebolla et al., 1999). Sin embargo, esto no ocurre con la proteína silvestre. ORC6 de Arabidopsis sólo guarda un 10% de homología con el de S. cerevisiae, pero puede ser que la levadura sea capaz de reconocer la D-box y degradar ORC6, al estar la maquinaria de replicación muy conservada en eucariotas. El ORC6 truncado (ORC6ΔDB) puede escapar a la proteolisis y, de alguna manera unir subunidades del APC de forma débil debido a la falta de estos cuatro aminoácidos que conforman la caja de degradación.

Figura 11. Degradación de ORC6 in vitro. Western-blot que muestra la degradación de GST-ORC6 (izquierda) y GST-ORC6ΔDB (derecha) en un extracto vegetal en ausencia de inhibidores del proteasoma (-MG132 y -epoxomicina) y en presencia de inhibidores del proteasoma (+MG132 y +Epoxomicina). Las flechas negras señalan la banda que corresponde a GST-ORC6 y GST-ORC6ΔDB. En la parte superior se muestra un esquema de ORC6 y ORC6ΔDB con la caja de destrucción truncada.
Para confirmar si la interacción con CC52B sugerida en el ensayo de doble híbrido, ocurre in vitro, se realizó un ensayo de pull-down de plantas sobre-expresoras de ORC6 unido al epitopo myc (plantas ORC6\[^{OE}\], ver Figura 31a) con la proteína recombinante CCS52B fusionada a un péptido de 6 aminoácidos de histidina en su extremo aminoterminal (His-CC52B). La interacción es positiva pudiendo detectar la proteína ORC6:myc con α-myc (Figura 12b).

Con el fin de verificar si la interacción de CCS52B y ORC6 es relevante in vivo se transformaron plantas mutantes ccs52b con la construcción pORC6:ORC6\[^{-}\]GUS (Figura 13a). Estos mutantes contienen una inserción de T-DNA en el primer intrón del gen CCS52B (SALK_098269) por lo que la transcripción completa del gen está impedida (comunicación personal de Eva Kondorosi). La expresión de pORC6:ORC6\[^{-}\]GUS fue estudiada en este fondo mutante con objeto de encontrar algún incremento en la cantidad de la proteína debido a la interrupción de esta vía de degradación. En la Figura 13 se muestra la expresión de pORC6:ORC6\[^{-}\]GUS en fondo silvestre (parte superior) y fondo mutante (parte inferior) durante las primeras 72 horas después de la germinación de la planta. En este experimento no se detectaron diferencias significativas como consecuencia de la pérdida de función de CCS52B (Cdh1). Estos datos sugieren que, a pesar de la interacción que se detecta entre CCS52B y ORC6, ésta no parece mediar la degradación de ORC6 o, en caso contrario, no es la única que pueda llevarla a cabo.
Para confirmar los datos anteriores se llevaron a cabo transformaciones de plantas mutantes ccs52b con la construcción pORC6:ORC6-GFP, similar a la anterior, pero sustituyendo el gen reportero GUS por el gen que codifica la proteína fluorescente Green Fluorescent Protein (GFP), (Figura 14). Esta construcción nos permite localizar la proteína de fusión ORC6 unida a GFP a nivel celular con el microscopio confocal *in vivo*. La observación de la planta nos muestra la localización nuclear de la proteína de fusión en raíces teñidas con ioduro de propidio, pero al no tener referente sobre la fase de ciclo en la que se encuentra la célula nos vemos obligados a realizar inmunolocalizaciones con anticuerpos que marquen las fases del ciclo celular. En el proceso de fijación de las plantas para llevar a cabo la inmunolocalización se altera la conformación nativa de la proteína GFP, por lo que la construcción ha de visualizarse utilizando anticuerpos anti-GFP. De esta forma podemos averiguar si la degradación de ORC6 tiene alguna modificación detectable a nivel subcelular. Como marcador hemos usado una sintaxina específica de plantas regulada por ciclo celular llamada KNOLLE, que se expresa fuertemente en mitosis, inicialmente en metafase, en vesículas que posteriormente se localizan en la placa celular en formación durante la telofase, y finalmente es degradada antes de entrar en la siguiente interfase (Lauber *et al*., 1997). La presencia de la proteína ORC6:GFP no coincide con KNOLLE en una misma célula,

Figura 13. Expresión de pORC6:ORC6-GUS durante la germinación en plantas ccs52b. Expresión de pORC6:ORC6-GUS a tiempos cortos (de 6h a 72 h) en planta silvestre (parte superior) y fondo mutante ccs52b (parte inferior).
por lo que se deduce que ORC6 se degrada antes de entrar en mitosis tanto en fondo silvestre como en el mutante (Figura 14). Este dato nos hace pensar que la subunidad CCS52B del APC no es la que participa en la degradación de ORC6 previa a la mitosis, o que, en el fondo mutante, otra subunidad sustituye la función de CCS52B.

5.1.3. ORC6 interacciona con componentes del SCF

La rápida degradación de ORC6 que se observa en la Figura 10a sugiere que pueda ocurrir a través de más de un mecanismo. Se han descrito proteínas de ciclo que se degradan tanto vía APC como por el SCF, por ejemplo la ciclina Cig2 de S. pombe (Yamano et al., 2004). Las proteínas F-Box son las que confieren especificidad de sustrato al complejo SCF. En células humanas, SCFSKP2 controla la estabilidad y por ende la actividad de muchos reguladores del ciclo celular como el factor de transcripción E2F1 (Marti et al., 1999), la CDK9 (Kiernan et al., 2001), Cdt1 (Li et al., 2003), o E2Fc en Arabidopsis (del Pozo et al., 2002a), por lo que SKP2 podría ser un regulador esencial para la proliferación celular (Dehan y Pagano, 2005). En Arabidopsis se han identificado dos proteínas homólogas: SKP2A y SKP2B que comparten un 83% de identidad en su secuencia aminoácida y un 44% en la secuencia de su promotor,
por lo que se sugiere que puedan ser genes duplicados (del Pozo et al., 2002a). Para ver si ORC6 interacciona con SKP2A se realizaron ensayos de pulldown usando la proteína recombinante GST-ORC6 e His-SKP2A. Estos ensayos mostraron una interacción entre ambas proteínas in vitro (Figura 15).

![Figura 15. Interacción de ORC6 con SKP2A. Ensayo de pulldown de GST/HIS:SKP2A (control negativo) y GST-ORC6/HIS:SKP2A.](image)

Para estudiar la relevancia in vivo de esta interacción transformamos con la construcción pORC6:ORC6-GUS plantas skp2a (del Pozo et al., 2006) con pérdida total de función de este gen y se estudió la localización de ORC6 en plántulas desde su germinación hasta los tres días (Figura 16).

![Figura 16. Expresión de pORC6:ORC6-GUS durante la germinación en plantas mutantes skp2a. Presencia de ORC6 a tiempos cortos (de 6h a 72 h) en planta silvestre (parte superior) y fondo mutante skp2a (parte inferior), transformadas con pORC6:ORC6-GUS.](image)
En el fondo mutante *skp2a*, ORC6 se detecta a tiempos tempranos (6-15h) a los que en el fondo silvestre no es detectable. Esto puede indicar que SKP2A esté degradando ORC6 durante la fase de desarrollo embrionario de forma constitutiva, por lo que la ausencia de SKP2A provoca la acumulación de ORC6 en estadios más tempranos o bien que las plantas mutantes *skp2a* tienen adelantado su desarrollo con respecto a las silvestres.

Las plantas *skp2a* también fueron transformadas con la construcción *pORC6:ORC6-GFP* para monitorizar cambios de localización a nivel celular. Las plantas transformadas con *pORC6:ORC6-GFP* en fondo silvestre no difieren del fondo mutante, desapareciendo la proteína de fusión cuando la célula entra en metafase y comienzan a formarse las vesículas que expresan KNOLLE (Figura 17). Esto puede deberse a que la proteína SKP2B, presente en las mutantes *skp2a*, está supliendo la función de SKP2A, por lo que se están llevando a cabo una transformación del doble mutante *skp2a/skp2b* con *pORC6:ORC6-GUS*. También es posible que incluso las funciones de ambas E3, SCF^{SKP2A} y APC^{CCS52B} sean solapantes a la hora de degradar ORC6. Por eso se están generando los triples mutantes *skp2a/skp2b/ccs52b* para en su día analizar la dinámica de ORC6 en dicho fondo genético.

Figura 17. Inmunolocalización de ORC6 en raíz de plantas silvestres y de mutantes *skp2a*. En la parte superior se representa el esquema de la construcción *pORC6:ORC6-GFP* que dará la proteína de fusión traduccional ORC6-GFP, en la parte inferior se muestra la inmunolocalización de ORC6-GFP (en verde) y KNOLLE (en rojo) de plantas transformadas con la construcción *pORC6:ORC6-GFP* en fondo silvestre (WT) y en fondo mutante (*skp2a*).
En la mayoría de organismos, la fosforilación del sustrato es un requisito para su reconocimiento por las proteínas F-Box del SCF (Ho et al., 2008). Estudios in silico (http://www.cbs.dtu.dk/services/NetPhos) de la secuencia de la proteína ORC6 muestran numerosos sitios susceptibles de ser fosforilados principalmente en serina (Figura 18a). Los sitios de fosforilación predichos son dianas para un buen número de quinasas, pero ninguno se corresponde con las secuencias consenso reconocidas por las CDKs, que son las que dirigen la progresión del ciclo celular. De las múltiples quinasas predichas destacamos tres que tienen alguna implicación en el ciclo celular (Figura 18b). La casein quinasa CK2 es una enzima heterotetramérica compuesta de dos subunidades catalíticas α y dos subunidades catalíticas β. Es una quinasa esencial y está presente en todos los organismos eucariotas regulando el ciclo celular, la apoptosis y el ritmo circadiano (Allende y Allende, 1995; Pinna, 2002; Meggio y Pinna, 2003; Espunya et al., 2005). La Chk1 y 2 son quinasas implicadas en los checkpoints del ciclo celular.

![Figura 18. Predicción de los sitios de fosforilación de ORC6 in silico. a: análisis in silico de posibles sitios de fosforilación de ORC6, b: quinasas implicadas en el ciclo celular que son susceptibles de fosforilar a ORC6.](image)

Para ver en primer lugar, si ORC6 se fosforila, se realizaron experimentos in vitro con la proteína recombinante GST-ORC6 tratada con extractos de plantas enriquecidos con 32P-γ-ATP. En la autorradiografía del gel de acrilamida (Figura 19a) observamos una banda que se corresponde con el tamaño de la proteína recombinante.
Disponemos de plantas \textit{ck2}, que expresan la subunidad \(\alpha_2 \) de la CK2 mutada bajo un promotor inducible por estradiol (cedidas por la Dra. Loreto Holuigue, Pontificia Universidad Católica de Chile). Una vez tratadas con el inductor, las plantas \textit{ck2} expresan la subunidad \(\alpha_2 \) mutada (M63K) de forma que la actividad de la CK2 endógena se ve disminuída en un 30%. Para ver si ORC6 era susceptible de ser fosforilado por CK2, la proteína recombinante GST-ORC6 fue incubada con extractos de plantas \textit{ck2} en ausencia y en presencia de estradiol, suplementados con \(^{32}\text{P}\gamma\text{-GTP} \), ya que las CK2 utilizan tanto ATP como GTP como donador de fosfatos (Allende y Allende, 1995). A una alícuota de estos extractos se le añadió heparina, que es un potente inhibidor de la CK2 (Hathaway \textit{et al.}, 1980). En la Figura 19b podemos ver como ORC6 incorpora \(^{32}\text{P} \) tanto en las plantas no inducidas como en las inducidas, sin que se aprecie una reducción de la fosforilación en el extracto de estas últimas. Sin embargo, en los extractos a los que se les ha añadido la heparina, GST-ORC6 no incorpora \(^{32}\text{P} \), lo que podría indicar que la disminución de la actividad de la CK2 en las plantas inducidas no se de con suficiente eficiencia como para que podamos observar una reducción de fosforilación de GST-ORC6. Por ello, no podemos confirmar la fosforilación directa de ORC6 por la CK2, aunque la falta de fosforilación de GST-ORC6 en los extractos de heparina sí es un dato más que añadir a favor de esta hipótesis.

\textbf{Figura 19. Fosforilación de ORC6 \textit{in vitro}} a: ensayo de fosforilación de GST-ORC6 en extracto de plantas. El extremo carboxiterminal de la proteína RBR (cRBR) se ha usado como control positivo y GST como control negativo; b: ensayo de fosforilación de GST-ORC6 en extracto de plantas mutantes \textit{ck2} sin inducir (CK2), CK2 más heparina (CK+H), y plantas \textit{ck2} inducidas (\textit{ck2}).
5.1.4. Expresión de ORC6 durante el ciclo celular in planta

Estudios previos en el laboratorio con células de Arabidopsis sincronizadas muestran que la expresión de ORC6 tiene un máximo en G1/S y en G2. Con respecto a la proteína, estudios de inmunolocalización mostraron que ORC6 se degrada antes de entrar en mitosis. Para determinar el patrón de expresión de ORC6 en un sistema de proliferación in planta se llevó a cabo un experimento previamente descrito en la literatura que consiste en la sincronización de las células de una capa de la raíz denominada periciclo (Himanen et al., 2002). La raíz de Arabidopsis está constituida por un conjunto de cilindros concéntricos de diferentes capas celulares: la epidermis, el cortex, la endodermis y, la más interna, el periciclo, que rodea las células de la estela que forma el tejido vascular (Benfey y Scheres, 2000) (Figura 20a). El periciclo tiene la capacidad de formar raíces laterales en un proceso que consta principalmente de dos pasos: la reactivación del periciclo en contacto con el xilema y el establecimiento de un nuevo meristemo (Vanneste et al., 2005). Como las primeras divisiones del periciclo dependen del transporte basipétalo (desde el ápice de la raíz) de la auxina (Casimiro et al., 2001), en este experimento de sincronización, las plantas son germinadas en medio MSS con un bloqueador del transporte de auxinas (10 µM de NPA). Este bloqueo impide el establecimiento del meristemo para formar las raíces laterales que se originan a partir de las 36 h de germinación (Beeckman et al., 2001)(Figura 20b), quedando las células del periciclo paradas en G1 (Himanen et al., 2002). A los 4 días las plantas se transfieren a un medio sin NPA pero con auxina (10 µM NAA) que induce la formación de raíces laterales. Al aplicarse de forma exógena sobre toda la raíz, las células del periciclo se activan de forma sincrónica.

Figura 20. Sincronización del periciclo. a: esquema de la raíz de Arabidopsis con sus distintas capas, b: esquema del método de sincronización del periciclo: germinación durante 4 días en presencia de 10 µM de NPA y posterior tratamiento con 10 µM de NAA.
Utilizando las plantas *pORC6:ORC6-GUS* podemos averiguar en qué momento está presente la proteína en el periciclo. Con el fin de saber si la sincronización se está llevando a cabo correctamente, hemos utilizado marcadores de ciclo que nos indiquen en qué fase se encuentran las células del periciclo. Para seleccionar estos marcadores se realizó un experimento de sincronización por ayuno de sacarosa de un cultivo de células de Arabidopsis, que detienen las células en G1, al igual que las células del periciclo bloqueadas con NPA. En nuestro ensayo de sincronización, el porcentaje de partida de células en G1 fue del 62,47% tal como se indica en la Figura 21. Para verificar la sincronización llevamos a cabo una RT-PCR cuantitativa con oligos que amplifican los cDNA de genes que hemos observado que tienen una expresión cíclica a lo largo del ciclo celular en los arrays disponibles *in silico* (Zimmermann et al., 2004). Los genes escogidos fueron *CDT1a* y *CDC6a* como marcadores G1/S y *CYCB1;1* como marcador para G2/M. Tanto el *CDT1a* como el *CDC6a* tuvieron un pico máximo a las 4 h mientras que el máximo de *CYCB1;1* fue a las 10 h.

Figura 21. Sincronización por ayuno de sacarosa. En el gráfico superior se muestran los niveles de expresión de los genes *CDT1a*, *CDC6a* y *CYCB1;1* con respecto al tiempo 0, a las 2, 4, 6, 8 y 10 horas (T0-T10) después de añadir sacarosa. En la parte inferior se muestra el perfil de citometría de flujo a lo largo del experimento.
Disponemos de plantas con fusiones transcripcionales de *CDT1a*, *CDC6a* y *CYCB1;1* al gen GUS donde la presencia de GUS nos indica la expresión del gen en cuestión y no la presencia de la proteína. El uso de la fusión traduccional *pORC6:ORC6-GUS* junto con el resto de marcadores nos puede permitir averiguar en qué fase del ciclo celular está presente la proteína. En la Figura 22a se muestra la activación de la expresión de GUS bajo los diferentes promotores. Las plantas *pCDT1:GUS* expresan GUS desde antes de la adición de auxina, ya que las células del periciclo se encuentran paradas en G1. El marcador *CDC6a* comienza a expresarse a partir de las 4h (G1/S), más acorde con la expresión que se observa en células sincronizadas y el marcador *CYCB1;1* se expresa a las 10h. La proteína ORC6-GUS se expresa a partir de las 6h coincidiendo con la fase S. Este dato se confirma cuando la sincronización se lleva a cabo en las plantas *pORC6:ORC6-GFP* (Figura 22b), donde la proteína de fusión también se detecta a partir de las 6h desde la adición de auxina en el núcleo de la célula del periciclo.

Figura 22: Expresión de ORC6 en el periciclo. a: fotos al microscopio óptico (5x) de raíces de plantas expresoras de GUS bajo el promotor de *CDT1a*, *CDC6a*, *CYCB1.1* y plantas *pORC6:ORC6-GUS*, crecidas en 10 µM de NPA durante 4 días y posteriormente tratadas con 1 µM de NAA hasta 10 h, b: fotos al microscopio confocal (40x) de plantas *pORC6:ORC6-GFP* crecidas en 10 µM de NPA durante 4 días y posteriormente tratadas con 1 µM de NAA hasta 10 h y tratadas con ioduro de propio (izquierda). A la derecha, amplificación de las células del periciclo de plantas *pORC6:ORC6GFP* fijadas, con αGFP (GFP), las mismas células teñidas con ioduro de propidio (IPr) y la fusión de ambas imágenes (M). Barra=1mm
Siendo un componente de ORC, ORC6 tendría que estar presente en G1/S para formar el complejo pre-replicativo. Sin embargo no está expresada en las células del periciclo antes de la adición de NAA y su expresión durante el primer ciclo celular es más tardía que CDC6. Hasta ahora, la función descrita más ampliamente para CDC6 en eucariotas es la de la formación del pre-RC durante G1 (Borlado y Mendez, 2008). Esto sugiere que ORC6 pueda ser ensamblado en el complejo posteriormente a CDC6, por lo que no sería necesario para la formación del pre-RC. Hay que tener en cuenta que en este ensayo se está analizando la expresión del gen GUS bajo el promotor de CDC6a, por lo que no detectamos la presencia de la proteína sino el lugar y el momento en el que se está expresando. Además, la unión de CDC6 a ORC está regulada por modificaciones postraduccionales en levaduras y humanos como la fosforilación o la traslocación al citosol (Borlado y Mendez, 2008), por lo que sería necesario hacer un examen bioquímico exhaustivo para saber el momento en el que se forma el pre-RC y si ORC6 forma parte de éste. En cualquier caso, la presencia de ORC6 se justifica durante la fase S por su función replicativa. La presencia de ORC6 en G2/M puede obedecer a otras funciones que no sean las estrictamente replicativas. En las secciones siguientes de la tesis se presentan resultados que implican a ORC6 en la ruta de señalización por daño de rotura de la doble cadena del DNA, motivo por el que queda justificada la presencia de la proteína en esta fase.
5.2. Estudio de la degradación de ORC6 frente a daño

Los estudios de fosforilación in silico de ORC6 revelan una diana de fosforilación en la posición 224 (GYSSGDE) para las quinasas de checkpoints CHK1 y CHK2, lo que nos sugiere que posiblemente ORC6 esté implicado en alguna de las vías de señalización por daño por doble rotura o bloqueo de la replicación. Las plantas *pORC6:ORC6-GUS* de las que disponemos pueden sernos de gran utilidad para ver una posible inducción y/o incremento de la proteína frente a daño. Por ello, estas plantas fueron tratadas durante 14 h con diversas drogas que producen parada en la progresión de la horquilla de replicación (afidicolina: inhibidor de DNAPolimerasa α; hidroxiurea: inhibidor de la ribonucleótido reductasa que reduce el pool de dNTPs) y rotura de doble cadena (zeocina: droga radiomimética de la familia de la bleomicina).

![Figura 23. Degradación de ORC6 frente a daño.](image)

a: plantas *pORC6:ORC6-GUS* tratadas con 2 µg/µL de afidicolina, 1 mM de hidroxiurea y 50 µM de zeocina durante 16h, *b:* plantas *pORC6:ORC6-GUS* tratadas con concentraciones de 5, 50 y 500 µM de zeocina durante 16 h, *c:* plantas *pORC6:ORC6-GUS* tratadas con zeocina 50 µM a 0h, 8h y 16h, *d:* actividad GUS (pmolMUG/min/µg de proteína) de plantas *pORC6:ORC6-GUS* en medio MSS y en medio con 50µM de zeocina durante 16h. Barra=1mm.
De los diversos tratamientos realizados, sólo la zeocina parece tener un efecto sobre ORC6, induciendo su degradación (Figura 23a). Ésta ocurre a partir de una concentración de 50 µM de zeocina al cabo de 8 h de tratamiento (Figura 23b y 23c). El hecho de que ni el tratamiento con afidicolina ni la hidroxiurea produzcan degradación indica que ésta podría ser específica de la señalización por rotura de doble cadena y no por bloqueo de la horquilla de replicación. Para cuantificar el grado de degradación de ORC6, se midió la actividad enzimática de GUS con sustratos fluorimétricos, corroborándose la disminución de la proteína observada en la región meristemática (Figura 23d).

La disminución de ORC6 puede deberse a una regulación postraduccional (degradación de la proteína) y/o a una regulación transcripcional (falta de inducción de la transcripción del gen ORC6). Para discernir entre estos dos tipos de regulación se determinaron los niveles de mRNA de ORC6 por PCR cuantitativa y se observó que su expresión no se ve disminuida después del tratamiento con 50 µM de zeocina durante 16 h (Figura 24). Para ver en qué fase se da la parada de ciclo por daño con zeocina se midieron los niveles de KNOLLE, como marcador de mitosis (Lauber et al., 1997), CYCB1;1, (Colon-Carmona et al., 1999) marcador de transición G2/M y CYCD3;1 como marcador de G1/S (Dewitte et al., 2007). KNOLLE tiene disminuida su expresión en plantas silvestres tratadas con 50 µM de zeocina durante 16 h, por lo que la parada de ciclo es previa a la fase de mitosis (Figura 24).

Figura 24. Expresión de genes de ciclo en plantas tratadas con zeocina. Porcentaje de expresión de ORC6, CYCB1;1 (marcador de transición G2/M), CYCD3;1 (marcador G1/S) y KNOLLE (marcador de mitosis) en plantas tratadas con 50 µM de zeocina con respecto a las plantas no tratadas, medidos por qPCR. Son estadísticamente significativas las variaciones de expresión por encima y por debajo de las líneas horizontales, por lo que se considera que sólo KNOLLE disminuye significativamente.
Para comprobar si la degradación inducida por la zeocina se llevaba a cabo a través del proteasoma, las plantas pORC6:ORC6-GUS fueron tratadas con zeocina y MG132, observándose una inhibición de la degradación con respecto a las plantas tratadas sólo con zeocina, por lo que podemos concluir que en la degradación de ORC6 inducida por daño está implicada la vía UPS (Figura 25a).

Tanto en plantas como en animales existen dos tipos de quinasas que constituyen los primeros transductores de la cascada de la señal que provoca la parada del ciclo celular y activan los complejos reparadores de daño: ATM y ATR. Disponemos en el laboratorio de plantas mutantes para cada una de estas kinasas, pero no del doble mutante ya que éste es homocigoto letal. Así, estudiamos el comportamiento de pORC6:ORC6-GUS en fondo mutante atm o atr. En la Figura 25 se observa cómo ORC6-GUS disminuye en respuesta al daño con 50 µM de zeocina en fondo atm, de la misma forma que ocurre en el silvestre. Sin embargo, en fondo atr, esta disminución no ocurre, e incluso aumentan los niveles de ORC6 con respecto al silvestre, de lo que se deduce que la ruta ATR es necesaria para la degradación de ORC6 frente a daño por zeocina.

Figura 25. ORC6 en la señalización por daño. a: plantas pORC6:ORC6-GUS tratadas con 50 µM de zeocina y 50 µM de zeocina más 10 µM de MG132, b: tratamiento con 50 µM de Zeocina de plantas pORC6:ORC6-GUS en fondo silvestre (WT), mutante atm y mutante atr, c: actividad GUS de plantas atm y atr transformadas con pORC6:ORC6-GUS tratadas con zeocina. Barra=1mm.
5.3. **Estudio de la degradación de ORC6 frente a hormonas**

Las hormonas son reguladores clave para el crecimiento y desarrollo de la planta. Una de las estrategias usadas para la transmisión de la señal por hormonas es la degradación a través del proteasoma de un factor de transcripción determinado que puede ser un activador de la señal hormonal, como es el caso de EIN3, o de un represor como los AUX/IAA, DELLA o JAZ (Xu et al., 2002; Dill et al., 2004; Dharmasiri et al., 2005; Kepinski y Leyser, 2005; Ueguchi-Tanaka et al., 2005; Chini et al., 2007). Otros componentes que intervienen en la regulación del ciclo celular son degradados de forma dependiente de hormonas, como es el caso de SKP2A mediada por auxina (Jurado et al., 2008).

El promotor de **ORC6** tiene secuencias de unión de factores de transcripción inducidos por etileno, auxina y ácido abscísico. Para determinar la posible funcionalidad de esos sitios, así como para observar la respuesta a otras hormonas, se realizaron diferentes tratamientos de plantas **pORC6:ORC6-GUS** con 100 µM de ACC (precursor de etileno), 100 µM de NAA (auxina) y 100 µM de ABA (ácido abscísico), 100 µM GA3 (giberelina), 100 µM de kinetina (KIN) y 100 µM de JA (ácido jasmónico) durante 16 h (Figura 26a) ya que, aunque no se hayan localizado secuencias reguladoras en el promotor, estas hormonas podrían regular a ORC6 postraduccionalmente. Observamos la expresión de la proteína ORC6 fusionada a GUS en las raíces de estas plantas con objeto de encontrar diferentes patrones de expresión en plantas tratadas con hormonas con respecto a las no tratadas. La adición de ABA, KIN, GA3 y JA no provoca diferencias en los niveles de ORC6, ni alteraciones en su distribución (Figura 26). Sin embargo, el tratamiento con 100 µM de ACC reduce visiblemente los niveles de proteína a las 16 horas, dato corroborado por los ensayos de actividad de GUS en plantas tratadas y no tratadas con ACC (Figura 27). Para diferenciar un posible silenciamiento transcripcional de una degradación activa de la proteína se cuantificó el mRNA de ORC6 de las plantas tratadas y sin tratar sin que presentara variación alguna (Figura 28a). Además, las plantas **pORC6:GUS** no presentan variación en su expresión al ser tratadas con 50 µM ACC durante 16 h (Figura 28b). Por ello, se puede concluir que el etileno induce la degradación de ORC6.
Figura 26. Tratamiento de plantas pORC6:ORC6-GUS con hormonas. a: Fotos al microscopio óptico (objetivo 10x) de plantas que expresan pORC6:ORC6-GUS tratadas con auxina (NAA), ácido abscísico (ABA), el precursor de etileno (ACC), giberelinas (GA), kinetina (CK) y ácido jasmónico (JA), b: fotos al microscopio óptico (objetivo 10x) de pORC6:ORC6-GUS tratadas con diferentes concentraciones de ACC durante 16 horas y tratamiento con 50 µM a 0 h, 8 h y 16 h, c: Fotos al microscopio óptico (objetivo 5x) de plantas pORC6:ORC6-GUS tratadas con diferentes concentraciones de NAA durante 16 horas y con 1 µM a 0 h, 8 h y 16 h. Barra=1mm.

Figura 27. Actividad GUS en plantas pORC6:ORC6-GUS tratadas con ACC. En este gráfico se representa la actividad de la enzima GUS (pmolMUG/min/µg de proteína) en plantas en medio sin hormonas (MSS) y con ACC.
Otra de las hormonas que muestran tener una influencia sobre la expresión de ORC6 es la auxina. Con 1 µM de NAA, ORC6 disminuye en el meristemo apical y se estimula a lo largo del periciclo (Figura 26c). Este efecto se produce a partir de concentraciones de auxina de 1 µM entre las 4 y las 8 h (Figura 26c).

Al igual que con el tratamiento de ACC, para ver si la regulación de NAA sobre ORC6 ocurre a nivel transcripcional o postraduccional, se realizó una PCR cuantitativa para medir los niveles de expresión de ORC6. En la gráfica de la Figura 28a se puede ver cómo la expresión de ORC6 se induce dos veces con respecto a las plantas no tratadas. Este efecto es coherente con el observado en las plantas pORC6:GUS, donde se ve la tinción azul distribuida por toda la raíz (Figura 28b). Al no estar GUS fusionado a la proteína ORC6, estos efectos sólo pueden deberse a un efecto de la auxina a nivel transcripcional.

En Arabidopsis, la ruta de señalización del etileno y de las auxinas interaccionan en numerosos puntos. La auxina induce la síntesis de etileno activando los genes que codifican la enzima ACS4 clave para la síntesis de etileno (Abel et al., 1995). Además, mutantes que muestran insensibilidad al etileno en raíz lo son en proteínas implicadas en la ruta de auxinas como aux1 (Fujimoto et al., 2000) o axr1 (Lehman et al., 1996). El etileno altera la síntesis de flavonoides que se consideran los principales reguladores del transporte de auxina (Buer et al., 2006). Para discernir cuáles son los efectos directos...
producidos por el etileno y la auxina en cada caso, al tratamiento de las plantas *pORC6:ORC6-GUS* con estas hormonas se le añadió un inhibidor de la síntesis de etileno (10 µM de AVG), así como un antagonista de éste (100 µM AgNO₃) y un bloqueador del transporte de auxinas (10 µM NPA) sucesivamente. Así comprobamos cómo el AVG no impide la degradación de ORC6 que conlleva el tratamiento con ACC. Esto tiene sentido ya que el AVG inhibe la síntesis del ACC, que es precisamente lo que estamos suministrando exógenamente (Figura 29a). Sin embargo, en las plantas tratadas con NAA sí tiene un efecto ya que inhibe la síntesis del etileno endógeno, lo que determina que el transporte de la hormona a lo largo de la raíz se vea afectado. Lo mismo ocurre cuando al tratamiento con NAA se le añade el antagonista de etileno AgNO₃ (Figura 29b). En las plantas tratadas con ACC y AgNO₃ la degradación de ORC6 está bloqueada ya que en este caso, AgNO₃ actúa por debajo del ACC. La degradación de ORC6 dependiente de ACC se sigue dando con la adición de NPA, lo que confirma definitivamente la implicación directa de la ruta de señalización por etileno en este fenómeno. En el tratamiento con NAA, la adición de NPA impide la distribución de ORC6 a lo largo de la raíz (Figura 29b). Esto indica que el efecto observado es específico de la ruta de señalización por auxinas.

![Figura 29. Interacciones entre etileno y auxina. a: fotos de raíces de plantas *pORC6:ORC6-GUS* tratadas con ACC (precursor de la síntesis de etileno), NPA (inhibidor del transporte de auxinas), AVG (inhibidor de la síntesis de etileno), AgNO₃ (antagonista del etileno), b: fotos de raíces de plantas *pORC6:ORC6-GUS* tratadas con 1 µM de NAA, 1 µM de NAA y AVG, AgNO₃ y NPA. Barra=1mm](image-url)
Dado que la degradación de ORC6 se induce por la ruta de etileno y que hemos demostrado que ORC6 se degrada por el proteasoma, se procedió a tratar las plantas \(p\text{ORC6:ORC6-GUS} \) con ACC y MG132 con objeto de observar el efecto que tiene el bloqueo de la degradación bajo la inducción de etileno (Figura 30). Las plantas \(p\text{ORC6:ORC6-GUS} \) tratadas con 50 µM ACC y 50 µM de MG132 tienen distribuida la proteína a lo largo de toda la raíz, al igual que las plantas no tratadas con hormonas. Con la auxina obtenemos el mismo patrón, pero además se aprecia la expresión de ORC6 en el periciclo (Figura 30).

La implicación del proteasoma en la degradación de ORC6 inducida por etileno nos llevó a estudiar si existe una posible implicación de SKP2A y CCS52B. Para ello las plantas mutantes \(skp2a \) y \(ccs52b \) transformadas con la construcción \(p\text{ORC6:ORC6-GUS} \) fueron tratadas con 50 µM de ACC. En ninguno de los fondos mutantes se bloqueó la degradación de ORC6, por lo que deducimos que la pérdida de función de SKP2A y CCS52B no es suficiente para prevenir la degradación señalizada por el etileno (Figura 31a). Estas plantas también fueron tratadas con 1 µM NAA sin que observásemos una diferencia con respecto al fondo silvestre (Figura 31b).

Para seguir profundizando en la ruta de la degradación de ORC6 por el etileno transformamos mutantes \(ein3 \) con la construcción \(p\text{ORC6:ORC6-GUS} \). El factor de transcripción EIN3 media la respuesta a etileno transcribiendo los genes de respuesta a esta hormona. Así que las plantas \(ein3 \) son insensibles al etileno. Sin embargo, la

Figura 30. Proteasoma y hormonas. Raíces de plantas \(p\text{ORC6:ORC6-GUS} \) tratadas con 50 µM de MG132 (izquierda), 50 µM de MG132 + 50 µM de ACC (centro) y 50 µM de MG132 + 1 µM de NAA (derecha), durante 16 h. Barra=1mm.
presencia de la proteína de fusión disminuye tanto en el fondo silvestre como en el mutante cuando tratamos las plantas con 50 µM de ACC, lo que nos lleva a concluir que existe una vía alternativa para la regulación de la degradación de ORC6 o que la señal para la degradación ocurre por arriba de EIN3.

También disponemos del mutante axr1 que tiene reducida la respuesta a auxina (Haber, 1998). Este mutante ha sido transformado con pORC6:ORC6-GUS sin que se observe una diferencia en la distribución de ORC6 inducida por NAA con respecto al fondo silvestre (Figura 31b), por lo que concluimos que ORC6 no se encuentra por debajo AXR1.

Figura 31. Elementos implicados en la señalización hormonal. a: fotos al microscopio óptico (objetivo 10x) de plantas pORC6:ORC6-GUS en fondo silvestre, mutante skp2a, ccs52b y ein3 tratadas con 50 µM de ACC (precursor de etileno), b: fotos al microscopio óptico (objetivo 5x) de plantas pORC6:ORC6-GUS en fondo silvestre, skp2a, ccs52b y axr1 tratadas con 1 µM de NAA. Barra=1mm.
5.4. Estudio de la función de ORC6

Con objeto de conocer la función que desempeña ORC6 durante el desarrollo en Arabidopsis, se generaron plantas que expresan constitutivamente ORC6-myc (ORC6OE). Cinco del total de líneas sobre-expresoras generadas tienen un nivel de ORC6-myc fácilmente detectable por western-blot (Figura 32a). De ellas se escogió la línea 15 para futuros experimentos, por tener los mayores niveles de expresión de ORC6-myc. Para realizar los estudios fenotípicos, se usaron varias líneas para constatar que el efecto observado es debido a la sobre-expresión de ORC6.

Por otro lado obtuvimos plantas con pérdida de función de ORC6 (orc6) a partir de semillas de la línea sail-1288-B07. Esta línea posee la inserción del T-DNA en la posición 1410 con respecto al ATG del ORC6 genómico en el octavo exón del gen, por lo que no se detectan niveles de mRNA completo de ORC6 (Figura 32b). Tanto las plantas ORCOE como las mutantes orc6 se analizaron para ver posibles fenotipos que pudiesen estar relacionados con una replicación anómala: estudios de ploidía, tamaño de los meristemos, tamaño de raíz y de células epidérmicas de hojas. También nos propusimos estudiar fenotipos de las plantas frente a aquellos tratamientos que afectan a la estabilidad y distribución de ORC6 descritos en los apartados anteriores como son los tratamientos con zeocina, auxina y etileno.

Figura 32. Análisis de las plantas ORC6OE y orc6. a: niveles de expresión de ORC6 endógeno y ORC6OE en las distintas líneas de plantas ORC6OE (líneas 3, 6, 11, 14, 15), con respecto al silvestre (WT). En la parte inferior se muestran los niveles de proteína en ORC6OE detectadas en un western-blot con α-myc. b: niveles de expresión de ORC6 endógeno en plantas silvestres (WT) y en plantas orc6 (KO) amplificado con oligos situados antes de la inserción (oligos A) y a un lado y otro de la inserción (oligos B), tal y como se indica en el esquema.
5.4.1. Efecto de ORC6 en la ploidía.

Al ser ORC6 un componente del pre-RC, se comenzó por estudiar los fenotipos de orc6 y ORC6OE relacionados con la replicación. Por ello se midieron los niveles de ploidía de plantas de 14 días, ya que a este tiempo podemos observar los cotiledones con células que no proliferan y endorreplican, las hojas 1 y 2 que proliferan y empiezan a endorreplicar y las incipientes hojas 3 y 4 en estado de proliferación, teniendo así varios estadios en el desarrollo (Beemster et al., 2005). A 14 días, las plantas orc6 tienen los niveles de ploidía aumentados en las hojas 1, 2 y 3, 4 (Figura 33), lo que sugiere que la ausencia o reducción de los niveles de ORC6 induce la salida del ciclo celular al ciclo de endorreplicación. Otra causa de este aumento de la ploidía puede ser la aceleración en el desarrollo de la planta orc6 con respecto a las silvestres. Si esto es así, las hojas 1 y 2 de plantas de 30 días que ya han completado su desarrollo tendrán una ploidía similar, ya que la inducción de la endorreplicación está asociada al propio desarrollo de la hoja. Esto último es lo que parece ocurrir en las plantas orc6, ya que la ploidía de estas plantas se iguala a los 30 días en las hojas 1 y 2, e incluso se reduce. Las plantas ORC6OE tienen un comportamiento similar a las silvestres en los primeros estadios del desarrollo (hojas 3 y 4), pero los niveles de ploidía se reducen a los 30 días en las hojas 1 y 2 con respecto a las plantas silvestres.

Figura 33. Niveles de ploidía de las plantas silvestres, orc6 y ORC6OE. Histogramas: representación del reparto de ploidía (2C, 4C, 8C, 16C) en plantas silvestres (WT), orc6 (KO) y ORC6OE (OE) de 14 días en cotiledones, hojas 1 y 2, 3 y 4. Gráficas: representación del porcentaje de ploidías en cotilendón, hojas 1 y 2, 3 y 4 en plantas silvestres, orc6 y ORC6OE de 14 días y porcentaje de ploidías en hojas 1 y 2 de plantas de 30 días.
5.4.2. Efectos de los niveles de ORC6 en el fenotipo de hojas y raíz

Una de las características del desarrollo de la hoja es que sus células sufren una transición desde el ciclo de división celular al endociclo. Este incremento de la endorreplicación generalmente, aunque no siempre, se encuentra asociado a un incremento del tamaño de la célula. (Boudolf et al., 2004; Castellano et al., 2004). Por ello se procedió a la medición del tamaño de células de epidermis adaxial de las hojas 1 y 2 de plantas de 14 días, que tienen aumentada la endorreplicación, así como en hojas no proliferantes como son las primeras hojas caulinares en plantas de 30 días (Figura 34a).

Figura 34. Células de la superficie adaxial de las hojas. a: fotos al microscopio óptico (20x) de la superficie adaxial de las hojas 1 y 2 de plantas de 14 días (14d) y de hojas caulinares de plantas de 30 días (30d) de plantas silvestres (WT), or6 (KO) y ORC6OE (OE). b (de izquierda a derecha), gráfica 1ª: frecuencia de tamaños de células en WT, KO y OE, en el eje de ordenadas se indica el número de células (x102), y en el eje de abscisas el Logaritmo del área celular ((µm2)x1000); gráfica 2ª: número de células por hoja x 103 de WT, KO y OE; gráfica 3ª: área celular (µm2 x102) media de las WT, KO y OE. *p<0,2, **p<0,001; n=150. Barra=50µm.
El área de las células de las plantas silvestres y ORC6OE es menor que la de las plantas \textit{orc6} en hojas 1 y 2 de 14 días (Figura 34b). Sin embargo, el tamaño se iguala en las hojas caulinares de plantas de 30 días (Figura 34b). Este fenotipo es coherente con el hecho de que las ploidías de hojas maduras, como son las 1 y 2 de 30 días, no existen diferencias entre las plantas silvestres y las \textit{orc6}. Además, el número de células por hoja es menor en las hojas 1 y 2 de plantas \textit{orc6} de 14 días, lo que quiere decir que la tasa de división en este estadio es menor que en las plantas silvestres y ORC6OE.

También se analizaron la longitud de raíces, el tamaño de meristemos radiculares y el número de capas de la columela en plantas silvestres, \textit{orc6} y ORC6OE. Las plantas \textit{orc6} tienen una media de la longitud de raíz un 10\% menor que las plantas silvestres de 7 días (Figura 35), mientras que las ORC6OE son un 9\% mayores que las silvestres en la línea número 15, pero presenta variabilidad en el resto de líneas sobre-expresoras, por lo que no se tuvieron en cuenta estos resultados. El menor tamaño de la raíz de las plantas \textit{orc6} puede deberse a un menor tamaño de las células o a una disminución en el número de células debido a una menor tasa de división.

![Figura 35. Tamaño de raíces de plantas de 7 días.](image)

Para averiguar la causa de la reducción de la longitud de la raíz de las plantas \textit{orc6}, se llevaron a cabo mediciones del tamaño del meristemo de la raíz. El meristemo radicular se origina a partir de un grupo de células madre que generan otras células que se dividen sucesivas veces antes de entrar en una zona de rápida elongación en la que las células paran de dividirse para posteriormente diferenciarse (Dello Ioio \textit{et al.}, 2007). Entre las células madre se encuentra un grupo de células con una tasa de división muy baja llamadas centro quiescente (QC), que controlan que las células madre vecinas se
mantengan en un estado indiferenciado. Esta estrategia asegura que después de que una célula madre se divida, una de ellas queda separada del QC y se diferencie mientras que la otra permanezca con el estatus de célula madre (Benfey y Scheres, 2000) (Figura 36a y 37b). Entre estas células madre y su progenie totalmente diferenciada se encuentra una población de células intermediarias que tienen una capacidad limitada de división y cuya capacidad de diferenciación está restringida. Son estas células en las que tienen lugar rondas extras de división y las que comprenden el llamado meristemo radicular (Scheres, 2007).

En este trabajo se ha definido la región meristemática como aquélla en la que las células están dividiéndose activamente y son relativamente pequeñas (<13 µm). Las células aumentan su tamaño (>13 µm) una vez que salen del ciclo celular y empiezan a elongar como parte de su programa de diferenciación (Figura 36a). En la Figura 36b se analizan los tamaños de los meristemos de las plantas silvestres y orc6 mediante la cuantificación del número de células <13 µm. En las plantas silvestres, las células empiezan a elongar más tarde, por lo que el meristemo es mayor y comprende un mayor número de células que en las plantas orc6. Las plantas ORC6OE no muestran una diferencia significativa con respecto a las silvestres y no se muestran en el gráfico.

Figura 36. Estudio del meristemo radicular. a: esquema del meristemo radicular sobre una raíz teñida con iodo de propidio observada al microscopio confocal (Dello Ioio et al., 2007), b: gráfico que representa el tamaño del meristemo de plantas orc6 en rojo y del silvestre en verde, en función del número de células menores de 13 µm. El eje de abcisas representa la posición de las células de la zona de división, siendo la número 1 la adyacente a las células madre. En el eje de ordenadas se representa el tamaño de cada célula. P<0.025; n=20.

Para el mantenimiento del tamaño de los meristemos, la tasa de diferenciación de células hijas tiene que ser igual a la de generación de nuevas células. La disminución del tamaño del meristemo de las plantas puede deberse a una menor capacidad de
división de las células madre, a una pérdida de potencial de división de las células meristemáticas o por diferenciación temprana de éstas (Dello Ioio et al., 2007).

Para ver si la causa del acortamiento del meristemo se encuentra en la disminución de la capacidad de división de células madre, observamos la tasa de divisiones alrededor del QC y de las células madre que dan origen a la columela en plantas silvestres, orc6 y ORC6OE. Para ello teñimos las raíces con lugol y las observamos con el microscopio óptico. El lugol tiñe de rojo los granos de almidón que contienen las células de la columela ya diferenciadas.

![Figura 37. Estudio de la organización del meristemo radicular. a: en la fila superior se muestran fotos al microscopio óptico mediante Nomarski del meristemo radicular de plantas silvestres (WT), orc6 (KO) y ORC6OE (OE), teñidas con lugol. Los asteriscos indican el lugar que ocupan las células del centro quiescente (QC). En la fila inferior se encuentran las raíces de WT, KO y OE teñidas con ioduro de propidio para contar las capas totales de la columela; b: esquema del meristemo radicular. En el recuadro se detallan las células madre que originan las diferentes capas de la raíz. Barra=15µm.](image)

Las capas de células que no aparecen teñidas corresponden a las células madre que dan origen al resto de la columela, quedando las células del QC inmediatamente por arriba de éstas y por debajo de la estela. En las plántulas silvestres la tasa de división de las células que ocupan el lugar del QC (indicado con asteriscos en la Figura 37a) es muy baja, y suele haber sólo una capa entre las células de la columela que contienen almidón y el QC que se corresponde con las células madre que generan la columela. La tasa de división del QC de las orc6 es superior a la del silvestre, encontrando varias células en la posición que ocupa el QC. Además, en 1 de cada cinco plántulas orc6 encontramos una capa extra de células madre de la columela (Figura 37a). Este aumento en el número de capas indiferenciadas se traduce a su vez en una capa de células extra en el
total de capas de la columela, por lo que parece ser consecuencia de un aumento de división de las células madre y no a un retardo en la diferenciación. En las plantas sobre-expresoras encontramos un fenotipo similar al de las plantas silvestres (Figura 37a).

Para estudiar el efecto sobre la división de las células meristemáticas medimos la actividad mitótica en los meristemos radiculares de plantas silvestres, orc6 y ORC6OE. Para ello se llevaron a cabo inmunolocalizaciones de KNOLLE como las descritas en los anteriores apartados, pero utilizando un fluoróforo verde asociado al anticuerpo secundario (FITC) y se contó el número de células positivas (Figura 38). Se observó una disminución en el número de placas de división en las plantas orc6 con respecto a las silvestres. Esta disminución es más patente en los dos tercios superiores, ya que en las orc6 las divisiones parecen acumularse en la parte apical de la raíz (Figura 38), reflejo del menor tamaño del meristemo radicular. Podemos concluir entonces que la tasa de división celular está disminuida en los meristemos de las plantas orc6.

![Figura 38. Tasa de división del meristemo radicular.](image)

Para estudiar la posible implicación de ORC6 en la diferenciación, las raíces de plantas silvestres, orc6 y ORC6OE se cultivaron en medio inductor de la dediferenciación (callus induction media: CIM), medio inductor de la formación de tallos (shoot induction media: SIM) y medio inductor de la formación de raíces (root induction media: RIM). En ninguno de los tres casos existe una diferencia clara entre el fenotipo silvestre y el de orc6 y ORC6OE (Figura 39). Este dato concuerda con el hecho...
de que la capa de células madre de la columela se deba a un aumento en la replicación de las células madre y no a falta de diferenciación. Por todo ello podemos concluir que la disminución del tamaño del meristemo observado en las plantas orc6 se debe a un aumento del potencial de división de las células meristemáticas.

<table>
<thead>
<tr>
<th>CIM</th>
<th>SIM</th>
<th>RIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>KO</td>
<td>OE</td>
</tr>
<tr>
<td>WT</td>
<td>KO</td>
<td>OE</td>
</tr>
<tr>
<td>WT</td>
<td>KO</td>
<td>OE</td>
</tr>
</tbody>
</table>

Figura 39. Dediferenciación de las raíces de plantas silvestres, orc6 y ORC6OE. Plantas silvestres (WT), orc6 (KO) y ORC6OE (OE) fueron crecidas en medio de diferenciación (CIM), inductor de formación de parte aérea de la planta (SIM) y de inducción de raíz (RIM).

5.4.3. Respuesta de ORC6 frente a daño.

Puesto que hemos demostrado que ORC6 se degrada en respuesta a daño del DNA, una de las posibles causas del incremento de ploidía observado en las plantas orc6 podría deberse a la activación de forma constitutiva de la ruta de daño vía ATM y/o ATR en los primeros estadios de desarrollo de la hoja. Por ello se midió el nivel de expresión de genes implicados en estas rutas. Un incremento en la transcripción de estos genes son una señal de que se está dando una respuesta a daño (Chen et al., 2003; Lafarge y Montane, 2003). Las plantas orc6 mostraron un incremento de la expresión de los genes PARP1 y RAD51, (Figura 40) ambos implicados en el mecanismo de reparación por recombinación homóloga, aunque no de BRCA1 que también está implicada en esta vía.

Figura 40. Niveles de expresión de los genes implicados en endorreíplicación y en daño en las plantas orc6. a: porcentaje de expresión de genes implicados en endorreíplicación (KPR1y2) y rutas de daño (KU70, PARP1, RAD51, BRCA1), en plantas orc6 con respecto a las WT. Son estadísticamente significativas las variaciones de expresión por encima y por debajo de las líneas horizontales, por lo que se considera que sólo PARP1 y RAD51 se encuentran desregulados con respecto al silvestre.
Con intención de ver la respuesta de estas plantas frente a zeocina, las plantas silvestres, orc6 y ORC6OE fueron crecidas en medio MSS y al cuarto día traspasadas a medio MSS con 6.3 µM de zeocina para posteriormente medir la longitud de la raíz y determinar su patrón de ploidía. Curiosamente, las raíces de las plantas orc6 alcanzan una longitud similar a las silvestres después de 10 días de tratamiento con zeocina, superando el retardo que muestra el mutante orc6 con respecto a las plantas silvestres cuando son crecidas en medio sin zeocina (Figura 41). Esto puede deberse a que estas plantas, al no tener ORC6, perciban el daño de forma constitutiva. Esta percepción de daño afecta a la longitud de la raíz de las plantas orc6 en medio sin zeocina. Cuando la zeocina está presente, las plantas silvestres perciben el daño por lo que la longitud de la raíz se reduce, por lo que no se aprecia una diferencia entre las raíces de las plantas silvestres y las mutantes orc6. Las plantas ORC6OE también muestran longitudes similares. La ploidía de las hojas 1 y 2 de las plantas orc6 tratadas con zeocina también es similar a la de las plantas silvestres. Sin embargo, las plantas ORC6OE muestran un ligero incremento del porcentaje de células con el contenido de DNA duplicado (4C) por lo que puede indicar un incremento de células con parada de ciclo en G2/M.

Figura 41: Fenotipo de plantas tratadas con Zeocina. a: foto con lupa de plantas de 14 días silvestres (WT), orc6 (KO), y ORC6OE (OE) crecidas en 6.3µM de zeocina durante 10 días. En la parte inferior se representa la distribución de núcleos con distinta ploidía (2C, 4C, 8C, 16C) de cotiledones (cot) y hojas 1 y 2 de WT, KO y OE, b: medias de la longitud de las raíces de WT, KO y OE en mm. c: cuantificación del análisis mostrado en el apartado “a” de cotiledones en WT, KO y OE, d: porcentaje de ploidía de hojas 1 y 2 en WT, KO y OE.
5.4.4. Respuesta de ORC6 frente a hormonas

En el apartado 5.3 se muestra cómo las plantas \textit{pORC6:ORC6-GUS} tienen una expresión diferencial de la proteína de fusión cuando son tratadas con el precursor de etileno ACC o la auxina sintética NAA. Por ello postulamos que tanto las plantas que expresan ORC6 de forma constitutiva como las que no expresan esta proteína han de tener un fenotipo diferente al del silvestre en aspectos regulados por alguna de estas dos rutas hormonales: número de raíces laterales, floración, elongación del hipocotilo en plantas etioladas, entre otros.

Con respecto al etileno, la selección de mutantes de esta ruta de señalización se ha hecho casi exclusivamente mediante el aislamiento de líneas que mostrasen algún defecto en la llamada “triple respuesta” (TR) (Knight y Crocker, 1913) que es el fenotipo que muestran las plantas crecidas en oscuridad en presencia de etileno. La TR en Arabidopsis se caracteriza por un hipocotilo más corto y grueso con una característica curvatura apical e inhibición del crecimiento de la raíz (Guzman y Ecker, 1990). Por ello observamos el hipocotilo así como la curvatura apical de las plantas silvestres, \textit{orc6} y \textit{ORC6OE} crecidas en oscuridad en medio MSS y en MSS con 50 µM de ACC. En oscuridad en medio MSS muestran un fenotipo similar al silvestre, pero con 50 µM de ACC, las plantas \textit{orc6} muestran una reducción de un 35% en la longitud del hipocotilo con respecto a las plantas silvestres. (Figura 41). Esto implica que la ausencia de ORC6 potencia el fenotipo de la TR llevado a cabo por el etileno. El hecho de que las plantas etioladas \textit{orc6} sean similares a las silvestres quiere decir que no se está dando una respuesta constitutiva a etileno en este aspecto, aunque sí se encuentra aumentada la sensibilidad una vez que añadimos ACC. Por ello concluimos que ORC6 regula negativamente la TR inducida por el etileno. Sin embargo, una vez más, las plantas \textit{ORC6OE} no muestran fenotipo alterado con respecto al silvestre (Figura 41). Esto puede deberse a que estamos sobre-expresando la proteína nativa, con su caja de destrucción y sitios de fosforilación. Al ser el ciclo celular un proceso altamente regulado, posiblemente las plantas \textit{ORC6OE} sean capaces de degradar la proteína cuando esto sea requerido, a pesar de que la cantidad de partida sea mayor que en las plantas silvestres. La expresión ubicua de ORC6 no tiene por qué influir en las células que no están en ciclo.
Los fenotipos de las plantas mutantes insensibles a etileno \textit{ein3, ein2} y \textit{etr1} tienen retardada la floración, mientras que el mutante constitutivo \textit{eto1} muestran una floración adelantada con respecto al silvestre (Ogawara \textit{et al.}, 2003), por lo que estudiamos la floración de \textit{orc6} y ORC6OE. Las plantas \textit{orc6} tienen adelantada la floración con respecto a las silvestres y las sobre-expresoras. En la Figura 43 se muestran plantas de 25 días donde se aprecia el tallo floral de las plantas \textit{orc6} de unos 4 cm mientras que las plantas silvestres y ORC6OE sólo acaban de empezar a generarla. Sin embargo, el número de hojas que componen la roseta una vez despunta el tallo floral es de una media de nueve hojas tanto en las plantas silvestres como en las \textit{orc6} y una media de 8 en las ORC6OE.

Figura 42. Crecimiento de plantas en oscuridad. a: fotos con lupa de plantas silvestres (WT), \textit{orc6} (KO) y ORC6OE (OE) de 7 días crecidas en oscuridad en MSS y en MSS con 50 \textmu M de ACC. b arriba: gráfica que muestra las medias de longitud del los hipocotilos de las plantas WT, KO y OE crecidas en oscuridad en medio MSS. b abajo: gráfica que muestra las medias de longitud del los hipocotilos de las plantas WT, KO y OE crecidas en oscuridad en medio MSS con 50\textmu M de ACC. **P<0.001; n=50.

Figura 43. Floración de las plantas silvestres, \textit{orc6} y ORC6OE. Fotos de plantas de 21 días silvestres (WT), \textit{orc6} (KO) y ORC6OE (OE), crecidas en agar y pasadas a tierra a los 10 días.
También se han descrito diversos efectos del etileno en la organización del meristemo radicular. Los mutantes que muestran una respuesta constitutiva a etileno, como *ctr1* o *eto1* muestran un incremento en la frecuencia de división del QC que se traduce en un mayor número de capas de células que conforman la columela, por lo que se piensa que el etileno tiene un papel en la modulación de la división de las células madre en la raíz de Arabidopsis (Ortega-Martínez et al., 2007). Las plantas *orc6* muestran también divisiones extra en las células que ocupan el lugar del QC, así como capas extra de las células madre que van a originar las células de la columela (Figura 37a). Esto sugiere que, en este aspecto, el mutante *orc6* fenocopia una respuesta constitutiva a etileno en estos aspectos. Dado que en las plantas *orc6* los niveles de expresión de dos de los genes implicados en el mecanismo de recombinación homóloga (HR), *PARP1*, *RAD51*, están incrementados, analizamos la expresión de genes de daño en un mutante de respuesta constitutiva a etileno, *ctr1*, usando los microarrays disponibles en la red (Zimmermann et al., 2004). Los niveles de genes implicados en la HR, *PARP1* y *BRCA1* están aumentados en las plantas *ctr1*, mientras *RAD51* y *Ku70* (implicado en la recombinación no homóloga), aumentan, pero en menor medida (Figura 44). Estos datos pueden ser un punto de partida para relacionar por vez primera la ruta de señalización del etileno con la ruta de señalización de daño de doble cadena.

![Figura 44. Expresión génica en las plantas mutantes *ctr1*. Incremento de expresión (%) de genes implicados en rutas de daño, *Ku70*, *RAD51*, *PARP1* y *BRCA1*, en en plantas *ctr1* medidos porcentualmente con respecto a la expresión de estos mismos genes en las plantas silvestres (Zimmermann et al., 2004).](image-url)
La auxina tiene un papel crucial en el crecimiento y desarrollo de la planta, incluida respuestas de regeneración y adaptación. Para detectar una posible intervención de ORC6 en la ruta de señalización de auxinas nos hemos centrado en tres aspectos fácilmente detectables: elongación de la célula (Evans, 1985), formación de raíces laterales (Negi et al., 2008) y gravitropismo (Muller et al., 1998).

Las plantas axr1, defectuosas en la respuesta a auxinas, en oscuridad muestran un crecimiento del hipocotilo reducido a la mitad con respecto al silvestre (Lincoln et al., 1990). Como hemos mostrado en la Figura 42, las plantas orc6 y ORC6OE crecidas en oscuridad muestran un fenotipo similar al silvestre, por lo que ORC6 no parece intervenir en la elongación del hipocotilo en oscuridad y en ausencia de etileno. Con respecto a la formación de raíces laterales, las plantas orc6 muestran una reducción del número de raíces laterales a los 10 días en comparación con las silvestres (Figura 45), mientras que no se observa un incremento significativo en las ORC6OE. ORC6 se expresa en los primordios de las raíces laterales (Figura 45b) y, además, se induce su expresión a lo largo del periciclo cuando tratamos las plantas con 1 µM de NAA, por lo que la ausencia de éste puede que esté afectando negativamente a la formación de las raíces laterales.

Otro de los aspectos en los que interviene la auxina es el gravitropismo: las plantas mutantes axr1 exhiben una respuesta retardada ante estímulos gravitatorios (Lincoln et al., 1990). El grado de alteración de la respuesta gravitópica de las plantas orc6 y ORC6OE con respecto a las silvestres se midió girando plantas de 5 días en un ángulo de 90º durante 16 h. El ángulo descrito por las raíces de las plantas silvestres se comparó con el de las orc6 y las ORC6OE (Figura 46), siendo de 90º tanto en plantas silvestres como en orc6 y ORC6OE.
Hemos demostrado que ORC6 se induce por NAA en el periciclo y que está implicado en uno de los procesos en los que interviene esta hormona. Por ello estamos llevando a cabo un estudio exhaustivo del fenotipo de los mutantes orc6 tratados con auxina, así como el cruzamiento de orc6 con otros mutantes de esta ruta.

Figura 46. Respuesta de las plantas al gravitropismo. Efectos del graviotropismo sobre plantas silvestres (WT), orc6 (KO) y ORC6OE (OE), observado en plantas de 5 días crecidas durante 16 h en un ángulo de 90º con respecto a la posición en la que germinaron.

5.4.5. Interacción de ORC6 con el DNA

El complejo ORC se une a los orígenes de replicación de forma diferencial dependiendo del organismo. En levaduras por ejemplo, todas las subunidades están unidas a la cromatina durante todo el ciclo celular (Vas et al., 2001; Wilmes et al., 2004). En este caso la regulación del complejo ORC se lleva a cabo por modificaciones posttraduccionales. En mamíferos, sin embargo, el complejo ORC no se mantiene fuertemente unido durante el ciclo celular (Thome et al., 2000). En humanos Orc2 se encuentra unido constitutivamente a la cromatina mientras que Orc1 se separa en fase S y vuelve a unirse en la re-entrada en fase S, lo que sugiere que esta subunidad tenga un papel regulador en la activación de los orígenes de replicación (Kreitz et al., 2001). En Arabidopsis el complejo ORC está aún poco caracterizado. En nuestro laboratorio se ha estudiado la unión de ORC1a y ORC1b al DNA mediante ensayos de inmunoprecipitación de cromatina (ChIP), habiéndose identificado sitios de unión específicos para esta subunidad (Sánchez y Gutiérrez, datos no publicados).

Para ver la unión de ORC6 al DNA, se realizó un ensayo de retardo de movilidad electroforética con una sonda de DNA que se incubó con las proteínas recombinantes GST-ORC1 (control positivo), GST (control negativo) y GST-ORC6 y His-ORC6. Mientras que podemos observar un retardo en la movilidad de ORC1b, no se aprecia retraso alguno para ORC6 en comparación con el control negativo GST (Figura 47). Por
ello podemos concluir que ORC6 no se une al DNA directamente, aunque no descartamos una interacción a través de su participación en el complejo ORC (Diaz-Trivino et al., 2005).

Uno de los sitios de los sitios de unión de ORC1a y ORC1b al DNA descritos se encuentra en el cromosoma 2 entre los genes *APG9* y *CDT1a* (Figura 48) (Sánchez y Gutiérrez, datos no publicados). El uso de diferentes parejas de oligos han permitido acotar la región genómica donde se une ORC1, situada en el promotor de *CDT1a*, próxima a su ATG (Figura 48). ORC1a y ORC1b se une fuertemente a la región amplificada por los oligos 2 y 3 especialmente, mientras que no se detecta en las regiones amplificadas por los oligos 4 y 1. Este hecho postula a la región proximal del promotor de *CDT1a* como un posible origen de replicación en Arabidopsis que, de ser así, se trataría del primer origen de replicación no ribosómico identificado en plantas. En este caso, sería esperable que el resto de subunidades del complejo también se uniera a esa región.

Por ello se llevó a cabo un ensayo ChIP utilizando las plantas ORC6OE para determinar si se detectaba una unión de ORC6 a las mismas regiones que las descritas para ORC1. En la Figura 48 se muestra cómo ORC6 se une también fuertemente a la región 3 y algo más débilmente a la 2 y a la 4, mientras que no se une a la región 1, confirmando la posibilidad de que esta región sea un origen de replicación, y mostrando por primera vez *in vivo* la participación de ORC6 en el complejo ORC.
5.4.6. Interacción de ORC6 con CDC6

Para ver si ORC6 forma parte, además, del complejo pre-RC, se llevaron a cabo diferentes ensayos de interacción con otros elementos de este complejo como son CDT1 y CDC6. Para ello se incubaron las proteínas recombinantes His-CDT1a y His-CDC6 con la proteína GST-ORC6, y con ORC6 con los tres dominios conservados en eucariotas (descritos en la introducción) truncados: GST-ORC6Δ1 GST-ORC6Δ2 GST-ORC6Δ. En el caso de CDT1 no obtuvimos interacciones evidentes, pero sí con CDC6 (Figura 49). Esta proteína se une tanto al ORC6 nativo como a ORC6 con sus regiones conservadas 1, 2 y 3 truncadas, por lo que concluimos que ORC6 se une a CDC6 a través de un dominio no conservado en eucariotas.
6. Discusión
Debido al gran tamaño del genoma en eucariotas, numerosos sitios de iniciación de la replicación están distribuidos por cada cromosoma. La activación de los complejos replicativos en los orígenes desencadena la replicación del DNA de forma bidireccional. En el núcleo de estos complejos pre-replicativos (pre-RC) se encuentra ORC que es indispensable para la formación del pre-RC. Para esta función replicativa las proteínas ORC tienen que ser reclutadas por la cromatina, pero poco se sabe sobre su destino durante el ciclo celular. En estos últimos años también se ha centrado la atención en el papel de las subunidades ORC fuera de su función estrictamente replicativa como la regulación transcripcional, la activación del checkpoint en fase S, la biogénesis de ribosomas o el desarrollo dendrítico de las neuronas (Triolo y Sternglanz, 1996; Pak et al., 1997; Loupart et al., 2000; Pflumm y Botchan, 2001; Lidonnici et al., 2004; Hou et al., 2005; Huang et al., 2005). La menor de las subunidades del complejo, ORC6, se requiere para la mitosis y la citoquinesis en humanos y Drosophila (Prasanth et al., 2002; Chesnokov et al., 2003). En este trabajo hemos demostrado que, en Arabidopsis, participa en la señalización del etileno y del daño de DNA de doble cadena, entre otros.

Para esta discusión, los resultados obtenidos se han agrupado en dos temas principales: “la dinámica de ORC6 durante el ciclo celular” y “la degradación de ORC6 inducida por hormonas”. En el apartado “Proteasoma, hormonas, daño y ORC6” se discute globalmente el posible papel del proteasoma como integrador de las diferentes señales reguladoras que dictan la degradación específica de ORC6.

6.1. Dinámica de ORC6 durante el ciclo celular

6.1.1. ORC6 está presente desde G1/S hasta G2/M en Arabidopsis

La disponibilidad de las diferentes subunidades del complejo ORC a lo largo de las distintas fases determina una correcta progresión del ciclo celular. La depleción o inactivación de varias de sus subunidades en G1 tardío impide que se lleve a cabo una correcta replicación (Weinberger et al., 2005; Gibson et al., 2006; Semple et al., 2006). Así, la depleción de ORC2 en fibroblastos de Drosophila, en S. cerevisiae y en humanos provoca una acumulación de células en G1 (Loupart et al., 2000; Pflumm y Botchan, 2001; Machida et al., 2005). La depleción ORC6 en G1/S en S. cerevisiae impide que la célula entre en fase S aún cuando los pre-RC están ya formados (Semple et al., 2006).
Esto implica a las diferentes subunidades ORC en algo más que la formación del pre-
RC en G1/S. Diversos efectos en proliferación han sido descritos también para los
mutantes orcl y orc5 (Loupart et al., 2000; Pflumm y Botchan, 2001; Park y Asano,
2008). En esta memoria de tesis hemos demostrado que la proteína ORC6 de
Arabidopsis se encuentra presente durante la fase S, siendo eliminada en G2/M para
volver a acumularse en S. Aunque ORC6 no es imprescindible para la viabilidad de
Arabidopsis, las plantas orc6 muestran diferencias en la ploidía en estadios tempranos
así como diferencias en la tasa de división de ciertos tipos celulares del meristemo
radicular.

6.1.2. Interacción de ORC6 con el DNA

De los organismos estudiados hasta ahora, sólo en Drosophila ORC6 es
indispensable para la unión del complejo ORC al DNA (Balasov et al., 2007). En S.
cerevisiae las subunidades Orc1-5 son suficientes para la unión al DNA aunque Orc6 es
esencial para la proliferación celular (Semple et al., 2006). En humanos, Orc6 no
interacciona con el resto de unidades de ORC y tampoco se requiere para la unión del
complejo al DNA, pero sí es necesario para la replicación (Prasanth et al., 2002).

En este trabajo hemos demostrado que, si bien ORC6 de Arabidopsis no se une
directamente al DNA, sí lo hace de forma indirecta en sitios específicos del promotor de
CDT1a a los que se une ORC1a y ORC1b, probablemente a través de su unión a las
subunidades ORC2-4-5, con las que se ha demostrado que ORC6 interacciona in vitratrino
(Díaz-Trivinio et al., 2005). Esta unión es un dato más para la confirmación de ORC6
como un componente integrante de ORC in vivo, ya que hasta ahora no se ha
conseguido una co-inmunoprecipitación con el resto de subunidades en Arabidopsis.

Además, el hecho de que tanto ORC6 como ORC1a y ORC1b se unan a ésta
región de forma específica es un dato más que refuerza la hipótesis de proponer esta
secuencia del promotor de CDT1a como un posible origen de replicación, siendo éste el
primer no ribosomal descrito en plantas.

6.1.3. ORC6, endorrepliación y daño

Cuando la horquilla de replicación deja de progresar, ya sea por bloqueo o daño
en el DNA, se desencadena la respuesta a daño originando una parada de ciclo.
Mutaciones en diferentes subunidades de ORC pueden suprimir o activar la respuesta a
daño (Sasaki y Gilbert, 2007). Se han generado numerosas cepas de *S. cerevisiae* que tienen interrumpidos estos mecanismos mediante mutaciones en secuencias específicas de ORC6. Así, la eliminación en esta proteína de sitios de fosforilación por CDKs o sitios RxL de unión a ciclinas provoca un aumento en el contenido de DNA nuclear. Además, la depleción inducida de ORC6 de *S. cerevisiae* en G1/S provoca el desplazamiento de las MCM de la cromatina (Semple *et al.*, 2006) impidiendo la progresión a fase S. En *Drosophila*, la depleción de esta proteína provoca un descenso de la replicación y un aumento del número de células binucleadas (Chesnokov *et al.*, 2003). Análisis *in silico* de ORC6 de Arabidopsis no muestran sitios susceptibles de ser fosforilados por CDKs, aunque sí muestran numerosos sitios RxL de unión a ciclina. La fosforilación de ORC6 puede estar mediada, al menos, por CK2 y probablemente por CHK. Para ver la funcionalidad que puedan tener estos sitios, se están transformando las plantas *orc6* con la construcción *pORC6:ORC6-GFP* en paralelo con *pORC6:ORC6-GUS* con los diferentes dominios RxL y dominios de fosforilación por CK2 mutados y con la caja de destrucción (DB) truncada, con objeto de observar qué fenotipo se restablece en el mutante con cada una de estas construcciones.

En este trabajo hemos caracterizado un mutante con pérdida de función a partir de una línea de inserción de T-DNA en el extremo carboxilo de *ORC6* que no transcribe un mRNA completo. Es el primer mutante descrito en Arabidopsis de una subunidad de ORC que no es gametofítico letal, como ocurre en el caso de *orc2* (Collinge *et al.*, 2004). Los mutantes de inserción *orc6* tienen aumentada la ploidía en comparación con el silvestre en fase de proliferación de las hojas. Esto muestra cómo, también en plantas, ORC6 puede formar parte de la ruta de prevención de la re-replicación o la endoreduplicación, aunque sólo en estadios tempranos del desarrollo de la planta, ya que las hojas maduras tienen una ploidía similar a la de las plantas silvestres. Puede que ORC6 medie una regulación del programa de endociclo de forma dependiente del estadio de desarrollo de la planta como ocurre con la proteína homóloga a la del retinoblastoma (RBR) (Desvoyes *et al.*, 2006). Otros mutantes de componentes del pre-RC y del replisoma en Arabidopsis tienen aumentada la endorreuplicación, como *cdt1a* (Raynaud *et al.*, 2005), *etg1* (Takahashi *et al.*, 2008) y *CDC6OE* (Castellano *et al.*, 2001). No ocurre así con mutantes *orc1* y *orc2* en las glándulas salivares de *Drosophila*, donde las células endorre replican del mismo modo que las silvestres, concluyendo que no intervienen en este mecanismo (Park y Asano, 2008).
Otra posibilidad es que las plantas *orc6* perciban este defecto en la maquinaria de replicación como daño, de forma que asegure su integridad genética activando el mecanismo de la endorreducción en los primeros estadios del desarrollo de la hoja. Este mecanismo ha sido descrito previamente en plantas silvestres tratadas con zeocina en los primeros estadios de desarrollo (Ramírez-Parra y Gutierrez, 2007). La ausencia de otras subunidades de ORC provocan una parada de ciclo, por ejemplo en *S. cerevisiae*, donde la depleción de ORC1 desencadena la activación del *checkpoint* durante la mitosis (Gibson *et al.*, 2006). Por su parte, Orc2 es necesario para la activación de Rad53, homólogo de Chk2 (Shimada *et al.*, 2002). En las plantas mutantes *orc6* hemos comprobado que, efectivamente, la falta de esta proteína es percibida como daño ya que los niveles de expresión de genes *PARP1* y *RAD51* que son marcadores del *checkpoint* de G2 (Babiychuk *et al.*, 1998; Chen *et al.*, 2003), se encuentran elevados de forma constitutiva. Si tenemos en cuenta que ORC6 se degrada cuando inducimos roturas de doble cadena en el DNA mediante la aplicación de zeocina, podemos establecer una relación entre la degradación de ORC6 y la respuesta a daño. Esta hipótesis se ve reforzada por el hecho de que en los mutantes *atr* el ORC6 no se degrada después del mismo tratamiento. Se están llevando a cabo dobles mutantes *orc6/atr* para observar su fenotipo frente a *stress* genotóxico y poder concluir a qué nivel y a través de qué ruta que se produce la degradación específica.

6.1.4. ORC6 y división celular

La proliferación celular en plantas tiene lugar en los meristemos. Aquí las células madre se renuevan y producen células hijas que se diferencian y dan lugar a diferentes órganos y estructuras. En el meristemo radicular de Arabidopsis las células madre rodean a un grupo de unas 4 células mitóticamente inactivas que constituyen el centro quiescente (QC). El QC mantiene la identidad de las células madre y define el nicho de éstas (Scheres, 2007). La especificación de la identidad celular del QC viene determinada por la co-expresión de, al menos, dos grupos de genes que codifican diferentes factores de transcripción: *SCARECROW (SCR)* y *SHORT-ROOT (SHR)* por un lado y *PLETHORA 1-2 (PLT1-2)* por otro. Cuando la acumulación de transcritos de *PLT* que se expresa distalmente por inducción de la auxina, se solapa con la expresión radial de *SHR* y *SCR*, se define posicionalmente la identidad de las células del QC (Sabatini *et al.*, 2003; Aida *et al.*, 2004).
Las plantas *orc6* muestran un mayor número de células en el nicho del QC que las silvestres. Las divisiones extras del QC se traducen en un aumento del número de capas que conforman la columela. Este aumento de la actividad mitótica parece ser específico del QC ya que las células del meristema radicular tienen una menor tasa de división que se traduce en un meristema de menor tamaño que el de las silvestres, fenotipo similar en este aspecto a los mutantes *plt1-2* (Aida *et al.*, 2004). Esta inducción de división específica del QC en ausencia de ORC6 sugiere que la proteína participa en la inhibición de la reentrada del centro quiescente en el ciclo celular. Para corroborar estos datos estamos transformando las plantas *orc6* con el vector que produce SCR-GFP, como marcador de las células del QC.

6.2. ORC6 y la ruta de señalización de etileno y auxina

6.2.1. Efectos del etileno y la auxina sobre la estabilidad y distribución de ORC6

En esta tesis se ha estudiado el efecto de las hormonas etileno y auxina sobre la dinámica de ORC6 utilizando como herramientas las plantas *pORC6:ORC6-GUS*. En estas plantas hemos encontrado que el etileno y la auxina producen efectos significativos en la expresión de ORC6.

En las vías de señalización del etileno descritas hasta ahora, el proteasoma degrada constitutivamente el factor de transcripción EIN3 (ETHYLENE INSENSITIVE-3), que estimula la transcripción de los genes de respuesta a etileno. Las proteínas F-Box, EBP1 y EBP2 (ETHYLENE BINDING PROTEIN 1-2) pertenecientes al complejo SCF, reconocen específicamente a EIN3, siendo, por tanto, reguladores negativos de la respuesta al etileno (Guo y Ecker, 2003; Potuschak *et al.*, 2003). Cuando el etileno se une a sus receptores, se inhibe esta degradación permitiendo que EIN3 transcriba los genes de respuesta a etileno. Además de EIN3, se han descrito en Arabidopsis otros cinco factores de transcripción que se han denominado proteínas EIN3-LIKE (EIL) que también parecen actuar como reguladores transcripcionales de respuesta a etileno (Chao *et al.*, 1997).

En este trabajo se han transformado plantas *ein3* con *pORC6:ORC6-GUS* con objeto de observar algún cambio en la distribución de ORC6 en plantas tratadas con el precursor del etileno ACC. Sin embargo, no hemos encontrado variación alguna, es
decir, ORC6 se sigue degradando en respuesta a etileno. Esto nos muestra que, o bien la degradación de ORC6 es un proceso que ocurre por encima de EIN3, o por otra vía independiente.

La degradación de ORC6 por el etileno se suma a otros procesos descritos en los que esta hormona interviene en la regulación del ciclo celular. Un ejemplo de ello lo tenemos en la muerte celular programada específica de fase S temprana y G2/M inducida por etileno en tabaco (Herbert et al., 2001).

Las auxinas también se señalizan a través de una cascada en la que está implicada la vía ubiquitina-proteasoma. Como se describió en la introducción, las AUX/IAA son una familia de proteínas que inhiben la actividad de los factores de respuesta a auxina (ARFs), un grupo de factores transcripcionales activadores de los genes de respuesta a auxina (Liscum y Reed, 2002). Las auxinas estimulan la unión de la AUX/IAA a la F-box TIR1 que actúa como receptor de la hormona mediando la ubiquitinación de las AUX/IAA (Dharmasiri et al., 2005; Kepinski y Leyser, 2005). En las plantas pORC6:ORC6-GUS el tratamiento con auxina distribuye la proteína a lo largo de los dos tercios distales de la raíz y disminuye en el meristemo debido a una inducción transcripcional y no a una regulación postranscripcional como muestra la subida del nivel de expresión de ORC6 en plantas silvestres tratadas con NAA con respecto a las no tratadas. Además, el tratamiento con MG132, aunque aumenta la cantidad de ORC6 puesto que impide su degradación, no modifica el patrón de distribución inducido por la hormona. Cuando al tratamiento con NAA se le añade un inhibidor de la síntesis del etileno como es el AVG, la distribución de ORC6:GUS varía, reduciéndose su expresión en los dos tercios distales de la raíz. Probablemente esto se deba a que el etileno altera la síntesis de flavonoides que se consideran los principales reguladores del transporte de auxina (Buer et al., 2006) impidiendo que la hormona pueda transportarse de forma basipetal (desde el ápice de la raíz).

La auxina interviene regulando múltiples aspectos del ciclo celular, propiciando su activación en el periciclo, y estableciendo células con potencial meristemático (Himanen et al., 2002). Por ello diversos componentes que intervienen en el ciclo celular tienen en sus promotores secuencias de regulación por auxinas, como es el caso de ORC6.

El hecho de que ambas hormonas, etileno y auxina, actúen sobre una misma proteína no es un caso aislado. Se han descrito dos factores de respuesta a auxina, ARF 19 y ARF7 que participan tanto en la vía de señalización de auxina como en la del
etileno (Li et al., 2006). En el apartado 6.2.2 discutimos sobre los fenotipos de orc6 que puedan tener relación con fenotipos de mutantes implicados en la vía de señalización de etileno y auxina descritos en la literatura.

6.2.2. Fenotipo de mutantes de la ruta de etileno y auxinas vs mutantes orc6

Las plantas orc6 muestran aspectos en su fenotipo que se han descrito previamente para mutantes de las vías de señalización de etileno y auxina. Uno de estos ejemplos es el fenotipo que presenta el QC en las plantas orc6. El establecimiento del QC y su tasa de división depende de una regulación hormonal. El transporte polar de auxina determina la organización del meristemo y una alteración de la localización de un máximo de auxina en el ápice de la raíz del maíz activan al QC, reactivándose el ciclo celular (Jiang et al., 2003). Además, las plantas mutantes plt1 y plt2 tienen reducida la transcripción del gen PIN4, uno de los cuatro genes que controlan colectivamente la distribución de auxina (Blilou et al., 2005). A su vez, la distribución de auxina es esencial para una transcripción adecuada de PLT1 y PLT2 (Galinha et al., 2007). El etileno también ha sido propuesto como parte del sistema de señalización que regula el QC en el desarrollo postembriónico de la raíz ya que los mutantes de respuesta constitutiva a etileno muestran una mayor tasa de división del QC (Ortega-Martinez et al., 2007). Al igual que los mutantes de respuesta constitutiva a etileno, las plantas orc6 tienen un aumento en la tasa de división de las células que ocupan el lugar del QC. Es posible que la presencia de ORC6 en la raíz inhiba de forma específica la entrada en mitosis de las células del QC y que su degradación sea uno de los mecanismos a través de los que se transduce la señal del etileno. La acumulación de la auxina en la parte apical de la raíz de maíz activan el ciclo de las células del QC, el mismo efecto observado en las plantas de respuesta constitutiva a etileno y en las plantas orc6, por lo que se podría postular que también ORC6 está implicado en la regulación de la tasa de división del QC vía auxina.

Para ver otras implicaciones de ORC6 en la ruta del etileno se analizó en las plantas orc6 y ORC6OE, la llamada “triple respuesta” (TR) que muestran las plantas crecidas en oscuridad con tratamiento de etileno: gancho apical, engrosamiento del hipocotilo y raíz reducida. El único fenotipo que muestran las plantas orc6 es que la elongación del hipocotilo se muestra reducida con respecto a las silvestres crecidas en
las mismas condiciones. El hecho de que las plantas orc6 sean hipersensibles al etileno en este aspecto implica que ORC6 debe de estar regulando negativamente la TR.

Las plantas mutantes insensibles a etileno ein3, ein2 y etr1 tienen retardada la floración, mientras que el mutante constitutivo eto1 muestra una floración adelantada con respecto al silvestre (Ogawara et al., 2003), al igual que las plantas orc6. Este dato junto con el aumento de la tasa de división del QC de los mutantes ctr1 apuntan a que las plantas orc6 se comportan como un mutante constitutivo en la vía de señalización del etileno. Si a este hecho le añadimos que estos mismos mutantes ctr1 tienen aumentados los niveles de expresión de los genes de recombinación homóloga, al igual que las plantas orc6, se podría establecer una conexión entre el checkpoint de G2 y el etileno.

Con respecto a los mutantes de la ruta de auxinas se han descrito múltiples fenotipos. En esta tesis hemos demostrado cómo las plantas orc6 coinciden en al menos uno de ellos: la reducción del número de raíces laterales. El transporte polar de auxina está mediado por transportadores de entrada de auxina (AUX1/LAX) y transportadores de salida de auxina (PINs, MDR/PGPS) (Friml, 2003; Geisler y Murphy, 2006). La proteína AUX1 facilita el transporte de auxina hacia los primordios de las raíces laterales, por lo que el mutante aux1 tiene reducido el número de raíces laterales (Marchant et al., 2002). La activación de la expresión de ORC6 en el periciclo inducida por auxina es coherente con un papel de esta proteína en la formación de raíces laterales.

6.3. Proteasoma, hormonas, daño y ORC6.

La degradación de ORC6 por el proteasoma ha sido el tema principal que ha dado pie al desarrollo de esta tesis. Diferentes experimentos desarrollados en este trabajo muestran cómo el sistema ubiquitina-proteasoma integra las rutas de señalización de daño y hormonas para degradar específicamente ORC6. Sin embargo aún no se ha conseguido determinar las subunidades del APC y del SCF que intervienen en estos procesos, si bien la intervención de ambas ligasas E3 ha quedado demostrada. Los diferentes escrutinios de doble híbrido realizados no han mostrado interacciones positivas para la proteína ORC6 con ningún miembro del APC o SCF, ni con ninguna otra proteína con las que interacciona ORC6 de otros organismos, como son otras subunidades de ORC o CDT1 (Chen et al., 2007). Esto puede deberse a que la caja D-
box al estar conservada, sea funcional en *S. cerevisiae* y, por tanto, reconocida por el sistema de degradación de la levadura. Sólo el ensayo llevado a cabo con los genes de la familia de adaptadores tipo Cdh1 del complejo APC de Arabidopsis mostró una débil interacción, paradójicamente, con la proteína que tiene truncado el motivo de unión al APC predicho, ORC6ΔDB. Posiblemente, la expresión heteróloga de ORC6ΔDB sea más estable al carecer de la secuencia de destrucción y es posible que interaccione a través de otras secuencias no descritas con la subunidad CCS52B del APC. El ensayo de interacción *in vitro* de plantas ORC6OE y la proteína recombinante HIS:CCS52B confirmaron finalmente la interacción.

Las plantas *skp2a* x pORC6:ORC6-GUS también mostraron una expresión de ORC6:GUS diferente con respecto a las del fondo silvestre. El comienzo de la expresión de la proteína de fusión parece adelantarse en el fondo mutante, aunque pueda deberse a un adelanto en el desarrollo de las plantas *skp2a* y no a que la ausencia de SKP2A evite la degradación de ORC6. Hay que tener en cuenta que la proteína SKP2B se encuentra presente en las plantas mutantes *skp2a* y puede estar supliendo la función de ésta.

Sin embargo, la interacción con SKP2a y CCS52B por sí solas, no parece mediar la degradación de ORC6 previa a la mitosis como se ha demostrado en las plantas que expresan pORC6:ORC6-GFP en el mutante *ccs52b* y *skp2a*, ni tampoco la degradación específica de ORC6 inducida por zeocina o por el etileno. En caso de que la función de estas proteínas se solape, sólo la generación de cruces de plantas pORC6:ORC6-GUS y pORC6:ORC6-GFP tanto con el doble mutante *skp2a/skp2b* como con el triple mutante *skp2a/skp2b/ccs52b* nos permitiría observar un posible cambio en la distribución de ORC6 a nivel de plántula y a nivel celular.

En la Figura 50 se representan, de forma esquemática, las distintas funciones de ORC6 de Arabidopsis que han sido descritas por vez primera en esta tesis (flechas grises). También se muestra la regulación transcriptual de *ORC6* llevada a cabo por la auxina y la postraduccional, por la degradación por el proteasoma. La rotura de DNA de doble cadena (DSB), a través de la ruta ATR, así como el etileno, inducen a su vez esta degradación.
Figura 50. Esquema resumen de las funciones de ORC6 de Arabidopsis y su regulación a partir de las conclusiones descritas en esta tesis. Las flechas negras indican la degradación de ORC6 por el proteasoma inducida por DSB, a través de ATR. Las flechas amarillas indican la regulación hormonal de ORC6 y del proteasoma, así como de intermediarios de la vía de señalización de daño por rotura de doble cadena de DNA (DBS). Las flechas grises indican las posibles funciones de ORC6 en Arabidopsis derivadas de las conclusiones de esta tesis.
7. Conclusiones
Las principales conclusiones que se derivan de este trabajo son:

- **ORC6 está sujeto a regulación durante el ciclo celular y se degrada por el proteasoma.** La proteína ORC6 se acumula durante la fase S y desaparece al final de G2, no estando presente durante la mitosis. La ausencia de ORC6 durante la mitosis descarta la implicación de esta proteína en procesos descritos para sus homólogas en otros organismos, como la citoquinesis, y refuerza su papel en replicación.

- **Las roturas del DNA de doble cadena (DSB) activan la degradación de ORC6 vía ATR.** La ruta de señalización por DSB desencadena la degradación de ORC6. Esto tiene como consecuencia el aumento de los niveles de expresión de RAD51 y PARP1, genes implicados en los sistemas de reparación por recombinación homóloga. ATR, y no ATM, es necesaria para la degradación de ORC6 en respuesta a DSB.

- **ORC6 inhibe procesos mediados por el etileno.** ORC6 restringe la división del centro quiescente y la elongación del hipocotilo en la triple respuesta, ambos procesos inhibidos en mutantes constitutivos a etileno.

- **La auxina induce la expresión de ORC6 en el periciclo.** ORC6 participa en la ruta de señalización de las auxinas mediando en, al menos, uno de los procesos regulados por esta vía: la formación de raíces laterales.

- **ORC6 forma parte del complejo ORC en Arabidopsis, aunque no es esencial para la viabilidad de la planta.** Las células de Arabidopsis son capaces de replicar su genoma en ausencia de ORC6. No obstante, la falta de esta subunidad provoca la entrada prematura en los endociclos durante el desarrollo de la hoja, el aumento de la división celular en áreas del centro quiescente y la disminución de la división en el meristemo radicular, así como la activación constitutiva de ciertos genes del checkpoint de G2, RAD51 y PARP1.
8. Bibliografía

Bibliografía

thaliana. Departamento de Biología Molecular. Universidad Autónoma de Madrid.

cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm. Plant Cell 16: 1854-1869.

