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Chapter 1

Introduction

1.1 Motivations

In the last years, image recognition has been a booming field of research because of the
huge demand of derivative applications. However, the detection and recognition of objects
in images are difficult problems. One of the main problems is that the localization of the
object in the images could be in scenes with high level of variegation and clutter, where the
objects of interest are similar to the background, objects are partially visible or the sizes
of the objects are very small with respect to the size of the images. In this context, two
important subareas of image recognition are: image classification and object detection.

In recent years many methods have been proposed for image classification that
have improved the performance drastically. Among them are the methods for image
classification based on the creation of supervised visual dictionaries [Nowak et al. (2006);
Willamowski et al. (2004); Torralba et al. (2007)]. The first algorithm of this type applied
to image classification is [Csurka et al. (2004)]. In [Csurka et al. (2004)], the authors
presented the Bag of Words (BOW) method to classify images. This method treats each
image as a document and each image feature as a word. Visual words could be considered
as a representative of several similar image visual feature patches. Image visual features
are transformed to their most similar visual word. For each image, a vector of occurrence
counts of words is created. This vector is used to compute the similarity between images.
In [Winn et al. (2005)], the authors propose using a high number of clusters using
K-means, these clusters then are concatenated to maximize the generalization power of the
model. In [Moosmann et al. (2007)], the authors build extremely randomized clustering
forests which classify each image directly using the output as the descriptor vector. After
that, the leaves of the trees are defined as the binary attributes which are used as the
entries of the visual dictionary. This method is discriminative, however, the creation of a
dictionary with large number of entries might overfit the data. In [Sukthankar2 (2008)], it

1



2 CHAPTER 1. INTRODUCTION

is proposed to use a sequence of ”visual bits” using Boosting algorithm. Each visual bit is
a binary attribute that is the entry for the next classifier in the ensemble. In a recent work
[Martı́nez-Muñoz et al. (2009)], a free-dictionary method is proposed to classify images.
This method analyzes directly the descriptor vectors of the image using Random Forests.
Instead of using the trees as the entries of a visual dictionary, they are used as a data
structure. Each tree stores a histogram of the number of reached training examples of each
class in each leaf. In test, the histograms are accumulated for all feature descriptors of a
new image. The global accumulated histogram is passed into a new classifier that outputs
the final prediction. This approach avoids the loss of information that occurs when each
feature descriptor is mapped to a visual dictionary entry. This is a non-parametric method
and it is called evidence trees reflecting the base mechanism.

Another important area of research in computer vision area is object detection. There
are multiple object detection techniques. Some of them are based on sliding window
detectors [Viola and Jones (2004)], contour dictionaries [Shotton et al. (2005)], modeling
of objects with constellations of parts using local image parts (patches) [Fergus et al.
(2003)] or contour fragments of objects [Opelt et al. (2006)]. The Generalized Hough
Transformation for the shape detection is also used with the combination of dictionaries
of local attributes [Leibe et al. (2008)]. In [Maji and Malik (2009)], the authors propose
a discriminative version of probabilistic Hough transformation. In [Gall and Lempitsky
(2009)], it is proposed to use Hough forests, where each tree votes the region of the image
where a possible object centroid might be localized. This method also uses a generalized
version of the Hough transformation with discriminative learning. The focus of this project
is the adaptation of image classification methods for object detection. Specifically, it aims
to bring the system of evidence trees for locating the centroids of the objects in a object
detection problem.

Ensemble learning is an area that there has been a lot of research [Breiman (1996);
Freund and Schapire (1996); Hansen and Salamon (1990); Martı́nez-Muñoz and Suárez
(2005)]. In ensemble methods, a collection of classifiers are created and their decisions
are combined to obtain the final prediction. Instead of considering a single prediction
hypothesis, these methods take into account the predictions of various hypotheses which
are consistent according to the observed data. Averaging these predictions provides a
mechanism to obtain more accurate and robust final decisions. There is ample empirical
evidence that the generated final predictions have good generalization capabilities. In
recent years, these powerful machine learning techniques have been applied in problems
of detection and classification in images [Moosmann et al. (2007); Gall and Lempitsky
(2009); Martı́nez-Muñoz et al. (2009)].

We believe that some ideas of image classification algorithms can be applied in an
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object detection algorithm. Tree evidences approach proposed in [Martı́nez-Muñoz et al.
(2009)] was used for a classification algorithm. In this work, we propose to adapt this
idea to object detection. The idea of vote maps used in detection algorithms [Opelt et al.
(2006); Shotton et al. (2005); Gall and Lempitsky (2009)] is applied to detect the center
of an object. The mentioned algorithms used the geometric information like the relative
distance between the image feature and the location of the object of interest. This approach
of using geometric information is also an interesting research area for this work. On the
other hand, we will use ensemble learning algorithm such as Random Forests to combine
location predictions for an object and use the final result to annotate the center of an object.

This research has been carried out in collaboration with professor Thomas G. Dietterich
of Oregon State University and professor Qing Yao of Zhejiang Sci-Tech University.

1.2 Objectives
The Master’s Thesis has following objectives:

• To study the state of the art in image classification and object detection algorithms.

• To study the incorporation of machine learning techniques such as ensembles of clas-
sifiers for object detection problems in images.

• To analyze the performance of object detection methods based on visual dictionar-
ies in object detection and to design new algorithms that incorporate randomization
techniques and supervised combination of a set of classifiers to generate visual dic-
tionaries.

• To incorporate geometric constraints in object detection and to design a new generic
object detection algorithm that is useful for any kind of objects.

• To evaluate and compare the proposed algorithm with previous state of the art detec-
tion algorithm.

The main objective is the design of an algorithm for combining multiple object location
detection decisions obtained by using visual dictionaries and machine learning algorithms
in a single final decision. In the same time, the design and implementation of the testing
protocol have to be done to evaluate the algorithm performance on different datasets. A
possible application for biomonitoring of ecosystems is investigated also. For example,
using the proposed algorithm to detect insect locations in an image or to identify a group
of high similarity species.
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1.3 Document Structure
The structure of the Thesis is as follows:

• Chapter 1. This chapter presents the motivation and the objectives of this work.

• Chapter 2. This chapter presents some state of the art algorithms which inspired us
in our own works.

• Chapter 3. This chapter presents the design and the details of the proposed object
detection method.

• Chapter 4. This chapter presents experimental results of the proposed algorithm in
different dataset and the comparison results with other methods.

• Chapter 5. This chapter summarizes the main results and conclusion of the work,
some related future works will be suggested.



Chapter 2

Related works

The main objective of an image recognition system is to transform the information
contained in an image to some computer format that can be utilized for some automatic
processing. Some of the typical processing in this area could be: image classification,
object detection, image retrieval, medical image analysis, etc. And the output of these
systems can be some discrete values indicating the class which an image belongs to
(classification) or the position of an detecting object with the area in which the object
occupies in the image (detection).

In computer vision area, feature extraction is always a crucial step. In this process the
physic of the image is transformed to some low level signals which are interpreted by a
recognition system. Therefore extraction of irrelevant or noisy features leads to the failure
of entire object recognition system. Good image features are those invariant to changes in:
lighting conditions, rotation, scaling, affine transformations and partial occlusion. On the
other hand, for classification system, a good features have to preserve high discrimination
between different images or objects. The metric which measures the effectiveness of an
image feature is called ”repeatability” [Lowe (2004)]. A good image feature has to have
high repeatability which means: Similar features will have to be detected in different
images of the same scene or object.

Image features are in a sense like human eyes, we use them to perceive the environment
and situation around us. We used images features to transform the external images in
some computer signals or statistics, this is what we do with our eyes to transform external
environment to some visual stimulations and transfer them to our brain. Without good
image features we are like blind people trying to read. However, we also need a machine
brain to understand the perceived information. For this purpose, a lot of machine learning
algorithms have been applied in this area to make our agent smart enough for a specific
image recognition tasks.

5
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Figure 2.1: SIFT Detector. Left, images are scaled in different sizes. In each octave,
images are filtered in different smoothness and DoGs are computed in each octave. Right,
the keypoint (cross) is detected as the maximum of its neighbours (circles) in the DoG.

In this section we give a revision of some of the most used algorithms and techniques
for image recognition tasks. Significant emphasis is given to some of them which will be
implemented and used in our approach or used as a basis for performance comparisons.

2.1 Feature detection

2.1.1 SIFT feature
In 1999 Lowe proposed a image feature named feature transform (SIFT) [Lowe (1999)].
Unlike other previous global image features extraction that were based on the charac-
teristics of the whole image like global texture and colour features, SIFT feature is a
patch-based feature which is used to detect a set of singular circular regions in an image.
Each individual SIFT feature presents robustness to partial occlusion, scale, illumination
and orientation changes and is partially invariant to affine transformations. SIFT feature
has also been demonstrated to be robust in detecting 3D objects from a large variation of
viewpoints [Lowe (2001)]. These stabilities across different image conditions make the
SIFT detector and descriptor suitable for image recognition problems. The SIFT algorithm
includes three modules: a detector to detect invariant patches in the image, a descriptor to
define the patches and a matching algorithm between SIFT descriptors.

The SIFT detection process works as following. First, the image is down-sampled by a
factor of two a few times. The number of subsamplings determine the number of possible
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scales of the detected point. These scaled images are convolved using Gaussian filters with
different variances (σ). The Gaussian filters are applied in order to smooth the image and
to remove noisy pixels. The set of filtered images obtained from the same scale is called
octave. In each octave, the difference of two adjacent layers is computed. This difference
is called Difference of Gaussians (DoG).

The location of Keypoints are identified by finding the maxima and minima in the DoG
images with respect to its neighbouring points. The neighbouring points are eight point
around the maximum/minimum in its layer and the nine neighbouring points in its upper
and lower layer. This process is shown in Figure (2.1).

Once the center position of each keypoint is detected, we have to obtain the scale and
orientation of the patch around the keypoint. The size of the keypoint is determined by the
scale of the octave in which it has been detected. The bigger the scale used, the smaller is
the region occupied by the keypoint in the original image. The size of the keypoint region
is a Gaussian window which is set to 1.5 times bigger than the Gaussian filter used in the
smoothed image where the keypoint center is detected. The orientation of the keypoint is
obtained by selecting the dominant gradient direction around the center of the keypoint. A
histogram of gradient directions with 36 bins is created, each bin covers 10 degrees. The
gradient direction θ of each sample position is weighted by the gradient magnitude m and
a Gaussian-weighted circular window with a sigma 1.5 times bigger than the scale of the
detected keypoint:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2, (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = atan2(L(x, y + 1)− L(x, y − 1), L(x+ 1, y)− L(x− 1, y))

where operator L(x, y) indicates the pixel value in the position x, y of the Gaussian-blurred
image L. The dominant gradient directions are considered as those above 80% of the
highest histogram maximum. Sometimes more than one dominant orientation is formed
and more than one SIFT detection is assigned to the same position of the image.

The final step is to obtain a descriptor vector of the detected patch. The SIFT descriptor
is needed to define, in a compact way, the region that the keypoint occupies. A SIFT
descriptor is a histogram of a 128-dimensional vector and the histogram is an estimation of
occurrences of gradient directions rounded of each inner sample point in discrete intervals
(bins).

To construct it, a 16-by-16 rectangle is cropped by circular Gaussian-weighted window.
The window used to compute the dominant orientation is used here. A keypoint descriptor
is described by computing the gradient magnitude and orientation at each image sample
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Figure 2.2: SIFT descriptor.

point and the gradient magnitude is normalized by the Gaussian window. The orientation
of each sample point is rounded into eight discrete directions. Note that the region around
the keypoint position is normalized previously in orientation, i.e. rotated according to the
orientation of the keypoint.

The patch region is divided in 16, 4-by-4 subregions. Each one generates a
sub-histogram with eight that bins represent discrete orientations. This is done by
accumulating the normalized gradient magnitude of each sample point in its respective ori-
entation bin. By concatenating all these sub-histograms, we finally get a 128-dimensional
descriptor vector. This process is shown in Figure (2.2).

The final module of the SIFT algorithm is the matching step of SIFT descriptors. This
is done by identifying its nearest neighbour in the database of keypoints from training
images. However, a typical image will produce several thousand overlapping features at
different scales. Then for a database with a set of images, this step may be a bottleneck. In
the original work [Lowe (2001)], the authors proposed to use a probabilistic version of the
KD-tree algorithm [Beis and Lowe (1997)] to compute the descriptor matching efficiently.
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2.1.2 Harris and Hessian affine detectors

Other keypoint detection methods are used and combined with SIFT descriptor for different
object detection and classification problem. In [Mikolajczyk et al. (2005)], Harris affine
detector and Hessian affine detector are presented. These detectors manage to find corners
that present high affine invariance. The idea behind the algorithms of these detectors is to
assume that corner regions in an image have large intensity changes in multiple directions.

The Harris affine detector is divided in two parts:

• Detect the feature region using scale-invariant Harris-Laplace Detector.

• Normalize the affine region and re-estimate the affine region by selecting keypoint
locations and scale properly.

The Harris-Laplace Detector is a detector which applies first the Harris corner detector
in multiple image scales. Using Harris corner detector in multiples scales makes the Harris-
Laplace Detector scale invariant. Harris corner detector uses the second moment matrix A
to determine corners in images as shown below:

A(X) =
∑
x,y

w(x, y)

∣∣∣∣ I2x(X) IxIy(X)
IxIy(X) I2y (X)

∣∣∣∣
where Ix(X) and Iy(X) are derivatives of pixels intensity in the x and y direction at point
X , I2 is the second derivative, andw(x, y) is a circular Gaussian which is a weighting func-
tion for each position (x, y). According to [Harris and Stephens (1988)], in corner regions,
matrix A will have two large, positive eigenvalues λ1 and λ2. A measure of cornerness, R,
can be computed as:

R = det(A)− α · trace2(A) = λ1λ2 − α(λ1 + λ2)
2

where α is a constant. If R(x,y) is bigger than a specific threshold t, the position is
considered a corner.

Up to this point the detector is not scale invariant. In order to make it scale invariant, it
is necessary to apply this detection in the Gaussian at different scale spaces, similar to the
ones used for SIFT. This combination is named Harris-Laplace detector. Taking the scale
into account the measure R can be redefined as:

R = det(µ(X, σI , σD))− α trace2(µ(X, σI , σD))
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where µ(X, σI , σD) is:

µ(X, σI , σD) = σ2
Dg(σI)

⊗∣∣∣∣ I2x(X, σD) IxIy(X, σD)
IxIy(X, σD) I2y (X, σD)

∣∣∣∣
and σ2

Dg(σI)
⊗

denotes the convolution of the Gaussian kernel applied to each derivative
and σI indicates the scale at which the Harris corner points are detected, i.e. the size of
the Harris corner. And σD establishes the smoothness of the Gaussian kernel operator.
Corner points are those local (eight point neighbourhood) maxima of the cornerness that
are above a specified threshold. Then an automatic iterative scale selection process is done
[Lindeberg (1998)]. The iterative algorithm both spatially localizes the corner points and
selects the characteristic scale. This process has three key steps:

• Choose the scale σI which maximizes the Laplacian-of-Gaussians (LoG) [Wikipedia
(2004c)] from a point X .

• Using the selected scale, the new point X is chosen such that it maximizes the Harris
corner measure.

• Stop if σI no suffers changes between two consecutive iterations.

At this point, the detected multi-scale Harris corners are not affine invariant. However,
these corners provide an approximate location and scale for initialization for the next
iterative process. The next step is done to estimate the regions with affine properties.
Finally, the affine regions are normalized with stretch and skew removed. Figure (2.3)
shows an example of this iterative process.

The Hessian affine detector algorithm proposed by the same author is very similar to
the Harris affine detector. The main difference between these two algorithms is that the
Hessian affine detector detects interest points based on the Hessian matrix:

H(X) =

∣∣∣∣ Lxx(X) Lxy(X)
Lxy(X) Lyy(X)

∣∣∣∣
where the Laa is the partial derivative in the direction a. Note that L(x) = g(σI)

⊗
I(x)

and it means that the derivatives are smoothed by a Gaussian kernel. The scale of the
detected interest point is determined by the σI . Once the initial Hessian points are detected,
the same iterative affine region estimation-normalization process used in Harris-affine
detector is done here to get Hessian affine regions.

Both detected Harris affine region and Hessian affine region can be described using the
SIFT descriptor.



2.1. FEATURE DETECTION 11

Figure 2.3: Left, the multi-scale Harris corner points detected by Harris-Laplace detector.
Center, the affine region is estimated, Right, The affine region is normalized.

2.1.3 Edge based detectors
In 1986, Canny introduced the named Canny edge detector [Canny (1986)] which is still
widely used nowadays in computer vision.

According to [Canny (1986)], there are three fundamental criteria for a good edge de-
tector:

• Good detection: the edge detector should detect as many real edges as possible.

• Good localization: the detected edge locations should match to the real edges loca-
tions.

• Only one response per edge, that is, there should be only one detection for each real
edge.

In [Canny (1986)], an optimal function is proposed to detect edges which meets the
previous criteria. Furthermore, the article demonstrates that the optimal function can be
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approximated by the first derivative of a Gaussian. In addition, it is also demonstrated that
a point in an edge presents large variation of directions, the idea of the Canny detector is to
apply Gaussian derivative filters in the images. Each image is blurred to remove noise and
transformed into gradient magnitude and orientation map by the following functions:

m(x, y) =
√
I2x + I2y

θ = arctan(
Iy
Ix
)

where Ix = Gx
σ ∗ I and Iy = Gy

σ ∗ I , and G is the first derivative of a Gaussian and I the
original image, m(x, y) indicates the gradient magnitude at position (x,y) in the image,
and θ its gradient angle which normally is rounded into four directions: 0, 45, 90, 135.
The variance σ used in Gaussian blur function is the parameter that helps to control the
number of detected edges. If the smoothness parameter σ is large, the image becomes more
blurred, and some real edges might be missed. This breaks the first criterion described
before. On the other hand when using a small σ, noisy edges may remain in the smoothed
image which breaks the third criterion. Intermediate values of σ should be selected.

Once the image is blurred, gradient magnitudes of each of four rounded directions at
each point are calculated. The direction with the maximum gradient magnitude is selected
as the gradient direction of that point. To decide if a point belongs to an edge or not,
we should verify if the gradient magnitude of the maximum is above a threshold t. This
parameter is similar to the σ variable used to control smoothness of the filtered image. The
parameter t controls the number of selected edge points. The value of this parameter is
critical since a large threshold may break the edges and make them seem discontinuous.
On the other hand, small thresholds may broke the third fundamental criterion producing
several parallel lines for a single edge. To alleviate this difficulty, it is proposed to use
thresholding with hysteresis. The parameters are formed now by two thresholds t1, t2
which are low and high respectively (t1 < t2). These thresholds are responsible to decide
if a point belongs to an edge:

• If the gradient intensity of a local maximum is below t1, then it is discarded as a point
on an edge.

• If the gradient intensity of a local maximum is above t2, then it is accepted as a point
on an edge.

• Otherwise, the point is considered as part of an edge only if it is in the middle of the
edge.

These criteria allow us to have a very robust response. As we point out previously,
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Canny edge algorithm is still one of the state of the art edge detector and it can be used into
edge based descriptors.

2.1.4 Beam angle statistics
Beam angle statistics (BAS) is a contour based descriptor used to describe contour of an
object. In [Arica and Vural (2003); Arica and Yarman-Vural (2003)], this descriptor is
used to represent two-dimensional object silhouettes. This is done by a histogram in which
angles formed by neighbouring points around a saliency of the contour are accumulated
discretely. With this method, global shape information of an object is retained by the entire
contour descriptor.

(a) Original example (b) Extracted contour
(c) vectors from a salient point to
its neighbours

Figure 2.4: An example which illustrates the procedure to generate beam angle feature
(A neighbours sampling is done here just for clarity). Here the saliency is s(i), the first
included pair of neighbours into a K-curvature function are s(i-1) and s(i+1).

Beam angle descriptor uses the object boundary in a way such that it is invariant to
translation, rotation and scale. The descriptor construction procedure used here is simple:
at each saliency point, the boundary curve of an object is extracted and the salient points
of the boundary are picked to construct the descriptors.

The angles formed by the line connecting the salient point with its kth right neighbour
and line connecting the salient point with its kth left neighbouring point on the contour
define the K-curvature function, see figure (2.4). For each of these salient points, a
K-curvature function is obtained and a histogram is then accumulated by the outputs of
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this function. This is, if we have a K-curvature with K=5, five pairs of nearest neighbours
are picked in each direction of the saliency point and the angles formed by them are
calculated; The output angles are then accumulated in a descriptor histogram. These
angles are discretized into 36 bins each one covering a range of 10 grades. This is done for
all saliencies on the extracted contours of an object and each salience forms a descriptor.
The number of extracted descriptors for each contour is same as the number saliencies in
that contour.

For an object in a new image, its contour is extracted and each one is described by
the the K-curvature function described before. The similarity between two Beam angle
descriptor can be computed using euclidean distance.

2.1.5 Summary

In this section, we have presented some image features which can be applied in computer
vision area. There are mainly two groups of features: patch based and shape based features.

Each one of these group of features works well with some specific conditions, some-
times the combination of some of them is necessary to get optimal recognition system.
We think that shape or contour based object detection algorithms should perform better in
textureless objects than appearance based algorithms (Patch based). On the other hand,
patch based features should work better in situations where the detecting object contains
rich texture information. In [Opelt et al. (2008)], Opelt used both appearance based and
shape based methods to detect centers of objects which proved this complementation
sometimes is necessary in image recognition. Their experimental results also show that se-
lection of features (preference for shape over appearance or vice-versa) is category specific.

Aside from all previous introduced and other image features, other tools may be needed
to complete a object recognition task and give the recognition agent sufficient intelligence
to do so. Normally, a proper machine learning algorithm or spatial information treating
procedure is indispensable for good performance recognition system. In the following
sections we give some references about these tools.

2.2 Image classification

The goal of an automatic image classification system is to categorize images based on
their content. In order to obtain a good performance the system is trained using a set
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of labelled images. These training images with their class labels normally present some
challenges for the classifiers, such as: intra-class variation, cluttered scenes, partially
occluded objects, light variation, objects from different viewpoints. The objective of the
classifier is to capture this variability and the common characteristics of the objects and
use them to categorize new images. Image classification can be applied in a wide variety
of applications such as Content-based image retrieval, landscape or scene recognition, etc.

In this section we describe some state-of-the-art machine learning tools for image
classification.

2.2.1 Bag of words

(a) Original image of an album
cover

(b) Detected SIFTs with different
size and orientation

(c) Encoded histogram of the
original image

Figure 2.5: An example which encodes an image into a histogram of occurrences. The size
of the image descriptor (histogram) depend on the size of the codebook, in this case: 300

In [Csurka et al. (2004); Willamowski et al. (2004)], the bag of words (BOW) method
is presented in the computer vision area. The method is inspired from text retrieval and text
categorization. This approach has demonstrated to be useful in image categorization too.
The idea is to represent an image using a bag of visual words. Visual words are patches on
the image which represent some kind of interest information related to the image features
(the color, shape or texture or low-level feature descriptor like SIFT). In [Csurka et al.
(2004); Willamowski et al. (2004)], the authors used SIFT descriptor as the visual word
in their experiments. A bag of visual words is a sparse vector of occurrence counts of
visual words which can represent the information about the meaning of the image. Thus
BOW approach is a method to transform each image to a characteristic representation of
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the image or counting of the different parts of the image.

However, for a high dimensional feature space such as SIFT descriptors, words con-
tabilization may be computationally unfeasible. A low length codebook is then needed to
reduce the dimensionality of the problem. The BOW model includes in general the follow-
ing steps:

• Feature representation.

• Codebook generation.

• Image representation.

In the original work [Csurka et al. (2004)], feature representation is carried out using
the SIFT algorithm to detect and describe keypoints of images. The result representations
of the image characteristics are 128-dimensional vectors which are invariant to intensity,
rotation, scale and small affine variations.

Codebook creation implies a clustering process in which similar feature descriptors are
grouped into same cluster. Each cluster center corresponds to a visual word or common
aspect of the images. Each visual word is an entry of the codebook. K-means clustering
is one commonly used algorithm to create an efficient codebook although other cluster-
ing techniques are used too, like: Hierarchical K-means clustering [Mikolajczyk (2006)],
Agglomerative clustering [Leibe and Schiele (2003)] or Gaussian Mixture Models (GMM)
[Wikipedia (2004d)]. In K-means, k cluster center positions are randomly sampled in the
beginning. The clustering process of K-means is an iterative algorithm [MacKay (2002)]
which contains two parts:

• Assignment step: in this step, each image feature is assigned into a cluster by finding
the cluster with minimum distance between its center and feature descriptor.

• Update step: After all feature descriptors are assigned, the center of each cluster has
to be updated by calculating its position as the mean of all points assigned to the
cluster in the previous step.

The iterative process is finished when any of the following criteria is met: No actualiza-
tion of the cluster centers is performed, or the maximum number of iterations is reached.
Some disadvantages of K-means must be pointed out: The number of clusters K has to be
set beforehand and the initialization of clusters positions is done randomly. This means
that, frequently the iterative process converges toward a local minimum. This problem
can be solved by running the iterative process various times with different initializations.
However, it makes the selection of the optimal k computationally expensive. However,
this parameter does not greatly affect the final performance of BOW given that a large K
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(˜1000-10000 visual words) is selected.

In problems with a large corpus of images, like a content based image retrieval system
(CBIR) [Wikipedia (2004a)], the above clustering process may become a computational
bottleneck. A solution to this problem is to randomly sampled feature points [Li et al.
(2009)]. Each of these points constitute a codebook entry. In test, each feature is assigned
to a entry if the distance between the feature and the entry is small than a threshold. More
than one entry could be assigned for each feature. The main idea is to replace a clustering
generated codebook by a set of generated hyper-spheres. This technique is demonstrated
to be efficient to replace the clustering process.

Using the generated codebook (a set of different cluster centers), each image can
be described directly as a histogram of number of occurrences through the codebook.
This is done by assigning each image SIFT descriptor to its most similar cluster in the
codebook. The numbers of allocations of each visual work in the codebook forms the
final histogram. This histogram is a description or counts of the characteristics of the image.

After all images are transformed into histogram vectors, we can then use them and their
corresponding labels to train a model and use the model to classify new images. Almost ev-
ery classification algorithm can be used. For example, in the original Willamowski’s work
[Willamowski et al. (2004)], both Naive Bayes and SVM are used in their experiments
which give good results. It has to be mentioned that despite of the simplicity of Naive
Bayes, actually it is widely applied in document classification in information retrieval field.

To classify a new image, first, its SIFT descriptors are extracted. Then a histogram
is created by using the codebook previously generated which summarizes the character-
istics of the image. Finally, the trained classifier determines the class label of the histogram.

2.2.2 Supervised codebook creation

One criticism that is generally done to BOW is that the clustering process is unsuper-
vised. Meaning that the image labels are not taken into account when building the
clusters. This might lead to non discriminative clusters and to an overall deterioration
of the classification system. There exist many papers that propose to apply different
semi-supervised techniques to obtain the codebook [Moosmann et al. (2008); Lepetit et
al. (2005); Martı́nez-Muñoz et al. (2009); Moosmann et al. (2007); Winn et al. (2005);
Sukthankar2 (2008); Zhang and Dietterich (2008)]

One of most used supervised algorithm in feature codebook creation is Random Forests
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[Statistics and Breiman (2001)] which allocates similar image features in the same leaf for
future retrievement. This classification algorithm is the basis of some of the algorithms
presented below. The main idea of Random forests is to construct an ensemble of classifiers
where each decision tree is trained using a subset of examples and a subset of attributes for
each node division. The learning process consists of following steps Algorithm (1):

Algorithm 1 Random Forests
1. A set of m decision trees are generated.
2. For each tree, a training set is selected by choosing n samples with replacement from

the training examples of size n.
3. When training the tree using the selected training set, for each node of the tree, a subset

of s attributes (s is much smaller than the number of attributes) are chosen as candidate
split variables. The best split test is used. A typical criterion used to determine the
quality of the test is the information gain measure or the Gini criterion. Each tree is
grown until if all feature samples belong to the same class or all attributes of these
samples have same values.

Random Forests is a very accurate classification algorithm over a wide variety of
problems [Caruana and Niculescu-Mizil (2006)]. In addition, it is a computationally
effective algorithm on large databases.

One of the image classification algorithm based on Random forests is [Moosmann et
al. (2008)]. In [Moosmann et al. (2008)], Moosmann proposed Extremely Randomized
Clustering Forests (ERC-Forests) which achieves good performance. This algorithm is
based on an extremely randomized Random forests that are very quick to be built. Another
contribution of the work is the use of ERC-Forests as spatial partitioning method to cluster
image feature descriptors instead of using the trees to classify images directly like in other
previous works [Lepetit et al. (2005)].

The ERC-Trees are built recursively top down. In each division t, the division criterion
corresponds to a binary test in which the image features are split into two sets. The division
criterion is a binary test which consists to a comparison like Tt = fi(t) ≤ θ, where fi(t) is
a randomly selected attribute. The split threshold θ is also selected randomly. To measure
the quality of a test, Shannon entropy is used:

Sc(C, T ) =
2I(C, T )

HC +HT

where HC is the entropy of the class, HT the entropy of the partition after the division
and I(C, T ) the mutual information. The randomly selected split is considered valid if
Sc(C, T ) is above a threshold Smin or if after Tmax attempts none of the selected splits has
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Figure 2.6: The architecture of the image classification system proposed in [Martı́nez-
Muñoz et al. (2009)]

a Sc > Smin, then the split with best Shannon entropy is selected. The parameters Smin
and Tmax allow us to control the strength and randomness of the generated trees.

The trained trees transform each feature descriptor into a set of leaf node indexes (one
index per tree). Then the votes for each index in the trees are accumulated and form a
global histogram for the image.

The remaining part of the algorithm is similar to the BOW approach used for image
classification. In training, all the histograms of images are used to training a classification
model. In test, first the image feature descriptors are extracted, then these descriptors are
used with the trained ERC-Forest to construct an image histogram. The histogram is then
passed through the classification model to give a prediction of the image label.

Another algorithm based on Random Forests is [Martı́nez-Muñoz et al. (2009)]. In
[Martı́nez-Muñoz et al. (2009)], the authors propose to use stacked evidence trees. In
their work, they use the standard Random Forests as the evidence trees that stores a his-
togram of the number of training features from each category that reached each leaf. Figure
(2.6) shows the overall architecture of the system. In the first stage, feature detection and
description are done, both keypoint and edge based features are used. This algorithm is
thought to combine multiple image features. So for each image, a set of pairs of detec-
tor and descriptor c is applied to the image and a bag of feature descriptors is produced
Bc
I = Xc

I,1, ..., X
c
I,N1. Then those feature vectors are dropped into the previous trained

classification system. The learning process involves three steps:
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• Learning a Random Forests: The training data used in each decision tree are
obtained by using those feature vectors of a training image subset in which each
image is selected randomly. Then in each node of a tree, a binary division criterion
xcI,j[a] ≤ θ is created by selecting randomly an attribute a from a subset of attributes
(with size 1 + blogAc) and a threshold θ. Branch left if the output of the test is true,
right otherwise. The tree stops the growth when the number of examples of each
node is less than 20.

• Constructing the second-level training set: Because each tree is grown by a subset
of images, then exists out-of-bag images that were not used to construct each tree.
To construct the second-level training set, the feature vector of each training image
I is passed through each trees for which I was out-of-bag. Then the histograms are
accumulated and normalized. These are called evidence histograms. This gives us
a unique histogram for each feature Random Forests and a global feature vector is
created by concatenating each of these histograms which will be used as training
sample in the stacked classifier.

• Learning the stacked classifier: In the stage, an ensemble of 200 decision trees are
trained by using Adaboost algorithm.

In the test phase, each feature descriptor is passed through the Random Forest and the
evidence histograms are generated. The output evidence histograms are normalized and
concatenated to form a global feature vector. This feature vector is passed into a classifier
in the second layer of the architecture which will give us the final label of the image.

This algorithm performs well in classifying very similar objects like different species
of stoneflies and for generic object categorization, the classification performance of their
method is shown in Figure (2.7) with PASCAL 2006 dataset.

In our approach, we are extending this work to use Random Forests to learn training
evidence with their displacements to the center of a detecting object, The learned Random
Forests will be used to predict the displacements to the center of an object for future
feature descriptors.

2.2.3 Spatial pyramids matching
If there is a drawback in codebook based methods is that the global and image structure
information are missed once feature descriptors are clustered and orderlessly quantized.
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Figure 2.7: Classification performance comparing with other state-of-art algorithm of the
approach in [Martı́nez-Muñoz et al. (2009)]
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This deficiency may cause false positives in matching problems where different contents
could be concluded to be the same [Savarese et al. (2006)]. Since this method is
based on identifying ”parts” of objects, the result is not guaranteed to be the desired
object. For example, detecting a wheel does not guarantee that there is a car in the
image. This problem also occurs in document classification based on BOW [Lijffijt
et al. (2011)]. In order to overcome this problem, in [Lazebnik and Schmid (2006);
Yang et al. (2009)], the authors use a spatial pyramid matching method which creates
a hierarchical histogram with different weights in each sub-histogram according to the
contributed global structure information. The same idea is used in [Bosch et al. (2007)]
where the authors use spatial pyramid kernel to represent shape features. In their work,
they extend the original version of using static histogram weights in each level, they
use an extra validation dataset to learn the weights of each level which improves the
classification performance. Other authors added more geometric constraints in feature
points matching problems by using Random Sample Consensus (RANSAC) algorithm
to eliminate wrong matching points [Wei et al. (2008)]. The idea of using spatial
information is applied in our approach too, we propose to use relative distances between
the SIFT feature points and the center of the detecting object. These distance information
are stored in training and are recovered in test to vote the center of an object in a test image.

As described before, the main idea of this algorithm is to use the spatial location of
each detected feature by adding spatial constraints. To do so, once the codebook is created,
each image is decomposed in multiple levels to create a hierarchical feature histogram. In
each level, the image is segmented and separated into different regions. Each region is
used to create a sub-histogram according to the previously constructed codebook and the
images features that are located in the region. The number of counts of each type of image
feature is stored along with its corresponding level and grid index as a feature vector. This
is shown in figure (2.8).

To measure the similarity of two images or features vectors X , Y , a histogram intersec-
tion function is used to find the common image features of these images:

I(H l
X , H

l
Y ) =

D∑
i=1

min(H l
X(i), H

l
Y (i))

where H l
X(i) and H l

Y (i) are the numbers of a specific image feature vector from X and Y
that fall into the ith cell of the grid of level l.

As proposed by the authors, the weight of each I(H l
X , H

l
Y ) should be proportional to
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Figure 2.8: There are three levels with a codebook of three types of image features. In
each level, the image is divided in different grids, and feature of each type is counted, the
number in the bottom indicate the weighted of each sub-histogram (An example extracted
from [Lazebnik and Schmid (2006)])

the width of the level l. So the pyramid match kernel is:

kL(X, Y ) =
1

2L
I0 +

L∑
l=1

1

2L− l + 1
I l

where I l is the abbreviation of I(H l
X , H

l
Y ).

The sum of the histogram intersections is the score of similarity between two images.
This is calculated by applying pyramid match kernel function for two images:

KL(X, Y ) =
M∑
m=1

kL(Xm, Ym)

where M means the total number of image features in the codebook.

In the original work, multi-class classification task is done by using a support vector
machine (SVM) trained using one-vs-all rule: There is one model for each class to separate
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its samples from the rest. Spatial pyramids matching kernel is then used as the kernel of
the SVM. This algorithm performs well in classifying images with structures like scene
categorization

2.2.4 Naive-Bayes Nearest-Neighbour
Codebook is a form of nearest neighbours search which is a method that compresses the
information in return for a good computation efficiency in test. In the sense that each
test descriptor is assigned to the nearest codebook entry. If the image sample is small,
the required precision of retrievement in test could be more strict. Therefore, direct
nearest neighbour search is sometimes needed to get the closest features. In [Boiman et
al. (2008)], the authors claimed that the creation of a codebook loses feature information
in the compression process of image features. In addition, the authors also defend the
non-parametric methods which does not lose any feature information, because there is not
a compression process in these models.

In their work [Boiman et al. (2008)], the authors give an explanation for the poor
performance of nearest neighbours applied to image classification that previous works had
reported. These works used the ”image to image” distance instead the ”image to class”
distance to label an image. In the ”image to class” distance approach, the training feature
descriptors are saved for each class. In a test image, the distances between each test feature
descriptor and the most similar training feature descriptors of each class are calculated.
All these distances are accumulated for each class. Finally, the class with minimum
distance will be selected as the label of the test image. Despite of its simplicity, (That is
why they named the algorithm Naive-Bayes Nearest-Neighbour (NBNN)) the algorithm
approximates the theoretical optimal Naive-Bayes classifier [Boiman et al. (2008)]. The
NBNN algorithm is summarized as follows in algorithm (2).

Algorithm 2 NBNN
1. Extract descriptors d1,...,dn of the query image Q.
2. ∀di ∀C compute the Nearest neighbour of di in C: NNC(di)
3. Ċ = argminC

∑n
i=1 ‖di −NNC(di)‖2

This algorithm does not require training, the neighbours retrieved in test can be
computationally costly. However, in [Boiman et al. (2008)], they used KD-trees [Bentley
(1975a)] to save the training image feature descriptors for each class. This reduces the
retrieval complexity to O(NlogN) for each image feature. And the total time complexity
for one query image is: O(nC ∗ nD ∗ log(nD)) where nC is the number of classes and nD
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is the number of descriptor searches.

2.3 Object detection

Object detection is another important subarea in computer vision due to that many possible
applications can be developed with a good object detector: face detection [Viola and Jones
(2004)], pedestrian detection [Gall and Lempitsky (2009)], video surveillance [Dedeoglu
(2004); Garcia-Martin and Martinez (2010)], etc. The objective of object detection is to
determine the presence of a specific object and its location in a query image. Here we
present some state-of-the-art algorithms in object detection area which inspired us in our
own object detector.

2.3.1 Sliding Window based

Sliding window approach is an intuitive and widely used method that can be applied to
object detection. The approach involves scanning the image with a fixed-size rectangular
window and the inner region acts as the entry to a detector. A detector will decide if an
object will be in the region o not. In this way, the detector model only works with a subset
of the original image which can simplify the model complexity. With the Sliding window
approach, a template matching method usually is implemented to decide if the region
in the window contains a specific object. The template defines the shape of the sliding
window and other geometric constraints for the object to be detected. In [Schneiderman
and Kanade (2000)], the authors presented a statistical model in which each window has
a statistical probability of containing an object. The features used are visual attributes to
estimate the probabilities and each model is trained for a specific orientation of an object.
In [Breazeal and Scassellati (1999); Anderson and McOwan (2006)], the authors use
template based algorithm to detect faces. In [Dalal and Triggs (2005)], the authors extend
templates to build features from grids of Histograms of Oriented Gradient (HOG) to detect
pedestrians. This algorithm gives very good results.

The benefit of using templates matching approach is that in each template, the
geometric constraints are set. This method has the advantage with respect to BOW that
it detects objects as a whole which reduces the number of false positives. Because in
BOW based methods, the feature quantization is done disorderly to generate a histogram
for each image, this makes it possible that two images with different structure or scene
generate a similar histograms. On the other hand the same benefit may cause undesirable
results: Some minimum affine transformation changes on the detecting object, which
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occur frequently in real world problems, can make it unfeasible for the template to indicate
a positive case.

Despite of the simplicity of the sliding window approach, normally it is a computational
inefficient algorithm, because the performance of the algorithm depends on the scale step
and move distance taken each time by the window. Big steps yields bad performances and
less time consuming, otherwise, small steps may assure the performance of the detector
by checking each possible subregion, but the high number of windows verifications makes
the detector unfeasible for a real-time application. Some authors prefer to reduce the
computational cost by searching only important subwindows in which detections are
performed. For example in [Lampert et al. (2008)], the authors used Branch-and-Bound
Search to reduce the number of candidate regions to be searched, the inspections of the
presence of an object will be done only in those windows with high scores calculated with
a bound quality function.

Viola-Jones object detection framework

One of the state-of-the-art and most utilized algorithm based on sliding window is
proposed by Viola and Jones in [Viola and Jones (2004)]. This algorithm solves the
mentioned computational problem using fast image feature calculation and computational
optimized subwindow verification. Its popularity is due to its performance and speed in
object detection. In this algorithm, a modified version of Adaboost is implemented: a stack
of boosting-like detectors are created. The false positives are detected in early stages. The
authors also proposed to use Haar-like features with integral images techniques to cut the
computational cost and to make the detection algorithm useful in real time application.

Haar-like features are used in this work as the base image detector. A Haar-like feature
is defined as the difference of the sum of pixels of certain area inside a rectangle region
of an image. Viola and Jones defined two, three and four rectangles feature as shown in
Figure (2.9). Posteriorly, Rainer Lienhart improved this approach by introducing rotated
Haar-like features which enrich the feature variety and improved the performances of the
algorithm.

To compute the difference between two rectangle sums quickly, the computation are
performed using integral image arithmetics. Integral image is a transformation of an image
where each pixel is assigned the sum of the values of all pixels in the original image to the
left and above its position. This is:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′)
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Figure 2.9: Haar-like features examples

where i(x′, y′) indicates the pixel value of the position (x, y) in the original image. With
the transformed integral image, the calculation of any inner rectangle can be done in few
operations. See an example in figure (2.10). The sum of pixels in the rectangle in gray can
be computed as: ii(C) + ii(A) - (ii(B) + ii(D)).

Haar-like features are weak features, in the original work, these features are applied
with 1-level decision tree: For each feature, a comparison between a randomly selected
Haar-like rectangle difference and a random threshold is done. After that, they apply a
feature learning process to select 1-level trees obtained in the previous step. A modified
version of Adaboost [Freund and Schapire (1997)] is used to select the most promising
weak classifier, see Algorithm (3).

The selected classifiers are successively appended to a cascade of classifiers and
for each classifier a threshold is learned to minimize false negatives. In test, the query
subwindow is processed sequentially through the cascade of classifiers until it is rejected
or passes all stages. If the query subwindow is rejected by any classifier in the cascade
of classifiers, no further inspection is performed in the following weak classifiers. In this
way, negatives examples can be rejected in early stages and the overall inspection time is
reduced. The defined Adaboost variation guarantees to put the most important classifiers
in early stages. As it is shown in their work, using only the first two classifiers can achieve
a false negative rate of approximately 1% and a false positive rate of 40% in a face detec-
tion problem. The same algorithm is used in [Levi and Weiss (2004)]. In this study it is
shown the importance of learning discriminative features when the training dataset is small.
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Figure 2.10: An example of sum of the pixels in a rectangle by using integral image.

2.3.2 Contour based object detection

Another object detection algorithm is proposed in [Opelt et al. (2006)]. This is based on
edge detection. Detected edges may be sometimes noisy, because many of them do not
belong to the object of interest like background edges. Therefore, a learning process is
required to find the most discriminative ones to be used in the model. In [Opelt et al.
(2006)], the authors proposed to use Boosting based learning algorithm (similar to the

Algorithm 3 Feature selection
1. given examples (xi, yi) with yi = 0, 1 for negative and positive cases.
2. Initialize weights equally for every examples w1, i
3. for t = 1...T do
4. Normalize the weights of examples: wt, i = wt,i∑

j=1 wt,i

5. For each feature, train a classifier hi
6. Select the classifiers hj with the lowest error ej =

∑
iwj|hi(xi)− yi|

7. Update each example distribution: wt+1,i = wt,iB
1−ei
t

8. ei = 0 if xi is correctly classified,
9. ei = 1 otherwise, Bt =

et
1−et

10. end for
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Adaboost based method in Viola-Jone’s work) to select discriminative combinations of
boundary fragments to form a Boundary Fragment Model (BFM) detector. In this method,
a codebook of similar positive curves is created for each object for future retrievement.
The use of a voting map is also done in our approach to find the position of the center of
an object. A similar approach is applied in Shotton’s previous work [Shotton et al. (2005)].
The main difference between these two methods are:

• The level of segmentation required in training;

• The number of fragments used to construct each weak detector.

• The center detection methods used in both algorithms.

Additionally, in another work [Ferrari et al. (2007)], the basic contour based object
detection is extend to detect the exact object boundaries in cluttered images and a
class-specific shape model is proposed to handle object deformation and large intra-class
variability.

In [Opelt et al. (2006)], each edge is detected by Canny detector. Firstly, a Boundary
Fragment Alphabet is built by selecting suitable candidate boundary fragments: (i)
fragments with high probability to be in positive images; (ii) fragments that have a good
localization of the centroid of the object in the positive image. The candidate boundary
fragments are selected from the contours of positive training images. For each contour,
three segments started from three randomly chosen locations on the contour are generated.
Agglomerative clustering is used to group all selected segments and to form an alphabet.
The Chamfer distance [Borgefors (1988)] is used in their method to measure the similarity
between edges. For each cluster, the displacements from the segment to the centroids of
objects are recorded.

Once the alphabet is generated, weak detectors are created by combining two candidate
edges which agree in their centroid estimates. For a weak detector hi, its output on an
image I is:

hi(I) =

{
1 if D(hi, I) < thhi ,

0 otherwise

D(hi, I) =
1

m2
s

·
k∑
j=1

distance(γj, I).

where distance(γj, I) is the distance to the best matching edge chain in the image. ms

is a penalty applied if the centroid decision of two selected edges are not overlapped.
The learning process is used to select promising weak classifier and learn the thresholds
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thhi by using Adaboost. In test, the algorithm (4) is used. First, edges are extracted
from the test image, then these edges are checked in the trained weak classifiers, those
edges that passed the test of a weak classifier can cast a vote to the center of the object
using the displacements stored in the corresponding passed weak classifier. After that, the
mean-shift is used for the accumulated vote map to obtain the center of the object. Finally,
back-projection is used to segment the detected object region from the test image.

Algorithm 4 BFM algorithm used to test an image
1. Extract edges from the query image
2. Test each weak classifiers hi, ifD(hi, I) < thhi the displacements saved in the training

is used to vote object centroid in Hough space.
3. Use mean-shift to estimate the center of object.
4. If the center response is above a threshold tdet then means the object is detected in that

position.
5. Back-project the fragments that voted for the center and it is also used to segment

object from the image.

2.3.3 Hough Forests

A second family of detection algorithms are based on the Generalized Hough Transform
(GHT) [Leibe et al. (2004); Opelt et al. (2006); Wolfson (1991); Gall and Lempitsky
(2009); Gall et al. (2011)]. In [Gall and Lempitsky (2009); Gall et al. (2011); Leibe et al.
(2004)] they apply a GHT voting map to detect an object position which is used in our
approach too. The Hough Forests proposed in [Gall and Lempitsky (2009); Gall et al.
(2011)] is a state of the art algorithm which achieves very good results in object detection.
Another contribution of this work is that their authors adapted GHT into a Random Forests
in which voting can be handled efficiently.

Hough Forests is basically an extension of Random Forests for computer vision area.
The Hough Forests uses HOG patches as the image feature and adapts the idea of Ran-
dom Forests to split the feature data in different leaves. Hough Forests has the following
advantages according to [Gall and Lempitsky (2009)]:

• The set of leaf nodes can be used as a class specific discriminative codebook where
similar features are located in same leaves. In this way, the voting performance can
be guaranteed.
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• It can be trained on large corpus of data, the retrieval process in test is very efficient.

• This method can tolerate noisy labels and errors in the training data.

In the original works [Gall and Lempitsky (2009); Gall et al. (2011)], each Hough
Forests tree is built based on patches Pi = (Ii, ci, di), where Ii is the descriptor of the
patch, ci is the class label of the patch and di, a two dimensional offsets (in x and y) from
the patch to the center of the object. All training instances need to be labeled. In their
work, each patch consists of C feature channels of 16-by-16 pixels rectangles, these feature
channels are defined as follows: three color channels of the lab color space [Wikipedia
(2004b)], the absolute values of the first-order derivatives α

αx
, α
αy

and the second-order

derivatives α2

αx2
, α2

αy2
and nine HOG-like [Dalal and Triggs (2005)] channels. To increase

the invariance under noise, the authors applied the min and the max filtration with 5-by-
5 filter size, yielding C = 32 feature channels (16 for the min filter and 16 for the max filter).

During training, the nodes split the patches in two sets according to their appearance.
This is done by applying a binary test that compares a threshold value τ with the difference
of two intensities at two randomly selected locations in the patches, (p, q) and (r, s), for a
randomly selected appearance channel α.

tα,p,q,r,s,τ (I) =

{
0 if Iα(p, q) < Iα(r, s) + τ

1 otherwise

where tα,p,q,r,s,τ (I) is the test, and Iα(x, y) is the intensity value at location x and y of the
channel α. This test is done various times with different values selected at random. The
one with best score is selected as the split criterion for that node. In their work, the score is
measured by two factors:

• The impurity of class labels ci:

U1(A) = |A| · Entropy(ci)

where Entropy(ci) = −c · logc− (1− c) · log(1− c)

• The offset uncertainty:

U2(A) =
∑
i:ci=1

(di − dA)2
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Figure 2.11: An example of voting process in Class-specific Hough Forests

where A is the set of divided patches. The objective is to minimize the impurity and uncer-
tainty respectively. The best division criterion U∗ is selected by:

argmink(U∗(pi|tk(Ii) = 0) + U∗(pi|tk(Ii) = 1))

The best criterion U∗ depends on the selected measure used to calculate the score. The
authors use the measures U1(A) and U2(A) randomly unless the number of negative
patches is small (smaller than 5% of total examples), in that case, U2 is selected.

Patches are stored in the leaf nodes to use as votes in the test. The authors adapted the
idea of voting map and used the displacements saved previously with each image features
to ”recover” the center position of an object. Figure (2.11) shows an example of a vote
map in which the accumulated votes concentrate in the center of a pedestrian. The size
of the pedestrians are determined by a fixed rectangle. To detect pedestrians in different
sizes, the authors scale the test images in multiple sizes and perform the detection always
using 16-by-16 pixels patches.



Chapter 3

Proposed algorithm

The main objective in a object detection task is to detect the position and the size of the
object. To determine the location of an object is enough to detect its center. However, for
a full localization of the object in the image, it is also necessary to estimate the region
that the object occupies. The proposed method achieves this in two steps. First, the center
position is detected (detection step) and then its size is estimated (size estimation step).

The proposed method is based on voting accumulated evidence using Random Forests
or KNN. Previously, several methods use accumulated voting to detect object locations
[Leibe et al. (2004); Opelt et al. (2006); Wolfson (1991); Gall and Lempitsky (2009); Gall
et al. (2011)]. One limitation in these algorithms is that they do not handle object with
different orientations along the axis perpendicular to image plane (z-axis). In the proposed
approach, we use orientation invariant patch descriptors and vote transformations in order
to solve this problem.

The proposed method is based on Evidence trees [Martı́nez-Muñoz et al. (2009)].
In [Martı́nez-Muñoz et al. (2009)], the authors used evidence trees to transform image
features into a class histogram of accumulated evidence. This histogram is used as the
feature vector for a stacked classifier that outputs the final class of the system. The
system was designed for image classification. In [Martı́nez-Muñoz et al. (2009)], it is
shown that it performs well for classifying different species of stoneflies (a problem with
objects with low inter-class variation) and for generic object categorization (PASCAL
2006 dataset). The approach presented here extends that work to object detection.
The key difference between the adapted algorithm and the original one is that the evi-
dence trees of the proposed method store in their leaves the relative distances from image
features to the location of the objects of interest instead of the class labels of image features.

The objective of image classification approaches is to provide the correct label for

33
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an test image, however, this type of algorithms might leave out geometric information in
their model construction in order to improve the computing efficiency. For example, BOW
based methods count image feature descriptors and form an orderless histogram regardless
the locations of feature descriptors and their possible geometric relationships with other
descriptors. Using the above method, we solve this kind of geometric information gap.
Hence we can be able to recover the center of an object using relative distances with a
voting map. In addition, in this study we also adapted NBNN [Boiman et al. (2008)] to
achieve object localization.

The relation of the image patch descriptor to use directly influences the performance
of the detection algorithm. For example, class specific Hough Forests algorithm [Gall and
Lempitsky (2009)] is not able to detect objects if the orientation of the object changes in
the test images. This is because this algorithm uses rectangular patches of HOG values
which are not orientation invariant. We use SIFT descriptor as our base image patch
descriptor. The primary reason is that the SIFT algorithm is able to capture the orientation
and scale of the detection. The proposed algorithm uses this information to detect object in
different scales and orientations. Hough Forests algorithm estimates the size of the object
by the scale of the resized image, because HOG based patches are not scale invariant. In
our approach, the size is determined based on the scale of the image patch descriptors, in
our case the size of the SIFT region. This is one of the alternatives used to estimate the
object size, the same image scaling approach used in Hough Forests can also be adapted in
the proposed method.

Most object detection algorithms use both positive and negative images to train the
model [Gall and Lempitsky (2009); Viola and Jones (2004)]. In the test phase, a test image
patch descriptor will be classified as positive or negative. If the result is positive, then this
feature can cast a vote by deciding the location of the center position. However, training
with negative examples poses some difficulties. First, it is almost impossible to cover all
possible non-object negative examples. Second, the background or non-object patches can
be different between the training data and real data from a production environment. In
consequence, using negative examples in training may lead to overfitting. In our approach,
we tried to avoid this problem by using only positive image features to train the model.
Our approach presents the following advantages:

• Handles orientation changes of objects (along the axis perpendicular to the image
plane).

• Handles scale changes of objects.

• It is a generic object detection algorithm which can be trained and detect any kind of
object.
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• No need to be trained with negative examples. The object detection performance is
stable on any background scenes.

3.1 Algorithm description
In this section, we give a general description of the proposed algorithm. The entire
procedure of our approach is divided in various parts. Here we list the sequence of
each submodule used in our method in Algorithms (5,6). In fact, our approach can be
easily extended, because some of these submodules can be replaced by other methods:
SIFT detector can be replaced by another scale-orientation-invariant feature; different
classification algorithms can fill into the ”model” part. After the maps are created for each
descriptor in a test image, the center selection is done, the maximum response positions of
the maps are used to be selected as the final predictions. But the size of the detected object
can not be computed directly. Thus, this decision-making task has to be treated differently
for each problem and will be explained in the experiments section.

Algorithm 5 Training
Require: positive cropped images, annotated center positions, descriptor size

1. feature vector = empty
2. for image in positive cropped images do
3. detected locations = mesh detection(image, descriptor size)
4. [feature descriptors, angles] = extract descriptor(image, detected locations, descrip-

tor size)
5. annotated center = get(annotated center positions, image)
6. feature displacements = normalized displacements(feature descriptors, anno-

tated center, angles)
7. add(feature vector, [feature descriptors, feature displacements])
8. end for
9. model = model train(feature vector)

10. return model

The images containing the object of interest are used to train the model. For each of
these images, the image features are extracted using an appropriate scale depending on
the size of the image. The displacements from the location of the feature descriptor to
the center of the object are computed. The displacements are rotated according to the
orientation of the feature descriptor and are scaled down by dividing the displacements by
the size of the feature descriptor. To train the model, the samples are the descriptors with
their associated transformed displacements. The objective of the model is to cluster similar
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Algorithm 6 Test
Require: test image, feature descriptor sizes, model, map

1. maps = empty
2. for size in feature descriptor sizes do
3. map = create matrix(size(image))
4. detected locations = mesh detection(test image, size)
5. [feature descriptors, angle] = extract descriptor(image, detected locations, size)
6. for location, feature in [detected locations feature descriptors] do
7. similar training features = test model(model, feature)
8. for training feature in similar training features do
9. standard displacements = des-normalize(get displacements (training feature),

angle, size)
10. predictions = location + standard displacements
11. draw(map, prediction)
12. end for
13. end for
14. add(maps, [map size])
15. end for
16. locations, sizes = select center(maps)

descriptors for future retrievement.

In test, the similar feature extraction processing is done for each test image. However,
the feature descriptors are extracted from the whole test image. Various scales are used to
extract features because we do not know the size of the object beforehand. For each scale,
the extracted feature descriptors get their similar training descriptors through the trained
model, for each of the recovered descriptors, the associated recovered displacements are
scaled up by multiplying the displacements with the scale of the feature descriptor. Then
the displacements are rotated according to the query descriptor coordinate system. The
scaled and rotated displacements are used to cast votes to predict the center of the object
of interest. The prediction location is computed by adding the transformed displacements
to the location of the query descriptor. The accumulated predictions generate a vote map
in the query image for that scale. For each scale used to extract feature descriptors, a vote
map is created. The centers of the object of interest are those location where high number
of votes are accumulated.

In the following sections, we present the different parts of the proposed method in
more detail.
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Figure 3.1: Two examples which show the limitations of using displacements without nor-
malization. Left: Two similar SIFT descriptors with different orientation, the recovered
displacements for SIFT point B from training data A misses the direction to the center
when patch orientation is ignored. Right: Two similar SIFT descriptors with different
scales, the SIFT point B failed to get the position of the tap using the displacement directly
from the larger feature A.

3.2 Features & Geometric information

In the proposed approach, we take advantage of the geometric information of orientation
and scale of the descriptors. The displacements values from each keypoint to the object
center are transformed in a new xy-Cartesian coordinate system using the orientation and
scaled with its size.

For each SIFT descriptor we keep the relative position information from the SIFT
center to the center of the object. Considering that, a similar SIFT descriptor is detected
in test, we can use the relative position information saved before to recover the center
position of the object from the new SIFT. The scale of the SIFT is also recorded.

However, using the raw displacements mentioned before in the standard x-y axis is
not enough when objects are in different orientations. If a feature patch in test has an
orientation change, then the displacements utilized to recover the object center could point
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to another direction. Also, the displacements module may not be precise if a test feature
differs in its scale to the scale of the most similar training data. These effects are illustrated
in Figure (3.1).

In test, an inverse transformation is performed to the recovered displacements in order
to obtain the displacements in the image Cartesian coordinate system. The transformation
involves a rotation transformation based on the SIFT orientation and a scale transformation
based on the size of the keypoint.

We use SIFT descriptor as our feature descriptor, the reason for using this type of
descriptors is because it outputs along with the patch descriptor the orientation and scale of
the detection. However, other scale and orientation invariant descriptors could in principle
also be used.

3.2.1 Rotation Matrix

A rotation matrix is a matrix which can be used to perform a rotation in Euclidean space.
In R2 the rotation matrix is:

Rotation(θ) =

∣∣∣∣ cosθ −sinθsinθ cosθ

∣∣∣∣
This matrix rotates vectors to a new Cartesian system through multiplication:∣∣∣∣ x′y′

∣∣∣∣ = ∣∣∣∣ cosθ −sinθsinθ cosθ

∣∣∣∣ ∣∣∣∣ xy
∣∣∣∣

In this way, displacements labeled in standard Cartesian system can be annotated in
new system according to the rotated angle θ. Applying the previously formulation we get:

x′ = xcosθ − ysinθ
y′ = xsinθ + ycosθ

Note that the rotation applied with the angle θ is counterclockwise. To transform
rotated displacements back and recover its values in the standard Cartesian system, the
inverse transformation is done by applying the same rotation formulations with −θ.

The effect of this operation does not change the euclidean distance from a point to
another, but the displacements x and y with respect to each axis suffers modifications
according to the rotation. One example is shown in Figure (3.2) which the coordinate
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Figure 3.2: A coordinate system rotation example
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system is rotated 26 grades, the displacements in the new coordinate system differ to the
ones in the standard system. In test, the inverse transformation mentioned before is done
to recover the displacements in its original Cartesian system.

3.2.2 Scale normalization
After rotating the displacements as described previously, the new x, y axis is normalized
according to the scale of the keypoint. The displacements after orientation normalization
x′ and y′ are divided by the scale of the feature point. In test, to recover the distance from a
feature point to the center of a object, the unitary displacements are multiplied by the scale
of the test feature point to get the displacements corrected according to the size of the test
object. After the orientation normalization, the displacements in the standard Cartesian
system is recovered using the process explained in the previous section.

With this normalization process, our recognition system manages to handle scale as
well as rotation on the z-axis on the image plane. However, for a multi-scale problem in
which each image may contain objects of interest with different sizes, different scales of
SIFT patch have to be detected for each image. The best detection of all scales is chosen
as the final localization of the object and its scale is then the size of the detected object.

3.2.3 Center voting
The displacements between each positive SIFT point to the centers of a specific object are
normalized and saved for future retrievement. The entire process is described in Figure
(3.3 a-h). In this toy example, only one feature point is considered for clarity. The objective
of this example is to show how are the displacements normalization and retrievement is
done for different orientation and scale changes.

In training, we detect feature points and describe them through a feature descriptor
(SIFT in this case). The distances to the center of the object from the detected feature
point location in coordinate x-y are recorded. Using a rotation matrix, the displacements
in a new Cartesian system which is rotated by the orientation of the SIFT point (3.3d)
is obtained. Finally, the displacements are scaled down by dividing by the SIFT scale (3.3f).

In test, for each new image, the features descriptors are extracted along with their
sizes and angles. For each feature descriptor the most similar training SIFT descriptors
are retrieved (using algorithms like Nearest neighbours or Random Forests) (3.3c). The
recovered feature points have the information about their displacements to the center in
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(a) Original training image (b) Original test image (c) Focused test image

(d) Orientation Normalization (e) Orientation recovery

(f) Scale Normalization (g) Scale recovery (h) Final prediction

Figure 3.3: One displacement normalization example is shown here. Figures (a,d,f) show
a training SIFT descriptor A with its displacements to the center of Eiffel Tower which are
rotated and scaled using the SIFT orientation and scale attributes. Figures (b,c,e,g,h) show
detections in test with SIFT descriptors similar to point A of the training data. Using the
normalized displacements in training and applying the inverse normalization process, we
get the prediction to the center of the object.
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the coordinate system given by their orientation and scale.The displacement vector and
coordinate system of the training keypoint is used to calculate the equivalent displacement
vector in the coordinate system of the test point. This is done by rotating back the
displacements applying the rotation matrix in inverse direction. The angle used in this
case is the negative degree of the orientation of the test feature descriptor, see in figure
(3.3e). Finally, the rotated displacements have to be scaled up to get correct displacements
according to the scale of the test feature point. This process is shown in figures (3.3g, 3.3h).

The center position prediction of an object is obtained by adding the normalized
displacements to the center point location of the test feature. This center voting process is
done for each of the image features and a vote map is then created with the accumulated
votes in each positions.

3.3 Mesh detection
Most image recognition systems look for keypoints that have high repeatability and stabil-
ity. The detected points are representative characteristics of the images. In this way, similar
images will produce detections in similar locations. This repeatability property is vital for
image recognition tasks. However, these detectors might present some disadvantages:

• Few feature points might be detected for the object of interest.

• The numbers of feature points are different for different kind of objects.

For example, using SIFT detector might produce large number of detections concentrated
in regions with high contrast. On the other hand, the object of interest might not obtain
enough number of detections to describe it, if it has low contrast. In consequence, the
objects of interest might not be properly described. This poses some difficulties in the
generalization power of the system.

Another way of getting repeatability is to retrieve keypoints from the entire image
using mesh detection. Mesh detection method is based on sampling all locations on a
grid as shown in Figure (3.4). In this way, a regular net of points are used as keypoint
detections. The detected points are then described using any feature descriptor (we used
SIFT in our experiment). The reason of using this approach is that, the density of the
detected keypoints in an image can be maintained. The mesh spatiality parameter s defines
the distances between neighbours vertically and horizontally. With this parameter, the
density of keypoints in an image can be easily controlled. The scale of the detection should
also be defined beforehand (in our experiments we used the same value s for the spatiality
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Figure 3.4: The face rectangle in the right figure is 1.3 times bigger than the left one, their
sizes of mesh points should be in the same ratio. here the mesh point size and its distance to
neighbours a 36, 36 for left figure and 48, 48 respectively for right figure. Note that mesh
points are located in similar zones in both images. The distances indicated in the figures
are in the same ratio which should be normalized to unitary displacements.

and SIFT scale).

With mesh detection all training objects can be fully covered with descriptors and
can get a similar number of descriptors. At the same time background can be ignored.
In test, all parts of the images receive the same importance (equal density of detections).
In a certain extent, this approach smooths the concentration of out-of-object predictions
in a local region with high contrast. On the other hand, positive object regions absorbs
more votes in their center which is one of the objectives in a object detection task and the
detection performance can be assured.

In our original method, we do not use negative examples (background or out-of-object
cases in the image) to train our model, because we think that for a generic object detection
problem there could be an extremely large number of negative cases. Using these examples
could be of interest when the test images have similar backgrounds. Without negative
cases we can create a object detection model which is independent of the scenes where the
objects are located. One disadvantage of this approach is that in test we do not know which
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keypoints are negatives cases, hence all detected keypoints cast votes. This could produce
noisy vote maps. This effect can be alleviated by using mesh detection as we explained
before.

3.3.1 Determine object size

Once the center of an object is detected, we need to estimate the size of the detected object.
For single-scale problem, that is, when the size of the objects in the test set is the same as
the size of the objects in train, it is enough to use the size of the objects in train as the size
of object.

In multi-scale problem, that is, when the scale of the test objects is unknown before-
hand, we can not use the size of the training objects directly to predict the test object size.
In this case, mesh detections with different keypoint sizes and different distances between
mesh points in test is applied. Various keypoint sizes are tested, and the size that predicts
the center position with the highest number of votes is used to determine the size of the
object. For this purpose, the ratio between the selected test keypoint size and the size of
the training keypoints is calculated. Then the object size is determined by multiplying the
size of the object in training by this ratio.

In figure (3.4), an example of this approach is shown, the SIFT point of each example
image have different sizes, but they occupy almost same relative region of the face. In
this way, we can be able to recover the true displacements for a test keypoint through its
most likely training data and use the displacements to make predictions of object center
according to the size of the object.

3.4 Training & Similar SIFT retrievement

SIFT descriptors similar to the ones extracted in a test image should be recovered from the
set of training SIFTs. Here we have used these different algorithms: K nearest neighbours
(KNN) and Random Forests.

KNN is a non-parametric method and it is simple to adapt to our object detection
approach. In this method, no explicit training step is required, the model construction in
this case consists only of storing the feature vectors and the associated displacements. For
each query SIFT feature, the fixed K closest SIFTs with its displacements in training are
recovered. However, the nearest neighbours searches are computationally expensive for
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Figure 3.5: The areas of each label used in proposed Random Forests

large corpus of data, data structure such as KD-tree [Bentley (1975b)] could be used to
alleviate this problem. The KD-tree is a binary tree in which each non-leaf node can be
thought of as a splitting hyperplane that divides the data space in two parts. In this way,
the nearest neighbour search could be done efficiently by eliminating large portions of the
search space in the beginning. In our experiment, we use this algorithm implemented in
the FLANN library [Muja and Lowe (2009)] to perform fast nearest neighbor searches.

Random Forests are trained to learn the displacements from a SIFT descriptor to the
center location of the object. This can be done by using positive training descriptors
with its recorded displacements to the center of the object. However, in the proposed
approach, the displacements are not used directly to train the model. The displacements
of each training descriptor are encoded with nine possible classes: center, near northeast,
near southeast, near southwest, near northwest, far northeast, far southeast, far southwest
and far northwest. In order to label the training examples, two distances parameters
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have to be defined: the radius R1 which is considered as the boundary between ”near”
and ”close”, and the radius R2 which is considered as the boundary between ”near”
and ”far”. If the distance between a keypoint to its center is lower than R1, it will
be labeled as center. If it is lower than R2, it will be labeled as near. Otherwise, it
is labeled as far. For displacements labeled as far or near a further labeling is per-
formed depending on the quadrant they are in by adding NE, NN, SE or SW. Each area
with its corresponding label is shown in Figure (3.5) These two parameters R1 and R2
are set in order to have the similar number of training keypoints distributed across all labels.

To train the trees we use the Gini impurity metric to split training examples in each tree
node:

i(N) = 1−
m∑
i=1

f 2
i

where f 2
i is fraction of examples of class i in the set and m is the total number of classes (9

in this case). The split criterion in each node is a binary test: A randomly selected attribute
index i and a randomly selected threshold θ compose the binary test: X(i) ≤ θ. With this
type of binary tests, the data in each node are split into two parts. A number of tests are
composed in each node, the one with best Gini impurity measure is then selected to split
data in that node. This splitting process continues until the number of examples in a node
is smaller then a predefined value or all examples are from the same class

3.5 Method summary

In summary, the training phase (Algorithm (5)) works as following. The image features
are extracted from each training image. Positive images are cropped to contain one single
object inside. Only features inside the cropped area are kept. And the parameter s (which
controls spatiality of the mesh points and it is the size of SIFT feature region) need to be
predefined. This parameter is set in order to give around 100-200 detections per object.
This gives a reasonable detection sizes in order to capture important features of the object.
This stage of extracting descriptor vector includes the following steps:

• Mesh detection to establish the locations of the center of each SIFT feature.

• Describe each SIFT region with a SIFT descriptor. In this step, the orientation of the
SIFT descriptor is also returned.

• The displacements from the each mesh keypoint to the center of the training image
are calculated.
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• The displacements are rotated using the angle given by the orientation of the SIFT
region.

• Scale the rotated displacements by dividing the displacements by the SIFT scale s.

Each SIFT along with its displacements are saved in training dataset. This is done
for each positive cropped training image. A model is trained using Random Forests or
Naive Bayes. For the case of Random Forest, normalized displacement vectors are further
encoded into nine displacement categories. This is based on the distance between the
detection and the center of the object and the quadrant where the detection is with respect
to the center of the object. The radius R1 and R2 have to be set for this propose. The
values which balance the label distribution according to all displacements of the training
descriptors are selected.

In test, Algorithm (6), the same feature extraction steps are performed for each image,
in this case, the extraction is done for the entire image as the object location is unknown.
If the size of the object is also unknown, we have to perform mesh detection with different
grid and SIFT scales. For each SIFT scale si, a voting map is generated by following steps:

• For each image descriptor of scale si, their similar training descriptors are retrieved
using Random Forests or KNN model. For Random Forests the training descriptor
retrieved correspond to the ones stored in the leaves in which the test descriptor is
classified. This number can be different for different test descriptor. For KNN, a
fixed number of neighbours is obtained for each descriptor.

• For each retrieved training feature, one pair of displacements in x and y directions is
obtained for the corresponding test descriptor.

• These displacements for each test feature are accumulated in an image map.

The voting map mi is generated after applying previous steps for image features of scale
si. The location of the object is obtained by selecting the position with highest number
of votes score for all generated voting maps. Once the location is formed, the scale is
determined simply by taking the scale of the corresponding voting map of the location.
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Chapter 4

Experiments

In order to analyze the performance of the proposed method for object detection, the
following datasets are used: the UIUC Car dataset [Agarwal et al. (2004); Agarwal and
Roth (2002)] and a moth dataset [Yao et al. (2013)]. The detection consists in detecting
the location and area of an object in each query image. The UIUC Car dataset is a
widely used dataset in object detection research area [Mutch and Lowe (2006); Gall
and Lempitsky (2009); Leibe et al. (2004)]. The moth dataset is created by [Yao et al.
(2013)]. This work is a part of a rice pest control system. This dataset will help us to
validate the the detection performance of the proposed method with respect to orientation
changes (on the z-axis on the image plane) of the objects. To verify the quality of
our method, we have tested the same data sets with the state-of-the-art method Class
Specific Hough Forests. The datasets are described in the following sections in more detail.

To evaluate the performance of the tested algorithms we used F-measure for each
dataset. The F-measure used here is:

F =
precision + recall

2

This is a variant of the traditional F-measure which is formulated as following:

Ftraditional = 2 · precision · recall
precision+ recall

This metric measures the retrieval effectiveness of each method. The Precision-Recall
curve is used to evaluate each algorithm. It is generated by changing the decision threshold
(In this way, the precision and recall indices are changed too, so as the F-measure).
The Precision-Recall curve helps us to view the evolution of the algorithm performance
(F-measure score) along with the threshold changes. The pair of precision and recall
values which gives best F-measure for an algorithm is denominated F-measure peak. This

49
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Figure 4.1: Examples of UIUC dataset. Row 1: positive training examples. Row 2: neg-
ative training examples. Row 3: test examples for single-scale problem. Row 4: test
examples for multi-scale problem with cars in different sizes.

score is shown in the result tables of our experiments and indicates the best performance of
each algorithm considering that both false-positive (precision) and false-negative (recall)
costs are the same.

4.1 UIUC Car
The images of UIUC cars dataset [Agarwal et al. (2004); Agarwal and Roth (2002)]
contain side views of cars and the objective is to detect the position the size of each car
with a rectangle indicating the region it occupies. The dataset is divided in three parts: A
training set containing 550 positive examples and 500 non-car images, a single-scale test
dataset with 200 cars in 170 images (with the same size as the cars in the training set) and
a multi-scale test dataset with 139 cars at various scales in 108 images. Examples of each
part are shown in Figure (4.1).

The positive cases of the train dataset are 100x40 pixels images, each one containing
exactly one car that occupies the whole image. The center of each car is then determined



4.1. UIUC CAR 51

as the center of the image. The negative cases are background images. In some of our
methods and for the Hough Forests model, these images are utilized as the negative cases
to train a model. In other cases, these images are not used.

There are two problems that need to be solved in this dataset: a single scale problem
and a Multi-scale problem. Both share the same training dataset. In the single scale
problem, the cars both in the train dataset and the test dataset have the same size. Hence,
only the center of the car has to be detected. In both single scale and multi-scale problems,
the test images might contain more than one car. To solve this problem, instead of
selecting one maximum from the voting map, we preselect three candidate car locations
in an iterative manner per test image. Every time a candidate is selected we draw a
rectangle with the estimated object size around the detected center. All pixels included in
the rectangle are set to 0, so in the next candidate location selection in that image, none
of these positions will be selected as a possible car center location. For each candidate
location, we save a tuple which includes the test image index, the predicted locations x, y,
the votes response and the estimated car size.

Figure (4.2) shows an example of the car detection process in one single-scale test
image. In (a), the original image is shown, the voting map (b) shows the regions that
concentrate the highest number of votes. In (c,d,e), the car detections are performed
iteratively, each time a car is detected, its region in the voting map is set to 0. In (f), all
detections are enclosed by rectangles.

A total of 510 (3*170 images) locations are selected from single-scale test dataset.
Once all the predicted centers are selected from all test images, we create a ranking with
locations from highest vote response to low vote response. Finally, the first n highest
response locations are used to calculate the F-measure with the program provided by
UIUC Car dataset and a Precision-Recall plot is generated. The Precision-Recall curves
are calculated by varying the size n from 0 to the number of the true cars in the test dataset.

In the multi-scale test set, cars may have different sizes. In order to be able to detect
all possible car sizes, detections at different scales are computed. Each scale will give a
different vote response maps. The used test scales have to include all possible car sizes.
For the mesh detection approach, the parameter s which controls the spatiality of the
detections is set to 13 different values ranged between 6 pixels and 18 pixels. For the
Hough Forests approach, we use 13 scales ranging uniformly from 0.8 to 2 times the size
of the image. For each of these algorithms, 13 voting maps are built.

For each of the generated 13 voting maps, two locations where the response in
the vote map are maxima are selected as possible car centers producing a total of
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(a) Original test image (b) Before the detection

(c) First detection (d) Second detection

(e) First detection (f) Final results

Figure 4.2: An example of extraction of cars in single-scale problem. The voting map are
generated from Random Forests. Once a car is detected, the pixels in the region that are
believed to contain the detected car are set to 0.
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26 possible locations for each test image. The 26 preselected candidates are ranked
according to the vote response from highest to lowest. For each preselected candidate,
a rectangle is drawn around it. The size of the rectangle is set according to the scale
used to generate the vote map. Then the two most voted positions are selected with the
condition that the second one is not in the rectangle of the first center position. Finally,
we rank all 216 (2*108 images) selected positions for the whole test set with respect
to their votes response. Similarly, as in the single-scale case, we select the n highest
response locations to be used to calculate the F-measure variant proposed before and
a Precision-Recall curve is than generated varying the number n of the selected car regions.

Different methods have been tested with this dataset for both the single and the
multi-scale problem. The following list indicates the methods tested. The details and
parameters used for each algorithm will be explained in the following sections.

• Class Specific Hough Forests + Single-scale problem (HF-S)

• Class Specific Hough Forests + Multi-scale problem (HF-MS)

• Mesh-KNN + Single-scale problem (MK-S)

• Mesh-KNN + Multi-scale problem (MK-MS)

• Mesh-Random Forests + Multi-scale problem (MRF-S)

• Mesh-Random Forests + Multi-scale problem (MRF-MS)

• Sift-KNN + Single-scale problem (SK-S)

• Sift-KNN + Multi-scale problem (SK-MS)

• Sift-Random Forests + Single-scale problem (SRF-S)

The combination of Sift-Random Forests + Multi-scale problem (SRF-MS) is not in-
cluded in the experiments due to its low performance.

4.1.1 Class Specific Hough Forests
The Class Specific Hough Forests algorithm [Gall and Lempitsky (2009); Gall et al.
(2011)] used here as the benchmark algorithm. It is trained using both positive and
negative training examples. Ten trees are built both in single-scale problem and multi-scale
problem. Each patch is based on HoG values and have a fixed size of 16x16 pixels. In
[Gall and Lempitsky (2009)], a 98.5% F-measure peak is achieved for the single-scale
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problem and a 98.6% for the multi-scale problem. Although the authors have not reported
their exact experiment configurations, like the number of the trees used or the number of
scales used for multi-scale problem, we have obtained similar results with respect to the
ones reported in [Gall and Lempitsky (2009)].

4.1.2 Mesh detection approach
In the mesh detection approach, as we explained previously, we do not use negative
examples to train the model, only the 550 positive images are used for training. A single
model is trained for both the single scale and the multi-scale problems. The keypoints
are drawn uniformly and equidistantly. In training, the distance from each keypoint to
their neighbour keypoints is set to four pixels. All keypoints are extracted with a size of
eight pixels. The keypoints are described using SIFT descriptor. Note that the cars in this
problem are side views and no variation in orientation exists.

In test, the same configuration as in training is used for the single-scale problem.
For the multi-scale problem, various scales of keypoints are used to perform the mesh
detections. For the mesh detection approach, 13 grid scales s are used to detect cars with
different scales. The values used range from s = 6pixels to s = 18pixels. The separation
of consecutive neighbour detections is s

2
. The reason of maintaining this relation between

the scale of keypoints and the distance between neighbours detections is to guarantee a
equivalent density of detections for each test scale in an each image.

Two classification algorithms are used with mesh detector: Random Forests and KNN.
The parameters used in these models are:

• Random Forests: 50 trees are built both in single-scale and multi-scale problem.
Class label is based on the relative distance from each SIFT keypoint to their center
explained before. In our experiment, R1 and R2 are set to 1 and 3 respectively after
testing various times different values. The splitting process is continued until, in each
leaf node, there are less than 10 examples or when all examples are of the same class.

• KNN: This algorithm does not need a training process. However, the training data
have been structured using FLANN library [Muja and Lowe (2009)] in order to
increase the speed of nearest neighbour searches. We also tested KD-tree but for
high-dimensional space problems such as the 128 dimensions of SIFT points, this
algorithm is slow in retrieving similar data. Finally, we use FLANN library because
it provides an automatically selection of data structure and algorithm to speed up
KNN searches according to the problem dimension. The unique parameter needed
to be set here is the number of neighbours k picked for every test SIFT point. We set
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it to 20. Other values for k were tested, the differences in the final accuracy of the
system for values of neighbours from 5-50 were small.

4.1.3 SIFT approach
In addition to computing a grid of keypoints, the SIFT detector algorithm was also tested.
With this approach, we only extract SIFT keypoints whose locations are given by the
maxima and minima of the result of difference of Gaussians functions applied in scale
space [Lowe (1999)]. Only positive cases are used in the training process. In theory,
with SIFT detector low contrast candidate points will be discarded in the detection, that
would ensure that the keypoints are more stable and repeatable. However, as mentioned
previously, this might cause concentration of detections in background regions which is
not desirable for objects detection.

The configuration of the Random Forests for this case is the same as in the Mesh
approach and the number of nearest neighbours selected for each test case is set to 5
instead of 20. This is because in this case, we have much less SIFT descriptors.

In order to try to improve the performance of the system when SIFT detector is used,
negative example images were also included into the training dataset. We believe that
there are many background SIFT points in the test images, and predictions from those
keypoints confuse the real locations of the center of a car. In order to reduce the influence
of background detections in test images we included background detections in training with
the following configurations:

• SIFT+KNN: The base method.

• SIFT+KNN+Negative cases: We adapt negative cases in our algorithm, the algorithm
ignores votes from negative nearest neighbours

• Pyramid+SIFT+KNN: Detecting SIFT keypoints with ”pyramid” parameter in detec-
tor function of OPENCV which detects keypoint in multiple scales. More detections
are made.

• Pyramid+SIFT+KNN+Negative cases: In this case, we combine all previous meth-
ods.

• Pyramid+SIFT+KNN+Negative cases+Weighted votes: In this case, we combine all
previous methods and use weighted votes. For each test case, we count the posi-
tive examples from its nearest neighbours and the weight of each positive example’s
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vote is calculated as: positive cases
Total nearest neighbours

. The idea is to give more importance to
detections where all their neighbours come from positive examples.

For the multi-scale problem with SIFT approach, we used the best performance method
for single-scale problem, this is the combination Pyramid-SIFT+KNN with Negative
cases+Weighted votes. Once the center of a car is detected we have to verify the size of the
car. In the mesh approach, the size of the object is directly obtained from the size of SIFT
detections, because all keypoints have the same size. However, with in this approach, the
keypoint size is different for each detection. For this propose we record the SIFT keypoint
size of both training and test data. For each vote, we calculate the ratio of sizes between a
test example and its corresponding similar training data. Therefore the scale of a detected
car is the mean of ratios between the sizes from test and training data. We only use these
ratios of the votes whose weight is above 0.8.

4.1.4 Results
Table (4.1) shows the result obtained in our experiments. The first two rows indicate
the obtained result of Hough Forests for both single and multi-scale problems. We used
this algorithm as our benchmark algorithm. The four following rows present the results
using Mesh detection approach. These methods achieve performances similar to Hough
Forests. With the mesh detection approach, KNN performs better than Random Forests.
The last rows show the results for methods using SIFT detector. These results are very
poor compared to the other approaches.

Table 4.1: Performance at F-measure peak for the UIUC car dataset

Methods + Problem type F-measure
Hough Forests + Single-scale problem (HF-S) 99%
Hough Forests + Multi-scale problem (HF-MS) 98.58%
Mesh-Random Forests + Single-scale problem (MRF-S) 96.5%
Mesh-Random Forests + Multi-scale problem (MRF-MS) 94.4%
Mesh-KNN + Single-scale problem (MK-S) 99.5%
Mesh-KNN + Multi-scale problem (MK-MS) 99.28%
Sift-KNN + Single-scale problem (SK-S) 82.05%
Sift-KNN + Multi-scale problem (SK-MS) 79.1%
Sift-Random Forests + Single-scale problem (SRF-S) 40.1%

In figure (4.3), the Precision-recall curves of all the tested algorithms for both single
and multi-scale problems are shown. The x-axis measures the recall of each algorithm
and the y-axis measures the precision. Figure (4.3(a)) shows the Precision-Recall curves
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for the single-scale problem. Figure (4.3(b)) shows the Precision-Recall curves for the
multi-scale problem. The curves of algorithms with good performances are on the top of
the figures and decrease sharply when the recall is near to 100%. This is due to the fact that
all detected true-positives are selected and large amount of false positives are accumulated
in lower positions of the rank.

With Hough forests, we have obtained better results with respect to the ones presented
in the original paper for the single-scale problem: 99% of F-measure peak is obtained in
our experiment and 98.5% of F-measure peak is reported in their work. In the multi-scale
case, each image is scaled multiple times in order to find cars of different sizes. A value
of F-measure peak of a 92.47% is obtained when using 13 scales uniformly distributed
between 0.8 and 2 times the images size. This value is far from the reported result in [Gall
and Lempitsky (2009)]. We believed that if we add more scales to transform each image
might increase their performance. A second experiment with 26 scales ranged uniformly
between 0.8 to 2 is carried out. With this configuration, 98.56% of F-measure peak is
obtained.

As the results shown in table (4.1), KNN approach outperforms the rest of the
algorithms. This combination of mesh detection approach and KNN outperforms Hough
Forests, one of the state-of-the-art algorithm. In the proposed algorithm, 13 different
mesh scales are used to select object size instead of 26 scales used in the Hough Forests.
A drawback that KNN presents is that it is the slowest of the tested algorithms in
spite of using accelerating algorithms such as the ones included in FLANN. On the
other hand, Random Forests does not perform as well as KNN and Hough Forests, but
it is very fast getting similar neighbouring training descriptors for each test SIFT descriptor.

The results for both Random Forests and KNN in single-scale problem indicate that
the performances of the system using the SIFT detection approach are very low: 70.25%
and 40.1% respectively. In figure (4.4), we can see the difference of the generated voting
maps generated of this method and the Mesh method using KNN. From the figure (4.4)
we can observe that the position of the center position is much more clear when mesh
detection is applied. Despite the poor performance of the SIFT detection approach, we
carried out further experiments trying to compensate for its low performance with other
mechanisms in conjunction with KNN, such as: using negative examples, pyramid sift
detections, weighted votes. The F-measure of each combination of methods is shown in
table (4.2) and the Precision-Recall curves are shown in figure (4.5). The results are still
far from the best approach using mesh detections. We can see that the number of SIFT
points influences substantially the performance of the algorithm.

Some error examples for the different methods are shown in figure (4.6). Most of
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(a) Precision-Recall of experimented algorithms for single-scale problem

(b) Precision-Recall of experimented algorithms for multi-scale problem

Figure 4.3: Precision-Recall curves for all UIUC Car experiments
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(a) Original test image with a
car in the middle

(b) Voting map using Mesh
approach

(c) Voting map using SIFT
approach

Figure 4.4: Examples of voting map using different methods

Table 4.2: Performance at F-measure peak for single-scale problem for SIFT approach in
UIUC car dataset

Methods F-measure
SIFT+KNN 70.25%
SIFT+KNN+Negative cases 74.5%
Pyramid SIFT+KNN 76.84%
Pyramid SIFT+KNN+Negative cases 81.57%
Pyramid SIFT+KNN+Negative cases+Weighted votes 82.05%

these error are due to the low vote peak of detections, see figures (4.6(a-f)). In multi-scale
problem, the deviation in the scale estimation also causes errors in some cases, see figures
(4.6(g-i)). Analyzing the results we realized a true positive in multi-scale problem was
miss-labeled in the original dataset, see figure (4.7). What we do is manually add it as a
positive case in the dataset and all multi-scale Precision-Recall curves are tested using this
new version of true car position file. In conclusion, we have tested various methods for
UIUC CAR problem, the new proposed Mesh-KNN algorithm outperforms other tested
algorithms including the benchmark algorithm: Hough forests. According to the results,
KNN based algorithms outperforms Random forests based algorithms. As we proposed
previously, mesh detection effectively diminishes the importance of votes from background
region in contrast of SIFT based detection and achieves much better performances.

4.2 Moths
Image object detection can be used also in biomonitoring to detect different species. For
example in [Yao et al. (2013)], the authors use segmentation techniques to separate rice
pests and monitor the population dynamics of rice pests in paddy fields. The generated
statistics could be used by scientists to control the pests. In our experiment, we have used
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Figure 4.5: Precision-Recall of experimented SIFT+KNN variants for single-scale problem
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(a) HF-S (b) HF-S (c) MK-MS

(d) MRF-S (e) MK-S (f) Vote response map

(g) MRF-MS (h) HF-MS (i) HF-MS

(j) MK-S (k) HF-S (l) MRF-MS

Figure 4.6: Some error examples found for the different algorithms in Figure (a-i). We
can see in these examples that some cars are detected[a-f], but their center positions give a
low vote response. Therefore, after all center positions are sorted, these predictions are not
included in the final decisions. Figure (f) is the vote response map of figure (e)-the unique
failed case in MK-S, in this case the background of the image has a similar color to the
car. In other cases (g-i), the scale estimations failed. Figures (j-l) are some false positives
(Shown in red rectangles) that obtain high positions in final rank.
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Figure 4.7: A true positive located by our system (in the red rectangle) which is not labeled
in the original test dataset.

Figure 4.8: Some of extracted moths from the training image. The center of each moth is
indicated with a red circle.
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Figure 4.9: A image which contains moths. In training, only those moths which are not
touched to others moths are used.

object detection techniques to detect centers of moth which may help us also to determine
moth classes. The center detection can be used as a moth counting application to count the
number of moths contained in an image. This application presents some challenges such
as detecting moths that are touching, see for example figure (4.8.a).

Figure (4.9) shows the training image used. This image has the background removed
automatically to simplify the moth detection task. However, there are distortions caused by
the background removing process. Some moths may have irregular contours as shown in
figure (4.8.b). In our experiment, a manual moth preselection is done to build the training
set. We selected only isolated moths that are moths that do not touch any other moth in the
image. The training dataset used here is an image which contains about 82 single moths.
Using only isolated moths in training will produce more stable center predictions in test.
This is because these moth samples are much more homogeneous and are less noisy data.
This property will help with the generalization capability of the system. On the other hand,
touched moths have the reverse properties, learning the statistics of all the ways in which
moths could be touching is almost impossible. Including them in training may deteriorate
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the performance of the object detection system. Hence we preferred to reduce the training
dataset by excluding the touching specimens than to have a large dataset with more
complex statistics to learn. In order to extract each training sample, first we transform the
entire training image into connected components separated with black background. After
that, we select manually each training moth if the connected component contains only one
moth. Then the center of each moth is calculated automatically as the center of mass of
the connected component. In figure (4.8.b-4.8.d), some gray-scaled training examples are
shown. In this experiment, we do not use negative examples to train our model.

The test dataset consists in another image like Figure (4.9) that contains different
specimens. The objective is to detect all moths in the image including the ones that are
touching. We have annotated manually all moth centers in the image for the performance
evaluation. The idea is to detect all moth centers. Note that each moth is in different
orientation and has different size and a priori we do not know its orientation and size.

In test, SIFT descriptors are extracted in a grid. For each image feature descriptor the
most similar neighbours in training data are retrieved. For each retrieved training point a
prediction is made. The predictions are displayed in a vote map, see figure (4.10a). After
the voting map is generated, maxima are ranked from higher to lower. In this problem, we
do not know the size and the shape of each test moth, so we can not change the moth region
to 0 directly in the voting map once the center is selected (to prevent future selections in
this area) as we did in UIUC car. It is necessary to eliminate the moth region to prevent
future center detections to fall in the same region which would be inconsistent.

Two approaches have been used here to get moths centers: local maxima and back-
projection:

• Local maxima: The voting map returned from previous module has been applied a
smooth filter twice to remove possible noise. The filter is a disk convolution filter
with a radius 10. An example is shown in figure (4.10). In figure (4.10a), the vote
map is drawn in gray-scale where the pixels are ranged from 0 (total absence, black)
to 1 (total presence, white), the regions with high number of votes are in white (Sat-
urated in this example). In figure (4.10b), a smoothed map is presented, this map
is drawn in the full range of its values, those orange pixels indicate positions with
a high number of votes. Once the vote response map is generated and refined, the
center of each moth has to be recognized. First, we divided the image in differ-
ent connected components using the black background information. However, each
connected component may have more than one moth in it, all maxima in each compo-
nent’s region from the voting map are considered as the possible centers of the moths
and a ranking is created in a descending order according to the number of votes in
each maximum.
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(a) vote map

(b) smoothed vote map

Figure 4.10: Example of a vote map with its smoothed version, the center positions are
more clear after applying the smooth operation. The maxima of each spot are selected as
the moth centers.
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• Back-projection: In this method, each test example finds its most similar points in
training data using whatever classification method, each of these examples cast one
vote. In the vote response map construction procedure of this type of method, we
save the origin position (location of the test example) and the predicted position for
each vote. Once a maximum is selected, we remove this center region (rectangle of
11x11 with the selected center position in the middle) and set all pixels in this region
to 0. We also lookup for the voters V which have predictions in this region. Then
we remove all others predictions from these voters V in the voting map. All selected
maxima are ranked in a descending order as the center predictions like in the Local
maxima approach.

The selected maxima are used to measure the performances of the algorithms. As
we do in UIUC Car problem, we selected first n predictions to calculate the F-measure
and we vary the n to generate a Precision-Recall curve. Each connected component from
the test image may have a number C of real moth centers and a different number P of
center predictions from the selected n predictions. To decide if one prediction is correct
or not, we have used the best-first algorithm (7). First, the distance of each pair of center
prediction and expected center position is calculated. The distances are sorted in ascending
order and stored in a list with its expected center and predicted center indexes. Then we
pop out from the list each tuple. In our test configuration, we considered that a predicted
position is correct only if the predicted center is less than 15 pixels away from the real
center position. So if the distance is less than 15 and the expected center and predicted
center indexes have not been checked previously, a true positive is added. The number
of false positives is the difference between the total number of predicted centers and the
true positives. The number of false negatives is the difference between the total number of
expected centers and the true positives.

4.2.1 Beam Angle
In addition to SIFT descriptors, for this problem we tested also beam angle descriptor
[Arica and Vural (2003)]. For the moth dataset we can easily extract the boundary of each
connected components as the images have uniform black background.

The selection of variable K of the K-curvature in this algorithm is important. Small K
means that few neighbours points around the salient point are used. The more neighbours
points are included in the histogram creation, the more global the boundary information
that is included in the descriptors. In our experiment, we use three different values:
50%, 25% and 12.5% for the percentage of points of the boundary around the salient
point to be included. These sub-histograms are normalized once are created. However,
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Algorithm 7 Best-first decision verifications
C ← expected centers
P ← predicted centers
for yi in C do

for xi to P do
Calculate the distance between yi and xj
Save it into a priority queue Q which contains three fields:
Distance, yi and xi

end for
end for
sort(Q) by distance from the lowest to higher.
set listx empty
set listy empty
true positives = 0
while not empty(Q) do

distance, yi, xi ← pop top(Q)
if distance < 15 and yi not in listy and xi not in listx: then

add(listy, yi)
add(listx, xi)
true positives = true positives + 1

else if distance > 15 then
break

end if
end while
false positives = length(P ) - true positives
false negatives = length(C) - true positives
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each sub-histogram have a different weight according to the percentage of points in the
sub-histogram: The more sampled points, more weight the histogram receives. So the
values of these three sub-histogram are multiplied by 800, 400 and 200 respectively. Then
these weighted sub-histograms are appended and the final histogram is created. Aside
from the histogram, we record also the tangent of the salient point in the curve and the
number of the points in the boundary. The distance from a descriptor of salient point in a
boundary to the center of the object is rotated by the angle formed by the tangent and the
x-axis.

After generating all Beam angle descriptors, we used KNN and Random Forests for
training and generating the vote maps. In Random Forests, each training example is
labeled into nine classes as described previously. The R1 and R2 used here for Random
Forests is 2.8 and 5.6 respectively. This relation of values is set in order to distribute the
training data equally in all labels. The Gini criterion is used as the metric to split training
data.

In test, for each training neighbour example retrieved for each test contour descriptor,
via KNN or Random Forests, two votes are casted. This is done because it is not possible
to determine whether the center of the object is in the concave or convex part of the curve.
This is done by drawing a tangent to the contour at the salient point of the test descriptor
and the both perpendicular directions of the tangent are used to compute the orientation
angles. The angles are computed as the angles formed by the perpendicular vectors to the
tangent and the x-axis of the image. The x and y displacements from the salient point to
the center of the object have to be normalized in orientation with the angles calculated and
the rotation matrix. Then each pair of displacements have to be normalized in size too, this
is done by dividing the number of pixels of the contour.

In the original approach, the entire boundary of an object is used to construct the
descriptor of each salient point. With this approach, we can detect easily isolated moths,
but this method can not be able to detect moths touching each other, because the boundary
shape of this kind of objects differs in a great extent to the shapes of the training objects
that contain a single moth, figure (4.11) is an example of touched moths.

Using the whole contour rises the problem of detecting touching moths. Here we
also tested this descriptors using only fragments of contours. In this way, we try to solve
the multiple connected moths problem, but the results are poor too. We believe this is
because of the distortions created in background removing which makes the detection with
boundaries difficult and pieces of contours augment the noise impacts, see figure (4.12).
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Figure 4.11: Contour extraction of two attached moths, the contour differs to contours of
training examples which are single moth in each sample

Figure 4.12: Contour extraction of an not complete moth caused by a background removing
process
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4.2.2 Mesh approach
The mesh detection approach was also tested for this problem. In our experiment, the
size of each SIFT descriptor and the distance of its neighbours at horizontal and vertical
directions was set to 10 pixels. This gives approximately 100 detections per moth. The
orientation of each SIFT descriptor is also treated in this case: The distance of a keypoint
to the center of a moth is transformed in orientation and size as the way explained in
previous sections.

Random Forests and KNN were tested in conjunction with mesh detection. Both
algorithms have similar performances although Random Forests works slightly better.
In Random Forests, 9 relative positions are used as the class of each example. For this
problem, the distance variable used to classify relative position R1 and R2 are: 2 and 4
for ”near” and ”far” respectively. The same approach as the one used in the UIUC Car
experiment is used here: 25 trees are built and trees are grown until the number of examples
is less than 10 or all examples are of the same class. We have tested using 50 trees instead
25 obtaining a similar performance. In KNN, we select 30 nearest neighbours for each test
example. Similar results are obtained when using different number of neighbours.

Additionally, we have used the approach used in UIUC Car problem: Extract both
training and test mesh SIFT points in different sizes. In this way, we try to solve the
problem of detecting the centers of bigger moths that are under represented in the training
data. With this multiple scale SIFT points approach, we extract SIFT points in mesh
pattern with both the size of the SIFT points and the distance between horizontal and
vertical neighbours of keypoints varied from 6 to 24. Then 19 voting maps are generated
for each image and maxima locations are selected using back-projection and local maxima.
After that, a ranking is made, points with higher scores will be included as predictions.
Each selected point occupies a rectangle region according to its size in the voting map
proportionally to its scale, lower ranked points localized in this region will not be selected.

4.2.3 SIFT approach
We also tried to use SIFT detector for this problem with the same configuration and maxima
selections methods described in the mesh approach. But the results shown in Table (4.3)
are poor compared to the mesh detection approach.

4.2.4 Class Specific Hough Forests
Class Specific Hough Forests is tested in this problem, but the performance is very poor.
The reason is that this algorithm can not handle orientation changes. In the moth detection
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Figure 4.13: The smoothed vote maps (second row) along with their respective original
images (first row)
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problem (see Figure (4.9)), we can see that each moth has a different orientation in
addition to a different scale. In Class Specific Hough Forests, image appearance patch
are considered as the descriptor, each of them has 32 rectangles of size 16x16 extracted
from different feature channel [Gall and Lempitsky (2009)]. During the training, a binary
test is applied to divide different patches in different leaves of a randomized Forests. In
test, same binary tests used in training are applied to each patch in order to find its nearest
neighbours. Note that the binary test implies selecting randomly 2 locations (P1 and P2),
and a change of patch orientation makes the positions P1 and P2 move to other locations.
For this reason, a same patch used in training and detected in test with some orientation
variation would output a near random center localization. In figure (??), some detection
results are shown. The first row shows the original test images and the second row shows
the generated smoothed vote maps using Hough forests. It can be observed that there are
no clear peaks in the vote maps and the prediction would be almost random.In conclusion,
this algorithm is not applicable for this moth center detection task unless all moths have
been previously orientated.

4.2.5 Results

Various object detection algorithms have been tested. Table (4.3) shows the result obtained
in our experiments. The first four rows indicate the results obtained by mesh based
detection approaches for both single and multi-scale problems. We can see that the
back-projection based algorithms obtain better performances compared to local maxima
based methods. The four following rows present the results obtained using SIFT detection
approach. As in the case of UIUC Cars, these methods achieve poor performances
comparing to mesh based detection approaches. In the last rows, the results for methods
using scaled mesh detections in training are presented. This method does not improve the
results obtained using single scale detection in training.

Figure (4.3) shows the Precision-Recall curves of these algorithms for both single and
multi-scale problems. The curves of algorithms with good performances are on the top of
the figures. The best F-measure peak achieved is near 87%. This is shown in the top right
position of the figure.

The results show that the performance of the proposed mesh detection based algorithm
is fairly good for this problem and outperforms other tested algorithms. The result
detection image with this approach is shown in figure (4.15). The results also confirms that
unlike Hough Forests, the proposed algorithm manages to handle the orientation changes
of the objects of interest. The algorithm with best performance is the method using the
combination of mesh detection, Random Forests and back-projection.
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Table 4.3: Performance at F-measure peak for moth center detection problem

Methods F-measure
Mesh Random Forests + Local maxima 83.89%
Mesh KNN + Local maxima 83.38%
Mesh Random Forests + Back-projection 87.70%
Mesh KNN + Back-projection 85.64%
SIFT Random Forests + Local maxima 52.97%
SIFT KNN + Local maxima 61.28%
SIFT Random Forests + Back-projection 48.63%
SIFT KNN + Back-projection 43.96%
Scaled Mesh Random Forests + Local maxima 78.95%
Scaled Mesh KNN + Local maxima 78.66%
Scaled Mesh Random Forests + Back-projection 74.16%
Scaled Mesh KNN + Back-projection 70.15%

Figure 4.14: Precision-Recall curves for all moth experiments
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Figure 4.15: A test image with detections indicated in blue stars and expected center regions
in a red circle.

The results of mesh based detection approaches show that they are capable to detect
the centers of touched moths in an image and are able posteriorly to eliminate the region
where the object is, this property can also be used in object segmentation problems. One
application of these approaches is to separate touched insects in a biomonitoring system or
any kind of touched objects.

SIFT detection based algorithms obtain very poor results for this problem, we believe
this is due to the fact that the number of detections obtained using SIFT detector is very
low when compared with the mesh approach. The scaled mesh based detection does not
approaches obtain good results too.

Some detection results are shown in figure (4.16), In the first row, the correct detections
are shown, they are some of the most difficult cases in the problem due to the proximity
between moths. In last two rows, some error examples are shown. Most of them are moths
of a minority classes which have their wings spread and are bigger than others. If we
increase the selection threshold, those false positives will be removed from the final rank,
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but new false negatives well be created too. We believe that with more training examples
of this type of moths the error rating may decrease.
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Figure 4.16: Moth detection examples. First row shows the the correct detections of some
of the most difficult cases. Last two rows show the effect of a prediction selection thresh-
old, a higher threshold will cause false negatives (second row)and a lower threshold will
includes mores false positives in the final ranking (third row).
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Conclusions and future work

A good object detection algorithm has to be effective in different image conditions such
as: partial occlusion, scale, illumination and orientation changes. The main contribution of
this work is the proposal of a new generic object detection algorithm which obtains good
performance for detecting any kind of objects under such variations. The main idea of the
proposed method is to learn the relative displacements of each object feature descriptor to
the center of the object. In test, for each test descriptor its most similar training descriptors
and their displacements are recovered, these displacements are used to vote the center
of the object. In order to handle object orientation and scale variations, the training
displacements are not stored in image coordinates but in relation to the patch coordinates.
The stored coordinates are rotated and scaled according to the patch orientation and scale.
These transformed coordinates are learned using a Random Forests or KNN model and for
the Random Forests are stored in the leaves of the trees. In test, for each new descriptor
the Random Forests or KNN model returns the most similar training displacements. Those
displacements are transformed back into the test patch coordinate system and a vote is
casted. The votes are accumulated into a voting map. And the maxima in this map indicate
the locations of the objects of interest.

The proposed algorithm is a generic object detection method that can in principle be
applied to the detection of any type of object. The proposed algorithm is based on the
feature descriptor used. It has to be orientation and scale invariant. The performance
depends on how discriminative is the feature descriptor. This confers the algorithm
with capacity to handle changes in illumination, object rotation, scale, etc. It has to be
noted that the proposed algorithm is not invariant to objects that present view point changes.

In order to test the performance of the proposed algorithm several experiments have
been carried out. Several combinations of methods are tested in UIUC-Car [Agarwal et al.
(2004); Agarwal and Roth (2002)] and Moth [Yao et al. (2013)] problems. The proposed
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approach works well in object detection when combined with mesh detection. Mesh
detection computes a grid of detections uniformly for the whole image. This approach per-
forms better than the state-of-the-art algorithm Hough Forests in both problems. In moth
problem, the proposed algorithm obtains rather good results. On the other hand, Hough
Forests is not capable to detect moths mainly because the moths are displayed in different
orientations. This proves the effectiveness of the proposed algorithm. Additionally, the
proposed algorithm was computationally faster than Hough Forests in our experiments.
Although, we did not do specific experiments to evaluate the computational performance
of the different algorithms. We also tested other variations of the proposed approach.
We tested using SIFT detector instead of mesh detection, there is a clear deterioration
of performance. We believe that this is due to the fact that a much smaller number of
detections are obtained with SIFT with respect to mesh detection. We also tested Beam
Angle descriptor in the moths problem, but the results are also poor, the reason is that this
dataset contains touching moths and incomplete moths which makes the extracted contour
descriptors unstable.

Concerning the future works, some variant algorithms could be experimented to im-
prove the performance of the system. As we mentioned before, the proposed system is
divided into different parts which confers the system with a modular structure. Each one
of these modules can be replaced by other methods for different problems or situation. For
example, in our experiments, we tested using Beam Angle descriptor instead of SIFT de-
scriptor to capture contour feature in the moth problem. Some other possible modifications
could be worth trying:

• The use of Random Forests without discretizetion or label annotation, this is, training
Random Forests for regression using the displacements directly to split samples.

• To combine both contour based descriptors and patch based descriptors to improve
the system performance.

• To include a descriptor that could handle view point variation such as Hessian or
Harris affine descriptor.

• To combine SIFT descriptors of different sizes both in training and test, this is to use
SIFT descriptors of different size levels of an image and include all of them in both
training and test data. In this way, different aspects of the object of interest could be
handled.

Other future lines of research related to this work that we are studying are: to modify
Hough Forests to get a orientation invariant version, this can be done by adapting an
orientation invariant descriptor in the algorithm; to adapt this detection method in a
classification algorithm, this is, creating several class specific detection models using this
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approach to classify images according to the containing objects.
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