Fabricación de nanopartículas metálicas por métodos físicos con tamaño, composición química y estructura controlados. Nanopartículas de Co, Au, Ag, aleación Ag-Au y Ag-Au-Pd, y Ag@Au

Memoria presentada para optar al grado de Doctor en Ciencias Físicas por

Manuel M. Ruano Díaz

Dirigida por Dra. Lidia Martínez Orellana y Dr. Yves Huttel

Tutora Prof. Pilar Prieto Recio

Madrid, Junio 2013
Índice general

<table>
<thead>
<tr>
<th>Índice</th>
<th>Resumen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introducción</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Bibliografía</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>Técnicas experimentales</td>
<td>11</td>
</tr>
<tr>
<td>2.1.</td>
<td>Introducción</td>
<td>13</td>
</tr>
<tr>
<td>2.2.</td>
<td>Técnicas de crecimiento</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1.</td>
<td>Sistema de crecimiento por pulverización catódica (Sputtering)</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1.1</td>
<td>Sputtering en corriente continua DC</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1.2</td>
<td>Sputtering con magnetrón</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2.</td>
<td>Sistema de crecimiento de nanopartículas con fuente de agregados (ICS)</td>
<td>17</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Parámetros de crecimiento de los agregados</td>
<td>19</td>
</tr>
<tr>
<td>2.2.3.</td>
<td>Sistema de crecimiento de nanopartículas con fuente de agregados múltiple (MICS)</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Técnicas de caracterización morfológica</td>
<td>24</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Microscopía de Fuerzas Atómicas (AFM)</td>
<td>24</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Microscopía Electrónica de Transmisión (TEM)</td>
<td>26</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Microscopía Electrónica de Transmisión-Barrido (STEM)</td>
<td>28</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Análisis del Ángulo de Contacto</td>
<td>30</td>
</tr>
<tr>
<td>2.3.4.1</td>
<td>Modo de medida del ángulo de contacto: gota sésil</td>
<td>31</td>
</tr>
<tr>
<td>2.4</td>
<td>Técnicas de caracterización composicional</td>
<td>32</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Espectroscopia de fotoelectrones de Rayos X (XPS)</td>
<td>32</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Espectroscopia de energía dispersiva de rayos X (EDX/EDS)</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>Técnicas de caracterización magnética</td>
<td>36</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Dispositivo superconductor de interferencia cuántica (SQUID)</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Bibliografía</td>
<td>40</td>
</tr>
</tbody>
</table>
3. Interacciones interpartícula entre nanopartículas de Co sobre Si(100) en función del tiempo de depósito y la rugosidad superficial

3.1 Introducción .. 45
3.2 Detalles experimentales .. 46
3.3 Resultados y discusión ... 47
3.3.1 Caracterización morfológica con AFM 47
3.3.2 Caracterización estructural por TEM 51
3.3.2 Estudio de interacciones interpartícula 52
3.3.3 Caracterización de la rugosidad superficial a escala nanométrica 58
3.3.4 Caracterización de la mojabilidad por ángulo de contacto 64
3.4 Conclusiones ... 68

4. Interacciones interpartícula entre nanopartículas de Co en matrices metálicas de Au y V con respecto a las propiedades magnéticas

4.1 Introducción .. 75
4.2 Detalles experimentales .. 77
4.3 Resultados y discusión ... 77
4.3.1 Consideraciones previas ... 77
4.3.2 Comportamiento magnético a 300 K de nanopartículas de cobalto en matrices de V y Au 79
4.3.3 Comportamiento magnético a 10 K de nanopartículas de cobalto en matrices de V y Au 81
4.3.4 Estudio de las interacciones magnéticas: Medidas de relajación magnética ... 86
4.3.5 Estudio de las interacciones magnéticas: Curvas ΔM 88
4.3.6 Comportamiento magnético en función de la temperatura de nanopartículas de cobalto en matrices de V y Au 90
4.3.7 Temperatura de bloqueo (T_B) 93
4.4 Conclusiones ... 97

5. Fabricación y caracterización de nanopartículas de composición y estructura controlada sobre Si(100) fabricadas mediante la técnica MICS

5.1 Introducción .. 109
5.2 Detalles experimentales .. 112
5.3 Nanopartículas de Ag y Au ... 113
5.3.1 Consideraciones previas: importancia de la elección de Au y Ag 113
5.3.2 Condiciones de depósito y caracterización morfológica con AFM de nanopartículas de Ag ... 114

Bibliografía .. 69
La fabricación de nanopartículas metálicas es una de las líneas de trabajo más importantes en nanociencia. El alto cociente superficie/volumen que presentan las nanopartículas les confiere unas propiedades distintas de sus materiales en volumen: nuevas propiedades magnéticas, catalíticas, ópticas, entre muchas otras. Dentro de sus posibilidades tecnológicas, se incluyen ejemplos como terapia médica, tecnología de almacenamiento de datos, biosensores u optoelectrónica. La generación de nanopartículas ha supuesto tanto el desarrollo de nuevas técnicas de fabricación como nuevas vías de protección o uso de las nanopartículas para generar nuevos materiales con las propiedades deseadas. El trabajo de investigación presentado en esta memoria comprende la fabricación y caracterización de nanopartículas metálicas tanto en superficies como en sistemas más complejos (matrices). Este estudio tiene como finalidad ampliar el conocimiento existente de este tipo de sistemas de reducida dimensionalidad.

En primer lugar se han fabricado y estudiado nanopartículas de Co depositadas sobre sustratos de Si(100) oxidados naturalmente, fabricadas mediante la técnica de agregación de gases usando una fuente de agregados (Ion Cluster Source, ICS) en ultra alto vacío. Los depósitos de nanopartículas corresponden a diferentes porcentajes de recubrimiento, bastante inferiores a una monocapa (entre 1.4% y 10.6%) con un tamaño promedio de nanoparticula de ~ 10 nm. Se profundiza en la modificación de las propiedades de la superficie del Si en función del porcentaje de recubrimiento. Primero, se estudia la influencia de las interacciones interpartícula en la distribución de las nanopartículas depositadas sobre la superficie durante el proceso de depósito. A continuación, se realiza un estudio de la rugosidad superficial de estos depósitos a nivel nanométrico que se correlaciona con la evolución de la mojabilidad de los sistemas fabricados. De este modo, puede observarse que la nanoestructuración de superficies muy planas es capaz de modificar notablemente las propiedades de la superficie depositada.

Las nanopartículas de Co son altamente reactivas al aire. Con el fin de conservar su naturaleza magnética, el estudio de vías de protección es el siguiente avance natural de este trabajo. Las nanopartículas de Co son embebidas en matrices metálicas de Au y V, fabricadas con la técnica de pulverización catódica (sputtering) con magnetrón. Estas matrices consisten en un sistema de láminas delgadas. El oro es una matriz no-reactiva ideal de polarización débil en contacto con metales de transición 3d. El vanadio es paramagnético y puede presentar...
magnetización distinta de cero en contacto con materiales ferromagnéticos 3d. Se ha observado que la alta fracción de átomos de las nanopartículas en contacto con la intercara de la matriz protectora, influye en la respuesta magnética del sistema estudiado. De este modo, se estudia si las propiedades magnéticas de las nanopartículas están condicionadas tanto por la intercara de la matriz como por el porcentaje de nanopartículas de Co embebidas.

La técnica de fabricación de nanopartículas ICS utilizada ha demostrado ser capaz de generar nanopartículas de alta pureza con gran precisión, pero presenta un principal inconveniente: el uso de un único blanco. Esto impide la generación de nanopartículas heteroestructuradas, formadas por varios elementos distintos, controlando la composición química. Nuestra experiencia previa con la ICS estándar motiva que nuestro grupo de investigación desarrolle una versión mejorada de la ICS. Este sistema de crecimiento de nanopartículas es denominado fuente de agregados múltiple (Multiple Ion Cluster Source, MICS). Tres magnetrones independientes sustituyen al magnetrón único del sistema ICS estándar. El control individual de los parámetros de trabajo de los tres magnetrones permite la fabricación de nanopartículas con composición química ajustable, pudiendo generar: nanopartículas de un solo elemento, nanopartículas de aleación de dos o tres elementos con estequiometría controlada y nanopartículas de tipo núcleo-corteza. En otras palabras, en la presente memoria se demuestra que la técnica MICS permite generar nanopartículas con control preciso de la composición química y del tamaño de las nanopartículas. Por último, para el caso de las nanopartículas núcleo-corteza, se ha desarrollado un protocolo mediante el cual, realizando una calibración previa de los magnetrones individuales, es posible ajustar el tamaño de núcleo y el espesor de la corteza.
Introducción
La nanotecnología consiste en la ingeniería de miniaturizar objetos con el fin de fabricar nuevos dispositivos funcionales en la escala nanométrica. Este concepto revolucionario se extendió a partir de las famosas conferencias universitarias del Prof. Richard Feynman, recopiladas bajo el título: “Hay mucho espacio en el fondo” [1]. Las clases maestras de Feynman supusieron asentar el comienzo de la aproximación “bottom-up”: la generación de un objeto final, partiendo de sus elementos constituyentes. Este planteamiento es el fundamento de una rama de la física de materiales, ya que el premiado Nobel contemplaba la posibilidad de manipular los átomos individualmente. En la actualidad, la definición de nanotecnología no se ha restringido al rango de las moléculas o átomos, y dentro de esta etiqueta, se incluye el estudio de estructuras de un tamaño comprendido entre los 1 y 100 nm. Se denomina nanoestructura o nanoobjeto a un objeto físico que presenta al menos una dimensión en escala nanométrica.

La mejora de las técnicas de vacío, sumado a la aparición de nuevas técnicas de fabricación de nanoestructuras, habilitó la fabricación de los primeros sistemas de baja dimensionalidad: las láminas delgadas [2]. El depósito de materiales con el control preciso de su espesor a escala nanométrica, permitió desarrollar nuevas aplicaciones. No obstante, a medida que el cociente de superficie/volumen aumentaba debido a la reducción de la dimensionalidad, surgieron muchos más interrogantes y propiedades apreciablemente diferentes respecto de los materiales en volumen. Esta búsqueda de nuevas propiedades ajustables a partir de materiales ya bien conocidos en volumen, ha resultado en las actuales líneas de trabajo como la ingeniería de nanopartículas, la ciencia de superficies o la nanociencia de materiales.

Dentro de los sistemas de baja dimensionalidad, las nanopartículas ocupan un lugar destacado. Implican que un relativamente alto número de átomos se encuentren situados en la superficie y la aparición de efectos cuánticos de tamaño. Sin embargo, un problema inevitable asociado a las estructuras en este rango de tamaño es su inestabilidad intrínseca durante largos periodos de tiempo. Las nanopartículas tienden a formar aglomerados para reducir su alto cociente superficie/volumen. Asimismo, si presentan una naturaleza magnética, ésta puede desaparecer debido a la oxidación al aire. Es por ello que, para su aplicación tecnológica, deben: i) ser depositadas sobre un sustrato o ser dispersadas en soluciones con agentes antiaglomerantes para evitar los aglomerados de nanopartículas; y/o ii) desarrollarse vías de protección con el fin de estabilizar químicamente las nanopartículas y evitar su degradación durante o después de su fabricación. El recubrimiento de las nanopartículas ha sido realizado tanto con especies orgánicas, incluyendo surfactantes o polímeros, como con láminas inorgánicas o matrices. En la mayoría de estos sistemas heteroestructurados, no sólo se ha permitido estabilizar las nanopartículas, sino que la combinación de más de un material ha permitido obtener nuevas propiedades e incluso, la funcionalización de dichos sistemas [3]. Las nanopartículas implican que una alta fracción de átomos esté en contacto con la superficie de la matriz protectora, siendo sensibles al medio que actúa de recubrimiento en la intercara. De este modo, la naturaleza de la matriz es alterada, influyendo en las propiedades finales del sistema global.
Desde el punto de vista de las propiedades magnéticas de las nanopartículas, dos son los puntos clave: los efectos finitos de tamaño y los efectos de superficie. Los efectos finitos de tamaño resultan del confinamiento cuántico de los electrones, mientras que los efectos de superficie están relacionados con la ruptura de la simetría de la estructura cristalina en el borde de la nanopartícula. En nanopartículas magnéticas, los efectos finitos de superficie más estudiados son el “límite monodominio” y el “límite superparamagnético”.

Un estado multidominio supone que diferentes regiones uniformes de magnetización son separadas por paredes de dominio. Las paredes de dominio se forman por el balance energético entre la energía magnetostática, que aumenta proporcionalmente con el volumen del material, y la energía de la pared de dominio, proporcional al área de intercara entre los dominios. Si se reduce el tamaño de la estructura, existe un volumen crítico por debajo del cual el coste energético para crear una pared de dominio es mayor que soportar la energía magnetostática externa de un estado monodominio. Típicamente, este volumen crítico es del orden de la decena de nanómetros y depende del material. Una partícula monodominio está uniformemente magnetizada, con todos los espines alineados en la misma dirección. La respuesta magnética será contraria a la rotación de los momentos magnéticos dado que no existen paredes de dominio que mover, observándose una alta coercitividad en nanopartículas pequeñas [4].

El superparamagnetismo puede ser entendido a partir del comportamiento de una partícula monodominio bien aislada. La energía de anisotropía magnética por partícula, que mantiene a los momentos magnéticos a lo largo de una cierta dirección, es proporcional al producto del volumen de la partícula V por la constante de anisotropía K_{eff}. Cuando el tamaño de partícula disminuye, la energía térmica, $k_B T$ (k_B es la constante de Boltzmann), supera a la energía de barrera $K_{\text{eff}} V$, de modo que la magnetización es fácilmente invertida con el tiempo y las nanopartículas pierden su orden magnético estable [5]. Para $k_B T \gg K_{\text{eff}} V$, el sistema se comporta como un paramagnético, pero en vez de momentos magnéticos atómicos, existe ahora un momento magnético gigante (super) dentro de cada partícula. Este comportamiento es el superparamagnético, definiendo el “límite superparamagnético”.

Si consideramos que las interacciones magnéticas entre las nanopartículas vecinas tienen una fuerte influencia en la respuesta magnética, la descripción del comportamiento magnético se hace más compleja. Es difícil separar los efectos de las interacciones magnéticas, que dan lugar a un comportamiento colectivo de las nanopartículas [6,7], frente a los efectos intrínsecos asociados a las nanopartículas estudiadas (distribución aleatoria de tamaños, su forma). Asimismo, pueden presentarse distintas interacciones simultáneamente en un mismo sistema magnético. El comportamiento magnético de una agrupación de nanopartículas envuelta en una matriz es el resultado de las propiedades intrínsecas de las partículas y su estructura electrónica, la naturaleza magnética de la matriz y las energías de interacción entre ellas. Esta situación remarca el importante interés de caracterizar las propiedades magnéticas del sistema estudiado en función de las interacciones magnéticas.

La disminución del tamaño de las nanopartículas conlleva a que los efectos de superficie/intercara sean relevantes [8], dado que un gran porcentaje de los átomos de la nanopartícula son átomos de la superficie. A causa de este alto cociente de átomos
superficie/volumen, los espines de la superficie influyen en la respuesta de la magnetización. La ruptura local de la simetría puede implicar cambios en la estructura de bandas, la constante de red o/la coordinación atómica. Por tanto, los efectos de superficie pueden conducir a la disminución de la magnetización de las nanopartículas con respecto al valor en volumen. Esta reducción ha sido asociada a diferentes mecanismos, tales como la existencia de una capa magnéticamente muerta en la superficie [9], estados parásitos anómalos [10] o un comportamiento de vidrio de espín de los espines de la superficie [11]. Asimismo, otros efectos de superficie que han sido observados en el caso de nanopartículas magnéticas son que, a medida que decrece el tamaño de las nanopartículas, se produce un aumento del momento magnético [12] o de la anisotropía magnética [12,13] respecto del volumen.

La elección de la naturaleza de las nanopartículas y del sistema complejo que envuelve a las mismas tiene una implicación estrecha en las propiedades resultantes. Las propiedades intrínsecas de las nanopartículas están principalmente determinadas por su distribución de tamaños y forma, su composición química, morfología, geometría y estructura. El amplio abanico de posibles aplicaciones industriales de las nanopartículas magnéticas es sorprendente, siendo algunos ejemplos: fluidos magnéticos [14], dispositivos ópticos [15], almacenamiento de datos [16], etiquetado biológico y biomedicina [17,18] o imágenes por resonancia magnética [19]. Una matriz que embeba las nanopartículas añade la influencia de dos contribuciones extra a las propiedades del sistema: la distribución espacial de las nanopartículas en la misma matriz, y la naturaleza de la intercara de contacto. La suma de la matriz junto con las nanopartículas compone el número de parámetros de trabajo con los que se puede controlar con precisión las propiedades del sistema final. Sin embargo, no es sencillo establecer una clara correlación entre la intercara con la matriz y las propiedades magnéticas de las nanopartículas, e incluso la misma intercara puede condicionar las propiedades magnéticas del sistema global. En otras palabras, el estudio de sistemas de nanopartículas embebidas en diferentes matrices, conlleva un elevado potencial tecnológico, a la vez que un alto interés científico.

El control de la fabricación de las nanopartículas metálicas ha demostrado ser una línea de trabajo muy importante. No obstante, la evolución de la investigación científica ha dado un avance en lo referente a la nanociencia: la generación de nanopartículas compuestas por varios elementos. La versatilidad de poder combinar distintos elementos metálicos, en diferentes proporciones, en la nanoescala y controladamente, constituye un nuevo paradigma en la ingeniería de nanomateriales. Las nanopartículas bimétálicas y trimetálicas con estructura aleada y de tipo núcleo-corteza (comúnmente denominadas core-shell) posibilitan la fabricación de nuevos sistemas heteroestructurados a escala nanométrica. Esta línea de trabajo supone el control tanto de la composición química de las nanopartículas, hasta unas pocas capas atómicas. Desde el punto de vista de la nanotecnología, implica la necesidad de desarrollo de nuevas técnicas de fabricación o su perfeccionamiento. Además, en esta escala, la generación con precisión de nanopartículas de composición química ajustable sin perder el control del tamaño representa un requisito imprescindible. Recientemente, se ha demostrado que, en el caso de nanopartículas núcleo-corteza, un cierto espesor de corteza de un elemento altamente oxidable, puede mejorar su estabilidad química por transferencia electrónica del núcleo a la corteza [20,21]. El prometedor potencial de este control nanométrico es
abrumador, abriendo nuevos frentes de aplicaciones en campos como la terapia médica, la optoelectrónica, la catálisis o la tecnología de la información [22 - 27].

En el presente trabajo se expone un estudio de ingeniería de nanopartículas metálicas compuestas de uno, dos y tres elementos, en tres niveles. En primer lugar, son fabricadas nanopartículas de Co, directamente depositadas sobre un sustrato de silicio, usando una fuente de agregados (ICS). Tras un estudio exhaustivo de su morfología, son analizadas las propiedades físicas del depósito: i) presencia de interacciones interpartícula como factor influyente en las condiciones del depósito, ii) rugosidad superficial; y iii) mojabilidad. El segundo nivel consiste en la formación de nuevos sistemas, embebendo dichas nanopartículas de Co en matrices metálicas de Au y V, siendo depositadas mediante pulverización catódica sputtering magnetrón. Este paso intermedio nos permite analizar la influencia en las propiedades magnéticas en función de los efectos de intercara para un sistema de nanopartículas ya conocido. Por último, son fabricadas nanopartículas de aleación bimetálicas Au-Ag y trimetálicas Ag-Au-Pd, y de tipo núcleo de Ag y corteza de Au (Agnúcleo-AuCORTEZA) a través de un prototipo de fuente de agregados múltiple (MICS) desarrollado por nuestro grupo de investigación. La finalidad de este trabajo es la fabricación de nanopartículas con control de la composición química, distribución de tamaños y de forma, y el estudio de los efectos físicos asociados a la nanoestructuración.

La memoria de este trabajo ha sido estructurada en los siguientes capítulos:

Capítulo 2. Introduciremos y describiremos las técnicas experimentales utilizadas para la fabricación y caracterización de los sistemas estudiados en este trabajo. En cada técnica, se detallarán las condiciones empleadas durante su uso, así como los sistemas generados con ellas. Además, mencionaremos los grupos de investigación con los que se ha colaborado para la realización de esta tesis.

Capítulo 3. Este capítulo está dedicado al estudio de nanopartículas de Co depositadas sobre sustratos de Si(100) oxidados naturalmente. Reportamos una caracterización morfológica y estructural de las nanopartículas fabricadas en función del porcentaje de recubrimiento, bastante inferior a un monocapa, así como la influencia de las interacciones interpartícula en la distribución espacial del depósito sobre la superficie. A continuación, se realizará un análisis pormenorizado de cómo estos depósitos modifican notablemente las propiedades físicas de superficies muy planas mediante un estudio de la rugosidad superficial en la microescala y nanoescala, y de la mojabilidad.

Capítulo 4. Describiremos las propiedades magnéticas de sistemas complejos compuestos por las nanopartículas de Co del capítulo 3 que son embebidas en matrices diamagnéticas de Au y matrices paramagnéticas de V. Se analizará la influencia del porcentaje de recubrimiento de nanopartículas de Co y de las matrices seleccionadas en la respuesta magnética de los sistemas fabricados.

Capítulo 5. En este capítulo, se presentará la generación de nanopartículas de composición química ajustable sin perder el control del tamaño mediante la nueva técnica
MICS compuesta por tres magnetrones independientes en una zona de agregación. Se caracterizarán morfológicamente depósitos de nanopartículas de Au y Ag. De los resultados extraídos de esta caracterización previa, se demostrará que con este equipo experimental es posible fabricar nanopartículas de aleación bimetálicas Au-Ag y triméticas Ag-Au-Pd, así como Ag\(_{\text{núcleo}}\)-Au\(_{\text{corteza}}\). En el caso de las nanopartículas de aleación, son generadas nanopartículas con distintas estequiometrias. Asimismo, es desarrollado un protocolo para la fabricación de nanopartículas de tipo núcleo-corteza. Partiendo de la caracterización morfológica de las nanopartículas fabricadas con cada uno de los magnetrones individualmente, es posible ajustar el diámetro de núcleo y el espesor de corteza para obtener las nanopartículas núcleo-corteza deseadas.

Capítulo 6. Presentamos las conclusiones generales más relevantes.

La memoria se completa con la presentación de las publicaciones y participaciones en eventos científicos realizados durante el periodo de tesis doctoral.
Bibliografía

Capítulo 1. Introducción

2

Técnicas Experimentales
Capítulo 2. Técnicas Experimentales

2.1 Introducción

En el presente capítulo se describirán el equipo experimental y las técnicas de caracterización que han sido utilizadas para la realización de esta tesis. Son técnicas necesarias para el crecimiento y el análisis morfológico, estructural, composicional y magnético de sistemas de láminas delgadas y nanopartículas. Cada apartado de este capítulo resumirá los conceptos básicos para la comprensión del fundamento físico de cada una de las técnicas experimentales utilizadas, así como los detalles experimentales.

Cuatro apartados componen la estructura del capítulo 2. Primero, se detallarán las técnicas de crecimiento empleadas para la fabricación de nanopartículas y películas delgadas. El segundo apartado contiene una explicación breve de las técnicas de caracterización morfológicas y estructurales utilizadas, focalizando en la microscopía de fuerzas atómicas (AFM), microscopía electrónica de transmisión (TEM) y medida del ángulo de contacto. En tercer lugar, se describirán las técnicas de caracterización composicional empleadas: las espectroscopías de fotoelectrones de Rayos (XPS) y de energía dispersiva de Rayos X (EDX). Por último, se presentará la técnica de caracterización magnética usada, el dispositivo superconductor de interferencia cuántica (SQUID), junto con el protocolo experimental.

2.2 Técnicas de crecimiento

Tres técnicas experimentales fueron utilizadas durante la realización de esta tesis para la fabricación de sistemas de nanopartículas y de películas delgadas: la pulverización catódica (sputtering) con magnetrón y bajo el mismo fundamento de dicha técnica, su empleo con una fuente de agregados simple (ICS, Ion Cluster Source) y múltiple (MICS, Multiple Ion Cluster Source). El depósito de materiales a partir de las técnicas seleccionadas presenta numerosas ventajas, destacando la fabricación en condiciones de Alto Vacío (HV) o Ultra Alto Vacío (UHV) y el control y estabilidad del ritmo de depósito. Una descripción breve de estas tres técnicas será realizada a continuación.

2.2.1. Sistema de crecimiento por pulverización catódica (Sputtering)

El sputtering es una de las principales técnicas físicas de depósito de láminas delgadas empleadas en tecnología industrial e investigación fundamental [1]. Permite el depósito de todo tipo de materiales y es compatible con cualquier sustrato compatible con el vacío. Esta técnica consiste en un proceso de bombardeo iónico del material a depositar, denominado blanco, mediante iones procedentes del plasma de un gas mantenido a baja presión (10^{-3} mbar – 1 mbar). Los iones que forman el plasma son acelerados hacia el blanco mediante un campo eléctrico. Cuando un ión impacta con la superficie del blanco, transfiere parte de su energía y momento a los átomos que lo forman. Múltiples colisiones pueden arrancar átomos de la superficie del blanco, que salen expulsados, alcanzando y depositándose controladamente sobre el sustrato. La mayor parte de la energía proporcionada por los iones incidentes se transforma...
en calor, siendo necesaria su disipación a través de un circuito de refrigeración que evita el sobrecalentamiento del blanco.

Habitualmente, se utiliza un gas inerte, salvo en sistemas donde se busque la reacción del gas con el material a depositar. Los iones de dicho gas deben presentar una masa lo suficientemente grande para que la transmisión de momento a los átomos del blanco sea eficiente. Comúnmente se escoge argón por su baja reactividad e inferior coste.

La naturaleza del campo eléctrico utilizado en la aceleración de los iones caracteriza las diferentes modalidades existentes de esta técnica y define un método diferente de generación del plasma y su confinamiento. Asimismo, la presión durante el depósito depende de la técnica utilizada y de las condiciones de crecimiento. El método utilizado en la presente tesis es el \textit{sputtering} con magnetrón, que fue alimentado con una fuente de corriente/voltaje continua o DC. Por ello, se comenzará explicando la técnica de \textit{sputtering} en DC como precursor del \textit{sputtering} con magnetrón.

\subsection*{2.2.1.1 Sputtering en corriente continua DC}

El \textit{sputtering} en DC permite depositar cualquier tipo de material conductor y algunos semiconductores (carbono, germanio o silicio). Su versatilidad limitada no permite su empleo para materiales aislantes (esto se consigue con \textit{sputtering} en radiofrecuencia RF).

El sistema está equipado con dos electrodos. El cátodo en contacto eléctrico con el blanco, está conectado al polo negativo de una fuente de alimentación de alta tensión (entre 0.5 y 5 kV). El ánodo, detrás del sustrato, está colocado enfrente del blanco a pocos cm, y conectado a tierra. La cámara de depósito está conectada a un sistema de bombeo. Partiendo de una presión inferior a 10^{-6} mbar para evacuar el aire, se introduce un gas inerte (usualmente Ar) y se mantiene a presión constante durante el proceso de \textit{sputtering} (típicamente, entre 10^{-2} y 1 mbar). Aplicando un potencial negativo en el cátodo, estamos aplicando un campo eléctrico. Los electrones libres del gas se aceleran, colisionan con los átomos de Ar, induciendo la ionización del gas y circulando pequeñas corrientes de iones y electrones. La energía cinética se transfiere más rápidamente sobre los electrones por la diferencia de masas entre iones y electrones. Como consecuencia, más átomos neutros del gas son ionizados, generándose más iones y electrones secundarios. Los iones, cargados positivamente, son atraídos por el electrodo negativo, chocando con el blanco y arrancando átomos y electrones. Estos electrones, repelidos por el potencial negativo del cátodo, son también acelerados por el campo eléctrico y encuentran en su recorrido nuevos átomos a los que también ionizan, repitiéndose de nuevo el proceso. De este modo, los electrones secundarios son los encargados de mantener el bombardeo iónico. Este proceso se denomina descarga. Cuando los electrones secundarios se alejan del blanco, son recogidos por el ánodo. Finalmente, se alcanza un estado de equilibrio, estabilizándose el plasma por la compensación entre las ionizaciones y neutralizaciones. Los átomos del blanco arrancados, son eyectados y se depositan sobre el sustrato. Mediante el voltaje aplicado y la presión del gas inerte en la cámara, se puede controlar el ritmo de depósito.
2.2.1.2. Sputtering con magnetrón

La introducción de un imán permanente en el cátodo supone la optimización del cátodo empleado en el sputtering en DC clásico. Penning fue el primero en estudiar el sputtering a baja presión con un campo magnético transversal superpuesto a una descarga DC en 1935 [2], pero no fue hasta 1974, cuando Chapin lo introdujo en el propio proceso de sputtering [3]. Este método se basa en la aplicación adicional de un campo magnético. El sputtering con magnetrón permite utilizar cualquier tipo de material ya que puede ser combinado con una polarización del blanco en DC o RF.

En las proximidades de la superficie del blanco, se superpone al campo eléctrico aplicado, un campo magnético perpendicular al campo eléctrico. Los electrones describen trayectorias helicoidales alrededor de las líneas del campo magnético, concentrando un gran número de electrones en la superficie del blanco y aumentando las posibilidades de ionizar átomos del gas inerte. Estos electrones son tanto electrones secundarios de la colisión con el blanco, como resultado de la ionización del gas inerte. Ambos tipos de electrones están sometidos a la fuerza de Lorentz ejercida por el campo eléctrico entre los electrodos y por los imanes permanentes. La eficiencia de la ionización de los electrones secundarios emitidos se incrementa con la consecuencia de alargar sus trayectorias antes de terminar en el ánodo. Aumenta la densidad iónica del plasma en torno al blanco y, por ende, el ritmo del depósito. Cuando los electrones secundarios tienen una trayectoria radial hacia el exterior, pueden rebasar el perímetro del blanco. Para evitar que alcancen al sustrato, dichos electrones son recogidos en el ánodo, situado alrededor del blanco (en la caperuza que rodea al magnetrón).

Habitualmente, la geometría del magnetrón es planar (rectangular o circular) y están constituidos por un conjunto de imanes permanentes. Con este método se trabaja a presiones de 10^{-3} mbar y voltajes inferiores que en el sputtering en DC, entre 300 y 500 V. Asimismo, el sputtering con magnetrón permite la fabricación de láminas de mejor calidad, con un ritmo de crecimiento superior, así como una mejor adhesión del depósito al sustrato por la energía de los átomos arrancados.
La desventaja del sputtering con magnetrón reside en la inhomogeneidad de las líneas de campo a lo largo de toda la superficie del blanco, provocando un desgaste desigual del mismo. Si el espesor del blanco es demasiado grande, las líneas de campo no se cierran bien dando lugar a una eficiencia baja o nula.

- **Detalles experimentales**

 La técnica de sputtering con magnetró con una fuente DC fue utilizada para la fabricación de láminas delgadas de Au y V. Las láminas delgadas fueron depositadas como matrices de Au y Au/V, en las cuales fueron embebidas nanopartículas de cobalto. En este subapartado sólo se detallará el procedimiento experimental para la fabricación de las láminas delgadas de Au y V. Ambas matrices fueron realizadas en colaboración con el grupo de Magnetoplasmónica del Instituto de Microelectrónica de Madrid (IMM) del Consejo Superior de Investigaciones Científicas (CSIC) en el grupo del Profesor Alfonso Cebollada.

 El equipo experimental empleado en el IMM consta de cuatro magnetrones planos circulares de 2” de diámetro, con una fuente de alimentación DC Advance Energy MDX500. Fue utilizado un sistema de sputtering con magnetrón comercial AJA International (Fig. 2.1) con dos blancos: un blanco de Au, de 99.99% de pureza de AJA International, y un blanco de V, de 99.7% de pureza de Kurt J. Lesker. Para el sistema de bombeo de la campana principal, fue utilizada una bomba turbomolecular (asistida por una bomba rotatoria) con capacidad de bombeo de 500 l·s⁻¹. La presión base fue del orden de 10⁻⁹ mbar (UHV).

 Antes de cada depósito, fue realizado un proceso de pre-sputtering de cada blanco mediante el bombardeo de iones de Ar para la limpieza del blanco de posibles óxidos superficiales u otros contaminantes. La presión de Ar durante el depósito fue constante, para el caso de V, fue 3·10⁻³ mbar y para Au, de 1·10⁻³ mbar. La potencia aplicada al magnetrón fue de 20 W, con un ritmo de depósito de 2 nm·s⁻¹ para el V y 20 nm·s⁻¹ para el Au.

 Las muestras fueron introducidas en una precámara con un sistema de bombeo independiente, antes de acceder a la campana de vacío principal. De este modo, no fue necesaria la ruptura del vacío de la cámara y fue posible introducir nuevos sustratos con un tiempo de bombeo de alrededor de 30 min. Una válvula de fugas permitió la introducción de Ar en la campana con un control preciso del flujo.

 Los sustratos utilizados fueron de Si(100) con el óxido nativo, cortados en dimensiones de 5 mm x 5 mm de una oblea de Si(100) de diámetro 2” y espesor 380 ± 25 µm, dopada con Boro (tipo p) de ITME (Institute of Electronic Materiales Technology). Cada sustrato, previo al depósito, fue desgasificado a 423 K durante 30 minutos en UHV para eliminar una posible contaminación atmosférica, y enfriado a temperatura ambiente. Todo depósito fue realizado a temperatura ambiente. Este tipo de sustrato de Si fue empleado para la fabricación de todos los sistemas estudiados en la presente tesis.
2.2.2 Sistema de crecimiento de nanopartículas con fuente de agregados (ICS)

Habitualmente, se denomina agregado (cluster) a una agrupación de átomos o moléculas, cuyo tamaño oscila desde unos pocos átomos hasta agrupaciones del orden de 10^7 átomos. La alta relación superficie-volumen que caracteriza a los agregados, ha permitido desarrollar nuevos materiales con unas propiedades intrínsecas únicas, diferentes de las propiedades de los mismos en volumen. Dependiendo del número de átomos o moléculas constituyentes, los agregados se pueden clasificar como pequeños, medianos y grandes. Las nanopartículas se clasifican dentro de la categoría de tamaño medio, para estructuras con un tamaño desde 1 y 100 nm.

La fuente de gas de agregación es un método físico para la formación de nanopartículas por medio de la evaporación de un material sólido (por sputtering u otro método) y su posterior condensación que conlleva a su agregación. El equipo experimental utilizado fue una fuente de agregados ICS equipada con un sistema de sputtering con magnetrón en DC (Fig. 2.2). La ICS está basada en el concepto desarrollado por Haberland [4]. Los detalles del equipo son especificados en un subapartado posterior y su esquema es representado en la figura 2.3. La técnica ICS presenta varias ventajas únicas frente a otras técnicas de fabricación de agregados. Permite tener un gran control de la densidad del depósito y el tamaño de los agregados fabricados. El depósito es realizado en condiciones de HV o UHV, obteniendo nanoestructuras de alta pureza. Además, los agregados son generados en una zona independiente a la región del depósito, otorgando una increíble versatilidad de la técnica (es decir, se puede usar en todo tipo de superficies). Por último, debido a sus reducidas dimensiones, es un sistema fácilmente transportable que puede ser conectado y combinado con otras técnicas de fabricación.
La formación de partículas en una fase gas tiene lugar por procesos de nucleación homogénea y de condensación (mediante colisiones). Existe una gran familia de técnicas, basadas en la fuente de condensación de gas (Gas Condensation Source), donde el material a depositar puede ser vaporizado a partir de una fuente caliente dentro de una atmósfera de una gas inerte de baja densidad (calor Joule, plasma térmico o ablación laser). El enfriamiento rápido del vapor conduce a la sobresaturación seguida de una nucleación homogénea y la formación de los primeros agregados \[5,6\]. En el caso de la técnica ICS, los agregados son fabricados por colisiones principalmente, aunque la nucleación homogénea es un mecanismo no despreciable.

Siendo A, un átomo del blanco, y B, un átomo de gas inerte, los posibles procesos de colisión en el sistema son \[7,8\]:

(i) Colisiones elásticas entre dos átomos o agregados del blanco (A-A), entre blanco y gas, A-B, o gas-gas, B-B. Usualmente, sólo las colisiones elásticas ocurren en el gas inerte (B-B).

(ii) Sublimación o reducción del agregado: \(A_i \rightarrow A_{i-1} + A_1\).

(iii) Proceso de pegado o agregado (stricking) \(A_i + A_j \rightarrow A_{i+j}\).

(iv) Fragmentación del agregado: \(A_i \rightarrow A_j + A_k\), donde \(i = j + k\), \(j > 1\), \(k > 1\)

(v) Proceso de reorganización: \(A_i + A_j \rightarrow A_k + A_l\), donde \(i + j = k + l\)

(vi) Colisiones inelásticas B-A. La energía cinética entre B y A, se transforma en energía de excitación interna (calor) de B o A. Es el principal mecanismo de enfriamiento de las colisiones de agregados.
Las colisiones entre el blanco y el gas inerte son procesos de sublimación o colisiones inelásticas. Después de la colisión con el blanco, la diferencia entre la sublimación y los procesos de pegado es determinada por la energía interna del agregado. La energía interna es la suma de las energías de rotación y vibracionales, y está limitada por la energía de enlace, dependiente del tamaño del agregado [7,9]. Si la energía interna es inferior que la energía de enlace, la colisión es un proceso de agregación, que está relacionado con la conservación del momento. En caso contrario, si la energía interna es superior a la energía de enlace, el átomo es evaporado del agregado para reducir su energía interna. Es el proceso de sublimación.

Los agregados son extraídos de la región de la zona de agregación a través de un orificio o diafragma hacia una cámara de depósito, donde se encuentra el sustrato, con una presión más baja por medio del flujo de gas inerte. El flujo de gas contribuye al mismo tiempo tanto a la agregación del material como al transporte hacia la salida de la zona de agregación. Una vez alcanzado el sustrato, existe un abanico de posibles procesos de colisión entre los agregados y la superficie del sustrato, durante el depósito. La energía cinética del agregado, la naturaleza del agregado y el sustrato determinan el proceso final. En una primera aproximación, cuanto mayor sea la energía del proceso, mayor adherencia y calidad tendrá el depósito [10]. No obstante, el número de factores que controlan las colisiones agregado-sustrato es bastante más complejo, interviniendo también otros parámetros como el tamaño del agregado, el coeficiente de pegado del sustrato, el estado de carga del agregado o el ángulo de impacto [11].

2.2.2.1. Parámetros de crecimiento de los agregados

El tamaño y la distribución de los agregados formados están afectados por numerosos factores, destacando la longitud del camino del vuelo, la temperatura de las paredes de la zona de agregación y del gas, el tiempo de permanencia en la fuente o el cociente de la densidad de especies agregadas y el gas de agregación. Cada uno de estos factores se traduce en diversos parámetros modificables de la ICS, de modo que el proceso de crecimiento se hace más complejo a la par que permite realizar un ajuste fino del resultado final. Además, es necesario realizar una calibración previa en función del sistema y del blanco escogido. Nuestro equipo experimental ICS permite modificar:

✓ La posición del magnetrón dentro de la zona de agregación (longitud de agregación)
✓ Tamaño de apertura
✓ Flujo de gas de sputtering (Ar es el gas utilizado en este trabajo)
✓ Uso de gas adicional en la región de agregación (habitualmente He)
✓ Potencia aplicada en el magnetrón
✓ Temperatura de la zona de agregación

El tamaño promedio y la distribución en tamaños de los agregados aumentan moderadamente en función del tiempo de permanencia en la zona de agregación, aunque existe un límite superior [8,12,13]. También se ha defendido la existencia de un rango de temperaturas del gas óptimo para la formación de agregados [8]. La modificación de cada parámetro dará lugar a una distribución de tamaños y una densidad de depósito de agregados diferente. Mencionaremos las tendencias más intuitivas de la técnica ICS variando un solo parámetro en cada caso:
Menor longitud de agregación implica un menor tiempo de permanencia en la zona de agregación y, por tanto, agregados más pequeños.

Mayor potencia aplicada en el magnetrón supone un mayor número promedio de átomos por agregado, hasta un punto de saturación donde el tamaño se estabiliza.

Mayor flujo de gas de agregación (Ar), no siempre se traduce en un mayor tamaño del agregado. La curva tamaño promedio de agregado en función del flujo de gas aplicado describe un comportamiento tipo gaussiano, con un intervalo óptimo de operación. Para muy altas presiones de gas inerte, los iones del gas pierden mucha energía antes de llegar al blanco por el elevado número de colisiones con átomos del gas. Es decir, se reduce el recorrido libre medio de los iones. De este modo, un número pequeño de iones puede arrancar átomos del blanco y sólo se generan agregados pequeños.

Adición de He como segundo gas de agregación disminuye el tamaño promedio de los agregados.

El ritmo de depósito también presenta un intervalo óptimo en función de la potencia del magnetrón aplicada y del flujo del gas de agregación. Para valores muy altos de potencia o flujo, el recorrido libre medio de los agregados se ve reducido.
Detalles Experimentales

La ICS fue utilizada para la fabricación de nanopartículas de Co, en el Instituto de Ciencia de Materiales de Madrid (ICMM) y en el Instituto de Microelectrónica de Madrid (IMM) del CSIC (Fig. 2.2). Las nanopartículas de Co fueron depositadas en sustratos de Si(100) y embebidas en matrices de Au y V, combinando esta fuente con el sputtering descrito en 2.2.1.2. La figura 2.3 presenta un esquema del equipo experimental de la ICS, compuesto por magnetrón, zona de agregación, sistema de posicionamiento del magnetrón y sistema de bombeo diferencial con su medidor de presión en la zona de agregación. El magnetrón, de 2” de diámetro, posee tres entradas para gases, una toma para la fuente de alimentación y la entrada/salida del circuito de refrigeración (fue empleado agua). Los gases fueron introducidos mediante controladores de flujo mático.

Las nanopartículas de Co fueron fabricadas con la fuente NC200U-B de Oxford Applied Research Ltd. (OAR), que está equipada con un magnetrón que puede trabajar en modo DC/RF (Fig. 2.4). La zona de agregación fue acoplada a una cámara en UHV donde se realizaron los depósitos sobre los sustratos (cámara de depósito). La presión base de vacío fue del orden de 10^{-9} mbar. Ambas cámaras están separadas por un diafragma de un diámetro de 6 mm. La distancia entre el diafragma y el sustrato, dentro de la cámara de depósito, fue de unos 20 cm.

El tamaño de los agregados (típicamente, entre 1 y 20 nm) y la densidad del depósito fueron controlados a través del ajuste de tres parámetros: la potencia suministrada al magnetrón, el flujo de Ar y la longitud de agregación. El número de nanopartículas que salen de la zona de agregación a través de la apertura fue controlado por el tiempo de depósito. Como se indicó en el apartado 2.2.1.2, antes de cada depósito, fue realizado un pre-sputtering del blanco, y una desgasificación del sustrato. Fueron empleados sustratos de Si(100) con óxido nativo, cortados a 5 mm x 5 mm, e introducidos en un precámara antes del depósito.

2.2.3 Sistema de crecimiento de nanopartículas con fuente de agregados múltiple (MICS)

La técnica de crecimiento de agregados ICS ha demostrado su gran versatilidad y su elevada eficiencia en la fabricación de nanopartículas de alta pureza. Sin embargo, presenta como inconveniente el uso de un único blanco con composición química fija. Aunque dicho blanco puede ser una aleación, no permite controlar ni modificar la composición química de las nanoestructuras fabricadas ya que su composición química está determinada por la naturaleza del blanco y el proceso de sputtering. En la mayoría de los casos, la composición química es cercana o igual a la del blanco [14]. Con el uso de una ICS, la modificación de la composición química de las nanopartículas fabricadas sólo se puede realizar cambiando el blanco de sputtering del magnetrón, i.e. abriendo el sistema de UHV.

La fuente de agregados múltiple (Multiple Ion Cluster Source, MICS) fue patentada por nuestro grupo de investigación como un nuevo diseño de la ICS para incrementar la versatilidad de la ICS en cuanto al control de la composición química de las nanopartículas [15]. El dispositivo objeto de la invención se basa en la sustitución del único magnetrón de 2” de la ICS, por tres
magnetrones de 1” (Fig. 2.5). Los magnetrones fueron fabricados siguiendo el diseño original del Profesor José M. Colino García de la Facultad de Ciencias de Medio Ambiente de Toledo [16]. Cada magnetrón presenta su propio sistema individual de posicionamiento y traslación dentro de la zona de agregación, así como su propia toma de gas de sputtering y fuente de alimentación. De este modo, individualmente, cada magnetrón puede disponer con la longitud de agregación deseada y se le puede aplicar diferentes potencias y flujos de gas. Además, varios parámetros de una ICS estándar son preservados: una toma de gas adicional en la zona de agregación y el tamaño del diafragma.

La MICS permite el ajuste fino de la composición química de las nanopartículas fabricadas, extendiendo las capacidades de las ICS y albergando tres blancos distintos in situ. Además, pueden fabricarse nanopartículas de aleación y tipo núcleo de un material con corteza de otro (nanopartículas núcleo-corteza, core-shell), controlando el tamaño promedio del nanopartículas, inclusive el espesor promedio de la corteza. En otras palabras, la MICS no sólo permite el uso de un magnetrón respecto de los otros de forma independiente, sino que supone un paso más en el control de las propiedades de las nanopartículas con estructura compleja y de alta pureza.

En la figura 2.5 se presenta un esquema de las distintas configuraciones que han sido utilizadas en la presente tesis. Cada configuración determina la naturaleza y estructura de las nanopartículas fabricadas, y su ajuste fino es resultado de la suma de todos los parámetros empleados. La principal novedad de la MICS es la relación entre los parámetros de ajuste del crecimiento. En otras palabras, esta técnica presenta tres nuevos parámetros cruciales para el control preciso: las diferencias relativas entre los flujos de gas de sputtering de cada uno de los magnetrones, la presión total en la zona de agregación, y las diferencias relativas entre las longitudes de agregación. Tres fueron las configuraciones usadas durante esta tesis en función de la estructura de la nanopartícula que se desee fabricar:
I. **Configuración nanopartícula de un solo elemento.** Un magnetrón es posicionado más próximo con respecto al diafragma de la zona de agregación. Los otros dos magnetrones son retraídos con el fin de evitar contaminación superficial de su blanco por el magnetrón encendido.

II. **Configuración nanopartícula aleación de dos o tres elementos.** Dos o tres magnetrones son posicionados a la misma distancia.

III. **Configuración nanopartícula núcleo-corteza (core-shell) y tipo cebolla.** Los magnetrones son posicionados a diferentes longitudes de agregación, escalonadamente. El núcleo (core) será del blanco más lejano a la apertura y será recubierto (shell) por el/los materiales más próximos a la apertura.

- **Detalles Experimentales**

La MICS fue utilizada para la fabricación de nanopartículas puras de Au y Ag y de aleación Au-Ag y Pd-Au-Ag, así como estructuras núcleo-corteza con la disposición $\text{Ag}_{\text{núcleo}}$-$\text{Au}_{\text{corteza}}$ sobre sustratos de silicio. Como en el caso de la ICS, la MICS fue acoplada a una campana en UHV (Fig. 2.6). La distancia entre la salida de la zona de agregación y el sustrato posicionado en el manipulador de la campana de depósito fue de unos 20 cm. Bajo esta distancia de trabajo, el diámetro del área circular de depósito de las nanopartículas fue aproximadamente de 40 mm. La presión base del sistema fue del orden de 1×10^{-9} mbar.

Los tres magnetrones de 1” fueron montados en una brida de 6” y fueron insertados dentro de la zona de agregación de una fuente NC200U-B de OAR. Los magnetrones fueron
empleados, con los blancos de plata (99.99%), paladio (99.99%) y oro (99.999%). Cada magnetrón está provisto de su propia entrada de argón, conexión para la refrigeración y conexión eléctrica con su propia fuente de alimentación.

Los sustratos utilizados fueron de Si (100) con el óxido nativo, cortados en dimensiones de 10 mm x 10 mm y fueron introducidos en una precámara con un sistema de bombeo independiente, antes de acceder a la campana de depósito.

2.3 Técnicas de caracterización morfológica

2.3.1. Microscopía de Fuerzas Atómicas (AFM)

El AFM es la extensión más directa e importante del microscopio de efecto túnel, dentro de la familia de técnicas de microscopía de campo cercano. Permite estudiar la morfología superficial y la topografía. Presenta una alta resolución lateral, convirtiéndola en una técnica idónea para la caracterización de superficies micro y nanoestructuradas. Requiere de una punta muy fina colocada al final de una micropalanca (cantiléver). Su operación se basa en la medida de la fuerza originada por la interacción entre los átomos de la punta y los átomos de la superficie (Fig. 2.7). La punta interacciona con la superficie a través de fuerzas atractivas y repulsivas, donde la fuerza resultante puede incluir fuerzas de van der Waals, fuerzas capilares, interacciones químicas, fuerzas magnéticas o fuerzas electrostáticas [17]. Estas fuerzas de interacción son medidas a través del desplazamiento del cantiléver. Un haz láser es focalizado sobre el cantiléver, de modo que cada deformación de la micropalanca se traduce en una deflexión del haz láser que es detectado por un fotodiodo de cuatro cuadrantes. El fotodiodo permite separar las señales originadas por el movimiento vertical (fuerza normal), de aquellas resultado del movimiento de torsión del cantiléver al deslizarse sobre la superficie (fuerza lateral de fricción). La información sobre el relieve se manifiesta en el desplazamiento vertical mientras que la información sobre las fuerzas de fricción se registra a través de la torsión del cantiléver. El rango de distancias en las que es medible la interacción entre punta y muestra está en el orden entre 100 y 10^{-1} nm, dependiendo del modo de operación del microscopio y de la constante del funciona del cantiléver, asociada a la Ley de Hooke. Las fuerzas interatómicas varían entre 10^{-7} N, para enlaces iónicos y 10^{-12} N para fuerzas más débiles que aparecen en la reconstrucción de las superficies. La resolución horizontal alcanzada está determinada por el diámetro final de la punta y su resolución vertical es tanto mayor cuanta más acusada es la dependencia de la interacción con la distancia. La dureza y radio de la punta se seleccionan en función de las características de la muestra a estudiar y del modo de operación del microscopio.

El portamuestras es colocado sobre un tubo piezoeléctrico y la cabeza que soporta la punta, dispone de un sistema de detección óptico, incluyendo un láser y un fotodiodo. El posicionamiento relativo de la punta y la muestra se realiza y se detecta a través de la señal eléctrica aplicada al material piezoeléctrico, dado que el sistema piezoeléctrico permite deformarse bajo la acción de fuerzas internas al ser sometidos a un campo eléctrico. El efecto es reversible, por lo que al dejar de aplicar un voltaje recupera su forma. No obstante, las cerámicas piezoeléctricas no se mueven la misma distancia en respuesta a una intensidad del
campo eléctrico en todos los rangos de su deformación (esta no linealidad puede dar origen a artefactos en la imagen). El sistema piezoeléctrico se encuentra conectado a una unidad externa de control con la electrónica necesaria para operar el microscopio y a un ordenador con el software y las tarjetas de interfaz adecuadas para controlar el funcionamiento del equipo.

El barrido de la superficie se realiza punto a punto y para cada coordenada X-Y de la superficie se registra una interacción y su intensidad. Existen dos modos de operación para realizar el barrido de la punta sobre la superficie. El modo de contacto consiste en que la punta se encuentra permanentemente en contacto con la superficie. No obstante, estas medidas se ven afectadas por la presencia de fuerzas de fricción durante el desplazamiento continuo de la punta y se daña más fácilmente la punta. En el modo dinámico de operación (tapping mode), donde la punta se hace oscilar mecánicamente a una frecuencia cercana a su frecuencia de resonancia. La interacción punta – muestra induce variaciones en la amplitud, la fase y en la frecuencia de la oscilación del cantiléver. El parámetro que se mantiene constante mediante el sistema de retroalimentación puede ser tanto la amplitud de la oscilación [18] como la frecuencia de resonancia [19]. Se construye la imagen topográfica representando la señal del piezoeléctrico. La magnitud de la diferencia de fase entre la oscilación del cantiléver libre y en interacción suele estar asociada a propiedades mecánicas distintas a la topografía.

- **Detalles Experimentales**

Para las medidas de AFM fue utilizado un sistema AFM Cervantes de Nanotec Electrónica S. L. [20], equipado con electrónica Dulcinea. El modo de operación dinámico fue empleado para la obtención de las imágenes de AFM grabadas, con la amplitud de oscilación como señal de control. Las puntas de AFM fueron utilizadas: i) puntas de silicio comercial con un radio típico inferior a 7nm y una constante de fuerza nominal de 42 N/m; y, ii) puntas modificadas Next-Tip con resolución lateral mejorada [21,22,23]. Para el análisis de las imágenes fue utilizado la combinación de los software WSxM [24], ImageJ [25] y Gwyddion [26].

![Figura 2.7 Esquema de un microscopio de fuerzas atómicas (AFM).](image)
2.3.2. Microscopía Electrónica de Transmisión (TEM)

El microscopio electrónico es el paralelismo entre la óptica lumínica y la óptica electrónica, resultado del uso del carácter ondulatorio de los electrones junto con la posibilidad de desviar electrones mediante lentes magnéticas adecuadas debido a su naturaleza de partículas cargada. La microscopía electrónica se basa en la irradiación de una muestra con un haz de electrones monoenergético. El alto poder de resolución de esta técnica, alcanzando la escala sub-nanométrica, ha permitido la caracterización y observación de tejidos biológicos, experimentos dinámicos in situ o defectos cristalinos.

El TEM está compuesto por un sistema de iluminación (el cañón de electrones y dos lentes condensadoras), el portamuestras, la lente objetivo, el sistema de aumento (lente de difracción, lentes intermedias y lentes protectoras) y un sistema de visualización de la imagen (Fig. 2.8). El cañón de electrones está formado por un filamento que actúa de cátodo, un electrodo focalizador que lo rodea llamado Wehnelt y un ánodo conectado a tierra. La fuente de electrones es el filamento caliente, que por efecto termoiónico emite electrones, que son acelerados mediante un potencial negativo de alto voltaje, alcanzando longitudes de onda del orden de 3 pm. Los electrones se focalizan en la zona situada enfrente del ánodo como consecuencia del potencial negativo. Sólo una pequeña fracción de la corriente total emitida por el cañón de electrones se utiliza para formar la imagen final, mientras que el resto se detiene en los distintos diafragmas dentro de la columna del microscopio. La columna del TEM está en condiciones de HV ($10^{-5} - 10^{-7}$ mbar) con el fin de minimizar la absorción de los electrones por moléculas de gas residual.

El sistema de lentes magnéticas condensadoras permite variar la densidad de corriente del haz en el plano de la muestra. El portamuestras se introduce en el espacio comprendido entre las piezas polares de la lente objetivo. El haz de electrones atraviesa la muestra y experimenta un proceso de dispersión por los átomos que la forman. La interacción más intensa es la dispersión elástica debida a la interacción de Coulomb entre los electrones del haz y los núcleos atómicos. La dirección de los electrones cambia en ángulos grandes, pero sus energías y momentos se conservan. En la dispersión inelástica, los electrones del haz interaccionan con los electrones de los átomos, perdiendo energía y momento, y son desviados con ángulos más pequeños que en la dispersión elástica. Finalmente, todos los haces son recogidos y focalizados mediante la lente objetivo. Un disco metálico, opaco a los electrones, es colocado en el eje de la lente objetivo. Este diafragma intercepta los electrones no deseados que han sido dispersados por la muestra, lo que se traduce en una mejora del contraste en la imagen final. Tras un sistema de aumento, con diversas lentes intermedias y proyectoras, se incide dicho haz de electrones sobre un dispositivo de carga acoplada (Charge-Couple Device, cámara CCD) o una pantalla fluorescente.

La calidad de la imagen viene determinada por la resolución y el contraste. Existen tres posibilidades respecto al contraste: contraste de amplitud, fase y difracción. El contraste de amplitud es debido a la variación de la intensidad electrónica de un punto a otro por los procesos de dispersión elástica. El contraste de fase es consecuencia de la interferencia entre la onda dispersada inelásticamente y la onda transmitida. Habitualmente, el contraste de la
imagen del microscopio viene dado por la combinación de ambas posibilidades. Las imágenes de más alta resolución se obtienen con electrones dispersados bajo ángulos grandes, esto es, cuando la imagen se forma predominantemente por contraste de fase sin necesidad del contraste de amplitud. En el caso de que la muestra sea cristalina, se presenta la posibilidad de realizar contraste por difracción por una familia de planos, de acuerdo con la ley de Bragg. Los planos cristalográficos que difractan son casi paralelos al haz incidente debido al pequeño valor de la longitud de onda de los electrones. Con ayuda del diafragma de la lente objetivo, se selecciona el haz transmitido o uno de los difractados con un ángulo dependiente del espacio interplanar que satisfaga la ley de Bragg, observando sobre la pantalla una imagen que presenta contraste de difracción.

Además, existen dos técnicas en función de la formación de la imagen: la técnica de campo claro y técnica de campo oscuro. La técnica de campo claro, con el diafragma de la lente objetivo centrado en el eje óptico del microscopio, es el modo convencional de uso del microscopio. La imagen se forma con el haz transmitido, que no ha sufrido dispersión. En modo de campo oscuro, el haz transmitido se intercepta en el plano focal de la lente objetivo y sólo se incluyen electrones dispersados. Las imágenes de campo oscuro necesitan un tiempo de exposición mayor porque la intensidad del haz difractado es más débil que la del transmitido, pero a cambio permiten obtener información complementaria a sus homólogas en campo claro. En condiciones de campo claro u oscuro y en el caso de muestras cristalinas, si se modifican las condiciones del sistema de aumento de tal manera que el plano focal posterior de la lente objetivo se focalice sobre la pantalla, se observa el diagrama de difracción de la zona iluminada de la muestras, formado tanto por el haz transmitido como por los difractados. Los diagramas de difracción proporcionan información sobre la orientación y estructura del cristal.
Para las medidas de TEM fueron utilizados dos microscopios. En primer lugar, un microscopio Philips Tecnai 20F FEG, operando a 200 keV, equipado con un sistema de análisis de energía dispersiva de rayos X. Con este equipo fueron estudiadas nanopartículas de Co depositadas sobre una rejilla de TEM recubiertas de carbono. Esta técnica de caracterización fue realizada en el Centro de Microscopía Electrónica de la Universidad Carlos III en colaboración con la Profesora Carmen Ballesteros. En segundo lugar, fue utilizado un microscopio TEM FEI-TITAN X-FEG, operando a 300 keV, del Instituto de Nanociencia de Aragón (INA) en la Universidad de Zaragoza. Este equipo fue utilizado para medir nanopartículas puras de Au y Ag, de aleación Au-Ag y Pd-Au-Ag y núcleo-corteza con la disposición AgNÚCLEO-AuCORTEZA. El análisis de las imágenes fue procesado con el software ImageJ [25].

2.3.3. Microscopía Electrónica de Transmisión-Barrido (STEM)

El microscopio STEM se construye partiendo de un TEM convencional al que se le acopla un sistema de barrido, de modo que una sonda de electrones muy focalizada permite barrer la muestra (Fig. 2.9). El STEM es una técnica muy versátil que combina alta resolución de un TEM con las posibilidades, tanto de formación de las distintas imágenes como de análisis, de un microscopio de barrido. Su principal ventaja es su capacidad para situar la sonda electrónica en áreas muy reducidas de la muestra. La resolución espacial de la imagen formada con el detector anular es simplemente el diámetro de la sonda electrónica sobre la muestra.

Las lentes condensadoras y objetivo se disponen de modo que una sonda electrónica muy fina incide sobre la muestra. El haz de electrones es desviado mediante bobinas para hacer barridos de la muestra. Los electrones transmitidos son detectados y atraviesan la apertura de un colector. Esta señal se utiliza para modular la intensidad de un tubo de rayos catódicos, sincronizada con el movimiento de la sonda sobre la muestra, formándose así una imagen. No obstante, esta modulación para el barrido puede ser realizada con cualquier señal resultado de la interacción de los electrones incidentes con la muestra. Los electrones transmitidos pueden emplearse para formar imágenes en campo claro u oscuro, colocando grandes diafragmas circulares enfrente del detector. Las imágenes obtenidas mediante STEM son interpretadas en comparación con las imágenes del TEM. Ambos microscopios son ópticamente equivalentes, pero las direcciones de los electrones están invertidas.

Los diagramas de difracción por selección de área en STEM pueden ser obtenidos cambiando el foco de la lente condensadora (por reciprocidad equivalente a la lente proyectora en TEM) para que enfoque la fuente de electrones en el plano focal posterior de la lente objetivo. Las bobinas varían el ángulo con el que el haz electrónico atraviesa la muestra y la señal detectada a través de la apertura del colector produce el diagrama de difracción. El área de la muestra que contribuye al diagrama es controlada por el tamaño de la apertura de selección de área. Además, el contraste de fase permite obtener imágenes de alta resolución. No obstante, en el STEM, las imágenes se obtienen de una forma menos eficiente, por la construcción de la imagen de manera secuencial. El alta corriente requerida para formar la
las imágenes, limita el uso de esta técnica a materiales resistentes al daño por irradiación. El proceso de formación de la imagen necesita únicamente detectar la intensidad transmitida en función de la posición de la sonda. La imagen en el campo oscuro incoherente se construye con un detector anular que detecta electrones dispersados en ángulos entre 15 y 100 mrad. La mayor parte de los electrones dispersados elásticamente se encuentran en dicho rango. Contrariamente en un TEM, estos electrones no pueden focalizarse para formar la imagen.

- **Detalles Experimentales**

Las medidas de STEM fueron realizadas con un TEM FEI-TITAN X-FEG, utilizado en modo STEM y operado a 300 keV en el Instituto de Nanociencia de Aragón (INA) de la Universidad de Zaragoza en colaboración con el Dr. Álvaro Mayoral. El aumento de voltaje respecto al TEM permite disminuir la longitud de onda de los electrones, mejorando el poder de resolución. El sistema disponía de un corrector de aberraciones esféricas para corregir el incremento del coeficiente de aberración esférica, asociado al aumento de voltaje. Las imágenes fueron adquiridas usando un detector anular de alto ángulo de campo oscuro (High Angle Annular Dark Field, HAADF) con la longitud de cámara deseada para satisfacer fácilmente la condición de contraste con el número atómico tal que el cuadrado del número atómico. Además, el microscopio está equipado con un monocromador modelo Gatan Energy Filter Tridiem 866 ERS y el corrector de aberraciones esféricas mencionado, CEOS, para que la sonda de electrones pudiese alcanzar una resolución espacial efectiva de 0.08 nm.
2.3.4. Medidas del Ángulo de Contacto

El ángulo de contacto es una técnica de caracterización, dependiente de la morfología y de la química de las superficies de forma combinada. Representa un sistema termodinámico heterogéneo formado por tres fases: vapor, sólida y líquida (Fig. 2.10). Para una superficie lisa, homogénea, no porosa, rígida y químicamente inerte, la ecuación de Young nos proporciona información de la mojabilidad respecto al movimiento de la intercara líquido-fluido [27]. El ángulo formado entre la tangente de la intercara líquido-fluido y la superficie del sólido se denomina ángulo de contacto, y es la magnitud física para cuantificar experimentalmente la mojabilidad. La ecuación de Young define el ángulo de contacto como el equilibrio mecánico de las componentes tangenciales de los tensores superficiales que actúan en la línea de contacto entre las tres fases (Fig. 2.10) y se expresa como:

\[\cos \theta_y = \frac{\gamma_{SF} - \gamma_{SL}}{\gamma_{LF}} \] (2.1)

Donde \(\gamma_{SF} \), \(\gamma_{SL} \) y \(\gamma_{LF} \) son las tensiones superficiales de las interfases sólido-fluido, sólido-líquido y líquido-fluido respectivamente, y \(\theta_y \) el ángulo de contacto de Young.

Esta ecuación establece que el ángulo de contacto sólo depende de las propiedades físico-químicas de las tres fases. Desde el punto de vista termodinámico, \(\theta_y \) es el ángulo de contacto asociado al estado de menor energía libre sobre una superficie ideal. No obstante, a pesar de la simple forma de esta ecuación y de la relativa simplicidad de las mediciones de ángulo de contacto, su validez se limita a superficies ideales.

Los tres parámetros más importantes que controlan el comportamiento de la mojabilidad en superficies reales heterogéneas son la rugosidad superficial, las contribuciones de áreas relativas de las distintas fracciones químicas presentes en la superficie, y sus respectivas energías superficiales [28]. Las superficies reales presentan defectos superficiales y son químicamente heterogéneas. La mojabilidad de una superficie rugosa y químicamente homogénea por un líquido determinado, se caracterizará con un único \(\theta_y \), mientras que para una superficie químicamente heterogénea, vendrá definida por varios \(\theta_y \) asociados a la heterogeneidad química presente. La heterogeneidad química de la superficie y su topografía generan los fenómenos denominados multiplicidad del ángulo de contacto e histéresis del ángulo de contacto, debido a la variabilidad del ángulo observable experimentalmente. Además, el ángulo de contacto supone la condición de minimización de la energía libre sobre la superficie.

![Figura 2.10 Representación esquemática del ángulo de contacto de Young.](image)
sólida. En el caso de una superficie real, esta condición no conduce a una única posible configuración, sino que existe un conjunto de mínimos locales de energía. La existencia de diferentes configuraciones metaestables origina la histéresis en el ángulo de contacto [29,30,31].

Conforme aumenta la rugosidad de una superficie, se observan dos regímenes teóricos bien diferenciados. El régimen de Wenzel o régimen homogéneo describe el ángulo de contacto cuando el líquido moja totalmente la superficie [32]. El líquido penetra por completo en la superficie sólida, no atrapándose aire entre la rugosidad de la superficie y el líquido [33]. El régimen de Cassie-Baxter o régimen heterogéneo tiene lugar cuando el aire está presente entre los defectos superficiales y poros debajo de la línea de contacto [34] y no tiene en cuenta la histéresis del ángulo de contacto.

2.3.4.1. Modo de medida del ángulo de contacto: gota sésil

El método de la gota sésil emplea la geometría superficial finita, tomando la intercara fluida como un casquete esférico. Una determinada cantidad de líquido es depositada sobre una superficie de manera que el fluido o vapor envuelve todo el sistema y puede considerarse una fase de dimensiones infinitas. La fase líquida está situada hacia la parte interna del casquete y la fase fluida hacia la parte externa.

El ángulo de contacto se define como la tangente de la intercara líquido-fluido con el sólido en el punto de contacto trifásico y hacia el lado interno del casquete. Se mide directamente el perfil de la gota por medio de fotografías digitales. El ángulo observable se considera constante a lo largo de la línea de contacto y la forma de la gota es asimétrica. El software permite obtener el perfil lateral de la gota a partir de la imagen digital de la misma. La ventaja de este método radica en que no es necesario introducir ningún parámetro superficial inicial.

- Detalles Experimentales

Las medidas de ángulo de contacto fueron realizadas a temperatura ambiente mediante el método de la gota sésil empleando gotas de agua destilada de 18.2 MΩ de 1 µl. El sistema de evaluación de energía superficial (Surface Energy Evaluation system, SEE) [35] equipado con una cámara CCD fue empleado para la adquisición de las imágenes de gotas y el posterior análisis del ángulo de contacto. Las medidas de ángulo de contacto fueron repetidas varias veces en cada muestra y los resultados obtenidos fueron promediados para minimizar la incertidumbre de la medida. El valor promedio y su incertidumbre asociada fueron calculados a partir de los datos recopilados. Las imágenes grabadas fueron analizadas manualmente, permitiendo controlar la determinación del ángulo de contacto.
2.4 Técnicas de caracterización composicional

2.4.1 Espectroscopia de fotoelectrones de Rayos X (XPS)

La técnica XPS permite determinar la naturaleza química y la estructura electrónica de los elementos (tipos de enlace, estado químico) presentes en un material. Presenta una elevada sensibilidad superficial, siendo ampliamente utilizada para el estudio de los cambios en la energía de enlace de los elementos químicos situados dentro de las primeras decenas de nm de la superficie del material [36].

La técnica XPS mide la emisión de electrones causados por la absorción de fotones incidentes. Está basada en el efecto fotoeléctrico, descubierto por Hertz en 1887 y explicado matemáticamente por Einstein en 1905. La figura 2.11 ilustra el proceso de fotoemisión. Cuando un fotón interacciona con un átomo, excita un electrón de un nivel interno de dicho átomo. Si su energía es superior a la energía necesaria para arrancar un electrón desde su estado fundamental (energía de ligadura, E_{BE}), este electrón (fotoelectrón) se desplaza hasta la superficie del sólido, pudiendo sufrir colisiones elásticas e inelásticas durante el recorrido. Finalmente, el electrón debe superar la barrera de potencial o función de trabajo de la muestra (φ_a). De este modo, el balance energético del proceso de fotoemisión es:

$$h\nu = E_{BE} + E_K + \varphi_a$$

siendo h la constante de Planck, ν la frecuencia del fotón incidente, $h\nu$ la energía del fotón incidente, E_{BE} es la energía de enlace, E_K es la energía cinética con la que sale el electrón y φ_a la función de trabajo para el espectrómetro utilizado. El origen de las energías de enlace se toma en el nivel de Fermi E_F y la energía cinética del electrón tiene como origen el nivel de vacío. La función de trabajo del espectrómetro φ_a es la diferencia entre E_F y el nivel del vacío, que

![Figura 2.11](image-url)
depende del espectrómetro usado, debido a que la medida con el espectrómetro realiza una ligera variación en la distribución de las energías cinéticas medidas. Por tanto, es posible determinar las energías de enlace de los niveles internos, al igual que los electrones más externos (electrones de valencia) involucrados en el enlace químico.

El esquema de un equipo XPS estándar es representado en la figura 2.12. Las medidas de espectros de XPS son realizadas en UHV para reducir el scattering de electrones con moléculas de gas (evitando pérdidas de energía cinética por colisiones) y controlar la limpieza de la superficie. Para proporcionar un haz de fotones con las características requeridas, el dispositivo está equipado con una fuente de rayos X focalizada en la superficie de la muestra. Las fuentes de rayos X más usadas son tubos de rayos X con ánodos de Al (Al Kα, 1486.6 eV) y Mg (Mg Kα, 1253.6 eV).

Un espectro de fotoemisión es la representación del número de fotoelectrones detectados (esto es, la intensidad de fotoemisión) en función de la energía cinética para un área iluminada con fotones. El espectro consiste en una serie de picos con una señal de fondo que generalmente aumenta a baja energía cinética y es debida a los electrones secundarios dispersados inelásticamente en el recorrido hacia fuera de la muestra. Los picos corresponden a energías cinéticas discretas asociadas a niveles internos, y a transiciones Auger, de modo que cada elemento tiene un espectro elemental único. La transición Auger tiene lugar cuando, tras la salida del fotoelectrón, se emite un electrón de un nivel más externo y la energía liberada se traduce en la emisión de un segundo electrón por interacción de Coulomb como mecanismo para desexcitar al átomo. Como el recorrido libre medio inelástico de escape de los electrones, λ, en sólidos es pequeño [37], la información química es obtenida de la superficie y unas pocas capas atómicas por debajo de la superficie. Los estados químicos de un elemento dado pueden

Figura 2.12 Esquema de un sistema experimental XPS.
ser identificados con la posición exacta en energía de los picos y las separaciones entre ellos (desplazamiento químico). El área de los picos ponderada por un factor de sensibilidad nos permite obtener información semi-cuantitativa de la composición superficial. La técnica XPS con un equipo convencional no puede detectar hidrógeno ni helio ni los elementos presentes en una composición inferior a un 1 % atómico.

Asimismo, esta técnica permite estudiar la composición en profundidad de modo destructivo o no destructivo. En el método destructivo, se utiliza el decapado superficial por bombardeo iónico con un gas inerte (Ar, generalmente). El bombardeo iónico y el registro del espectro de XPS pueden ser aplicados consecutivamente o simultáneamente. Sin embargo, este método ocasiona habitualmente cambios tanto del estado de oxidación como ruptura de enlaces de los elementos [38]. En la aproximación no-destructiva, la composición en profundidad es obtenida variando el ángulo de detección de los electrones emitidos entre la muestra y el analizador, donde la profundidad de análisis está limitada en primera aproximación a 3 λ y la resolución lateral está afectada por el ángulo de análisis.

Un problema importante en el análisis mediante XPS está relacionado con la degradación de la muestra debido a la radiación de rayos X. Esta degradación es consecuencia de la emisión de electrones secundarios emitidos durante la exposición a rayos X [39,40] y es particularmente importante en muestras orgánicas. En nuestro caso, siendo las muestras de metales sobre silicio, no se ha observado degradación de las muestras por los electrones secundarios.

- **Detalles Experimentales**

Las medidas de XPS fueron realizadas en una campana de UHV a una presión base de 2·10⁻¹⁰ mbar, utilizando un analizador Phoibos 100 ESCA/Espectrómetro Auger con ánodo Mg Ka. Fue realizado un sputtering con Ar⁺ sobre las muestras para eliminar parcialmente la contaminación atmosférica resultante de la transferencia de la muestra desde su fabricación al equipo XPS. El espectro XPS fue registrado antes y después del sputtering para revisar posibles efectos adversos inducidos por el sputtering, como el sputtering preferencial. La ausencia de dicho artefacto fue cautelosamente revisada. La regiones de los niveles internos Au 4f y Ag 3d y Pd 3d fueron registradas en un intervalo de energías de 15 eV con un paso de energía de 50 meV. Para el análisis de los datos, las contribuciones de las líneas de satélite de Mg Ka fueron sustraídas, y el espectro fue sujeto al formalismo Shirley para la sustracción del fondo. En función del sistema medido, la escala de las energías de enlace fue calibrada con respecto al pico del nivel interno C 1s a 285 eV o al pico Si 2p, a 99 eV.

2.4.2 **Espectroscopia de energía dispersiva de rayos X (EDX/EDS)**

El EDX es una técnica de análisis espectral que proporciona información acerca de la composición química. Se emplea habitualmente como complemento al TEM o al microscopio electrónico de barrido (SEM). La resolución espacial está gobernada por la penetración y trayectoria del haz de electrones en la muestra.
El haz de electrones incide sobre la muestra. Cuando los electrones colisionan con los átomos de la muestra, pueden atravesar sin interacción, colisionar elásticamente o inelásticamente o excitar electrones de los niveles internos de los átomos de la muestra. Si un electrón de un nivel interno es eyectado, el átomo se encuentra en un estado excitado. El electrón secundario ha dejado un hueco en el átomo y es llenado por un proceso de desexcitación, en el que uno de sus electrones de un nivel más externo de mayor energía cae a dicha vacante. La energía así liberada puede disiparse mediante dos posibles procesos: la emisión de un fotón de rayos X (cuya señal conforma el espectro EDX) o la emisión de otro electrón de un nivel más externo (espectroscopia de electrones Auger [41]). No obstante, los fotones de rayos X generados pueden interactuar con los átomos circundantes y ser absorbidos por otros átomos. Dicha absorción da lugar al arranque de nuevos electrones (Auger) o bien, a emitir nuevos fotones de rayos X secundarios. Los rayos X absorbidos conforman los espectros de absorción y los rayos X secundarios son la base de la espectroscopia de fluorescencia de rayos X.

El análisis cualitativo se basa en la discriminación de las energías de los rayos X captados por el detector. La energía del fotón es característica de cada elemento y representa la transición entre dos niveles de energía (Fig. 2.13). La posición de las líneas es independiente de las condiciones de excitación y del estado químico de los elementos. La intensidad de la señal generada por cada elemento depende de su número atómico y del rendimiento fluorescente del elemento, implicando factores de corrección contrapuestos. Con EDX, no se pueden detectar los elementos con número atómico inferior a 5 (H, He, Li y Be) y presenta dificultades para detectar

Figura 2.13 Diagrama de los niveles de energía parcial con las transiciones que habitualmente producen radiación X. n es el nivel de energía principal o número cuántico principal. I es el subnivel energético o número cuántico del momento angular. j es el espín del electrón e indica en qué orbital se encuentra dicho electrón.
elementos con un número atómico menor de 9. Asimismo, permite realizar un análisis cuantitativo de la cantidad relativa de cada elemento, a partir del número de fotones emitidos para cada energía. La intensidad relativa de cada línea es aproximadamente proporcional a la concentración en masa de dicho elemento. El límite inferior de detección puede llegar a ser de entre el 1% y el 0.1% atómico.

En nuestro caso, el sistema EDX está acoplado a un TEM, pudiendo obtener mapas morfológico-composicionales de la muestra. Se emplea un detector de rayos X, un procesador de pulsos y un analizador. El detector recoge el espectro total emitido por todos los elementos de la muestra y convierte cada fotón de rayos X en una señal de pulso eléctrico cuya amplitud es proporcional a la energía del fotón. Las señales son enviadas a un procesador de pulsos, que mide las señales y las envía a un analizador multicanal para la visualización y análisis de los datos. El acoplamiento de EDX a un TEM en el caso de rejillas de TEM presenta la dificultad de conocer el espesor de la zona que se está analizando, generando incertidumbre a la hora de calcular las correcciones necesarias de absorción y fluorescencia, no deseadas en EDX. Es decir, se necesitan patrones de calibración.

- **Detalles Experimentales**

Los dos sistemas de TEM empleados en esta tesis (cf. secciones 2.3.2 y 2.3.3) presentan un sistema EDX acoplado.

2.5 Técnicas de caracterización magnética

El estudio de las propiedades magnéticas de sistemas con nanopartículas magnéticas embebidas en matrices diamagnéticas y paramagnéticas supone un capítulo importante del trabajo realizado en la presente tesis. Aparte de una explicación breve de la técnica empleada, el dispositivo superconductor de interferencia cuántica (**Superconducting Quantum Interference Device, SQUID**), se detallarán los diferentes protocolos de medida utilizados para la caracterización de las propiedades magnéticas: curvas de magnetización en función de la temperatura y del campo, relajación magnética y curvas ΔM.

2.5.1 Dispositivo superconductor de interferencia cuántica (SQUID)

El magnetómetro SQUID es la más sensible técnica de magnetometría. Este dispositivo utiliza la combinación de anillos superconductores con uniones Josephson para medir variaciones de campos magnéticos con resolución por encima del orden de $10^{-11} \text{ G} \left(10^{-15} \text{ T}\right)$. Existen dos tipos de SQUID, DC y RF. Los SQUIDs RF sólo tienen una unión de Josephson, mientras que los SQUIDs DC tienen dos o más uniones.

En superconductores, la resistencia eléctrica es realizada por pares de electrones (pares de Cooper) a una determinada temperatura. Un par de Cooper es un par de electrones acoplados por las vibraciones de red del material. Cuando un electrón pasa a través de la red
cristalina, su carga negativa es atraída por la carga positiva de los núcleos de la red por interacciones coulombianas, causando una leve ondulación. Un segundo electrón que viaja en dirección opuesta es atraído por dicha ondulación, formando el par de Cooper. Cada par puede ser tratado como una única partícula de espín entero y, por tanto, es un bosón. De este modo, los pares de Cooper pueden condensarse en paquetes de onda y todos ellos pueden ser descritos por una única función de onda conjunta. En ausencia de una carga, la función de onda es coherente. La presencia de la función de onda coherente supone que el flujo magnético que pasa a través de un anillo superconductor está cuantizado en unidades de $\phi_0=h/2e$, donde h es la constante de Planck y $2e$ es la carga del par de electrones.

Si dos regiones superconductoras son mantenidas totalmente aisladas entre ellas, las fases de los pares de electrones en las dos regiones no estarán relacionadas. No obstante, si las dos regiones son puestas juntas, entonces los pares de Cooper que transitan por la unión serán capaces de cruzar el espacio con el efecto túnel (corriente túnel) y las ondas de cada superconductor se acoplarán. A medida que la separación decrece, se incrementa la intensidad del acople. Este efecto túnel de los pares de electrones conlleva una corriente superconductora descubierta por B. D. Josephson [42]. Por ello, se denominó unión Josephson a la unión entre dos superconductores con un enlace débil.

En nuestro caso, un SQUID RF fue utilizado en la presente tesis (Fig. 2.14). En este dispositivo, el elemento central es un anillo de material superconductor con una unión Josephson. Las medidas de magnetización se basan en el movimiento de la muestra a estudiar en el interior del anillo. La muestra se desplaza verticalmente con ayuda de un motor a través de unas bobinas secundarias. Estas bobinas inducen un voltaje (o corriente DC) proporcional al momento magnético de la muestra. Esta corriente, que genera un flujo magnético externo, se conduce a las bobinas de entrada, que están acopladas inductivamente al anillo. Al mismo

![Esquema de un SQUID de tipo RF.](image-url)
tiempo, el anillo también está acoplado inductivamente con un circuito tanque de resonancia LC que oscila con una frecuencia RF. El campo magnético externo es aplicado perpendicular al plano del anillo y da lugar a una diferencia de fase en la onda a través de las uniones Josephson. Dependiendo del flujo magnético externo, como el SQUID opera en modo resistivo, la inductancia efectiva del circuito tanque cambia, por lo que varía la frecuencia de oscilación del circuito tanque y se traduce en una variación de voltaje detectable. En resumen, el método de trabajo se basa en ajustar el circuito tanque para que el máximo de corriente que se induce en el anillo exceda la corriente crítica I_c, de manera que en cada ciclo induce transiciones energéticas por efecto túnel en el anillo. Cada vez que se produce una corriente túnel, la impedancia efectiva del circuito tanque varía, reduciéndose el nivel de las oscilaciones. La reducción es temporal, ya que inmediatamente el voltaje del circuito tanque vuelve a crecer hasta alcanzar el nivel inicial, y el proceso se repite.

- **Detalles Experimentales**

El SQUID utilizado fue el MPMS de Quantum Design modelo 5S del ICMM. Las medidas magnéticas fueron realizadas en colaboración de la Profesora Mar García-Hernández y la Doctora Ana Espinosa. Este dispositivo fue utilizado para la caracterización magnética de los sistemas de nanopartículas de Co embebidas en matrices de Au y V. Las muestras fueron insertadas dentro del SQUID en una pajita de plástico que sirve como soporte. La bobina superconductora del SQUID puede aplicar campos magnéticos de hasta $5.5 \cdot 10^4$ Oe y el dispositivo puede operar en el rango de temperaturas entre 1.8 K y 400 K. La resolución del equipo es de 10^{-6} emu (o 10^{-9} Am2). La señal magnética medida en los sistemas estudiados fue del orden de 10^{-4} emu, con una incertidumbre estadística en la medida del orden de 10^{-7} emu. Por tanto, el magnetómetro con sensor SQUID fue adecuado para esta caracterización magnética.

Dada la débil señal magnética de los sistemas estudiados, las muestras fueron cuidadosamente manipuladas (uso de guantes y utensilios de plástico), para evitar la influencia de cualquier fuente que pueda falsear la medida. Es conocido que la utilización de pinzas metálicas puede alterar las medidas de magnetización, introduciendo impurezas de hierro o Ni en las mismas [43]. Los sustratos de Si fueron cortados en dimensiones de aproximadamente 5 mm × 5 mm. Cada muestra fue medida varias veces para verificar la reproducibilidad de la respuesta magnética y descartar una posible evolución temporal. A continuación, se procederá a detallar el protocolo de cada una de las medidas de magnetización realizadas.

- **Magnetización en función de la temperatura**

Tras introducir la muestra en el SQUID, ésta es enfriada hasta la temperatura de 1.8 K en ausencia de campo magnético externo. Se aplica un campo magnético $H = 5 \cdot 10^4$ Oe, centrándolo en el anillo en dicho campo. Una vez desimanada la muestra aplicando campos externos (H_x y H_y) decrecientes, se puede medir la imanación en función de la temperatura. Partiendo de 1.8 K, se aplica un campo de 1500 Oe y se aumenta la temperatura hasta 300 K. Se recogen medidas cada 0.5 K desde 1.8 K hasta 70 K y cada 2.5 K entre 70 K y 300 K. De este modo, se obtiene la curva *Zero Field Cooling* (ZFC). Para medir la curva *Field Cooling* (FC), se enfria de nuevo hasta 1.8 K,
manteniendo aplicado el campo de 1500 Oe ($H_{FC} = H$ medida). A continuación, se aumenta la temperatura hasta 300 K y se utilizan los mismos pasos de mediciones que en la curva ZFC.

Debemos resaltar que el valor de campo magnético aplicado de 1500 Oe se encuentra en el régimen de respuesta magnética lineal del ciclo de histéresis. Intentamos medir curvas de magnetización en función de la temperatura para campos aplicados inferiores. Sin embargo, la débil señal ferromagnética de las nanopartículas de cobalto no podía ser separada de la señal diamagnética del silicio, dificultando la extracción de información de la medida magnética.

- **Magnetización en función del campo a 10 K y 300 K**

Primero, se enfría a 10 K en ausencia de campo magnético externo y se desimana la muestra. Partiendo de un campo magnético aplicado de $5 \cdot 10^4$ Oe, se mide la imanación en función del campo magnético, decreciendo hasta $-5 \cdot 10^4$ Oe u o de campo, entre los $5 \cdot 10^3$ Oe y $5 \cdot 10^3$ Oe, se recogen medidas cada $5 \cdot 10^3$ Oe, entre $5 \cdot 10^3$ Oe y $1.5 \cdot 10^4$ Oe, cada $5 \cdot 10^2$ Oe, y entre $1.5 \cdot 10^4$ Oe y 0 Oe, cada 50 Oe. Manteniendo aplicado el campo a $5 \cdot 10^4$ Oe ($H_{FC} = 5 \cdot 10^4$ Oe), se enfría hasta 10 K, y repetimos el procedimiento para recoger la curva FC. Por último, se mide un ciclo equivalente a 300 K.

- **Relajación magnética**

Partiendo de 300 K, se aplica un campo magnético de $5 \cdot 10^4$ Oe y se enfría hasta 5 K. Una vez estable, se deja de aplicar de campo y se mide la imanación remanente en función del tiempo hasta 2 h, recogiendo medidas cada 350 s.

- **Curvas ΔM**

La curva ΔM (explicada en detalle en el capítulo 4) viene descrita por la siguiente expresión matemática:

$$\Delta M(H) = m_d(H) - [1 - m_r(H)]$$ \hspace{1cm} (2.3)

Donde $m_d(H)$ es la magnetización de remanencia de desimanación DC normalizada con la magnetización de saturación (curva de desimanación DC) y $m_r(H)$, la magnetización de remanencia isoterma normalizada con la magnetización de saturación.

Primero se desimana la muestra a 300 K y se enfría la muestra hasta 5 K. Para medir $m_r(H)$, se mide la magnetización a campo magnético nulo (imanación remanente) para distintos campos magnéticos aumentando de 0 hasta $2 \cdot 10^4$ Oe. Los campos aplicados son entre 0 y $1 \cdot 10^4$ Oe, con un paso de $1 \cdot 10^3$ Oe y para terminar con una medida a $2 \cdot 10^4$ Oe. La magnetización de saturación tiene lugar a un campo aplicado inferior a $2 \cdot 10^4$ Oe, por lo que no es necesario medir hasta $5 \cdot 10^4$ Oe. En el caso de $m_d(H)$, en vez de partir del estado desimanado, se realiza en estado saturado (para ser coherentes con protocolos anteriores se inició a $5 \cdot 10^4$ Oe). Se mide la imanación remanente incrementando progresivamente el campo desimanador (campo aplicado en la dirección contraria a $m_r(H)$). Es decir, los campos aplicados son entre 0 y $-1 \cdot 10^4$ Oe, con un paso de $-1 \cdot 10^3$ Oe y finalmente a $-2 \cdot 10^4$ Oe.
Bibliografía

[34] A. Marmur, Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be?, Langmuir, 19, (2003), 8343-8348.

Interacciones interpartícula entre nanopartículas de Co sobre Si(100) en función del tiempo de depósito y la rugosidad superficial
3.1 Introducción

El estudio de las propiedades de superficies, láminas delgadas, intercara o sistemas formados por multica capas constituye una de las más importantes líneas de investigación experimentales, asociado a su gran aplicabilidad en tecnología industrial. En las últimas décadas, la comunidad científica ha dirigido múltiples esfuerzos a la caracterización y la comprensión de las modificaciones de las propiedades inherentes de un material, cuando se reduce al menos una de sus dimensiones a la escala nanométrica. Las estructuras de baja dimensionalidad permiten ajustar las propiedades intrínsecas del material a fabricar, ampliando sus aplicaciones por medio de la funcionalización, incorporación o recubrimiento de superficies. El característico alto cociente de superficie/volumen de materiales a escala nanométrica se traduce en un cambio de las propiedades respecto a los mismos materiales en volumen. De este modo, la incorporación de nanopartículas o nanoestructuras a superficies o sistemas complejos estructurados permite la fabricación de nuevos materiales funcionales.

En particular, dentro de las estructuras de baja dimensionalidad, son interesantes las estructuras magnéticas ya que ofrecen un amplio abanico de aplicaciones. Algunos ejemplos de campos donde destaca su incorporación son: medios de almacenamiento de datos de alta densidad magnética [1,2], suministro selectivo de fármacos [3], adquisición de imágenes por resonancia magnética [4], electrónica de alta frecuencia [5] o estudio fundamental de fenómenos físicos como el efecto túnel cuántico magnético [6]. Los materiales magnéticos útiles para el almacenamiento de datos (discos duros), han suscitado un enorme interés debido a que el aumento de la densidad de almacenamiento requiere de la reducción de los dominios magnéticos sin disminuir su imanación ni su alta coercitividad. De entre los materiales con más opciones para satisfacer la principal necesidad de almacenamiento magnético, el cobalto es uno de los principales candidatos. El cobalto en volumen presenta una mayor constante de anisotropía frente a otros metales de transición ferromagnéticos (como el hierro o el níquel) y es bien conocida la gran dependencia de sus propiedades intrínsecas (estructurales, electrónicas, magnéticas y catalíticas) en función del tamaño [7].

La estrecha relación entre el tamaño de nanopartículas y sus nuevas propiedades intrínsecas supone que las propiedades de la superficie (normalmente despreciables) ahora se conviertan en el término más importante, condicionando las propiedades finales del mismo material. No obstante, a pesar de los grandes esfuerzos realizados en esta línea de trabajo, es sorprendente la falta de conocimiento detallado sobre las relaciones entre los distintos parámetros que controlan la nano-estructuración. Cuando son incorporadas nanopartículas magnéticas a una matriz, varios factores condicionan las propiedades del sistema fabricado: i) la morfología de las nanopartículas (distribución de tamaño/forma) y su arreglo geométrico; ii) las interacciones interpartícula de largo alcance y los acoplamientos locales; iii) la intercara entre las nanopartículas y el sistema que envuelve o está en contacto con las mismas nanoestructuras. Cada una de estas contribuciones es determinante en las propiedades finales del material fabricado.

Dentro de estos factores, el análisis de las interacciones (y, por ende, de las distancias interpartícula) es esencial para el entendimiento detallado de cualquier sistema.
nanoestructurado fabricado. Las interacciones interpartícula no sólo influencian las propiedades finales del material resultante, sino que las mismas interacciones condiconan el propio proceso de depósito, así como los mecanismos de crecimiento en función de la rugosidad. El interés de conocer hasta qué punto son críticas las interacciones interpartícula en la fabricación y las propiedades finales del sistema, ha motivado un pormenorizado estudio de sistemas con nanopartículas de Co, dividido en dos capítulos de la presente tesis. En el capítulo 3 se mostrará un estudio de las nanopartículas de Co depositadas sobre un sustrato. En el capítulo 4, se profundizará en la modificación de las propiedades magnéticas de los mismos sistemas de nanopartículas estudiados en el capítulo 3, cuando son insertados en matrices dieléctricas y paramagnéticas.

En este capítulo, se estudiará la nanoestructuración de superficies planas por depósito de nanopartículas de Co en función del porcentaje de recubrimiento, desde distribuciones de no-interacción hasta un recubrimiento superficial donde existen interacciones interpartícula, bastante por debajo de una monolapa. Investigaremos primero la morfología de las nanopartículas de cobalto depositadas en superficies planas de Si(100) naturalmente oxidadas y calcularemos la ocupación con respecto al porcentaje de recubrimiento de una monolapa. A continuación, analizaremos la influencia de las interacciones interpartícula en función de cada depósito para conocer paso a paso nuestro sistema. Y por último, estudiaremos los cambios de la nanoestructuración asociados a los depósitos en términos de rugosidad superficial y mojabilidad.

3.2. Detalles Experimentales

Para la fabricación de los depósitos de nanopartículas de Co, es empleada una fuente de agregados de iones (ICS), equipada con una fuente de sputtering con magnetrón, que está acoplada a un sistema de UHV (vease subapartado de la sección 2.2.2). La presión base es del orden de 10^{-9} mbar. Se utiliza un blanco de cobalto de 2 mm de espesor. Durante el proceso de sputtering, las presiones medidas en la zona de agregación y en la cámara de UHV son del orden de 10^{-3} mbar y 10^{-5} mbar, respectivamente. Las condiciones aplicadas para el depósito son: un flujo de argón de 100 sccm (standard cubic centimeter per minute), una potencia de 50 W y una longitud de agregación de 100 cm. Cada depósito es realizado sobre sustratos de Si(100) de 25 mm2.

La densidad de depósito es controlada por medio del tiempo de depósito, variando desde 1.5 min hasta 15 min. Los porcentajes de recubrimiento de nanopartículas son determinados a partir del número de eventos promedio extraídos de una serie de imágenes de AFM de las muestras. Para calcular el valor del porcentaje de recubrimiento de una monolapa, asumimos que una concentración 100% de la superficie (monolapa nominal) corresponde a una disposición hcp (hexagonal compacta, hexagonal close packed) de nanopartículas. Por ejemplo, el número de nanopartículas dispuestas en la ordenación hcp para una altura de 10 nm y una superficie de 1 x 1 µm2 es de 10732 nanopartículas. La densidad de nanopartículas de Co depositada oscila desde una distribución de bajo recubrimiento superficial, 1.4%, hasta un 10.6% de una monolapa. Tras su depósito, las nanopartículas son dejadas al aire.
Las imágenes de AFM, empleadas en el estudio, corresponden a áreas de barrido de 1 x 1 µm2 y 10 x 10 µm2 en diferentes zonas aleatorias de las muestras, con una resolución de 512 por 512 píxeles. El tratamiento y análisis de las imágenes se realiza utilizando los software WSxM [8], ImageJ [9] y Gwyddion [10]. La homogeneidad del tamaño y del porcentaje de ocupación de los depósitos son revisados mediante el análisis de diversas imágenes de AFM y TEM.

3.3 Resultados y discusión

3.3.1 Caracterización morfológica con AFM

Las figuras 3.1a, b y c muestran tres imágenes de AFM representativas de los depósitos de nanopartículas de cobalto sobre sustratos de Si(100) con diferentes porcentajes de recubrimiento. En el extremo superior derecho de cada imagen de AFM se ilustra el perfil de las nanopartículas, cuyo trazado es indicado en su imagen asociada mediante una línea azul. En los perfiles extraídos se observa que las nanopartículas con alturas ~ 11 nm presentan una anchura a mitad de pico (full width at half maximum, FWHM) en torno a 40 nm (eje x). Este fenómeno es conocido como el efecto de convolución lateral en AFM debido a la convolución de la punta con los rasgos medidos y se traduce en diámetros aparentemente más grandes para cada nanopartícula. El AFM proporciona información precisa tanto de la distribución como de la altura de las estructuras de una superficie, pero no de sus anchuras cuando los rasgos medidos son del orden del radio de la punta. Es por ello que, desde este momento, en el caso de medidas con AFM hablaremos sólo de alturas para la caracterización de las nanopartículas. La homogeneidad de los depósitos es verificada mediante la medida de varias imágenes de AFM en diferentes zonas de las muestras. Dado que la concentración de la superficie es determinada en función de una ordenación hcp para una monocapa, necesitamos primero conocer la distribución de alturas como requisito para estimar el porcentaje de recubrimiento. Las imágenes de AFM presentadas en este subapartado corresponden a áreas de barrido de 1 x 1 µm2 a 512 x 512 píxeles (cada pixel equivale aproximadamente a 2 nm).

Para el estudio de la distribución de alturas, escogimos un tiempo intermedio de 6 min, de entre los tiempos de depósito realizados (entre 1.5 y 15 min). Sus imágenes de AFM presentan una distribución de eventos adecuada para realizar un estudio estadístico y observamos que la mayoría de las nanopartículas no están en contacto entre sí. Se emplearon cinco imágenes de AFM de distintas regiones de la muestra para obtener la distribución de alturas del depósito. Un ejemplo representativo es ilustrado en la figura 3.2. Previamente a la medida de las alturas, se filtra cada imagen manualmente con la herramienta WSxM. Una vez tratadas las imágenes para eliminar contrastes que pudiesen modificar artificialmente la distribución de alturas, utilizamos conjuntamente los programas Gwyddion y ImageJ con el fin de extraer los datos de las alturas (esto es, se registra la altura partícula por partícula). El programa Gwyddion permite realizar distribuciones de alturas manualmente, tomando como valor de referencia la altura máxima de la imagen. De este modo, puede controlarse el valor...
Figura 3.1 (Izquierda) Imágenes de AFM de nanopartículas de Co sobre Si(100) en un área de barrido de 1 x 1 μm² con un porcentaje de recubrimiento de 2.4% (a), 5.4% (c) y 10.6% (e). El recubrimiento superficial es en términos de una monocapa. En cada imagen se ha añadido un perfil de las nanopartículas obtenidos de la línea marcada en cada imagen (línea azul). (Derecha) Representaciones equivalentes a las imágenes AFM exponiendo la distribución de las nanopartículas en los casos de 2.4% (b), 5.4% (d) y 10.6% (f).
umbral de la altura de cada partícula y evitar incertidumbres de automatización por defecto del software. Paralelamente, empleamos el software ImageJ para señalar cada partícula que ha sido contada, mediante una función extra del programa que permite extraer las coordenadas de cada partícula. Esta opción del ImageJ nos permitirá anotar aquellas partículas cuya altura se han tenido en cuenta y evitar el doble conteo de eventos. El resultado del uso del ImageJ permite crear imágenes como las figuras 3.1b, 3.1d y 3.1f. Nótese que esta opción será especialmente útil para la estimación de las distancias interpartícula en el apartado 3.3.3.

El ajuste de las distribuciones de alturas es realizado asumiendo una distribución de Galton o distribución lognormal [11],

$$f(z) = \frac{1}{\sqrt{2\pi}\sigma z} \exp\left[-\frac{(\ln(z) - \mu)^2}{2\sigma^2}\right]$$

Donde μ y σ son la desviación media y desviación estándar, respectivamente. La altura media, \bar{z}, de la distribución viene dada por $\bar{z} = \exp(\mu)$ y la desviación estándar de la distribución σ_z por:

$$\sigma_z = \sqrt{\exp(\mu + \frac{\sigma^2}{2}) - \exp(\mu)}$$

Del ajuste, puede extraerse que la altura promedio es 10.3 ± 1.8 nm (Fig. 3.3). La baja desviación estándar indica que la distribución de alturas es homogénea.

Figura 3.2 Imagen de AFM de un área de barrido de 1 x 1 µm² con un 4.7% de recubrimiento -6 min de depósito-(izquierda). Se ha realizado un zoom de la imagen AFM (centro superior). El método de obtención de la distribución de alturas permite extraer simultáneamente los datos para el cálculo de las distancias a primeros, segundos y terceros vecinos. De cada imagen AFM, se extraen las coordenadas de cada una de las nanopartículas registradas en la imagen. Bajo la aproximación de nanopartículas esféricas con 10 nm de diámetro, se calculan las distancias borde a borde de cada partícula con sus partículas vecinas. Se ha realizado un zoom de la imagen AFM, ilustrando la hipótesis explicada (central inferior). La primera, segunda y tercera distancia más próxima entre las nanopartículas son las distancias útiles para el cálculo de distancias interpartícula.
Capítulo 3. Interacciones interpartícula entre nanopartículas de Co sobre Si(100)

Asumimos que una monocapa (concentración 100%) corresponde a una disposición hcp de nanopartículas. Por tanto, en el caso de las nanopartículas de un diámetro de 10.3 nm, una superficie de $1 \times 1 \, \mu m^2$ contiene 10732 nanopartículas, en una monocapa de nanopartículas dispuestas en la ordenación hcp. Dado que el número de nanopartículas por μm^2 en la figuras 3.1a, c y e, es aproximadamente 260, 576, y 1135, los porcentajes de recubrimiento de la superficie asociados son próximos a 2.4%, 5.4% y 10.6%, respectivamente.

Nótese también que debido a la convolución intrínseca entre la forma de la punta del AFM con las nanopartículas, en las imágenes AFM parece apreciarse que el recubrimiento de las nanopartículas es mayor que el porcentaje de recubrimiento medido [12]. Esta característica inherente al AFM afecta a la imagen topográfica adquirida de la superficie. La adquisición de los datos con ImageJ permite evitar esta confusión. En los tres ejemplos de AFM de la Fig. 3.1, representamos los datos adquiridos con Imagen J donde reemplazamos cada nanopartícula identificada en el AFM por un punto con un diámetro de 10 nm asociado al diámetro promedio de las nanopartículas a escala (Fig. 3.1 b, d y f). Esto ha sido ilustrado con mayor claridad en el esquema adjunto al zoom de la Fig. 3.2. En dicho zoom, cada nanopartícula, como una representación en dos dimensiones, es convertida en un círculo de 10 nm a escala del zoom. La ventaja de estas representaciones es que proporcionan una visión sencilla de la densidad real y la distribución de nanopartículas. Las figuras 3.1b, d y f muestran claramente que las nanopartículas no forman sistemáticamente aglomerados más grandes, inclusive para un porcentaje de recubrimiento de 10.6%.

Figura 3.3 Histograma del número de nanopartículas en función de la altura, extraído del análisis de varias imágenes de AFM con un porcentaje de recubrimiento de 4.7% de nanopartículas de Co sobre Si(100). El histograma ha sido ajustado con una distribución log-normal.

![Histograma de nanopartículas](image)

$\bar{Z} = 10.3 \, nm$

$\sigma_z = 1.8 \, nm$
3.3.2 Caracterización estructural por TEM

La técnica TEM permite obtener información del diámetro de las nanopartículas, debido a que es una técnica más precisa que el AFM para estudiar las nanopartículas en el plano de la muestra. Para estas medidas, los depósitos de nanopartículas son realizados directamente en rejillas de TEM, teniendo en cuenta que las rejillas de TEM presentan un mayor coeficiente de pegado que los sustratos de Si. Se adquirieron imágenes de baja magnificación (Fig. 3.4a) para ilustrar la relativa homogeneidad en la distribución y el tamaño del depósito. A mayores aumentos (Fig. 3.4b) observamos que, mientras que la forma de las nanopartículas es aparentemente esférica en las imágenes de AFM, en las imágenes de TEM apreciamos que algunas partículas tienen una forma hexagonal y pentagonal. Esta estructura observada aquí es probablemente resultado de una estructura icosaédrica (Fig. 3.4b), como se ha observado en el caso de pequeñas nanopartículas (4-6 nm) de Co [13,14,15]. Las nanopartículas de Co tienen un carácter policristalino con una estructura hcp y alguna presencia de estructuras fcc. En el borde de las nanopartículas, es también encontrado un plano fcc característico del CoO.

Como en el análisis de las imágenes de AFM, la distribución de diámetros extraída de las imágenes de TEM es ajustada a una distribución lognormal (ec. 3.1), mostrada en la figura 3.5. El diámetro promedio resultante es $\bar{x} = 9.6 \pm 2.0$ nm. La distribución de diámetros es homogénea (baja desviación del diámetro medio) y las nanopartículas están distribuidas homogéneamente sobre las superficie. Si comparamos los resultados extraídos mediante AFM (altura promedio) y TEM (diámetro promedio), podemos afirmar que dentro de los intervalos de incertidumbre experimentales, $\bar{z} \approx \bar{x}$. Es decir, las nanopartículas presentan la misma dimensión dentro (TEM).

![Figura 3.4 Imagen de TEM de 550 x 550 nm² de nanopartículas de cobalto depositadas sobre una rejilla de TEM con un tiempo de depósito de 4 min a $8 \cdot 10^4$ aumentos (a). Imagen de TEM de 83 x 80 nm² de otra área de la misma muestra a $3 \cdot 10^5$ aumentos (b). En el extremo superior izquierdo, se ilustra un esquema de la estructura icosaédrica. Un icoaedro se compone de veinte tetraedros, que está limitado por veinte caras con forma triangular, cuyo corte transversal es un hexágono.](image-url)
y fuera del plano (AFM) de la superficie donde se depositan. Como consecuencia, esto significa que las partículas no sufren deformación debido a la colisión con la superficie. Las nanopartículas llegan a la superficie con la suficiente baja energía cinética como para ocasionar un “aterrizaje suave”. Nótese que Fig. 3.4a es similar a las representaciones de imágenes de AFM a través de los datos adquiridos con el software ImageJ (Figs. 1b, d y f), teniendo en cuenta la diferencia de escalas entre ambas imágenes. La imagen de AFM representa un área de barrido de $1 \times 1 \mu m^2$, mientras que la imagen de TEM está asociada a un área de $550 \times 550 \, \text{nm}^2$.

Asimismo, se han realizado patrones de difracción con TEM que corresponden a un parámetro de red cerca de $4.14 \, \text{Å}$, asociado a un óxido de cobalto con una estequiometría CoO con un parámetro de red entre 4.2 y $4.5 \, \text{Å}$. Por tanto, cuando las nanopartículas estudiadas son dejadas al aire, presentan oxidación.

3.3.3 Estudio de las interacciones interpartícula

El análisis detallado de las distancias interpartícula a los primeros, segundos y terceros vecinos es realizado con la finalidad de estudiar la distancia crítica o umbral al cual las nanopartículas comienzan a comportarse colectivamente en lugar de entidades individuales. En otras palabras, a partir de este umbral, observaremos un cambio importante tanto en la distribución espacial de las nanopartículas como en las propiedades del sistema fabricado. Para
este análisis, se emplearon los eventos estadísticos de diversas imágenes de AFM de un área de 1 x 1 μm² de nanopartículas de Co depositadas sobre sustratos Si(100). El número de imágenes requeridas para el estudio depende del porcentaje de recubrimiento y varía entre tres y seis imágenes. Es importante resaltar que el hecho de haber seleccionado imágenes de AFM para realizar el estudio de las interacciones interpartícula es intencionado. Las medidas con TEM son resultado de depósitos de nanopartículas sobre rejillas de TEM con películas de carbono. Las rejillas presentan una mayor rugosidad que los sustratos de Si, conduciendo a una falsa interpretación de los resultados.

Las distancias a los primeros, segundos y terceros vecinos están relacionadas con las tres nanopartículas más próximas alrededor de cada nanopartícula. En la figura 3.2, se incluye un esquema ilustrativo de las tres distancias realizado de un zoom de una imagen de AFM. El análisis parte de una hipótesis inicial: las N nanopartículas depositadas sobre un área de 1 x 1 μm² presentan una geometría esférica con un diámetro promedio de 10.3 nm. Como fue explicado en el apartado anterior, el programa ImageJ nos permite no sólo adquirir datos, señalarlos en la imagen y contar las nanopartículas observadas, sino que podemos extraer su posición en pixeles de la imagen estudiada. Es decir, por medio de este software, se obtienen las coordenadas \((x_i,y_i)\) de cada una de las N nanopartículas observadas en las imágenes de AFM estudiadas (siendo N el número total de nanopartículas en cada imagen de AFM analizada de un área de 1 x 1 μm²). Las coordenadas de cada nanopartícula son tomadas en el centro geométrico. Las imágenes de AFM equivalentes obtenidas, para los porcentajes de recubrimiento analizados, son expuestas en las figuras 3.1b, d y f. Debe destacarse que las figuras 3.1d y f muestran que nuestro análisis estadístico puede ser empleado también hasta en el caso de un 10.6% de recubrimiento.

Con el conjunto de coordenadas, se pueden calcular las distancias a los primeros, segundos y terceros vecinos a cada nanopartícula aplicando el teorema de Pitágoras. A continuación, a cada valor de distancia se le sustrae el valor del diámetro promedio de nanopartícula con el fin de obtener las distancias interpartícula de borde a borde. Desde el punto de vista de las interacciones interpartícula, la distancia de borde-borde es la distancia relevante. Las distribuciones de las distancias interpartícula a los primeros, segundos y terceros vecinos son ajustadas siguiendo el modelo teórico de Srinivasa y Haenggi [16]. Estos autores dedujeron la función de densidad de probabilidad (Probability Density Function, PDF) de la distribución de distancias de los \(N\) puntos al vecino \(n\) más próximo para un polígono regular de tamaño \(l\). Para nuestro análisis, este modelo se aplica en el caso de un cuadrado 2D de lado \(S = 2 \times R\), siguiendo la expresión:

\[
PDF_n = \frac{2\pi d}{4R^2} \left(1 - \frac{\pi l^2}{4R^2}\right)^{N-n} \cdot \frac{\left(\frac{\pi l^2}{4R^2}\right)^{n-1}}{\Gamma(N-n+1) \cdot \Gamma(n)} \end{equation}

(3.3)
Nótese que la función gamma Γ requiere de un procesador superior a un ordenador convencional para altos valores de iteración N. De hecho, a partir de valores de $N > 170$, un software para representaciones gráficas como IGOR Pro 5.2 no puede converger el ajuste de los datos. Para superar esta dificultad, se fija el número de nanopartículas a 120 en cada porcentaje de recubrimiento, teniendo en cuenta los buenos ajustes que fueron obtenidos en trabajos previos para tal número de nanopartículas [17]. El uso de esta normalización supone que el cuadrado de lado 1 μm es dividido en un número proporcional de nuevos cuadrados, cuyos lados son $2R'$, que contienen un número total de 120 nanopartículas.

El máximo de la función PDF_n es una buena aproximación de la distancia interpartícula promedio a los vecinos n. En otras palabras, la distancia promedio entre los vecinos n es extraída del máximo de tal PDF. De este modo, la distancia interpartícula promedio viene dada por el punto de inflexión de la función PDF donde,

$$N = [1 + 2(n - 1)] \cdot \left[\frac{2R^2}{\pi d^2} - \frac{1}{2}\right] - n$$

que conduce a la expresión siguiente para la distancia promedio como una función de los vecinos n:

$$\bar{d} = 2R \cdot \left[\frac{1 + 2(n - 1)}{(2N - 1) \cdot \pi}\right]^{1/2}$$

(3.5)
\[R_{\text{Ryc}} \quad N \gg 1 \quad \Rightarrow \quad 2N - 1 \equiv 2N \]
\[\bar{d} = 2R \left(\frac{\alpha}{2N\pi} \right)^{1/2} \quad \text{siendo,} \quad \alpha = 1 + 2(n-1) \]
\[(3.6) \]

donde \(\alpha = 1 \) (para \(n = 1 \)), 3 (para \(n = 2 \)), y 5 (para \(n = 3 \)). Por tanto, la distancia media puede ser escrita tal que,
\[\bar{d} \propto N^{-1/2} \]
\[(3.7) \]

La figura 3.6 presenta la evolución de la distancia experimental promedio a los primeros, segundos y terceros vecinos con el porcentaje de recubrimiento. Cada curva ha sido ajustada con la ecuación 3.7. En promedio, las distancias a los segundos y terceros vecinos son 1.7 y 2.3 superiores respectivamente a las distancias a los primeros vecinos, en acuerdo con los estudios de Tournus [18]. Las barras de error de los valores promedio de cada porcentaje de recubrimiento son la dispersión estadística estándar.

No obstante, si queremos extraer el significado físico de los valores de las distancias a los primeros vecinos a partir de imágenes de AFM, tienen que ser comparados con simulaciones teóricas. De este modo, realizamos el cálculo de depósitos de nanopartículas distribuidas aleatoriamente sobre la superficie, asumiendo nanopartículas esféricas, para todos los porcentajes de recubrimiento estudiados experimentalmente. En otras palabras, hemos simulado el caso de un sistema ideal donde la posición final de cada nanopartícula depositada no

\[\text{Figura 3.7} \quad \text{Representación de las distancias interpartícula promedio a los primeros vecinos obtenidas de imágenes de AFM (distancia experimental) y del resultado de la simulación de un sistema ideal de nanopartículas distribuidas aleatoriamente (distancia simulada) con respecto al porcentaje de recubrimiento de una monocapa.} \]
Las interacciones entre nanopartículas son definidas como la suma de las interacciones electrostáticas, las interacciones atractivas de van de Waals y las interacciones magnéticas [22]. Considerando las condiciones en las que son realizados los depósitos estudiados, pueden desprecribirse las interacciones magnéticas por dos motivos: las nanopartículas presentan un comportamiento superparamagnetico a temperatura ambiente; y no hay un campo magnético aplicado durante el depósito. Las interacciones de repulsión estéricas en el caso de nanopartículas están asociadas a una funcionalización de la superficie de las nanopartículas: moléculas cargadas enlazadas a la superficie de la partícula [23]. Obviamente, éste no es el caso de nuestros sistemas, que son crecidos en condiciones de UHV. En los sistemas estudiados hemos observado que las interacciones de van de Waals son originadas por fluctuaciones electromagnéticas debidas a los incesantes movimientos de las cargas positivas y negativas dentro de todo tipo de átomos, moléculas y materiales en volumen [22]. En solución, grandes interacciones isótropas de van der Waals inducen la formación de agregados esféricos, en ausencia de interacciones dipolares [23]. Las interacciones de van der Waals se esperan que presenten una naturaleza atractiva. En los sistemas estudiados, hemos observado que la distancia promedio experimental entre los primeros vecinos siempre es mayor que la distancia simulada correspondiente, lo que indica claramente que la interacción dominante es repulsiva y,
Capítulo 3. Interacciones interpartícula entre nanopartículas de Co sobre Si(100)

por tanto, podríamos considerar que las interacciones atractivas de van der Waals son despreciables. Por otro lado, las interacciones electrostáticas pueden ser tanto atractivas como repulsivas y su origen es debido a la interacciones carga-carga y a la polarización eléctrica inducida de las nanopartículas [24]. Como una consecuencia del proceso de fabricación de nuestras partículas, el 80% de ellas pueden presentar una carga eléctrica [25]. Esta carga puede ser muy alta. El número de átomos que alberga una nanopartícula de 10 nm de diámetro es superior a 45.000. Aunque el proceso de fabricación puede conducir a nanopartículas altamente cargadas, la carga debe mantenerse el tiempo suficiente para que las repulsiones electrostáticas no sean despreciables. De este modo, las nanopartículas podrían interaccionar con sus vecinas. Guerrero-García et al. han estudiado el potencial de la fuerza media entre nanopartículas idénticamente cargadas en presencia de un electrolito monovalente de tamaño asimétrico en el caso de una gran magnitud de la carga de las nanopartículas [26]. Las interacciones entre dos nanopartículas igualmente cargadas son la suma de un núcleo macroión repulsivo (potencial de Lennard-Jones) más una interacción coulombiana. Asimismo estos autores observaron que el núcleo y las interacciones de Coulomb son repulsivos, sobre distancias mayores que el diámetro de nanopartículas. Verificaron que si las nanopartículas presentan una carga lo suficientemente grande, la interacción promedio puede presentar un comportamiento repulsivo sobre la distancia del diámetro de la nanopartícula. Nosotros no podemos definitivamente concluir el origen de los comportamientos repulsivos observados, pero el hecho experimental no puede ser despreciado.
3.3.4 Caracterización de la rugosidad de la superficie a nano-escala

La evolución de la rugosidad de la superficie con el porcentaje de recubrimiento es estudiada a partir de los datos morfológicos adquiridos de imágenes de AFM en el marco de la teoría de escalado dinámico [27]. Las propiedades de la rugosidad de la superficie son caracterizadas a partir de la densidad espectral de potencia (Power Spectral Density, PSD) y de la raíz cuadrada de la rugosidad promedio de la superficie (root mean square surface roughness, \(\sigma_{\text{RMS}}\)). Los datos recogidos en las imágenes de AFM contienen la información de la distribución de alturas de secciones cuadradas de 512 x 512 píxeles de áreas de barrido de 1 x 1 \(\mu\text{m}^2\) y 10 x 10 \(\mu\text{m}^2\). \(\sigma_{\text{RMS}}\) proporciona una medida promedio de la variación de las alturas de la superficie y se define como:

\[
\sigma_{\text{RMS}} = \left(\frac{1}{N} \sum_{i=1}^{N} (z_i - \bar{z})^2 \right)^{1/2}
\]

(3.8)

siendo \(z_i\), la altura de la superficie en el punto \(i\) en el perfil de la superficie, \(\bar{z}\), la altura promedio de la superficie, y \(N\), el número de puntos tomados como datos en el perfil.

Sin embargo, \(\sigma_{\text{RMS}}\) sólo proporciona una indicación de las dimensiones verticales en vez de suministrar la información completa de la imagen topográfica [12]. El espectro PSD contiene una descripción completa de la estadística de la superficie junto con la información de las escalas de longitud lateral [28]. Además, proporciona información sobre la evolución de la rugosidad a corto y largo alcance, la forma y tamaño de los rasgos o asperezas presentes en la superficie, o la frecuencia y regularidad de la aparición de estos eventos en la superficie [29]. Por tanto, un análisis espectral es requerido para obtener la información completa del sistema estudiado.

El comportamiento del escalado en los perfiles topográficos, extraídos de las medidas de AFM, ha sido analizado utilizando el análisis de espectros PSD unidimensionales, descritos con la siguiente ecuación:

\[
PSD(k) = \frac{1}{L} \left[\int h(x) e^{i k x} dx \right]^2
\]

(3.9)

donde \(h(x)\) corresponde al perfil de línea, \(L\) es la longitud de barrido, \(k\) es el número de onda, y \(x\) es la dirección rápida de barrido de un área medida. Se escoge la PSD unidimensional para poder disminuir la señal del ruido de la dirección de barrido [30]. El espectro PSD unidimensional es obtenido tomando las transformadas rápidas de Fourier (Fast Fourier Transform, FFT) del barrido de cada línea individual que compone el área de una imagen de AFM, elevando al cuadrado la amplitud de la rugosidad superficial por intervalo de frecuencia espacial, y promediando las 512 secciones transversales de la superficie barrida en cada frecuencia para generar el espectro PSD [29].
En una primera aproximación, el comportamiento del escalado puede analizarse de acuerdo con:

$$
PS(k) \propto k^{-(2\sigma+d)}
$$

siendo σ, el exponente de rugosidad y d, la dimensión de la línea de barrido. Para nuestro caso, $d = 1$.

En las figuras 3.9 y 3.10, presentamos las curvas PSD unidimensionales frente al número de onda k asociado a los diferentes porcentajes de recubrimiento estudiados para las dos áreas de barrido analizadas. Cada curva PSD presentada es un promedio de un número representativo de imágenes de AFM de cada sistema. Escogimos dos áreas de barrido diferentes para observar tanto el punto de vista local de la rugosidad ($1 \times 1 \mu m^2$, Fig. 3.9) como la rugosidad promedio microscópica ($10 \times 10 \mu m^2$, Fig. 3.10), que puede ser comparada con las medidas de ángulo de contacto que se presentarán en el subapartado 3.3.5. La representación de la curva PSD en función de la frecuencia espacial en escala logarítmica, permite el uso de la aproximación de la ley de potencias (ec. 3.10) y divide cada curva PSD en una colección de regiones lineales adyacentes que corresponden a distintos regímenes de escalado. De este modo, en una primera aproximación, cada intersección de dos regiones lineales adyacentes está asociada a distintos exponentes de rugosidad y determina un número de onda mínimo k_c que conduce a una longitud característica $L_c (k_c=1/L_c)$ [31]. Por tanto, los valores de k_c identifican las periodicidades de la rugosidad superficial. Dado que los depósitos de nanopartículas de cobalto están definidos en la escala nanométrica, el estudio de los valores característicos será observado en áreas de barrido de $1 \times 1 \mu m^2$. Sin embargo, si se desea comparar nuestro análisis de la rugosidad
Capítulo 3. Interacciones interpartícula entre nanopartículas de Co sobre Si(100) superficial con las medidas de ángulo de contacto, es necesario un mayor área de barrido, ya que la superficie de contacto de las gotas de agua empleadas sobre las muestras es del orden de 8×10^{-1} mm2. Nótese que, en el caso de un área de barrido de 10×10 µm2, los valores de k mínimos de los espectros PSD no incluyen el régimen de frecuencias espaciales de la rugosidad de la escala nanométrica.

En ambas áreas de barrido, las curvas PSD asociadas al sustrato de Si(100) son mostradas (Fig. 3.9 y 3.10) y están en acuerdo con la literatura [32]. La Fig. 3.9 presenta las curvas PSD unidimensionales para áreas de barrido de 1×1 µm2. Se observa una primera longitud de onda característica a $k_{c1} \approx 10^{-1}$ nm$^{-1}$ (línea vertical discontinua de la Fig. 3.9) en todas las muestras depositadas, que corresponde a $L_{c1} \approx 10$ nm. Este valor coincide con el diámetro promedio de las nanopartículas depositadas, como ha sido analizado con las medidas de AFM (sección 3.3.1.) y TEM (sección 3.3.2.). Una segunda k_c (k_{c2}) es observada a mayores longitudes de onda, cuyo intervalo de frecuencias es indicado con un rectángulo naranja en la Fig. 3.9. El valor de k_{c2} para cada curva PSD estudiada depende del porcentaje de recubrimiento de la superficie. Para porcentajes de recubrimiento inferiores a 2.9%, $k_{c2} \approx 10^{1.35}$ nm$^{-1}$. Al aumentar el recubrimiento de la superficie, k_{c2} se va desplazando progresivamente a mayores frecuencias espaciales, hasta que no puede ser distinguido de k_{c1}. Las longitudes características correspondientes a cada k_{c2}, evolucionan con el aumento del recubrimiento, desde 22.2 nm hasta 11.2 nm. En principio, no es evidente la interpretación de estos valores de longitudes características. Sin embargo, si
correlacionamos los valores obtenidos aquí con el estudio de las interacciones interpartícula (vease subapartado 3.3.3), observamos que k_{C2} está directamente relacionado con la distancia interpartícula promedio a los primeros vecinos de cada porcentaje de recubrimiento. Cuando el porcentaje de recubrimiento es superior a 7.1%, su distancia interpartícula promedio a los primeros vecinos tiene un valor muy cercano al diámetro promedio de las nanopartículas (k_{C1}). Este hecho explica porque no somos capaces de discriminar entre k_{C1} y k_{C2} para altos porcentajes de recubrimiento dentro de nuestra resolución experimental. Por tanto, el análisis de las curvas PSD de áreas de barrido pequeñas en el caso de sistemas planos con nanopartículas proporcionan información tanto del tamaño de nanopartícula así como de las distancias interpartícula a los primeros vecinos.

El siguiente paso consiste en analizar las curvas PSD que incluyen un estudio espectral de mayor área de barrido. En nuestro caso, estudiamos áreas de barrido de $10 \times 10 \mu m^2$ (Fig. 3.10). Por ajuste de las curvas PSD con la ecuación 3.10, cuatro regiones diferentes puedan ser distinguidas. Cada exponente de rugosidad es el promedio de las regiones lineales de cada PSD, dentro del mismo intervalo de número de ondas. Nótese que en la figura 3.10 no se han incluido todas las curvas PSD estudiadas tal que en la figura 3.9 con el fin de facilitar la visualización de los distintas regiones.

En la región de altas frecuencias, pueden identificarse dos exponentes de rugosidad característicos para el sustrato de Si(100): $\alpha_1 = 0.06 \pm 0.01$ y $\alpha_2 = 0.365 \pm 0.003$. Cuando las nanopartículas son depositadas sobre un sustrato de Si(100), α_1 sólo se observa en muestras con bajo porcentaje de recubrimiento (< 1.4%), mientras que α_2 está presente en todos los recubrimientos estudiados. Por tanto, puede deducirse que la topografía del sustrato está caracterizada por dos clases de rugosidad: α_1 representa la periodicidad de largo alcance y α_2, la periodicidad de corto alcance. La periodicidad de corto alcance del sustrato se mantiene en todos los recubrimientos estudiados, mientras que la periodicidad de largo alcance es fácilmente perdida por la presencia de unas pocas nanopartículas. Aparte de los exponentes de rugosidad del sustrato, dos exponentes adicionales son registrados en las muestras con depósito de nanopartículas: $\alpha_3 = 0.69 \pm 0.01$ y $\alpha_4 = 1.20 \pm 0.01$. α_3 es observado para todos los recubrimientos, mientras que α_4 aparece a partir de recubrimientos superiores a 2.9%. Hemos visto en el estudio de las interacciones interpartícula (sección 3.3.3.) que las nanopartículas no están distribuidas de forma puramente aleatoria por encima de este recubrimiento, dado que las interacciones electrostáticas interpartícula influencian la localización final de cada nanopartícula durante el proceso de depósito. Esto implica que α_4 aparece como una consecuencia de las interacciones entre las nanopartículas depositadas.

Las curvas PSD de un área de barrido $10 \times 10 \mu m^2$ describen un balance entre el mecanismo de rugosidad de las primeras nanopartículas depositadas y la influencia de las interacciones interpartícula como factor condicionante de la morfología superficial. En el caso de haber estudiado depósitos bastante superiores a una monocapa, este efecto de distribución espacial no puramente aleatoria podría ser considerado como el principio de una situación inicial de suavizado de la superficie [33]. Es importante resaltar que exponentes de rugosidad mayores a la unidad (como ocurre con α_4) han sido previamente atribuidos en la literatura a un escalado anómalo [29,34,35] o a un artefacto de no linealidad del piezoeeléctrico del AFM [36] debido a un
fondo parabólico en la señal registrada. En nuestro caso, hemos observado la presencia de un exponente de rugosidad ocasional alrededor de 1.66 en algunas imágenes de AFM aleatorias midiendo el mismo área de barrido, resultado de un artefacto del sistema piezoeléctrico. El sistema piezoeléctrico del AFM empleado en nuestro estudio, es óptimo para áreas de barrido pequeñas. Una evidencia de la presencia residual de este artefacto, debido a un fondo parabólico de la señal registrada en las medidas AFM, se puede observar si comparamos las curvas PSD de las dos áreas de barrido analizadas (Fig. 3.9 y 3.10). Para un área de barrido de 1 x 1 μm², cada curva PSD presenta un comportamiento paralelo mientras que esto no es observado claramente en las curvas PSD en áreas de 10 x 10 μm². Cuando este efecto es crítico, las curvas PSD inducen un escalado anómalo, conduciendo a un valor no aceptable para nuestros sistemas (esto es, implica una dimensión fractal no compatible). No obstante, utilizando la expresión de una PSD unidimensional y esperando el tiempo suficiente para que se establezca la señal registrada del AFM, este artefacto puede ser minimizado, de manera que los exponentes de rugosidad anómalos desaparezcan de las curvas PSD. En nuestro caso, las imágenes de AFM son adquiridas en diferentes regiones de las muestras para validar los valores obtenidos y conseguir una buena estadística. El valor de α₄ es observado en todas las imágenes analizadas para depósitos superiores al 2.9% de recubrimiento sin y con estabilización de la señal de grabado del AFM, revelando que no es debido a un artefacto del AFM.

Hasta ahora se han observado cuatro exponentes de rugosidad: α₁ y α₂ surgen de la topografía del sustrato y α₃ está asociado a la interacción entre las nanopartículas para recubrimientos por encima de 2.9%. Nos quedaría pendiente la interpretación de α₃, que es observado en toda superficie con depósito de nanopartículas. Por tanto, α₃ representa el exponente de la rugosidad de una estructura local. Para verificar el origen de α₃ en el modelo de escalado dinámico, se analizará σ_RMS como una función del tiempo de depósito. De acuerdo a la teoría de escalado dinámico, la rugosidad superficial con el tiempo de crecimiento t obedece a la ley de potencia de:

$$\sigma_{RMS} \propto t^{\beta}$$

(3.11)

donde el parámetro β es el exponente de crecimiento.

Como σ_RMS es una medida promedio de la variación de las alturas de la superficie extraída de imágenes de AFM, en una primera aproximación este valor estará relacionado con el exponente de rugosidad α₃, presente en todas las muestras con depósito de nanopartículas. Además, dado que σ_RMS es fuertemente dependiente del área barrido [36] debido a la geometría fractal [37,38], σ_RMS estará relacionado con α₃, para el área de barrido de 10 x 10 μm². Por tanto, en nuestro caso, β se define como $\beta_{10 \times 10 \mu m^2}$.

La figura 3.11 ilustra la evolución de σ_RMS en función del área de barrido registrada en con el AFM. Nótese el doble eje x con tiempo de depósito (necesario para la teoría del escalado dinámico) y el porcentaje de recubrimiento (notación empleada hasta ahora). Como puede apreciarse, el tiempo de depósito no es directamente proporcional al porcentaje de recubrimiento de la superficie y es dependiente tanto de la superficie como del material a depositar. Con el fin de establecer un criterio comparativo entre distintos estudios de escalado, es considerado el tiempo de depósito como valor de referencia respecto a σ_RMS. Para el área de
Capítulo 3. Interacciones interpartícula entre nanopartículas de Co sobre Si(100)

barrido de 10 x 10 µm², σ_{RMS} aumenta desde 0.20 ± 0.01 nm (σ_{RMS} del sustrato oxidado naturalmente) a 3.85 ± 0.10 nm en 10 min (7.1% de recubrimiento) y disminuye levemente a 3.21 ± 0.14 nm en 15 min (10.6%). Estos valores de σ_{RMS} conducen a un exponente β_{10x10µm²} = 0.28 ± 0.05 para α_3 = 0.69 ± 0.01. En el caso de un área de barrido de 1 x 1 µm², β_{1x1µm²} = 0.64 ± 0.07. Observamos que en función del área de barrido, σ_{RMS} presenta un comportamiento diferente [36]. Como ha sido mencionado, las periodicidades observadas en áreas muy pequeñas no tienen en cuenta la rugosidad superficial a una dimensionalidad comparable con otras técnicas de caracterización, como no ocurre con un área de barrido de 10 x 10 µm². Es por ello que no profundizaremos en los parámetros de rugosidad a escalas de 1 x 1 µm². No obstante, es muy importante mostrar la diferencia en el comportamiento de la rugosidad superficial en función de la escala estudiada.

En la Fig. 3.11 vemos cómo la morfología superficial cambia con el aumento del porcentaje de recubrimiento de la superficie, aunque las nanopartículas siempre mantengan su geometría. Por tanto, α_3 expone la rugosidad local de la morfología superficial y dicha morfología se mantiene intacta para todos los recubrimientos estudiados. En otras palabras, α_3 y β_{10x10µm²} pueden ser considerados como los exponentes intrínsecos de escalado asociados a nanopartículas aisladas.

Varios autores han referenciado valores similares para diferentes mecanismos de rugosidad. El modelo de Kardar-Parisi-Zhang estima los parámetros α = 0.5 y β = 0.33 en dimensiones d = 1+1, sin incluir la posibilidad de difusión superficial [29]. Thompson et al. obtuvieron α = 0.70 ± 0.10 y β = 0.26 ± 0.15 en el caso de películas de plata depositadas por vaporización térmica sobre sustratos de silicio [39]. Das Sarma and Tamborenea estimaron α ≈ 1.5 y β ≈ 0.375 para un modelo entre el depósito aleatorio y el depósito aleatorio incorporando relajación [40]. Además, el valor de α = 0.70 es consistente con modelos de

Figura 3.11 Evolución de la raíz cuadrada de la rugosidad promedio de la superficie en función del tiempo de depósito (eje inferior) y del porcentaje de recubrimiento (eje superior), extraído de imágenes de AFM de áreas de barrido de 10 x 10 µm² (izquierda) y 1 x 1 µm² (derecha).
crecimiento conservadores en los cuales sugieren difusión superficial como el mecanismo de relajación dominante [41]. Sin embargo, estos modelos han sido descritos para láminas delgadas, dado que la mayor parte de los esfuerzos para modificar la rugosidad superficial son en la micro-escala (estructuras artificiales están en el orden de 0.1 - 10 µm) y en depósitos que conforman láminas delgadas microscópicamente rugosas. En otras palabras, el análisis de la rugosidad se ha enfocado habitualmente para los mecanismos de rugosidad de láminas delgadas. Por otro lado, existen estudios de la mejora de la rugosidad a través de la combinación de una rugosidad jerárquica de micro y nano-escala, imitando sistemas biológicos micro-estructurados [42], y se ha observado que la rugosidad de nano-escala proporciona un beneficio añadido a la mejora de la rugosidad, influyendo tanto el tamaño como la forma de los rasgos de la microestructura [43].

Pese a este interés por la nanoestructuración, no existen estudios que analicen en detalle el efecto de la modificación de la rugosidad superficial exclusivamente en la nano-escala que nos puedan servir de base para el estudio aquí presentado. En nuestro caso, los valores de α_3 y $\beta_{10 \times 10 \mu m^2}$ podrían indicar un posible mecanismo de rugosidad debido a efectos de difusión superficial [39], dentro de los intervalos de incertidumbre. No obstante, las discrepancias entre nuestros sistemas estudiados y la literatura son debidas a que en nuestro trabajo, no sólo analizamos depósitos notablemente inferiores a una monocapa, sino que trabajamos exclusivamente en la nano-escala. Esto determina que no encontremos mecanismos de rugosidad que concuerden uniformemente con nuestro sistema. La cantidad de material que es depositado en los sistemas estudiados es del orden de la incertidumbre en espesor de un depósito de una lámina delgada. Como será explicado comparativamente con las medidas de ángulo de contacto en el posterior subapartado, estos reducidos depósitos de nanopartículas de Co son suficientes para ocasionar cambios significativos en las propiedades de superficies planas.

3.3.5 Caracterización de la mojabilidad por ángulo de contacto

En el conjunto de muestras estudiadas en el subapartado anterior, realizamos un estudio sistemático de la mojabilidad de los sistemas fabricados. La figura 3.12 muestra una imagen de AFM representativa de cada depósito y en la parte inferior a cada imagen, una fotografía de una gota de agua de 1 μl sobre el correspondiente depósito. Es interesante resaltar que, incluso una pequeña presencia de nanopartículas en el sustrato de Si(100) (por debajo de 1.45% de una monocapa), es capaz de producir cambios significativos en el ángulo de contacto. Observamos un incremento progresivo en el ángulo de contacto en función del porcentaje de recubrimiento. La evolución del ángulo de contacto de gotas de agua con el recubrimiento de la superficie es presentada en la figura 3.13. El ángulo de contacto aumenta siguiendo un crecimiento exponencial que tiende a estabilizarse alrededor de 4.7% de recubrimiento. A partir de este porcentaje de recubrimiento, no existe efecto alguno en la mojabilidad del silicio si aumentamos el número de nanopartículas. Los valores del ángulo de contacto obtenidos en esta región son próximos a 110°.
El control de la mojabilidad en superficies heterogéneas está influenciado principalmente por tres factores: la rugosidad superficial, las contribuciones de área relativa de las porciones químicamente diferentes que componen la superficie y sus dimensiones, así como sus energías superficiales asociadas [44]. Desde el punto de vista químico, en el caso de los sistemas estudiados, el silicio oxidado naturalmente presenta una estequiometría SiO\textsubscript{x} con x cerca de 2. La mojabilidad de capas de sílice está principalmente gobernada por la densidad de grupos -OH en la superficie [45,46]. Como SiO\textsubscript{2} tiene una fuerte afinidad por los grupos -OH [47,48], un líquido polar como el agua suele mojar la superficie y, por tanto, SiO\textsubscript{2} es comúnmente referenciado como hidrofílico. Por otro lado, las nanopartículas de cobalto depositadas son dejadas al aire de manera que se oxidan naturalmente formando una película superficial de CoO según los estudios de TEM (sección 3.3.2.). Este óxido de cobalto es polar y también presenta una tendencia a ser recubierto por grupos -OH [49] como ocurre con el sustrato. Takeda y Fukawa [46] reportaron cómo la afinidad por grupos -OH en superficie era dependiente de la diferencia de electronegatividades entre el oxígeno y el elemento directamente unido a él. En nuestro caso, la mayor diferencia de electronegatividad entre Co y O hace cada nanopartícula más polar y con una mayor afinidad por los grupos –OH que el sustrato de SiO\textsubscript{x}. Por tanto, si consideramos únicamente la química de la superficie para el análisis de la evolución del ángulo de contacto, la presencia de nanopartículas CoO en la superficie debería
inducir a una progresiva disminución del ángulo de contacto medido. A medida que aumente el porcentaje de recubrimiento, mayor carácter polar presentará la superficie. Sin embargo, observamos la tendencia opuesta, indicando que la influencia de los factores químicos de la superficie en la mojabilidad es despreciable frente a otros factores como la morfología superficial. Estos resultados son de gran relevancia, considerando que estamos realizando este estudio en superficies muy planas. Habitualmente, los estudios que se encuentran en la literatura sobre la estructuración de superficies para modificar su mojabilidad se encuentran en la micro-escala (entre 0.1 y 10 µm). En nuestro caso, con nanopartículas de 10 nm de diámetro promedio, en depósitos inferiores a 10.7% de una monocapa, pasamos de una superficie hidrofílica a un comportamiento de alta hidrofobicidad. De este modo, se evidencia la importancia de la rugosidad superficial en la escala nanométrica para entender las propiedades de la mojabilidad.

A lo largo de este capítulo hemos caracterizado sistemas de nanopartículas de Co sobre sustratos de Si. En todas las muestras, se ha observado cómo bajos porcentajes de recubrimiento son capaces de modificar el comportamiento del sistema. Vemos que con tan sólo un 1.4% de recubrimiento, se produce una variación de 20° en el ángulo de contacto y aparece un nuevo exponente de rugosidad α₃ en las PSD, para todos los sistemas con nanopartículas. Estudiando las interacciones interpartícula a primeros vecinos en función del porcentaje de recubrimiento, hemos encontrado un valor crítico de 3.5%, a partir del cual las interacciones interpartícula condicionan la morfología del depósito sobre el sustrato. Por otro lado, el ángulo de contacto aumenta exponencialmente con el recubrimiento de la superficie y empieza a estabilizarse alrededor de 4.7%. Finalmente, en los estudios de rugosidad observamos la

![Figura 3.13](image.png) Representación del ángulo de contacto del agua en función del porcentaje de recubrimiento de una monocapa de nanopartículas de cobalto sobre Si(100).
aparición de un exponente de rugosidad α_4 que es sólo observado en el caso de sistemas con un porcentaje de recubrimiento superior a 2.9%. Es decir, a partir del 2.9%, existe una competición entre α_3 y α_4, contribuyendo a la morfología superficial. Cuando el depósito presenta una distribución aleatoria de las nanopartículas, el ángulo de contacto aumenta y α_3 es el exponente de rugosidad dominante. Sin embargo, cuando α_4 se convierte en la contribución dominante, observamos que la evolución del ángulo de contacto comienza a estabilizarse. Si interpolamos en la Fig. 3.13, veremos que el valor umbral 3.5% se incluye dentro del rango de porcentajes donde el ángulo de contacto empieza a estabilizarse. De este modo, α_4 es coherente con las medidas de ángulo de contacto.
3.4 Conclusiones

La fuente de agregados ICS ha permitido fabricar nanopartículas de cobalto de tamaño controlado con una densidad de recubrimiento homogénea sobre sustratos de Si(100) oxidados naturalmente. La caracterización morfológica y estructural realizada mediante AFM y TEM ha determinado que las nanopartículas estudiadas tienen un tamaño promedio de unos 10 nm y su altura y diámetro promedio coinciden. De este modo, las nanopartículas no presentan deformación al ser depositadas sobre la superficie. Se han realizado series de muestras con diferentes porcentajes de recubrimiento de una monocapa, variando desde 1.4% a 10.6%. Las nanopartículas de cobalto son dejadas al aire y presentan oxidación. Se ha encontrado que el porcentaje de recubrimiento de 3.5% es un recubrimiento superficial crítico. Para recubrimientos inferiores a dicho valor umbral, las nanopartículas están distribuidas aleatoriamente, mientras que en el caso de recubrimientos superiores a 3.5%, la localización final de cada nanopartícula durante el depósito está influenciada por las nanopartículas ya depositadas (distribución no totalmente aleatoria).

El estudio de la rugosidad superficial ha sido realizado en dos áreas de barrido de AFM diferentes (1 x 1 μm² y 10 x 10 μm²) mediante el análisis de las PSD y σRMS. En el caso de áreas más pequeñas, se observan dos periodicidades características asociadas al tamaño promedio de las nanopartículas depositadas y a la distancia interpartícula a los primeros vecinos. Para áreas de barrido de 10 x 10 μm², se distinguieron dos exponentes de rugosidad relacionados con los depósitos. La evolución de la rugosidad de la superficie con las nanopartículas de cobalto es el resultado de un balance entre las nanopartículas aisladas, \(\alpha_3 = 0.69 \), y la influencia de las interacciones interpartícula que condicionan la distribución final de las nanopartículas sobre la superficie, \(\alpha_4 = 1.20 \).

Los estudios de mojabilidad muestran que el ángulo de contacto del agua aumenta exponencialmente con el recubrimiento hasta estabilizarse a partir de 4.7% alrededor de 110°. Hemos visto que los factores químicos no tienen una influencia significativa en la mojabilidad de los sistemas estudiados en comparación con la influencia de la rugosidad superficial. Aunque se esté trabajando con sistemas notablemente planos, el estudio muestra la importancia de la rugosidad a escala nanométrica y las condiciones del depósito. La evolución del ángulo de contacto se corresponde con el estudio de las curvas PSD. Para valores inferiores de 3.5% de recubrimiento, \(\alpha_3 \) es el exponente de rugosidad dominante y el ángulo de contacto aumenta con el recubrimiento. Sin embargo, cuando las interacciones interpartícula condicionan el depósito, el ángulo de contacto comienza a describir una estabilización en función del porcentaje de recubrimiento, y \(\alpha_4 \) se convierte en el término dominante de la rugosidad superficial.
Capítulo 3. Interacciones interpartícula entre nanopartículas de Co sobre Si(100)

Bibliografía

Capítulo 3. Interacciones interpartícula entre nanopartículas de Co sobre Si(100)

Interacciones interpartícula entre nanopartículas de Co en matrices de Au y V con respecto a las propiedades magnéticas
4.1 Introducción

El magnetismo de nanopartículas representa una de las más importantes ramas de la investigación científica. Telecomunicaciones [1], catálisis [2] o fotónica [3] son algunos de las líneas de trabajo que han experimentado un intenso desarrollo gracias a los avances en nanociencia. En particular, las nanopartículas magnéticas monodominio con anisotropía uniaxial ha adquirido una creciente atención debido a la necesidad de materiales que puedan ser utilizados como medio magnético en dispositivos magnéticos de almacenamiento de datos [4].

Las propiedades magnéticas intrínsecas sólo dependen de la estructura química y cristalográfica, en el caso de materiales en volumen [5]. Por tanto, su anisotropía magnética está principalmente determinada por la anisotropía magnetocrystalina. Sin embargo, cuando al menos una de las dimensiones del sistema estudiado es reducida a la escala nanométrica, las propiedades magnéticas están fuertemente influenciadas por los efectos de tamaño finito y de superficie. Los efectos de tamaño finito resultan del confinamiento cuántico de los electrones, mientras los efectos de superficie surgen de la rotura de la simetría en las fronteras de la partícula (esto es, átomos con un bajo número de coordinación) y determinan la anisotropía magnética de superficie [6]. La progresiva reducción del tamaño de las entidades magnéticas resulta en comportamientos magnéticos que están fundamentalmente dominados por los espines de superficie de la partícula [7]. En otras palabras, el alto cociente superficie/volumen confiere a los sistemas nanométricos de unas propiedades únicas, respecto al material en volumen.

Aparte de las propiedades intrínsecas de las nanopartículas, el material que rodea y está en contacto con las nanopartículas juega también un papel importante en las propiedades finales del sistema [8,9]. La mayoría de las nanopartículas no pueden ser utilizadas libremente y necesitan ser insertadas en sistemas más complejos, ya sea mediante recubrimiento de su superficie o introducidas en matrices. Es por ello que la comprensión de las propiedades resultantes de estos sistemas complejos representa el punto clave para el uso de nanopartículas. Mediante la introducción de las nanoestructuras en matrices, la industria ha podido implementar tecnológicamente los efectos de superficie y confinamiento de los metales de tamaño nanométrico [10,11,12,13]. Las nanopartículas magnéticas embebidas en matrices han sido utilizadas en un amplio rango de aplicaciones tales como dispositivos ópticos con elevada actividad magneto-óptica y baja absorción óptica [14,15], en dispositivos magnéticos de almacenamiento de datos de alta densidad o de alta frecuencia [16,17,18], y en aplicaciones plasmónicas [19], entre otras [20,21,22].

Dentro de las técnicas de fabricación de nanopartículas, la técnica de depósito en fase gas es cada vez más usada para producir nanoestructuras deseadas, probablemente debido a su versatilidad en producir nanopartículas de alta pureza, pudiendo ajustar de forma precisa su distribución de tamaños y concentración. Un aumento del número de estudios en nanopartículas magnéticas crecidas empleando esta técnica y su introducción en diferentes matrices, puede ser encontrado en la literatura incluyendo nanopartículas de metales puros como Co [23,24,25,26,27,28,29,30,31,32], Ni [32,33] o Fe [25,31,32,34] y aleación [31,32,35,36]. Las nanopartículas magnéticas de metales de transición 3d (habitualmente Fe, Ni y Co) en
Capítulo 4. Interacciones interpartícula entre nanopartículas de Co en matrices de Au y V contacto con matrices no-ferromagnéticas presentan una anisotropía interfacial [37], cuyo origen depende fuertemente de tres factores: i) la estructura electrónica de las nanopartículas; ii) el comportamiento magnético de la matriz; iii) las energías de interacción interpartícula. La inserción de nanopartículas en matrices puede conducir a una encapsulación que impida efectos no deseados tales como la aglomeración y, por tanto, el aumento del tamaño magnético efectivo. Además, el desorden de espín en la superficie de las nanopartículas, no explicado por completo por la existencia de interacciones dipolares entre sí [38], puede traducirse en sistemas más complejos con estados de vidrio de espín y estados parásitos magnéticos [39]. La caracterización magnética de estos sistemas ha generado el debate sobre las propiedades intrínsecas de la partícula por sí misma y un comportamiento colectivo inducido por las interacciones interpartícula [40,41].

Como fue explicado en la sección 3.1, en el presente capítulo estudiaremos el comportamiento magnético de nanopartículas de Co cuando son embebidas en matrices de Au y V, desde partículas aisladas físicamente hasta 10.6% de una monocapa de recubrimiento nominal. El oro es seleccionado como una matriz no-reactiva ideal que impide la oxidación de las nanopartículas de Co, y también exhibe una polarización débil en contacto con metales de transición 3d [42]. Por tanto, se espera que las nanopartículas de cobalto embebidas en una matriz de Au preserven la mayor parte de sus propiedades magnéticas intrínsecas. Por el otro lado, el vanadio, que es paramagnético, puede exhibir magnetización no nula bajo condiciones concretas tales como la pérdida de coordinación, cuando su volumen atómico es aumentado, o en contacto con materiales ferromagnéticos 3d, a pesar de su gran susceptibilidad paramagnética [43,44]. Las nanopartículas de cobalto han sido embebidas en materiales tales como Pt [37], Nb [45], Cu [46], Mn [47], Ag [48], Au [27] y SiO$_x$ [10,29]. Asimismo, existen diversos estudios de multicapas Co/V [49,50,51,52,53,54,55,56,57,58,59,60]. No obstante, hasta lo que sabemos, no han sido reportadas las propiedades magnéticas de nanopartículas embebidas en matrices de vanadio. Presentaremos el comportamiento magnético de diferentes porcentajes de ocupación de una monocapa de nanopartículas de cobalto embebidas en matrices de Au y V, y la evolución de las propiedades magnéticas como una función del porcentaje de recubrimiento, poniendo especial atención en la influencia de las interacciones magnéticas interpartícula, así como los efectos de intercara matriz/nanopartículas.

Figura 4.1 Esquema de las muestras fabricadas de nanopartículas de Co sobre Si(100) –capítulo 3- y embebidas en matrices metálicas de Au y V.
4.2 Detalles Experimentales

Para la fabricación de los sistemas estudiados, es utilizada la combinación de una fuente ICS y un sistema de UHV con presión base en el orden de 10^{-9} mbar, equipado con una fuente de sputtering con magnetrón (Véase secciones 2.2.1.2 y 2.2.2). Dos series de muestras son fabricadas sobre sustratos de Si(100) cortados en áreas de 5 x 5 mm2 (Fig. 4.1). La primera serie consiste en sistemas de nanopartículas de cobalto embebidas en dos láminas delgadas de oro, de un espesor nominal de 40 nm [Si(100)/40 nm Au/Co$_{NPs}$/40 nm Au]. La segunda serie de muestras son nanopartículas de cobalto embebidas en dos láminas de vanadio de un espesor nominal de 15 nm y encapsuladas en dos capas delgadas de oro de 40 nm de espesor nominal para impedir la oxidación [Si(100)/40 nm Au/15 nm V/Co$_{NPs}$/15 nm V/40 nm Au]. Todas las muestras son recubiertas a temperatura ambiente con los sustratos de Si(100) oxidados naturalmente y desgasificadas in situ durante 30 min a 423 K antes del depósito. Las nanopartículas de Co son fabricadas con la ICS y utilizando un blanco de Co de 99.95% de pureza. La potencia típica aplicada al magnetrón es 50 W. Durante el depósito, la presión base es del orden de 10^{-5} mbar en la cámara de UHV. Como fue detallado en los subapartados 3.3.1 y 3.3.2, depositamos nanopartículas de Co de un diámetro promedio de 10.3 ± 1.8 nm. El tiempo de depósito es variado para obtener porcentajes de recubrimiento diferentes, entre 1.4% y 10.6% de una monocapa. Se asume que el porcentaje de recubrimiento para una monocapa completa corresponde a una ordenación hcp.

Las películas delgadas de Au y V son depositadas por sputtering con magnetrón DC utilizando los blancos de Au y V de 99.99% y 99.7% de pureza, respectivamente. La presión de Ar durante el proceso de sputtering es de orden del 10^{-3} mbar. Los magnetrones de Au y V son operados a 20 W con un ritmo de depósito de 0.2 nm·s$^{-1}$ y 0.02 nm·s$^{-1}$ para oro y vanadio, respectivamente. Las propiedades magnéticas de las nanopartículas de cobalto insertadas en sistemas multicapa Si(100)/40 nm Au/Co$_{NPs}$/40 nm Au y Si(100)/40 nm Au/15 nm V/Co$_{NPs}$/15 nm V/40 nm Au son medidas mediante la técnica SQUID. El campo magnético es aplicado en la dirección paralela al plano de la muestra (in-plane), aunque también es estudiada la posible presencia de anisotropía de forma aplicando el campo en dirección perpendicular al plano de la muestra (out-plane).

4.3 Resultados y discusión

4.3.1 Consideraciones previas

El comportamiento magnético de los sistemas fabricados con nanopartículas embebidas en matrices, depende de las propiedades de los componentes (por ejemplo, tamaño, estructura y composición) y del balance entre la anisotropía magnética y las interacciones interpartícula condicionadas por la matriz [61]. La energía de anisotropía magnética de las nanopartículas tiene dos contribuciones principales: anisotropía de volumen y de superficie. La anisotropía de volumen está principalmente determinada por la estructura cristalográfica de las partículas vía la anisotropía magnetocrystalina. En el caso de la anisotropía de superficie, esta anisotropía tiene
dos orígenes. Primero, como los átomos de menor coordinación en la superficie están en un ambiente menos simétrico, éstos tienen una energía de anisotropía magnética mayor comparada con el volumen. Esta anisotropía de superficie es intrínseca a la partícula e independiente de la matriz [62,63]. La segunda contribución es debida a la intercara nanopartículas/matriz, denominada anisotropía interfacial. Por ejemplo, en el caso de matrices metálicas, la anisotropía interfacial es debida al acoplamiento espín-órbita y a la hibridación entre los orbitales del agregado y de la matriz, como ya se ha mostrado en multicapas Co/Pt [64] y en agregados de Co embebidos en matrices de Pt [37]. Otro efecto típico de la anisotropía interfacial es la anisotropía de Canje entre una fase ferromagnética y una fase antiferromagnética tal como en nanopartículas de tipo núcleo-corteza Co-CoO [65]. Además, los acoplamientos locales y las interacciones de largo alcance condicionan la respuesta magnética, que es consecuentemente dependiente de la distribución de tamaños magnéticos, la matriz, y la estructura de la intercara nanopartículas/matriz. Mediante la variación de la distancia interpartícula (esto es, el porcentaje de recubrimiento -sección 3.3.3-), la importancia relativa de estas contribuciones puede ser ajustada dentro de un cierto rango. Dentro de este marco discutiremos e interpretaremos los resultados magnéticos presentados en este capítulo.

Antes de iniciar la caracterización magnética de los sistemas fabricados, es necesario puntualizar varias premisas respecto al comportamiento magnético que presentan estos sistemas. La técnica SQUID permite analizar la respuesta ferromagnética de los depósitos de nanopartículas de Co muy inferiores a una monocapa completa, rodeadas de una matriz metálica. El tamaño de las nanopartículas de cobalto (10.3 nm) es ligeramente superior al límite superparamagnético (≈ 9 nm). Por tanto, la señal ferromagnética estudiada puede estar influenciada por varios factores: i) la distribución de tamaños de nanopartículas de cobalto, cubriendo un intervalo entre nanopartículas superparamagnéticas y agregados más grandes; ii) el efecto de la matriz (paramagnética –V- y diambiénética –Au-, en nuestro caso); iii) la contribución diambiénética del substrato; iv) el efecto de la densidad de nanopartículas, actuando como unidades magnéticas individuales o presentando un comportamiento colectivo.

![Imagen de ciclos de histéresis](image)

Figura 4.2 Ciclos de histéresis de nanopartículas de Co embebidas en matriz de Au (izquierda) y en matriz de V (derecha), para diferentes recubrimientos de nanopartículas, sin sustracción de la señal diambiénética.
La utilización de sustratos de Si implica la presencia de una pendiente negativa en la magnetización cuando los ciclos están saturados, debido al comportamiento diamagnético del silicio (Fig. 4.2). Por este motivo, previo a analizar la respuesta magnética de las nanopartículas de Co en cada sistema fabricado, se sustrae la señal diamagnética del Si. Un material diamagnético responde al campo magnético tal que \(M = \chi B \), donde la susceptibilidad, \(\chi \), es una constante con valor negativo. El valor absoluto de la magnetización debida al silicio dependerá únicamente del volumen del sustrato. Desde este momento, todos los ciclos de histéresis presentados en este capítulo habrán sido corregidos de la contribución diamagnética medida, siguiendo este protocolo.

Por último, debe destacarse que fue realizado un estudio preliminar del comportamiento magnético de los sistemas estudiados a 10 K con enfriamiento sin campo aplicado y con campo aplicado (ZFC y FC), aplicando el campo en dirección perpendicular al plano de la muestra (out-plane). No observamos diferencias en los parámetros magnéticos al aplicar el campo magnético paralelamente o perpendicularmente a la muestra. De esto modo, se descarta la posible presencia de efectos de anisotropía de forma.

4.3.2 Comportamiento magnético a 300 K de nanopartículas de cobalto en matrices de V y Au

La figura 4.3 muestra los ciclos de histéresis de los sistemas Au/Co/Au y Au/V/Co/V/Au a temperatura ambiente. Observamos que la mayoría de las nanopartículas de cobalto son superparamagnéticas, para todos los porcentajes de recubrimiento estudiados. Con el fin de determinar el volumen magnético de las nanopartículas depositadas, las curvas de histéresis se ajustaron con la función de Langevin canónica considerando como referencia el cobalto en volumen con ordenación hcp. En ambas matrices, y para todos los recubrimientos estudiados, el diámetro magnético extraído de los ajustes de los ciclos con la función de Langevin, es alrededor de \(7.0 \pm 0.5 \text{ nm} \). Por tanto, las nanopartículas con un diámetro físico de 10.3 nm deberían estar formadas por un núcleo ferromagnético con un diámetro promedio de 7.0 nm y una corteza de 1.6 nm de anchura. Sin embargo, como será presentado a continuación, nuestros sistemas no se comportan como superparamagnéticos canónicos. Es decir, la ley del escalado no puede describir la respuesta magnética [66]. En muchos sistemas superparamagnéticos, es comúnmente observada una falta de acuerdo entre los datos experimentales y la teoría superparamagnética estándar. Varios autores han demostrado que en el caso de sistemas con interacciones interpartícula o distribuciones de tamaños (esto es, sistemas que no se comportan como superparamagnéticos ideales), un aparente buen ajuste de la curva de magnetización con la ecuación de Langevin, suele conducir a resultados inconsistentes [67,68,69]. En estos sistemas, el tamaño magnético deducido a partir del ajuste de la función de Langevin puede ser bastante diferente si es comparado con medidas estructurales directas [70]. Allia et al. [69] presentaron curvas de ajuste con la función de Langevin aparentemente buenas, para sistemas de partículas interactuando. Sin embargo, aquellos ajustes condujeron a un momento magnético y a un tamaño de partícula inferiores a los valores reales. Simulaciones de Monte Carlo en un sistema de nanopartículas de Co con interacciones dipolares [71] han demostrado claramente que los resultados obtenidos mediante procedimientos convencionales de ajuste no son
realistas. En otras palabras, del ajuste de la función Langevin canónica no podemos excluir a priori que el tamaño magnético no aumente con el porcentaje de recubrimiento de la superficie.

El modelo superparamagnético con interacciones (Interacting Superparamagnetic Model, ISP) considera la interacción dipolar como una perturbación del régimen superparamagnético, que puede ser tenido en cuenta mediante la adición de una temperatura fenomenológica T^* a la temperatura real [66]. La temperatura adicional T^* permite introducir un desorden de los momentos magnéticos en el formalismo, causado por un campo dipolar aleatorio actuando en cada dipolo, que cambia en dirección, signo y magnitud a un elevado ritmo [66,72]. Añadiendo T^* a la temperatura real en la función de Langevin, estamos considerando efectos de interacción. Con el fin de extraer los valores reales del momento magnético de las nanopartículas de Co (por tanto, el volumen magnético verdadero) es necesario estimar T^*. Para una distribución de momentos magnéticos, la susceptibilidad a bajo campo χ de un sistema ISP es:

$$\frac{\rho}{\chi} = 3k_B N \left(\frac{T}{M_S^2} \right) + 3\alpha$$

siendo N el número de momentos por unidad de volumen, α, una constante proporcional correspondiente de la suma de todas las contribuciones dipolares, M_S, la magnetización de saturación y ρ es definido como el cociente:

$$\rho = \frac{\langle \mu^2 \rangle}{\langle \mu \rangle} = \frac{\sum p_i \cdot \mu_i^2}{\left(\sum p_i \cdot \mu_i \right)^2} = \frac{\sum p_i \cdot (M_{\text{núcleo}} ; V_i)^2}{\left(\sum p_i \cdot (M_{\text{núcleo}} ; V_i) \right)^2} = \frac{\sum p_i \cdot V_i^2}{\left(\sum p_i \cdot V_i \right)^2}$$

donde p_i es la probabilidad para el momento magnético μ_i en la distribución de momentos magnéticos y V_i es el volumen asociado a cada μ_i. En una primera aproximación, el factor ρ puede ser estimado tomando el promedio de los valores de la distribución de tamaños de

![Figura 4.3](image-url) Ciclos de histéresis normalizados a 300 K para un recubrimiento de 2.4% de nanopartículas de Co embebidas en matriz de Au (izquierda) y para un recubrimiento de 5.4% en matriz de V (derecha). Han sido ajustados con la función de Langevin modificada de acuerdo al modelo ISP.
nanopartículas, extraído de las imágenes de AFM o TEM. La ecuación 4.1 puede ser aplicada en la región de alta temperatura de las curvas ZFC-ZF (por tanto, por encima de la temperatura de bloqueo) [70]. El ajuste es realizado en la región lineal con el formalismo normalizado de la ecuación 4.1, que viene dada por la siguiente expresión:

\[
\chi = \frac{3k_B N}{M_S^2} T M_S^{10K} + 3\alpha M_S^{10K} = \alpha M_S^{10K} + CM_S^{10K}
\]

(4.3)

donde \(M_S^{10K}\) es la magnetización de saturación (en emu) a 10 K. Debe puntualizarse que estas medidas magnéticas a 10 K serán detalladas en el subapartado 4.3.3.

La definición de \(T*\) está relacionada con la ecuación 4.3 tal que:

\[
T^* = \frac{\alpha M_S^2}{k_B N} = \frac{C}{A}
\]

(4.4)

Si se incluye \(T^*\) en la función de Langevin modificada, estamos estimando el diámetro magnético de un conjunto de nanopartículas interaccionando dipolarmente en el régimen superparamagnético (Fig. 4.3). En el caso de la matriz de Au (sistema Au/Co/V), el diámetro magnético promedio aumenta desde 14.5 ± 0.5 nm (2.6%) hasta 20 ± 1 nm (10.0%), mientras que para el caso del sistemas de V, permanece alrededor de 11.5 ± 0.5 nm para todos los recubrimientos de Co estudiados. En la figura 4.3 se ilustran dos ejemplos de porcentajes de recubrimiento representativos, para ambos sistemas fabricados. A pesar de que los diámetros extraídos con el modelo ISP son superiores al diámetro físico, nos permite observar la importancia de los efectos de interacción en los sistemas estudiados. En el caso de la matriz de Au, éste efecto es notablemente más acusado y aumenta en función de la densidad de nanopartículas de Co embebidas. En cambio, en la matriz de V, la presencia de este efecto es apreciado pero se conserva constante por algún mecanismo adicional. Esta información cualitativa será verificada en las posteriores secciones del capítulo 4.

4.3.3 Comportamiento magnético a 10 K de nanopartículas de cobalto en matrices de V y Au

Las curvas isotermas de magnetización a 10 K siguiendo el procedimiento de ZFC y FC son obtenidas aplicando un valor de campo magnético máximo de \(5 \cdot 10^4\) Oe en la dirección paralela al plano de la muestras. Con estas medidas magnéticas, es posible estudiar si las nanopartículas presentan un efecto de intercambio de polarización (exchange bias, EB). A priori, este efecto es esperable en aquellos sistemas con matriz de V. Como fue previamente mencionando, el vanadio es paramagnético en su forma bcc en volumen, pero puede presentar un estado magnético diferente en sistemas de baja dimensionalidad o en contacto con materiales ferromagnéticos. En la intercara Co/V en láminas delgadas, ha sido observado un
Capítulo 4. Interacciones interpartícula entre nanopartículas de Co en matrices de Au y V

82

gran momento magnético atómico inducido y acoplado antiferromagnéticamente con un reducido momento magnético atómico de cobalto [53,54,56,57,58,59,60]. Asumiendo que este acoplamiento antiferromagnético permanece en el caso de las nanopartículas de cobalto en la matriz de V, investigamos el efecto de EB en los sistemas de V. Es importante puntualizar que esperamos que una intercara antiferromagnética contribuya a la magnetización con una ley lineal, especialmente a altos campos magnéticos. La señal diamagnética del sustrato Si es de un orden de magnitud superior que la señal magnética de las nanopartículas a altos campos magnéticos.

De este modo, una contribución antiferromagnética debida a la corteza es apenas distinguible de la pendiente en la curva del ciclo de histéresis tras sustraer la contribución lineal negativa efectiva. Además, la señal diamagnética medida es la suma de las señales diamagnéticas del sustrato de Si(100) y de la matriz de Au, o recubrimiento con Au, con el fin de proteger la matriz de V. Sin embargo, dado que esta posible corteza antiferromagnética solo abarca a algunas distancias atómicas de vanadio, esta contribución es casi despreciable en comparación con la alta señal diamagnética. Como fue explicado en el subapartado 4.3.1.1, la contribución efectiva lineal, debida principalmente al sustrato, fue sistemáticamente sustraída de nuestras medidas con el fin de señal magnética de las capas de nanopartículas.

El efecto de EB es estudiado para diferentes porcentajes de recubrimiento en los sistemas de nanopartículas de Co embebidos en matrices de V y Au midiendo los ciclos de histéresis ZFC y FC después de enfriar la muestra a 10 K bajo un campo aplicado de 50 kOe. La figura 4.4 muestra un ejemplo representativo de este estudio para un 5.4% de recubrimiento de

Figura 4.4 Ciclos de histéresis normalizados a 10 K para un recubrimiento de 5.4% de nanopartículas de Co embebidas en matriz de V siguiendo el procedimiento de enfriado sin campo aplicado (ZFC) y con campo aplicado (FC).
nannopartículas de Co en el sistema de V. Observamos que las curvas ZFC y FC describen el mismo comportamiento magnético, revelando la ausencia de EB en el ciclo de histéresis. Este comportamiento es observado para todos los porcentajes de recubrimiento estudiados. Considerando el conocimiento previo que ha sido descrito al inicio de este subapartado, la ausencia de EB no es sorprendente. El acoplamiento antiferromagnético del V con Co está confinado en la intercara con Co (esto es, está extendido sólo sobre unas pocas capas atómicas) [53,54]. El alineamiento antiparalelo de los átomos de V inducido por átomos de Co es siempre simultáneo a la magnetización de Co en curso. Por tanto, el volumen antiferromagnético o su valor de anisotropía o ambos factores, no son suficientes para inducir el efecto de EB [65]. Asimismo, la ausencia de EB es observada también para los sistemas de nanopartículas de Co embebidas en la matriz de Au, como se esperaba. En trabajos previos, las nanopartículas de Co fueron embebidas en matrices dieléctricas (SiO$_x$) y esta matriz inducía la formación de una corteza de óxido que fue detectada por la presencia de EB [10,29]. Fermento et al. reportaron que las nanopartículas de Co presentaban un núcleo de Co (7-8 nm en diámetro) rodeados por una corteza de óxido de cobalto (1-2 nm de anchura), embebidas en SiO$_x$. El tamaño de las nanopartículas de Co estudiadas en este capítulo es similar a las referencias 10 y 29. Por otro lado, una capa de óxido probablemente aislaría las nanopartículas de cobalto de las matrices de Au y V, y las propiedades de los sistemas no dependerían de la matriz. Complementariamente, estudiamos la posibilidad de la oxidación de las nanopartículas en los sistemas estudiados (Fig. 4.5). Si las nanopartículas de Co son expuestas al aire e introducidas de nuevo en el sistema de UHV para su depósito encima de una lámina delgada de Au, los ciclos de histéresis claramente muestran el efecto de EB como una consecuencia de la oxidación de las nanopartículas de Co, de acuerdo con las medidas de TEM (Veasé apartado 3.3.2). En cualquier caso, la ausencia de EB no es una prueba definitiva de que las nanopartículas de Co no estén oxidadas. No obstante, si las nanopartículas de cobalto presentan una corteza de óxido, su espesor debería ser inferior que 1 nm [10] y/o el óxido debería estar ordenado pobremente.

Figura 4.5 Ciclos de histéresis a 10K para un recubrimiento de 2.8% de nanopartículas de Co embebidas en matriz de Au bajo y sin exposición al aire de las nanopartículas, antes de depositar la segunda lámina delgada de Au.
La Figura 4.6 presenta los ciclos de histéresis representativos de ambos sistemas estudiados con diferentes porcentajes de recubrimiento de Co medidos a 10 K bajo FC en la configuración paralela. Los ciclos de histéresis han sido normalizados a la magnetización de saturación (M_S) para facilitar su comparación. Observamos que los ciclos de histéresis presentan una forma característica muy próxima a la curva asociada para partículas monodominio con anisotropía uniaxial (esto es, donde no existen paredes de dominio). Aunque las nanopartículas de cobalto son policristalinas, son demasiado pequeñas para que el balance energético sea favorable a la existencia de paredes de dominios, y en consecuencia son imanes monodominio [73]. La forma del ciclo de histéresis cambia con el porcentaje de recubrimiento. Por debajo del 3.5% de recubrimiento, en ambos sistemas se observa un estrechamiento de los ciclos de histéresis, que se debe a la presencia de campos coercitivos inferiores. Estos ciclos estrechos alrededor de $H = 0$ pueden ser atribuidos a la existencia de pequeñas nanopartículas que permanecen superparamagnéticas por debajo de 10 K [65] pero podría ser también procedente de una anisotropía magnética inducida [74] cuyo origen permanece incierto. Por encima de este porcentaje, el estrechamiento en los ciclos de histéresis ya no es observado. Basado en este comportamiento, pueden ser inferidas dos contribuciones diferentes en función del porcentaje de recubrimiento: la primera contribución vendría dada por las nanopartículas aisladas, en el caso de bajos porcentajes de recubrimiento, y la segunda contribución podría ser atribuida a nanopartículas que se comportan colectivamente [75], a porcentajes de recubrimiento superiores a 3.5%, formando estados magnéticos interactuando. Esta doble contribución está en acuerdo con el estudio de interacciones interpartícula a primeros vecinos, explicado en el subapartado 3.3.3. Con el fin de entender la respuesta magnética de ambos sistemas y verificar este enfoque, estudiamos la evolución de los parámetros magnéticos en función del porcentaje de recubrimiento de las nanopartículas de Co en ambas matrices.

La magnetización de remanencia (M_r) normalizada con M_S en función del porcentaje de recubrimiento para los sistemas Au y V es presentada en la figura 4.7. Independientemente de la matriz estudiada, ambos sistemas presentan un aumento de M_r/M_S con el porcentaje de recubrimiento, claramente definiendo dos regímenes distintos por debajo y encima de 3.5%. De este modo, observamos que 3.5% representa un porcentaje de recubrimiento crítico en ambos sistemas, dividiendo el comportamiento magnético en dos evoluciones distintas. El cociente M_r/M_S varía entre 0.43 y 0.58 para el sistema de Au y, en el caso del sistema de V, entre 0.46 y

Figura 4.6 Ciclos de histéresis normalizados a 10K siguiendo el procedimiento FC para varios recubrimientos representativos de los sistemas de Au (izquierda) y V (derecha).
0.56, describiendo un aumento con el porcentaje de recubrimiento. El valor \(M_r/M_s \approx 0.5 \) es observado para el recubrimiento crítico 3.5%. Es bien conocido que \(M_r/M_s \approx 0.5 \) corresponde a una ordenación de macro-espines orientados aleatoriamente que no interaccionan con anisotropía uniaxial compatible con el modelo de Stoner-Wohlfarth [76]. En otras palabras, este valor se cumple en el caso de un sistema de partículas con anisotropía uniáxica que no interactúan, con ejes fáciles orientados aleatoriamente en el espacio de modo que el sistema es magnéticamente isótropo. Podemos deducir que no hay una contradicción evidente con el modelo de Stoner-Wohlfarth a bajos porcentajes de ocupación.

Los campos coercitivos \((H_C) \) extraídos de los datos de la Fig. 4.6, son presentados en la figura 4.8 en función del porcentaje de recubrimiento para ambas matrices. Es importante destacar que, para ambos sistemas, la evolución de \(H_C \) con el recubrimiento no muestra la transición magnética monodominio a multidominio o, al menos, no hay evidencia experimental de un decrecimiento monótono en la curva de \(H_C \) que revele la presencia de esta transición, inclusive para depósitos de un 10.6% de recubrimiento. Para todos los recubrimientos estudiados, la influencia de la matriz que rodea a las nanopartículas de Co es observada en los valores absolutos de los parámetros magnéticos. El sistema de V presenta mayores valores de \(H_C \) comparado con los sistemas de Au. Esto es, el vanadio endurece la respuesta magnética del sistema. Un posible origen de tales diferencias entre ambos sistemas podría ser el mayor papel que la anisotropía interfacial juega en el sistema de V. Los átomos de V en el borde de las nanopartículas pueden mejorar la anisotropía interfacial a través de las deformaciones superficiales, el intercambio antiferromagnético y el acoplamiento magneto-elástico [55,58]. En el caso de la matriz de Au, la anisotropía interfacial no ejercería una influencia crucial en el comportamiento ferromagnético de las nanopartículas debido a la ausencia de un fuerte acoplamiento.
No obstante, el continuo aumento de la coercitividad en ambos sistemas también podría ser causado por interacciones dipolares originadas por las nanopartículas en contacto directo, dando lugar a la formación de agregados, junto con el aumento de la coercitividad. Es decir, no se puede invertir la imanación de cada nanopartícula de forma individual, implicando la aparición de un estado colectivo [75]. Dada la disyuntiva en cuanto a la explicación del comportamiento magnético, realizamos medidas magnéticas específicas para verificar la presencia de interacciones magnéticas: las curvas ΔM y las medidas de relajación magnética. Las curvas ΔM y las medidas de relajación magnética son medidas para demostrar no sólo la existencia de interacciones interpartícula sino también conocer su naturaleza e importancia para la comprensión de los sistemas estudiados.

4.3.4 Estudio de las interacciones magnéticas: Medidas de relajación magnética

Una partícula ferromagnética llega a ser monodominio si su tamaño (d) es reducido por debajo de un tamaño crítico, cuyo valor viene determinado por la competición entre las energías dipolares y de Canje [77]. Por debajo de este tamaño crítico, la pérdida de energía debida a la creación de paredes de dominio magnético (proporcional a d²) es mayor que la ganancia debida a la desaparición de la energía asociada al campo dipolar (proporcional a d³). Tales partículas ferromagnéticas monodominio pueden ser consideradas como grandes unidades magnéticas, cada una presentando un momento magnético con miles de magnetones de Bohr. Sin embargo, en el caso de los sistemas de nanopartículas de nuestros estudios, intervienen efectos como la reorientación del momento magnético [78] o un posible estado de vidrio de espin [79]. En otras palabras, existe un comportamiento magnético irreversible, que en el caso de las nanopartículas magnéticas es observado en las curvas de magnetización en función de la temperatura (Véase...
subapartado 4.3.1.6), definiéndose la temperatura de irreversibilidad como la temperatura a la que las curvas ZFC y FC se cruzan. La irreversibilidad magnética en nanopartículas está convencionalmente asociada a la energía requerida para una reorientación del momento de la partícula, venciendo una barrera debida a la anisotropía magnética de forma o cristalina.

La descripción fenomenológica de la relajación magnética explica la irreversibilidad magnética a través de la dependencia temporal de la barrera para reorientar los momentos magnéticos de cada nanopartícula. Considerando el equilibrio entre las rotaciones del momento magnético de una partícula hacia delante y hacia atrás, y promediando sobre todo el volumen de la muestra, la relajación magnética puede ser descrita [80]:

\[
\frac{\partial M}{\partial t} = -AM_c \exp \left[-\frac{U}{k_B T} \right]
\]

(4.5)

donde \(M_c = M_0 - M_{rev} \), \(U = U(1 - M/M_0) \) y \(U_0 = 2kV + 4M_p(H - \gamma M_{rev})/\pi \)

siendo \(M_c \) la magnetización irreversible inicial, \(M_0 \) el valor inicial del momento magnético total; \(M_{rev} \) el momento magnético correspondiente al estado de equilibrio (curva FC); \(A \), la frecuencia de intento; \(U \), la barrera energética para la relajación magnética; \(\gamma \), la constante asociada a la suma de las interacciones dipolo-dipolo, \(M_p \) el momento magnético de una partícula individual; \(K \), la constante de anisotropía; \(V \), el volumen de la partícula.

Si la barrera para la reorientación del momento de una partícula no depende del momento total magnético: \(\gamma = 0 \) y \(U = U_0 \). La solución de la ecuación 4.5 es:

\[
M = M_c \exp \left[-\frac{t}{\tau} \right]
\]

siendo \(\tau = \tau_0 \exp \left[\frac{U_0}{k_B T} \right] \)

(4.6)

donde \(\tau \) es el tiempo de relajación característico macroespín. Esta expresión coincide con la relajación superparamagnética clásica de Néel [81] y describe el sistema como agrupaciones uniformes de partículas superparamagnéticas que no interaccionan.

Si las interacciones no pueden ser despreciadas, la barrera magnética depende de la magnetización. En este caso, la relajación magnética presenta una dependencia logarítmica con el tiempo, siendo la solución de la ecuación 4.5:

\[
M = M_c \left(1 - \frac{k_B T}{\partial} \ln \left(1 + \frac{t}{t_0} \right) \right)
\]

(4.7)

donde \(\partial = \frac{U_0 M_c M_p}{A \pi} \) y \(t_0 = \frac{k_B T}{A \partial} \exp \left[\frac{U_0 - \partial}{k_B T} \right] \)
Se realizaron medidas de relajación magnética para los porcentajes de recubrimiento 2.6%, 5.4% y 10.0% para la matriz de Au, y 1.7%, 4.4% y 10.0% en el caso del sistema de V. En la figura 4.9 presentamos dos ejemplos representativos de relajación de la magnetización en función del tiempo para 10.0% en la matriz de Au y 4.4% en V. Para todo recubrimiento estudiado, los mejores ajustes son obtenidos asumiendo un decaimiento logarítmico. De este modo, las medidas de relajación magnética nos permiten señalar que la reorientación del momento magnético de cada nanopartícula depende del campo magnético interno, que incluye un campo dipolar promedio alrededor de las nanopartículas [80]. Este campo dipolar decrece con el tiempo debido al aumento de la aleatoriedad en la orientación de los momentos magnéticos en torno a las nanopartículas.

4.3.5 Estudio de las interacciones magnéticas: Curvas ΔM

El estudio de las curvas de remanencia ha sido empleado para la descripción de las propiedades magnéticas de nuestros sistemas, siendo un método de determinación de las interacciones magnéticas que gobiernan los procesos de magnetización. Las curvas de remanencia son consecuencia directa de la irreversibilidad del proceso de magnetización, mientras que un ciclo de histéresis proviene de la suma de las contribuciones de los procesos de magnetización reversible e irreversible. Es por ello que los valores de remanencia están relacionados con el cambio en la distribución del campo magnético aplicado y permiten obtener información de la interacción interna dominante entre las nanopartículas por medio de las representaciones de Henkel [82]. Las representaciones de Henkel han planteado problemas de incertidumbre sobre su aplicabilidad, dado que la mayor parte de sus derivaciones parten del
modelo de Stoner–Wohlfarth [76], válido precisamente para 0 K de temperatura y distribuciones de partículas con anisotropía uniaxial que no interactúan. No obstante, diversos trabajos experimentales han verificado que esta representación permite conocer cualitativamente el carácter de las interacciones magnéticas presentes [83,84]. Asimismo, existen estudios de simulaciones de Monte Carlo de las curvas de remanencia en sistemas de partículas monodominio con anisotropía uniaxial y cúbica, con y sin interacciones interpartícula, donde se observa su capacidad para describir la naturaleza de las interacciones interpartícula dominante del sistema estudiado [85].

Dentro del marco del modelo de Stoner–Wohlfarth puede obtenerse una relación entre los diferentes valores de remanencia. Comenzando en un sistema de partículas alineadas con sus direcciones fáciles de imanación formando un ángulo \(\psi \) arbitrario con el campo aplicado, puede deducirse que para cada orientación \(\psi \) se cumple:

\[
M_{d,\psi}(H) = M_{r,\psi}(\infty) - 2M_{r,\psi}(H)
\]

(4.8)

donde \(M_{d}(H) \) es la respuesta de la desimanación de corriente directa de un sistema alineado (DCD), \(M_r(\infty) = M_S \) es la magnetización de saturación, y \(M_r(H) \) es la magnetización de remanencia isotérmica (IRM). Para un sistema de partículas que no interactúan, orientado aleatoriamente, la magnetización total es la suma de las magnetizaciones de la orientación de cada partícula. De este modo, cada orientación es independiente y, por tanto, la ecuación 4.8 es válida no sólo para un sistema alineado sino que puede generalizarse para toda orientación \(\psi \).

Las representaciones de Henkel son la representación de la curva \(M_d/M_S \) en función de \(M_r/M_S \). Sin embargo, con el fin de cuantificar las desviaciones del comportamiento ideal, la ecuación 4.8 es normalizada a \(M_r(\infty) = M_S \) y es reexpresada tal que:

\[
\Delta M = m_d(H) - \left[1 - 2m_r(H)\right]
\]

(4.9)

La ecuación 4.9 tiene un significado físico directo en el marco del modelo, ya que presenta una medida directa de la diferencia en la fracción de nanopartículas que cambian a partir de los procesos IRM y DCD. En otras palabras, la curva \(\Delta M \) presenta la naturaleza e intensidad del mecanismo dominante de interacción interpartícula. Si \(\Delta M = 0 \), corresponde a un sistema ideal descrito por el modelo de Stoner–Wohlfarth. Cuando \(\Delta M < 0 \), la curva DCM es inferior que la curva IRM, sugiriendo una interacción de carácter desimanador [83,84]. Esto es atribuido a una interacción dipolar que dificulta el proceso de magnetización. En el caso de que \(\Delta M > 0 \), indica la dominancia de la interacción de Canje.

La figura 4.10 presenta las curvas \(\Delta M \) en función del campo aplicado para las nanopartículas de Co embebidas en matrices de Au y V. En ambos sistemas, la interacción interpartícula de Canje es muy débil, siendo dominante la interacción dipolar de largo alcance. Cuando el campo aplicado es pequeño, en el estado inicial de imanación los momentos magnéticos están desalineados, de modo que los ángulos entre los momentos magnéticos vecinos y el eje de fácil imanación, son mayores. Por tanto, el efecto de la interacción de Canje
Capítulo 4. Interacciones interpartícula entre nanopartículas de Co en matrices de Au y V

Es dominante, apreciando un valor \(\Delta M \) positivo para bajos campos aplicados. Con el continuo aumento del campo aplicado, los momentos magnéticos son gradualmente alineados paralelamente entre sí, llegando a ser predominante la interacción dipolar. En la figura 4.10, observamos que \(\Delta M \) es negativo para campos magnéticos \(H > 1000 \text{ Oe} \). Esto está en acuerdo con la desmagnetización debida a interacción dipolar como observaron Kechrakos y Trohidou por medio de simulación de Monte Carlo \([86]\).

Las medidas de relajación y las curvas \(\Delta M \) permiten caracterizar cualitativamente la presencia de interacciones interpartícula dipolares entre las nanopartículas como interacción interpartícula dominante. La baja señal medida en ambas caracterizaciones hace que sea difícil extraer conclusiones cuantitativas de las interacciones con el porcentaje de recubrimiento o en función de la matriz.

4.3.6 Comportamiento magnético en función de la temperatura de nanopartículas de cobalto en matrices de V y Au

La influencia del porcentaje de recubrimiento de nanopartículas con la matriz utilizada es especialmente bien observada en las medidas de imanación frente a la temperatura siguiendo el protocolo ZFC y FC, aplicando un campo magnético constante de 1500 Oe. La rampa de medida es de 3.0 K/min, asegurando así que los tiempos de relajación sean menores que el tiempo entre dos medidas sucesivas (~ 60 s). En la figura 4.11 es presentada la evolución de la magnetización en ZFC y FC para diferentes recubrimientos de nanopartículas de Co embebidas en las matrices de Au y V. En la curva ZFC, al enfriar la muestra sin campo externo, la imanación
de las nanopartículas queda orientada a lo largo del eje fácil de cada partícula (esto es, una orientación aleatoria). Se aplica un campo externo que intenta alinear la imanación venciendo cualquier efecto o anisotropía opuesta a la dirección del campo, pero dicha alineación sólo se consigue parcialmente. Con el aumento de la temperatura, disminuye la anisotropía y aumenta la alineación de la imanación con el campo aplicado. En el caso de la curva FC, se enfria la muestra con un campo magnético aplicado, logrando una alineación parcial mayor que en el protocolo ZFC. Como consecuencia, el efecto del aumento de la magnetización con la temperatura es menos intenso en la curva FC. Esto justifica la diferencia entre las curvas ZFC y FC y la superior respuesta de la imanación para las curvas FC.

![Figura 4.11](image)

Figura 4.11 Curvas ZFC y FC en función de la temperatura para diferentes recubrimientos de nanopartículas de Co de una monocapa en matrices de Au (panel izquierdo) y V (panel derecho) a un campo aplicado de 1500 Oe.
Antes de proseguir la descripción de la figura 4.11, debe notarse que la contribución diamagnética del sustrato de Si y la matriz de Au no son despreciables en la curva de la magnetización frente a la temperatura. La señal diamagnética es igual a $6 \cdot 10^{-6}$ emu a un campo magnético aplicado de 1500 Oe. Es decir, la señal diamagnética es un orden de magnitud inferior a la señal magnética de las nanopartículas en la Fig. 4.11. Sin embargo, este fondo es una pequeña constante independiente de la temperatura, dado que la magnetización de un diamagnético es independiente de la temperatura. Por tanto, la forma de la curva M(T) no puede verse modificada por dicho fondo y el valor de magnetización apenas es aumentado. No obstante, la contribución del fondo es muy significativa cuando la medida es realizada para altos campos magnéticos.

Como era previsible, el comportamiento de la imanación está totalmente condicionado por la matriz utilizada. Analizaremos las curvas de imanación frente a la temperatura, distinguiendo dos intervalos de temperaturas: bajas temperaturas (entre 0 y 100 K) y altas temperaturas (entre 150 K y temperatura ambiente). A bajas temperaturas, en el sistema Au/Co/Au (Fig. 4.11, izquierda) se extrae la temperatura de bloqueo (T_B), asociada al máximo de la curva ZFC, que refleja la transición del régimen ferromagnético al superparamagnético. Sin embargo, la evolución de las curvas ZFC y FC describen una tendencia diferente para el sistema Au/V/Co/V/Au (Fig. 4.11, derecha). Las grandes irreversibilidades entre las curvas ZFC y FC indican la presencia de un desorden y frustración magnéticos en estos sistemas. De hecho, existe una anomalía o indicio de este desorden localizado a bajos (2.8%) y medios (4.4 %) recubrimientos alrededor de 50 K en ambas curvas FC y ZFC. Este indicio podría ser interpretado como una transición de espín o de vidrio de espín, definida con una temperatura de transición T_g. Vemos que para los recubrimientos de 2.6% en matriz de Au y 2.8% en matriz de V, las temperaturas de transición están alrededor de 50 K en ambos sistemas (55 ± 7 K en Au y 52 ± 4 K en V). Estos valores coinciden con el rango de temperaturas compatibles con la transición superparamagnética/ferromagnética T_g reportada para nanopartículas de Co de similar diámetro [46,87,88,89] y pueden ser sombreados en los sistemas de V debido a la presencia de una transición de espín o vidrio de espín.

Si aumentamos el porcentaje de recubrimiento, observamos, sin lugar a dudas, la influencia de la naturaleza de la matriz en las curvas ZFC-FC a altas temperaturas. En el caso del sistema de V, T_g es casi suprimida a altos porcentajes (10.0% en sistema V, Fig. 4.11) y se observa un ensanchamiento de las curvas junto a un desplazamiento moderado de T_B. Para la matriz de Au, vemos un comportamiento distinto con el porcentaje de recubrimiento. Ahora, se observa un pico extremadamente ancho a altas temperaturas (entre 175 K y 235 K), indicando una amplia distribución de barreras de energía en estos sistemas. La anchura de este pico impide la identificación de una sola temperatura de bloqueo. En otras palabras, la temperatura a la cual T_B ocurre principalmente depende del volumen magnético de la partícula. Un máximo ancho como aquél medido en 5.4% y 10.0 % en el sistema de Au, podría resultar de una amplia distribución de tamaños magnéticos de partícula. Asimismo, un ancho pico en las curvas ZFC como el pico observado en nuestros sistemas, ha sido medido cuando intervienen interacciones interpartícula magnéticas, dando lugar a un comportamiento magnético colectivo, que se suma a un posible aumento del tamaño magnético. En las curvas ZFC estudiadas, esta distribución de tamaño magnético es evidenciada por el desbloqueo de las nanopartículas a diferentes temperaturas, y
no contribuye a la magnetización neta, mientras que un comportamiento de desbloqueo no afecta a la magnetización en la medida FC. En resumen, el comportamiento colectivo observado en el sistema de Au, no es observado en el sistema de V, donde la matriz aísla magnéticamente las nanopartículas de Co y dificulta posibles comportamientos colectivos. Las diferencias observadas en la respuesta magnética resaltan la importancia del matriz envolvente de las nanopartículas.

4.3.7 Temperatura de bloqueo (T_B)

La figura 4.12 hemos representado la evolución de las T_B extraídas de las curvas de la Fig. 4.11. Existen diferentes métodos convencionales para estimar T_B. En la mayor parte de la literatura, T_B es obtenida a través del máximo de la curva $d(M_{FC} - M_{ZFC})/dT$ en función de la temperatura. No obstante, este procedimiento implica que el valor de T_B calculado esté asociado a una única temperatura de bloqueo promedio del sistema [90]. Considerando el comportamiento magnético de las curvas de la Fig. 4.11, los sistemas estudiados son bastante más complejos, no siendo evidente la determinación de una única temperatura de bloqueo. Por este motivo, realizamos curvas de $\log(M_{FC} - M_{ZFC})$ en función de la temperatura para los sistemas de Au y V. En el caso del sistema de Au, podemos distinguir dos regiones, que son ajustadas a dos funciones polinomiales de 2º grado, mientras que para la matriz de V, sólo es observada una única región ajustable. De este modo, T_B es definida como el mínimo del ajuste polinomial que es estimado mediante la derivada de la curva de ajuste:

$$\log (M_{FC} - M_{ZFC}) = A + BT + CT^2$$

$$\frac{d}{dT} \log (M_{FC} - M_{ZFC}) = B + 2CT \Rightarrow T_{min} = T_B = -\frac{B}{C}$$

donde A, B y C, son constantes del ajuste polinomial.

La figura 4.12 es expuesta con el fin de resaltar las notables diferencias del comportamiento magnético, dependiendo de la matriz estudiada. Las grandes desviaciones de T_B revelan respuestas magnéticas diferentes según la matriz escogida. Además, en el caso de la matriz de Au, dos T_B son identificadas. T_{B1} es la temperatura de bloqueo asociada a la respuesta magnética de nanopartículas aisladas físicamente de 10 nm de diámetro, que corresponde con los valores de T_B extraídos a bajas temperatura en la Fig. 4.11. T_{B2} corresponde a una ordenación de nanopartículas que se han aglomerado y, por tanto, presentan un volumen magnético mayor como resultado de las interacciones dipolares interpartícula.

Se observa que T_B es mayor en los sistemas de Au frente a la matriz de V, para recubrimientos por encima de 3.5%. Un posible aumento de la anisotropía interfacial en el caso del sistema de V en comparación con el sistema de Au no explica este efecto, ya que este comportamiento está en contradicción con otros estudios previos [27,91]. Entre ellos, Tamion et al. y Rohart et al. reportaron que cuanto mayor es la anisotropía efectiva, mayores son los valores de los parámetros magnéticos característicos. Además, Domingo et al. y Skumryev et al.
observaron que, en el caso de sistemas de Co-CoO con EB, la anisotropía de Canje entre un núcleo ferromagnético y una corteza antiferromagnética inducía un desplazamiento del límite superparamagnético a altas temperaturas y una coercitividad aumentada [47,92]. Por tanto, la diferencia en T_B entre los dos sistemas a recubrimientos superiores de 3.5% no puede ser explicada por el aumento de la anisotropía interfacial en el sistema de V.

Con el aumento del porcentaje de recubrimiento, el número de nanopartículas de Co interactuando aumenta. Cuando el recubrimiento es superior a 3.5%, los agregados magnéticos de nanopartículas interactuando comienzan a ser relevantes y dan lugar a la modificación de las propiedades magnéticas. La interacción de Canje puede ser despreciable cuando la distancia borde a borde promedio a las nanopartículas vecinas es mayor que 10 nm y en tal caso, las propiedades magnéticas de las nanopartículas son determinadas por las energías del campo dipolar y la energía de anisotropía magnética [80]. Sin embargo, al 10.6% de recubrimiento, el 48% de las distancias a los primeros vecinos, es inferior a 10 nm, donde la interacción de Canje puede existir (Véase subapartado 3.3.3). Además, las medidas de ΔM han evidenciado la presencia de interacciones de Canje, aunque la interacción interpartícula dipolar es dominante (Fig. 4.10). El aumento en T_B con el depósito de partículas ha sido observado y atribuido a interacciones dipolares entre partículas [93,94,95,96,97,98,99]. A altos porcentajes de recubrimiento, se forman fuertes campos dipolares de agregados coherentes, favorecidos por el

Figura 4.12 Temperaturas de transición de los sistemas de Au y V extraídas de las curvas magnetización frente a temperatura (Fig. 4.11) en función del porcentaje de recubrimiento. En el caso de las nanopartículas de Co embebidas en la matriz de Au, existen dos temperaturas de bloqueo. T_{B1} corresponde a la temperatura de bloqueo para las nanopartículas aisladas. T_{B2} es la temperatura de bloqueo asociada a la población de nanopartículas actuando colectivamente.
aumento de la interacción de Canje [100] que resultan de que las distancias interparcial se ven reducidas. Estos campos dipolares podrían introducir una anisotropía adicional en el sistema e inducir un incremento de T_{B2} [47,101] mientras que T_{B1} varía entre 49 ± 9 K y 78 ± 14 K. Las interacciones magnéticas son capaces de superar el decaimiento térmico y desplazan la transición superparamagnética a altas temperaturas. Esta descripción es coherente con el comportamiento magnético del sistema de Au, donde las interacciones dipolares influencian la respuesta magnética del sistema [47]. Además, la presencia de una distribución de tamaños magnéticos aumenta el ensanchamiento del máximo de las curvas ZFC y explica que la respuesta magnética observada para un 5.4% y 10.0% de recubrimiento. Por consiguiente, la matriz de Au no apantalla las interacciones magnéticas entre nanopartículas, conduciendo a un comportamiento colectivo a altos porcentaje de recubrimiento de acuerdo con las medidas de relajación magnética y las curvas ΔM. Esto es apoyado también con la distorsión de la curva de magnetización FC que experimenta una inclinación a temperaturas por debajo de T_{B1}, debida a las contribuciones de interacciones colectivas entre nanopartículas [102,103].

En el caso de V, la ausencia de un comportamiento colectivo entre las nanopartículas se refleja en el valor casi constante de T_g con el recubrimiento y puede ser explicado teniendo en cuenta un comportamiento de vidrio de espín en la intercara. Este comportamiento podría ser causado por la combinación de dos factores. El primer factor vendría dado por la diferencia entre el comportamiento magnético de la superficie de la partícula y el asociado al núcleo de la misma partícula, debido a un número menor de coordinación de los átomos exteriores. El segundo factor es el acoplamiento antiferromagnético entre Co y V en la intercara Co-V junto con el momento magnético inducido del V y el momento magnético atómico reducido del Co [53,54,56,57,58,59,60]. La coordinación reducida, entre los espines de la superficie, que induce spin canting (esto es, un pequeño ángulo en los espines exhibiendo un momento magnético total distinto de cero sin campo aplicado) y la presencia de un orden antiferromagnético, son compatibles con un comportamiento de espín o vidrio de espín en la superficie [24,65,104,105]. En otras palabras, la presencia de áreas correlacionadas de corto alcance, que permanecen limitadas en tamaño, y el ordenamiento no-colinear de los momentos magnéticos definen el estado magnético de la intercara Co-V. Un vidrio de espín canónico podría ser definido como un sistema magnético con una mezcla de interacciones ferromagnéticas y antiferromagnéticas, caracterizado por el congelamiento cooperativo y aleatorio de los espines a una temperatura de transición T_c. Por debajo de T_c, se desarrolla una alta irreversibilidad, donde las principales contribuciones son las interacciones mixtas, la competición a lo largo de ellas (frustración) y el desorden. La formación de una capa superficial de vidrio de espín es la explicación más fiable para la respuesta magnética del sistema de V, a razón de las siguientes evidencias experimentales:

i. El anómalo o agudo máximo alrededor de 50 K (zona sombreada en gris en la figura 4.11), apenas observado en el sistema de Au. Un comportamiento similar ha sido descrito en otros sistemas de nanopartículas [106,107] en los cuales, por disminución de la temperatura, se desacelera las fluctuaciones de los espines de la superficie y se desarrollan las interacciones de corto alcance entre los espines de la superficie, resultando en una formación progresiva de regiones de espines correlacionados magnéticamente de tamaño creciente que finalmente da lugar a una congelación, un
interacciones interpartículas entre nanopartículas de Co en matrices de Au y V.

ii. La observada diferencia en los valores de T_{B1} y T_g en la Fig. 4.12 a porcentajes de recubrimiento iguales o superiores a 3.5%.

iii. La polarización antiferromagnética entre V y Co en la intercara con un alto desorden estructural. Esta polarización fue demostrada en películas delgadas [53,54]. Por otro lado, es conocido que los efectos de superficie resultan básicamente por la ruptura de la simetría de la red, que conduce a una anisotropía superficial, generalmente unidireccional. A su vez, los enlaces rotos implican un mal alineamiento de los espines de la superficie, con respecto a los espines del núcleo, y un desorden de los espines de la superficie y frustración, para tamaños de partícula suficientemente pequeños, como fue observado en partículas ferrimagnéticas [108,109]. En este contexto, mostramos aquí que el desorden de las intercara Co/V, cuando está localizada en la superficie de la nanopartícula, puede inducir a la formación de un estado de vidrio de espín.

La intercara magnética desordenada Co/V apantalla las interacciones magnéticas entre nanopartículas, impidiendo la respuesta colectiva del sistema. Esto explica el mayor endurecimiento magnético en la matriz de V en comparación con el sistema de Au (Fig. 4.8). Finalmente, la diferencia observada en los valores de T_{B1} y T_g en la figura 4.12 a porcentajes de recubrimiento iguales o mayores que 3.5% es compatible con la tendencia de los tamaños magnéticos deducidos de los ajustes de la función de Langevin modificada con T^* en ambos sistemas.
4.4 Conclusiones

Hemos analizado la respuesta magnética de nanopartículas de Co de unos 10 nm de diámetro promedio embebidas en matrices de Au y V y con diferentes porcentajes de recubrimiento de una monocapa (desde 1.7% hasta 10.6%). En ambos sistemas de Au y V, el 3.5% de recubrimiento representa el porcentaje de recubrimiento crítico, como ya fue observado y descrito en la sección 3.3.3. A partir de 3.5%, existe un cambio en la tendencia de las parámetros magnéticos extraídos de los ciclos de histéresis (remanencia, coercitividad) y de la temperatura de bloqueo. Por debajo de este umbral, las nanopartículas de Co presentan una respuesta magnética de nanopartículas aisladas. Por encima de este porcentaje crítico, las interacciones interpartícula comienzan a jugar un importante papel en la respuesta final magnética del sistema Au/Co/Au. El sistema evoluciona hacia la formación de agregados coherentes, asociados a la aglomeración de las nanopartículas que puede ser atribuido a interacciones interpartícula. Las curvas ΔM y las medidas de relajación magnética han demostrado no sólo la presencia de interacciones interpartícula sino también su naturaleza dipolar dominante y su importancia en los sistemas estudiados. Además, independientemente del volumen magnético estudiado en este trabajo, la naturaleza magnética monodominio parece ser mantenida.

Cuando el porcentaje de recubrimiento aumenta por encima del valor crítico de 3.5%, se observan cambios en las propiedades magnéticas en función de la matriz estudiada. En el sistema de Au, existe una distribución de tamaños magnéticos que resulta en una competición entre las nanopartículas aisladas y las nanopartículas que actúan colectivamente. Esta respuesta magnética está influenciada por las interacciones interpartícula dipolares, conduciendo a dos temperaturas de bloqueo. Por el otro lado, la matriz de vanadio tiene una mayor influencia en la respuesta magnética final del sistema. El diferente comportamiento magnético entre el núcleo y la corteza no-ferromagnética de las nanopartículas, sumado al acoplamiento antiferromagnético entre los espines de la superficie de V y Co, hacen este sistema más complejo con una inversión de la imanación más difícil con el campo magnético. Esto añade más frustración magnética al sistema de V, acentuando un comportamiento de vidrio de espin, detectado a través de la anomalía observada en torno a 50 K. Este desorden magnético impediría la interacción dipolar entre los núcleos ferromagnéticos. Observamos un valor único casi constante de T_g. De este modo, el sistema V presenta mayor coercitividad con respecto al sistema de oro.
Bibliografía

Capítulo 4.
Interacciones interpartícula entre nanopartículas de Co en matrices de Au y V

Capítulo 4. Interacciones interpartícula entre nanopartículas de Co en matrices de Au y V

100

Capítulo 4. Interacciones interpartícula entre nanopartículas de Co en matrices de Au y V

Capítulo 4. Interacciones interpartícula entre nanopartículas de Co en matrices de Au y V

102

56 Jisang Hong, Perpendicular magnetic anisotropy of V/Co(0 0 1), Surface Science, 600, 2006, 2323-2328.

57 Jisang Hong, Magnetic phase of ultrathin V films on FCC Co(0 0 1) and X-ray magnetic circular dichroism, Journal of Magnetism and Magnetic Materials, 303, 2006, 191-196.

Capítulo 4. Interacciones interpartícula entre nanopartículas de Co en matrices de Au y V

Capítulo 4. Interacciones interpartícula entre nanopartículas de Co en matrices de Au y V

Fabricación y caracterización de nanopartículas de composición, estructura y tamaño controlados sobre Si(100) fabricadas mediante la técnica MICS
5.1 Introducción

Dentro de los métodos físicos utilizados para la fabricación de nanopartículas, la fuente de gas de agregación está atrayendo un especial interés tanto en investigación científica como en industria, debido a sus características ya descritas en la sección 2.2.2. En la presente tesis, nos hemos focalizado en el sistema basado en el proceso de sputtering. Este tipo de fuente puede ser combinado con el filtro de masas cuádrupolo gracias al hecho de que el 80% de las nanopartículas formadas están cargadas [1,2]. A partir de los estudios del grupo de Haberland [1,2], Binns et al. demostraron que el uso de un cuádrupolo para la selección de las nanopartículas por carga, era muy eficiente para reducir la dispersión de la distribución de tamaños de las nanopartículas [3,4].

La ICS estándar está compuesta por un magnetrón que genera iones de un material dado, los cuales se agregan en la zona de agregación. Los parámetros de trabajo que permiten controlar el tamaño de los agregados fabricados son: a) la potencia aplicada en el magnetrón; b) el flujo de gas para el proceso de sputtering (Ar, habitualmente); c) la posición del magnetrón en la zona de agregación (longitud de agregación); d) el flujo de un gas extra que suele ser helio, \(\Phi_\text{extra} \); y e) el diámetro del diafragma entre la zona de agregación y la campana de depósito donde las nanopartículas son depositadas sobre el sustrato. Con esta técnica, la composición química de las nanopartículas fabricadas es próxima o idéntica a la del material del blanco [5].

Han sido referenciadas diversas modificaciones de la ICS en la literatura, mayormente orientadas a la generación de altos flujos de agregados [6,7,8], y a tratamientos posteriores para fabricar partículas magnéticas con estructura cristalográfica deseada y alta anisotropía magnética [9,10,11]. Asimismo, han sido desarrolladas otras modificaciones de la ICS para: controlar la oxidación de los agregados [12], focalizar el haz de agregados mediante lentes aerodinámicas [13], controlar la energía cinética de las nanopartículas sobre el sustrato [14] o trabajar a temperatura ambiente [15]. Sorprendentemente, apenas existen trabajos sobre modificaciones de la ICS con el fin de controlar y ajustar in situ la composición química de las nanopartículas generadas. Pellarin et al. [16,17] utilizaron una doble ablación laser para generar agregados de cationes \((C_{60})_n Si_m \) mediante el enfriamiento de los vapores procedentes de dos blancos independientes de \(C_{60} \) y silicio. En cambio, Sumiyama et al. [18] emplearon dos fuentes de sputtering para producir agregados de tipo núcleo-corteza de Co/CoO y Co/Si. En ambos diseños, las posiciones de los blancos son fijas y, por tanto, no pueden ser utilizadas como un parámetro para modificar el tamaño de las nanopartículas, como en otros casos de ICS estándar [7,19]. Hasta donde conocemos, no ha sido reportado ningún trabajo usando dos o más blancos independientes para generar nanopartículas de aleación en una ICS. Además, los modelos habituales de ICS sólo incluyen un único magnetrón, de modo que la modificación de la composición química de las nanopartículas supone la sustitución de dicho blanco por otro con una composición química diferente.
Capítulo 5. Fabricación y caracterización de nanopartículas de composición, estructura y tamaño controlados sobre Si(100) fabricadas mediante la técnica MICS

Con el fin de superar la limitación de la composición química de una ICS estándar, nuestro grupo de investigación patentó la MICS [20]. La modificación de la ICS que presentamos en este capítulo permite la generación de nanopartículas de composición química controlable sin perder el control del tamaño y evitando el cambio del blanco dentro de la ICS. Este último punto es de gran interés tanto para estudios fundamentales como para aplicaciones en áreas como catálisis o tecnología de la información, por ejemplo [21,22]. En otras palabras, este capítulo presentará la investigación realizada sobre esta modificación de la ICS capaz de ajustar de forma precisa la composición química de las nanopartículas sin necesidad de cambiar físicamente el material del blanco. La MICS está basada en el reemplazo del magnetrón de 2” por tres magnetrones (A, B, C) de 1” de diámetro, que son insertados dentro de la zona de agregación de una ICS estándar (Fig. 5.1). Cada magnetrón posee su sistema individual de posicionamiento y de refrigeración, así como su propia toma de gas de sputtering y su fuente de alimentación. De este modo, la MICS puede ser vista como una triple ICS estándar, considerando que cada magnetrón puede ser operado tal que un magnetrón estándar de la ICS. Asimismo, la MICS presenta parámetros en común con una ICS estándar para el control del tamaño de nanopartícula como una toma de flujo de gas extra y el diafragma de apertura.

Sin embargo, la MICS posee nuevos parámetros de trabajo, asociados al uso de tres magnetrones controlados individualmente, que deben ser considerados para el control del proceso de fabricación de las nanopartículas depositadas: i) el flujo de gas de sputtering aplicado a cada magnetrón que define un flujo total en la zona de agregación, Φ_T, y, ii) la posición relativa de cada magnetrón en la zona de agregación, L_{rel}. Estos nuevos parámetros juegan un papel importante en la formación del vapor generado en la zona de agregación y han de ser comprendidos para la fabricación de nanopartículas de forma precisa. La influencia de estos nuevos parámetros es de gran importancia cuando son utilizados simultáneamente dos o tres magnetrones. Los parámetros que permiten controlar la fabricación de nanopartículas en una ICS y una MICS son recopilados en la tabla 5.1. Observamos que la MICS presenta trece parámetros de trabajo en vez de los seis disponibles en la ICS.

<table>
<thead>
<tr>
<th>Parámetros de trabajo</th>
<th>Fuente de agregados (ICS)</th>
<th>Fuente de agregados múltiple (MICS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flujo de un gas extra Φ_{Extra}</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Diámetro del diafragma</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Potencia</td>
<td>P</td>
<td>P_A, P_B, P_C</td>
</tr>
<tr>
<td>Flujo del gas de sputtering</td>
<td>Φ</td>
<td>Φ_A, Φ_B, Φ_C</td>
</tr>
<tr>
<td>Longitud de agregación</td>
<td>L</td>
<td>L_A, L_B, L_C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L_{rel}</td>
</tr>
</tbody>
</table>

Tabla 5.1 Parámetros de trabajo en una fuente de agregados ICS y en una fuente de agregados múltiple MICS.
Capítulo 5. Fabricación y caracterización de nanopartículas de composición, estructura y tamaño controlados sobre Si(100) fabricadas mediante la técnica MICS

Con el fin de demostrar el potencial de esta nueva técnica, colocamos un blanco de Ag, Au y Pd en cada uno de los magnetrones. La MICS es capaz de fabricar hasta 25 tipos diferentes de nanopartículas, si los magnetrones han sido cargados con tres elementos diferentes. La Figura 5.2 presenta el abanico de nanopartículas posibles a generar e indica con un rectángulo rojo, aquellas nanopartículas que han sido generadas y caracterizadas en la presente tesis. El capítulo 5 se estructura en tres partes. Primero, presentaremos una calibración de los magnetrones individuales, fabricando nanopartículas de Ag y Au que serán caracterizadas morfológicamente por AFM. Conocido nuestro sistema en función de los diversos parámetros de trabajo, en segundo lugar, se procederá a la fabricación de nanopartículas más complejas, controladas por el ajuste de las condiciones de trabajo de los magnetrones. Son fabricadas nanopartículas de aleación bimetálicas AgAu, trimétálicas AgAuPd y núcleo – corteza Ag-Au (Ag\textsubscript{NÚCLEO}-Au\textsubscript{CORTEZA}). En el caso de las nanopartículas núcleo–corteza, se ha desarrollado una metodología de trabajo que permite ajustar tanto el diámetro del núcleo como el espesor de la corteza, partiendo de los resultados extraídos de la calibración de los magnetrones individuales. Las nanopartículas de aleación y núcleo-corteza fabricadas en este trabajo han sido estudiadas mediante tres técnicas: i) con AFM, observamos tamaño y la densidad de las nanopartículas; ii) con XPS, analizamos la composición química de las nanopartículas; y iii) con HRTEM, estudiamos individualmente las nanopartículas generadas, revelando claramente su naturaleza. El capítulo 5 de la presente tesis demostrará que la técnica MICS no sólo permite el uso de un magnetrón respecto de los otros de forma independiente, sino que representa un avance más en el control de las propiedades de las nanopartículas con estructura compleja y de alta pureza.

Figura 5.1 Sistema MICS, con imágenes de sus diferentes partes (a): el sistema de los tres magnetrones de 1” con blancos de Au, Ag y Pd (b), la zona de agregación (c) y el diafragma de apertura, antes de ser conectado con la cámara de depósito (d).
5.2 Detalles Experimentales

El sistema MICS es conectado a una campaña de UHV con una presión base del orden de 10^{-9} mbar. La distancia entre la apertura de salida de la zona de agregación y el sustrato posicionado en el manipulador de la campana de depósito es ≈ 20 cm. De este modo, y con el tamaño del diafragma utilizado en este trabajo (7 mm), el diámetro del área circular de depósito de las nanopartículas es ≈ 40 mm.

Los tres magnetrones de 1” son montados en una brida de 6” e insertados dentro de la zona de agregación de una fuente NC200U-B de OAR [23]. Los magnetrones fueron fabricados siguiendo el diseño original del Profesor José M. Colino García de la Facultad de Ciencias de Medio Ambiente de Toledo [24]. Los blancos colocados en los tres magnetrones son de plata (99.99%), paladio (99.99%) y oro (99.999%). Cada magnetrón puede ser utilizado de forma independiente, disponerse a la longitud de agregación deseada, y está provisto de su propia toma de argón como gas de sputtering, conexión para la refrigeración y conexión eléctrica con su propia fuente de alimentación. Se fabricaron nanopartículas de Au y Ag, de aleación AgAu y Pd-Au-Ag y de estructura tipo núcleo - corteza con la disposición $Agnúcleo$-Aucéreza (Fig. 5.2). Las nanopartículas generadas son depositadas en sustratos de Si, cortados en dimensiones de 10 x 10 mm2 de una oblea de silicio, que son transferidos a la campana de depósito a través de una entrada rápida. La configuración de los magnetrones junto con las condiciones de trabajo aplicadas para la fabricación de cada una de las nanopartículas estudiadas, serán detalladas en los subaparatados correspondientes.

Los tiempos de depósito son fijados para producir multicapas de nanopartículas adecuadas para la caracterización con XPS y también, para generar depósitos de nanopartículas
inferiores a la monocapa para ser medidas con AFM y HRTEM. En nuestro caso, como las nanopartículas son fabricadas en una atmósfera controlada (condiciones de UHV), presentan una alta pureza con una muy limitada cantidad de contaminantes. Las medidas con AFM son realizadas en el modo dinámico utilizando dos tipos de puntas de AFM: i) puntas de silicio comercial con un radio típico inferior a 7nm y, ii) puntas modificadas Next-Tip con resolución lateral mejorada [25,26,27]. Los softwares WSxM y Gwyddion son utilizados para el análisis de las imágenes de AFM y, Gatan Digital Micrograph, para las imágenes de HRTEM.

Para las medidas de XPS, las muestras son bombardeadas con Ar⁺ para eliminar parcialmente la contaminación resultante de la exposición al aire durante la transferencia de las muestras desde la MICS al equipo de medida de XPS. Los espectros de XPS son grabados antes y después del sputtering con Ar⁺ con el fin de revisar la presencia de procesos no deseados durante el bombardeo. Las ventanas de los niveles internos Au 4f, Ag 3d y Pd 3d son registradas utilizando un paso de energía de 15 eV y con una resolución de 50 meV. Para el análisis de los datos, las contribuciones de las líneas satélites de Mg Kα son sustraídas y los espectros están sujetos al formalismo de Shirley para substraer el fondo. La escala de las energías de enlace son calibradas con respecto al pico 1s C a 285 eV (para las nanopartículas de aleación bimetalica y trimetálica) y al pico Si 2p, a 99 eV (para las nanopartículas de tipo núcleo - corteza).

5.3. Nanopartículas de Au y Ag

5.3.1 Consideraciones previas: importancia de la elección de Au y Ag

La generación o síntesis de nanopartículas metálicas formadas por varios elementos ha recibido una gran atención. La versatilidad de combinar diferentes composiciones de metales a nanoescala, ha motivado un interés significativo en las nanopartículas bimetálicas con estructura aleada y núcleo-corteza, debido a sus nuevas propiedades [28,29]. Esta capacidad de diseño de sistemas multi-componente ha abierto nuevos frentes de aplicaciones en campos como la terapia médica [30], la optoelectrónica [31] o la catálisis [32,33].

El oro y la plata son ejemplos habituales de materiales utilizados en nanoestructuras multi-componente con el fin de modificar las propiedades del material resultante, frente a las nanopartículas de un solo elemento. Asimismo, las nanoestructuras compuestas por ambos metales nobles han sido estudiadas en virtud de varios motivos: i) Au y Ag presentan constantes de red similares y son miscibles formando aleaciones homogéneas en volumen [34]; ii) las nanopartículas de núcleo - corteza y aleación bimetálica muestran interesantes propiedades ópticas, electrónicas y catalíticas, y como biosensores; iii) la banda de absorción de los plasmones asociado al Au o Ag se ve alterada con la inserción del otro elemento [35,36] y, iv) la combinación de las propiedades de Ag y Au en nanopartículas heteroestructuradas conjuntas es
Capítulo 5. Fabricación y caracterización de nanopartículas de composición, estructura y tamaño controlados sobre Si(100) fabricadas mediante la técnica MICS

Estudiada actualmente por sus prometedoras aplicaciones como dispositivos ópticos, catálisis heterogénea o investigación biomédica.

No obstante, la capacidad para conseguir las propiedades deseadas está directamente relacionada con el control fino del proceso de fabricación de las nanopartículas. En otras palabras, el punto clave para la fabricación de nanopartículas con la composición química deseada es la capacidad de controlar la distribución de tamaños, forma, composición, estructura y propiedades superficiales de las nanopartículas resultantes. La calibración individual de los magnetrones no sólo determina el tamaño y distribución de las nanopartículas fabricadas de un elemento, sino que su comprensión condiciona la posibilidad de generar nanopartículas bimetálicas y de tipo núcleo-corteza. Esto ha motivado que se realice un estudio pormenorizado a nivel morfológico de las nanopartículas de Ag y Au, para a continuación, proceder a estudiar sistemas de nanopartículas más complejos.

5.3.2 Condiciones de depósito y caracterización morfológica con AFM de nanopartículas de Ag

El magnetrón empleado para este estudio es cargado con un blanco de Ag de 99.99% de pureza. La potencia aplicada al magnetrón, P_{Ag}, es fijada a 8 W. Los depósitos son realizados posicionando los tres magnetrones en diferentes longitudes de agregación, L. Para simplificar la notación, referiremos los parámetros de trabajo en función del blanco dispuesto de cada
magnetón. De este modo, las longitudes de agregación se etiquetarán \(L_{Ag} \), \(L_{Au} \) y \(L_{Pd} \) respectivamente. Los magnetrones con blancos de Au y Pd son siempre posicionados detrás del magnetón con Ag para evitar su contaminación por el plasma de iones de Ag. La figura 5.3 ilustra un esquema de la configuración de los magnetrones utilizada para la fabricación de las nanopartículas de Ag, así como una representación de los iones arrancados del blanco de Ag y su agregación en nanopartículas, lejos de los otros dos magnetrones.

Como fue explicado en la sección 5.1, la MICS cuenta con dos parámetros característicos que la diferencian de la ICS estándar: el flujo total en la zona de agregación (\(\Phi_t = \Phi_{Ag} + \Phi_{Au} + \Phi_{Pd} \)), y, la longitud de agregación relativa en función de los tres magnetrones. Realizamos series de depósitos de nanopartículas de Ag en los que se modifica un parámetro de trabajo del equipo, manteniendo las restantes variables fijas a un valor constante. De este modo, podemos estudiar la influencia de los distintos parámetros de trabajo en función de los depósitos de nanopartículas de Ag. Los depósitos de nanopartículas de Ag son caracterizados morfológicamente por AFM extrayendo tanto \(L_{Ag} \) como el ritmo de depósito (\(NPs/\mu m^2\cdot s \)). \(L_{Ag} \) es caracterizada a través de un estudio sistemático de varias imágenes de AFM, siguiendo el protocolo que fue descrito en el subapartado 3.3.1. \(NPs/\mu m^2\cdot s \) es el número de nanopartículas recubriendo una superficie de 1 x 1 \(\mu m^2 \) por unidad de tiempo de exposición al haz de nanopartículas generadas y es obtenido de las mismas imágenes de AFM empleadas para la distribución de alturas. Las figuras 5.4 y 5.5 corresponden a las evoluciones de \(L_{Ag} \) y el número de \(NPs/\mu m^2\cdot s \) en áreas de 1 x 1 \(\mu m^2 \) de barrido en función del flujo de Ar aplicado en los tres magnetrones (\(\Phi_{Ag}, \Phi_{Au} y \Phi_{Pd} \)). \(L_{Ag} \) y \(\Phi_t \). Nótese que esta calibración se ha focalizado en el estudio de aquellos parámetros que representan una novedad con respecto a una ICS estándar. A continuación, procederemos a analizar los comportamientos observados en cada caso, expuestos en las figuras 5.4 y 5.5. A modo ilustrativo, en la figura 5.6 presentamos cuatro imágenes de AFM representativas de una serie de depósitos de nanopartículas de Ag, expuestos en la Fig. 5.5.

Las figuras 5.4a y 5.4b muestran la altura promedio y el ritmo de depósito en función de \(\Phi_{Ag} \) para tres distintas \(L_{Ag} \) (170, 125 y 95 mm) a un \(\Phi_t = 60 \) sccm. Los magnetrones de Au y Pd son mantenidos fijos a las distancias de 194 y 203 mm, respectivamente. Para cada longitud de agregación del magnetón con Ag, se realizaron depósitos a diferentes \(\Phi_{Ag} \). Con el fin de mantener \(\Phi_t \) a un valor constante, el flujo de Ar aplicado en los magnetrones con Au y Pd es compensado, de modo que:

\[
\Phi_{Au} = \Phi_{Pd} = \frac{\Phi_t - \Phi_{Ag}}{2}
\] (5.1)

Tanto \(L_{Ag} \) como el número de \(NPs/\mu m^2\cdot s \) decrecen linealmente con respecto a \(\Phi_{Ag} \) para cada \(L_{Ag} \) (Fig. 5.4a y b). Por tanto, para una \(L_{Ag} \) dada, cuanto menor es \(\Phi_{Ag} \), mayor número de nanopartículas son depositadas sobre el sustrato, así como a los átomos arrancados se les
Capítulo 5. Fabricación y caracterización de nanopartículas de composición, estructura y tamaño controlados sobre Si(100) fabricadas mediante la técnica MICS

La confiere de un mayor tiempo de vuelo para agregarse, formando nanopartículas de mayor tamaño. Este comportamiento es visualizado claramente en las figuras 5.4c y d, donde presentamos la altura promedio y el ritmo de depósito en función de L_{Ag} para las mismas condiciones de trabajo de la MICS que en las figuras 5.4a y b. Observamos que \bar{z} y $NPs/\mu m^2s$ presentan un comportamiento lineal creciente con la longitud de agregación, alcanzando los valores más altos bajo el menor Φ_{Ag} estudiado ($\Phi_{Ag} = 5$ sccm). No fabricamos sistemas a menores flujos de gas de sputtering, porque el medidor de flujo de gas no es totalmente estable para flujos inferiores a 5 sccm. Nótese que el flujo de Ar óptimo para el magnetró con Ag es notablemente inferior en comparación con una ICS convencional. Esto es debido a que el diámetro de los magnetrones de la MICS es bastante inferior respecto a un equipo estándar con un único magnetró.

El siguiente paso es estudiar la evolución de \bar{z} y el ritmo de depósito modificando simultáneamente las longitudes de agregación de los tres magnetrones, bajo distintos flujos de argón entre los distintos magnetrones: $\Phi_{Ag} \neq \Phi_{Au} \neq \Phi_{Pd}$. Las figuras 5.5a y b muestran el

![Figura 5.4](image)

Figura 5.4 Evolución de la altura promedio de las nanopartículas depositadas \bar{z}, y del ritmo de depósito (número de nanopartículas sobre un área de barrido de $1 x 1 \mu m^2$ por segundo de depósito) en función del flujo de Ar aplicado en el magnetró de Ag (a y b), a distintas longitudes de agregación, y de la longitud de agregación (c y d), para tres flujos de Ar aplicados en el magnetró con Ag. La longitud de agregación es la distancia entre el magnetró y el diafragma de la zona de agregación.
comportamiento de \bar{z} y del número de $NPs/\mu m^2\cdot s$ con respecto a Φ_{Au}. Φ_T es fijado a 80 sccm y Φ_{Ag} a 5 sccm, de modo que Φ_{Pd} cumple: $\Phi_{Pd} = \Phi_T - \Phi_{Ag} - \Phi_{Au}$. El magnetrón con Ag se ha posicionado en la mayor longitud de agregación estudiada en la Fig. 5.4 ($L_{Ag} = 170$ mm), mientras que los otros dos magnetrones se han colocado a igual distancia mayor que el magnetrón de Ag ($L_{Au} = L_{Pd} = 195$ mm). Observamos que la altura promedio de las nanopartículas aumenta con Φ_{Au} (Fig. 5.5a), mientras que el número de $NPs/\mu m^2\cdot s$ presenta un intervalo óptimo, a partir de cual, comienza a disminuir con Φ_{Au} (Fig. 5.5b). Nótese que las líneas punteadas de ambas figuras son sólo una guía para los ojos y no una curva de ajuste. El conjunto de muestras de la Fig. 5.5 a y b sólo se diferencian en la distribución del flujo de Ar aplicado a través de las tres entradas del sistema. Sin embargo, esta diferencia local en la aplicación del mismo Φ_T influye críticamente en el vapor de Ag generado en la zona de agregación. Es importante destacar la colocación de los tres magnetrones en la zona de agregación (Fig. 5.3). En el caso de que $\Phi_{Au} \approx \Phi_{Pd}$, estamos fabricando nanopartículas de mayor altura promedio, pero el cantidad de nanopartículas depositadas sobre el sustrato disminuye notablemente. Sin embargo, si $\Phi_{Au} \rightarrow 0$, la mayor parte del flujo de Ar aplicado, procede del magnetrón con Pd, $\Phi_{Pd} \rightarrow \Phi_T$, y observamos que las

![Figure 5.5](image-url)

Figura 5.5 Evolución de la altura promedio de las nanopartículas depositadas, \bar{z}, y del ritmo de depósito (número de nanopartículas sobre un área de barrido de $1 \times 1 \mu m^2$ por segundo) en función del flujo de Ar aplicado en el magnetrón de Au (a y b) y del flujo total de Ar en la zona de agregación (c y d). La longitud de agregación es la distancia entre el magnetrón y el diafragma de la zona de agregación.
n nanopartículas fabricadas presentan un \bar{z} y un ritmo de depósito mayores que en $\Phi_{Au} \approx \Phi_{Pd}$. En otras palabras, el comportamiento del vapor generado es altamente dependiente de cómo son aplicados los flujos de Ar. Este resultado nos motivó a estudiar la influencia del flujo total en la zona de agregación en los depósitos de nanopartículas de Ag.

Las figuras 5.5c y 5.5d presentan la evolución del \bar{z} y el número de $NPs/\mu m^2\cdot s$ en función de Φ_T, conservándose las longitudes de agregación de las Figs. 5.5a y b. Φ_{Ag} es fijado a 10 sccm. En el caso de Φ_{Au} y Φ_{Pd}, establecimos el criterio de la ec. 5.1, para evitar añadir más parámetros de trabajo en esta serie de muestras estudiadas. Tanto \bar{z} como el ritmo de depósito presentan un comportamiento análogo con el Φ_T, siendo la línea discontinua una guía para el lector. Este comportamiento de tipo gaussiano ha sido ya observado en el caso de ICS estándar cuando los flujos de Ar en la zona de agregación son altos. Los iones del gas pierden mucha energía antes de alcanzar el blanco debido al alto número de colisiones con átomos del gas. Por ello, para $\Phi_T = 90$ sccm, la altura promedio de la nanopartícula y el ritmo de depósito disminuyen notablemente. Las figuras 5.4a, b, c y d, y 5.5c y d nos permiten visualizar que el dispositivo MICS presenta un manejo muy similar a una ICS convencional. No obstante, es importante tener presente que, si son fabricadas nanopartículas de estructura compleja, la distribución del flujo total de Ar en los distintos magnetrones es un parámetro altamente influyente en las nanopartículas generadas. Este parámetro es único de la MICS.

Figura 5.6 Imágenes de AFM de nanopartículas de Ag sobre Si(100) en un área de barrido de $1 \times 1 \mu m^2$ que se corresponden con las muestras presentadas en las figuras 5.4a y 5.4b, realizadas con un tiempo de depósito de 10 s (a), 16 s (b) y 20 s (c y d). Todas las imágenes de AFM se representan con la misma escala de alturas.
Asimismo, debe señalarse que la potencia aplicada en el magnetrón de plata P_{Ag} ha sido mantenida fija durante toda esta calibración. La máxima potencia que podía ser aplicada al magnetrón con Ag para obtener un vapor saturado estable, conservando al magnetrón adecuadamente refrigerado, es de 15 W. La mínima potencia para poder formar el plasma, es de 3 W. Con las P_{Ag} aplicadas en este estudio, la \bar{z} no varía significativamente, dentro del intervalo de incertidumbre extraído de la desviación estándar de las distribuciones de alturas. En cambio el ritmo de depósito con respecto a P_{Ag} presenta un comportamiento de tipo gaussiano, definiendo un cierto intervalo óptimo de operación entre 5 y 8 W.

Por último, es importante destacar que los valores obtenidos de altura promedio con su desviación estándar asociada, son similares a los obtenidos utilizando una ICS estándar (véase sección 3.3.1).

5.3.3 Condiciones de depósito y caracterización morfológica con AFM de nanopartículas de Au

La calibración del magnetrón de Ag nos ha permitido conocer el comportamiento del uso individual de un solo magnetrón encendido y verificar la capacidad del equipo para fabricar depósitos de nanopartículas de un elemento. Hemos estudiado cómo varían los depósitos de nanopartículas de Ag en función de distintos parámetros de trabajo de la MICS. Así, hemos observado que una MICS en configuración para fabricar nanopartículas de un elemento, puede ser operada como una ICS estándar, realizando una calibración previa del magnetrón a utilizar. En otras palabras, la evolución de los depósitos en función de los parámetros de trabajo de la ICS y MICS son similares (subapartado 2.2.2.1). Aunque este estudio depende fuertemente del material del blanco usado, permite extrapolar los parámetros del uso individual de un solo magnetrón, sin necesidad de repetir las Figs. 5.4 y 5.5 para cada blanco que sea cargado en la MICS. Con este planteamiento, en el caso de las nanopartículas de Au, no realizamos un estudio tan pormenorizado. En el caso del Au, escogimos fabricar depósitos de nanopartículas bajo varias condiciones clave para continuar nuestra investigación hacia el objetivo principal: la generación de nanopartículas bimetálicas, trimetálicas y de estructura corteza-núcleo.

En la tabla 5.2 son recopiladas las condiciones de trabajo de las muestras realizadas con el blanco de Au, que serán utilizadas como base para fabricar nanopartículas multicomponente. A modo de guía para el lector, la tabla ha sido dividida en tres bloques según el flujo total aplicado en la zona de agregación. La potencia máxima que puede ser aplicada al magnetrón de Au, P_{Au} es de 12 W. De este modo, decidimos inicialmente mantener constante P_{Au} a 10 W. Además, aplicamos el mismo flujo de Ar a los magnetrones de Au y Ag ($\Phi_{Au} = \Phi_{Ag} = 5$ sccm). L_{Au} es fijada a 170 mm e L_{Ag} y L_{Pd} a 195 mm, considerando los resultados de las figuras 5.5a y b. A continuación expondremos los resultados extraídos de la caracterización morfológica de los depósitos de nanopartículas de Au.
En primer lugar, estudiamos la evolución de la altura promedio de las nanopartículas y el ritmo de depósito con respecto al Φ_T, correspondiente a las muestras MICS Au.1 ($\Phi_T = 60$ sccm), MICS Au.2 ($\Phi_T = 70$ sccm) y MICS Au.7 ($\Phi_T = 80$ sccm). Observamos que \bar{z} aumenta con Φ_T, mientras que el ritmo de depósito no describe una tendencia concluyente en función de Φ_T. No obstante, podemos extraer que el sistema MICS Au.2 presenta un balance idóneo entre \bar{z} y número de NPs/µm2·s.

Para la segunda serie de muestras, fijamos $\Phi_T = 70$ sccm, $\Phi_Ag = \Phi_Au = 5$ sccm y $L_{Au} = 170$ mm. Las muestras MICS Au.2, 3, 4, 5 y 6 son realizadas variando la potencia aplicada al magnetrón con Au (Fig. 5.7). A medida que aumenta P_{Au}, \bar{z} permanece constante dentro de los intervalos de incertidumbre. En cambio, el número de NPs/µm2·s presenta un valor máximo a $P_{Au} = 9.9$ W, para luego decrecer con $P_{Au} = 10.4$ W. Observamos que $P_{Au} \approx 10$ W es la máxima potencia que debemos aplicar, y lo que es más importante, para $\Phi_T = 70$ sccm, no obtenemos mayores valores de \bar{z} y NPs/µm2·s que la muestra MICS Au.7.

Por último, realizamos una última serie de muestras con $\Phi_T = 80$ sccm. Estudiamos la influencia de flujo de Ar, según es introducido por las tres entradas de los magnetrones. Partiendo de las condiciones de trabajo de la muestra MICS Au.7, mantuvimos las longitudes de agregación de los tres magnetrones y fijamos $P_{Au} \approx 10$ W. Para los depósitos de las
Capítulo 5. Fabricación y caracterización de nanopartículas de composición, estructura y tamaño controlados sobre Si(100) fabricadas mediante la técnica MICS

muestras MICS Au.8 y 9 igualamos Φ_{Ag} y Φ_{Pd} bajo un $\Phi_t = 80$ sccm. Para MICS Au.8, $\Phi_{Ag} = \Phi_{Pd} = 35.0$ sccm y $\Phi_{Au} = 10$ sccm, mientras que para MICS Au.9, $\Phi_{Ag} = \Phi_{Pd} = 37.5$ sccm y $\Phi_{Au} = 5$ sccm. En ambas muestras observamos que los valores extraídos de \overline{z} y ritmos de depósito son inferiores a la muestra MICS Au. 7, y en el caso del número de NPs/µm²·s, esta disminución es bastante notable. Verificamos de nuevo que la distribución del flujo total de Ar en los distintos magnetrones es un parámetro de trabajo crucial en la MICS.

5.4 Nanopartículas de aleación bimetálicas Ag-Au y triméticas Ag-Au-Pd

5.4.1 Antecedentes previos

Para el presente estudio, hemos utilizado tres magnetrones con blanco de plata (99.99%), oro (99.99%) y paladio (99.99%). Fabricamos dos tipos de nanopartículas de aleación. La primera serie de muestras son nanopartículas aleadas bimetálicas de Ag-Au con cinco estequiometrias distintas, desde nanopartículas de Ag y Au, pasando por tres composiciones intermedias. Este primer sistema permitirá demostrar la capacidad de la MICS para controlar con precisión la estequiometria de las nanopartículas generadas. En segundo lugar, fabricamos

![Figura 5.8](image.png)

Figura 5.8 Esquema de la fuente de agregados múltiple MICS en la configuración para la fabricación de nanopartículas de aleación.
nanopartículas de aleación Ag-Au-Pd para verificar si es posible generar nanopartículas trimétálicas sin perder el control sobre la estequiometría. El éxito de controlar la composición química nos permitirá fabricar nanopartículas de aleación con las propiedades deseadas, como por ejemplo, con propiedades catalíticas [37] y magnéticas [38,39], que son particularmente interesantes para aplicaciones específicas.

Para cada serie de muestras fabricadas, fijamos a un valor contante tanto las longitudes de agregación como el flujo de Ar aplicado en los magnetrones encendidos. De este modo, la potencia aplicada en cada magnetrón es el parámetro de trabajo de la MICS con el que controlaremos el depósito (Fig. 5.8). En el caso de las nanopartículas de aleación Ag-Au, los magnetrones con Au y Ag son dispuestos a la misma distancia respecto al diafragma de la zona de agregación, mientras que para nanopartículas de aleación trimetálica, los tres magnetrones son posicionados a la misma longitud de agregación. Variamos los tiempos de depósito con el fin de producir multicapas de nanopartículas, adecuadas para la caracterización con XPS, y depósitos de nanopartículas inferiores a la monocapa, para ser medidas con AFM y HRTEM. Las tablas 5.3 y 5.4 recopilan las condiciones de trabajo para la fabricación de las dos clases de nanopartículas de aleación estudiadas, así como la composición química extraída de los espectros de XPS.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>$P _{Ag}$ (W)</th>
<th>$\Phi _{Ag}$ (sccm)</th>
<th>$L _{Ag}$ (mm)</th>
<th>$P _{Au}$ (W)</th>
<th>$\Phi _{Au}$ (sccm)</th>
<th>$L _{Au}$ (mm)</th>
<th>$P _{Pd}$ (W)</th>
<th>$L _{Pd}$ (mm)</th>
<th>$\Phi _{T}$ (sccm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ag_{100}Au_{0}$</td>
<td>14.3</td>
<td>40.0</td>
<td>165</td>
<td>0</td>
<td>40.0</td>
<td>165</td>
<td>0</td>
<td>205</td>
<td>80</td>
</tr>
<tr>
<td>$Ag_{50}Au_{45}$</td>
<td>7.7</td>
<td>9.3</td>
<td></td>
<td>6.1</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Ag_{35}Au_{65}$</td>
<td>5.0</td>
<td>9.3</td>
<td></td>
<td>9.3</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Ag_{50}Au_{100}$</td>
<td>0</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.3 Parámetros de trabajo aplicados al magnetrón de Ag y Au para la fabricación de nanopartículas de aleación bimetálicas Ag – Au.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>$P _{Ag}$ (W)</th>
<th>$\Phi _{Ag}$ (sccm)</th>
<th>$L _{Ag}$ (mm)</th>
<th>$P _{Au}$ (W)</th>
<th>$\Phi _{Au}$ (sccm)</th>
<th>$L _{Au}$ (mm)</th>
<th>$P _{Pd}$ (W)</th>
<th>$L _{Pd}$ (mm)</th>
<th>$\Phi _{T}$ (sccm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ag_{24}Au_{42}Pd_{36}$</td>
<td>7.6</td>
<td>30.0</td>
<td>170</td>
<td>9.3</td>
<td>9.3</td>
<td>170</td>
<td>7.3</td>
<td>170</td>
<td>9.8</td>
</tr>
<tr>
<td>$Ag_{40}Au_{36}Pd_{100}$</td>
<td>4.9</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5.4 Parámetros de trabajo aplicados al magnetrón de Ag, Au y Pd para la fabricación de nanopartículas de aleación trimétálicas Ag – Au - Pd.
5.4.2 Caracterización morfológica con AFM

La figura 5.9 presenta varias imágenes de AFM representativas de los depósitos realizados (tablas 5.3 y 5.4). Las nanopartículas de aleación Ag-Au son presentadas en las figuras 5.9 a – e, mientras que las figuras 5.9 f-h corresponden a nanopartículas de aleación Ag-Au-Pd. Todas las imágenes de AFM muestran claramente sistemas multicapa de nanopartículas. Estas muestras son medidas previamente con AFM con el fin de observar morfológicamente los depósitos generados, para, a continuación, ser medidas con XPS (véase sección 5.4.3). Se ha confirmado la conservación del tamaño de nanopartícula dentro de un mismo rango, para evitar posibles efectos de tamaño en la posterior caracterización con XPS. No obstante, en la figura 5.9, puede observarse cierta dispersión de diámetros. Esta dispersión es debida a los cambios en la potencia aplicada a los magnetrones para la fabricación de cada muestra. En el caso de imágenes de AFM, si no es posible identificar con claridad el sustrato, no se puede realizar un estudio de la distribución de alturas, extraída de las imágenes recopiladas. Sin embargo, pese a dicha problemática, ha sido demostrado por otros grupos que la dispersión del diámetro puede corregirse con la utilización de un cuadrupolo [3,4] o se podría variar la longitud de agregación como se ha visto en la figura 5.4c y d.

Con el fin de mostrar la altura promedio de los depósitos fabricados, realizamos depósitos de nanopartículas, por debajo de una monocapa. La submonocapa es alcanzada, reduciendo el tiempo de depósito a unos pocos segundos (típicamente 5 s). La figura 5.10 muestra el depósito de nanopartículas de composición química Ag₅₅Au₄₅ con un tiempo de depósito de 5 s. Como puede ser observado en la figura 5.10a, a pesar del corto tiempo de depósito sobre el sustrato, el número de nanopartículas para un área de barrido de 1 x 1 µm² es

![Figura 5.9 Imágenes de AFM adquiridas de depósitos de nanopartículas sobre Si(100) para diferentes potencias aplicadas a los magnetrones (Véase tablas 5.3 y 5.4). Las composiciones químicas de cada uno de los depósitos, extraídas de las medidas con XPS, son también indicadas. Las imágenes a-e corresponden con nanopartículas de aleación Ag-Au y las imágenes f-h, están asociadas a nanopartículas de aleación Ag-Au-Pd.](image)
típicamente de 150 nanopartículas/µm². En otras palabras, el alto ritmo de depósito de la MICS indica la alta eficiencia del proceso de fabricación. Las imágenes de AFM de muestras a bajo tiempo de depósito ilustran claramente que las nanopartículas individuales son generadas dentro de la MICS y sucesivamente, depositadas en el sustrato deseado, como ocurre en una ICS estándar. La distribución de alturas de las nanopartículas de composición química Ag₅₅Au₄₅, extraídas de varias imágenes de AFM, es expuesto en la figura 5.10b. Esta distribución de alturas ha sido obtenida siguiendo el protocolo que fue descrito en la sección 3.3.1 y es ajustada a una distribución de Galton o log normal. La altura resultante promedio y su desviación estándar son 6.3 y 1.1 nm, respectivamente. Como en el caso de las nanopartículas de un elemento (secciones 5.3.2 y 5.3.3), los valores obtenidos con la MICS están en el orden de los depósitos de nanopartículas realizados con una ICS estándar y sin el uso de filtro del cuadrupolo al final de la zona de agregación.

Figura 5.10 Imagen de AFM de un depósito de nanopartículas de aleación de Ag₅₅Au₄₅ sobre Si(100) con un tiempo de depósito de 5s, por debajo de una monocapa (a). Distribución de alturas extraída de varias imágenes de AFM (b).

5.4.3 Caracterización química con XPS

Los espectros de XPS nos permiten caracterizar la composición química de los sistemas fabricados. Los tiempos de depósito oscilan entre los 5 y 15 min con el fin de producir multicas de nanopartículas adecuadas para la caracterización con esta técnica. Asimismo, comprobamos vía SEM que, con tan sólo 4 min de depósito, es formada una multica de nanopartículas de aproximadamente 350 nm de espesor con una apariencia bastante compacta y cierta rugosidad [40]. De este modo, observamos de nuevo la alta eficiencia del proceso. La composición química de las nanopartículas es determinada analizando las intensidades integradas de los picos de los niveles internos Au 4f, Pd 3d y Ag 3d, siguiendo el procedimiento detallado en la sección 5.2 y considerando los factores de sensibilidad relativos.
5.4.3.1 Nanopartículas de aleación bimetálica Ag-Au

Los espectros de los niveles internos de Ag 3d y Au 4f son expuestos en la figura 5.11, señalándose, en cada uno, su estequiometría medida. Los espectros han sido desplazados en el eje Y para facilitar la comparación entre ellos y la intensidad ha sido expresada en cuentas por segundo. Observamos que los espectros presentan cambios significativos en las intensidades que concuerdan con la modificación de la estequiometría de las nanopartículas. A continuación, analizaremos individualmente los niveles internos de Ag 3d y Au 4f.

La energía de enlace del pico del nivel interno Ag 3d5/2 (Fig. 5.11a) correspondiente a las nanopartículas de Ag (368.7 eV), está situado a mayores energías de enlace que el pico metálico de la plata en volumen (368.2 eV). Este desplazamiento de energía es coherente con la presencia de nanopartículas. De hecho, es bien conocido que la energía de enlace del pico de Ag 3d5/2 en nanopartículas de Ag y aleadas Ag-Au depende del tamaño de la nanopartícula, del recubrimiento y de la estequiometría [41,42,43,44]. Adicionalmente, apreciamos un leve desplazamiento progresivo del pico hacia energías de enlace inferiores según aumenta el contenido de Au, que coincide con estudios previos de nanopartículas de aleación Ag-Au [41,42,43].

La evolución del nivel interno de Au 4f es presentada en la figura 5.11b. La energía de enlace medida de las nanopartículas de Au en el pico del nivel interno Au 4f7/2 (84.3 eV) se encuentra a mayores energías de enlace que el pico metálico de Au en volumen (84.0 eV). Como ocurre en el caso del pico de Ag 3d5/2, este desplazamiento está de acuerdo con la presencia de una agrupación densa de nanopartículas de Au [41]. Asimismo, vemos que la energía de enlace

Figura 5.11 Espectros de los picos de los niveles internos de Ag 3d (a) y Au 4f de las nanopartículas crecidas con diferentes estequiometrias de Ag y Au (tabla 5.3).
del pico del nivel interno Au 4f\textsubscript{7/2} disminuye según decrece el contenido de Au en las nanopartículas. La evolución de los desplazamientos químicos de los picos de los niveles internos Ag 3d\textsubscript{5/2} y Au 4f\textsubscript{7/2}, con respecto a los picos metálicos de Ag y Au en volumen es expuesto en función de la estequiometría de las nanopartículas en la figura 5.1. Los desplazamientos químicos mostrados concuerdan razonablemente bien con los estudios previos de Harikumar et al. [41]. De este modo, estos desplazamientos confirman la presencia de nanopartículas de aleación de Ag-Au.

Es importante destacar que no es detectado Au en la muestra de nanopartículas de Ag (Ag\textsubscript{100}Au\textsubscript{0}) ni se ha observado presencia de Ag, para la muestra de nanopartículas de Au (Ag\textsubscript{0}Au\textsubscript{100}). La figura 5.13 presenta los espectros generales de XPS de ambas muestras, donde se observa claramente que no hay señal de Au y Ag, en las muestras Ag\textsubscript{100}Au\textsubscript{0} y Ag\textsubscript{0}Au\textsubscript{100}, respectivamente. En otras palabras, cuando se emplea un solo magnetrón, el vapor generado no contamina a los otros dos magnetrones, y viceversa. La contaminación entre blancos vecinos puede tener lugar cuando los plasmas procedentes de diferentes magnetrones interactúan. Sin embargo, esto que podría ser una problemática crucial de nuestro sistema, no es observado en ningún caso. Como ha sido señalado, cada magnetrón tiene su propio suministro de potencia y de toma de gas, trabajando cada uno de manera independiente. Cuando fabricamos nanopartículas de un elemento con un magnetrón, los dos restantes magnetrones están apagados, evitando cualquier posible contaminación (Véase apartado 5.3). No obstante, en la disposición necesaria para la fabricación de nanopartículas de aleación, varios magnetrones son...
encendidos (Fig. 5.8). La mezcla de los vapores individuales en la zona de agregación, en una proporción que viene dada por la potencia aplicada a cada magnetrón, es ajustada de modo que podemos controlar la estequiométrie de las nanopartículas fabricadas.

5.4.3.2 Nanopartículas de aleación trimetálica Ag-Au-Pd

Una caracterización similar con XPS es realizada para las nanopartículas de aleación trimetálicas. Los espectros de XPS de los niveles internos de Ag 3d, Pd 3d y Au 4f son expuestos en la figura 5.14. Las posiciones de las energías de enlace correspondientes a las nanopartículas de Ag, Pd y Au han sido incluidas en la figura 5.14 como líneas discontinuas para facilitar la comparación. El objetivo de este subapartado no consiste en un análisis fino de la evolución de los desplazamientos químicos de los picos de los niveles internos de los tres elementos. Aquí queremos demostrar que, con el uso de la técnica de fabricación MICS, somos capaces de producir nanopartículas aleadas con una estequiométrie ajustable, compuestas por los tres elementos. Asimismo, apenas existe literatura de las nanopartículas aleadas Ag-Au-Pd [45,46] y ninguno de estos trabajos, exponen resultados de XPS que puediesen ser comparados con nuestros sistemas estudiados.

La estequiométrie extraída de los datos XPS es presentada en la tabla 5.4 e incluida en los espectros de XPS de la figura 5.14. En el caso de los sistemas trimétálicos de Ag-Au-Pd, debe tenerse especial cuidado en el solapamiento del pico Pd 4s con los picos Au 4f, y los picos Pd 3d con el pico Au4d5/2, cuando es realizado el análisis de cuantificación. También es importante
destacar que no es detectada la presencia de Au o Ag en la muestra de nanopartículas de Pd, indicando de nuevo que los magnetrones no se contaminan entre ellos.

La energía de enlace del pico del nivel interno de Pd 3d\(_{5/2}\), asociada a nanopartículas de Pd (335.5 eV), está desplazada en comparación con la energía de enlace del pico del Pd en volumen (335.2 eV). Este desplazamiento señala la presencia de nanopartículas [47], como fue observado en la imagen de AFM correspondiente (Fig. 5.9f). Para las estequiométrias \(\text{Ag}_{32}\text{Au}_{42}\text{Pd}_{26} \) y \(\text{Ag}_{27}\text{Au}_{17}\text{Pd}_{56} \), los picos de los niveles internos de Ag 3d\(_{5/2}\) (a 368.3 y 368.0 eV, respectivamente) presentan desplazamientos químicos compatibles con la formación de una aleación. En el caso de los picos asociados a los niveles internos de Pd 3d\(_{5/2}\) (a 335.4 eV) no se observa un cambio significativo en función de la composición química de las nanopartículas. En sistemas de nanopartículas de aleación Ag-Pd, una disminución de las energías de enlace de los picos de Pd 3d\(_{5/2}\) fue atribuida a la transferencia de electrons de Ag a Pd [48]. Las posiciones de los picos de los niveles internos de Au 4f\(_{7/2}\) son 84.3 y 84.0 eV para las muestras \(\text{Ag}_{32}\text{Au}_{42}\text{Pd}_{26} \) y \(\text{Ag}_{27}\text{Au}_{17}\text{Pd}_{56} \), respectivamente. Estas energías de enlace están próximas al caso de nanopartículas puras de Au (84.3 eV) y del Au en volumen (84 eV). Los resultados presentados evidencian la dificultad de analizar sistemas de nanopartículas trimétalicas. Los cambios observados en la energía de enlace indican la presencia de nanopartículas aleadas.

![Figura 5.14](image_url) Espectros de los picos de los niveles internos de Ag 3d (a), Pd 3d (a) y Au 4f (b) como una función de la composición química en nanopartículas de aleación trimétalicas Ag-Au-Pd (tabla 5.4).
5.4.4 Caracterización morfológica con TEM

La técnica XPS nos ha proporcionado información química promedio de las muestras fabricadas. Sin embargo, con el fin de realizar un estudio completo, es necesaria la caracterización química local de las nanopartículas individualmente, combinando las técnicas HRTEM y EDX. Presentaremos solo los resultados correspondientes a las nanopartículas de aleación bimetálica Ag-Au (Fig. 5.15), debido a la dificultad para distinguir la señal procedente del Ag y Pd en EDX. La figura 5.15a presenta una imagen de TEM representativa a baja magnificación de una agrupación de nanopartículas de aleación con composición química Ag$_{55}$Au$_{45}$, depositadas directamente en una rejilla de TEM. La figura 5.15b muestra una imagen de HRTEM de una nanopartícula representativa. Como fue explicado en el subapartado 5.3.1, las distancias cristalográficas en Ag, Au y sus aleaciones, son muy similares. De este modo, no es directa la identificación de una aleación a través del análisis estructural. Por tanto, optamos por el análisis con EDX de las nanopartículas.

La figura 5.15c presenta la evolución de la intensidad de las líneas L de Au y Ag a través de la línea de barrido, indicada en la figura 5.15b. Las dos líneas de trazos son líneas guía para el lector. Puede observarse claramente que los contenidos de Au y Ag son homogéneos a lo largo de la línea de barrido y, por tanto, en la nanopartícula. Debido a la baja señal EDX cuando realizamos el barrido (como consecuencia del reducido tamaño de las nanopartículas), la concentración atómica no puede ser extraída del barrido. Sin embargo, un análisis puntal (que permite una mejor estadística y, por ende, una determinación química) en el centro de la nanopartícula, revela que la concentración atómica es Ag$_{51}$Au$_{49}$. Este valor concuerda con la composición química determinada mediante XPS. Es importante destacar que para la realización de un perfil de barrido, es necesario reducir la corriente de haz de electrones para no destruir las nanopartículas que son expuestas al haz. La corriente relativamente baja de haz de electrones para extraer dicho perfil, induce a una cierta dispersión en las líneas del perfil, como puede observarse en la figura 5.15c. Para verificar la formación de una aleación, los perfiles expuestos en la Fig. 5.15c deben cumplir que las líneas de Au y Ag presenten sus valores más intensos en el

![Figura 5.15 Imagen de TEM a baja magnificación de un depósito de nanopartículas de aleación de configuración Ag$_{55}$Au$_{45}$ (a). Imagen de HRTEM de una nanopartícula de aleación Ag$_{55}$Au$_{45}$ representativa (b). Perfil EDX asociado a los niveles K y L de Au y Ag a lo largo de la línea dibujada en (b).](image-url)
centro de la nanopartícula. Si se observase la disminución de la concentración de Ag o Au en la superficie de la nanopartícula, implicaría un comportamiento de tipo núcleo-corteza. En tal caso, la concentración de Au o Ag habría disminuido en el centro de las nanopartículas [49], lo cual no sucede en nuestro sistema estudiado.

Es importante resaltar que no es observado la existencia de nanopartículas Janus (esto es, nanopartículas compuestas por dos caras, una de Ag y otra de Au), y que el análisis de las imágenes de HRTEM revela que la mayoría de las nanopartículas están aleadas. Además, una proporción reducida de las nanopartículas depositadas presenta una estructura de tipo núcleo-corteza y sólo algunas de ellas, son nanopartículas de Ag o Au. Más interesante aún, es que este bajo número de nanopartículas núcleo-corteza y de un elemento observado, presentan diámetros inferiores a las nanopartículas de aleación. De este modo, el uso de un filtro con un cuadropolo de masas permitiría seleccionar el tipo de nanopartículas deseadas.

5.5 Nanopartículas de núcleo – corteza: $\text{Ag}_{\text{NÚCLEO}}-\text{Au}_{\text{CORTEZA}}$ y $\text{Au}_{\text{NÚCLEO}}-\text{Ag}_{\text{CORTEZA}}$

5.5.1 Consideraciones previas

Las nanopartículas de Au y Ag de tipo núcleo-corteza ofrecen nuevas propiedades, debido a la sinergia de las características de ambos elementos en escala nanométrica [50]. De este modo, han sido sintetizadas un amplio rango de nanoestructuras con el objetivo de controlar sus propiedades ópticas, su reactividad y su estabilidad [51,52,53]. Las nanopartículas núcleo-corteza de Au y Ag son consideradas como estructuras muy prometedoras para su uso en sensores de moléculas y aplicaciones de bio-diagnóstico, donde sus propiedades plasmónicas únicas son sensibles a la presencia de componentes químicos o moléculas [54,55,56].

Este tipo de nanopartículas de $\text{Ag}_{\text{NÚCLEO}}-\text{Au}_{\text{CORTEZA}}$ son especialmente interesantes para estas aplicaciones, dado que un núcleo de Ag presenta una intensa señal plasmónica, mientras que una corteza de Au aportaría la reactividad molecular, así como una estabilidad química en contra de la agregación y la oxidación [57] y permite la funcionalización mediante el anclaje de moléculas con puente sulfuro. No obstante, la capacidad para obtener esta estructura es imprecisa por el potencial de reducción relativamente alto del Au sobre Ag [52,53]. Habitualmente, se obtienen nanopartículas cuasi núcleo-corteza con imperfecciones tales como espacios o agujeros en la corteza de Au, aleación Ag-Au o incluso la eliminación completa del núcleo de Ag [58,59,60].
Tradicionalmente, la estructura \(\text{Au}_{\text{NÚCLEO}}-\text{Ag}_{\text{CORTÉZA}} \) no ha sido considerada para aplicaciones como sensor, debido a que la exposición al aire de la plata conduce a la oxidación superficial o a la agregación de nanopartículas. Sin embargo, ha sido demostrado que esta disposición de nanopartícula puede implicar una mayor resistencia de la Ag a la oxidación [61,62,63]. Esta mejora de la estabilidad de Ag es bastante sorprendente. El punto clave de esta observación reside en el control del espesor de la corteza de Ag en un rango donde puede tener lugar la transferencia electrónica del núcleo de Au a la corteza de Ag [61,62]. De este modo, esta nanopartícula podría ser utilizada para desarrollar sensores plasmónicos, y enfatiza la importancia del control preciso del núcleo y la corteza para las propiedades del material resultante.

Con el fin de fabricar de un modo preciso nanopartículas de núcleo-corteza controlando tanto el diámetro del núcleo como el espesor de la corteza, este apartado del capítulo 5 está dividido en cuatro secciones. En primer lugar, estimaremos la proporción atómica por nanopartícula de Au y Ag necesaria para fabricar nanopartículas de tipo núcleo-corteza en las configuraciones \(\text{Ag}_{\text{NÚCLEO}}-\text{Au}_{\text{CORTÉZA}} \) y \(\text{Au}_{\text{NÚCLEO}}-\text{Ag}_{\text{CORTÉZA}} \). Este estudio preliminar nos permitirá establecer las condiciones de trabajo requeridas en ambos magnetrones, de modo que la combinación de los dos vapores generados proporcione las nanopartículas deseadas. En segundo lugar, se caracterizará morfológicamente con AFM las nanopartículas de Ag y Au en función de la longitud de agregación. Según la altura promedio de la distribución de alturas, el ritmo de depósito y la longitud de agregación, estableceremos qué configuración de nanopartícula de núcleo-corteza es posible obtener, de acuerdo con la proporción atómica núcleo-corteza. Por último, realizaremos medidas de XPS, para estudiar su composición química promedio y de HRTEM, para analizar individualmente las nanopartículas fabricadas.

5.5.2 Estudio teórico del cociente atómico corteza/núcleo por nanopartícula en función del diámetro del núcleo y el espesor de corteza

Hemos demostrado que la técnica MICS es capaz de fabricar nanopartículas de un elemento y de aleación bimetálica y trimetálica. En esta sección, mostraremos como la variación de las longitudes de agregación de dos magnetrones encendidos, nos permite fabricar
nanopartículas con estructura núcleo-corteza. Para este tipo de nanopartículas, previamente ha de generarse el núcleo, y éste ser recubierto con un determinado espesor por átomos procedentes del vapor generado de un segundo magnetrón. Esta primera premisa nos está determinando la configuración de los magnetrones que tendrá nuestro sistema (Fig. 5.16). El magnetrón cuyo blanco deseamos que sea el núcleo de la nanopartícula fabricada, estará dispuesto a una mayor longitud de agregación, mientras que el magnetrón con blanco más cercano al diafragma, representará la corteza de la nanopartícula fabricada. De este modo, los primeros átomos arrancados, se agregarán formando el núcleo y en el camino de vuelo hacia el diafragma, se verán rodeados por el segundo vapor saturado.

Asimismo, como fue estudiado en el apartado 5.3 y 5.4, para unas condiciones de trabajo en el equipo MICS, somos capaces de fabricar depósitos de nanopartículas de un determinado diámetro promedio con un determinado ritmo de depósito por unidad de área y tiempo. Es decir, conocemos un valor experimental del volumen total de nanopartículas depositado por unidad de tiempo y, por ende, una aproximación experimental del número de átomos depositados por unidad de tiempo con un solo magnetrón. Esta aproximación constituye la base para nuestra estimación teórica del cociente atómico corteza/núcleo por nanopartícula.

Una nanopartícula de tipo núcleo-corteza de volumen V puede ser vista como un núcleo esférico de volumen $V_{\text{NÚCLEO}}$, bajo una corteza de volumen $V_{\text{CORTEZA}} = V - V_{\text{NÚCLEO}}$ (Fig. 5.17). Tomando como referencia la densidad de Au y Ag en volumen, el peso molecular de cada elemento y el número de Avogadro, puede calcularse el número de átomos depositado por unidad de tiempo, y la corteza o el núcleo, y el cociente de ambos, define el cociente atómico corteza/núcleo experimental por nanopartícula. La aproximación del cociente atómico corteza/núcleo teórico por nanopartícula parte de la suposición de que por cada átomo de núcleo, se deposita un átomo de corteza. De este modo, el cociente atómico experimental es igual al cociente atómico teórico multiplicado por el cociente del número de eventos por unidad de área por tiempo corteza-núcleo. Si realizamos este cálculo para distintos volúmenes de núcleo y corteza (esto es, distintos diámetros de núcleo, bajo diferentes espesores de corteza), estaremos...
Capítulo 5. Fabricación y caracterización de nanopartículas de composición, estructura y tamaño controladas sobre Si(100) fabricadas mediante la técnica MICS

estimando tablas de referencia de nanopartículas de tipo núcleo-corteza, dependientes de los materiales a fabricar. Las tablas 5.5 y 5.6 recopilan los cocientes atómicos con la aproximación teórica por nanopartícula bajo esta hipótesis mencionada para las configuraciones $Ag_{NÚCLEO}$ - $Au_{CORTEZA}$ y $Au_{NÚCLEO}$ - $Ag_{CORTEZA}$, respectivamente.

<table>
<thead>
<tr>
<th>Diámetro del núcleo Ag (nm)</th>
<th>Espesor de la corteza Au (nm)</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>26.2</td>
<td>63.5</td>
<td>124.9</td>
<td>216.6</td>
<td>344.6</td>
<td>514.9</td>
<td>733.5</td>
<td>1006.6</td>
<td>1340.1</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>11.8</td>
<td>26.2</td>
<td>48.7</td>
<td>81.0</td>
<td>124.9</td>
<td>182.3</td>
<td>255.0</td>
<td>344.6</td>
<td>453.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7.1</td>
<td>14.7</td>
<td>26.2</td>
<td>42.2</td>
<td>63.5</td>
<td>90.8</td>
<td>124.9</td>
<td>166.6</td>
<td>216.6</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td>4.9</td>
<td>9.7</td>
<td>16.7</td>
<td>26.2</td>
<td>38.6</td>
<td>73.6</td>
<td>97.1</td>
<td>124.9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3.7</td>
<td>7.1</td>
<td>11.8</td>
<td>18.1</td>
<td>26.2</td>
<td>36.3</td>
<td>48.7</td>
<td>63.5</td>
<td>81.0</td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td>2.9</td>
<td>5.4</td>
<td>8.9</td>
<td>13.4</td>
<td>19.1</td>
<td>26.2</td>
<td>34.7</td>
<td>44.9</td>
<td>56.8</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2.4</td>
<td>4.4</td>
<td>7.1</td>
<td>10.5</td>
<td>14.7</td>
<td>19.9</td>
<td>26.2</td>
<td>33.6</td>
<td>42.2</td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td>2.0</td>
<td>3.7</td>
<td>5.8</td>
<td>8.5</td>
<td>11.8</td>
<td>15.8</td>
<td>20.6</td>
<td>26.2</td>
<td>32.7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1.8</td>
<td>3.1</td>
<td>4.9</td>
<td>7.1</td>
<td>9.7</td>
<td>12.9</td>
<td>16.7</td>
<td>21.1</td>
<td>26.2</td>
</tr>
</tbody>
</table>

Tabla 5.5 Cociente atómico teórico núcleo/corteza para nanopartículas de núcleo de Ag y corteza de Au, en función del diámetro de núcleo y del espesor de corteza, de acuerdo con la Fig. 5.17. La configuración sombreada en amarillo coincide con un punto experimental de la tabla 5.7.

<table>
<thead>
<tr>
<th>Diámetro del núcleo Au (nm)</th>
<th>Espesor de la corteza Ag (nm)</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>25.8</td>
<td>62.5</td>
<td>123.1</td>
<td>213.4</td>
<td>339.4</td>
<td>507.1</td>
<td>722.5</td>
<td>991.5</td>
<td>1320.0</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>11.6</td>
<td>25.8</td>
<td>47.9</td>
<td>79.8</td>
<td>123.1</td>
<td>179.6</td>
<td>251.1</td>
<td>339.4</td>
<td>446.2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6.9</td>
<td>14.5</td>
<td>25.8</td>
<td>41.6</td>
<td>62.5</td>
<td>89.4</td>
<td>123.1</td>
<td>164.1</td>
<td>213.4</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td>4.8</td>
<td>9.6</td>
<td>16.5</td>
<td>25.8</td>
<td>38.0</td>
<td>53.5</td>
<td>72.5</td>
<td>95.6</td>
<td>123.1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3.6</td>
<td>6.9</td>
<td>11.6</td>
<td>17.8</td>
<td>25.8</td>
<td>35.8</td>
<td>47.9</td>
<td>62.5</td>
<td>79.8</td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td>2.9</td>
<td>5.4</td>
<td>8.8</td>
<td>13.2</td>
<td>18.9</td>
<td>25.8</td>
<td>34.2</td>
<td>44.2</td>
<td>56.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2.4</td>
<td>4.3</td>
<td>6.9</td>
<td>10.3</td>
<td>14.5</td>
<td>19.6</td>
<td>25.8</td>
<td>33.1</td>
<td>41.6</td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td>2.0</td>
<td>3.6</td>
<td>5.7</td>
<td>8.3</td>
<td>11.6</td>
<td>15.6</td>
<td>20.3</td>
<td>25.8</td>
<td>32.2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1.7</td>
<td>3.1</td>
<td>4.8</td>
<td>6.9</td>
<td>9.6</td>
<td>12.7</td>
<td>16.5</td>
<td>20.8</td>
<td>25.8</td>
</tr>
</tbody>
</table>

Tabla 5.6 Cociente atómico teórico núcleo/corteza para nanopartículas de núcleo de Au y corteza de Ag, en función del diámetro de núcleo y del espesor de corteza, de acuerdo con la Fig. 5.17. Las configuraciones sombreadas en amarillo coinciden con puntos experimentales de la tabla 5.8.
5.5.3 Caracterización morfológica con AFM y condiciones de trabajo

Las tablas de referencia 5.5 y 5.6 son el punto inicial de trabajo para la fabricación de nanopartículas de tipo núcleo-corteza de forma precisa. Los depósitos de nanopartículas de Au y Ag fueron caracterizados morfológicamente (véase sección 5.3), de modo que conocemos las condiciones óptimas de trabajo del equipo para fabricar el núcleo de una nanopartícula de tipo núcleo-corteza. El magnetrón con Pd es fijado a una longitud de agregación de 195 mm. Los flujos de Ar aplicados a los magnetrones con Au y Ag son igualados a 5 sccm, pero el Φ\text{r} dependerá del núcleo que deseemos generar. En el caso de un núcleo de Ag, Φ\text{r} se mantiene constante a 80 sccm, mientras que si el núcleo es de Au, Φ\text{r} = 70 sccm. De este modo, Φ_{\text{pd}} = Φ_{\text{r}} – (Φ_{\text{Ag}} + Φ_{\text{Au}}). Esto condiciona los parámetros de trabajo con los que debemos fabricar la corteza, bajo unas condiciones de flujo total de Ar y a una longitud de agregación inferior a la que es dispuesto el magnetrón utilizado como núcleo (Fig. 5.16). Los tiempos de depósito son fijados con el fin de producir depósitos bastante inferiores a una monocapa (típicamente, entre 15 y 20 s). A continuación, expondremos los parámetros de trabajo aplicados en los tres magnetrones para fabricar nanopartículas de tipo núcleo-corteza (tablas 5.7 y 5.8).

La tabla 5.7 expone las condiciones de trabajo aplicadas en la MICS en el caso de Ag\text{NÚCLEO}-Au\text{CORTIEZA}, mientras que la tabla 5.8, recopila los parámetros de trabajo para Au\text{NÚCLEO}-Ag\text{CORTIEZA}. Para ambas configuraciones, primero deben ser seleccionados los parámetros de trabajo del elemento que actúe de núcleo. Una vez definidas las condiciones de trabajo del núcleo, configuramos el magnetrón con el blanco escogido como corteza, con el fin de fabricar la nanopartícula deseada. Los valores de ζ y número de NPs/µm²·s son extraídos siguiendo el procedimiento descrito en la sección 3.3.1. Nótese que las muestras Au\text{NÚCLEO} 3, 4 y 5 (tabla 5.8) se corresponden con las imágenes de AFM de la figura 5.7. La última columna de las tablas 5.7 y 5.8 es el cociente resultado de la división del número de átomos de la corteza depositados por unidad de tiempo por el número de átomos del núcleo depositados por unidad de tiempo. Estos valores han de ser comparados con las tablas 5.5 y 5.6. De este modo, podemos observar que, para el ejemplo de una nanopartícula Ag\text{NÚCLEO}-Au\text{CORTIEZA}, el cociente atómico experimental de Ag\text{NÚCLEO} 1 con Au\text{CORTIEZA} de la tabla 5.7 (1,4, en la tabla 5.7) es muy próximo al cociente de un núcleo de diámetro de 5 nm y una corteza de espesor de 1 nm (cociente atómico teórico = 1,8, en la tabla 5.5). A esta configuración la denominaremos por tanto Ag\text{NÚCLEO} 1-Au\text{CORTIEZA}. Para fabricar una nanopartícula Au\text{NÚCLEO}-Ag\text{CORTIEZA}, si comparamos las tablas 5.8 y 5.6, vemos que sería posible fabricar tres nanopartículas distintas con estas condiciones de trabajo presentadas:

i) Au\text{NÚCLEO} 4 - Ag\text{CORTIEZA} : núcleo de 5 nm de diámetro, corteza de 1 nm de espesor.

ii) Au\text{NÚCLEO} 5 - Ag\text{CORTIEZA} : núcleo de 5 nm de diámetro, corteza de 1.5 nm de espesor.

iii) Au\text{NÚCLEO} 6 - Ag\text{CORTIEZA} : núcleo de 2 nm de diámetro, corteza de 1.5 nm de espesor.

Es importante resaltar que los valores teóricos de cocientes atómicos mostrados en las tablas 5.5 y 5.6 corresponden a casos ideales: por cada átomo de núcleo se deposita un átomo de corteza. No obstante, este factor no se cumple desde el punto de vista experimental. La
condición 1:1 núcleo-corteza, solo implica que la probabilidad de generación de la nanopartícula deseada sea más alta. Si estudiamos el número de \(NPs/\mu m^2 \cdot s \) para las configuraciones mencionadas, obtenemos las siguientes relaciones:

\[
\begin{align*}
\text{Ag}_\text{NÚCLEO} 1 - \text{Au}_\text{CORTEZA} & \quad (1.5 \text{ núcleo} : 1 \text{ corteza}) \\
\text{Au}_\text{NÚCLEO} 2 - \text{Ag}_\text{CORTEZA} & \quad (1.7 \text{ núcleo} : 1 \text{ corteza}) \\
\text{Au}_\text{NÚCLEO} 3 - \text{Ag}_\text{CORTEZA} & \quad (1 \text{ núcleo} : 1.9 \text{ corteza}) \\
\text{Au}_\text{NÚCLEO} 4 - \text{Ag}_\text{CORTEZA} & \quad (1 \text{ núcleo} : 8.4 \text{ corteza})
\end{align*}
\]

Hasta una relación 1:2 o 2:1, implica que el elemento con un factor 2 se depositará en una doble proporción con respecto al otro elemento. Es decir, que encontraremos una mayor estadística de nanopartículas del elemento con factor 2 en el depósito resultante. Sin embargo, independientemente de si son nanopartículas solo del elemento del núcleo o de la corteza, presentarán una altura promedio diferente de la nanopartícula de núcleo-corteza, que podrían ser eliminadas con el uso del filtro de un cuadrupolo de masas. Es por ello que una relación 1:2 es una proporción bastante razonable y próxima a las condiciones ideales. Teniendo en cuenta
Capítulo 5. Fabricación y caracterización de nanopartículas de composición, estructura y tamaño controlados sobre Si(100) fabricadas mediante la técnica MICS

La caracterización morfológica, las configuraciones de nanopartículas núcleo-corteza que podemos fabricar son Ag_NÚCLEO-1-Au_CORTIZA, Ag_NÚCLEO-4-Ag_CORTIZA y Au_NÚCLEO-5-Ag_CORTIZA. En nuestro caso, escogeremos las configuraciones Ag_NÚCLEO-1-Au_CORTIZA (tabla 5.7) y Au_NÚCLEO-4-Ag_CORTIZA (tabla 5.8). Nuestro objetivo es demostrar que es posible fabricar nanopartículas de núcleo y corteza de forma precisa, independientemente de los elementos escogidos. Ag_NÚCLEO-1-Au_CORTIZA y Au_NÚCLEO-4-Ag_CORTIZA presentarían, a priori, el mismo diámetro de núcleo (Ag o Au) y mismo espesor de corteza (Au o Ag). No obstante, nos limitaremos a la configuración de nanopartícula Ag_NÚCLEO-1-Au_CORTIZA. Hemos establecido las condiciones de trabajo para la fabricación de la nanopartícula Au_NÚCLEO-Ag_CORTIZA, pero la investigación está en curso y para la redacción del manuscrito, no ha sido posible tener finalizado un estudio exhaustivo.

Las figuras 5.18 a, b y c presentan imágenes de AFM representativas de los depósitos de nanopartículas de Au (muestran Au_CORTIZA de la tabla 5.7), Ag (Ag_NÚCLEO-1 de la tabla 5.7) y Ag_NÚCLEO-Au_CORTIZA sobre sustratos de Si, respectivamente. El depósito de nanopartículas de Ag_NÚCLEO-Au_CORTIZA ha sido realizado fijando los parámetros de trabajo detallados en la tabla 5.7 en los tres magnetrones, definiendo la configuración Ag_NÚCLEO-1-Au_CORTIZA. El tiempo de depósito es de 20 s. Debajo de cada imagen de AFM, ilustramos un perfil de las nanopartículas depositadas, cuyo trazado es señalado en su imagen correspondiente a través de una línea azul. Para el caso de Ag_NÚCLEO-1-Au_CORTIZA (Fig. 5.18c), realizamos la distribución de alturas de las nanopartículas promedio de varias imágenes de AFM (véase subapartado 3.3.1), extrayendo que es de 6.8 ± 1.5 y el número de NPs/µm²·s, de 14 ± 2.

Figura 5.18 Imágenes de AFM de nanopartículas de Ag (a), Au (b) y Ag-Au (c) en disposición de los magnetones para fabricar nanopartículas de núcleo-corteza sobre Si(100) en un área de barrido de 1 x 1 µm². Las condiciones de trabajo de la MICS se corresponden con la configuración Ag_NÚCLEO-1-Au_CORTIZA (tabla 5.7). Todas las imágenes de AFM están a la misma escala de alturas. Inferior a cada imagen de AFM, se ha añadido un perfil de las nanopartículas extraído de la línea marcada en cada imagen (línea azul).
5.5.4 Caracterización química con XPS

Tras haber sido realizada la caracterización morfológica del AFM, el siguiente paso es estudiar la composición química. Bajo la configuración de la MICS para fabricar nanopartículas Ag\textsubscript{NÚCLEO} 1-Au\textsubscript{CORTEZA}, aumentamos el tiempo de depósito hasta 30 min con el fin de producir una multicapa de nanopartículas adecuada.

En el caso de nanopartículas núcleo-corteza, es necesario realizar un análisis de la composición en profundidad. De este modo, será posible apreciar si existe una variación en la concentración del núcleo y la corteza, cuando se está efectuando el perfil. El decapado superficial es realizado por bombardeo iónico de la muestra con Ar+. El bombardeo iónico y el registro del espectro de XPS son aplicados consecutivamente. Los tiempos de bombardeo son de 0, 15, 30, 45, 62, 82 y 103 min. La distancia de la superficie original que es detectada por el XPS es calculada a partir de la calibración de la velocidad de bombardeo, realizada para películas metálicas [64]. De los espectros generales de la muestra Ag\textsubscript{NÚCLEO} 1-Au\textsubscript{CORTEZA} son extraídas las concentraciones en porcentaje atómico de cada uno de los elementos presentes en el sistema estudiado. La figura 5.19 presenta las intensidades relativas de los niveles internos de Si 2p, O 2p, C 1s, Au 4f y Ag 3d en función de la distancia desde la superficie original y el tiempo de sputtering con Ar+. A medida que incrementamos el tiempo de sputtering, disminuye la

![Figura 5.19](image-url)
Capítulo 5. Fabricación y caracterización de nanopartículas de composición, estructura y tamaño controlados sobre Si(100) fabricadas mediante la técnica MICS

contribución del nivel interno de C 1s y O 1s, así como aumenta la contribución del pico Si 2p. Estamos progresivamente eliminando la contaminación resultante de la exposición al aire durante la transferencia de las muestras desde la MICS al equipo de medida de XPS. Además, el aumento del pico del nivel interno Si 2p indica que nuestra multicapa no es tan compacta como en el caso de las muestras de nanopartículas de aleación para XPS (véase sección 5.4.3). El detalle de la figura 5.19 es un zoom de las concentraciones en porcentaje atómico de los picos de los niveles internos de Ag 3d y Au 4f. Observamos que las intensidades relativas de ambos elementos presentan una evolución similar con la distancia desde la superficie original hasta el 1 nm de perfil de profundidad. Recientemente, A. G. Shard [65] reportó un método para la interpretación de los datos de XPS en nanopartículas de núcleo-corteza, que aplicado a nuestro sistema estima un espesor de corteza de este mismo orden de magnitud. El valor de 1 nm es similar al espesor de corteza previsto para la nanopartícula Ag\textsubscript{NÚCLEO} 1-Au\textsubscript{CORTÉZA}, según la caracterización morfológica.

Figura 5.20 Espectros de los picos de los niveles internos de Ag 3d (a) y Au 4f de las nanopartículas crecidas con la configuración de la MICS de Ag\textsubscript{NÚCLEO} 1-Au\textsubscript{CORTÉZA}.
Los espectros de los niveles internos de Ag 3d y Au 4f son expuestos en la figura 5.20, indicando, en cada uno, la distancia a la superficie original detectada por XPS, respectivamente. La intensidad ha sido expresada en intensidad normalizada, y para facilitar la comparación, los espectros han sido desplazados en el eje Y. Dado la identificación clara del pico interno del Si 2p, la escala de energías de enlace es calibrada con respecto al pico del nivel del núcleo de Si 2p, a 99 eV.

La energía de enlace del pico del nivel interno Ag 3d\(_{5/2}\) asociado a las nanopartículas (Fig. 5.20a), aumenta de 367.4 a 368.0 eV con la distancia a la superficie (línea discontinua verde) y está situado a menores energías de enlace que el pico metálico de la plata en volumen (368.2 eV). Este desplazamiento de energía es coherente con la presencia de nanopartículas. La energía de enlace del pico de Ag 3d\(_{5/2}\) en nanopartículas de Ag depende del tamaño de la nanopartícula y del recubrimiento [41]. Este leve desplazamiento hacia mayores energías de enlace puede ser debido a una diferencia de carga entre el sustrato y las nanopartículas depositadas. Además, es importante destacar que el pico del nivel interno Ag 3d\(_{5/2}\) no se observa asimetría alguna que evidencie la presencia de este elemento en otro estado, a pesar de la conocida facilidad de la plata para oxidarse al aire.

La figura 5.20b presenta la evolución del nivel interno de Au 4f. Vemos que el pico del nivel interno Au 4f\(_{7/2}\) debe ser ajustado a dos componentes. Una primera componente (Au 4f\(_{7/2}\) 1) tendría asociada una energía de enlace que varía de 83.4 a 83.6 eV, mientras que la segunda componente (Au 4f\(_{7/2}\) 2) aumenta de 84.4 a 84.7 eV. Estos desplazamientos en comparación con el pico metálico de Au en volumen están de acuerdo con la presencia de nanopartículas. Aunque ambas contribuciones aumenten con la energía de enlace, la intensidad de Au 4f\(_{7/2}\) 1 disminuye según crece la intensidad de Au 4f\(_{7/2}\) 2 a medida que nos alejamos de la superficie original. En el caso del sistema de nanopartículas núcleo-corteza, la señal del pico del nivel interno de Au 4f procedería, en primera aproximación, de una corteza de un espesor de pocas capas atómicas. Esta doble contribución podría estar asociada a una contribución de volumen, Au 4f\(_{7/2}\) 1, que va disminuyendo su intensidad en pro de la contribución superficial, Au 4f\(_{7/2}\) 2.

5.5.5 Caracterización morfológica y composicional con TEM

Las nanopartículas de Ag\(_{\text{NÚCLEO}}\)-Au\(_{\text{CORTÉZA}}\) son depositadas directamente en una rejilla de TEM recubierta de carbono. La figura 5.21a presenta una imagen de TEM representativa a baja magnificación del depósito de nanopartículas, bajo las condiciones de trabajo de la MICS según la configuración Ag\(_{\text{NÚCLEO}}\) 1-Au\(_{\text{CORTÉZA}}\) (tabla 5.7). La figura 5.21b presenta una imagen de HRTEM de una nanopartícula representativa. Como fue mencionado en la subapartado 5.4.4, el oro y la plata presentan parámetros de red similares, no siendo directo su análisis estructural. De este modo, focalizaremos este análisis en la caracterización química de la nanopartícula a través del EDX. Antes de proceder al análisis EDX, es importante observar con atención la distribución de nanopartículas presente, comparando las figuras 5.21a y b. Vemos la existencia de nanopartículas Janus, nanopartículas de Au y nanopartículas que, a continuación, se verificará su
estructura de tipo núcleo-corteza (Fig. 5.21b). Cada clase de nanopartícula presenta un diámetro diferente, de modo que, como fue explicado en la sección 5.4.4, el uso del filtro de un cuadrupolo de masas permitiría escoger el tipo de nanopartículas deseadas.

En la figura 5.21b, se ha trazado un perfil de línea (línea roja). La evolución de la intensidad normalizada de las líneas L de Au y Ag en dicha línea es mostrada en la figura 5.21c. Las líneas discontinuas de la figura 5.21c son líneas guía para el lector. Como fue explicado en la sección 5.4.4, es necesario reducir la corriente del haz de electrones con el fin de no destruir la nanopartícula barrida, lo que se traduce en una cierta dispersión en los puntos del perfil (Fig. 5.21c). Observamos que las concentraciones de Au y Ag comienzan en el mismo punto e inicialmente, aumentan simultáneamente. A partir de 2.2 nm, la línea L de Au aumenta y desciende bruscamente hasta 3.2 nm. Este descenso de la línea L de Au, viene acompañado de un incremento en intensidad de la línea L de Ag. La intensidad de Ag y Au se estabiliza entre los 4 y 8 nm del perfil de barrido. A partir de los 8 nm, la línea L de Ag desciende paulatinamente, mientras que la línea L de Au, vuelve a experimentar un rápido aumento y descenso, entre los 8 y 9 nm del perfil. Este tipo de comportamiento durante el barrido de un perfil de línea, coincide con la descripción de una nanopartícula de núcleo-corteza [49]. En nuestro caso, se corresponde con una nanopartícula de núcleo de Ag de ≈ 5.6 nm de diámetro, recubierta por una corteza de ≈ 1.2 nm de espesor, dando resultado a una nanopartícula AgNÚCLEO–AuCORTEZA de 8 nm de diámetro. Este resultado coincide con los valores extraídos de la caracterización morfológica con AFM (véase apartado 5.5.3). En otras palabras, la caracterización realizada con HRTEM nos permite confirmar tres puntos: i) la técnica MICS nos permite fabricar nanopartículas de tipo núcleo-corteza, ii) podemos controlar tanto el tamaño del núcleo como el espesor de la corteza; y iii) si realizamos una calibración previa de las magnetrones de forma individual y comparamos los resultados extraídos con un estudio teórico para los blancos a depositar, podemos conocer la estructura núcleo-corteza que va a ser generada, previamente a su fabricación.
5.6 Conclusiones

Hemos presentado una nueva ruta de ingeniería de nanopartículas denominada MICS. La técnica desarrollada por nuestro grupo de investigación está basada en el diseño modificado de una fuente de agregados ICS estándar donde un único magnetrón de 2” es reemplazado por tres magnetrones de 1” de diámetro. Se ha demostrado que el control individual de los parámetros de trabajo de los tres magnetrones permite la fabricación de nanopartículas con composición química ajustable.

Hemos caracterizado individualmente cada magnetrón con el fin de verificar las similitudes y diferencias del equipo MICS con respecto a una fuente de agregados estándar, fabricando nanopartículas de Au y Ag. Se ha visto que la MICS dispone de nuevos parámetros de fabricación: el flujo total de gas de sputtering en la zona de agregación y su distribución en cada toma de los tres magnetrones, así como la posición relativa de cada magnetrón en la zona de agregación. Una vez calibrados los magnetrones individuales, se procedió a la generación de nanopartículas de estructura multicomponente. Han sido fabricadas y caracterizadas nanopartículas de aleación bimetálicas (Au-Ag) y trimétálicas (Au-Ag-Pd) de alta pureza con estequiometría controlada. En el caso de las nanopartículas aleadas, los datos de XPS muestran claramente que las nanopartículas presentan las estequiometrias deseadas de forma precisa. Las medidas de HRTEM evidencian que los elementos están distribuidos homogéneamente en las nanopartículas formando una aleación, de acuerdo con su estequiometria correspondiente.

Asimismo, hemos establecido un protocolo de trabajo para la fabricación de nanopartículas de tipo núcleo–corteza, controlando de forma precisa tanto el diámetro del núcleo como el espesor de la corteza. Esta metodología ha sido aplicada para el caso de nanopartículas de AgNÚCLEO-AuCORTÉZA. Partiendo de las calibraciones individuales de los magnetrones, puede conocerse el tamaño del núcleo y el espesor de la corteza, con gran exactitud. Las estimaciones extraídas de la calibración previa, coinciden de forma precisa con las caracterizaciones realizadas mediante HRTEM.

Bibliografía

Capítulo 5. Fabricación y caracterización de nanopartículas de composición, estructura y tamaño controlados sobre Si(100) fabricadas mediante la técnica MICS

Capítulo 5. Fabricación y caracterización de nanopartículas de composición, estructura y tamaño controlados sobre Si(100) fabricadas mediante la técnica MICS

Capítulo 5. Fabricación y caracterización de nanopartículas de composición, estructura y tamaño controlados sobre Si(100) fabricadas mediante la técnica MICS

Conclusiones
Han sido fabricadas nanopartículas metálicas con control de la composición química, estructura y distribución de tamaños. A continuación se exponen las conclusiones más importantes de este trabajo.

Nanopartículas de Co sobre sustratos de Si(100)

Nanopartículas de cobalto de un tamaño de 10 nm han sido fabricadas con una fuente de agregados ICS y depositadas sobre Si(100) con su capa de óxido nativo. La caracterización morfológica y estructural ha mostrado que la altura promedio obtenida mediante AFM ($\bar{z} = 10.3 \pm 1.8$ nm) y el diámetro promedio obtenido mediante TEM ($\bar{x} = 9.6 \pm 2.0$ nm) coincidían, dentro de los intervalos de incertidumbre. Las nanopartículas presentan una geometría esférica y no se deforman durante el depósito, ya que aterrizan suavemente sobre el sustrato. Exhiben un carácter policristalino con una estructura hcp y menor porcentaje una estructuras fcc.

Se han extraído las distribuciones de distancias interpartícula a los primeros, segundos y terceros vecinos, ajustadas según el modelo teórico de Srinivasa y Haenggi. El estudio de las evoluciones de las distancias a primeros vecinos experimentales y simuladas (suponiendo un sistema ideal donde la posición final de cada nanopartícula depositada no presenta influencia debida a las interacciones interpartícula) ha permitido la identificación de un recubrimiento superficial crítico de 3.5% de una monocapa. Por debajo de este umbral, las nanopartículas son depositadas con una distribución aleatoria. Cuando el porcentaje de recubrimiento es superior al 3.5%, la localización final de cada nanopartícula durante el depósito está influida por las nanopartículas ya depositadas, debido a interacciones de carácter repulsivo.

La rugosidad superficial de sistemas de nanopartículas de Co depositadas sobre Si(100) fue estudiada en el marco de la teoría del escalado dinámico con AFM. Dos áreas de barrido fueron escogidas para estudiar tanto la rugosidad a la nanoescala ($1 \times 1 \mu m^2$) como a la microescala ($10 \times 10 \mu m^2$) mediante el análisis de las PSD y σ_{RMS}. En el caso de áreas de barrido $1 \times 1 \mu m^2$, fueron observadas dos periodicidades características que se corresponden con el tamaño promedio de las nanopartículas (10 nm) y la distancia interpartícula borde a borde a los primeros vecinos. Para áreas de barrido de $10 \times 10 \mu m^2$, fueron extraídos dos exponentes de rugosidad: α_3 y α_4. α_3 exhibe la rugosidad local de la superficie y está asociado al exponente de rugosidad intrínseco a las nanopartículas aisladas. α_4 corresponde a la influencia de las interacciones interpartícula que afectan la distribución final de las nanopartículas sobre la superficie.

Por primera vez se ha realizado un estudio de la mojabilidad exclusivamente en la nanoescala. En él, se ha visto que sustratos planos de Si(100), inicialmente hidrofílico, pasa a ser altamente hidrófobo con depósitos de nanopartículas por debajo de la monocapa. Estos estudios de mojabilidad mostraron que el ángulo de contacto aumenta exponencialmente con el recubrimiento hasta estabilizarse alrededor de 110° a partir de un 4.7% de recubrimiento. La rugosidad superficial es el factor determinante de este comportamiento en la mojabilidad, siendo despreciables los factores químicos de la superficie. La correlación de este estudio con el análisis de las curvas PSD evidencia que α_3 es el exponente de rugosidad dominante para...
porcentajes de recubrimiento inferiores al 3.5%, donde el ángulo de contacto aumenta con el recubrimiento. A partir de este valor umbral de recubrimiento, α_4 se convierte en el término dominante de la rugosidad superficial y el ángulo de contacto comienza a estabilizarse en función del recubrimiento.

Nanopartículas de Co embebidas en matrices de Au y V/Au

La respuesta magnética de las nanopartículas está influenciada tanto por la naturaleza de las matrices de Au y V como por el porcentaje de recubrimiento de nanopartículas. Los ciclos de histéresis a 10 K presentan una forma característica de anisotropía uniáxica y no se observan ni efectos de anisotropía de forma ni exchange bias. Para ambos sistemas, 3.5% de una monocapa es un recubrimiento superficial crítico, con respecto a las propiedades magnéticas observadas. La coercitividad aumenta con el porcentaje de recubrimiento, sin mostrar una transición monodominio a multidominio.

En el sistema de Au/Co/Au, para recubrimientos superficiales inferiores a 3.5%, las nanopartículas presentan una respuesta magnética de nanopartículas aisladas, mientras que para recubrimientos superiores, existe una influencia de las interacciones interpartícula. Las curvas ΔM y las medidas de relajación magnética verificaron la dominancia de interacciones dipolares originadas por las nanopartículas en contacto. Existe una distribución de tamaños magnéticos que resulta en una competición entre las nanopartículas aisladas y las nanopartículas que actúan colectivamente. Esta respuesta magnética está influenciada por las interacciones interpartícula dipolares, dando lugar a dos temperaturas de bloqueo.

La respuesta magnética del sistema de V está influenciada fuertemente por los efectos de intercara Co-V. Se observa una única temperatura de bloqueo y una mayor coercitividad con respecto al sistema de Au. Las curvas ΔM y las medidas de relajación muestraron la existencia de interacciones dipolares interpartícula en este sistema. No obstante, el acoplamiento antiferromagnético entre los espines de Co-V, junto con el efecto de comportamiento magnético entre la superficie de la nanopartícula y el asociado al núcleo de la misma, implican una mayor frustración magnética. Esto se traduce en un comportamiento de vidrio de spin, detectado en torno a los 50 K. El desorden magnético extra impediría la interacción dipolar entre los núcleos ferromagnéticos.

Sistema de crecimiento de nanopartículas fabricadas con una fuente de agregados múltiple (MICS)

El equipo MICS permite la fabricación de nanopartículas combinando materiales dispuestos en sus tres magnetrones. Así se puede ajustar la composición química sin perder el control de la distribución de tamaños, en condiciones de UHV. Se han encontrado tres nuevos parámetros de trabajo adicionales a los de una ICS estándar: el flujo total de gas de sputtering en la zona de agregación, las diferencias de flujo de gas de sputtering en cada magnetrón y la posición relativa de cada magnetrón en la zona de agregación. El control individual de los parámetros de trabajo de los tres magnetrones permite la fabricación de nanopartículas con composición química ajustable. En particular, se han empleado blancos de Au, Ag y Pd para
generar nanopartículas de un sólo elemento, donde se ha comprobado la ausencia de contaminación de los otros magnetrones. También se han fabricado sistemas más complejos de nanopartículas de aleación bimetálica Ag-Au y trimetálica Ag-Au-Pd y de tipo núcleo-corteza Ag\textsubscript{NÚCLEO}-Au\textsubscript{CORTÉZA} de alta pureza, a partir del control de los distintos parámetros de trabajo de la MICS. En el caso de nanopartículas de aleación hemos mostrado que es posible controlar la estequiometría de las mismas. Para nanopartículas tipo núcleo-corteza se ha demostrado la efectividad del protocolo desarrollado para controlar de forma precisa tanto el diámetro del núcleo como el espesor de la corteza.