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Abstract A test for the hypothesis of uniformity on a
support S C R? is proposed. It is based on the use of
multivariate spacings as those studied in Janson (1987).
As a novel aspect, this test can be adapted to the case
that the support S is unknown, provided that it ful-
fils the shape condition of A-convexity. The consistency
properties of this test are analyzed and its performance
is checked through a small simulation study. The nu-
merical problems involved in the practical calculation
of the maximal spacing (which is required to obtain the
test statistic) are also discussed in some detail.

Keywords Uniformity - set estimation - multi-

dimensional spacings

1 Introduction

In the univariate goodness-of-fit theory the hypothe-
sis of uniformity is maybe the most important one,
only second to normality; see, e.g., Marhuenda et al.
(2005) for a recent comparison of univariate uniformity
tests. The interest in the univariate uniform distribu-
tion is mostly associated with the need for checking
the different procedures of random number generation
which are in the basis of most simulation procedures
and therefore in the core of many important proce-
dures in science and technology. Besides this obvious
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motivation, the uniform distribution reflects a notion
of non-informativeness and lack of structure which is
interesting to check in many cases. The multivariate
counterpart of the theory of uniformity tests is much
less developed. It has been mostly considered (often un-
der the name of “randomness”) in connection with the
theory of point processes, especially for the bi-variate
case d = 2. In that setup the uniformity hypothesis
amounts to assume that the underlying process gen-
erating the points is of Poisson type with a constant
intensity function. See e.g., Ripley (1979), Moller and
Waagepetersen (2004) for the study of randomness in
the point processes framework.

However, we are concerned here with the more clas-
sical approach in which we want to test whether a R
valued random variable X has a uniform distribution
on a compact support S C R? and the available infor-
mation is given by a random iid sample of Xy,..., X,
drawn from X. Only a few references on this topic can
be found in the literature even in the case of a simple
null hypothesis, that is, when the support S is com-
pletely specified and we want to test

Hj : X is uniform on S. (1)

Liang et al. (2001), propose a class of tests based on
discrepancy measures between expectations of the type
E(f(X)) and their Monte Carlo approximations. The
asymptotic behavior of these discrepancies under the
uniformity hypothesis is used to derive several unifor-
mity tests for the case S = [0,1]¢ which work for any
dimension d. Berrendero et al. (2006) propose a method
based on the distance from the sample points to the
boundary of S. It is computationally efficient and works
for a wide class of possible supports S but, still, only
the case (1) of known support is analyzed in some de-
tail by these authors. Tenreiro (2007) uses the Bickel-



Rosenblatt approach, based in nonparametric density
estimation, to derive an uniformity test for the case
S =10,1]4.

Smith and Jain (1984) define a test statistic for test-
ing the uniformity of multidimensional data over some
compact convex set. The test is obtained as an exten-
sion of the Friedman-Rafsky test (see Friedman and
Rafsky, 1979), which determines if two sets of sample
points belong to the same distribution. It is based on
the Minimum Spanning Tree of the pooled samples.

The case of unknown support

In this paper we will deal with the case of unknown
support. This means that we are considering a compos-
ite null hypothesis such as

Hy : The distribution of X belongs to the class Uc,

(2)

where Ue is the class of uniform distributions whose
support belongs to a family C of compact connected
supports on R¢.

This is the analog, for the uniformity hypothesis, of
the classical problem of goodness of fit to a parametric
family (which includes for example the important prob-
lem of testing whether a random variable has a normal
distribution, without specifying the values of the loca-
tion and scale parameters).

Note that there is a sort of “qualitative jump” in
the difficulty of the problem (2) from d =1 to d > 1.
In the first case the class of possible connected sup-
ports coincides with the class of bounded closed in-
tervals. Therefore it is “finite-dimensional” or “para-
metric”; see Baringhaus and Henze (1990). However,
in the multivariate case d > 1 the class of possible
connected supports is really huge so that the hypothe-
sis (2) will be typically non-parametric, unless drastic
assumptions are imposed on Ug. In fact, the problem
of testing a composite hypothesis of type (2) remains
largely unexplored, at least from the theoretical point
of view. Berrendero et al. (2006) briefly outline a pos-
sible extension (based on set estimation ideas) of their
distance-to-boundary method, valid for the problem (2)
of unknown support. This idea is currently under de-
velopment. Along the lines of Smith and Jain (1984),
Jain et al. (2002) propose a method for the uniformity
testing problem with unknown support. Their approach
does not rely on any explicit assumption on the shape
of the support. Still this interesting idea is not fully
developed from the theoretical point of view.

The purpose of this paper

We propose here a uniformity test valid for the prob-
lem (2) of unknown support. It is based on the use
of multivariate spacings as those analyzed in Janson
(1987). This author proves a deep result which com-
pletely establishes the asymptotic behavior of the largest
gap (of a prescribed shape) left by the sample points in-
side the support S, under extremely wide conditions for
S. Relying on Janson’s theorem a first uniformity test
(for the case of known support) is proposed in Section
2 and their consistency properties are analyzed.

Section 3 is devoted to adapt this spacings-based
test to the testing problem with unknown support (2).
Our proposal is based on set estimation ideas and will
assume that the unknown support belongs to the wide
class of A-convex sets which includes the compact con-
vex supports.

The practical problems involved in the calculation
of the multivariate largest spacing are far from trivial.
They are analyzed in Section 4.

A small simulation study is given in Section 5.

Section 6 illustrates the application of the new uni-
formity test to a set of real data.

Section 7 is devoted to the proofs.

2 A test based on multivariate spacings

In the univariate case, the spacings defined by a random
sample of points X1,...,X,, in a support interval S =
[a,b] are defined as the gap lengths left by the sample
points in the interval. They are calculated in a simple
way in terms of differences between consecutive order
statistics. The use of univariate spacings in the problem
of testing uniformity is known since long time ago; see,
e.g., Jammalamadaka and Goria (2004) and references
therein.

In the multivariate case Xi,..., X, € S C RY, the
definition of spacings is not so straightforward. How-
ever, there still is a natural way to define the largest
(or maximal) spacing 4,, in such a way that some valu-
able properties can be derived for it.

Before going on, we need a bit of notation. In what
follows let S C R? be a compact support with 1(9S) =
0, where 1 denotes the Lebesgue measure on R? and 95
will stand for the boundary of S. Let X;,...,X,, be a
sample drawn on S with distribution P. Denote R,, =
{Xi,...,X,}. The shape of the considered spacings will
be defined by a given set A C R? For the validity of
the theoretical results it is sufficient to assume that
A is a bounded convex set with non-empty interior.
For practical purposes the usual choices are A = [0,1]¢
or A = B(0,1), where B(z,r) denotes the closed ball



of radius r and center x. We will assume throughout
this latter choice A = B(0,1) which provides spherical
spacings.

Then, the formal definition of maximal spacing is
that used by Janson (1987); see also Deheuvels (1983):

A, (S; P) =sup{r: Jz withx+rAC S\N,}
=sup{r: Jz with B(z,r) C S\ N,}. (3)

Let now B be a ball included in S. We denote by
A, (S, B; P) the maximum spacing in B generated by
the sample Xi,...,X, drawn on S. Of course, given
the shape element A, the value of the maximal spac-
ing depends only on S and on the sample points in N,
but the notation A, (S; P) allows us to emphasize that
the distribution of this random variable depends on the
distribution P of the data points.

The Lebesgue measure (volume) of the balls with
radii A, (S, B;P) and A, (S;P) will be denoted, re-
spectively, by V,,(S, B; P), V,(S; P). If P is omitted we
will understand that it is uniform. S may be also omit-
ted when no confusion is possible. When the notation
Vin(T) is used for a set T # S we will understand that
it represents the volume of the maximal spacing gen-
erated by a uniform sample of size m drawn on 7', in-
dependently from the original sample X, ..., X, used
to evaluate V,,(S; P). Note however that the reason-
ings in the proof of Theorem 1 below do not depend on
any independence assumption between V,, and V,, in-
volved statistics as they only rely on the corresponding
marginal distributions.

The following neat and general result due to Janson
(1987) will be essential in what follows:

JANSON’S THEOREM.- If the X; are iid uniform on S,
with pu(S) = 1, u(9S) = 0, and the volume element A
is a bounded convex set with non-empty interior, then
the following weak convergence holds

nV, —logn — (d — 1) loglogn — log f - U (4)

where V,, is the volume associated with the largest spac-
ing A,, defined in (3), 8 is a known constant (depend-
ing on A), convergence in distribution is denoted as
—, and U is a random variable with distribution
P(U < u) = exp(— exp(—u)), for u € R. Also

—1
lim inf nVn —logn _ d — 1, almost surely (a.s.)
loglogn
and
n — 1
lim sup w =d+1, a.s.
loglogn

Just two remarks on this result:

(a) From the conclusions of this theorem we directly
obtain,

nV,

lim
logn

=1, as. (5)

which will be very useful in the proofs of Theorems 1
and 2 below.

(b) The value of the constant 8 = S(A) is explicitly
given by Janson (1987) for the most important partic-
ular choices of A. For example it turns out that g =1
whenever A is a cube. When A is a ball, the expression
of 8 is more complicated and depends on the gamma
function. However, in the case d = 2 we have § = 1 not
only for the ball but also for any A with the centrosym-
metric property, that is, for all A such that A —z =
—(A — z) for some z.

A uniformity test

Janson’s theorem suggests a uniformity test on S,
which would reject, at a significance level «, the null
hypothesis (1) whenever

L Ua +logn + (d — 1) loglogn + log 8

V. (S; P) -

(6)
where u, is the 1 — a quantile defined by P(U > uy) =
a.

In the general case that p(S) = a the a-critical re-
gion would be

N a(uq + logn + (d — 1) loglogn + log 3)
- .

V. (S; P)
(7)

The rationale behind this critical region is quite simple:
if the distribution P fails to be uniform then there must
exist a ball B such that P(B N S) would be smaller
than the corresponding uniform probability on BN S.
This “low probability region” would be asymptotically
detected by an unusually large spacing.

This is made explicit in the following consistency
result whose proof is in Section 7.

THEOREM 1.- Assume, without loss of generality, u(S) =
1. The test (6) based on spacings is consistent against
an alternative hypothesis of type

H,: P is absolutely continuous with density f such
that there exists a ball B C S and a constant ¢ with
f(z) <e<1forallz € B.

This means that the probability of having the in-
equality (6) tends to 1, as n — oo if Hy is true.



3 The case of unknown support

We now concentrate on our main target of obtaining a
test for the hypothesis (2) in which the support S is not
given in advance.

We will use set estimation ideas; see Cuevas and
Fraiman (2009) for a recent overview of this topic. The
general idea is quite simple. We will just estimate S
by an estimator .S,, based on the sample Xi,...,X,,.
Then the maximal spacing A,,(S; P) will be estimated
by means of

A, =sup{r: 3z with B(z,7) C S, \ R, }, (8)
and the critical region (7) would be replaced with

. an(uq +logn + (d ; 1)loglogn +log 5) )

Here ‘A/n denotes the volume of the ball with radius AAn,
given in (8) and a,, = p(Sy). See Section 5 for a discus-
sion on the effective calculation of a,,.

If AAn is close enough to A,,, its asymptotic distri-
bution will also be given by (4). To have this we need
to find a “good” estimator S, of S, for which the esti-
mated boundary 0.5, is close enough to 95. This can be
typically achieved by imposing some shape conditions
on S and choosing an appropriate estimator based on
them.

In particular, we will assume that S is A-convex for
some A > 0. This means that S can be expressed as
the intersection of the complement sets of a family of
open balls of radius A. In other words S is A-convex if
it coincides with its A-convex hull, defined by

CA(S) = ﬂ

int(B(z,A\)NS=0

(int(B(z,\)))".

This definition is clearly reminiscent of the definition of
a closed convex set S as the intersection of the closed
half spaces which contain S. It can be seen that a closed
convex set is A-convex for all A > 0. The reciprocal is
true when S has non-empty interior. Some references
on the statistical interest of the A-convexity assumption
and the estimation of A-convex sets are Walther (1997,

1999), Rodriguez-Casal (2007) and Pateiro-Lépez (2008).

Figure 1 shows a A-convex set and the A-convex hull of
a sample of size n = 30 for A = 0.25.

There are three main reasons for considering the
shape restriction of A-convexity here. First, the class
of A-convex sets is very broad and, in any case, much
wider than that of closed convex sets. In informal terms,
this class includes (for different values of A) most sets

Fig. 1 A-convex set (left), A\-convex hull of a random sample
(right)

one could visualize or draw, provided that they do not
have too sharp inlands; see the above mentioned refer-
ences for technical details. Second, if we assume that
a compact support S is A-convex there is a natural es-
timator of S from a sample X, = {X3,..., X,,} which
is simply given by the A-convex hull of the sample (see
Rodriguez-Casal 2007 and Pateiro-Lépez 2008),

Sp = CA(Ry,).

Third, if S is A-convex we know precise (fast enough)
convergence rates for the convergence of S, and 95,
towards S and 0S5, respectively.

Therefore, we will use the A-convexity to define the
class C of admissible supports in the hypothesis (2).
This class will be made of those supports S C R? sat-
isfying the following property:

(CS) S is a compact path-connected set with int(S) #
(). Moreover, S and S¢ are both A-convex.

This condition is borrowed from Walther (1997, 1999).
It has been used by Rodriguez-Casal (2007) to derive
the convergence rates in the approximation of S, to S
that we will need in our Theorem 2 below. The essen-
tial point is that the sets fulfilling condition (CS) have
a number of properties which make them easier to han-
dle. In particular, condition (CS) implies an intuitive
rolling property (a ball of radius X’ rolls freely inside S
and S¢ for all 0 < A\’ < \) which can be seen as a sort
of geometric smoothness statement. See Walther (1997,
1999) for a detailed discussion of these issues.

The following theorem establishes the validity of the
uniformity test (9). The proof is given in Section 7.

THEOREM 2.- Let X1,...,X, be asample of iid obser-
vations from a random variable X whose distribution
Px has support S C R%. Let us consider the problem
of testing

Hy : Px has a uniform distribution with support in C,



where C is the class of supports satisfying the property
(CS). The inequality (9), where S,, = Cx\(X,,), is a crit-
ical region for Hy with an asymptotic significance level
«, that is

lim P(V, > Cp.o) = a, (10)

n—o0

under Hy, where C), o denotes the right-hand side in
(9).

Moreover, this test is consistent against the same
alternative hypothesis indicated in Theorem 1.

4 Numerical aspects: the effective calculation
of spacings

The practical implementation of the proposed tests re-
quires the numerical calculation of the maximal spac-
ings A, (when the support S is known) and A, (when
S is unknown). This is a non-trivial problem closely re-
lated with some relevant concepts in stochastic geome-
try. This section is devoted to discuss this problem both
when the support S is assumed to be known and when
S is unknown. Recall that, in both cases, calculating the
maximal spacing essentially means finding the largest
ball contained in a set (either S or an estimation of
S), that does not intersect the sample. Let us restrict
ourselves to the two dimensional case S C RZ. The
algorithm we propose consists basically of two stages.
First, based on the Voronoi diagram and Delaunay tri-
angulation of the sample, we determine an initial ra-
dius, stored as a candidate to be the maximal spacing.
Then, by enlarging this initial value iteratively, we de-
fine an increasing sequence of radii and check whether
any of them satisfies the conditions to define the max-
imal spacing.

This algorithm could be generalized to d > 2. At
the end of the following paragraph we explain how to
adapt the first stage for d = 3. As for the iterative “en-
larging” stage, the indicated methodology should also
work for d > 2 although the computationally efficient
implementation is not straightforward.

The Voronoi diagram and the Delaunay triangulation

The Voronoi diagram of a finite sample of points N,,
in R? is a covering of the plane by n regions V; where,
for each i € {1,...,n}, the cell V; consists of all points
in R? which have X; as nearest sample point. That is,
Vi={z e R?: |z—X;| < |z—X;| forall X; €
N, }. Two sample points X; and X; are said to be
Voronoi neighbours if the cells V; and V; share a com-
mon point. We denote the Voronoi Diagram of N, by

Fig. 2 Voronoi diagram and Delaunay triangulation (left). The
empty circle property (right); the circumference in gray corre-
sponds to the first step of the algorithm to calculate A, , being
S the ball in solid line.

VD(X,,). The Delaunay triangulation of 8,,, denoted by
DT(R,), is defined as the partition of R? by triangles
which are delimited by the segments (called Delaunay
edges) connecting the Voronoi neighbours. Thus, there
exists a Delaunay edge connecting the sample points
X; and X; if and only if they are Voronoi neighbours.
The Delaunay triangulation was introduced by Voronoi
(1907) and extended by Delaunay (1934) who proved
the following empty circle property: No vertex in a De-
launay triangulation is included inside a circumcircle
drawn through the vertices of a Delaunay triangle. This
property will be used below in order to get a radius to
initialize our algorithm. For a survey of these topics we
refer to Aurenhammer (1991). Figure 2 shows a Voronoi
diagram, the corresponding Delaunay triangulation and
the empty circle property. The circumference in gray
represents the largest circumcircle contained in the set.

The Delaunay triangulation and its duality to the
Voronoi diagrams generalize to higher dimensions. The
Delaunay triangulation of a set of points in R? is a tes-
sellation of the convex hull of the points such that no
d-sphere defined by the d-triangles contains any other
points from the set. Figure 3 shows the Delaunay tri-
angulation of a set of points in R3. The sphere rep-
resents the largest circumsphere contained in the set
S = [0,1]3. Regarding the computation of the Delau-
nay triangulation in general dimension, Barber et al.
(1996) present the implementation of the Quickhull al-
gorithm, that computes convex hulls, Delaunay trian-
gulations, Voronoi vertices, furthest-site Voronoi ver-
tices, and halfspace intersections in R?. This algorithm
is available for computing languages such as R, MAT-
LAB, and Mathematica. See, for the former, the pack-
age geometry, by Grasman and Gramacy (2010).



Fig. 3 Delaunay triangulation of a sample of points in R3 (left).
The sphere corresponds to the first step of the algorithm to cal-
culate Ay, being S the unit cube (right).

The case of known support

Let us first assume that the support S is known.
Note that, even though they may not be contained
in S, the open circumdiscs defined by the Delaunay
triangulation do not intersect the sample. Therefore
Ay (S; P) > AP where AY) = max{r : IB(z,r) C
S, B(x,r) circumdisc defined by DT(R,,)}; this is the
radius of the circumference in gray in Figure 2. The
decision on whether a circumdisc, B(z,r), is contained
in S is made based on d(z,dS) which is not difficult to
calculate for certain sets S.

Once A%O) is determined, we proceed iteratively. The
goal is to find a disc, B(x,r), such that int(B(z,r)) C
S\ R, with r > AP If such a dise does exist then
x ¢ B(R,, A%O)), where

B(Nn7A’I(’LO)) = U B(XHA'E’LO))
X, eN,

is the dilation of radius A%O) of the sample. This means
that the centres of the possible maximal balls neces-
sarily lie outside B(NH,A%O)). Now, fix a maximum
number of iterations N and & > 0. Set 7 = A and,
for each k =1,..., N, proceed as follows:

L. Set r(*) = pk=1) 4 ¢
2. Determine the set D*) = SN OB(R,,r*).
3. 1f d(z,08 UR,) > AY ™Y for any z € D®)| set

AP = max{d(z,0SUR,) : d(z,dSUR,) > AF™ e

D(k)} and r*) = Ag@). Else, set Agc) _ Aﬁf‘l)_

The radius A%N) approximates the maximal spacing
A, (S; P). The implementation of this algorithm is vi-
sualized in Figure 4.

(a) (b) (©)

Fig. 4 Maximal spacing algorithm with known support S. (a) In
gray, ball with radius A;O). In light gray, B(Rn, Aﬁlo)). In dashed
line dB(R,,, (). (b) Ball with radius AS). (c) Ball with radius
A,

The case of unknown support

Assume now that the support S is unknown. As
indicated above, in this situation the maximal spac-
ing A, (S; P) is estimated by A, (Sy, P), where S, is
a suitable estimator of S. Thus, the first step in this
case is to compute S, based on the sample. If we as-
sume that S is A-convex for some A > 0 we will take
Sn = CA(R,,), the A-convex hull of the sample. The
algorithm for computing C(X,,) is described in Edels-
brunner et al. (1983). Let AY = max{r : B(z,r) C
Cr(Ry,), B(x,r) circumdisc defined by DT'(X,,)}.

The structure of the A-convex hull can be used to
decide whether a circumdisc, B(z,r), is contained in
Cx(X,,). By DeMorgan’s law, the complement of C (R,,)
can be written as the union of all open balls of ra-
dius A which contain no point of X,,. As a consequence,
OC\(R;,) is formed by arcs of balls of radius A (besides
possible isolated sample points). These arcs are deter-
mined by the intersections of some of the balls that
define the complement of the A-convex hull, see Figure
5. Therefore, for points z € Cy\(R,,), we can compute
d(xz,0C\(R,,)) from the minimum distance between x
and the centers of the balls that define 9C)(R,,).

Once AA%O) is determined the algorithm follows the
same steps as in the case of known support.

One issue that needs to be addressed is the selection
of the parameter \ which, in practice, may be unknown.
Different values of A result in different sets and, con-
sequently, the choice of this parameter may affect the
value of AA;N). For sufficiently large A, the A-convex hull
tends to the convex hull of the sample whereas, as A de-
creases, the estimator shrinks until that, for sufficiently
small A, the A-convex hull reduces to the sample points.
Therefore, if the original set S is known to be convex,
the estimator works reasonably well for large values of



(a) (b)

Fig. 5 Random sample of size n =20 on S = B(0,1/+/7). (a) In
solid black line, 9C (X5 ) for A > 0. The boundary of C)(Xy) is
formed by arcs of balls of radius A (in dashed line). (b) In dashed

line, circumcircles defined by the Delaunay triangulation of the

sample. In gray, circumdisc with radius A,(IO).

A. However, if S is not convex and A is too large, the
estimator may not be able to identify the cavities of the
set. In the absence of an automatic parameter selection
method, small values of A\ result in more conservative
estimations.

In any case, as we will see in the simulation ex-
periments of the next section, the numerical outputs
(in terms of significance level) are quite robust against
small and moderate changes in A.

5 Simulation study

We offer here a small simulation study in order to check
the practical performance of our proposals. The details
are as follows.

Tests under study

Our main target is to study the behaviour of our
maximal spacing tests (denoted by MS and EMS) whose
critical region are (6) or (9) corresponding, respectively,
to the case where the support S is known (with p(S) =
1) and estimated.

In the case of unknown support, we also need to
compute the area of the estimator, see the numerator
of (9). The area of the A-convex hull estimator can be
exactly determined. Since the A-convex hull is defined
as the complement of the intersection of open balls of
radius A, its boundary is formed by the union of arcs of
balls of radius A besides possible isolated points. In view
of this observation, the area of the A-convex hull can
be computed by adding and subtracting (if there are

holes) the areas of the polygons that result from joining
the extreme points of adjacent arcs and the areas of
the circle segments determined by those arcs. Despite
the fact that we are able to compute the area of the
estimator, there is still one problem we have to face
with. Since, with probability one, C\(R,,) C S, the area
of the estimator systematically underestimates the area
of the support and, as a consequence, the test tends to
reject the null hypothesis more readily than one would
wish. Finding an appropriate dilation of the estimator
in order to correct the bias is an open problem which
was already pointed out by Ripley and Rasson (1977)
for the case of the convex hull estimator. As in their
paper, we propose to estimate p(S) by means of
. n

n M(C)\(Nn))a

a. =
n— v,

where v,, is the number of vertices of the A-convex hull.
Thus, we reject the null hypothesis of uniformity on an
unknown support whenever,

7 s a* (uq + logn + (d — 1) loglogn + log 3)

n

As competitor procedures we will consider several
tests proposed by Liang et al. (2001). These tests are
based on different statistics (we will consider here those
denoted A, and T,) as well as on different discrep-
ancy measures (we will use here those called symmet-
ric, centered, and star). We will also consider the one-
sided (o0-s) “distance-to-boundary” (DB) test proposed
by Berrendero et al. (2006). Let us recall that all these
competitors require the knowledge of the support S.
Therefore the comparison is not fair for our EMS method
(as the competitors incorporate extra information) but
still it will allow us, at least, to assess the loss of effi-
ciency entailed on the estimation of the support. The
test by Smith and Jain (1984) addresses the problem
of testing the uniformity of multidimensional data over
some compact set, called the sampling window. It uses
the Friedman-Rafsky test to determine if two samples
come from the same population. One of the samples
is the given data and the other one is generated uni-
formly over the sampling window when it is known.
For unknown sampling windows, the second sample is
generated uniformly over the convex hull of the given
data.

Considered supports

We will use the following supports:

cx? P <

}.

3=
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(© S={(@y e”: (&) + (%) <1}
(d) S ={(z,y) eR?: 0.322 <22 +y? < 0.65%}.

As mentioned before, most existing methods in the
literature for testing uniformity in the multidimensional
context are limited to the unit hypercube. We have cho-
sen the support (a) in order to compare our proposal
with other tests although, for the case of unknown sup-
port, S = [0, 1]? does not fulfill property (CS) in Theo-
rem 2. Note that (CS) is used only as a sufficient condi-
tion to guarantee a fast enough rate in the estimation of
S (see the proof of Theorem 2). Nevertheless, the test
will work whenever this rate holds, even if (CS) is not
fulfilled.

Outputs

The numerical results given below have been ob-
tained using the R software, R Development Core Team
(2008), and the alphahull package. See Pateiro-Lépez
and Rodriguez-Casal (2010) for a description of the li-
brary.

Table 1 gives the outputs corresponding to the em-
pirical significance level obtained (as an average over
10000 independent runs) with the different tests in-
tended for a nominal significance level « = 0.05. Sample
sizes are n = 100, 200, 500. Since the tests proposed by
Liang et al. (2001) are designed for the unit hypercube,
they are only evaluated for that support. The test by
Smith and Jain (1984) is evaluated for compact con-
vex supports, since it has been developed under this
assumption.

Table 2 gives the empirical powers of the different
procedures under the so-called Neyman-Scott model.
This is a typical deviation from the uniformity assump-
tion, often considered in the theory of point processes;
see, e.g., Moller and Waagepetersen (2004), chapter 5
for details. This kind of non-uniformity pattern appears
as quite natural in our case, as it can be defined, and
easily interpreted, irrespectively of the structure of the
support S. Under this model the sample tends to pro-
vide “clustered” observations. Figure 6 shows two ex-
amples of data sets generated under a Neyman-Scott
process.

Table 3 shows the empirical significance levels at-
tained with different choices of A for the EMS test un-
der the models (a)-(c). The results suggest a remark-
able stability with respect to the values of this shape
parameter.
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Fig. 6 Realization from the Neyman-Scott process over the unit
square with size n = 200. Each cluster consist of 5 points, gen-
erated from the uniform distribution on a disc of radius r. (a)
r=0.05. (b) 7 =0.1.

Conclusions

We observe that, in which concerns the significance
level, both tests (MS and EMS) perform reasonably well
for large sample sizes, except perhaps in the case (d) of
the circular crown where larger sample sizes are needed.
In the remaining cases, even in the case of unknown sup-
port, the estimated maximal spacing test does a good
job in preserving the nominal value. The reason is that,
whenever the support estimator is able to the recover
faithfully the boundary of the original set, the maxi-
mal spacing with unknown support is not much smaller
than the maximal spacing with known support. This is
illustrated in Figure 7, where the balls corresponding
to the maximal spacing and estimated maximal spac-
ing are represented. For the the unit square in (a), the
choice of a large value of A ensures that the support
estimator works well. For the supports (b), (¢) and (d),
the parameter A is chosen as the largest value for which
the corresponding support is A-convex.

We should say that other uniformity tests reported
in literature, such as the proposals by Liang et al. (2001),
show a better performance for small sample sizes. Re-
call, however, that these tests are designed for the case
S = [0,1]¢ so that, in principle, they are not appli-
cable to the case where S is a support different from
the unit square or to the case where S is unknown.
We should also keep this in mind when comparing the
power outputs of the different tests in the case of un-
known support. However, even when .S is unknown, the
test EMS based on the maximal spacing shows a clear
superiority in the case of Neyman-Scott clustering al-
ternatives over the proposals by Liang et al. (2001) and



Fig. 7 Uniform samples of size n = 200 on different supports
S. In dark gray, maximal ball with known support. In light gray
and dashed, maximal ball with unknown support. The support
is estimated through C) (R, ), whose boundary is represented in
gray. The values of X\ are (a) A =1, (b) A = 0.56, (¢) A = 0.19,
and (d) A = 0.32.

the DB test by Berrendero et al. (2006). The reason is
that under the Neyman-Scott processes empty spaces or
holes tend to arise between the clusters of points and,
consequently, the maximal balls are significantly larger
than those in the uniform case; see Figure 8. Regard-
ing Smith and Jain’s (1984) test for convex supports,
the power outputs are satisfactory and slightly better
than those of their competitors. However, the observed
significance levels are always larger than the theoreti-
cal ones, especially for large sample sizes. This could
be due to the fact that we are using, as proposed in
Smith and Jain (1984), the conditional version of the
test statistic given in Friedman and Rafsky (1979, p.
702). This “conditional version” (easier to compute) is
obtained by replacing the variance in the denominator
of the test statistic by a conditional variance; see equa-
tion (14) in Friedman and Rafsky (1979).

We should also mention that the performance of the
EMS test (and even that of the MS) is much worse
under a further class of “natural” deviations from uni-
formity, namely the “e-contamination models” as those

(a) (b)

Fig. 8 Maximal ball with known support. (a) Neyman-Scott pro-
cess over the unit square of size n = 200. (b) Uniform sample on
the unit square of size n = 200.

considered in Berrendero et al. (2006). In these models
the sample includes some contamination given by an
extra proportion e of “outliers” (observations close to
the boundary of S) or “inliers” (observations close to
the middle of ).

As a final conclusion, we think that the EMS test is
to be especially recommended whenever there are some
reasons to suspect departures from uniformity via “clus-
tered” observations. The fact that (unlike the remain-
ing standard tests) the EMS procedure does not require
the knowledge of the underlying support, provides an
extra flexibility. Our simulation results show that, if the
shape of S is somewhat involved, the EMS procedure
could be rather conservative. Still, we have performed
other numerical experiments, not reported in Tables 1-
3, which suggest a good behavior with respect to power
even in this case.

6 A real data example

There are different contexts in which to deal with a set
of points distributed within a region. One example is
the study of spatial patterns in natural vegetation. In
order to understand the establishment or the growth
of plant communities, it is important to analyze their
spatial characteristics. Given a plant population, a good
starting point is to test whether the point locations of
the individuals are distributed completely at random.
A positive answer would dissuade us from attempting
to model any kind of structure in the data. Usually the
randomness assumption is formalized in terms of the
validity of an homogeneous Poisson process. This could
be translated into our approach by conditioning to a
fixed sample size.

The data we have studied, due to Gerrard (1969),
come from an investigation of a 19.6 acre square plot in
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Fig. 9 Location of trees in Lansing Woods, Clinton County,
Michigan, USA. (a) Hickories. (b) Mapples. (c¢) Oaks.

Lansing Woods, Clinton County, Michigan, USA. The
complete data set give the locations of 2251 trees. It
is available from the R package spatstat, see Bad-
deley and Turner (2005). We have considered for this
study the locations corresponding to the three major
species (hickory, maple and oak). Figure 9 shows the
three spatial point patterns. The original plot size has
been rescaled to the unit square. As discussed in Dig-
gle (2003), the visual examination of the data suggests
evidence of aggregation for the hickories and especially
for the maples. For the oaks, the plot shows no obvious
structure and might be considered as a realization from
a uniform distribution. This intuition is supported by
the results of several complete spatial randomness tests
in Diggle (2003). We have applied the uniformity tests
discussed in this work to the Lansing Woods data. Re-
sults are given in Table 4. The tests based on maximal
spacings (MS and EMS) accept the null hypothesis of
uniformity for the oaks, at a significance level of 0.05,
and reject in favour of the alternative hypothesis for
both the hickories and the maples. For the EMS test
we have chosen A\=1. As a conclusion, we cannot as-
sume that the locations of hickories and maples are dis-
tributed completely at random. The next natural step
in a further study of the data would be to find groups
in these two species and to estimate the number of clus-
ters. We refer to Cuevas et al. (2000) and Tibshirani et
al. (2001) for different approaches to this major prob-
lem.

7 Proofs

In this section we give the proofs of the stated theorems.

PrROOF OF THEOREM 1: If £, and 7, are positive se-
quences of random variables, the notations

$n S s gnénn and &, = nj,

will mean, respectively that, with probability one (that
is, a.s.),

&n &n &n

limsup — < 1, limsup-— <1 and lim — = 1.
Mn Mn Mn

For the sake of clarity we will divide the proof in
several steps:

Step 1: It will suffice to prove that

Va(S) < Va(S; P), (11)

where V,,(S) and V,,(S; P) are based on independent
samples drawn from the uniform on S and the distri-
bution P, respectively.

Indeed, note that the null hypothesis, under unifor-
mity would be rejected whenever

nV,(S) —logn — (d — 1) loglogn — log 8 > ug (12)

and, under P the critical region is

nV,(S; P) —logn — (d — 1) loglogn —log 8 > us. (13)
The difference between the statistics of the left-hand
sides is

mw&m—wwwWFQ%?—@mm.

If (11) holds, then for all € > 0 small enough we have
that, with probability one, there exists ng such that
V(S5 P) 1

V. (S) 1—ce¢

, VYn > ng.

On the other hand, from Equation (5) nV,(S) = oo,
a.s. Then we conclude n[V,,(S; P) — V,(5)] = oo as.
and, since the rejection probability under uniformity in
(12) is «, the rejection probability in (13) tends to 1 as
n — 0o.

Step 2: Let B be the ball indicated in the definition of
hypothesis H;. Note that, in order to prove (11) it is in
turn sufficient to prove that for any ¢; € (¢, 1),
Va(er /S) S Va(S, B; P) (14)

since, from the definition of the spacings and Equation
(5), we have that

V(e Y48) = 7V (S) > Viu(S)

and
Vo (S, B; P) < V,.(S; P).
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Step 3: To see (14) we will find a sequence V,,,(B), with
appropriately chosen m = m(n), such that

Va(c; V18) £ Vin(B) (15)
and
Vin(B) £ Va(S, B; P). (16)

More precisely, we will take
_ | B | _
= |ty | = Lo
where |k| denotes the integer part of k.

Step 4: Now the proof is reduced to check (15) and (16).
In order to prove (16) we will first show that

Va(c¢™18, B1) = Viu(B), (17)

where B; denotes a ball such that B; C ¢~ 1/4S and
w(B1) = p(B). Indeed, relation (17) follows from the
fact that, according to the Strong Law of Large Num-
bers, if Y; are i.i.d. uniformly distributed on ¢~1/4S,
then the random variable

Nn:#{ZKEBl}
is such that, for all € > 0,
my = [(1—€)nep(B)| < N, < [(14€)nep(B)] := ma,

eventually with probability 1, where [r] = [r] + 1.
Then,

Vina(B) £ Va8, By) £ Vi, (B),
but, from (5),

__ logm, logn

le (B) ~

w(B) =

my (1—e)nc’

logm logn
Vin, (B) = 2u(B) ~

ma (14 €)nc’
for all € > 0. Therefore

I
Vo (cV48, By) ~ 28"

ne
which proves (17) since, using again (5)

logn

Step 5: Since the uniform density on ¢~!/4S is equal
to ¢ on the set By and the density f of P is such that
f<con B,

Vo(c='18, By) < Vi(S, B; P).

This, together with (17), proves (16).

Step 6: Likewise, (15) follows from

logn

Va(ey V98) m e 'V(S) S =2 & Vi (B).

ne
Finally, as indicated in Step 3, we conclude (14) since
we have proved (15) and (16).
O
PrROOF OF THEOREM 2: To prove the first statement
(concerning the asymptotic preservation of the level)
the crucial point is to show that, under Hy, the weak
convergence (4) holds also when V}, is replaced with V.
To see this denote by d,(S,,S) and dg(S,,S) the
symmetric difference distance and the Hausdorff dis-
tance between S, and S defined, respectively, by

du(Snv S) = M(SnAS) =M ((Sn \ S) U (S \ Sn))
dpr(Sn, S) = max{ sup d(z, S),stel]g d(y, Sn)},

€S,

where, for any A C R? and z € R¢,
d(z, A) = inf{||lx —y| : y € A}.

Under the assumption (CS) it has been proven (see
Rodriguez-Casal 2007, Theorem 3) that, with probabil-
ity one,

2/(d+1)
A (98,,08) = O ((k’g”) )
n

and the same holds for dg (S,,S) and d,(Sy, S).
Define

en = max{dg (9Sy,0S), dr (S, S)},

T,=5\{zreS: d(z,05) < 2e,}.

We now see that 7, C S,, or, equivalently, Sg C T'S.
Indeed, take x ¢ S,, such that z € S (the case z ¢ S is
trivial). Since dg (S, S,) < €,, there exists y € S, such
that d(x,y) < e€,. Also, since the projection of z on
S, must belong to 95, we may take y € 95,. On the
other hand, since dg (95, 9S,,) < €,, there exists z € 95
such that d(y,z) < €,. From the triangle inequality,
d(z, z) < 2¢, so that « ¢ T,,. Therefore S5 C T¢.

Now, let B(z', A,) be any “maximal” ball realizing
the definition (3) for some 2z’ € S. We have

B, A, —2¢,) C T, CS,.

and therefore A\n > A, — 2¢,, where AAn is the esti-
mated maximal radius defined in (8). This, together
with AAn < A, a.s. (which follows from S, C S a.s.)
proves that, with probability one,

A, — A, = O(logn/n)¥ @1, (18)
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o~

Now denote A,, — A,, = r,,. We want to prove that (4)
holds also then nV, is replaced with nV,,. As V,, =
pu(B(0,1))Ad it will suffice to prove that, with proba-

n’

bility one,
nA% —nAd -0 (19)

To this end put
4 rd
nAd =n(A, + ) =n < >Aﬁkr7’fb
( ) Z; L

and recall that from (5), A2~F is (with probability one)
of exact order (logn/n)@*)/4 for 0 < k < d. Thus,
from (18), with probability one,

d—k)/d k/(d
nAYFrk — o (logn>( )/ (logn>2/( =

n n

(20)
which proves nAY=*rk — 0 as., since (up to logn
terms) the right hand side of (20) is of order n? with

A+ d—kd— k+ 2kd

=1
q 2 +d

< 0.

We have thus proved (19) and therefore, from (4), we
also conclude

nV, —logn — (d — 1)loglogn — log B —% U

with P(U < u) = exp(— exp(—u)) for u € R.

To show (10) we only need to prove a,, — a with
probability one. But this follows from Theorem 3 in
Rodriguez-Casal (2007) which, in particular, states that
d,(Sn,S) — 0, as.

Finally, the consistency result against an alterna-
tive hypothesis of type of those considered in Theorem
1 follows from (5) and (19) which together imply the
validity of the “estimated analog” of expression (5),

— 1, as.. (21)

Now the proof of consistency follows the same lines as
the proof of Theorem 1, replacing (5) with (21). O
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Table 1 Empirical significance level over 10000 uniform samples of size n = 100, 200, 500 on different supports S. The uniformity
tests considered for the case of known support are the maximal spacing test (MS), the (SJ) test by Smith and Jain (1984), the tests
by Liang et al. (2001) and the one-sided DB test by Berrendero et al. (2006). The uniformity tests considered for the case of unknown
support are the estimated maximal spacing test (EMS) and the (SJ) test by Smith and Jain (1984). The nominal value is 0.05.

n
100 200 500
Support (a)  known MS 0.0334  0.0449  0.0504
SJ 0.0558 0.0581 0.0746
A, symmetric 0.0501 0.0578 0.0457
centered 0.0519  0.0520 0.0438
star 0.0510 0.0496 0.0505
Ty symmetric 0.0604 0.0566 0.0527
centered 0.0604 0.0556 0.0519
star 0.0674 0.0636 0.0619
DB o-s 0.0441 0.0491 0.0493
unknown EMS 0.0231 0.0388 0.0471
SJ 0.0552  0.0591 0.0709
Support (b)  known MS 0.0369  0.0449  0.0548
SJ 0.0553  0.0592 0.0758
unknown EMS 0.0247 0.0356  0.0491
SJ 0.0579  0.0557  0.0686
Support (c)  known MS 0.0326  0.0385 0.0515
SJ 0.0563 0.0528 0.0766
unknown EMS 0.0138 0.0281 0.0463
SJ 0.0598 0.0523 0.0724
Support (d)  known MS 0.0000 0.0177  0.0380
unknown EMS 0.0000 0.0062 0.0324

Table 2 Empirical powers of the uniformity tests under study over 5000 runs of sample size n = 100 from Neyman-Scott clustering
alternatives. Each cluster consist of m points, generated from the uniform distribution on a disc of radius 7.

r = 0.05 r=0.1
m=5 m=10 m=5 m=10
Support (a)  known MS 0.9852 1.0000 0.8582  0.9930
SJ 1.0000 1.0000 0.9006  0.9998
Ay symmetric  0.4072 0.5974 0.3608 0.5466
centered 0.4220  0.5954 0.3900 0.5634
star 0.3478  0.5156 0.3398  0.4904
Ty symmetric  0.8772  0.9954 0.8036  0.9692
centered 0.8206  0.9842 0.7528  0.9448
star 0.7614  0.9700 0.6906  0.9198
DB o-s 0.3022  0.4536 0.2394  0.3416
unknown EMS 0.9804  0.9992 0.7978  0.9794
SJ 0.9998 1.0000 0.8444  0.9936

Table 3 Empirical significance level over 10000 uniform samples of size n = 100, 200, 500 on different supports S. The uniformity test
considered is the estimated maximal spacing test (EMS). The support estimator Cy (X, ) is constructed for different values of X. The
nominal value is 0.05.

n
100 200 500

Support (a) unknown EMS A=0.9 0.0233  0.02381  0.0469
A=1 0.0231 0.0388 0.0471

A=11 0.0233 0.0392 0.0475

Support (b) unknown EMS A=0.5 0.0233  0.0349  0.0491
A =0.56 0.0247  0.0356 0.0491

A=0.6 0.0245 0.0362 0.0491

Support (¢) unknown EMS A=0.15 0.0000  0.0265  0.0441
A=0.19 0.0138 0.0281 0.0463

A=0.25 0.0169  0.0297  0.0462
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Table 4 Analysis of Lansing Woods data. For each species, p-values of the associated uniformity tests.

p-value
Hickory Maple Oak
Known support MS < 0.001 < 0.001 0.350
SJ < 0.001 < 0.001 0.273
A, symmetric 0.004 < 0.001 0.018
centered < 0.001 0.774 0.004
star < 0.001 < 0.001 0.087
Ty symmetric < 0.001 < 0.001 < 0.001
centered < 0.001 <0.001 <0.001
star < 0.001 <0.001 <0.001
DB o-s < 0.001 < 0.001 0.002
Unknown support EMS < 0.001 < 0.001 0.313
SJ < 0.001 < 0.001 0.165




