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Abstract

Sparse models are growing in popularity as the amount of data available is becoming bigger.
Feature selection methods have been around for many years, but the problems to solve
evolve quite rapidly. If ten years ago a dataset with hundreds of variables was considered
quite large, today datasets with ten thousands of variables are a common problem and
easy to find. Hence, sparse models are not evaluated only by the error of the fit but also
by its interpretability. This means that sometimes we might prefer a model with “worse”
error if we can learn some structure of the problem from it.

In this thesis we will provide an overview of the classic sparse models, starting with
the Lasso and, from that point, we will dicuss the more modern proximal optimization
theory. The main result is the FISTA algorithm, which is a general framework to optimize
any combination of differentiable function and convex regularization. An implementation
of FISTA in ANSI C was also developed along with this thesis, and it is publicly available
on the Internet. Finally we will present some experiments where all the previous models
are compared using real-world datasets.
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Chapter 1

Introduction

Machine learning is a branch of artificial intelligence commonly defined as the science
of learning from data without the need for the computer to be explicitly programmed.
Other fields that overlap with machine learning are statistics, data mining and pattern
recognition, since they often use the same methods. Some example of learning problems
are:

• Learn to distinguish between spam and non-spam email messages and classify new
messages accordingly.

• Predict the selling price of a house based on facts such as square meters and number
of bedrooms.

• Predict the price of a stock in 6 months from now, on the basis of company perfor-
mance measures and economic data [1].

• Recognize handwritten digits from a digitized image, for example ZIP codes in letters.

• Identify the risk factors for prostate cancer, based on clinical and demographic vari-
ables [1].

• Identify the clients of an insurance company who are likely to upgrade their policy
to premium if an offer is made to them.

In the typical scenario we have an outcome measurement we want to predict, which
can be either quantitative (price of the house) or categorical (spam/non-spam), based on
a set of features or variables. We have a set of data, in which we observe both the features
and the outcome, and the goal is to build a prediction model which allows us to predict
the outcome of new samples, not used to train the model.

Notice that it is impossible to compute the accuracy of the predictions for the new
data, since the real outcome is not available. So, in order to asses the quality of the model,
the original dataset is usually divided into a training set and a test set. The former is used
to build the prediction model while the latter is used to estimate its performance. This is
done by computing the accuracy of the predictions in the test set and, since they were not
used for training, they are a good estimate of the accuracy for new data (assuming they
are similar).

The ability to predict correctly the outcome of new unseen data is known as generaliza-
tion. In practice the variability of the data will be such that the training set can comprise
only a small amount of all possible examples, so generalization is a central goal in machine
learning.

1



2 Chapter 1. Introduction

Machine learning systems also have to deal with the representation of the data. For
instance in the case of handwritten digits recognition, it is usually convenient to represent
the digitized images as numerical vectors using a greyscale approach. Data is also usually
pre-processed to transform it into another space where the problem of building the model is
easier to solve. Continuing with the example of digit recognition, the images are typically
traslated and scaled so that each digit is contained in a fixed size box [2]. Note that new
data must be processed using the same steps as the training data.

So far we have only mentioned the task where the training data contains both the
features and the outcome. That kind of data is said to be labeled, and such applications
are known as supervised learning problems. These problems can be further divided into
classification, if the outcome is a finite number of discrete categories, or regression, if the
outcome consists of one or more continuous variables. Examples of classification problems
are spam detection, handwritten digits recognition and identifying prossible premium users.
Examples of regression problems are house princing, prostate cancer detection and stock
price prediction.

There are other machine learning problems where the input data consists only of fea-
tures, and no outcome is available. In those unsupervised learning problems the goal is to
find some kind of structure in the data: groups of similar examples (clustering), distribu-
tion of the data in the input space (density estimation) or subspaces in which the data is
still “meaningful” but with less dimensions (dimensionality reduction).

1.1 Optimization theory

In this section we are going to conver some basic optimization theory, which will be useful
in the following chapters, since models are usually built by minimizing a function. Most
of the definitions and theorems are taken from [3], so please refer to it for more details on
this subject.

The general form of the problem we are going to consider is that of finding the maximum
or minimum of a function subject to some constraints.

Definition 1.1.1. (Primal optimization problem) Given function f , gi, i = 1, · · · , k, y hi,
i = 1, · · · ,m, defined over a domain w ⊆ Rn.

min f(w), w ∈ w,
s.t gi(w) ≤ 0, i = 1, · · · , k,

hi(w) = 0, i = 1, · · · ,m,

where f(w) is known as objective function, gi(w) are the inequality constraints and hi(w)
are the equality contraints. From now on we are going to write g(w) ≤ 0 to indicate
gi(w) ≤ 0, i = 1, · · · , k, and the same with h(w).

Definition (1.1.1) is general, since maximization problems can be transformed into
minimization ones simply by flipping the sign of the objective function f(w). In the same
way, every constraint can be re-written in one of the previous forms. For instance, if we
have the constrain

∑
w < t, we can always write it like

∑
w − t < 0.

The domain region where the objective function is defined and all the constraints are
satisfied is known as feasible region

R = {w ∈ w : g(w) ≤ 0, h(w) = 0} (1.1.1)

The solution of the problem is a point w∗ ∈ R such that there is no other point w ∈ R for
which f(w) < f(w∗).
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Definition 1.1.2. An optimization problem where the objective function and all the con-
straints are linear is a linear problem. If the objective function is quadratic and the con-
straints are linear is a quadratic problem.

For the purposes of the following chapters we can restrict ourselves to the case where
the constraints are linear, the objective function is convex and quadratic. A nice property
of unconstrained convex problems is that any local minimum w∗ is also a global minimum.
An exception is multilayer perceptrons (section 1.3.1), whose objective function is not
convex an thus many local minima will exist. Convex problems will be discussed further
in chapter 3, where we present the definitions of convex set and convex function. We are
going to present next the basics of the Lagrangian theory, that will be used in subsequent
chapters.

1.1.1 Lagrange theory

The Fermat theorem that characterizes the solutions of unconstrained convex problems
will be discussed in detail in chapter 3. Let us consider here the more general case where
the optimization problem has both equality and inequality constraints. We are going to
define first the generalized Lagrangian.

Definition 1.1.3. (Lagrangian function) Given the optimization problem (1.1.1), we de-
fined the generalized Lagrangian function as

L(w,α,β) = f(w) +

k∑
i=1

αigi(w) +

m∑
i=1

βihi(w)

= f(w) + αtw + βtw.

We can now define the Lagrangian dual problem

Definition 1.1.4. (Dual optimization problem)
The Lagrangian dual problem of the primal problem of definition 1.1.1 is the following

problem:
max Θ(α,β)
s.t α ≥ 0

where Θ(α,β) = infw L(w,α,β)

One of the fundamental relationships between the primal and the dual problem is given
by the weak duality theorem, presented next.

Theorem 1.1.1. (Weak duality theorem) Let w ∈ Ω be a feasible solution of the primal
problem 1.1.1 and (α,β) a feasible solution of the dual problem 1.1.4. Then f(w) ≥
Θ(α,β).

Proof. From the definition of Θ(α,β) for w ∈ Ω we have

inf
u
L(u,α,β) ≤ L(w,α,β) = f(w) + αtg(w) + βth(w) ≤ f(w). (1.1.2)

The last inequality holds since the feasibility of w implies that

g(w) ≤ 0 and h(w) = 0 (1.1.3)

while the feasibility of α implies
α ≥ 0. (1.1.4)
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Therefore from (1.1.3)-(1.1.4)

βth(w) = 0 and αtg(w) ≤ 0.

The difference between the values of the primal and dual problems is known as duality
gap. Now we are going to see the strong duality theorem, which guarantees that the duality
gap is 0 in the optimization problems we are discussing later. This means that the dual
and the primal problems have the same value. The proof of the strong duality theorem
can be found in [4].

Theorem 1.1.2. (Strong duality theorem) Given an optimization problem like the one in
definition 1.1.1, where the gi and hi are affine functions, that is

h(w) = Aw − b (1.1.5)

for some matrix A and vector b, the duality gap is 0.

The last theorem of this section characterizes the optimum solution of a general opti-
mization problem [3].

Theorem 1.1.3. (Khun-Tucker) Given an optimization problem in the convex domain
Ω ⊆ Rn

min f(w), w ∈ Ω,
s.t gi(w) ≤ 0, i = 1, · · · , k,

hi(w) = 0, i = 1, · · · ,m,

with convex f , affine gi, hi, the necessary and sufficient conditions for a normal point w∗

to be an optimum are the existence of α∗ and β∗ such that

∂L(w∗, α∗, β∗)

∂w
= 0

∂L(w∗, α∗, β∗)

∂β
= 0

α∗i gi(w
∗) = 0, i = 1, · · · , k

gi(w
∗) ≤ 0, i = 1, · · · , k
α∗i ≥ 0, i = 1, · · · , k

1.2 Linear models

1.2.1 Regression

A linear regression model has the form

y = f(X) = Xw + w0, (1.2.1)

where X is the n×p data matrix and y is the n×1 response vector (n number of samples or
observations, p number of variables). The linear model either assumes that the regression
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function E(y|X) is linear or that the linear model is a reasonable aproximation, which is
usually the case. Therefore we assume that data comes from a model

y = f(X) = Xw + w0 + ε (1.2.2)

where ε ∼ N(0, σ) is the noise, and it stresses the fact that the linear model is only an
aproximation of the underlying true model, since it is very difficult in practice to have real
data that comes from a perfectly linear model.

The term w0 is known as the bias or intercept and it is usually included into the vector
w. That way, if we also add a column of 1s to the matrix X, we can write the model in
the more convenient form

y = Xw.

The components of the vector w, wj , are known as parameters or coefficients and the
columns of the matrix xj are the variables or features. These variables can come from
different sources [1]:

• quantitative inputs;

• transformations of quantitative inputs, x3 = xt1x2;

• basis expansions, such as x2 = x2
1;

• “dummy” variables coding of the levels of qualitative inputs. For instance if we have
a feature with 5 possible values we might create five different variables that are all
set to 0 but one.

Let xi be now the ith pattern, that is, the ith row of the matrix X. Tipically we
have a training set {xi,yi}, i = 1, . . . , n from which to estimate the parameters w. The
most popular estimation method is ordinary least squares (OLS), in which coefficients are
obtained by minimizing the residual sum of squares, defined as

RSS(w) =

n∑
i=1

(yi − xtiw)2 = (y −Xw)t(y −Xw) = ‖y −Xw‖22 (1.2.3)

that is
ŵ = argmin

{
‖y −Xw‖22

}
. (1.2.4)

It is easy to show that the optimization problem (3.3.4) has a closed-form solution.
Differenciating in (1.2.3) with respect to w we obtain

∂RSS

∂w
= −2Xt(y −Xw) (1.2.5)

∂2RSS

∂w
= 2XtX.

Assuming that X has full column rank and hence XtX is positive definite, we set the
first derivative to zero

Xt(y −Xw) = 0, (1.2.6)

to obtain the unique solution
ŵ = (XtX)−1Xty. (1.2.7)

The fitted values at the training inputs are

ŷ = Xŵ = X(XtX)−1Xty. (1.2.8)
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Figure 1.2.1: Linear least squares fitting with X ∈ R

The matrix H = X(XtX)−1Xt is sometimes called the “hat” matrix. We can also make
predictions for new data X̃ that was not used to fit the model. The predicted values are
given by f(X̃) = X̃ŵ.

From a geometrical point of view, the least squares solution is the p + 1 dimensional
hyperplane that minimizes the sum of squared residuals. The coefficients are chosen so
that the residual vector y− ŷ is orthogonal to the subspace spaned by the columns of the
input matrix X. This orthogonality is expresed in (1.2.5), and the resulting estimate ŷ is
the orthogonal projection of y into this subspace. Hence the matrix H is also known as the
projection matrix. Figure 1.2.1 shows an example of the regression hyperplane in a two-
dimensional space for randomly generated data with w1 = 0.2, w0 = 2 and ε ∼ N(0, 2.5).

It may happen that the columns of X are not linearly independent so that X is not
full rank. This is the case, for example, if two of the variables are perfectly correlated.
Then the matrix XtX is singular, the inverse in equation (2.2.3) cannot be computed and
the coefficients w are not uniquely defined. The natural way to solve this non-unique
representation is to remove from the matrix X all the redundant variables.

Rank deficiencies also accur when the number of variables p is bigger than the number
of observations n. This happens frequently in fields such as image processing and bioin-
formatics. Redundant variables are non-existent in this case, so the less important ones
must be filtered for the problem to be solvable. Another option is to control the fit by
regularization, as explained in section 1.4.
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1.2.2 Classification

As explained before, in the classification problem the predictor G(x) takes values in a dis-
crete set G. Therefore we can always divide our input space into regions labeled according
to the classification. In the linear methods for classification, these decission boundaries
will be linear.

One of the most common ones is logistic regression, where we model the posterior
probabilities of the K classes via linear functions in x, while at the same time we make
sure that they sum one. Let xi be the ith observation (row) of the input matrix X and yi
the associated label. For the sake of simplicity, we are going to assume that K = 2 and we
are going to label the two classes as 0/1. Then, the probability of belonging to the positive
class (yi = 1) is defined as

p(yi = 1|xi) = π(xi) =
1

1 + exp(−wtxi)
, (1.2.9)

and the probability of belonging to the negative class (yi = 0) is

p(yi = 0|xi) = 1− π(xi) = π(−xi) =
1

1 + exp(wtxi)
. (1.2.10)

Logistic regression models are usually fit by maximum likelihood, using the conditional
likelihood of G given X. The log-likelihood for n observations is

L(w) =
n∑
i=1

yi log π(xi) + (1− yi) log π(−xi)

=
n∑
i=1

yiw
txi + log π(−xi).

Next we have to maximize the log-likelihood (or minimize the negative log-likelihood,
which is usually more convinient). The derivatives of the log-likelihood with respect to w
are

∂L(w)

∂w
=

n∑
i=1

xi(yi − π(xi)), (1.2.11)

that is, p+1 equations non-linear in w. This optimization can be performed with different
algorithms such as iteratively reweighted least squares or IRLS. It is worth mentioning that
maximum likelihood can exhibit severe over-fitting for data sets that are linearly separable
[2]. Once the weights are estimated, new observations can be classified using the rule

ŷ = G(x) =

{
0 if π(x) ≥ 0.5
1 if π(x) < 0.5

Last it is also important to mention that logistic regression can be extended to the
multinomial setting (K > 2). See [1] and [2] for more details.

1.3 Non-linear models

1.3.1 Multilayer perceptron

A multilayer perceptron (MLP) is a feedforward artificial neural network with multiple
layers of nodes in a direct graph, with each layer fully connected to the next one. The first
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layer is the input layer and the last layer is known as the output layer. All the middle layers
are called hidden layers. In figure 1.3.1 there is an example of a multilayer perceptron with
one hidden layer, which is the most common one. Sometimes the more general term “neural
network” is used to described this type of multilayer perceptron, and in what follows both
will be used interchangeably.

Input layer Hidden layer Output layer

Figure 1.3.1: An example of a multilayer perceptron with one hidden layer

The neural network model can be described as series of functional transformations.
First we construct H linear combination of the input variables x1, . . . , xP

aj =
P∑
i=1

w
(1)
ji xi + w

(1)
j0 (1.3.1)

where H is the number of units in the hidden layer and the superscript indicates that the
corresponding parameters or “weights” connect the input layer to the hidden layer. The
parameters wj0 are the biases, and they can be included with the other weights if we add
a new input x0 equal to one. The quantities aj are the activations of the hidden units.
These values are again linearly combined after being transformed using a differentiable,
nonlinear activation function Φ

ak =
H∑
j=1

w
(2)
kj Φ(aj) + w

(2)
k0 (1.3.2)

where k = 1, . . . ,K, and K is the number of outputs. Here the superscript indicates
that these weights are the ones from the hidden layer to the ouput layer. The nonlinear
functions Φ are usually chosen to be sigmoidal functions such as logistic sigmoid or the
’tanh’ function. Finally the output unit activations are transformed again using another
activation function to give the network outputs yk,

yk = σ(ak). (1.3.3)

This output activation function depend on the type of problem we are trying to solve.
Therefore, for regression problems the output activation function is the identity, σ(a) = a
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E(W)

w2

w1

wa wb

Figure 1.3.2: Geometrical view of the error function E(w). Point wA is a local minimum
and point wB is the global minimum [2]

while for binary classification problems the output is transformed using a logistic sigmoid
function

σ(a) =
1

1 + exp(−a)
. (1.3.4)

The previous steps can be combined to give the overall network function, that, for one
output k takes the form

yk(x,w) = σ

 H∑
j=1

w
(2)
kj Φ

(
P∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

 . (1.3.5)

1.3.1.1 Backpropagation

Given a training set of input vectors {xn}, where n = 1, . . . , N , together with a corre-
sponding set of target vectors {tn}, we minimize the error function

E(w) =
1

2

N∑
n=1

‖y(xn,w)− tn‖2 (1.3.6)

Because the the error E(w) is a smooth continuous function of w, its smallest value
will occur at a point in weight space where the gradient is zero,

∇E(w) = 0.

However, there will be many points where the gradient vanishes but not all of them are
global minima, that is, the smallest value of the function for any weight. Any other minima
corresponding to higher values of the error function are local minima. Figure 1.3.2 shows
an example of error function as a surface in the weight space, with one local minimum and
one global minimum.

This function can be minimized using iterative procedures such as, gradient descent,
also known as steepest descent. This technique starts with an initial value or “guess” for
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the weights, w(0) and update the weight vector taking a small step in the direction of the
negative gradient, so that,

w(t+1) = w(t) − η∇E(w(t)), (1.3.7)

where the parameter η > 0 is the learning rate. It is worth mentioning that the error
function is defined with respect to a training set, so each step requires that the entire set
is processed. This is called batch learning, as oppose to online learning, where only a few
observations are present at each iteration (or even only one observation). There are faster
algorithms for batch training such as conjugate gradient and quasi-Newtown methods,
although not as simple as gradient descent.

As mentioned earlier, the error function has many local minima, so it may be necessary
to run the procedure multiple times starting from different initial points, randomly selected,
in order to find a good minimum. However, most of the times in practice we will not know
if it is a global minimum or not.

Finally, we need an efficient procedure to compute the gradient ∇E(w), since this
operation is performed at each iteration. This can be achieved using an algorithm called
backpropagation. We present next a slightly modified derivation of the algorithm from
[2], for a multilayer perceptron with one hidden layer and arbitrary differentiable nonlinear
activation functions. First we have to compute the activations of all the hidden and output
units for all the training patterns, using equations (1.3.1)-(1.3.3). Next, consider the error
for a particular training pattern n,

E =
1

2

K∑
k=1

(yk − tk)2. (1.3.8)

In order to compute the partial of the error function with respect to a weight wji we
have to apply the chain rule of partial derivatives

∂E

∂wji
=
∂E

aj

∂aj
∂wji

(1.3.9)

We now introduce the notation

δj ≡
∂E

∂aj
. (1.3.10)

Then, using equation (1.3.1) we get

∂aj
∂wji

= Φ(ai). (1.3.11)

Substituting (1.3.11) and (1.3.10) in (1.3.9) we obtain

∂E

∂wji
= δjΦ(ai). (1.3.12)

Thus, in order to evaluate the derivatives, we only need to calculate the value of δj for
each output unit and hidden unit and then apply (1.3.12). For the output units with linear
activation functions, yk = ak and then

δk = yk − tk. (1.3.13)

Let j be a hidden unit, then using again the chain rule for partial derivatives we get

δj ≡
∂E

∂aj
=
∑
k

∂E

ak

∂ak
∂aj

, (1.3.14)
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summing over all the output units k. Making use of (1.3.2) we can compute the derivative

∂ak
∂aj

= wkjΦ
′(aj). (1.3.15)

Substituting (1.3.10) and (1.3.15) into (1.3.14) we get the following backpropagation rule

δj = Φ′(aj)
∑
k

wkjδk (1.3.16)

The backpropagation procedure can be summarized as follows [2]:

1. Forward propagate an input vector xi through the network using equation (1.3.5),
storing all the intermediate activations.

2. Evaluate the δk for all the output units using (1.3.13).

3. Backpropagate the δ’s using (1.3.16) to obtain δj for each hidden unit in the network.

4. Use (1.3.12) to evaluate the required derivatives.

Finally, the gradient descent step for the multilayer perceptron can be written as

w
(t+1)
ji = w

(t)
ji − ηδjΦ(ai). (1.3.17)

It is worth mentioning that for batch methods we can obtain the total error simply by
summing over all patterns.

1.3.2 Support vector machines

Support Vector Machines (SVM) are a classification method capable of dealing with high
dimensional data. SVMs belong to the class of algorithms known as kernel methods, since
they depend on data only through dot-products. Therefore, they can be replaced by kernel
functions, that compute these products in another feature space, different from the input
space, and possibly with higher dimension. This presents two main advantages:

1. The hability to generate non-linear decision functions using methods designed for
linear classifiers.

2. The clasifier can be applied to data that do not have a representation in a fixed
dimension space.

1.3.2.1 The linearly separable case

Given a training set {xi, yi}, i = 1, · · · , l, yi ∈ {−1, 1}, xi ∈ Rd, let’s assume that there is
an hyperplane that separates positive samples from the negative ones. The points x that
are on the hyperplane satisfy wtx + b = 0, where w is normal to the hyperplane, |b|/‖w‖
is the distance perpendicular from the hyperplane to the origin and ‖w‖ is the Euclidean
norm of w. Let d+ (d−) the distance from the hyperplane to the closest positive (negative)
point. Then, we define the margin of the hyperplane as d+ +d−. For the linearly separable
case, the SVM simply tries to find the maximum-margin separating hyperplane. This can
be formulated more formally as follows: assume that the points satisfy the restrictions

xtiw + b ≥ +1 for yi = +1 (1.3.18)

xtiw + b ≤ −1 for yi = −1 (1.3.19)
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These can be combined in

yi(x
t
iw + b)− 1 ≥ 0 ∀i. (1.3.20)

The points that satisfy the equality constraint in equation (1.3.18) are on the hyperplane
xtiw + b = 1 and the points that satisfy the equality constraint in equation (1.3.19) are on
the hyperplane xtiw + b = −1.

If the data is linearly separable, these hyperplanes separate the data and there are no
points between them. The distance from this hyperplanes to xtiw + b = 0 is d+ = d− =
1/‖w‖ and the margin defined above is simply 2/‖w‖. The maximum-margin hyperplane
can be found minimizing ‖w‖2 subject to the constraints (1.3.20).

min
w,b

1
2 ||w||

2

s.t yi(x
tw + b)− 1 ≥ 0 ∀i

(1.3.21)

Next lets transform the previous problem into the dual equivalent. The objective
function (1.3.21) is clearly convex and the restrictions are affine, therefore the Lagrangian
of the problem is

LP =
1

2
‖w‖2 −

l∑
i=1

αiyi(x
t
iw + b) +

l∑
i=1

αi (1.3.22)

Now we have to minimize LP with respect to w and b, requiring also that the derivatives
of LP with respect to αi are 0 and everything under the constraints αi ≥ 0. The derivatives
of LP with respect to w and b are

∂wLP = w −
l∑

i=1

αiyixi (1.3.23)

∂bLP = −
l∑

i=1

αiyi. (1.3.24)

Thus, the optimum (w∗, b∗) is obtained if the following constraints are met (KKT
conditions):

w −
∑
i

αiyixi = 0 (1.3.25)

−
∑
i

αiyi = 0 (1.3.26)

yi(xi ·w + b)− 1 ≥ 0 i = 1, · · · , l (1.3.27)

αi ≥ 0 ∀i (1.3.28)

αi(yi(xi ·w + b)− 1) = 0 ∀i (1.3.29)

Substituting (1.3.23) and (1.3.24) in (1.3.22) we get

LD =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjxi · xj . (1.3.30)

Therefore the new dual problem is defined as

max
α

∑
i αi −

1
2

∑
i,j αiαjyiyjxi · xj

s.t αi ≥ 0 ∀i∑
i αiyi = 0

(1.3.31)
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The dual problem is much easier to solve since the constraints are simpler. However,
most real world datasets are not linearly separable. In the following section we are going to
introduce the most common case in practice, that is, when data is not linearly separable.

1.3.2.2 Non-linearly separable case

In order to allow classification errors when data is not linearly separable, we replace the
constraints (1.3.20) by

yi(x
t
iw + b)− 1 + ξi ≥ 0 ∀i (1.3.32)

where ξi ≥ 0 are slack variables that make possible for a point to be inside the margin
0 ≤ ξi ≤ 1 or to be misclassified (ξ > 1). Since a data point is wrongly classified if
the value of its slack variable is larger than 1,

∑
i ξi is an upper bound on the number

of classification errors. The new goal is to maximize the margin i.e. minimize ||w||2 but
penalizing classification errors with the term C

∑
i ξi. The parameter C > 0 controls the

tradeoff between margin maximization and error minimization. The optimization problem
is now

min
w,b

1
2 ||w||

2 + C
∑l

i=1 ξi

s.t yi(xi ·w + b)− 1 + ξi ≥ 0 ∀i
ξi ≥ 0 ∀i

(1.3.33)

The dual formulation of this problem is obtained in the same way as the linearly
separable case

max
α

∑
i αi −

1
2

∑
i,j αiαjyiyjxi · xj

s.t 0 ≤ αi ≤ C ∀i∑
i αiyi = 0

(1.3.34)

1.3.2.3 Kernel SVM

Despite extending SVMs to deal with non-separable data, the decision function is still
linear, that is, the surface that separates both classes is an hyperplane. Most problems in
practice are in fact non-linear and thus it is useful to extend the SVM formulation for this
type of problems. The non-linear SVM is based on the kernel trick explained below.

The kernel trick comes from the idea of transforming the input variables into another
set of features in a higher dimensional space, where the data points are linearly separable.
More formally, let φ(xi) be a function that takes a point in a d-dimensional space and
returns another point in a D-dimensional space, D >> d. If φ is choosen correctly then
we obtain another problem that is linearly separable in this new feature space.

However, if we try to compute explicitly the value of φ(xi), we run into two main
problems, one of them practical and another one theoretical:

1. The feature space can have a very large dimension, even infinite.

2. It can be very computationally expensive to compute the mapping values every time
they are needed, or even storing them in memory.

The kernel trick comes from the observation that the dual function (1.3.34) only depends
on the x through dot products, that is, they always appear in pairs. If we define the kernel
function as

k(xixj) = φ(xi) · φ(xj) (1.3.35)
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the problem can be rewritten

max
α

∑
i αi −

1
2

∑
i,j αiαjyiyjk(xixj)

s.t 0 ≤ αi ≤ C ∀i∑
i αiyi = 0

(1.3.36)

Therefore it is not neccessary to know the mapping function φ but only the kernel
function k. The only condition is that the kernel function must be decomposed into a
dot product of two functions. Mercer’s theorem states which types of kernels can be used,
although in practice there are a few known kernels that met Mercer’s condition and they
are the most used. An example is the RBF kernel

k(xi,xj) = exp

(
−||xi − xj ||2

2σ2

)
(1.3.37)

The value of w in the transformed space is

w =
∑
i

αiyiφ(xi)

and, usually, it cannot be computed explicitly. However, a new point x can be classified
using again the kernel trick

wtφ(x) =
∑
i

αiyik(xi,x) (1.3.38)

Note also that only patterns with αi > 0 (support vectors) are needed for the classification
of a new point, which is a nice property.

1.3.2.4 SVMs for regression

The full kernel SVM problem (1.3.36) is a binary classfication problem, since the possible
values for the targets are either −1 or +1. However, the SVM formulation can be extended
in order to solve regression problems, and we are going to do so in this section.

SVMs applied to a regression problem perform a linear regression in the feature space
using the ε-insensitive loss as cost function and, at the same time, regularizing the weights
so large values are penalized (more on regularization in section 1.4). It is important to
notice that the feature space is different from the input space, and thus depending on the
kernel the problem could be non-linear on the input variables. The ε-insensitive loss is
defined as

Lε(y, f(x,w)) =

{
0 if |y − f(x,w)| ≤ ε
|y − f(x,w)| − ε otherwise

(1.3.39)

and the SVM for regression solves the following optimization problem

min
w,b

1
2 ||w||

2 + C
∑l

i=1 (ξi + ξ∗i )

s.t yi − f(xi,w)− b ≤ ε+ ξ∗i
f(xi,w) + b− yi ≤ ε+ ξi

ξi, ξ
∗
i ≥ 0.

(1.3.40)

where the parameter C determines the tradeoff between model complexity and the amount
of deviations larger than ε allowed, and the parameter ε controls the width of the ε-
insensitive tube. It can be proven that a good value for ε has to be proportional to the
noise of the input value, i.e. ε ∝ σ [5]. However, ε also depends on the number of samples
in the training set.
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The selection of the hyperparameters is a big problem, since the SVM performance
depends greatly on their value. One possible option is to use cross-validation over a 3D
grid of (C, σ, ε) values, selecting the tuple with the lowest error.

1.4 Regularization

1.4.1 Ill-posed problems

In the previous sections, given some data D, we minimize some kind of error function
ED(x). However, as we mentioned before, minimizing the error term alone is often an
ill-posed problem: solutions are not unique and sensitive to data variations. Therefore, a
regularization term is usually added to enforce some desirable properties on the solution,
such us smoothness, sparsity, low-rank, and so on, changing the criterion function to

J(x) = ED(x)︸ ︷︷ ︸
error

+ω(x)︸︷︷︸
reg.

. (1.4.1)

Another common problem solved by regularization is known as overfitting, and it occurs
when a statistical model is too complex and it exhibits poor generalization. This means
that the model is memorizing the particular structure of the training data, but it is unable
to learn the underlying relationship. As a result, such model will perform poorly on new
unseen data, also known as test data. An example can be seen in figure 1.4.1.

1.4.2 Bias-variance tradeoff

Let’s assume that data comes from a model

Y = f(X) + ε (1.4.2)

with E[ε] = 0 and Var(ε) = σ2. For simplicity we also assume that the values of x are fixed
in advance. Then, the expected prediction error of an estimator f̂(X) at a point x, also
know as simply prediction, test or generalization error is defined as

PE = E[(Y − f̂(x))2] (1.4.3)

and it can be decomposed into

PE =
(
E[f̂(x)]− f(x)

)2
+ E

[
f̂(x)− E[f̂(x)]

]2
+ Var(ε)

=
(
E[f̂(x)]− f(x)

)2
+ E

[
f̂(x)− E[f̂(x)]

]2
+ σ2

= Bias2 + Variance + Noise

The third term is the irreducible error, the inherent uncertainty from noise in the true
relationship and cannot be reduced by any model. The first and second terms are under
our control and make up the mean squared error of f̂(x) in estimating f(x).

In practice, for every model there is a bias-variance tradeoff [6], when varying its
“complexity” parameters. For instance in the model from figure 1.4.1 we could consider
the complexity parameter to be the degree of the polynomial d used to fit the points. If
d ≥ 11 the model is very complex and it fits the training points perfectly, i.e, the bias is
very close to 0. However, the variance is very large, since for any other point not in the
training set the model will perform poorly. On the other hand, if d = 2, the model is much
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Figure 1.4.1: Points are generated from a random model y = x2 + N (0, 2) and they are
fitted to both quadratic (blue solid line) and polynomial functions (black dashed line). The
high-order polynomial fits perfectly the training data, but it will exhibit poor generaliza-
tion, since it is also learning the random error or noise of the data.

simpler. Now the bias is clearly not zero but the variance is reduced significantly, so we
may consider this to be a better model.

Typically we would like to choose our model complexity to trade bias off with variance
in such a way as to minimize the test error, which is the error of new observations (not
used to fit the model). Figure 1.4.2 shows the typical behavior of train and test error as
model complexity is varied. The training error tends to decrease whenever we increase the
model complexity, overfitting the data. However, with too much fitting the model adapts
too closely and will not generalize well. In contrast, if the model is not complex enough,
it will underfit and may have large bias.

As mentioned earlier, a common approach to control the complexity of the problem is
through regularization. We present next some common regularization techniques involving
the l2 penalty. More recent methods involving the l1 penalty and mixed penalties will be
described further in chapter 2.

1.4.3 Ridge regression

Consider the linear model with noise ε ∼ N(0, σ)
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Figure 1.4.2: Test and training error as a function of the model complexity [1]

y = Xw + ε, (1.4.4)

we are going to prove that the least squares estimates are unbiased. Substitute (1.4.4) into
(2.2.3)

ŵ = (XtX)−1Xty

= (XtX)−1Xt(Xw + ε)

= w + (XtX)−1Xtε

Now fix the data matrix X and take expectations on both sides,

E[ŵ] = w + E[(XtX)−1Xtε] = w + (XtX)−1XtE[ε] = w, (1.4.5)

since E[ε] = 0 and the X are fixed. In addition of being unbiased estimates, the Gauss-
Markov theorem [7] also states that in a linear regression model they are the best ones,
where “best” means giving the lowest variance. Let Var(y) = σ2, then the variance of the
OLS estimates is

Var(ŵ) = Var
(
(XtX)−1Xty

)
= ((XtX)−1Xt) Var(y)

(
(XtX)−1Xt

)t
= Var(y)((XtX)−1Xt)(X(XtX)−1)

= σ2(XtX)−1

Now we are going to prove the Gauss-Markov theorem. Let w̃ be another linear esti-
mator,

w̃ =
(
(XtX)−1Xt + D

)
y, (1.4.6)
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where D is a p× n non-zero matrix. The expectation of w̃ is

E[w̃] = E[((XtX)−1Xt + D)y]

= E[((XtX)−1Xt + D)(Xw + ε)]

= E[((XtX)−1Xt + D)(Xw)] + E[(XtX)−1Xt + D)ε]

= ((XtX)−1Xt + D)(Xw) + ((XtX)−1Xt + D)E[ε]

= (XtX)−1XtXw + DXw

= (I + DX)w.

From this we conclude that DX = 0 for this estimator to be unbiased. The variance of w̃
is

Var(w̃) = Var
(
(XtX)−1Xt + D

)
y)

= Var(y)((XtX)−1Xt + D)((XtX)−1Xt + D)t

= σ2((XtX)−1Xt + D)(X(XtX)−1 + Dt)

= σ2((XtX)−1XtX(XtX)−1 + (XtX)−1XtDt + DX(XtX)−1 + DDt)

= σ2((XtX)−1 + (XtX)−1(DX)t + DDt)

= σ2((XtX)−1 + DDt)

= σ2((XtX)−1 + σ2DDt

= Var(ŵ) + σ2DDt

≥ Var(ŵ),

since DDt is a positive definite matrix, DDt ≥ 0. Therefore the least squares estimators ŵ
are the unbiased linear estimators with the lowest variance, or BLUE (best linear unbiased
estimator).

However, in practice there are many reason why the least square estimates are not a
satisfactory solution to the regression problem. Recall that one of these reasons was the
non-uniqueness of the OLSsolution when the number of variables is larger than the number
of observations.

Ridge regression its a regularized version of linear regression, that adds a l2 penalty
term to the standard least squares objective function

ŵ = argmin


n∑
i=1

yi −∑
j

wjxij

2

+ λ
∑
j

w2
j

 = argmin
{
‖y −Xw‖22 + λ‖w‖22

}
.

(1.4.7)
Via the Lagrangian form, it can be seen [1] that the previous optimization problem is

equivalent to

min

N∑
i=1

yi −∑
j

wjxij

2

s.t
∑
j

w2
j ≤ t. (1.4.8)

Using similar arguments to the ordinary least squares case, it is easy to show that ridge
regression has also a closed form solution

ŵ = (XtX + λI)−1Xty (1.4.9)

Note that, in contrast to ordinary least squares, now the matrix (XtX + λI) is al-
ways positive definite and therefore invertible, resulting in a unique solution for the ridge
estimates.
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1.4.4 Weight decay

Weight decay adds a l2 penalty term to the multilayer perceptron error function (1.3.8)

E =
1

2

K∑
k=1

(yk − tk)2 +
λ

2

∑
w2
ji. (1.4.10)

In a linear model, this form of weight decay is equivalent to ridge regression. The new
derivative of the error function with respect to the weights is

∂E

∂wji
= δjΦ(ai) + λwji, (1.4.11)

and the gradient descent step is changed as follows

w
(t+1)
ji = w

(t)
ji − ηδjΦ(ai)− ηλw(t)

ji . (1.4.12)

Therefore, in addition to each weight update by backpropagation, the weight is also
decreased by a part ηλ of its old value. An additional problem with this approach is that we
have to select the value of the parameter λ, since the generalization hability of the network
can depend crucially on this constant. One possible approach is to train several networks
with different values for λ and select the one with the lowest generalization error. This
error can be estimated either by using cross-validation or a whole new different validation
set.

Another practical consideration for getting good results with weight decay is to stan-
darize both inputs and targets so they are in the same range. It is also a good idea to omit
the biases from the penalization [8].

We should also mention that there is two more meta-parameters whose values should
be selected: the network architecture (number of hidden neurons) and the η constant.
This may result in cross-validation not being computationally feasible, since we have to
try with every triplet of parameters in a 3D grid. However, most modern algorithms such
as conjugate gradient automatically select the optimal value for η in each step using a
linear search. This means that we only have a 2D grid of values to optimize. In chapter 4
we will also discuss some other methods to select the number of hidden units.

1.4.5 SVM as a Penalization Method

Consider the optimization problem with f(x) = φ(x)tw + b

min
w

n∑
i=1

[1− yif(xi)]+ +
λ

2
‖w‖2 (1.4.13)

where the subscript “+” indicates the positive part. This has the form loss + penalty
(equation (1.4.1)) and it can be shown that the solution to (1.4.13), with λ = 1

C , is the
same as that for (1.3.33) [1].

The loss function L(y, f(x)) = [1 − yf(x)]+ is known as the “hinge” loss and it is a
particular case of the ε-insensitive loss (1.3.39) used for SVR with ε = 0. Figure 1.4.3
shows that it is reasonable for two-class classification, when compared with the logistic
regression loss function.

The conclusion of this section is that SVM can be considered as a regularization prob-
lem, where the coefficients w are shrunk towards 0 (excluding the bias). Similarly, the
SVR problem can be seen as a regularized version of the ε-insensitive loss [1].
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Figure 1.4.3: Support Vector Machines loss function (hinge loss) compared to the logistic
regression loss (negative log-likelihood loss). They are shown as a function of yf rather
than f because of the symmetry between the y = +1 and y = −1 case [1].



Chapter 2

Classic sparse models

2.1 Introduction

Let’s consider the usual regression problem

y = Xw + ε (2.1.1)

where X is the n× p input matrix (xij denotes the j–th coordinate of the pattern i), y is
the n×1 output vector, ε ∼ N(0, σ) some white noise, n is the number of patterns and p is
the number of features. Recall from chapter 1 that ordinary least squares (OLS) estimates
are obtained as

ŵ = argmin
{
‖y −Xw‖22

}
. (2.1.2)

There are at least two main reasons why these estimates may not be very useful in
most cases:

1. Accuracy of the predictions: OLS estimates usually have low bias but high variance
(in the common case where n >> p). In some cases accuracy increases by reducing
or even setting to 0 some coefficients. This increases the bias a little bit but reduces
variance to a great extent.

2. Interpretability : When the number of predictors is big, sometimes it is interesting to
find the subset that affects outputs the most. These estimates do not provide this
information.

The two standard techniques to improve OLS estimates, subset selection [1] and ridge
regression (chapter 1), have disadvantages. Subset selection obtains interpretable models
but it can be very variable since it is a discrete process: predictors are either kept in the
model or dropped from it. On the other hand, ridge regression is a continuous process,
in the sense that all coefficients are shrunk (but not dropped) and hence more robust.
However, it is very rare that coefficients become strictly 0 and therefore models are not
interpretable.

2.2 Lasso

Lasso (Least Absolute Shrinkage and Selection Operator) is a technique that reduces
(shrinks) some coefficients and sets others to 0; therefore it tries to maintain the advan-
tages of both subset selection and ridge regression. Let’s assume, without loss of generality,
that the xij are normalized to have zero mean and unit variance, that is,

∑
i xij/n = 0,

21
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∑
i x

2
ij/n = 1 and the output variables yi have zero mean. Let ŵ = (ŵ1, ŵ2, . . . , ŵp)

t be
the lasso estimate, defined by

ŵ = argmin


n∑
i=1

yi −∑
j

wjxij

2 s.t
∑
j

|wj | ≤ t (2.2.1)

where t is a tuning parameter. This parameter controls the amount of shrinking that is
applied to the estimates. Let ŵ0

j be the full OLS estimates and t0 =
∑

j |ŵ0
j |. Values of

t < t0, will cause shrinking of the coefficients towards 0, and some coefficients may be
strictly 0. For instance if t = t0/2, the effect will be similar to finding the best subset of
size p/2 [9]. The motivation for the lasso came from and interesting proposal of Breiman,
the non-negative garotte [10]

min

n∑
i=1

yi −∑
j

cjŵ
0
jxij

2

s.t cj ≥ 0,
∑

cj ≤ t. (2.2.2)

The garotte starts with the full OLS estimates (ŵ0
j ) and shrinks them using non-negative

factors (cj) whose sum is bounded. The ŵj(t) = cjŵ
0
j are the new predictor coefficients.

As t is decreased, more of the {cj} become 0, and the remaining non-zero ŵj(t) are shrunk.

Orthonormal case The orthonormal design case is a highly simplified situation (it is
never the case in real-world datasets) where lasso, subset selection, non-negative garrote
and ridge regression solutions can be computed exactly. This can give interesting insight
into the comparative behaviour of those methods.

Recall that X is the n× p matrix with ijth entry xij and suppose that XtX = I. Let
ŵ0 be the ordinary least squares solution (chapter 1)

ŵ0 = (XtX)−1Xty (2.2.3)

In the case of an orthogonal design, equation (2.2.3) simplifies to

ŵ0 = Xty.

Using Lagrangian theory, it can be seen [1] that the lasso problem (2.2.1) is equivalent to

ŵ = argmin
{
‖y −Xw‖22 + λ‖w‖1

}
, (2.2.4)

with λ ≥ 0. Note that the lasso penalty is convex, but not strictly convex (refer to chapter
3 for the definitions). Expanding the first term of the previous equation and using the fact
that X is orthonormal, we get yty− 2ytXw + wtw. Since yty does not contain any of the
variables to minimize and noting that ŵ0 = Xty, we can rewrite the problem (2.2.4) as

ŵ = argmin
{

2ŵ0w + ‖w‖22 + λ‖w‖1
}

= argmin

∑
j

2w0
jwj + w2

j + λ|wj |

 (2.2.5)

The objective function is now a sum of objectives, each corresponding to a separate
variable wj , so they may be solved individually. Fixing a certain j, then we want to
minimize

2w0
jwj + w2

j + λ|wj |.



2.2. Lasso 23

Note that if w0
j > 0 then wj ≥ 0 since otherwise we could flip the sign and get a lower

value for the objective function. Similarly, if w0
j < 0 then wj ≤ 0. For the first case,

differentiating with respect to wj and setting equal to 0 we get

wj = w0
j −

λ

2
.

But this is only positive if the right-hand side is non-negative, that is, we have to take

ŵj =

(
ŵ0
j −

λ

2

)+

= sign(ŵ0
j )

(
|ŵ0
j | −

λ

2

)+

(2.2.6)

Using a similar argument the same solution is obtained for the w0
j < 0 case. Finally,

letting γ = λ
2 we get that the lasso solutions for the orthonormal case are

ŵj = sign(ŵ0
j )(|ŵ0

j | − γ)+ (2.2.7)

where γ is determined by the condition
∑
ŵj = t. In fact, for every t ≥ 0 it is possible to

find a γ ≥ 0 for which the solution of the problem is the same [11].
In this scenario, the best subset selection of size k reduces to choosing the k largest

coefficients in absolute value and setting the rest to 0. This is equivalent to

ŵj =

{
ŵ0
j if |ŵ0

j | > λ

0 otherwise

for some choice of λ [9]. Recall from chapter 1 that ridge regression solutions are

ŵ = (XtX + λI)−1Xty.

If XtX = I and noting again that ŵ0 = Xty, the solutions for the orthonormal case
can be rewritten as

ŵj =
1

1 + λ
ŵ0
j .

On the other hand, the solutions for the garotte are [10]

ŵj =

(
1− λ2

(ŵ0
j )

2

)+

ŵ0
j .

Figure 2.2.1 shows the comparison between lasso, ridge regression, garotte and best
subset selection solutions as a function of the OLS estimates. As it can be seen the lasso
often obtains some coefficients equal to 0, while shrinking the rest towards 0. Best subset
selection also obtains coefficients equal to 0, but the rest remain unchanged. The garotte
is similar to the lasso, with less shrinkage for larger coefficients. According to [9], the
differences can be large if the design is not orthonormal. Finally, rigde regression shrinks
all coefficients, but none of them is strictly 0.

Geometry Now let’s look at the lasso penalty from a geometrical point of view. Figure
2.2.2 shows the elliptical contours of the objective function, centered at the OLS estimates.
The lasso solution is the first place where these estimates intersect with the unit square.
Sometimes this will happen at a corner and thus that coefficient will be 0. In the ridge
regression case, the constrain region is a circle and hence zero solutions will rarely result.
As it can be deduced from the figure, ridge regression contour plots intersect with the circle
in a point (0, y) only if the corresponding OLS estimate is already in the y-axis, i.e. the
coefficient is already 0, which is a much more unlikely event.
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Figure 2.2.1: Subset regression, ridge regression, lasso and garotte shrinkage comparison
in the case of an orthonormal design.

Figure 2.2.2: Lasso (a) and ridge regression (b) estimates [9]
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2.2.1 Prediction error and estimation of t

In this section we describe the three methods proposed in [9] in order to estimate the
lasso parameter t: cross-validation, generalized cross-validation and an analytical unbiased
estimation of risk.

Cross-validation Let’s assume a linear model

y = η(X) + ε

where E(ε) = 0 and var(ε) = σ2. The mean squared error of an estimator η̂(X) is defined
by

MSE = E{(η̂(X)− η(X))2}. (2.2.8)

The prediction error is a similar measure, already defined in chapter 1, that may be written
in terms of the MSE

PE = E{(y − η̂(X))2}
= E{(η(X) + ε− η̂(X))2}
= E{(η(X)− η̂(X))2}+ 2E{(η(X)− η̂(X))ε}+ E{ε2}
= E{(η̂(X)− η(X))2}+ σ2

= MSE + σ2 (2.2.9)

The empirical prediction error for the lasso is estimated using 5-fold cross-validation.
The parameter used is a normalized version of t, s = t/

∑
ŵ0
j , and the prediction error is

computed for values of s from 0 to 1, both included. Finally, the value ŝ with the lowest
PEis selected.

The advantages of using s instead of t is that it lies in the interval [0, 1], since t is an
upper bound on the weights,

∑
|wj | ≤ t. As we have seen before, values of t <

∑
ŵ0
j will

shrink the OLS coefficients towards 0. The first value for which there is no shrinkage is
t =

∑
ŵ0
j and it corresponds to s = 1. For smaller values of s the amount of shrinkage

increases until we reach the extreme trivial case s = 0, where all the weights are also 0.
The main disadvantage of using the normalized parameter s is that first we have to

perform an ordinary least squares regression on the data in order to obtain the weights
ŵ0
j . Although there is a closed form solution for these estimates, it involves computing an

inverse, which may not exist (see equation (2.2.3)). Moreover, even if we can compute the
inverse theoretically, it may be very expensive or even not possible at all in practice, due
to memory limitations (especially if the data has very high dimension).

Generalized cross-validation This method is derived from a linear approximation of
the lasso estimate. The constraint

∑
|wj | ≤ t can be rewritten as

∑
w2
j/|wj | ≤ t. As

we have seen before, using Lagrangian theory, this is equivalent to adding the penalty
λ
∑
w2
j/|wj | to the residual sum of squares, with λ depending on t. The solution for this

problem can be written as the ridge regression estimator [9]

w̃ = (XtX + λW+)−1Xty (2.2.10)

where W = diag(|w̃j |) and W+ denotes the generalized inverse.
Therefore the number of effective parameters in w̃ can be approximated by

p(t) = tr{X(XtX + λW+)−1Xt}.
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Letting rss(t) be the residual sum of squares, the following statistic is defined in [9]

GCV(t) =
1

n

rss(t)

{1− p(t)/n}2
(2.2.11)

Finally, the parameter t with the lowest value of the statistic GCV(t) is selected.
Given a discrete grid with, for example, 15 different values of the parameter, it is impor-

tant to notice that this methods only needs 15 applications of the optimization procedure,
while the previous method needs 15× 5 = 75, assuming we use 5−fold cross validation.

Unbiased estimator of risk Let τ̂ = σ̂/
√
n be the estimated standard error of the OLS

model defined by ŵ0
j , where σ̂2 =

∑
(yi − ŷi)2/(n − p). Then, according to [9], ŵ0

j/τ̂ are
approximately independent standard normal variables (conditioned to X). Using Stein’s
unbiased estimate of risk [12], the following formula can be derived

R{ŵ(γ)} ≈ τ̂2

p− 2#(j; ŵ0
j/τ̂ < γ) +

p∑
j=1

max(ŵ0
j/τ̂ , γ)2


as an unbiased estimator of the risk or mean-squared error E[(ŵ(γ)−w)2], where ŵj(γ) =
sign(ŵ0

j )(|ŵ0
j/τ̂ | − γ)+. Therefore an estimator for γ can be obtained as the minimizer of

R{ŵ(γ)}:
γ̂ = argmin

γ≥0
[R{ŵ(γ)}].

Assuming an orthonormal design, we can obtain an estimator of the lasso parameter t

t̂ =
∑

(|ŵ0
j | − γ̂)+.

Although the previous derivation for t̂ assumes an orthogonal design, we can still try to use
it in a non-orthogonal setting. In [9] we can find simulated examples where this method
gives useful estimates of t, but they only provide heuristic arguments in favor of it.

2.2.2 Algorithm to find lasso solutions

If we set t ≥ 0, the problem (2.2.1) can be expressed as a least squared problem with 2p

linear inequality constraints, corresponding to the 2p possible signs of the coefficients wj .
More precisely, let g(w) =

∑n
i=1 (yi −

∑
j wjxij)

2 and δi, i = 1, 2, . . . , 2p be p−tuples
of the form (±1,±1, . . . ,±1). Then the condition

∑
|wj | ≤ t is equivalent to δiw ≤ t for

all i.
There are procedures such as Lawson and Hansen (1974) that solve the least-squares

problem subject to a general inequality restriction Gw ≤ h, where G is an m × p matrix
corresponding to the m inequality restrictions of the p-vector w. For this problem m = 2p

is a very large value and this procedure cannot be applied directly. However, this problem
can be approached introducing the inequality restrictions sequentially.

In more detail, for a given w and δi as before, let us define E = {i : δiw = t}, that is,
the set of restrictions that are fulfilled exactly. The set S = {i : δiw < t} corresponds to
the rest of the restrictions. Let GE be the matrix whose rows are δi for i ∈ E. Finally, let
1 be a vector of 1 whose size is equal to the number of rows in GE . The pseudo-code is
given in algorithm 1.

The algorithm converges in a finite number of steps, since in each one a new element is
added to the set E, and there is a total of 2p elements. The final result of the algorithm is
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Algorithm 1: Lawson and Hansen (1974).

Start with E = {i0} where δi0 = sign(ŵ0), with ŵ0 the full OLS estimates.
Find ŵ that minimizes g(w), subject to GEw ≤ t1
While

∑
|ŵj | > t

Add i to the set E, where δi = sign(ŵ)
Find ŵ that minimizes g(w) subject to GEw ≤ t1

End

a solution to the original problem since it can be shown that the Kuhn-Tucker conditions
are fulfilled for the sets E and S [9].

Although the algorithm is guaranteed to terminate in at most 2p iterations, if p is
large this rate of convergence is a limitation. However, in practice the average number of
iterations needed by the algorithm lies in the range (0.5p, 0.75p).

2.3 Fused lasso

2.3.1 Introduction

Fused lasso is a modification of the lasso where feature ordering is taken into account. If
we denote with xj the jth column of the design matrix X, we now assume that the xij are
realizations of features x1,x2, . . . ,xp that can be ordered in a meaningful manner. The
goal is to predict y given x1,x2, . . . ,xp, so the coefficients w are also grouped in blocks of
consecutive values. In particular, we are interested in problems where p >> n. We start
with a standard linear model

yi =
∑
j

xijwj + εi (2.3.1)

where the errors εi have zero mean and σ2 variance. We also assume that the predictors
are standardized to have zero mean and unit variance, and the outputs have zero mean.

It is important to notice that p is much larger than n in the applications we are
interested in, so in these problems the standard linear regression (OLS) is ill–conditioned
and prone to over-fitting. One possible solution for this is the lasso [9]. Recall that the lasso
finds the solution to the problem (2.2.1), where the bound t is a tunning parameter. For
sufficiently large t we obtain the OLS solution, or one of the many if p > n. For small values
of t, the solutions are sparse, that is, some coefficients are exactly 0. In contrast, ridge
regression does not produce sparse models. Subset selection does produce sparse models
but it is not a convex operation, since it can be understood as l0 constrained regression.
Moreover, best subset selection is essentially a combinatorial problem and therefore it is
not computationally feasible for, say, p > 30.

The lasso can be applied even if p > n, and it has an unique solution assuming that two
predictors are not co-linear [13]. Another interesting property of the solution is that the
number of coefficients different from 0 is at most min(p, n) [14], appendix A. A disadvantage
of the lasso is that it ignores feature ordering. In order to solve this problem we define the
fussed lasso as

ŵ = argmin


n∑
i=1

yi −∑
j

wjxij

2 s.t
∑
j

|wj | ≤ s1 and

p∑
j=2

|wj − wj−1| ≤ s2

(2.3.2)
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The first constraint is the standard Lasso one that encourages sparsity in the coef-
ficients, while the second encourages dispersity in their differences; s1 y s2 are tuning
parameters that have to be estimated.

2.3.2 Computational approach

First we are going to show how the fused lasso can be reduced to a Quadratic Program.
Assuming fixed s1 and s2, the lasso objective function is a quadratic programming problem.
This type of problems are difficult to solve if p is large. In order to solve it efficiently one
option is the algorithm SQOPT from Gill et al. (1997). This algorithm is designed for
quadratic problems with sparse linear constraints and we write next the fused lasso in this
way.

Let’s consider the decomposition wj = w+
j − w

−
j , where w+

j , w
−
j ≥ 0. Notice that, if

wj > 0 then w+
j = |wj |, w−j = 0 and if wj < 0 then w+

j = 0, w−j = |wj |. We define

θ =

{
w1 if j = 1
wj − wj−1 if j > 1

Consider also θj = θ+
j − θ

−
j with θ+

j , θ
−
j ≥ 0 and let L be the matrix

L =


1 0 0 . . . 0 0
−1 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −1 1


so θ = Lw (notice that L is invertible). If X is the n × p data matrix, w the p-vector of
coefficients and y the n-vector of outputs, the problem (2.3.2) can be rewritten as

ŵ = argmin{(y −Xw)t(y −Xw)} (2.3.3)

subject to 
−a0

0t

0
0

 ≤


L 0 0 −I I
I −I I 0 0
0 et et 0 0
0 0 0 et0 et0




w
w+

w−

θ+

θ−

 ≤


a0

0t

s1

s2

 , (2.3.4)

in addition to the non-negativity constraints w+,w−,θ+,θ− ≥ 0, where e is a column
vector with p 1s and I is the p × p identity matrix. Here a0 = (∞, 0, 0, . . . , 0). Since
w1 = θ1, setting its bounds to ±∞ avoids a double penalty for |w1|. Similarly e0 = (0, e),
i.e., we add a first component equal to 0 to e. Notice also that the larger matrix has
dimension (2p+ 2)× 5p and the 0s are in fact row vectors of dimension p with only 0s.

Now we are going to check that the previous problem is in fact equivalent to the fused
lasso problem. Starting with the objective function, by simple algebra

n∑
i=1

yi −∑
j

wjxij

2

= ‖y −Xw‖22 = (y −Xw)t(y −Xw).

Next, in order to see why the constraints are equivalent, note the following∑
j

|wj | =
∑
j

|w+
j − w

−
j | =

∑
j

w+
j + w−j =

∑
j

w+
j +

∑
j

w−j .
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Similarly,
p∑
j=2

|wj − wj−1| =
p∑
j=2

|θj | =
p∑
j=2

θ+
j +

p∑
j=2

θ−j .

Finally, multiplying the matrix in equation (2.3.4), we get as the last two rows(
0
0

)
≤
(

etw+ + etw−

et0θ
+ + et0θ

−

)
≤
(
s1

s2

)
, (2.3.5)

which are the same as the fused lasso constraints.

Next we discuss the search strategy to find s1 and s2. For small problems (p ' 1000 y
N ' 100), the previous procedure is fast enough to use it over a bi-dimensional grid of s1

and s2 values, with a moderate s resolution. For larger problems, it is necessary to use a
more restrictive search. First we exploit the fact that the complete path of lasso (s2 =∞)
and fusion solutions (s1 = ∞) can be solved efficiently using the Least Angle Regression
(LARS) algorithm [15].

More precisely, the lasso problem is solved by a simple modification of LARS described
in [15]. In order to solve the fusion problem, first we transform it into a lasso-type problem.
Let L be the same matrix as before and create then a new data matrix Z = XL−1. The
optimization problem

θ̂ = argmin{‖y − Zθ‖22 + s2|θ|}

is a lasso-type problem with weights θ = Lw, and it can be solved using again the LARS
procedure. The solution to the original fusion problem is obtained by transforming back
the weights, that is, ŵ = L−1θ̂.

Note that for a given problem only some values of the bounds (s1, s2) are possible. It
is also important to mention that the degrees of freedom of the lasso fit g can be estimated
as the number of non-zero coefficients [16], and they change as the parameter s1 is varied.
Therefore we write s1(g) to refer to a parameter s1 for which the lasso has g degress of
freedom, that is, g non-zero coefficients.

Since solutions for the constraints (s1(g),∞) can be found efficiently using the least
angle regression (LARS) procedure, first we use cross-validation in order to estimate an
optimal value for the degrees of freedom ĝ. As we will see later, LARS is an iterative
procedure that starts with all the coefficients equal to 0 and they join the model in sucesive
steps. Therefore, to obtain a solution with g non-zero coefficients we just simply stop the
algorithm exactly when g coefficients have joined the model (we refer to section 2.5 for
detailed information on the LARS algorithm). Now let

s2max{s1(ĝ)} =
∑
j

|ŵj(s1(ĝ))− ŵj−1(s1(ĝ))|.

Once s1 is fixed, this is the largest value of the bound s2 which affects the solution. Finally,
the following points are defined in a bi-dimensional grid

c1 = (s1(ĝ/2), s2max{s1(ĝ/2)}),
c2 = (s1(ĝ), s2max{s1(ĝ)}),
c3 = (s1({ĝ + min(n, p)}/2), s2max{s1({ĝ + min(n, p)}/2)}).

The search strategy consists in starting on those points and solve the fused lasso problem
for each pair of parameters, moving in the direction (1,−2). This search direction is
proposed in [17] where they mention it was found after extensive empirical experiments.
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2.3.3 Fused lasso degrees of freedom and solution sparsity

It is useful to consider how many degrees of freedom has the fused lasso as s1 and s2 vary.
The following definition of degrees of freedom is considered in [15]

df(ŷ) =
1

σ2

N∑
i=1

cov(yi, ŷi) (2.3.6)

where σ2 is the variance of yi. For standard linear regression with p < n, df(ŷ) = tr(ŷ) =
tr(Xŵ) = p, assuming that the matrix X has full rank, i.e., rank(X) = p. In an orthonor-
mal design, the lasso estimates are simply the soft-thresholding estimates (2.2.7) and [15]
shows that the degrees of freedom are equal to the number of coefficients different from 0.
For the fused lasso, [17] propose the following estimate of the degrees of freedom

df(ŷ) = #{non-zero coefficient blocks in ŵ}.

This is equivalent to count as 1 degree of freedom every consecutive non-zero sequence of
one or more equal wj-values.

Regarding the sparsity of the fused lasso solutions, we have mentioned before that
if p > n, lasso solutions will have at most n non-zero coefficients. Fused lasso has a
similar property, which applies not to the number of non-zero coefficients but rather to
the the number of sequences of identical non-zero coefficients. Let w0 = 0 and nseq(w) =∑p

j=1 1{wj 6= wj−1}. Then, under certain no-redundancy conditions on the matrix X the
fused lasso problem (2.3.2) has a unique solution ŵ with nseq(ŵ) ≤ n [17].

2.4 Elastic Net

We consider the usual regression model (2.1.1) with p predictors. As shown before there
are several options to find the weight vector ŵ, such as OLS, ridge regression or the lasso.
It is well known that OLS estimates often do poorly in both prediction and interpretation.
As a continuous shrinkage method, ridge regression achieves better prediction performance,
although it does not produce sparse and, hence, interpretable models.

The lasso fixes both problems, since it does simultaneously continuous shrinkage and
automatic variable selection. Some works ([9] and [18]) compare the prediction perfor-
mance of the lasso and ridge regression and found that none uniformly dominates over
the other. However, as data is rapidly increasing in both number and dimension, lasso
is more appealing due to its sparse representation. Although lasso has shown success in
many situations, it has some limitations:

1. In the p > n case, the lasso selects at most n variables, because of the nature of the
convex optimization problem [15]. From a variable selection method point of view,
this seems like a limiting feature. However, from a regression method point of view
this is not a bad property since the problem is ill-posed.

2. If there is a group of variables for which pairwise correlations are very high, then the
lasso tends to select somewhat randomly only one variable from the group CITE.

3. In the n > p case, if there are high correlations between predictors, it has been
empirically observed that the prediction of ridge regression is better than that of the
lasso.



2.4. Elastic Net 31

Moreover, for some problems, such as the gene selection problem in microarray data,
the lasso may not be a good variable selection method [19]. A typical microarray data
has many thousands of variables (genes) and often fewer than 100 samples. There are
also some genes with high correlations between them, forming a group. The ideal gene
selection method should be able to eliminate the trivial genes and automatically include
whole groups into the model. For this kind of p >> n and grouped variables situation,
the lasso is not the ideal method, because it can only select at most n variables out of p
candidates and it lacks the ability to reveal grouping information.

The elastic net is a method that tries to improve on both lasso and ridge regression as
it simultaneously does automatic selection and continuous shrinkage like the lasso, but it
can also select groups of correlated variables. It also lacks the limitation of selecting at
most n features out of p when p > n.

2.4.1 Näıve elastic net

Definition Suppose that the data set has n observations and p predictors. Let y ∈ Rn
be the response vector and X ∈ Rn×p the data matrix. As in the lasso, we assume that the
response has zero mean and the predictors are standarized. The näıve elastic net criterion
is defined as

L(w, λ1, λ2) = ||y −Xw||22 + λ2||w||22 + λ1||w||1 (2.4.1)

where we recall that

‖w‖22 =

p∑
j=1

w2
j (2.4.2)

‖w‖1 =

p∑
j=1

|wj |. (2.4.3)

The näıve elastic net estimator ŵ is the minimizer of equation (2.4.1):

ŵ = argmin
w
{L(w, λ1, λ2)}. (2.4.4)

Let α = λ2/(λ1 + λ2), then equation (2.4.4) is equivalent to [19]

ŵ = argmin
w

‖y −Xw‖22, s.t. (1− α)‖w‖1 + α‖w‖22 ≤ t. (2.4.5)

The function (1 − α)‖w‖1 + α‖w‖22 is the elastic net penalty, which is a convex com-
bination of the lasso penalty (l1-norm) and the ridge regression penalty (l2-norm). When
α = 1, the näıve elastic net becomes simply ridge regression. For all α ∈ (0, 1) the elastic
net penalty is strictly convex. Recall that the lasso penalty (α = 0) is convex but not
strictly convex and non-differenciable. See figure 2.4.1 for a graphical representation of the
elastic-net penalty.

We discuss next how to solve the elastic net problem. It turns out that minimizing
equation (2.4.1) is equivalent to a lasso-type optimization problem.

Lemma 2.4.1. Given a dataset (X,y) and (λ1, λ2), define an artificial dataset (X̃, ỹ) by

X̃(n+p)×p = (1 + λ2)−1/2

(
X√
λ2Ip

)
, ỹ(n+p) =

(
y
0

)
. (2.4.6)
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Elastic Net
Lasso

Ridge Regression

Figure 2.4.1: Lasso, ridge regression and elastic net penalties for the two variable case

Let γ = λ1/
√

(1 + λ2) and w̃ =
√

(1 + λ2)w. Then the näıve elastic net criterion can
be written as

L(w, γ) = L(w̃, γ) = ‖ỹ − X̃w̃‖22 + γ‖w̃‖1. (2.4.7)

Moreover, let

w̃∗ = argmin
w̃
{L(w̃, γ)};

then the elastic net optimum ŵ is given by

ŵ =
1√

(1 + λ2)
w̃∗.

Proof. We are going to show how to recover the criterion function (2.4.1) from the function
(2.4.7). First, substituting the values of γ and w̃ in equation (2.4.7) we get

L(w̃, γ) =
∥∥∥ỹ − X̃

√
(1 + λ2)w

∥∥∥2

2
+

λ1√
(1 + λ2)

∥∥∥√(1 + λ2)w
∥∥∥

1

=
∥∥∥ỹ − X̃

√
(1 + λ2)w

∥∥∥2

2
+ λ1 ‖w‖1 .

Now substituting the values of X̃ and ỹ into the previous equation we get

L(w, λ1, λ2) =

∥∥∥∥( y
0

)
− (1 + λ2)−1/2

(
X√
λ2Ip

)√
(1 + λ2)w

∥∥∥∥2

2

+ λ1 ‖w‖1

=

∥∥∥∥( y
0

)
−
(

Xw√
λ2w

)∥∥∥∥2

2

+ λ1 ‖w‖1

= ‖y −Xw‖22 + ‖ − λ1/2
2 w‖22 + λ1 ‖w‖1

= ‖y −Xw‖22 + λ2‖w‖22 + λ1‖w‖1,

which is exactly the same as equation (2.4.1)
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Lemma 2.4.1 shows that we can transform the näıve elastic net problem into a equivalent
lasso problem on augmented data. Note that the sample size in the augmented problem
is n + p and X̂ has rank p, which means that the näıve elastic net can potentially select
all p predictors in all situations. This property overcomes the limitation of the lasso that
were described in section 2.2. Lemma 2.4.1 also shows that näıve elastic net can perform
an automatic variable selection in a fashion similar to the lasso.

Let’s briefly discuss now the grouping effect in the elastic net model. In the p � n
case, the grouped variables situation is particularly important, for the reasons mentioned in
section 2.4. Qualitatively speaking, a regression method exhibits the grouping effect if the
regression coefficients of a group of highly correlated variables tend to be equal in absolute
value. In particular, in the extreme situation where some variables are exactly identical, the
regression method should assign identical coefficients to the identical variables. In order
to quantify the grouping effect, in [19] they consider the following generic penalization
problem

ŵ = argmin
w
{‖y −Xw‖22 + λJ(w)} (2.4.8)

where J(·) is positive valued for w 6= 0. The following lemma characterizes the grouping
effect depending on the penalty term J(·).

Lemma 2.4.2. Assume that xi = xj, i 6= j ∈ {1, . . . , p}.

1. If J(·) strictly convex, then ŵi = ŵj, ∀λ > 0.

2. If J(w) = ‖w‖1, then ŵiŵj ≥ 0 and for any s ∈ [0, 1], the weights ŵ∗(s)

ŵ∗k(s) =


ŵk if k 6= i and k 6= j,
(ŵi + ŵj) s if k = i,
(ŵi + ŵj)(1− s) if k = j,

are also minimizers of equation (2.4.8).

Lemma 2.4.2 shows a clear distinction between strictly convex penalty functions and
the lasso penalty. Strict convexity guarantees the grouping effect, i.e., equal coefficients in
the extreme situation with identical predictors. In contrast the lasso does not even have
an unique solution. The elastic net penalty is strictly convex for λ2 > 0, thus enjoying
lemma 2.4.2 property 1.

Theorem 2.4.1. Given data (X,y) and parameters (λ1, λ2), assume the y has zero mean
and the predictors X are standarized. Let ŵ(λ1, λ2) be the näıve elastic net estimate.
Suppose that ŵi(λ1, λ2)ŵj(λ1, λ2) > 0 and define

Dλ1,λ2(i, j) =
1

‖y‖1
|ŵi(λ1, λ2)− ŵj(λ1, λ2)|;

then

Dλ1,λ2(i, j) ≤ 1

λ2

√
2(1− ρij),

where ρij = xtixj is the xi,xj sample correlation.

Proofs of lemma 2.4.2 and theorem 2.4.1 can be found in [19], appendix A. The quantity
Dλ1,λ2(i, j) describes the difference between the coefficients paths of predictors i and j. If xi
and xj are highly correlated, theorem 2.4.1 says that the difference between the coefficient
paths of predictor i and predictor j is almost 0.
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2.4.2 Elastic net

As an automatic variable selection model, the näıve elastic net overcomes the limitations
of the lasso in scenarios (1) and (2). However, empirical evidence (see [19] sections 4 and 5)
shows that elastic net may not perform well unless it is very close to either ridge regression
or the lasso.

As we have mentioned before in section 1, an accurate penalization method achieves
good prediction performance through the bias-variance trade-off. The näıve elastic net
estimator is a two stage procedure: for each fixed λ2 first the ridge regression coefficients
are found and then a lasso-type shrinkage is done along the lasso coefficient solution paths.
This suggests that a double amount of shrinkage is being performed in the coefficients. This
double shrinkage does not help to reduce the variance much and introduces unnecessary
extra bias.

The elastic net estimate In order to improve the prediction performance of the näıve
elastic net estimate this double shrinkage has to be corrected. Given data (X,y), penalty
parameters (λ1, λ2), and augmented data (X̃, ỹ), the näıve elastic net solves the lasso-type
problem

w̃∗ = argmin
w̃

{
‖ỹ − X̃w̃‖22 +

λ1√
(1 + λ2

‖w̃‖1

}
(2.4.9)

The corrected elastic net estimates are defined in [19] by

ŵ(elastic net) =
√

(1 + λ2)w̃∗ (2.4.10)

Recalling that we had ŵ(näıve elastic net) = (1/
√

(1 + λ2))w̃∗, it follows that

ŵ(elastic net) = (1 + λ2)ŵ(näıve elastic net) (2.4.11)

Hence the elastic net coefficients are a rescaled version of the näıve elastic net coef-
ficients. Such an scaling transformation preserves the variable selection property of the
näıve elastic net and it is the simplest way to undo the double shrinkage. Empirically it
was also found in [19] that the elastic net performs very well when compared with the lasso
and ridge regression. We also see that behavior in the experimental results of chapter 4.

2.5 LARS

In the next chapter we will see how Lasso, Elastic Net and similar methods can be consid-
ered from the point of view of convex optimization. In particular, we will discuss advanced
modern methods that yield general algorithms to solve all these problems. But before doing
so, we will discuss in this section Least Angle Regression (LARS) [15], the first algorith-
mic procedure to solve lasso and related problems. LARS is a model selection algorithm
related to others such as the Lasso, Forward Stagewise regression and Forward Stepwise
regression. In fact, simple modifications of the LARS procedure implement algorithms to
solve both problems using less computer time.

One of the first model selection method was Forward Stepwise regression [20]. Given a
collection of possible predictors, we select the one having largest absolute correlation with
the response y, say x1, and perform a linear regression of y on x1. This leaves a residual
vector orthogonal to x1 that is now considered to be the response. We project the other
predictors orthogonally to x1 and repeat the selection process. After k steps we have a set
of predictors x1, x2, . . . xk that can be used to construct a linear model with k parameters.
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This procedure may be overly greedy since useful predictors can be discarded too early if
they are very correlated to previously selected xi predictors.

Next we describe Forward Stagewise regression [15], which is a much more cautious
version of Forward Stepwise regression, since it makes a lot of tiny steps (more than k) as
it moves towards a final model. Forward Stagewise starts with ŵ = 0 and builds up the
regression function in successive small steps. If ŵ is the current estimated weight vector
and ŷ = Xŵ, let c(ŷ) be the vector of current correlations, i.e.,

ĉ = c(ŷ) = Xt(y − ŷ) (2.5.1)

so that its j–th component ĉj is proportional to the correlation between covariate xj and
the current residual vector. The next step of the algorithm is taken in the direction of the
largest current correlation j, i.e., we first find j∗ as

j∗ = argmax |ĉj |

and then we update the estimate

ŷ = ŷ + ε · sign(ŷj∗)xj∗ (2.5.2)

with ε some small constant. Notice that if ε = |ĉj | this reduces to the Forward Stepwise
algorithm and the number of iterations is equal to k, the number of parameters in the
final model. As ε approaches 0, the algorithm is going to increase the number of iterations
(taking more computer time), but possibly also its accuracy, since it will not discard early
useful predictors very correlated with the response.

LARS is an intermediate approach [15], since a simple formula allows to implement
Forward Stagewise with fairly large steps, although not as large as those in Forward Step-
wise, reducing the computational burden. LARS builds up the estimates ŷ = Xŵ in k
steps, adding one covariate to the model in each step, so at the end only k of the ŵj are
non-zero. First we start with ŵ = 0 and find the predictor most correlated with the re-
sponse using (2.5.1)-(2.5.2). We take the largest step possible in that direction until some
other predictor has as much correlation with the current residual. At this point, LARS
proceeds in a direction equiangular to the current predictors until a third variable earns
its way into the most correlated set, and so on.

More formally, we begin at ŵ = 0, that is, ŷ0 = 0, and suppose that ŷA is the current
LARS output estimate. Then, the vector of current residual correlations is (2.5.1)

ĉ = Xt(y − ŷA).

The active set A is the set of indices corresponding to covariates with the greatest absolute
current correlations,

Ĉ = max
j
{|ĉj |} and A = {j : |ĉj | = Ĉ}. (2.5.3)

Assuming that the feature vectors x1,x2, . . . ,xp are linearly independent, we define the
n× |A|-matrix

XA = (. . . sign(ĉj)xj . . . )j∈A, (2.5.4)

with sign being the ±1-valued sign function. Let

GA = Xt
AXA and AA = (1tAG

−1
A 1A)−1/2 (2.5.5)

with 1A a vector of 1’s of lenght |A|. Then

ωA = AAG
−1
A 1A
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is the unit-norm vector making equal angles, less than 90◦, to the columns of XA, that is,

Xt
AuA = AA1A and ||uA||2 = 1. (2.5.6)

We also consider the equiangular vector

uA = XAωA. (2.5.7)

and compute the vector of lenght |A|

a = XtuA. (2.5.8)

Then the next step of the LARS algorithm selects first the new covariate ĵ to be added as

ĵ = argmin+

j∈Ac

{
Ĉ − ĉj
AA − aj

,
Ĉ + ĉj
AA + aj

}
= argmin+

j∈Ac
{γj}

where by argmin+ we indicate that the minimum is taken only over positive components.
Then ŷA is updated as

ŷA+ = ŷA + γ̂uA (2.5.9)

where γ̂ = γĵ , i.e.,

γ̂ = min+

j∈Ac

{
Ĉ − ĉj
AA − aj

,
Ĉ + ĉj
AA + aj

}
. (2.5.10)

Here min+ indicates again that the minimum is taken only over positive components for
each choice of j.

We discuss next the rationale for the above choices (see [15] for more details). Define

y(γ) = ŷA + γuA (2.5.11)

for γ > 0, so that the new residual correlation is

cj(γ) = xtj(y − y(γ))

= xtj(y − ŷA − γuA)

= xtj(y − ŷA)− γxtjuA

= ĉj − γaj (2.5.12)

For j ∈ A, equations (2.5.1), (2.5.6) and (2.5.3) yield

|cj(γ)| = Ĉ − γAA (2.5.13)

showing that all of the maximal absolute correlations of the features already selected will
decline equally for any value of γ. For j ∈ Ac, γ is selected so that the next covariate to
join the active set has a new correlation exactly equal to (2.5.13). Equating (2.5.12) with
(2.5.13) shows that cj(γ) equals the maximal value at γ = (Ĉ − ĉj)/(AA − aj). Likewise

−cj(γ) achieves its maximum at γ = (Ĉ + ĉj)/(AA + aj). Therefore we want to choose γ̂
in equation (2.5.10) as the smallest possible such value of γ. In other words, we select the
next covariate j to join the active set, i.e., A+ = A ∪ {ĵ}, as

ĵ = argmin+

j∈Ac

{
Ĉ − ĉj
AA − aj

,
Ĉ + ĉj
AA + aj

}
.

The new maximum absolute correlation Ĉ+ verifies then Ĉ+ = Ĉ − γ̂AA.



2.6. Group variants 37

2.6 Group variants

2.6.1 Group lasso

Let’s consider a modification of the regression problem (2.1.1), where the features or vari-
ables are grouped into factors

y =

J∑
j=1

Xjwj + ε (2.6.1)

where y is an n × 1 vector, ε ∼ Nn(0, σ2I), Xj is an n × pj matrix corresponding to the
jth factor and wj is a coefficient vector of size pj , j = 1, . . . , J . J is the number of factors
and pj is the number of subvariables in factor j

An special case of equation (2.6.1) is when pj = · · · = pJ = 1. Then, the number of
“factors” is equal to p, and this problem is equivalent to equation (2.1.1). This is the most
studied model selection problem, and we have already discussed some methods to solve
it such as the non-negative garrotte or the Lasso. Some of this methods are described in
section 2.2.

Group lasso [21] is an extension of the lasso for selecting groups of variables or factors.
For a vector η ∈ Rb, d ≥ 1, and a symmetric d× d positive definite matrix K, we define

||η||K = (ηtKη)1/2.

Given positive definite matrices K1, . . . ,KJ , the group lasso estimate is defined as the
solution to

1

2

∥∥∥∥∥∥Y −
J∑
j=1

Xjwj

∥∥∥∥∥∥
2

+ λ
J∑
j=1

||wj ||Kj (2.6.2)

where λ ≥ 0 is a tuning parameter. It is clear that expression (2.6.2) reduces to the lasso if
pj = · · · = pJ = 1. The penalty function used in expression (2.6.2) is intermediate between
the l1-penalty that is used in the lasso and the l2-penalty that is used in ridge regression.
The l1-penalty encourages sparsity in individual coefficients and the l2-penalty does not.
The group lasso wants to encourage sparsity at the factor level.

There are many reasonable choices for the kernel matrices Kjs. An obvious choice
would be Kj = Ipj , j = 1, . . . , J . For this case the penalty term in (2.6.2) can also be
written as the mixed norm

||w||2,1 =

J∑
j=1

||wj ||2.

Another choice, used in the implementation of [21], is Kj = pjIpj .
The group lasso problem can be solved along the lines mentioned above [21]. However,

we will see in the next chapter how to solve it along the same lines of convex optimization
that we will discuss for Lasso and Elasic Net.
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Chapter 3

Proximal optimization

3.1 Convex optimization theory

First we are going to introduce some basic concepts in convex analysis, such as convex
sets and functions. We will limit ourselves to define those concepts in the Euclidean space,
although with some more careful work they can be extended to Hilbert spaces. Rn and E
are used interchangeably throughout this chapter to denote the Euclidean space.

Definition 3.1.1. An Euclidean space E is a finite-dimensional real vector space with an
inner product and a norm

Definition 3.1.2 (Convex set). A set C ⊆ E is a convex set if for all t ∈ (0, 1) the
following holds

tx+ (1− t)y ∈ C, ∀x, y ∈ C

Intuitively, the previous definition means that all the points of the segment joining x
and y must be inside the set C, and this has to be true for any two points in C. For
instance an hyperplane H = {x ∈ Rn : wtx−β = 0} or a ball B = {x ∈ Rn : |x−x0| ≤ β}
are examples of convex sets. However, the sphere S = {x ∈ Rn : |x − x0| = β} provides
an example of a set that is not convex (β > 0). Figure 3.1.1 (left) shows another example
of an arbitrary convex set. On the other hand, figure 3.1.1 (right) is an example of a
non-convex set. It is easy to see that any intersection of two convex sets is also convex.
Given i convex sets Si, the finite sum is a new set S formed by taking all the terms

∑
si,

where si ∈ Si. Finite sums of convex sets are also convex. We now introduce the concept
of effective domain and convex function.

Definition 3.1.3 (Effective domain). The effective domain of f is the set

dom(f) = {x ∈ E : f(x) < +∞}.

If dom(f) is not empty, the function f is called proper.

Definition 3.1.4 ((Strictly) convex function). An function f : E→ R∪{+∞} is a convex
function if dom(f) is a convex set and, for every x, y ∈ E and any t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

The same function is said to be strictly convex if for every x, y ∈ E, x 6= y and any t ∈ (0, 1)

f(tx+ (1− t)y) < tf(x) + (1− t)f(y).

39
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Figure 3.1.1: Example of convex set (left) and non-covex set (right) [Wikipedia, “Convex
set”]

The previous definition does not take into account functions that take the value −∞,
although it can be expanded to do so [22]. Some methods to create new convex functions
from known convex functions f1, . . . , fm : Rn → (−∞,+∞] are:

1. Pointwise sum: for any α1, . . . , αm ∈ R+, f(x) =
∑m

i=1 αifi(x)

2. Pointwise maximum: f(x) = max1≤i≤m fi(x)

In the following sections we will want to minimize some functions that are not differentiable
(or at least have some component that it is not). The subdifferential is a fundamental tool
in the analysis of nondifferentiable convex functions.

Definition 3.1.5 (Subdifferential). The subdifferential of a proper convex function is the
set-valued map ∂f : E→ 2E, defined as

∂f(x) = {ξ ∈ E : f(x) + ξt(y − x) ≤ f(y), ∀y ∈ E}

where 2E is the power set, that is, the set of all subsets of E.

Let x ∈ E. Then f is subdifferentiable at x if ∂f(x) 6= ∅. The elements of ∂f(x) are
the subgradients of f at x. Observe that this definition is only non-trivial if the function
is proper, that is, x ∈ dom f . Otherwise f(x) = +∞ and ∂f(x) = ∅. Some properties of
the subdifferential are:

(i) For any x ∈ E, ∂f(x) is either empty or a closed convex set (see [23] proposition
16.3).

(ii) For any x ∈ int(dom(f)), ∂f(x) is not empty and bounded (see [22] lemma 2.16).

(iii) ∂f(x) = {∇f(x)} if and only if f is differentiable at x ∈ E (see [22] proposition 2.6).

(iv) A point x ∈ E is a (global) minimizer of f if and only if

0 ∈ ∂f(x).

This is known as the Fermat’s rule in convex optimization, and it will be proven later
in this chapter.
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Figure 3.1.2: A convex function (blue) and “subtangent” lines at x0 (red) [Wikipedia
“Subdifferential”]

Theorem 3.1.1 (Moreau-Rockafellar). Let f and g be proper convex functions. Then, for
every x0 ∈ Rn

∂f(x0) + ∂g(x0) ⊂ ∂(f + g)(x0).

Moreover, suppose that int(dom f ∩ dom g) 6= ∅. Then for every x0 ∈ Rn we also have

∂(f + g)(x0) ⊂ ∂f(x0) + ∂g(x0).

Proof. For the first part, let ξ1 ∈ ∂f(x0) and ξ2 ∈ ∂g(x0). Then, for all x ∈ Rn

f(x) ≥ f(x0) + ξt1(x− x0)

g(x) ≥ g(x0) + ξt2(x− x0)

Adding the previous inequalities gives

f(x) + g(x) ≥ f(x0) + g(x0) + (ξ1 + ξ2)t(x− x0)

and hence (ξ1 + ξ2) ∈ ∂(f + g)(x0). For the second part, check [22].

3.1.1 Minimizing convex functions

We are going to start this section by reviewing briefly some theory on monotone oper-
ators, since they play a central role in nondifferentiable convex optimization. The most
prominent example of monotone operator is the subdifferential operator, defined in the
previous section. The main result will be the Fermat’s rule for convex optimization, which
characterizes the solutions of convex optimization problems.

Definition 3.1.6 (Monotone operator). A set-valued operator T : E→ 2E is called mono-
tone if

(ξ1 − ξ2)t(x1 − x2) ≥ 0, ∀x1, x2 ∈ E, ξ1 ∈ T (x1), ξ2 ∈ T (x2)

Proposition 3.1.1 (Monotonicity of subdifferencial). The subdifferencial is a monotone
operator, that is, for all x1, x2 ∈ E, ξ1 ∈ ∂f(x1), ξ2 ∈ ∂f(x2) the following holds

(ξ1 − ξ2)t(x1 − x2) ≥ 0.

Proof. From the definition of subdifferential, for all x1, x2 ∈ E, there are ξ1 and ξ2 also in
E such as

f(x1)− f(x2) ≤ ξt1(x1 − x2)

f(x2)− f(x1) ≤ ξt2(x2 − x1)
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Adding together the previous inequalities we get

ξt1(x1 − x2) + ξt2(x2 − x1) ≥ 0⇔ ξt1(x1 − x2) + (−ξ2)t(x1 − x2)〉 ≥ 0

⇔ (ξ1 − ξ2)t(x1 − x2)〉 ≥ 0

The following proposition reveals some interesting properties of monotone operators.

Proposition 3.1.2. Monotone operators have the following properties:

(i) Non-negative scaling: αT is monotone for any alpha ≥ 0.

(ii) Inverse: T−1 is monotone.

(iii) Resolvent: The resolvent operator

RT = (I + T )−1

is singled-valued and firmly non-expansive:

〈RT (x1)−RT (x2), x1 − x2〉 ≥ ||RT (x1)−RT (x2)||2, ∀x1, x2 ∈ E.

Proof. (i) follows from the definition. First let’s prove (ii). We consider the graph of T ,
graph(T ) = {(x, ξ) : ξ ∈ T (x)}. The graph of T−1 is graph(T−1) = {(ξ, x) : (x, ξ) ∈
graph(T )}, that is (ξ, x) ∈ graph(T−1) ⇔ ξ ∈ T (x). Since T is monotone, (ξ1 − ξ2)t(x1 −
x2) ≥ 0, ∀x1, x2 ∈ E, ξ1 ∈ T (x1), ξ2 ∈ T (x2) and the monotonicity of T−1 is obvious from
the definition.

Next we prove (iii) showing first that RT is single valued. Assume there is one point z
with two values (z, x1), (z, x2) ∈ graph(RT ). Then we have z ∈ x1 + T (x1), z ∈ x2 + T (x2)
and there are ξ1 ∈ T (x1), ξ2 ∈ T (x2) such that z = x1 + ξ1 = x2 + ξ2, i.e., ξ1 − ξ2 =
−(x1 − x2). Since T is monotone,

0 ≤ (ξ1 − ξ2)t(x1 − x2) = −‖x1 − x2‖2

and x1 = x2.
To prove the firmly non-expansiveness, let xi = RT (zi), i = 1, 2. Then zi ∈ xi + T (xi)

and zi = xi + ξi with ξi ∈ ∂T (xi). Now

(x1 − x2)t(z1 − z2) = (x1 − x2)t(x1 − x2) + (x1 − x2)t(ξ1 − ξ2)

= ‖x1 − x2‖2 + (x1 − x2)t(ξ1 − ξ2),

and since T is monotone, (x1 − x2)t(ξ1 − ξ2) ≥ 0 and firmly non-expansiveness of RT
follows.

Proposition 3.1.3 (Zeros of monotone operator). The zeros of a monotone operator T
coincide with the fixed points of the resolvents RαT , that is,

0 ∈ T (x) ⇔ x = RαT (x).

Proof.

0 ∈ T (x) ⇔ 0 ∈ αT (x) ⇔ x ∈ x+ αT (x) ⇔ x ∈ (I + αT )(x)

⇔ x = (I + αT )−1(x) ⇔ x = RαT (x)
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Some examples of monotone operators taken from [24] are:

• Any linear positive semidefinite operator:

〈T (x), x〉 ≥ 0, ∀x ∈ E.

• The projection operator over a non-empty closed convex set C, defined as

PC(x) = argmin
y∈C

||x− y||.

We show next two alternative definitions of the proximal operator. Proposition 3.1.4
demonstrates the equivalence between both definitions.

Definition 3.1.7 (Proximal mapping). The resolvent of the subdifferential is called the
proximal mapping, i.e.

proxf = (I + ∂f)−1.

Notice that x = proxf (z) iff z − x ∈ ∂f(x), i.e., iff 0 ∈ x− z + ∂f(x). Moreover, given
z, we have seen that x is unique.

Definition 3.1.8 (Proximal mapping (alternative)). Let f be a lower semicontinous,
proper convex function. For every z ∈ RN , the proximal mapping of f is defined as

proxf (z) = argmin
y∈R

(
f(y) +

1

2
||z − y||2

)
.

Proposition 3.1.4. Definitions 3.1.7 and 3.1.8 are equivalent.

Proof. First we are going to show that the first definition can be obtained from the second
one. Let φ(y) = f(y) + 1

2 ||z − y||2 and x = argminφ(y). The subdifferential of φ is
∂φ(y) = y − z + ∂f(y) and since x is a minimizer 0 ∈ x − z + ∂f(x). As we have seen
before, this is equivalent to x = (I + γ∂f)−1(z), which is the first definition.

Now we are going to show that the second definition can be obtained from the first
one. Assume x = (I + γ∂f)−1(z); then z− x ∈ ∂f(x), i.e, z− x is a subgradient of f at x.
Using the definition of subdifferential we have that for all y,

f(y) ≥ f(x) + (z − x)t(y − x).

Adding 1
2‖y − z‖

2 to both sides gives

f(y) +
1

2
‖y − z‖2 ≥ f(x) + (z − x)t(y − x) +

1

2
‖y − z‖2. (3.1.1)

Next let ψ(y) = (z − x)t(y − x) + 1
2‖y − z‖

2. Then ∇ψ(y) = z − x+ y − z = y − x and ψ
attains a minimum at x, for which ψ(x) = 1

2‖x− z‖
2. Substituting in (3.1.1) we get ∀y

f(y) +
1

2
‖y − z‖2 ≥ f(x) + ψ(y)

≥ f(x) +
1

2
‖x− z‖2,

and, therefore, x = argminy{f(y) + 1
2 ||z − y||

2}, which is the second definition.
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Some examples of proximal operators are:

• For f = 0, proxf (x) = x.

• For f = IC , proxf (x) = PC(x). Here IC denotes the indicator function (definition
3.1.10). Given the second definition of proximal mapping and the definition of the
indicator function, it is easy to see why this is true.

• Let f : Rn → R, f(x) = ||x||1 =
∑n

i=1 |xi|. Then,

[proxf (x)]i = sign(xi) max(0, |xi| − 1).

The optimization problem we are interested in solving is the following

Definition 3.1.9 (Constrained optimization problem).

min
x∈E

f(x), subject to x ∈ S

where S ⊆ E

This constrained optimization problem can be rewritten as a unconstrained optimization
problem, since (3.1.9) is equivalent to

min
x∈E

(f(x) + IS(x))

where the indicator function IS is defined next.

Definition 3.1.10 (Indicator function). The indicator function of the set S ⊆ E is

IS(x) =

{
0, x ∈ S

+∞, else

Convex optimization is a subfield of optimization where both the function f and the set
S are convex. Global minimizers of convex functions are characterized by Fermat’s rule, a
simple but powerful principle.

Theorem 3.1.2 (Fermat’s rule). Let f be a proper convex function. Then,

argmin f = zer ∂f = {x ∈ E | 0 ∈ ∂f(x)}.

Moreover, x = proxf (x).

Proof. Let x ∈ E. Then x ∈ argmin f if it does not exist any other point y ∈ E such as
f(y) < f(x). This is equivalent to

(y − x)t0 + f(x) ≤ f(y)

∀y ∈ E, since (y − x)t0 = 0. Looking at the definition of subdifferential, that is also
equivalent to 0 ∈ ∂f .

For the second fact, notice that ∂f(x) is a monotone operator and its resolvent is the
proximal mapping (definition 3.1.7). Therefore using proposition 3.1.3, 0 ∈ ∂f(x) ⇔ x ∈
x + ∂f(x) = (I + ∂f)(x) ⇔ x = proxf (x) and the proof is complete. Note that we can
add a constant term γ > 0 multiplying ∂f and this result still holds.

The conclusion of this section is that we can obtain solutions for 0 ∈ ∂f(x) as the fixed
points of the proximal operator. This suggests the proximal point method in section 3.3.
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3.2 Minimizing the sum of two functions

In many problems we further decompose problem (3.1.9) into two functions: the loss
function and the regularizer, as we have seen in section 1.4. The minimization problem
then becomes

min
x∈E

f(x) + g(x). (3.2.1)

Using the Fermat’s rule and the fact that ∂(f+g) ∈ ∂f+∂g (theorem 3.1.1), the optimality
condition for this problem is

0 ∈ ∂f(x) + ∂g(x).

The previous result does not assume that either f or g are differentiable functions. Most
of the times in practice we find that one of them it is indeed differentiable, while the other
is not. This can be further exploited to simplify the optimality condition. If the function
f is differentiable and Lipschitz continuous, the new optimality condition is

0 ∈ ∇f(x) + ∂g(x),

where we have used the third property of the subdifferential. The next proposition sum-
marizes the previous results.

Proposition 3.2.1. Let f , g be proper convex functions and f differentiable. Then, the
following are equivalent:

(i) x is a solution of the problem 3.2.1;

(ii) 0 ∈ ∇f(x) + ∂g(x);

(iii) x = proxγg(x− γ∇f(x)).

Proof. If x is a solution of the problem 3.2.1 then, using Fermat’s theorem (theorem 3.1.2),

0 ∈ ∂(f + g)(x) ⇔ 0 ∈ ∂f(x) + ∂g(x) (theorem 3.1.1)

⇔ 0 ∈ {∇f(x)}+ ∂g(x) (property (iii) of the subdifferential)

⇔ −∇f(x) ∈ ∂g(x)

⇔ x− γ∇f(x)) ∈ x+ γ∂g(x)

⇔ x = proxγg(x− γ∇f(x)).

3.3 Algorithms

3.3.1 Proximal gradient method (forward-backward splitting)

Equation (iii) of proposition 3.2.1 gives the idea of iterating

xk+1 = proxγg(xk − γ∇f(xk)), (3.3.1)

starting from an initial point x0. It is important to note that, on one hand, when g = 0,
(3.3.1) reduces to the gradient descent method (see the previous examples of proximal
mappings)

xk+1 = xk − γ∇f(xk) (3.3.2)
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for minimizing a Lipschitz-differentiable function [25]. On the other hand, when f = 0,
(3.3.1) reduces to the proximal point algorithm

xk+1 = proxγg(xk), (3.3.3)

for minimizing a non-differentiable function.

Theorem 3.3.1 (Convergence of the proximal gradient method). If f has Lipschitz con-
tinuous gradient with constant L, (f + g) admits minimizers and

γ ∈
(

0,
2

L

)
,

then the proximal-gradient iterations xk converge to a minimizer.

The proof of this theorem can be found in [23] (corollary 27.9).

3.3.2 ISTA

A classical approach to solve the regression problem is the least squares approach, in which
the estimator is chosen to minimize the error

ŵOLS = argmin
w
{‖Xw − y‖2}. (3.3.4)

As we mentioned in chapter 2, the previous problem is usually replaced by a well-conditioned
problem whose solution approximates the required solution. Recall from chapter 1 that one
popular regularization technique is Tikhonov regularization, in which a quadratic penalty
is added to the objective function:

ŵRLS = argmin
w
{‖Xw − y‖2 + λ‖w‖22} (3.3.5)

Another regularization method is l1 regularization, where you try to find the solutions of

min
w
{||Xw − y||2 + λ‖w‖1}. (3.3.6)

This is the Lasso problem (see chapter 2) and it fits the general framework of convex
optimization problems (3.1.9), where f(w) = ‖Xw−y‖2 and g(w) = λ‖w‖1. In addition,
since f is a differentiable function and g it is not, we can apply the proximal gradient
method of the previous section. Specifically, the general step of ISTA is

wk+1 = Tλt(wk − 2twt(Xwk − y)), (3.3.7)

where Tα is the proximal mapping of the l1-norm, that is, the soft-thresholding operator
defined by

[Tα(x)]i = (|xi| − α)+ sign(xi). (3.3.8)

Now let’s see an alternative, more general, derivation of the algorithm from [26]. Consider
the general formulation:

min{F (w) ≡ f(w) + g(w) : w ∈ Rn}. (3.3.9)

The following assumptions are made:

• g : Rn → R is a continous convex function which is possibly nonsmooth.
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• f : Rn → R is a smooth convex function of the type C1,1, i.e, continuosly differentiable
with Lipschitz continous gradient L(f):

||∇f(x)−∇f(y)|| ≤ L(f)||x− y||,

where || · || denotes the standard Euclidean norm and L(f) > 0 is the Lipschitz
constant of ∇f .

• The problem is solvable, i.e. argminF 6= ∅.

Now we are going to consider the following quadratic approximation of F (w) := f(w) +
g(w) at a given point y:

QL(w,y) := f(y) + 〈w − y,∇f(y)〉+
L

2
||w − y||2 + g(w) (3.3.10)

which admits an unique minimizer

pL(y) := argmin{QL(w,y) : w ∈ Rn} (3.3.11)

Simple algebra shows that (ignoring constant terms in y)

pL(y) = argmin
w

{
g(w) +

L

2

∥∥∥∥w − (y − 1

L
∇f(y)

)∥∥∥∥2
}

(3.3.12)

Note that the operator pL is just the proximal operator of g (3.1.8) evaluated at the point
y − 1

L∇f(y),

prox 1
L
g

(
y − 1

L
∇f(y)

)
= argmin

w

{
1

L
g(w) +

1

2

∥∥∥∥(y − 1

L
∇f(y)

)
−w

∥∥∥∥2
}

= argmin
w

{
g(w) +

L

2

∥∥∥∥w − (y − 1

L
∇f(y)

)∥∥∥∥2
}

= pL(y)

that is, after taking a small step in the direction of the negative gradient. Finally, the basic
step of the algorithm is

wk = pL(wk−1) (3.3.13)

This is a more general version of ISTA [26] since g(w) could be any nonsmooth regularizer
and f(w) any smooth convex function. However, in [26] they still refer to this more general
method as ISTA, which may be confusing.

Algorithm 2: ISTA with constant stepsize

Input: L := L(f)
Step 0. Take w0 ∈ Rn.
Step k. (k ≥ 1) Compute

wk = pL(wk−1);

If f(w) = ||Xw − y||2 and g(w) = λ||w||1 (λ > 0) then equation (3.3.13) reduces
to (3.3.7) with t = 1

L(f) . A possible drawback of this basic scheme is that the Lipschitz
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constant L(f) is not always known or computable. For instance, the Lipschitz constant in
the l1-regularization problem depends on the maximum eigenvalue of XtX. For large-scale
problems, this quantity is not always easily computable. The trivial algorithm to compute
eigenvalues needs O(n3) operations, where n is the size of the matrix, although there are
faster approaches if we only need a few of them. We therefore also analyze ISTA with a
backtracking stepsize rule.

Algorithm 3: ISTA with backtracking

Step 0. Take L0 > 0, some η > 1, and w0 ∈ Rn.
Step k. (k ≥ 1) Find the smallest nonnegative integers ik such that with
L̄ = ηikLk−1

F (pL̄(wk−1)) ≤ QL̄(pL̄(wk−1),wk−1).

Set Lk = ηikLk−1 and compute

wk = pLk
(wk−1)

Theorem 3.3.2. Let {wk} be the sequence generated by algorithms 2 or 3. Then, for any
k > 1

F (wk)− F (w∗) ≤ αL(f)‖w0 −w∗‖2

2k
∀w∗ ∈W∗ (3.3.14)

where α = 1 for the constant stepsize setting and α = η for the backtracking stepsize setting.

The previous result can be interpreted as follows. The number of iterations required
to obtain a solution w̃ such that F (w̃) − F (w∗) ≤ ε, is at most dC/εe, where C =
αL(f)‖w0−w∗‖2

2 . The proof of theorem 3.3.2 can be found in [26]. In the next section we
will discuss FISTA, a different method as simple as ISTA but with a faster convergence
rate, O(1/k2).

3.3.3 FISTA

In the previous section we showed that ISTA has a worst-case complexity of O(1/k). In
this section we will introduce FISTA (fast iterative shrinkage-thresholding algorithm), an
improved version of ISTA with a worst-case complexity of O(1/k2). We recall that ISTA is
just a specific version of the more general proximal gradient method (3.3.1), which reduces
to the gradient method when g(x) = 0. Nesterov showed in [27] that exists a gradient
method with complexity O(1/k2) which is an “optimal” first order method for smooth
problems. Beck and Teboulle [26] extended the previous method to composite functions,
where one of them is (possibly) non-smooth. The pseudocode for FISTA is showed in
algorithm 4.

FISTA can be also modified in the same way as ISTA in order to get rid of the Lipschitz
constant L(f). The pseudocode for FISTA with a backtracking stepsize rule can be seen
in algorithm 5.

Note that the only important difference between algorithms 2-3 and 4-5 is that the
operator pL is not applied to the previous point wk−1 but to a smartly chosen linear
combination of the previous two, wk−1 and wk−2. Since the computational burden is in
the pL operator and both algorithms require the same number of pL evaluations, the cost
per iteration is almost identical. Clearly, the extra computation performed by FISTA is
marginal in comparison to the pL evaluation. In addition, they are almost equally difficult
to implement, but FISTA has an improved convergence rate of O(1/k2).
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Algorithm 4: FISTA with constant stepsize

Input: L := L(f)
Step 0. Take y1 = w0 ∈ Rn, t1 = 1.
Step k. (k ≥ 1) Compute

wk = pLk
(yk)

tk+1 =
1 +

√
1 + 4t2k

2

yk+1 = wk +

(
tk − 1

tk+1

)
(wk −wk−1)

Algorithm 5: FISTA with backtracking

Input: L := L(f)
Step 0. Take L0 > 0, some η > 1, and w0 ∈ Rn. Set y1 = x0, t1 = 1.
Step k. (k ≥ 1) Find the smallest nonnegative integers ik such that with
L̄ = ηikLk−1

F (pL̄(yk)) ≤ QL̄(pL̄(yk),yk).

Set Lk = ηikLk−1 and compute

wk = pLk
(yk)

tk+1 =
1 +

√
1 + 4t2k

2

yk+1 = wk +

(
tk − 1

tk+1

)
(wk −wk−1)

Theorem 3.3.3. Let {wk}, {yk} be generated by FISTA. Then, for any k > 1

F (wk)− F (w∗) ≤ 2αL(f)‖w0 −w∗‖2

(k + 1)2
∀w∗ ∈W∗, (3.3.15)

where α = 1 for the constant stepsize setting and α = η for the backtracking stepsize setting.

Theorem 3.3.3 shows that the number of iterations required by FISTA to obtain a solu-
tion w̃ such that F (w̃)−F (w̃∗) ≤ ε, is at most, dC/

√
ε−1e, where C =

√
2αL(f)‖w0 −w∗‖2,

which clearly improves ISTA. The proof of the theorem can be found in [26]. It is worth
mentioning that the value of the function in FISTA does not decrease in every iteration. In
[28] they propose a modification of the algorithm, known as monotone FISTA or MFISTA
that guarantees descent at each iteration, that is

f(wk) < f(wk−1).

The theoretical complexity of this new algorithm is the same as FISTA, and it can be
found also in [28].
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Chapter 4

Experiments

4.1 Wind-power prediction

In this section we will apply the previous algorithms to the problem of predicting the energy
production of a wind farm. Sotavento1 is an experimental wind farm whose objectives are,
apart from its commercial exploitation, the following:

• Being the ”showcase” of the different wind technologies present in Galicia;

• Being a framework for the realization of I+D activities;

• Formation and debate center;

• Center of renewable energies spreading.

Sotavento’s real production data is publicly available on the web, as well as other useful
technical information. This makes working with Sotavento very convenient, since it is very
difficult to find real production data for wind farms. Some of this information taken from
Sotavento’s website is depicted below:

• Number of wind turbines: 24

• Technologies present: 5

• Different machines: 9

• Nominal power of the farm: 17.56 MW

• Predicted annual production: 38.500 MWh

The features will be numerical weather predictions (NWP) for a rectangular grid around
Sotavento, which is located at coordinates 43.34190◦N, 7.86169◦W. Five meteorological
variables that have been proven effective in the past [29] for wind energy prediction are
used:

• V , norm of the wind speed

• Vx, x component of wind speed

• Vy, y component of wind speed

1http://www.sotaventogalicia.com
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Geopotential height (m)

Pressure level (hPa) Min 1st Quartile Median Mean 3rd Quartile Max

1000 -53.67 20380 20510 20540 20790 21020
975 -44.09 16090 16200 16240 16460 16690
950 -26.67 13550 13700 13720 13940 14230
925 -14.41 11750 11930 11920 12120 12430
900 3.6 10350 10530 10510 10690 10960
875 1.87 9182 9342 9322 9481 9703
850 6743 7230 7362 7340 7457 7631
800 5218 5623 5730 5707 5801 5935
700 2727 3053 3110 3099 3160 3245
500 1683 1986 2031 2020 2067 2153
400 1198 1492 1533 1523 1567 1655
300 964 1252 1293 1284 1328 1417
250 734.9 1018 1059 1050 1095 1188
200 510.6 789.2 830.1 822.7 867.7 967.5
150 291.1 565.8 606.5 600.3 646.0 751.2
100 76.32 347.1 387.8 383.1 429.8 539.4
50 -133.9 133.4 174.1 170.7 217.6 332.5

Table 4.1.1: Geopotential height statistics for the 17 pressure levels provided by AEMET
at 43.25◦N 7.75◦W (1 year of data)

• T , temperature

• G, geopotential height

These variables are normalized to have zero mean and unit variance. AEMET2 forecasts
for those variables are used over a 6×6×17 grid with horizontal resolution 0.25◦. The grid
contains a total of 612 points with longitudes in the interval [8.5◦W, 7.25◦W], latitudes in
the interval [42.75◦N, 44◦N] and the following pressure levels: 1000, 975, 950, 925, 900,
875, 850, 800, 700, 500, 400, 300, 250, 200, 150, 100 and 50 hPa. The dimension of the
input space is then 612× 5 = 3060. Target values are wind energy productions normalized
to the interval [0, 1] as a percentage of the total nominal power of the farm.

Although meteorological data is available in 17 different pressure levels, where level 1
is the highest and 17 the lowest, it is obvious that not all of them have an effect on the
energy production of the wind farm. Table 4.1.1 shows some statistics of the geopotential
height for 1 year of data and each one of the different pressure levels. This statistics are
computed at the closest point to Sotavento in the grid (43.25◦N, 7.75◦W). A first selection
of pressure levels can been done using the elevation of this particular wind farm, which is
between 600 − 700 m above sea level. According to the table 4.1.1, the first 10 levels are
located consistently much higher than 700 m and they are immediately discarded. Note
also that the first 6 levels contain some errors in the data, since the minimum should not
be that low.

This can be further confirmed by computing correlation plots between wind speed and
production of the wind farm for all the pressure levels. Figure 4.1.1 shows that correlation
is below 0.5 for the first 10 levels and reaches its maximum value at levels 13, 14, 15, 16 and

2Spanish State Meteorological Agency, http://www.aemet.es

http://www.aemet.es
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17. The mean elevation of these four levels is 1050, 822.7, 600.3 and 347.1 m respectively,
which makes sense taking into account that the elevation of Sotavento is 600− 700 m and
wind turbines are usually 80− 100 m tall.
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Figure 4.1.1: Correlation between wind speed (norm) and wind energy production for the
17 pressure levels and the whole grid around Sotavento

Even though the rest of the levels (11− 17) are selected for the experiments, it is not
clear that all of them have the same effect (if any) on wind energy production. Sparse
methods can help us to select the most useful points in order to obtain the best prediction
error. This methods could have also been used in order to select the most important
pressure levels out of the 17, that is, without discarding any level to begin with. However,
the amount of computer power that we had available was not enough to handle an input
space of dimension 3060. After the first manual level selection, the dimension of the input
is reduced to 6× 6× 6× 5 = 1080, which is almost 1/3 of the original dimension and much
more manageable.

AEMET also provides meteorological data at surface level. The variables are now wind
speed and norm at 10 m above surface, temperature at 2 m above surface and pressure
at sea level. The resolution of the grid is the same as before and thus now the dimension
is 6 × 6 × 5 = 180. Therefore, another alternative is to train a model using only surface
information. We would expect this model to be worse in terms of accuracy than the
previous one, since it contains much less information, and therefore we will use it as a
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baseline.
The data used in our experiments corresponds to period of 1 year and 2 months. Since

meteorological forecast are only available every 3 hours, there are 8 patterns per day. The
first 12 months are used for training and the last 2 months are used for test. The models
are evaluated using the Mean Absolute Error (MAE) and the sparsity level.

MAE =
1

N

N∑
n=1

|xtnw − yn| ,

where xn denotes the nth pattern.
The models we are going to test are Ordinary Least Squares (OLS), Ridge Regression

(RLS), Lasso (LA) and Elastic Net (ENet). The code used is the C implementation of the
FISTA algorithm discussed in the appendix A.

An important issue for most of the algorithms is the estimation of hyper-parameters λ1

and λ2 that configure each model. This is done with a search over a grid that represents
a discrete version of the parameter space, using a logarithmic scale, from 10−3 to 102 and
steps of 100.10. In the algorithm that involves a bidimensional grid (ENet), the step size
is increased to 100.20. At each point of the parameter grid, 5-fold cross validations is used
to evaluate the given model, using the MAE as fitness. Finally, the parameters with the
lowest MAE are selected. The comparison of the different models is summarized in table
4.1.2.

Algorithm λ1 λ2 Sparsity (%) MAE

ENet 0.1 4 60.463 7.489
RLS 0 16 0 7.493
LA 0.1 0 69.907 7.591

OLS 0 0 0 10.062

(a) AEMET pressure level data

Algorithm λ1 λ2 Sparsity (%) MAE

LA 0.0016 0 10.556 7.624
RLS 0 0.0016 0 7.629
ENet 0.006 0.016 23.333 7.725
OLS 0 0 0 7.759

(b) AEMET surface data

Table 4.1.2: Results for 4 different models: Lasso (LA), Elastic Net (ENet), Ridge Regres-
sion (RLS) and Ordinary Least Squares (OLS)

In terms of the MAE, the worst model is OLS, probably due to overfitting, since
the number of variables (1080) is large in comparison to the number of training patterns
(2640). Ridge regression performs better than the Lasso in terms of the error, but none of
its coefficients are 0, so the second probably probably be a more useful model. Elastic Net
has the lowest error also achieving great sparsity, almost the same as the Lasso. The main
disadvantage is that it is more computationally expensive, since two parameters must be
selected.

In conclusion we may say that Elastic Net is the best model, since with only 40% of
the variables is capable of obtaining the lowest error, and it only sacrifices a little bit of
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sparsity in comparison to the Lasso. In addition, using pressure level information is useful
when predicting wind power, seeing that surface results are considerably worse. Finally, if
more sparsity is needed, the λ1 parameter can always be tuned in order to get the desired
% of active weights.

If we look now at the active weights (weights that are different from 0), we might find
some structure in the problem. Figure 4.1.2 shows the percentage of active weights for
each variable and for each pressure level.

In the first case the geopotential height (G) is almost completely discarded from the
model, and hence it is not useful to predict wind power. On the other hand, the wind
power norm and its x component are the most “important” variables, which makes sense
according to the correlation plots 4.1.1.

In the second case, there is no clear distinction between the “best” and “worst” levels.
However both models tend to select the lowest and highest levels. An explanation of this
behavior could be that medium levels are quite correlated and thus Lasso selects some
points from any of them somewhat randomly. On the other hand, levels 12 and 17 are
usually located very far from the farm, but some days they provide some useful and “new”
information, since they are more independent between them. Elastic Net is similar to the
Lasso, although it seems to behave a little bit better, since it selects more points from the
middle levels, closest to the farm.

4.2 Variable selection in Rab8 detection

The problem in this section comes from the biomedical domain, and it involves classifying
images of cells as having or not a certain protein (Rab8). The presence of the protein Rab8
is important mainly because it is related to the cell migration process, which causes cancer
cells to move and extend the tumor to other adjacent tissue, forming colonies. These cells
move by extending protrusions in the direction of propagation. Therefore the objective of
this work is trying to detect the phenotype of a migratory cell, so they can be automatically
classified.

All the variables for this problem were extracted from microscopic cell images. First,
the images are preprocessed in order to segment individual cells and then the features are
generated, all of this using the Definiens software. Some of the cells contain Rab8 combined
with another fluorescent protein (GFP), so they can be distinguished from control cells.
Then, cells are labeled as GFP positive, if the fluorescent marker is present, or GFP
negative, if it is not. Hopefully GFP positive cells will also contain the Rab8 protein,
although it is not always the case. The dataset was provided by the CNIC foundation
3 as a part of a collaboration project [30], and it contains 6497 cells with 162 variables.
Example of variable types are:

• Morphometrics: measure cell shape;

• Textures;

• Spots: area proportion, mean distance to border...;

• Actin;

• Intensities;

• Ratios;

3http://www.cnic.es/en/index.php
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Figure 4.1.2: Percentage of active weights per variable (top) and per level (bottom)

• Binary logs of the ratios.

In this experiment we are going to use logistic regression with an l1 penalization term
in order to select the most relevant variables in a binary classification setting. The labels
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are GFP positive (1) and GFP negative (0). Considering all the attributes were generated
from cell images, it is likely that there is a lot of redundancy in them, making variable
selection a very important step before classification. It is also useful for biologists to know
the most important variables selected by the model, since they have an intrinsic biological
meaning and biologist can interpret the results.

As seen in section 2.2, the l1 penalty term will shrink coefficients towards 0 and some of
them will be strictly 0, acting as an embedded feature selection method. Logistic regression
can be optimized using FISTA, since it takes the form L(w) + λ‖w‖1, where the loss
function is differentiable (equation (1.2.11)) and the penalization term is convex. Besides,
the penalization is the l1 norm and thus its proximal operator is the same as Lasso, the
soft thresholding operator (3.3.8). The C code developed in this thesis could be used here,
but it is still not able to minimize the logistic regression loss. This is a feature that will be
implemented in the future. Therefore, we will use the R package glmnet, which does not
use FISTA but coordinate descent instead [31].

The package glmnet is able to compute the whole regularization path for a logistic
regression model, that is, it trains the model for a sequence of λ’s instead of just for one
λ. This is similar to how the Lasso is solved using LARS (section 2.5). The idea behind
the regularization path is the following: the algorithm starts with the smallest value of λ
for which all coefficients are 0 and then, as λ is decreased, some coefficients will enter the
model. For λ = 0, all coefficients are different from 0 and the model is the standard logistic
regression. If we stop at any point in the middle, we have effectively performed variable
selection, since features with 0 coefficients can be discarded from the model.

Computing the whole regularization path is at least equally expensive and sometimes
faster than training only one model, since the weights of the previous value of λ are used as
a starting point for the next value [31]. This is known as warm starts, and it is a remarkably
efficient strategy for this kind of problems. Figure 4.2.1 shows the regularization path for
our dataset, where each line represents one variable as the value of λ varies.

Once we compute the whole regularization path we have to chose one λ in order to
train the final model. This “optimal” λ may be selected in, at least, two different ways. If
the sparsity level is known in advance, either because we have some prior information or
we want to enforce it, we can stop at the closest λ producing the desired sparsity. Recall
that in LARS we know exactly how much should be decreased λ so one coefficient joins
the model at every step. On the other hand, in glmnet, it may be the case where many
variables join the model “at once”, when we go from one λ to the next. This can be
prevented increasing the number of λ’s, but this also increases the computational burden
and in practice it is usually not a problem to stop at an approximate sparsity level.

If we do not know anything or do not really care about the final sparsity level, we can
still select λ to have the best possible generalization error. As usual, the generalization
error is estimated using cross-validation. The leftmost dotted vertical line in figure 4.2.2
represents the value of λ with the lowest misclassification error. Since data is reused in
cross-validation, this value of λ may be a little bit too optimistic (check glmnet help for
more details). To correct for data reuse, the largest value of λ for which the error is
within one standard deviation of the minimum is used instead. This is represented by the
rightmost dotted vertical line in figure 4.2.2.

Finally, we measure the accuracy of the model in a different test set, not used previously.
The accuracy is 81.0782% and the number of coefficients different from 0 is 56 out of the
162. Looking at the variables selected by the algorithm, we can see that the process is
rather unstable. This means that if we re-run the algorithm with another cross-validation
partition, it yields quite different results regarding the number of variables and which ones
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Figure 4.2.1: Coefficient paths for the logistic regression with l1 penalty. The upper x-axis
represent the number of coefficients in the model

are selected.

In order to further investigate the stability of sparse logistic regression, we can do the
following experiment: repeat the previous process M times and at the end take only the
coefficients that are different from 0 in all the iterations. More formally, let Ai be the set of
active coefficients after the ith run of logistic regression. Then, the final set of coefficients
is given by

B =
⋂

1≤i≤M
Ai. (4.2.1)

The ideal result would be that after running the previous algorithm multiple times,
all the resulting sets B were the same or at least very similar. In order to compute
some statistics of the algorithm, we are going to run it 100 times. Figure 4.2.3 shows the
frequency of the final weights for M = 20. As we can see not all the resulting sets are
the same, but more than 50% of the coefficients appear 100% of the time. Table 4.2.1
shows some statistics of the number of coefficients selected by sparse logistic regression
after the first and the last iteration. We are interested mainly in the standard deviation,
since it gives an idea of how stable is the algorithm when selecting variables. From figure
4.2.3 and table 4.2.1 we can conclude that, for this dataset, selecting variables as the
intersection of different runs (equation (4.2.1)) improves the stability of the algorithm and
all the “important” coefficients will always be selected.

Considering that after an iteration we are keeping only the intersection between the two
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Figure 4.2.2: 10-fold cross-validation error. The upper x-axis represents the number of
coefficients in the model

No. of coefficients selected Min. 1st Qu. Median Mean 3rd Qu. Max. Sd

After first iteration 33.00 50.00 58.00 56.01 63.00 73.00 10.54
After last iteration 21.00 25.00 26.00 27.07 29.00 36.00 3.57

Table 4.2.1: Statistics of the number of coefficients selected by sparse logistic regression

sets, one could think that the number of selected variables tends to 0. However, the selected
number of variables reaches a plateau, around 10 or 20 iterations in our experiments.

Clearly, the main problem of this method is of course the execution time, since for
M = 20 it will be 20 times slower as a simple logistic regression procedure. It is also not
clear how it will generalize to other datasets. For this dataset, the execution time of a full
cross-validation is around 40 s, so it is quite cheap to iterate the algorithm 20 or 30 times.

Finally, in order to test if the selected variables are “useful”, we can build a more
powerful model (i.e. non-linear model) with only those variables and another one with all
the variables. Table 4.2.2 compares these results to the previous one. As expected, the
SVM with Gaussian kernel performs best in terms of accuracy. However, we can say that
we are able to select the important features using this iterative version of sparse logistic
regression, which is more stable.
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Figure 4.2.3: Frequency of the final weights after running algorithm (4.2.1) with M = 20
for 100 times

4.3 Sparse multi-layer perceptrons

The goal of this experiment is to perform automatic architecture selection in multi-layer
perceptrons (MLP). Thus, we are going to add the l1 penalty to the objective function
somehow, inducing sparsity in the weights. In order to introduce a Lasso approach in MLP
training we need to decide in which weights to apply the l1 penalty function. Moreover,
we have to take into account the different nature of the residual sum of squares (which
determines the practical model error) and the l1 term, that only affects model sparsity.
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Model Features Accuracy (%)

SVM gaussian kernel 162/162 81.7454
Sparse logistic regression 56/162 81.0782
SVM gaussian kernel 28/162 80.9714

Table 4.2.2: Accuracies for SVM with gaussian kernel and sparse logistic regression with
different sets of features

We also have to keep in mind that standard MLP training and methods such as ISTA
or FISTA are quite different and it may be better to separate the two different terms of
the objective function: global error and l1 penalty.

Since our MLP model has linear output weights (that is, the activation function of the
output units is linear), it is natural to apply the l1 penalty only to them. In fact, if the
task to solve is a regression problem (only one output unit), we could perform automatic
architecture selection by removing all hidden units whose hidden-to-output weights are 0.
More formally, let h be a hidden unit and WO, the matrix of hidden-to-output weights.
Then, after the training, if WO

h = 0, the unit h can be omitted since it will not have any
effect on the output y.

For the sake of simplicity let’s not consider the l2 penalty here and, as we discussed
above, we are going to apply the l1 penalty only to the output weights. This might
be dangerous because the l1 penalty could not be enough to avoid overfitting, since the
input-to-hidden weights are not regularized. However, we are going to assume that this
regularization is in fact sufficient. The global criterion function is

J(W ) = J(WH ,WO) = RSS(WH ,WO) +
α

NWO

‖WO‖1, (4.3.1)

where NWO denotes the number of output weights (which is the number of hidden units
plus one to account for the bias). We should try to improve more or less simultaneously
the RSS and the ‖WO‖1 terms. Next, we are going to try using batch training as the
optimization procedure.

Usually, a desirable property of optimization algorithms is monotonicity. Therefore,
we are going to make sure that our training algorithm decreases J at every iteration. The
simplest way to achieve that is to make a two step procedure: first we fix WO and minimize
the objective function with respect to WH and vice versa. We show next that using this
procedure the objective function J decreases monotonically after every step. Let’s assume

WH = W
H

is fixed, then we want to minimize the function

J1(WO) = J(W
H
,WO) = RSS(W,WO) +

α

NWO

‖WO‖1. (4.3.2)

This is just the standard linear square error plus the l1 penalty, which can be optimized
with algorithms such as FISTA. Now let’s assume that WO = WO. The new objective
function to minimize is

J2(WH) = J(WH ,W
O

) = RSS(WH ,W
O

) +
λ1

NWO

‖WO‖1 = RSS(WH ,W
O

). (4.3.3)

This can be optimized using a simple modification of the backpropagation algorithm that
does not modify the hidden-to-output weights, but takes them into account in order to
compute the error.
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Let (WH
k ,W

O
k ) be the input and output weights at step k. Fixing WH

k , FISTA can be
applied on WO to get a new set of weights WO

k+1 that represent an improvement in the
objective function

J(WH
k ,W

O
k+1) = RSS(WH

k ,W
O
k+1) + α‖WO

k+1‖1 ≤ J(WH
k ,W

O
k ).

Notice that although the previous inequality holds, FISTA may increase the least squares
error as a result, that is, RSS(WH

k ,W
O
k+1) > RSS(WH

k ,W
O
k ). The next step is aimed to

correct this, and it can be achieved by applying a fast batch optimization procedure such
as Conjugate Gradient (CG). This will yield a weight matrix WH

k+1 such that

J(WH
k+1,W

O
k+1) = RSS(WH

k+1,W
O
k+1) < J(WH

k ,W
O
k+1) = RSS(WH

k ,W
O
k+1).

Considering together the FISTA and CG steps we get

J(WH
k+1,W

O
k+1) < J(WH

k ,W
O
k+1) < J(WH

k ,W
O
k ).

It is important to note that the previous procedure will minimize the error no matter the
order in which FISTA and CG are applied, so we can start with any of them. It is also
worth mention that the FISTA algorithm itself is not monotonic, so it has to converge
in order to minimize the objective function. A possible outline of the algorithm is shown
next.

Algorithm 6: Batch Conjugate Gradient and FISTA MLP training

Input: Sample S = {(Xp, yp)} and FISTA parameter α
Initialize k = 0, W0 = (WH

0 ,WO
0 )

while stopping condition == FALSE do
WH
k = CG(WH

k−1,RSS(·,WO
k ))

WO
k = FISTA(WO

k−1,RSS(WH
k−1, ·) + α‖ · ‖1)

end

The previous algorithm can be also analyzed from the standard MLP backpropagation
training point-of-view. Given an input matrix X, the MLP function can be described as

y = F (X;WH ,WO) = HtWO

where H = φ(XtWH) is the non-linear projection of the input X into its hidden layer rep-
resentation and φ is the activation function (possibly non-linear, otherwise the projection
is linear).

Therefore an MLP can be seen as a two step procedure: first it creates new features
using non-linear combinations of the original features and then performs a linear regression
on the new features. In our algorithm, instead of using the standard residual sum of squares
objective function, the penalty l1 is added, performing a Lasso on the new data matrix
H. More formally, let (WH

k ,W
0
k ) be the weights at step k. First the following objective

function is optimized using Conjugate Gradient, starting at the point WH
k

J(WH) = RSS(WH) =
1

2N

∑
p

(yp − F (X;WH ,WO
k )2.

Note how it only depends on WH , since the WO
k are fixed. As a result we obtain the

weights WH
k+1. Next we compute the projection of the input data using the new set of
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weights WH
k+1, Hk and we apply FISTA to minimize the following function

J(WO) = RSS(WO) + α
∑
|WO| = 1

2N

∑
p

(yp −Ht
kW

O)2 + α
∑
|WO|.

The output of FISTA are the new weights WO
k+1, and these two steps are iterated until

some kind of stopping criterion is met.
When applying these procedures some care should be taken. For instance, if the l1

penalty term α is relatively large, FISTA may shrink to 0 many WO weights, making the
subsequent CG iterations rather ineffective. One possible solution to this problem consists
on increasing the value of α at each iteration, starting from a low value and progressively
reaching the final value. Let αmax be the final value of α and K the number of iterations.
Then, the value of α for each iteration can be computed as

αk =
kαmax

K
(4.3.4)

Several experiments using the prostate dataset4 have been performed to see whether it
was possible to train an MLP using algorithm 6. The most straightforward approach is to
perform a fixed number of iterations (100 in our experiments) using also a fixed value for
α. Let f be the square error and g the l1-norm. Figure 4.3.1 (top) shows the evolution of
the objective function f +αg with α = 1024 and 20 hidden units. As can be seen the value
of the objective function does not decrease after a few iterations of Congugate Gradient
plus FISTA. This is due to the problem mentioned before, that is, FISTA shrink too many
weights to 0 in the first iterations due to the aggressive α schedule. In this example, only
one weight is non-zero after the third iteration and thus successive steps are useless.

This problem can be partially solved by introducing a stopping criterion on the value of
the objective function. The implemented criterion is a very simple one, where the algorithm
stops if the difference in absolute value of the objective function between one iteration and
the previous one is below a certain threshold. As shown in figure 4.3.1 (bottom), using this
condition the algorithm successfully stops when the objective function reaches a plateau.

Algorithm 7: Batch Conjugate Gradient and FISTA MLP training

Input: Sample S = {(Xp, yp)}, number of iterations K, schedule parameter t and
FISTAparameter αmax

Initialize W0 = (WH
0 ,WO

0 )
for k = 1 to K do

WH
k = CG(WH

k−1,RSS(·,WO
k ))

αk = min
(
αmax,

kαmax
K−(t−1)

)
WO
k = FISTA(WO

k−1,RSS(WH
k−1, ·) + αk‖ · ‖1)

end

Another possible solution, outlined in the previous section, is to use a less aggressive α
schedule (equation (4.3.4)), so that FISTA will progressively shrinks the weights towards
0, and not after only a few iterations. One possible problem of equation (4.3.4) is that only
one iteration of CG+FISTA will be made with the value α = αmax. This may lead to the
algorithm not achieving full sparsity. Thus, equation (4.3.4) can be modified as follows

αk = min

(
αmax,

kαmax

K − (t− 1)

)
, (4.3.5)

4http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data

http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data
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Figure 4.3.1: Evolution of the objective function with (bottom) and without (top) stopping
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where t ∈ (0,K] is the number of iterations with αmax that are going to be performed.
If t = 1, equations (4.3.5) and (4.3.4) are equivalent. On the other hand, if t = K, this
schedule is the same as using α = αmax in all the iterations. Algorithm 7 is a modified
version of algorithm 6 that reflects all these changes. Although a stopping criterion could
also be added to this algorithm, for the sake of clarity we assume that the full K iterations
are always performed.

The results of the algoritm are shown in tables ?? and ??. As we can see the amount
of iterations performed at the end with αmax increases the sparsity level and the error is
practically the same. We can also see that as the number of hidden units is increased, the
penalization we have to apply to achieve 100% sparsity is larger. One could expect that
if we select for each number of hidden units H1, H2, . . . ,HN the sparsity given the lowest
MAE S∗i , then

dH1(S∗1/100)e = dH2(S∗2/100)e = · · · = dHN (S∗N/100)e.

In that case, the optimal number of hidden units selected is clear. However, in our exper-
iments this does not happen exactly, so we will have to further investigate reasons behind
that.
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nHid alpha MAE Sparsity(%)

5 4 0.709434 16.6667
5 8 0.682161 16.6667
5 16 0.605985 16.6667
5 32 0.643354 16.6667
5 64 0.515909 16.6667
5 128 0.510196 16.6667
5 256 0.478706 33.3333
5 512 0.618081 100.0
5 1024 0.618081 100.0
5 2048 0.618081 100.0
5 4096 0.618081 100.0
10 4 0.557148 0.0
10 8 0.565861 0.0
10 16 0.550023 9.09091
10 32 0.549371 18.1818
10 64 0.613252 36.3636
10 128 0.511189 45.4545
10 256 0.497758 45.4545
10 512 0.526149 72.7273
10 1024 0.618081 100.0
10 2048 0.618081 100.0
10 4096 0.618081 100.0
20 4 0.628681 28.5714
20 8 0.64252 33.3333
20 16 0.611457 33.3333
20 32 0.618805 33.3333
20 64 0.53307 33.3333
20 128 0.509943 42.8571
20 256 0.435704 57.1429
20 512 0.53193 61.9048
20 1024 0.538629 90.4762
20 2048 0.618081 100.0
20 4096 0.618081 100.0
40 4 0.591329 51.2195
40 8 0.563564 56.0976
40 16 0.636757 60.9756
40 32 0.534465 63.4146
40 64 0.566172 65.8537
40 128 0.529359 68.2927
40 256 0.54396 78.0488
40 512 0.467754 82.9268
40 1024 0.485833 82.9268
40 2048 0.521624 92.6829
40 4096 0.618081 100.0
80 4 0.689637 64.1975
80 8 0.649843 72.8395
80 16 0.578509 81.4815
80 32 0.612448 77.7778
80 64 0.572195 81.4815
80 128 0.607766 83.9506
80 256 0.541409 86.4198
80 512 0.545421 83.9506
80 1024 0.590662 86.4198
80 2048 0.50664 88.8889
80 4096 0.49452 92.5926

Table 4.3.1: Results of algorithm 7 with
K = 100 and t = 1

nHid alpha MAE Sparsity(%)

5 4 0.707403 16.6667
5 8 0.680784 16.6667
5 16 0.601 16.6667
5 32 0.606875 16.6667
5 64 0.513783 16.6667
5 128 0.50564 16.6667
5 256 0.482147 33.3333
5 512 0.618081 100.0
5 1024 0.618081 100.0
5 2048 0.618081 100.0
5 4096 0.618081 100.0
10 4 0.598195 0.0
10 8 0.573201 0.0
10 16 0.579802 18.1818
10 32 0.560766 18.1818
10 64 0.536612 36.3636
10 128 0.528813 45.4545
10 256 0.497801 45.4545
10 512 0.526177 72.7273
10 1024 0.618081 100.0
10 2048 0.618081 100.0
10 4096 0.618081 100.0
20 4 0.629118 28.5714
20 8 0.600615 33.3333
20 16 0.587248 33.3333
20 32 0.519149 33.3333
20 64 0.570605 42.8571
20 128 0.482249 52.381
20 256 0.531595 66.6667
20 512 0.512466 71.4286
20 1024 0.537595 85.7143
20 2048 0.618081 100.0
20 4096 0.618081 100.0
40 4 0.576683 56.0976
40 8 0.550674 58.5366
40 16 0.580663 65.8537
40 32 0.545226 63.4146
40 64 0.644038 68.2927
40 128 0.541507 68.2927
40 256 0.484605 75.6098
40 512 0.509772 80.4878
40 1024 0.489849 82.9268
40 2048 0.525916 95.122
40 4096 0.618081 100.0
80 4 0.674687 60.4938
80 8 0.606669 72.8395
80 16 0.590575 77.7778
80 32 0.56183 79.0123
80 64 0.62943 81.4815
80 128 0.584787 82.716
80 256 0.588908 86.4198
80 512 0.430071 85.1852
80 1024 0.567595 90.1235
80 2048 0.475463 92.5926
80 4096 0.497544 97.5309

Table 4.3.2: Results of algorithm 7 with
K = 100 and t = 5



Chapter 5

Conclusions and further work

5.1 Discussion

The main objective of this master thesis was to present the state of the art in proximal
optimization. First, the classic models are discussed: Lasso, Group Lasso, Fused Lasso
and Elastic Net. Then, after developing some necessary convex optimization theory, we
presented the FISTA algorithm, which is a modification of Nesterov’s optimal gradient
method. FISTA is a general algorithm able to minimize the sum of any two functions, as
long as one of them has a Lipchitz continuous gradient, the other is convex and has an
easily computable proximal operator. Thus, all the previous models (Lasso, Elastic Net,
...) can be solved using FISTA.

A C implementation of the FISTA algorithm was also developed in this thesis. The
main objective of this implementations is to overcome the limitations of Matlab when
dealing with very large datastes. The C code was faster than two publicly available Matlab
implementations of FISTA in all the benchmarks and it was also used for the experiments
in sections 4.1 and 4.3.

We also performed experiments with real-world datasets, different from the well known
datasets used in the literature. Lasso and Elastic Net are compared, with the second
being usually the best model with a proper parameter selection. This is not surprising,
since the Lasso is a particular case of Elastic Net when λ2 = 0. The Lasso was also
compared to other more straightforward algorithms such as Ordinary Least Squares and
Ridge Regression. The results are as expected, that is, the Lasso and Ridge Regression
are comparable in terms of the error, but the first one produces also interpretable models,
since many of the weights will be zero. Ordinary Least Squares depends heavily on the
dataset, and it does not work well if the number of variables is big in comparison to the
number of training patterns.

The capabilities of the l1 penalization as an embedded feature selection method were
also studied in a bioinformatic classification setting. Hence, the loss function for this case
is the binomial log-likelihood, instead of the usual residual sum of squares.

Finally we have investigated how to train sparse multi-layer perceptrons, that is, adding
a l1 penalization to the perceptron error function. The multi-layer perceptron training can
be seen as a two step procedure, first the input variables are non-linearly combined and
then a standard linear regression is performed on those new features. Therefore, we tried
to replace the linear regression step by the Lasso, that adds a l1 penalty and thus enforces
sparsity in the hidden-to-ouput weights. The results are mixed. On one hand we were able
to train the sparse multi-layer perceptrons effectively but on the other hand we were not
able to obtain any clear conclusion regarding the relation between the λ1 parameter of the
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l1 penalty and the number of units in the hidden layer.

5.2 Further work

As future work, the first priority is to introduce more features into the C implementation
of FISTA. Right know it can only handle the residual sum of squares loss function, and
the plan is to introduce others such as the binomial log-likelihood. Thus, experiments
in section 4.2 could be done with this software, instead of the glmnet package. The C
code can be further improved by using OpenMP to handle parallelization. That way the
proximal operator could be computed in parallel if multiple cores are available, making the
whole algorithm much faster. It is also pending work to compute benchmarks for all the
public implementations listed in the appendix A.

As we mentioned throughout the thesis, there are other state-of-the-art algorithms
apart from FISTA that can solve the Lasso and Elastic Net problems. Example of such
algorithms are Coordinate Descent, used by R package glmnet, and Interior Point Methods.
Therefore it would be interesting to investigate how the performance of these two general
algorithms compare.

Next, continuing with the experiments presented in section 4.2, there are some other
proposals like [32] and [33] to make the Lasso model more stable for feature selection.
This is an interesting topic with growing attention in some fields, such as classification of
microarray gene expression datasets.

Lastly, we can try to use the results in section 4.3 to automatically select the network
architecture of a multi-layer perceptron, that is, the optimal number of hidden units. At
the present time the results are not conclusive, but there are more options and we are
working on them.



Appendix A

LIBFISTA

A.1 Introduction

One of the contributions of this thesis is the development of a library written in C which
implements the FISTA algorithm (section 3.3.3). Other publicly available FISTA imple-
mentations are:

• L1 benchmark package. Matlab implementation (http://www.eecs.berkeley.edu/

~yang/software/l1benchmark/).

• SparseLab. Matlab implementation (http://sparselab.stanford.edu/).

• P-FISTA. C implementation, only solves the Lasso problem (http://www.caam.
rice.edu/~optimization/disparse/p-fista.html).

• Forward-Backward Proximal Splitting. Matlab implementation, solves many differ-
ent problem (https://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/
optim_4_fb/).

• SolveLA. Matlab implementation based on ProxTV (http://arantxa.ii.uam.es/

~gaa/software.html).

Matlab also has its own implementation of Lasso and Elastic Net in the Statistics
Toolbox, but of course it is not publicly available. The main features of LIBFISTA are:

1. Implemented in ANSI C.

2. Solves the Lasso, Elastic Net, Ordinary Least Squares and Ridge Regression models.

3. Automatically standarizes variables.

4. Two versions of FISTA are implemented, backtracking and constant step size [26].

LIBFISTA minimizes the residual sum of squares together with any combination of the
l1 and l2 penalizations. Therefore, in order to build a Lasso model, λ1 > 0 and λ2 = 0.
For Ridge Regression, λ1 = 0 and λ2 > 0 and so on. The library is coded in ANSI C,
using matrix and vector functions from [34]. The FISTA algorithm with backtracking is a
C implementation of the function solveLasso from the L1 benchmark package, with some
modifications to solve also the Elastic Net model. The FISTA algorithm with constant step
size is a straightforward implementation of the one in Teboulle’s paper [26]. The Lipschitz
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constant is estimated as the largest eigenvalue of the matrix XtX. The C code to compute
eigenvalues is also taken from [34].

The help page for LIBFISTA is:

Usage: fista [OPTION]... TRAIN

Builds an Elastic Net model using the FISTA algorithm

Options:

-h, --help show help and exit

-t, --test=FILE test file

-l, --l1=LAMBDA_1 l1 norm parameter [default: 1e-6]

-r, --l2=LAMBDA_2 l2 norm parameter [default: 0]

-b, --backtracking use backtracking in FISTA

-z, --standarize standarize data to zero mean and unit variance

-v, --verbose verbose

A.2 Benchmarks

In this section we are going to perform some benchmarks to compare the Matlab and C
implementations. All the datasets we are going to use are publicly available and they are
summarized in table A.2.1. Note that all of them have a really low number of variables,
since it is difficult to find some regression datasets with more. We have available meteoro-
logical datasets, which usually have much more variables, so we plan to add them to this
benchmark in the future.

Dataset No. of patterns No. of variables

abalone 4177 8
bodyfat 252 14
cpusmall 8192 12
housing 506 13
mpg 392 7
prostate 67 8
space ga 3107 6

Table A.2.1: Datasets used in the benchmark

The benchmarks compare the MAE, number of iterations and execution time of the
implementations for all datasets. The results are in tables A.2.2, A.2.3 and A.2.4. The
MAE is mainly to check that the implementations are correct, since it should be really
similar for all of them. As we can see, the main conclusion of this section is that C
implementations clearly outperform the Matlab ones. Note that in the C implementations
the execution time is measured with a precision of 0.01 s, so any execution time below that
is 0.
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Dataset l1 benchmark SolveLA LIBFISTA constant LIBFISTA backtracking

abalone 1103 4327 4228 1103
bodyfat 542 96 96 447
cpusmall 176 336 336 176
housing 495 699 699 479
mpg 415 889 889 611
prostate 188 141 141 166
space ga 1291 1746 1746 1291

Table A.2.2: Comparison of the iterations

Dataset l1 benchmark SolveLA LIBFISTA constant LIBFISTA backtracking

abalone 1.584 32 1.584 33 1.584 33 1.584 32
bodyfat 0.000 926 0.000 923 0.000 924 0.000 925
cpusmall 6.163 19 6.1637 6.1637 6.163 19
housing 3.270 83 3.270 88 3.270 88 3.270 88
mpg 2.4993 2.499 31 2.499 31 2.499 31
prostate 0.498 613 0.498 613 0.498 613 0.498 604
space ga 0.096 455 0.096 454 0.096 454 0.096 455

Table A.2.3: Comparison of the MAE

Dataset l1 benchmark SolveLA LIBFISTA constant LIBFISTA backtracking

abalone 0.347 579 0.627 829 0.13 0.16
bodyfat 0.041 969 0.040 002 0 0
cpusmall 0.078 051 0.060 374 0.08 0.06
housing 0.038 408 0.037 918 0.01 0
mpg 0.028 729 0.042 252 0 0
prostate 0.011 14 0.009 293 0 0
space ga 0.211 725 0.142 273 0.09 0.04

Table A.2.4: Comparison of the elapsed time in seconds
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