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Abstract

The response of bacteria to environmental stresses including antibiotic stresses is
one of the key factors helping them survive and evolve. In this thesis, we stud-
ied antibiotic resistance in two different aspects: mutagenic effect of antibiotics and
mechanisms of antibiotic resistance. In many bacteria, including Escherichia coli,
the stimulation of mutagenesis is mediated by the SOS response. Thus, blockage or
attenuation of this response through the inhibition of RecA has been proposed as a
possible therapeutic adjuvant in combined therapy to reduce the generation of antibi-
otic resistance. We studied the capacity of sublethal concentrations of antimicrobials
of different families with different molecular targets, which cause the increase in the
mutant frequency of E. coli, and the effects that the inactivation of recA would have
on the antibiotic-mediated mutagenesis. We tested the mutagenicity of 13 antibi-
otics; among them eight antibiotics stimulate E. coli mutagenesis (slightly in most
cases), with trimethoprim alone or in combination with sulfamethoxazole producing
the highest impacts. Inactivation of recA abolishes the mutagenic effect and also pro-
duces increased susceptibility to some anti-microbials. The fact that inactivation of
recA reduces mutagenicity and/or increases the activity of a large number of antimi-
crobials, supports the hypothesis that RecA inhibition might have favourable effects
on antibiotic therapy. We also studied the responses of bacteria under the antibi-
otic pressure including the development of antibiotic resistance. Thus, a library of
11.000 Mycobacterium smegmatis insertion mutants were constructed and analyzed
to find candidates which may have a rifampicin resistant phenotype. Rifampin is
an important first-line antibiotic for the treatment of tuberculosis. Although most
rifampin-resistant strains arise through mutations in the rpoB gene in mycobacteria,
a proportion of such strains showed no rpoB mutations. This suggests that alternative
mechanisms are responsible for rifampin resistance. We found that the disruption of
trkA, a putative regulator of K+ uptake, and the disruption of ich, a putative K+

channel lead to increased rifampicin resistance. Our data indicate that TrkA and Ich
are important for maintenance of the M. smegmatis growth rate, its pH homeosta-
sis and membrane potential. Besides increasing rifampicin resistance, inactivation of
these genes confers resistance to other hydrophobic agents, such as novobiocin, as
well as increased susceptibility to isoniazid and positively charged aminoglycosides.
We suggest that trkA and ich are general regulators of antibiotic susceptibility, and
that changes in the multidrug susceptibility/resistance pattern detected in the trkA
and ich mutants are associated with the membrane hyperpolarization.
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Resumén

La respuesta de las bacterias frente el estrés ambiental, incluyendo el estrés generado
por los antibióticos, es uno de los factores clave que las ayuda a sobrevivir y evolu-
cionar. En esta tesis, hemos estudiado la resistencia a antibióticos desde dos puntos de
vista distintos: El efecto mutagénico de los antibióticos y los mecanismos de resisten-
cia a los mismos. En muchas bacterias el incremento de la mutagénesis está mediada
por la respuesta SOS. Por lo tanto, se ha propuesto el bloqueo o atenuación de dicha
respuesta mediante la inhibición de RecA como tratamiento adyuvante en terapias
combinadas para reducir la aparición de resistencia a los antibióticos. Nosotros hemos
estudiado la capacidad de concentraciones subletales de antimicrobianos de diferentes
familias con distintas dianas moleculares que causan un incremento en la frecuencia de
mutantes en E. coli y los efectos que una inactivación de recA tienen en la mutagénesis
mediada por antibióticos. Exploramos la mutagenicidad de trece antibióticos, de los
cuales ocho estimulan la mutagénesis en E. coli (ligeramente en la mayor parte de los
casos), siendo el Trimetropin por śı solo o en combinación con Sulfametoxazol, el que
produce mayor efecto. La inactivación de recA elimina el efecto mutagénico y además
incrementa la sensibilidad a ciertos antimicrobianos. El hecho de que la inactivación
de recA reduce la mutagenicidad y/o aumenta la actividad de un gran número de
antimicrobianos apoya la hipótesis de que la inhibición de RecA podŕıa tener efectos
favorables en la terapia antibiótica.

También se ha estudiado la respuesta bacteriana en frente a la presión ejercida
por antibióticos, incluyendo el desarrollo de resistencia. De esta manera, se con-
struyó una libreŕıa de 11.000 mutantes por inserción de Mycobacterium smegmatis,
los cuales se analizaron en busca del fenotipo resistente a rifampicina. La rifampicina
es uno de los antibióticos de primera linea utilizado para el tratamiento de tubercu-
losis. Si bien la resistencia a rifampicina en mycobacteria está principalmente dada
por mutaciones en rpoB, hubo fenotipos resistentes a rifampicina que no presentaron
mutaciones en dicho gen. Esto sugiere que existen mecanismos alternativas respon-
sables de de la resistencia a rifampicina. Durante el trabajo, hemos observado que
la disrupción del gen trkA, un regulador putativo de la introducción de potasio a la
célula, aśı como la disrupción de ich, un canal de potasio putativo, incrementan la
resistencia a rifampicina. Nuestros resultados indican que tanto TrkA como Ich, son
importantes para mantener la el equilibrio ácido-base, tasa de crecimiento y potencial
de membrana en M. smegmatis. Además de aumentar la resistencia a rifampicina,
la inactivación de estos genes confiere resistencia a otros agentes antimicrobianos de
tipo hidrofóbico como la novobiocina, aśı como también provoca un aumento en la
sensibilidad a isoniazida y a antibióticos aminoglicósidos cargados positivamente. A
partir de los resultados obtenidos, sugerimos que trkA y ich regulan de manera general
la suceptibilidad a antibióticos, y que los cambios en los perfiles de susceptibilidad
y resistencia a múltiples antibióticos observados en las mutantes de trkA e ich se
asocian a la hiperpolarización de la membrana.
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Chapter 1

Introduction

1.1 Antibiotic stress and the development of an-

tibiotic resistance

Like the other living organisms, bacteria are continuously exposed to environmental

stresses and are able to adapt themselves to severe fluctuations of the environment.

There are many factors causing stresses in bacteria. Among them, the presence of

antibiotics produces different types of vital stresses. Studying the evolution of the

bacterial cell structure under such stressful conditions is an important research topic

because it provides us with an insight of how bacteria become antibiotic resistant.

Antibiotics can provoke antibiotic resistance through mutator selection. Simple or

successive selections with antibiotics for mutant phenotypes increase the proportion of

mutator strains in a cell population [Mao et al., 1997]. In such cases, antibiotics used

for selections do not only stimulate resistance to themselves, but also the increase of

mutator strains may result in acquired resistance of a selected population to other an-

tibiotics. Bacteria acquire resistance to antibiotics by one of two mechanisms: either

spontaneous mutations or horizontal transfer. Resistance by spontaneous mutations

depends on the mutation rate and the presence of proofreading and repair mecha-

nisms [Miller, 1996]. Mutations may cause the resistance of bacteria to antibiotics by

modifying their target, by changing their uptake or by stimulating an increase of their
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efflux [Hooper, 2001, Normark and Normark, 2002]. This kind of resistance is usually

found in bacteria that do not have any effective mechanisms of gene transferring such

as Mycobacterium tuberculosis. On the other hand, resistance by horizontal transfer

of genes is the main mechanism of acquired resistance. A horizontal gene trans-

fer usually consists of three different basic processes: conjugation, transduction and

transformation [Rice, 2000]. These processes do not only occur in the same species

but also among different ones. Thus, horizontal transfers are a major reason of wide

spreading resistance [Salyers and Amábile-Cuevas, 1997, Maiden, 1998].

Mutations and horizontal transfers can occur together. Indeed, in the resis-

tance caused by genes such as extended-spectrum TEM-type β-lactamase variants,

the horizontal transfer introduces new resistant alleles in a cell population. Then

these alleles are modified to produce various variants of resistance by mutations

[Blazquez et al., 1995, Blazquez et al., 2000].

1.2 Bacterial models used in this work

Escherichia coli : is Gram-negative, rod-shaped, flagellated, motile, oxidase neg-

ative and facultative anaerobe. It is a member of the Enterobacteriaceae family

[Buxton and Fraser, 1977] usually having two types of metabolism: respiratory and

fermentative, which commonly take place in the intestinal tract of humans and other

animals. In 1922, E. coli K-12 strain was isolated [Bachmann, 1972]. This strain does

not have virulence characteristics; it grows easily in laboratory media. Moreover, it

has been proven to be an useful model for microbial physiology and genetic research.

In one part of this thesis, we examined the role of antibiotics as mutagens in E.coli .

Mycobacterium smegmatis, used as a model organism in this study, is a Gram-

positive bacterium with high G+C DNA which belongs to the genus Mycobacterium,

the Mycobacteriaceae family, the Corynebacterineae suborder, the Actinomycetales

order and the Actinobacteridae class. Species in the genus Mycobacterium consist of

both environmental nonpathogenic organisms and obligate, opportunistic pathogenic.

Mycobacteria have an unusual structure because their cell wall contains a complex of
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long chains of mycolic acids and peptidoglican-arabinogalactan.

In particular, mycobacteria are usually classified to either slow or fast-growing

groups. M. smegmatis being aerobic belongs to the latter one. Besides, M. smegma-

tis is considered as a saprophytic and non-pathogenic microorganism although it may

cause skin and soft-tissue lesions [Brown-Elliott and Wallace, 2002]. Unlike most of

pathogenic mycobacterial species, M. smegmatis is a simple model and is easy to

work with because of its fast growing rate and requiring cheaper infrastructures for

experiments. There are many similarities between M. smegmatis and the much more

virulent obligate mycobacterial pathogens such as Mycobacterium tuberculosis. They

both have the same unusual cell wall structure and have 90% genetic homology to

each other [Tyagi and Sharma, 2002]. In addition to the aforementioned properties,

the M. smegmatis mc2 155 strain is hyper-transformable; it is an efficient host for

the eclectroporation of DNA [Snapper et al., 1990] and is now the work-horse of my-

cobacterial genetics. Furthermore, it is readily cultivatable in most of synthetic or

complicated laboratory media, where it can form visible colonies in quite a short time

from just three to five days. For these reasons, M. smegmatis became more popular

in scientific laboratories than M. tuberculosis or any other mycobacterial pathogens.

1.3 Antibiotics stimulate mutagenesis in E. coli

1.3.1 The SOS system

The SOS system is a cellular response to DNA damage; it is a programmed DNA

repair which results in DNA mutagenesis and genetic exchange or recombination

[Matic et al., 1995]. The SOS system is a regulon consisting of over 40 unlinked

genes [Radman, 1975]. Two key regulatory proteins LexA and RecA are involved

in the regulation and the induction of SOS response [Miura and Tomizawa, 1968,

Defais et al., 1971]. LexA is a transcriptional repressor that has two typical domains:

an N-terminal DNA-binding and a C-terminal dimerization and catalytic domain

[Luo et al., 2001, Schnarr et al., 1988, Oertel-Buchheit et al., 1993]. The LexA pro-
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tein binds to a site in the promoters of the SOS genes (SOS box) and down-regulates

the expression of these SOS genes, including the lexA gene [Courcelle et al., 2001,

Fernandez De Henestrosa et al., 2000]. RecA is an inducer protein of SOS response;

it plays an important role in homologous recombination and in many DNA repair

pathways such as repairing daughter strand gaps, double strand breaks and SOS mu-

tagenesis. RecA is activated by binding itself to a single-stranded DNA (ssDNA) pro-

duced by DNA damages during the replication processes and forming a nucleoprotein

filament in the presence of ATP [Chen et al., 2008, Cox, 2007]. The activated form

of RecA , usually known as ReA*, interacts with LexA and activates the self-cleavage

activity of LexA (also known as auto-cleavage) leading to the dissociation of LexA

from the SOS boxes. It results in the induction of the SOS regulon [Little et al., 1980].

When a DNA damage is repaired, the activity of RecA* disappears, thus, functional

LexA is re-accumulated and binds to the operator region of the SOS genes, and finally

the expression of SOS genes is prevented [Erill et al., 2007].

When the SOS response is induced by DNA damage, multiple genes involved in

repair, replication, recombination and cell division are expressed. Among them some

important genes are listed below:

1. In nucleotide excision repair (NER): uvrD (helicase encoding UvrD), uvrA and

uvrC encode subunits UvrA and UvrC of the UvrABC nuclease. The NER

repairs any damage caused by ultraviolet radiation.

2. In replication: polB, dinB and umuD, C encode the polymerases II, IV and

V respectively. These enzymes are able to bypass DNA lesions blocking chain

elongation by the DNA polymerase III.

3. In recombination:

• recA: encodes the RecA protein, which also have a role in SOS regulation

system and is one of the key proteins involved the homologous recombina-

tion process.

• recN : encodes the RecN protein involved in recombination via the RecFOR
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pathway.

• ruvAB : encodes the RuvA and RuvB proteins, being responsible for the

resolution of the holiday junctions created during homologous recombina-

tion.

4. In cell division:

• sulA encodes the SulA protein, which inhibits cell division by interact-

ing with the FtsZ protein being responsible for cell septation process

[Trusca et al., 1998].

• ftsK : encodes a DNA translocase that coordinates the processes of chro-

mosome segregation and cell division [Liu et al., 1998].

1.3.2 The SOS mutagenesis

The first action of SOS response is rescuing cells via restarting replications. SOS

mutagenesis is an error-prone DNA replication process allowing the bypass of DNA

lesions induced by UV or other external agents via a special kind of DNA repair

machinery [Walker, 1985]. Under usual conditions, the amount of LexA in a cell is

enough to control the expression of the SOS genes and lexA itself. When auto-cleavage

of LexA occurs via RecA* action, several genes from the SOS regulon are expressed

to activate error-prone DNA replication and the damage is therefore repaired. When

the reparation is finished, the concentration of LexA increases and the expression of

the SOS genes is again inhibited. During the SOS response, three main repairing

processes occur: excision, recombination and mutagenic repair.

The genes encoding DNA polymerases II (encoded by polB), IV (encoded by dinB)

and V (a product of umuD, C genes) are expressed through the induction of SOS

response. These genes known as error-prone DNA polymerases are responsible for

continuing of DNA replication with DNA lesions that cannot be replicated by DNA

polymerase III. This kind of replication is called translesion DNA synthesis. However,

these polymerases have low fidelity on replication, thus, errors can be introduced

during this process causing the generation of mutations [Sutton et al., 2000].
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1.3.3 Antibiotics increase mutagenesis via the induction of

SOS responses

It has been demonstrated that some antibiotics increase the mutagenesis via their

ability to induce the SOS response in bacteria [Ysern et al., 1990]. Among them,

quinolones work as good inducers of the SOS system. They are DNA-damaging

antibiotics which can increase mutant frequency via the induction of RecA-mediated

processes including also the induction of the error-prone DNA-polymerase expression

[Kohanski et al., 2010]. Quinolones induce the SOS response by a mechanism in which

the RecBCD nuclease/helicase is required [Newmark et al., 2005]. These drugs target

DNA gyrase and form a drug-stabilized gyrase cleavage complex to inhibit the DNA

replication. RecBCD processes the conversion of drug-stabilized cleavage complex

into DNA breaks. This process produces ssDNA which is necessary to activate RecA

to form RecA* that is required for the induction of the SOS response.

Other antibiotics being able to induce the SOS response are β-lactams. These

antibiotics are cell wall synthesis inhibitors, their targets in bacteria are penicillin

binding proteins (PBPs) which play an important role in the synthesis of peptido-

glycan. The PBP3 protein encoded by ftsI, is a key element in the septation during

cell division [Ishino and Matsuhashi, 1981] and is a target of β-lactams including

ceftazidime. It has been demonstrated that inhibition of PBP3 by β-lactams stim-

ulates the SOS response in E. coli [Miller et al., 2004] and the transcription of the

dinB gene encoding the error-prone DNA polymerase IV [Perez-Capilla et al., 2005].

Moreover, it also has been shown that the cephalosporin ceftazidime elicits adap-

tive responses, including the increase of mutant frequency in Pseudomonas aerugi-

nosa [Blazquez et al., 2006]. In addition, it is known that sub-inhibitory concentra-

tions of the fluoroquinolone antibiotic ciprofloxacin promote genetic recombination

in E. coli [Lopez and Blazquez, 2009, Lopez et al., 2007]. Recently, Kohanski et al.

[Kohanski et al., 2010] have demonstrated that sublethal levels of some bactericidal

antibiotics induce mutagenesis and this induction correlates with an increase in reac-

tive oxygen species (ROS), which in turn produces an induction of the SOS response.
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1.4 Anti-Tuberculosis drug resistance problem

The discovery of antibiotics is one of the most important breakthroughs in mod-

ern medicine. Since then, antibiotics have been widely used for effectively treating

and avoiding many popular bacterial infections in both human and animal bodies.

However, bacteria evolve very quickly to adapt themselves to new environments and

become resistant to many popular antibiotics. The recent fast increase of antibiotic

resistance causes a number of issues in health care. Nowadays, many well-known

antibiotics quickly become ineffective making treatment processes more complicated

and expensive. So far, some studies show that the main reason of antibiotic resistance

is inappropriate use of antibiotics. It is shown that over-use and misuse of antibiotics

can lead to the appearance and the wide-spread of antibiotic resistance.

Tuberculosis (TB) is a disease caused by several strains of mycobacteria, mainly

by M. tuberculosis. From the beginning, anti-TB drugs have been very effective in

protecting patients from tuberculosis. However, there might be unexpected side-

effects of inappropriate using anti-TB drugs. On one hand, they kill bacteria but on

the other hand they stimulate bacteria to become resistant to those drugs. Resistance

to anti-TB drugs happens during the selection of drug-resistant mycobacteria with

spontaneous mutations. When a treatment regimen is inadequate these resistant

mutants widely spread and replace wild type strains. Drug resistance developing

when there is no history of a TB treatment is called resistance among new cases

or primary drug resistance. Similarly, drug resistance developing during or after

the courses of a treatment is defined as resistance among previous treated cases or

acquired drug resistance.

The wide spread of TB resistance to many locations supposses a huge challenge

for many TB control programs. The increase of TB resistance is usually due to many

factors including the neglects of governments in TB control, inadequate accesses and

infrastructures, economic circumstances, poor managements of TB control programs,

population growth, migrations and a rising number of TB cases in HIV infected

individuals. Studies on drug resistance in many locations showed that the number
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of drug resistant TB is much higher in developing countries than developed countries

[Espinal, 2003].

Initially, bacteria are only resistant to a specific drug. However, as time goes by

they accumulate mutations being resistant to every individual drug. Finally, they may

become multi-drug resistance (MDR) [Ramaswamy et al., 2000]. In the literature

[Iseman, 1999], MDR-TB is usually defined as TB organisms that are resistant to

isoniazid and rifampicin whose are the two most potential first-line anti-tuberculosis

drugs. Patients with MDR-TB are difficult to be treated effectively because it requires

long-term treatments with more toxic, expensive and effective drugs. Besides, there

is a high possibility that they can remain as source of infection for a long period.

Another type of TB resistance is XDR-TB defined as TB with resistance to at least

isoniazid and rifampicin and resistance to a fluroquinolone or a second line injectable

agent (i.e. amikacin, kanamycin or capreomycin)[for Disease Control and Prevention, 2010].

This kind of resistance is identified as among the group of dangerous resistance which

results in very poor outcome and high mortality rate [Raviglione and Smith, 2007].

Both MDR-TB and XDR-TB strains are resistant to the most of important anti-TB

drugs. These kinds of resistance make TB control programs more complicated.

1.5 The burden of disease caused by TB

Statistics data regarding the magnitude of the TB epidemic all over the world reported

by the World Health Organization shows that one third of the world’s population is

infected by M. tuberculosis. In 2010, there were 8.8 million new infection cases; 1.1

million of deaths caused by TB infections from HIV-negative people and an additional

number of 0.35 million of deaths from HIV-associated TB. The majority of new cases

occurred in Asia (55%), followed by Africa (30%), the Eastern Mediterranea (7%),

Europa (5%) and America (3%).

According to a report of WHO, “There are about 5% of previously treated or new

TB patients being identified as MDR-TB infections in most countries. An estimation

of 16% of 290 thousands of cases of MDR-TB may exist among notified TB patients
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in 2010” [WHO, 2011]. The highest rates of the MDR-TB among new cases were

discovered in former Soviet Union states and China, where a high percentage of

patients fail to respond to standard drug therapy.

TB is the leading killer of HIV-infected individuals. In fact, it was estimated about

13% of TB infection cases reported among people living with HIV [WHO, 2011]. The

rate of TB in areas with high HIV prevalence such as in Africa is much more than the

rate of TB in low HIV prevalence areas. In developing countries, TB mainly affects

young people who are the major economic labors of the society. Another serious fact

is that TB is the main cause of death among women, especially in Africa. In 2010,

there are 3.2 million women being identified as incident cases of TB, among them

there are 0.32 million deaths [WHO, 2011].

1.6 The mechanisms of antibiotic resistance in my-

cobacteria

M. tuberculosis does not contain plasmid; they can develop resistance to antibiotic

via accumulation of spontaneous chromosomal mutations. In general, resistance of

mycobacteria to antibiotics can be classified as either intrinsic (natural) or acquired

(chromosomal mutations). Resistance is usually provided by four different mecha-

nisms:

1. modification of permeability of the cell wall

2. the activation of efflux pump system

3. drug degradations or modifications

4. drug target modifications

In particular, acquired drug resistance is mainly characterized by mutations in chro-

mosomal genes, producing the selection of resistant strains during drug therapy.
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1.6.1 Mycobacterial cell wall acts as a barrier against antibi-

otic penetration

Like the other free living bacteria, mycobacteria are covered by a cell wall. The cell

wall not only keeps mycobacteria’s shape but also protects them from harmful factors

such as different osmotic pressure and physical or chemical compounds. Nevertheless,

the chemical compositions of the cell wall and the assembly of the different macro-

molecules that make it up are modified during the growth and morphogenesis of cells.

Mycobacteria have a special and complex cell wall with significantly low permeability.

This characteristic serves as one of the major reasons of antibiotic resistance.

More than 60 % of the mycobacterial cell wall correspond to lipids. The structure

of mycobacterial cell envelope usually consists of two lipid layers. The first one is

a regular inner membrane, while second one is a layer mainly comprising of long-

chain mycolic acids whose are covalently linked to peptidoglycan via arabinogalactan

network (mAGP) [Minnikin, 1982]. When components of the cell wall are extracted,

under the action of different detergents, beside soluble components such as proteins

and free lipids, the mAGP complex remains insoluble.

Mycolic acids are long chains α-alkyl β-hydroxyl fatty acids, usually containing

from 60 to 90 carbon atoms. They are strongly hydrophobic molecules forming the

inner leaflet of the lipid bilayer of the cell wall. Lipoarabiomannan (LAM) and lipo-

mannan (LM) are also forming the cell wall [Minnikin, 1982]. Mycolic acid layers are

believed to have responsibility for the low permeability of mycobacteria. It works as

the outer membrane of Gram-negative organisms and prevents the entry of hydrophilic

compounds as antibiotics [Jarlier and Nikaido, 1994, Brennan and Nikaido, 1995]. How-

ever, mycobacteria cell wall is about a thousand times less permeable than Gram-

negative bacteria such as E. coli.

It has been demonstrated that mycolic acid layers play an important role in form-

ing an effective barrier against antibiotics. Liu and Nikaido [Liu and Nikaido, 1999]

showed that the mycolate-deficient mutant failed to synthesize full-length mycolic

acids and it increases susceptibility to hydrophobic compounds such as novobiocin,
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rifampicin, erythromycin and crystal violet. The increase of the permeability was

considered as one of the possible reasons for the increase of susceptibility to various

hydrophobic compounds.

There are two different systems for biosyntheses of short chain and long chain

fatty acids in mycobacteria. Indeed, the short chain fatty acids are synthesized by the

fatty acid synthase I complex (FASI), while the long chain fatty acids are synthesized

by the extension of the mercomycolate precursors from FASI by the FASII complex

[Barry et al., 1998]. Cole et al. [Cole et al., 1998] showed that genes encoding FASII

enzymes in M. tuberculosis are located in two loci: an operon having four genes:

fabD-acpM-kasA-kasB and another mabA-inhA operon. These enzymes were tested

as potential drug targets for TB.

The cell wall usually contains free lipids which are not covalently linked to peptidoglican-

arabinogalactan such as asglycopeptidolipids or phthiocerol-dimycocerosates (DIMs/PDIMs)

or the sulfolipids or the cord factor and so on [Minnikin, 1982]. These lipids have been

shown to be important in maintaining an outer membrane like the structure of my-

cobacteria.

Free lipids play an important role in forming an effective barrier against antibiotics

in M. tuberculosis. DIMs/PDIMs are produced by M. tuberculosis and a few other

mycobacteria or most pathogenic in humans and animals. They are the main lipids of

tubercle bacillus and play a role in the cell wall permeability [Camacho et al., 2001].

Many studies have implicated these molecules in the virulence of M. tuberculosis. Hy-

drophobic compounds can pass through the cell wall directly via the lipid membrane.

Meanwhile the penetration of hydrophilic solutes is very low; they can diffuse via pore

proteins-porins in the mycobacterial cell wall.

The porin of M. chelonae is the first one reported in mycobacteria. When the cell

wall of M. chelonae is extracted by detergents, it is found to contain proteoliposomes,

i.e. a channel-forming activity destroyed by protease. Subsequently, this channel-

forming activity is purified and finally, it becomes a 59 kDa cell wall protein that

allows the small and hydrophilic solutes to enter the cell [Trias et al., 1992]. The

purified protein contains negative charges at its mouth and produces action-selective
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channels. Nevertheless, unlike enterobacterial porin, the M. chelonae porin is a minor

protein of the cell wall. Its amount is less than the amount of porin found in E.coli.

Besides, it produces far lower permeability than that produced by the porin of E. coli

[Trias et al., 1992]. These observations can be considered as an explanation of why

the permeability of the M. chelonae cell wall to hydrophilic solutes is quite low.

In M. tuberculosis there is a molecule known as OmpATb which may play an

important role in permeability to small hydrophilic solutes. OmpATb is a pore-

forming protein and it appears to function as a porin. The OmpATb is required for

adaptation of M. tuberculosis at low pH. The mutants of M. tuberculosis lacking of the

ompA gene did not change their profile of antibiotics resistance [Raynaud et al., 2002]

and up to now there have not been any evidence showing the participation of OmpA

in the uptake of antibiotics.

MspA is the main porin of M. smegmatis and is responsible for the uptake of

hydrophilic solutes. In M. smegmatis, there is a set of very similar porins known

as Msp A, B, C and D. In wild type M. smegmatis, there are only expressions

of mspA and mspC. When the mspA gene is deleted, the transcription of mspB

and mspD is activated [Stephan et al., 2005]. It has been shown by Stephan et al.

[Stephan et al., 2004] that porin pathway across the cell wall plays an important

role in the sensitivity of both hydrophobic and hydrophilic antibiotics of M. smeg-

matis. MspA plays a major role in uptake of β-lactam antibiotics, moreover, the

small and hydrophilic antibiotics such as, fluoroquinolones and norfloxacinalso cross

the cell wall via Msp porin pathway. Other hydrophobic antibiotics such as chlo-

ramphenicol, erythromycin, novobiocin and rifampicin use porins to enter the cell as

well [Danilchanka et al., 2008]. Mutants of M. smegmatis with a defected mspA gene

increased resistance to the first line antibiotics such as rifampicin, ethambutol and

isoniazid at high concentration as well as the second line antibiotics such as fluoro-

quinolones and cycloserine at concentration close to the MICs. It can also become

multi-drug resistance [Stephan et al., 2004].
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1.6.2 Efflux pump systems

Efflux pumps are one of the reasons of low-level intrinsic resistance in bacteria. The

concentration of drug inside the cell depends on the balance of its influx and ef-

flux [Viveiros et al., 2003]. Drug efflux pumps in bacteria were classified in several

main families including the major facilitator superfamily (MFS), multidrug and toxic

compounds extrusion (MATE), resistance-nodulation cell division (RND), small mul-

tidrug resistance (SMR) and the ATP binding cassette (ABC) [Li and Nikaido, 2004,

Saier et al., 1998].

In mycobacteria, MFS, RND, SMR and ABC efflux pumps were known to involve

in drug resistance. In the following subsections, we enumerate several mycobacterial

drug efflux pumps which have been carefully studied.

MFS efflux pumps

Analysis of M. tuberculosis genome with bioinformatic tools helped identify 16 puta-

tive MFS efflux pumps [De Rossi et al., 2002]. However, not all of them were com-

pletely understood in their roles in drug resistance. M. smegmatis LfrA, was the

first multidrug efflux pump reported in mycobacteria by [Takiff et al., 1996]. Over-

expression of the lfrA gene confers resistance to fluoroquinones, acriflavine and other

toxic compounds such as ethidiumbromide [Li et al., 2004, Sander et al., 2000]. The

lfrR, i.e. an upstream of the lfrA gene, encodes a TetR-like regulator in which the lfrR

gene acts as a repressor of lfrA. The deletion of the lfrR gene leads to strong expression

of lfrA and causes the increase of high resistance to cationic dyes, fluoroquinolones and

tetracycline. It also induces slightly resistance to INH [Li et al., 2004]. There is no

homology of lfrA in M. tuberculosis, suggesting that there may be other efflux pumps

contributed to the resistance of this mycobacterium to fluoroquinolones. Indeed, the

Rv1634 efflux pump in M. tuberculosis confers resistance to various fluoroquinolones

when it is over-expressed in M. smegmatis [De Rossi et al., 2002].

The Tet(V) is an efflux pump isolated from M. smegmatis. The increase of tetra-

cycline MIC was observed when Tet(V) is over-expressed in M. smegmatis. However,
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the analysis of the Tet(V) distribution showed that only M. smegmatis and M. for-

tuitum have this efflux pump [De Rossi et al., 1998a]. Other MFS efflux pumps were

also identified in mycobacteria such as Tap and P55. Tap is an efflux pump of M.

fortuitium and has a homology Rv1258c in M. tuberculosis and causes the resistance

to aminoglicosides and tetracycline [Ainsa et al., 1998]. Moreover, the correlation be-

tween the transcription level of Rv1258c and drug resistance was determined in clinical

M. tuberculosis isolates resistant to rifampicin and ofloxacin [Siddiqi et al., 2004]. The

increase level of Rv1258c transcripts was observed when the isolates were grown in

the presence of rifampicin and ofloxacin. However, both of these antibiotics were not

shown to be substrates of Tap [Ainsa et al., 1998]. This suggests that efflux pumps

may be stimulated in response to the presence of the corresponding drugs.

The P55 efflux pump in M. bovis and its M. tuberculosis homologue, known as

Rv1410c, ia also associated with low-level resistance to aminoglycosides and tetra-

cycline [Silva et al., 2001]. Recently, it has been shown that mutants lacking of P55

in M. bovis BCG increased susceptibility to various toxic compounds including ri-

fampicin and clofazimine [Ramon-Garcia et al., 2009].

The epfA gene encodes a putative efflux pump EpfA in M. tuberculosis H37Rv.

The secondary structure of this efflux pump is similar to that of members of trans-

porter family QacA. To the best of our knowledge the association between EpfA and

drug resistance in M. tuberculosis has not been well understood yet. Nevertheless,

the deletion of epfA homologue in M. smegmatis causes an increase of susceptibility

to ethidium bromide, gentamicin, FQ and acriflavine [De Rossi et al., 2006].

SMR family drug transporters

Mmr encoded by the mmr gene is a member of the SMR family, which was identified

in M. tuberculosis. Other mmr -like genes exist in other Mycobacterium species includ-

ing: M. simiae, M. gordonae, M. marinum, M. smegmatis and M. bovis [De Rossi et al., 1998b].

The expression of the mmr gene in M. tuberculosis or in M. smegmatis results in re-

sistance to tetraphenyl phosphonium, ethidiumbromide, erythromycin, safranin O

and pyronin Y [De Rossi et al., 1998b]. Moreover, mutants with the deletion of the
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mmr homologue in M. smegmatis increase susceptibility to cationic dyes and flouro-

quinolones.

RND drug transporters

The genome sequence of M. tuberculosis consists of 13 putative transporters predicted

to belong to RND family [Cole et al., 1998]. The MmpL (mycobacterial membrane

proteins, large) appears to be confined to mycobacteria [Pasca et al., 2005]; they share

sequence and structure similarities to each other. The mmpL7 gene of M. tuberculosis

confers high level resistance to INH (MIC is 32 times higher than wild type) when

it is over expressed in M. smegmatis. This fact indicates that the MmpL7 protein

actively pumps out INH in M. smegmatis [Pasca et al., 2005].

ABC drug transporters

There are at least 37 ABC transporters completely and incompletely identified in M.

tuberculosis [Braibant et al., 2000]. Only a few of them has been characterized and

determined to play a role in drug resistance in M. tuberculosis. The genome sequenc-

ing and analyzing of M. tuberculosis show that M. tuberculosis has the doxorubicin-

resistance operon, i.e. drrAB [Cole et al., 1998]. The expression of the drrAB genes

in M. smegmatis confers resistance to antibiotics such as tetracycline, erythromycin,

ethambutol, norfloxacin, streptomycin and chloramphenicol. This resistant pheno-

type can be reversed by treatments with verapamil or reserpine which are known as

efflux pump inhibitors [Choudhuri et al., 2002].

Phosphate specific transporter (Pst) has been reported in many bacteria including

M. tuberculosis. The high level of transcription [Banerjee et al., 1998] and chromoso-

mal amplification [Banerjee et al., 2000] of the pstB gene encoding PstB was observed

in the M. smegmatis ciprofloxacin resistant mutant generated in a laboratory. The

active efflux pump plays a major role in resistance to ciprofloxacin of this strain

[Bhatt et al., 2000]. An ABC transporter encoded by the Rv2686c-Rv2687c-Rv2688c

operon of M. tuberculosis plays an important role in fluoroquinolones efflux when it

is produced from a multi-copy plasmid. Over-expression of this operon in M. smeg-
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matis confers resistance to ciprofloxacin and norfloxacin. Pump inhibitors reserpine,

verapamil and carbonyl cyanide m-chlorophenylhidrazole (CCCP) reduce the level of

resistance [Pasca et al., 2004].

1.6.3 Drug tolerance

The tolerance of M. tuberculosis to several commonly used antibiotics limits the

chemotherapy. In many cases, it is considered as the root of TB treatment fail-

ure. Morris et al. [Morris et al., 2005] described a mycobacterial system inter-

connecting with resistance to antibiotics penetrating the cell wall; it enables my-

cobacteria to tolerate to antibiotics which inhibit cytoplasmic targets. This sys-

tem depends on whiB7 which is a gene encoding a WhiB7 transcriptional regulator.

WhiB7 belongs to a family of regulator proteins WhiB which is restricted to the

Actinomycetes [Soliveri et al., 2000]. In Steptomyces coelicolor there are 14 genes

belonging to the whiB family, among them whiB7 plays a role in multidrug re-

sistance phenotype. The replacement of whiB7 in M. tuberculosis, M. bovis BCG

or in M. smegmatis (Nguyen et al., unpublished manuscript) causes the sensitivity

to variety of antibiotics including macrolides, a lincosamide, and an aminoglycoside

[Morris et al., 2005, Nguyen and Thompson, 2006].

Moreover, the expression of whiB7 is significantly induced by minimal inhibi-

tion concentration of erythromycin, tetracycline and high concentration of strep-

tomycin. It also controls the expression of a regulon that contains at least eight

genetic loci including two well documented antibiotic resistant genes tap and erm

[Morris et al., 2005]. Similar to the other WhiB proteins, WhiB7 seems to work to-

gether with the primary sigma factor (SigA) in control of its regulon. Nevertheless,

genome of M. tuberculosis encodes 12 alternative sigma factors, among them there is

SigF being antibiotic-inducible and taking part in intrinsic multidrug resistance.

The iniBAC operon is strongly induced when M. bovis BCG or M. tuberculosis

are treated with ethambutol or INH. This operon confers multidrug tolerance via

an associated pump-like activity [Colangeli et al., 2005]. Over-expression of the M.

tuberculosis iniAgene in the M. bovis BCG under exposure to either INH or etham-
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butol may result in tolerance to these antibiotics. M. tuberculosis mutants with iniA

deletion increase susceptibility to INH [Colangeli et al., 2005].

Lsr2 is a small histone-like protein with broad down-regulatory and up-regulatory

activities in M. smegmatis. In M. tuberculosis it controls the iniBAC operon and the

other antibiotic-induced genes including the efpA gene. This protein regulates genes

by modifying the DNA shape; it introduces a small number of coils into the DNA

structure. Therefore, Lsr2 is broadly considered as one of the major regulators of

antibiotic-induced responses in mycobacteria [Colangeli et al., 2007].

1.6.4 Molecular mechanisms of resistance to the first and the

second line anti-TB drugs

Isoniazid

Isoniazid (INH) is one of the first-line antibiotics in the treatments of tuberculosis.

It was first reported as anti-tuberculosis in 1952. Isoniazid has a very simple struc-

ture consisting of a pyridine ring and a hydrazide group. These two components are

believed to have an essential role in the high activity against Mycobacterium tubercu-

losis.

Isoniazid enters the mycobacterial cell through passive diffusion [Bardou et al., 1998].

It is a prodrug which must be activated mainly by the mycobacterial catalase-peroxidase

enzyme KatG encoded by the katG gene [Zhang et al., 1992]). In accordance with

its peroxidase activity, KatG activates INH by peroxidation to produce intracellular

reactive INH species. It is known that INH inhibits the synthesis of both mycolic and

nucleic acids. However, the mechanisms behind these processes are still unclear and

required more deep investigations.

In the presence of NADH (NAD+ or NAD. radical) reactive INH intermediates lead

to the formation of INH-NAD adducts which are powerful inhibitors of InhA. InhA

is an enoyl acyl carrier protein reductase [Banerjee et al., 1994, Dessen et al., 1995]

known as an important enzyme involving in mycolic acid biosynthesis. Moreover,

INH reacts with NADP+ to form an INH-NADP abduct strongly inhibiting MabA,
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an NADPH dependent β-ketoacyl-ACP reductase which also plays an important role

in mycolic acid biosynthesis [Ducasse-Cabanot et al., 2004]. Thus, INH-NAD and

INH-NADP adducts can inhibit different steps of cell wall lipid synthesis via inacti-

vation of important enzymes of this process including InhA and MabA, Furthermore,

it has been shown that the INH-NADP adduct binds M. tuberculosis dihydrofolatere-

ductase (DHFR) and blocks DHFR activities [Argyrou et al., 2006]. DHFR is central

in nucleic acid biosynthesis to make the nucleotide pools, thus its inhibition leads

to the prevention of the nucleic acid synthesis. In addition to that, another enzyme

target of INH is a complex of an acyl carrier protein (AcpM) and a β-ketoacyl-ACP

synthase (KasA), an enzyme taking part in mycolic acid synthesis.

Mutations in katG are the main mechanisms of INH resistance. Indeed, mutants

in katG have high level resistance to INH [Winder, 1982]. About 50% of INH resistant

clinical isolates of M. tuberculosis have deletions or missense mutations in the katG

gene. The Ser315Thr mutation is reported as the most frequent mutation among

isoniazid resistant mutations. The enzyme KatG with Ser315Thr mutation losses

its ability to activate INH, but it still remains about 50% of its catalase-peroxidase

activity [Rouse et al., 1996].

Resistance to INH may also be the results of other mutations in the promoter

regions of the mabA-inhA operon which leads to over expression of InhA or mutations

in the inhA gene causing the decrease of the InhA affinity to the INH-NAD adducts

[Rozwarski et al., 1998, Banerjee et al., 1994]. These mutations usually confer low-

level resistance. INH resistant mycobacteria containing mutation in the inhA gene

may have mutation in katG, they confers high level of resistance [Heym et al., 1995].

In addition to the aforementioned mutations, the mutations in the genes kasA,

acpM in clinical isolates exhibit low-level resistance to INH [Zhang and Telenti, 2000].

However, the role of KasA mutation in resistance to INH is still unclear. The reason

is that similar mutations are also found in INH-susceptible strains;in the case of

resistance to INH, mutations were also determined in the katG or the inhA genes

[Lee et al., 1999, Piatek et al., 2000].

Mutations in the promoter region of ahpC, encoding an alkylhydroperosidereduc-
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tase, may be another reason of INH resistance. These mutations cause over expression

of the AhpC enzyme and do not confer high-level resistance. The INH resistant strains

with these kinds of mutants also possess katG mutations [Zhang and Telenti, 2000,

Ramaswamy and Musser, 1998, Sherman et al., 1996]. The over expression of AhpC

was observed as a compensation for the lack of catalase-peroxidase in these mycobac-

terial strains [Wilson et al., 1998].

In M. smegmatis, mutations in ndh reducing the activity of NADH dehydrogenase

cause resistance to INH and ethionamide [Miesel et al., 1998]. In M. tuberculosis,

INH resistant strains with mutations in ndh may also have mutations in other genes

such as inhA or katG.

Recently, down regulation of katG expression has been determined to have a rela-

tion with INH resistance. Three mutations in furA-katG intergenic region substitution

were found in INH resistant clinical isolates of M. tuberculosis. Mutations in this re-

gion decrease the katG expression, thus, confer resistance to INH [Ando et al., 2011].

Furthermore, mutations in the intergenic region of oxyR-aphC reduce the level of

expression of inhA and also have been associated with INH resistance. These muta-

tions have been reported in 4.8% to 24.2% of INH resistant M. tuberculosis isolates

[Dalla Costa et al., 2009].

In addition, [Sholto-Douglas-Vernon et al., 2005] showed that INH is activated

by the human N-Acetyl transferase (NAT2), as well as by the M. tuberculosis NAT

enzyme [Upton et al., 2001]. When both nat genes of M. tuberculosis and M. smeg-

matis were expressed in M. smegmatis, an increase of INH resistance was observed

[Payton et al., 1999]. Moreover, the deletion of nat in M. smegmatis causes the in-

creasing sensitivity to INH [Payton et al., 2001].

Rifampicin

Rifampicin (rifampin) is a bacterial antibiotic drug of the group rifamycin. Rifampicin

was discovered in 1963 and introduced for TB chemotherapy in 1971 as a major

addition to the treatments methods of tuberculosis and inactive meningitis, along

with isoniazid, ethambutol, pyrazinamide and streptomycin. Currently, rifampicin
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is one of the most important anti-TB drugs in the treatments of TB in short-term

chemotherapy [Mitchison, 1992].

According to [Cole, 1994, Rastogi and David, 1993], rifampicin inhibits bacteria

RNA-polymerase activity; it binds β-subunit of RNA-polymerase and forms a stable

drug-enzyme complex . Therefore, the transcription of RNA from DNA template is

prevented. One of the most important characteristics of rifampicin is its great activity

against actively growing and slow metabolizing (non-growing) bacilli. Recently, resis-

tance to rifampicin is increasing rapidly as a result of the widespread of inappropriate

antibiotic usage.

Resistant mutant do not form complex between enzyme and rifampicin. Most

M. tuberculosis rifampicin resistance strains arise because of mutations in the rpoB

gene, which encodes the RNA polymerase β-subunit [Wehrli et al., 1968]. It was esti-

mated that around 95% of rifampicin resistant M. tuberculosis strains had mutations

located in the 81-bp region of the rpoB gene (codons 507 to 533). This region is

also known as the rifampicin resistance-determining region (RRDR). In most of the

studies, the bacterial strains with high resistance levels tend to harbor mutations at

codons 526 and 531 (about 60% of all mutations). Besides, the other additional mu-

tations have been mapped to positions 511, 512, 513, 516, and 533. These mutations

do not correlate with the increasing levels of resistance [Cummings and Segal, 2004,

Morlock et al., 2000]. Rifampicin resistant tuberculosis is often observed in combina-

tion with resistance to the other drugs, leading to long-term treatments and remark-

ably worse chemo-therapeutic outcomes. About 90% of rifampicin resistant clinical

isolates are also isoniazid resistant, thus, rifampicin resistance is a positive indicator

of multi-drug or extensive-drug resistance.

However, rifampicin resistant strains of M. tuberculosis with no mutations in 81-

bp region of the rpoB gene have been reported [Ohno et al., 1996]. Furthermore,

most of rifampicin resistant clinical isolates of M. avium and M. intracellulare did

not have any mutations in the rpoB gene [Guerrero et al., 1994], in M. smegmatis,

rpoB mutations have not yet been identifiable [Hetherington et al., 1995]. These data

suggest that there are mechanisms of rifampicin resistance being not fully addressed
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in the literature. To the best of our knowledge, the permeation and transport of

antibiotics into mycobacteria are still not yet well understood. Although there are

only a few studies on this topic, rifampicin, i.e. a hydrophobic antibiotic, is believed

to enter the mycobacteria cell through direct diffusion across the mycobacterial cell

wall. Most part of natural resistance of mycobacteria to rifampicin can be attributed

to a permeability of lipid-rich through mycobacterial cell wall [Hui et al., 1977].

Pyrazinamide

Pyrazinamide is an important first line anti-TB drug; it was discovered in 1952

and was not used extensively in TB treatment until 1980s. Utilization of this drug

helps treatment duration to be reduced from 9-12 months to 6 months. The drug

is most active against TB at acid pH (pH < 6) [McDermott and Tompsett, 1954].

The activity of pyrazinamide increases under low oxygen or anaerobic conditions

[Wade and Zhang, 2004].

Pyrazinamide is a prodrug entering M. tuberculosis cells through passive diffusion.

It must be activated to have its active form, i.e. pyrazinoic acid by the pyrazinami-

dase/nicotinamidase enzyme (PZase) which is encoded by the pncA gene in M. tuber-

culosis [Scorpio and Zhang, 1996]. Acid pH condition stimulates the formation of the

protonated pyrazinoic acid which then crosses the membrane and causes increasing ac-

cumulation of pyrazinoic acid anions and protons in the cell [Zhang et al., 1999]. The

accumulation of protons is a reason of the disruption of membrane potential which is

a main contributor of the proton motive force. The disruption of membrane potential

leads to the inhibition of the membrane transport. These facts indicate that pyrazi-

noic acid points to the membrane energy metabolism [Zhang et al., 2003]. Pyrazinoic

acid and its n-propyl ester were thought to inhibit enzyme fatty acid synthesis Fas-I

[Zimhony et al., 2000], but its validity is still questioning [Boshoff et al., 2002].

According to [Scorpio and Zhang, 1996, Scorpio et al., 1997, Cheng et al., 2000]

mutations in pncA are the major mechanisms of pyrazinamide resistance. Indeed,

most of mutations occur in the pncA gene and in its putative promoter regions

[Scorpio et al., 1997, Juréen et al., 2008]. These mutants results in the loss or reduc-
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ing activity of PZase [Scorpio et al., 1997]. Between 72-97% of pyrazinamide resistant

M. tuberculosis strains have mutations in pncA [Scorpio et al., 1997, Louw et al., 2006,

Portugal et al., 2004]. However, some resistant strains do not have mutations in

pncA. It has been suggested that pyrazinamide resistance may be provided by mu-

tations in an unknown pncA regulator gene. Furthermore, another type of sim-

ilar resistant strains without pncA mutations has low-level resistance and retains

PZase activity; the mechanisms of such pyrazinamide resistance remain unidentified

[Sreevatsan et al., 1997b].

Pyrazinamide is highly active against M. tuberculosis, but it has a little or no ac-

tivity against other mycobacteria such as M. bovis. The reason may be due the differ-

ence between the pncA genes in many species of mycobacteria [Sun and Zhang, 1999].

Scorpio et al. [Scorpio and Zhang, 1996] shows that strains of M. bovis are naturally

resistant to pyrazinamide and do not have PZase, these characteristics are used to

differentiate M. bovis from M. tuberculosis.

Ethambutol

Ethambutol is a first line drug that is usually used in combination with INH, ri-

fampicin, pyrazinamide and streptomycin to avoid the spread of drug resistance in

TB. It was first discovered in 1962 and up to date it has been using as a part of a

standard treatment regimen for TB. Ethambutol is active against growing bacilli and

almost has no effect on non-replicating bacilli. It intervenes in biosynthesis of cell

wall agabinogalactan [Takayama and Kilburn, 1989]. The target of ethambutol was

identified to be arabinosyl transferase encoded by embB, an enzyme taken part in the

synthesis of arabinogalactan, in M. tuberculosis and in M. bovis. In M. tuberculosis,

embB belongs to an operon together with embA and embC in the order embCAB.

They share more than 65% of amino acid identity with each other and are predicted

to encode transmembrane proteins [Telenti et al., 1997, Belanger et al., 1996].

Mutations in the embCAB operon, usually in embB and occasionally in embC,

are the main mechanisms of resistance to ethambutol [Telenti et al., 1997]. According

to [Sreevatsan et al., 1997a], most of ethambutol resistant isolates in M. tuberculosis
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have mutations in embB . Mutations in embB codon 306 happen most frequently in

up to 20% of ethambutol-susceptible isolates [Lee et al., 2004, Ahmad et al., 2007].

Some studies have suggested that embB306 mutations did not cause the classical

ethambutol resistance. Instead, they were found to be associated with resistance to

other antibiotics and to multidrug resistance [Hazbon et al., 2005, Shi et al., 2007,

Perdigao et al., 2009]. Analysis of individual mutations causing different amino acid

substitutions showed that mutations producing certain amino acid changes caused

ethambutol resistance, while other amino acid substitutions had little or no effect on

ethambutol resistance. Mutations at embB306 also appeared to be necessary, but

not sufficient, to produce high-level EMB resistance in the clinical strains. There-

fore, these mutations must contribute indirectly to high-level resistance, probably,

via interaction with mutations in other genes [Safi et al., 2008].

However, there is a proportion about 35% of ethambutol resistant strains observed

without mutations in embB. This number is significant suggesting that there may be

other unknown mechanisms of resistance to ethambutol [Alcaide et al., 1997].

Aminoglycosides: streptomycin, kanamycin, amikacin and capreomycin

Steptomycin was first isolated in 1943 and was the first antibiotic that could be

used for TB treatment. It is an alternative first line anti-TB drug recommended by

WHO [Cooksey et al., 1996]. Therefore, streptomycin is usually used in the treat-

ment regimen of TB in combination with four other drugs including INH, rifampicin,

pyrazinamide and ethambutol.

Streptomycin is an inhibitor of protein synthesis. Indeed, it binds to the 30S sub-

unit of ribosome, leading to misreading of mRNA during translation [Davies et al., 1965].

Streptomycin interacts with the 16S rRNA encoded by the rrs gene and S12 ribosomal

protein encoded by the rpsL gene [Finken et al., 1993]. Mutations in the rrs gene and

the rpsL gene are the major original causes of resistance to streptomycin. About 50%

of streptomycin resistant strains have mutation in the rpsL gene. Among them muta-

tions causing a change from Lys to Arg in codon 43 and 88 are the most common and

result in high-level of resistance. There are about 20% streptomycin resistant isolates
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harbor mutations in the rrs gene. These mutations were found mainly in the loops

of the 16S rRNA, in two regions around nucleotides 530 and 915 [Finken et al., 1993,

Nair et al., 1993]. However, low-level streptomycin resistant strains without muta-

tions in both of the rrs genes and the rpsL genes were reported. Hence, there might

be an alternative mechanism for streptomycin resistance [Cooksey et al., 1996]. Re-

cently, mutations in the gidB encoded a conserved 7-methylguanosine methyltrans-

ferase specifically for the 16S rRNA have been discovered as a main reason of low-level

resistance to streptomycin [Okamoto et al., 2007, Spies et al., 2008].

Kanamycin and amikacin also inhibit protein synthesis by modification of riboso-

mal structures at the 16S rRNA. High-level resistance to kanamycin and amikacin

is provided by mutations at codon 1400 of the rrs gene [Alangaden et al., 1998,

Suzuki et al., 1998].

Capreomycin is a peptide antibiotic. Mutations in the tlyA gene are associated

with resistance to capreomycin. This gene encodes an rRNA methyltransferase. The

activity of this enzyme is lost when mutations occur in the tlyA [Maus et al., 2005].

Cross-resistance maybe found between kanamycin, amikacin and capreomycin

[Winder, 1982]. The A1401G mutation in the rrs gene causes resistance to all the

three antibiotics. Mutant strains being resistant to kanamicin and capreomycin could

have C1402T or G1484T mutation in the rrs gene. Multiple mutations may also

happen in the rrs gene in one strain causing cross-resistance among these antibiotics

[Maus et al., 2005].

Fluoroquinolones

Fluoroquinolones are broad-spectrum antibiotics being very important in treatments

of serious bacterial infections. These antibiotics are currently used as second-line

drug in TB treatments. The targets of fluoroquinolones in most bacterial species

are DNA gyrase (topoisomerase II) and topoisomerase IV. DNA topoimesomerases

are responsible for maintaining chromosomes in an appropriate topological structure

[Drlica and Malik, 2003]. M. tuberculosis only have DNA gyrase which is a tetrameric

protein containing A and B subunits encoded by the gyrA and the gyrB genes re-
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spectively [Wang, 1996, Takiff et al., 1994]. Fluoroquinolone resistance is a result of

mutations in the putative fluoroquinolone binding to a region in gyrA or in gyrB. It is

a conserved region, i.e. the quinolone resistant determining region (QRDR) of gyrA

(320 pb) and gyrB (375 pb) which was determined to play the most important role in

resistance to fluoroquinolones [Takiff et al., 1994]. Among mutations in gyrA of M.

tuberculosis, the most frequently mutated positions were identified at codons 90 and

94. Nevertheless, other mutations at codons 74, 88 and 99 have also been reported

[Chen et al., 2004, Sun et al., 2008]. Mutation at codon 95 contains a polymorphism

and it is not involved in quinolone resistance [Sreevatsan et al., 1997a]. Mutations in

gyrB seem to be very rare.

There are other mechanisms of fluoroquinolone resistance. The contribution of

efflux pumps in resistance to these antibiotics was mentioned in the efflux pump part

of this thesis. Recently, resistance to quinolones mediated by MfpA was determined.

MfpA is a member of the pentapeptide repeat family of proteins from M. tuberculosis.

Its expression causes resistance to ciprofloxacin and sparfloxacin. This protein binds

to DNA gyrase and inhibits its activity. The MfpA with three-dimensional structure

contains a fold named as the right-handed quadrilateral -helix, which displays size,

shape and electrostatic similarity to B-form DNA. It was suggested that MfpA com-

petes with B-from DNA for the gyrase surface. MfpA binding to DNA-gyrase forbids

the formation of DNA gyrase-DNA complex which is the target of fluoroquinolonee.

Therefore it prevents the lethal interaction of the drugs with DNA gyrase and provides

a molecular explanation for the antibiotic resistance mechanism [Hegde et al., 2005].

In addition, the mutations in the gyr genes confer high-level resistance to fluoro-

quinolones, while the alternative mechanisms usually relate to low-level of resistance

[Chen et al., 2004]. However, the combination of gyr mutations and alternative mech-

anisms results in a considerable level of resistance to fluoroquinolones.

Ethionamide

Ethionamide is an important drug usually used for treatments of MDR-TB. Similar to

isoniazid, ethionamide is a prodrug that needs to be activated by a mono-oxygenase
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EthA encoded by the ethA genes [DeBarber et al., 2000]. EthA is a flavin adeno-

sine dinucleotide. It activates ethionamide through oxidation to active intermediates

which subsequently form adducts with NAD. The ethionamide-NAD adduct inhibits

the same target as the INH, particularly, the InhA of the mycolic acid synthesis

pathway [Banerjee et al., 1994].

Mutations in the ethA gene and the inhA gene result in the resistance to ethion-

amide [Hazbon et al., 2006]. Moreover, mutations in inhA may alter the InhA target

or mutations in the promoter region of inhA causing the over-expression of inhA and

confer cross-resistance to ethionamide and isoniazid [Vilcheze et al., 2006]. In addi-

tion to that, cross-resistance to these drugs is also a result of mutation in ndh which

increases the intracellular concentration of NADH [Vilcheze et al., 2005].

Moreover, the expression of ethA is negatively regulated by the ethR gene encod-

ing of the EthR protein [Baulard et al., 2000, DeBarber et al., 2000]. EthR belongs

to the TetR/CamR family of transcriptional regulators; it binds to the ethA operator,

5 to 16 nucleotides upstream from the ethA gene start codon [Aramaki et al., 1995,

Engohang-Ndong et al., 2004]. The over expression of the ethR genes causes repres-

sion of ethA expression, thus, it results in ethionamide resistance [Baulard et al., 2000,

DeBarber et al., 2000].
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Chapter 2

Research Objectives

In this thesis, we studied mutagenesis effect of antibiotics and mechanisms of antibi-

otic resistance of bacteria. Two model organisms were used: Escherichia coli and

Mycobaterium smegmatis.

2.1 Mutagenic effect of antibiotics in E. coli

Low concentrations of some antibiotics have been reported to stimulate mutagenesis

and recombination, whose may facilitate adaptation of bacteria to different types

of stresses, including antibiotic pressure. However, the mutagenic effects of most

of the currently used antibiotics remains untested. In this part, we would like to

study the roles of antibiotics in the stimulation of mutagenesis of E. coli via SOS

response. Indeed the effect of recA inactivation on mutagenesis was studied under

the treatments of variety antibiotics with different concentrations around their MIC.

In order to achieve the aforementioned goals our studies are planned as follows:

• To study the mutagenic effect of difference antibiotics on the E. coli E12 strains

by evaluating mutant frequency of bacteria in rifampicin and fosfomycin resis-

tance.

• To study the effect of antibiotics on the induction of recA transcription
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• To study the effect of antibiotics on mutant frequency in the mutant lacking of

the recA gene.

• To study the effect of antibiotics on cell morphology.

2.2 Antibiotic resistance in M. smegmatis

Antibiotic resistances in mycobacteria is one of the most emergency issues in the

world. In this thesis, we would like to analyze the possible resistant mechanisms in

the model organism M. smegmatis. It has been well-known that mutation in rpoB is

one of the main mechanisms of rifampicin resistance. However, there are alternative

mechanisms of rifampicin resistant which are not provided by mutations in rpoB.

Therefore, in this study we aim at characterizing those mechanisms in M. smegmatis.

The plan of our study is as follows:

• To generate an insertion mutant library of M. smegmatis by tranposon muta-

genesis using φMycoMarT7.

• to screen the mutant library for mutants that may be resistant to rifampicin.

• To characterize the rifampicin resistant candidates with disruptions in the trkA

and ich genes, focusing in the following characteristics:

– Antibiotic resistant profile

– Growth properties under different conditions including at normal condi-

tions and at acidic pH conditions

– The membrane permeability (via evaluating the membrane potential)
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Chapter 3

Materials and Methods

3.1 Bacterial strains and plasmids

Bacterial strains used in this thesis are: Mycobacterium smegmatis wild-type strain

mc2 155. The Escherichia coli K-12 strains used were: MG1655 (F−, lambda−,

rph-1, wild-type K-12 strain) ME12 (MG1655 lacZDC-lacZDN-yfp) and an ME12

recA :: kan derivative (ME12 recA938::Tn5 (KnR)). Escherichia coli DH5α (F−,

endA1, hsdR17 (r−, m+), supE44, thi1, recA1, gyrA, relA1, D( lacZYA, argF)U169,

80 [D lacZM15]).

Plasmids are listed in the following table:

Plasmid Description Source or reference

p2NIL Gene manipulation vector, KnR [Parish and Stoker, 2000]
p2NIL-∆trkA p2NIL containing an in-frame deletion of the trkA gene This study
p2NIL-∆ich p2NIL containing an in-frame deletion of the ich gene This study
pGOAL19 HygR PAg85 -lacZ Phsp60 -sacBS PacI cassette vector, AmpR [Parish and Stoker, 2000]
pVV16 Mycobacteria expression vector with HygR, KnR and Phsp60 [Schulbach et al., 2001]
pvv16-trkA pvv16 containing the trkA gene This study
pvv16-ich pvv16 containing the ich gene This study
pSC101-PrecA::GFP GFP transcriptional fusion after the promoter [Ronen et al., 2002]

of the recA gene with KnR

Table 3.1: Plasmids
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3.2 Bacterial media and growth conditions

LB (Luria-Bertani) broth (USB Corporation): 20g was added to 1L purified water.

For LB agar 15g of agar was added to the liquid media and sterilized by autoclaving.

Difco Middlebrook 7H9 broth (BD biosciences): 4.7g was added to 900 ml purified

water and was sterilized by autoclaving, 100 ml Middlebrook ADC enrichment (BBL)

and 0.05% Tween80 was added before using.

Difco Middlebrook 7H10 agar (BD biosciences): 19g was added to 900 ml purified

water and sterilized by autoclaving, add 100ml Middlebrook ADC enrichment (BBL)

and 0.05% Tween80 was added before using.

Media supplements: all media supplements were obtained from Sigma. They are

listed with their stock concentrations as following: hygromycin B at 100 mg/ml,

kanamycin at 50 mg/ml, 5-bromo-4chloro-3-indolyl-b-D-galactoside (X-gal) at 20

mg/ml in DMSO, sucrose at 40mM.

M. smegmatis wild-type strain mc2 155 and its mutant derivatives were grown

at 37oC in Middlebrook 7H9 broth or Middlebrook 7H10 agar. For strain selection,

media were supplemented with 25 µg/ml kanamycin or 50 µg/ml hygromycin B or 40

mg/ml XGAL or 10 mM sucrose, when necessary. E. coli DH5a strain was cultured

at 37oC in LB medium containing 50 µg/ml kanamycin or 100 µg/ml hygromycin,

when appropriate.

Long-term storage of bacterial strains was carried out by adding 0.2 ml of 80%

v/v sterile glycerol to 1 ml aliquots of an overnight culture and stored at -80oC.

3.3 General techniques of bacterial genetics

The methods for preparation of competent or electro-competent cells, transformation

by heat-shock or electroporation, transduction with phage and so on follow the in-

struction of the techniques described in the literature by Sambrook [Sambrook et al., 1989],

Miller [Miller, 1992], Parish and Brown [Parish and Brown, 2011].
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3.4 DNA techniques

All of the techniques such as restriction digestion of DNA, ligation of DNA fragments,

agarose gel electrophoresis and isolation of M. smegmatis genomic DNA were designed

based on the protocols proposed by Sambrook [Sambrook et al., 1989] and Parish and

Brown [Parish and Brown, 2011]. Besides, the plasmids of E.coli were purified using

the Qiagen QiAprep Spin Miniprep kit.

The specific amplification of DNA regions was done using the polymerase chain

reaction. PCR reactions were performed in 50µL volumes containing 1.25U AmpliTaq

Gold DNA polymerase (Roche), 0.2mM each dNTP, 1.5mM of MgCl2, 0.5 µM each

primer, 20ng of DNA template and 1 x PCR buffer.

3.5 Colony PCR

The reaction was carried out in 50µL volumes and the same PCR cycle was also

maintained. The colony of E.coli was re-suspended in the PCR mix and the PCR per-

formed on it. In the case of colony PCR of M. smegmatis, the colony was re-suspended

in 50ml sterile water in an eppendorf. Later on, the mix was being incubated at 90oC

for 15 minutes before being centrifuged and adding 3µml of the supernatant to the

PCR mix as a template.

The purification of PCR products and restriction digests was carried out using

the Qiagen QiAquick PCR Purification Kit in accordance with the manufacturer’s

instructions. For the purification of DNA from an agarose gel slice the Qiagen Qi-

Aquick Gel Extraction kit was used.

3.6 DNA sequencing

The sequence of plasmids and PCR products were carried out by the sequencing ser-

vices of the company Secugen1 using the modified dideoxy-chain termination method.

The oligos used for reactions are shown in Table 3.2.

1http://www.secugen.es

41



3.7 Oligos used in this study

All oligos were synthesized by Sigma-Aldrich and are listed in the following table

(underlined bases denote restriction sites):

Name Sequence (5’ 7→3’) Description
DeltrkA5’F CCCGCTGCAGGCCGTGTTGGCGGCCAGACA Fwd primer to amplify a fragment

up-stream of trkA from M. smegmatis
DeltrkA5’R GTCCAAGCTTTCGACCGCAGCGCG Rev primer to amplify a fragment

up-stream of trkA from M. smegmatis
DeltrkA3’F CCTCAAGCTTCCTGGATTCCGAATGAGCCG Fwd primer to amplify a fragment

down-stream of trkA from M. smegmatis
DeltrkA3’R GGTGGGTACCGACGACGCGGGCTGGCGCGA Rev primer to amplify a fragment

down-stream of trkA from M. smegmatis
Delich5’F GACAAAGCTTCGGCCACCGCGCGTGCGGTT Fwd primer to amplify a fragment

up-stream of ich from M. smegmatis
Delich5’R GCGAGGTACCATTCGAGTCGATGGCGGCCA Rev primer to amplify a fragment

up-stream of ich from M. smegmatis
Delich3’F GGCCGGTACCCGGCTCCTGTACATCCGCAG Fwd primer to amplify a fragment

down-stream of ich from M. smegmatis
Delich3’R CCAAGCGCGGCCGCCCTTATCCCGAGAAT Rev primer to amplify a fragment

GGGCCAC down-stream of ich from M. smegmatis
trkAF GGCCGCCATATGACCAGTCGGCGCGCTGCG Fwd primer to amplify trkA from

M. smegmatis
trkAR CCGCCTGCAGTCATTCGGAATCCAGGTCGT Rev primer to amplify trkA from

M. smegmatis
ichF GGATGACATATGGCTAAAGGCAGGTTACGG Fwd primer to amplify ich from

M. smegmatis
ichR CGGTAAGCTTTCATCGTTCGGCGTCCGCAC Rev primer to amplify ich from

M. smegmatis
MycoMar CCCGAAAAGTGCCACCTAAATTGTAAGCG Primer for sequencing to
specific primer identify the transposon insertion site
seqichF GGTGCGGTCATGGTTACATTG Fwd primer for sequencing checked the ich

knockout mutant
seqichR GACAGCAGCGGGACGTTAC Rev primer for sequencing checked the ich

knockout mutant
seqtrkA CATCCAGTCTATTAATTGTTGCCG Fwd primer for sequencing checked the

trkA knockout mutant
seqtrkAR CTGCGCAGGGCTTTATTGATTCCA Rev primer for sequencing checked the

trkA knockout mutant

Table 3.2: Oligonucleotides

3.8 Mutagenesis experiments

Mutant frequencies were obtained in the same way as described in the literature

[Lopez et al., 2007, Elez et al., 2007]. Briefly, for mutant frequency, 2 ml aliquots of

exponentially growing cells (108 cells/mL) were incubated with different concentra-

tions of antibiotic for 4 hours at 37oC with shaking (250 rpm). One ml of these

cultures was centrifuged for 10 minutes at 6000 rpm in a minifuge. The pellet was

resuspended in 2 ml of fresh LB medium and incubated overnight at 37oC with
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shaking. This step is necessary to resolve the filaments formed after treatments

with some antibiotics, such as ciprofloxacin, ceftazidime, trimethoprim and trimetho-

prim/sulfamethoxazole. Resolution of filaments was verified by direct observation

of samples from the different cultures under the microscope. Only cultures with a

proportion of filaments of less than 5% of total cells were plated. Viable cells were

determined by plating appropriate dilutions onto LB agar plates. Mutant frequen-

cies were obtained as the number of colonies growing on rifampicin (100 µg/ml) or

fosfomycin (10 µg/ml) plates per viable colony. At least three independent exper-

iments were performed for each antibiotic concentration, and three more, with five

replicas each, for the most mutagenic concentrations were performed. For the experi-

ments with the recA mutants, five independent experiments were performed for each

concentration.

3.9 Effects of antibiotics on recA expression

To qualitatively assess the antibiotic-mediated induction of transcription from the

recA promoter the strain ME12 containing the pSC101-PrecA::GFP reporter plasmid

was used. A 100 µl aliquot of an overnight culture was inoculated into LB soft

agar (0.7% agar) and spread onto LB plates. Antibiotic-containing filter discs were

deposited onto the agar and plates were visualized through a blue-light lamp after

24 hours of incubation at 37oC. Discs with mitomycin-C (10 mg), a known inducer

of the SOS system, or without antibiotic were used as a positive or negative control,

respectively.

3.10 Effects of antibiotics on cell morphology

The effect of low concentrations of antibiotics on cell morphology was studied by direct

observation of the treated cultures under an Olympus BX61 microscope. Aliquots (2

mL) of exponentially growing ME12 cells (108 cells/ml) were incubated with different

antibiotics for 4 hours at 37oC with shaking (250 rpm). After 4 hours of treatment,
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2 µl from each culture was used to prepare samples. These samples were scanned

and photographed under the microscope with an UplanF1 100 NA 1.30 oil immersion

objective.

3.11 Statistical analysis

Statistical evaluation was done by using the Mann-Whitney U-test when two groups

were compared. Differences were considered significant when P-values were less than

0.05.

MICs of antibiotics for ME12 and ME12recA were determined according to CLSI

recommendations (Clinical and Laboratory Standards Institute, 2008), except that

the bacterial inocula were identical to those used in all subsequent mutagenesis ex-

periments. Antibiotics tested for stimulation ofmutation were used at different con-

centrations around their MICs.

3.12 Generation and screening of M. smegmatis

ΦMycoMarT7 insertion library

Transposon ΦMycoMarT7, a mariner-based system, was used to obtain a M. smeg-

matis mutant library of random insertions. The isolation of a thermo-sensitive trans-

poson phage and preparation of high-titre phage stock have been described in the lit-

erature [Sassetti et al., 2003]. For transduction, M. smegmatis mc2 155 cultures were

washed with MP buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 10 mM MgSO4 and

2 mM CaCl2), mixed with the phage stock at a multiplicity of infection of 1:10 and

incubated (37oC, for 3 hours). Mycobacterial cells were then plated on Middlebrook

7H10 agar supplemented with kanamycin (25 µg/ml). The insertion mutants were

isolated as kanamycin-resistant colonies after 3 days of incubation at 37oC. Approx-

imately 11.000 clones were picked randomly and inoculated into individual wells in

96-well microtitre plates containing Middlebrook 7H9 medium.

To identify rifampicin-resistant mutants (M. smegmatis wildtype, MIC 2 µg/ml),
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each M. smegmatis transposition mutant was replicated onto Middlebrook 7H10 agar

plates supplemented with several rifampicin concentrations (5, 10 or 20 µg/ml).

Strains that showed resistance to the drug were retested twice to select only those

able to grow on rifampicin-containing plates. To confirm the resistance phenotype

for the selected mutants, the MIC of rifampicin was determined by the broth micro-

dilution method. In order to define antibiotic resistance, it has been proposed that

mycobacterial strains with a resistance ratio greater than 8 (defined as the MIC for

the test strain divided by the MIC for the wild-type strain) are considered as resistant

ones [Inderlied and Nash, 2005]. Thus, those mutants being able to grow on 20 µg/ml

rifampicin (equivalent to 10-fold the MIC of rifampicin for the parental strain) were

selected as candidates for further study.

3.13 Localization of ΦMycoMarT7 transposon in-

sertion site

To determine the insertion position of the transposon cassette in the M. smegma-

tis chromosome, purified genomic DNA from each resistant mutant was digested with

BamHI and religated with T4 ligase. Self-ligated plasmids contained the entire trans-

poson plus flanking chromosomal DNA next to the insertion site. Re-circularized

plasmids were electroporated into E. coli DH5αλpir116 and selected on LB with

kanamycin (50 µg/ml). After purification, plasmids were sequenced using a MycoMar-

specific primer that hybridizes next to the transposon/chromosome junction. The

DNA sequences adjacent to each insertion site were compared with the M. smegmatis

genome sequence to identify the interrupted gene.

3.14 Generation of trkA knockout mutant strains

The M. smegmatis trkA deletion was obtained by allelic replacement as described in

the literature [Menzies et al., 2009]. Briefly, 1.0-kbp fragments up- and down-stream

of the target gene were amplified by PCR with appropriate primers, 5’ fragment
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(DeltrkA5’F and DeltrkA5’R) and 3’ fragment (DeltrkA3’F and DeltrkA3’R). Both

fragments were cloned in-frame into the p2NIL vector. The resulting plasmid was

digested with PacI to insert a hyg sacB lacZ cassette from pGOAL19 and verified

by sequencing. The plasmid that harbored an in-frame deletion of the target gene,

termed p2NIL-∆trkA, was introduced into M. smegmatis wild-type strain mc2 155

and plated on Middlebrook 7H10 agar supplemented with kanamycin (25 µg/ml) and

hygromycin (50 µg/ml). Once single-crossover clones were obtained, they were grown

in Middlebrook 7H9 broth without antibiotics to allow a second crossover event.

Finally, cultures were diluted and counter-selected on 7H10 plates containing 10%

sucrose. Candidate colonies were tested for kanamycin and hygromycin sensitivity

and analyzed by PCR to confirm the unmarked deletion of trkA.

3.15 Generation of ich knockout mutant strains

Similar to the generation of trkA knockout mutant strains (∆trkA mutant), the frag-

ments up-and down-stream of the ich gene were amplified with primers, 5’ fragment

(Delkch5’F and Delkch5’R) and 3’ fragment (Delkch3’F and Delkch3’R). Then, they

were cloned into the p2NIL vector. The resulting plasmid was inserted a hyg sacB

lacZ cassette and verified by sequencing. Final plasmid p2NIL∆ich, then, was intro-

duced into M. smegmatis wild-type strain mc2 155 and colonies of a mutant with the

unmarked deletion of ich (4ich mutant) were selected as described above.

3.16 Generation of kch-trkA double knockout mu-

tant strains

In order to get the ich-trkA double knockout mutant strain, plasmid p2NIL-∆ich was

introduced into the M. smegmatis ∆trkA mutant. The double mutant ∆ich−∆trkA

was selected in the same way as to obtain the other single mutants ∆ich and ∆trkA.
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3.17 Complementation of mutant strains

A plasmid carrying the wild-type trkA gene was constructed to restore expression

of the gene in the 4trkA mutants. trkA was amplified by PCR from M. smegmatis

wild-type genomic DNA, using the forward primer trkAF and the reverse primer

trkAR. The PCR product was digested with NdeI and PstI and cloned directly into

the pVV16 vector [Telenti et al., 1993] to generate the complementation plasmid.

The resulting plasmid, pVV16-trkA, was introduced into the M. smegmatis 4trkA

mutant by electroporation. Transformants were selected on Middlebrook 7H10 agar

supplemented with kanamycin (25 µg/ml) and hygromycin (50 µg/ml).

The ich gene was amplified with oligos ichF and ichR. Then the PCR product was

digested with NdeI and PstI and coloned into the pVV16 vector. The pVV16-ich was

electroporated into the M. smegmatis 4ich mutant. Transformants were selected on

Middlebrook 7H10 agar supplemented with kanamycin (25 µg/ml) and hygromycin

(50 µg/ml).

3.18 Growth curves and competition experiments

M. smegmatis wild-type and mutants were cultured overnight and diluted (OD(600)

0.05) in 5 ml Middlebrook 7H9 medium, and growth curves performed in triplicate

for 24 hours at OD600.

Fitness of M. smegmatis strains was quantified in vitro by competition assays

in which overnight cultures of wild-type (rifampin-sensitive) and the 4trkA mutant

(rifampin-resistant) strains were diluted and adjusted to inoculate the same cell num-

bers in three mixed cultures of 5 ml 7H9 medium (initial OD(600) 0.05). Competition

cultures with the drug-resistant and drug-sensitive strains were incubated (37oC) and

10-fold serial dilutions plated after 0, 10 and 20 hours on Middlebrook 7H10 agar alone

or with rifampin (2 µg/ml). Colony-forming units (CFU) of the rifampin-resistant

4trkA strain were counted on drug-containing plates, while CFU counts of the wild

type were obtained after subtracting CFU for the 4trkA mutant from that for total
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viable cells on drug-free plates. The trkA mutant fitness was measured as the ratio

of the number of generations of the rifampin-resistant strain relative to that of the

wild type strain.

3.19 MIC determination

MIC for the M. smegmatis wild-type and mutant strains were determined in triplicate

in Middlebrook 7H10 agar supplemented with two-fold increasing concentrations of

antibiotics. Each strain was grown in Middlebrook 7H9 broth to logarithmic phase.

Cultures were diluted to yield a standard inoculum containing 106 CFU/ml, and

approximately 104 viable cells were plated on drug-containing and on drug-free plates.

The MIC of an antibiotic was defined as the lowest concentration at which no growth

was visible after 3-5 days under incubation. To analyze the effect of antibiotics on

cell survival, the number of CFU on drug-containing plates was divided by that for

viable cells on drug-free plates.

3.20 Membrane potential assay

For the membrane potential assay, three cultures of M. smegmatis wild-type and

mutant strains were grown to late logarithmic phase. Cultures were washed and

adjusted to the same number of cells ( 107 CFU/ml). Cell membrane potential was

estimated using the fluorescent probe rhodamine 123 (Sigma), [Morlock et al., 2000]

a lipophilic cationic molecule that is taken up into mycobacterial cells in response

to the level of the electrical potential [Cummings and Segal, 2004]. Inside the cells,

probe fluorescence is quenched.

To measure the degree of fluorescence decay, rhodamine 123 was added to samples

at a final concentration of 0.5 µg/ml. Time courses of fluorescence decay were ana-

lyzed by measuring the fluorescence decrease in the samples over a ten minutes long

period using a Tecan infinite F200 spectrofluorimeter (480 nm excitation and 530 nm

emission). The rate of fluorescence decay was normalized to the initial fluorescence
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and the fluorescence decay of the probe itself.

Moreover, the membrane potential was also measured via monitoring fluorescence

of rhodamine 123. This dye was added to the samples at a final concentration of 0.5

µg/ml. Then the fluorescence was measured in Tecan infinite F200 spectrofluorimeter

(480 nm excitation, 530 nm emission). Wild-type probe with additional valinomicin

was used as a control.

3.21 Estimating spontaneous mutant frequencies

For spontaneous mutant frequency estimation, approximately 103 cells from overnight

cultures were inoculated into three tubes with 5 ml Middlebrook 7H9 medium and

incubated (37oC). When cultures reached late logarithmic phase, cell aliquots were

plated on Middlebrook 7H10 agar supplemented with rifampin (50, 75 or 100 µg/ml)

and incubated (37oC, 3 to 5 days). Serial dilutions from cultures were also plated

on 7H10 agar without antibiotic to estimate the number of viable cells. Mutant

frequency was measured as the average number of rifampin-resistant colonies divided

by the average number of viable cells.
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Chapter 4

Results

4.1 Antibiotics induce mutagenesis in E. coli

4.1.1 Effect of different concentrations of antimicrobials on

E. coli mutagenesis

In principle, mutagenic activities of antimicrobials are expected to occur within a

window of concentrations very close to the MIC (peri-MIC), because higher concen-

trations will kill or stop the growth of most of the cells in the population and lower ones

will have not stimulatory effect [Couce and Blazquez, 2009]. In this work, we inves-

tigated the mutagenic effect of thirteen antimicrobials at peri-MIC concentrations on

the strain ME12, a MG1655 derivative, by evaluating the appearance of mutants resis-

tant to rifampicin and fosfomycin. We used the strain ME12 for consistence, because

it was used to study the effect of the same antibiotics on homologous recombination

[Lopez et al., 2007, Lopez and Blazquez, 2009]. This strain shows a spontaneous fre-

quency of rifampicin-resistant mutants of 2x10−7 and of fosfomycin-resistant mutants

of 1x10−6 (not shown). Table 4.1 shows the MIC of each antimicrobial under our ex-

perimental conditions for the strain ME12. The mutagenic effect was tested for five

different concentrations, including two below and two over the MIC and the MIC (i.e.

1/4xMIC, 1/2xMIC, MIC, 2xMIC and 4xMIC). The concentration of each antimicro-

bial producing the highest effect was re-tested using five independent replicates to con-
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Antibiotic ME12 ME124recA
Ampicillin (Amp) 1 1
Ceftazidime (Caz) 0.25 0.12
Imipenem (Imi) 0.12 0.12
Fosfomycin (Fos) 0.06 0.03
Ciprofloxacin (Cip) 0.12 0.007
Trimethoprim (Tri) 0.5 0.25
Sulfamethoxazol (Sul) 256 256
Tri/Sul (1/19)] 0.5/9.5 0.25/4.75
Colistin (Col) 8 2
Tetracycline (Tet) 0.5 0.5
Gentamicin (Gen) 0.5 0.5
Rifampicin (Rif) 2 2
Chloramphenicol (Chl) 2 2

Table 4.1: Minimal inhibitory concentrations (µg/ml) of the antimicrobials used
in this study against the wild-type strain ME12 and its recA-derivative.]: The
proportion trimethoprim/sulfamethoxazol is 1/19 as indicated by the EUCAST
http://eucast.www137.server1.mensemedia.net/clinical breakpoints

firm the results. Ten antimicrobials (ampicillin, ceftazidime, imipenem, fosfomycin,

ciprofloxacin, trimethoprim, sulfamethoxazole, trimethoprim/sulfamethoxazole, col-

istin and tetracycline) produced statistically significant increases (P ≤ 0.05) in the

mutant frequency when it was calculated for rifampicin-resistance, with maximal in-

creases of 3.4, 2.2, 3.0, 5.0, 2.0, 17.1, 6, 3, 8.7, 3.0 and 2.1-fold, respectively (Figure

4-1A, black bars).

The results from the other three drugs were not statistically significant (P >

0.05). When the mutagenic effect was studied calculating the mutant frequency

for fosfomycin-resistance, eight antimicrobials (ampicillin, ceftazidime, imipenem,

ciprofloxacin, trimethoprim, sulfamethoxazole, trimethoprim/sulfamethoxazole and

tetracycline) produced statistically significant increases (P ≤ 0.05) in the mutant

frequency, with maximal increases of 3.6, 2.0, 2.2, 2.2, 7.7, 4.9, 7.9 and 3.0-fold,

respectively (Figure 4-1B, black bars). The results from the other five drugs were

not statistically significant (P > 0.05). Taken together, these results indicate that

at least eight out of thirteen antimicrobials or combinations (those with positive re-

sults in both tests) produced increased mutagenesis levels at concentrations close to
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their MICs. Interestingly, while most antimicrobials produced mild increases in mu-

tagenesis, trimethoprim, sulfamethoxazole and the combination of trimethoprim plus

sulfamethoxazole produced the highest increases in mutant frequency in both tests

(rifampicin resistance and fosfomycin resistance). The resolution of filaments was

verified by direct observation of samples from the different cultures under the micro-

scope before plating, and only cultures with a proportion of filaments lower than 5%

of total cells were plated. Thus, increased mutant frequency is not attributable to

the presence of filamented cells in the treated cultures. A description of the effect of

antibiotic treatment on cell morphology can be found below.

As the number of viable bacteria in the inoculum (after antibiotic treatment)

might affect the observed frequency of mutants, we performed experiments with dif-

ferent inoculum sizes of untreated ME12 cells, ranging from 107 to 109 cells. No dif-

ferences were observed in the mutant frequencies among these cultures (not shown).

Thus, the final number of viable cells after treatment with different drugs was not

the cause of the observed antibiotic-mediated stimulation of mutagenesis.

Finally and remarkably, treatments with rifampicin or fosfomycin did not produce

an increased number of rifampicin-resistant or fosfomycin-resistant mutants, respec-

tively, thus indicating that the concentrations of these antibiotics and/or the time of

exposure used in our experiments were not able to select for rifampicin-resistant or

fosfomycin-resistant variants.

4.1.2 SOS induction by the different antimicrobials

In the literature, [Perez-Capilla et al., 2005, Ysern et al., 1990, Kohanski et al., 2007,

Miller et al., 2004, Gillespie et al., 2005], the induction of the SOS stress response by

some antimicrobials has been well investigated. However, in order to know whether

the observed stimulation of mutagenesis can be linked to an SOS induction, we stud-

ied the effects of these antimicrobials on the induction of recA transcription. We

used the disk-plate assay described in the Materials and Methods section. Figure 4-

2 shows that ampicillin, ceftazidimie, ciprofloxacin, trimethoprim, sulfamethoxazole

and trimethoprim plus sulfamethoxazole induce transcription of the recA::GFP fusion,
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Figure 4-1: Effect of sublethal concentrations of antimicrobials on mutant frequency.
Fold changes in mutant frequency of the wild-type (wt) strain ME12 (black bars)
and its recA mutant derivative (grey bars) for rifampicin resistance (RIFR) (a) and
fosfomycin resistance (FOSR) (b), after treatment with antibiotics. Data are relative
to untreated controls (no antibiotic). Only concentrations with the highest change in
mutant frequency are represented. The number in parentheses below the antibiotic in-
dicates the concentration relative to its MIC. Values are the means of five experiments
±SD. Asterisks indicate that the fold increases relative to the untreated strain are
statistically significant (P < 0.05), according to the MannWhitney U-test). AMP,
ampicillin; CAZ, ceftazidime; IPM, imipenem; CIP, ciprofloxacin; TMP, trimetho-
prim; SUL, sulfamethoxazole; SXT, trimethoprim/sulfamethoxazole; CST, colistin;
TET, tetracycline; GEN, gentamicin; CHL, chloramphenicol.
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Figure 4-2: Effects of antibiotics on the transcription of the recA::GFP fusion after
16 hours on solid surface. 100µl of an overnight culture were inoculated into LB-soft
agar (agar 0.7 %) and spread onto LB plates. Antibiotic-containing filter disks were
deposited onto the gelified agar, and plates were visualized through a blue-light lamp
after 16 hours of incubation at 37oC. Induction is observed as a fluorescent band
around the inhibition halo produced by Amp, Caz, Cip, Tri, Sul and Tri/Sul. This
assay permits the exploration of the full range of antibiotic concentrations for SOS
induction without knowing the most effective.The disks contain different amounts of
antibiotic (g): Amp (500), Caz (10), Imi (40), Fos (100), Cip (10), Tri (300), Sul
(3,200), Tri/Sul (13.5/256), Col (200), Tet (100), Gen (200), Rif (200) and Chl (300).
Disks containing no antibiotic and 10 g of mitomycin-C (Mito), a known inducer of
the SOS system, have been used as negative and positive controls, respectively.

with the highest induction produced by ciprofloxacin, trimethoprim and trimethoprim

plus sulfamethoxazole.

4.1.3 Effects of RecA on antibiotic-mediated stimulation of

mutagenesis

It has been demonstrated that ciprofloxacin and ceftazidime stimulate mutagenesis

in E. coli through the induction of mutagenic DNA-polymerases of the SOS system

[Perez-Capilla et al., 2005, Ysern et al., 1990]. Therefore, we studied the effects of

the different antimicrobials on mutant frequencies in a recA-deficient background.

As in the case of the wild-type strain, MICs of the different drugs were obtained

for the recA strain (Table 4.1). As we expected, a strong decrease in ciprofloxacin
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MIC was observed between the wild-type and its recA-deficient derivative. Also, a

slight decrease was observed in the MICs of ceftazidime, fosfomycin, trimethoprim,

trimethoprim/sulfamethoxazole and colistin.

The effects of drugs on the mutant frequency of the recA-deficient derivative were

studied with different peri-MIC concentrations, including the MIC itself. The mu-

tagenesis stimulated by ampicillin, imipenem, ciprofloxacin, trimethoprim, trimetho-

prim plus sulfamethoxazole and tetracycline is abolished in the recA background

(Figures 4-1). Gray bars show the results with concentrations equivalent to the

most mutagenic in the recA-proficient strain. None of the tested concentrations

showed an increased mutagenesis in the recA-deficient strain (except ceftazidime in

the rifampicin-resistance test). Therefore, RecA is absolutely necessary for the stim-

ulation of mutagenesis by the eight antimicrobials with the positive results in both

rifampicin-resistance and fosfomycin-resistance tests.

4.1.4 Effects of mutagenesis-stimulating concentrations of an-

timicrobials on cell morphology

We studied the effects of peri-MIC concentrations of antimicrobials on cell morphol-

ogy. The most stimulating concentrations are shown in Figure 4-3. Figure 4-3A shows

that ampicillin, ciprofloxacin, trimethoprim, sulfamethoxazole and trimethoprim plus

sulfamethoxazole, and the SOS-inducer Mitomycin-C (positive control) produced, as

expected, a clear filamentation of ME12 cells after 4 hours of treatments. A small

cell enlargement can be seen along with tetracycline. In addition, imipenem pro-

duced the classical ball-shaped cells. We also studied the effects of the corresponding

antimicrobial concentrations on the recA-deficient strain. Figure 4-3B shows that,

as predicted from its mechanism of action (inhibition of the septation process via

protein PBP3), ceftazidime also produced filaments in the recA mutant. Amazingly,

ciprofloxacin and trimethoprim (and sulfamethoxazole in a lesser extent) produced

filaments in the recA derivative, although shorter than in the wild-type. This is an

unexpected result as the production of filaments by these antibiotics was believed to
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Figure 4-3: Effects of antibiotics on cell morphology. Bacterial cultures were treated
for 4 hours as indicated in the Materials and Methods section. A: Effect on the wild-
type strain ME12. B: Effect on the ME12 recA derivative. Bars at the right bottom
of each image represent 10 µm.
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be caused by the induction of SOS system (see below). Thus, according to our results,

a recA-independent mechanism of filamentation can be predicted.

4.2 Antibiotic resistance in M. smegmatis

4.2.1 Screening for mutants

Generation transposon library

Transposon mutagenesis can be considered as a useful tool for bacterial genetic studies

because of the following reasons. First of all, an antibiotic marker of transposon is

an indicator that distinguishes mutants from wild-type. Secondly, transposon marks

its insertion sites, so the location of the changes can be easily isolated. Thirdly,

transposons can be constructed in order that recipient strains contain only a single

mutation. For example, the transposons can be constructed with the transposase

gene located outside of the transposon boundiries. When transposition occurs, the

transposase gene is lost together with the phage vector. Therefore, once the element

inserts in the chromosome it cannot transpose to a new site. Finally, these elements

can be designed to discover useful properties of bacteria such as the ability to form

transcriptional or translational fusions [Parish and Brown, 2011].

We have used ΦMycoMarT7 containing Himar1 -based mariner transposon to pro-

duce a large number of M. smegmatis mutants isolated after several independent

high efficient transduction events. So far, the analysis of the insertion sites from a

large number of mutants has revealed that transposon mutagenesis produced stable

mutants with no evidence of multiple insertions in each single strain. HimarI trans-

posons were inserted at random TA dinucleotides sites within the genome. There-

fore, there are a countable number of locations where the insertions can take place

[Sassetti et al., 2001].

Because the transposon has a kanamycin resistant cassette, the insertion mutant

can be selected on a medium supplemented with kanamycin 25 µg/ml; totally, we

generated an extensive transposon insertion mutant library of M. smegmatis mc2
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155 containing about 11.000 independent insertion mutants. The large number of

insertion mutants isolated by transposition covers more than two times the total

number of non-essential genes predicted in the M. smegmatis genome, with a high

probability (P > 0.9) that at least one insertion disrupts each target gene.

To verify the complexity of our insertion mutant library, we searched for and

selected mutant strains which may have an antibiotic resistant phenotype. The main

experimental results in this thesis were obtained when rifampicin is used to select the

rifampicin resistant mutants.

Identification of rifampicin resistant candidates

Rifampicin is one of the most powerful first line anti-TB drugs. The mutations

in the rpoB gene are the major mechanism of rifampicin resistance. However, as

we have discussed in the introduction section, there are alternative mechanisms of

rifampicin resistance which is not related to mutations in rpoB. Therefore, we probed

for rifampicin resistant mutants that can help us to discover the alternative mechanism

of resistance to rifampicin and understand in deep the role of these mutants in the

response to the other factors as an effect of other antibiotics.

For identification of the mycobacterial genes implicated in rifampicin resistance,

a transposon mutant library of M. smegmatis mc2 155 was screened to obtain mu-

tants with reduced rifampicin susceptibility. Each insertion mutant was replicated

on Middlebrook 7H10 agar plates supplemented with rifampicin (5, 10 or 20 µg/ml).

The growth of the M. smegmatis wild-type strain was completely inhibited at these

antibiotic concentrations (MIC of rifampicin for M. smegmatis mc2 155, 2 µg/ml);

nonetheless, dozens of insertion mutants with increased rifampicin resistance were

able to grow on plates containing 5 µg/ml rifampicin. Among them, 16 mutants grew

on plates supplemented with 10 µg/ml rifampicin. The rifampicin resistance pheno-

type of these strains was confirmed by MIC. Lastly, the three transposition mutants

with the highest degree of rifampicin resistance that grew well on 20 µg/ml rifampicin

were selected for further analysis.

To identify the disrupted gene in each strain, DNA sequences for each mutant were
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Locus Identity Number of strains MIC to rifampicin (µg/ml)
MSMEG 1945 Ionic channel Ich 1 20
MSMEG 2771 K+ regulator TrkA 2 20

Table 4.2: Rifampicin resistant candidates

compared with the M. smegmatis genome sequence as described in the materials and

methods section. Inside these genes, a high proportion of transposon insertion are

targeted to different gene locations as expected by random mutagenesis. However, a

few genes contain overlapping insertions in the same location, demonstrating a sub-

saturation level of gene inactivation. Rifampicin resistant candidates studied in this

thesis are listed in Table 4.2.

4.2.2 Analysis of interested rifampicin resistant candidates

trkA

From rifampicin resistant candidates, there were two selected mutants had indepen-

dent insertions disrupting the same target gene MSMEG 2771, which encodes a puta-

tive K+ transport regulatory protein (Figure 4-4a). One mutant harbored a transpo-

son insertion near the translation start codon (TA dinucleotide at position +7); the

other carried another transposon insertion in the middle of the gene (TA dinucleotide

at position +321). Both mutants showed the same level of rifampicin resistance (MIC

32 µg/ml), in accordance with a loss of gene function. Inactivation by transposition

of a gene that encodes a K+ transport protein thus confers increased resistance to

rifampicin in M. smegmatis.

Characterization of the trkA gene in rifampin resistance. The target gene

MSMEG2771, whose disruption increased M. smegmatis rifampin resistance, encodes

a TrkA protein with a K+ conductance regulatory domain (RCK). RCK proteins are

subunits that control K+ transporters in Bacteria, Archaea and Eukarya [Choe, 2002].

The core Trk system for K+ uptake in prokaryotes consists of two components: the in-

tegral membrane K+ translocating protein and the NAD+/NADH-binding peripheral

membrane protein TrkA [Dosch et al., 1991]. TrkA binds to the cytoplasmic portion

of the K+ membrane transporter, where it acts as an essential factor in K+ uptake
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Figure 4-4: Analysis of the M. smegmatis trkA gene. (A) Vertical arrows indicate
the location of transposon insertion in each rifampin-resistant mutant (number of
base pair in the trkA gene)(top). Domain organization of the TrkA protein, showing
the NAD(H)-binding motif sequence (bottom). (B) Alignment of TrkA sequences
from M. smegmatis (MSMEG 2771), M. tuberculosis (Rv2691) and E. coli. Asterisks
indicate identical residues.
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[Bossemeyer et al., 1989]. In E. coli, TrkA-mediated K+ transport is driven by proton

motive force and also requires a high ATP concentration [Rhoads and Epstein, 1977].

Analysis of the M. smegmatis TrkA sequence showed that the protein consists of

two tandemly arranged halves (RCK-N and RCK-C terminal; Figure 4-4A). The N-

terminal subdomain was predicted to form a Rossmann fold, similar to dehydrogenase

enzymes. This region has a nucleotide-binding sequence (Figure 4-4A), previously

identified as a flavin adenine dinucleotide-binding motif. This characteristic motif,

also present in the E. coli TrkA protein, binds NAD+ or NADH with high affinity

[Schlosser et al., 1993]. M. smegmatis TrkA protein shared considerable sequence

identity with other TrkA domain proteins, such as E. coli TrkA N-terminal (23%)

and M. tuberculosis CeoB (74%) (Figure 4-4B).

Deletion of the trkA gene decreases rifampin susceptibility in M. smeg-

matis. To establish that the loss of TrkA activity is responsible for enhancing ri-

fampin resistance in M. smegmatis, we generated an in-frame 4trkA deletion mutant.

Rifampin MIC for the wild-type strain and the 4trkA mutant were determined in

7H10 agar (Table 4.3). The trkA mutant showed considerable rifampin resistance

(32 µg/ml), with a 16-fold higher MIC of rifampin than the wild-type strain. Being

consistent with the absence of polar effects, the degree of resistance of the deletion

mutant was similar to that of the two insertion mutants. Analysis of survival curves

confirmed that 4trkA was highly viable when mutant cells were exposed to antibiotic

concentrations which killed the wild-type strain (Figure 4-5a).

The trkA gene from M. smegmatis wild-type strain mc2 155 was cloned into the

shuttle vector pVV16 and the resulting plasmid, pVV16-trkA, was introduced into the

4trkA strain. Plasmid expression of the trkA gene in the deletion mutant restored

rifampin susceptibility (MIC 2-4 µg/ml), but had no effect on the MIC of the wild

type strain, confirming that loss of trkA expression was the only factor responsible

for the rifampin resistance phenotype in M. smegmatis. These results demonstrate

that trkA gene inactivation increases M. smegmatis resistance to rifampin.

Deletion of the trkA gene confers isoniazid sensitivity in M. smegmatis.

Overexpression of the M. tuberculosis TrkA ortholog CeoB confers isoniazid resistance
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MIC (µg/ml) MIC (µg/ml)
Antibiotic Molecular weight LogS] mc2 155 4trkA
Novobiocin 612 -4.80 16 64
Rifampin 822 -4.09 2 32
Ofloxacin 361 -2.40 0.32 0.32
Ciprofloxacin 331 -2.39 0.32 0.32
Ethionamide 166 -2.30 32 32
Ethambutol 204 -1.43 2 2
Amikacin 585 -1.07 0.8 0.4
Streptomycin 581 -0.96 0.8 0.2
Kanamycin 484 -0.72 3.2 1.6
Capreomycin 1,321 n/a 6.4 1.6
Isoniazid 137 -0.59 128 32

Table 4.3: MIC of the main groups of antimycobacterial agents for M. smegmatis
wild-type mc2 155 and the 4trkA mutant. Antibiotics are ordered by solubility
values from hydrophobic to hydrophilic. ]: predicted solubility according to Drugbank
(http://www.drugbank.ca)

in an isoniazid-sensitive E. coli oxy R mutant [Chen and Bishai, 1998]. It has been

suggested that TrkA binds and sequesters isoniazid, preventing antibiotic attachment

to its target [Argyrou et al., 2006]. To examine the effect of trkA inactivation on iso-

niazid susceptibility, we determined the MIC of isoniazid for the wild-type strain and

the 4trkA mutant (Table 4.3). Although M. smegmatis shows intrinsic isoniazid tol-

erance, the 4trkA mutant was more sensitive to isoniazid (MIC 32 µg/ml), resulting

in a 4-fold decrease in MIC value compared to the wild-type strain (MIC 128 µg/ml).

This result was reflected by a sharp decrease in 4trkA viability when the mutant

cells were exposed to low antibiotic concentrations; in contrast, wild-type cells were

affected only moderately, even at high isoniazid concentrations (Figure 4-5b). This

result supports a function of TrkA as an element that protects mycobacterial cells

from the action of isoniazid.

M. smegmatis multidrug susceptibility is dependent on TrkA activity.

To explore the role of TrkA in the susceptibility pattern of M. smegmatis to distinct

antimycobacterial agents, we determined the MIC of a large number of antibiotics

for the 4trkA mutant; Table 4.3 shows the correlation of antibiotic activity with the

predicted hydrosolubility coefficients (LogS). Large hydrophobic antibiotics such as
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Figure 4-5: Survival (%) of M. smegmatis mc2 155 wild-type and the 4trkA mu-
tant under different concentrations of antibiotics. Percent of survivors of the wild-
type (black bars) and the 4trkA mutant (grey bars) to rifampin (A), isoniazid (B),
ciprofloxacin (C) and streptomycin (D) are shown. Survivors were determined by
plating serial dilutions on Middlebrock 7H10 agar plates with the indicated antibi-
otic concentrations, and represented as the percent of surviving cells (viable cells
determined on antibiotic-containing plates divided by total viable cells x100). The
asterisks indicate lack of growth on plates with the indicated antibiotic concentra-
tions, representing in all cases a survival of ≤ 0.0001%).

rifampin penetrate cells by passive diffusion; thus, reduced permeability to hydropho-

bic drugs could be responsible for the resistance phenotype in the trkA mutant. The

MIC of novobiocin, another highly hydrophobic drug, was increased 4-fold for the

4trkA mutant compared to that of the wild-type strain (Table 4.3). Less hydropho-

bic drugs with a large apolar core, such as fluoroquinolones (ciprofloxacin, ofloxacin),

were also less effective against the trkA mutant (Figure 4-5c), although there was no

change in the MIC.

In prokaryotes, cationic antimicrobial peptides, which bind to the negative charge

on the cytoplasmic membrane surface to disrupt the membrane, inhibit trkA mutants

more efficiently than wild-type strains [Parra-Lopez et al., 1994, Chen et al., 2004].

Aminoglycosides, another group of positively charged, very hydrophilic antimycobac-

terial drugs, killed the 4trkA mutant more efficiently than the M. smegmatis wild-

type strain. All aminoglycosides tested (kanamycin, amikacin, streptomycin and

capreomycin) showed lower MIC values for the 4trkA mutant than those of the wild-
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type strain, ranging from a 2-fold to 4-fold decrease (Table 4.3). M. smegmatis 4trkA

susceptibility to small hydrophilic drugs (ethambutol, ethionamide) or β-lactams was

unchanged.

These data indicate that trkA deletion affected the drug susceptibility pattern

of M. smegmatis, increasing resistance to hydrophobic antibiotics and sensitivity to

hydrophilic cationic agents. This suggests TrkA may influence the M. smegmatis

permeability barrier to antibiotics as a function of the chemical nature of the drug.

Growth, K+ requirement and fitness in the M. smegmatis trkA mutant.

Growth curves of M. smegmatis wild-type strain mc2 155 and the4trkA mutant show

a notable growth defect of the deletion strain (Figure 4-7a). The mutant had a lower

growth rate during the logarithmic phase than the wild-type strain, although both

showed the same cell density at stationary phase. The growth of the4trkA strain was

restored when additional K+ was supplied to the medium (Figure 4-7b). Addition

of KCl (10 to 100 mM) stimulated the growth of the 4trkA mutants but had no

effect on wild-type cells; at 200 mM KCl, the growth of the mutants and wild-type

strains was the same. These results suggest a reduced K+ uptake due to lack of

TrkA-mediated transport in the 4trkA mutant, and that it requires an additional

K+ supply to counterbalance its growth defect.

Resistance to antibiotics often has a fitness cost when the antibiotic is absent,

shown by the reduced growth of mutants relative to the wild-type strain in mixed

cultures [Andersson and Levin, 1999]. Competition experiments have shown that

all rifampin resistance mutations in the rpoB gene impose a cost in mycobacteria

[Billington et al., 1999, Gagneux et al., 2006], we thus examined whether trkA inac-

tivation had deleterious effects on bacterial fitness. As stated above, trkA inactivation

produces a notable growth defect. As expected, competition assays showed that the

wild-type was strongly outcompeted by the rifampin-resistant mutant during expo-

nential growth in mixed cultures. In these experiments, the relative fitness value of

the 4trkA mutant was 0.77 (Table 4.4).

TrkA is necessary for pH homeostasis in M. smegmatis. K+ uptake

maintains intracellular ionic balance in prokaryotes [Epstein, 2003]. K+ accumulation
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Figure 4-6: Growth curves and K+ effect on growth of mc2 155 and its 4trkA deriva-
tive. (A) Growth curves of M. smegmatis wild-type mc2 155 (closed circles) and
its 4trkA deletion mutant (open circles). (B) Effect of K+ addition (10-200 mM
KCl) on growth of mc2 155 (black bars) and 4trkA (grey bars). The ability of high
K+ concentrations to restore growth of the 4trkA mutant was measured in cultures
at mid-exponential phase (12 h). Values, optical density at 600 nm, (OD600) are
mean±SD of three experiments.
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Competition cultures
Strain No. of divisions Doubling time (hours) Relative fitness
mc2 155 6.87 2.91 1.00±0.02
4trkA 5.32 3.76 0.77±0.02

Table 4.4: Fitness of M. smegmatis mc2 155 and its 4trkA-derivative during the
logarithmic growth phase. Strains were grown in mixed cultures until late logarithmic
phase (three independent experiments). The number of divisions and the doubling
time of each strain were obtained from CFU counts on drug-containing and drug-
free plates. The 4trkA mutant fitness was measured as the ratio of the number of
generations of the rifampin-resistant strain relative to those of the wild type strain.

is essential for intracellular pH homeostasis, and loss of K+ uptake can thus increase

sensitivity to acidic conditions. We studied trkA knockout mutant growth over a

range of pH values (pH 5-8; Figure 4-7A). At neutral pH, the 4trkA mutant’s growth

was reduced compared to that of the wild-type strain. At acid pH, the mutant’s

growth was severely impaired, while the wild-type strain growth was reduced only

slightly. Wild-type cells were able to grow even at pH 5, at which the 4trkA mutant

growth was completely inhibited. In contrast, at alkaline with pH equal to 8, 4trkA

mutant growth was nearly identical to that of wild-type strain, with no visible growth

defect. The reduced growth of the 4trkA mutant at acid pH was compensated when

supplementary K+ was added to the medium. For instance, Figure 4-7B shows how

different concentrations of K+ counterbalance the growth defect of the 4trkA mutant

at pH 5.5. These results suggest that TrkA-dependent K+ uptake counteracts the

decrease in intracellular pH when cells are exposed to low pH values; as K+ tends to

increase intracellular pH, the K+ uptake requirement decreases at higher pH.

TrkA inactivation leads to hyperpolarization of the cytoplasmic mem-

brane. PMF is an electrochemical ion gradient across the membrane, with an electri-

cal component (4ψ inside negative) and a chemical gradient (4pH, inside alkaline).

The membrane is separated from the bulk aqueous phase by a barrier of electro-

static nature that could serve as a storage for protons [Mulkidjanian et al., 2006].

TrkA-dependent K+ uptake is needed to maintain constant PMF values in prokary-

otes [Bakker and Mangerich, 1981]. The K+ uptake rate has a direct influence on

the electrical membrane potential, the main contributor to PMF when cells grow in
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Figure 4-7: Growth curves and K+ effect on growth of mc2 155 and its 4trkA deriva-
tive. (A) Growth curves of M. smegmatis wild-type mc2 155 (closed circles) and
its 4trkA deletion mutant (open circles). (B) Effect of K+ addition (10-200 mM
KCl) on growth of mc2 155 (black bars) and 4trkA (grey bars). The ability of high
K+ concentrations to restore growth of the 4trkA mutant was measured in cultures
at mid-exponential phase (12 h). Values, optical density at 600 nm, (OD600) are
mean±SD of three experiments.
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Figure 4-8: Membrane potential assay. (a) Exponentially growing cultures of M.
smegmatis wild-type mc2 155 (closed circles) and its 4trkA derivative (open circles)
were incubated with rhodamine 123. The curves, monitored for 10 min, show the
decrease in fluorescence emission produced by intracellular quenching of the probe. .
(b) Effect of K+ addition (50-200 mM KCl) on membrane potential of mc2 155 and
4trkA. Cells were pre-incubated for 30 minutes with increasing KCl concentrations
(50-200 mM KCl). Fluorescence decay was measured after 10 minutes of incubation
with rhodamine 123. Values show the mean ±SD.

a neutral environment. To explore the effect of trkA inactivation on cell membrane

electric properties in M. smegmatis, we estimated the electrochemical potential gen-

erated across the membrane by monitoring fluorescence quenching of rhodamine 123.

Cells with higher membrane potential (increased interior negative charge) accumulate

the cationic probe rhodamine 123 more efficiently, leading to the decreased intensity

of fluorescence emission (28); the rate of fluorescence decay is thus proportional to

the electrical membrane potential.

Compared with wild-type cells, the 4trkA cells showed increased rhodamine 123

uptake and, thus, enhanced fluorescence decay (Figure 4-8); these data indicate that

the trkA mutant has a hyperpolarized cell membrane. Thus, loss of TrkA-dependent

K+ uptake is responsible for the increased electrical membrane potential in the M.

smegmatis 4trkA strain. The high negative charge of the intracellular membrane

in the trkA mutant is consistent with its previously known multidrug susceptibility
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pattern (susceptibility to cationic agents and resistance to hydrophobic drugs).

Additionally, the cells were pre-incubated for 30 minutes with increasing K+ con-

centrations (50, 100 and 200 mM KCl). The addition of K+ to the medium depolarizes

the bacterial membrane, leading to a strong decrease in the diffusion of the probe in-

side the cells and, consequently, to a reduced fluorescence decay in the samples (Figure

4-8). As expected, the trkA mutant maintains higher levels of membrane potential

when compared with wild-type cells at each KCl concentration.

We have studied the effects of an H+ ionophore, carbonyl cyanide m-chlorophenyl

hydrazone (CCCP), against M. smegmatis wild-type and the trkA mutant. CCCP

destroys membrane potential by eliminating the proton H+ gradient. Although the

M. smegmatis trkA mutant had a hyperpolarized membrane, the susceptibility of

both strains to CCCP was similar (MIC 4 µg/ml). Finally, we analysed the effect of

K+ ionophore and nigericin. This compound has a very high affinity for monovalent

cations, such as K+, and catalyses the electroneutral exchange of intracellular K+ for

H+ (antiporter). Therefore, nigericin reduces intracellular K+ levels, disrupts mem-

brane potential and decreases intracellular pH. As expected, the trkA mutant showed

a hypersusceptibility to the K+ ionophore nigericin (MIC 4 µg/ml), compared with

the wild-type cells (MIC 16 µg/ml). The trkA mutant was unable to counterbal-

ance the K+ efflux due to its impaired K+ uptake, leading to severe defects in the

membrane potential and intracellular pH.

Ich

The other rifampicin candidate from our library was a mutant with an insertion in

the ich gene which encodes a putative K+ transport protein (Figure 4-9). The gene

was inactivated by the insertion of TA dinucleotide at position +1066. Because of

the loss of function of the gene, the mutant showed a rifampicin resistant phenotype

with MIC around 32µg/ml.

Sequence analysis of Ich protein encoded by MSMEG 1945 reveals

identity with potassium transporter protein. The gene MSMEG 1945 en-

codes an ionic channel protein with TrkA-N domain (K+ conductance regulator
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Ion transport TrkA RCK-N 

M. smemagtis MSMEG_1945 1095bp 

M. smemagtis Ich 364 aa 

MycoMarT7(+1066) 

Figure 4-9: Location of transposon insertion. Vertical arrows indicate the location
of transposon insertion in a rifampin-resistant mutant (number of base pair in the
ich gene)(top). Domain organization of the Ich protein, showing the TrkA-N domain
(bottom).

domain RCK-N which controls K+ transporters in Bacteria, Archaea and Eukarya

[Choe, 2002]. The analysis of the sequence of the M. smegmatis protein Ich encoded

by MSMEG 1945 showed that the protein contains two domains: one is ion trans-

porter locating in the membrane; the other is TrkA-N domain locating on cytoplasm.

Moreover, search for the homologues of this protein by protein blast (BLASTp) re-

vealed identity with proteins implicated in the potassium transport. We found that

the Ich protein has considerable sequence identity with the protein tranmembrane

cation transporter in M. tuberculosis (70%) with Kch of M. massiliense (74%) and

Kch of E. coli (22%). In E. coli Kch protein is a potassium transporter similar to a

group of eukaryotic K+ channel proteins [Milkman, 1994]. It takes part in the reg-

ulation of membrane potential under certain stress and its overproduction leads to

the increase of potassium permeability of cells [Kuo et al., 2005, Ungar et al., 2001,

Kuo et al., 2005].

Deletion of ich increases resistance of M.smegmatis to rifampicin. Our

analysis of insertion mutants of ich from our insertion library showed that the mutants

with interruption in ich increased their resistance to rifampicin with MICs over 20
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mg /ml. To avoid polar effects of the result, an in-frame knock out ich mutant was

constructed. The MICs to rifampicin of the wild type strain and the ich deletion

strain were determined in Middlebrook with MIC roughly 32 µg/ml. Meanwhile,

rifampicin MIC of wild type strain was only 2 µg/ml that was 16 folds lower than

rifampicin MIC of ich mutants.

Plasmid pvv16 with the cloned ich gene was transformed into Ich knock out mu-

tant. The expression of pvv16 -ich in the mutant strain recovered the phenotype of

wild type. This result demonstrates that deletion of ich gene may be one of the key

factors of resistance to rifampicin in M. smegmatis.

Mutant with ich deletion increase the susceptibility to isoniazide and

ethionamde. Recent results by [Argyrou et al., 2006] suggested that TrkA binds

and isolates isoniazid. Our previous work further showed that mutants lacking of

the trkA gene became isoniazid susceptibility in M. smegmatis with MIC 64 µg/ml

[Castaneda-G’arcia et al., 2011]. As ich contains TrkA domain, it may also have

tight relations with isoniazid susceptibility like trkA does. Therefore, in this work, we

performed several analyses to reveal the effect of ich together with trkA on isoniazid.

First, besides ich deletion mutant, we created a double mutant with deletion of

both genes ich and trkA. Subsequently, MICs to isoniazid of ich deletion mutant

and double mutant ich-trkA were acquired. While wild type strain of M. smegmatis

showed resistances to isoniazid with MIC 128 µg/ml, both ich deletion and ich-trkA

mutants were considerably more susceptible to isoniazid with MICs 8 µg/ml and 2

µg/ml respectively. Comparing to the acquired MIC at 64 µg/ml on the mutants

lacking of the trkA gene alone, these numbers are significantly smaller.

Ethionamide is structurally similar to INH and also is an inhibitor of mycolic acid

biosynthesis. The MICs to ethionamide of ∆ich and ∆ich-∆trkA were determined.

We found that both of mutants were more susceptible to ethionamide than wild-type.

Indeed the obtained MICs were 16 µg/ml and 8 µg/ml for ∆ich and ∆ich-∆trkA,

respectively; when the MIC of wild-type was 64 µg/ml. This result suggested that

these genes have an important role in the defense mechanism of M. smegmatis from

isoniazid and ethionamide.
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MICs (µg/ml)
Antibiotics mc2 155 4ich 4ich-4trkA 4ich-pvv16 ich
Novobiocin 32 64 64 32
Rifampicin 4 32 32 8
Ofloxacin 0.32 0.32 0.32 0.32
ciprofloxacin 0.32 0.32 0.32 0.32
Ethionamid 32 8 4 32
ethambutol 2 2 2 2
Amikacin 0.8 0.4 0.4 0.8
streptomycin 0.8 0,2 0,2 0.4
Kanamycin 3.2 1.6 1.6 —
Isoniazid 128 8 2 128

Table 4.5: MIC of the main group of antimycobacterial agents for M. smegmatis
wild-type mc2 155, the 4ich, the 4ich-4trkA mutants and the complementation
strain of the 4ich. Antibiotics are ordered by solubility values from hydrophobic to
hydrophilic.

The role of the ich gene in antibiotic resistance profile of M. smegmatis.

In order to investigate the functions of ich and ich together with the trkA genes, MICs

of mutants ∆ich and ∆ich-∆trkA with respect to various antibiotics were determined.

Table 4.5 shows the obtained results in our experiments. Hydrophobic antibiotics

such as novobiocin and rifampicin are able to pass through the outer membrane to

the cell by passive diffusion. Meanwhile, the penetration of hydrophilic antibiotics is

significant low. Our first observation showed that the mutants were more resistant to

hydrophobic antibiotics than hydrophilic antibiotics.

In particular, inactivation of ich and double mutants were resistant to hydrophobic

antibiotics such as novobiocin and rifampicin with two-fold and eight-fold increase in

MIC. Less hydrophobic antibiotics, such as fluoroquilones almost do not have any

effect on mutants with no change in MICs. On the other hand, aminoglycosides with

high hydrophilic properties killed the mutants more effectively than wild type strain

with two-fold decrease in MIC. However, with the other small hydrophilic antibiotics,

such as ethambutol and β-lactams we obtained the same MICs as wild type.

In addition, we also analyzed the viability of wild type, ∆ich and ∆ich-∆trkA

mutants on different concentrations of several antibiotics ranging from hydrophobic to

hydrophilic including rifampicin, ciprofloxacin and isoniazid. Viable count of mutants
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Figure 4-10: Viability (%) of M. smegmatis mc2 155 wild-type, 4ich and 4ich-
4trkA mutants under different concentrations of antibiotics. Percentage of viabilities
of the wild-type (blue bars), 4ich (red bars) and the 4ich-4trkA mutant (yellow
bars) to rifampin (A), isoniazid (B), ciprofloxacin (C) ) at the indicated antibiotic
concentrations are shown.

on different concentrations of rifampicin is much larger than viable count of wild

type. This result again explains the MIC numbers of these strains shown in Table. It

demonstrates that ich plays an important role in protection of M. smegmatis against

rifampicin.

As we observe in Figure 4-10, although there is no change in MICs of all the strains

to fluoroquilones, viable count of mutants to high concentrations of ciprofloxacin

closed to the MIC is significantly larger than wild type. The results in this figure

show that those antibiotics are less effective on ∆ich and ∆ich-∆trkA mutants.

The difference between isoniazid MIC of ∆ich and ∆ich-∆trkA mutants and wild

type is supported by the viability count of those strains. In fact, in Figure 4-10 the

viability of these mutants reduces dramatically when the concentration of antibiotics

is increased. Meanwhile, the effect of isoniazid acting on the viability of wild type is

negligible even at high concentration.

Complementation strain with expression of plasmid pvv16-IC restores all the wild

type phenotypes. In summary, the reaction of ∆ich mutant and double mutant

∆ich-∆trkA under the impact of different antibiotics demonstrates that ich gene

together with the trkA gene play an important role in uptake of both hydrophobic

and hydrophilic antibiotics.

Growth effect and K+ requirement. To study the growth effect of ∆ich
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Strain Growth rate doubling time (hours)
wt 0.532±0.039 1.31
4ich 0.455±0.019 1.52
4ich-4trkA 0.435±0.039 1.6

Table 4.6: The growth rates and doubling time of the mc2 155, the 4ich and the
4ich-4trkA mutants. The growth rate was estimated as the maximum slope of the
natural logarithm of optical densities versus time

and ∆ich-∆trkA mutants, growth curves were plotted for 24 hours. The obtained

growth curves of mutants and wild type are different. In particular, the ∆ich and

∆ich-∆trkA mutants have notable lower growth rate than wild type.

According to [Andersson and Levin, 1999, Levin et al., 2000], antibiotic resistance

is usually related to physiological cost for the bacteria. When bacteria are exposed

to antibiotics, mutations conferring antibiotic resistance give the bacteria advan-

tages over susceptible ones. Quantification of fitness cost is one of the methods

to investigate the evolution of antibiotic resistance and its stability in a population

[Pope et al., 2010]. To evaluate the fitness cost associated with antibiotic resistance

the growth rate and doubling time of bacteria were calculated. From the growth

curves, the growth rate was estimated as the maximum slope of the natural loga-

rithm of optical densities at 600 nm versus time. The obtained results are showed

in Table 4.6. According to that table, the growth rate of mutants is lower than the

growth rate of wild-type and the mutants need more time to reach a double optical

density value than the wild-type.

When K+ was added into the medium at different concentrations the growth rate

of mutants increased. However, although adding K+ helps mutants to grow faster, it

almost does not have any effect on the growth rate of wild type. This result shows

that bacteria lacking of the ich gene require more K+ to grow.

Loss of the Ich gene causes increase sensitivity to acidic pH. Potas-

sium and acid-base balance were known to be interrelated. At low internal pH, cells

exchange intracellular protons for extracellular K+ [Kashket and Barker, 1977], an

optimal accumulation of K+ is essential in bacteria for the maintenance of internal

pH. Therefore, loss of the K+ retention by the disruption of the K+ transport can
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Figure 4-11: Growth curves and K+ effect on the growth of the mc2 155, the 4ich
and the 4ich-4trkA mutants. (A) Growth curves of M. smegmatis wild-type mc2

155 (blue colors), 4ich (red colors) and 4ich-4trkA(yellow colors). (B) The effect
of K+ addition (10-200 mM KCl) on the growth of mc2 155 (blue bars), 4ich (red
bars) and4ich-4trkA (yellow bars). The ability of high K+ concentrations to restore
growth of the mutants was measured in cultures at mid-exponential phase (12 hours).
Values, optical density at 600 nm, (OD 600) mean ±SD.

increase the sensitivity of bacteria when they are exposed to acidic conditions. To

examine the functions of ich in regulation of internal pH, the 4ich and 4ich-4trkA

mutants were grown in liquid media with pH ranging from 5 to 8. The growth of

different strains are plotted in Figure 4-11. At neutral pH, the mutants grew slower

than wild type. When bacteria are grown in acid pH, the growth of mutants reduces

significantly while the growth of the wild type only changes slightly. On the other

hand, at alkaline pH the growth of the mutants almost reached the growth of the wild

type.

In addition, the growth of mutants in the medium at pH 5.5 with different concen-

tration of K+ was also compared to that of wild-type (Figure 4-12). In the presence

of K+ the mutants grew better. However, even when 25mM of K+ was added to

the medium the mutants could not get the growth level of the wild-type. Only at

100mM of K+ the growth of 4ich mutant almost reached the the growth level of

the wild-type. The aforementioned result indicates that the ich gene is important for

potassium-dependent growth of M. smegmatis at low pH values.

Deletion ich and membrane potential. Proton motive force (PMF) is con-
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Figure 4-12: Effect of extracellular pH on growth of the 4ich and the 4ich-4trkA
mutants. (A) Effect of pH (5.0 to 8.0) on the growth of mc2 155 (blue bars), 4ich
(red bars) and 4ich-4trkA (yellow bars) in Middlebrook 7H9 liquid medium (initial
OD600 0.05). (B) Effect of K+ addition (10-100 mM KCl) on the growth of mc2

155 (blue bars), 4ich (red bars) and 4ich-4trkA (yellow bars) at pH 5.5. Optical
density (OD600) was measured after 12 hours incubation at 37oC. Values show the
mean±SD

tributed by two factors: an electrical component (4ψ, inside negative) and a chem-

ical gradient (4pH, inside alkaline). The uptake of K+ directly relates to elec-

trical membrane potential, maintaining the optimal transport of K+ is one of the

obligators for electrical membrane potential value, the main contributor to PMF

when cells grow in a neutral environment [Bakker and Mangerich, 1981]. We have

already studied the function of trkA in regulation of electrical membrane potential

[Castaneda-G’arcia et al., 2011]. Following that result, we will also examine the effect

of ich deletion on membrane potential properties in this work.

Particularly, we measured electrochemical membrane potentials across membrane

by monitoring fluorescence of rhodamine 123. Cells with higher membrane potential,

i.e. with charging more negatively inside, accumulated a higher number of the cationic

rhodamine 123. The florescence of rhodamine 123 in the medium was monitored. The

medium containing cells with high membrane potential had low fluorescence. Besides,

the K+ ionophore (valinomycin) was used for the positive control probe.

When valinomycin was added to the medium (without K+ or with concentration

of K+ less than in the cells), it forced the cells to take K+ out. In that way, the

negative charge inside the cells increased leading to an increase of membrane potential.

Therefore, cells in the positive control probe took in high number of the cationic
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Figure 4-13: Membrane potential assay. Exponentially growing cultures (without
KCl) of M. smegmatis mc2 155 (blue bars), 4ich(red bars) and 4ich-4trkA (yellow
bars) were incubated with rhodamine 123. The curves show the decrease in fluores-
cence emission produced by intracellular quenching of the probe. Effect of K+ addi-
tion (100 mM KCl) on the membrane potential of mc2 155, 4ich and 4ich-4trkA.
Cells were pre-incubated for 30 min with increasing KCl concentrations. Fluorescence
measured with rhodamine 123. Values show the mean±SD of experiments

rhodamine 123. Accordingly, rhodamine 123 in the medium decreased. At the end,

compared to wild type, the medium of the positive control probe presented with lower

fluorescence.

Similar to the positive control probe, mutant strains ∆ich and ∆ich-∆trkA also

showed a decrease of fluorescence. Indeed, they accumulated more rhodamine 123

and possessed higher membrane potential. The higher negative inside of the ∆ich

and ∆ich-∆trkA mutants can be considered as a reasonable explanation for the ob-

served multidrug susceptibility, i.e. sensitivity to cationic agents and resistance to

hydrophobic antibiotics.
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Chapter 5

Discussion

5.1 Antibiotics and mutagenesis

Over the past six decades, the extensive usage of antimicrobial drugs has estab-

lished a major impact on human-associated bacteria including both commensal and

pathogens, leading to the selection and the wide spread of resistant variants. The

frequent exposure of bacteria to different antibacterial agents results in the selec-

tion of preexisting resistant variants that ultimately become fixed in the population

[Lederberg and Lederberg, 1952, Newcombe, 1949]. Under antibiotic stresses, many

bacteria with an increased mutation rate (hypermutators) survive and become resis-

tant to the antibiotics [Mao et al., 1997].

The induction of the SOS response by antimicrobials, such as fluoroquinolones,

and its consequence, i.e. the increased mutagenesis, were described in the litera-

ture long time ago [Ysern et al., 1990]. Since the SOS response is efficiently acti-

vated by DNA-damaging agents leading to the transcriptional induction of the error-

prone DNA-polymerases, it is not surprising that clear evidence of antimicrobial-

induced mutagenesis was first described with fluoroquinolones [Ysern et al., 1990,

Power and Phillips, 1993]. However, the induction of the SOS response, and its di-

rect consequence, i.e. the increased mutagenesis caused by β-lactams have just been

recently revealed in the literature [Perez-Capilla et al., 2005, Miller et al., 2004].

Recent work by [Kohanski et al., 2007] has demonstrated that some antimicro-
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bials, defined as bactericidal, such as ampicillin, norfloxacin and kanamycin, stimu-

late the production of highly deleterious ROS radicals in Gram-negative and Gram-

positive bacteria, which ultimately can contribute to cell deaths. On the contrary, bac-

teriostatic drugs do not produce such effects. Besides, it also shows that the same bac-

tericidal drugs induce the SOS stress response and that the inactivation of RecA, a co-

regulator of the response, produces an increased susceptibility to some of them, includ-

ing norfloxacin, ampicillin and kanamycin [Kohanski et al., 2007, Lewin et al., 1989].

In this work, our results discovered an additional interesting fact that mutagenesis

is not only induced by bactericidal drugs but also by bacteriostatic ones, and that

inactivation of RecA activity abolishes the induction of mutagenesis in all cases.

Another interesting result from our investigation is that trimethoprim, either alone

or in combination with sulfamethoxazole, promotes the highest increase in mutant

frequency (Figures 4-1A and 4-1B). Trimethoprim prevents incorporation of thymine

into bacterial DNA by inhibition of dihydrofolate reductase [Amyes and Smith, 1974].

It not only provokes the induction of the SOS response [Lewin and Amyes, 1991]

but also the nucleotide pool imbalance which may affect the replication fidelity

[Lewin and Amyes, 1991]. Therefore, both SOS response and nucleotide imbalance

might act synergistically to the increase of mutant frequency. The other interest-

ing result is the production of filaments in the recA derivative by ciprofloxacin and

trimethoprim treatments. In particular, the production of filaments by these an-

tibiotics was believed to be caused by the SOS response, which was mediated by

RecA and LexA. This response induces the transcription of the sulA (sfiA) gene

[Peterson et al., 1985, Kunz and Kohalmi, 1991]. SulA interacts reversibly with the

protein FtsZ causing the inhibition of cell division and the consequent filamentation

[Huisman and D’Ari, 1981]. A sulA-independent filamentation is also discovered in E.

coli, the mechanism of which is also dependent on SOS induction [Kawarai et al., 2004].

Our results suggest that a new SOS-independent mechanism mediates filamentation

in the absence of RecA. In fact, we have discovered that, at least for ciprofloxacin,

filamentation occurs in a sulA-deficient background (not shown).

Moreover, we show that a number of antibiotics can increase genetic variation by
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the stimulation of mutagenesis in the treated bacteria, suggesting that antibiotic treat-

ments may favor the acquisition and/or the evolution of antibiotic resistance in bacte-

ria. For instance, some extended-spectrum β-lactamases are the result of combining

a reduced number of mutations [Morosini et al., 1996, Morosini et al., 1998]. Thus,

sub-lethal concentrations of mutagenic antimicrobials (not necessarily β-lactams) may

accelerate the evolution of new extended-spectrum variants by stimulating the produc-

tion and the accumulation of mutations. Another example is the resistance conferred

by the increased expression of efflux pumps. It can occur via mutation in different

targets, including mutations in the local repressor gene, mutation in a non-related

global regulatory gene and changes in the promoter region of the efflux-pump gene

(see for instance reference [Piddock, 2006]).

The stimulatory effect on mutagenesis described in this work for some of the tested

antimicrobials is very low, and may be considered too modest to exert any effect on

bacterial evolution. However, it has been stated that modest changes in mutation

rate can influence antibiotic resistance developments greatly [Denamur et al., 2005].

Concerning the possibility of finding the stimulatory concentrations by a sufficiently

dense bacterial population, we have studied a vast amount of bacteria challenged by

antibiotic treatments. Antibiotics are mainly used to combat pathogens but they

also challenge commensals collaterally. While an infection is usually produced by

a relatively small number of cells (108-109), about 1014 prokaryotic cells from hun-

dreds of different species conform our commensal flora with different intrinsic levels

of antibiotic susceptibility [Andremont, 2003]. Finally, even resistant microorganisms

might be included among the possible targets for the mutagenic effect of antibiotics

as high concentrations of antibiotics must be considered sub-lethal for resistant bac-

teria. Thus, any particular window of sub-MIC mutation-stimulating concentrations

of antibiotics should not be difficult to find. The fact that thousand of tons of antibi-

otics are used every year to treat billions of human and veterinary infections and to

promote animal growth, increases the probability of finding the suitable conditions

for the stimulation of mutagenesis.

Studies by Romesberg and coworkers have shown that prevention of SOS acti-
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vation resulted in decrease of both survival and mutagenesis in ciprofloxacin-treated

cultures, as well as ciprofloxacin or rifampicin-treated infected mice [Cirz et al., 2005,

Cirz and Romesberg, 2006]. Consequently, the possibility that components of in-

duced mutation pathways might be inhibited as a novel therapeutic strategy to pre-

vent the development of antibiotic resistance has been proposed in the literature

[Cirz and Romesberg, 2007]. Efforts have been made to identify small molecules

and short peptide inhibitors of RecA activity, although the absence of potential

adverse effects on Rad51 (the human RecA homologue) needs to be demonstrated

[Wigle and Singleton, 2007, Wigle et al., 2009].

Our study aimed at exploring the effect of RecA inhibition on the induced mutage-

nesis produced by many antibiotics. Our results with the recA-defective strain suggest

that most, if not all, mutagenesis induced by sublethal concentrations of antibiotics

is dependent, directly or indirectly, on RecA activity, thus supporting the hypothesis

that inhibition of RecA is a plausible therapeutic adjuvant in combined therapy to

reduce the capacity for generating antibiotic resistant mutants, with additional advan-

tages of affecting sensitivity, homologous recombination [Kowalczykowski et al., 1994],

swarming motility, [Gomez-Gomez et al., 2007] and biofilms [Boles et al., 2004].

5.2 Antibiotic resistance of M. smegmatis

In this study, we tried to identify the mechanisms which could provide acquired

antibiotic resistance of mycobacteria. We analyzed a M. smegmatis mutant library for

rifampicin resistance. We found 16 transposon mutants that increased the resistance

of M. smegmatis to rifampicin from our insertion mutant library. Among them, we

studied two independent insertion mutants carried insertions within the same target

gene, trkA (MSMEG 2771), predicted to encode a regulator of K+ uptake and one

mutant having insertion in the ich gene predicted to encode a K+ transporter. The

level of antibiotic resistance was identical (16-fold increase) in the 4trkA in-frame

deletion mutant, which was complemented by the wild-type trkA gene. The 4ich in-

frame deletion mutant also has a high level of rifampicin resistance (16 fold increase).
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This mutant then was complemented by the ich gene of the wild-type strain.

5.2.1 TrkA

Our results show that TrkA is necessary for K+ uptake in M. smegmatis, in accordance

with studies that indicate it is essential for K+ accumulation in prokaryotes, which

need a high intracellular K+ concentration (0.1-1 M) for survival [Dosch et al., 1991,

Parra-Lopez et al., 1994, Chen et al., 2004, Nakamura et al., 1998]. Here, we show

that the M. smegmatis trkA mutant requires an additional K+ supply to counterbal-

ance its growth defect and its susceptibility to acidic pH. Given the K+ deficiency

in 4trkA cells, we suggest that TrkA-dependent ion acquisition is central to the

maintenance of adequate K+ levels in M. smegmatis.

In bacteria, proteins involved in basic physiological functions have an essen-

tial role in intrinsic resistance to antibiotics and the acquisition of antibiotic re-

sistance [Fajardo et al., 2008, Liu et al., 2010]. Here, we demonstrate that in ad-

dition to increased rifampicin resistance, the M. smegmatis 4trkA mutant exhibits

enhanced isoniazid susceptibility. Interestingly, overexpression of CeoB, the M. tu-

berculosis TrkA homologue, confers isoniazid resistance in an E. coli oxy R mutant

[Chen and Bishai, 1998]. This effect was suggested to be due to TrkA sequestration

of isoniazid, as it is chemically similar to the NAD+ nucleotide. 35 This hypothesis is

supported by a recent study in which TrkA showed high affinity for active isoniazid

adducts in complex with NAD(P)+ [Argyrou et al., 2006]. Another group suggests

that flavin adenine dinucleotide-binding proteins also influence NADH/NAD+ lev-

els, and, hence, modify isoniazid activation and binding to its main target, InhA,

through nucleotide competition [Miesel et al., 1998, Vilcheze et al., 2005]. Our re-

sults indicate that the mycobacterial protein TrkA protects cells from the first-line

antibiotic isoniazid, increasing tolerance of this drug by M. smegmatis. In addition to

the previously proposed mechanisms, our results suggest that the chemical properties

of isoniazid (high solubility and polarity) influence its penetration inside M. smegma-

tis and, thus, it could contribute to explain why the trkA mutant is more susceptible

(see below).
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TrkA is necessary for intrinsic resistance to a number of positively charged antibi-

otics in prokaryotes, such as polycationic antimicrobial peptides in E. coli, Salmonella

enterica and Vibrio vulnificus [Parra-Lopez et al., 1994, Chen et al., 2004] or amino-

glycosides in Pseudomonas aeruginosa [Lee et al., 2009]. We found that loss of TrkA

activity modifies M. smegmatis susceptibility to a wide variety of antibiotics. The

M. smegmatis 4trkA mutant showed hypersusceptibility to cationic agents, such

as aminoglycosides, and increased resistance to large hydrophobic antibiotics, in-

cluding rifampicin, novobiocin and fluoroquinolones. In E. coli, Trk proteins, in-

cluding TrkA, are also associated with a general function in antibiotic susceptibility

[Girgis et al., 2009]. Disruption of the Trk system increased antibiotic tolerance when

E. coli cells were exposed to sublethal concentrations of several classes of antibiotics

with different targets (nalidixic acid, piperacillin, tetracycline and doxytetracycline),

although the molecular basis of this effect was not identified [Girgis et al., 2009]. K+

uptake via the TrkA system has a major role in bacterial physiology [Epstein, 2003,

Su et al., 2009] as it has a function in osmotic stress tolerance, internal pH mainte-

nance, the regulation of protein activity and the control of bacterial virulence. M.

smegmatis maintains intracellular pH near neutral and a constant PMF through in-

terconversion of the membrane electrical potential to a pH gradient.

Here, we show that TrkA activity counteracts the effect of extracellular acidic pH

in M. smegmatis and, hence, participates in controlling intracellular ionic balance.

Our results strongly suggest that in the absence of TrkA-dependent K+ uptake, pH

homeostasis fails and intracellular pH decreases to lethal levels in acidic conditions.

Furthermore, it has been demonstrated that pH could affect K+ flux and regulate the

activity of K+ uptake systems in prokaryotes [Epstein, 2003]. Therefore, the effect of

pH on K+ transport in M. smegmatis needs to be explored in detail.

Although a connection between TrkA-dependent K+ transport and cell physi-

ology has been established in prokaryotes, its association with antibiotic tolerance

remains to be analyzed in detail. General alterations in antibiotic susceptibility are

frequently caused by permeability changes in the mycobacterial cell envelope due to

electrostatic perturbations [Nguyen and Thompson, 2006]. Our results suggest that
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the mechanism by which TrkA controls multidrug susceptibility is similarly based on

regulation of K+ transport, and its effect on pH homeostasis and membrane perme-

ability. K+ uptake is essential for the maintenance of a constant PMF through the

interconversion of membrane electrical potential to a pH gradient in Actinobacteria

[Follmann et al., 2009]. Impaired K+ uptake by inactivation of the Trk system or K+

insufficiency increase membrane potential in E. coli [Bakker and Mangerich, 1981].

In the yeast Schizosaccharomyces pombe, changes in membrane potential are associ-

ated with pleiotropic changes in the susceptibility to chemotherapeutic agents due to

impaired K+ uptake [Thornton et al., 2005]. Here, we demonstrate that the lack of

TrkA-dependent K+ uptake in M. smegmatis leads to increased membrane potential.

The hyperpolarized membrane of the M. smegmatis trkA mutant could attract and fa-

cilitate the penetration of positively charged antibiotic molecules into bacterial cells,

but might also reduce the diffusion of large hydrophobic drugs, such as rifampicin

or novobiocin. Additionally, both membrane potential and intracellular pH are key

components that control the activity of PMF-dependent multidrug efflux pumps in

prokaryotes [Su et al., 2006, Eicher et al., 2009]. Therefore, an impaired K+ uptake

could also indirectly modify the activity of efflux pumps in M. smegmatis and may

influence the susceptibility to antibiotics. However, our results showed a correlation

between the physicochemical properties of the antibiotics with their activities against

M. smegmatis, suggesting a direct effect of K+ uptake rates on bacterial permeability

to antimycobacterial agents.

The acquisition of rifampicin resistance in M. smegmatis by trkA inactivation en-

tails a conspicuous growth defect and a clear loss of fitness, probably due to the impact

on cell physiology of ionic imbalance and membrane hyperpolarization. In addition,

trkA mutants are attenuated for virulence in several bacterial pathogens, including

M. tuberculosis [Parra-Lopez et al., 1994, Chen et al., 2004, Rengarajan et al., 2005]

suggesting a low frequency of trkA (ceoB) mutations among rifampicin resistant M.

tuberculosis clinical isolates; however, the occurrence of different trkA mutations in

M. tuberculosis strains remains to be explored. Our results indicate that by modifying

cell permeability, alterations in ion transport promote a change in the M. smegma-
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tis susceptibility pattern to antibiotics. K+ supply might be an important element

in this effect; variations in K+ levels could influence antibiotic diffusion and pro-

duce changes in drug susceptibility. In addition to trkA, the M. smegmatis genome

contains two others genes, MSMEG 2769 (trkB) and MSMEG 1945 (ich), which

encode a putative K+ transporter (see below). Mycobacteria also encode another

main K+-uptake system, named Kdp, a P-type ATPase. Kdp is an inducible system

with high affinity for K+ and requires ATP hydrolysis to promote K+ uptake in E.

coli [Greie and Altendorf, 2007]. Furthermore, ABC components could also develop

a regulatory role in Trk-mediated K+ uptake [Harms et al., 2001]. As other proteins

involved in ion transport might also influence antibiotic effectiveness, it would be of

interest to explore the role of ion transporters in intrinsic resistance and the acquisi-

tion of drug resistance in mycobacteria. On the other hand, K+ uptake is inhibited by

some compounds with anti-mycobacterial activity, such as the riminophenazine clo-

fazimine [Steel et al., 1999]. Our data, nonetheless, indicate that the inhibition of K+

uptake could induce a complex pattern of phenotypes, including increased resistance

to anti-mycobacterial drugs such as rifampicin. Such collateral resistance should be

carefully considered when combined treatments are designed.

5.2.2 Ich

We found that the 4ich mutant need an additional amount of K+ to grow. Indeed,

it grew better when more K+ was added to the medium at different concentrations.

This result provides physiological evidences that the Ich protein may function as a

potassium transporter. Our study also suggested that the role of the Ich protein in

potassium transport relies on its structure which contains the TrkA-N domain having

a nucleotide-binding sequence previously identified as a flavin adenine dinucleotide-

binding motif.

While the mutants lacking of the ich gene poorly grew in normal MB medium,

their growth was restored by adding more K+. The fact that additional K+ are

required for the mutants lacking of ich to balance their growth suggests that the Ich

protein may play an important role in the maintenance of sufficient K+ concentration
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in the cells of M. smegmatis.

In general, ionic channels are very important in underpinning numerous funda-

mental physiological processes. Therefore, ionic channels are certainly considered

as a major class of drug targets [Clare, 2010]. In bacteria, this kind of proteins

plays an important role in antibiotic resistance. For instance, the K+ uptake sys-

tem Trk including TrkA was determined to be associated with general functions in

antibiotic resistance profile in many bacteria such as E. coli [Girgis et al., 2009] and

Pseudomonas aeruginosa [Lee et al., 2009].

Our experimental results showed the participation of the ich gene having a TrkA

domain in antibiotic resistance profile of M. smegmatis. On one hand, we found that

the deletion of the ich gene in M. smegmatis was associated with hypersusceptibility

to hydrophilic antibiotics (cationic agents) such as INH and aminoglycosides. Yet on

the other hand, it was also associated with the increasing resistance to many other

hydrophobic/lipophilic antibiotics such as rifampicin, novobiocin and floroquinolones.

In addition to the decrease of the susceptibility to rifampicin, the mutants lacking

of ich increase the susceptibility to INH. This result demonstrated the role of ich in

the protection of M. smegmatis from INH. Because the Ich protein has a TrkA-N

domain, the Ich protein can protect bacteria from INH based on those two previous

mechanisms described in the TrkA part (see above). Furthermore, the double mutant

with deletions of both genes trkA and ich showed higher susceptibility to INH. As

the 4trkA mutant of M. smegmatis was determined to increase its susceptibility to

INH in our previous work [Castaneda-G’arcia et al., 2011], we hypothesize that the

deficiency of both genes causes the increasing of susceptibility to INH.

An increase of susceptibility to ethionamide was observed in mutants lacking of

the ich gene and the double mutant with deletions of both genes ich and trkA. Ethion-

amide and INH have a similar structure and the mechanism of both drugs requires

the activation of prodrug [Johnsson et al., 1995]. Although there are significant dif-

ferences in their activation mechanisms, both of these drugs have a common target,

i.e. InhA. It has been determined that the alteration of NADH/NAD+ ratios is not

only related to the activation of INH as we have discussed above but also involved
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in the activation of ethionamide. Indeed, the change of the NADH/NAD+ ratios is

associated with inhibiting the binding of INH and ethionamide to their target InhA

[Vilcheze et al., 2005]. Interestingly, we did not see the increase of susceptibility to

ethionamide of the mutant lacking of trkA via identification of its MIC. Another

interesting result is that, the 4ich mutant is more susceptible to INH than 4trkA.

Therefore, we hypothesize that the change of NADH/NAD+ ratios maybe much larger

in 4ich than that in 4trkA. This hypothesis should be verified more carefully by ex-

perimental works in the future.

In the literature, it has been determined that the presence of K+ is necessary

for the maintenance of neutral internal pH in several well-known bacteria such as E.

coli [Kroll and Booth, 1981], Lactococcus lactis [Kashket and Barker, 1977] and also

Steptococcus mutans [Dashper and Reynolds, 1992]. Experiments about the growth

of bacteria at pH value ranging from 5 to 8 in the absence of K+ and at pH value 5.5

in the presence of K+ confirmed the importance of K+ under acidic conditions. An

increase of sensitivity to acidic conditions was observed with mutants without the ich

gene. Indeed, the mutants were growing with similar to growing level of wild-type

at alkaline and neutral pH, but their growth was significantly impaired at low pH

values. At pH 5.5, additional K+ was necessary to support the growths of mutants.

In the presence of sufficient K+ (100mM), the 4ich mutant almost reach the growth

level of wild-type. Interestingly, we found that the double mutant with deletions of

both genes ich and trkA had almost lost its capacity at low pH (5.5). Besides, when

the single mutants have recovered their growth with the additional K+, the growth

of double mutant was still very bad.

Our results demonstrate that the disruption of K+ transport by the loss of Ich

function impaired the capacity for pH homeostasis in M. smegmatis, and the intra-

cellular pH decreases significantly to lethal level in acidic conditions. Therefore, Ich

plays an important role in the growth at acidic conditions. Moreover, the internal

pH is also regulated by the other system such as the K+ efflux and the K+ uptake

systems. Particularly, our results together with the results of our previous work indi-

cated that both Ich and TrkA participated in the regulation of internal pH. However,
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the role of the ich gene in the regulation of internal pH is still unveiled and need more

efforts to understand it deeply.

We found that mutants with inactivation of Ich protein showed an increase of 4ψ

which were then decreased by the adding K+. The highest membrane potential was

observed in the double mutant lacking of two genes trkA and ich. Because both of

these genes involve in the regulation of membrane potential via the K+ transport, their

absence should cause the highest unbalance in the K+ transport. As a consequence,

it causes the highest difference between concentrations of K+ inside and outside the

cell. It is also a reason of the observation that the highest membrane potential was

obtained in double mutant cells.

The ionic imbalance and hyperpolirization may lower the growth of the mutants

with the ich deletion. Moreover, we suggested that the modification of membrane

permeability, the change in ionic transport of M. smegmatis take a crucial part in

antibiotic resistance profile. The supplement of K+ could be considered as an impor-

tant factor in this process. Indeed, the maintained K+ inside the cells may have an

effect in the penetration of antibiotics across the membrane and the change in K+

transport. Thus, it can cause alternations in antibiotic susceptibility. In this work,

we determined the function of the Ich protein as a putative K+ channel. Furthermore,

the genome of M. smegmatis also has other proteins taking part in the K+ transport

including the uptake the efflux systems. It would be interesting to study the role of

ionic transporters in the resistance development to antibiotics in mycobacteria. As

we have discussed above, the membrane potential and intracellular pH are important

factors which regulated the activity of the drug efflux pumps depending on PMF in

prokaryote [Su et al., 2006, Eicher et al., 2009]. Thus, the K+ transport could have

effects on the function of drug efflux pumps. The relation between the K+ transport

system, in particular the activity of the Ich protein, and the function of drug efflux

pumps should be carried in a future work to identify the molecular mechanisms of

drug resistance in mycobacteria.
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Chapter 6

Conclusions

1. Sublethal concentrations of eight antibiotics, including ampicillin, ceftazidime,

trimethoprim/sulfamethoxazole, imipenem, ciprofloxacin, trimethoprim, sulfamethox-

azole, and tetracycline, are able to stimulate mutagenesis of E. coli.

2. While most antibiotics have a slight effect with mild increase in mutagene-

sis, trimethoprim, sulfamethoxazole and the combination of trimethoprim plus

sulfamethoxazole produced the highest effect with highest increase in mutant

frequency for both rifampicin and fosfomycin resistance. In this case, both SOS

response and nucleotide imbalance might act synergistically to increase mutant

frequency.

3. Inactivation of recA abolishes the induction of mutagenesis produced by differ-

ent antibiotics. Thus, most mutagenesis induced by sublethal concentrations of

antibiotics depends on RecA activity.

4. The disruptions of trkA and ich result in the increase of rifampicin resistance

in M. smegmatis.

5. TrkA mediates K+ uptake, and it is essential for maintaining the growth of M.

smegmatis, its pH homeostasis and membrane potential.

6. The Ich protein is a putative K+ transporter which plays an important role

in the maintenance of sufficient K+ concentration in the cells of M. smegmatis.
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Similar to TrkA, Ich is essential for the growth at acidic conditions, it also takes

part in the regulation of membrane potential of bacteria.

7. TrkA takes an important part in regulation of antibiotic susceptibility. Deletion

of the trkA gene modifies M. smegmatis susceptibility to a wide variety of an-

tibiotics. Indeed, the M. smegmatis 4trkA mutant showed hypersusceptibility

to cationic agents, such as aminoglycosides, and increased resistance to large

hydrophobic antibiotics, including rifampicin, novobiocin and fluoroquinolones.

8. Inactivation of ich also causes the change of antibiotic resistance profile of M.

smegmatis, mutants lacking of ich, on one hand, become resistance to hydropho-

bic antibiotics such as novobiocin and rifampicin, and on the other hand, they

are more susceptible to hydrophilic antibiotics, such as isoniazid and aminogly-

cosides

9. TrkA and Ich are considered as general regulators of antibiotic susceptibility.

The change in antibiotic resistance profile of M. smegmatis in the absence of

the TrkA or Ich proteins is associated with membrane hyperpolarization.
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plementation strain of the 4ich. Antibiotics are ordered by solubility

values from hydrophobic to hydrophilic. . . . . . . . . . . . . . . . . . 73

4.6 The growth rates and doubling time of the mc2 155, the 4ich and the

4ich-4trkA mutants. The growth rate was estimated as the maximum

slope of the natural logarithm of optical densities versus time . . . . . 75
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