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Abstract 

Recommender Systems (RS) aim to help users with information access and retrieval tasks, 
suggesting items –products or services– according to past preferences –interests, tastes– in 
certain contexts. For such purpose, one of the most studied contexts is the so-called 
temporal context, which has originated an already extensive research area, known as Time-
Aware Recommender Systems (TARS). 

Despite the large number of approaches and advances on TARS, in the literature, 
reported results and conclusions about how to exploit time information seem to be 
contradictory. Although several reasons could explain such contradictory findings, in this 
thesis we hypothesize that TARS evaluation plays a fundamental role. The existence of 
multiple evaluation methodologies and metrics makes it possible to find some evaluation 
protocol suitable for a particular recommendation approach, but ineligible or non-
retributive for others. Problems that arise from this situation represent an impediment to 
fairly compare results and conclusions reported in different studies, making complex the 
identification of the best recommendation approach for a given task. Moreover, the review 
of published work shows that most of the existing TARS have been developed for 
diminishing the error in the prediction of user preferences (ratings) for items. However, 
nowadays the RS focus is shifting towards finding (lists of) items relevant for the target 
user. Also, the use of RS in diverse tasks lets develop new applications where time context 
information can serve as a distinctive input. 

In this thesis we analyze how time context information has been exploited in the RS 
literature, in order to a) characterize a robust protocol that lets conduct fair evaluations of 
new TARS, and facilitate comparisons between published performance results; and b) 
better exploit time context information in different recommendation tasks. Aiming to 
accomplish such goals, we have identified key methodological issues regarding offline 
evaluation of TARS, and propose a methodological framework that lets precisely describe 
conditions used in the evaluation of TARS. From the analysis of these conditions, we 
provide a number of guidelines for a robust evaluation of RS in general, and TARS in 
particular. Moreover, we propose adaptations and new methods for different 
recommendation tasks, based on the proper exploitation of available time context 
information. By using fair evaluation settings, we are able to reliably assess the 
performance of different methods, identifying the circumstances under which some of them 
outperform the others.  

In summary, by means of the proposed methodological characterization and the 
conducted experiments, we show the importance of using a robust evaluation method to 
measure the performance of TARS, issue which had not been addressed in depth so far. 

 





 

Resumen 

Los Sistemas de Recomendación (SR) tienen como objetivo ayudar a los usuarios en tareas 
de acceso y recuperación de información, sugiriendo ítems –productos o servicios– de 
acuerdo a preferencias –intereses, gustos– pasadas en contextos concretos. En los últimos 
años, uno de los contextos que se ha estudiado en más detalle ha sido el llamado contexto 
temporal, que ha dado lugar a una ya amplia área de investigación conocida como Sistemas 
de Recomendación Conscientes del Tiempo (SRCT). 

A pesar del gran número de propuestas y avances realizados sobre SRCT, en la 
literatura, resultados y conclusiones sobre cómo explotar la información temporal parecen 
contradictorios. Aunque diversos motivos podrían explicar contradicciones existentes, en 
esta tesis se plantea que la evaluación de los SRCT juega un rol fundamental. La existencia 
de múltiples metodologías y métricas de evaluación posibilita encontrar algún protocolo de 
evaluación a la medida de un enfoque de recomendación particular, no necesariamente 
generalizable. Los problemas originados de esta situación son un impedimento para 
comparar imparcialmente resultados y conclusiones de diferentes estudios, dificultando la 
identificación de la mejor aproximación de recomendación para una tarea dada. Además de 
lo anterior, la revisión de los trabajos publicados muestra que la mayoría de los SRCT 
existentes se han desarrollado para disminuir el error en la predicción de las preferencias 
(ratings) de usuarios por ítems. Sin embargo, actualmente el foco de los SR está cambiando 
hacia la sugerencia de (listas de) ítems relevantes para el usuario. Por otra parte, el uso de 
los SR en tareas diversas posibilita nuevas aplicaciones donde la información de contexto 
temporal pueda ser un valor diferenciador. 

Esta tesis sintetiza y analiza la forma en que la información de contexto temporal ha 
sido explotada en la literatura de SR, con el objetivo de a) caracterizar un protocolo de 
evaluación robusto que permita realizar evaluaciones imparciales de nuevos SRCT y 
facilitar las comparaciones entre resultados publicados; y b) explotar más adecuadamente la 
información de contexto temporal en diferentes tareas de recomendación. Para cumplir tales 
objetivos se han identificado cuestiones metodológicas clave con respecto a la evaluación 
offline de SRCT, y se propone un marco metodológico que permite describir de manera 
precisa las condiciones usadas en la evaluación de SRCT. Del análisis de estas condiciones, 
se concluye un conjunto de guías metodológicas para la evaluación robusta de SR en 
general y SRCT en particular. Por otro lado, se proponen adaptaciones y nuevos métodos 
para distintas tareas de recomendación, basadas en la adecuada explotación de la 
información de contexto temporal disponible. Usando escenarios de evaluación 
imparciales, se ha medido ecuánimemente el rendimiento de diferentes métodos, 
identificando las circunstancias bajo las cuales unos mejoran a otros.  

En definitiva, mediante la caracterización metodológica propuesta y los experimentos 
realizados, se pone de manifiesto la importancia de utilizar un método de evaluación 
robusto para SRCT, aspecto que no había sido abordado en profundidad hasta la fecha. 
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Chapter 1  
 
Introduction 

In this chapter we present a general overview of the thesis, describing its main research 
topics, and the limitations in the subject that motivated the work, giving an outline of the 
conducted analysis, and reporting and discussing achieved results. 

In Section 1.1 we outline the research topics that motivated this thesis. In Section 1.2 
we define the scope of this work by stating the general addressed problem and research 
goals. Next, in Sections 1.3 and 1.4 we detail the main contributions, and list the 
publications originated from the conducted research. Finally, in Section 1.5 we describe the 
structure of this document. 



2  Chapter 1 

1.1 Motivation: Recommendation, context, and time 

Recommender Systems (RS) are software applications that aim to help users with 
information access and retrieval tasks on large collections of items –products or services–, 
by in general suggesting items according to past personal preferences.  

The last decade has been fertile ground for research in the RS field and, among other 
issues, different recommendation problems and tasks (Adomavicius and Tuzhilin, 2005), 
algorithmic approaches (Herlocker et al., 1999), and evaluation metrics and methodologies 
(Shani and Gunawardana, 2011) have been investigated. 

This amount of research has led to important advances on deployed RS, and has 
increased the interest in building more and better RS. On the one hand, users of RS obtain 
personalized suggestions about items they might be interested in, and which may be 
difficult for them to find.  On the other hand, businesses exploiting RS obtain higher profits 
due to an increased consumption of suggested items. These facts have led to the creation 
and expansion of important personalized services supported by RS technologies in the 
internet, such as Amazon1, Netflix2, and Last.FM3, to name a few. 

During the exploitation of a RS through time, large records of user preferences –
ratings and consumption logs– are collected, and these records may include information 
about the context in which the user preferences were expressed (Adomavicius and 
Tuzhilin, 2011). For instance, along with a particular user’s preferences, a RS can record 
the type of device used by the user (e.g. a computer or a mobile phone), the user’s location 
(e.g. at home or at the office), the user’s mood (e.g. happy or sad), the user’s social 
companion (e.g. alone, with relatives, or with friends), and the time at which the user 
expressed her preference (e.g. in the morning, or in the evening). Exploiting this 
information, context-aware RS (CARS) can suggest items that may fit better the user’s 
interests under certain circumstances or situations (contexts), being thus very valuable for 
increasing the performance of the provided recommendations (Koren, 2009a; Adomavicius 
and Tuzhilin, 2011; Panniello et al., 2013). 

Among the existing contextual dimensions, time can be considered as one of the most 
useful. It facilitates tracking the evolution of user preferences (Xiang et al., 2010), enabling 
e.g. to identify periodicity in user preferences (Baltrunas and Amatriain, 2009), and may 
lead to significant improvements on recommendation accuracy, as found by the winning 
team of the Netflix Prize competition (Koren, 2009a). Moreover, time context information 
is in general easy to collect without additional user efforts and strict device requirements. 

                                                 
1 Amazon.com online shopping, http://www.amazon.com 
2 Netflix on-demand video streaming, http://www.netflix.com 
3 Last.FM internet radio, http://www.last.fm 
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 Due to these benefits, recent years have been prolific in the research and 
development of time-aware RS (TARS), that is, CARS that exploit the time dimension for 
both user modeling and recommendation strategies. Different TARS proposals can be 
found in the literature, showing improvements over traditional RS on recommendation 
performance. However, we note that some studies have shown divergences on 
assumptions in which TARS models are built, casting doubt on the generalization of 
time-aware recommendation capabilities. As a matter of fact, for instance, some TARS 
approaches penalize old preferences data, assuming that recent data better reflect the users’ 
current tastes, compared to older ones (Ding and Li, 2005; Ma et al., 2007; Lee et al., 
2008). However, some authors, e.g. Koren (2009a) have found a decrease in 
recommendation performance from this type of penalization. 

Although such inconsistencies could be explained by several reasons, e.g. differences 
in user and item characteristics, and peculiarities of the application domains, we believe 
that evaluation plays a prominent role. The existence of diverse evaluation methodologies 
makes it easy to find an evaluation protocol suitable for a particular algorithmic approach, 
but ineligible or non-retributive for others. Indeed, some authors, such as Lathia et al. 
(2009a, 2009b), have shown important discrepancies on recommendation performance 
depending on how training and test data for recommendation evaluation is chosen. 
Problems that arise from this situation represent an increasing impediment to fairly 
compare results and conclusions reported in different studies (Bellogín et al., 2011), and 
make the selection of the best recommendation solution for a given task more difficult 
(Gunawardana and Shani, 2009). The study of methodological issues that a robust 
evaluation of TARS should take into account in order to increase the reliability of measured 
improvements attributed to TARS, and facilitate the comparison of approaches, is thus a 
main concern in our research. 

The discovery of unexpected results in TARS studies also shows that more 
research is still required to fully understand the relation between time context information 
and recommendation results. Baltrunas and Amatriain (2009) provide an illustrative 
example of this in experiments testing several time-dependent partitions of user preference 
data for increasing recommendation performance of a CARS. They found that the scarce 
{even hours, odd hours} partitioning provides higher recommendation improvements than 
other partitions such as {morning, evening} and {workday, weekend}. In words of 
Baltrunas and Amatriain, the hours partition corresponds to a “meaningless” partition, and 
thus calls for further research. What is more, the lack of studies comparing TARS 
performances keeps the knowledge of the circumstances under which some TARS 
approaches –and the time context signals exploited by them– are able to outperform the 
others fairly unexplored. This also prevents to adjust TARS for better exploiting the 
available time information in particular situations. 
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In addition to the above issues, a review of published work in the subject exposes that 
most TARS have been developed for the rating prediction task. Nonetheless, nowadays 
recommendation focus is shifting from diminishing error in rating prediction towards 
finding (lists of) relevant/appealing items for the target user, i.e., the top-N 
recommendations task. Moreover, the widespread use of recommender systems on diverse 
user tasks makes it possible to find new applications where time context information can 
serve as a distinctive input. All in all, understanding how time information can be exploited 
for improving recommendation tasks, including and beyond rating prediction, is another 
main goal of our research. 

In summary, drawing from the state of the art on TARS approaches for generation 
and evaluation of contextualized recommendations as a starting point, this thesis studies, 
synthesizes and analyzes how time context information has been exploited in the 
recommender systems literature, in order to a) characterize a robust evaluation 
methodology that lets conduct fair evaluation of new TARS, and facilitate comparisons 
between TARS performance results; and b) improve the exploitation of time context 
information in different recommendation tasks, leading to new and better applications of 
time-aware recommendation technologies. 

1.2 Problem statement, research goals and hypotheses 

From a general point of view, the recommendation problem consists of suggesting items 
that should be the most appealing ones to a user according to her preferences. Traditionally, 
most approaches to recommender systems do not take any contextual information into 
account, that is, they only consider two types of entities for generating recommendations: 
users and items (Adomavicius and Tuzhilin, 2011). In many applications, however, 
contextual information may provide valuable input for improving recommendations, under 
the assumption that similar circumstances (i.e., contexts) are related with similar user 
preferences. 

In this thesis, we focus on problems that incorporate time as a source of contextual 
information for both user modeling and recommendation strategies. Our final goal is to 
address the recommendation problem from a time-aware perspective based on two main 
lines of action. On the one hand, establishing a robust evaluation protocol that takes time 
dependencies of data into account, in order to enable an objective and rigorous evaluation 
of recommendation results from TARS; and on the other hand, approaching different 
recommendation tasks from a time-aware perspective, in order to take advantage of time 
context information for improving current methods’ performance on such tasks. By using a 
robust evaluation protocol, we seek to count with a reliable assessment of the 
improvements obtained. For tackling these problems we aim to address the following 
research goals: 
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RG1: Characterization of the conditions involved in the evaluation of TARS. We shall 
develop an in-depth review and analysis of the protocols utilized for the evaluation of the 
current generation of TARS, aiming to distinguish and formalize the key conditions that the 
performed evaluations are driven by. We address this research goal in Chapter 4. 

 We note that in any evaluation protocol there are two fundamental components that 
define the setting in which a system’s performance is assessed: the evaluation metrics, 
which define what to assess, and the evaluation methodologies, which define how to assess. 
In the recommender systems field, certain metrics have been accepted and are commonly 
used (Herlocker et al., 2004; Gunawardana and Shani, 2009). However, there is no 
consensus on the methodologies used (Bellogín et al., 2011). Moreover, it is a general 
practice to report the metrics applied to assess the performance of developed recommender 
systems, but it is less common to find clear descriptions of the followed evaluation 
methodologies. Due to this, we shall emphasize our study on methodological divergences 
in TARS evaluation. 

RG2: Analysis of the effect of different evaluation conditions on the assessment of 
TARS performance. We shall study and determine whether the application of distinct 
evaluation conditions leads to differences in the assessment of recommendation results 
from TARS. From this, we shall establish a set of conditions that let conduct fair and 
reproducible evaluations of TARS in order to perform rigorous measurements of TARS 
performance. We address this research goal in Chapter 5. 

As already mentioned in Section 1.1, we hypothesize that evaluation plays an 
important role in explaining discrepancies found in the TARS literature. However, to the 
best of our knowledge, the impact of different evaluation settings on assessed results has 
not been studied. From the analysis of such effect and the characteristics of the conditions, 
we shall aim to establish a set of conditions that provide reliable settings for TARS 
evaluation. This set of conditions shall be used throughout the experimental work in this 
thesis, for properly measuring the improvements achieved from the use of time context 
information associated to user preference data. 

RG3: Adaptation of existing recommendation approaches to make better use of 
available time context information. We shall investigate the relation between time 
context information and user preferences, aiming to improve recommendation results of 
one or more recommendation approaches based on knowledge about time context. This 
knowledge will let adjust or adapt existing recommendation approaches to improve the 
manner in which time context knowledge is exploited. The obtained improvements will be 
assessed with a set of conditions that ensure a fair evaluation and comparison with other 
approaches. We address this research goal in Chapter 6. 
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Exploiting time context information has been proved to be an effective approach to 
improve recommendation performance, as shown e.g. by the winning team of the well-
known Netflix Prize competition (Koren, 2009b). It is possible to find several approaches 
in the literature able to exploit time context information. Nonetheless, the shift from 
diminishing error prediction towards finding relevant items, and the lack of a standardized 
evaluation protocol, makes it difficult to establish which approaches make better use of 
available time context information. By counting with a fair and common evaluation setting, 
it would be possible to determine the circumstances in which some algorithms outperform 
the others. From these, we would be able to adjust or adapt the operation of some 
recommendation approaches in order to improve their performance. 

RG4: Exploitation of time context information on a non well-established 
recommendation task. We aim to take advantage of the experience and insights regarding 
the utilization and evaluation of time-aware recommendation models, by means of 
developing novel applications for these techniques. With this goal in mind, we shall 
consider recommendation-related tasks –beyond rating prediction and top-N 
recommendations– where available time context information can be an important input for 
improvements. We shall develop new approaches based on the exploitation of time context 
to address a selected task, and shall use an evaluation setting that ensures a fair and robust 
evaluation. We address this research goal in Chapter 7. 

Addressing the above research goals is based on the following hypotheses: 

Hypothesis 1: Variations in the evaluation protocol lead to differences on recommendation 
results assessment. This hypothesis is associated with RG1 and RG2. 

Hypothesis 2: The appropriate exploitation of time context information leads to 
improvements on assessed recommendation results. This hypothesis is associated with RG3 
and RG4. 

Hypothesis 3: From a temporal viewpoint, using a robust evaluation protocol of 
recommendation models and techniques exploiting time context information leads to a 
decrease on assessed performance, with respect to a less robust evaluation protocol. This 
hypothesis is associated with RG2, RG3 and RG4. 

1.3 Contributions 

The research conducted in this thesis contributes to improve the reliability of the 
assessment of results from time-aware recommender systems, letting a better exploitation 
of time context information in recommender systems. Hence, the main contributions of our 
research are: 
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• The characterization of conditions which drive the evaluation process of 
TARS. We perform a comprehensive review of TARS-related literature, 
identifying key methodological issues to be faced in the experimental design of 
an offline evaluation of TARS. From this, we formalize a number of conditions 
used in evaluation of TARS that address the methodological issues analyzed. The 
defined conditions are mostly related to the training-test data splitting process, 
which can be differently performed due to the existence of time context 
information associated to data. We also cover conditions required for evaluating 
specific recommendation tasks, as is detailed in Chapter 4. 

• The development of a methodological framework for describing conditions 
used in the evaluation of TARS. We propose a methodological description 
framework that incorporates the evaluation conditions characterized in the thesis, 
aimed to facilitate the description and adoption of evaluation protocols, and make 
the evaluation process fair and reproducible. This framework, introduced in 
Chapter 4, includes the definition of a splitting procedure algorithm for building 
training-test splits of data using the formalized evaluation conditions. The usage 
of this framework may facilitate the comparison of results from different TARS 
proposals, as it lets communicate easily and formally the different evaluation 
conditions used to assess TARS performance. 

• The analysis of methodological issues that a robust offline evaluation of 
TARS in particular, and RS in general, should take into account. We 
synthesize and discuss the effect of alternative conditions addressing key 
methodological issues involved in the evaluation of TARS throughout Chapter 4. 
Additionally, in Chapter 5 we classify the surveyed TARS literature in terms of 
the defined evaluation conditions, thus relating and analyzing the use of such 
conditions in a large body of research on context- and time-aware recommender 
systems. Furthermore, we conduct a rigorous experimental comparison of results 
obtained from different TARS evaluation protocols, which is also reported in 
Chapter 5. We evaluate a set of well-known TARS in the movie and music 
recommendation domains, using different types of user preference data, namely 
explicit and implicit ratings. This comparison is aimed to assess the influence of 
evaluation conditions on measured performance results, by means of accuracy 
and ranking metrics. 

• The proposal of a set of methodological guidelines aimed to facilitate the 
proper selection of conditions for offline TARS evaluation. From the results 
obtained in our experiments, and the analysis of the evaluation protocols used in 
the TARS literature, in Chapter 5 we conclude a set of general guidelines aimed 
to facilitate the selection of conditions for a proper TARS evaluation. These 
guidelines comprise the choice of conditions for performing the training-test 
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splitting of data required for computing evaluation metrics, and for the 
application of an adequate cross-validation method. We also include guidelines 
for selecting specific conditions required for evaluating top-N recommendations. 

• The proposal of new heuristics and adaptations for some general context-
aware recommender systems to make better use of time context information. 
We implement state-of-the-art CARS, and propose novel heuristics in order to 
improve their performance when exploiting time context information. 
Specifically, in Chapter 6 we propose a new impurity criterion to be used in Item 
Splitting (Baltrunas and Ricci, 2009a, 2009b), and develop a post-filtering 
strategy that let contextualize recommendations generated by the high-
performing Matrix Factorization recommendation algorithm (Takács et al., 2008; 
Koren et al., 2009). Additionally, we adjust other impurity criteria used by Item 
Splitting, and adapt a contextual modeling approach by Panniello and 
Gorgoglione (2012). The proposed heuristics and adaptations are based on the 
assessment of results obtained on contextualized data from real users utilizing a 
common and precisely defined evaluation protocol. 

• The proposal of a novel methodology for evaluating top-N recommendations 
results. We propose and use a new methodology for evaluating the top-N 
recommendations task in the study presented in Chapter 6, which lets build 
ranked list of items targeted for the same time context, including unrated items in 
the list, and lets provide a more realistic evaluation setting than those from other 
methodologies in the literature. 

• The development of novel time-aware approaches to address the 
identification of active users in shared user accounts task. In Chapter 7 we 
propose and develop novel methods that exploit time context information to 
address this recently defined recommendation task, consisting of automatically 
identifying the active user (in a particular moment) of a shared (household) user 
account. We formulate this task as a classification problem, and test classifiers 
that exploit time features from past item consumption records of users in 
households. The analysis of the time features extracted show the existence of 
dissimilar temporal rating habits of users of household accounts, which let 
differentiate which user is active in a given moment. 

• The adaptation of TARS evaluation methodologies for assessing 
performance of methods in the identification of active users in shared user 
accounts task. In Chapter 7 we describe an extension to the proposed 
methodological framework for TARS evaluation by defining an additional 
condition specific for this non well-defined task. We show that the organization 
of the framework lets an easy incorporation of the new condition. Based on the 
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above, we use the conceptual structure of the framework for adapting the 
methodologies recommended by our methodological guidelines, in order to 
assess the proposed approaches for the task. 

1.4 Publications 

The contributions of this thesis have originated a number of publications, which are listed 
in the following. We group them according to the chapter and research topic they are 
related to. 

Chapter 4 

Evaluation methodologies and TARS 

An initial proposal towards establishing a framework for the evaluation of time-aware 
recommender systems was presented in: 

• Campos, P. G., Díez, F. (2010). La Temporalidad en los Sistemas de 
Recomendación: Una Revisión Actualizada de Propuestas Teóricas. I 
Congreso Español de Recuperación de Información (CERI 2010), pp. 65-76. 
Madrid, España. 

In that work we described a review of the state of the art on TARS, from which we 
observed the need of improving the evaluation protocols used for TARS performance 
assessment. This observation motivated the main purpose of this thesis –the need to provide 
a more reliable evaluation of TARS performance. Aiming to accomplish that purpose, we 
developed a methodological framework for selecting and describing the conditions used to 
evaluate and compare TARS. The evaluation conditions that comprise the methodological 
framework introduced in the chapter are studied in: 

• Campos, P.G., Díez, F., Cantador, I. (2013). Time-Aware Recommender 
Systems: A Comprehensive Survey and Analysis of Existing Evaluation 
Protocols. User Modeling and User-Adapted Interaction, Special Issue on 
Context-Aware Recommender Systems. In press (Online publication: 2013). 

In that work we formalized a number of conditions used for the evaluation of TARS, 
from the analysis of evaluation protocols found in a comprehensive review of the TARS 
literature. These conditions let precisely describe evaluation methodologies employed in 
the assessment of TARS performance, facilitating the reproducibility of evaluation settings 
and the comparison of diverse TARS proposals. 
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Chapter 5 

Evaluation settings and recommendation performance 

Identifying the importance of the setting used for the evaluation of TARS, we studied the 
performance of a well-known TARS approach under different evaluation protocols. This 
study was presented in: 

• Campos, P.G., Díez, F., Sánchez-Montañés, M. (2011). Towards a More 
Realistic Evaluation: Testing the Ability to Predict Future Tastes of Matrix 
Factorization-based Recommenders. 5th ACM Conference on Recommender 
Systems (RecSys 2011), pp. 309-312, Chicago, IL, USA. 

In that work we compared the performance of the matrix factorization (MF) 
algorithm –which is not time aware– against the MF with temporal dynamics approach 
(Koren, 2009a), under two evaluation protocols: the one used in the Netflix Prize 
competition, and a setting that uses a strict temporal separation of training and test data. In 
this study we found important differences in the relative ranking of the evaluated 
approaches when changing the evaluation setting, clearly showing the need for a more 
robust evaluation of TARS approaches. The evaluation protocols tested in this work served 
for defining the evaluation conditions used in the empirical comparison of TARS presented 
in the chapter. 

Chapter 6 

Evaluation of time-aware recommendation performance 

Once we observed that the variability on assessed performance of distinct TARS in the 
literature was mainly due to the usage of different evaluation settings, we decided to 
implement and compare TARS proposals under a common and clear evaluation protocol. In 
this way, we could identify which approaches ones outperform the others, and under which 
circumstances. A first comparative study was presented in: 

• Campos, P.G., Díez, F., Cantador, I. (2012). A Performance Comparison of 
Time-Aware Recommendation Models. Proceedings of the 2nd Spanish 
Conference in Information Retrieval (CERI 2012), Valencia, Spain. 

In that work we compared TARS exploiting continuous time context information, 
using an evaluation methodology that takes the time order of ratings into account. 
However, we were limited to the use of a dataset with rating timestamps, not counting with 
information about the time context in which items were effectively used/consumed. In a 
subsequent work, we performed a user study in order to obtain reliable time context 
information, as well as other contextual signals, for comparing different recommendation 
approaches exploiting context information. This latter study is described in: 
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• Campos, P.G., Fernández-Tobías, I., Cantador, I., Díez, F. (2013). Context-
Aware Movie Recommendations: An Empirical Comparison of Pre-
Filtering, Post-Filtering and Contextual Modeling Approaches, Proceedings 
of the 14th International Conference on Electronic Commerce and Web 
Technologies (EC-Web 2013), pp. 137-149, Prague, Czech Republic. 

In that work we focused on comparing general CARS approaches able to exploit time 
context information in the form of categorical variables. Moreover, we compared time 
context information against social context information, in order to study which one is more 
informative for the evaluated approaches, in terms of improvements on rating prediction 
task. The proposed methodological framework served as basis for defining the evaluation 
setting in that study. 

Context-aware recommender systems and time context information 

We studied the ability of context-aware RS for improving recommendation performance 
from the exploitation of time context signals modeled as categorical variables, derived from 
continuous time context information (in the form of timestamps) associated to ratings. We 
evaluated a state-of-the-art pre-filtering approach in: 

• Campos, P.G., Cantador, I., Díez, F. (2013). Exploiting Time Contexts in 
Collaborative Filtering: An Item Splitting Approach, 3rd workshop on 
Context-Awareness in Retrieval and Recommendation (CaRR 2013) held in 
conjunction with the 6th ACM International Conference on Web Search and Data 
Mining (WSDM 2013), pp. 3-6, Rome, Italy. 

That work is focused on the analysis of the Item Splitting pre-filtering approach, 
looking for the best combinations of time context signals such as period of the day and 
period of the week, and different parameters utilized by the approach, in order to obtain 
improvements in rating prediction as well as in the top-N recommendations task. 

Chapter 7 

Study of user temporal rating habits 

The analysis of time context information associated to user ratings let us to address a less 
studied task related to recommender systems: The identification of users in shared user 
accounts. This task was proposed as a challenge within the 2nd Workshop on Context-aware 
Movie Recommendation (CAMRa 2011). The initial analysis of such data and our first 
approaches to the task are presented in: 

• Campos, P.G., Díez, F., Bellogín, A. (2011). Temporal Rating Habits: A 
Valuable Tool for Rating Discrimination. Proceedings of the 2nd Workshop on 
Context-aware Movie Recommendation (CAMRa 2011), held in conjunction 
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with the 5th ACM Conference on Recommender Systems (RecSys 2011), pp. 29-
35, Chicago, IL, USA. 

In that work we analyzed different time context variables derived from timestamps, as 
well as other information associated to user ratings, finding important differences in the 
rating behavior of different users utilizing the same shared (household) account. Moreover, 
we proposed a probabilistic modeling approach to the identification of the active user at a 
given time. 

Identification of active users in shared accounts based on time context information 

Motivated by the good performance of the proposed approach, we implemented and 
evaluated diverse methods for the above task, based exclusively on the exploitation of time 
context information. These methods and their performance on the task are described in: 

• Campos, P.G., Bellogín, A., Díez, F., Cantador, I. (2012). Time feature 
selection for identifying active household members. Proceedings of the 21st 
ACM International Conference on Information and Knowledge Management 
(CIKM’12), pp. 2311-2314 Maui, HI, USA. 

The methods presented in that work were able to provide a high accuracy on the task 
(over 95%) using the evaluation protocol established by the CAMRa 2011 challenge 
organizers, which is based in the random selection of test data. 

Robust evaluation of methods for the identification of active users in shared accounts 

In order to test the reliability of the proposed methods, we decided to adapt and use the 
methodological framework proposed in this thesis to assess the methods’ performance on 
different evaluation protocols. This evaluation is reported in: 

• Campos, P.G., Bellogín, A., Cantador, I., Díez, F. (2013). Time-Aware 
Evaluation of Methods for Identifying Active Household Members in 
Recommender Systems,  Proceedings of the 15th Spanish Conference on 
Artificial Intelligence (CAEPIA 2013), Madrid, Spain. To appear. 

The study’s contributions were two-fold. On the one hand, we showed that the 
discrimination power of the proposed methods varies considerably when assessed by 
different methodologies. On the other hand, we showed the flexibility and extensibility of 
the methodological framework proposed in this thesis, employing it for the evaluation of 
time-aware predictive models targeted to a different task than the ones the framework was 
originally designed for. 
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Related contributions 

The observation of the difficulty in comparing distinct TARS’ performance arises from a 
comparative study of TARS performance on diverse evaluation dimensions, conducted in 
the author’s Master Thesis entitled “Temporal Models in Recommender Systems: An 
Exploratory Study on Different Evaluation Dimensions” (Campos, 2011). The review and 
comparison of published results made in that work showed us the need of a more reliable 
evaluation protocol for time-aware recommender systems. That work, thus, served as a 
basis for the contributions of this thesis. 

Alongside the thesis additional contributions on related issues regarding 
recommender systems were published. Specifically, we investigated 1) heuristics for time-
aware recommendation, 2) recommendation approaches able to exploit other types of 
context information, and 3) alternative approaches for identifying active users in shared 
accounts. The first proposal served as basis for exploring new TARS approaches described 
in Section 6.2. The second corresponds to extensions of approaches presented in Chapter 6, 
able to exploit all type of context information. The third corresponds to a novel approach 
for addressing the task described in Chapter 7. 

Heuristics for time-aware recommendation 

We evaluated simple heuristics to exploit time context information in: 

• Campos, P.G., Bellogín, A, Díez, F., Chavarriaga, J.E. Simple Time-Biased 
KNN-based recommendations. Workshop Challenge on Context-aware Movie 
Recommendation (CAMRa 2010), held in conjunction with the 4th ACM 
Conference on Recommender Systems, pp. 20-23, Barcelona, Spain. 

The heuristics studied in that work let adapt kNN-based recommendations by means 
of the exclusive exploitation of ratings in the near time of the target recommendation time. 
These heuristics thus help improve recommendation results provided by kNN algorithm 
while reduce the amount of information required to provide recommendations. 

Model-based context-aware recommendation 

We also investigated different model-based context-aware recommendation approaches 
able to exploit different types of context information. A proposal exploiting social context 
was presented in: 

• Díez, F., Chavarriaga, J.E., Campos, P.G., Bellogín, A. (2010) Movie 
Recommendations based in explicit and implicit features extracted from the 
Filmtipset dataset. Proceedings of the Workshop Challenge on Context-aware 
Movie Recommendation (CAMRa 2010), held in conjunction with the 4th ACM 
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Conference on Recommender Systems 2010 (RecSys 2010), pp. 45-52, 
Barcelona, Spain. 

In that work we used different collaborative filtering algorithms based on Random 
Walks to exploit social context information in the form of friend relationships on a movie 
ratings dataset. Using a different approach, we tested content-based CARS in:  

• Fernández-Tobías, I., Campos, P.G., Cantador, I., Díez, F. (2013). A Contextual 
Modeling Approach for Model-based Recommender Systems, Proceedings of 
the 15th Spanish Conference on Artificial Intelligence (CAEPIA 2013), Madrid, 
Spain. To appear. 

In that work we evaluated different machine learning algorithms exploiting user 
patterns including genres preferences and social context information in the form of social 
companion, additionally to location and time contexts, in which users prefer to watch 
movies and listen to music. The previous works showed the ability of the proposed 
approaches to improve recommendation performance from the exploitation of contextual 
information. 

Game theoretic modeling for identifying active users in shared accounts 

We tested diverse modeling approaches in order to address the novel task of identifying 
active users in shared accounts. One of such approaches is described in: 

• Díez, F., Campos, P.G. (2012). Identificación de usuarios en Sistemas de 
Recomendación mediante un modelo basado en Teoría de Juegos. II 
Congreso Español de Recuperación de Información (CERI 2012), Valencia, 
España. 

One of the interesting contributions of that work, besides the novelty of employing a 
game theoretic modeling scheme, is a proposed approach to dynamically select the best 
information sources independently for each shared user account. 

1.5 Thesis structure 

The thesis has been divided into three parts. The first part gives a literature survey in 
recommender systems in general, and time-aware recommender systems in particular. The 
second part characterizes a robust evaluation protocol for time-aware recommender 
systems, based on the identification and analysis of conditions that drive evaluation 
methodologies; and evaluates the effect of using different conditions on assessed 
recommendation results. The identified conditions give form to a methodological 
framework for the evaluation of TARS. The third part and last part presents different 
applications that exploit time context information, and takes advantage of the proposed 
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framework for providing a more reliable measurement of the improvements due to the use 
of time-aware models. In more detail, the contents of this thesis are distributed as follows: 

Part I. State-of-the-art: Recommender systems and time context 

• Chapter 2 provides an overview of the state of the art in recommender systems, 
considering recommendation tasks, types of user feedback, and techniques and 
evaluation of these systems. 

• Chapter 3 presents a comprehensive review of the state of the art in time-aware 
recommender systems, considering a classification of the main approaches in the 
literature regarding the modeling and exploitation of time context information. 
Additionally, the methodologies and metrics used in the evaluation of these 
systems are discussed. 

Part II. Characterizing a robust time-aware recommendation evaluation protocol 

• Chapter 4 analyzes key methodological issues involved in the design of 
protocols for evaluating time-aware recommender systems, and formalizes a 
number of conditions addressing these issues. From the stated conditions, a 
methodological framework aimed to characterize the TARS evaluation process is 
defined. 

• Chapter 5 presents a classification of state-of-the-art TARS literature based on 
the key conditions used in their evaluation, and reports an empirical analysis on 
such conditions. From the analysis of obtained results, a number of general 
guidelines to select proper conditions for evaluating particular TARS are 
provided. 

Part III. Exploiting time context information in recommendation tasks 

• Chapter 6 exposes a comparison of different TARS approaches on two 
important recommendation tasks, namely rating prediction and top-N 
recommendations. New heuristics, as well as adaptations and adjustments to 
some approaches that improve the exploitation of time context signals are 
proposed. Taking advantage of the proposed methodological framework, a fair 
and common evaluation setting is provided in order to obtain a reliable 
assessment of performance improvements. A user study performed for collecting 
explicit time context information from users is also detailed, which serves as 
input for the evaluated TARS. 

• Chapter 7 describes novel time-aware methods developed for addressing a 
recommender systems-related task: the identification of active users in shared 
(household) accounts. The proposed methods, based on the exploitation of time 
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context information associated to rating events, are assessed under different 
evaluation settings provided by the adaptation of the proposed methodological 
framework for the evaluation of this task. 

• Chapter 8 concludes the thesis with a summary of the main contributions, and a 
discussion about future research lines. 

Additionally to these chapters, the thesis includes the following appendixes: 

• Appendix A contains the translation into Spanish of the Introduction chapter. 

• Appendix B contains the translation into Spanish of the Conclusions chapter. 
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Chapter 2  
 
Recommender systems 

Nowadays, Internet and particularly Web-based services and applications bring access to 
almost non limited resources of information. For example, an online store may offer 
customers with access to millions of products. In this context, recommender Systems (RS) 
aim to help users with information access and retrieval tasks when large collections of 
items are involved. In general, these systems work by means of suggesting those items that 
should be the most appealing ones to the users based on their personal preferences and 
needs. 

Different recommendation tasks defining the outcomes of a RS can be distinguished, 
including rating prediction, in which a numerical value estimating user preference for a 
given item is computed, and top-N recommendations, in which a list of the best (top-N) 
items is delivered. For performing these tasks, RS exploit knowledge about user 
preferences extracted from feedback of different forms, which are commonly classified as 
either explicit feedback or implicit feedback. Moreover, several techniques for computing 
recommendations have been proposed in the literature, being content-based and 
collaborative filtering techniques the most commonly recognized, and hybrid techniques 
those that combine different techniques to overcome individual limitations of each 
technique. Finally, in order to assess RS performance, distinct evaluation methodologies 
and metrics –focusing on different recommendation properties– have been proposed. 

In this chapter we provide an overview of terminology, models and methods related 
to the building and evaluation of recommender systems. In Section 2.1 we formalize the 
problem of recommendation, and describe the main tasks addressed by RS. In Section 2.2 
we detail the types of user feedback in RS, and in Section 2.3 we introduce main 
recommendation techniques. Next, in Section 2.4 we explain the methodologies and metrics 
used for RS evaluation. Finally, in Section 2.5 we conclude with a summary of the chapter. 

 



20  Chapter 2 

2.1 Recommendation problem and related tasks 

Current online service providers utilize several types of software tools to provide users with 
suggestions of appealing items. These tools are commonly called recommender systems. In 
general, the goal of these systems is to help individuals who lack of sufficient personal 
experience or competence to explore and evaluate a potentially overwhelming number of 
items, for example, those available in Web-based applications (Ricci et al., 2011). 
Collaborative filtering is usually considered as the first approach of recommender systems. 
The term was coined in the mid 90’s for an email filtering application based on using 
different users’ opinions collaboratively (Goldberg et al., 1992), following the idea of 
“word-of-mouth” phenomenon. Since then, diverse forms of recommendations and 
techniques to compute such recommendations have been proposed in the literature, and 
have been used in commercial and leisure applications. Moreover, several events and media 
have shown the growth and complexity of the field. We can mention, among others, survey 
papers (e.g. Adomavicius and Tuzhilin, 2005; Burke, 2007; Gunawardana and Shani, 2009; 
Su and Khoshgoftaar, 2009; Ekstrand et al., 2011; Pu et al., 2012), books (e.g. Jannach et 
al., 2010; Ricci et al., 2011), an annual conferences (Cunningham et al., 2012), workshops 
(e.g. Cantador et al., 2011; Castells et al., 2011; Adomavicius et al., 2012; Mobasher et al., 
2012; Böhmer et al., 2013), and journal special issues (e.g. Ricci and Werthner, 2006; 
Jannach et al., 2008; Riedl and Smyth, 2011; Felfernig et al., 2012). 

Due to the diversity of approaches for generating recommendations, it is difficult to 
find a general definition that holds the complexity of all existing recommender systems. 
Conversely, here we present simple and widely used formulations that represent the core 
concepts involved in common recommendation tasks.  

According to Adomavicius and Tuzhilin (2005), the recommendation problem relies 
on the notion of ratings as a mechanism to capture user preferences for different items. Let 
𝑈 denote the set of users (known by the system), let 𝐼 denote the set of items (that form the 
system’s catalog), and let 𝑅 denote a totally ordered set (e.g. non-negative integer or real 
numbers in a particular range) of allowed rating values. A recommender system models a 
function 𝐹:𝑈 × 𝐼 → 𝑅 that computes a predicted rating �̂�𝑝𝑢,𝑖 for an unknown rating 𝑝𝑝𝑢,𝑖 that 
user 𝑢𝑢 ∈ 𝑈 would assign to item 𝑡𝑡 ∈ 𝐼: 

 ∀𝑢𝑢 ∈ 𝑈, 𝑡𝑡 ∈ 𝐼, �̂�𝑝𝑢,𝑖 = 𝐹(𝑢𝑢, 𝑡𝑡) (2.1) 

where the rating value is interpreted as a measure of the usefulness of item 𝑡𝑡 for user 𝑢𝑢. 

Alternatively, the recommendation problem can be stated as the task of finding 
relevant items for the target user –the user for whom recommendations must be provided– 
(Sarwar et al., 2001). This task is consistent with the use of RS in many applications where 
a system does not predict ratings, but delivers lists of items that may be relevant for the user 
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(Shani and Gunawardana, 2011). In this case, ratings can be interpreted as a measure of 
relevance (score), and thus, those items scored over a certain threshold value can be 
considered as relevant. 

For either of the above two formulations, the recommendation problem can be 
reduced to solve a rating prediction problem, which consists of predicting unknown ratings 
for pairs (𝑢𝑢, 𝑡𝑡) by providing an estimation of the function 𝐹 (Adomavicius and Tuzhilin, 
2005). In this context, when a RS is required to provide an item recommendation, it could 
return rating predictions for a particular set of items unknown to the target user –the rating 
prediction task– or a list of top ranked items the user may prefer –the top-N 
recommendations task, also known as recommendation ranking task (Shani and 
Gunawardana, 2011). In the latter case, rating predictions4 are generally used to rank the 
items, and select (for recommendation) the top ranked ones. If the order of presentation of 
the top-N items is not important, then this task is also referred to as recommending some 
good items (Herlocker et al., 2004; Gunawardana and Shani, 2009). 

Figure 2.1 shows a schematic view of rating prediction (upper side) and top-N 
recommendations (lower side) tasks, in the context of an example movie recommender 
system. In the former case, the target user asks the recommender system for a prediction of 
her preference for a target movie in the system’s catalog. The system performs an algorithm 
to compute the value of 𝐹(target user, target item), which is informed to the user. In the 
case of top-N recommendations, the user simply asks the system for a recommendation of 
movies (i.e., no target item is required), and the system computes the value of 𝐹 for the 
target user and items in the system’s catalog. The N movies with highest values of 𝐹 are 
then delivered as recommendations for the target user. 

 
Figure 2.1. Schematic view of rating prediction and top-N recommendations tasks in a movie 
recommender system. 

                                                 
4 In this case it may be more precise to talk about score prediction, but for the sake of simplicity we will refer 
to this as rating prediction. 
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Although top-N recommendations is perhaps the most common task of commercial 
RS, most RS research has been focused on the rating prediction task (Gunawardana and 
Shani, 2009; Cremonesi et al., 2010). Accordingly, in this thesis we mainly focus on these 
tasks. Nonetheless, we note that there are other recommendation tasks identified in the 
literature of RS. For instance, in the context of e-commerce RS, Gunawardana and Shani 
(2009) describe the optimizing utility task, in which the RS must generate recommendations 
that maximize the profits of a Web portal. Furthermore, Herlocker et al. (2004) provide a 
detailed taxonomy of user tasks for recommendation systems, which includes, among 
others, the recommend sequence task (i.e., finding a sequence of pleasant songs), the find 
credible recommender task (i.e., looking for non-serendipitous items, but items that match 
user tastes), and the influence others task (i.e., assigning high ratings to items in a given 
category in order to influence others to purchase items in that category).  

More recently, other tasks have been explored in the literature that are not part of core 
functionalities of RS, but help to perform the recommendation tasks. For instance, in the 
TV show recommendation domain, it is common that several users in a household use only 
one user account for accessing a TV show RS. In this case, correctly identifying which 
users are requesting recommendations in a given moment –the household member 
identification task– can be important for providing personalized recommendations 
(Kabutoya et al., 2010; Campos et al., 2012). 

2.2 Types of user feedback in recommender systems 

Most recommender systems require some knowledge about user preferences and behavior. 
These data, however, are usually stored in transactional databases, which may not be suited 
for efficient recommendations. In order to properly model and exploit user knowledge, user 
profiles are usually built. A user profile stores the information that characterizes the user in 
a format that lets its efficient usage by a RS.  

User profiles used by RS are typically built from user feedback, commonly classified 
according to how it is gathered, as explicit feedback and implicit feedback (Kelly and 
Teevan, 2003; Herlocker et al., 2004). Explicit feedback corresponds to information stated 
by the user about her preferences on items, e.g. star ratings and up/down thumbs. On the 
contrary, implicit feedback is automatically collected when the user interacts with the 
system. Examples of implicit feedback are product browsing and purchasing history in e-
commerce sites, and time spent reading articles in online news sites. Figure 2.2 shows some 
examples of user feedback used in popular online services that use RS. 
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Figure 2.2. Examples of user explicit feedback in popular online services. a) Facebook’s like 
button; b) YouTube’s thumbs up and down; c) MoviePilot’s rating scale; d) Netflix’s stars 
ratings. 

Traditionally, explicit feedback has been considered of higher quality than implicit 
feedback due to its “explicit” nature, and thus, most work on recommender systems has 
focused on processing such type of user feedback (Hu et al., 2008; Jawaheer et al., 2010). 
Explicit feedback, commonly referred to as ratings, is associated to a scale of values 
indicating the users’ preferences for items. The simplest case corresponds to unary ratings, 
indicating a user likes an item (e.g. Facebook’s5 like button; see Figure 2.2a). In the binary 
case, there is also an indication for dislike of items (e.g. YouTube’s6 up/down thumbs; see 
Figure 2.2b) –note that in the unary case, an absence of a like indication is not equivalent to 
a dislike indication. More common are the 5-points scales (e.g. Netflix’s7 1-5 star ratings; 
see Figure 2.2d) and above (e.g. MoviePilot’s8 0 to 10 scale with step size 0.5; see Figure 
2.2c), which let the user express fine-grained levels of preference. Note that whatever the 
scale used, a user can assign only one value to each given item. That is, an overall rating 
that resumes all aspects of interests. In order to enable users evaluate different dimensions 
of items, multi-criteria rating systems are being explored (Adomavicius and Kwon, 2007; 
Manouselis and Costopoulou, 2007; Adomavicius et al., 2011). These systems consider 
different attributes of items, and let users rate each of them independently. For instance, a 
multi-criteria movie RS could contemplate three criteria about movies, e.g. story, direction 
and acting. Although multi-criteria RS offer more flexibility, they require the users to 
provide more information (several ratings per item), increasing the users’ effort. 

Implicit feedback, on the contrary, lets RS infer user preferences from user behavior 
information gathered by the system (Hu et al., 2008; Knijnenburg et al., 2012). For 
instance, the time spent viewing a TV show or the play count of a music track, can be used 
as an approach of user preferences for an item. Collecting implicit feedback only requires 

                                                 
5 Facebook online social networking, http://www.facebook.com 
6 YouTube video sharing, http://www.youtube.com 
7 Netflix on-demand video streaming, http://www.netflix.com 
8 MoviePilot movie recommendations, http://www.moviepilot.de 

a)

b)

c)

d)
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an initial approval to gather usage data from the user, providing a less intrusive user 
experience (Knijnenburg et al., 2012). This type of feedback not always reflects actual user 
preferences, since usage or consumption of an item does not necessarily indicates the user’s 
preference for that item. For example, a user’s TV view history may be assumed to reflect a 
long period of time spent by a user watching a TV show, but such assumption may be not 
true if the user left the TV on to do a different activity. Moreover, in implicit feedback 
approaches it may be hard to determine which items are disliked by the users. Not 
consuming an item (e.g. not seeing a TV show) cannot be inferred as negative feedback.  

In general, it is more difficult to obtain explicit than implicit feedback. Some users 
are reluctant to provide ratings due to e.g. privacy concerns, required cognitive effort, etc. 
(Jawaheer et al., 2010). Moreover, some researchers have questioned the reliability of this 
type of feedback. For instance, Amatriain et al. (2009a, 2009b) have shown that users are 
inconsistent in rating the same movies through time. In fact, the concept of “magic barrier” 
coined by Herlocker et al. (2004), and used by other researchers (Said et al., 2012a, 2012b), 
refers to the limit on improvements achievable by RS due to these inconsistencies or noise 
in user ratings.  

On the other hand, implicit feedback does not directly represent user preferences, and 
thus is considered generally as less reliable than explicit feedback. One possible way to 
address this problem is to derive paired magnitudes from this type of feedback for each 
user-item pair: an estimation of preference, together with its confidence level (Hu et al., 
2008). Additionally, the lack of negative feedback leads to a bias towards positive 
preferences that may hamper a proper user model (Hu et al., 2008). In order to avoid such 
bias, some researchers have proposed methods to transform implicit feedback to explicit 
feedback by a proper binning of frequency values into ratings (Celma, 2008; Parra and 
Amatriain, 2011). These transformations relate less consumed items to negative explicit 
ratings, with which afterwards use recommendation techniques that require explicit 
feedback input. 

2.3 Recommendation techniques 

In this section we briefly describe the main techniques used by recommender systems. 
Among the most general and widely used, we can distinguish between content-based 
techniques (CB), which suggest similar items to those preferred by the target user in the 
past, and collaborative filtering techniques (CF), which suggest items preferred by users 
with similar tastes to the target user (Adomavicius and Tuzhilin, 2005). Both CB and CF 
techniques exploit the target user’s feedback to identify her preferences. Burke (2007) 
additionally identifies demographic techniques, which exploit the user’s demographics for 
generating item recommendations, and knowledge-based techniques, which exploit specific 
domain knowledge about the items to recommend. Furthermore, it is possible to distinguish 
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hybrid recommenders, which combine two or more of the above techniques in order to 
overcome some of their limitations.  

Another common classification of RS considers heuristic-based (or memory-based) 
and model-based (Breese et al., 1998; Adomavicius and Tuzhilin, 2005) recommenders. 
Heuristic-based approaches essentially compute the rating prediction function 𝐹 from the 
entire collection of user profiles by means of certain heuristics. That is, they compute rating 
predictions directly from all known ratings using a particular mathematical expression. 
Model-based approaches, on the other hand, learn a predictive model from the collection of 
known ratings, which represents an approximation of 𝐹 . This requires a prior learning 
process to build the model, but thereafter the built model directly generates rating 
predictions, leading to fast response at recommendation time. 

2.3.1 Content-based recommendations 

Content-based (CB) recommender systems analyze and exploit the contents of items in 
order to find “similar” items to those known and preferred by the target user, assuming that 
such similar items are also interesting for the user (Adomavicius and Tuzhilin, 2005; 
Pazzani and Billsus, 2007). The contents of an item can be, for instance, the item itself in 
the case of text-based items (e.g. news articles, Web pages, books), the features or 
attributes of the item (e.g. “cuisine” and “service” features of a restaurant, and “genre” and 
“actors” attributes of a movie), and user generated descriptions assigned to the item (e.g. 
reviews and tags of an item commented and annotated in a social media). In content-based 
recommender systems, it is also common to represent a user profile as a weighted vector of 
content features, giving more weight to those features present in preferred items. Figure 2.3 
shows an example of user and item content-based profiles for a movie RS (left side), and 
their vector representation (right side). In the figure, movie genres are used as content 
descriptions –only two features are included for the sake of simplicity. As shown in the 
right side of the figure, such profiles can be viewed as vectors in the space of content 
features.  

 

Figure 2.3. Example of user and item content-based profiles in a movie recommender system. 

Using user and item content-based profiles, CB recommender systems compute 
𝐹(𝑢𝑢, 𝑡𝑡) as a score that represent how well the features of item 𝑡𝑡 fit the preferences of user 𝑢𝑢 
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(Balabanović and Shoham, 1997; Adomavicius and Tuzhilin, 2005). Many methods from 
Information Retrieval (IR) and Machine Learning (ML) fields have been utilized to 
compute the above score (Adomavicius and Tuzhilin, 2005; Pazzani and Billsus, 2007; 
Lops et al., 2011). 

Heuristic-based CB RS compute the score 𝐹 using heuristic formulas that directly 
measure the similarity between contents of items in the system’s catalog and the preferred 
items in the target user’s profile. For instance, Lang (1995) uses the well-known term 
frequency/inverse document frequency (tf-idf) metric (Salton, 1989; Baeza-Yates and 
Ribeiro-Neto, 1999) of IR to compute weights of features (words in that case) in news 
articles to be recommended. More formally, let |𝐼| be the total number of items in the 
catalog, 𝑓𝑓𝑖  be a feature that appears in 𝑛𝑖  item’s content descriptions, and 𝑓𝑓𝑝𝑝𝑒𝑞𝑖,𝑗  be the 
number of times that 𝑓𝑓𝑖 appears in item j’s content description, 𝑡𝑡𝑗. Then, the term frequency 
𝑡𝑡𝑓𝑓𝑖,𝑗 of 𝑓𝑓𝑖 in 𝑡𝑡𝑗 is: 

𝑡𝑡𝑓𝑓𝑖,𝑗 =
𝑓𝑓𝑝𝑝𝑒𝑞𝑖,𝑗

max
𝑙
𝑓𝑓𝑝𝑝𝑒𝑞𝑙,𝑗

 

where the maximum is computed from the frequencies 𝑓𝑓𝑝𝑝𝑒𝑞𝑙,𝑗 of all features 𝑓𝑓𝑙 that appear 
in 𝑡𝑡𝑗. This metric represents a normalized frequency of feature 𝑓𝑓𝑖 in 𝑡𝑡𝑗. Nonetheless, if 𝑓𝑓𝑖 
appears in the descriptions of many items, it is not useful for distinguishing such items. To 
deal with this issue, the inverse document frequency 𝑡𝑡𝑡𝑡𝑓𝑓𝑖 of 𝑓𝑓𝑖 is utilized; it is computed as 
follows: 

𝑡𝑡𝑡𝑡𝑓𝑓𝑖 = 𝑙𝑝𝑝𝑔
|𝐼|
𝑛𝑖

 

Then, the tf-idf weight of 𝑓𝑓𝑖 in 𝑡𝑡𝑖 is defined as: 

𝑤𝑖,𝑗 = 𝑡𝑡𝑓𝑓𝑖,𝑗 × 𝑡𝑡𝑡𝑡𝑓𝑓𝑖 

Using vectors of feature weights, it is possible to find the items more similar to those 
preferred by the user by means e.g. of the cosine similarity: 

𝑢𝑢𝑝𝑝𝑠�𝑤��⃗ 𝑑𝑎 ,𝑤��⃗ 𝑑𝑏� =
𝑤��⃗ 𝑑𝑎 ⋅ 𝑤��⃗ 𝑑𝑏

�𝑤��⃗ 𝑑𝑎�2 × �𝑤��⃗ 𝑑𝑏�2
=

∑ 𝑤��⃗ 𝑖,𝑑𝑎𝑤��⃗ 𝑖,𝑑𝑏
𝐾
𝑖=1

�∑ 𝑤𝑖,𝑑𝑎
2𝐾

𝑖=1 �∑ 𝑤𝑖,𝑑𝑏
2𝐾

𝑖=1

 

where 𝐾 is the total number of features. By representing the user profile as a vector of 
content features of the user’s preferred items 𝐶𝐵𝑃𝑝𝑝𝑝𝑝𝑓𝑓𝚤𝑙𝑒����������������������⃗ (𝑢𝑢) (see Figure 2.3), 𝐹(𝑢𝑢, 𝑡𝑡) can 
be computed as: 

𝐹(𝑢𝑢, 𝑡𝑡) = 𝑢𝑢𝑝𝑝𝑠�𝐶𝐵𝑃𝑝𝑝𝑝𝑝𝑓𝑓𝚤𝑙𝑒����������������������⃗ (𝑢𝑢),𝑤��⃗ 𝑑𝑖� 
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Alternatively to heuristic-based approaches, model-based CB RS build a model of 
user preferences based on contents of items, and use the built model to compute 𝐹. For 
instance, Pazzani and Billsus (1997) use a Bayesian model (Duda et al., 2001) to classify 
Web pages as interesting or non-interesting for a user, given a set of pages previously rated 
by the user. This Bayesian classifier is used to compute the probability that a Web page 
described by 𝑡𝑡𝑗 belongs to a class 𝐶𝑖 (e.g. interesting or non-interesting) given the feature 
values of 𝑡𝑡𝑗: 

𝑃�𝐶𝑖|𝑓𝑓1 = 𝑣1,𝑗 ,𝑓𝑓2 = 𝑣2,𝑗,⋯ ,𝑓𝑓𝑛 = 𝑣𝑛,𝑗� 

Assuming that the feature values are independent, Pazzani and Billsus (1997) show that this 
probability is proportional to: 

𝑃(𝐶𝑖)�𝑃�𝑓𝑓𝑘 = 𝑣𝑘,𝑗|𝐶𝑖�
𝑘

 

where both 𝑃�𝑓𝑓𝑘 = 𝑣𝑘,𝑗|𝐶𝑖� and 𝑃(𝐶𝑖) can be estimated from training data. In this way, to 
classify an unrated page, the probability of each class is computed, and the page is assigned 
to the class with the highest probability. 

The main advantage of CB RS is their ability to recommend items that have no rating 
assigned –avoiding the new item problem of collaborative filtering RS –because they only 
require knowing the contents of new items. CB recommendations are thus useful when data 
sparsity is very high, or the item catalog rapidly changes, such as in the news 
recommendation domain (Balabanović and Shoham, 1997). On the contrary, CB RS require 
some form of item content descriptions to generate recommendations. CB techniques are 
also limited by the number and type of features associated with the items,  i.e., the limited 
content analysis problem; no CB RS can provide good recommendations if analyzed 
content does not contain enough and useful information. Moreover, CB RS suffer from 
over-specialization, as they suggest items similar to those items already known by the user 
(which are in her profile), and thus cannot provide novel nor serendipitous 
recommendations, which is also referred to as the portfolio effect (Burke, 2002). Finally, 
CB RS require an enough number of items preferred by the target user –the new user 
problem–, in order to have a proper knowledge about the user’s preferences (Adomavicius 
and Tuzhilin, 2005; Pazzani and Billsus, 2007; Lops et al., 2011). 

2.3.2 Collaborative filtering 

Collaborative filtering (CF) recommender systems aim to find items that are liked by users 
with similar preferences to the target user (Adomavicius et al., 2005; Su and Khoshgoftaar, 
2009; Ekstrand et al., 2011). These RS extend the social process of “word-of-mouth” 
phenomenon –in which people ask their peers (or look for experts’ advice) about e.g. books 
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to read or where to go on vacation– thus generating collaborative suggestions. Hence, CF 
RS do not require descriptions of item contents, but some quantitative measure of 
preferences from users for different items. 

In CF RS, a user profile is usually represented as a vector of numeric ratings, and the 
set of vector profiles from all users gives form to the so-called rating matrix 𝑀. Figure 2.4 
shows a simple example of a rating matrix. A rating matrix is usually very sparse because a 
typical user rates a small portion of the available items. A blank empty cell corresponds to 
an item that has not been rated by a particular user, and whose rating is estimated by 
computing the value of function 𝐹 for such user and item. In this case, 𝐹�𝑢𝑢𝑗 , 𝑡𝑡𝑘� represents 
the preference user 𝑢𝑢𝑗  might have for item 𝑡𝑡𝑘  based on the preferences expressed by 
similar-minded users (represented as the gray cell in the middle). 

 

Figure 2.4. Example of rating matrix 𝑴. 

Heuristic-based CF RS are based on heuristic formulas that compute 𝐹 directly from 
the ratings in matrix 𝑀. One of the most used heuristics is the neighbor-based or k-Nearest 
Neighbors (kNN) heuristic, which computes the preference of 𝑢𝑢 for 𝑡𝑡 as an aggregation of 
the ratings given to 𝑡𝑡 by the 𝑢𝑢’s most similar users (the nearest neighbors) (Adomavicius 
and Tuzhilin, 2005): 

 𝐹(𝑢𝑢, 𝑡𝑡) = aggr
𝑣∈𝑁(𝑢)

𝑝𝑝𝑣,𝑖 (2.2) 

where 𝑁(𝑢𝑢) is the set of nearest neighbors of 𝑢𝑢, and 𝑝𝑝𝑣,𝑖 is the rating given by neighbor 𝑣 to 
item 𝑡𝑡. In this context, to find the nearest neighbors of 𝑢𝑢, a similarity or distance metric is 
needed (Amatriain et al., 2011; Desrosiers and Karypis, 2011). A common choice is to use 
a correlation metric (Adomavicius and Tuzhilin, 2005; Su and Khoshgoftaar, 2009), such as 
the Pearson’s correlation coefficient 𝜌 (Desrosiers and Karypis, 2011): 

us
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 𝜌(𝑢𝑢, 𝑣) =
∑ �𝑝𝑝𝑢,𝑖 − �̅�𝑝𝑢��𝑝𝑝𝑣,𝑖 − �̅�𝑝𝑣�𝑖∈𝐼𝑢∩𝐼𝑣

�∑ �𝑝𝑝𝑢,𝑖 − �̅�𝑝𝑢�
2 ∑ �𝑝𝑝𝑣,𝑖 − �̅�𝑝𝑣�

2
𝑖∈𝐼𝑢∩𝐼𝑣𝑖∈𝐼𝑢∩𝐼𝑣

 (2.3) 

where 𝐼𝑢is the 2.3 set of items rated by 𝑢𝑢 (items in 𝑢𝑢’s profile) and �̅�𝑝𝑢 is the average rating 
of 𝑢𝑢 . For instance, Resnick et al. (1994) use the correlation coefficient (2.3) and the 
following instantiation of the aggregation function (2.2) for computing rating predictions in 
the GroupLens RS: 

𝐹(𝑢𝑢, 𝑡𝑡) = �̅�𝑝𝑢 +
∑ �𝑝𝑝𝑣,𝑖 − �̅�𝑝𝑣�𝜌(𝑢𝑢, 𝑣)𝑣∈𝑁(𝑢)

𝜌(𝑢𝑢, 𝑣)  

These formulas can be improved to obtain more precise rating predictions. Herlocker 
et al. (1999) discuss several variations of the aggregation function (2.2) and the correlation 
coefficient (2.3), as well as other similarity metrics such as the Spearman’s correlation and 
the cosine similarity. 

Furthermore, the above heuristics are commonly called user-based CF because their 
computations are based on sets of user neighbors. Alternatively, item-based CF (Sarwar et 
al., 2001; Linden et al., 2003) explore relationships between items. In this case, heuristics 
like (2.3) are modified to find items similar to the target item –the item for which a rating 
prediction is required–, and the rating prediction is computed as an aggregation of the 
ratings given to the items in the neighborhood of the target item. Figure 2.5 shows a 
schematic view of both approaches. The left side of the figure shows the user-based 
approach in which user rating vectors are compared, in order to find users similar to the 
target user (𝑢𝑢𝑗). The right side of the figure shows the item-based approach in which item 
rating vectors are compared, in order to find items similar to the target item (𝑡𝑡𝑘). 

 

Figure 2.5. Schematic view of user-based (left side) and item-based (right side) kNN. 

Model-based CF RS, in contrast, learn a predictive model from the collection of 
known ratings, and afterwards use this model to compute 𝐹 . A successful example of 
model-based CF is the matrix factorization (MF) technique (Takács et al., 2008; Koren et 
al., 2009), an extension of the Singular Value Decomposition (SVD) technique that models 

??
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user-item interactions in a latent factor space, where latent factors are used to efficiently 
predict unknown ratings. In general, MF techniques iteratively approximate the rating 
matrix 𝑀 by user and item latent factor matrices 𝑃 and 𝑄 of lower dimension (𝑡𝑡 in our 
notation). Using such latent factors, the function 𝐹 can be computed as: 

 𝐹(𝑢𝑢, 𝑡𝑡) = � 𝑃𝑗,𝑢𝑄𝑗,𝑖 = 𝑝𝑝𝑢𝑇𝑞𝑖
𝑑

𝑗=0
 (2.4) 

where 𝑝𝑝𝑢 and 𝑞𝑖 are the 𝑢𝑢-th column of 𝑃 and the 𝑡𝑡-th column of 𝑄, and represent the latent 
factor vectors of user 𝑢𝑢  and item 𝑡𝑡 , respectively. Values of 𝑃  and 𝑄  are computed by 
minimizing an estimation of a rating prediction error, such as the Frobenius norm, 
min‖𝑀 − 𝑃𝑄‖𝐹2 .  

Several other techniques from the ML field have been used for building CF rating 
models, including clustering (Breese et al., 1998; Rashid et al., 2007), Bayesian classifiers 
(Chien and George, 1999), neural networks (Salakhutdinov et al., 2007), and Latent 
Semantic Analysis (Hofmann, 2003, 2004), to name a few. 

The main advantage of CF RS is the ability to deal with any type of item, since CF 
does not require item contents descriptions. Additionally, they have better chances to 
provide novel and serendipitous item suggestions, since they generate recommendations 
based on preferences of multiple users, and thus include items dissimilar to those used by 
the target user in the past. Nonetheless, they suffer from the new user/item problem (i.e., 
the cold-start problem), and may find difficult to generate good recommendations in case 
of rating sparsity, i.e., when only a small fraction of ratings is available. Finally, since CF 
relies on finding similarities between users (or items), when the target user has unusual 
preferences, CF may find difficult to find (an enough number of) other similar-minded 
users –the gray sheep problem– (Burke, 2002; Adomavicius and Tuzhilin, 2005; Su and 
Khoshgoftaar, 2009). 

2.3.3 Hybrid recommender systems 

Due to the different characteristics, together with the advantages and drawbacks, of existing 
recommendation techniques, a common practice in RS is to combine two or more of such 
techniques in hybrid approaches, aiming to overcome individual limitations. An alternative 
hybrid approach consist of combining different implementations of a particular technique 
(Burke, 2002, 2007; Adomavicius and Tuzhilin, 2005). Research in ML has shown that 
combining multiple predictive models –such as the ones used by RS– often yields better 
results than using an isolated model (Bishop, 2006). A well-known example of this is the 
Netflix Prize competition (Bennett and Lanning, 2007), where the best performing 
recommendation approaches corresponded to large ensembles of recommendation 
algorithms (Koren, 2009b; Piotte and Chabbert, 2009; Töscher et al., 2009). 
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Burke (2002, 2007) presents a detailed taxonomy of hybrid RS, identifying seven 
different types: 

• Weighted: The system numerically combines the scores provided by different 
recommendation algorithms, by means e.g. of a voting scheme or a linear 
combination, to produce a single recommendation. 

• Switching: The system switches (i.e., selects) among available recommendation 
algorithms depending on the current “recommendation situation.” This type of 
hybrid approach requires some reliable criterion with which base the switching 
decision. 

• Mixed: The system presents together the results from different recommendation 
algorithms. In this case, an appropriate combination method is required. 

• Feature Combination: The system performs a single recommendation algorithm, 
which is fed with combined features derived from different knowledge sources. 

• Feature Augmentation: The system performs several recommendation 
algorithms, using the output of one of them as additional input for other algorithm 
in turn. 

• Cascade: The system utilizes some recommendation algorithms to refine 
recommendations given by others (i.e., break ties), using a pre-defined priority of 
algorithms. 

• Meta-level: The system uses the model learned by one recommendation 
algorithm as input for another algorithm in turn. The original knowledge source is 
completely replaced by the model built by the contributing recommender. 

Adomavicius and Tuzhilin (2005) further identify the following hybrid 
recommendation approaches that combine CB and CF techniques as follows: 

• Implementing content-based and collaborative filtering algorithms separately 
and combining their predictions. This corresponds to a weighted or a switching 
hybrid according to the taxonomy of Burke (2002, 2007). 

• Incorporating some content-based characteristics into a collaborative filtering 
approach. One example of this hybrid technique consist of applying a CF 
algorithm with user profiles that include content-based information, as done by 
Balabanović and Shoham (1997). This corresponds to a specific case of the 
feature combination or a feature augmentation hybrid approach, according to 
Burke’s taxonomy (Burke, 2002, 2007). 
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• Incorporating some collaborative characteristics into a content-based approach. 
One example of this hybrid technique is to use a dimensionality reduction 
technique (Bishop, 2006), e.g. applying Latent Semantic Indexing (Deerwester 
et al., 1990) on content-based profiles in order to exploit their commonalities, 
creating a collaborative view of a collection of content-based user profiles, as 
done by Soboroff and Nicholas (1999). This corresponds to a specific case of 
the feature combination or a feature augmentation hybrid approach, according to 
Burke’s taxonomy (Burke, 2002, 2007). 

• Constructing a general unifying model that incorporates both content-based and 
collaborative characteristics. The aim of this type of hybrid technique is to 
exploit user and item information in a single model, such as the model described 
by Ansari et al. (2000), which integrates user preferences and item 
characteristics into a Bayesian model. This corresponds to a specific case of the 
feature combination hybrid approach, according to Burke’s taxonomy (Burke, 
2002, 2007). 

 The selection of the best hybrid approach for a particular situation depends on the 
characteristics of the recommenders to combine, the data available, and the run-time 
efficiency requirements (Burke, 2002, 2007). For instance, some hybrid approaches, such 
as the weighted approach, assume that the individual recommenders have uniform 
performance, which is not always the case. 

2.3.4 Other techniques 

Content-based and collaborative filtering recommendations are the most used techniques in 
RS (Adomavicius and Tuzhilin, 2005; Su and Khoshgoftaar, 2009; Ekstrand et al., 2011; 
Lops et al., 2011; Ricci et al., 2011), but other techniques have been proposed in the 
literature. Burke (2002, 2007) distinguishes three types of alternative RS: demographic-
based, knowledge-based, and community-based (recently called as social-based). Ricci et 
al. (2011) also emphasize context-aware techniques as an additional approach to RS. 

Demographic-based RS utilize demographic information available in the user profile, 
e.g. age, gender, educational level, and country of residence, to produce recommendations 
targeted to specific demographic niches. For instance, Pazzani (1999) describes how to 
exploit the users’ gender, age, and area code (location) to identify types of users that prefer 
certain restaurants. As noted by Ricci et al. (2011), this technique is popular in the 
marketing literature, but has attracted relatively little attention in RS community. 

Knowledge-based RS exploit specific domain knowledge about how certain item 
features meet the users’ needs and preferences. Examples of knowledge-based RS are case-
based reasoning systems that use examples of user goals and related items as a source to 
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find items with similar features (Burke, 2000), and constraint-based systems that apply 
explicit rules about how to relate user goals with item features (Felfernig et al., 2011). 
Knowledge-based RS do not suffer from cold-start, but require experts’ domain knowledge 
encoded in the system, a problem known as knowledge acquisition bottleneck (Felfernig et 
al., 2011). 

Social-based RS focus on exploiting preferences from the user’s friends, as opposed 
to exploiting preferences from all the community of users. This technique is based on the 
idea that people rely more on recommendations from their friends than from other unknown 
users (Sinha and Swearing, 2001). The growing popularity of social networks such as 
Facebook and Twitter9 has been attracting interest in this approach within the RS field, 
being an open research topic (Ricci et al., 2011). 

Context-aware RS (CARS) exploit the context (e.g. location, time, weather, device, 
and mood) in which users use or consume items (Adomavicius et al., 2005; Adomavicius 
and Tuzhilin, 2011). In this way, CARS can discriminate the interest a user may have in a 
particular item within different contexts and situations. Several approaches have been 
proposed to deal with contextual information (Adomavicius et al., 2005; Adomavicius and 
Tuzhilin, 2011; Baltrunas, 2011; Panniello and Gorgoglione, 2012). In general, CARS 
require one or more of the explained basic CB and CF techniques as underlying methods 
for computing recommendations, and somehow take into account contextual information in 
the process of generating recommendations. Information exploited by other techniques can 
also be used as a proxy of context, e.g. demographic data such as age and gender (Baltrunas 
and Ricci, 2009a). Hence, we consider CARS techniques as enhancements for improving 
other RS techniques, rather than a pure technique for computing recommendations. We 
deepen into CARS techniques in Chapter 3.  

2.4 Evaluation of recommender systems 

In the past most research on RS has focused on designing and improving the performance 
of proposed recommendation algorithms (Herlocker et al., 2004; Shani and Gunawardana, 
2011). In order to compare and select the best performing among several alternative 
algorithms, it is necessary to measure and compare their performance. This comparison is 
usually made empirically based on experiments that test the algorithms performance either 
in an online or an offline setting, by applying a particular evaluation protocol, that is, by 
using certain evaluation metrics –which define what to assess– and a given evaluation 
methodology –which defines how to assess. In this section we briefly describe these 
concepts. 

 

                                                 
9 http://www.twitter.com 
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2.4.1 Online and offline evaluation 

Broadly speaking, two types of evaluations can be performed to assess the performance of 
recommender systems, namely online evaluation (also called user-based evaluation), and 
offline evaluation (also called system evaluation) (Herlocker et al., 2004; Gunawardana and 
Shani, 2009; Shani and Gunawardana, 2011).  

Whatever the evaluation case, a RS is built with information about the users –such as 
preferences and demographics– and the items –such as content descriptions and attributes. 
Then, user responses to received recommendations are tracked, and are used to compute 
certain metrics related to one or more desired properties of the recommendations, e.g. 
accuracy, diversity, and novelty of rating predictions, and user satisfaction. 

In online evaluation, users interact with several settings of the system under 
evaluation, and may fill questionnaires regarding their experience with the system and the 
received recommendations. Evaluation results are then obtained by recording and 
comparing the users’ behavior (ratings, activity logs, etc.) over different system settings 
(Kohavi et al., 2009), by means of subjective user perceptions gathered in the 
questionnaires (Knijnenburg et al., 2012), or by combinations of both. In offline evaluation, 
on the other hand, datasets containing past user behavior are used to simulate how users 
would have behaved if they had used the evaluated system. In this case, evaluation results 
are obtained by comparing predicted and actual ratings for users and items of the dataset 
(Herlocker et al., 2004; Shani and Gunawardana, 2011). 

Online evaluation may be considered preferable to offline evaluation, mainly due to 
its ability to take into account the user’s experience (Knijnenburg et al., 2012; Konstan and 
Riedl, 2012). That is, the user’s perceptions about the interaction with the system. 
Moreover, some studies have shown differences between offline metric results and user 
perceived quality (Cremonesi et al., 2011). Although there is no a clear explanation, 
variations in user interfaces (Cosley et al., 2003), data selection (Cremonesi et al., 2011), 
and situational and personal characteristics of users (Knijnenburg et al., 2012) may be 
related with such differences. 

Despite its advantages, online evaluation is more difficult and expensive to perform, 
as it requires counting with (fully) functional implementations of the system’s settings to 
evaluate. Moreover, users have to be recruited and probably be paid for testing the system. 
Offline evaluation, on the other hand, only requires implementing the system’s algorithmic 
settings to be tested. If a dataset is already available, no user recruiting is needed. Thanks to 
historical data availability, offline evaluation brings a low cost, and easy to reproduce 
experimental environment for testing new algorithms, and distinct settings of a particular 
algorithm. Thus, a common practice is to test new recommendation algorithms by offline 
evaluations, especially as a preceding step to online evaluation, in which only the best 
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(offline) performing algorithms would be tested. In this way, overall experimentation costs 
are reduced (Kohavi et al., 2009; Shani and Gunawardana, 2011). Because of these issues, 
in this thesis we focus on offline evaluation. 

2.4.2 Offline evaluation methodologies 

In the literature a large variety of evaluation protocols –metrics and methodologies– has 
been proposed for offline evaluation of RS. In order to facilitate the analysis of existing RS 
offline evaluation approaches, in this section we describe the main steps that should be 
followed to conduct an offline evaluation of a RS. Particular implementations of these steps 
give form to distinct evaluation methodologies. 

In general, a recommendation model is built (or equivalently a recommendation 
heuristic is computed) with available user data. Afterwards, its ability to deliver good10 
recommendations is assessed somehow with additional user data. In an offline evaluation 
scenario, we have to simulate the users’ actions after receiving recommendations. This 
behavior is reproduced by splitting the set of available ratings into a training set (𝑇𝑝𝑝) –
which serves as historical data to learn the users’ preferences– and a test set (𝑇𝑒) –which is 
considered as knowledge about the users’ decisions when faced with recommendations, and 
is commonly referred to as ground truth data. Since test data should not be accessible 
during the model/heuristic building process, in general, the only restriction that must be 
hold is to avoid pairwise user-item rating overlaps between training and test sets, i.e., 
𝑇𝑝𝑝 ∩ 𝑇𝑒 = ∅. 

Figure 2.6 shows a schematic view of the generic stages of an offline evaluation 
protocol for RS. In the figure the ratings matrix 𝑀 is partitioned into a training set 𝑇𝑝𝑝 and a 
test set 𝑇𝑒, using a training-test splitting process. Once a model (or heuristic) is built with 
𝑇𝑝𝑝, the recommendation process is performed to generate a set of item suggestions for each 
user. These item suggestions are then compared against the ground truth 𝑇𝑒 using a number 
of metrics. In this context, additional processing of data may be required depending on the 
recommendation task at hand, among rating prediction and top-N recommendations tasks 
(Herlocker et al., 2004; Gunawardana and Shani, 2009). In the former task, 
recommendations correspond to rating predictions, and the metrics are computed by 
comparing predicted and actual values of test ratings. In the latter task, recommendations 
consist of a ranked list of items predicted as the most appealing for the user. Here, metrics 
take into account the ranking positions of relevant and non-relevant test items in the 
generated list (Cremonesi et al., 2010; Bellogín et al., 2011). In this case the notion of item 
relevance can take multiple definitions, e.g. by considering relevant items those whose 
actual rating values are over certain threshold. 
                                                 
10 There is no general definition of what good recommendations are. Nonetheless, a commonly used approach 
is to establish the quality (goodness) of recommendations by computing different metrics that assess various 
desired characteristics of a RS output. 
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Figure 2.6. Schematic view of the generic stages followed in an offline evaluation protocol for 
recommender systems. 

2.4.3 Evaluation metrics 

A wide array of metrics has been proposed and used to evaluate and compare 
recommendation algorithms, attempting to assess different properties of generated 
recommendations (Herlocker et al., 2004; Gunawardana and Shani, 2009). In the literature 
most of the published evaluations of RS have focused on rating prediction accuracy 
metrics, such as the Mean Absolute Error (𝑀𝐴𝐸 ) and the Root Mean Squared Error 
(𝑅𝑀𝑆𝐸 ), which measure how well a RS can predict the ratings of particular items 
(Gunawardana and Shani, 2009): 

 
𝑀𝐴𝐸 =

∑ ��̂�𝑝𝑢,𝑖 − 𝑝𝑝𝑢,𝑖�𝑟𝑢,𝑖∈𝑇𝑒

|𝑇𝑒|  
(2.5) 

 

𝑅𝑀𝑆𝐸 = �∑ ��̅�𝑝𝑢,𝑖 − 𝑝𝑝𝑢,𝑖�
2

𝑟𝑢,𝑖∈𝑇𝑒

|𝑇𝑒|  

(2.6) 

These metrics provide an estimation of the deviation of prediction values from true ones, 
being RMSE more sensitive to large errors (Herlocker et al., 2004), and being the lower 
values those that indicate better accuracy. Recently, it has been argued, however, that 
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ranking precision metrics are better suited for recommendation purposes, as RS are 
typically required to present a limited number of the most appealing items for a user –
instead of rating predictions for individual items (Konstan and Riedl, 2012). For such 
purpose, in general, an item ranking for user 𝑢𝑢  –denoted by 𝐼𝑟𝑎𝑛𝑘𝑢 – is generated by 
comparing (and sorting) rating predictions, and the top-N items in the ranking 𝐼𝑡𝑜𝑝𝑁𝑢 are 
delivered as recommendations. Then, ranking precision metrics measure to what degree the 
list of recommendations contains relevant items for the users –we denote by 𝐼𝑟𝑒𝑙𝑢 the set of 
relevant items for 𝑢𝑢 – (Herlocker et al., 2004). These metrics usually correspond to 
adaptations of metrics used in the IR field, such as Precision (𝑃), Recall (𝑅), F-measure 
(𝐹), and normalized Discounted Cumulative Gain (𝑛𝐷𝐶𝐺) (Baeza-Yates and Ribeiro-Neto, 
1999), and metrics used in the ML field, such as the Receiver Operating Characteristic 
curve, and the Area Under the Roc curve (𝐴𝑈𝐶) (Ling et al., 2003). 𝑃, 𝑅, 𝐹 and 𝑛𝐷𝐶𝐺 can 
be computed by: 

 
𝑃 =

1
|𝑈𝑇𝑒| ⋅�

�𝐼𝑟𝑒𝑙𝑢 ∩ 𝐼𝑡𝑜𝑝𝑁𝑢�

�𝐼𝑡𝑜𝑝𝑁𝑢�𝑢∈𝑈𝑇𝑒
 (2.7) 
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1
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�𝐼𝑟𝑒𝑙𝑢�𝑢∈𝑈𝑇𝑒
 (2.8) 

 
𝐹 =

2𝑃𝑅
(𝑃 + 𝑅) (2.9) 

 
𝑛𝐷𝐶𝐺 =

1
|𝑈𝑇𝑒| ⋅�

𝐷𝐶𝐺𝑢
𝐼𝐷𝐶𝐺𝑢𝑢∈𝑈𝑇𝑒

 (2.10) 

being 𝑈𝑇𝑒 the set of users with ratings in 𝑇𝑒,  𝐷𝐶𝐺𝑢 = 𝑝𝑝𝑒𝑙𝑢,1 + ∑ 𝑟𝑒𝑙𝑢,𝑝𝑜𝑠

log2 𝑝𝑜𝑠
𝑁
𝑝𝑜𝑠=2 , 𝑝𝑝𝑒𝑙𝑢,𝑝𝑜𝑠 the 

relevance value for user 𝑢𝑢 of the item at position 𝑝𝑝𝑝𝑝𝑠 in 𝐼𝑟𝑎𝑛𝑘𝑢, and 𝐼𝐷𝐶𝐺𝑢 the ideal 𝐷𝐶𝐺𝑢, 
that is, 𝐷𝐶𝐺𝑢 computed over a full known ranked relevance items list. It is also common to 
use the notation 𝑃@𝑁, 𝑅@𝑁, 𝐹@𝑁, and nDCG@N respectively, to indicate the ranking 
position or cutoff 𝑁 up to which items are considered recommended in the computation of 
these metrics. In ML literature the items 𝐼𝑟𝑒𝑙𝑢 ∩ 𝐼𝑡𝑜𝑝𝑁𝑢  are usually referred to as true 
positives because they represent the set of recommended (positive) items that are truly 
relevant. The 𝐴𝑈𝐶 (Ling et al., 2003) can be computed as:  

 
𝐴𝑈𝐶 =

1
|𝑈𝑇𝑒| ⋅�

𝑆0 − �𝐼𝑟𝑒𝑙𝑢���𝐼𝑟𝑒𝑙𝑢� + 1�/2
�𝐼𝑟𝑒𝑙𝑢��𝐼\𝐼𝑟𝑒𝑙𝑢�𝑢∈𝑈𝑇𝑒

 (2.11) 
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where 𝑆0 = ∑ 𝑝𝑝𝑎𝑛𝑘(𝑡𝑡)𝑖∈𝐼𝑟𝑒𝑙𝑢 , and 𝑝𝑝𝑎𝑛𝑘(𝑡𝑡)  is the rank position of item 𝑡𝑡 . Note that, in 
general, rating prediction accuracy metrics are used to assess a rating prediction task, while 
ranking precision metrics are used to assess a top-N recommendations task. 

Apart from prediction accuracy and ranking precision, other recommendation 
properties are recently under research. This is the case of novelty and diversity (Vargas and 
Castells, 2011), by means of metrics like Self Information (SI) (Zhou et al., 2010), and Intra 
List Similarity (ILS) (Ziegler et al., 2005) metrics, 

 

𝑆𝐼 =
1
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∑ log2 �
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where 𝑈𝑟𝑒𝑙𝑖  denotes the set of users to whom item 𝑡𝑡 is relevant, and 𝑠𝑡𝑡𝑚(𝑡𝑡, 𝑗) denotes a 
similarity metric between 𝑡𝑡 and 𝑗, e.g. 𝜌. 

Novelty metrics aim to capture the degree in which unknown items (for a user in 
particular or for the overall community) are recommended, whereas diversity metrics assess 
how similar the items in a recommendation list are. 

2.5 Summary 

Recommender systems are successful tools that help users to find items suited to their 
preferences and needs on overwhelming collections, available through e.g., Web-based 
applications. In this chapter we have revised the most common concepts of the 
recommendation problem and tasks, as well as their sources of knowledge, the main 
techniques developed in their implementation, and the evaluation methodologies and 
metrics used in their evaluation. 

Despite the advances in the field, there are several open problems that require 
attention from the research community. For instance, as noted by Adomavicius and 
Tuzhilin (2005), not all transactional information available in databases is exploited by 
most RS. In fact, most techniques reviewed in this chapter can be modeled through a rating 
estimation function 𝐹(𝑢𝑢, 𝑡𝑡) that depends only on the user and the item, leaving out any 
other contextual information. An example of contextual information is the time information 
associated to preferences. In Chapter 3 we shall review RS techniques particularly suited 
for exploiting time information. The evaluation of RS also represents an open area of 
research. The existence of multiple ways to implement evaluation protocols shows the need 
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of working towards a standardization of evaluation methodologies, in order to facilitate 
reproducibility and comparability of RS.  

 





 

 

Chapter 3  
 
Time-aware recommender systems 

Time-aware recommender systems are a type of context-aware recommender systems that 
take advantage of contextual information in the form of time. A wide range of approaches 
on modeling and exploiting such information for recommendation purposes have been 
proposed in the literature. 

In this chapter we present a comprehensive review of the literature on time-aware 
recommender systems, starting with a description of the relation between them and the 
more general context-aware recommendation approaches. In Section 3.1 we describe a 
generic approach to incorporate contextual information in the recommendation process, and 
in Section 3.2 we discuss particularities of time as context information for recommendation. 
Next, in Section 3.3 we detail the different time-aware recommendation approaches 
revised, classifying them according to how time is treated, and in Section 3.4 we describe 
the methodologies followed to evaluate such approaches. Finally, in Section 3.5 we 
conclude with a summary of the chapter. 
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3.1 Incorporating contextual information into recommender 
systems 

Context is a multifaceted concept that has been studied across different research disciplines, 
and has been defined in multiple ways (Adomavicius and Tuzhilin, 2011). Hence, Bazire 
and Brézillon (2005) compile 150 definitions of context from various disciplines such as 
computer science, economy, and philosophy. Dey (2001) states that “context is any 
information that can be used to characterize the situation of an entity”, where in the case of 
a recommender system an entity can be a user, an item, or an experience the user is 
evaluating (Baltrunas and Ricci, 2013). Bazire and Brézillon (2005) observe that, in 
psychology, it is common to analyze a person performing a task in a given situation, aiming 
to state which context is relevant from the context of the person, the context of the task, and 
the context of the interaction. In the case of recommendation, the interaction between users 
and items is the key piece of information. Thus, in most of context-related recommender 
systems (RS) research, any information regarding the situation in which a user experiences 
(interacts with) an item – e.g. location, time, weather, device, and mood – is considered as 
context. 

The importance of including context in the recommendation process can be observed 
from a practical viewpoint through a classic, simple example in the tourism domain: 
Although a user may love skiing, recommending her a ski resort during summer is 
questionable. Such recommendation could be detrimental for the user’s trust in the system 
if interpreted as ‘out of context.’ In fact, in a user study comparing several RS that use and 
do not use contextual information, Gorgoglione et al. (2011) found that the former provide 
more user trust in the delivered recommendations. Moreover, they detected that trust affect 
purchasing behavior, and observed that RS exploiting context information increase the 
user’s trust and levels of sales. 

Recommender systems that exploit any of the above types of information are known 
as context-aware RS (CARS) (Adomavicius and Tuzhilin, 2011). Different approaches and 
techniques have been proposed for developing CARS. Most of them follow a 
representational view of context (Dourish, 2004), which assumes that context can be 
described by means of attributes that can be observed. In this view, context can be 
represented as a set of variables or contextual attributes known a priori. For instance,  
Panniello et al. (2009a) present a hierarchical structure of contextual information for the 
context period of the year of purchases on an e-commerce portal. Figure 3.1 shows this 
hierarchy, which considers two broad contexts: winter and summer. In a second level, each 
of these contexts is further split into more specific periods. 

In contrast, the interactional view (Dourish, 2004) assumes that context is not a 
property that can be defined in advance, but “it arises from the activity,” i.e., it assumes that 
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observable user behavior is influenced by an underlying context (that is not necessarily 
observable). In this view, context is a property discovered from the user’s behavior, whose 
scope is defined dynamically, and may or may not be relevant to some particular activity. 
Hence, most work in RS using this view does not define a set of fixed context variables, but 
infers them from the user’s actions with the system. Herlocker and Konstan (2001) provide 
an example of this, aiming to performing task-focused recommendations. In that work, the 
context of interest is the user task, which is inferred from a number of example items 
related to the task. The example item set, called the task profile, is then used to find task-
associated items –we note that no explicit description of the task is generated.  For instance, 
if the example items are a hammer and a screwdriver, the system may infer that woodwork 
is the current task. Then, the system may recommend nails and screws to the user.  

 

Figure 3.1. Hierarchical structure of contextual information used in (Panniello et al., 2009a). 

In this thesis we follow the representational view because it provides a 
computationally feasible approach (Baltrunas, 2011), and is the approach mostly used in 
time-aware RS research. 

Based on the representational view of context, and extending the definition of 
recommendation problem given in Chapter 2 (Eq. 2.1), Adomavicius et al. (2005) present a 
generic model for CARS that incorporate additional dimensions of contextual information 
𝐶 into the rating computation formula 𝐹: 

 𝐹:𝑈 × 𝐼 × 𝐶 → 𝑅 (3.1) 

This model assumes that the context can be known and represented as a set of 
contextual dimensions 𝐶1,𝐶2, … ,𝐶𝑛 ∈ 𝐶 , where each dimension 𝐶𝑖  has its own type and 
domain. Moreover, a dimension 𝐶𝑖  may have different representations reflecting the 
complex nature of its contextual information (Adomavicius and Tuzhilin, 2011). For 
instance, the contextual dimension location can be defined as a plain list of values, e.g. 
{home, abroad}, or can be defined by means of a hierarchical structure such as room → 
building →  neighborhood →  city →  country. In general, according to Palmisano et al. 
(2008) and Adomavicius et al. (2005), each contextual dimension 𝐶𝑖 ∈ 𝐶 can be defined as 
a set of attributes 𝐶𝑖 = �𝐶𝑖1,𝐶𝑖2, … ,𝐶𝑖

𝑞� that may be independent or related through some 
kind of structure. 

CONTEXT 

WINTER 

HOLIDAY NO 
HOLIDAY 

SUMMER 

HOLIDAY NO 
HOLIDAY 
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Adomavicius and Tuzhilin (2011) established a classification of CARS based on the 
algorithmic approach for contextual information treatment, considering contextual pre-
filtering, contextual post-filtering and contextual modeling systems. In contextual pre-
filtering, the target recommendation context –i.e., the context in which the target user 
expects to consume the recommended items– is used to filter user profile data relevant to 
such context before the rating prediction computation. In contextual post-filtering, rating 
predictions are adjusted according to the target context after being computed (on entire user 
profiles). In both cases, traditional non-contextualized recommendation algorithms can be 
performed, as the contextualization involves an independent pre- or post- processing 
computation. On the other hand, contextual modeling incorporates context information 
directly into the model used to compute rating predictions. In this way contextual modeling 
lets effectively extend and exploit user-item relations with context information without the 
need of discarding (valuable) data or adapting generated recommendations for providing 
contextualized suggestions. 

3.2 Specifying time context in recommender systems 

Among existing contextual dimensions, the time dimension –i.e., the contextual signals 
related to time, such as period of the day, day of the week, and season of the year– has the 
advantage of being easy to collect, since almost any system can record item 
usage/consumption/rating timestamps. Moreover, as noted in the ski resort recommendation 
example given in the previous section, the time dimension can serve as a valuable input for 
improving recommendation quality (Baltrunas and Amatriain, 2009; Koren, 2009a; 
Panniello et al., 2009b). 

Time-aware recommender systems (TARS) can be considered as a specialized type of 
CARS. Their main characteristic is the usage of time context information at some stage of 
the rating prediction process, being able to provide differentiated recommendations 
depending on the target recommendation time –i.e., the desired time for item usage or 
consumption, which may be different from the recommendation delivery time– according 
e.g. to the preferences expressed by the users at similar time contexts in the past. Thus, the 
general formulation of context-dependent rating prediction can be particularized for the 
time dimension of context, 𝑇, as follows: 

 𝐹:𝑈 × 𝐼 × 𝑇 → 𝑅 (3.2) 

where 𝑇  can be represented in several ways. According to Merriam-Webster 11, time is 
defined as “a non-spatial continuum that is measured in terms of events that succeed one 
another from past through present to future.” From this definition, it follows that it is 
possible to establish an order between time events (or time values), e.g. night is after 
                                                 
11 http://www.merriam-webster.com/dictionary/time  
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evening, and Monday is before Tuesday. A second sense of time is “the measured or 
measurable period during which an action, process, or condition exists or continues.” Given 
the huge differences in duration of various processes (consider e.g. the duration of a movie, 
and the human lifetime), several time units have been used, e.g. hours, days, months and 
years (Whitrow, 1988), together with hierarchies of time units (e.g. a day “is formed” by 24 
hours, and a week “is formed” by 7 days). This hierarchical structure and the fact that time 
is a continuum, lead to a cyclic conception of time where its values repeat periodically. 

Due to this flexibility in the time conception and measurement, different 
representations of time context information can be used. For example, time may be 
modeled as a continuous variable whose values are the specific times at which items are 
rated/consumed (e.g. a timestamp like “January 1st, 2000 at 00:00:00”). Another option is 
to specify categorical values, regarding time periods of interest in the recommendation 
domain at hand. For instance, in the tourism domain, a seasonal variable like season of the 
year = {hot_season, cold_season} may be convenient, whereas in the music and movie 
domains, the variable period of the week = {workday, weekend} may have more sense. A 
hierarchical modeling could also be used, enabling to control the degree of granularity of 
the time context information (e.g. period of the week can be disaggregated into day of the 
week = {Monday, Tuesday, … , Sunday}). In this sense, it has to be noted that storing the 
timestamp of user actions is the most flexible option, since it lets exploit diverse 
representations of time context, including both continuous and (maybe overlapping) 
categorical values. 

In general, collecting time information of user interactions does not require additional 
user effort nor impose strict system/device requirements. Many time-aware 
recommendation models exploit collected time information related to past user preferences, 
e.g. the timestamps associated to ratings and item consumptions by users. Moreover, it has 
been used as a key input to achieve significant improvements on recommendation accuracy 
(Koren, 2009a). Hence, the timestamps of collected user preferences are valuable, easy-to-
collect data for improving recommendations. 

At this point, we note that when a RS exploits ratings instead of usage/consumption 
data, the collected rating timestamps do not necessarily correspond to real 
usage/consumption time, and thus may not be considered as the context in which users 
prefer using/consuming items. Nonetheless, Said et al. (2011) found that users tend to rate 
items shortly after consuming them –a fact that lets relate rating preferences with some time 
context signals. 

Other sources of time information can also be collected and exploited. Examples of 
interesting events are the time of the items’ incorporation into the system’s catalog, and the 
time of the users’ registration into the system’s community. We denote by 𝒯(𝑒)  the 
function returning the time associated to an event 𝑒. 
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Due to the benefits and flexibility of time context, recent years have been prolific in 
the research and development of TARS exploiting explicit and implicit user feedback. In 
the next section we detail on the approaches to time-aware recommendation. 

3.3 Time-aware approaches in recommender systems 

A wide array of approaches on modeling and exploiting time context information has been 
proposed in the RS literature. In order to get a comprehensive landscape on existing 
approaches, in this section we review and classify a large number of papers about TARS. 

First approaches considering time information in RS date back to 2001. Zimdars et al. 
(2001) treated the CF recommendation problem as a time series prediction problem, 
encoding the time-dependent order of the data. In a more generic perspective, Adomavicius 
and Tuzhilin (2001) proposed the use of a multi-dimensional representation of RS in order 
to deal with contextual information, including the time dimension among others. 

Despite this early work, the topic recalled the attention of researchers more recently; 
proposals by Adomavicius et al. (2005) and Koren (2009a) have had a strong influence in 
the field, which is producing an increasing number of RS approaches exploiting some form 
of time information. 

For the sake of simplicity, we roughly group related work by the type of treatment 
given to time information. In this sense, we identify approaches that adapt rating 
predictions depending on the target recommendation time, and represent time as a 
continuous contextual variable –continuous time-aware RS– or as categorical context 
variables –categorical time-aware RS. Additionally, there are approaches that exploit time 
context information in a more subtle way, without differentiating rating prediction 
according to the target recommendation time, but rather adjusting some parameters or data 
dynamically –time adaptive RS. 

Additionally, for each TARS approach, we distinguish between heuristic-based (or 
memory-based) and model-based approaches, following a common classification of 
recommender systems (Breese et al., 1998; Adomavicius and Tuzhilin, 2005). As described 
in Chapter 2, heuristic-based approaches use the collection of ratings for computing 
predictions, whereas model-based approaches learn a model from rating data, which is 
afterwards used to compute predictions. 

3.3.1 Continuous time-aware recommender systems 

In this type of TARS, time information 𝑇 is represented as a continuous variable. The rating 
prediction becomes an explicit function of the target recommendation time 𝑡𝑡, �̂�𝑝 = 𝐹(𝑢𝑢, 𝑡𝑡, 𝑡𝑡), 
where 𝑡𝑡 ∈ 𝑇 is measured in time units such as seconds, days, and years. Note that this 
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formulation lets define a target recommendation time different from the current time; the 
recommendation may be required for a time different from the requesting time, e.g. the user 
can ask “what movie could I see tomorrow?” 

In the case of heuristic-based continuous TARS, heuristics for computing rating 
predictions incorporate continuous time information into their analytic formulas. A 
common approach of this type of TARS is to differently weight ratings according to their 
“age” (distance, in terms of time) with respect to the target time, generally in the form of an 
increasing penalization on older data, under the assumption that more recent ratings better 
reflect current user tastes and interests. In user-based kNN (see Eq. 2.2) this leads to: 

 𝐹(𝑢𝑢, 𝑡𝑡, 𝑡𝑡) = aggr
𝑣∈𝑁(𝑢)

𝑝𝑝𝑣,𝑖 ⋅ 𝑤𝑡 �𝑡𝑡,𝒯�𝑝𝑝𝑣,𝑖�� (3.3) 

where 𝑡𝑡 ∈ 𝑇  denotes the target (recommendation) time, and 𝑤𝑡(⋅,⋅)  returns a time-
dependent weight. For instance, Ding and Li (2005) proposed an exponential time decay 

weight 𝑤𝑡 �𝑡𝑡,𝒯�𝑝𝑝𝑣,𝑖�� = 𝑒−𝜆⋅�𝑡−𝒯�𝑟𝑣,𝑖�� , being 𝜆  a constant value representing the decay 

rate. In this formulation, the value of 𝜆 is computed as 𝜆 = 1 𝑇0⁄ , being 𝑇0 the half life, that 
is, the weight of a rating reduces approximately by 1 2⁄  after 𝑇0 days. Figure 3.2 shows 
some typical examples of weight curves generated with Ding and Li’s exponential time 
decay model, using different values of 𝑇0. 

 

Figure 3.2. Example of exponential time decay weights using different 𝑻𝟎 values. 
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The notion of time weight can also be used to estimate the similarity between users or 

items. For example, Hermann (2010) used the heuristic 𝑠𝑡 �𝑡𝑡,𝒯�𝑝𝑝𝑢,𝑖�,𝒯�𝑝𝑝𝑢,𝑗�� =

1 ��𝒯�𝑝𝑝𝑢,𝑖� − 𝒯�𝑝𝑝𝑢,𝑗�� + �𝑚𝑡𝑡𝑛 �𝒯�𝑝𝑝𝑢,𝑗𝑖�,𝒯�𝑝𝑝𝑢,𝑗�� − 𝑡𝑡���  as a measure of time similarity 
between items consumed by user 𝑢𝑢. The most extreme case of this approach is that in 
which 𝑤𝑡(⋅,⋅) is 0 (i.e., the data is discarded) if the time distance between 𝒯(𝑝𝑝) and 𝑡𝑡 is 
over some specified threshold (Gordea and Zanker, 2007; Campos et al., 2010). This is 
sometimes referred to as instance selection, time window, or time truncation. 

Model-based continuous TARS build models from users rating data, taking the 
dynamics of such data into account. As in heuristic-based continuous TARS, time is 
represented as a continuous variable, and the target time is explicitly considered for rating 
prediction. There is not a general formulation for these approaches, whose formulations 
strongly depend on the proposed models. One of the best known examples is the temporal 
dynamics model proposed by Koren (2009), which corresponds to a MF model (see Eq. 
2.4). In order to take time effects in the MF model into consideration, Koren incorporates 
into 2.4 static and dynamic bias terms as follows: 

𝐹(𝑢𝑢, 𝑡𝑡, 𝑡𝑡) = 𝜇 + 𝑏𝑢(𝑡𝑡) + 𝑏𝑖(𝑡𝑡) + 𝑝𝑝𝑢𝑇(𝑡𝑡)𝑞𝑖 

where 𝜇 denotes the overall mean rating, 𝑏𝑢(𝑡𝑡) and 𝑏𝑖(𝑡𝑡) are user- and item-specific time-
dependent biases. User factors represented as  𝑝𝑝𝑢(𝑡𝑡) are assumed to change through time, 
becoming time-aware. Note that this model assigns latent factor vector(s) to a user at each 
time  𝑡𝑡 . Figure 3.3 shows a schematic view of a static user factor vector, and the 
corresponding bi-dimensional time-aware factor vector. For each user and factor, there are 
several values, one per time unit. In the formulation of (Koren, 2009a), 𝑡𝑡 is measured in 
days, being able to detect changes in the users’ preferences with a daily granularity, and in 
(Rendle et al., 2011), an additional factorization-based model including time-variant factors 
is described. 

 

Figure 3.3. Schematic view of static user factors (upper side) and time-aware user factors 
(lower side) vectors. 
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Another example of a continuous time-based model is given in (Xiong et al., 2010), 
where a Bayesian probabilistic Tensor Factorization (TF) model is proposed. In that work 
Xiong and colleagues incorporate time as an additional feature vector associated to each 
user-item pair, instead of to each user and factor as in (Koren, 2009a). In this way, the 
|𝑈| × |𝐼| rating matrix 𝑀 is extended into a three dimensional tensor 𝔐 ∈ ℝ|𝑈|×|𝐼|×|𝑇|. We 
note that a tensor is a generalization of the matrix concept to three or more dimensions. 
Figure 3.4 shows a schematic view of a ratings tensor. In the figure the tensor is composed 
of user, item, and time dimensions. 

 

Figure 3.4. Schematic view of a three dimensional rating tensor. 

Under this scheme, users, items and time are modeled via probabilistic latent factor 
vectors that are computed by means of the TF approach. Hence, rating prediction is 
computed by the scalar product: 

𝐹(𝑢𝑢, 𝑡𝑡, 𝑡𝑡) = � 𝑃𝑗,𝑢𝑄𝑗,𝑖𝑊𝑗,𝑡

𝑑

𝑗=0
 

where 𝑃⋅,𝑢, 𝑄⋅,𝑖 and 𝑊⋅,𝑡 denote the feature vectors of user 𝑢𝑢, item 𝑡𝑡, and time 𝑡𝑡, respectively. 
This formulation avoids an expensive increase of time-related factors associated with 
entities, as in the case of MF models. 

A different modeling scheme is presented by Koenigstein et al. (2011), where they 
use session factors to model specific user behavior in music listening sessions. Such 
sessions are inferred from time information associated to ratings, in such a way that a 
session is defined as a set of consecutive ratings with no more than 5 hours of difference. 
The authors found that users tend to rate songs in a session very similarly. 

We note that, from the temporal perspective, the main disadvantage of this type of 
models is the inability to extrapolate future temporal dynamics. Authors, however, argue 
that these models isolate persistent signals from transient noise, thus helping to predict 
future user behavior. 
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3.3.2 Categorical time-aware recommender systems 

In this type of TARS, the time dimension 𝑇 is modeled as one or more discrete variables 
𝑇1,𝑇2,⋯𝑇𝑛 ∈ 𝑇  that let treat ratings differently depending on their contextual values. 
Under this formulation, the possible target time is one of the values of the contextual 
variables, and no references to time ordering can be made (e.g. a user can ask “what movies 
may I see in the weekends?”, but not “what movies may I see the next weekend?”). The 
main difference between continuous TARS and categorical TARS is given by the domain 
of the time information they use; in categorical TARS, time information is represented as 
discrete contextual values. 

Heuristic-based categorical TARS include discrete time context information in their 
heuristics. Generic CARS algorithms exploiting time by contextual pre-filtering and 
contextual post-filtering strategies belong to this category. A particular time context is 
represented as 𝑡𝑡 = ⋃ 𝑡𝑡𝑗  | 𝑡𝑡𝑗 ∈ 𝑇𝑗𝑗 . For instance, given 𝑇1 = {𝑚𝑝𝑝𝑝𝑝𝑛𝑡𝑡𝑛𝑔, 𝑒𝑣𝑒𝑛𝑡𝑡𝑛𝑔}  and 
𝑇² = {𝑤𝑝𝑝𝑝𝑝𝑘𝑡𝑡𝑎𝑦,𝑤𝑒𝑒𝑘𝑒𝑛𝑡𝑡}, two allowed values of 𝑡𝑡 are 𝑡𝑡1 = {𝑚𝑝𝑝𝑝𝑝𝑛𝑡𝑡𝑛𝑔,𝑤𝑒𝑒𝑘𝑒𝑛𝑡𝑡}, and 
𝑡𝑡2 = {𝑒𝑣𝑒𝑛𝑡𝑡𝑛𝑔,𝑤𝑝𝑝𝑝𝑝𝑘𝑡𝑡𝑎𝑦}. Thus, in this case, there is no possibility to order the data by 
means of their timestamps, that is, there is no “older” data, but rather data relevant (or not) 
for a particular context 𝑡𝑡. This change in modeling time information leads to a different 
type of heuristics for computing 𝐹(𝑢𝑢, 𝑡𝑡, 𝑡𝑡) than those used in continuous TARS. In this case, 
a time-dependent filter 𝑧𝑡 is used, which can be viewed as a penalty applied to data non-
relevant for the target context 𝑡𝑡. Depending on the contextualization strategy, this filters a 
different role in the computation of 𝐹(𝑢𝑢, 𝑡𝑡, 𝑡𝑡). 

In contextual pre-filtering, 𝑧𝑡 is used as a filter to select relevant ratings for prediction 
computations, being computed in general as 𝑧𝑡�𝑡𝑡,𝒯(𝑝𝑝)� = 1  when 𝑡𝑡 = 𝒯(𝑝𝑝) , and 
𝑧𝑡�𝑡𝑡,𝒯(𝑝𝑝)� = 0  otherwise. In this way, a set 𝑀𝑡  of ratings relevant to context 𝑡𝑡 , 

𝑀𝑡 ={ 𝑝𝑝𝑢,𝑖|𝑝𝑝𝑢,𝑖 ∈ 𝑀, 𝑧𝑡 �𝑡𝑡,𝒯�𝑝𝑝𝑢,𝑖�� = 1} , is selected, and prediction computations are 
performed using 𝑀𝑡 and a model like 2.1. Figure 3.5 shows an example of ratings selection 
in contextual pre-filtering. In the figure, two contextual values are considered. The ratings 
in 𝑀𝑡  corresponding to the target context (those shadowed) are the only ones used in 
prediction computations. 

For instance, Baltrunas and Amatriain (2009) created contextual micro-profiles, each 
of them containing ratings of a user in a particular context, as a pre-filtering strategy aimed 
to better detect the user’s preferences for specific time contexts. Only those micro-profiles 
that correspond to the target context are used for computing recommendations. The authors 
tested several contextual schemes, such as timeOfTheDay = {morning, evening}, 
timeOfTheWeek = {workday, weekend} and timeOfTheYear = {hot_season, cold_season}, 
obtaining improvements on accuracy metrics. Figure 3.6 shows a schematic view of 
contextual micro-profiles created from a user profile. 
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Figure 3.5. Selection of ratings in contextual pre-filtering. 

 

Figure 3.6. Schematic view of contextual micro-profiles. 

In contextual post-filtering, 𝑧𝑡  is used to adapt rating prediction values previously 
computed with the original rating matrix 𝑀 and a model like (2.1): 

𝐹(𝑢𝑢, 𝑡𝑡, 𝑡𝑡) = 𝐹(𝑢𝑢, 𝑡𝑡) ⋅ 𝑧𝑡(𝑡𝑡,𝑢𝑢, 𝑡𝑡) 
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An example of post-filtering using categorical time context variables is given in 
(Panniello et al., 2009a). The time context information used is presented in Figure 3.1. In 
that work, rating predictions �̂�𝑝𝑢,𝑖   are computed by means of a heuristic as 2.2. After that, 
the rating predictions are contextualized based on the contextual probability 𝑃𝑡(𝑢𝑢, 𝑡𝑡, 𝑡𝑡) that 
user 𝑢𝑢 chooses a certain type of item 𝑡𝑡 in context 𝑡𝑡 as follows: 

�̂�𝑝𝑢,𝑖,𝑡 = �
�̂�𝑝𝑢,𝑖  if 𝑃𝑡(𝑢𝑢, 𝑡𝑡, 𝑡𝑡) ≥ 𝑃∗

     0 if 𝑃𝑡(𝑢𝑢, 𝑡𝑡, 𝑡𝑡) < 𝑃∗
 

where 𝑃𝑡(𝑢𝑢, 𝑡𝑡, 𝑡𝑡) is computed as the number of 𝑢𝑢’s neighbors who purchased 𝑡𝑡 in context 𝑡𝑡 
divided by the total number of neighbors, and 𝑃∗ is a threshold value. In this way, �̂�𝑝𝑢,𝑖 is 
interpreted as relevant for the target time 𝑡𝑡 when  𝑃𝑡(𝑢𝑢, 𝑡𝑡, 𝑡𝑡) ≥ 𝑃∗. This is equivalent to set 
𝑧𝑡(𝑡𝑡,𝑢𝑢, 𝑡𝑡) = 1 when  𝑃𝑡(𝑢𝑢, 𝑡𝑡, 𝑡𝑡) ≥ 𝑃∗, and 𝑧𝑡(𝑡𝑡,𝑢𝑢, 𝑡𝑡, ) = 0 otherwise. 

It is important to note that if rating timestamps are available, multiple time context 
attributes can be exploited. For instance, Lee et al. (2010) derived the time variables season 
= {fall, winter, spring, summer}, dayOfWeek = {sun, mon, tue, wed, thu, fri, sat}, and 
timeOfDay = {midnight, dawn, morning, AM, noon, PM, evening, night}, and used all these 
attributes together for recommendation computation. 

Given the flexibility of the categorical context representation, it is easy to incorporate 
other contextual dimensions beyond time, and use more complex representations of time 
context. For instance, Palmisano et al. (2008) used a hierarchical structure for the 
contextual variable intent of purchase at a food distributor. The hierarchy presents three 
levels: a first, more general level that considers the intents personal and gift, a second, 
specific level for the intent gift that considers the values {event, no_event}, and a third level 
for the intent (gift, event) that takes the values {christmas, easter}. More examples 
combining different discrete contextual dimensions (including time) can be found in 
(Adomavicius et al., 2005; Gorgoglione and Panniello, 2009; Panniello et al., 2013). 

Model-based categorical TARS learn models from user preference data that include 
discrete time context attributes. One of the first approaches on model-based categorical 
TARS is presented in (Oku et al., 2006), where several contextual dimensions including 
time, social companion, and weather are incorporated into a Support Vector Machine model 
(Vapnik, 1995) for restaurant recommendation. 

Karatzoglou et al. (2010) used TF to model n-dimensional contextual information. 
They called this approach multiverse recommendation because of its ability to bridge data 
pertaining to different contexts (universes of information) into a unified model. In this 
approach, the rating information is represented as an n-dimensional tensor 𝔐 ∈
ℝ|𝑈|×|𝐼|×|𝐶1|×|𝐶2|×⋯×�𝐶𝑛𝑐� , where 𝐶1,𝐶2, … ,𝐶𝑛𝑐  represent contextual dimensions of 
information. By applying the High Order SVD decomposition approach (Lathauwer et al., 
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2000), 𝔐 is factorized into factor matrices 𝑃 ∈ ℝ𝑑𝑃×|𝑈|, 𝑄 ∈ ℝ𝑑𝑄×|𝐼|, 𝐴𝑘 ∈ ℝ𝑑𝐶𝑘×|𝐶𝑘|, and 
a central tensor 𝔖 ∈ ℝ𝑑𝑃×𝑑𝑄×𝑑𝐶1×⋯×𝑑𝐶𝑛𝑐 , in which 𝑡𝑡𝑘 denotes the number of latent factors 
describing each dimension k. Figure 3.7 shows a schematic view of a 3-dimensional High 
Order SVD TF. In the figure, 𝔐 is composed of users, items, and one contextual dimension 
(𝐶1). The result of the factorization are a matrix of user factors (𝑃), a matrix of item factors 
(𝑄), a matrix of context 𝐶1 factors (𝐴1) and the central tensor 𝔖. 

 

Figure 3.7. Schematic view of (3-dimensional) High Order SVD tensor factorization. 

Once obtained the factor matrices, the rating prediction formula becomes a function 
of the target user, item, and context: 

𝐹�𝑢𝑢, 𝑡𝑡, 𝑢𝑢1, 𝑢𝑢2,⋯ , 𝑢𝑢𝑛𝑐� = 𝔖 ×𝑃 𝑃⋅,𝑢 ×𝑄 𝑄⋅,𝑖 ×𝐴1 𝐴1⋅,𝑐1 ×𝐴2 𝐴2⋅,𝑐2 × ⋯×𝐴𝑛𝑐 𝐴𝑛𝑐⋅,𝑐𝑛𝑐
 

where ×𝐷  denotes a tensor-matrix multiplication operator, and the subscript shows the 
direction on the tensor on which to multiply. Another example of categorical time-aware 
model is given in (Rendle et al., 2011), where Factorization Machines (FMs) were used to 
combine continuous and categorical time information. 

3.3.3 Time-adaptive recommender systems 

In this type of TARS, the rating prediction does not depend on the target recommendation 
time. In general, time-adaptive RS exploit time information from past user preferences in 
order to adjust parameters or data according to changes of some data characteristics through 
time. This is an important difference with respect to continuous and categorical TARS 
approaches, as the rating prediction is not targeted for a particular time context. 

Heuristic-based time-adaptive RS generally penalize older preferences that are 
presumed to be not/less valid at recommendation time, and usually utilize a continuous time 
representation. Thus, they could be considered as a particular case of time decay heuristics, 

items
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but, as noted before, they do not target a specific recommendation time. An example of 
time adaptive heuristics can be found in (Lee et al., 2008, 2009), where implicit purchase 
information is transformed into explicit ratings by assigning increasing weights to more 
recent ratings. This is modeled as a special time-dependent weight function 𝑤𝑡

′�𝒯(𝑝𝑝)� that 
assigns a weight to each rating 𝑝𝑝 according to its timestamp: 

𝐹(𝑢𝑢, 𝑡𝑡) = aggr
𝑣∈𝑁(𝑢)

𝑝𝑝𝑣,𝑖 ⋅ 𝑤𝑡
′ �𝒯�𝑝𝑝𝑣,𝑖�� 

Note that, differently to the time-dependent weight 𝑤𝑡(⋅)  discussed in heuristic-based 
continuous TARS, the function 𝑤𝑡

′�𝒯(𝑝𝑝)� only depends on the rating time, but not on the 
target recommendation time. These heuristics can also use, for instance, the time an item is 
incorporated into the system’s catalog for the weight computation. We remark again that, 
under this formulation, the rating prediction is a function of the users and items, but not of 
the target (recommendation) time. A particular formulation of 𝑤𝑡

′�𝒯(𝑝𝑝)� is given in (Ding 
et al., 2006), where item ratings are weighted according to their deviation from the target 
user’s latest ratings on similar items. The underlying assumption is that the user’s latest 
ratings on a neighborhood of similar items show her current trend on such items. 

Following the idea of detecting user interest drift, Min and Han (2005) and Cao et al. 
(2009) developed approaches that derive time series of user ratings, aiming to establish 
current user interests. In order to build the time series ratings, items are grouped according 
to a certain heuristic, e.g. by category, as done in (Min and Han, 2005) –leading to several 
time series for each user, one per category– or grouping all ratings using an interest 
measure that takes into account item similarity, as done in (Cao et al., 2009) –leading to a 
unique time series for each user. Figure 3.8 shows examples of time series generated with 
those methods for the same user. The left side of the figure shows two time series of the 
user, each of them corresponding to items in two different categories (Min and Han, 2005). 
In this case, an interest drift is observed when any of the curves shows a trend shift. The 
right side of the figure shows the time series corresponding to the user’s all rated items 
(Cao et al., 2009). In this case, an interest drift is observed when the curve shows a peak –
we note that this latter method includes the items’ similarity into the interest computation, 
and thus, a peak shows an increase in interest on certain group of similar items, followed by 
a decrease in interest on those items, or in the similarity of items.  

An additional form of time adaptive heuristics is described in (Lathia et al., 2009a), 
where the number 𝑘 of neighbors to be used in a kNN approach is dynamically adjusted, 
looking for values of 𝑘 that diminish the error on previous predictions. Other approaches 
performing time adaptive heuristics are (Zimdars et al., 2001), where Web logs are coded 
as time series, and (Tang et al., 2003), where the production year of movies is used to 
reduce dimensionality in a CF system by means of an “old” movie pruning strategy. 
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Figure 3.8. Example of rating time series for the same users, from two alternative methods. In 
the left part of the figure, Min and Han’s method (Min and Han, 2005) generates several time 
series, one per rated items’ category . In the right part of the figure, Cao’s  method (Cao et al., 
2009) generates a unique time series from all the user’s rated items.  

In model-based time-adaptive RS, rating estimations are improved by means of 
exploiting temporal ordering of ratings rather than temporal closeness and relevance with 
respect to the target recommendation time. An example of time adaptive model is described 
in (Karatzoglou, 2011), where a temporal order of ratings is incorporated into a MF model, 
by means of learning differentiated item factors according to the rating timestamps, thus 
extending Eq. (2.4) to: 

𝐹(𝑢𝑢, 𝑡𝑡) = � 𝑃𝑗,𝑢𝑄𝑗,𝑖
𝑠

𝑑

𝑗=1
𝑄𝑗,𝑎
𝑠−1𝑄𝑗,𝑏

𝑠−2 ⋯𝑄𝑗,𝑁
𝑠−𝑁 

where 𝑄⋅,𝑖𝑠  is the item factors vector learned for item 𝑡𝑡 with user preference information 
recorded until time 𝑠, and 𝑎, 𝑏,⋯ ,𝑁 denote the items consumed at times 𝑠 − 1, 𝑠 − 2 and 
so on. This model is referred to as a multiplicative model. The authors also proposed a 
summative model in which factor products 〈𝑝𝑝𝑢, 𝑞𝑖𝑠〉, 〈𝑝𝑝𝑢, 𝑞𝑎𝑠−1〉, 〈𝑝𝑝𝑢, 𝑞𝑏𝑠−2〉,⋯ , 〈𝑝𝑝𝑢, 𝑞𝑁𝑠−𝑁〉 are 
summed up to compute the rating prediction 𝐹(𝑢𝑢, 𝑡𝑡). 

One more example of time adaptive model can be found in (Jahrer et al., 2010), 
where several time-unaware models are learned. In order to blend such models, training 
data are split into several bins according to rating times (among other variables), and 
different weights are assigned to each time bin. In this way the blending process becomes 
time-dependent. 

3.3.4 Overview of time-aware recommendation approaches 

There has been a considerable amount of research on TARS, as described in Sections 3.3.1, 
3.3.2 and 3.3.3.  As discussed before, most TARS can be categorized as 1) continuous, 
categorical, or time-adaptive, according to the treatment given to time information, and as 
2) heuristic-based or model-based, according to the type of recommendation techniques 
used for rating estimation. Table 3.1 groups representative TARS approaches using these 
two orthogonal dimensions, including example references. 
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Table 3.1. Overview of time-aware recommender systems in terms of algorithmic approaches 
and time treatment. 

 Algorithmic approach 

Heuristic-based Model-based 

T
im

e 
tr

ea
tm

en
t 

Continuous 
TARS 

• Time decay (Ding and Li, 2005) 
• Time window (Gordea and Zanker, 

2007) 
• Temporal similarity (Hermann, 2010) 

• Matrix Factorization with 
temporal dynamics (Koren, 
2009a) 

• MF with temporal dynamics and 
session factors (Koenigstein et 
al., 2011) 

• Tensor Factorization (Xiong et 
al., 2010) 

Categorical 
TARS 

• kNN-based Pre-Filtering (Adomavicius 
et al., 2005) 

• kNN-based Post-Filtering (Panniello et 
al., 2009b) 

• Micro-profiles (Baltrunas and 
Amatriain, 2009) 

• Support Vector Machines (Oku 
et al., 2006) 

• Tensor Factorization 
(Karatzoglou et al., 2010) 

Time-
Adaptive 

RS 

• Time-based CF with implicit feedback 
(Lee et al., 2008, 2009) 

• Recency-based CF (Ding et al., 2006) 
• Time series of ratings (Zimdars et al., 

2001; Min and Han, 2005; Cao et al., 
2009) 

• Time-based pruning (Tang et al., 2003) 
• Adaptive Neighbors (Lathia et al., 

2009a) 

• Temporal Order Modeling 
(Karatzoglou, 2011) 

• Time-dependent blending (Jahrer 
et al., 2010) 

 

We note that the most flexible TARS category corresponds to categorical TARS, 
since their modeling scheme lets include other type of categorical context dimensions, such 
as location and social companion; in fact, most TARS in this category are actually CARS 
that incorporate some time context information. However, its main drawback is the 
difficulty to model changes in user preferences through time; in general, it only models 
periodicity of preferences. This disadvantage is addressed by some model-based TARS that 
combine continuous and categorical time context variables. In particular, the matrix 
factorization with temporal dynamics model by Koren (2009) can handle factors associated 
with categorical context data, thus enabling exploit both time representations (categorical 
time variables can be derived from continuous time information). Other factorization-based 
methods such as Tensor Factorization can also handle both representations. However, more 
research is required in order to find the best modeling approach that properly integrates 
continuous and categorical time context information. 
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The methods presented in the table have shown a superior performance when 
compared against time-unaware baselines. However, little work has been done in 
comparing different TARS proposals, to determine which ones outperform the others, and 
under which circumstances. Moreover, there is a great diversity in the evaluation protocols 
used for TARS, which difficult their comparison. In the next section, we review the most 
common of such evaluation protocols.  

3.4 Time-aware recommendation evaluation 

As discussed in the previous section, there are multiple approaches to time-aware 
recommendation. Moreover, there are several methodologies and metrics that have been 
used to evaluate such approaches. In this section, we present some representatives examples 
of those methodologies, and discuss evaluation issues arising from them. 

3.4.1 Time-aware evaluation methodologies 

Diverse methodologies for the evaluation of RS have been developed, and TARS 
evaluation has not been the exception. Based on the generic stages of offline evaluation 
introduced in Chapter 2, we may observe that the training-test splitting process is the most 
influential step because it defines the (training) data that will be used for building a 
recommender system, and the main (test) data that will be used for performing 
recommendation evaluations. Due to these facts, in the following we focus our discussion 
on the training-test splitting process. 

One of the most widely used methodologies for TARS evaluation is the one utilized 
in the Netflix Prize competition (Bennett and Lanning, 2007). It has been used in 
publications related with the competition, as well as other publications using the Netflix 
Prize dataset. In this methodology, ratings from each user are sorted according to their 
timestamps. Then, a fixed number 𝑛𝑓 of ratings from each user are assigned to the test set, 
and the remaining ratings are assigned to the training set (Bennett and Lanning, 2007). 
Figure 3.9 shows a schematic view of this training-test splitting process. The figure shows 
the items rated by each user (represented as triangles) sorted by rating time, indicating 
which ratings are assigned to the test set. In the figure, 𝑛𝑓 = 3, and the shadowed ratings 
represent the ones assigned to the test set.  

We observe that this methodology ensures that all users have an equal number of test 
ratings12. However, we also observe that the timestamps of test ratings from some users 
may be lower (i.e., earlier) than the timestamps of training ratings from other users. In case 
                                                 
12 In strict sense, the described methodology ensures that most users will have an equal number of test ratings. 
In those cases where a user has few ratings, assigning 𝑛𝑓 ratings to the test set may leave the user with no or 
few training ratings. In such a case, an alternative condition may be defined, e.g. assigning only the half of the 
user’s ratings to the test set. 
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of CF-based TARS, this may imply that some ratings whose values would not be known in 
a “real-world” setting (one that respects time order of the whole set of ratings) can be used 
to predict some other ratings. 

 
Figure 3.9. Schematic view of training-test splitting of ratings performed in the evaluation 
methodology used in the Netflix Prize competition, among many others. 

An alternative methodology used in (Lathia et al., 2009a) and other works attempts to 
mimic how the training-test splitting would be in real-world operation of RS, that is, using 
a strict time-based splitting. In this case, a particular date/time is selected as splitting point, 
and all ratings prior to that time are used as training data, while ratings after that time are 
used as test data. This is equivalent to start the evaluation of a deployed RS in the defined 
splitting date/time. All data stored by the RS prior to that time can be used to compute 
predictions, but none after that time. Figure 3.10 shows a schematic view of this training-
test splitting process. In the figure the dotted vertical line represents the splitting date/time, 
and the shadowed ratings represent the ones assigned to the test set. 

 
Figure 3.10 Schematic view of a training-test splitting of ratings that mimic real-world 
operation of RS. 
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We observe that in this case, there are a varying number of test ratings for the users. 
Moreover, some users may have all their ratings assigned to the test set, if they rated all 
items consumed after that time; or conversely, all their ratings may be assigned to the 
training set if the users provided all their ratings before that time. Despite this, we note that 
this scenario seems more realistic than the one used in the Netflix Prize competition, from a 
temporal point of view. 

A third methodology that has been used in several works corresponds to a random 
(time-independent) training-test splitting. In this case, a random selection of ratings is 
assigned to the test set, and the remaining ratings are assigned to the training set. Figure 
3.11 shows a schematic view of a random training-test splitting. In the figure, the shadowed 
ratings represent the ones assigned to the test set. 

 
Figure 3.11. Schematic view of a random training-test splitting of ratings. 

We observe that in this case there are no restrictions on which ratings can be used for 
training a RS. Hence, although this methodology does not take the time of ratings into 
consideration, it has been used for evaluating some TARS, mainly those exploiting time in 
a categorical representation.  

3.4.2 Time-aware evaluation metrics 

There are a few metrics in RS literature that explicitly consider time in their formulations. 
In general, recommendation results from TARS are assessed by means of traditional 
metrics such as RMSE and Precision, varying the evaluation methodology followed. 
Despite this, in the following we review some proposed performance metrics for time-
aware recommendation. 

Lathia et al. (2009b) propose a time-aware accuracy metric based on RMSE, which 
they called time-averaged RMSE (𝑅𝑀𝑆𝐸𝑇𝐴). This metric is computed as the RMSE on 
ratings made until a particular time 𝑡𝑡: 
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𝑅𝑀𝑆𝐸𝑇𝐴 = �
∑ ��̅�𝑝𝑢,𝑖 − 𝑝𝑝𝑢,𝑖�𝑟𝑢,𝑖∈𝑇𝑒𝑡

|𝑇𝑒𝑡|
 

where 𝑇𝑒𝑡 is the set of ratings in 𝑇𝑒 made until time 𝑡𝑡, i.e., 𝑇𝑒𝑡 = �𝑝𝑝𝑢,𝑖,𝑡′: 𝑝𝑝𝑢,𝑖,𝑡′ ∈ 𝑇𝑒, 𝑡𝑡′ ≤
𝑡𝑡�. This metric is intended to be applied iteratively during a long period of time, in order to 
observe the evolution of rating prediction accuracy through time. 

Alternatively, Lathia et al. (2010) address the problem of measuring diversity and 
novelty of recommendations through time. They use set theoretic differences in order to 
assess such metrics. In the case of time-aware diversity, they compare the differences 
between consecutive recommendation lists presented to users, aiming to measure (and 
avoid) the repetition of recommendations: 

𝑡𝑡𝑡𝑡𝑣𝑒𝑝𝑝𝑠𝑡𝑡𝑡𝑡𝑦@𝑁�𝐼𝑡𝑜𝑝𝑁𝑢,𝑡1
, 𝐼𝑡𝑜𝑝𝑁𝑢,𝑡2

 � =
�𝐼𝑡𝑜𝑝𝑁𝑢,𝑡1

 \ 𝐼𝑡𝑜𝑝𝑁𝑢,𝑡2
 �

𝑁
 

where 𝐼𝑡𝑜𝑝𝑁𝑢,𝑡
 is the set op top-N items recommended at time 𝑡𝑡. As noted by the authors, 

one limitation of this metric is that it measures the diversity between two lists, highlighting 
the extent to which users are sequentially offered the same recommendations, but does not 
provide take into account how recommendations change in terms of new items. They also 
propose a novelty metric that compares a recommendation list to the set of all items that 
have been recommended until time 𝑡𝑡, 𝐼𝑟𝑒𝑐𝑜𝑚𝑚∗

𝑢,𝑡: 

𝑛𝑝𝑝𝑣𝑒𝑙𝑡𝑡𝑦@𝑁 �𝐼𝑡𝑜𝑝−𝑁𝑢,𝑡
� =

�𝐼𝑡𝑜𝑝−𝑁𝑢,𝑡
\ 𝐼𝑟𝑒𝑐𝑜𝑚𝑚∗

𝑢,𝑡
�

𝑁
 

These metrics represent alternatives to traditional metrics in order to measure 
recommendation properties in a time-aware manner. However, they have been rarely used 
in recommendation evaluation, probably due to the difficulty for delivering a unique 
resume value –they provide different values in different points of time. Most of the revised 
TARS have been evaluated by means of traditional error metrics such as MAE and RMSE 
for measuring rating prediction, and ranking accuracy metrics such as Precision and Recall 
for assessing the top-N recommendations task. In this context, it is important to note that 
the majority of TARS research has been focused on the rating prediction task. 

3.4.3 Open problems in time-aware recommendation evaluation 

We observe from the literature review that TARS evaluation presents important differences 
in the methodologies followed for assessing recommendation quality properties. The 
availability of rating timestamps can be considered as the source of major differences in the 
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evaluation of TARS compared to other types of RS. In particular, the ability to order ratings 
according to timestamps before training-test data splitting lets define this splitting in 
various ways, as discussed in Section 3.4.1. The possibilities range from maintaining a 
random data split–as mostly done in time-unaware RS evaluation– to a strict time-aware 
split. In the latter, a test rating 𝑝𝑝𝑇𝑒 ∈ 𝑇𝑒 has a timestamp posterior to any training rating 
𝑝𝑝𝑇𝑟 ∈ 𝑇𝑝𝑝, i.e., a time-dependent order of rating data is used: ∀𝑝𝑝𝑇𝑒 , 𝑝𝑝𝑇𝑟 ,𝒯(𝑝𝑝𝑇𝑒) > 𝒯(𝑝𝑝𝑇𝑟) 
(see Figure 3.10). We note that this case is the most similar to a real-world setting, where a 
RS may only use past recorded data in order to estimate future user preferences.  

The methodologies used for TARS evaluation make use of several intermediate 
approaches that highly differ from one work to another, and we hypothesize that existing 
methodological differences may have a significant effect on the assessment of TARS 
performance. For instance, in many methodologies, time-dependent order of data is not 
used to perform the training-test splitting, which may represent an unfair setting for TARS 
with respect to time-unaware methods unable to exploit time information.  

As a matter of fact, some studies have shown divergences on the ground assumption 
in which recommendation models are built, casting doubt on the generalization of time-
aware recommendation capabilities. The results from (Ding and Li, 2005) show 
recommendation improvements when applying a time decay weight, while experiments on 
the Netflix Prize dataset (Koren, 2009a) indicate that better rating prediction is achieved 
when no time weight is applied. In experiments testing several time-dependent rating data 
partitioning for creating contextual micro-profiles, Baltrunas and Amatriain (2009) found 
that the scarce {even hours, odd hours} partitioning provides higher recommendation 
improvements than other partitions such as {morning, evening} and {workday, weekend}. 
In words of the authors, the hours partition correspond to a “meaningless” partition, and 
calls for further research. Additionally, Lathia et al. (2009a) found that improvements 
obtained by some non-contextualized algorithms on the Netflix Prize dataset do not hold 
when computing predictions on an iterative basis by strictly using past ratings to predict 
future ratings –the actual setting for a real-world recommender systems. 

Despite the fact that a number of reasons could be enumerated for explaining such 
contradictory findings (e.g. different application domains, item characteristics and 
contextualization schemas for time information), we believe evaluation plays a prominent 
role. The existence of multiple evaluation methodologies, each of them with distinct 
assumptions and purposes, makes it easy to find an evaluation protocol suitable for a 
particular algorithmic approach, but ineligible or non-retributive for others. Problems that 
arise from this situation thus represent an increasing impediment to fairly compare results 
and conclusions reported in different studies, and make the selection of the best TARS 
solution for a given task more difficult. 
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3.5 Summary 

Exploiting the context in which users express their preferences has been proven very 
valuable for increasing the performance of recommendations. Among existing contextual 
dimensions, time information can be considered as one of the most useful ones. Moreover, 
time context information is in general easy to collect without additional user efforts and 
strict device requirements. Due to these benefits, recent years have been prolific in the 
investigation and development of time-aware recommender systems. In this chapter, we 
have revised and classified state-of-the-art literature on TARS. 

Despite the benefits of time-aware recommendation, some studies have shown 
important divergences regarding the results achieved by different approaches. We 
hypothesize that methodological differences plays a prominent role in explaining these 
divergences. In the next Part of this thesis, we present the research conducted to get a 
deeper understanding of the impact of existing differences in TARS evaluation, by means 
of the development of a methodological framework that lets define and analyze the key 
conditions that drive TARS evaluation methodologies. 

 



 

 

Part II  
 
Characterizing a robust time-aware 
recommendation evaluation protocol 
 

 





 

 

Chapter 4  
 
A methodological framework for         
time-aware recommendation evaluation 

A wide range of approaches dealing with time context information in user modeling and 
recommendation strategies has been proposed. In the literature, however, reported results 
and conclusions about how to incorporate and exploit time information within the 
recommendation process are contradictory in some cases. The existence of multiple 
evaluation methodologies seems to have a key role in explaining such opposing outcomes. 
Moreover, the lack of standardization in evaluation of TARS represents an impediment to 
fairly compare results from different studies. 

In this chapter we propose a descriptive methodological framework aimed to 
characterize the TARS evaluation process, and make it fair and reproducible under different 
circumstances. The framework is based on a set of key evaluation conditions defined from 
the analysis of the TARS literature. These conditions address a number of general 
methodological issues to be faced in the experimental design of an offline evaluation of 
TARS. Moreover, the formalism of the framework includes the definition of a splitting 
procedure that lets precisely build and replicate data splits for evaluation. In Section 4.1 we 
briefly analyze methodological differences among TARS evaluation protocols, and pose 
methodological questions and related evaluation conditions, namely data splitting 
conditions –which are related to the training-test data splitting process–, cross-validation 
conditions, and top-N recommendations conditions – which are specific for the top-N 
recommendations task. In Section 4.2 we introduce the main concepts of the proposed 
framework. In Section 4.3 we detail the data splitting conditions, which are related to the 
rating ordering of training and test sets, the size of these sets, and the base data user for 
building the splits. In Section 4.4 we present cross-validation conditions, which include 
time-independent and time-dependent conditions. In Section 4.5 we describe the conditions 
that are specific for top-N recommendations evaluation, namely the formation of the set of 
items to be ranked, and the identification of items relevant to the user. Finally, in Section 
4.6 we end the chapter with partial conclusions regarding the evaluation conditions defined. 
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4.1 Evaluation conditions for time-aware recommender systems 

A review of proposed TARS and protocols followed to evaluate such systems shows 
important methodological differences in the assessment of recommendation results across 
studies. Although the diversity in evaluation protocols is not a problem per se, it makes the 
comparison of TARS –and consequently the selection of the appropriate recommendation 
approach for a particular application or domain– difficult. In order to deal with this 
situation, a formal description of decisions on existing alternatives in the evaluation of 
TARS is needed. In this section we identify the main decisions to be made from the 
analysis of divergences in methodologies described in Chapter 3 (Section 3.4.1), and state a 
set of methodological questions to be addressed in the design of a TARS evaluation 
protocol. 

An important source of methodological variations is the training-test rating splitting 
process, particularly when rating timestamps are available, as is the case in most TARS 
studies. As a matter of fact, in the literature one can find diverse implementations of the 
hold-out method (Duda et al., 2001), which has been widely used for rating data splitting 
(Gunawardana and Shani, 2009). A first decision to be made when designing an evaluation 
setting is whether the rating splits should be based on some rating ordering criterion. For 
instance, we may use a time-dependent ordering in which all ratings are first ordered 
according to their timestamps. Next, those ratings prior to a particular date are selected for 
training, whereas the remaining ratings are selected for test, as done in (Panniello et al., 
2009a). We may, on the other hand, use a random selection of training and test ratings, 
without considering the ratings’ timestamps or any ordering criterion, as done in (Stormer, 
2007). Between these two extreme cases, there are intermediate options. For example, 
ordering the ratings by timestamp separately for each user, and assigning the most recent 
ratings of each one to the test set, as done in the Netflix Prize competition (Bennett and 
Lanning, 2007). 

A careful analysis of differences among the reviewed evaluation protocols shows that 
the ordering –and the overall splitting process– can also have different base rating sets. 
That is, the splits can be created on the base of the whole rating matrix, as done in 
(Karatzoglou, 2011), or can be created independently over each user’s ratings, as done in 
(Koenigstein et al., 2011). 

The number of ratings selected for the test set is also chosen differently among 
TARS-related papers. An example is the typical proportion-based schema (e.g. 80% of the 
ratings for the training set, and the remaining 20% for the test set) used e.g. in (Lee et al., 
2010). Other strategies, in contrast, select a fixed number of ratings per user, as done in 
(Ding et al., 2006), or set a threshold date to select ratings before (after) that date for the 
training (test) set, as done in (Lathia et al., 2009a), to name a few. 
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Additionally, there are cross-validation strategies (Stone, 1974) aimed to increase the 
generalization of the evaluation results on independent data. A popular strategy is to use 
some variant of the resampling method, such as X-fold cross-validation, but other strategies 
have also been used in TARS evaluation. These techniques let average results over several 
test sets extracted from 𝑀, by means of repeatedly splitting the data (Gunawardana and 
Shani, 2009). 

Another important source of methodological differences is related to specific 
requirements for assessing particular recommendation tasks. For instance, in order to 
evaluate the top-N recommendations task, we have to establish a set of target items a 
recommender has to rank. As described in (Bellogín et al., 2011), several approaches have 
been used to generate the set of target items. For example, ranking only those items for 
which the user’s relevance can be determined (Adomavicius et al., 2005); or mixing items 
considered relevant for the user (e.g. highly rated items) with other items considered as 
non-relevant (e.g. unrated items), as done in (Cremonesi et al., 2010). 

Moreover, for the top-N recommendations task, the concept of item relevance –an 
estimation of the user’s interest in an item– has been interpreted differently. One 
interpretation is that all items in the target user’s test set are relevant. It has been argued, 
however, that some items in the user’s test set should be treated as non-relevant; consider 
for example a one-time-played song, or a movie rated with 1 in a 1-5 rating scale. 
Furthermore, as noted by Parra and Amatriain (2011), in some scenarios, such information 
may be treated as evidence of the user’s lack of interest in an item. For instance, the authors 
argue that one can assume that a user did not like a TV series she watched only once. 

The above discussion expresses that there are several potential sources of divergence 
in protocols used for evaluating TARS. These potential sources of differences lead to a set 
of methodological questions regarding the design of a TARS evaluation protocol: 

• MQ1: What base rating set is used to perform the training-test splitting? 

• MQ2: What rating ordering is used to assign ratings to the training and test sets? 

• MQ3: How many ratings comprise the training and test sets? 

• MQ4: What cross-validation method is used for increasing the generalization of 
evaluation results? 

In the case of top-N recommendations task evaluation, there are a set of additional 
methodological questions that must be answered: 

• MQ5: Which items are considered as target items? 

• MQ6: Which items are considered relevant for each user? 
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In the subsequent sections we describe the possible ways to address each of the above 
methodological questions by means of a number of evaluation conditions, which we have 
defined from the revision of evaluation protocols used in the TARS literature. These 
evaluation conditions are base rating set conditions, addressing MQ1; rating ordering 
conditions, addressing MQ2; rating set size conditions, addressing MQ3; cross-validation 
conditions, addressing MQ4; target item conditions, addressing MQ5; and relevant item 
conditions, addressing MQ6. We describe and formalize these conditions in the context of a 
generic descriptive methodological framework, aiming to facilitate a precise 
communication of the evaluation conditions that drive an evaluation process. 

4.2 A methodological description framework for TARS 
evaluation conditions 

In the following we define the methodological framework aimed to address the 
methodological questions stated in the previous section. This framework is constituted by a 
set of evaluation conditions, and a procedure to make the evaluation process fair and 
reproducible under different circumstances. We begin by giving some general definitions of 
concepts used in the framework, and next we provide detailed descriptions of each 
evaluation condition involved in the framework. 

Definition 1 A split Σ of the rating matrix 𝑀 is a partition of 𝑀 into a training set 𝑇𝑝𝑝 and 
a test set 𝑇𝑒, that is, Σ = 〈𝑇𝑝𝑝,𝑇𝑒〉 | 𝑇𝑝𝑝 ∩ 𝑇𝑒 = ∅. 

Definition 2 A splitting procedure is an algorithm that takes as input the 4-tuple 〈𝑀 ×
𝒷𝒷 × ℴ × 𝓈𝓈〉, where 𝒷𝒷 ∈ 𝔅 is a condition in the set 𝔅 of conditions to define a base rating 
set, ℴ ∈ 𝒪 is a condition in the set 𝒪 of conditions to define an ordered set of ratings, and 
𝓈𝓈 ∈ 𝒮 is a condition in the set 𝒮 of conditions to define the size of the training and test sets 
of a split. The output of a splitting procedure is a split Σ. 

Definition 3 A base rating set condition 𝒷𝒷 ∈ ℬ  specifies the set of base datasets 
𝑀𝒷𝒷 = {𝑀1,𝑀2,⋯ ,𝑀𝑚} generated from 𝑀, being 𝑀 = ⋃ 𝑀𝑘𝑘 ,𝑀𝑘 ⊆ 𝑀. 

Definition 4 A rating ordering condition ℴ ∈ 𝒪 establishes an ordered sequence for a set 
of ratings. The sequence 𝑆𝑒𝑞𝑘 defined by the ordering condition ℴ over the ratings in 𝑀𝑘 
is: 

𝑆𝑒𝑞𝑘 = �𝑝𝑝(1), 𝑝𝑝(2),⋯ , 𝑝𝑝(|𝑀𝑘|)� | 𝑝𝑝(𝑗) ∈ 𝑀𝑘 

where 𝑝𝑝(𝑗) denotes the 𝑗-th rating in the sequence. 



A methodological framework for time-aware recommendation evaluation 69 

 

Definition 5 A rating set size condition 𝓈𝓈 ∈ 𝒮 sets a criterion for computing the number 
of ratings from 𝑆𝑒𝑞𝑘 that will be assigned to the training and test sets 𝑇𝑝𝑝 and 𝑇𝑒, denoted 
by 𝓈𝓈𝑇𝑟(𝑆𝑒𝑞𝑘) and 𝓈𝓈𝑇𝑒(𝑆𝑒𝑞𝑘). 

Algorithm 4.1 describes the steps of a splitting procedure. First, the base rating sets are 
built (step 1). Then, according to the rating ordering condition ℴ, a sequence of ratings is 
generated from each base dataset (step 2). After that, according to the rating set size 
condition 𝓈𝓈 (and a set of parameter values depending on the value of 𝓈𝓈), the number of 
training and test ratings is established (step 3). Taking these sizes into account, the first 
ratings in each sequence are assigned to the training set, and the following ratings are 
assigned to the test set (step 4). 

Splitting Procedure(𝑴, 𝓫, 𝓸, 𝓼) 

Input: Rating matrix 𝑀, base rating set condition 𝒷𝒷, rating 
ordering condition ℴ, rating set size condition 𝓈𝓈 

Output: Split Σ = 〈𝑇𝑝𝑝,𝑇𝑒〉 

Step 1: According to 𝒷𝒷, build the base  rating sets 𝑀𝒷𝒷 =
{𝑀1,𝑀2,⋯ ,𝑀𝑚}. 

Step 2: According to ℴ, generate the sequences 𝑆𝑒𝑞𝑘 from the 
rating sets 𝑀𝑘. 

Step 3: According to 𝓈𝓈, compute the sizes 𝓈𝓈𝑇𝑟(𝑆𝑒𝑞𝑘) and 
𝓈𝓈𝑇𝑒(𝑆𝑒𝑞𝑘). 

Step 4: For each ordered sequence 𝑆𝑒𝑞𝑘: 

4.1: Find the rating 𝑝𝑝(𝑝𝑘) such that the subsequence 
�𝑝𝑝(1), 𝑝𝑝(2),⋯ , 𝑝𝑝(𝑝𝑘) �, 𝑝𝑝(𝑗) ∈ 𝑆𝑒𝑞𝑘 contains 𝓈𝓈𝑇𝑟(𝑆𝑒𝑞𝑘) ratings. 

4.2: Assign the first 𝑝𝑝𝑘 ratings to the training set 𝑇𝑝𝑝, 
and the remaining ratings to the test set 𝑇𝑒, 
forming the split Σ = 〈𝑇𝑝𝑝,𝑇𝑒〉. 

Algorithm 4.1. Splitting procedure to generate training and test rating sets. 

According to the generic stages of offline evaluation protocols, described in Chapter 2 
(Section 2.4.2), in order to perform the assessment of recommendations, we also need to 
process the test set data, build (train) the recommender, and perform the recommendation 
process. The training set obtained from the splitting procedure is used as input data for 
building the RS. In case of assessing a top-N recommendations task, the test set is further 
processed for obtaining a set of target items to rank, and selecting the set of relevant items 
for each user. Then, recommendations are computed to obtain rating predictions for items 
in the test set, or generate a ranking of items in case of top-N recommendations. When 
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cross-validation (CV) methods are utilized, the above stages are repeated according to the 
CV condition used. 

In the next sections we provide specific formulations for these evaluation conditions. 
We group conditions in 𝔅, 𝒪 and 𝒮 as data splitting conditions, and specific conditions for 
ranking items as top-N recommendations conditions. 

4.3 Data splitting conditions 

Data splitting conditions are involved in the training-test splitting process, namely the base 
rating set (𝔅), the rating ordering (𝒪), and the rating set size (𝒮) conditions, which are 
detailed in the following. 

4.3.1 Base rating set conditions 

The base rating set conditions state whether the rating ordering and rating set size 
conditions in steps 2 and 3 of the splitting procedure (described in Algorithm 4.1) are 
applied on the whole set of ratings in 𝑀, or independently in different rating sets 𝑀𝑘 ⊆ 𝑀. 
Specifically, we consider two conditions, namely the community-centered (𝒷𝒷𝑐𝑐) and the 
user-centered (𝒷𝒷𝑢𝑐) base rating set conditions. 

Community-centered base rating set condition. A single base rating set with all the ratings 
in 𝑀 is used: 

𝑀𝒷𝒷𝑐𝑐 = 𝑀 

As a result of the application of rating ordering and rating set size conditions on the full set 
of ratings when 𝒷𝒷𝑐𝑐 condition is applied, some users may have all or none of their ratings in 
the test set. This makes no possible to assess the RS performance for such users, as in 
general CF strategies cannot generate recommendations for users without profiles (i.e., 
without training ratings), and metrics cannot be computed without ground truth data (i.e., 
test ratings). This problem is due to large differences on rating patterns between users, 
existing some users with many more ratings than others, and/or different rating 
distributions across time. A solution for this is to split each user’s ratings separately. 

User-centered base rating set condition. A base rating set 𝑀𝑢 is built with the ratings of 
each user 𝑢𝑢: 

𝑀𝒷𝒷𝑢𝑐 = {𝑀𝑢 | 𝑢𝑢 ∈ 𝑈},𝑀𝑢 = �𝑝𝑝𝑢,⋅ | 𝑝𝑝𝑢,⋅ ∈ 𝑀� 

Figure 4.1 shows a schematic view of base datasets generated by a user-centered base 
rating set conditions. The rating matrix 𝑀 in the figure is a quite simple one, with only five 
users and six items, in order to facilitate the visualization. 
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Figure 4.1. Schematic view of the application of a user-centered base condition. 

In the figure the ratings in 𝑀 from each user 𝑢𝑢𝑗  form an independent rating set, 𝑀𝑢𝑗, that 
will serve for the application of other data splitting conditions. By performing the splitting 
independently on each user’s ratings, we can ensure that all users will have ratings in both 
the training and test sets13. 

The above defined base rating set conditions correspond to the most common settings 
used in TARS evaluation. Other possible conditions, such as item-centered, are less 
practical since recommendation performance is usually assessed for each user. After the 
selection of one base rating set condition, a rating ordering condition has to be chosen, as 
detailed in the next subsection. 

4.3.2 Rating ordering conditions 

The rating ordering conditions establish the type of ordering to apply in the generation of 
the rating sequence(s) used to make the training-test set splitting. We define two rating 
                                                 
13 In a strict sense, a user-centered split ensures that most users will have training and test data, but there may 
be some users without enough ratings for both training and test sets. This will depend not only on the number 
of ratings of each user, but also on the definition of other evaluation conditions like the size condition. 

us
er

s



72  Chapter 4 

ordering conditions related with the evaluation settings found in the TARS literature 
review: a time-independent (i.e., random) ordering (ℴ𝑡𝑖), and a time-dependent ordering 
(ℴ𝑡𝑑). 

Time-independent rating ordering condition. The timestamps associated to ratings are not 
considered for ordering the latter in the training and test datasets. Other ordering criteria 
may be used, but in general, the sequence14 they generate consists of a random selection of 
ratings from the base rating set 𝑀𝑘: 

𝑀𝑘
ℴ𝑡𝑖��𝑆𝑒𝑞𝑘𝑡𝑖 

Figure 4.2 shows an example rating sequence (lower side) built from a community-centered 
base rating set and a time-independent rating ordering condition. In the upper side of the 
figure, the base rating set –which is equivalent to the rating matrix 𝑀 in this case– remarks 
the timestamps of the ratings. Only one sequence is formed, and timestamps are not 
considered in the sequence’s order (random sequence). 

 

Figure 4.2. Example of rating sequence built from a community-centered base rating set using 
a time-independent rating ordering condition. 

The main advantage of this rating ordering condition is its applicability, since it does 
not require timestamp information. Its main drawback, from a contextual point of view, is 
that time dependencies between training and test ratings do not hold. This means that the 
timestamp of some training ratings could be more recent than the timestamp of test ratings, 
as shown in Figure 3.11. That is, some ratings included in the training set may have been 
                                                 
14 Note that each user’s rating sequence 𝑆𝑒𝑞𝑢𝑡𝑖 is generated independently in case of using a user-centered base 
rating set condition. 
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produced after some ratings in the test set. This situation can be interpreted as an evaluation 
of TARS that have knowledge about “future” preferences of the users, which is far away 
from a real-world setting, and may give TARS unfair advantages in an offline evaluation 
(Campos et al., 2011b). Using a time-dependent order can help avoid this problem. 

Time-dependent rating ordering condition. The rating sequence is ordered according to 
the rating timestamps by means of a time-dependent rating ordering ℴ𝑡𝑑: 

𝑀𝑘
ℴ𝑡𝑑��𝑆𝑒𝑞𝑘𝑡𝑑 

being 𝑆𝑒𝑞𝑘𝑡𝑑  ordered by increasing rating timestamp, i.e., 𝒯�𝑝𝑝(𝑗)� ≤  𝒯�𝑝𝑝(𝑗+1)�,∀𝑝𝑝(𝑗) ∈
𝑆𝑒𝑞𝑘𝑡𝑑 15. Figure 4.3 shows different rating sequences built from user-centered base rating 
sets, using a time-dependent rating ordering condition. The left part of the figure shows the 
base rating sets with the timestamps of their ratings. Note that base rating sets in Figures 
4.2 and 4.3 are built from the same rating matrix 𝑀  showed in Figure 4.1, but using 
different base rating set conditions. In Figure 4.3, one rating sequence is built from each 
base rating set –that is, for each user’s ratings a sequence is built–, and each sequence is 
strictly ordered according to the ratings’ timestamps, as shown in the right side of the 
figure. 

 

Figure 4.3. Example of rating sequences built from user-centered base rating sets, using a 
time-dependent rating ordering condition.  

This rating ordering condition aims to maintain time dependencies between ratings, 
and is only applicable when ratings have timestamp information. Thus, when the desired 
evaluation setting is aimed to mimic real-world conditions (as illustrated in Figure 3.10), a 
time-dependent ordering may be preferred. 

It is important to note that a strict time-dependent ordering between training and test 
ratings can be generated only by using a community-centered base rating set condition. In 

                                                 
15 In case of ties, they could be broken by sorting the tied ratings by user id. If still there are tied ratings, then 
they could be sorted by item id (note that in real datasets it is possible to find users with several ratings with 
the same timestamp due to e.g. inconsistencies in the log subsystem).  
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such a case, all the test ratings have timestamps more recent than the timestamp of any 
training rating, that is, ∀𝑝𝑝𝑇𝑟 ∈ 𝑇𝑝𝑝, 𝑝𝑝𝑇𝑒 ∈ 𝑇𝑒,𝒯(𝑝𝑝𝑇𝑟) < 𝒯(𝑝𝑝𝑇𝑒). This combination generates 
an evaluation setting similar to a real-world setting, where a deployed RS can only be 
trained with data available up to a particular moment, and its effectiveness is usually 
evaluated with user feedback provided afterwards. Examples of this approach are presented 
in (Ardissono et al., 2004) and (Panniello et al., 2009a). A drawback of this combination –
𝒷𝒷𝑐𝑐 and ℴ𝑡𝑑– is that, due to different user rating distributions through time, there may be 
many users without ratings either in the training or in the test set. 

When a time-dependent rating ordering condition is used with a user-centered base 
rating set –𝒷𝒷𝑢𝑐  and ℴ𝑡𝑑–, each user’s ratings are time-sorted independently from other 
users’ ratings (see Figure 4.3). This means that time-dependent ordering of ratings is 
maintained for each user independently, and thus cross-user time dependencies are not 
maintained; some users may have training ratings subsequent to test ratings of other users. 
On the other hand, by using this combination TARS do not have access to future 
knowledge of the target user (in contrast to using ℴ𝑡𝑖), and the problem of leaving many 
users with only training or test ratings is avoided (in contrast to using 𝒷𝒷𝑐𝑐).  

The combination of user-centered and time-dependent ordering conditions has been 
one of the most used in TARS evaluation, probably because it was used for building the 
training and test sets of the Netflix Prize competition (Bennett and Lanning, 2007). It has 
been argued, however, that TARS that make recommendations for a target user by 
exploiting knowledge about other users’ “future” preferences (with respect to the target 
recommendation time) may have unfair advantages in an evaluation (Campos et al., 2011b). 

Once the rating ordering condition has been established, only the size of the training 
and test rating sets remains to be decided in order to perform the training-test splitting 
procedure. The conditions defining these sizes are described in the next subsection. 

4.3.3 Rating set size conditions 

The rating set size evaluation conditions establish how many ratings from each rating 
sequence 𝑆𝑒𝑞𝑘 are included in the training and test sets, 𝑇𝑝𝑝 and 𝑇𝑒. In the literature, it is 
common to establish and report the size of the test set, and there are several ways to set that 
size; some of them can be used in combination with any other evaluation conditions, while 
others can only be used with a particular combination of conditions, as we shall explain 
below. The covered conditions include proportion-based size, fixed size, and date-based 
size. Note that, as described in Algorithm 4.1, the rating ordering is considered when 
assigning ratings to training and test sets. In general, the first 𝓈𝓈𝑇𝑟(𝑆𝑒𝑞𝑘) ratings of 𝑆𝑒𝑞𝑘 are 
assigned to 𝑇𝑝𝑝, and the remaining 𝓈𝓈𝑇𝑒(𝑆𝑒𝑞𝑘) ratings are assigned to 𝑇𝑒. 
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Proportion-based size. Denoted by 𝓈𝓈𝑝𝑟𝑜𝑝, this condition establishes that a proportion 𝑞𝑝𝑟𝑜𝑝 
of the ratings in each 𝑆𝑒𝑞𝑘  is used as test data, and the remaining ratings are used as 
training data, that is, 𝓈𝓈𝑝𝑟𝑜𝑝𝑇𝑒 (𝑆𝑒𝑞𝑘) = 𝑞𝑝𝑟𝑜𝑝 ⋅ |𝑆𝑒𝑞𝑘|  and 𝓈𝓈𝑝𝑟𝑜𝑝𝑇𝑟 (𝑆𝑒𝑞𝑘) = �1 − 𝑞𝑝𝑟𝑜𝑝� ⋅
|𝑆𝑒𝑞𝑘|, with 𝑞𝑝𝑟𝑜𝑝 ∈ [0,1]16. 

When a user-centered base rating set condition (𝒷𝒷𝑢𝑐) is used –i.e., a rating sequence 
is built for each user– a proportion-based rating set size ensures that different users have a 
similar proportion of their ratings in the training and test sets. An evaluation setting defined 
with this combination on conditions is used in (Zheng and Li, 2011). 

Fixed size. Denoted by 𝓈𝓈𝑓𝑖𝑥 , this condition establishes that a fixed number 𝑞𝑓𝑖𝑥  of the 
ratings in each 𝑆𝑒𝑞𝑘  are used as test data, that is, 𝓈𝓈𝑓𝑖𝑥𝑇𝑒 (𝑆𝑒𝑞𝑘) = 𝑞𝑓𝑖𝑥  and 𝓈𝓈𝑓𝑖𝑥𝑇𝑟 (𝑆𝑒𝑞𝑘) =
|𝑆𝑒𝑞𝑘| − 𝑞𝑓𝑖𝑥. 

When using 𝒷𝒷𝑢𝑐 a fixed rating set size condition ensures that the same number of 
ratings is assigned to the users’ test sets, regardless the number of training ratings of each 
user. Figure 4.4 shows an example of the application of 𝓈𝓈𝑓𝑖𝑥 . In the figure, the rating 
sequences are built using 𝒷𝒷𝑢𝑐  and ℴ𝑡𝑑 , and 𝑞𝑓𝑖𝑥 = 1 . The red shadowed ratings are 
assigned to 𝑇𝑒, and the remaining (green shadowed) ratings are assigned to 𝑇𝑝𝑝.  

 

Figure 4.4. Example of the application of a fixed size condition (𝒒𝒇𝒊𝒙 = 𝟏) on sequences of 
ratings built with a user-centered base rating set and a time-dependent rating ordering 
conditions. 

Given that some users may have less than 𝑞𝑓𝑖𝑥 ratings, the rating set size condition 
can be changed for such users. For instance, in the Netflix Prize competition dataset, a fixed 
number of 𝑞𝑓𝑖𝑥 = 9 ratings of each user was selected for building the test sets, but in cases 
where |𝑆𝑒𝑞𝑢| < 18 only half of a user’s ratings were selected as test data (Bennett and 
Lanning, 2007). This can be interpreted as a mechanism switching from a fixed into a 
proportion-based rating set size condition with 𝑞𝑝𝑟𝑜𝑝 = 0.5. 

                                                 
16 In case of a non-integer size value, it could be rounded to the nearest integer value. 
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If the fixed size condition refers to the number of training ratings, all the users have 
the same number of training ratings 𝑞𝑓𝑖𝑥𝑇𝑟 , leaving the remaining ratings for the test dataset 
(whose size would vary from user to user). This latter case has been referred to as given N 
(Ding and Li, 2005), where 𝑁 = 𝑞𝑓𝑖𝑥𝑇𝑟 .  

Time-based size. Denoted by 𝓈𝓈𝑡𝑖𝑚𝑒, this rating set size condition can only be used with a 
time-dependent rating ordering condition. It establishes a threshold time 𝑞𝑡𝑖𝑚𝑒 that is used 
to assign the ratings of each 𝑆𝑒𝑞𝑘 into training and test sets. In this case the ratings with a 
timestamp after 𝑞𝑡𝑖𝑚𝑒 are assigned to 𝑇𝑒, and the ratings with a timestamp before 𝑞𝑡𝑖𝑚𝑒 are 
assigned to 𝑇𝑝𝑝. Hence, given the last index 𝑝𝑝𝑘 in 𝑆𝑒𝑞𝑘 that satisfies 𝒯�𝑝𝑝(𝑝𝑘)� ≤ 𝑞𝑡𝑖𝑚𝑒, the 
sizes 𝓈𝓈𝑡𝑖𝑚𝑒𝑇𝑟 (𝑆𝑒𝑞𝑘) = �{𝑝𝑝(1), 𝑝𝑝(2), … , 𝑝𝑝(𝑝𝑘) }�  and 𝓈𝓈𝑡𝑖𝑚𝑒𝑇𝑒 (𝑆𝑒𝑞𝑘) = |𝑆𝑒𝑞𝑘| − 𝓈𝓈𝑡𝑖𝑚𝑒𝑇𝑟 (𝑆𝑒𝑞𝑘)  are 
established, as done in (Lu et al., 2009). 

Using the time-based size condition in combination with either a community-centered 
or a user-centered base rating set condition yields equivalent training and test sets if the 
threshold 𝑞𝑡𝑖𝑚𝑒 is the same for all users. This particular case is similar to the combination 
of a community-centered base rating set, a time-dependent rating ordering, and a 
proportion-based rating set size conditions (with an appropriate 𝑞𝑝𝑟𝑜𝑝 value). 

The time-based size condition can be enhanced by incorporating an ending time limit 
𝑞𝑒𝑛𝑑_𝑡𝑖𝑚𝑒. In this case, only the ratings whose timestamps are between 𝑞𝑡𝑖𝑚𝑒 and 𝑞𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 
are assigned to the test set. Hence, given the last index 𝑙𝑘 in 𝑆𝑒𝑞𝑘 that satisfies 𝒯�𝑝𝑝(𝑙𝑘)� ≤
𝑞𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 , the sizes 𝓈𝓈𝑡𝑖𝑚𝑒𝑇𝑟 (𝑆𝑒𝑞𝑘) = 𝑝𝑝𝑘 and 𝓈𝓈𝑡𝑖𝑚𝑒𝑇𝑒 (𝑆𝑒𝑞𝑘) = 𝑙𝑘 − 𝑝𝑝𝑘  are assigned, and the 
ratings with timestamp subsequent to 𝑞𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 are discarded, as done in (Liu et al., 2010b; 
Pradel et al., 2011). In this case the assumption is that the user’s preferences (manifested as 
ratings) that were produced long after a target recommendation time should not be 
considered for assessing the quality of recommendations. Figure 4.5 shows training and test 
sets formed by applying a user-centered (right side of the figure) and community-centered 
(bottom side of the figure) base rating set conditions, time-dependent rating ordering and 
time-based rating set size conditions. In the figure 𝑞𝑡𝑖𝑚𝑒 = 𝑡𝑡8 and 𝑞𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 =  𝑡𝑡13 . The 
final training and test sets formed by using either 𝒷𝒷𝑢𝑐 or 𝒷𝒷𝑐𝑐 are equivalent. As shown in 
the figure, a disadvantage of using a 𝓈𝓈𝑡𝑖𝑚𝑒 condition is that some users may have no ratings 
assigned to the training or the test set (𝑢𝑢1 and 𝑢𝑢5 in the figure). 

An alternative way to specify a time-based size is establishing a period of time (or 
window size) 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤  to the timespan of the test ratings (e.g. 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤 = 10 
days). Hence, the ratings assigned to the test set are those starting from the last known 
rating time in each 𝑆𝑒𝑞𝑘 minus 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤. In this case, given the last index 𝑝𝑝𝑘 in 𝑆𝑒𝑞𝑘 
that satisfies 𝑡𝑡�𝑝𝑝(𝑝𝑘)� ≤ 𝑡𝑡�𝑝𝑝(|𝑆𝑒𝑞𝑘|)� − 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤 , the sizes 𝓈𝓈𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤

𝑇𝑟 (𝑆𝑒𝑞𝑘) = 𝑝𝑝𝑘 
and 𝓈𝓈𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤

𝑇𝑒 (𝑆𝑒𝑞𝑘) = |𝑆𝑒𝑞𝑘| − 𝑝𝑝𝑘 are assigned, as done in (Zhan et al., 2006). 
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Figure 4.5. Example training and test sets formed by applying a time-based size condition 
(𝒒𝒕𝒊𝒎𝒆 = 𝒕𝟖,𝒒𝒆𝒏𝒅_𝒕𝒊𝒎𝒆 =  𝒕𝟏𝟑). 

We note that when used in combination with a user-centered base rating set 
condition, 𝒯�𝑝𝑝(|𝑆𝑒𝑞𝑘|)� is different for each user. In such a case, there would be a different 
starting date for the ratings in the test set of each user. Because of this, combining the 
𝓈𝓈𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤  and 𝒷𝒷𝑢𝑐  conditions has a disadvantage similar to that of the 𝓈𝓈𝑓𝑖𝑥  condition 
when it is used with user-centered base rating set and time-dependent rating ordering 
conditions, since some users may have all their ratings within the test timespan. 

These conditions describe the ways in which training and test set sizes are defined in 
TARS evaluation. By using different combinations of the three types of conditions 
addressed in this section –base rating set, rating ordering, and rating set size conditions– it 
is possible to replicate most of the evaluation settings that have been used in TARS 
literature. In the following subsection we show examples of use of the conditions in order 
to reproduce some common data splits used in TARS evaluation. 

4.3.4 Examples of use of data splitting conditions 

In order to show the use of evaluation conditions under the splitting procedure (Algorithm 
4.1), in the following we reproduce two commonly used data splits for TARS evaluation, 
namely, the one used in the Netflix Prize competition, and one avoiding temporal overlap 
of ratings. 

The splitting procedure (Algorithm 4.1) requires as input the rating matrix 𝑀, and the 
base rating set, rating ordering and rating set size conditions. According to the Netflix Prize 
competition setting, the last 𝑛𝑓  ratings of each user are assigned to the test set, and the 

:Test

:Training
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remaining ratings are assigned to the training set. When 𝑛𝑓 is larger than the half of the user 
profile size, the last half of user ratings are assigned to test. From this description, we 
determine that we must use a) a user-centered base rating set condition 𝒷𝒷𝑢𝑐 (because we 
need to independently select ratings from each user), b) a time-dependent rating ordering 
condition ℴ𝑡𝑑 (because we need to find the last ratings of each user), and c) a fixed rating 
set size condition 𝓈𝓈𝑓𝑖𝑥 with 𝑞𝑓𝑖𝑥 = 𝑛𝑓, and a proportion rating set size 𝓈𝓈𝑝𝑟𝑜𝑝 with 𝑞𝑝𝑟𝑜𝑝 =
0.5 in cases where 𝑛𝑓  is larger than the half of the user profile size. To facilitate the 
visualization of the example, we use the small rating matrix showed in Figure 4.6, 
composed of four users and seven items, and set 𝑛𝑓 = 2. 

 

Figure 4.6. Example rating matrix. 

 Following the steps of the splitting procedure (Algorithm 4.1), we first apply the 
base rating set condition 𝒷𝒷𝑢𝑐  to build the base rating sets. This lead to the rating sets 

𝑀𝒷𝒷𝑢𝑐 = �𝑀𝑢1 ,𝑀𝑢2 ,𝑀𝑢3 ,𝑀𝑢4� with 𝑀𝑢𝑗 = �𝑝𝑝𝑢𝑗,⋅ | 𝑝𝑝𝑢𝑗,⋅ ∈ 𝑀�. That is: 

 𝑀𝑢1 = �𝑝𝑝𝑢1,𝑖1,𝑡5 , 𝑝𝑝𝑢1,𝑖3,𝑡1 , 𝑝𝑝𝑢1,𝑖5,𝑡8 , 𝑝𝑝𝑢1,𝑖7,𝑡14�  
 𝑀𝑢2 = �𝑝𝑝𝑢2,𝑖2,𝑡10 , 𝑝𝑝𝑢2,𝑖5,𝑡2�  
 𝑀𝑢3 = �𝑝𝑝𝑢3,𝑖1,𝑡3 , 𝑝𝑝𝑢3,𝑖4,𝑡6 , 𝑝𝑝𝑢3,𝑖5,𝑡4 , 𝑝𝑝𝑢3,𝑖6,𝑡12 , 𝑝𝑝𝑢3,𝑖7,𝑡9�  
 𝑀𝑢4 = �𝑝𝑝𝑢4,𝑖2,𝑡15 , 𝑝𝑝𝑢4,𝑖3,𝑡7 , 𝑝𝑝𝑢4,𝑖4,𝑡11 , 𝑝𝑝𝑢4,𝑖7,𝑡13�  

 
In the second step, we apply the rating ordering condition ℴ𝑡𝑑  to generate the 

sequences of ratings from each rating set. This lead to the following time ordered sequences    
 𝑆𝑒𝑞𝑢1

𝑡𝑑 , 𝑆𝑒𝑞𝑢2
𝑡𝑑 , 𝑆𝑒𝑞𝑢3

𝑡𝑑 and 𝑆𝑒𝑞𝑢4
𝑡𝑑: 

 𝑆𝑒𝑞𝑢1
𝑡𝑑 = �𝑝𝑝𝑢1,𝑖3,𝒕𝟏 , 𝑝𝑝𝑢1,𝑖1,𝒕𝟓 , 𝑝𝑝𝑢1,𝑖5,𝒕𝟖 , 𝑝𝑝𝑢1,𝑖7,𝒕𝟏𝟒�  

 𝑆𝑒𝑞𝑢2
𝑡𝑑 = �𝑝𝑝𝑢2,𝑖5,𝒕𝟐 , 𝑝𝑝𝑢2,𝑖2,𝒕𝟏𝟎�  

 𝑆𝑒𝑞𝑢3
𝑡𝑑 = �𝑝𝑝𝑢3,𝑖1,𝒕𝟑 , 𝑝𝑝𝑢3,𝑖5,𝒕𝟒 , 𝑝𝑝𝑢3,𝑖4,𝒕𝟔 , 𝑝𝑝𝑢3,𝑖7,𝒕𝟗 , 𝑝𝑝𝑢3,𝑖6,𝒕𝟏𝟐�  

 𝑆𝑒𝑞𝑢4
𝑡𝑑 = �𝑝𝑝𝑢4,𝑖3,𝒕𝟕 , 𝑝𝑝𝑢4,𝑖4,𝒕𝟏𝟏 , 𝑝𝑝𝑢4,𝑖7,𝒕𝟏𝟑 , 𝑝𝑝𝑢4,𝑖2,𝒕𝟏𝟓�  
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In the third step, we apply the rating set size condition 𝓈𝓈𝑓𝑖𝑥 (or alternatively 𝓈𝓈𝑝𝑟𝑜𝑝 in 
cases where 𝑛𝑓 is less than the half of the user profile size) to compute the sizes of the 
training and test sets from each sequence, 𝓈𝓈𝑇𝑟(𝑆𝑒𝑞𝑘) and 𝓈𝓈𝑇𝑒(𝑆𝑒𝑞𝑘). That is: 

 𝓈𝓈𝑓𝑖𝑥𝑇𝑟 �𝑆𝑒𝑞𝑢1
𝑡𝑑� = �𝑆𝑒𝑞𝑢1

𝑡𝑑� − 𝑞𝑓𝑖𝑥 = 4 − 2 = 𝟐, 
 𝓈𝓈𝑓𝑖𝑥𝑇𝑒 �𝑆𝑒𝑞𝑢1

𝑡𝑑� = 𝑞𝑓𝑖𝑥 = 𝟐 
 

 𝓈𝓈𝑝𝑟𝑜𝑝𝑇𝑟 �𝑆𝑒𝑞𝑢2
𝑡𝑑� = �1 − 𝑞𝑝𝑟𝑜𝑝� ⋅ |𝑆𝑒𝑞𝑘| = (1 − 0.5) ⋅ 2 = 𝟏,  

𝓈𝓈𝑝𝑟𝑜𝑝𝑇𝑒 �𝑆𝑒𝑞𝑢2
𝑡𝑑� = 𝑞𝑝𝑟𝑜𝑝 ⋅ |𝑆𝑒𝑞𝑘| = 0.5 ⋅ 2 = 𝟏 

 

 𝓈𝓈𝑓𝑖𝑥𝑇𝑟 �𝑆𝑒𝑞𝑢3
𝑡𝑑� = �𝑆𝑒𝑞𝑢3

𝑡𝑑� − 𝑞𝑓𝑖𝑥 = 5 − 2 = 𝟑, 
 𝓈𝓈𝑓𝑖𝑥𝑇𝑒 �𝑆𝑒𝑞𝑢3

𝑡𝑑� = 𝑞𝑓𝑖𝑥 = 𝟐 
 

 𝓈𝓈𝑓𝑖𝑥𝑇𝑟 �𝑆𝑒𝑞𝑢4
𝑡𝑑� = �𝑆𝑒𝑞𝑢4

𝑡𝑑� − 𝑞𝑓𝑖𝑥 = 4 − 2 = 𝟐, 
 𝓈𝓈𝑓𝑖𝑥𝑇𝑒 �𝑆𝑒𝑞𝑢4

𝑡𝑑� = 𝑞𝑓𝑖𝑥 = 𝟐 
 

 
In the fourth step, we look for the rating 𝑝𝑝(𝑝𝑘)  such that the subsequence 

�𝑝𝑝(1), 𝑝𝑝(2),⋯ , 𝑝𝑝(𝑝𝑘) �, 𝑝𝑝(𝑗) ∈ 𝑆𝑒𝑞𝑘  contains 𝓈𝓈𝑇𝑟(𝑆𝑒𝑞𝑘) ratings. We show in bold the rating 
𝑝𝑝(𝑝𝑘) for each 𝑆𝑒𝑞𝑘𝑡𝑑: 

 𝑝𝑝𝑢1 = 2: 𝑆𝑒𝑞𝑢1
𝑡𝑑 = �𝑝𝑝𝑢1,𝑖3,𝑡1 , 𝒓𝒖𝟏,𝒊𝟏,𝒕𝟓 , 𝑝𝑝𝑢1,𝑖5,𝑡8 , 𝑝𝑝𝑢1,𝑖7,𝑡14�  

 𝑝𝑝𝑢2 = 1: 𝑆𝑒𝑞𝑢2
𝑡𝑑 = �𝒓𝒖𝟐,𝒊𝟓,𝒕𝟐 , 𝑝𝑝𝑢2,𝑖2,𝑡10�  

 𝑝𝑝𝑢3 = 3: 𝑆𝑒𝑞𝑢3
𝑡𝑑 = �𝑝𝑝𝑢3,𝑖1,𝑡3 , 𝑝𝑝𝑢3,𝑖5,𝑡4 , 𝒓𝒖𝟑,𝒊𝟒,𝒕𝟔 , 𝑝𝑝𝑢3,𝑖7,𝑡9 , 𝑝𝑝𝑢3,𝑖6,𝑡12�  

 𝑝𝑝𝑢4 = 2: 𝑆𝑒𝑞𝑢4
𝑡𝑑 = �𝑝𝑝𝑢4,𝑖3,𝑡7 , 𝒓𝒖𝟒,𝒊𝟒,𝒕𝟏𝟏 , 𝑝𝑝𝑢4,𝑖7,𝑡13 , 𝑝𝑝𝑢4,𝑖2,𝑡15�  

 
Finally, we assign the first 𝑝𝑝𝑘  ratings in each 𝑆𝑒𝑞𝑘  to the training set 𝑇𝑝𝑝, and the 

remaining ratings to the test set 𝑇𝑒, forming the split Σ = 〈𝑇𝑝𝑝,𝑇𝑒〉: 

 𝑇𝑝𝑝 = �𝑝𝑝𝑢1,𝑖3,𝑡1 , 𝑝𝑝𝑢1,𝑖1,𝑡5 , 𝑝𝑝𝑢2,𝑖5,𝑡2 , 𝑝𝑝𝑢3,𝑖1,𝑡3 , 𝑝𝑝𝑢3,𝑖5,𝑡4 , 𝑝𝑝𝑢3,𝑖4,𝑡6 , 𝑝𝑝𝑢4,𝑖3,𝑡7 , 𝑝𝑝𝑢4,𝑖4,𝑡11�  
 𝑇𝑒 = �𝑝𝑝𝑢1,𝑖5,𝑡8 , 𝑝𝑝𝑢1,𝑖7,𝑡14 , 𝑝𝑝𝑢2,𝑖2,𝑡10 , 𝑝𝑝𝑢3,𝑖7,𝑡9 , 𝑝𝑝𝑢3,𝑖6,𝑡12 , 𝑝𝑝𝑢4,𝑖7,𝑡13 , 𝑝𝑝𝑢4,𝑖2,𝑡15�  

 
Let us suppose now the case of a setting avoiding temporal overlaps. In this case, we 

require all ratings time-sorted, assigning the last ratings to the test set. From this 
description, we determine that we must use a) a community-centered base rating set 
condition 𝒷𝒷𝑐𝑐 (because we need to time-sort the full set of ratings), b) a time-dependent 
rating ordering condition ℴ𝑡𝑑 (because we need to find the last ratings), and c) a proportion 
rating set size condition 𝓈𝓈𝑝𝑟𝑜𝑝  with 𝑞𝑝𝑟𝑜𝑝 = 0.2 . We could use another rating set size 
condition, but this one lets easily select a proportion of the full set of ratings. We use the 
example rating matrix showed in Figure 4.6. 

Following the steps of the splitting procedure (Algorithm 4.1), we first apply the base 
rating set condition 𝒷𝒷𝑐𝑐  to build the base rating set. This leads to the rating set 𝑀𝒷𝒷𝑐𝑐 =
{𝑝𝑝|𝑝𝑝 ∈ 𝑀}. That is: 
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 𝑀𝑏𝑐𝑐 = �
𝑝𝑝𝑢1,𝑖1,𝑡5 , 𝑝𝑝𝑢1,𝑖3,𝑡1 , 𝑝𝑝𝑢1,𝑖5,𝑡8 , 𝑝𝑝𝑢1,𝑖7,𝑡14 , 𝑝𝑝𝑢2,𝑖2,𝑡10 , 𝑝𝑝𝑢2,𝑖5,𝑡2 , 𝑝𝑝𝑢3,𝑖1,𝑡3 , 𝑝𝑝𝑢3,𝑖4,𝑡6 ,

𝑝𝑝𝑢3,𝑖5,𝑡4 , 𝑝𝑝𝑢3,𝑖6,𝑡12 , 𝑝𝑝𝑢3,𝑖7,𝑡9 , 𝑝𝑝𝑢4,𝑖2,𝑡15 , 𝑝𝑝𝑢4,𝑖3,𝑡7 , 𝑝𝑝𝑢4,𝑖4,𝑡11 , 𝑝𝑝𝑢4,𝑖7,𝑡13
�  

 
In the second step, we apply the rating ordering condition ℴ𝑡𝑑 to generate the ordered 

sequence of ratings from the rating set. This lead to the sequence: 

 𝑆𝑒𝑞𝑀𝑡𝑑 = �
𝑝𝑝𝑢1,𝑖3,𝒕𝟏 , 𝑝𝑝𝑢2,𝑖5,𝒕𝟐 , 𝑝𝑝𝑢3,𝑖1,𝒕𝟑 , 𝑝𝑝𝑢3,𝑖5,𝒕𝟒 , 𝑝𝑝𝑢1,𝑖1,𝒕𝟓 , 𝑝𝑝𝑢3,𝑖4,𝒕𝟔 , 𝑝𝑝𝑢4,𝑖3,𝒕𝟕 , 𝑝𝑝𝑢1,𝑖5,𝒕𝟖 ,
𝑝𝑝𝑢3,𝑖7,𝒕𝟗 , 𝑝𝑝𝑢2,𝑖2,𝒕𝟏𝟎 , 𝑝𝑝𝑢4,𝑖4,𝒕𝟏𝟏 , 𝑝𝑝𝑢3,𝑖6,𝒕𝟏𝟐 , 𝑝𝑝𝑢4,𝑖7,𝒕𝟏𝟑 , 𝑝𝑝𝑢1,𝑖7,𝒕𝟏𝟒 , 𝑝𝑝𝑢4,𝑖2,𝒕𝟏𝟓

�  

 
In the third step, we apply the rating set size condition 𝓈𝓈𝑝𝑟𝑜𝑝 to compute the sizes of 

the training and test sets from the sequence, 𝓈𝓈𝑝𝑟𝑜𝑝Tr (𝑆𝑒𝑞𝑘) and 𝓈𝓈𝑝𝑟𝑜𝑝Te (𝑆𝑒𝑞𝑘). That is: 

 𝓈𝓈𝑝𝑟𝑜𝑝𝑇𝑟 �𝑆𝑒𝑞𝑀𝑡𝑑� = �1 − 𝑞𝑝𝑟𝑜𝑝� ⋅ |𝑆𝑒𝑞𝑘| = (1 − 0.2) ⋅ 15 = 𝟏𝟐,  
𝓈𝓈𝑝𝑟𝑜𝑝𝑇𝑒 �𝑆𝑒𝑞𝑀𝑡𝑑� = 𝑞𝑝𝑟𝑜𝑝 ⋅ |𝑆𝑒𝑞𝑘| = 0.2 ⋅ 15 = 𝟑 

 

 
In the fourth step, we look for the rating 𝑝𝑝(𝑝𝑀)  such that the subsequence 

�𝑝𝑝(1), 𝑝𝑝(2),⋯ , 𝑝𝑝(𝑝𝑀) �, 𝑝𝑝(𝑗) ∈ 𝑆𝑒𝑞𝑀𝑡𝑑 contains 𝓈𝓈𝑇𝑟�𝑆𝑒𝑞𝑀𝑡𝑑� ratings. We show in bold the rating 
𝑝𝑝(𝑝𝑀): 

 𝑝𝑝𝑀 = 12: 
𝑆𝑒𝑞𝑀𝑡𝑑 = �

𝑝𝑝𝑢1,𝑖3,𝑡1 , 𝑝𝑝𝑢2,𝑖5,𝑡2 , 𝑝𝑝𝑢3,𝑖1,𝑡3 , 𝑝𝑝𝑢3,𝑖5,𝑡4 , 𝑝𝑝𝑢1,𝑖1,𝑡5 , 𝑝𝑝𝑢3,𝑖4,𝑡6 , 𝑝𝑝𝑢4,𝑖3,𝑡7 , 𝑝𝑝𝑢1,𝑖5,𝑡8 ,
𝑝𝑝𝑢3,𝑖7,𝑡9 , 𝑝𝑝𝑢2,𝑖2,𝑡10 , 𝑝𝑝𝑢4,𝑖4,𝑡11 , 𝒓𝒖𝟑,𝒊𝟔,𝒕𝟏𝟐 , 𝑝𝑝𝑢4,𝑖7,𝑡13 , 𝑝𝑝𝑢1,𝑖7,𝑡14 , 𝑝𝑝𝑢4,𝑖2,𝑡15

� 

 

 
Finally, we assign the first 𝑝𝑝𝑀 ratings to the training set 𝑇𝑝𝑝, and the remaining ratings 

to the test set 𝑇𝑒, forming the split Σ = 〈𝑇𝑝𝑝,𝑇𝑒〉: 

 𝑇𝑝𝑝 = �
𝑝𝑝𝑢1,𝑖3,𝑡1 , 𝑝𝑝𝑢2,𝑖5,𝑡2 , 𝑝𝑝𝑢3,𝑖1,𝑡3 , 𝑝𝑝𝑢3,𝑖5,𝑡4 , 𝑝𝑝𝑢1,𝑖1,𝑡5 , 𝑝𝑝𝑢3,𝑖4,𝑡6 ,
𝑝𝑝𝑢4,𝑖3,𝑡7 , 𝑝𝑝𝑢1,𝑖5,𝑡8 , 𝑝𝑝𝑢3,𝑖7,𝑡9 , 𝑝𝑝𝑢2,𝑖2,𝑡10 , 𝑝𝑝𝑢4,𝑖4,𝑡11 , 𝑝𝑝𝑢3,𝑖6,𝑡12

�  

 𝑇𝑒 = �𝑝𝑝𝑢4,𝑖7,𝑡13 , 𝑝𝑝𝑢1,𝑖7,𝑡14 , 𝑝𝑝𝑢4,𝑖2,𝑡15�  
 
These examples show how different data splits for evaluation of TARS can be 

defined by using the evaluation conditions and splitting procedure included in the proposed 
framework. We note that, additionally, some works have performed cross-validation 
methods in the evaluation process. We review the related conditions in the following 
section. 

4.4 Cross-validation conditions 

Cross-validation conditions state whether one or more data splits (i.e., pairs of training-test 
sets) are built with the ratings in 𝑀. Research in Statistics (Arlot and Celisse, 2010) and 
Machine Learning (Dietterich, 1998) has shown that the variability of evaluation results is 
diminished by repeating the evaluation process several times by using a different data split 
each time. This procedure is commonly referred to as cross-validation. In this section we 
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describe two general cross-validation conditions, namely time-independent and time-
dependent cross-validation, which can be approached by diverse methods that have been 
used in the revised TARS literature. First of all, we introduce the hold-out procedure, as it 
is the basic building block for the above methods, and can deal with time dimension in 
different ways according to other evaluation conditions explained in previous subsections. 

Hold-out splitting. One training set and one test set are built according to the evaluation 
conditions base rating set, rating ordering, and rating set size, and avoiding pairwise (user, 
item) rating overlap, i.e., 𝑇𝑝𝑝 ∩ 𝑇𝑒 = ∅. The performance of TARS is measured by training 
the recommendation algorithm with ratings in 𝑇𝑝𝑝 and comparing generated 
recommendations with the ground truth 𝑇𝑒, as done e.g. in (Panniello et al., 2009a). The 
rationale for having separated, non-overlapping training and test sets is that measuring 
performance of rating predictions on training data may produce an underestimated 
prediction error (Arlot and Celisse, 2010). 

4.4.1 Time-independent cross-validation condition 

The cross-validation methods that satisfy this condition make use of a time-independent 
rating ordering condition, and build 𝑋 different splits Σ𝑥 = (𝑇𝑝𝑝𝑥,𝑇𝑒𝑥),𝑓𝑓 ∈ {1,⋯ ,𝑋} with 
the ratings in 𝑀, avoiding pairwise (user, item) rating overlap on each split, i.e., 𝑇𝑝𝑝𝑥 ∩
𝑇𝑒𝑥 = ∅. These methods are described in the following. 

Repeated sampling. This method repeats the hold-out splitting procedure 𝑋  times, 
according to some base rating set and rating set size conditions. By using a random, time-
independent rating ordering condition (i.e., a different sequence is generated in each 
repetition, due to the use of a random ordering) it is ensured that each split will be different 
from the rest. This method has been applied in (Gordea and Zanker, 2007). 

User resampling. This method randomly samples a subset of users 𝑈𝑥 ⊂ 𝑈  in each 
repetition, and then applies the hold-out splitting procedure on each dataset 𝑀𝑥 =
�𝑝𝑝𝑢,⋅|𝑢𝑢 ∈ 𝑈𝑥�, according to some base rating set and rating set size condition. This method 
has been used in (Zheng and Li, 2011). 

X-fold cross validation. This is a commonly used method that takes a time-independent 
ordered sequence of ratings, and splits it into 𝑋 disjoint sets (called folds). Then, 𝑋 different 
training and test sets are built in each repetition, by assigning the ratings in one fold to the 
test set, and the ratings in the remaining 𝑋 − 1 folds to the training set, as e.g. done in 
(Adomavicius et al., 2005). In general, the folds are equally sized, and thus the value of 𝑋 
is used to determine the size of training and test sets. Note that this is similar to use a 
proportion-based size condition, with 𝑞𝑝𝑟𝑜𝑝 = 1 𝑋⁄ .Furthermore, this method can be 
applied with a community-centered or a user-centered base rating set conditions. Figure 4.7 
shows example folds generated by a 3-fold cross-validation method when using a user-
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centered (right side of the figure) and a community-centered (bottom side of the figure) 
base rating set conditions. We note that using a user-centered base rating set condition 
ensures that most users will have ratings in each fold, while a community-centric base 
condition does not. Despite this difference, details about the used base rating set are rarely 
given in the literature; in general, only the usage of an X-fold cross validation method and 
the value of 𝑋 are reported. 

 
Figure 4.7. Examples of folds created by a 3-fold cross-validation method using a user-
centered (upper side) and a community-centered (lower side) base rating set conditions. 

Leave-one-out. This is a particular 𝑋-fold cross validation method in which 𝑋 = |𝑀|. Each 
rating in 𝑀 is considered as the test set, and the remaining ratings are used for training. 
Although this method has showed the lowest variability in results in generic prediction 
problems (Arlot and Celisse, 2010), its high computational cost (the algorithms must be 
trained and evaluated |𝑀| times) makes it unfeasible in many situations. This method has 
been applied in (Cremonesi and Turrin, 2009). 

Category-based cross validation. This is a 𝑋-fold cross validation method that has been 
used to evaluate categorical TARS. In this case, a rating set is partitioned according to the 
value of one or more categorical context variables. Afterwards, training-test splits are built 
with ratings from one partition each time. The rationale for this is twofold: on the one hand, 
making independent evaluations of TARS performance in different categorical contexts; 
and, on the other hand, facilitating the computation of a single value of performance across 
contexts for a given metric. 

:Fold 2

:Fold 1

:Fold 3
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The category-based cross validation condition can be applied with a time-independent 
or a time-dependent17 rating ordering condition, but requires the availability of categorical 
context information associated to the ratings. Note that, when the categorical variable 
corresponds to a time context variable, this method lets evaluate TARS performance 
separately on different time contexts (e.g. weekday vs. weekend). This method, in contrast, 
does not ensure that time dependencies between ratings in a given training-test set pair hold 
(unless a time-dependent rating ordering condition is used). The number of different splits 
that can be generated with this method is limited by the number of different categorical 
values of the contextual variables. Figure 4.8 shows example partitions generated when 
applying this condition using a community-based base rating set condition. The training-
test splitting procedure is performed afterwards on each of these partitions individually. 
This method has been applied in (Baltrunas and Amatriain, 2009). 

 
Figure 4.8. Example of a two-fold partition generated by category-based cross-validation. 

In general, time-independent cross-validation methods present two characteristics that 
must be handled carefully when evaluating TARS. On the one hand, they may produce 
overlapping training and test sets from the time ordering point of view. On the other hand, 
they may produce pairwise (user, item) rating overlaps between different training or test 
sets, which may make the application of statistical tests difficult (Dietterich, 1998). The 
first issue can be addressed by using one of the time-dependent cross-validation methods 
described in the following subsection. 

4.4.2 Time-dependent cross-validation condition 

The cross-validation methods that satisfy this condition aim to ensure that time 
dependencies between ratings in each training-test set pair hold, i.e., ∀𝑝𝑝𝑇𝑟 ∈ 𝑇𝑝𝑝𝑥,∀𝑝𝑝𝑇𝑒 ∈
                                                 
17 The application of a time-dependent rating ordering condition requires the availability of rating timestamps. 

:Fold 2

:Fold 1
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𝑇𝑒𝑥,𝒯(𝑝𝑝𝑇𝑟) < 𝒯(𝑝𝑝𝑇𝑒). This is accomplished by using the combination of a community-
centered base rating set and a time-dependent rating ordering conditions, and some time-
based rating set size condition. The time-based size condition can be iteratively updated to 
form time-evolving training and test sets. These methods are described in the following. 

Time-dependent resampling. This is a simple method that selects 𝑋  different ratings 
𝑝𝑝𝑥 ∈ 𝑀 | 𝑓𝑓 ∈ {1,2,⋯ ,𝑋}, and builds splits Σ𝑥 by using a 𝓈𝓈𝑡𝑖𝑚𝑒 condition with the time-
based size threshold 𝑞𝑡𝑖𝑚𝑒𝑥 = 𝒯(𝑝𝑝𝑥). This method has been used in (Hermann, 2010). 

Time-dependent users resampling. This method is similar to the time-independent user 
resampling, but uses a time-dependent rating ordering condition. In this case, 𝑋 different 
splits are built because the users (and thus the ratings) vary from sample to sample. This 
method has been used in (Cremonesi and Turrin, 2010). 

Increasing-time window. This method builds different splits by means of increasing the 
timespan of training sets. It requires the definition of a training window size 
𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑟 and a test window size 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑒, measured in some time unit, e.g. 
days or weeks. For building the initial training and test sets, this method uses a 𝓈𝓈𝑡𝑖𝑚𝑒 
condition with 𝑞𝑡𝑖𝑚𝑒 = 𝒯�𝑝𝑝(1)� + 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑟  and 𝑞𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 = 𝑞𝑡𝑖𝑚𝑒 +
𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑒. The method builds subsequent training and test sets by iteratively updating 
𝑞𝑡𝑖𝑚𝑒  and 𝑞𝑒𝑛𝑑_𝑡𝑖𝑚𝑒  as follows: 𝑞𝑡𝑖𝑚𝑒′ = 𝑞𝑡𝑖𝑚𝑒 + 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑒  and 𝑞𝑒𝑛𝑑_𝑡𝑖𝑚𝑒

′ =
𝑞𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 + 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑒 . Setting 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑟  and 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑒  such that 
𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑟 + 𝑋 ⋅ 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑒 = 𝒯�𝑝𝑝(|𝑀|)�, the method builds 𝑋  training and test 
sets, being the timespans in the test sets equally sized. This method has been used in 
(Lathia et al., 2009a). 

Figure 4.9 shows example splits generated by increasing-time window. Green 
shadowed ratings are assigned to the training set, and the red shadowed to the test set. In 
the figure, 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑟 = 6 and 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑒 = 3 (for the purpose of this example, 
we assume that time indexes used correspond to certain time measure unit, e.g. days). The 
upper side of the figure shows the first split, the split in the middle represents the second 
one, and the bottom side of the figure shows the third split. We note that ratings not 
shadowed are not used in the corresponding split. 

 

Figure 4.9. Example of increasing-time window splits, using 𝒒𝒕𝒊𝒎𝒆_𝒘𝒊𝒏𝒅𝒐𝒘_𝑻𝒓 = 𝟔  and 
𝒒𝒕𝒊𝒎𝒆_𝒘𝒊𝒏𝒅𝒐𝒘_𝑻𝒆 = 𝟑. Green shadowed ratings correspond to training data, and red shadowed 
ratings correspond to test data. 
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Fixed-time window. This cross-validation method is a variation of the increasing-time 
window method. The timespan size of each training set is maintained by means of 
discarding “old” ratings. In this case, the first training and test sets are built as in the 
increasing-time window method, and the subsequent training sets are pruned by discarding 
those ratings out of the training time window 𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑟 : 𝑝𝑝 | 𝒯(𝑝𝑝) < 𝑞𝑡𝑖𝑚𝑒 −
𝑞𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤_𝑇𝑟. Figure 4.10 shows example splits generated by fixed-time window. In this 
example we use the same setting as in Figure 4.9, only varying the cross-validation method. 
In this case, initial ratings are discarded in subsequent splits. 

 

Figure 4.10. Example of fixed-time window splits, using 𝒒𝒕𝒊𝒎𝒆_𝒘𝒊𝒏𝒅𝒐𝒘_𝑻𝒓 = 𝟔  and 
𝒒𝒕𝒊𝒎𝒆_𝒘𝒊𝒏𝒅𝒐𝒘_𝑻𝒆 = 𝟑. Green shadowed ratings correspond to training data, and red shadowed 
ratings correspond to test data. 

We note that this method leads to faster training and evaluation processes compared 
with those of the increasing-time window method, since the training set sizes do not 
increase. However, it has the disadvantage of losing part of the training data, which may be 
valuable for some TARS. This method has been used in (Pradel et al., 2011). 

Time-dependent cross-validation methods require (as well as the time-dependent 
rating ordering condition) the availability of rating timestamps. Moreover, they suffer the 
same problems of applying a time-based rating set size condition, since some users may 
have all of their ratings within the training (or test) timespan. However, they let maintain 
training-test temporal dependencies, which, as discussed before, is a more realistic scenario 
for TARS performance evaluation.  

The cross-validation techniques described in this section cover most of the methods 
used in TARS evaluation. By using one of these methods, the variability of evaluation 
results is diminished. Having defined the training-test splitting and the cross-validation 
conditions to use, it is possible to perform the evaluation of TARS on a rating prediction 
task. In contrast, to evaluate a top-N recommendations task, it is necessary to define some 
additional specific conditions, as we describe in the next section. 

4.5 Specific evaluation conditions for top-N recommendations 

These conditions are specific for the evaluation of a top-N recommendations task.  They 
include conditions for the selection of the target items, and for the identification of the 
items considered as relevant. These conditions state which items are ranked in order to 
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select the top items for recommendation, and which items are considered as relevant for 
each user, respectively. 

4.5.1 Target item conditions 

These conditions select the target items 𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢 to be ranked by the evaluated TARS. We 
recall that the need to take these conditions into consideration arises from the different 
nature of rating prediction and top-N recommendations tasks. In rating prediction, a RS is 
requested to predict the rating a target user would give to a target item. In top-N 
recommendations, there is no target item, but only a target user; the RS is then requested to 
estimate the set of top items the target user would prefer. 

We note that a broad –and close to a real world setting– target item condition would 
be ranking all the items except the target user 𝑢𝑢’s training items, which are already known 
by 𝑢𝑢, i.e., setting 𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢 = 𝐼\ 𝐼𝑇𝑟𝑢 . In the revised literature, nonetheless, smaller item 
sets have been used as 𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢 , letting a faster evaluation, as fewer items have to be 
ranked by the assessed TARS. 

The impact of using different target item sets on recommendation performance 
assessment has been studied by Bellogín et al. (2011). In the following we define 
conditions describing the target item sets found in the revised TARS papers. 

User-based target items. The items in the target user’s test set 𝑇𝑒𝑢  are ranked, i.e., 
𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢 = 𝐼𝑇𝑒𝑢.  

The rationale for this condition is to avoid ranking items for which there is no explicit 
evidence of user preferences. This type of target item set has been used in (Adomavicius et 
al., 2005) and (Ma et al., 2007). 

Community-based target items. All the items in the test set 𝑇𝑒 (i.e., the ratings of the 
whole community of test users) are ranked, i.e., 𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢 = �⋃ 𝐼𝑇𝑒𝑣𝑣∈𝑈 �\𝐼𝑇𝑟𝑢. A variation 
that includes more target items consists of ranking all the items in the community training 
set 𝑇𝑝𝑝, i.e., 𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢 = �⋃ 𝐼𝑇𝑟𝑣𝑣∈𝑈 �\𝐼𝑇𝑟𝑢. 

The rationale of this condition is to include in 𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢  items interpreted as non-
relevant for user 𝑢𝑢, in order to assess a recommendation algorithm’s ability to better rank 
relevant items. The underlying assumption is that items rated by 𝑢𝑢 are relevant, and unrated 
items are presumably non-relevant. This type of target item set has been used in (Pradel et 
al., 2011) and (Zimdars et al., 2001). 

One-plus random target items. In order to describe this condition, we first define the set of 
highly relevant items for user 𝑢𝑢 as 𝐼ℎ𝑟𝑒𝑙𝑢 = �𝑡𝑡 ∈ 𝐼 | 𝑝𝑝𝑢,𝑖 ∈ 𝑇𝑒𝑢, 𝑝𝑝𝑢,𝑖 > 𝜏ℎ𝑟𝑒𝑙�, where 𝜏ℎ𝑟𝑒𝑙 is 
a high-relevance threshold, i.e., items in the ground truth of 𝑢𝑢 with high ratings; and the set 
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of non-relevant items for user 𝑢𝑢 as 𝐼𝑟𝑒𝑙����𝑢 = �𝑡𝑡 ∈ 𝐼 | 𝑝𝑝𝑢,𝑖 = ∅�, i.e., items that have not been 
rated by 𝑢𝑢. Several sets 𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢𝑘  for the target user 𝑢𝑢 are built, each of them consisting of 
one highly relevant item 𝑡𝑡𝑘 ∈ 𝐼ℎ𝑟𝑒𝑙𝑢 , plus a set of non-relevant items 𝐽𝑟𝑒𝑙����𝑢 ⊆ 𝐼𝑟𝑒𝑙����𝑢 : 
𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢𝑘 = 𝑡𝑡𝑘 ∪ 𝐽𝑟𝑒𝑙����𝑢. 

The rationale for this condition is to find out whether a recommendation algorithm is 
able to consistently rank the selected relevant items above all other non-relevant items 
(Cremonesi et al., 2010).This type of target item set has been used in (Stormer, 2007). 

Other target item conditions. A particular target item set we identified in our review 
corresponds to a given list of target items, where a fixed set of items is ranked. This 
approach has been used in domains where there is a fixed set of possible items to 
recommend at a particular moment, as in TV show recommendation, in which there is a set 
of shows being broadcast at a particular time. In such a case 𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢 contains the TV 
listings at recommendation time, as shown in (Vildjiounaite et al., 2008). 

Another target item set we identified corresponds to a one-item target item, in which 
𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢 is composed of just one item at a time. In this case, a TARS has to decide whether 
or not to recommend a given item. This condition can be used to measure the ability of an 
algorithm to recommend only relevant items by repeating the evaluation process with all 
known items. This particular target item set was used with the leave-one-out cross-
validation method in (Panniello et al., 2009a). 

All these conditions broadly address all the definitions of target item set used in 
TARS evaluation. From the evaluation design point of view, the usage of different target 
item conditions lets control the amount of items to be ranked –and consequently, the 
number of rating predictions to compute–, which has an important effect on the time 
needed to perform the evaluation. Once defined the items to be ranked, it is necessary to 
establish which of those items will be interpreted as relevant for each user, which is 
required by several evaluation metrics used for assessing the top-N recommendations task. 
The conditions defining relevant items are described in the next subsection. 

4.5.2 Relevant item conditions 

Relevant item conditions select the items to be interpreted as relevant for the target user. 
The notion of relevance is central for information retrieval metrics applied to evaluate top-
N recommendations. A RS has a set of ratings for some items, and depending on such 
ratings, the items have to be interpreted as relevant or non-relevant. In this context we 
define two main conditions, namely the test-based and the threshold-based relevant item 
conditions. 
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Test-based relevant items. The set of relevant items for user 𝑢𝑢, 𝐼ℎ𝑟𝑒𝑙𝑢, is formed by the 
items in 𝑢𝑢’s test set: 𝐼𝑟𝑒𝑙𝑢 = 𝐼𝑇𝑒𝑢 . By using this condition, rating/consuming an item is 
interpreted as indicative of interest for such item. This type of relevant item set has been 
used in (Liu et al., 2010b). 

Threshold-based relevant items. The items in the user’s test set rated/consumed above a 
threshold value 𝜏𝑟𝑒𝑙  are considered as relevant, i.e., 𝐼𝑟𝑒𝑙𝑢 = �𝑡𝑡 ∈ 𝐼|𝑝𝑝𝑢,𝑖 ∈ 𝑇𝑒𝑢, 𝑝𝑝𝑢,𝑖 ≥ 𝜏𝑟𝑒𝑙�. 
Thus, the test set is pruned from low rated items. This type of relevant item set has been 
used in (Adomavicius et al., 2005) and (Vildjiounaite et al., 2008). Note that the definition 
of 𝐼𝑟𝑒𝑙𝑢 is similar to the definition of 𝐼ℎ𝑟𝑒𝑙𝑢 used in the description of the one-plus random 
target item condition. The difference between both sets is their threshold value, being 
𝜏ℎ𝑟𝑒𝑙 > 𝜏𝑟𝑒𝑙 in general. 

The usage of a threshold-based relevant item condition lets a more detailed control of 
which items should be interpreted as relevant for the user. As noted by (Parra and 
Amatriain, 2011), items with low rating or low usage/consumption rates can be interpreted 
as negative feedback, and thus, it is counter-intuitive to interpret such items as relevant 
ones –which is the results of using a test-based relevant item condition. 

Target item and relevant item conditions let define the specific decisions needed for 
assessing a top-N recommendations task. With them we conclude the description of 
evaluation conditions used in TARS evaluation. 

4.6 Conclusions 

A careful review and comparison of the evaluation protocols followed to assess state-of-
the-art TARS showed us that there are several methodological differences on how the 
evaluation has been conducted among the different research works. Analyzing such 
differences, we pose a number of methodological questions regarding the design of a TARS 
evaluation protocol: 

• What base rating set is used to perform the training-test splitting? 

• What rating ordering is used to assign ratings to the training and test sets? 

• How many ratings comprise the training and test sets? 

• What cross-validation method is used for increasing the reliability of the 
evaluation results and of their generalization? 

In addition to these questions, we have also observed differences in assessing the top-
N recommendations task, posing the following two methodological questions: 
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• Which items are considered as target items (in a top-N recommendations task)? 

• Which items are interpreted as relevant for each user (in a top-N 
recommendations task)? 

These questions are addressed by means of a number of evaluation conditions that we 
characterized and formalized, related with the evaluation settings found in the review of 
TARS literature. The conditions express decisions related to the training-test splitting and 
cross-validation processes in the evaluation of RS, and specific aspects regarding the 
evaluation of top-N recommendations. 

In order to facilitate the comprehension of such decisions, in this chapter we have 
presented a methodological framework for describing and formalizing evaluation 
conditions adopted when designing an offline evaluation of TARS. This framework is 
aimed to make the evaluation process fair and reproducible under different circumstances, 
by means of facilitating a precise communication of the evaluation conditions that drive an 
evaluation process. 

The formalism of the framework includes the definition of a splitting procedure that, 
using a set of conditions as input parameter, lets precisely build and reproduce data splits 
(i.e., training and test sets) for a given evaluation setting. 

By using the splitting procedure and different combinations of the formalized 
conditions, diverse evaluation settings for TARS can be accurately described. We have 
included examples of replication of data splits used commonly in TARS evaluation to show 
the usage and capabilities of the framework. In this way, the proposed framework may help 
researchers and practitioners in conducting fair evaluations of new TARS, and facilitate 
reproducibility of results and comparisons with other TARS proposals. 

We note that the influence of these conditions in evaluation results is still an open 
research question. In the next chapter, we use the proposed framework to analyze the 
impact of the conditions in the literature of TARS, and to perform an empirical evaluation 
and comparison of several TARS using different combinations of conditions, aiming to 
shed light and better understand the effect of changing evaluation conditions in TARS 
performance assessment. 

 

 





 

 

Chapter 5  
 
Analysis of evaluation conditions for   
time-aware recommender systems 

The methodological framework proposed in Chapter 4 lets provide a precise statement and 
reproducibility of the conditions in which a TARS is evaluated. To the best of our 
knowledge, the impact that using some or others of such conditions has on the assessment 
of recommendation results has not been studied in the literature. Given that using different 
combinations of the conditions lets define distinct training and test sets –which are the basic 
input for building recommendation models/heuristics and computing evaluation metrics–, 
we hypothesize that differences on the used evaluation conditions may have an important 
impact on the measured and reported results. 

In this chapter we conduct an empirical analysis on the conditions established in the 
proposed methodological framework. In Section 5.1 we classify state-of-the-art TARS 
according to the conditions used in their evaluation. In Section 5.2 we report a study 
analyzing the impact that some key conditions have on the performance of well-known 
TARS, in the movie and music recommendation domains. In Section 5.3 we provide a 
number of general guidelines to select proper conditions for evaluating particular TARS, 
drawn from the analysis of the findings presented in Sections 5.1 and 5.2. Finally, in 
Section 5.4 we end the chapter with some conclusions of the conducted analysis. 
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5.1 Evaluation conditions in state-of-the-art time aware 
recommender systems 

The methodological framework defined in Chapter 4 serves as a descriptive tool that 
enables the accurate communication of the decisions taken during the design of a protocol 
to evaluate TARS. Although the evaluation conditions that characterize the framework 
were identified from the review of TARS literature, we only have an approximation of the 
volume of TARS studies applying each of these conditions. In order to identify the most 
common evaluation settings, in this section we provide an exhaustive classification of state-
of-the-art TARS according to the evaluation conditions defined in our methodological 
description framework. This classification lets an easy identification of the evaluation 
conditions used in the reviewed work, and thus facilitate the replication of the setting used 
for evaluating a particular TARS approach. 

Table 5.1 provides the summary of the revised papers on time-aware recommendation 
approaches that make use of an offline evaluation, by showing the used conditions, as 
defined in Chapter 4. In the table, each row represents a particular combination of 
conditions, and each column is associated to an evaluation condition; some papers include 
more than one evaluation and/or condition combination –hence, some papers appear in 
more than one row. 

In the table, we first observe that despite the fact that the revised papers deal with 
time-aware recommendation, in 24.6% (14 out of 57) of them, a time-independent ordering 
of ratings is used in the evaluation protocols. On the other hand, a combination of a 
community-centered base rating set and a time-dependent rating ordering –which provides 
the evaluation scenario most similar to a real-world setting, maintaining temporal 
dependencies between training and test ratings, ∀𝑝𝑝𝑇𝑒 , 𝑝𝑝𝑇𝑟 , 𝑡𝑡(𝑝𝑝𝑇𝑒) > 𝑡𝑡(𝑝𝑝𝑇𝑟)– is used in only 
38.6% of the papers (22). Additionally, in less than the half of the papers (24) a time-based 
size condition is utilized. 

Regarding cross-validation methods, the basic hold-out procedure (i.e., no cross-
validation) is used in 70.2% of the papers (40). Only in 10 of the 19 papers in which cross-
validation was used (17.5% of the whole list of papers) a time-based cross-validation 
method was used. 

With respect to specific evaluation conditions of the top-N recommendations task, we 
first note that in 25 papers these conditions are not applicable, since the above task was not 
evaluated. We observe that in the majority of TARS-related papers addressing the top-N 
recommendations task (21 out of 32), a test-based relevant item condition was used, but we 
find an even distribution on the use of different target item conditions. 
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Table 5.1. List of revised papers about TARS, and their used offline evaluation conditions. 
“X” denotes an evaluation condition (at the corresponding column) that is used in a paper (at 
the corresponding row). Some papers include more than one evaluation and/or condition 
combination (one at each row). “-” denotes an evaluation condition that is not applicable for a 
paper. “?” indicates that we could not identify whether an evaluation condition was used or 
not in a paper. CV stands for cross-validation. 
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(Adomavicius et al., 2005) X  X  X    X  X     X 
(Ardissono et al., 2004) X   X   X X   ? ? ? ? X  
(Baltrunas and Amatriain, 2009) X  X  X    X  - - - - - - 
(Bell et al., 2007)  X  X  X  X   - - - - - - 
(Bell et al., 2008)  X  X  X  X   - - - - - - 
(Brenner et al., 2010) X   X   X X    X    X 
(Campos et al., 2010) X   X   X X    X    X 
(Campos et al., 2011b) X   X   X   X  X    X 
(Cao et al., 2009)  X  X X   X    X   X  
(Chen et al., 2012)  X  X  X  X   - - - - - - 
(Cremonesi and Turrin, 2009)  X X   X   X    X  X  
(Cremonesi and Turrin, 2010) X   X   X   X   X  X  
(Ding and Li, 2005) 

 X  X  X  X   - - - - - - 
 X ? ?  X  X   - - - - - - 

(Ding et al., 2006)  X  X  X  X   - - - - - - 
(Gantner et al., 2010) X   X   X X    X    X 

(Gordea and Zanker, 2007) 
 X X   X   X    X  X  
 X  X  X    X   X  X  

(Gorgoglione and Panniello, 2009) X   X   X X      X  X 
(Hermann, 2010) X   X   X   X ? ? ? ? X  
(Iofciu and Demartini, 2009) X   X   X X      X X  
(Jahrer and Töscher, 2012)  X  X  X  X   - - - - - - 
(Jahrer et al., 2010)  X  X  X  X   - - - - - - 
(Karatzoglou, 2011) X   X X   X   - - - - - - 
(Karatzoglou et al., 2010) X  X  X    X  - - - - - - 
(Koenigstein et al., 2011)  X  X  X  X   - - - - - - 
(Koren, 2009b)  X  X  X  X   - - - - - - 
(Koren, 2009a)  X  X  X  X   - - - - - - 
(Lathia et al., 2009a) X   X   X   X - - - - - - 
(Lathia et al., 2010) X   X   X   X  X   X  
(Lee et al., 2010) X  X  X   X     X  X  
(Lee et al., 2008) ? ? ? ? X   X   ? ? ? ? X  
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(Lee et al., 2009) ? ? ? ? X   X   ? ? ? ? X  
(Li et al., 2011) X  X  X    X  - - - - - - 
(Lipczak et al., 2009)  X   X   X X      X X  
(Liu et al., 2010a) X   X   X X    X    X 
(Liu et al., 2010b) X   X   X   X ? ? ? ? X  
(Lu et al., 2009) X   X   X X   - - - - - - 
(Ma et al., 2007)  X X  X   X   X    ? ? 
(Min and Han, 2005) ? ? ? ? ? ? ? X   - - - - - - 
(Montanés et al., 2009)  X  X   X X      X X  

(Panniello et al., 2009a) 
X  X   X   X     X X  
X   X   X X      X X  

(Panniello et al., 2009b) X   X   X X      X  X 

(Pradel et al., 2011) 
X   X   X   X    X X  
X   X   X   X  X   X  

(Rendle, 2011) X   X   X   X - - - - - - 
(Rendle et al., 2011) X  X  X    X  - - - - - - 
(Stormer, 2007) X  X   X   X    X  X  
(Tang et al., 2003) 

 X X  X   X   X     X 
 X  X  X  X   X     X 

(Töscher and Jahrer, 2008)  X  X  X  X   - - - - - - 
(Töscher et al., 2008)  X  X  X  X   - - - - - - 
(Vildjiounaite et al., 2008)  X  X   X X      X  X 
(Wu et al., 2011)  X  X  X  X   - - - - - - 

(Xiang and Yang, 2009) 
 X  X  X  X   - - - - - - 

? ? ? ? X   X   - - - - - - 
(Xiang et al., 2010)  X  X  X  X     X  X  

(Xiong et al., 2010) 
X   X   X X   - - - - - - 
 X  X  X  X   - - - - - - 
 X X   X   X  - - - - - - 

(Zhan et al., 2006)  X  X   X X   ? ? ? ? X  
(Zheng and Li, 2011)  X  X X     X  X   X  
(Zheng et al., 2012)  X  X  X  X   - - - - - - 

(Zimdars et al., 2001) 
X   X   X X    X   X  
X  X  X   X    X   X  

Number of papers using the condition 
(total number of papers: 57) 29 26 14 45 15 22 24 40 10 10 3 10 6 8 21 10 
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The presented classification provides valuable information for reproducing the 
evaluation setting used in assessing each of the reviewed TARS. Moreover, we have 
examined the usage of the evaluation conditions throughout the revised work, in order to 
detect the most frequent ones. In the next section we investigate the effect of using different 
combinations of these conditions in recommendation results assessment.  

5.2 Empirical comparison of evaluation conditions 

The methodological framework presented in Chapter 4 introduces a number of conditions 
that drive the evaluation process for TARS. Different combinations of such conditions 
result in a wide and diverse set of evaluation methodologies followed in the TARS 
literature. Our framework lets state the particular evaluation setting used for assessing a 
given TARS approach. The framework thus facilitates the reproducibility of reported 
evaluation results, and moreover, as discussed in Chapter 3, the framework also lets verify 
if using different framework conditions influences obtained evaluation results. In this 
context, we hypothesize that methodological differences between studies cause divergences 
on the recommendation results from certain TARS reported by different researchers. 

In order to analyze the impact that changes in conditions have on evaluation results, 
we conducted an empirical study comparing the recommendation performance of a number 
of algorithms when different combinations of the above conditions are used. In this 
comparison we include two categorical TARS –as they are instances of the most widely 
used approach for context-aware recommendation– and a well-known heuristic-based 
continuous TARS. We consider both the rating prediction and the top-N recommendations 
tasks, and analyze several rating prediction accuracy and ranking precision metrics, as well 
as novelty and diversity metrics. Moreover, we use three publicly available datasets that 
belong to different domains –movies and music18–, and have distinct types of ratings –
explicit and implicit ratings. In the next subsections we present the recommendation 
algorithms evaluated, the datasets used, and the evaluation methodologies and metrics that 
were compared. We present and discuss the results obtained, taking advantage of our 
framework to fairly state the conditions in which the experiments were conducted. 

5.2.1 Datasets 

In our study we used four datasets with timestamp information obtained from MovieLens19 
(Herlocker et al., 1999), Netflix 20 (Bennett and Lanning, 2007), and Last.fm21 (Celma, 

                                                 
18 In this work we use a pure collaborative filtering approach for the music recommendation domain. Content-
based approaches –exploiting special characteristics of music, such as chord, melody, lyrics, musical genre, 
and composer– could be used instead, but they fall out of the scope of this study. 
19 MovieLens movie recommender system, http://movielens.umn.edu 
20 Netflix on-demand video streaming, http://www.netflix.com 
21 Last.fm Internet radio, http://www.lastfm.es 
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2008) systems. The MovieLens and Netflix datasets have explicit ratings for movies, and 
the Last.fm contains implicit ratings (listening to records) for music artists. Some basic 
statistics about the datasets are shown in Table 5.2. The MovieLensR dataset was built 
similarly as done in (Ding and Li, 2005), that is, by selecting the ratings of the first 60 users 
in the dataset (according to their identifiers). We used this dataset to replicate the results 
reported in that work, where the Time Decay algorithm obtained significant improvements 
over the kNN algorithm. 

Table 5.2. Statistics of the used datasets. 

 MovieLens MovieLensR Netflix Last.fm 

Number of users 6,040 60 480,189 992 

Number of items 3,706 2,056 17,770 174,091 

Number of events 1,000,209 8,979 100,480,507 19,150,868 
(898,073 user-item 

pairs) 

Timespan ~3 years 
(2000/04/26 – 

2003/02/28) 

~2 years 
(2000/12/27 –  

2003/01/07) 

~6 years 
(1999/11/11 – 

2005/12/31) 

~4.5 years 
(2005/02/14 – 

2009/06/19) 

Sparsity 0.0447 0.0834 0.0118 0.0052 

 

To make the Netflix dataset more manageable, we divided it into 5 different sub-datasets on 
which we performed the evaluations. Specifically, we binned the original set of users into 
50 equally sized bins, maintaining an increasing size of the user profiles in subsequent bins. 
Similarly to (Lathia et al., 2009a), we built each sub-dataset with the ratings of 1,000 
randomly sampled users from each bin, plus those ratings generated during the first 500 
days in the original dataset (from all users). Each of the new datasets had around 60,000 
users, 17,765 items, and 11.7 million ratings, ranging the same timespan as the original 
dataset. 

5.2.2 Recommendation algorithms 

For our study, we evaluated two categorical heuristic-based TARS, namely contextual pre-
filtering and contextual post-filtering algorithms. These algorithms have been widely used 
in the CARS-related research literature, and enable an easy incorporation of time context 
information. We also evaluated a Time Decay algorithm, as an example of continuous 
heuristic-based TARS. 
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As baseline algorithm we considered a context-unaware weighted user-based kNN 
algorithm (Herlocker et al., 1999): 

 
𝐹(𝑢𝑢, 𝑡𝑡) = �̅�𝑝𝑢 +

∑ �𝑝𝑝𝑣,𝑖 − �̅�𝑝𝑣�𝑣𝑁(𝑢) ⋅ 𝑠𝑡𝑡𝑚(𝑢𝑢, 𝑣)
∑ 𝑠𝑡𝑡𝑚(𝑢𝑢, 𝑣)𝑣∈𝑁(𝑢)

  

where 𝑠𝑡𝑡𝑚(𝑢𝑢, 𝑣)  denotes a user similarity function based on the type of ratings used, 
including weights to penalize user similarities based on little information (understood as a 
low number of data points). For explicit ratings, the similarity function is the weighted 
Pearson’s correlation coefficient, defined as: 

𝑠𝑡𝑡𝑚(𝑢𝑢, 𝑣) =
𝑛
𝑤
⋅

∑ �𝑝𝑝𝑣,𝑖 − �̅�𝑝𝑣�𝑖∈𝐼𝑣∩𝐼𝑢 ⋅ �𝑝𝑝𝑢,𝑖 − �̅�𝑝𝑢�

∑ �𝑝𝑝𝑣,𝑖 − �̅�𝑝v�𝑖∈𝐼𝑣∩𝐼𝑢
2
⋅ ∑ �𝑝𝑝𝑢,𝑖 − �̅�𝑝𝑢�

2
𝑖∈𝐼𝑣∩𝐼𝑢

 

where 𝑛 is the number of items rated by both users 𝑢𝑢 and 𝑣, and 𝑤 is a constant. In case 
that 𝑛 ≥ 𝑤, no penalty is applied and the above similarity turns into the standard Pearson’s 
correlation coefficient (Eq. 2.3). For implicit ratings, the used similarity function is the 
weighted cosine similarity, defined as: 

𝑠𝑡𝑡𝑚(𝑢𝑢, 𝑣) =
𝑛
𝑤
⋅

∑ 𝑝𝑝𝑣,𝑖𝑖∈𝐼𝑣∩𝐼𝑢 ⋅ 𝑝𝑝𝑢,𝑖

�∑ �𝑝𝑝𝑣,𝑖�𝑖∈𝐼𝑣∩𝐼𝑢
2
⋅ �∑ �𝑝𝑝𝑢,𝑖�

2
𝑖∈𝐼𝑣∩𝐼𝑢

 

where 𝑝𝑝𝑢,𝑖  denotes the number of times the user 𝑢𝑢 consumed item 𝑡𝑡. We set 𝑤 = 50 and 
𝑘 = 200 in all our experiments, as they provided good results and tendencies similar to 
other tested values. In cases where kNN was unable to compute a recommendation (e.g. 
because the target user/item did not appear in a training set), we used the 
user’s/item’s/global mean rating as the default prediction value. In case of implicit ratings, 
the default prediction value was set to 0, as there is not a meaningful mean rating value, but 
rather a long-tailed item consumption rate. 

The first evaluated recommendation algorithm is an implementation of the contextual 
pre-filtering (PRF) approach presented in (Adomavicius and Tuzhilin, 2011). This 
algorithm selects ratings relevant to the target context, and, using the selected ratings, it 
computes rating predictions with a context-unaware recommendation strategy. Specifically, 
we used the 𝑡𝑡𝑡𝑡𝑚𝑒𝑂𝑓𝑓𝑇ℎ𝑒𝑊𝑒𝑒𝑘 = {𝑤𝑝𝑝𝑝𝑝𝑘𝑡𝑡𝑎𝑦,𝑤𝑒𝑒𝑘𝑒𝑛𝑡𝑡}  categorical variable as time 
context, and the kNN approach described above as the underlying rating prediction strategy. 

The second evaluated recommendation algorithm is an implementation of the 
contextual post-filtering (POF) approach presented in (Adomavicius and Tuzhilin, 2011). 
This algorithm first computes rating predictions, which can be generated by a context-
unaware strategy, and then rating predictions are contextualized according to the target 
context. We used the categorical time variable and kNN rating prediction strategy used in 
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the PRF approach. The contextualization of rating predictions was performed by a filtering 
strategy presented in (Panniello et al., 2009b), which penalizes the recommendation of 
items that are not relevant in the target context as follows. The relevance of an item 𝑡𝑡 for 
the target user 𝑢𝑢  in a particular context 𝑢𝑢  is approximated by the probability 𝑃𝑐(𝑢𝑢, 𝑡𝑡) =
�𝑈𝑢,𝑖,𝑐�
𝑘

, where 𝑈𝑢,𝑖,𝑐 = �𝑣 ∈ 𝑁(𝑢𝑢)|𝑝𝑝𝑣,𝑖,𝑐 ≠ ∅� , that is, the user’s neighbors 𝑣  who have 
rated/consumed item 𝑡𝑡 in context 𝑢𝑢. The item relevance is determined by a threshold value 
𝜏𝑃𝑐 (set to 0.1 in our experiments) that is used to contextualize the ratings as: 

𝐹(𝑢𝑢, 𝑡𝑡, 𝑢𝑢) = �
𝐹(𝑢𝑢, 𝑡𝑡) 𝑡𝑡𝑓𝑓 𝑃𝑐(𝑢𝑢, 𝑡𝑡) ≥ 𝜏𝑃𝑐
min(𝑅) 𝑡𝑡𝑓𝑓 𝑃𝑐(𝑢𝑢, 𝑡𝑡) < 𝜏𝑃𝑐

 

where min(𝑅) returns the minimum rating value for the domain at hand. 

We note that this particular implementation of POF is better suited for a top-N 
recommendations task, as rating predictions may be heavily penalized in some cases (due to 
replacement of the predicted rating value by min(𝑅) when 𝑃𝑐(𝑢𝑢, 𝑡𝑡) < 𝜏𝑃𝑐), thus affecting 
rating prediction accuracy metrics. 

The third evaluated recommendation algorithm is an implementation of the Time 
Decay (TD) approach, proposed in (Ding and Li, 2005): 

𝐹(𝑢𝑢, 𝑡𝑡, 𝑡𝑡) = �̅�𝑝𝑢 +
∑ �𝑝𝑝𝑣,𝑖 − �̅�𝑝𝑣�𝑣∈𝑁(𝑢) ⋅ 𝑠𝑡𝑡𝑚(𝑢𝑢, 𝑣) ⋅ 𝑒−𝜆⋅�𝑡−𝒯�𝑟𝑣,𝑖��

∑ 𝑠𝑡𝑡𝑚(𝑢𝑢, 𝑣)𝑣∈𝑁(𝑢)
 

with 𝜆 = 1 200⁄  and 𝑡𝑡 being a continuous time variable. In this implementation we use 
time values with day granularity as done in (Ding and Li, 2005). 

5.2.3 Evaluation metrics and methodologies 

Aiming to adequately cover the spectrum of mostly used recommendation quality metrics 
in offline evaluations, and to obtain an overview of distinct properties of recommendations 
generated by the tested algorithms under the selected evaluation methodologies, in our 
experiments, we considered both the rating prediction and the top-N recommendations 
tasks. We assessed accuracy for the two recommendation tasks, and novelty and diversity 
for the top-N recommendations task. Specifically, we used Root Mean Squared Error 
(RMSE) (Eq. 2.6) to assess accuracy in rating prediction, and Precision (P) (Eq. 2.7), 
Recall (R) (Eq. 2.8), and normalized Discounted Cumulative Gain (nDCG) (Eq. 2.10) to 
assess accuracy (ranking precision) of top-N recommendations. We computed novelty and 
diversity by means of Self-Information (SI) (Eq. 2.12) and Intra-list Similarity (ILS) (Eq. 
2.13) respectively. We computed the P, R, I and ILS metrics at cut-off 10, and nDCG on the 
whole lists of recommended items. 
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Regarding the methodologies, aiming to find and analyze differences in 
recommendation quality results obtained with distinct combinations of evaluation 
conditions, we selected four different evaluation methodologies –three of them used a time-
dependent order condition, and the other one used a time-independent order condition.  

Having all the previous issues into account, the first used methodology (denoted as 
𝒷𝒷𝑢𝑐ℴ𝑡𝑖𝓈𝓈𝑝𝑟𝑜𝑝) consists of a combination of a user-centered base rating set (𝒷𝒷𝑢𝑐), a time-
independent rating order (ℴ𝑡𝑖 ), and a proportion-based size (𝓈𝓈𝑝𝑟𝑜𝑝  with 𝑞𝑝𝑟𝑜𝑝 = 0.2 ) 
condition, which is used to generate a splitting Σ𝒷𝒷𝑢𝑐ℴ𝑡𝑖𝓈𝓈𝑝𝑟𝑜𝑝. According to the framework 
introduced in Chapter 4, this splitting is represented as: 

Σ𝒷𝒷𝑢𝑐ℴ𝑡𝑖𝓈𝓈𝑝𝑟𝑜𝑝 = 〈𝑀,𝒷𝒷𝑢𝑐 ,ℴ𝑡𝑖, 𝓈𝓈𝑝𝑟𝑜𝑝�𝑞𝑝𝑟𝑜𝑝 = 0.2�〉 

The second methodology (denoted as 𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑝𝑟𝑜𝑝) consists of the 𝒷𝒷𝑢𝑐ℴ𝑡𝑖𝓈𝓈𝑝𝑟𝑜𝑝 evaluation 
conditions, but using a time-dependent rating order. The generated splitting is: 

Σ𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑝𝑟𝑜𝑝 = 〈𝑀,𝒷𝒷𝑢𝑐,ℴ𝑡𝑑, 𝓈𝓈𝑝𝑟𝑜𝑝�𝑞𝑝𝑟𝑜𝑝 = 0.2�〉 

The third methodology (denoted as 𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑝𝑟𝑜𝑝 ) is equivalent to the 𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑝𝑟𝑜𝑝 
methodology with a community-centered base rating set condition. The generated splitting 
is: 

Σ𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑝𝑟𝑜𝑝 = 〈𝑀,𝒷𝒷𝑐𝑐,ℴ𝑡𝑑 , 𝓈𝓈𝑝𝑟𝑜𝑝�𝑞𝑝𝑟𝑜𝑝 = 0.2�〉 

Finally, the fourth methodology (denoted as 𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥) consists of a combination of a 
user-centered base rating set, a time-dependent rating order, and a fixed size (𝑞𝑓 = 9) 
condition. The generated splitting is: 

Σ𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥 = 〈𝑀,𝒷𝒷𝑢𝑐,ℴ𝑡𝑑 , 𝓈𝓈𝑓𝑖𝑥�𝑞𝑓 = 9�〉 

In case a user has less than 10 ratings, the size condition is switched to the proportion based 
size condition 𝓈𝓈𝑝𝑟𝑜𝑝 with 𝑞𝑝𝑟𝑜𝑝 = 0.5 in order to maintain such user in the training and test 
sets. 

All the combinations use a hold-out procedure, a community-based target item 
condition𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢 = �⋃ 𝐼𝑇𝑒𝑣𝑣∈𝑈 �\𝐼𝑇𝑟𝑢 , and a test-based relevant item condition 𝐼𝑟𝑒𝑙𝑢 =
𝐼𝑇𝑒𝑢. 

5.2.4 Experimental results 

Tables 5.3, 5.4, 5.5 and 5.6  respectively show the average recommendation performance 
results obtained on the MovieLens, MovieLensR, Netflix and Last.fm datasets.  
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Table 5.3. Performance results on the MovieLens dataset, grouped by evaluation 
methodology. For each methodology, green-up, yellow-diagonal-up, yellow-diagonal-down 
and red-down arrows indicate the first, the second, the third and the fourth performing 
algorithm on the corresponding metric, respectively. Statistical significant differences 
(Wilcoxon p < 0.05) of TARS algorithms are indicated with respect to kNN (*). 

 

Table 5.4. Performance results on MovieLensR dataset, grouped by evaluation methodology. 
For each methodology, green-up, yellow-diagonal-up, yellow-diagonal-down and red-down 
arrows indicate the first, the second, the third and the fourth performing algorithm on the 
corresponding metric, respectively. Statistical significant differences (Wilcoxon p < 0.05) of 
TARS algorithms are indicated with respect to kNN (*). 

 

KNN 0.9066 0.0206 0.0090 0.3424 7.8234 0.0536
TD 0.9396* 0.0123* 0.0049* 0.3294* 7.5165* 0.0632*
PRF 0.9136* 0.0167* 0.0077* 0.3468* 8.4496* 0.0980*
POF 1.4350* 0.1020* 0.0382* 0.4163* 2.7039* 0.1800*
KNN 0.9246 0.0067 0.0031 0.3227 9.6791 0.0340
TD 0.9448* 0.0070 0.0030 0.3196* 9.2671* 0.0390*
PRF 0.9389* 0.0071 0.0033 0.3249* 8.8760* 0.0607*
POF 1.6062* 0.0585* 0.0215* 0.3815* 2.7090* 0.1754*
KNN 0.9631 0.0322 0.0054 0.4642 8.4924 0.0346
TD 0.9637* 0.0317 0.0054 0.4640* 8.4813 0.0350
PRF 0.9709* 0.0196* 0.0035* 0.4570* 8.9337* 0.0633*
POF 1.9169* 0.1988* 0.0252* 0.5255* 2.5657* 0.1714*
KNN 0.9531 0.0081 0.0091 0.2413 5.7619 0.1073
TD 0.9804* 0.0043* 0.0047* 0.2338* 5.9759* 0.1052*
PRF 0.9628* 0.0068* 0.0075* 0.2447* 6.7210* 0.1617*
POF 1.4048* 0.0209* 0.0232* 0.2782* 2.6309* 0.1963*

nDCG I@10 ILS@10
Metric

Methodology Algorithm
RMSE P@10 R@10

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
 

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑓𝑓𝑡𝑡𝑓𝑓  

KNN 1.1320 0.0367 0.0125 0.3784 4.6233 0.0022
TD 1.1474 0.0367 0.0115 0.3793 4.5967 0.0017
PRF 1.1756 0.0450 0.0208* 0.3836 4.3867* 0.0292*
POF 2.2777* 0.0833* 0.0293* 0.4176* 2.5559* 0.2896*
KNN 1.1767 0.0317 0.0107 0.3651 4.4579 0.0042
TD 1.1759 0.0317 0.0107 0.3659* 4.4330 0.0042
PRF 1.2247 0.0400 0.0157 0.3706 4.3593 0.0934*
POF 2.1047* 0.0500 0.0238* 0.3869* 2.8733* 0.2511*
KNN 1.2370 0.0958 0.0071 0.4535 4.8243 0.0022
TD 1.2369 0.0958 0.0071 0.4534 4.8094 0.0023
PRF 1.2387 0.1000 0.0273 0.4668 4.4043* 0.0675*
POF 2.0521* 0.1292 0.0178* 0.4929* 2.8091* 0.2579*
KNN 1.2596 0.0233 0.0259 0.3222 4.0093 0.0048
TD 1.2463 0.0283 0.0315 0.3270* 4.0130 0.0052
PRF 1.3133* 0.0450* 0.0500* 0.3434* 3.8496* 0.1600*
POF 1.9723* 0.0317 0.0352 0.3282* 2.5812* 0.2375*

Methodology Algorithm
Metric

RMSE P@10 R@10 nDCG I@10 ILS@10
𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
 

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑓𝑓𝑡𝑡𝑓𝑓  
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Table 5.5. Average performance results on the 5 sub-datasets generated from the Netflix 
dataset, grouped by evaluation methodology. For each methodology, green-up, yellow-
diagonal-up, yellow-diagonal-down and red-down arrows indicate the first, the second, the 
third and the fourth performing algorithm on the corresponding metric, respectively. 
Statistical significant differences (Wilcoxon p < 0.05) of TARS algorithms are indicated with 
respect to kNN (*). 

 

Table 5.6. Performance results on the Last.fm dataset, grouped by evaluation methodology. 
For each methodology, green-up, yellow-diagonal-up, yellow-diagonal-down and red-down 
arrows indicate the first, the second, the third and the fourth performing algorithm on the 
corresponding metric, respectively. Statistical significant differences (Wilcoxon p < 0.05) of 
TARS algorithms are indicated with respect to kNN (*). 

 

kNN 0.9208 0.0060 0.0012 0.2694   9.8411 0.0683
TD 0.9445* 0.0046* 0.0008* 0.2648* 10.1921* 0.0551*
PRF 0.9210* 0.0055* 0.0021* 0.2682* 10.9453* 0.1756*
POF 1.7514* 0.0668* 0.0133* 0.3497*   3.8757* 0.2452*
kNN 0.9379 0.0023 0.0005 0.2655 13.1286 0.0259
TD 0.9587* 0.0018 0.0003* 0.2619* 12.9199* 0.0200*
PRF 0.9454* 0.0017* 0.0004* 0.2624* 12.6859* 0.0729*
POF 2.0637* 0.0632* 0.0144* 0.3351*   3.8053* 0.2448*
kNN 1.0276 0.0032 0.0007 0.2955 13.8497 0.0123
TD 1.0356* 0.0033* 0.0006* 0.2944* 13.6752* 0.0116*
PRF 1.0333* 0.0030* 0.0006* 0.2923* 13.1698* 0.0419*
POF 2.2643* 0.0830* 0.0134* 0.3536*   3.4888* 0.2348*
kNN 0.9722 0.0009 0.0010 0.1899 10.2081 0.0702
TD 0.9838* 0.0007* 0.0009* 0.1867*   8.7635* 0.0909*
PRF 0.9837* 0.0012* 0.0013* 0.1892* 10.9743* 0.1478*
POF 1.7705* 0.0116* 0.0131* 0.2346*   3.7158* 0.2464*

Methodology Algorithm
Metric

RMSE P@10 R@10 nDCG I@10 ILS@10
𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
 

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑓𝑓𝑡𝑡𝑓𝑓  

kNN 0.0013 0.0001 0.4084 5.4079 0.5886
PRF 0.0044* 0.0004 0.4143 4.4504 0.5856
POF 0.1254* 0.0070 0.4354 2.2878 0.3700
kNN 0.0005 0.0000 0.3856 5.4116 0.5662
PRF 0.0022* 0.0001* 0.3910* 4.4670* 0.5402*
POF 0.0874* 0.0051* 0.4132* 2.3687* 0.2796*
kNN 0.0031 0.0002 0.3422 5.1873 0.5540
PRF 0.0057* 0.0006* 0.3497* 4.3868* 0.5084*
POF 0.0546* 0.0059* 0.3571* 2.2138* 0.2555*
kNN 0.0002 0.0003 0.1839 4.8600 0.5267
PRF 0.0002 0.0003 0.1846 4.0791* 0.4560*
POF 0.0032* 0.0061* 0.2108* 2.3819* 0.2474*

Methodology Algorithm
Metric

P@10 R@10 nDCG I@10 ILS@10
𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
 

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑓𝑓𝑡𝑡𝑓𝑓  
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In these tables results are grouped by evaluation methodology, facilitating the 
identification of absolute and relative differences of algorithms within and between 
evaluation conditions. On the Last.fm dataset, we only tested the top-N recommendations 
task, since this dataset does not have explicit ratings with which rating prediction 
comparisons could be done. Thus, RMSE cannot be computed for such dataset. Also, in 
that dataset, the TD algorithm was not assessed because of multiple events (i.e., listening 
records) and timestamps related to the same user-item pair, which do not let set a unique 
timestamp to apply the time decay weight. 

In the tables, we observe that the performance results provided by each of the 
assessed metrics for a particular algorithm are very dissimilar when different evaluation 
methodologies are used. For instance, POF values of P@10 range from 0.0032 up to 0.1254 
on Last.fm dataset. Figures 5.1 and 5.2 show the differences of RMSE and nDCG metrics 
across methodologies for the four evaluated algorithms, on the MovieLens and 
MovieLensR datasets respectively.  

 

Figure 5.1. RMSE and nDCG values of different algorithms across evaluation methodologies, 
on the MovieLens dataset. 

 

 

Figure 5.2. RMSE and nDCG values of different algorithms across evaluation methodologies, 
on the MovieLensR dataset. 

𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡 𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑓𝑓𝑡𝑡𝑓𝑓  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡 𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑓𝑓𝑡𝑡𝑓𝑓  

 
𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡 𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑓𝑓𝑡𝑡𝑓𝑓  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡 𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝒷𝒷𝑢𝑢𝑢𝑢ℴ𝑡𝑡𝑡𝑡𝓈𝓈𝑓𝑓𝑡𝑡𝑓𝑓  
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We observe that using the 𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑝𝑟𝑜𝑝 and 𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥 methodologies, kNN, TD and 
PRF values of RMSE are larger than when using 𝒷𝒷𝑢𝑐ℴ𝑡𝑖𝓈𝓈𝑝𝑟𝑜𝑝 and 𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑝𝑟𝑜𝑝, on both 
datasets. Conversely, the 𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥  methodology leads to the lowest RMSE values of 
POF. Moreover, the 𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥 methodology leads to the lowest values of nDCG for all 
the tested algorithms –statistical significant differences in regard to the values obtained 
with the other methodologies. 

The obtained results show that recommendation assessment under different 
evaluation protocols (metrics and methodologies) is an issue that has to be carefully taken 
into consideration in order to derive well-founded conclusions about relative performance 
of recommendation algorithms. 

The conducted experiments also reveal that dissimilar relative rankings of the tested 
algorithms are obtained, depending on the analyzed dataset, metric, and methodology. For 
instance, regarding the rating prediction accuracy measured with the RMSE metric on the 
MovieLens dataset, when the 𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑝𝑟𝑜𝑝 methodology was used TD outperformed PRF, 
differently to what was obtained when using the other methodologies22. A more notorious 
example can be observed in the MovieLensR dataset, where according to RMSE and using 
the 𝒷𝒷𝑢𝑐ℴ𝑡𝑖𝓈𝓈𝑝𝑟𝑜𝑝  methodology, the best performance is achieved by kNN. For the same 
metric using any of the other methodologies, the best performance is achieved by TD, 
although differences were not statistically significant. In the case of the Netflix dataset, TD 
was not able to outperform kNN in any of the used methodologies. On the other hand, PRF 
and POF showed worse performance than kNN in terms of RMSE, regardless of the 
methodology used. 

The relative performance rankings of the algorithms according to the ranking 
precision metrics also show differences across datasets, metrics, and methodologies. One 
example is observed when comparing the algorithms’ rankings using P@10 as performance 
metric. With a user-centered base rating set (𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑝𝑟𝑜𝑝), the algorithms are ranked as 
POF, PRF, TD and kNN on MovieLens, observing little difference between PRF, TD and 
kNN results. Changing into a community-centered base rating set (𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑝𝑟𝑜𝑝), and using 
the same dataset, the ranking is POF, kNN, TD and PRF, and the difference between kNN 
and TD becomes statistically significant. 

We observe similar switches on the algorithms’ rankings when changing the rating 
order condition (e.g. by comparing R@10 results on Netflix, using the 𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑝𝑟𝑜𝑝 
methodology instead of 𝒷𝒷𝑢𝑐ℴ𝑡𝑖𝓈𝓈𝑝𝑟𝑜𝑝) and the size condition (e.g. comparing P@10 results 
on Netflix, using the 𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥  methodology instead of 𝒷𝒷𝑢𝑐ℴ𝑡𝑑𝓈𝓈𝑝𝑟𝑜𝑝). Moreover, it is 
notable the contrast in performance between rating prediction accuracy and ranking 

                                                 
22 These differences are statistically significant (Wilcoxon p < 0.05). 
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precision metrics. POF consistently showed a superior performance in terms of P@10, 
R@10 and nDCG across datasets and methodologies, and an inferior performance 
according to RMSE. We also remark that the magnitude of metric values may vary 
considerably from one methodology to another on the same dataset. 

Regarding novelty and diversity, we observe even more variations on the relative 
rankings depending on the datasets, methodology, and metric, compared with the ones 
observed in rating prediction accuracy and ranking precision metrics. It is interesting to 
note, anyhow, that the relative rankings on Last.fm dataset are stable across methodologies. 
Additionally, we also observe that in general there is a trade-off between precision-ranking 
accuracy, and diversity and novelty of TARS. This trade-off was also observed in 
(Panniello et al., 2013) when exploiting other contextual dimensions. 

Supported by the fact that they were obtained on several datasets, in different 
recommendation domains and tasks, and with various types of ratings (explicit and 
implicit), the above results show the importance of clearly stating the conditions under 
which TARS are evaluated. Differences of absolute metric values obtained by the same 
algorithm across methodologies confirm the difficulty of comparing results reported by 
other authors when evaluation conditions are not described precisely. And more 
importantly, differences on relative rankings of the algorithms across datasets, metrics, and 
methodologies show the need of selecting a proper evaluation protocol for identifying the 
improvement capabilities of new TARS correctly. 

The conducted evaluation let us detect divergences on recommendation results due to 
the usage of different evaluation protocols, even when the experiments were not exhaustive. 
We did not test all the described methodologies, and, moreover, alternative cross-validation 
methods, target items, and relevant item conditions may be used. However, based on the 
reported results, we can confirm our hypothesis that different evaluation conditions lead to 
differences on recommendation results obtained, and thus, in order to compare TARS 
approaches, we claim that it is necessary to do it with the same well defined evaluation 
setting. 

The above findings remark the importance of knowing under which conditions a 
given TARS approach was evaluated, in order to be able to compare its performance to 
other approaches. In the next section, we sum up the results of the descriptive percentages 
obtained in Section 5.1 and the empirical comparison presented in this section, and provide 
a set of methodological guidelines for selecting appropriate conditions for TARS 
evaluation. 

 Taking advantage of our methodological framework, in the next section we analyze 
and classify state-of-the-art TARS literature based on the conditions used in their 
evaluation.  



Analysis of evaluation conditions for time-aware recommender systems 105 

 

5.3 Analysis of key findings 

In this section we summarize the key findings of the research presented in this chapter. 
These findings are presented as an initial set of methodological guidelines covering the 
selection of evaluation conditions for TARS, formulated from the analysis of the results 
obtained in our experiments and the usage of these conditions in TARS literature. These 
guidelines are aimed to help researchers and practitioners interested in TARS evaluation to 
select proper combinations of evaluation conditions.  

We must note that these guidelines are based on the insights derived from the works 
analyzed in Section 5.1, and the experiments we conducted. They do not cover all possible 
combinations of dataset characteristics, and evaluation conditions, metrics, and 
methodologies. Hence, we also identify additional research required for a deeper 
understanding of the evaluation conditions that comprise the methodological framework 
presented in Chapter 4. 

5.3.1 Guidelines for TARS Evaluation 

From the summary given in Table 5.1 we observe that a considerable number of studies has 
used a time-independent rating ordering condition (ℴ𝑡𝑖 ). In the empirical comparison, 
however, we found that an evaluation methodology with that condition was unable to detect 
the performance improvements obtained by continuous TARS on some of the used datasets. 
Thus, our first guideline is: 

Guideline 1: Use a time-dependent rating order condition (ℴ𝑡𝑑) for TARS evaluation. 

The use of this condition avoids ignoring variations on performance induced by the 
exploitation of time information by an evaluation methodology. 

A second finding from Table 5.1, is that there is a similar amount of papers using 
community-centered (𝒷𝒷𝑐𝑐) and user-centered (𝒷𝒷𝑢𝑐) base rating set conditions. As discussed 
before, the combination 𝒷𝒷𝑐𝑐 , ℴ𝑡𝑑 provides a real world-like evaluation scenario. However, 
a problem of this combination is that many users may not be evaluated due to a lack of 
ratings in their training or test sets. Thus, considering the application of Guideline 1, we 
state a second guideline: 

Guideline 2: If the dataset has an even distribution of data among users, use the 
community-centered base condition. Otherwise, use a user-centered base condition in 
order to avoid biases towards profiles with long-term ratings. 

Note that in this guideline we refer to an imprecise notion of “even distribution of data 
among users”.  We do not have a specific characterization (e.g. in terms of profile sizes, 
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timespans, and sparsity levels) as to precisely define it. Additional research on this issue is 
required to provide a more precise guideline. 

With respect to the size condition, we noted that when using a 𝒷𝒷𝑐𝑐, ℴ𝑡𝑑 combination, 
proportion-based and time-based size conditions can be equivalent. This is due to the 
possibility of finding a proportion value that defines a splitting point equal to that from a 
time threshold. On the other hand, when using a 𝒷𝒷𝑢𝑐, ℴ𝑡𝑑 combination, a time-based size 
definition may suffer from the same general problems of 𝒷𝒷𝑐𝑐,  ℴ𝑡𝑑  combination (leaving 
some users without training or test data). Likewise, the use of a fixed size with a 𝒷𝒷𝑢𝑐 
condition implies that users with small profiles will have a greater proportion of their 
profiles held out as test data, which may lead to a cold start situation for such users. In this 
way, our third guideline is: 

Guideline 3: Use a proportion-based size condition. 

This guideline ensures the appropriate control of the proportion of user profiles held for test 
purposes in case of using a 𝒷𝒷𝑢𝑐 condition, and provides an adequate control of training/test 
proportions when using either a 𝒷𝒷𝑐𝑐 or a 𝒷𝒷𝑢𝑐 condition. Our experiments did not cover the 
effect of using an ending time to limit the size of the test data; this effect may have 
particular importance on domains with seasonal changes, and further research on this topic 
is required to assess its impact on measured performance values of TARS. 

These first three guidelines have been derived from the empirical results reported in 
Section 5.1 and the classification of state-of-the art TARS literature presented in Section 
5.1, and encompass the methodological questions MQ1, MQ2 and MQ3 stated in Chapter 
4. Regarding MQ4, MQ5, and MQ6, although we did not perform experiments for 
assessing their impact in metric results, insights from the analysis of the surveyed work let 
us formulate two additional guidelines.  

Guideline 4: Apply a cross-validation method consistent with the conditions derived from 
guidelines 1, 2 and 3. 

Despite we did not test empirically the effect of different cross-validation methods on 
evaluation metrics, it is known that the use of more than one data split can diminish the 
variability of results (Dietterich, 1998; Arlot and Celisse, 2010). In this way, it is highly 
advisable to use a cross-validation method. Moreover, the selection of the method has to be 
consistent with the application of guidelines 1-3, i.e., the cross-validation method to use 
must apply the same rating order, base rating set, and rating set size condition advised from 
the guidelines. 

In the case of the target item and relevant item conditions, it is important to note that 
they are required only when assessing a top-N recommendations task. These conditions let 
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state which items have to be ranked to select the top-ranked items for recommendation, and 
which items in the test set have to be considered as relevant for the user, respectively. 

Guideline 5: For a top-N recommendations evaluation, use a community-based target item 
and a threshold-based relevant item condition. 

In the case of target item conditions, the closest condition to a real world setting would be 
to rank all available items unknown by the user. A slight variation, which may let perform 
faster offline evaluations, consists of considering all items selected for the test set, that is, a 
community-based target item condition applied over the test set. Bellogín et al. (2011) 
found that it makes no differences in algorithm relative ranking to apply this condition on 
the training or the test sets, although they did not test time-aware algorithms. Despite there 
are several works that apply a user-based target item condition, relative ranking of 
algorithms may be different from that obtained with a community-based condition 
(Bellogín et al., 2011). Thus, following the idea of mimicking a real world setting, it is 
advisable to use a community-based target item condition.  

With respect to relevant item conditions, as Parra and Amatriain (2011) noted, low 
ratings and consumption rates could be treated as evidence of negative feedback about the 
items’ relevance. Hence, interpreting low rated/consumed items as relevant results may be 
counterintuitive. In this context, using a threshold-based condition leads to a more fair 
evaluation of performance. 

By following these guidelines we believe that TARS performance can be assessed 
more objectively and realistically. Moreover, the guidelines enable an easier and fairer 
comparison of evaluation results between approaches from different authors, which would 
ease the development of better TARS. 

In a more general perspective, we note that the results of the experimental 
comparison reported in Section 5.1 show important divergences on the performance of 
algorithms across measured recommendation properties. Divergences are particularly 
remarkable between rating prediction accuracy and ranking precision metrics. In fact, the 
best performing algorithms on RMSE show poor results on ranking precision metrics, and 
vice versa. From this, we note that relying only on rating prediction accuracy metrics for 
assessing the performance of recommender systems is not advisable, especially when the 
most valuable recommendation task is distinct from rating prediction. This is an important 
consideration, given that most work on TARS has been commonly evaluated in terms of 
rating prediction accuracy, without taking into account other metrics, recommendation 
properties and tasks. More importantly, we stress the value of providing clear and detailed 
specifications of the evaluation protocols used. Having such specifications at their disposal 
will let other researchers and practitioners in the field to compare results fairly, and test 
whether a new algorithm is able to outperform existing TARS. The methodological 
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description framework introduced in Chapter 4, which lets provide rigorous descriptions of 
evaluation conditions used, may help in this task. 

5.3.2 Open questions 

Despite the remarkable findings of this thesis –finally reflected on the proposed evaluation 
guidelines–, a number of issues requires further research in order to fully understand and 
take advantage of the different evaluation conditions identified so far.  

First, more experimentation is required to properly analyze the impact of 
combinations of conditions not covered in this work. In particular, we did not consider 
cross-validation conditions, given the combinatorial explosion of conditions that should be 
tested. We leave the empirical study of those conditions and specific conditions regarding 
the top-N recommendations task as an interesting and important line of future research. For 
this purpose, we believe that the proposed evaluation framework provides an important 
conceptual structure to guide the research. 

Another important pending issue is related to the analysis of the relation between 
characteristics of datasets (and individual user profiles), and evaluation conditions. For 
instance, the notion of “even distribution of data,” stated in guideline 2, is imprecise, and 
requires further experiments in order to obtain a specific definition. Beyond that, the 
appropriateness of certain evaluation conditions for specific rating distributions through 
time/users/items, types of events (item ratings, purchases, and consumption), domains, etc. 
has to be investigated. 

The relation between accuracy and novelty/diversity metrics also remains as an open 
evaluation issue. Given the increasing importance of the latter metrics in the RS field, 
additional analysis and explanations are required in order to provide time-aware 
recommendations with adequate levels of those properties. 

A final question is whether improvements of TARS performance measured by offline 
evaluation results are effectively perceivable for real users. As noted e.g. by Knijnenburg et 
al. (2012), accuracy improvements are not necessarily observable by users. The lack of 
online evaluation studies on TARS is a major limitation to address the above question 

5.4 Conclusions 

In this chapter we analyzed the evaluation conditions that comprise the methodological 
description framework introduced in Chapter 4. We conducted an empirical comparison of 
the impact of several evaluation protocols on measuring relative performances of three 
widely used TARS approaches and one well-known non-contextual recommendation 
approach. Moreover, based on the methodological framework, we provided a 
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comprehensive classification of the evaluation conditions used in state-of-the-art TARS 
literature. 

From our analysis and experiments, we reported key methodological issues that a 
robust evaluation of TARS should take into consideration in order to perform a fair 
evaluation of approaches, and facilitate comparisons among published experiments. In 
particular, the obtained results showed that the use of different evaluation conditions not 
only yields remarkable differences between metrics measuring distinct recommendation 
properties –namely accuracy, precision, novelty, and diversity. They also may affect the 
relative ranking of approaches for a particular metric. From the results obtained in our 
experiments, and the analysis of the evaluation protocols used in the TARS literature, we 
concluded a set of general guidelines aimed to facilitate the selection of conditions for a 
proper TARS evaluation. These guidelines recommend making training-test splitting based 
on a time-dependent rating order over the whole set of ratings in a dataset, applying a 
proportion-based size definition for training and test sets, using a compatible cross-
validation method. In the case of top-N recommendations evaluation, using a real-world 
like set of items to rank, and a more confident interpretation of item relevance is advised. 

With the presented study we confirmed our hypothesis that the use of different 
evaluation conditions leads to differences on recommendation results. Nonetheless, we 
believe that this investigation still raises interesting additional research questions regarding 
TARS evaluation. We consider of key importance studying the specific impact of each 
identified evaluation condition on the assessment of recommendation performance. 
Moreover, we propose as future research to deepen the analysis of existing relations 
between dataset characteristics and evaluation conditions, and general effects on less 
studied novelty and diversity metrics. By having a robust understanding of these effects, it 
would be possible to select the most appropriate and fair protocol for a given 
recommendation evaluation task. 

Finally, we highlight the need of clearly stating the conditions in which offline 
experiments are conducted to evaluate RS in general, and TARS in particular. By having 
fair and consensual evaluation conditions, we will enable the reproducibility of 
experiments, and ease the comparison of recommendation approaches. In the hope to 
contribute to such purpose, we developed the methodological description framework 
presented in this thesis. 

 

 





 

 

Part III  
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Chapter 6  
 
Evaluating the performance of time-aware 
recommender systems 

Exploiting time context information has been proved to be an effective approach to 
improve recommendation performance, as explained in the literature review presented in 
Chapter 3. However, despite individual improvements, little work has been done in 
comparing different approaches to determine which of them outperforms the others, and 
under what circumstances; and a number of different protocols have been used for 
evaluating time-aware recommender systems without consensus on the evaluation 
methodologies and metrics used. As shown in Chapter 5, the use of distinct evaluation 
conditions may lead not only to significant differences in absolute performance values, but 
also to distinct relative ranking of recommendation approaches, making it difficult to fairly 
compare TARS assessed under different evaluation settings. 

In this chapter we assess the improvements on recommendation results obtained from the 
use of several time-aware recommendation approaches under a common, clear and 
reproducible evaluation setting. With this purpose, we adapt some existing approaches, 
propose new heuristics for some general context-aware RS, and study their performance 
when only exploiting time-context information. Moreover, we develop a novel 
methodology specifically targeted to evaluate contextualized top-N recommendations, and 
aimed to provide a realistic setting for the evaluation of such recommendation task.  
Finally, we perform a user study in order to obtain and exploit explicit and reliable time 
context information in the movie domain. 

In Section 6.1 we present the user study where we collected user ratings for movies, 
together with information about the time context in which users prefer to watch the rated 
movies. In Section 6.2 we describe the evaluated recommendation approaches, including 
the new heuristics proposed. In Section 6.3 we report the results of an empirical comparison 
of the approaches in the rating prediction task. In Section 6.4 we describe the proposed 
evaluation methodology for top-N recommendations, and report the results of a comparison 
of the above approaches and methodologies for this task. The conclusions in Section 6.5 
end the chapter. 
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6.1 Time context and user preferences: A user study 

In general, obtaining contextual information imposes an extra effort from the user –who has 
to explicitly state or describe the item usage/consumption context–, and some 
system/device requirements to automatically infer such item usage/consumption context, 
e.g. by capturing time and location signals, or by analyzing the user’s interactions with the 
system. Due to these issues, there is a lack of publicly available context-enriched datasets.  

To overcome this limitation, many TARS have been evaluated using datasets with 
time stamped ratings. In these cases, however, it is important to note that if a RS collects 
ratings instead of usage/consumption data, the collected timestamps do not necessarily 
correspond to item usage/consumption time, and thus could not be considered as the 
context in which the user prefers to use/consume the items23. 

In order to count with confident context signals related to user preferences, we 
collected a movie rating dataset including time context information explicitly requested to 
users. Since we were interested in the effect of time context on user interests, we built our 
own Web application, and asked users (recruited via social networks) to provide personal 
ratings for movies they had watched. Specifically, participants rated freely chosen sets of 
movies using a rating scale from 1 to 5 (1 representing no user interest, and 5 a maximum 
user interest). The built dataset consisted of 481 ratings from 67 users given to 174 movies. 

In addition to ratings, participants stated in which period of the day (morning, 
afternoon, night, and indifferent) and period of the week (working day, weekend, and 
indifferent) they would prefer to watch the rated movies. These categorical time context 
variables had been previously found as significant for time-aware recommendation 
(Adomavicius and Tuzhilin, 2005; Baltrunas and Amatriain, 2009). As it would not have 
been practical to ask users for the exact date/time in which they watched movies, we did 
not consider continuous time context variables. 

Aimed to obtain first insights about the context influence on user preferences, we 
analyzed the rating differences between movie genres and contexts. Figure 6.1 shows the 
average movie rating value computed over the considered time contexts, globally and per 
movie genre. As shown in the figure, there are notable differences in the average rating 
values between different contexts. These results show that time context information has an 
impact on user preferences in the movie domain, and thus, can be useful in the rating 
prediction task, as analyzed in Section 6.3. 

                                                 
23  Some studies, e.g. (Said et al., 2011), have found that users tend to rate items nearly after their 

usage/consumption. However, this is not necessarily true for all users. Furthermore, this can affect the 
time context information reliability, particularly of those time contexts involving short timespans, e.g. 
period of the day. 
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Figure 6.1. Average movie rating values computed over different time contexts and movie 
genres on the collected context-enriched dataset. 

6.2 Evaluated context-aware recommendation approaches 

In this section we describe the evaluated recommendation algorithms. Since the collected 
dataset only contains categorical time context variables, we focused on categorical TARS. 
As described in Chapter 3, most categorical TARS are special cases of the more general 
pre-filtering, post-filtering, and contextual modeling strategies for context-aware 
recommendation. Hence, we evaluated algorithms implementing each of these approaches. 
Furthermore, we proposed novel heuristics aimed to improve the way the studied 
approaches exploit context information. 

6.2.1 Pre-filtering approaches 

In the pre-filtering case, we used the context-aware strategy suggested by Adomavicius et 
al. (2005), and the Item Splitting technique proposed by Baltrunas and Ricci (2009a, 2009b, 
2013). 
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As explained in Section 3.3.2, the pre-filtering approach (PRF) uses only ratings 
relevant to the target context to compute rating predictions with a context-unaware 
recommendation technique (Adomavicius and Tuzhilin, 2011). In our study, we used the k-
nearest neighbor, kNN (Herlocker et al., 1999), and the Matrix Factorization, MF (Koren, 
2009a) algorithms as base recommendation techniques. 

Item Splitting (IS) is a variant of context pre-filtering. This method splits user 
preference data for items according to the context in which such data were generated, in 
cases where there are significant differences in the user preferences received by items 
among contexts. In order to determine whether such differences are significant an impurity 
criterion is used. When an item 𝑡𝑡 is split, two new (artificial) items are created, 𝑡𝑡𝑐𝑎 and 𝑡𝑡𝑐𝑏, 
and each of them are assigned to a subset of the users’ preferences from the original item, 
according to the associated context value. Thus, one of these new items corresponds with 
the preferences generated on one contextual condition, that is, 𝑡𝑡𝑐𝑎 = �𝑝𝑝⋅,𝑖,𝑐𝑎|𝑝𝑝⋅,𝑖,𝑐𝑎 ∈ 𝑀�, and 
the other item corresponds with the remainder preferences for the original item, i.e., 
𝑡𝑡𝑐𝑏 = �𝑝𝑝⋅,𝑖,⋅|𝑝𝑝⋅,𝑖,⋅ ∈ 𝑀�\𝑡𝑡𝑐𝑎. The original item is removed from the dataset, and afterwards, 
any non-contextualized recommendation technique is performed on the modified dataset. 

In order to decide whether or not to split the set of ratings given to an item 𝑡𝑡, we 
utilized several impurity criteria, based on Baltrunas and Ricci’s findings (Baltrunas and 
Ricci, 2013). Additionally, we proposed a new impurity criterion – 𝑡𝑡𝑢𝑢𝐹(𝑡𝑡, 𝑠)– based on the 
Fisher’s exact test (Fisher, 1922). An impurity criterion 𝑡𝑡𝑢𝑢(𝑡𝑡, 𝑠)  returns a score of the 
differences between the ratings given to an item 𝑡𝑡 in a split 𝑠 ∈ 𝑆, where 𝑆 represents the set 
of possible contextual splits. For instance, if there are three contextual values 𝑢𝑢𝑎, 𝑢𝑢𝑏 and 𝑢𝑢𝑐, 
then 𝑆 = {(𝑢𝑢𝑎, 𝑢𝑢𝑏 ∪ 𝑢𝑢𝑐), (𝑢𝑢𝑏 , 𝑢𝑢𝑎 ∪ 𝑢𝑢𝑐), (𝑢𝑢𝑐, 𝑢𝑢𝑎 ∪ 𝑢𝑢𝑏)}.  

More specifically, we consider the three commonly used 𝑡𝑡𝑢𝑢𝐼𝐺(𝑡𝑡, 𝑠), 𝑡𝑡𝑢𝑢𝑀(𝑡𝑡, 𝑠), 𝑡𝑡𝑢𝑢𝑃(𝑡𝑡, 𝑠) 
criteria, and propose a new criterion 𝑡𝑡𝑢𝑢𝐹(𝑡𝑡, 𝑠), which are defined as follows. 

• 𝑡𝑡𝑢𝑢𝐼𝐺(𝑡𝑡, 𝑠) impurity criterion is based in the measurement of the information gain –
also referred to as Kullback-Leibler divergence (Kullback and Leibler, 1951)– 
given by 𝑠 to the knowledge of item 𝑡𝑡 rating: 

𝑡𝑡𝑢𝑢𝐼𝐺(𝑡𝑡, 𝑠) = 𝐻(𝑡𝑡) − 𝐻�𝑡𝑡𝑐𝑎�𝑃𝑖𝑐𝑎 + 𝐻�𝑡𝑡𝑐𝑏�𝑃𝑖𝑐𝑏  

where 𝐻(𝑡𝑡) is the entropy of the item 𝑡𝑡 rating value distribution and 𝑃(𝑡𝑡𝑐) is the 
proportion of ratings that 𝑡𝑡𝑐 receives from item 𝑡𝑡. 

• 𝑡𝑡𝑢𝑢𝑀(𝑡𝑡, 𝑠) impurity criterion estimates the statistical significance of the difference 
in the means of ratings associated to each context in 𝑠 using the t-test: 
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𝑡𝑡𝑢𝑢𝑀(𝑡𝑡, 𝑠) = ��
𝜇𝑖𝑐𝑎 − 𝜇𝑖𝑐𝑏

�𝜎𝑖𝑐𝑎
2 𝑛𝑖𝑐𝑎� + 𝜎𝑖𝑐𝑏

2 𝑛𝑖𝑐𝑏�
�� 

where 𝜇𝑖𝑐 is the mean rating value of item 𝑡𝑡𝑐, 𝜎𝑖𝑐
2  is the rating value variance of 

item 𝑡𝑡𝑐 and 𝑛𝑖𝑐  is the number of ratings given to item 𝑡𝑡𝑐. 

• 𝑡𝑡𝑢𝑢𝑃(𝑡𝑡, 𝑠) impurity criterion estimates the statistical significance of the difference 
between the proportion of high and low ratings in each context of 𝑠 using the two-
proportion z-test (in the case of the used dataset, ratings 4 and 5 are considered 
high): 

𝑡𝑡𝑢𝑢𝑃(𝑡𝑡, 𝑠) =
𝑃𝑖𝑐𝑎
ℎ − 𝑃𝑖𝑐𝑏

ℎ

�𝑃(1 − 𝑃) �1 𝑛𝑖𝑐𝑎� + 1 𝑛𝑖𝑐𝑏� �
 

where 𝑃 = �𝑃𝑖𝑐𝑎
ℎ 𝑛𝑖𝑐𝑎 + 𝑃𝑖𝑐𝑏

ℎ 𝑛𝑖𝑐𝑏  � �𝑛𝑖𝑐𝑎 + 𝑛𝑖𝑐𝑏��  and 𝑃𝑖𝑐
ℎ is the proportion of high 

ratings in 𝑡𝑡𝑐. 

• 𝑡𝑡𝑢𝑢𝐹(𝑡𝑡, 𝑠) impurity criterion estimates the statistical significance of the difference 
between the proportion of low and high ratings in each context of 𝑠 using the 
Fisher’s exact test: 

𝑡𝑡𝑢𝑢𝐹(𝑡𝑡, 𝑠) =

�
𝑃𝑖𝑐𝑎
ℎ + 𝑃𝑖𝑐𝑏

ℎ

𝑃𝑖𝑐𝑎
ℎ ��

𝑃𝑖𝑐𝑎
𝑙 + 𝑃𝑖𝑐𝑏

𝑙

𝑃𝑖𝑐𝑎
𝑙 �

�
𝑛

𝑃𝑖𝑐𝑎
ℎ + 𝑃𝑖𝑐𝑎

𝑙 �

=
�𝑃𝑖𝑐𝑎

ℎ + 𝑃𝑖𝑐𝑏
ℎ � ! + �𝑃𝑖𝑐𝑎

𝑙 + 𝑃𝑖𝑐𝑏
𝑙 � ! + �𝑃𝑖𝑐𝑎

ℎ + 𝑃𝑖𝑐𝑎
𝑙 � ! + �𝑃𝑖𝑐𝑏

ℎ + 𝑃𝑖𝑐𝑏
𝑙 �

�𝑃𝑖𝑐𝑎
ℎ � ! + �𝑃𝑖𝑐𝑏

ℎ � ! + �𝑃𝑖𝑐𝑎
𝑙 � ! + �𝑃𝑖𝑐𝑏

𝑙 � ! + 𝑛!

 

where 𝑃𝑖𝑐
𝑙  is the proportion of low ratings in 𝑡𝑡𝑐 and 𝑛 is the total number of ratings 

given to 𝑡𝑡. 

A set of item ratings is split if the corresponding criterion returns a score above 
certain threshold. If several splits obtain a score above the threshold, the split with the 
highest score is chosen. Note that by using this heuristic, when more than one context 
variable is used for splitting (e.g. time of the day and period of the week), the impurity score 
lets dynamically select the best context variable for performing the split of a given item, 
i.e., the one that maximizes the differences in item rating patterns among contextual 
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conditions. As in PRF, we used the kNN and MF algorithms separately as base 
recommendation techniques to be applied after IS. 

6.2.2 Post-filtering approaches 

In the post-filtering case, rating predictions are first generated by a context-unaware 
algorithm, and then the predictions are contextualized according to the target context. We 
used the kNN and MF rating prediction algorithms used with pre-filtering approaches. In 
order to contextualize the rating predictions generated by kNN, we performed the filtering 
heuristic presented by Panniello et al. (2009b), denoted as POF. In order to contextualize 
recommendations generated by MF, we proposed a novel heuristic based in the probability 
of rating the target item in the target context, denoted as POF-MF. 

The contextualization of kNN rating predictions was performed by the POF filtering 
strategy, which penalizes the recommendation of items that are not relevant in the target 
context as follows. The relevance of an item 𝑡𝑡 for the target user 𝑢𝑢 in a particular context 𝑢𝑢 

is approximated by the probability 𝑝𝑝𝑐(𝑢𝑢, 𝑡𝑡, 𝑢𝑢) = �𝑈𝑢,𝑖,𝑐�
𝑘

, where 𝑘 is the number of neighbors 

used by kNN, and 𝑈𝑢,𝑖,𝑐 = �𝑣 ∈ 𝑁(𝑢𝑢)|𝑝𝑝𝑣,𝑖,𝑐 ≠ ∅� is the users in the neighborhood of 𝑢𝑢 , 
𝑁(𝑢𝑢) , who have rated/consumed the item 𝑡𝑡  in the context 𝑢𝑢 . The item relevance is 
determined by a threshold value 𝜏𝑝𝑐 set to 0.1 in our experiments –based on findings of 
Panniello et al. (2009b)– that is used to contextualize the ratings as: 

 𝐹(𝑢𝑢, 𝑡𝑡, 𝑢𝑢) = �
𝐹(𝑢𝑢, 𝑡𝑡) if 𝑝𝑝𝑐(𝑢𝑢, 𝑡𝑡, 𝑢𝑢) ≥ 𝜏𝑝𝑐

𝐹(𝑢𝑢, 𝑡𝑡) −  Υ if 𝑝𝑝𝑐(𝑢𝑢, 𝑡𝑡, 𝑢𝑢) < 𝜏𝑝𝑐
 

where 𝐹(𝑢𝑢, 𝑡𝑡)  denotes the context-unaware rating prediction given by a RS, 𝐹(𝑢𝑢, 𝑡𝑡, 𝑢𝑢) 
denotes the context-aware rating prediction, and Υ is a penalty value. We defined a penalty 
value of 0.5 instead of assigning the minimum rating value, in order to avoid the 
introduction of excessive error in the rating prediction task.  

In MF the notion of neighbors does not exist. Hence, we proposed a novel heuristic 
for contextualizing the rating predictions generated by such recommendation algorithm. 
The heuristic POF-MF is based on the a-priori probability 𝑝𝑝𝑐(𝑡𝑡) of rating the target item 𝑡𝑡 
in the target context 𝑢𝑢, according to the observed (training) data: 𝑝𝑝𝑐(𝑡𝑡) = 𝑛𝑖𝑐

𝑛𝑖
, where 𝑛𝑖𝑐 is 

the number of ratings given to 𝑡𝑡 in context 𝑢𝑢, and 𝑛𝑖 is the total number of ratings given to 
item 𝑡𝑡 . We used the same threshold 𝜏𝑝𝑐  and penalty Υ  defined above, and MF rating 
predictions were contextualized by: 

 𝐹(𝑢𝑢, 𝑡𝑡, 𝑢𝑢) = �
𝐹(𝑢𝑢, 𝑡𝑡) if 𝑝𝑝𝑐(𝑡𝑡) ≥ 𝜏𝑝𝑐

𝐹(𝑢𝑢, 𝑡𝑡) − Υ if 𝑝𝑝𝑐(𝑡𝑡) < 𝜏𝑝𝑐
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6.2.3 Contextual modeling approaches 

In the contextual modeling case, we adapted and implemented the contextual-neighbors 
algorithm presented in (Panniello and Gorgoglione, 2012). This algorithm, denoted as CM, 
is based on the definition of contextualized user profiles 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑡𝑡𝑙𝑒�𝑢𝑢, 𝑢𝑢𝑗�, which contains 
user preferences associated to each context value 𝑢𝑢𝑖 . For instance, if we consider the 
context period of the week, we would have two contextual profiles for each user, one for 
workday and the other for weekend. 

As noted by Panniello and Gorgoglione (2012), these contextual profiles can be 
defined in many different ways. In our case, we built the profiles with the ratings associated 

to each contextual value, that is, 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑡𝑡𝑙𝑒�𝑢𝑢, 𝑢𝑢𝑗� = �𝑝𝑝𝑢,𝑖,𝑐𝑗|𝑝𝑝𝑢,𝑖,𝑐𝑗 ∈ 𝑀�. 

Once the contextualized profiles were built, we used all the contextualized profiles in 
a joint model. In this way, each contextualized profile is exploited as a new user profile. In 
the original formulation of Panniello and Gorgoglione (2012), a kNN algorithm is used 
afterwards to select a number of nearest neighbors among these contextualized profiles, by 
means of different strategies to constraint the profiles eligible as neighbors. In our case, we 
treated each contextualized profile as an independent user profile without constraints, 
letting different recommendation algorithms exploit such profiles. We used kNN and MF as 
underlying recommendation techniques.  

We note that CM can be viewed as a type of pre-filtering. Nonetheless, we note that 
no ratings are discarded for rating computation (as it is the case of pre-filtering), and no 
contextualization of computed ratings is required (as it is the case of post-filtering)24. 

6.3 Evaluating rating prediction 

In this section we describe the empirical results obtained on the rating prediction task. We 
begin by describing the experimental setting, and then present the results in two 
subsections. First, we present an analysis on the impact of threshold values in applying the 
item splitting method. And then, we present a comparison across all the implemented 
methods. In the comparison we aim to i) determine the best performing approaches, and 
detect whether there is an overall best contextualization approach; ii) identify the most 
informative time context signal in terms of performance; and iii) observe if the increased 
sparsity of the data, due to the additional dimension of context information, affects the 
approaches capacity to generate recommendations. The latter is done by measuring the 
proportion of predictions computed by an approach from the total number of test ratings. 

                                                 
24  Following this reasoning, Item Splitting can also be classified as a type of contextual modeling because no 

rating data are discarded previous to recommendation computation. Nonetheless, here we follow the 
classification given in (Baltrunas and Ricci, 2009a, 2009b, 2013).  
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6.3.1 Experimental setting 

The approaches evaluated in this chapter require an underlying recommendation algorithm 
for producing rating predictions. We used kNN and MF implementations provided by the 
Apache Mahout project25, with 𝑘 = 30 and the Pearson’s Correlation for kNN, and 60 
factors for the MF algorithm. Best parameter values could be obtained for particular tasks 
and time context signals, but we used the same settings across experiments to avoid 
differences not due to the contextualization approach. To obtain full coverage, in cases 
where an algorithm was unable to compute a rating prediction, the global average training 
rating value was provided as default prediction. 

The implemented approaches were evaluated using the data collected in the user 
study presented in Section 6.1. Aiming to ensure a rigorous and reproducible evaluation 
setting, we used the methodological framework introduced in Chapter 4 for describing the 
evaluation conditions, and applied the guidelines proposed in Chapter 5.  Since the used 
dataset does not count with timestamps, we only were able to employ a time-independent 
rating order condition ℴ𝑡𝑖 . We used a community-centered base rating set 𝒷𝒷𝑐𝑐 , and a 
proportion-based size condition 𝓈𝓈𝑝𝑟𝑜𝑝. Given the small size of the dataset, to avoid biases 
in the results, we used a cross-validation method compatible with the above conditions. We 
thus performed 10-fold cross validation in all the experiments. 

We computed the accuracy of the evaluated approaches in terms of the error on rating 
prediction, by means of the Mean Average Error, MAE (see Eq. 2.5), and the Root Mean 
Squared Error, RMSE (see Eq. 2.6). As we noted before, in some cases certain algorithms 
were unable to generate a rating prediction, due e.g. to lack of knowledge about user 
preferences in a given context. In order to provide a more complete perspective of the 
performance of the considered approaches, we also computed the proportion of predictions 
effectively computed (denoted as PPEC), that is, the proportion of predictions computed by 
each algorithm from the total predictions required (the remaining correspond to default 
value predictions). Moreover, we report the MAE and RMSE values obtained in effectively 
computed predictions, which we denote as EC-MAE and EC-RMSE respectively. 

6.3.2 Selecting thresholds for Item Splitting 

As described in Section 6.2.1, Item Splitting requires an impurity criterion 𝑡𝑡𝑢𝑢(𝑡𝑡, 𝑠) that 
returns a score of the differences between the ratings given to an item 𝑡𝑡 in a split 𝑠. The 
item 𝑡𝑡 is split if the used criterion returns a score above certain threshold τ. In order to 
determine the best threshold values for the different criteria used in this analysis, we 
computed the RMSE values obtained by using different thresholds on each contextual 
condition. Figure 6.2 shows the obtained results.  

                                                 
25  Apache Mahout machine learning library, http://mahout.apache.org/ 
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Figure 6.2. Threshold value vs. RMSE obtained by the different impurity criteria and 
recommendation approach tested. 
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For all the impurity criteria, we tested thresholds in the range [0,4.5] with increments 
of 0.1. We note that, as the threshold value becomes higher, a criterion becomes less 
sensitive, and finally no item is split. We cut the graphs in the figure at the threshold for 
which no item was split. 

The figure shows that each impurity criterion meets the lowest RMSE at a different 
threshold, depending on the time context information used to split the items, and the 
underlying recommendation approach (kNN or MF). These results reveal that Item Splitting 
is able to exploit differences in global item preferences across time contexts, but a careful 
selection of the threshold is required in order to obtain performance improvements. 

6.3.3 Experimental results 

Tables 6.1 and 6.2 show the results obtained by each of the tested CARS approaches on our 
context-enriched dataset, using kNN and MF as underlying recommendation algorithm 
respectively. The results are grouped according to the time context information provided to 
each recommendation approach. In the case of IS approaches, we report the results obtained 
with the best performing thresholds for each combination of impurity criterion and time 
context. These thresholds are reported in the tables. 

In order to put in perspective the performance of the contextualization approaches, we 
included as baselines the basic recommendation algorithms, namely kNN and MF without 
contextualization, using the same parameter values as in the other approaches. The results 
of the baseline algorithms are in accordance with those reported in previous studies: MF 
has a superior performance compared to kNN on all the analyzed metrics, and MF provides 
a higher proportion of personalized rating predictions. This is due to the structure of MF, 
which builds a model of latent factors for all the users and items in the training set at the 
same time. The non-personalized predictions correspond to target users or items not present 
in the training set. In the case of kNN, it is required to find some similar users (to the target 
user) who have rated the target item, which is not possible in many cases.  

These important differences motivated us to analyze results separately for 
implementations using kNN and MF. It let us study the improvements due to the 
contextualization approaches. Moreover, it let us observe if some approaches are able to 
improve performance independently of the underlying recommendation algorithm. 

In Table 6.1 we observe that, being kNN the underlying recommendation algorithm, 
the best performing approaches according to MAE and RMSE are PRF and CM. In fact, the 
best global MAE and RMSE values are obtained by PRF exploiting the period of the day 
time context, individually or in conjunction with period of the week. CM is also able to 
improve considerably MAE and RMSE values when period of the day context is available. 
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In the case of IS and POF, only slight performance improvements were obtained, 
regardless of the time context signal exploited. Moreover, MAE and RMSE values from 
POF were worse than those of the baseline when exploiting period of the week context. 

Observing the PPEC, we note that PRF and CM heavily penalize the ability of 
algorithms to compute rating predictions. This is due to the interaction of these filtering 
techniques and kNN requisites. In the case of PRF, many ratings were discarded previous to 
rating prediction computation, which makes it harder to find neighbors having rated the 
target item. In the case of CM, no rating was discarded, but user profiles were partitioned 
into contextualized profiles, leaving less rated items in each contextualized profile, and 
making it more difficult to find neighboring contextualized profiles with the target item. 

Table 6.1. Performance values in the rating prediction task obtained by pre-filtering, post-
filtering, and contextual modeling-based recommender systems using kNN as underlying 
recommendation algorithm. Global top values of each column are in bold, and best values for 
each context are underlined. Green-up arrow heads, yellow lines and red-down arrow heads 
indicate better, equal, and worse values of the metric in the column with respect to the 
baseline, respectively. 

 

Context Approach RMSE MAE PPEC EC-RMSE EC-MAE
Baseline(kNN) 1.0804 0.8038 0.3028 1.3768 1.0396
PRF 0.9781 0.7510 0.0147 0.7083 0.7017

1.0587 0.7934 0.2612 1.3141 0.9941
1.0804 0.8038 0.3028 1.3768 1.0396
1.0799 0.8027 0.3028 1.3752 1.0355
1.0804 0.8038 0.3028 1.3768 1.0396

POF 1.0782 0.8006 0.3028 1.3730 1.0291
CM 1.0106 0.7751 0.0458 1.2337 1.0802
PRF 0.9963 0.7513 0.1095 1.2050 0.9325

1.0736 0.8001 0.3008 1.3615 1.0252
1.0685 0.7954 0.2967 1.3522 1.0165
1.0702 0.7927 0.2823 1.3695 1.0225
1.0570 0.7862 0.2885 1.3306 0.9956

POF 1.0990 0.8181 0.3028 1.4215 1.0848
CM 1.0667 0.8018 0.1834 1.4628 1.2164
PRF 0.9781 0.7510 0.0147 0.7083 0.7017

1.0724 0.8042 0.2346 1.4255 1.0952
1.0804 0.8038 0.3028 1.3768 1.0396
1.0636 0.7910 0.1823 1.3170 0.9953
1.0750 0.7938 0.3028 1.3594 1.0044

POF 1.0721 0.7971 0.3028 1.3549 1.0157
CM 1.0119 0.7771 0.0413 1.3170 1.2098
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We note that EC-MAE and EC-RMSE show similar trends to those observed on 
MAE and RMSE. This is probably due to the fact that the baseline also has a low PPEC, 
and also shows that using the average rating value as default rating prediction does not 
harm importantly MAE and RMSE of kNN-based approaches. 

Table 6.2. Performance values in the rating prediction task obtained by pre-filtering, post-
filtering, and contextual modeling-based recommender systems using MF as underlying 
recommendation algorithm. Global top values of each column are in bold, and best values for 
each context are underlined. Green-up arrow heads, yellow lines and red-down arrow heads 
indicate better, equal, and worse values of the metric in the column with respect to the 
baseline, respectively. 

 

In the case of the approaches that use MF as underlying recommendation algorithm 
(Table 6.2), the best performing approach according to MAE and RMSE was IS. The best 
global RMSE value was obtained by IS using the proposed 𝑡𝑡𝑢𝑢𝐹  impurity criterion and 
exploiting the period of the day time context, while the best global MAE was obtained by 
the same algorithm exploiting period of the day and period of the week time contexts. 

Context Approach RMSE MAE PPEC EC-RMSE EC-MAE
Baseline(MF) 0.8813 0.6946 0.7508 0.8534 0.6855
PRF 0.8916 0.6938 0.5457 0.7921 0.6483

0.8757 0.6905 0.7508 0.8458 0.6800
0.8789 0.6927 0.7508 0.8499 0.6826
0.8786 0.6946 0.7508 0.8497 0.6853
0.8802 0.6947 0.7508 0.8515 0.6851

POF-MF 0.8977 0.7105 0.7508 0.8740 0.7063
CM 0.8841 0.6901 0.6879 0.8374 0.6663
PRF 0.8965 0.6958 0.5979 0.8711 0.6876

0.8784 0.6906 0.7508 0.8497 0.6803
0.8806 0.6936 0.7508 0.8523 0.6841
0.8792 0.6923 0.7508 0.8508 0.6826
0.8792 0.6919 0.7508 0.8506 0.6818

POF-MF 0.8993 0.7109 0.7508 0.8775 0.7071
CM 0.8925 0.7020 0.7074 0.8568 0.6825
PRF 0.9130 0.6969 0.4378 0.8000 0.6399

0.8761 0.6893 0.7508 0.8463 0.6785
0.8790 0.6923 0.7508 0.8500 0.6821
0.8784 0.6926 0.7508 0.8495 0.6827
0.8789 0.6924 0.7508 0.8498 0.6820

POF-MF 0.9107 0.7194 0.7508 0.8907 0.7177
CM 0.9016 0.6996 0.6167 0.8225 0.6519
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Regarding the remaining algorithms, none of them was able to improve either MAE 
or RMSE values of the baseline, regardless of the time context signal exploited. 

Observing the PPEC and the EC-MAE and EC-RMSE values of MF-based 
approaches, it is possible to better understand the difference of their MAE and RMSE 
compared with those of the kNN-based approaches. For instance, we note that the best EC-
MAE and EC-RMSE values were obtained by PRF exploiting period of day alone, and both 
period of day and period of week contexts, respectively. These results are very similar to 
those observed in Table 6.1. However, in both cases, the PPEC is very low compared with 
the other approaches. In this case, the low number of predictions effectively computed by 
PRF and CM is worsening the results on MAE and RMSE. 

The above results let us observe important clues regarding the application of time-
aware approaches to recommendation in the rating prediction task. First, we did not 
observe a unique superior TARS approach for improving rating prediction 
performance. We observed that performance improvements have a strong dependency 
with the used recommendation algorithm. In general PRF provided the best performance 
values when using kNN, while IS had most of the improvements when using MF as 
underlying recommendation algorithm, particularly using the proposed 𝑡𝑡𝑢𝑢𝐹  impurity 
criterion. Second, the period of the day context, used individually or in conjunction with 
other time context, was the most informative time context in terms of rating prediction 
error, particularly in the case of RMSE. Finally, we note that the final rating prediction 
performance also depends on the proportion of predictions effectively computed by 
each recommendation algorithm and contextualization approach, and the default rating 
value used. 

6.4 Evaluating top-N recommendations 

In this section we focus on the evaluation of top-N recommendations task. We first analyze 
the additional evaluation conditions required for the assessment of such task. Then, from 
this analysis we propose a new methodology in terms of a new target item condition within 
our methodological framework, aiming to provide a more realistic evaluation setting for the 
task. Finally, we describe the used experimental setting, and report and discuss the results 
obtained when comparing the different recommendation approaches. In this comparison –
similarly to the analysis performed in Section 6.3–, we focus on i) determining the best 
performing approaches, and detecting whether there is an overall best contextualization 
approach; and ii) identifying the most informative time context signal in terms of 
recommendation performance. 
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6.4.1 Evaluation conditions for time-aware top-N recommendations  

To compute top-N recommendations metrics, we first require defining the target item and 
relevant item conditions, which indicate the items that will be ranked, and the items in the 
test set that will be considered as relevant (and non-relevant) for computing relevant-based 
metrics, respectively.  

The selection of these conditions is not trivial. As indicated by Cremonesi et al. 
(2010), a careful construction of the test set is required. Moreover, the evaluation of time-
aware recommendations requires special care, as the rating prediction is computed not only 
for a target user and item, but also for a target time context that must be taken into account 
by the system to generate contextualized recommendations. 

In the case of the recommendation approaches evaluated in this chapter, the target 
period of the day and period of the week categorical contexts are known by a RS prior to its 
rating prediction computation. To evaluate categorical TARS –and generic CARS 
exploiting categorical context variables–, the most common approach is to utilize a user-
based target item condition and a threshold-based relevant item condition. That is, to rank 
the items in the user’s test set –for which the user’s ratings are known–, by considering as 
relevant those items rated above some predefined threshold. By using such target item 
condition, a recommender can receive the target time context for which compute a given 
rating prediction in the test set. 

However, as discussed in (Koren, 2008; Cremonesi et al., 2010; Bellogín et al., 
2011), this evaluation setting completely miss any assessment on unrated items, a situation 
far away of the reality, where all items in the system’s catalog should be eligible for 
recommendation. Hence, a more realistic setting should include unrated items in the set of 
target items. This motivated our suggestion (guideline number 5 in Chapter 5) of using a 
community-based target item condition for evaluating TARS. The community-based target 
item condition forces to rank all items in the test set for each target user (of course, with the 
exception of those items rated by the target user in the training set). 

A problem that arises from the community-based target item condition is the selection 
of the target time context in which compute rating predictions for unrated items. The 
simplest way to address that problem is to randomly assign time contexts to each unrated 
item. Such strategy, nonetheless, forces to combine rating predictions targeted to different 
time contexts into a unique ranking. It is likely (and expectable) that an item may get 
different rating predictions for different contexts, and thus, combining items targeted to 
different contexts may make it difficult to estimate the ranking position a relevant item 
should have. 

Alternatively, we aim to use a target item condition that lets rank relevant and non-
relevant items targeted to the same context, and include unrated items at the same time. 
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Revising the different target item conditions included in the methodological framework 
presented in Chapter 4, we observe that none of them achieves both goals. However, we 
note that a one-plus random (OPR) target item condition can be easily adapted for this 
purpose. 

The original formulation of OPR states that for each highly relevant item in the test 
set (among those rated by the user), a number 𝑘 of unrated items is randomly selected. 
Hence, a ranking is computed for each of these sets, which are composed of one relevant 
item and 𝑘 non-relevant items. We propose a simple modification on this condition, called 
contextual one-plus random target item condition, in which the context of the relevant item 
is used as target context for all the items in the corresponding set. In this way, all items in 
each ranking are targeted to the same context. The formal definition of this condition is as 
follows: 

Contextual one-plus random target items. Let 𝐼ℎ𝑟𝑒𝑙𝑢 be the set of highly relevant items for 
user 𝑢𝑢 defined as 𝐼ℎ𝑟𝑒𝑙𝑢 = �𝑡𝑡 ∈ 𝐼 | 𝑝𝑝𝑢,𝑖 ∈ 𝑇𝑒𝑢, 𝑝𝑝𝑢,𝑖 > 𝜏ℎ𝑟𝑒𝑙�, where 𝜏ℎ𝑟𝑒𝑙 is a high-relevance 
threshold, i.e., the items in the test set of 𝑢𝑢, 𝑇𝑒𝑢, that have high ratings; and let 𝐼𝑟𝑒𝑙����𝑢 be the 
set of non-relevant items for user 𝑢𝑢 defined as 𝐼𝑟𝑒𝑙����𝑢 = �𝑡𝑡 ∈ 𝐼 | 𝑝𝑝𝑢,𝑖 = ∅�, i.e., the items that 
have not been rated by 𝑢𝑢. For each item 𝑡𝑡𝑘 ∈ 𝐼ℎ𝑟𝑒𝑙𝑢, a set 𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢𝑘  is built as the union of 
𝑡𝑡𝑘  and a number N of non-relevant items randomly selected from 𝐼𝑟𝑒𝑙����𝑢 . All items in 
𝑇𝑎𝑝𝑝𝑔𝑒𝑡𝑡𝑢𝑘 are assigned with the time context of 𝑡𝑡𝑘. 

The usage of this target item condition implicitly forces to use a threshold-based 
relevant item condition because the value 𝜏ℎ𝑟𝑒𝑙 establishes the threshold for interpreting an 
item as relevant or not.  

6.4.2 Experimental setting 

We used the same recommendation algorithms and contextualization approaches evaluated 
in Section 6.3, and the thresholds that lead to the best RMSE values for the impurity criteria 
of Item Splitting (see Tables 6.1 and 6.2), in order to compare the same recommendation 
models in both tasks. 

Moreover, we applied the same evaluation conditions for training-test split, that is, 
we performed 10-fold cross validation in all the experiments, corresponding to the use of a 
time-independent rating order condition ℴ𝑡𝑖 , a community-centered base rating set 
condition 𝒷𝒷𝑐𝑐, and a proportion-based size condition 𝓈𝓈𝑝𝑟𝑜𝑝. 

Regarding the specific top-N recommendations evaluation conditions, we performed 
the proposed contextual one-plus random target item condition, and a threshold-based 
relevant condition with a threshold 𝜏ℎ𝑟𝑒𝑙 = 5.0. The number 𝑛 of randomly selected non-
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relevant items to rank with each relevant item was set to 𝑛 = 10. We did not use larger 
values of 𝑛 due to the small sample size of the dataset. 

We computed the accuracy of the evaluated approaches using Precision (see Eq. 2.7), 
Recall (see Eq. 2.8), and F-measure (see Eq. 2.9) metrics at level 5 (denoted as P@5, R@5 
and F@5, respectively), in order to assess the ability of the approaches to rank the relevant 
items among their 5 top recommendations. We used the normalized Discounted Cumulative 
Gain metric (nDCG, see Eq. 2.10) and the Area Under the Curve (AUC, see Eq. 2.11) on 
the full list of recommendations, in order to assess the whole rankings generated. 

6.4.3 Experimental results 

Tables 6.3 and 6.4 show the results obtained by the tested recommendation approaches 
using kNN and MF as underlying recommendation algorithms, respectively. The results are 
grouped according to the time context information provided to each approach. The specific 
thresholds for Item Splitting are reported in the tables. 

In the tables we also show the results obtained by kNN and MF algorithms as 
baselines. We observe that MF has a superior performance compared to kNN –which is in 
accordance with results on rating prediction, and with other studies. We also observe that 
P@5 –and consequently F@5– values may be considered low. This is due to the followed 
evaluation methodology: only one relevant item is included in each recommendation list. 
Thus, the maximum achievable P@5 is 0.2. These low values are not inconvenient for 
evaluation, as the metric results are used to rank algorithms in terms of performance, and 
thus, the absolute numeric metric values are not informative by themselves. 

In Table 6.3 we observe that, using kNN as underlying recommendation algorithm, 
the best P@5, R@5 and F@5 values are obtained by PRF. The best global value of P@5 is 
obtained by PRF exploiting the period of the day time context, individually or in 
conjunction with period of the week. In the case of R@5, the best global value is obtained 
by PRF exploiting period of the week time context. In the case of F@5, the best global 
value is obtained by PRF exploiting either of the time context variables individually or 
simultaneously. 

CM is also able to improve these metrics with respect to the baseline, in particular 
when exploiting both time contexts in conjunction. POF is only able to improve the 
baseline’s performance on these metrics when exploiting period of the day time context 
individually. Contrarily, IS provides a superior performance with respect to the baseline 
when exploiting time of the week context, individually or in conjunction with time of the 
day. We note that the best results from IS in P@5, R@5 and F@5 are obtained when 
exploiting both time contexts in conjunction, using the proposed 𝑡𝑡𝑢𝑢𝐹 impurity criterion. 
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Regarding nDCG and AUC metrics, the best global values are obtained by IS using 
𝑡𝑡𝑢𝑢𝑃  and PRF respectively, when exploiting period of the week time context. In general, 
most contextualization approaches are unable to improve the baseline’s performance when 
exploiting the period of the day time context alone. 

Table 6.3. Performance values in the top-N recommendations task obtained by pre-filtering, 
post-filtering, and contextual modeling-based recommender systems using kNN as underlying 
recommendation algorithm. Global top values of each column are in bold, and best values for 
each context are underlined. Green-up arrow heads, yellow lines and red-down arrow heads 
indicate better, equal, and worse values of the metric in the column with respect to the 
baseline, respectively. 

 

In the case of approaches that use MF as underlying recommendation algorithm 
(Table 6.4), we observe that the best performing approach in terms of P@5, R@5 and F@5 
is our proposed POF-MF approach, on all the context signals. The best global values of 
these metrics are obtained by the approach when exploiting period of the day and period of 
the week time context in conjunction. The remaining approaches are unable to improve the 
baseline performance on all these metrics simultaneously. 

Context Approach P@05 R@05 F@05 nDCG AUC
Baseline(kNN) 0.0805 0.2897 0.1215 0.3665 0.4877
PRF 0.0933 0.3261 0.1390 0.3463 0.5206

0.0764 0.2684 0.1145 0.3566 0.4752
0.0805 0.2897 0.1215 0.3665 0.4877
0.0805 0.2897 0.1215 0.3613 0.4852
0.0805 0.2897 0.1215 0.3665 0.4877

POF 0.0839 0.3064 0.1271 0.3653 0.4897
CM 0.0899 0.3125 0.1336 0.3479 0.5154
PRF 0.0917 0.3383 0.1390 0.3598 0.5294

0.0841 0.3033 0.1271 0.3680 0.4959
0.0820 0.3023 0.1245 0.3697 0.4898
0.0838 0.2933 0.1257 0.3745 0.5055
0.0865 0.3061 0.1297 0.3764 0.4993

POF 0.0789 0.2914 0.1199 0.3646 0.4780
CM 0.0876 0.3140 0.1316 0.3449 0.5016
PRF 0.0933 0.3261 0.1390 0.3463 0.5206

0.0909 0.3260 0.1374 0.3656 0.5182
0.0805 0.2897 0.1215 0.3665 0.4877
0.0906 0.3093 0.1345 0.3725 0.5201
0.0837 0.2927 0.1255 0.3747 0.4975

POF 0.0805 0.2897 0.1215 0.3664 0.4935
CM 0.0919 0.3225 0.1370 0.3461 0.5134
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Regarding nDCG, the best results are obtained by PRF, particularly when exploiting 
period of the day time context. In the case of AUC, the best results are obtained by POF-
MF. The best global values on nDCG and AUC are obtained by PRF and POF-MF 
respectively, when exploiting period of the day and period of the week time contexts 
simultaneously. The remainder algorithms show improvements over the baseline 
performance on these metrics when exploiting period of the week time context, with the 
exception of CM. 

Table 6.4. Performance values in the top-N recommendations task obtained by pre-filtering, 
post-filtering, and contextual modeling-based recommender systems using MF as underlying 
recommendation algorithm. Global top values of each column are in bold, and best values for 
each context are underlined. Green-up arrow heads, yellow lines and red-down arrow heads 
indicate better, equal, and worse values of the metric in the column with respect to the 
baseline, respectively. 

 

From these results we obtain some important insights regarding the contextualization 
of top-N recommendations. First, we observe that there is no dominant TARS approach 
for improving top-N recommendations performance. We found a strong dependency 

Context Approach P@05 R@05 F@05 nDCG AUC
Baseline(MF) 0.1238 0.4748 0.1898 0.4245 0.6227
PRF 0.1247 0.4549 0.1886 0.4453 0.6404

0.1236 0.4694 0.1890 0.4217 0.6180
0.1216 0.4493 0.1846 0.4180 0.6139
0.1187 0.4467 0.1810 0.4174 0.6050
0.1226 0.4590 0.1868 0.4198 0.6194

POF-MF 0.1360 0.5201 0.2084 0.4452 0.6722
CM 0.1232 0.4771 0.1895 0.4295 0.6231
PRF 0.1199 0.4460 0.1824 0.4285 0.6039

0.1201 0.4623 0.1851 0.4367 0.6313
0.1227 0.4634 0.1873 0.4361 0.6277
0.1245 0.4667 0.1897 0.4396 0.6349
0.1276 0.4794 0.1947 0.4285 0.6356

POF-MF 0.1286 0.4937 0.1971 0.4323 0.6532
CM 0.1161 0.4462 0.1783 0.4109 0.6070
PRF 0.1281 0.4652 0.1937 0.4603 0.6581

0.1196 0.4512 0.1825 0.4136 0.6083
0.1236 0.4593 0.1879 0.4282 0.6287
0.1119 0.4211 0.1712 0.4203 0.6204
0.1246 0.4690 0.1901 0.4402 0.6415

POF-MF 0.1394 0.5373 0.2141 0.4516 0.6774
CM 0.1118 0.4207 0.1708 0.4131 0.5986
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between the performance of the contextualization approaches and the used base 
recommendation algorithm. This finding is similar to the observed in the case of the rating 
prediction task. In general, PRF provided the best performance values when using kNN, 
while the proposed POF-MF had most of the improvements when using MF as underlying 
recommendation algorithm. From these, we note that the contextualization approach to use 
should be selected depending on the recommendation task and the underlying 
recommendation algorithm. And second, regarding the use of time context information, 
period of the day was less informative than period of the week time context, as most 
recommendation approaches were not able to improve performance when exploiting the 
former time context. This is contradictory with the results observed in the rating prediction 
task, where period of the day was the most informative time context. These results indicate 
that the time context to exploit has to be selected carefully depending on the 
recommendation task and the contextualization approach at hand. 

6.5 Conclusions 

In this chapter we have evaluated the performance of various time-aware recommendation 
approaches in two important recommendation tasks, namely rating prediction and top-N 
recommendations. We used a dataset of movie ratings with explicit time context 
information, obtained through a user study specifically designed for such aim. We adapted 
several context-aware recommender systems able to exploit the collected time context 
information, and proposed new heuristics for different CARS approaches. All these 
approaches were assessed using a common and reproducible evaluation setting, which was 
precisely described by means of the methodological framework presented in Chapter 4. 
Moreover, starting from the guidelines and evaluation conditions for top-N 
recommendations task presented in Chapter 5, we proposed and used a new methodology 
for evaluating that task. This methodology let built ranked list of items targeted for the 
same time context, including unrated items in the list, thus providing a more realistic 
evaluation setting than those from other methodologies in the literature. 

Based on the results reported in this chapter, we may conclude that there is no 
unique dominant TARS in either the rating prediction or top-N recommendations 
task. Moreover, we observed that performance improvements achieved by the tested 
contextualization approaches depend on the underlying recommendation algorithm and the 
exploited time context. This conclusion is in line with findings of previous research 
comparing CARS on e-commerce applications, e.g. (Panniello et al., 2009b). The 
identification of the best performing approach, thus, requires a time-consuming evaluation 
and comparison of candidate TARS implementations on the target data. Furthermore, some 
contextualization approaches may require an intensive testing of parameters, as is the case 
of IS. 
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Regarding the heuristics proposed in the chapter, we remark the performance of IS 
obtained with the 𝑡𝑡𝑢𝑢𝐹 impurity criterion in the rating prediction task, and the performance 
of POF-MF in the top-N recommendations task. These two new heuristics are able to 
effectively contextualize recommendations generated by the high-performing MF 
recommendation algorithm, thus leading to the best global values on the majority of 
metrics in the rating prediction and top-N recommendations tasks, respectively. In this way, 
the use of the proposed heuristics in conjunction with a Matrix Factorization 
recommendation algorithm can be considered a good approach to contextualize 
recommendations when time context information about user preferences is available. 

One important remark that may help on the search of better TARS is the fact that the 
performance may be considerably affected by the proportion of predictions that are 
assigned a default value, particularly in the prediction of ratings. In this chapter we used 
the average rating value in the dataset as default value, in order to obtain full coverage and 
avoid biases in the assessment of metrics due to the use of a more sophisticated method. 
Nonetheless, the usage of a more accurate default rating method may help improve 
considerably the performance of some approaches, such as PRF. 

We note that the conclusions obtained in this analysis are not necessarily 
generalizable, due to the small size of the used dataset, and the fact that only one 
recommendation domain was evaluated. Nonetheless, we remark that our analysis provides 
an objective comparison of approaches based on the utilization of a common and precisely 
defined evaluation setting. Moreover, we highlight the extensibility of the methodological 
evaluation framework proposed in Chapter 4, as we could easily incorporate a new target 
item condition that integrated seamlessly with other conditions, and furthermore, could 
follow a more realistic evaluation methodology for the evaluation of TARS approaches in 
the top-N recommendations task. 

 

 



 

 

Chapter 7  
 
Identification of active users in shared user 
accounts 

Popular online rental services such as Netflix and MoviePilot are usually accessed via 
household accounts. A household account is typically shared by various users who live in 
the same house, but in general does not provide a mechanism by which current active users 
are identified, and thus leads to considerable difficulties for making effective personalized 
recommendations. The identification of the active household members, defined as the 
discrimination of the users from a given household who are interacting with a system (e.g. 
an on-demand video service), is thus an interesting challenge for the recommender systems 
research community. In this chapter, we formulate the above task as a classification 
problem, and address it by means of methods that only exploit time context information 
from the users’ past activity logs. Moreover, we extend the methodological framework 
introduced in Chapter 4 for the evaluation of this task. This lets assess the proposed 
methods’ performance using different evaluation methodologies, and properly take into 
account the evolution of user preferences and behavior through time, from an evaluation 
point of view. 

In Section 7.1 we provide a general definition of the task, and a brief review of 
related work. In Section 7.2 we present an empirical analysis of the temporal behavior of 
users in households, performed on a movie rating dataset with household data, and show 
the suitability of a time-based approach for active user identification. In Section 7.3 we 
detail the methods used for the task, and report their performance on a publicly available 
test dataset. In Section 7.4 we present a comparison of the methods by using diverse 
evaluation methodologies, in order to determine their robustness when using different 
evaluation settings. Finally, in Section 6.4 we end with partial conclusions from our 
analysis. 
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7.1 Identifying users in shared accounts 

Many online services providers offer access to their services via user accounts. These 
accounts can be seen as a mechanism to identify the active user, and track her behavior, 
letting e.g. build a personalized profile. The user profile can be used afterwards to provide 
personalized services, e.g. recommendation. User accounts, however, can be shared by 
multiple users. An example of shared account is a household account, that is, an account 
shared by several users who usually live in the same house. In general, it is hard to detect 
whether a household account is being accessed by more than one user, and this raises 
difficulties and limitations for providing an effective personalized assistance (Kabutoya et 
al., 2010; Berkovsky et al., 2011). 

Users sharing a household do not necessarily access the service together, and 
consume offered items at the same time. Consider for instance a four members family 
(formed e.g. by a father, a mother, a son, and a daughter), sharing a household account of a 
video-on-demand service. Each member of the family has distinct viewing interests and 
habits, and thus each of them watches video differently regarding gender, time, and many 
other contextual variables. If one member of the family asks for video recommendations, it 
is likely that those recommendations do not fit the user’s interests, because the account 
profile contains a mixture of preferences from the four family members. 

Two main strategies can be adopted in order to overcome such problem (Campos et 
al., 2012). The first strategy is to increase the diversity of delivered recommendations 
(Zhang and Hurley, 2008), aiming to cover the heterogeneous range of preferences of the 
different members in the household. The second strategy is to identify the active household 
members for which recommendations have to be delivered. In this thesis, we focus on the 
second strategy since it lets make more accurate recommendations, by only using 
preferences of active members, and discarding preferences of other, non-present members 
(Kabutoya et al., 2010). 

The identification of active household members, defined as the discrimination of 
which users from a given household are interacting with a system (e.g. an on-demand video 
service), is thus an interesting challenge for the recommender systems research community. 
In fact, the convenience of identifying users in households for recommendation purposes 
has been addressed in the RS literature. Several proposed recommendation approaches on 
the TV domain consider the knowledge of which users are receiving the recommendations 
by means of explicit identification of users. For instance, Ardissono et al. (2001) propose a 
personalized Electronic Programming Guide for TV shows, requiring the user to log in the 
system for receiving personalization. Vildjiounaite et al. (2008) propose a method to learn a 
joint model of user subsets in households, and use individual remote control devices for 
identifying users. The methods considered in this chapter, in contrast, aim to identify the 
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user who is currently interacting with the system, by analyzing temporal patterns of 
individual users, without requiring to log in or to use special devices at recommendation 
time.  

Specific methods for the identification of users from household accounts have been 
proposed in the RS research field. Goren-Bar and Glinansky (2004) predict which users are 
watching TV based on a temporal profile manually stated. In (Goren-Bar and Glinansky, 
2004) users indicate the time lapses in which they would probably be in front of the TV. Oh 
et al. (2012) derive time-based profiles from household TV watching logs, which model 
preferences of time lapses instead of individual users. In this way, the target profile 
corresponds to the time lapse at which recommendations are requested. These methods 
assume that users have a fixed temporal behavior through time. 

Other works have also dealt with problems raised by the use of shared user accounts. 
In the context of the Netflix Prize competition, Koren (2009) discusses some difficulties for 
RS that could emerge from the use of household accounts –note that the well-known 
Netflix Prize competition dataset in fact contains household identifiers, not user identifiers. 
In that work, Koren proposes a temporal recommendation model that assumes the existence 
of a drifting meta-user associated with each household account. Similarly, Kabutoya et al. 
(2010) aim to identify latent users sharing an account, by using a probabilistic topic model.  

The above approaches use household-level training data, i.e., data where it is 
unknown which users compose a household, and which household members really 
provided particular (training) ratings; and aim to improve recommendation accuracy over 
withheld test ratings. With this respect, these works differs from the research presented 
herein, in the sense that they focus on detecting latent preference patterns within account 
user profiles, in order to improve the final performance of certain recommender system. We 
propose, on the contrary, to model knowledge about such patterns independently from the 
recommender system used. Thus, in our approach, once the active members of household 
accounts are identified, any recommendation algorithm could be performed. In this way, we 
believe that recommended items would better fit the active users’ preferences. 

7.2 Discrimination of active user based on time context 
information 

The 2011 edition of the Context-Aware Movie Recommendation (CAMRa) Challenge 
(Berkovsky et al., 2011) requested participants to identify which members of particular 
households were responsible for a number of events –interactions with the system in the 
form of ratings. The contest provided a training dataset with information about ratings in a 
movie RS, including the users who provided the ratings, and their associated timestamps. It 
also provided information about a number of users utilizing household accounts. The 
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challenge’s goal was to identify the users of household accounts who had been responsible 
for certain events (ratings), and whose household and timestamp were given in a randomly 
sampled test dataset. 

Figure 7.1 shows a schematic view of the challenge’s task. In the matrix, each row 
represents a household (ℎℎ) and each column a represents a movie. Each cell of the matrix 
contains the known ratings given by household members to the corresponding movie 
(training data). The question marks (?) indicate cases to identify which member of the 
corresponding household performed the given rating (test data). Given the availability of 
rating timestamps, the contest’s task can be assumed equivalent to that of identifying active 
users requesting recommendations at a particular time, and thus the contest’s data can be 
used for testing methods aimed to discriminate active users in household accounts. 

 

Figure 7.1. Schematic view of CAMRa 2011 Challenge  household member identification task. 

CAMRa 2011’s MoviePilot Dataset is a movie rating dataset from the German movie 
recommender MoviePilot26, consisting of a training set of 4,536,891 time stamped ratings 
from 171,670 users on 23,974 items in a timespan from July 11, 2009 up to July 12, 2010, 
and two test sets –there were two challenge tracks: track #1 corresponding to a household 
rating prediction task, and track #2 corresponding to the household member identification 
task. The test set of track #1 contains 4,482 ratings from 594 users on 811 items in a 
timespan from July 15, 2009 up to July 10, 2010 and the test set of track #2 contains 5,450 
ratings from 592 users on 1706 items in a timespan from July 13, 2009 up to July 11, 2010. 
Additionally, the dataset contains information about 602 users that belong to one of 290 
household accounts. 

Figure 7.2 shows the rating, community, and catalog growth of training data (upper 
side) and testing data for the track #2 (lower side) through time. It may be seen that data 
growth follows a similar proportion on both rating sets. Table 7.1 shows the size 
distribution of households in the dataset. 2-sized households represent the 93.8% of all the 

                                                 
26 MoviePilot movie recommendations, http://www.moviepilot.de 
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households, while 3-sized and 4-sized households represent the 4.8% and 1.4% 
respectively. 

 

 

Figure 7.2. Training (upper side) and testing (lower side) CAMRa 2011’s MoviePilot dataset 
growth through time. 

Table 7.1. Distribution of household account sizes. 

Number of 
members per 

account 

Number of 
accounts 

2 272 
3 14 
4 4 
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Taking advantage of timestamp information, we are able to derive several categorical 
time context variables. Using these variables, we observe that user temporal behavior 
within a household is not uniform. For instance, Figure 7.3 shows the rating hour 
probability mass function (PMF) of the two users in household account #1. We observe that 
there is a clear disparity between the hours employed by each of the household’s members 
for rating movies. The user u40246 has a probability close to 1 (0.93) of rating movies in 
the period from 18:00 to 19:00. On the contrary, the user u311738 rates movies starting at 
20:00 and later on, that is, mostly by night. Similar patterns are repeated along the data set, 
suggesting that time-based strategies might be useful for the household member 
identification task. 

 

Figure 7.3. Probability mass function (PMF) of rating hours of users in household account #1. 

When analyzing the rating date from each user, it is also possible to detect some 
interesting facts. Figure 7.4 shows how many ratings are made by users through time. The 
left frame shows that the mean rating window size (i.e., the timespan at which users 
perform ratings) is very small, –just a few days. The center and right frames also show that 
the vast majority of ratings are incorporated during the first days after the users start 
providing ratings. Considering that users start their participation in different days, this 
information can be helpful for the task at hand. We also note that there are differences on 
the day of the week each user rates movies. 

These findings motivated us to use probability-based models in order to classify users 
in a given household, by exploiting time context information with a good discrimination 
power. Our approach can be formalized as follows. Let us consider a set of events 𝐸 =
{𝑒1, 𝑒2, … , 𝑒𝑚}, and a set of users 𝑈ℎ = �𝑢𝑢1,ℎ,𝑢𝑢2,ℎ, … ,𝑢𝑢𝑛,ℎ� in a household ℎ , such that 
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event 𝑒𝑖 is associated to one, and only one, user 𝑢𝑢𝑗,ℎ. Also, let us consider that each of these 
events is described by means of a feature vector, called 𝑋𝑒𝑖 . The question to address is 
whether it is possible to determine which user is associated to an event 𝑒𝑖 once the values 
𝑓𝑓𝑒𝑖,𝑘  of (some) components 𝑋𝑒𝑖,𝑘  of its feature vector 𝑋𝑒𝑖  are already known. In the 
following, events correspond to instances of user ratings, and feature vectors correspond to 
time context information associated to the events. Each time context variable corresponds 
to a feature describing the time at which the event was produced. As we focus on time 
context information, we use interchangeably the terms time context variable and feature in 
the remainder of this chapter. 

 

Figure 7.4. Time-based rating frequencies: from left to right, rating window size, daily and 
cumulative number of ratings through time. 

Table 7.2 shows the time context features analyzed in this study. Aiming to estimate 
the discrimination power of such features, we used the well-known Kullback-Leibler 
Divergence (KLD) (Kullback and Leibler, 1951), which lets us to measure the divergence 
between pairs of users in a household, regarding the probability distribution of the features 
for the users in each household: 

𝐾𝐿𝐷�𝑝𝑝𝑢1,𝑇𝑘 ,𝑝𝑝𝑢2,𝑇𝑘� = � ln�
𝑝𝑝𝑢1,𝑇𝑘(𝑡𝑡)
𝑝𝑝𝑢2,𝑇𝑘(𝑡𝑡)

�𝑝𝑝𝑢1,𝑇𝑘(𝑡𝑡)
𝑡

 

where 𝑝𝑝𝑢,𝑇𝑘  is the probability mass function of user 𝑢𝑢 for time feature 𝑇𝑘, and 𝑝𝑝𝑢,𝑇𝑘(𝑡𝑡) is 
the value of 𝑝𝑝𝑢,𝑇𝑘  at time 𝑡𝑡 . Higher values of KLD correspond to more divergent 
probability distributions, and can be interpreted as having users in households with 
differentiated habits with respect to the corresponding time features. 

In the table, the features are sorted in descending order by the average KLD value 
computed over all pairs of users in each household. We note that, to avoid biases due to the 
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order of computations, we computed for each user pair the average  𝐾𝐿𝐷�������𝑝𝑝𝑢1,𝑇𝑘 ,𝑝𝑝𝑢2,𝑇𝑘� =

�𝐾𝐿𝐷�𝑝𝑝𝑢1,𝑇𝑘 ,𝑝𝑝𝑢2,𝑇𝑘� + 𝐾𝐿𝐷�𝑝𝑝𝑢2,𝑇𝑘 ,𝑝𝑝𝑢1,𝑇𝑘�� /2. The best discriminant features according 
to KLD were the absolute date (𝐷), the day of the week (𝑇𝑤), and the hour of the day 
(𝐻). 

Table 7.2. Analyzed time features. 

Time feature Domain KLD 

Absolute date (𝑫) 1,2, … , # of days in training set 5.79 

Day of the week (𝑾) 1,2, … 7 4.56 

Hour of the day (𝑯) 0,1, … ,23 4.53 

Time of the day (𝑻𝒅) morning, noon, afternoon, evening, night 2.28 

Time of the week (𝑻𝒘) workday, weekday 1.79 

Meridian (𝑴) AM, PM 1.47 

Minute of the hour (𝑴𝒉) 0,1, … ,59 0.97 

Quarter of the hour (𝑸𝒉) 1,2,3,4 0.70 

Month of the year (𝑴𝒚) 1,2, … ,12 0.36 

 

The use of KLD as a predictor of the discrimination power of a time feature in the 
household member identification task requires to be confirmed experimentally. 
Furthermore, the use of feature vectors including different combination of time features 
may have diverse impact on the performance in the task. In order to test the discrimination 
power of the analyzed time features, in the next section we use distinct classification 
methods to identify the user associated to an event in a given household. 

7.3 Classification accuracy of active user identification methods 

In this section, we present and evaluate several methods that use time context information 
for the classification of users as (currently) active or inactive within a household at a given 
time. In Section 7.3.1 we present the used methods. In Section 7.3.2 we describe the 
experimental setting followed for the evaluation of such methods. In Section 7.3.3 we 
report and discuss obtained evaluation results. 
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7.3.1 Methods for active user identification 

The first considered method is the A priori model described in (Campos et al., 2011a). This 
method computes probability distribution functions, which represent the probabilities that 
users are associated to particular events, and uses computed probabilities to assign a score 
to each user in a household, given a new event. More specifically, we compute the PMF of 
each feature 𝑋 given a particular user, restricted to the information related with that user’s 
household, that is, �𝑝𝑝�𝑋 = 𝑓𝑓|𝑢𝑢𝑗��𝑢𝑗∈𝑈ℎ , where 𝑈ℎ is the set of users in the household ℎ.  

Then, for each new event 𝑒, we obtain its representation as a feature vector 𝑋�𝑒, and 
identify the user who maximizes the PMF, that is, 𝑢𝑢𝑗∗(𝑒) = arg maxuj∈𝑈ℎ 𝑝𝑝�𝑋�𝑒|𝑢𝑢𝑗�. When 
more than one feature is used, we assume independence and use the joint probability 
function, i.e., the product of the features’ PMFs. 

We also evaluate Machine Learning (ML) algorithms described in (Campos et al., 
2012), that are able to deal with heterogeneous attributes. Specifically, we consider the 
following methods: Bayesian Networks (BN), Decision Trees (DT), and Logistic 
Regression (LR) (Bishop, 2006). These methods provide a score �𝑠�𝑋�𝑒 ,𝑢𝑢𝑗��𝑢𝑗∈𝑈ℎ based on 

different statistics from the training data, and select the user with highest scores. The above 
methods use a fixed set of time features in the classification task, and thus they use the 
same set of features over all the households. It is important to note, however, that data from 
only one household is used to classify events of that household, i.e., the methods do not use 
data from other households to identify members of a given household. 

Additionally, we considered two baselines for comparison purposes, namely a 
Random classifier, and a Frequency-based classifier, which for a given test event, selects 
the household member who has the largest number of previous events in the training set, 
and no rating for the event’s item. 

7.3.2 Experimental setting 

For the evaluation of the methods, we used the CAMRa 2011 Challenge proposed test set 
(track #2 test set). We computed the accuracy of the methods in terms of the correct 
classification rate by household ( 𝑎𝑢𝑢𝑢𝑢ℍ ), i.e., the number of correct active member 
predictions divided by the total number of predictions, averaged by household, as proposed 
by the CAMRa 2011 Challenge organizers. Formally, let ℍ be the entire set of households 
in the dataset, and let 𝑔(⋅)  be a method under evaluation. The metric is expressed as 
follows: 

𝑎𝑢𝑢𝑢𝑢ℍ =
1

|ℍ| �
1

|ℎ| � 𝐿�𝑢𝑢𝑖,𝑔(𝑒𝑖)�
(𝑒𝑖,𝑢𝑖)∈ℎℎ∈ℍ
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where 𝑔(𝑒𝑖) = 𝑢𝑢� is the user predicted by 𝑔(⋅) as associated to 𝑒𝑖, 𝐿(𝑢𝑢,𝑢𝑢�) = 1 if 𝑢𝑢 = 𝑢𝑢� , and 
0 otherwise, and (𝑒𝑖,𝑢𝑢𝑖) is a pair event-user of household ℎ in the test set. 

7.3.3 Experimental results 

We first study whether time features alone are a valuable source of information to properly 
discriminate users for identifying active household members. Table 7.3 shows the 𝑎𝑢𝑢𝑢𝑢ℍ 
values obtained by the A priori method when using each of the proposed time features (see 
Table 7.2), and using different combinations of such features. Note that in the table, the 
diagonal cells contain the 𝑎𝑢𝑢𝑢𝑢ℍ values obtained from the use of a single feature, and the 
remainder cells contain the 𝑎𝑢𝑢𝑢𝑢ℍ values obtained from the use of feature combinations. 

We observe that the best single performing features are 𝐻, 𝐷 and 𝑊 , which is in 
accordance with the KLD-based feature ranking reported in Table 7.2, confirming the 
predictive power of KLD. In cases where two features were used, combinations including 
any of 𝐻 , 𝐷  and 𝑊  features obtained better results. Furthermore, we evaluated all the 
possible combinations of features, and found that combinations including 𝐻 , 𝐷  and 𝑊 
achieved the best results. In particular, the best 𝑎𝑢𝑢𝑢𝑢ℍ  value of 0.9737 was achieved by 
combining the features 𝐻, 𝐷, 𝑊 and 𝑄ℎ. 

Table 7.3. Accuracy of the A priori method using different time feature combinations. Darker 
grey cells indicate worse values of the metric. Global best value is in bold. 

 
𝐷 𝑊 𝐻 𝑇𝑑 𝑇𝑤 𝑀 𝑀ℎ 𝑄ℎ 𝑀𝑦 

𝐷 0.9413 
        𝑊 0.9426 0.9310 

       𝐻 0.9727 0.9652 0.9457 
      𝑇𝑑 0.9557 0.9467 0.9391 0.8260 

     𝑇𝑤 0.9430 0.9298 0.9531 0.8885 0.7991 
    𝑀 0.9553 0.9435 0.9402 0.8544 0.8614 0.7832 

   𝑀ℎ 0.9509 0.9424 0.9511 0.8944 0.8942 0.8793 0.8396 
  𝑄ℎ 0.9517 0.9409 0.9532 0.8786 0.8770 0.8642 0.8404 0.8081 

 𝑀𝑦 0.9420 0.9372 0.9538 0.8472 0.8332 0.8077 0.8657 0.8351 0.7190 
 
We also evaluated BN, LR and DT Machine Learning methods. We used Weka 27 
implementations of BN, LR and J48 DT algorithms, with default parameter values. Their 
accuracy values are shown in Table 7.4 for combinations of the best individual performing 
time features. 

We observe that, in general, these methods outperform the A priori model for a small 
margin. We also note that as more features are used, the higher accuracy is obtained, 
although combining only 𝐻  and 𝐷  features achieves high accuracy values as well. The 

                                                 
27 Waikato Environment for Knowledge Analysis, a suite of machine learning software developed at the 
University of Waikato, New Zealand. Available at http://www.cs.waikato.ac.nz/ml/weka/ 
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highest accuracy was obtained by the DT method when using all the considered time 
features.  

Table 7.4. Accuracy of Machine Learning methods using different time feature combinations. 
Darker grey cells indicate worse values of the metric. Global best value is in bold. 

 
BN LR DT A priori 

𝐷 0.9538 0.9515 0.9472 0.9413 
𝑊 0.9438 0.9405 0.9435 0.9310 
𝐻 0.9442 0.9432 0.9459 0.9457 
𝐷𝑊 0.9484 0.9564 0.9470 0.9426 
𝐷𝐻 0.9740 0.9769 0.9709 0.9727 
𝑊𝐻 0.9690 0.9701 0.9750 0.9652 
𝐷𝑊𝐻 0.9744 0.9759 0.9752 0.9720 
All 0.9722 0.9785 0.9787 0.9663 

 
From these results we conclude that the identification of active household members 

within the evaluation setting proposed by the CAMRa 2011 Challenge can be effectively 
addressed by exploiting only time context information, regardless of the classification 
method used. 

To conclude our study on the classification accuracy of the methods, we compare 
them with the proposed baselines. Moreover, we use the two available CAMRa 2011 
Challenge’s test sets. The purpose of this is to observe the performance of proposed 
methods on independent test sets, in order to avoid unintentional overfitting on the data of 
test set #2. 

Table 7.5 shows the obtained accuracy results. Random and frequency-based 
baselines had a poor performance on test set #1, and a better performance on test set #2. 
This may be due to the differences on the rating data distributions in such test sets, which 
were built with distinct purposes. We observe that in test set #1, every test item assigned to 
a household had not been previously rated by a member of the household. This fact turns 
the frequency-based classifier into a random classifier, since it was not able to decrease its 
uncertainty by getting rid of some of the users in the household (who previously rated the 
test event’s item). 

We note that the tendency of results is similar on the two test sets, although better results 
were obtained on test set #2. The best result of the A priori model was obtained with the 
combination of 𝐷𝐻 features on both test sets, while the best result among ML models was 
obtained by LR using all features for test set #1. On test set #2, the best value was obtained 
by DT using all features. 
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Table 7.5. Accuracy of the evaluated methods on test sets #1 and #2. Darker grey indicate 
worse values of the metric in each column. Best value in each column is in bold. 

Method Test set #1 Test set #2 
Random 0.4988 0.4890 
Frequency 0.4906 0.8100 
A priori (All features) 0.9384 0.9663 
A priori (𝐷𝐻) 0.9504 0.9727 
BN (All features) 0.9482 0.9722 
LR (All features) 0.9552 0.9785 
DT (All features) 0.9528 0.9787 

 

These results show that the correct classification rate is prone to minor differences 
depending on the utilized household member identification method. In any case, the use of 
adequate time features brings the most significant improvements, achieving much higher 
accuracy values than the random- and frequency-based classifiers. 

The obtained results indicate that simple algorithms are able to achieve high accuracy 
values on this task when certain time context variables are used, using the provided 
evaluation setting –the CAMRa 2011 Challenge’s test sets. However, considering the 
discussion on evaluation methodologies presented in Chapter 3, we question whether the 
evaluation methodology used for building the CAMRa 2011 Challenge’s test sets is fair 
enough for evaluating time-based predictive models. In the next section, we take advantage 
of the methodological framework proposed in Chapter 4 for assessing the above household 
member identification methods on different evaluation settings. These include some 
settings that take into account the time dependences between training and test data. 

7.4 Robust evaluation of active user identification methods 

Results reported in Section 7.3, as well as in other works exploiting time context signals for 
active household user identification (Bento et al., 2011; Campos et al., 2011a, 2012), show 
that the analysis of temporal patterns on historical data of household accounts provides 
important information for the discrimination of users, letting accurately identify active 
members at a given time. 

Nonetheless, it is important to note that proposed methods have been assessed using 
evaluation methodologies based on the random selection of test cases. As reported in 
Chapter 5, however, it has been shown that using randomly selected test data may not be 
fair enough for evaluation, particularly when temporal trends are being considered by the 
evaluated methods. We question whether this is also applicable for the task at hand, and in 
such case, which accuracy for active user identification would be achieved by using other 
evaluation methodologies. 
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In this section we perform an empirical comparison of the methods introduced in 
Section 7.3 using different evaluation methodologies, including some that take into account 
the temporal order of data for building the training and test sets. To do so, we make use of 
the methodological evaluation framework proposed in Chapter 4 in order to select proper 
evaluation conditions, and specify the methodologies followed. In Section 7.4.1 we discuss 
the applicability and extensions of our methodological evaluation framework for the task at 
hand. In Section 7.4.2 we describe the experimental setting for this comparison, and in 
Section 7.4.3 we report and discuss the obtained results. 

7.4.1 Using the TARS methodological evaluation framework for assessing 
active user identification methods 

The methodological framework introduced in Chapter 4 provides a conceptual support for 
selecting different conditions in the evaluation of time-aware recommender systems, thus 
facilitating the specification of diverse methodologies for assessing the performance of 
such time-based predictive models. Moreover, many conditions that comprise the 
framework (base rating set, rating ordering, and rating set size conditions) are related with 
the formation of adequate training and test sets, constituted by tuples in the form 〈𝑢𝑢, 𝑡𝑡, 𝑝𝑝, 𝑡𝑡〉, 
where 𝑢𝑢 and 𝑡𝑡 are pairs of entities (user and item), and 𝑝𝑝 is a value associated to the pair 
(𝑢𝑢, 𝑡𝑡) at time 𝑡𝑡. In the case of the task at hand, similar pieces of information must be 
handled, incorporating relations between user and households. Given this, and the fact that 
the methods under evaluation exploit time information, the proposed framework seems to 
fit well for defining more robust evaluation methodologies for the task. 

We note that the evaluation conditions regarding the training-test splitting procedure 
(Algorithm 4.1) in the framework can be easily extrapolated to the task at hand. In the case 
of base rating set conditions, the community-centered 𝒷𝒷𝑐𝑐 condition can be applied because 
there is individual rating data for each user-item pair in the dataset, and the user-centered 
𝒷𝒷𝑢𝑐 condition can also be applied because each rating is associated to a user. In the case of 
rating order conditions, the time-independent (random) ℴ𝑡𝑖 condition can be applied, as it 
does not require any type of specific information in the data, and the time-dependent ℴ𝑡𝑑 
condition can also be applied because each rating has a timestamp. In the case of rating set 
size conditions, the proportion-based 𝓈𝓈𝑝𝑟𝑜𝑝 , fixed-based 𝓈𝓈𝑓𝑖𝑥  and time-based 𝓈𝓈𝑡𝑖𝑚𝑒 
conditions can be applied, since the dataset contains individual rating data. 

From the above, we observe that we can use the proposed framework for generating 
different training-test splits in order to test the reliability of the methods used for household 
member identification. These conditions, however, do not take into account the relation 
between users and households. Moreover, we note that it may be desirable to count with 
evaluation data focused on the household level –as opposed to the community or the user 
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level. This additional requirement can be accomplished by defining a new base rating set 
condition, the household-centered base rating set (𝒷𝒷ℎ𝑐) as follows: 

Household-centered base rating set condition. A base dataset 𝑀ℎ is built with the ratings 
of all users 𝑢𝑢ℎ that belongs to the household ℎ: 

𝑀𝒷𝒷ℎ𝑐 = {𝑀ℎ | ℎ ∈ ℍ},𝑀ℎ = �𝑝𝑝𝑢,⋅ | 𝑝𝑝𝑢,⋅ ∈ 𝑀,𝑢𝑢 ∈ ℎ� 

This base rating set condition forces the application of rating ordering and rating set size 
conditions on each household’s data. Furthermore, it lets define and describe several 
methodologies particularly suited for evaluation of the active user identification task. 

Regarding the remaining conditions, we note that conditions related with top-N 
recommendations evaluation (target item and relevant item) do not apply in this case, 
because we do not evaluate recommendation performance. In the case of cross-validation 
conditions, the conditions can be used following the guideline 4 stated in Chapter 5, that is, 
applying a cross-validation method consistent with the selected base rating set, rating 
ordering, and rating set size conditions. We note, however, that the household-centered 
base rating set condition is not included in the defined set of cross-validation methods. 

7.4.2 Experimental setting 

In this evaluation we compared the same methods presented in Section 7.3 (A priori, BN, 
LR and DT), using again the CAMRa 2011 Challenge MoviePilot dataset. Based on the 
results reported in the previous section, the time features considered were the absolute date 
(𝐷), the day of the week (𝑊 ), and the hour of the day (𝐻), as they were the best 
performing features for the task. 

Aiming to analyze differences on the accuracy of the methods, we selected three 
evaluation methodologies, which are described in the following. Two of them use a time-
dependent rating order condition, and the other one use a time-independent order condition. 

The first methodology (denoted as 𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥) consists of combining a community-
centered base rating set (𝒷𝒷𝑐𝑐 ), a time-dependent rating order (ℴ𝑡𝑑 ), and a fixed size 
(𝓈𝓈𝑓𝑖𝑥,𝑞=5450) condition. Specifically, all ratings in the dataset were sorted according to their 
timestamp, and the last 5,450 ratings were assigned to the test set (the first 149,551 were 
assigned to the training set). In this way, we built a test set of similar size to that of test set 
#2. 

The second methodology (denoted as 𝒷𝒷ℎ𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥) is equivalent to 𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥 with a 
household-centered base rating set condition (𝒷𝒷ℎ𝑐 ). Specifically, the ratings of each 
household were sorted according to timestamp, and the last 19 ratings from each household 
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were assigned to the test set. We chose 19 ratings aiming to build a test set of similar total 
size to that of the one built with 𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥. 

The third methodology (denoted as 𝒷𝒷ℎ𝑐ℴ𝑡𝑖𝓈𝓈𝑓𝑖𝑥) is similar to 𝒷𝒷ℎ𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥 with a time-
independent rating order condition (ℴ𝑡𝑖). That is, 19 ratings were randomly selected from 
each household, and assigned to the test set. 

As in the previous experiments, we computed the accuracy of the evaluated methods 
in terms of the correct classification rate by household (𝑎𝑢𝑢𝑢𝑢ℍ). 

7.4.3 Experimental results 

Table 7.6 shows the 𝑎𝑢𝑢𝑢𝑢ℍ  results obtained by the evaluated methods using the three 
methodologies described above. The table also shows the results obtained on the test set #2, 
proposed by CAMRa organizers for the task (column titled CAMRa), for comparison 
purposes. The table shows the results obtained by using individual time features, grouped 
by method. 

Table 7.6. Accuracy of the evaluated methods using different time features and evaluation 
methodologies. Darker grey cells indicate worse values of the metric in each column. Global 
top values in each column are in bold, and the best values for each method are underlined. 

Method Time 
Feature 𝓫𝒄𝒄𝓸𝒕𝒅𝓼𝒇𝒊𝒙 𝓫𝒉𝒄𝓸𝒕𝒅𝓼𝒇𝒊𝒙 𝓫𝒉𝒄𝓸𝒕𝒊𝓼𝒇𝒊𝒙 CAMRa 

A priori 
H 0.6087 0.8163 0.9468 0.9457 
W 0.6167 0.8069 0.9299 0.931 
D 0.4947 0.8152 0.9461 0.9413 

BN 
H 0.6533 0.8232 0.9539 0.9442 
W 0.6907 0.8189 0.9412 0.9438 
D 0.6506 0.8575 0.9574 0.9538 

DT 
H 0.6637 0.8229 0.9541 0.9459 
W 0.6963 0.8223 0.9417 0.9435 
D 0.6506 0.8544 0.9535 0.9472 

LR 
H 0.6674 0.8256 0.9537 0.9432 
W 0.6908 0.8132 0.9381 0.9405 
D 0.6147 0.8307 0.9555 0.9515 

 
In the table, we observe similar results when using methodologies based on a time-

independent (random) rating order condition (CAMRa and 𝒷𝒷ℎ𝑐ℴ𝑡𝑖𝓈𝓈𝑓𝑖𝑥). Much worse results 
are observed when using methodologies employing a time-dependent rating order condition 
(𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥  and 𝒷𝒷ℎ𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥 ). Particularly lower accuracies are achieved when using 
𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥. We note that this latter methodology provides the evaluation scenario most 
similar to a real-world situation: data up to a certain point in time is available for training 
purposes, and data after that (unknown at that time) is then used as ground truth. In our 
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case, this methodology provides a small number of training events for some households, 
which affects the methods’ ability to detect temporal patterns of users. In fact, for some 
households, there is no training data at all. In this way, 𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥 represents a hard, but 
realistic evaluation methodology for the task. 

On the contrary, methodologies using a time-independent rating order condition 
provide easy, but unrealistic evaluation scenarios, because they let the methods use training 
data that would not be available in a real-world setting. The 𝒷𝒷ℎ𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥  methodology 
provides an intermediate scenario, in which an important part of data is available for 
learning temporal patterns of each household’s members. 

In the table we also observe that the discrimination power of the different time 
features varies among methodologies. In the case of the A priori method, the best results on 
time-independent methodologies and 𝒷𝒷ℎ𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥 are obtained with the hour of the day (H) 
feature, while the absolute date (D) achieves the best results among ML methods –we note 
that results show small differences across features. However, when using the stricter 
𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥, the best results among methods are obtained with the day of the week (W) 
feature, nearly followed by the hour of the day feature. On the contrary, the absolute date 
feature performs the worst consistently. 

The above highlights how unrealistic the less strict methodologies are for the task, 
because they let the methods exploit a temporal behavior (the exact date of interaction) that 
in a real situation would be impossible to learn. This also shows that the hour of the day 
and more strongly the day of the week features describe a consistent temporal pattern of 
users through time.     

Table 7.7 shows the 𝑎𝑢𝑢𝑢𝑢ℍ  results obtained by the evaluated methods using 
combinations of time features, and the same methodologies reported in Table 7.6. The 
results show that using less strict methodologies, combinations including the absolute date 
feature perform better. On the contrary, using the realistic 𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥  methodology, the 
best results across methods are achieved by the combination of hour of the day and day of 
week. These results are in accordance with those observed in Table 7.6. 

All these results show that a correct classification rate is prone to major differences 
depending on the followed evaluation methodology. The discrimination power of time 
features varies considerably when assessed by different methodologies. Moreover, the 
accuracy achieved by the methods is much lower when using the more realistic 𝒷𝒷𝑐𝑐ℴ𝑡𝑑𝓈𝓈𝑓𝑖𝑥 
methodology. 
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Table 7.7. Accuracy of the evaluated methods using combinations of time features, on 
different evaluation methodologies. Darker grey cells indicate worse values of the metric in 
each column. Global top values in each column are in bold, and the best values for each 
method are underlined. 

Method Time 
feature 𝓫𝒄𝒄𝓸𝒕𝒅𝓼𝒇𝒊𝒙 𝓫𝒉𝒄𝓸𝒕𝒅𝓼𝒇𝒊𝒙 𝓫𝒉𝒄𝓸𝒕𝒊𝓼𝒇𝒊𝒙 CAMRa 

A priori 

HW 0.6496 0.8421 0.9688 0.9652 
HD 0.4947 0.8205 0.9739 0.9727 
WD 0.4947 0.8152 0.947 0.9426 
HWD 0.4947 0.8205 0.9746 0.972 

BN 

HW 0.6876 0.8325 0.9721 0.969 
HD 0.6262 0.8287 0.9773 0.974 
WD 0.6529 0.8127 0.9534 0.9484 
HWD 0.6809 0.8401 0.977 0.9744 

DT 

HW 0.7188 0.8644 0.9773 0.975 
HD 0.6389 0.8648 0.9753 0.9709 
WD 0.6932 0.8417 0.9526 0.947 
HWD 0.695 0.8599 0.9777 0.9752 

LR 

HW 0.6635 0.8652 0.9768 0.9701 
HD 0.6515 0.865 0.9824 0.9769 
WD 0.6636 0.8697 0.9553 0.9564 
HWD 0.6591 0.867 0.9808 0.9759 

 

7.5 Conclusions 

In this chapter we have presented and evaluated a number of methods to effectively identify 
which user of a shared household account is currently interacting with an online 
recommender system at a particular time, by only exploiting knowledge about past user 
interactions with the system. We focused this study on two main axes: (i) we analyzed 
existing differences in temporal rating habits, described in terms of various time features. 
These features were used to discriminate between users in a household by means of a 
classification algorithm; and (ii) we made an empirical comparison of these methods with 
different methodologies previously applied on time-aware recommender systems 
evaluation. Given that the methods are based on exploiting temporal patterns, we used a 
time-based rating order evaluation condition, taking advantage of the methodological 
framework introduced in Chapter 4, and following the guideline 1 for evaluation stated in 
Chapter 5. 

Regarding (i), we found that simple algorithms are able to achieve good accuracy 
values when certain time features are used, showing that isolated time features are valuable 
sources of information for discriminating users in a shared household account. 
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Concerning (ii), we found that the discrimination power of time features, alone and 
combined, varies considerably when assessed by different methodologies. We observed that 
less strict methodologies provide unreliable results, due to the exploitation of temporal 
information that is hard to obtain in a realistic evaluation scenario. Moreover, the accuracy 
achieved by all the methods was much worse when using a strict time-aware evaluation 
methodology. 

These findings show that, despite the described methods have good accuracy rates, 
additional improvements are required to provide accurate identification of active household 
members in real-world applications. More importantly, the presented study remarks the 
importance of assessing the performance of time-aware algorithms using a robust 
evaluation protocol that properly takes the evolution of data through time into account. 

We finally highlight the flexibility and extensibility of the methodological evaluation 
framework proposed in Chapter 4. In particular, the conditions regarding the training-test 
split of data were directly applicable for generating the training and test sets required for a 
more robust evaluation of the developed methods. Moreover, we could easily extend the 
framework by incorporating an additional condition specific for the task at hand –the 
household-centered base rating set condition. The structure of the framework lets an easy 
incorporation of this new condition, and a seamlessly integration with the rest of evaluation 
conditions. 

 

 



 

 

Chapter 8  
 
Conclusions 

The work presented in this thesis was motivated by the need of understanding and 
improving the exploitation of time context information by recommender systems. As initial 
steps towards such objective, in this thesis we have focused on the definition, formulation 
and use of robust evaluation protocols for comprehensive and fair assessment of different 
time-aware recommendation models. We then have adapted and proposed time-aware 
methods for different recommendation tasks, based on the experience derived from the 
more reliable measurement of the performance improvements obtained. More specifically, 
we have addressed the following research goals: 

• The characterization of conditions involved in the evaluation of time-aware 
recommender systems. 

• The analysis of the effect of different evaluation conditions on the assessment of 
time-aware recommendation performance. 

• The adaptation of existing recommendation approaches to make better use of 
available time context information. 

• The exploitation of time context information in a non well-established 
recommendation task. 

In the first part of the thesis, we have reviewed existing approaches to 
recommendation computation and evaluation, putting particular emphasis and detail on 
time-aware recommendation approaches. Starting from such comprehensive review, in the 
second part of the thesis, we have formalized, analyzed, and empirically compared the 
conditions that drive the evaluation process of TARS, and have proposed a methodological 
description framework that lets precisely state the conditions used in the evaluation of a 
particular TARS. Furthermore, we have proposed a set of guidelines aimed to help 
selecting appropriate conditions for a reliable evaluation of TARS. Finally, in the third part 
of the thesis, we have presented different applications of time-aware approaches to 
recommendation tasks, proposing new heuristics and adaptations of existing methods in the 
case of the well-established rating prediction and top-N recommendations tasks, and 
developing novel methods in the case of the recently proposed task of identifying active 
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users in shared accounts. We have utilized the proposed framework to evaluate the 
performance of the proposed adaptation and methods. 

In this chapter, we present the main conclusions of our work. In Section 8.1 we 
summarize the contributions of the thesis. In Section 8.2 we detail the validation of the 
stated hypotheses, and in Section 8.3 we describe potential future research directions. 
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8.1 Summary and discussion of contributions 

In the next subsections we summarize and discuss the main contributions of this thesis, 
regarding the research goals and hypotheses stated in Chapter 1. These contributions are 
organized according to the addressed research goals. First, we investigated the conditions 
that drive the evaluation process of TARS. Second, we analyzed the differences between 
recommendation performance assessments due to the change of the used evaluation 
conditions, in order to establish a set of conditions leading to a robust evaluation protocol. 
Third, we proposed new heuristics and adaptations to existing recommendation approaches 
in order to enhance the exploitation of time context information. And fourth, we proposed 
novel time-aware methods for the less studied task of identifying active users in shared 
accounts. 

8.1.1 Characterization of conditions involved in the evaluation of TARS 

From a comprehensive survey of the research literature on time-aware recommender 
systems, we observed that reported results and conclusions about how to incorporate and 
exploit time information within the recommendation process seem to be contradictory in 
some cases. We hypothesized that existing discrepancies could be caused by meaningful 
divergences in the used evaluation protocols, –metrics and methodologies. A careful review 
of such evaluation protocols showed several methodological differences on the evaluations 
conducted among works. With more detail, in Section 4.1 we observed that the training-test 
splitting process is an important source of methodological divergence, particularly when 
rating timestamps are available. We identified several design decisions to be taken when 
defining an evaluation setting that lead to methodological differences. Analyzing such 
differences, we posed a number of key methodological questions regarding the design of a 
TARS evaluation protocol: 

• MQ1: What base rating set is used to perform the training-test splitting? 

• MQ2: What rating ordering is used to assign ratings to the training and test sets? 

• MQ3: How many ratings comprise the training and test sets? 

• MQ4: What cross-validation method is used for increasing the generalization of 
the evaluation results? 

In addition to these questions, we also covered specific conditions for the evaluation 
design of the top-N recommendations task, posing the following two methodological 
questions: 

• MQ5: Which items are considered as target items (in a top-N recommendations 
task)? 
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• MQ6: Which items are considered relevant for each user (in a top-N 
recommendations task)? 

We addressed these questions by means of a number of evaluation conditions that 
we stated from the review of evaluation settings found in the TARS literature. These 
conditions express decisions related to the training-test splitting and cross-validation 
processes in the evaluation of RS, and specific aspects regarding the evaluation of top-N 
recommendations. Specifically, in Chapter 4 we characterized and formalized the following 
evaluation conditions: 

• Community-centered and user-centered base rating set conditions, which 
indicate if next conditions have to be applied on the full set of ratings, or 
independently on each user’s ratings set, addressing MQ1. 

• Time-dependent and time-independent rating ordering conditions, which indicate 
whether or not to sort the set of ratings by time, addressing MQ2. 

• Proportion-based, fixed and time-based rating set size conditions, which state the 
criterion used to define the sizes of training and test sets, addressing MQ3. 

• Time-dependent and time-independent cross-validation conditions, which 
establish the cross-validation methods applicable depending on the compatibility 
with the ratings’ time-sort restrictions, addressing MQ4. 

• User-based, community-based, one-plus random and other target item 
conditions, which indicate the criterion used to determine the set of items to be 
ranked in a top-N recommendations task, addressing MQ5. 

• Test-based and threshold-based relevant item conditions, which set the criterion 
used to determine the relevance of items, addressing MQ6. 

These conditions cover the wide range of alternative design decisions used in the 
evaluation process of approaches in the TARS literature. 

Based on the defined conditions, we developed a methodological description 
framework aimed to facilitate the comprehension of such conditions. The framework is 
intended to make the evaluation process fair and reproducible under different 
circumstances, by letting state clearly and meticulously the settings used in the evaluation 
of TARS. The formalism of the framework includes the definition of a splitting procedure 
proposed by us, and described in Section 4.2, which, taking as input a set of evaluation 
conditions, lets precisely build and reproduce data splits (i.e., training and test sets) for a 
given evaluation setting. Using the splitting procedure and different combinations of the 
conditions included in the framework, the diverse evaluation settings for TARS can be 
accurately defined, as was shown by means of the examples given in Section 4.3.4. 
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Moreover, in Section 5.1, we conducted a comprehensive classification of state-of-
the-art TARS in terms of the characterized evaluation conditions, mapping such conditions 
to the evaluation settings used in the time-aware recommender system literature, and 
providing a general overview of the conditions and methodologies more commonly used in 
the evaluation of such systems. We found that almost a 25% of the revised studies used a 
time-independent rating ordering –despite the fact that the reviewed papers deal with time-
aware approaches–, and that approximately 40% of the studies use a combination of a 
community-centered rating base set and a time-dependent ordering of ratings –which 
provides the evaluation scenario most similar to a real-world setting. We also found an 
even distribution on the use of rating set size criterions and a low usage of cross-validation 
methods. Regarding the conditions specific for evaluating top-N recommendations, we 
observed that most TARS-related papers addressing this task use a test-based criterion for 
defining the relevance of items, and a more even distribution of the criteria used for 
selecting target item sets. 

8.1.2 Analysis of the effect of different evaluation conditions on the 
assessment of TARS performance 

Alongside the characterization of evaluation conditions presented in Chapter 4, we 
discussed the effect of using alternative conditions on addressing each posed key 
methodological question involved in the evaluation of TARS (MQ1 – MQ6). From this 
discussion, we observed the important differences of applying data splitting conditions on 
the full set of ratings in a dataset –that is, using a community-centered base rating set 
condition– vs. applying such conditions independently on each user data –i.e., using a user-
centered base rating set condition. Moreover, we noted the differences in the generated data 
splits induced by applying time-independent, or alternatively a time-dependent rating 
ordering condition. In order to study the influence of using different combinations of 
evaluation conditions on the assessment of recommendation performance, we performed an 
empirical comparison of several TARS following different evaluation protocols. In 
particular, in Chapter 5 we reported the evaluation of three widely used TARS approaches, 
and one well-known non-contextual recommendation approach using four different 
evaluation methodologies. The obtained results showed that the use of distinct evaluation 
conditions not only yields remarkable differences between metrics measuring distinct 
recommendation properties –namely accuracy, precision, novelty and diversity, but also 
may affect the relative ranking of approaches for a particular metric. 

From our analysis and experiments, we reported key methodological issues that a 
robust evaluation of TARS should take into consideration in order to perform a fair 
assessment of recommendation approaches performance, and facilitate comparisons among 
published experiments. From this, in Section 5.3 we concluded a set of methodological 
guidelines aimed to facilitate the selection of conditions for a proper TARS evaluation. In 
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the evaluation of the rating prediction task, our guidelines suggest making training-test 
splitting based on a time-dependent rating ordering over the full set of ratings in a dataset, 
applying a proportion-based size criterion for training and test sets, and using a cross-
validation method compatible with the suggested data splitting conditions. In the evaluation 
of the top-N recommendations task, our guidelines suggest to rank a mixed set of items 
including some for which user relevance is completely unknown, as this is the common 
setting in real-world applications, and using a threshold-based relevant item condition, 
which discards low rated/consumed items from the set of relevant items, thus providing a 
more confident interpretation of item relevance. 

8.1.3 Adaptation of existing recommendation approaches to make better 
use of available time context information 

The evaluation guidelines proposed in this thesis let us establish a fair and common 
evaluation setting for assessing performance results from different recommendation 
approaches exploiting time context information. Starting from the analysis of such results 
and the characteristics of the recommendation approaches, in Chapter 6 we proposed new 
heuristics and adaptations for some of the approaches, in order to make better use of 
available time context information. 

In particular, in Section 6.2.1 we proposed a new impurity criterion based on the 
Fisher’s exact test, to be used in Item Splitting (Baltrunas and Ricci, 2009a, 2009b) –a 
general pre-filtering contextualization approach. Moreover, in Section 6.3.2, we adjusted 
several impurity criteria used by Item Splitting by finding the best thresholds for 
diminishing rating prediction error when exploiting different time contexts. In Section 
6.2.2, we also developed a new post-filtering strategy based on the probability of rating 
an item in the target recommendation context. This heuristic let perform a post-filtering 
contextualization of recommendations generated by the Matrix Factorization 
recommendation algorithm (Takács et al., 2008; Koren et al., 2009). Moreover, in Section 
6.2.3, we adapted the contextual neighbors method (Panniello and Gorgoglione, 2012) –a 
general contextual modeling approach– by eliminating constraints originally considered to 
control the used type of contextualization, in order to be able to utilize different 
recommendation algorithms together with the method. 

From the analysis of the suggestions given in the methodological guidelines proposed 
in Chapter 5 for the top-N recommendations task, and the particularities of the studied 
approaches –that are able to handle categorical representations of time context–, we 
proposed and used a new methodology for assessing contextualized top-N 
recommendations.  This novel methodology, described in Section 6.4.1, let build ranked 
lists of items targeted for the same time context independently of the used time 
representation –an issue not previously addressed in the TARS literature–, while including 
unrated items in the list. By doing so, the proposed methodology provides an evaluation 



Conclusions  157 

 

setting more similar to that deployed TARS shall confront –correctly rank unrated items for 
a given target context in order to recommend the relevant ones– than those from other 
methodologies previously used in the literature. 

We evaluated the proposed adaptations together with other approaches able to exploit 
time context information –namely exact pre-filtering (Adomavicius and Tuzhilin, 2011) 
and post-filtering (Panniello et al., 2009a)– on a context-enriched dataset of movie 
preferences from real users. The obtained results, discussed in Sections 6.3.3 and 6.4.3, 
showed the importance of selecting a proper threshold for each combination of impurity 
criterion and time context signal in the case of Item Splitting to obtain the best achievable 
recommendation performance. 

Furthermore, these results also revealed that there is no unique dominant TARS in 
either the rating prediction or the top-N recommendations task, and that the performance 
improvements achieved by the tested approaches depend on the underlying 
recommendation algorithm and the exploited time context. This finding is in line with 
conclusions from previous research comparing context-aware RS in e-commerce 
applications, e.g. (Panniello et al., 2009a). The identification of the best performing 
approach, thus, requires a time-consuming evaluation and comparison of candidate TARS 
implementations on the target data. Furthermore, some contextualization approaches may 
require an intensive testing of parameters, as in the case of Item Splitting. 

Despite the above mentioned, we note that the new heuristics proposed in Chapter 6 –
the new impurity criterion for Item Splitting and post-filtering strategy for Matrix 
Factorization–  are able to effectively contextualize recommendations generated by the 
high-performing Matrix Factorization recommendation algorithm. Furthermore, they 
showed the best global values on the majority of metrics of rating prediction and top-N 
recommendations task, respectively, on the performed comparison of approaches. Thus, the 
use of the proposed heuristics in conjunction with a Matrix Factorization recommendation 
algorithm can be considered a good approach to contextualize recommendations when time 
context information about user preferences is available. 

8.1.4 Exploitation of time context information on a non well-established 
recommendation task 

The exploitation of different time contexts associated to user ratings let us address a 
recommendation task out of the scope of the well-established rating prediction and top-N 
recommendations tasks: the identification of active users in shared accounts (households) 
(Berkovsky et al., 2011). In Chapter 7 we proposed and evaluated a number of methods 
to effectively identify which user of a shared household account is interacting at a given 
time with a recommender system, by only exploiting knowledge about past user 
interactions with the system. The methods are based on the identification of differences in 
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user temporal rating habits, described in terms of various time context signals or features 
including the absolute date (e.g. November 1st, 2013), the day of the week (e.g. Monday) 
and the hour of the day (e.g. 4:00 p.m.) at which users interact with the system. We 
formulated the task as a classification problem, and the time features were used to 
discriminate between users in a household by means of diverse classification algorithms. 

Moreover, we adapted methodologies used in TARS evaluation in order to reliably 
assess the performance of the proposed methods on the identification of active users in 
shared accounts task. This required the formalization of a new condition, specific for the 
task –the household-centered base rating set condition–, which was incorporated into the 
proposed methodological framework, as described in Section 7.4. By utilizing the 
conceptual structure of the framework, we were able to specify methodologies based on the 
guidelines for TARS evaluation proposed in Chapter 5 that were used in the evaluation of 
the task. The above also showed the extensibility and ease of integration of new evaluation 
conditions of the proposed framework. 

The results obtained in the experiments showed that some of the most elementary 
algorithms proposed were able to achieve good accuracy values when certain time contexts 
were exploited. Nonetheless, we observed that the discrimination power of time contexts, 
alone and combined, varied considerably when they were evaluated with different 
methodologies. We found that methodologies less strict from a temporal viewpoint –that 
is, methodologies that do not avoid a temporal overlap of training and test data– provided 
less reliable results. From these results, we noted the importance of following robust 
evaluation protocols such the ones suggested by the methodological guidelines proposed 
in the thesis. 

8.2 Validation of stated hypotheses 

In this section we detail on the validation of the hypotheses stated at the beginning of this 
thesis. Their validity has been tested by means of the experimental results obtained in the 
thesis. 

Hypothesis 1: Variations in the evaluation protocol lead to differences on 
recommendation results assessment. 

The results obtained in the empirical comparison of TARS evaluation methodologies, 
presented in Chapter 5 and further discussed in Section 8.1.2, let us prove this hypothesis. 
In particular, these results showed differences in the absolute value of metrics, and more 
importantly, on the relative ranking of approaches for a particular metric, when using 
different evaluation settings. From the above, we remark that the comparison of TARS 
approaches under distinct evaluation protocols may yield completely different results. All 
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of this emphasizes the importance of counting with reliable protocols for the evaluation of 
TARS. 

The validity of the above hypothesis has important implications for the 
reproducibility and comparability of reported performance results in the TARS literature. 
By using the same evaluation metrics and methodologies it is possible to reproduce and 
fairly compare results from different works on TARS. From this, we highlight the need of 
clearly stating the conditions in which offline experiments are conducted to evaluate RS 
in general, and TARS in particular. Furthermore, by following consensual and fair 
evaluation conditions –i.e., a robust evaluation protocol–, we will enable the reproducibility 
of experiments, and will ease the comparison of recommendation approaches. In the hope 
to contribute to such purpose, we developed the methodological description framework 
presented in this thesis. 

Hypothesis 2: The appropriate exploitation of time context information leads to 
improvements on assessed recommendation results. 

The results obtained in the evaluation of methods for well-established recommendation 
tasks –namely rating prediction and top-N recommendations–, presented in Chapter 6 and 
further discussed in Section 8.1.3, let us prove this hypothesis. In particular, these results 
showed that by appropriately selecting the time context signal, the underlying 
recommendation algorithm, and the specific parameters required by some approaches, it is 
possible to improve the recommendations generated by methods not exploiting time 
context. The assessed performance of the approaches in our experiments depended to a 
great extent on the underlying recommendation algorithm used. However, for instance, we 
note that a proper selection of threshold values for the impurity criteria used by Item 
Splitting let improve the results of high performance algorithms such as Matrix 
Factorization. 

Proving this hypothesis is in accordance with reported results from previous research 
in the area. Nonetheless, we stress that not all the methods that exploit time context 
information are able to obtain better results than those that do not exploit such information. 
Moreover, the fact of observing improvements depends on the evaluation protocol 
followed, as showed in the results reported in Section 5.2.4. Our results indicate that a 
careful selection of the methods’ parameters, the time context signals, and the underlying 
recommendation algorithms is required in order to effectively leverage recommendation 
performance when following a robust evaluation protocol. 

Hypothesis 3: From a temporal viewpoint, a robust evaluation protocol of 
recommendation models and techniques exploiting time context information, leads to 
a decrease on performance with respect to a less robust evaluation protocol. 
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This hypothesis is proved on the basis of the results obtained in the experimental 
comparison of methods exploiting time context information for the identification of active 
users in shared accounts. This included methodologies with both time-independent and 
time-dependent rating ordering conditions, presented in Chapter 7 and further discussed in 
Section 8.1.4. In particular, these results showed an impressive performance of the 
proposed methods on the task –over 95% of accuracy on the identification of active user– 
when using methodologies based on a time-independent rating ordering condition. 
However, the same methods showed an important decrease on performance when 
assessed with methodologies based on a time-dependent rating ordering condition. 
Moreover, the lowest performance of the methods –rounding 65% of accuracy– was 
measured when using the evaluation conditions suggested by our methodological 
guidelines. 

The validity of this hypothesis highlights the importance of defining and utilizing a 
robust evaluation protocol to accurately assess the degree of performance improvement 
obtained from the exploitation of time context information by TARS approaches. In this 
context, the methodological guidelines proposed in Chapter 5 are a powerful tool for 
increasing the reliability of performance assessments.  

8.3 Future work 

In this thesis we have presented a comprehensive review and analysis of protocols used in 
TARS evaluation, which have led us define a methodological framework, and a set of 
guidelines to provide robust evaluation settings for TARS. Moreover, he have proposed and 
evaluated adaptations and new methods for exploiting time context information. Despite 
these important contributions and findings, the research conducted in this thesis raises 
interesting additional research questions regarding TARS development and evaluation. In 
the following subsections we discuss a number of issues that call for further research, and 
depict possible work lines to address such issues. 

8.3.1 Evaluation of time-aware recommendation approaches 

The methodological framework proposed in this thesis is composed of a set of conditions 
that let define the setting in which a recommendation approach is evaluated, covering the 
evaluation methodologies used in TARS literature. The evaluation reported in Chapter 5 
provided us evidence about the effect on the assessment of recommendation performance 
due to changes in the used evaluation conditions, letting us to propose a set of guidelines 
for selecting conditions for a robust evaluation of TARS. Nonetheless, more 
experimentation is required to properly analyze the impact of combinations of conditions 
not addressed in our study. Also, new conditions should be defined leading to apply the 
proposed guidelines in other recommendation tasks where time context could be exploited, 
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and that were not studied in this thesis, such as the recommend sequence task (Herlocker et 
al., 2004). For these purposes, we believe that the proposed framework provides an 
important conceptual structure to guide such research. 

Another important pending issue is related to the analysis of the relation between 
different characteristics of datasets (e.g. user profile sizes, timespans, and sparsity levels) 
and the effect on performance from using dissimilar evaluation protocols. Beyond this, the 
appropriateness of using certain evaluation conditions when using datasets with particular 
rating distributions through time/users/items, types of feedback, domains, etc. could to be 
investigated. 

The relation between accuracy and novelty/diversity metrics also remains as an open 
evaluation issue. Given the increasing importance of the latter metrics in the RS field, 
additional analysis and explanations are required in order to provide time-aware 
recommendations with adequate levels of such performance properties. For instance, as 
noted by Lathia et al. (2010), from a temporal viewpoint, recommendation diversity is an 
important facet a recommender system should have. 

An additional interesting question is whether improvements of TARS performance 
measured by offline evaluation are effectively perceivable for real users. As noted e.g. by 
Knijnenburg et al. (2012), accuracy improvements are not necessarily observable by users. 
The lack of online evaluation studies on TARS is a major limitation to address the above 
question. 

8.3.2 Development of new and better time-aware recommendation 
approaches 

Using a context-enriched dataset of movie preferences from real users, the experiments 
reported in Chapter 6 let us derive important insights regarding the circumstances in which 
certain recommendation approaches outperform others. Nonetheless, the obtained 
conclusions are not necessarily general, due to the small size of the used dataset, and the 
fact that only one recommendation domain was evaluated. Repeating the evaluation on 
different datasets, from diverse domains, and types of user feedback, would let establish 
more general conclusions regarding the applicability of specific TARS and time contexts. 
Indeed, as stated by Adomavicius and Tuzhilin (2011), one of the main challenges on 
context-aware recommendation is the investigation of which contextualization approaches 
perform better, and under which circumstances. In such evaluation, it is also important to 
consider recommendation properties beyond accuracy and precision. An interesting 
example of this in the more general field of context-aware recommender systems is the 
work from Panniello et al. (2013), where different CARS approaches are compared in terms 
of accuracy and diversity. For such purpose, we remark the importance of using a common 
evaluation protocol for the reproducibility and comparability of results. 
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We note that our survey of the literature showed the existence of two main types of 
TARS, according to how time context information is represented, namely in continuous and 
discrete representations. However, in the evaluation of TARS approaches reported in 
Chapter 6, we focused on TARS based on the latter representation, due to the 
characteristics of the used datasets. The comparison of such approaches with other 
recommendation approaches based on a continuous time representation is thus an issue to 
be investigated. 

An additional research line is the joint exploitation of both types of time 
representation. One way to accomplish this would be building hybrid approaches (Burke, 
2007) that combine recommendations from several TARS. Other possible way to address 
such issue may be to develop and improve model-based approaches able to handle both 
types of time representations, such as the timeSVD++ technique proposed by Koren 
(2009a), and tensor factorization-based models like the Bayesian Probabilistic TF proposed 
by Xiong et al. (2010). 

 

  



 

 

Appendix A 
 
Introducción 

En este capítulo presentamos una visión general de la tesis doctoral. Describimos los 
principales temas de investigación abordados y las limitaciones que motivaron la 
realización de la misma, proporcionando un resumen del trabajo llevado a cabo, y 
presentando y discutiendo los resultados obtenidos. 

En la Sección A.1 reseñamos los temas de investigación que motivaron esta tesis. En 
la Sección A.2 definimos el alcance de este trabajo, estableciendo el problema general y los 
objetivos de investigación abordados. A continuación, en las Secciones A.3 y A.4 
detallamos las principales contribuciones y listamos las publicaciones originadas a partir de 
la investigación realizada. Finalmente, en la Sección 1.5 describimos la estructura de este 
documento. 

 



164  Appendix A 

A.1 Motivación: Recomendación, contexto y tiempo 

Los Sistemas de Recomendación (SR) son aplicaciones de software cuyo propósito es 
ayudar a los usuarios en tareas de acceso y recuperación de información en grandes 
colecciones de ítems (productos o servicios), sugiriendo ítems, de modo general, de 
acuerdo a las preferencias personales mostradas en el pasado por los usuarios. 

La última década ha sido fértil para la investigación en el campo de los SR. Se han 
investigado, entre otros, diferentes problemas y tareas de recomendación (Adomavicius y 
Tuzhilin, 2005), aproximaciones algorítmicas (Herlocker et al., 1999), o métricas y 
metodologías de evaluación (Shani y Gunawardana, 2011), dando lugar a importantes 
avances en los SR en operación y aumentando el interés en construir más y mejores SR. Por 
un lado, los usuarios de SR obtienen sugerencias personalizadas sobre ítems en los que 
pueden estar interesados y que pueden ser difíciles de encontrar. Por otro lado, las empresas 
que utilizan SR obtienen mayores beneficios gracias al incremento del consumo de los 
ítems sugeridos. Estos factores han llevado a la creación y expansión de importantes 
servicios personalizados apoyados por tecnologías de SR en Internet, tales como Amazon28, 
Netflix29, y Last.FM30, por nombrar algunos. 

La explotación de un SR permite recolectar grandes registros de preferencias de 
usuarios –ratings (valoraciones) o registros de consumo–, los cuales pueden incluir 
información sobre el contexto en el cual las preferencias de usuario fueron expresadas 
(Adomavicius y Tuzhilin, 2011). Por ejemplo, junto con las preferencias de un usuario 
particular, un SR puede registrar el tipo de dispositivo utilizado por el usuario (p. ej. un 
ordenador o un teléfono móvil), su localización (p. ej. en el hogar o en la oficina), el estado 
de humor del usuario (p. ej. feliz o triste), la compañía del usuario (p. ej. solo, con 
familiares o con amigos) o el instante en el que el usuario expresa su preferencia (p. ej. por 
la mañana o por la tarde). Explotando esta información, los SR conscientes del contexto 
(SRCC) pueden sugerir ítems que se ajusten de mejor forma a los intereses del usuario en 
ciertas circunstancias o situaciones (contextos), constituyéndose en valiosas herramientas 
para incrementar la eficacia de las recomendaciones proporcionadas (Koren, 2009a; 
Adomavicius y Tuzhilin, 2011; Panniello et al., 2013). 

Entre las dimensiones contextuales existentes, el contexto temporal puede 
considerarse como uno de los más útiles. Éste contexto facilita el seguimiento de la 
evolución de las preferencias de usuario (Xiang et al., 2010), permitiendo por ejemplo 
identificar periodicidad en las preferencias de usuario (Baltrunas y Amatriain, 2009). 
También puede llevar a mejoras significativas en la exactitud de las recomendaciones, 
como fue el caso del equipo ganador de la competición Netflix Prize (Koren, 2009a). Más 
                                                 
28 Tienda en línea Amazon.com, http://www.amazon.com 
29 Servicio de transmisión de vídeo bajo demanda Netflix.com, http://www.netflix.com 
30 Radio vía internet Last.FM, http://www.last.fm 



Introducción  165 

 

aún, la información de contexto temporal es, en general, fácil de recolectar, sin esfuerzo 
adicional del usuario ni requisitos estrictos en los dispositivos usados. 

Debido a estos beneficios, los años recientes han sido prolíficos en la investigación y 
desarrollo de SR conscientes del tiempo (SRCT), esto es, SRCC que explotan la 
dimensión temporal para estrategias tanto de modelado como de recomendación. Es posible 
encontrar diferentes propuestas de SRCT en la literatura que muestran mejoras sobre SR 
tradicionales en la eficacia de las recomendaciones. Sin embargo, cabe destacar que 
algunos estudios han mostrado divergencias en las suposiciones sobre las que se 
construyen los modelos de SRCT, generando dudas sobre la generalización de las 
capacidades de las recomendaciones conscientes del tiempo. De hecho, por ejemplo, 
algunas aproximaciones de SRCT penalizan los datos de preferencias antiguas, asumiendo 
que los datos recientes reflejan de mejor forma los gustos actuales de los usuarios, en 
comparación con los datos más antiguos (Ding y Li, 2005; Ma et al., 2007; Lee et al., 
2008). Por el contrario, algunos autores, como por ejemplo Koren (2009a), han encontrado 
que este tipo de penalización lleva a una disminución en la calidad de las recomendaciones. 

Aunque esta inconsistencia podría ser explicada por diversas razones, p. ej. 
diferencias en las características de usuario e ítem, y peculiaridades de los dominios de 
aplicación, nosotros creemos que la evaluación juega un rol fundamental. La existencia de 
metodologías de evaluación diferentes facilita encontrar un protocolo de evaluación 
idóneo para una aproximación algorítmica particular, pero no usable o inadecuado para 
otras aproximaciones. En efecto, algunos autores tales como Lathia et al. (2009a, 2009b) 
han mostrado discrepancias importantes en la calidad de la recomendación dependiendo de 
cómo se eligen los datos de entrenamiento y prueba para la evaluación de las 
recomendaciones. Los problemas que surgen a partir de esta situación representan un 
impedimento creciente para comparar, de forma ecuánime, resultados y conclusiones de 
diferentes investigaciones (Bellogín et al., 2011), haciendo más difícil la selección de la 
mejor solución de recomendación para una tarea dada (Gunawardana y Shani, 2009). Por 
tanto es una preocupación fundamental de nuestra investigación el estudio de las cuestiones 
metodológicas que una evaluación robusta de SRCT debería tener en cuenta, con el fin de 
aumentar la confiabilidad de las mejoras de calidad atribuidas a SRCT así como a  facilitar 
la comparación de distintos planteamientos. 

El descubrimiento de resultados inesperados en diferentes estudios sobre SRCT 
demuestra que aún se requiere de más investigación para comprender cabalmente la 
relación entre la información de contexto temporal y los resultados de recomendación. 
Baltrunas y Amatriain (2009) proveen un ilustrativo ejemplo de esto. Realizando 
experimentos para aumentar la eficacia de un SRCC sobre diversas particiones de datos de 
preferencias de usuario dependientes del tiempo, encontraron que la partición temporal 
poco común {horas pares, horas impares} mejora las recomendaciones en mayor cuantía 
con respecto a otras particiones tales como {mañana, tarde} y {día de semana, día de fin 
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de semana}. En palabras de Baltrunas y Amatrian, la partición de horas corresponde a una 
partición “sin sentido”, y por lo tanto llaman a incrementar la investigación al respecto. 
Más aún, la falta de estudios comparativos de la eficacia de SRCT mantiene sin explorar las 
circunstancias bajo las cuales algunas aproximaciones de SRCT –y las señales o 
condiciones de contexto temporal explotadas, p.ej. el momento del día o el período de la 
semana– son capaces de superar a otras aproximaciones. Esto también impide ajustar los 
SRCT para explotar de mejor forma la información temporal disponible en situaciones 
particulares.  

Adicionalmente a las cuestiones mencionadas anteriormente, una revisión de los 
trabajos publicados en esta área pone de manifiesto que la mayor parte de los SRCT han 
sido desarrollados para la tarea de predicción de rating. A pesar de ello, hoy en día el 
foco de recomendación está cambiando desde la disminución del error en las predicciones 
de rating hacia la búsqueda de (listas de) ítems relevantes/atractivos para el usuario destino 
de los mismos, i.e. la tarea de recomendación de los N-mejores. Más aún, el uso 
extendido de sistemas de recomendación en diversas tareas de usuario posibilita encontrar 
nuevas aplicaciones donde la información de contexto temporal puede contribuir de manera 
distintiva. Considerando todo lo anterior, la comprensión de cómo la información temporal 
puede ser explotada para mejorar las tareas de recomendación, más allá de (pero también 
incluyendo) la predicción de rating, constituye otra meta principal de nuestra investigación. 

En resumen, tomando como punto de partida el estado del arte sobre aproximaciones 
a SRCT para la generación y evaluación de recomendaciones contextualizadas, esta tesis 
estudia, sintetiza y analiza cómo la información de contexto temporal ha sido explotada en 
la literatura de sistemas de recomendación, con el fin de a) caracterizar una metodología de 
evaluación robusta que permita realizar evaluaciones ecuánimes de nuevos SRCT, así como  
facilitar la comparación de resultados entre SRCT; y b) mejorar la explotación de 
información de contexto temporal en diferentes tareas de recomendación, llevando a nuevas 
y mejores aplicaciones de las tecnologías de recomendación conscientes del tiempo. 

A.2 Planteamiento del problema, objetivos de investigación e 
hipótesis 

Desde un punto de vista general, el problema de recomendación consiste en sugerir ítems 
que deberían ser los más atractivos para un usuario de acuerdo a sus preferencias. 
Tradicionalmente, la mayor parte de las propuestas de sistemas de recomendación no toman 
en cuenta ninguna información de carácter contextual, esto es, sólo consideran dos tipos de 
entidades para generar recomendaciones: usuarios e ítems (Adomavicius y Tuzhilin, 2011). 
En muchas aplicaciones, sin embargo, la información contextual puede ser una valiosa 
fuente de mejora de las recomendaciones, bajo la suposición de que circunstancias 
(contextos) similares  se relacionan con preferencias de usuarios afines. 
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En esta tesis nos centramos específicamente en problemas que incorporan el tiempo 
como fuente de información contextual para estrategias tanto de modelado como de 
recomendación. El objetivo final de la tesis es abordar el problema de recomendación desde 
una perspectiva consciente del tiempo, basándonos en dos líneas de acción principales. Por 
un lado, estableciendo un protocolo de evaluación robusto que tome en cuenta las 
dependencias temporales de los datos, de forma tal que permita una evaluación objetiva y 
rigurosa de los resultados de recomendación de SRCT; y por otro lado, abordando 
diferentes tareas de recomendación desde una perspectiva consciente del tiempo, de forma 
que se obtengan ventajas del uso de información de contexto temporal para mejorar la 
eficacia de los métodos actuales en dichas tareas. Por medio del uso de un protocolo de 
evaluación robusto tratamos de disponer de una medida fiable de las mejoras obtenidas. 
Para afrontar estas líneas de acción hemos definido los siguientes objetivos de 
investigación: 

OI1: Caracterización de las condiciones involucradas en la evaluación de SRCT. En 
este objetivo debemos realizar una profunda revisión y análisis de los protocolos empleados 
para la evaluación de la actual generación de SRCT, con el propósito de distinguir y 
formalizar las condiciones clave que conducen las evaluaciones realizadas. Abordamos este 
objetivo de investigación en el Capítulo 4. 

Cabe destacar que en todo protocolo de evaluación existen dos componentes 
fundamentales que definen el escenario en el cual se mide la eficacia de un sistema: las 
métricas de evaluación, que definen qué se debe medir, y las metodologías de evaluación, 
que definen cómo medir. En el campo de los sistemas de recomendación, existen métricas 
aceptadas de uso habitual (Herlocker et al., 2004; Gunawardana y Shani, 2009). Sin 
embargo, no existe consenso respecto de las metodologías a usar (Bellogín et al., 2011). 
Más aún, es práctica común informar de las métricas aplicadas para medir la eficacia de los 
sistemas de recomendación desarrollados, pero es menos común encontrar descripciones 
claras sobre las metodologías de evaluación utilizadas. Debido a esto focalizaremos nuestro 
estudio en las divergencias metodológicas en la evaluación de SRCT. 

OI2: Análisis del efecto del uso de diferentes condiciones de evaluación en la medición 
de la eficacia de SRCT. Mediante este objetivo queremos determinar si la aplicación de 
diferentes condiciones de evaluación lleva a diferencias en la medición de resultados de 
recomendación de SRCT. A partir de esto debemos definir el conjunto de condiciones que 
permitan efectuar evaluaciones ecuánimes y reproducibles de SRCT, con el fin de realizar 
mediciones rigurosas de la eficacia de SRCT. Abordamos este objetivo de investigación en 
el Capítulo 5. 

Tal como se mencionó en la Sección A.1, planteamos como hipótesis que la 
evaluación juega un rol preponderante en la explicación de las discrepancias encontradas en 
la literatura de SRCT. Sin embargo, hasta donde conocemos, no se ha estudiado el impacto 
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que tiene el uso de diferentes escenarios de evaluación en la medición de resultados. A 
partir del análisis de tal efecto, y de las características de las condiciones de evaluación, 
pretendemos establecer un conjunto de condiciones que proporcionen escenarios confiables 
para la evaluación de SRCT. Este conjunto de condiciones deberá usarse a lo largo de todo 
el trabajo experimental de esta tesis, para medir de forma apropiada las mejoras logradas 
por el uso de la información de contexto temporal asociada a los datos de preferencia de 
usuario. 

OI3: Adaptación de propuestas de recomendación existentes para hacer un mejor uso 
de la información de contexto temporal disponible. Debemos investigar la relación entre 
la información de contexto temporal y las preferencias de usuario, al objeto de mejorar los 
resultados de recomendación de una o más propuestas de recomendación basadas en el 
conocimiento del contexto temporal. Este conocimiento permitirá ajustar o adaptar 
propuestas de recomendación existentes para mejorar la forma en que el contexto temporal 
es explotado. Las mejoras obtenidas serán medidas utilizando un conjunto de condiciones 
que aseguren una evaluación ecuánime y la comparabilidad con otras propuestas. 
Abordamos este objetivo de investigación en el capítulo 6. 

Se ha comprobado que la explotación de la información de contexto temporal es una 
aproximación efectiva para mejorar la calidad de la recomendación, como lo demostró, por 
ejemplo, el equipo ganador de la conocida competición Netflix Prize (Koren, 2009b). En la 
literatura es posible encontrar múltiples propuestas de sistemas capaces de explotar 
información de contexto temporal. No obstante, el cambio de enfoque que va desde la 
disminución del error de predicción hasta la búsqueda de ítems relevantes, unido a la falta 
de protocolos de evaluación estandarizados, hace difícil establecer qué propuestas utilizan 
de mejor forma la información de contexto temporal. Por tanto, contando con un escenario 
de evaluación ecuánime, sería posible determinar las circunstancias en las cuales algunos 
algoritmos superan a los demás. A partir de esto, seríamos capaces de ajustar o adaptar el 
funcionamiento de algunas propuestas de recomendación con el objeto de mejorar su 
eficacia. 

OI4: Explotación de la información de contexto temporal en una tarea de 
recomendación novedosa. En este objetivo pretendemos obtener ventaja de la experiencia 
y conocimiento sobre la utilización y evaluación de modelos de recomendación conscientes 
del tiempo, por medio del desarrollo de aplicaciones novedosas de estas técnicas. Con este 
objetivo en mente, consideraremos tareas relacionadas con la recomendación –más allá de 
la predicción de rating y la recomendación de los N-mejores (N mejores ítems o top-N)– 
donde la información de contexto temporal disponible pueda ser una fuente importante de 
mejoras. Desarrollaremos nuevas propuestas basadas en la explotación del contexto 
temporal para abordar una de estas tareas y usaremos un escenario de evaluación que 
asegure una evaluación ecuánime y robusta. Abordamos este objetivo de investigación en el 
Capítulo 7. 



Introducción  169 

 

El desarrollo de los objetivos de investigación antes mencionados se basa en las 
siguientes hipótesis: 

Hipótesis 1: Variaciones en el protocolo de evaluación llevan a diferencias en la medición 
de resultados de recomendación. Esta hipótesis está relacionada con OI1 y OI2. 

Hipótesis 2: La explotación adecuada de la información de contexto temporal lleva a 
mejoras en los resultados de recomendación medidos. Esta hipótesis está relacionada con 
OI3 y OI4. 

Hipótesis 3: Desde un punto de vista temporal, el uso de un protocolo de evaluación 
robusto para modelos y técnicas de recomendación que explotan información de contexto 
temporal provoca un descenso de la eficacia medida con respecto a un protocolo de 
evaluación menos robusto. Esta hipótesis está relacionada con OI2, OI3 y OI4. 

A.3 Contribuciones 

La investigación llevada a cabo en esta tesis busca contribuir a mejorar la confiabilidad en 
la medición de resultados de sistemas de recomendación conscientes del tiempo, 
permitiendo una mejor explotación de la información de contexto temporal en los sistemas 
de recomendación. Por ello, las principales contribuciones de nuestra investigación son: 

• La caracterización de las condiciones que conducen el proceso de evaluación 
de los sistemas de recomendación conscientes del tiempo. Realizamos una 
revisión exhaustiva de la literatura sobre SRCT, identificando las cuestiones 
metodológicas clave que se deben afrontar durante el diseño experimental de una 
evaluación offline de SRCT. A partir de esto, formalizamos un conjunto de 
condiciones usadas en la evaluación de SRCT que abordan las cuestiones 
metodológicas analizadas. Las condiciones definidas se encuentran relacionadas 
principalmente con el proceso de partición de datos en conjuntos de 
entrenamiento y prueba, el cual puede realizarse de diferentes formas debido a la 
existencia de información de contexto temporal asociada a los datos. Incluimos 
también condiciones requeridas para evaluar tareas de recomendación 
específicas, tal y como se detalla en el Capítulo 4. 

• El desarrollo de un marco de trabajo metodológico para describir las 
condiciones usadas en la evaluación de SRCT. Proponemos un marco de 
trabajo de descripción metodológica que incorpora las condiciones de evaluación 
caracterizadas en la tesis, con el propósito de facilitar la descripción y adopción 
de protocolos de evaluación, y hacer el proceso de evaluación ecuánime y 
reproducible. Este marco de trabajo, introducido en el Capítulo 4, incluye la 
definición de un nuevo algoritmo de partición de repositorios de datos para 
generar conjuntos de datos de entrenamiento y prueba, usando las condiciones de 
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evaluación formalizadas. El uso de este marco de trabajo facilita la comparación 
de resultados de diferentes propuestas de SRCT, ya que permite difundir de 
manera simple y formal las distintas condiciones de evaluación utilizadas para 
medir la eficacia de los SRCT. 

• El análisis de aspectos metodológicos que una evaluación offline robusta de 
SRCT en particular, y de SR en general, debería tener en cuenta. 
Sintetizamos y discutimos el efecto de usar diferentes condiciones que abordan 
las cuestiones metodológicas clave involucradas en la evaluación de SRCT a 
través del Capítulo 4. Adicionalmente, en el Capítulo 5 clasificamos la literatura 
de SRCT revisada en términos de las condiciones de evaluación definidas, 
analizando y mapeando el uso de tales condiciones en un amplio número de 
trabajos de investigación sobre sistemas de recomendación conscientes del 
contexto y del tiempo. Más aún, realizamos una rigurosa comparación 
experimental de resultados obtenidos de diferentes protocolos de evaluación de 
SRCT, la cual es presentada en dicho Capítulo 5. Evaluamos un conjunto de 
conocidos SRCT en los dominios de recomendación de películas y música, 
usando diferentes tipos de datos de preferencias de usuario, a saber, ratings 
explícitos e implícitos. El propósito de esta comparación es valorar la influencia 
de las condiciones de evaluación en los resultados de eficacia medidos, por 
medio de métricas de precisión y ranking. 

• La propuesta de un conjunto de guías metodológicas cuyo propósito es 
facilitar la selección apropiada de condiciones para la evaluación offline de 
SRCT. A partir de los resultados obtenidos en nuestros experimentos y del 
análisis de los protocolos de evaluación utilizados en la literatura de SRCT, en el 
Capítulo 5 concluimos un conjunto de guías generales destinadas a facilitar la 
selección de condiciones para una evaluación de SRCT apropiada. Estas guías 
incluyen la elección de condiciones para realizar la partición de datos en 
conjuntos de entrenamiento y prueba, necesaria para calcular las métricas de 
evaluación y para la aplicación de un método de validación cruzada adecuado. 
También incluimos guías para seleccionar condiciones específicas requeridas 
para evaluar recomendaciones de los N-mejores. 

• La propuesta de nuevas heurísticas y adaptaciones para algunos sistemas de 
recomendación conscientes del contexto para hacer un mejor uso de la 
información de contexto temporal. Implementamos SRCC del estado del arte y 
proponemos nuevas heurísticas con el fin de mejorar su eficacia al explotar 
información de contexto temporal. Específicamente, en el Capítulo 6 
proponemos un nuevo criterio de impureza para ser utilizado por el algoritmo 
Item Splitting (Baltrunas and Ricci, 2009a, 2009b), y desarrollamos una 
estrategia de post-filtrado que permite contextualizar las recomendaciones 
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generadas por el destacado algoritmo de recomendación de factorización de 
matrices (Takács et al., 2008; Koren et al., 2009). Adicionalmente, ajustamos 
otros criterios de impureza utilizados por Item Splitting y adaptamos una 
propuesta de modelado contextual de Panniello y Gorgoglione (2012). Las 
heurísticas y adaptaciones propuestas se basan en la medición de resultados 
obtenidos a partir de datos contextualizados de usuarios reales, utilizando un 
protocolo de evaluación común y definido de manera precisa. 

• La propuesta de una nueva metodología para evaluar resultados de 
recomendación de los N-mejores. Proponemos y utilizamos una nueva 
metodología para evaluar la tarea de recomendación de los N-mejores ítems en el 
estudio presentado en el Capítulo 6, la cual permite construir listas ordenadas de 
ítems destinadas al mismo contexto temporal, incluyendo ítems no valorados en 
la lista, proporcionando así un escenario de evaluación más realista que aquellos 
resultantes de otras metodologías descritas en la literatura. 

• El desarrollo de nuevas propuestas conscientes del tiempo para abordar la 
tarea de identificación de usuarios activos en cuentas de usuario 
compartidas. En el Capítulo 7 proponemos y desarrollamos nuevos métodos que 
explotan la información de contexto temporal para abordar esta tarea de 
recomendación recientemente definida, que consiste en identificar de forma 
automática al usuario activo (en un instante concreto) en una cuenta de usuario 
compartida (por ejemplo en el hogar). Formulamos esta tarea como un problema 
de clasificación y evaluamos diferentes clasificadores que explotan atributos 
temporales de registros de consumo de ítems de los usuarios de un hogar. El 
análisis de los atributos temporales obtenidos muestra la existencia de diferentes 
hábitos temporales de valoración por parte de los usuarios de cuentas 
compartidas, los cuales permiten diferenciar qué usuario se encuentra activo en 
un momento determinado. 

• La adaptación de metodologías de evaluación de SRCT para medir la 
eficacia de diferentes métodos en la tarea de identificación de usuarios 
activos en cuentas de usuario compartidas. En el Capítulo 7 describimos una 
extensión al marco de trabajo metodológico propuesto para la evaluación de 
SRCT, por medio de la definición de una condición adicional, específica para 
esta reciente tarea. Concluimos que la estructura del marco de trabajo permite 
incorporar fácilmente la nueva condición. Basados en esto, utilizamos el marco 
de trabajo para adaptar las metodologías recomendadas por nuestras guías a la 
evaluación de esta tarea, con el fin de valorar los métodos propuestos para la 
misma. 
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A.4 Publicaciones 

Las contribuciones de esta tesis han originado un conjunto de publicaciones, las cuales se 
detallan a continuación. Las hemos agrupado de acuerdo al capítulo y tema de investigación 
con el cual se relacionan. 

Capítulo 4 

Metodologías de evaluación y SRCT 

Una propuesta inicial orientada a establecer un marco de trabajo para la evaluación de 
sistemas de recomendación conscientes del tiempo fue presentada en: 

• Campos, P. G., Díez, F. (2010). La Temporalidad en los Sistemas de 
Recomendación: Una Revisión Actualizada de Propuestas Teóricas. I 
Congreso Español de Recuperación de Información (CERI 2010), pp. 65-76. 
Madrid, España. 

En este trabajo describimos una revisión del estado del arte en SRCT, a partir de la 
cual advertimos la necesidad de mejorar los protocolos de evaluación utilizados en la 
valoración de la eficacia de SRCT. Esta observación motivó el propósito principal de esta 
tesis –la necesidad de proporcionar una evaluación de la eficacia de los SRCT más fiable. 
Con la finalidad de cumplir tal propósito, desarrollamos un marco de trabajo metodológico 
para seleccionar y describir las condiciones utilizadas para evaluar y comparar SRCT. Las 
condiciones de evaluación que constituyen el marco de trabajo metodológico presentado en 
el capítulo son estudiadas en: 

• Campos, P.G., Díez, F., Cantador, I. (2013). Time-Aware Recommender 
Systems: A Comprehensive Survey and Analysis of Existing Evaluation 
Protocols. User Modeling and User-Adapted Interaction, Special Issue on 
Context-Aware Recommender Systems. En prensa, pendiente de publicación 
(publicación online: 2013). 

En este trabajo, formalizamos un conjunto de condiciones utilizadas para evaluar 
SRCT, a partir del análisis de protocolos de evaluación encontrados en una revisión 
exhaustiva de la literatura sobre SRCT. Estas condiciones permiten describir de forma 
precisa las metodologías empleadas en la medición de la eficacia de SRCT, facilitando la 
reproducibilidad de escenarios de evaluación y la comparación de diversas propuestas de 
SRCT. 
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Capítulo 5 

Escenarios de evaluación y eficacia de recomendación 

Una vez identificada la importancia del escenario utilizado para evaluar SRCT, estudiamos 
la eficacia de propuestas de SRCT conocidos bajo diferentes protocolos de evaluación. Este 
estudio fue presentado en: 

• Campos, P.G., Díez, F., Sánchez-Montañés, M. (2011). Towards a More 
Realistic Evaluation: Testing the Ability to Predict Future Tastes of Matrix 
Factorization-based Recommenders. 5th ACM Conference on Recommender 
Systems (RecSys 2011), pp. 309-312, Chicago, IL, USA. 

En este trabajo, comparamos la eficacia del algoritmo de factorización de matrices 
(FM) –el cual no es consciente del tiempo– frente a la aproximación de FM con dinámicas 
temporales (Koren, 2009a), bajo dos protocolos de evaluación: aquel utilizado en la 
competición Netflix Prize, y un escenario que utiliza una separación temporal estricta de los 
datos de entrenamiento y prueba. Del análisis llevado a cabo encontramos diferencias 
importantes en el ordenamiento relativo de las propuestas evaluadas al cambiar el escenario 
de evaluación, mostrando así claramente la necesidad de una evaluación de propuestas de 
SRCT más robusta. Los protocolos de evaluación probados en este trabajo sirvieron como 
base para definir las condiciones de evaluación utilizadas en la comparación empírica de 
SRCT presentada en el capítulo. 

Capítulo 6 

Evaluación de la eficacia de recomendaciones conscientes del tiempo 

Una vez que observamos que la variabilidad de diferentes SRCT en la literatura se debe 
principalmente al uso de diferentes escenarios de evaluación, decidimos implementar y 
comparar diferentes propuestas de SRCT bajo un protocolo de evaluación claro y común. 
De esta forma, es posible identificar qué propuestas superan a otras, y bajo qué 
circunstancias. Un primer estudio comparativo fue presentado en: 

• Campos, P.G., Díez, F., Cantador, I. (2012). A Performance Comparison of 
Time-Aware Recommendation Models. Proceedings of the 2nd Spanish 
Conference in Information Retrieval (CERI 2012), Valencia, España. 

En este trabajo comparamos SRCT que explotan información de contexto temporal 
continua, utilizando una metodología de evaluación que toma en cuenta el orden temporal 
de los ratings. Sin embargo, estuvimos limitados a usar un conjunto de datos de ratings con 
marcas de tiempo, sin contar con información sobre el contexto temporal en el cual los 
ítems fueron consumidos y/o utilizados efectivamente. En un trabajo posterior, realizamos 
un estudio de usuario con el fin de obtener información de contexto temporal confiable, 
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para comparar diferentes propuestas de recomendación que explotan información de 
contexto. Este último estudio es descrito en: 

• Campos, P.G., Fernández-Tobías, I., Cantador, I., Díez, F. (2013). Context-
Aware Movie Recommendations: An Empirical Comparison of Pre-
Filtering, Post-Filtering and Contextual Modeling Approaches, Proceedings 
of the 14th  International Conference on Electronic Commerce and Web 
Technologies (EC-Web 2013), pp 137-149, Prague, Czech Republic. 

Este trabajo se enfoca en la comparación de propuestas generales de SRCC que son 
capaces de explotar información de contexto temporal en la forma de variables categóricas. 
Más aún, comparamos información de contexto temporal y social, de manera de estudiar 
cuál proporciona más información a las propuestas evaluadas, en términos de mejoras en la 
tarea de predicción de rating. El marco de trabajo metodológico propuesto sirvió de base 
para definir el escenario de evaluación en este estudio. 

Sistemas de recomendación conscientes del contexto e información de contexto 
temporal 

Estudiamos la capacidad de SR conscientes del contexto de mejorar la eficacia de las 
recomendaciones, a partir de la explotación de señales de contexto temporal modeladas 
como variables categóricas, derivadas de información de contexto temporal continua (en la 
forma de marcas de tiempo) asociadas a los ratings. Evaluamos una propuesta de pre-
filtrado del estado del arte en: 

• Campos, P.G., Cantador, I., Díez, F. (2013). Exploiting Time Contexts in 
Collaborative Filtering: An Item Splitting Approach, 3rd workshop on 
Context-Awareness in Retrieval and Recommendation (CaRR 2013) desarrollado 
conjuntamente con 6th ACM International Conference on Web Search and Data 
Mining (WSDM 2013), pp. 3-6, Rome, Italy. 

Este trabajo se enfoca en el análisis del algoritmo de pre-filtrado Item Splitting, 
buscando las mejores combinaciones de señales de contexto temporal tales como periodo 
del día y periodo de la semana, así como de diferentes parámetros utilizados por dicho 
algoritmo, con el fin de obtener mejoras en predicciones de rating, así como en la tarea de 
recomendación de los N-mejores. 

Capítulo 7 

Estudio de los hábitos temporales de los usuarios en valoración de items 

El análisis de la información de contexto temporal asociada a los ratings de usuario nos 
permitió abordar una tarea relacionada con los sistemas de recomendación que ha sido 
menos estudiada: la identificación de usuarios en cuentas de usuario compartidas. Esta tarea 
fue propuesta como una competición en el marco del segundo Taller sobre Recomendación 
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de Películas consciente del Contexto (CAMRa 2011, por sus siglas en inglés). El análisis 
inicial de los datos proporcionados, y nuestras primeras propuestas para la tarea, fueron 
presentados en: 

• Campos, P.G., Díez, F., Bellogín, A. (2011). Temporal Rating Habits: A 
Valuable Tool for Rating Discrimination. Proceedings of the 2nd Workshop on 
Contex-aware Movie Recommendation (CAMRa 2011), desarrollado 
conjuntamente con 5th ACM Conference on Recommender Systems (RecSys 
2011), pp. 29-35, Chicago, IL, USA. 

En este trabajo examinamos diferentes variables de contexto temporal derivadas de 
marcas de tiempo, así como información adicional asociada a ratings de usuario, 
encontrando diferencias importantes en el comportamiento de usuarios distintos para 
realizar valoraciones dentro una misma cuenta compartida (en el hogar). Más aún, en este 
trabajo propusimos una aproximación basada en un modelo probabilístico para la 
identificación del usuario activo en un momento dado. 

Identificación de usuarios activos en cuentas compartidas basada en información de 
contexto temporal 

Motivados por el buen desempeño de las aproximaciones propuestas, implementamos y 
evaluamos diversos métodos para la tarea antes mencionada, basados exclusivamente en la 
explotación de información de contexto temporal. Estos métodos y su eficacia en la tarea se 
describen en: 

• Campos, P.G., Bellogín, A., Díez, F., Cantador, I. (2012). Time feature 
selection for identifying active household members. Proceedings of the 21st  
ACM International Conference on Information and Knowledge Management 
(CIKM’12), pp. 2311-2314 Maui, HI, USA. 

Los métodos presentados en este trabajo son capaces de abordar la tarea con gran 
exactitud (sobre un 95%) utilizando el protocolo de evaluación establecido por los 
organizadores de la competición de CAMRa 2011, la cual se basa en la selección aleatoria 
de datos de prueba. 

Evaluación robusta de métodos para la identificación de usuarios activos en cuentas 
de usuario compartidas 

Con el fin de probar la confiabilidad de los métodos propuestos, decidimos adaptar y 
utilizar el marco de trabajo metodológico propuesto en esta tesis para valorar la eficacia de 
los métodos bajo diferentes protocolos de evaluación. Esta evaluación es presentada en: 

• Campos, P.G., Bellogín, A., Cantador, I., Díez, F. (2013). Time-Aware 
Evaluation of Methods for Identifying Active Household Members in 
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Recommender Systems,  Proceedings of the 15th Spanish Conference on 
Artificial Intelligence (CAEPIA 2013), Madrid, España. Pendiente de 
publicación. 

La contribución de este estudio fue doble. Por un lado, mostramos que el poder de 
discriminación de los métodos propuestos varía considerablemente al ser medidos con 
diferentes metodologías. Por otro lado, mostramos la flexibilidad y extensibilidad del 
marco de trabajo metodológico propuesto en esta tesis, empleándolo para la evaluación de 
modelos predictivos conscientes del tiempo destinados a una tarea diferente de aquella para 
la cual el marco de trabajo fue originalmente diseñado. 

Contribuciones relacionadas 

La observación de las dificultades para comparar la eficacia de diferentes SRCT surgió a 
partir de un estudio comparativo sobre la eficacia de SRCT en diversas dimensiones de 
evaluación, realizado en el Trabajo de Fin de Máster del autor, titulado “Temporal Models 
in Recommender Systems: An Exploratory Study on Different Evaluation Dimensions” 
(Campos, 2011). La revisión y comparación de resultados publicados, realizada en dicho 
trabajo, nos mostró la necesidad de contar con un protocolo de evaluación para sistemas de 
recomendación conscientes del tiempo más fiable. De esta forma, dicho trabajo sirvió de 
germen para desarrollar las contribuciones de esta tesis. 

Durante la realización de la tesis, se publicaron otras contribuciones en temas 
relacionados con sistemas de recomendación. Específicamente, investigamos 1) heurísticas 
para recomendación consciente del tiempo, 2) aproximaciones de recomendación capaces 
de explotar otros tipos de información de contexto, y 3) aproximaciones alternativas para 
identificar usuarios activos en cuentas compartidas. La primera propuesta sirvió como base 
para explorar nuevas aproximaciones a SRCT descritas en la Sección 6.2. La segunda 
corresponde a extensiones de las propuestas presentadas en el capítulo 6, capaces de 
explotar todo tipo de información de contexto. La tercera corresponde a una nueva 
aproximación para abordar la tarea descrita en el Capítulo 7. 

Heurísticas para recomendación consciente del tiempo 

Evaluamos heurísticas para explotar información de contexto temporal en: 

• Campos, P.G., Bellogín, A, Díez, F., Chavarriaga, J.E. Simple Time-Biased 
KNN-based recommendations. Workshop Challenge on Context-aware Movie 
Recommendation (CAMRa 2010), desarrollado conjuntamente con 4th ACM 
Conference on Recommender Systems, pp. 20-23, Barcelona, España. 

Las heurísticas estudiadas en este trabajo permiten adaptar recomendaciones basadas 
en kNN por medio de la explotación exclusiva de ratings en el entorno temporal cercano 
del momento de recomendación. Así, estas heurísticas ayudan a mejorar los resultados de 
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recomendación proporcionados por el algoritmo kNN, mientras que reducen la cantidad de 
información requerida para generar recomendaciones. 

Recomendación consciente del contexto basada en modelo 

También investigamos diferentes aproximaciones de recomendación consciente del 
contexto basadas en modelo, capaces de explotar diferentes tipos de información de 
contexto. Una propuesta que explota información de contexto social fue presentada en: 

• Díez, F., Chavarriaga, J.E., Campos, P.G., Bellogín, A. (2010) Movie 
Recommendations based in explicit and implicit features extracted from the 
Filmtipset dataset. Proceedings of the Workshop Challenge on Context-aware 
Movie Recommendation (CAMRa 2010), desarrollado conjuntamente con 4th  
ACM Conference on Recommender Systems 2010 (RecSys 2010), pp. 45-52, 
Barcelona, España. 

En este trabajo, utilizamos diferentes algoritmos de filtrado colaborativo basados en 
Caminos Aleatorios para explotar información de contexto social en la forma de relaciones 
de amistad en un conjunto de datos de ratings de películas. Utilizando un enfoque diferente, 
probamos SRCC basados en contenido en: 

• Fernández-Tobías, I., Campos, P.G., Cantador, I., Díez, F. (2013). A Contextual 
Modeling Approach for Model-based Recommender Systems, Proceedings of 
the 15th Spanish Conference on Artificial Intelligence (CAEPIA 2013), Madrid, 
España. Pendiente de publicación. 

En este trabajo evaluamos diferentes algoritmos de aprendizaje automático que 
explotan patrones de usuarios que incluyen preferencias de género de películas e 
información de contexto social en la forma de compañía social, además del contexto 
temporal y espacial (de localización) en los cuales los usuarios prefieren ver películas y 
escuchar música. Estos trabajos mostraron la capacidad de las aproximaciones propuestas 
de mejorar la eficacia de las recomendaciones a partir de la explotación de información de 
contexto. 

Modelado basado en teoría de juegos para identificar usuarios activos en cuentas 
compartidas 

Probamos diferentes aproximaciones de modelado con el fin de abordar la novedosa tarea 
de identificar usuarios en cuentas compartidas. Una de tales aproximaciones se describe en: 

• Díez, F., Campos, P.G. (2012). Identificación de usuarios en Sistemas de 
Recomendación mediante un modelo basado en Teoría de Juegos. II 
Congreso Español de Recuperación de Información (CERI 2012), Valencia, 
España. 
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Una de las contribuciones más interesantes de este trabajo, además de la novedad de 
emplear un esquema de modelado basado en Teoría de Juegos, consiste en el enfoque de 
seleccionar dinámicamente las mejores fuentes de información de forma independiente para 
cada cuenta de usuario compartida. 

A.5 Estructura de la tesis 

Esta tesis se ha dividido en tres partes. La primera parte revisa la literatura sobre sistemas 
de recomendación en general, y sobre sistemas de recomendación conscientes del tiempo 
en particular. La segunda parte caracteriza un protocolo de evaluación robusto para 
sistemas de recomendación conscientes del tiempo, basado en la identificación y análisis de 
las condiciones que conducen las metodologías de evaluación; y evalúa el efecto de utilizar 
diferentes condiciones en los resultados de recomendación medidos. Las condiciones 
identificadas dan forma a un marco de trabajo metodológico para la evaluación de SRCT. 
La tercera y última parte presenta diferentes aplicaciones que explotan información de 
contexto temporal, tomando ventaja del marco de trabajo propuesto para proporcionar 
mediciones más fiables de las mejoras debidas al uso de modelos conscientes del tiempo. 
Concretamente, los contenidos de esta tesis se distribuyen de la siguiente forma: 

Parte I. Estado del arte: Sistemas de recomendación y contexto temporal 

• El Capítulo 2 proporciona una visión general del estado del arte en sistemas de 
recomendación, considerando tareas de recomendación, tipos de 
retroalimentación de usuario, técnicas y evaluación de estos sistemas. 

• El Capítulo 3 presenta una revisión exhaustiva del estado del arte en sistemas de 
recomendación conscientes del tiempo, considerando una clasificación de las 
principales aproximaciones en la literatura sobre el modelado y la explotación de 
información de contexto temporal. Adicionalmente, se discuten las metodologías 
y métricas utilizadas en la evaluación de estos sistemas. 

Parte II. Caracterización de un protocolo de evaluación robusto de recomendaciones 
conscientes del tiempo  

• El Capítulo 4 analiza las cuestiones metodológicas clave involucradas en el 
diseño de protocolos para evaluar sistemas de recomendación conscientes del 
tiempo, y formaliza un conjunto de condiciones que abordan estas cuestiones. A 
partir de las condiciones establecidas, se define un marco de trabajo 
metodológico cuyo propósito es caracterizar el proceso de evaluación de SRCT. 

• El Capítulo 5 presenta una clasificación del estado del arte en la literatura de 
SRCT basada en las condiciones clave utilizadas en su evaluación, y describe un 
análisis empírico de dichas condiciones. A partir del análisis de los resultados 
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obtenidos, se proporciona un conjunto de guías generales para seleccionar 
condiciones apropiadas para evaluar SRCT particulares. 

Parte III. Explotación de información de contexto temporal en tareas de 
recomendación 

• El Capítulo 6 expone una comparación de diferentes propuestas de SRCT sobre 
dos tareas de recomendación habituales, a saber, predicción de rating y 
recomendación de los N-mejores. Se proponen nuevas heurísticas, así como 
adaptaciones y ajustes a algunas propuestas, que mejoran la explotación de 
señales de contexto temporal. Tomando ventaja del marco de trabajo 
metodológico propuesto se proporciona un escenario de evaluación ecuánime y 
común, con el fin de obtener una medición fiable de las mejoras de eficacia. 
También se detalla, sobre un estudio de usuario llevado a cabo para recolectar 
información explícita de contexto temporal de los usuarios, la cual sirve como 
fuente de entrada para los SRCT evaluados. 

• El Capítulo 7 describe nuevos métodos conscientes del tiempo desarrollados 
para abordar una tarea relacionada con sistemas de recomendación: la 
identificación de usuarios activos en cuentas compartidas (en el hogar). Los 
métodos propuestos, basados en la explotación de información de contexto 
temporal asociada a eventos de rating, son valorados bajo diferentes escenarios 
de evaluación proporcionados por la adaptación para la evaluación de esta tarea 
del marco de trabajo metodológico propuesto anteriormente. 

• El Capítulo 8 concluye la tesis con un resumen de las principales contribuciones 
y una discusión sobre líneas de trabajo futuro. 
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Conclusiones 

 

El trabajo presentado en esta tesis estuvo motivado originalmente por la necesidad de 
comprender y mejorar la explotación de la información de contexto temporal por parte de 
los sistemas de recomendación en la actualidad. Para cumplir con dicho objetivo, en la tesis 
nos hemos centrado sobre la definición, formulación y uso de protocolos de evaluación 
robustos para la evaluación exhaustiva y ecuánime de diferentes modelos de 
recomendación. A partir de lo anterior adaptamos y propusimos métodos conscientes del 
tiempo para diferentes tareas de recomendación, basadas en una medición más fiable de las 
mejoras obtenidas. Más específicamente, hemos abordado los siguientes objetivos de 
investigación: 

• La caracterización de condiciones involucradas en la evaluación de sistemas de 
recomendación conscientes del tiempo 

• El análisis del efecto de diferentes condiciones de evaluación en la medición de 
la eficacia de las recomendaciones conscientes del tiempo 

• La adaptación de propuestas de recomendación existentes para hacer un mejor 
uso de la información de contexto temporal disponible. 

• La explotación de información de contexto temporal en una tarea de 
recomendación novedosa. 

En la primera parte de esta tesis hemos revisado las aproximaciones existentes para 
generar y evaluar recomendaciones, con particular énfasis y detalle en las aproximaciones 
de recomendación consciente del tiempo. A partir de dicha revisión exhaustiva, en la 
segunda parte de esta tesis hemos formalizado, analizado, y comparado empíricamente las 
condiciones que conducen el proceso de evaluación de SRCT, y hemos propuesto un marco 
de trabajo de descripción metodológica que permite declarar de manera precisa las 
condiciones utilizadas en la evaluación de un SRCT particular. Más aún, hemos propuesto 
un conjunto de guías cuyo propósito es ayudar a seleccionar las condiciones apropiadas 
para una evaluación fiable de SRCT. Finalmente, en la tercera parte de esta tesis, hemos 
presentado diferentes aplicaciones de propuestas conscientes del tiempo en tareas de 
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recomendación, proponiendo nuevas heurísticas, así como adaptaciones de métodos 
existentes en el caso de las bien establecidas tareas de predicción de rating y 
recomendación de los N-mejores, y desarrollando nuevos métodos en el caso de la 
recientemente propuesta tarea de identificar usuarios activos en cuentas compartidas. 
Hemos utilizado el marco de trabajo propuesto para evaluar la eficacia de las heurísticas, 
adaptaciones y métodos propuestos. 

En este capítulo, presentamos las principales conclusiones de nuestro trabajo. En la 
Sección 8.1 resumimos las contribuciones de esta tesis. En la Sección 8.2 detallamos la 
validación de las hipótesis planteadas y, en la Sección 8.3, describimos algunas directrices 
para el potencial trabajo futuro. 
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B.1 Resumen y discusión de contribuciones 

En las siguientes subsecciones resumimos y discutimos las principales contribuciones de 
esta tesis, con respecto a los objetivos de investigación y las hipótesis planteados en el 
Capítulo 1. Estas contribuciones se encuentran organizadas de acuerdo a los objetivos de 
investigación abordados. En primer lugar, investigamos las condiciones que guían el 
proceso de evaluación de Sistemas de Recomendación Conscientes del Tiempo (SRCT). En 
segundo lugar, analizamos las diferencias en las mediciones de la eficacia de las 
recomendaciones a consecuencia de los cambios en las condiciones de evaluación 
utilizadas, con el fin de establecer un conjunto de condiciones que den lugar a un protocolo 
de evaluación robusto. En tercer lugar, propusimos nuevas heurísticas, así como 
adaptaciones a aproximaciones de recomendación existentes, con el objeto de mejorar la 
explotación de la información de contexto temporal. Y en cuarto lugar, propusimos 
novedosos métodos conscientes del tiempo para la tarea de identificación de usuarios 
activos en cuentas compartidas. 

B.1.1 Caracterización de las condiciones involucradas en la evaluación de 
SRCT 

A partir de una revisión exhaustiva de la literatura publicada sobre sistemas de 
recomendación conscientes del tiempo, observamos que los resultados y conclusiones 
existentes acerca de cómo incorporar y explotar información temporal en el proceso de 
recomendación, parecen contradictorios en algunos casos. Nosotros planteamos como 
hipótesis que tales discrepancias pueden ser causadas por diferencias significativas en los 
protocolos de evaluación utilizados –métricas y metodologías. Una revisión cuidadosa de 
tales protocolos de evaluación nos mostró múltiples diferencias metodológicas en las 
evaluaciones llevadas a cabo en diferentes trabajos. Concretamente, en la Sección 4.1 
observamos que el proceso de partición de datos en conjuntos de entrenamiento y prueba es 
una importante fuente de divergencia metodológica, particularmente cuando se encuentran 
disponibles las marcas de tiempo de los ratings. Identificamos diversas decisiones de diseño 
que deben tenerse en cuenta al definir un escenario de evaluación, las cuales llevan a 
diferencias metodológicas. Analizando dichas diferencias, planteamos un conjunto de 
preguntas metodológicas clave respecto del diseño de un protocolo de evaluación para 
SRCT: 

• MQ1: ¿Qué conjunto de ratings base se utiliza para realizar la partición de datos 
en conjuntos de entrenamiento y prueba? 

• MQ2: ¿Qué ordenamiento de los ratings se utiliza para asignar estos a los 
conjuntos de entrenamiento y prueba? 

• MQ3: ¿Cuántos ratings conforman los conjuntos de entrenamiento y prueba? 
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• MQ4: ¿Qué método de validación cruzada se emplea para incrementar la 
fiabilidad de la generalización de los resultados de la evaluación? 

Adicionalmente a estas preguntas, también establecimos condiciones específicas para 
el diseño de la evaluación de la tarea de recomendación de los N-mejores, plateando las dos 
siguientes preguntas metodológicas: 

• MQ5: ¿Qué ítems se consideran como ítems objetivo (en la tarea de 
recomendación de los N-mejores)? 

• MQ6: ¿Qué ítems se consideran relevantes para cada usuario (en la tarea de 
recomendación de los N-mejores)? 

Abordamos la respuesta a estas preguntas empleando un conjunto de condiciones de 
evaluación que planteamos a partir de la revisión de los escenarios de evaluación 
encontrados en la literatura de SRCT. Estas condiciones ayudan a la toma de decisiones 
relacionadas con los procesos de partición de datos en conjuntos de entrenamiento y prueba 
y de validación cruzada en la evaluación de SR, y con aspectos específicos con respecto a 
la evaluación de la recomendación de los N-mejores ítems. Así, específicamente, en el 
Capítulo 4 caracterizamos y formalizamos las siguientes condiciones de evaluación: 

• Condiciones de conjunto base de ratings centrada en la comunidad y centrada 
en el usuario, las cuales especifican si se deben aplicar las restantes condiciones 
bien sobre todo el conjunto de ratings, o bien independientemente sobre el 
conjunto de ratings de cada usuario, en respuesta a la pregunta MQ1. 

• Condiciones de ordenamiento de ratings dependiente del tiempo e independiente 
del tiempo, las cuales indican si se debe ordenar temporalmente o no el conjunto 
de ratings, en respuesta a la pregunta MQ2. 

• Condiciones de tamaño de conjunto de ratings basado en proporción, fijo y 
basado en tiempo, las cuales indican el criterio utilizado para definir los tamaños 
de los conjuntos de entrenamiento y prueba, en respuesta a la pregunta MQ3. 

• Condiciones de validación cruzada dependiente del tiempo o independiente del 
tiempo, las cuales indican los métodos de validación cruzada aplicables 
dependiendo de la compatibilidad con las restricciones de ordenamiento temporal 
de los ratings, en respuesta a la pregunta MQ4. 

• Condiciones de ítem objetivo basado en el usuario, basado en la comunidad, 
one-plus-random y otras condiciones de ítem destino, las cuales indican el 
criterio usado para determinar el conjunto de ítems a ser ordenado en la tarea de 
recomendación de los N-mejores, en respuesta a la pregunta MQ5. 
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• Condiciones de ítem relevante basado en el conjunto de prueba y basado en 
umbral, las cuales indican el criterio utilizado para determinar la relevancia de 
los ítems, en respuesta a la pregunta MQ6. 

Estas condiciones en conjunto cubren el amplio espectro de alternativas de decisiones 
de diseño usadas en el proceso de evaluación en la literatura de SRCT. 

Basándonos en las condiciones definidas, desarrollamos un marco de trabajo 
metodológico, cuyo propósito es facilitar la comprensión de tales condiciones. Más aún, el 
marco de trabajo pretende hacer el proceso de evaluación ecuánime y reproducible bajo 
diferentes circunstancias, al declarar de forma clara y meticulosa el escenario utilizado en la 
evaluación de SRCT. El formalismo empleado en el marco de trabajo incluye la definición 
de un procedimiento de partición, descrito en la Sección 4.2, el cual, tomando como 
entrada un conjunto de condiciones de evaluación (escenario de evaluación), permite 
realizar y reproducir particiones de datos en conjuntos de entrenamiento y prueba. 
Haciendo uso del procedimiento de partición y de las distintas combinaciones de las 
condiciones incluidas en el marco de trabajo, es posible definir de forma exacta los diversos 
escenarios de evaluación de SRCT, como se mostró por medio de los ejemplos incluidos en 
la Sección 4.3.4. 

Adicionalmente, en la Sección 5.1 realizamos una exhaustiva clasificación del 
estado del arte en SRCT en términos de las condiciones de evaluación caracterizadas, 
mapeando tales condiciones hacia los escenarios de evaluación utilizados en la literatura de 
sistemas de recomendación conscientes del tiempo y proporcionando una visión general de 
las condiciones y metodologías más comúnmente usadas en la evaluación de tales sistemas. 
Encontramos que casi un 25% de los estudios revisados utilizan un ordenamiento de ratings 
independiente del tiempo –a pesar del hecho que los artículos revisados versan sobre 
propuestas conscientes del tiempo–, y que aproximadamente un 40% de los estudios usan 
una combinación de conjunto de ratings base centrado en la comunidad y ordenamiento de 
ratings dependiente del tiempo –condiciones tales que proporcionan el escenario de 
evaluación más similar al existente en el mundo real–. También encontramos una 
distribución equitativa en el uso de los criterios sobre el tamaño del conjunto de ratings, así 
como un uso escaso de métodos de validación cruzada. Respecto de las condiciones 
específicas para evaluar la recomendación de los N-mejores, observamos que la mayor 
parte de los artículos relacionados con SRCT que abordan esta tarea utilizan un criterio 
basado en el conjunto de prueba para definir la relevancia de los ítems, y una distribución 
equitativa en el uso de los criterios para seleccionar los conjuntos de ítems objetivo. 
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B.1.2 Análisis del efecto de las diferentes condiciones de evaluación en la 
medición de la eficacia de los SRCT 

Junto con la caracterización de las condiciones de evaluación presentadas en el Capítulo 4, 
discutimos el efecto de utilizar diferentes condiciones para abordar cada pregunta 
metodológica clave involucrada en la evaluación de SRCT (MQ1 – MQ6). Como 
conclusión, observamos las importantes diferencias resultantes de aplicar las condiciones 
de partición de datos sobre el conjunto total de ratings en un conjunto de datos –esto es,  
usando una condición de conjunto de ratings base centrado en la comunidad– versus la 
aplicación de tales condiciones de forma independiente sobre los datos de cada usuario –
i.e., usando una condición de conjunto de ratings base centrado en el usuario. Más aún, 
notamos las diferencias en las particiones de datos generadas inducidas por la aplicación de 
una condición de ordenamiento de ratings independiente del tiempo, o de forma alternativa, 
dependiente del tiempo. Con el fin de estudiar la influencia del uso de diferentes 
combinaciones de condiciones de evaluación en la medición la eficacia de las 
recomendaciones, realizamos una comparación empírica de varios SRCT empleando 
diversos protocolos de evaluación. En particular, en el Capítulo 5 presentamos la 
evaluación de tres propuestas de SRCT y una de recomendación no contextual ampliamente 
utilizadas, usando cuatro metodologías de evaluación diferentes. Los resultados obtenidos 
mostraron que el uso de diferentes condiciones de evaluación da lugar no sólo a diferencias 
importantes entre las métricas que miden diferentes propiedades de recomendación –a saber 
exactitud, precisión, novedad y diversidad–, sino que también pueden afectar al orden 
relativo de los algoritmos respecto de una métrica en particular. 

Basándonos en los experimentos y análisis realizados, presentamos las cuestiones 
metodológicas clave que una evaluación robusta de SRCT debe tener en consideración para 
realizar una medición ecuánime de la eficacia de la recomendación, y facilitar la 
comparación entre experimentos publicados. A partir de esto, en la Sección 5.3 concluimos 
un conjunto de guías metodológicas destinadas a facilitar la selección de condiciones para 
una evaluación apropiada de SRCT. Para la evaluación de la tarea de predicción de rating, 
las guías propuestas sugieren realizar la partición en conjuntos de entrenamiento y prueba 
basada en un ordenamiento de ratings dependiente del tiempo sobre todo el conjunto de 
ratings, aplicando un criterio de tamaño basado en proporción y utilizando un método de 
validación cruzada compatible con las condiciones de partición de datos sugeridas. Para la 
evaluación de la tarea de recomendación de los N-mejores, nuestras guías sugieren ordenar 
un conjunto de ítems que incluya algunos para los cuales la relevancia para el usuario sea 
completamente desconocida. Este es el escenario más común en las aplicaciones del mundo 
real. Utilizando una condición de ítem relevante basada en umbral, la cual descarta del 
conjunto de ítems relevantes aquellos con valoraciones o consumos bajos, proporciona una 
interpretación más confiable de la relevancia de los ítems. 
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B.1.3 Adaptación de propuestas de recomendación existentes para hacer 
un mejor uso de la información de contexto temporal disponible 

Las guías de evaluación propuestas en esta tesis nos permitieron establecer un escenario de 
evaluación ecuánime y común para medir la eficacia de diferentes modelos de 
recomendación que explotan información de contexto temporal. A partir del análisis de 
estos resultados y de las características de los modelos, en el Capítulo 6 propusimos nuevas 
heurísticas y adaptaciones, con el fin de hacer un mejor uso de la información de contexto 
temporal disponible. 

En particular, en la Sección 6.2.1 propusimos un nuevo criterio de impureza 
basado en la prueba exacta de Fisher, para ser utilizado por el algoritmo Item Splitting 
(Baltrunas y Ricci, 2009a, 2009b) –una propuesta general de pre-filtrado consciente del 
contexto. Adicionalmente, en la Sección 6.3.2 ajustamos diferentes criterios de impureza 
usados por Item Splitting para encontrar los umbrales óptimos que disminuyen el error en la 
predicción de rating al explotar diferentes contextos temporales. También desarrollamos, en 
la Sección 6.2.2, una nueva estrategia de post-filtrado basada en la probabilidad de 
valorar un ítem en el contexto de recomendación objetivo. Esta heurística permite 
realizar la contextualización de post-filtrado de las recomendaciones generadas por el 
algoritmo de recomendación de factorización de matrices (Takács et al., 2008; Koren et al., 
2009). Por su parte, en la Sección 6.2.3 adaptamos el método de vecinos contextuales 
(Panniello y Gorgoglione, 2012) – una aproximación general de modelado contextual– 
eliminando restricciones consideradas en la propuesta original para controlar el tipo de 
contextualización utilizada, con el fin de permitir la utilización de diferentes algoritmos de 
recomendación junto a dicho método. 

Adicionalmente, a partir del análisis de las sugerencias dadas en las guías 
metodológicas propuestas en el Capítulo 5 para la tarea de recomendación de los N-mejores 
ítems, y las particularidades de las propuestas estudiadas –que son capaces de utilizar 
representaciones categóricas del contexto temporal–, propusimos y utilizamos una nueva 
metodología para medir recomendaciones contextualizadas de los N-mejores. Esta 
nueva metodología, descrita en la Sección 6.4.1, permite construir listas ordenadas de ítems 
destinadas al mismo contexto temporal, independientemente de la representación temporal 
utilizada –una cuestión no abordada previamente en la literatura de SRCT–, al tiempo que 
incluye ítems no valorados en la lista. De esta forma, la metodología propuesta proporciona 
un escenario de evaluación más similar a aquel que los SRCT en funcionamiento deben 
enfrentar –ordenar correctamente ítems no valorados para un contexto de destino dado, con 
el fin de recomendar aquellos relevantes– que aquellos resultantes de otras metodologías 
previamente usadas en la literatura. 

Evaluamos las adaptaciones propuestas, junto con otras aproximaciones capaces de 
explotar información de contexto temporal –a saber pre-filtrado exacto (Adomavicius y 
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Tuzhilin, 2011) y post-filtrado (Panniello et al., 2009a)– en un conjunto de datos de 
preferencias de películas de usuarios reales enriquecido con información de contexto. Los 
resultados obtenidos, discutidos en las Secciones 6.3.3 y 6.4.4, mostraron la importancia de 
seleccionar un umbral apropiado para cada combinación de criterio de impureza y señal 
de contexto temporal en el caso de Item Splitting, para poder obtener la mejor eficacia en la 
recomendación posible. 

Adicionalmente, estos resultados también revelaron que no existe un único SRCT 
dominante tanto en la tarea de predicción de rating como de recomendación de los N-
mejores, y que las mejoras logradas por las propuestas evaluadas dependen del algoritmo de 
recomendación subyacente y el contexto temporal explotado. Este hallazgo es concordante 
con las conclusiones de investigaciones previas que comparan SR conscientes del contexto 
en aplicaciones de comercio electrónico, p. ej. (Panniello et al., 2009a). De esta forma, la 
identificación de la mejor aproximación requiere de una evaluación y comparación 
exhaustiva de implementaciones de SRCT candidatas sobre el conjunto de datos sobre el 
que desean utilizarse. Más aún, algunas aproximaciones de contextualización pueden 
requerir de una prueba intensiva de parámetros, como es el caso de Item Splitting. 

A pesar de lo antes mencionado, observamos que las heurísticas propuestas en el 
Capítulo 6 –el nuevo criterio de impureza para Item Splitting y la estrategia de post-filtrado 
para factorización de matrices– son capaces de contextualizar de manera efectiva las 
recomendaciones generadas por el eficiente algoritmo de recomendación de factorización 
de matrices. Más aún, éstos mostraron los mejores valores globales en la mayoría de las 
métricas de las tareas de predicción de rating y recomendación de los N-mejores, 
respectivamente, en la comparación de propuestas realizada. De esta forma, el uso de las 
heurísticas propuestas en conjunto con un algoritmo de recomendación basado en 
factorización de matrices puede considerarse como una buena aproximación para 
contextualizar recomendaciones cuando se encuentra disponible información de contexto 
temporal sobre las preferencias de usuario. 

B.1.4 Explotación de información de contexto temporal en una tarea de 
recomendación novedosa 

La explotación de diferentes contextos temporales asociados a ratings de usuario nos 
permitió abordar una tarea de recomendación fuera del ámbito de las tareas habituales de 
predicción de rating y recomendación de los N-mejores: la identificación de usuarios 
activos en cuentas compartidas (en el hogar) (Berkovsky et al., 2011). En el capítulo 7 
propusimos y evaluamos un conjunto de métodos para identificar de forma efectiva qué 
usuario de una cuenta compartida en el hogar está interactuando con un sistema de 
recomendación en un momento dato, explotando sólo conocimiento sobre interacciones 
pasadas con el sistema. Los métodos propuestos se basan en la identificación de diferencias 
en los hábitos de valoración temporales de los usuarios, descritos en términos de varias 
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señales de contexto temporal o atributos que incluyen la fecha absoluta (p. ej. 1 de 
Noviembre de 2013), el día de la semana (p. ej. Lunes) y la hora del día (p. ej. 4:00 p.m.) 
en la cual los usuarios interactúan con el sistema. Formulamos la tarea como un problema 
de clasificación y usamos los atributos temporales para discriminar entre usuarios en un 
hogar por medio de diversos algoritmos de clasificación. 

Adicionalmente, también adaptamos metodologías usadas en la evaluación de 
SRCT con el fin de medir de forma confiable el rendimiento de los métodos propuestos 
para la tarea de identificar usuarios activos en cuentas compartidas. Esto requirió de la 
formalización de una nueva condición, específica para la tarea –la condición de conjunto de 
ratings base centrada en la cuenta compartida– la cual fue incorporada en el marco de 
trabajo metodológico propuesto, como fue descrito en la Sección 7.4. Empleando la 
estructura conceptual del marco de trabajo, fuimos capaces de especificar metodologías 
basadas en las guías propuestas para la evaluación de SRCT en el Capítulo 5, las cuales 
fueron usadas en la evaluación de la tarea. Lo anterior también mostró la extensibilidad y 
facilidad de integración de nuevas condiciones de evaluación del marco de trabajo 
propuesto. 

Los resultados obtenidos en los experimentos mostraron que algunos de los 
algoritmos propuestos más elementales fueron capaces de obtener elevados valores de 
exactitud al explotar ciertos contextos temporales. A pesar de ello, observamos que el poder 
de discriminación de los diferentes contextos temporales, de forma individual y 
combinados, variaron considerablemente cuando fueron evaluados con diferentes 
metodologías. Encontramos que las metodologías menos estrictas desde un punto de vista 
temporal –esto es, metodologías que no evitan un solapamiento temporal de los datos de 
entrenamiento y prueba– proporcionaron resultados menos confiables. A partir de estos 
resultados se justifica la importancia de seguir protocolos de evaluación robustos tales 
como aquellos sugeridos por las guías metodológicas propuestas en esta tesis. 

B.2 Validación de las hipótesis planteadas 

En esta sección proporcionamos detalles acerca de la validación de las hipótesis planteadas 
al comienzo de nuestro trabajo. Su validez fue probada por medio de los resultados 
experimentales obtenidos en la tesis. 

Hipótesis 1: Variaciones en el protocolo de evaluación llevan a diferencias en la 
medición de resultados de recomendación.  

Los resultados obtenidos en la comparación empírica de metodologías para la 
evaluación de SRCT, presentada en el Capítulo 5 y discutida adicionalmente en la Sección 
8.1.2, nos permitió probar esta hipótesis. En particular, estos resultados muestran 
diferencias en los valores absolutos de las métricas, y de manera más importante, en el 
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ordenamiento relativo de los algoritmos respecto de una métrica en concreto, cuando se 
utilizan diferentes escenarios de evaluación. A partir de lo anterior, remarcamos que la 
comparación de aproximaciones de SRCT bajo distintos protocolos de evaluación puede 
dar lugar a resultados completamente diferentes. Todo esto enfatiza la importancia de 
contar con protocolos fiables para la evaluación de SRCT. 

La validez de esta hipótesis tiene importantes implicaciones para la reproducibilidad 
y comparabilidad de los resultados presentados en la literatura de SRCT. Utilizando las 
mismas métricas y metodologías de evaluación es posible reproducir y comparar de forma 
ecuánime los resultados de diferentes trabajos en SRCT. A partir de esto, resaltamos la 
necesidad de declarar claramente las condiciones bajo las cuales se realizan 
experimentos offline para evaluar SR en general y SRCT en particular. Más aún, siguiendo 
condiciones de evaluación consensuadas y ecuánimes –i.e. un protocolo de evaluación 
robusto– será posible la reproducibilidad de los experimentos y se facilitará la comparación 
de los modelos de recomendación propuestos. Para contribuir a este propósito 
desarrollamos el marco de trabajo de descripción metodológica presentado en esta tesis. 

Hipótesis 2: La explotación adecuada de la información de contexto temporal lleva a 
mejoras en los resultados de recomendación medidos. 

Los resultados obtenidos en la evaluación de métodos para tareas de recomendación 
bien establecidas –a saber predicción de rating y recomendación de los N-mejores– 
presentada en el Capítulo 6 y discutida adicionalmente en la sección 8.1.3, nos permitió 
probar esta hipótesis. En particular, estos resultados mostraron que por medio de la 
selección apropiada de la señal de contexto temporal, el algoritmo de recomendación 
subyacente y los parámetros específicos requeridos por algunas propuestas, es posible 
mejorar las recomendaciones generadas por métodos que explotan el contexto temporal. La 
eficacia de los modelos propuestos en los experimentos depende en gran medida del 
algoritmo de recomendación subyacente. Sin embargo, notamos que por ejemplo una 
selección apropiada de valores umbral para el criterio de impureza utilizado por Item 
Splitting permite mejorar los resultados de algoritmos muy eficaces tales como es el de 
factorización de matrices. 

La validez de esta hipótesis es concordante con resultados presentados en 
investigaciones previas en el área. A pesar de esto, remarcamos que no todos los métodos 
que explotan información de contexto temporal son capaces de obtener mejores resultados 
que aquellos que no explotan tal información. Más aún, el hecho de observar mejoras 
depende del protocolo de evaluación seguido, tal como mostraron los resultados 
presentados en la Sección 5.2.4. Nuestros resultados indican que se requiere de una 
cuidadosa selección de los parámetros de los métodos, las señales de contexto temporal y 
los algoritmos de recomendación subyacentes para mejorar de forma efectiva la eficacia de 
las recomendaciones, cuando se sigue un protocolo de evaluación robusto. 
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Hipótesis 3: Desde un punto de vista temporal, el uso de un protocolo de evaluación 
robusto para modelos y técnicas de recomendación que explotan información de 
contexto temporal lleva a un descenso en la eficacia medida con respecto a un 
protocolo de evaluación menos robusto.  

Los resultados obtenidos en la comparación experimental de los métodos que 
explotan información de contexto temporal para la identificación de usuarios activos en 
cuentas compartidas, que incluyeron metodologías con condiciones de ordenamiento de 
ratings independientes y dependientes del tiempo, presentados en el Capítulo 7 y discutidos 
adicionalmente en la Sección 8.1.4, nos permitieron probar esta hipótesis. En particular, 
estos resultados mostraron un rendimiento excepcional de los métodos propuestos en la 
tarea –sobre un 95% de exactitud en la identificación del usuario activo– cuando se utilizan 
metodologías basadas en una condición de ordenamiento de ratings independiente del 
tiempo. Sin embargo, los mismos métodos mostraron un importante descenso en la 
eficacia cuando se valoraron con metodologías basadas en una condición de ordenamiento 
de ratings dependiente del tiempo. Más aún, la menor eficacia de los métodos –que estuvo 
alrededor del 65% de exactitud– fue medida usando las condiciones de evaluación 
sugeridas por nuestras guías metodológicas. 

La validez de esta hipótesis resalta la importancia de definir y utilizar un protocolo de 
evaluación robusto para medir de forma precisa el grado de mejora obtenida de la 
explotación de información de contexto temporal por parte de aproximaciones de SRCT. 
En este contexto, las guías metodológicas propuestas en el Capítulo 5 son una poderosa 
herramienta para aumentar la confiabilidad de la medición de la eficacia. 

B.3 Trabajo futuro 

En esta tesis hemos presentado una revisión y análisis exhaustivos de los protocolos 
utilizados en la evaluación de SRCT, que nos han llevado a definir un marco de trabajo 
metodológico y un conjunto de guías para proporcionar escenarios de evaluación robustos 
para SRCT. Más aún, hemos propuesto y evaluado adaptaciones y nuevos métodos para 
explotar información de contexto temporal. A pesar las importantes contribuciones y 
hallazgos presentados, la investigación realizada en esta tesis da lugar a interesantes 
preguntas de investigación adicionales respecto del desarrollo y evaluación de SRCT. En 
las siguientes subsecciones discutimos un conjunto de cuestiones que requieren de más 
investigación, e introducimos posibles líneas de trabajo para abordar tales cuestiones. 

B.3.1 Evaluación de aproximaciones de recomendación consciente del 
tiempo 

El marco de trabajo metodológico propuesto en esta tesis se compone de un conjunto de 
condiciones que permiten definir el escenario en el cual se evalúa una propuesta de 
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recomendación, cubriendo las metodologías de evaluación utilizadas en la literatura de 
SRCT. La evaluación presentada en el Capítulo 5 nos proporcionó evidencias sobre el 
efecto en la medición de la eficacia de las recomendaciones ante cambios en las 
condiciones de evaluación utilizadas. Estos hechos nos llevaron a proponer un conjunto de 
guías para seleccionar las condiciones de una evaluación robusta de SRCT. A pesar de ello, 
se requiere de experimentación adicional para analizar de forma apropiada el impacto de 
combinaciones de condiciones no abordadas en nuestro estudio. Además se deberían definir 
nuevas condiciones que permitan aplicar las guías propuestas en otras tareas de 
recomendación donde el contexto temporal pueda ser explotado y que no han sido 
estudiadas en esta tesis, tales como la tarea de recomendación de secuencias (Herlocker et 
al., 2004). En la consecución de tales propósitos, creemos que el marco de trabajo 
propuesto proporciona una importante estructura conceptual para guiar esta investigación. 

Otra importante cuestión pendiente está relacionada con el análisis de la relación 
entre diferentes características de los conjuntos de datos (p. ej. tamaño del perfil de usuario, 
intervalos temporales y niveles de escasez de ratings) y el efecto en la eficacia debido al 
uso de diferentes protocolos de evaluación. Más allá de esto, lo apropiado de utilizar ciertas 
condiciones de evaluación al usar conjuntos de datos con distribuciones de ratings a través 
del tiempo/usuarios/ítems, tipos de retroalimentación, dominios, etc. particulares, debe ser 
investigado. 

La relación entre las métricas de exactitud y novedad/diversidad también permanecen 
como una cuestión abierta respecto de la evaluación. Dada la importancia creciente de estas 
últimas métricas en el campo de SR, se requieren análisis y explicaciones adicionales con el 
fin de proporcionar recomendaciones conscientes del tiempo con niveles adecuados de tales 
propiedades. Por ejemplo, tal como lo nota Lathia et al. (2010), desde un punto de vista 
temporal, la diversidad de las recomendaciones es una importante faceta que un sistema de 
recomendación debe considerar. 

Una pregunta adicional es acerca de las mejoras en la eficacia de los SRCT medidas 
por resultados de evaluaciones offline y cómo son percibidas por parte de usuarios reales. 
Tal como lo nota por ejemplo Knijnenburg et al. (2012), las mejoras en la exactitud no son 
necesariamente observables por los usuarios. La falta de estudios de evaluación online en 
SRCT es una limitación mayor para abordar esta pregunta. 

B.3.2 Desarrollo de nuevas y mejores aproximaciones de recomendación 
consciente del tiempo 

Utilizando un conjunto de datos de preferencias de películas de usuarios reales enriquecido 
con información contextual, los experimentos presentados en el Capítulo 6 nos permitieron 
derivar importantes observaciones respecto de las circunstancias en las que ciertas 
aproximaciones de recomendación superan a otras. A pesar de esto, las conclusiones 
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obtenidas no son necesariamente generales, debido al tamaño reducido del conjunto de 
datos usado y al hecho de que sólo se evaluó un dominio de recomendación. La repetición 
de esta evaluación sobre diferentes conjuntos de datos, de dominios y tipos de 
retroalimentación diversos, permitirá establecer conclusiones más generales respecto de la 
aplicabilidad de SRCT y señales contextuales específicos. De hecho, tal como lo indican 
Adomavicius y Tuzhilin (2011), uno de los principales desafíos en la recomendación 
consciente del contexto es la investigación de cuales aproximaciones de contextualización 
son más eficaces y bajo qué circunstancias. En tal evaluación también es importante 
considerar propiedades de la recomendación más allá de la exactitud y la precisión. Un 
interesante ejemplo de esto en el ámbito de los sistemas de recomendación conscientes del 
contexto es el trabajo de Panniello et al. (2013), donde se comparan diferentes 
aproximaciones de SRCC en términos de exactitud y diversidad. Con dicho propósito 
remarcamos la importancia de utilizar un protocolo de evaluación común para la 
reproducibilidad y comparabilidad de resultados. 

Advertimos que la revisión de la literatura realizada mostró la existencia de dos tipos 
principales de SRCT, de acuerdo a cómo se representa la información de contexto 
temporal, a saber, en una representación continua o discreta. Sin embargo, en la evaluación 
de propuestas SRCT presentada en el Capítulo 6, nos enfocamos en SRCT basados en esta 
última representación, debido a las características del conjunto de datos usado. La 
comparación de tales propuestas con otras basadas en una representación continua del 
tiempo es por tanto una cuestión que debe ser investigada. 

Una línea de investigación adicional es la explotación conjunta de ambos tipos de 
representación temporal. Una forma de realizar esto sería por medio de la construcción de 
aproximaciones híbridas (Burke, 2007) que combinen recomendaciones de diferentes 
SRCT. Otra forma posible de abordar esta cuestión es desarrollar y mejorar aproximaciones 
basadas en modelo capaces de utilizar ambos tipos de representaciones temporales, tales 
como la técnica timeSVD++ propuesta por Koren (2009a), y modelos basados en 
factorización de tensores tales como factorización de tensores Probabilística Bayesiana 
propuesta por Xiong et al. (2010). 
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