
Author: Alicia Lozano Dı́ez
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Abstract

In recent years, deep learning has been arisen as a new paradigm within machine learning

field. In particular, Deep Neural Networks (DNNs) are an important part of this new paradigm.

This set of architectures has properties that make them suitable for difficult tasks among which

it can be highlighted automatic language recognition (or Spoken Language Recognition, SLR).

Their capability to model complex functions in high-dimensional spaces and to get a good

representation of the input data makes these architectures and algorithms proper for processing

complex signals as, for instance, the voice signal. Thereby, they can be used as a technique to

provide an automatic way to distinguish the language that has been used in a specific segment

of speech.

This Master Thesis is intended to provide a new approach that, combining both deep learning

and automatic language recognition fields, improves the SLR task by getting a better represen-

tation of voice signals for classification purposes so that it can be identified which language has

been used in that voice signal.

In order to do this, both DNNs and state-of-art SLR systems have been studied thoroughly.

Firstly, it has been reviewed the application of DNNs to speech recognition tasks. Then, con-

volutional deep neural networks, in particular, have been adapted to the language recognition

problem and their performance has been evaluated on a challenging dataset such as NIST LRE

2009 (National Institute of Standards and Technology Language Recognition Evaluation).

Although some results do not always outperform the reference system that has been consid-

ered in the experimental part of this work, the new approach based on DNNs can be seen as a

starting point to improve current SLR systems.
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Chapter 1

Introduction

Automatic speech processing and machine learning are two research fields strongly

linked due to their complementarity: theoretical algorithms broadly studied into machine learn-

ing field can be benefited by the amount of data collected by automatic speech recognition

researchers, approaching machine learning to the reality; at the same time, automatic speech

recognition area needs algorithms to solve complex problems, and they can be extracted from

machine learning research area [Deng and Li, 2013].

In particular, language recognition, as a part of automatic speech signal processing field, can

be viewed as a classification task, where the input data are segments of speech that want to be

classified into different classes (languages). Thereby, machine learning algorithms can provide

the best classifier to solve this task. Among the amount of options that can be chosen to solve

the problem, deep neural networks provide, not only a classifier but a form to extract features

from input data, in an automatic way, that represent them properly for classification purposes.

The two main topics of this Master Thesis, language recognition and deep neural networks,

will be introduced in this chapter. After that, the motivation and goals of the Master Thesis

will be presented and an outline of the dissertation will be included at the end of this section.

1.1. Language Recognition

Within voice signal processing field, a big amount of tasks may be included. Three of them

can be highlighted due to their relation with this Master Thesis: 1) Speech Recognition, 2)

Speaker Recognition and 3) Language Recognition. All of them have properties in common,

such as, for example, a phase of feature extraction at the beginning of the system. However,

their objectives are completely different. Then, let’s introduce briefly each of them:

1. Speech Recognition

This task deals with the problem of determining what the message in a segment of voice

signal is, what is being said. To solve this task, it does not matter who the speaker is, so the

speaker can be considered as a source of variability. As it will be shown, each mentioned
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1. INTRODUCTION

task has its own factors of variability to deal with, and which make the problem difficult

to solve.

2. Speaker Recognition

When we talk about speaker recognition we mean the task of recognizing the speaker’s

identity, who is speaking. In this case, the content of the message itself can be considered a

variability factor that the system should deal with (if we are referring to text-independent

systems).

3. Language Recognition

It is known as language recognition the task of determining which language is being used

in a segment of speech. As in the other tasks involved in speech processing, there are many

variability factors that affect at the system performance as, for instance, the message itself

and its speaker. This means that language identification should be a speaker and text

independent task.

As it was mentioned before, all these tasks have properties in common, but this Master

Thesis will be related to the problem of language recognition, so, this issue will be explained

deeper.

First of all, language recognition can be referred to spoken or written resources. In our case,

we will always refer to the spoken language case. As the goal of the task is to identify which

language is being spoken in a segment of speech, the task can be described into two phases:

create a model of the signals for each language and measure how similar an input signal is with

the model.

The problem of language recognition (or spoken language recognition, SLR) can be broadly

divided into different variants:

Language verification: a decision about whether a target language is spoken in an input

signal or not. The system outputs often a likelihood (plausibility or confidence measure)

of the decision as well.

Language identification in a closed-set: the output of the system for this modality is which

language, among N given languages, is spoken in a given input signal.

Language identification in an open-set: this variant of the task is similar like the close-set

modality, but the system can output none of them as a result.

As far as the structure of a SLR system is concerned, it can be divided into different parts:

Feature extraction: in this part, the system will extract some features from the input

signal, ideally, those that give us relevant information for classification purposes. Thus, a

new representation of the input signal is obtained.

2
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Output  
Feature extraction Classification Decision 

Input  

Figure 1.1: General structure of a language recognition system.

Classification: this phase is based on giving a score (confidence or distance measure) in

order to accomplish the classification task.

Decision: given the scores obtained in the previous part, the system makes a decision,

depending on the task (verification or identification).

Finally, regarding the applications of language identification systems, we can mention audio

indexing, information retrieval and call center monitoring. Furthermore, these systems can be

used for filtering telephone calls and retaining only those in the language of interest, or for

preprocessing the input speech signal in multilingual dialog systems [Ambikairajah et al., 2011;

Gonzalez-Dominguez et al., 2010].

1.2. Deep Neural Networks

Deep Neural Networks (hereafter, DNNs) are a part of the machine learning field whose

success is relatively new. Under this name, a range of structures is included and all of them

have something in common: taking classical neural networks (the shallow ones, which are those

whose structure is composed of just one hidden layer) as a starting point, hidden layers are

added so that they allow dealing with complex problems within the machine learning field, in

which traditional structures are limited.

Thereby, DNNs try to emulate the complex human learning system, extracting features

at multiple levels of abstraction and learning complex functions directly from the input data,

without depending completely on human-crafted features. The ability to automatically learn

powerful features is becoming increasingly important as the amount of data and range of appli-

cations to machine learning methods carries on growing [Bengio, 2009].

However, successful experimental results using deep architectures with more than one or two

hidden layers were not reported until 2006 [Bengio, 2009] (except for the case of convolutional

networks, that will be described in section 2.2.5) due to limitations in training this kind of

structures. Some of these limitations were not coming from a theoretical point of view, but

they were due to limitations in hardware devices. Moreover, although algorithms to train them

already existed, the random initialization of the parameters makes these architectures yield poor

results [Bengio et al., 2007; Erhan et al., 2009].

All these limitations were solved with the evolution of hardware devices and with a learning

algorithm that greedily trains one layer at a time [Hinton et al., 2006], taking advantage of

3
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unsupervised learning algorithms to initialize the parameters.

Nevertheless, the huge number of free parameters to train in this kind of neural networks is

one of the main disadvantages that they have. Moreover, other of their drawbacks that it can

be highlighted is the computational cost that their training algorithms present and the amount

of data that should be used to train the whole architecture.

1.3. Motivation

The idea of combining DNNs and SLR areas comes from the good results obtained in the

speech recognition field by using this kind of structures [Hinton et al., 2012a; Jaitly et al., 2012;

Lee et al., 2009b; Mohamed et al.]. Those results make us think that deep architectures have

the capability to obtain a good speech signal modeling that can be useful for the language

recognition task.

On the one hand, as it has been mentioned above, it has been numerous the researchers

within machine learning field that have obtained better performance on systems using DNNs

than other architectures. This has happened, not just in the speech processing area but in other

fields such as, for instance, computer vision tasks [Poon and Domingos, 2011; Salakhutdinov

and Hinton, 2009]. All these previous works give us an idea of how powerful DNNs can be as a

machine learning tool.

On the other hand, the SLR problem shares most of its issues with other related research

tasks such as speech and speaker recognition, so the solution to this task can be extrapolated

to these fields. For instance, the inter-session variability problem, which is the set of differences

between segments of speech that are not related to the language or the speaker, has consequences

that difficult the main task of language or speaker recognition themselves.

Moreover, the study of both areas and the systems developed in this Master Thesis can be

ported to other relevant research fields such as, for example, biometric recognition systems based

on other traits (face, signature, fingerprints, iris).

1.4. Goals of the Master Thesis

The main goal of this Master Thesis is to apply learning algorithms based on deep neural

networks to the problem of language recognition.

Thus, the Master Thesis can be divided into two parts:

Theoretical framework: This part includes the study of different architectures of deep

neural networks and their properties to know which of them are suitable for the problem

to be solved. In addition to this, language recognition systems based on acoustic models

have been studied in order to enlarge the knowledge of the problem itself and the methods

that can help to solve it.

4
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Experimental framework: The aim of this part is the development of a SLR system based

on DNNs. As a starting point, some experiments with handwritten digits have been

replicated, and, after that, the system has been adapted to cope the SLR problem.

1.5. Outline of the Dissertation

The Dissertation is structured as follows:

Chapter 1 introduces the issues of language recognition and deep neural networks and

gives the motivation, objectives and outline of this Master Thesis.

Chapter 2 summarizes the state of the art in language recognition and deep neural net-

works, the main issues discussed in this Dissertation.

Chapter 3 presents applications of deep neural networks which encourage this work and

describes the proposed method of language recognition by using deep neural networks.

Chapter 4 describes the experiments performed during this work, detailing and analyzing

the results achieved.

Chapter 5 summarizes the main conclusions drawn from this work, outlining also future

research lines.

5
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Chapter 2

Related Works and State of the Art

The two areas in which this work is focused are language recognition and machine

learning based on deep neural networks. Both of them have been widely studied by researchers

during the last three decades.

This chapter provides a brief overview of both fields.

First, in section 2.1, some reasons that make language recognition an important field for

researchers will be shown, as well as a summary of the two main approaches on which language

recognition systems are based: spectral or acoustic approaches and phonotactic systems.

Second, section 2.2 will present how deep neural networks have been arisen as a new paradigm

within the machine learning field lately, and will also summarize some concepts related to ma-

chine learning such as different types of learning, architectures and training algorithms.

2.1. Automatic Language Recognition Systems

Among the amount of topics where automatic language recognition systems are involved,

this section will describe briefly the advantages of studying those systems, and will present some

ideas on which the most common approaches of language recognition systems are based.

All the concepts that will be mentioned in this work are referred to systems that receive a

speech signal as input, that is, they try to figure out which language is spoken in a concrete

segment of speech. They are known as spoken language recognition (SLR) systems too, to be

distinguished from those that consider text as their input.

2.1.1. Why Language Recognition?

As it was mentioned before, SLR area belongs to the huge field of speech processing, and is

closely related to other parts of it such as speaker and speech recognition.

One of the main problems that all these tasks share is the variability between different

sessions. As far as the language recognition task is concerned, that is the problem that, although

the spoken language in two utterances is the same, their content can be completely different,

7
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and this can cause a bad performance of the system if it classifies the utterance into different

languages, making a mistake in the final decision.

Apart from the variability problem, SLR shares the same kind of input data with other tasks

involved in speech processing. This input data, that are segments of speech, are complex signals

that usually need to be preprocessed and, thus, features which are relevant for the purpose of

the final system are not easy to extract. The extraction of features from input data is other

property that the language recognition task has in common with speech and speaker recognition

problems.

However, the final aim of a SLR system is different from, for example, a speaker recognition

one. The former tries to classify into known classes and, normally, the classes to train and test

the system are the same. On the contrary, if we talk about a speaker recognition system, the

speaker that the system wants to recognize can be different from those that have been used to

train it, making the task even more challenging.

Moreover, the task of SLR can be viewed as a classification task, where those features that are

relevant to discriminate into different classes should be extracted from the input data, sharing,

indeed, properties with lots of problems within the machine learning field.

Other tasks related to the one that this work is focused on are those within image processing

field such as handwritten digit recognition or object identification, in which the image should

be modeled to extract the important information to achieve the objective of the system.

Finally, the large amount of applications that a SLR system can have in actual life, such as

those mentioned in section 1.1, make it an interesting problem to start with.

2.1.2. Spectral Systems: Acoustic Approaches

Spectral systems, also known as acoustic or lower level systems, are one of the approaches

that it can be used to face the problem of SLR.

These systems are based on spectral features extracted, typically, from short segments of

speech (normally, around 20 or 30 milliseconds long).

The most common acoustic features used to represent the speech signal are the Mel Frequency

Cepstral Coefficients (MFCCs), but, to make the representation more compact, the first and,

depending on the application, the second derivatives are appended to the static information

provided for the MFCCs. Sometimes, prosodic features such as duration, pitch or stress are

used to complement the representation of the signal.

However, in SLR in particular, the Shifted Delta Cepstrum (SDC) representation is com-

monly used since it was proposed in Torres-carrasquillo et al. [2002]. The SDC representation

consists of a sequence of delta features computed at different time instants and is defined by the

following 4 parameters (N-d-P-k):

N corresponds to the number of cepstral coefficients (static features) computed at each

frame.
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Figure 2.1: Computation of the SDC feature vector at frame t for parameters N-d-P-k [extracted from

Torres-carrasquillo et al. [2002]].

d represents the time advance and delay for the delta computation, that is, the length of

the window used to estimate the delta.

P is the time shift between consecutive deltas.

k is the number of blocks whose delta coefficients are concatenated to form the final feature

vector.

This idea is illustrated in Figure 2.1.

Consequently, the length of the final feature vector would be kN + N, since the SDC repre-

sentation is often concatenated with the static features. For instance, if the chosen configuration

were 7-1-3-7, the final vector would be composed of 56 components, which is the case of some

experiments shown in chapter 4.

Regarding the classifiers themselves, many different approaches have been used, since the

simplest ones based on Gaussian Mixture Models (GMMs) to those that use Support Vector

Machines (SVMs), Factor Analysis (FA) or Total Variability (TV) [Ambikairajah et al., 2011].

2.1.3. High Level Systems: Phonotactic Approaches

Other successful group of approaches in the SLR field is the set of systems that consists of

those based on high level information that can be extracted from the speech signal.

These high level systems are also known as phonotactic systems due to this kind of approaches

takes into account the restrictions on the possible combinations between phonemes in a given

language. Thus, an important part of this kind of systems is the phonetic recognizer that

processes the speech signal and converts it into a sequence of tokens that identifies the phonemes.

It can be used just a single phonetic recognizer or several ones in different languages (this is the

9
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case of the parallel phonetic recognizer) to improve the performance of the system [Zissman and

Singer, 1994].

Then, phonotactic systems take advantage of information about the phonetic distribution,

the morphological rules that are defined in a language and other information related to the

language itself.

Instead of considering the whole words, classical approaches use phonemes, which is easier

for the system. Thereby, these systems utilize statistical language modeling techniques to model

the frequencies of appearance of phones in a particular language. They also take into account

the phone sequences called n-grams for a concrete language, that given the grammar of that

particular language, a probability of the following phoneme given the n previous ones can be

defined as follows:

P (sn|sn−1, sn−2, ..., s1) =
n∏

i=1

P (si|si−1, si−2, ..., s1)

Due to the large amount of combinations that can result from phonemes that make up a

particular language, this kind of models are usually reduce by taking into account just one, two

or three previous phonemes:

Trigrams: P (sn|sn−1, sn−2, ..., s1) = P (sn|sn−1, sn−2)

Bigrams: P (sn|sn−1, sn−2, ..., s1) = P (sn|sn−1)

Unigrams: P (sn|sn−1, sn−2, ..., s1) = P (sn)

This combination of a phonetic recognizer and a language model is the underlying idea in

the case of the phone recognition language modeling (PRLM) approach, widely use within the

field of language recognition. Figure 2.2 illustrates its structure for a verification task, which is

given an utterance, the system outputs a high score whether the utterance belongs to the target

language or low score otherwise.

Hence, the stages that a PRLM system has to carry out are the following ones:

Training a phonetic recognizer for some language.

Training a Universal Background Model (UBM) for all the languages.

Training a model for each language, often by adapting the UBM.

Recognizing the language by comparing the utterance with the UBM and the language

models. This phase outputs a score that it should be used to make the final decision in

the case of a verification task.

As it was mentioned before, more than one phonetic recognizer can be used, fusing the

results of each individual phonetic recognizer. This results in a new system known as Parallel

PRLM (PPRLM), that achieves better performance than a PRLM system but by increasing the
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Figure 2.2: Verification task in a PRLM system [extracted from Gonzalez-Dominguez et al. [2010]].

complexity of the system and, hence, the computational cost. These PPRLM schemes are still

a key in the state-of-the-art SLR systems.

Other alternatives based on the same information than PRLM and PPRLM systems are

the Phone Support Vector Machines (Phone-SVMs), which use SVMs for classifying the whole

n-gram probability matrices, instead of using them in a likelihood ratio framework [Campbell

et al., 2004].

Finally, a complete SLR system is usually a combination of different subsystems, so a fusion

module is frequently required. This part of the system is commonly known as the back-end

module, and it can be considered as a pre-calibration stage [Gonzalez-Dominguez et al., 2010].

However, although these back-end strategies are really important in all the systems, they will

not be explained in this work due to it has not been used in the development part.

2.2. Deep Neural Networks

This section is intended to provide an overview about how deep architectures have emerged

as a new paradigm in recent years and why they have become a breakthrough within the machine

learning field, transferring, at the same time, their influence to other interesting research fields

as it can be the speech processing area.

Furthermore, some basic concepts about learning algorithms will be summarized, such as

the differences between what is called supervised and unsupervised learning algorithms, things

that make shallow and deep architectures different, and, finally, some ideas about how to train

11
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deep architectures unlike the shallow ones.

2.2.1. A New Machine Learning Paradigm

Broadly speaking, the main aim of artificial intelligence could be stated as “make comput-

ers be able to model our world” [Bengio, 2009]. That implies to process a large quantity of

information to answer questions and generalize to new contexts. Here, it is where machine

learning algorithms play an important role. During lots of years, much progress has been made

in this field, but the challenge of the artificial intelligence field still remains: computers can not

understand well enough real scenes or describe them in natural language [Bengio, 2009].

One of the reasons which make human brain and learning algorithms performance so different

is the way both extract useful information from the data. It is believed that human brain acts

as a feature extractor that, gradually, gets information from the data at different levels of

abstraction [Serre et al., 2007]. In other words, it tries to decompose the problem to solve

into some sub-problems with less complexity, obtaining, at the same time, different levels of

representation.

This behavior is what machine learning structures and algorithms have tried to imitate.

Firstly, the system captures low-level features that are invariant to small variations (for example,

geometric variations if we talk about a computer vision task), transforms them to increase their

invariance, and, finally, extracts useful information, which means frequent patterns that could

be generalized to other data.

All this process of extracting useful information from raw input data makes necessary to

have a structure with the ability of transforming the input in a non-linear way. In these terms,

learning algorithms should be able to apply mathematical transformations or functions that are

highly non-linear and varying.

Most of structures that have been used during years within the machine learning field have

not enough capability to apply those complex functions that are necessary to solve certain

problems. Classic architectures have usually one hidden layer that implies just one non-linear

transformation of the data. The idea of deep architectures comes from this point: if more trans-

formations are required, more hidden layers will be stacked. But this has many consequences for

learning algorithms, such as the more complex the function to model is, the more local minimum

can be found.

Thus, training algorithms that had been used for many years, did not work with these new

architectures, known as “deep schemes” due to their higher number of layers respect to the

previous ones. Backpropagation and gradient descent algorithms did not yield good results in

experiments that used these new architectures, since weights and other parameters converged

into really small values, close to zero.

There was an exception: Convolutional Neural Networks. This deep architecture yielded the

first successful results when Yann Lecun used his structure known as “LeNet” for classification

tasks [LeCun et al., 2001]. In this architecture, the amount of free parameters that have to be

learnt is reduced thanks to many of those parameters are shared between different parts of the
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network. However, these networks work in a supervised way, so they need a huge amount of

labeled data to train, which can be considered a drawback for some problems where it is not

easy to get these labels.

From the point of view of unsupervised learning, it was not until 2006, when successful results

were achieved by Hinton et al. at University of Toronto with which is called Deep Belief Networks

(DBNs). This kind of networks was trained one layer at a time, taking advantage of unsupervised

learning algorithms, which are the Restricted Boltzmann Machines. These networks exploit the

advantages of unsupervised learning, which make them suitable for problems where lots of

unlabeled data are available, such as audio tasks. Consequently, successful improvements have

been achieved in the speech recognition field, as it was reported in Hinton et al. [2012a] and

Mohamed et al., field closely related to this Master Thesis.

Other consequence of augmenting the complexity of the network is the increase of the number

of free parameters that has to be estimated or learnt. This means that computers need more

capacity of computation, and more data to store. Thus, the limitations of hardware resources

have proved that, although theoretical algorithms existed and were correct before 2006, they

could not have been exploded. Fortunately, those limitations have been got over nowadays,

although the high computational cost that DNNs present is still an unsolved problem.

There are more open issues concerning DNNs, as, for instance, how much knowledge of a

certain problem the network should have or how to choose the parameters or structure of the

network that suit a concrete problem. As an example, theoretical results have shown that there

is no universally right depth for the network so that selecting one depth or other one is a problem

dependent issue [Bengio, 2009].

However, although these open issues can be considered as big disadvantages of DNNs, they

can be seen as an emerging research field with lots of topics to study as well.

To conclude, all the advantages that have been presented, the huge amount of applications

where deep neural networks have achieved successful results, among speech and speaker recog-

nition tasks are included, and the unsolved issues that these schemes have, give us reasons to

consider deep architectures as an interesting new machine learning paradigm to explode.

2.2.2. Supervised and Unsupervised Learning

A learning algorithm can be defined as a form to calculate a prediction (output) from input

data. This prediction is, indeed, a function that matches inputs with outputs.

The concept of learning itself is related to generalization. In a classification task, this can

be defined as the ability to categorize correctly new examples that differ from those used for

training. Thereby, datasets used in machine learning tasks should be split into, at least, two

parts:

Training data: This set covers the samples used to estimate the parameters of the objective

function, with the objective of minimizing the error, for instance, the misclassified examples

in a classification task.

13
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Test data: It is composed of examples that let prove the system. These examples are

not included in the training dataset and, thus, they do not interfere in the parameters

selection.

Regarding learning algorithms, they can be divided into two main groups: 1) supervised

or 2) unsupervised algorithms, depending on the information that the system uses for training

(labeled or unlabeled data). There are also semi-supervised algorithms and what is known as

reinforcement learning, but we will focus on the first two cases.

1. Supervised learning

If we talk about a classification task, which is a machine learning problem where the output

of the system should be the class or category of a certain input, supervised learning includes

algorithms that use the information of the class to train. This modality requires which is

called labeled data. In this manner, the cost function to minimize can be an error function

that measures the difference between the predicted class and the actual class of a certain

input.

Among this kind of algorithms, it can be highlighted Logistic Regression, Multilayer Per-

ceptron and Deep Convolutional Network, due to their relation with this work.

2. Unsupervised learning

This set of algorithms is also known as algorithms based on clustering. The most known

example is the K-means algorithm that tries to create groups among the data based on

some measure of similarity between them.

These algorithms can be understood as a way of modeling the distribution of the input data

too. From this point of view, unlike supervised learning methods, they cannot measure

an error between the predicted class and the actual class since they do not have the

information about the actual class. Instead, they can try to minimize a “reconstruction

error”, and this may be the cost function that the algorithm will consider to train.

Within this set, Auto-Encoders and Restricted Boltzmann Machines (RBMs) are included.

Apart from these two groups, due to its relation with this work, we can mention a semi-

supervised learning algorithm: Deep Belief Networks [Hinton et al., 2006]. As it will be shown

in subsection 2.2.4, this architecture uses RBMs as building blocks, so they are trained in an

unsupervised way. But its training has also a “fine-tuning” phase, that constitutes a supervised

learning algorithm.

2.2.3. From Shallow to Deep Architectures

As it was commented before, from a theoretical point of view, shallow architectures present

limitations that deep schemes can potentially solve.
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Figure 2.3: Expression computed by a deep architecture with sums and products [extracted from Bengio

[2009]].

The main motivation to explore deep architectures lies on the idea that some functions

cannot be efficiently represented, which means with a reasonable number of parameters to tune

by learning, by architectures that are too shallow. When this happens, it is said that a function

is compact [Bengio, 2009]. Thus, a function that can be represented in a compact form by

certain architecture may carry an exponential increase in the number of parameters to tune if

other architecture with one layer less is used instead.

All this implies that, if the amount of data available to train is not enough with respect

the number of parameters to be tuned, the representation that will be achieved by a shallow

network can be not as good as the representation that a deep architecture could accomplish.

Figure 2.3 extracted from Bengio [2009] shows an example of an expression where the term

x2x3 occurs more than once, and how a deep architecture can avoid repeating that computation

many times.

With the structure shown in figure 2.3, the number of parameters or connections to tune by

learning would be 12, while with the shallow structure represented by figure 2.4 the amount of

parameters increases up to 20.

Although all the advantages that deep architectures seem to present versus the shallow

structures, the big amount of variations within input data from a certain problem, for example

data from a vision or audio context, is still a problem for machine learning algorithms.

Also, it should be taken into account that not every problem in the world is so difficult that

a deep architecture is required to solve it, so that the simplest structure that fits the problem

should be used in those cases.

15



2. RELATED WORKS AND STATE OF THE ART

 

x1 x2 x2 x3 x3 x4 

  (x1x2)(x2x3)  (x1x2)(x3x4)        (x2x3)
2  

  (x2x3)(x3x4) 

(x1x2)(x2x3) + (x1x2)(x3x4) + (x2x3)
2
 + (x2x3)(x3x4) 

x x x x 

+ 

Figure 2.4: Same expression from figure 2.3 computed by a shallow architecture with sums and products.

Regarding the issue of how to build a deep architecture, some ideas about it will be presented

below, according to the software and architectures [LISA] used in the experimental part of this

work.

In that sense, shallow structures can be seen as building blocks for deep ones. For example,

if a classification task based on supervised learning is being implemented, the structure shown

in figure 2.5 could be used. That architecture is composed of the next elements:

An input layer, which just represents the input used to feed the network.

Hidden layers, that apply non-linear transformations to the input data, such as, for exam-

ple, a sigmoid or tanh functions defined as follows:

sigmoid(a) =
1

1 + e−a

tanh(a) =
ea − e−a

ea + e−a

It can be added as much hidden layers as it was necessary for the problem to solve, building

a structure where the input of one hidden layer is the output of the previous one.

A logistic regression classifier, which is the output layer and performs the classification

maximizing a cost function, as, for example the one defined as follows:

P (Y = i|x,W, b) = softmaxi(Wx+ b) =
eWix+bi∑
j e

Wjx+bj
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… 

Logistic Regression Classifier 

Hidden layer k 

Hidden layer k-1 

Hidden layer 1 

Input layer 

Figure 2.5: Example of deep architecture for classification.

Where the selected class for a certain input would be:

y = argmaxiP (Y = i|x,W, b)

The parameters to be tuned, in that case, would be the weight matrix W , and the bias vector

b, that can be learnt by using, for instance, a gradient descent algorithm [Bishop, 2007].

Following the same idea, but using a semi-supervised learning algorithm, Deep Belief Network

(DBN) constitutes an architecture where Restricted Boltzmann Machines (RBMs) are used as

building blocks for pre-training [Hinton et al., 2006]. Finally, a logistic regression classifier can

be added as output layer to perform the same classification task as the one mentioned before.

The algorithm widely used to train this DBN architectures will be summarized in section 2.2.4.

2.2.4. Training Algorithms for Deep Architectures

According to some experimental results [Bengio et al., 2007; Erhan et al., 2009], training deep

architectures in the same way as shallow structures are trained does not work as it is expected:

high training errors and poor generalization are usually obtained when a random initialization

of the parameters is used.
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Figure 2.6: Training algorithm for a deep belief network [extracted from Hinton et al. [2012a]].

Except for the case of convolutional deep neural networks (see section 2.2.5), training algo-

rithms for shallow architectures had to be modified to be used with deep architectures.

The solution discovered to solve the problem of poor generalization obtained by deep archi-

tectures trained as shallow architectures was the use of unsupervised learning for pre-training

[Hinton et al., 2006] since, before this, the parameters were initialized randomly. With that

phase of pre-training, the structure of the input data is discovered in an unsupervised way, fa-

voring generalization. After that phase, a fine-tuning process is applied to adjust the parameters

for the final purpose of the system. In this sense, pre-training can be viewed as a regularization

source.

It was also shown that pre-training helps to get better optimization and avoids the algorithm

to get stuck in local minima that are far from the global minima.

An example of this algorithm composed of two stages, pre-training and fine-tuning, is that

used to train DBNs. In this case, each RBM can be trained with the Contrastive Divergence

algorithm in the pre-training phase. Then, the stack of RBMs can be converted to a single

generative model, by replacing the undirected connections by top-down, directed connections.

Finally, the resultant DBN can be discriminatively trained to the final objective (classification,

for example). This process is illustrated by figure 2.6.

2.2.5. Case of Success: Deep Convolutional Networks

As it was mentioned before, DNNs did not accomplish good performance due to the difficult

that was found before the unsupervised pre-training stage. However, convolutional deep neural
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networks (convolutional DNNs) [LeCun et al., 2001] are an exception.

These networks are models based on the structure of the visual system and are composed of

two kinds of layers: convolutional layers and subsampling layers. The first ones act as a feature

extractor where each unit is connected to a local subset of units in the layer below. Some units

that are related because of their location share their parameters, allowing the network to extract

the same features from different locations in the input, and reducing the amount of parameters

to tune. Subsampling layers reduce the size of the representations obtained by convolutional

layers by applying a subsampling operation, and making the network, in some way, invariant to

small translations and rotations [Bengio, 2009].

Moreover, convolutional nets can be trained as a classic feedforward network, by using, for

instance, supervised learning based on gradient descent algorithms [LeCun et al., 2001]. Even

with random initialization of the parameters (weights), convolutional DNNs perform well, not

just in tasks such as digits recognition on MNIST [LeCun et al., 2001], but also in object

classification tasks on Caltech-101 [Ranzato et al., 2007].

According to Bengio [2009], one hypothesis about why this kind of networks works well even

when they are trained with gradient-based algorithms is the small number of inputs per neuron

that makes the gradient not so much diffusing to be useless. In this article, it is mentioned

too that the hierarchical local connectivity structure of convolutional networks makes the set of

parameters be in a favorable region where gradient-based optimization works.

Thereby, all the examples where convolutional DNNs achieve good results make them be

among the best pattern recognition systems [Bengio, 2009], and this is why the experimental

part of this Dissertation is performed using this type of deep architectures.
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Chapter 3

Deep Neural Networks Applied to

Language Recognition

Deep neural networks, as a machine learning tool, can be applied in many research fields,

in which their influence is being increased currently.

First of all, it is important to highlight the results obtaining by these deep architectures in

two classification tasks within the computer vision field: 1) handwritten digit recognition and

2) object classification.

1. Handwritten Digit Recognition

It is a very standard task to test machine learning algorithms, frequently using the MNIST

database [Lecun and Cortes].

Although results obtained with classical machine learning structures are pretty good, the

test error rate can be reduced by using deep neural networks [Ciresan et al., 2010; LeCun

et al., 2001].

Figure 3.1 shows the 35 misclassified examples out of 10.000 test cases obtained with one

of the deep architectures explained in Ciresan et al. [2010]. In the figure, it is also shown

the two most likely predictions for each example (bottom) and the correct label according

to MNIST (top). It should be mentioned that the correct answer is the second guess of

the network for 30 out of the 35 misclassified digits.

2. Object Classification

Other application where DNNs have shown their powerful properties is the object classi-

fication task on challenging datasets such as ImageNet database [Deng et al., 2009].

Figure 3.2 shows some examples of predictions obtained with Convolutional Neural Net-

works as object classifiers by Krizhevsky et al. [2012].
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Figure 3.1: The 35 misclassified digits [extracted from Ciresan et al. [2010]].

These cases-of-success give us an idea about how powerful DNNs can be as a machine learning

tool. But, what mainly motivate this Master Thesis are the good results that have been achieved

with the application of DNNs to speech processing tasks.

The reminder of this chapter is organized as follows. Some results obtained using Deep Belief

Networks (DBNs) in the speech recognition field will be exposed. Then, some ideas about how

DNNs could be applied to the SLR problem will be proposed and architectures that have been

used in the experimental part of this works will be presented, as well.

3.1. DNNs Applied to Speech Recognition

As it was mentioned before, the motivation of this work comes from promising results ob-

tained with the application of different types of DNNs to the speech processing field [Deng and

Li, 2013; Hinton et al., 2012a; Lee et al., 2009b; Mohamed et al.].

In particular, Hinton et al. [2012a] provides an overview about how speech recognition tasks

can be improved by using DNNs for acoustic modeling, according to results obtained recently

by four relevant researcher groups (University of Toronto, Microsoft Research, Google and IBM

Research).

Traditionally, Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs) have

been used as the main framework for speech recognition tasks. Within that context, the prop-

erties of GMMs make them suitable for modeling the probability distributions over vectors of

input features that are associated with each state of an HMM [Hinton et al., 2012a]. GMMs are
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Figure 3.2: Examples of object classification predictions [extracted from Krizhevsky et al. [2012]].

able to model complex probability distributions if they have enough components, and can be

easily fit to data with the Expectation-Maximization (EM) algorithm [Moon, 1996].

However, the GMM-HMM framework has some important limitations. For instance, GMMs

require assumptions about the data distribution to estimate the posterior probabilities of HMM

states. This problem does not occur by using DNNs instead of GMMs [Mohamed et al.]. But

the main limitation that GMMs present is that “they are statistically inefficient for modeling

data that lie on or near a nonlinear manifold in the data space” [Hinton et al., 2012a].

Thereby, according to Hinton et al. [2012a], it is believed that there are models that exploit

better the underlying information of the speech signal, by considering larger windows of frames,

than GMMs.

DNNs have that capacity to learn complex models. Deep architectures used by the groups

mentioned before take advantage of a generative pre-training stage, that tries to capture the data

distribution, and, after that, the model is trained discriminately in what is called a “fine-tuning”

stage.
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Figure 3.3: Spectrograms of the same phoneme for female and male speakers and their representations

obtained by a convolutional DBN [extracted from Lee et al. [2009b]].

Results reported in [Hinton et al., 2012a] show that the DNN-HMM framework outperforms

the traditional GMM-HMM benchmark in different speech recognition tasks (Phonetic classifi-

cation on TIMIT, Switchboard, English Broadcast News, Bing Voice Search, Google Voice Input

and Youtube), decrementing error rates in any case. It should be taken into account that, when

enough data and components are available for a GMM-HMM based system, both DNN-HMM

and GMM-HMM achieve similar results.

It is important to highlight that the computational cost of training algorithms to DNNs is

still an open issue, since parallelizing their algorithms is not as easy as the EM algorithm [Hinton

et al., 2012a].

Other way of using DNNs in speech processing tasks can be as feature extractors: hidden

layers of DNNs give different representations of the input signal that can be used as input

features for classic GMM-HMM systems [Hinton et al., 2012a].

In Lee et al. [2009b], convolutional deep belief networks (hereafter, convolutional DBNs) [Lee

et al., 2009a] are used to obtain a new representation of the input data, by training the structure

in an unsupervised way. This also allows taking advantage of a big amount of unlabeled data

available, while labeled data are not easy to find for some speech processing tasks.

In that work, MFCCs and the representation obtained in the first two hidden layers of a

convolutional DBN are used as input for different systems and tasks, achieving better results

than those obtained with just MFCCs as input. Figure 3.3 shows examples of spectrograms

of the same phoneme for female and male speakers, and their correspondent representations

obtained in the first and second hidden layers of a convolutional DBN. That can give us an idea

of how the discriminative power of the input representation seems to be increased as we pass

through the layers of the network.
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All these ideas can be used in order to improve other speech processing tasks, such it can be

the SLR problem on which this work is focused.

3.2. Proposed Method: DNNs Applied to Language Recogni-

tion

One of the ideas extracted from previous works (cited in section 3.1) that could be applied

to the SLR field is the used of DNNs to extract features from the raw input data. In these

terms, a new representation of the input signal could be obtained, and used in a classic system

such as a Support Vector Machine (SVM). Among other things, this application would let us

take advantage of an unsupervised learning stage and use lots of unlabeled data available in

the world; indeed, labeled data would be needed just in the classic system to carry out the

classification task.

However, this Dissertation proposes the use of DNNs as a complete system: feature extraction

and classification is done by the DNN.

Concretely, convolutional deep neural networks have been the selected architecture to imple-

ment the experimental part of this work. This decision was based on the good results obtained

with this kind of networks in different tasks [LeCun et al., 2001; Lee et al., 2009a,b]. Moreover,

convolutional DNNs, due to their properties about sharing weights and pooling, usually have

less free parameters to tune. This allows a better generalization even when the amount of avail-

able data to train is not as big as that which would be required to train other types of deep

architectures.

Therefore, taking the application of convolutional DNNs to the handwritten digits classifi-

cation task as starting point, the idea was to adapt the structure to fit the problem of SLR.

Then, the process of that adaptation consisted of different stages, which are summarized

below.

Input

Firstly, it should be chosen what kind of input will be used to feed the network. In the

handwritten digits recognition case, the input used is usually the gray-scale image that

represents a certain digit [LeCun et al., 2001]. Due to the properties of convolutional

DNNs that make the relative position between pixels be important, the image is, indeed,

a 2-dimensional representation of the signal. Likewise, the speech signal associated with a

certain language is then represented by its spectrogram, i.e. a time-frequency representa-

tion.

Two kinds of representation have been used in the experiments carried out in this work:

SDCs and Mel-scale filter-bank output. However, Mel-scale filter-bank outputs are used

in most of the experiments. This is due to SDCs throw away some information in the

sound wave that it is supposed to be irrelevant for discrimination [Mohamed et al.], but

that process does not seem to be required when a DNN is being used.
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Figure 3.4: Example of a convolutional DNN structure used in the experimental part.

As far as the time domain axis is concerned, segments of three seconds of speech are mostly

used in the experiments, although there are some examples where the model used considers

half a second of speech.

Configuration of the network

One important issue of the use of DNNs is to choose the parameters to configure the

structure of the network.

First of all, the number of layers selected for the experimental part of this work is five (or

six):

• An input layer that just reshapes the input data into the required shape.

• Three (or four) convolutional layers (including the convolution and the max-pooling

parts).

• An output layer that computes the score for each class. The number of output units

will be given by the number of languages involved in each experiment.

Figure 3.4 shows an example of one of the structures used in the experimental part of this

Dissertation.

Regarding the convolutional layers, some parameters (number of filters for each layer,

filters shape and max-pooling shape) have to be set to different values, originating the set

of experiments shown in Chapter 4.

Labels

Similarly with what is done in the case of digits recognition, the labels used to identify

a determined language are just an integer number (from 0 to the number of languages

involved in the experiment).

26
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Training algorithm

The algorithm that has been selected to train the network in all the experiments is the

stochastic gradient descent algorithm, based on minibatches. This algorithm uses a certain

number of examples to estimate the gradient [LISA]. The minibatch size is set to 500

examples in all the experiments carried out in this work.

A technique of “early stopping” is used to combat overfitting: the performance of the

model is evaluated on a validation set and, when the improvement is not relevant enough

(depending on some configuration parameters), the algorithm stops.

The cost function that the algorithm tries to optimize (minimize in this case) is the negative

log-likelihood (NLL), defined as follows:

NLL(θ,D) = −
|D|∑
i=0

logP (Y = y(i)|x(i), θ)

where D is the dataset, θ represents the parameters of the model (θ = W, b, weights and

bias respectively), x(i) is an example, y(i) is the label corresponding to example x(i), and

P is defined as the output of a softmax function as it was defined in section 2.2.3.

This is the same algorithm that is used in LISA by LISA lab (University of Montreal) for

the case of handwritten digits classification.

Output and Evaluation

The output of the last layer is considered a score, which is analyzed after. This allows

extracting confusion matrices and error rates such as the Zero-One Loss (ZOL) or the

Equal Error Rate (EER).
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Chapter 4

Experiments and Results

This chapter presents the experimental results obtained in this Dissertation.

The rest of this chapter is organized as follows. A reference system is described and it will

be taken as a baseline to compare the results obtained by the proposed method. Then, the

database and experimental framework involved in the experiments performed will be described.

Finally, the results achieved will be detailed and analyzed.

4.1. Reference System

In order to have a baseline to compare with, one of the systems that ATVS - Biometric

Recognition Group submitted to the NIST LRE 2009 evaluation has been tested for the same

tasks performed with the proposed method of this work.

Concretely, the system that has been taken as reference system is a spectral system that

consists of a GMM system with linear scoring and session variability compensation applied in

the statistic domain, system named as ATVS3 or Factor Analysis GMM Linear Scoring (FA-

GMM-LS) in Gonzalez-Dominguez et al. [2010]. This system has been selected as reference

system for this work due to it is among the state-of-the-art acoustic approaches in the SLR field.

The configuration of the system is as follows. The speech signal is represented by a pa-

rameterization consisting of seven MFCCs with CMN-Rasta-Warping concatenated to 7-1-3-7

SDC-MFCCs. Two Universal Background Models (UBMs) with 1024 Gaussian components were

trained. One of them (UBMCTS) was trained with Conversational Telephone Speech (hereafter,

CTS), data extracted from CallFriend, LRE05 and LRE07. The other one (UBMV OA) was train

with data from VOA (Voice of America radio broadcasts through Internet), provided by NIST.

Regarding the amount of data used for training the UBMs, a total of 38.5 hours of speech were

used in the case of UBMCTS (about 2.75 hours per 14 languages). The UBMV OA was trained

with 31.2 hours in total, with 1.42 hours per 22 available languages.

Thereby, two different systems were developed, one for each UBM. Two session variability

subspaces matrices were obtained (UCTS and UV OA). The subspaces were initialized with PCA

(Principal Component Analysis) based on Kenny et al. [2005]; Vogt and Sridharan [2008], taking
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Prior model Databases # Languages # Hours/language Total

UBMCTS CallFriend, LRE05, TrainLRE07 14 2.75 38.5

UCTS CallFriend, LRE05, TrainLRE07 14 25 350

UBMV OA VOA 22 1.42 31.2

UV OA VOA 22 25 550

Table 4.1: Data used to train the elements of the reference system [extracted from Gonzalez-Dominguez

et al. [2010]].

Amharic Bosnian Cantonese Creole Croatian Dari

English (American) English (Indian) Farsi French Georgian Hausa

Hindi Korean Mandarin Pashto Portuguese Russian

Spanish Turkish Ukrainian Urdu Vietnamese

Table 4.2: Target languages in the NIST LRE09 evaluation.

into account just top-50 eigenchannels, and trained by using the EM algorithm. To train these

matrices, 350 hours were used for UCTS (600 segments of approximately 150 seconds per the

14 languages used) and 550 hours for UV OA (600 segments of around 150 seconds per the 22

available languages). This information is summarized in table 4.1.

4.2. Database Description

In order to perform experiments that can be compared with the reference system described

above, the database used has been that provided by NIST LRE09 evaluation [NIST, 2009].

LRE09 database includes data coming from different audio sources: conversational telephone

speech (CTS), used in previous evaluations, and broadcast data that contains telephone and

non-telephone speech. That broadcast data consists of two corpora from past Voice of America

(VOA) broadcast in multiple languages. One of these corpora (hereafter, VOA3) had VOA

supplied language labels, but the labels of the other one (VOA2) were obtained by an automatic

procedure. Furthermore, around 80 segments for each target language (of approximately 30

seconds duration each) had been audited for training purposes.

Regarding evaluation data, segments of 3, 10 and 30 second of duration from CTS and

broadcast speech data are available to test the developed systems.

The languages considered in the mentioned evaluation are reported in table 4.2, but just

those marked in blue have been used in the experiments of this work.

More details can be found in the NIST LRE09 evaluation plan [NIST, 2009].
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4.3. Experimental Framework

As it was mentioned in section 3.2, some designing decisions should be made in order to

select the structure that will be used for performing the experiments.

Some of these decisions remain fixed across all the experimental part of this work: con-

volutional DNNs have been the deep architecture selected to carry out the experiments and

the stochastic gradient descent algorithm based on minibatches has been chosen as training

algorithm.

Other fixed factor has been the windowing process with windows of duration of 10 millisec-

onds that has been applied to speech signals. Consistently, an input of 300 of length in the

temporal dimension would correspond to a fragment of 3 seconds.

Two types of signal representation have been used as it was mentioned in section 3.2: SDCs

and Mel-scale filter-bank outputs (hereafter, MFBs). In the case of MFBs, a normalization

of zero mean and unit variance has been applied in order to help the learning process of the

network and get a better performance. According to empirical results, when the network is fed

with SDCs, this normalization does not seem to be needed. The reason might be the cepstral

mean and variance normalization (CMN and CVN) applied when the cepstral representation

based on SDCs is being obtained.

Furthermore, all the models used in the experiments presented in this Dissertation are tested

on segments of 3 seconds of duration, in which just around 2 or 2.5 seconds are actual speech

(the rest is supposed to be silence or noise). Since the implementation of the network requires

a fix size of the input signal, the solution taken to the problem of variable sizes in the input has

been to replicate the first part of the speech. Then, a right padded has been applied to obtain

3 seconds (or 300 frames) of speech as input signal.

The rest of the parameters involved in the network configuration (see Configuration of the

network, section 3.2) are different for each experiment. Most of them use three convolutional

(hidden) layers, with filter shapes of dimension 5 for the first two layers, and of dimension 2 for

the last one. The shape of the max-pooling subsampling applied in the first two convolutional

layers is, for most of the cases, 2x2, and, for the last layer, this shape is set to the dimension

needed to get just a value (1x1 shape) at the end.

Regarding the partition of the datasets used to perform the experimental part, three different

sets are required:

Training set, composed of examples used to estimate the free parameters of the network

(weights and bias).

Validation set, formed by examples out of the training set used to perform model and

configuration parameters selection and the “early-stopping” condition.

Test set, examples used to evaluate the final generalization error and compare different

algorithms in an unbiased way.
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Language # Files VOA2 # Files VOA3 # Total Hours

Amharic 379 - 16

Bosnian 5 866 36

Cantonese 782 - 33

Creole 56 2598 111

Croatian 80 373 19

Hausa 623 6237 286

Hindi 324 1464 75

Turkish 47 918 40

Ukrainian 606 738 56

Urdu 738 10842 483

Vietnamese 1872 - 78

Table 4.3: Amount of available data for each language used for development in the experiments per-

formed. Each file corresponds with approximately 150 seconds of speech.

Depending on how the database was split, two types of experiments can be distinguished: 1)

experiments where the development dataset of NIST LRE09 was divided into the three datasets

needed; and 2) those experiments that used the development data of NIST LRE09 for training

and validation sets and the evaluation data provided by NIST as test set.

In order to specify the source of the development data, table 4.3 shows the number of files

that comes from VOA2 and VOA3 for each language used in the experiments.

Finally, as far as the type of experiments performed is concerned, they can be divided into

three types:

One vs. one (language pairs): just two languages are involved in this set of experiments.

Then, the network has just two output units.

All vs. all (closed-set): experiments with so many output units as languages are involved in

the experiment (more than two languages). For this work, these experiments are constraint

to six languages. Moreover, the same languages used to train are those that will be included

in the test set (closed-set task).

One vs. all: experiments where although six languages (in this work) are involved, just

one of them is considered as target language.

In all cases, the output is a score (real value indicating a “likelihood measure”) for each unit,

i.e. the network establishes a score of belonging to each language among those considered in

the experiment performed. It should be taken into account that the predicted label is set to the

class that has received the highest score (argmax function), and the Zero-One Loss depends on

this decision.
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4.4 Results

Exp. # Hidden layers # Filters / layer Filter shapes Pool shapes

HU1 3 [12, 12, 12] [(5, 5), (5, 5), (2, 2)] [(2, 2), (2, 2), (1, 71)]

HU2 3 [20, 50, 30] [(5, 5), (5, 5), (2, 2)] [(2, 2), (2, 2), (1, 71)]

HU3 3 [6, 12, 15] [(5, 5), (5, 5), (2, 2)] [(2, 2), (2, 2), (1, 71)]

HU4 4 [6, 6, 6, 6] [(5, 5), (5, 5), (5, 5), (11, 11)] [(1, 2), (1, 2), (1, 2), (1, 24)]

Table 4.4: Configuration parameters for the experiments performed on the language pair Hindi -

Ukrainian.

4.4. Results

In this section, the results that have been obtained during the experimental part of this

work are detailed and analyzed. Results are presented by using DET (Detection Error Tradeoff)

Curves, confusion matrices and error measures such as Zero-One Loss (ZOL), Equal Error Rate

(EER) and an average cost (meanCavg) defined as in NIST [2009].

The remaining of the section is organized as follows. First, some experiments where just two

languages are involved are presented (“one vs. one” models). Second, “all vs. all” models are

performed; in these experiments, two sets of six languages each are used. Finally, some “one vs.

all” experiments (just one target language) are shown.

4.4.1. “One vs. One” Experiments (Language Pairs)

This set of experiments includes those where just two languages are considered: one target

language and one non-target language. Both training and test datasets are only composed of

segments of speech from the two languages involved in the experiment.

Hindi - Ukrainian (HU )

Four different experiments have been performed using these two languages. All of them

use the same training, validation and test datasets (around 42 hours have been used for

training, 18 hours for the validation set and 986 segments of 3 seconds of speech for

testing). The input speech signal is represented by MFBs, each fragment corresponds with

3 seconds of speech and a normalization of zero mean and unit variance has been applied.

The models differ in the network configuration, as it is specified in table 4.4.

The test error results obtained in these four experiments are shown in table 4.5, where

reference systems results are also included.

The ZOL percentage is worse in all cases comparing with the reference system that uses

1024 Gaussian components. That could be due to the simple decision that our system

makes of taking as the predicted class that that achieves the maximum score.

However, according to the EER and meanCavg measures, HU1, HU2 and HU3 experiments

outperformed the reference systems. It should be highlighted that HU4, which has four
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Error Measure Ref. System 512 Ref. System 1024 HU1 HU2 HU3 HU4

ZOL (%) 22.12 17.90 21.81 19.17 18.66 30.02

EER (%) 27.32 25.77 21.45 19.30 20.38 28.69

MeanCavg 26.52 22.77 21.25 18.48 19.64 27.74

Table 4.5: Results experiment Hindi vs. Ukrainian.

Error Measure Ref. System 512 Ref. System 1024 TV1 TV2 TV3 TV4

ZOL (%) 21.47 17.12 25.56 20.26 26.53 23.63

EER (%) 27.21 21.69 24.03 20.16 26.74 23.26

MeanCavg 27.07 20.93 22.82 18.48 24.49 22.55

Table 4.6: Results experiment Turkish vs. Vietnamese.

hidden (convolutional) layers, achieves worse error rates than the other systems. Two

possible reasons could be that the amount of available data is not enough to tune the

parameters of the network or the selected configuration is not appropriated for this data.

Turkish - Vietnamese (TV )

This set of experiments is similar to the previous one, but the aim is to distinguish between

Turkish and Vietnamese languages. The four configurations of the network parameters are

the same as the ones use in the Hindi - Ukrainian language pair. Regarding the datasets,

the amount of data used is as follows: 40 hours for training, 17 hours for validation and

622 segments of around 3 seconds of speech for testing, approximately.

The results obtained for each system are summarized in table 4.6.

In this case, just the second model (TV2) outperforms the best reference system (1024

Gaussians) according to EER and meanCavg measures. The rest of the models are com-

parable but not better than the reference systems. A possible reason for this can be that

almost all the files of Turkish and Vietnamese used to train the network come from the same

part of the database (VOA2 in the case of Turkish and VOA3 in the case of Vietnamese).

This can derive in an increase of the overfitting problem, and a worse generalization.

The small differences between EER and ZOL measures in the cases of DNN-based systems

can be an indication of well alignment in the output scores (they are probabilities, scores

normalized to sum one, which makes the range of output scores be small).

Bosnian - Croatian (BC )

The last language pair of languages considered has been Bosnian and Croatian languages.

These two languages are a challenging pair of languages due to they are pretty similar to

each other.
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Error Measure Ref. System 512 Ref. System 1024 BC

ZOL (%) 39.26 36.94 46.58

EER (%) 48.40 46.28 44.02

MeanCavg 40.79 38.42 42.29

Table 4.7: Results experiment Bosnian vs. Croatian.
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Figure 4.1: DET curves corresponding to results of the Bosnian vs Croatian experiment.

The configuration of the network has been the same that that used in the experiment HU1,

and the amount of available data for this case has been around 21 hours for training, 9

hours for validation and 1022 segments of 3 seconds of speech for testing.

The results achieved by this model are shown in table 4.7. The EER is lower than that

obtained by reference systems, as it can be seen in figure 4.1. The remaining error measures

are worse than the reference systems ones.

Finally, figure 4.2 shows the DET curves of the reference system (with 1024 Gaussian com-

ponents) (top) and the best (according to EER) DNN model (down) for each pair of languages

involved in the experiments presented above.
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Figure 4.2: DET curves corresponding to pairs results of the reference system with 1024 Gaussian

components (top) and the best DNN models according to the EER for each language pair (down).
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4.4.2. “All vs. All” Experiments (Closed-set)

Other set of experiments performed are those where more than two languages are involved.

These experiments are based on a closed-set “all vs. all” model, where the same languages that

are used to train the network are the expected ones in the testing stage.

Two different sets (of six languages each one) have been chosen. The first one uses a SDC

representation of the input signal, as it was used in the reference system. The second is based

on MFBs and a zero mean and unit variance normalization has been applied, as it was done in

the “language pairs” experiments. More details and results are specified below.

1. Experiments based on SDC representation

This set of experiments takes into account the six following languages: Amharic, Bosnian,

Cantonese, Croatian, Hindi and Urdu. It should be highlighted that among this group of

languages, very similar language pairs are included such as Bosnian-Croatian and Hindi-

Urdu.

Two different experiments have been performed. Both of them use the same configuration

of the network, specified in table 4.8.

The first experiment, identified as ABCCHU-EVAL-TEST, uses data from the develop-

ment set provided by NIST LRE09, and splits them into training and validation datasets,

while the test dataset is composed of data from the evaluation data of the database.

Around 20 hours of speech are used for training, 5 hours for validation and 2469 segments

of 3 seconds of speech for test have been used.

The second one (ABCCHU-DEV-TEST ) uses just the development data from the NIST

LRE09 database and splits them into the three datasets required by the algorithm. Then,

approximately 15 hours of speech are used for training, 5 hours for validation and 5 hours

for testing too (5940 segments of around 3 seconds of speech).

The second model described, as it can be seen in table 4.9, achieves better performance

than the reference systems, but this does not happen with the first one. A possible reason

could be that, in the second case, test examples are very similar to the training ones;

indeed, they can be parts of the same utterances and share the same speakers. Thus, the

network can be learning features that are not directly related with the language itself, so

that overfitting can be occurring and a good generalization is not being achieved. The big

gap between the validation and test error that exists in the first case could be an indication

of this problem as well.

As it can be seen in the confusion matrices (tables 4.10, 4.11, 4.12 and 4.13), discriminating

between Bosnian-Croatian and Hindi-Urdu segments of speech is one of the main error

sources of the network, as it was expected due to the similarities that exist among this

two language pairs. The last column shows the True Positive Rate (TPR) or Sensitivity

for each language, calcuated as True Positives/(True Positives + False Negatives).
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Exp. # Hidden layers # Filters / layer Filter shapes Pool shapes

6 languages, SDCs 3 [12, 12, 12] [(5, 5), (5, 5), (11, 11)] [(2, 2), (2, 2), (1, 62)]

Table 4.8: Configuration parameters for the performed experiments based on SDC representation.

Error Measure Ref. System 512 Ref. System 1024 ABCCHU-EVAL-TEST ABCCHU-DEV-TEST

ZOL (%) (validation) - - 38.87 39.66

ZOL (%) (test) 51.15 47.43 60.96 39.75

MeanEER (%) 25.91 24.10 29.37 20.20

MeanCavg 25.36 23.36 28.69 19.54

Table 4.9: Results “all vs. all” experiments based on SDC representation (ABCCHU experiments).

PREDICTED CLASS TPR

(%)Amharic Bosnian Cantonese Croatian Hindi Urdu

A
C

T
U

A
L

C
L

A
S

S Amharic 298 26 23 33 13 5 74.87

Bosnian 31 142 26 129 19 8 40.00

Cantonese 27 28 218 27 25 9 65.27

Croatian 26 90 19 224 7 10 59.57

Hindi 100 52 72 69 227 109 36.09

Urdu 56 39 35 40 110 97 25.73

Table 4.10: Confusion matrix for the reference system (512 Gaussian components). Languages Amharic,

Bosnian, Cantonese, Croatian, Hindi and Urdu.

PREDICTED CLASS TPR

(%)Amharic Bosnian Cantonese Croatian Hindi Urdu

A
C

T
U

A
L

C
L

A
S

S Amharic 306 25 21 21 17 8 76.88

Bosnian 29 163 16 116 14 17 45.92

Cantonese 23 16 241 23 16 15 72.16

Croatian 24 81 15 235 13 8 62.50

Hindi 86 56 61 58 248 120 39.43

Urdu 42 27 39 34 130 105 27.85

Table 4.11: Confusion matrix for the reference system (1024 Gaussian components). Languages

Amharic, Bosnian, Cantonese, Croatian, Hindi and Urdu.
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PREDICTED CLASS TPR

(%)Amharic Bosnian Cantonese Croatian Hindi Urdu

A
C

T
U

A
L

C
L

A
S

S Amharic 250 8 35 49 24 32 62.81

Bosnian 44 59 13 149 24 66 16.62

Cantonese 48 18 168 16 21 63 50.30

Croatian 56 53 20 168 24 55 44.68

Hindi 119 8 39 68 146 249 23.21

Urdu 47 5 18 43 49 146 47.40

Table 4.12: Confusion matrix for the experiment ABCCHU-EVAL-TEST (test evaluation data).

PREDICTED CLASS TPR

(%)Amharic Bosnian Cantonese Croatian Hindi Urdu

A
C

T
U

A
L

C
L

A
S

S Amharic 663 36 85 61 66 65 67.93

Bosnian 53 591 42 167 32 28 64.73

Cantonese 68 23 699 18 55 41 77.32

Croatian 55 125 26 643 64 53 66.56

Hindi 95 35 64 88 447 210 47.45

Urdu 102 53 69 98 246 331 36.82

Table 4.13: Confusion matrix for the experiment ABCCHU-DEV-TEST (test part of the development

dataset).
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Error Measure Ref. System 512 Ref. System 1024 CHHTUV-300 CHHTUV-50

ZOL (%) (validation) - - 26.4 43.59

ZOL (%) (test) 46.05 39.87 60.91 67.78

MeanEER (%) 27.08 22.86 32.89 -

MeanCavg 26.11 22.27 31.96 -

Table 4.14: Results “all vs. all” experiments based on MFB representation (CHHTUV experiments).

2. Experiments based on MFB representation

The second set of “all vs. all” models are based on a MFB representation. In this case,

segments of Creole, Hausa, Hindi, Turkish, Ukrainian and Vietnamese languages are used

to train and test the network. The amount of available data has been increased in order

to try to avoid the overfitting problem of the previous set of experiments. Then, 145 hours

have been used for training, 62 hours for validation and 2 hours for testing, approximately.

Two experiments have been performed: one model have been trained on fragments of 300

frames in the time domain (3 seconds), and other, on segments of just 50 frames. Both

have been tested on utterances of 3 seconds of duration, averaging the scores in the second

case to obtain one score per utterance. It should be taken into account that in the second

case, replicating the first frames, as it was done for the rest of the experiments, was not

necessary.

The configuration parameters use the same values than in the HU1 experiment.

Table 4.14 shows the validation and test error rates achieved by the two described models.

Comparing with the reference system, both reach worse performance according to the test

error. However, validation errors are pretty lower than test errors in both cases, which

could be an indication that the problem of overfitting is happening.

Regarding the comparison between the two different models based on convolutional DNNs,

it seems to be better the first one, which uses 300 frames of speech to train. This can make

us supposed that the more information the network receives, the better generalization can

be obtained.

Tables 4.15, 4.16 and 4.17 show the confusion matrices and the True Positive Rate (TPR)

or Sensitivity for each language obtained by the different systems.

For the case of the experiment referred as CHHTUV-300 (table 4.17), it can be observed

that the worst classification results are obtained for Creole, Turkish and Vietnamese.

These languages have most of their examples from the same part of the database (VOA2

or VOA3 ) according to the information shown in table 4.3. This might cause less variance

among the data used to train the network, and could be the reason for the overfitting

observed in this model and for the bad generalization obtained.

40



4.4 Results

PREDICTED CLASS TPR

(%)Creole Hausa Hindi Turkish Ukrainian Vietnamese

A
C

T
U

A
L

C
L

A
S

S Creole 202 20 24 30 22 25 62.54

Hausa 45 188 36 50 26 44 48.33

Hindi 50 41 329 88 52 69 52.31

Turkish 27 17 30 270 19 31 68.53

Ukrainian 60 27 37 53 178 33 45.88

Vietnamese 20 25 32 46 24 125 45.96

Table 4.15: Confusion matrix for the reference system (512 Gaussian components). Languages: Creole,

Hausa, Hindi, Turkish, Ukrainian and Vietnamese.

PREDICTED CLASS TPR

(%)Creole Hausa Hindi Turkish Ukrainian Vietnamese

A
C

T
U

A
L

C
L

A
S

S Creole 217 19 20 27 14 26 67.18

Hausa 31 221 28 53 18 38 56.81

Hindi 45 36 362 84 39 63 57.55

Turkish 18 18 31 293 15 19 74.37

Ukrainian 43 15 33 56 217 24 55.93

Vietnamese 16 24 37 37 28 130 47.79

Table 4.16: Confusion matrix for the reference system (1024 Gaussian components). Languages: Creole,

Hausa, Hindi, Turkish, Ukrainian and Vietnamese.

PREDICTED CLASS TPR

(%)Creole Hausa Hindi Turkish Ukrainian Vietnamese

A
C

T
U

A
L

C
L

A
S

S Creole 66 19 55 12 128 29 21.36

Hausa 30 122 73 14 98 23 33.89

Hindi 17 57 331 31 150 27 54.00

Turkish 31 23 124 72 82 32 19.78

Ukrainian 9 6 41 7 257 53 68.90

Vietnamese 15 71 67 11 52 42 16.28

Table 4.17: Confusion matrix for the experiment CHHTUV-300, model of 300 frames.
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4. EXPERIMENTS AND RESULTS

Target

Language

EER (%)

Ref. System 1024 Conv. DNN Systems “one vs. all”

Amharic 11.41 16.22

Bosnian 10.84 16.21

Cantonese 17.62 11.14

Croatian 12.80 20.92

Hindi 30.96 24.59

Urdu 27.92 30.93

Table 4.18: Performance of reference system (1024 Gaussian components) ( ATVS3, Gonzalez-

Dominguez [2011]) and “one vs. all” models using convolutional DNNs on development dataset (per

language).

4.4.3. “One vs. All” Experiments

This third group of experiments consists of models in which just one language is the target

language, and the rest of them (five languages in this case) are non-target.

The six languages involved are Amharic, Bosnian, Cantonese, Croatian, Hindi and Urdu. Six

different “one vs. all” models have been developed, considering one of the six listed languages

as target language. Then, each model will output two scores, one for each possibility: being or

not the target language.

The configuration of the network is that shown in table 4.8, and each segment of speech is

represented with 56 SDCs (the same configuration described for the reference systems).

For these experiments, development datasets provided by NIST LRE09 have been partitioned

as follows: around 15 hours of speech for training, 5 hours for validation and 5 hours for testing.

Approximately, the sixth part of each dataset belongs to the target language.

Table 4.18 shows the results of these “one vs. all” systems, comparing with the results

obtained by the reference system (1024 Gaussian components). To be fair with the comparison,

the results of the reference system that are included in this table are those achieved in a test set

extracted from the development dataset, and not from the evaluation data provided by NIST

LRE09.

As it can be seen in table 4.18, just the models for Cantonese and for Hindi as target

languages outperform the reference system. All the models might be overfitting the data (as it

was mentioned in section 4.4.2 for the experiment ABCCHU-DEV-TEST ), since the test data

are very similar to the training data. It might have occured that training data of Cantonese

and Hindi languages have had more variations and the model had not overfit as much as in the

other cases.
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Chapter 5

Conclusions and Future Work

This Master Thesis has been focused on exploring approaches based on deep neural net-

works in order to improve language recognition systems.

Thus, after a wide study of some techniques that have been applied to spoken language

recognition (SLR) problems and other fields closely related to this one, the experimental part

of this work has been presented. The aim of this part has been to develop a new system, based

on acoustic features, by using convolutional DNNs as machine learning architecture.

Then, this chapter includes some conclusions that have been extracted during the develop-

ment of this work, both from a theoretical and practical point of view. Some future research

lines where this work could be applied will be described as well.

5.1. Conclusions

Chapter 1 has introduced basic concepts about SLR field and some ideas of what deep neural

networks (DNNs) are and why they are a relatively new tool in the machine learning field. The

motivation of this Dissertation, its main goals and its structure has been also included in the

first chapter.

In Chapter 2, relevant systems and algorithms within the two fields in which this work is

included (SLR and machine learning) have been briefly described, focusing on those topics that

are more closely related to the main objectives of this Dissertation.

Applications of DNNs have been introduced in Chapter 3, explaining also the main ideas to

develop a SLR system based on DNNs, which is the proposed method of this work.

Finally, the experimental part of this Dissertation has been described in Chapter 4, where

the experiments performed and the results achieved have been detailed and analyzed.

The main conclusions that can be extracted from the theoretical and experimental parts of

this work are presented below.

On the one hand, the main conclusions that want to be highlighted from a theoretical point

of view are:
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5. CONCLUSIONS AND FUTURE WORK

DNNs can be considered a breakthrough within the machine learning field, due mostly to

their advantages over shallow neural networks (those with just one hidden layer). Among

them, it can be highlighted the following ones:

• Capability to model complex functions when the amount of available data is enough

to estimate their free parameters.

• Automated discovery of abstract representation of the data, overcoming shallow ar-

chitectures dependency on human-crafted features.

• Shallow architectures, as local estimators, are limited when a high variant function

wants to be represented, i.e., variations of the input space is a non-linear manifold.

This results in a poor non-local generalization when variations not seen in the training

set appear in the test set. In this sense, it is needed a number of examples proportional

to the number of variations to be covered. This limitation can be overcome by using a

deep architecture (non-local estimator), which introduces non-linear transformations

and allows a more compact representation of the function that wants to be modeled.

There are numerous deep architectures and algorithms and, depending on their properties,

could be suitable for different applications. Moreover, lots of different configurations of the

same networks can be used to develop different models and, according to research works

on this field, it seems that the best model for solving a certain problem can not be selected

in a generic way, since the configuration and the architecture itself is highly dependent on

data.

The recent success of DNNs applied to speech recognition tasks encourages the use of

these architectures on other related fields, such as SLR. They seem to model adequately

the speech signal, which can help in the SLR task.

Convolutional DNNs can be considered a good starting point due to their success in dif-

ferent computer vision and speech processing tasks. They are “easier” to train than other

deep structures, and their specific properties reduce the number of free parameters, which

means they need less data and lower computational capacity to reach good results.

On the other hand, some conclusions from the experimental part of this work can be extracted

as well:

Results achieved by the developed system of SLR by using convolutional DNNs are not

always better than those that the reference system obtains. However, they are at least

comparable, which seems to be a good starting point. Moreover, a fusion between both sys-

tems might outperform the individual systems, since they can be considered uncorrelated

approaches: discriminative versus generative models.

The new DNN-based system could be considered as a baseline system and the starting

point to get improvements in the SLR task by following this approach.
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5.2 Future Work

Comparing with the performance of the reference systems, the new developed systems seem

not to generalize as well as it should be. When test data are quite different than training

data, test error rates are markedly increased. One possible reason could be the overfitting

problem, since a big gap between test and validation error exists. Also, available data are

not enough different among them to collect all the variability sources that can appear in

speech signals, which can cause this not good generalization as well.

The huge amount of possible configuration of the networks can be considered a disadvan-

tage of this kind of architectures and can make that the selected configuration of the model

for a certain problem could not be the best option for it.

The big memory and computational requirements of these training algorithms can be

mentioned as drawbacks. In this case, some experiments have needed around three days

to estimate “adequately” the network parameters (weights and bias) running in a CPU

with 24 cores.

5.2. Future Work

A number of research lines arise from the work carried out in this Master Thesis. Among

them, following ones can be highlighted:

Exploring DNNs configurations: following the same approach carried out in this

work, different configuration of convolutional DNNs will be tried in order to get better

performance of the system.

Adding a back-end module: in the experimental part of this work, the predicted class

has been selected just taking that corresponding to the maximum score. More complex

modules and techniques will be developed so that it can be taken advantage of the under-

lying information of the output scores of the network.

Exploring different types of deep architectures: using other kind of structures, such

as Restricted Boltzmann Machines (RBMs) or Deep Belief Networks (DBNs), will let us

use unsupervised learning algorithms. This could be a key for improving SLR systems

performance.

Synthetic data: in order to avoid the overfitting problem, more data can be generated

synthetically so that the new examples could collect different variability sources. Also,

some techniques such as “dropout” [Hinton et al., 2012b] will be implemented and analyzed

to see how they affect in the SLR experiments performed.

Exploring other related research lines: this work might be extended to other research

fields such as, for example, speaker recognition area. Possible starting points can be the

use of DNNs to obtain a new representation of the input signal or to develop a complete

system following the work of Stafylakis et al. [2012].
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