NUEVO PROCEDIMIENTO DE OBTENCIÓN DE VIDRIOS DE OXICARBURO. ESTUDIO DE LOS MECANISMOS DEL PROCESO.

M. ALEJANDRA MAZO FERNÁNDEZ

Memoria presentada para optar al grado de DOCTOR EN CIENCIAS QUÍMICAS

Director:
Prof. Dr. José Luis Oteo Mazo
Dr. Fausto Rubio Alonso

Instituto de Cerámica y Vidrio (C.S.I.C.)
Madrid, Junio 2008
Índice

Justificación y objetivos.

1 INTRODUCCIÓN. 1
 1.1 Vidrios de oxicarburo de silicio. ... 1
 1.1.1 Definición y Antecedentes. 1
 1.1.2 Métodos de Obtención. 3
 1.1.3 Estructura y Propiedades. 5
 1.1.4 Aplicaciones. 9
 1.2 El proceso Sol-gel. Obtención de materiales precerámicos precursores de SiOC. 10
 1.2.1 Mecanismo de Reacción. 11
 1.2.2 Híbridos Orgánico-Inorgánicos. 15
 1.2.2.1 Clasificación de los materiales híbridos... 18
 1.2.2.2 Sistema TEOS/PDMS. ... 22
 1.2.2.2.1 Mecanismo de Reacción ... 24
 1.2.2.3 Otros sistemas. Materiales híbridos orgánico-inorgánicos que contienen enlaces Si-H. 28
 1.3 Pirólisis de híbridos orgánico-inorgánicos. .. 30
 1.3.1 Factores que Influyen en el Proceso de Pirólisis. 30
 • Naturaleza del precursor híbrido orgánico-inorgánico. .. 30
 • Atmósfera durante el tratamiento térmico. ... 31
 • Temperatura, velocidad de calentamiento y tiempo de permanencia a dicha temperatura. 32
 • Tamaño de partícula del precursor, ya sea monolito o partículas finamente divididas... 32
 • Microestructura del híbrido/vidrio. ... 33
 1.3.2 Mecanismo de Pirólisis. 33
 1.3.2.1 Condensación de silanoles residuales. ... 36
 1.3.2.2 Reacciones de redistribución o de intercambio .. 37
 1.3.2.2.1 Redistribución de enlaces Si-O/Si-H.. 38
 1.3.2.2.2 Redistribución de enlaces Si-O/Si-C ... 39
 1.3.2.2.3 Redistribución de enlaces Si-O/Si-O ... 42
 1.3.2.3 Reacciones de mineralización (o Reacciones de ceramización). 44
 1.3.2.3.1 Efecto de los enlaces Si-H en las reacciones de mineralización............... 49
 1.3.2.4 Reducción carbotérmica .. 52
II PROCEDIMIENTO EXPERIMENTAL.

II.1 Procedimiento experimental

II.1.1 Síntesis de Materiales Híbridos Orgánico-Inorgánicos Precursores de Vidrios de Oxicarburo de Silicio

II.1.1.1 Materias primas

II.1.1.2 Composiciones

II.1.1.3 Condiciones de síntesis del híbrido orgánico-inorgánico

II.1.2 Obtención de Vidrios de Oxicarburo de Silicio

II.1.2.1 Condiciones experimentales del tratamiento térmico

SISTEMA TEOS/PDMS

SISTEMA TREOS/PDMS

III EL SISTEMA TEOS/PDMS

III.1 Híbrido orgánico-inorgánico: Características estructurales, textura y microestructura

III.1.1 Análisis Químico

III.1.2 Caracterización Estructural

III.1.2.1 Espectroscopía infrarroja

III.1.2.2 Espectroscopía Raman

III.1.2.3 Resonancia magnética nuclear

III.1.2.3.1 29Si MAS RMN

III.1.2.3.2 13CP MAS RMN

III.1.2.4 Difracción de RX

III.1.3 Caracterización Microestructural y Textural

III.1.3.1 Porosimetría de mercurio

III.1.3.2 Adsorción de nitrógeno

III.1.3.3 Microscopía electrónica de barrido

III.2 Pirólisis y mecanismos de reacción

III.2.1 Influencia de la Temperatura de Tratamiento

III.2.1.1 Caracterización estructural

III.2.1.1.1 Estudio mediante espectroscopía infrarroja

III.2.1.1.2 Estudio mediante espectroscopía Raman

III.2.1.1.3 Estudio mediante resonancia magnética nuclear

III.2.1.1.4 Estudio mediante difracción de RX

III.2.1.2 Contenido en carbono y análisis químico

III.2.1.3 Caracterización microestructural y textural

III.2.1.3.1 Estudio mediante porosimetría de mercurio

III.2.1.3.2 Estudio mediante adsorción de nitrógeno

III.2.1.3.3 Estudio mediante microscopía electrónica de barrido

III.2.1.3.4 Variación de la densidad real
III.2.2 Influencia de la Velocidad de Calentamiento.

III.2.2.1 Caracterización Térmica. ...137
 III.2.2.1.1 Estudio mediante Análisis Termogravimétrico.137
III.2.2.2 Caracterización estructural...143
 III.2.2.2.1 Estudio mediante espectroscopía infrarroja.................................143
 III.2.2.2.2 Estudio mediante espectroscopía Raman.144
 III.2.2.2.3 Estudio mediante difracción de RX...145
III.2.2.3 Contenido en carbono y análisis químico..146
III.2.2.4 Caracterización microestructural y textural..148
 III.2.2.4.1 Estudio mediante porosimetría de mercurio.................................148
 III.2.2.4.2 Estudio mediante adsorción de nitrógeno....................................150
 III.2.2.4.3 Estudio mediante microscopía electrónica de barrido..................152
 III.2.2.4.4 Variación de la densidad real ...154

III.2.3 Influencia del Flujo de Nitrógeno.

III.2.3.1 Caracterización estructural...155
 III.2.3.1.1 Estudio mediante espectroscopía infrarroja.................................155
 III.2.3.1.2 Estudio mediante espectroscopía Raman.156
 III.2.3.1.3 Estudio mediante difracción de RX...157
III.2.3.2 Contenido en carbono y análisis químico..158
III.2.3.3 Caracterización microestructural y textural..159
 III.2.3.3.1 Estudio mediante porosimetría de mercurio.................................159
 III.2.3.3.2 Estudio mediante adsorción de nitrógeno....................................161
 III.2.3.3.3 Estudio mediante microscopía electrónica de barrido..................163
 III.2.3.3.4 Variación de la densidad real ...164

III.2.4 Influencia del Tiempo de Pirólisis.

III.2.4.1 Caracterización estructural...165
 III.2.4.1.1 Estudio mediante espectroscopía infrarroja.................................165
 III.2.4.1.2 Estudio mediante espectroscopía Raman.165
 III.2.4.1.3 Estudio mediante difracción de RX...167
III.2.4.2 Contenido en carbono y análisis químico..168
III.2.4.3 Caracterización microestructural y textural..169
 III.2.4.3.1 Estudio mediante porosimetría de mercurio.................................169
 III.2.4.3.2 Estudio mediante adsorción de nitrógeno....................................171
 III.2.4.3.3 Estudio mediante microscopía electrónica de barrido..................171
 III.2.4.3.4 Variación de la densidad real ...174

III.2.5 Influencia del Tipo de Procesamiento.

III.2.5.1 Caracterización estructural...175
 III.2.5.1.1 Estudio mediante espectroscopía infrarroja.................................175
 III.2.5.1.2 Estudio mediante espectroscopía Raman.175
 III.2.5.1.3 Estudio mediante difracción de RX...177
IV. EL PROCESADO POR LA “VÍA CERÁMICA”/ LA “VÍA CERÁMICA” NUEVA ALTERNATIVA DE PROCESADO

IV.1 Obtención de la pieza en “verde”. 188

IV.1.1 Preparación de Polvos Para la Obtención de Piezas en “Verde”. 188

IV.1.1.1 Tratamiento térmico previo. 188

IV.1.1.2 Molienda. 188

• Variación del tamaño de partícula en función del tiempo de molienda. 188

IV.1.1.3 Pirólisis 1100 ºC. 189

IV.1.1.4 Conformado de la pieza en “verde”. 190

IV.1.2 Caracterización de los Productos Intermedios Hasta la Pieza en “Verde”. 190

IV.1.2.1 Variación del contenido en carbono y análisis químico. 190

IV.1.2.2 Caracterización estructural. 192

• Estudio mediante espectroscopía infrarroja. 192

IV.1.2.3 Caracterización microestructural. 193

• Estudio mediante porosimetría de mercurio. 193

• Estudio mediante Adsorción de nitrógeno. 197

• Microscopía electrónica de barrido. 199

• Variación de la densidad real. 201

IV.2 Sinterización de polvos de oxicarburo. 201

IV.2.1 Microscopía de Calefacción. 201

IV.2.2 Caracterización de los Materiales Densos de Vidrio de Oxicarburo Obtendos. 204

IV.2.2.1 Variación del contenido en carbono y análisis químico. 204

IV.2.2.2 Estructura de los oxicarburos obtenidos a 1550 ºC. 208

• Estudio mediante espectroscopía infrarroja. 208

• Estudio mediante espectroscopía Raman. 212

• 29Si MAS RMN. 223

• Estudio mediante difracción de RX. 226

IV.2.2.3 Microestructura y tectura de los oxicarburos obtenidos a 1550 ºC. 232

IV.2.2.3.1 Estudio mediante porosimetría de mercurio. 232

IV.2.2.3.2 Estudio mediante adsorción de nitrógeno. 234

IV.2.2.3.3 Estudio mediante microscopía electrónica de barrido. 236

IV.2.2.3.4 Variación de la densidad real. 241
IV.2.2.4 Evaluación de las propiedades de los materiales obtenidos a 1550 ºC. 245
 IV.2.2.4.1 Propiedades mecánicas.. 245
 • Microdureza Vickers... 245
 • Tensión de fractura en flexión a tres puntos. ... 247
 • Módulo elástico.. 249
 IV.2.2.4.2 Resistencia frente a la oxidación. ... 249

IV.3 Conclusiones. ... 253

VEL SISTEMA TREOS/PDMS. ... 255
V.1 Híbrido orgánico-inorgánico: Características estructurales, textura y microestructura....
 .. 255
 V.1.1 Análisis Químico. ..255
 V.1.2 Caracterización Estructural..257
 V.1.2.2 Espectroscopía infrarroja. .. 257
 V.1.2.3 Espectroscopía Raman. ... 259
 V.1.2.4 Resonancia magnética nuclear. ... 260
 V.1.2.4.1 29Si MAS RMN. ... 260
 V.1.2.4.2 13C CP MAS RMN... 263
 V.1.2.5 Difracción de RX. ... 264
 V.1.3 Caracterización Microestructural y Textural. .. 264
 V.1.3.1 Porosimetría de mercurio. .. 264
 V.1.3.2 Adsorción de nitrógeno. ... 265
 V.1.3.3 Microscopía electrónica de barrido. ... 266
V.2 Pirólisis y mecanismos de reacción. .. 266
 V.2.1 Influencia de la Temperatura de Tratamiento. .. 267
 V.2.1.2 Caracterización estructural .. 267
 V.2.1.2.1 Estudio mediante espectroscopía infrarroja... 267
 V.2.1.2.2 Estudio mediante espectroscopía Raman. .. 277
 V.2.1.2.3 Estudio mediante resonancia magnética nuclear. ... 285
 29Si MAS NMR. .. 285
 13C CP MAS RMN.. 293
 V.2.1.2.4 Estudio mediante difracción de Rayos X. .. 297
 V.2.1.3 Contenido en carbono y análisis químico. ... 297
 V.2.1.4 Caracterización microestructural y textural. .. 301
 V.2.1.4.1 Estudio mediante porosimetría de mercurio... 301
 V.2.1.4.2 Estudio mediante adsorción de nitrógeno.. 304
 V.2.1.4.3 Estudio mediante microscopía electrónica de barrido. 308
 V.2.1.4.4 Variación de la densidad real ... 310
V.2.2 Influencia de la Velocidad de Calentamiento

V.2.2.2 Caracterización térmica
V.2.2.2.1 Análisis Termogravimétrico
V.2.2.3 Caracterización estructural
V.2.2.3.1 Estudio mediante espectroscopía infrarroja
V.2.2.3.2 Estudio mediante espectroscopía Raman
V.2.2.3.3 Estudio mediante difracción de rayos X
V.2.2.4 Contenido en carbono y análisis químico
V.2.2.5 Caracterización microestructural y textural
V.2.2.5.1 Estudio mediante porosimetría de mercurio
V.2.2.5.2 Estudio mediante adsorción de nitrógeno
V.2.2.5.3 Microscopía electrónica de barrido
V.2.2.5.4 Variación de la densidad real

V.2.3 Influencia del Flujo del Gas de Pirólisis

V.2.3.2 Caracterización estructural
V.2.3.2.1 Estudio mediante espectroscopía infrarroja
V.2.3.2.2 Estudio mediante espectroscopía Raman
V.2.3.2.3 Estudio mediante difracción de rayos X
V.2.3.3 Estudio del contenido en carbono y análisis químico
V.2.3.4 Caracterización microestructural y textural
V.2.3.4.1 Estudio mediante porosimetría de mercurio
V.2.3.4.2 Estudio mediante adsorción de nitrógeno
V.2.3.4.3 Microscopía electrónica de barrido
V.2.3.4.4 Variación de la densidad real

V.2.4 Influencia del Tiempo de Pirólisis

V.2.4.2 Caracterización estructural
V.2.4.2.1 Estudio mediante espectroscopía infrarroja
V.2.4.2.2 Estudio mediante espectroscopía Raman
V.2.4.2.3 Estudio mediante difracción de rayos X
V.2.4.3 Contenido en carbono y análisis químico
V.2.4.4 Caracterización microestructural y textural
V.2.4.4.1 Estudio mediante porosimetría de mercurio
V.2.4.4.2 Estudio mediante adsorción de nitrógeno
V.2.4.4.3 Microscopía electrónica de barrido
V.2.4.4.4 Variación de la densidad real

V.3 Conclusiones

V.3.1 Conclusiones del Sistema TREOS/PDMS
V.3.1.2 Diferencias Entre el Sistema Formado a Partir de TEOS y TREOS

VI CONCLUSIONES FINALES
TÉCNICAS EXPERIMENTALES.

<table>
<thead>
<tr>
<th>AI.1</th>
<th>Análisis químico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contenido en Silicio.</td>
</tr>
<tr>
<td></td>
<td>Contenido en Carbono.</td>
</tr>
<tr>
<td>AI.2</td>
<td>Análisis termogravimétrico.</td>
</tr>
<tr>
<td>AI.3</td>
<td>Espectroscopía infrarroja por transformada de Fourier (FT-IR).</td>
</tr>
<tr>
<td>AI.4</td>
<td>Espectroscopía Raman.</td>
</tr>
<tr>
<td>AI.5</td>
<td>Resonancia magnética nuclear.</td>
</tr>
<tr>
<td>AI.6</td>
<td>Difracción de rayos X.</td>
</tr>
<tr>
<td>AI.7</td>
<td>Adsorción de nitrógeno.</td>
</tr>
<tr>
<td>AI.8</td>
<td>Porosimetría de mercurio.</td>
</tr>
<tr>
<td>AI.9</td>
<td>Picnometría de helio.</td>
</tr>
<tr>
<td>AI.10</td>
<td>Microscopía electrónica de barrido (MEB).</td>
</tr>
<tr>
<td>AI.11</td>
<td>Determinación del tamaño de partícula.</td>
</tr>
<tr>
<td>AI.12</td>
<td>Microdureza Vickers.</td>
</tr>
<tr>
<td>AI.13</td>
<td>Tensión de fractura en flexión a tres puntos.</td>
</tr>
<tr>
<td>AI.14</td>
<td>Microscopía de calefacción.</td>
</tr>
<tr>
<td>AI.15</td>
<td>Bibliografía.</td>
</tr>
</tbody>
</table>
Justificación y objetivos:

Esta tesis nace con el deseo de obtener materiales estructurales ligeros que puedan ser empleados a altas temperaturas y que presenten buenas propiedades mecánicas y térmicas.

Es bien sabido que la sustitución de oxígeno divalente por nitrógeno trivalente en la red vitrea aumenta las propiedades mecánicas de los correspondientes vidrios de oxinitruro de silicio. De la misma manera, la sustitución parcial de oxígeno por carbono tetravalente también mejora las propiedades mecánicas y térmicas con respecto a vidrios convencionales.

Los primeros intentos de introducir carbono en la red vítrea fueron a partir de los métodos convencionales de fusión, que dieron como resultado tanto una modesta incorporación de carbono como una ligera mejora en las propiedades mecánicas de los vidrios de oxicarburo de silicio así obtenidos.

En la actualidad, el proceso sol-gel es una de las rutas más empleadas para la obtención de estos materiales. Mediante el proceso sol-gel se pueden obtener geles de sílice que contengan enlaces $Si-C$ mediante el empleo de alcóxidos de silicio que contengan dichos enlaces. La pirólisis, en atmósfera inerte de estos híbridos orgánico-inorgánicos a temperaturas del orden de los 1000-1100 ºC conduce a la formación de la fase de vidrio de oxicarburo y de una fase de carbono libre adicional. El vidrio de oxicarburo de silicio está constituido por una distribución aleatoria de unidades SiC_xO_{4-x} y una fase de carbono tipo grafito procedente de la pirólisis de los grupos orgánicos. La proporción de las diferentes unidades estructurales del oxicarburo así como su proporción relativa con respecto a la fase de carbono libre dependerá fundamentalmente de la composición inicial de los precursores empleados así como, de las condiciones experimentales empleadas durante la pirólisis.

En esta memoria se va a estudiar dos tipos diferentes de sistemas que conducen a la obtención de vidrios de oxicarburo de silicio. Por un lado el sistema constituido por TEOS (Tetraetilortosilicato) un alcóxido de silicio con sus cuatro enlaces hidrolizables y PDMS (polidimetilsiloxano) un polímero orgánico que contiene enlaces siloxano y que
además introduce carbono en el sistema, y por otro lado el formado por TREOS (Trietoxisilano) un alcóxido de silicio con tres enlaces hidrolizables y un enlace Si-H y PDMS.

El primero de ellos, denominado sistema TEOS/PDMS, da como resultado vidrios de oxicarburo porosos, aunque tras el empleo de lo que ha sido llamado como “vía cerámica” se pretende eliminar esta porosidad y obtener materiales monolíticos densos.

En el segundo de ellos, denominado TREOS/PDMS, uno de sus precursores es TREOS, contiene en su estructura enlaces Si-H, lo que aumenta la reactividad del sistema y a priori supondrá un aumento del carbono introducido en la red vitrea y como consecuencia una mejora de sus propiedades.

Uno de los objetivos de esta memoria estudiar el mecanismo de pirólisis de estos dos sistemas, es decir cómo influyen los distintos parámetros en el proceso de pirólisis en cada uno de los sistemas implicados, es decir con la presencia o ausencia de enlaces Si-H. Los parámetros que han sido tenidos en cuenta son: temperatura, velocidad de calentamiento, flujo de la atmósfera inerte, tiempo de pirólisis y tipo de procesamiento. El buen conocimiento de todos ellos permitirá, en función de las solicitaciones requeridas, poder seleccionar para cada sistema dichos parámetros de una manera más eficiente.

Otro aracterizar los materiales obtenidos mediante la “vía cerámica”. La aplicación de dicha “vía cerámica” sobre el sistema TEOS/PDMS ha dado lugar a materiales monolíticos altamente densificados. Los materiales obtenidos han sido caracterizados estructural y microestructuralmente y también han sido evaluadas ciertas propiedades, tales como microdureza Vickers, tensión de fractura y resistencia frente a la oxidación.
I- INTRODUCCIÓN.
I INTRODUCCIÓN.

I.1 Vidrios de oxicarburo de silicio.

I.1.1 Definición y Antecedentes.

Los vidrios de oxicarburo de silicio son el resultado de una modificación de vidrios oxídicos convencionales donde se ha sustituido parcialmente el oxígeno divalente por carbono tetravalente. Esta incorporación del carbono en la red vitrea lleva consigo un incremento de la densidad del enlace y del entrecruzamiento con respecto a vidrios convencionales. Como consecuencia de esto, se produce una mejora de las propiedades mecánicas (módulo de Young, microdureza Vickers, tensión de fractura, tenacidad, etc.), térmicas (resistencia a la fluencia), resistencia frente a la oxidación, y estabilidad química (resistencia frente al ataque de ácidos y bases) respecto a las propiedades que presentan los vidrios oxídicos.

Siempre se ha intentado modificar las propiedades de los vidrios oxídicos mediante la introducción de óxidos de diferentes elementos (empleo de diferentes cationes) y de esta manera se ha conseguido variar la estructura tridimensional del vidrio dando lugar al desarrollo de vidrios con diferentes propiedades mecánicas, eléctricas u ópticas. Igualmente, el siguiente paso fue el reemplazo del oxígeno por otros elementos tales como nitrógeno o carbono (empleo de diferentes aniones). La introducción de nitrógeno en vidrios de sílice supuso una variación de sus propiedades con respecto a vidrios que no lo contenían, efecto que fue asociado al reemplazo de oxígeno divalente por nitrógeno trivalente. Inicialmente, este tipo de vidrios fueron obtenidos mediante métodos clásicos de fusión (empleando una mezcla de óxidos y nitruros) en atmósferas reductoras y elevadas temperaturas (1700 ºC). Posteriormente, se emplearon temperaturas más bajas (500-1050 ºC) nitrurando vidrios de borosilicato porosos en atmósfera de amoníaco y finalmente empleando geles obtenidos mediante el proceso sol-gel. Al comparar las propiedades de los vidrios de oxinitruro (SiON) se apreció una mejora de sus propiedades mecánicas y térmicas, asociada a la formación de estructuras tipo SiN_3 que aumentan el entrecruzamiento de la red y por lo tanto suponen
un fortalecimiento de la misma. Esta misma filosofía se empleó para obtener vidrios de oxicarburo, ya que se pensó que la presencia de estructuras tipo SiC₄ fortalecería aún más la red vítrea y las propiedades obtenidas serían todavía mejores.¹⁶

Uno de los primeros intentos de incorporar carbono en el vidrio fue llevado a cabo por Ellis¹⁷ en 1951. En este trabajo se añadió una disolución acuosa de carbonohidratos a un vidrio poroso tipo Vycor*, posteriormente la mezcla fue calentada a 1200 ºC en atmósfera inerte, obteniendo un vidrio que conducía la electricidad, ya que el carbón formado como consecuencia de la descomposición de la materia orgánica se había distribuido a través de la microestructura porosa del vidrio.

Por otro lado Smith y Crandall¹⁸ realizaron ensayos de prensado en caliente de una mezcla de vidrio y Carbowax (polietilenglicol) a 1000-1150 ºC y obtuvieron un vidrio que contenía un 1.2 % en peso de carbono. El material obtenido de esta manera presentaba una mayor resistencia frente a la desvitrificación, así como una mayor densidad que la sílice vítrea.

Elmer y Meissner¹⁹ impregnaron alcohol furfurílico en un vidrio poroso y lo sometieron a un tratamiento en atmósfera inerte a 1250 ºC, lo que le conferió al vidrio un aumento del punto de recocado que se asoció a la eliminación de los grupos hidroxilo por el carbono.

Homeny et al.²⁰ sintetizaron, mediante fusión a 1750-1800 ºC en atmósfera de nitrógeno, vidrios del sistema Mg-Al-Si-O-C empleando como fuente de carbono carburo de silicio. Debido a las elevadas condiciones de procesado durante éste se forman especies gaseosas (SiO, CO, CO₂) que dificultan la reproducibilidad del mismo consiguiendo incorporar como máximo un 2.5% de carbono. A pesar de ello se consigue aumentar, con respecto a los vidrios sin carbono, el valor de ciertas propiedades como la densidad, el módulo de elasticidad, la microdureza Vickers y la tensión de fractura. Coon²¹ estudió cómo afecta la adición de SiC en la cristalización de vidrios del sistema Mg-Li-Al-Si-O. El carburo de silicio se adiciona al vidrio y posteriormente se estudia su comportamiento frente a la cristalización, apreciándose que la adición del carburo de silicio hace que los vidrios sean más resistentes frente a la oxidación.

* El vidrio tipo Vycor es un vidrio con alto contenido en sílice, que presenta una composición típica de 96 % SiO₂ + 3% B₂O₃ + 0.5 % M₂O₃ (principalmente Al₂O₃ y ZrO₂) y trazas de Na₂O y As₂O₃.
En estos estudios se aprecian cambios en las propiedades de los materiales obtenidos, sin embargo no existen evidencias de la incorporación del carbono en la red vítrea. Posteriormente, Babonneau et al.22, Zhang et al.23 y Renlund et al.24 demostraron mediante diversas técnicas experimentales (tales como la resonancia magnética nuclear o \textit{RMN}, la espectroscopía Raman y la espectroscopía de fotoelectrónica de rayos X o \textit{XPS}) cómo, mediante la pirólisis en atmósfera inerte de policarbosilanos, polisiloxanos, y resinas poliméricas, respectivamente, se formaba una fase de vidrio de oxicarburo y otra de carbono tipo grafito.

Mediante estudios de oxidación de carburo de silicio, Pampuch et al.25,26 habían demostrado la formación de una fase de \textit{Si-O-C} en la interfase entre el carburo de silicio y la fase de sílice formada durante la oxidación. Estos estudios fueron corroborados posteriormente por Yurkov y Polyak27.

\textit{Lipowitz et al.}28 encontraron que las fibras de \textit{SiC} tipo \textit{NICALON} obtenidas a partir de la pirólisis de polímeros tipo policarbosilanos estaban constituidas por una fase vítrea de vidrio de oxicarburo en la que se encuentran embebidos nanocristales de \textit{β-SiC} (de aproximadamente 2 nm) y carbono tipo grafito con un elevado grado de desorden. Estos mismos resultados fueron corroborados por Porte y Sartre29 y posteriormente por Le Coustumer et al.30.

\textbf{1.1.2 Métodos de Obtención.}

En un principio los vidrios de oxicarburo de silicio se intentaron desarrollar mediante los métodos clásicos de fusión, pero en seguida esta vía fue descartada fundamentalmente debido a las elevadas temperaturas requeridas, la baja reproducibilidad y sobre todo por los bajos porcentajes de carbono incorporados en el vidrio. Actualmente este tipo de materiales se obtienen mediante pirólisis en atmósfera inerte tanto de precursores híbridos orgánico-inorgánicos obtenidos mediante el proceso \textit{sol-gel}, como de polímeros precerámicos obtenidos mediante la ruta polimérica. A continuación se comentarán estas dos vías de obtención.
La vía conocida como proceso sol-gel supuso un gran avance para lograr este tipo de materiales. Así se pueden obtener híbridos orgánico-inorgánicos, que incorporan enlaces Si-C y que se mantienen en el vidrio de oxicarburo de silicio obtenido tras pirólisis en atmósfera inerte a temperaturas relativamente bajas del orden de 900-1000º C, sin los problemas de descomposición y oxidación que presentan los métodos clásicos de fusión.

Los híbridos orgánico-inorgánicos se obtienen mediante reacciones de hidrólisis y condensación de alcóxidos de silicio tipo $R_xSi(OR')_{4-x}$, donde $R = H$, grupos saturados (radicales alifáticos de cadena lineal o ramificada, de cadena corta o cadena larga), grupos insaturados (radicales tipo vinilo, alilo, fenilo, etc.) y R' = grupos alifáticos generalmente etilo.

Durante el proceso sol-gel los enlaces $Si-OR'$ se hidrolizan a los correspondientes $Si-OH$, que posteriormente se condensan formando enlaces $Si-O-Si$. El híbrido orgánico-inorgánico presenta enlaces $Si-C$ (y/o H), que se mantienen inalterados durante el proceso sol-gel (reacciones de hidrólisis y condensación), así como en las posteriores etapas de secado.

Aunque generalmente se emplean precursores híbridos orgánico-inorgánicos obtenidos mediante el proceso sol-gel para la síntesis de vidrios de oxicarburo, también se pueden utilizar resinas poliméricas comerciales de silicona (tipo polisiloxanos) o policarbosilanos modificados.

Por otro lado, la vía conocida como ruta polimérica consiste en los siguientes pasos: (a) fusión o disolución del polímero y conformado en la preforma deseada, (b) entrecruzamiento de la resina (térnicamente o mediante el empleo de la catálisis adecuada) y (c) pirólisis en atmósfera inerte para la obtención del vidrio de oxicarburo. Para disminuir la reducción de volumen y la porosidad producida durante la pirólisis se pueden emplear aditivos de relleno, los cuales pueden o no reaccionar con la matriz polimérica o con los productos generados durante el tratamiento térmico. Como aditivos pasivos pueden emplearse carburos metálicos, así como óxidos o nitruros. Por otro lado, como aditivos activos pueden utilizarse metales o compuestos intermetálicos. La ruta polimérica da lugar a los denominados PDCs (Polymer Derived Ceramics es decir,
Introducción

materiales Cerámicos Derivados de Polímeros), que son fundamentalmente los sistemas ternarios SiOC y SiCN y los cuaternarios Si(B)OC y Si(B)CN. En general puede decirse que este método de obtención está experimentando un gran desarrollo en los últimos años.36

Renlund et al.6,24 emplearon resinas comerciales constituidas por una mezcla de siloxanos lineales y cíclicos, que presentaban tanto grupos metilo como grupos silanol terminales. Cuando estas resinas se entrecruzan durante la pirólisis se producen piezas monolíticas, mientras que cuando estas resinas no se entrecruzan en la pirólisis, el proceso conduce a polvos que posteriormente pueden ser prensados y pirolizados de nuevo para obtener piezas monolíticas.

I.1.3 Estructura y Propiedades.

La pirólisis en atmósfera inerte, a temperaturas del orden de los 900-1100 ºC, de los precursores (híbridos o poliméricos), conduce a la formación de vidrios de oxicarburo de silicio. Este método de obtención hace que, además de la fase oxicarburo, se genere una fase de carbono tipo grafito, también llamado “carbono libre”, que está embebida dentro de la matriz vítrea. Esta fase de carbono libre es la responsable del color negro que presentan estos materiales, por lo que en un principio fueron conocidos con el nombre de “Vidrios negros” (Black glasses). Una representación de la estructura de estos materiales a temperaturas del orden de 800-1000 ºC se muestra en la Figura I-1.

La fase oxicarburo está constituida por una distribución aleatoria de enlaces Si-O y Si-C,37,38 donde no se encuentran presentes enlaces Si-Si, C-O o C-C. Por lo tanto, las unidades estructurales que componen dicha fase vítrea son: [SiO₄], [SiCO₃], [SiC₂O₂], [SiC₃O] y [SiC₄].24 Este tipo de materiales puede ser descrito mediante la siguiente fórmula estequiométrica:39 Si₄C₉O₂(1-x) + yC_libres, la cual incluye la fase oxicarburo y la fase de carbono libre adicional.40
Capítulo I

Los vidrios de oxicarburo son amorfos según se determina mediante difracción de rayos X. Sin embargo, para temperaturas superiores a 1200 ºC se produce una segregación de la fase metaestable de vidrio de oxicarburo hacia la formación de sílice y carburo de silicio y, posteriormente, a temperaturas alrededor de 1500 ºC la sílice reacciona con el carbono libre formando más carburo de silicio y especies volátiles.40

A partir de estudios realizados mediante difracción de rayos X (DRX) y microscopía electrónica de transmisión de alta resolución (HR-TEM), a temperaturas alrededor a 1500 ºC en estos materiales se aprecian nanodominios de carburo de silicio y carbono tipo grafito, pero no de cristobalita.6

![Figura I- 1: Representación de la estructura de los vidrios de oxicarburo para la temperatura de 800-1000 ºC. Extraída de referencia 40.](image)

La composición química y estructura del material formado depende fuertemente del precursor, de la naturaleza de los grupos orgánicos, de la relación O/Si, de las condiciones de pirólisis, de la temperatura y de la duración del tratamiento, etc.
Introducción

Los vidrios de oxicarburo presentan una remarcable estabilidad, tanto nanoestructural como química, a temperaturas próximas a 1500 ºC. También es sorprendente la resistencia de este tipo de materiales a la cristalización. Existen algunos estudios que atribuyen este comportamiento a la fase de carbono libre, fase que restringe la movilidad de las especies moleculares (y que concuerda con que se hayan encontrado unas velocidades de fluencia extremadamente bajas en este tipo de materiales con respecto a la sílice vítrea⁵). Además, los vidrios de oxicarburo presentan propiedades viscoelásticas a elevada temperatura similares a las observadas en polímeros orgánicos a temperatura ambiente.⁴¹

Tabla I-1: Propiedades de vidrios de oxicarburo de silicio (SiOC). Extraído de la referencia 6.

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Valor</th>
<th>Comentarios</th>
<th>Valores para la sílice vítrea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad</td>
<td>2.35 (g/cm³)</td>
<td></td>
<td>2.20 (g/cm³)</td>
</tr>
<tr>
<td>Coeficiente de expansión térmica</td>
<td>3.14 x 10⁻⁶(ºC⁻¹)</td>
<td>Muestras obtenidas por prensado en caliente entre 1000 -100 ºC</td>
<td>0.5 x 10⁻⁶(ºC⁻¹)</td>
</tr>
<tr>
<td>Dureza Vickers</td>
<td>855 kg/mm²</td>
<td>Carga 200 g</td>
<td>600-700</td>
</tr>
<tr>
<td></td>
<td>704 kg/mm²</td>
<td>Carga 1000 g</td>
<td></td>
</tr>
<tr>
<td>Factor crítico de intensidad de tensiones</td>
<td>1.8 MPam¹/²</td>
<td>Carga 1000 g</td>
<td>1MPam¹/²</td>
</tr>
<tr>
<td>Tensión de fractura</td>
<td>153 ±20 MPa</td>
<td>Tres puntos, fibras 0.74 mm de diámetro</td>
<td>-</td>
</tr>
<tr>
<td>Módulo elástico</td>
<td>385 ± 227 MPa</td>
<td>Tres puntos en barras</td>
<td></td>
</tr>
<tr>
<td></td>
<td>97.9 GPa</td>
<td></td>
<td>70 GPa</td>
</tr>
<tr>
<td>Índice de refracción</td>
<td>1.58</td>
<td>A 0.5893 μm</td>
<td>1.46</td>
</tr>
<tr>
<td>Temperatura de transición vítrea</td>
<td>1350 ºC</td>
<td>Viscosidad de 10¹³ P</td>
<td>1190 ºC</td>
</tr>
<tr>
<td>Constante dieléctrica</td>
<td>4.4</td>
<td>25 ºC, 10 a 10⁷ Hz pirolizadas a 1100 ºC</td>
<td>4.0</td>
</tr>
<tr>
<td>Tangente dieléctrica de pérdidas</td>
<td>0.1</td>
<td>25 ºC, 10 a 10⁷ Hz pirolizadas a 1100 ºC</td>
<td>10⁻⁴</td>
</tr>
<tr>
<td>Conductividad eléctrica</td>
<td>4 x10⁻¹³ Ω⁻¹ cm⁻¹</td>
<td>25 ºC, pirolizadas a 1100 ºC</td>
<td>≈10⁻²² Ω⁻¹ cm⁻¹</td>
</tr>
</tbody>
</table>

Debido a la incorporación de carbono en la red vítrea, los vidrios de oxicarburo de silicio presentan una estructura más refractaria y compacta con respecto a los vidrios convencionales. Esto se traduce en un cambio de sus propiedades con respecto a dichos
vidrios oxídicos. Renlund et at.\cite{6} llevaron a cabo un extenso y completo trabajo comparando muchas de las propiedades de ambos tipos de vidrios. Debido a la gran información aportada por este trabajo se han reproducido en la Tabla I-1 los valores de las propiedades medidas, comparando los obtenidos para los vidrios de oxicarburo y la sílice vítrea. Posteriormente otros autores han llevado a cabo medidas de las propiedades mecánicas\cite{1,2,3,4,42,43,44} y térmicas\cite{4,5} para estos materiales, completando los trabajos iniciales llevados a cabo por Renlund et at.\cite{6}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{FiguraI-2.png}
\caption{Disposición a nivel molecular de los nanodominios presentes en los vidrios de oxicarburo. En la interfase de las capas de carbono tipo grafito y los dominios de sílice se encuentran los enlaces mixtos Si-C-O. Extraído de la referencia 45.}
\end{figure}

Recientemente, se ha desarrollado un modelo estructural donde están de acuerdo tanto la información obtenida a partir de diferentes técnicas instrumentales como las propiedades de estos materiales.\cite{45} En la Figura I-2 puede observarse una representación esquemática de dicho modelo, que consiste en hojas de grafito interconectadas en una red celular que contienen dominios de sílice. En las paredes de los dominios de grafito se encuentran las unidades mixtas de Si-O-C del oxicarburo que
conectan el carbono libre con los tetraedros de sílice. La red de carbono no permite la fluencia viscosa, pero sí el comportamiento viscoelástico a elevadas temperaturas. Este modelo también permite explicar la elevada resistencia a la cristalización a elevadas temperaturas. La nucleación de cristalitos de sílice requiere la presencia de núcleos de sílice con un tamaño crítico (de unos pocos nanómetros). Este tamaño crítico puede ser similar al tamaño de los dominios de sílice, de manera que las láminas de grafito obstruyen la difusión de las moléculas de sílice entre los diferentes dominios, disminuyendo la probabilidad de encontrar núcleos con un tamaño crítico y por lo tanto la evolución de la cristalización.46,47

Para apoyar este modelo se han llevado a cabo estudios de lixiviado de los vidrios de oxicarburo con ácido fluorhídrico.48,49 El HF elimina la sílice formando una estructura porosa que permite la caracterización del material después del ataque, informando del tamaño y cantidad de nanodominios de sílice extraídos del material.

I.1.4 Aplicaciones.

Desde los primeros intentos de introducir carbono dentro de la estructura vítrea, los vidrios de oxicarburo han despertado gran interés por la cantidad de posibles aplicaciones que se espera de ellos.40 Los vidrios de oxicarburo también presentan una gran variedad de maneras de procesado lo que permite obtenerlos de muy diversas formas aumentando aún más sus posibles campos de aplicación. Se pueden elaborar como vidrios densos y porosos, polvos, fibras, monolitos, espumas, materiales cerámicos, matrices para materiales compuestos, etc.

De hecho estos materiales presentan potenciales aplicaciones, debido a sus particulares propiedades eléctricas, térmicas, químicas, mecánicas y biológicas. Además es posible ajustar una determinada propiedad mediante la adición de metales o partículas cerámicas de relleno, hecho que amplía todavía más sus posibilidades.36 Sus posibles usos se basan principalmente en materiales con elevada resistencia a altas temperaturas en diferentes atmósferas y baja densidad (con respecto a aleaciones metálicas), pero son tan variados como los que se exponen a continuación: materiales estructurales ligeros,50
fibras o matrices en materiales compuestos, soportes para catalizadores, membranas cerámicas para separación de gases, ánodos en baterías recargables de íon litio, electrodos sólidos para pilas de combustible, almacenamiento de hidrógeno, materiales biocompatibles sustitutos de carbón pirolítico para aplicaciones biomédicas (válvulas artificiales de corazón), materiales con baja constante dieléctrica (para sistemas de telecomunicaciones inalámbricos).
También se pueden emplear para la obtención de polvos de carburo de silicio de elevada pureza los cuales pueden ser útiles para la fabricación de piezas cerámicas monolíticas o también se pueden emplear como aditivos para unir polvos de de carburo de silicio.

I.2 El proceso Sol-gel. Obtención de materiales precerámicos precursores de SiOC.

El proceso sol-gel surge de la idea de obtener materiales inorgánicos a temperaturas más bajas que las utilizadas en procesos convencionales (como la fusión de vidrios o el procesado cerámico); por ejemplo, en el caso de los vidrios a temperaturas próximas al punto de transformación (T_g).

Algunas de las ventajas de este proceso con respecto a los métodos convencionales se basan en que, como consecuencia de las menores temperaturas de trabajo con respecto a los métodos convencionales, se ahorra energía y se disminuye la emisión de gases contaminantes a la atmósfera, se consiguen materiales con una elevada pureza y homogeneidad, se obtienen materiales que no podrían ser obtenidos mediante los métodos clásicos por problemas de cristalización o separación de fases durante el procesado, se pueden preparar materiales no cristalinos, cristalinos y recubrimientos con unas propiedades determinadas que únicamente son posibles mediante el proceso sol-gel.

Por otro lado, sus principales inconvenientes son: el elevado coste de las materias primas, presencia de porosidad, grupos hidrófilos y carbono residuales que, en función de la aplicación, pueden ser perjudiciales, la contracción y la aparición de grietas que a veces surgen durante el envejecimiento, secado y posteriores tratamientos térmicos del
gel, siendo este último hecho el que limitó en un principio la obtención de piezas monolíticas.

Por todo lo expuesto, parece claro que el proceso sol-gel se emplea fundamentalmente para conseguir materiales que no pueden ser obtenidos mediante los métodos clásicos de fusión. El primer ejemplo de reacción sol-gel se atribuye a Ebelman que observó fortuitamente la hidrólisis/condensación del tetraetilortosilicato (TEOS). Posteriormente hubo un gran desarrollo de la química del silicio y se descubrieron los silanos, su fabricación, reactividad química y, sobre todo, su facilidad para formar estructuras poliméricas mediante la formación de enlaces silicio-oxígeno-silicio mediante reacciones de condensación. Geffcken y Berger indicaron un método para fabricar films producidos a partir de alcóxidos basados en sílice, alúmina o titania. En base a esto la empresa Schott Glaswerke desarrolló un proceso industrial para depositar recubrimientos funcionalizados sobre vidrio plano y a partir de este momento comenzaron a desarrollarse estudios de recubrimientos sobre vidrio.

El proceso sol-gel también pareció interesante a la hora de producir polvos cerámicos ultra finos, pero a la hora de procesar estos polvos surgieron problemas de aglomeraciones.

El sistema más investigado, y que aún tiene gran interés, es el de los tetraortosilicatos. Las razones que lo hacen tan popular es que presentan una velocidad de hidrólisis lenta, lo que permite estudiar el mecanismo de reacción, casi independientemente de la estructura y, además, sus productos de condensación no suelen precipitar. Existen otros sistemas tales como titania, alúmina o zirconia, pero sus velocidades de hidrólisis y condensación son muy altas y además pueden dar problemas de precipitación.

I.2.1 Mecanismo de Reacción.

El proceso Sol-Gel puede verse como un proceso de polimerización que comprende la hidrólisis y condensación de alcóxidos metálicos \(M(OR)_z \), \((M = \text{Si, Ti, Zr, Al, Sn, Ce,…} \); \(OR \) un grupo alcóxido y \(Z \) la valencia o el estado de oxidación del metal). En primer
Capítulo I

lugar los alcóxidos se hidrolizan generando especies que posteriormente experimentan una policondensación, dando como resultado una red tridimensional.69

El proceso ocurre inicialmente a través de la hidrólisis de los alcóxidos metálicos (Reacción I-1) que tiene lugar en tres pasos: (a) ataque nucleófilo del oxígeno de la molécula de agua al átomo metálico M; (b) transferencia del protón de la molécula de agua al grupo OR del alcóxido metálico; (c) eliminación de la correspondiente molécula de ROH.

$$M-OR + H_2O \rightarrow M-OH + R-OH \quad \text{Reacción I- 1}$$

En cuanto se generan los grupos hidroxilos, tienen lugar las reacciones de condensación que producen la formación de oligómeros y polímeros ramificados con un esqueleto metal-oxígeno, en los que están presentes grupos hidroxilo y grupos alcóxidos residuales. Dependiendo de las condiciones experimentales, esta condensación se produce mediante dos mecanismos competitivos, la oxolación (Reacción I-2) y la olación (Reacción I-3) tal y como se describen a continuación.

Oxolación

$$M-OH + XO-M \rightarrow M-O-M + X-OH \quad \text{Reacción I- 2}$$

$$(X = H \text{ o grupo alquilo})$$

Mediante la oxolación se produce la formación de puentes de oxígeno entre átomos metálicos y, al igual que la reacción de hidrólisis, también es una sustitución nucleófila en tres pasos dando como resultado final la eliminación de H_2O o ROH. Normalmente bajo condiciones de hidrólisis estoquiométricas ($h = H_2O/M < 2$) está favorecida la formación de alcohol, mientras que para condiciones de hidrólisis muy superiores ($h>>2$) se favorecerá la formación de agua.

Oolución

$$M-OH + HO-M \rightarrow M-(OH)_2-M \quad \text{Reacción I- 3}$$
La olación es una adición nucleófila que tiene lugar cuando el átomo metálico central no satisface completamente su número de coordinación ($N-Z > O$), siendo N el número de coordinación encontrado, normalmente en su óxido, y Z el estado de oxidación del mismo. Los grupos OH entran en la esfera de coordinación del metal dando como resultado la formación de puentes hidroxílicos. En este proceso no son necesarios ni la transferencia de un protón ni la salida de ningún grupo saliente, por lo que la cinética de la olación es generalmente más rápida que la de la oxolación.

La participación de cada una de estas reacciones influirá en la transformación desde el alcóxido metálico hasta la red tridimensional. En algunas ocasiones esta red alcanza dimensiones macroscópicas, sin embargo en otras no se alcanza un crecimiento macroscópico. Esta gran variabilidad es consecuencia de las diferentes maneras en las que los oligómeros y polímeros pueden unirse y organizarse, lo que a su vez estará supeditado a otros factores como la naturaleza de los precursores (reactividad del átomo central (electronegatividad), así como a los impedimentos estéricos producidos por los grupos alcóxidos, relación $H_2O/alcóxidos$, cantidad y tipo de catálisis (pH del medio), cantidad y naturaleza del disolvente, temperatura y tiempo de reacción, etc.

La polimerización de la sílice en medio acuoso se produce mediante reacciones de condensación que forman uniones $Si-O-Si$. Esta reacción sucede en tres pasos: el primero es la polimerización de los monómeros para formar partículas, el segundo es el crecimiento de las partículas y, el tercero, es la unión de estas partículas formando cadenas ramificadas que darán lugar a una estructura tridimensional convirtiendo el sol en un gel.

$Iler^{70}$ explica como influye el pH del medio y/o la adición de sales en la polimerización de la sílice en medio acuoso (Figura I-3). El ácido silíaco tiene una gran tendencia a polimerizarse de manera que se verá favorecida la formación de uniones siloxano ($Si-O-Si$) y desfavorecida la presencia de grupos silanoles. Como consecuencia de esto, los monómeros evolucionarán a dímeros y éstos a oligómeros (por ejemplo tetrámeros ciclicos) que posteriormente se seguirán uniendo para formar moléculas tridimensionales. Estas unidades esféricas son núcleos primarios para formar partículas de mayor tamaño. Las partículas pequeñas son más solubles que las grandes y debido a que las partículas formadas no son del mismo tamaño irán creciendo en tamaño y...
disminuyendo en cantidad debido a que las más pequeñas se van disolviendo y las grandes no.

Figura I- 3: Diferente comportamiento de la polimerización de la sílice en medio acuoso. En medio básico (B) las partículas en el sol aumentan en tamaño y decrecen en número; en medio ácido o en presencia de sales floculantes (A) las partículas se agregan formando una red tridimensional que forma geles. Extraído de la referencia 70.

A \(pH \) por encima de 6-7, las partículas están cargadas negativamente y se repelen entre sí, esto hace que no se agregen y que continúen creciendo. Sin embargo mediante la adición de sales, la repulsión se reduce, se produce la agregación y finalmente la gelificación. A \(pH \) bajo, las partículas no presentan cargas iónicas y pueden formar coloides y agregarse formando cadenas para, posteriormente, formar una red tridimensional y como consecuencia de todo ello se produce la transformación del sol en gel.
Las reacciones de hidrólisis y condensación de los alcóxidos de silicio generalmente siguen un mecanismo tipo SN₂, en el cual se forma un estado de transición en el que el átomo metálico está penta o hexacordado.\(^6\)

Bajo condiciones ácidas, la hidrólisis está favorecida con respecto a las reacciones de condensación: los grupos alcóxidos se protonan rápidamente haciéndose mejores grupos salientes, agilizando la hidrólisis. A \(p\text{H}\) bajo, la hidrólisis llega a completarse en pocos minutos y como consecuencia de la gran cantidad de centros de nucleación formados se genera una gran cantidad de partículas de pequeño tamaño. Para \(p\text{H}\) básico se disminuye la velocidad de hidrólisis y por lo tanto disminuye la cantidad de centros de nucleación formados. Las reacciones de hidrólisis y condensación coexisten y por lo tanto se pueden formar centros de nucleación en estructuras copolimerizadas dando como resultado pocas partículas pero de gran tamaño.\(^7\)

En medio ácido la condensación se produce entre silanoles (\(\text{Si-OH}\)) y átomos de silicio que contienen especies protonadas (\(\equiv\text{Si-OH}_2^+\)), por lo que los grupos silanoles con mayor carácter nucleófilo (más básicos) son los de los monómeros u oligómeros no ramificados, dando como resultado de la condensación entre ambas especies cadenas lineales o estructuras entrecruzadas no muy ramificadas. En medio básico la hidrólisis mediante los \(\text{OH}\) genera \(\text{Si-O}\); los grupos silanoles desprotonados atacaran preferentemente a los silanoles más ácidos, que serán aquellos que presenten un mayor grado de condensación. En contraste con la catálisis ácida, bajo condiciones básicas se favorece la formación de clusters (agrupaciones de partículas o núcleos primarios) altamente condensados.

I.2.2 Híbridos Orgánico-Inorgánicos.

Uno de los mayores logros del proceso sol-gel es la síntesis de híbridos orgánico-inorgánicos que combinan propiedades que no podrían ser obtenidas por otras vías. En la literatura se encuentran diversos nombres para estos híbridos, siendo denominados como ORMOSILES (ORGanically MODified SILicates), ORMOCERS (ORGanically MODified CERamics) y CERAMERS (CERamic polyMERS) o POLYCERAM (POLYmeric CERAMics).
Según explica Schmidt, la demanda creciente de materiales especiales llevó hace varias décadas al concepto de composites, donde se combinaron las propiedades requeridas de diferentes tipos de materiales a escala macromolecular (refuerzo de plásticos con fibras, recubrimientos para evitar la corrosión en metales, laminados, vidriado de cerámicos, etc.). Una vez conseguidos tales materiales compuestos/composites, el siguiente paso fue la combinación de los diferentes materiales a escala molecular para obtener nanomateriales/nanocomposites. El proceso sol-gel ofreció esta posibilidad y por lo tanto se comprobó que era una buena vía para combinar materiales orgánicos e inorgánicos y obtener híbridos que combinaran e incluso mejorarán las propiedades de sus precursores. En los últimos años la interconexión entre materiales obtenidos mediante el proceso sol-gel y materiales nanoestructurados está ligada de una manera tan estrecha que muchas veces es difícil hacer una separación entre estos dos campos tecnológicos. En la actualidad se han empezado a utilizar nanopartículas modificadas superficialmente como aditivos en la preparación de materiales. A la hora de procesar nanopartículas es muy importante el tratamiento superficial, que evita aglomeraciones y además dota de la funcionalidad que se desee en cada caso concreto. Existen una gran variedad de materiales donde se están aplicando estos conceptos, un ejemplo son los poliuretanos reforzados con nanopartículas de sílice con una determinada funcionalización, de manera que se consigue mejorar la resistencia al rayado del polímero manteniendo la transparencia del material, esto supone una gran ventaja con respecto a la adición de nanopartículas de sílice sin funcionalizar, ya que se mejora la compatibilización del aditivo con la matriz y se evita la formación de agregados.

La mejor manera para obtener materiales híbridos es formar puntos de unión entre las partes inorgánica y orgánica. Estos tipos de uniones pueden ser iónicas, coordinativas o covalentes. En el primer caso, un tipo de estas uniones iónicas sería el empleo de sales. En el segundo caso un ejemplo sería el empleo de óxidos de metales de transición que pudieran formar complejos y, en el tercer caso, sería la formación de enlaces tipo metal con carbono o metal con oxígeno y con carbono. Para el caso concreto del silicio, los enlaces Si-C presentan una gran estabilidad térmica e hidrolítica y por otro lado los enlaces Si-O presentan buenas propiedades, por lo que parece que la mejor forma para llevar a cabo este tipo de uniones sea mediante la formación de enlaces -O-Si-C.
Introducción

Al introducir grupos orgánicos en una matriz inorgánica, estos pueden actuar como formadores, cuando se emplean ligandos orgánicos polimerizables (radicales vinilo, metacrilato, epoxi), o únicamente como modificadores de red (por ejemplo grupos metilo). Cuando actúan como modificadores disminuyen el grado de entrecruzamiento ya que bloquean enlaces con el átomo de silicio y como consecuencia se obtienen materiales densos sin ser necesario el empleo de tratamientos térmicos. En cualquier caso la incorporación de la parte orgánica en la red inorgánica conferirá a ésta características muy diversas tales como propiedades ácidas, básicas, posibilidad de formar complejos, hidrofobicidad, termoplasticidad, etc.

El proceso sol-gel acepta la introducción de componentes orgánicos, ya sea mediante la adición de polímeros orgánicos o alcóxidos modificados orgánicamente. El primer caso, es decir el de incorporación de polímeros orgánicos, fue el que se desarrolló inicialmente y consistió en el empleo de polímeros tipo polidimetilsiloxano (PDMS) con grupos silanoles terminales u otro tipo de polímeros que también presentasen grupos silanoles terminales, mediante los cuales pudiera producirse enlace químico con los alcóxidos metálicos. Este tipo de materiales puede verse como un nanocomposite con enlaces entre grupos orgánicos e inorgánicos. El segundo tipo consiste en la utilización de alcóxidos modificados orgánicamente $M(OR)_{n-x}X_x$. La hidrólisis y condensación de este tipo de precursores da como resultado una red inorgánica donde los grupos orgánicos están químicamente unidos. Los enlaces $Si-C$ son muy estables y permanecen inalterados durante el proceso sol-gel, lo que explica que la química de híbridos orgánico-inorgánicos esté fundamentalmente desarrollada alrededor de alcóxidos de silicio.

En consecuencia a lo comentado anteriormente, los alcóxidos de silicio son los más ampliamente empleados. Dentro de éstos se pueden utilizar alcóxidos que tengan sus cuatro enlaces hidrolizables, por ejemplo el $TEOS$ (tetraetilortosilicato) u otros que presenten tanto enlaces hidrolizables como otros que vayan a sobrevivir en la estructura del híbrido tras el proceso sol-gel. Estos enlaces pueden ser del tipo $Si-H$ o $Si-CH_3$, presentando estructuras tales como $R_xSi(OR')_{4-x}$, donde $R = H$, grupos alifácticos (de cadena lineal o ramificada, de cadena corta o cadena larga), grupos vinilo, fenilo, etc., y $R' = $ grupos alifácticos (generalmente etilo).
Aunque los alcóxidos más empleados son los de silicio, también puede emplearse otro tipo de alcóxidos metálicos cuya incorporación aumenta la dureza de los materiales, aumenta el índice de refracción y cataliza las reacciones de condensación de los siloxanos. Los alcóxidos más utilizados después del silicio son los de zirconio, titanio, aluminio y boro, y cada uno de ellos introducirá nuevas propiedades en el material híbrido obtenido.

Debido a la gran variedad de reactivos que pueden ser empleados, el tipo de materiales obtenidos es muy diverso y aquí es donde radica el gran interés que despiertan los materiales sintetizados mediante el proceso sol-gel, ya que se pueden obtener muy diversas formas, como por ejemplo recubrimientos, materiales monolíticos, polvos, fibras que pueden tener una gran variedad de aplicaciones, así como recubrimientos con resistencia al rayado, recubrimientos super-repelentes de agua, distintas funcionalizaciones, nuevos materiales para lentes de contacto, materiales microporosos, aislantes acústicos, matrices con aplicaciones ópticas, etc.75,76

1.2.2.1 Clasificación de los materiales híbridos.

Novak,77 Sanchez \textit{et al.},78 y Mackenzie79 han realizado diferentes clasificaciones de los híbridos orgánico-inorgánicos, recogiendo revisiones bibliográficas de los diversos híbridos orgánicos inorgánicos obtenidos y sus posibles usos. Sobre todo los dos primeros trabajos sirven y han servido de referente para muchos autores a la hora de trabajar o clasificar este tipo de materiales.

Por un lado, \textit{Novak}77 clasificó estos materiales en cinco tipos: I, II, III, IV y V

\textbf{Tipo I}: Polímeros orgánicos polimerizados que están embebidos en una red inorgánica.

\textbf{Tipo II}: Polímeros orgánicos polimerizados que forman enlace covalente con una red inorgánica.

\textbf{Tipo III}: Redes orgánica e inorgánica interpenetradas.

\textbf{Tipo IV}: Redes orgánica e inorgánicas interpenetradas que están formando enlace covalente entre ellas.

\textbf{Tipo V}: Materiales composites híbridos obtenidos mediante sol-gel que no presentan cambios dimensionales durante su procesado.
Por otro lado, Sánchez et al.78 establecieron la siguiente clasificación:

\textbf{Clase I}

\textit{Clase I A: Híbridos amorfos.}

Los componentes orgánicos se pueden incorporar fácilmente dentro de una matriz inorgánica o bien durante la propia formación de dicha red; en el primer caso simplemente adicionándolos mientras se están produciendo las reacciones de hidrólisis y condensación con la consiguiente formación de la red inorgánica (con el empleo de los disolventes adecuados), o en el segundo caso, mediante impregnación de dichos compuestos dentro de la matriz inorgánica ya formada. La microestructura y distribución espacial de cada grupo están gobernadas por interacciones débiles tipo \textit{Van der Waals}, enlaces de hidrógeno o fuerzas hidrofóbicas-hidrofílicas. Todo esto repercutirá directamente en la gran variedad de propiedades (mecánicas, ópticas, eléctricas, iónicas, sensores, biosensores, catalizadores, etc.) que presentan estos materiales.

Un ejemplo de este tipo de materiales son los tintes orgánicos embebidos dentro de matrices sol-gel inorgánicas, inicialmente descritos por Avnir, \textit{et al.}80 y que, gracias a la naturaleza de las moléculas orgánicas incorporadas, pueden dar lugar al desarrollo de sistemas con unas determinadas propiedades ópticas (concentradores solares luminiscentes, láseres y sistemas fotocrómicos NLO (Óptica no lineal)).

Los polímeros orgánicos generalmente necesitan mejorar sus propiedades mecánicas por lo que normalmente se recurre a su refuerzo mediante la adición de rellenos inorgánicos. Las estrategias empleadas requieren condiciones de alta viscosidad lo que provocan la aglomeración de partículas y disminuyen las interacciones entre el relleno y el polímero. El empleo del proceso sol-gel resuelve parte de estos problemas: en primer lugar, permite la formación de enlaces covalentes o iónico-covalente entre el relleno y el polímero mediante la funcionalización apropiada del polímero (híbridos de Clase II); en segundo lugar, permite la formación \textit{in situ} de una red inorgánica homogénea (a partir de la hidrólisis y condensación de alcóxidos metálicos) y el control de la microestructura del híbrido mediante formación de enlaces de hidrógeno u otras
interacciones débiles y, en tercer lugar, permite la formación simultánea de redes interpenetradas.

• Relleno de polímeros con partículas inorgánicas generadas in situ.
En la literatura se encuentran numerosos ejemplos de híbridos orgánico-inorgánico obtenidos satisfactoriamente, aunque no presenten enlaces covalentes entre la parte orgánica y la inorgánica. En este tipo de sistemas se producen interacciones débiles, como por ejemplo enlaces de hidrógeno que tienen lugar entre los grupos hidroxilo de los alcóxidos metálicos (generados durante el proceso sol-gel) y grupos amino, carbonilo, etc., de la parte orgánica.
Los polímeros orgánicos utilizados son muy diversos y pueden ser: PDMS, poli (n-butilmetacrilato, PMMA, polifosfacenos, poliamidas tales como poli (2-metil-2-oxazolina (POZO), poli (N-vinil pirrolidona (PVP), y poli(N,N-dimetilacrilamida (PDMAAm). Por otro lado, aunque la mayoría de las redes inorgánicas son las derivadas del silicio, también se han encontrado otras que provienen del titanio, aluminio o zirconio.

• Redes orgánico-inorgánicas interpenetradas generadas simultáneamente.
En estos materiales la disminución de volumen asociada al proceso sol-gel se intenta compensar mediante el empleo de derivados tipo tetraalquilortosilicatos que poseen grupos alcóxidos polimerizables en lugar de los grupos etóxidos o metóxidos convencionales. Durante el proceso sol-gel, la hidrólisis y condensación de estos precursores libera cuatro equivalentes de alcohol polimerizable. En presencia de la catálisis apropiada (radicales libres o ROMP (polimerización mediante apertura de anillo (metatésis)), empleando la cantidad estequiométrica de agua y el correspondiente alcohol como codisolvente todos los derivados generados son polimerizables.

• Matrices híbridas generadas mediante la impregnación de disoluciones orgánicas en una red inorgánica porosa.
Los polímeros oxo-metálicos sintetizados a través del proceso sol-gel están constituidos por estructuras porosas interconectadas (1 nm < tamaño de poro < 10 nm) tales como las encontradas en zeolitas o vidrio Vycor. Debido a esto se pueden obtener fácilmente híbridos orgánico-inorgánicos mediante impregnación, rellenando la porosidad abierta de la red inorgánica con soles oxo metálicos, monómeros orgánicos polimerizables,
Introducción

Posteriormente, aplicando estos mismos conceptos se desarrolla lo que se conoce como bioencapsulación, ya que Braun et al. mostraron que las enzimas atrapadas dentro de una matriz porosa de sílice mantenían su actividad biológica. A colación de éste se han desarrollado numerosos trabajos extendiendo los estudios a un amplio intervalo de especies biológicas.

Clase I B: Híbridos ordenados

Dentro de esta subclasificación se encuentran los híbridos orgánicos-inorgánicos, donde las moléculas orgánicas o polímeros están insertadas dentro de una red inorgánica ordenada, por ejemplo con una disposición laminar (como la que presentan compuestos naturales tales como arcillas, silicatos, etc.).

Un ejemplo lo constituyen los geles obtenidos de alcóxidos de vanadio, que tras seleccionar las condiciones experimentales adecuadas pueden formar estructuras laminares y, entre estas distintas láminas, se pueden incorporar moléculas orgánicas y una gran variedad de polímeros. La distribución de estos compuestos orgánicos entre las diferentes capas no es arbitraria y es el resultado de diferentes interacciones tales como fuerzas de Van der Waals, repulsiones electrostáticas, etc.

Clase II

Este tipo de materiales están caracterizados por presentar enlaces covalentes o iónico-covalentes entre los componentes orgánicos e inorgánicos que forman parte del híbrido. Para sintetizar este tipo de materiales existen dos posibles vías: (a) secuencial, donde sobre una red inicialmente formada se produce otra nueva y, (b) simultánea, donde se produce la formación de la red orgánica e inorgánica a la vez.

- **Redes híbridas obtenidas a partir de macromonómeros orgánicos funcionalizados.**

En este tipo de híbridos se produce la unión entre alcóxidos metálicos y un polímero funcionalizado que presenta grupos que pueden enlazarse químicamente a la red inorgánica. Estos polímeros suelen presentar grupos terminales tipo trialcoxisilil \((\text{Si(OR)}_3)\) o hidróxidos a través de los cuales se produce la unión. En la literatura se puede encontrar gran cantidad de trabajos donde se emplean una gran diversidad de...
Capítulo I

polímeros como por ejemplo alquilsilanos (PDMS, PDPS), poliestireno, polioxazolinas (POZO), poliimidas, poliamidas, polibutadienos (MPBP), óxidos de polietileno (MPEOU), óxidos de polietetrametileno (PTMO), poliéter de cetona (PEK), polioxipropileno (PPO), poliorganofosfacenos, ciclofosfacenos (POP, CP), y polimetilmetacrilatos (PMMA). Como parte inorgánica suelen emplearse alcóxidos de silicio (generalmente TEOS), pero también pueden emplearse alcóxidos metálicos de titanio, zirconio, aluminio o zinc que mejoran aún más las propiedades mecánicas de los híbridos obtenidos. La diferencia de reactividad de estos últimos alcóxidos metálicos con respecto al TEOS debe ser tenida en cuenta a la hora de evitar posibles precipitaciones de los alcóxidos más reactivos. Una manera de evitarlo es hacer reaccionar inicialmente el TEOS y el polímero y posteriormente adicionar los alcóxidos más reactivos.

- **Redes híbridas obtenidas a partir de bloques inorgánicos funcionalizados.**

Los híbridos se obtienen mediante polimerización orgánica de clusters oxo metálicos funcionalizados. Algunas de las posibilidades se basan en derivados del ácido silícico, donde se sintetizan clusters que presentan grupos etilénicos o silanos a través de los cuales se produce la polimerización con el polímero orgánico.

En último lugar, Mackenzie clasificó los ormosiles en tres tipos: A, B y C.

Tipo A: El componente orgánico se mezcla con la disolución sol-gel y cuando se produce la gelificación queda atrapado dentro del gel inorgánico.

Tipo B: Primero se forma una red inorgánica porosa y posteriormente el material orgánico se impregna a través de los poros interconectados de la red inorgánica.

Tipo C: A diferencia con los dos primeros para este tipo de ormosiles se produce enlace químico entre la parte orgánica e inorgánica del material.

I.2.2.2 **Sistema TEOS/PDMS.**

Durante bastantes años el proceso sol-gel se ha dirigido fundamentalmente hacia el estudio de tetraortosilicatos y, entre ellos sobre todo el TEOS (tetraetilortosilicato), pero posteriormente Schmidt vislumbró la posibilidad de obtener híbridos orgánico-inorgánicos y a partir de aquí aparecieron trabajos donde se estudiaban los materiales...
obtenidos a partir de TEOS y PDMS, trabajos entre los que destacan los llevados a cabo por Wilkes et al.85 y Mark et al.86, aunque existen muchos otros, donde se estudiaban y se estudiaban los mecanismos de reacción y la influencia de diferentes parámetros, que han contribuido al mejor conocimiento de este tipo de materiales.

En esta tesis, como se comentará posteriormente, se han elegido estos dos precursores para obtener híbridos ya que, para el caso del TEOS su hidrólisis era conocida y se puede controlar y, en el caso del PDMS con OH terminales se seleccionó éste debido a su buena estabilidad térmica, y puesto que presenta OH terminales puede producirse la condensación con el TEOS. Esto supondría el refuerzo del polímero con sílice.

Existen factores cruciales en el proceso sol-gel, como la naturaleza del alcóxido, la cantidad de agua, el pH del medio, el tiempo de reacción y la temperatura. Cuando se incorpora un polímero o un alcóxido modificado orgánicamente, además de los factores expuestos anteriormente, hay que tener presentes otros como la diferencia de reactividad y la solubilidad entre ambos, la proporción en la que se encuentran, la naturaleza del compuesto orgánico (longitud de la cadena, presencia de grupos silanos) y los disolventes empleados.87

El aspecto del gel cambia enormemente a medida que se va incorporando el polímero en la red vítrea. Mientras que los geles que únicamente contienen TEOS son frágiles y duros, al ir aumentando la proporción de PDMS en el híbrido, éstos cada vez se vuelven más blandos y menos frágiles. Para proporciones de PDMS $\geq 25\%$ el híbrido tiene apariencia de goma. En la Figura I-4 se ha hecho una representación de cómo afecta el porcentaje del polímero en el híbrido obtenido.

\textbf{Figura I-4: Discontinuidad que produce el PDMS en la red de sílice: (a) red de gel de sílice, (b) red modificada con pequeñas cantidades de PDMS y (c) red modificada con grandes cantidades de PDMS. Extraído de la referencia 88.}
I.2.2.2.1 Mecanismo de Reacción.

El mecanismo de reacción de estos híbridos orgánico-inorgánicos ha sido estudiado ampliamente por numerosos autores y en este apartado se quiere explicar de una manera somera el mecanismo más aceptado.

Wilkes et al.85 proponen la hidrólisis de las moléculas del TEOS y posterior condensación a partir de los silanolos terminales de las cadenas de PDMS. Sin embargo, este esquema de reacción tuvo que ser modificado más tarde, ya que se detectó la formación de oligómeros cíclicos de cuatro eslabones (provenientes de las cadenas de PDMS) mediante espectroscopías Raman y 29Si RMN.89,90 A partir de 29Si RMN también se detecta la formación de especies copolimerizadas entre TEOS y PDMS (D(Q)), por lo que el esquema de reacción propuesto es el siguiente:

- **Hidrólisis del TEOS**

 \[
 \text{Si(OR)}_4 + n\text{H}_2\text{O} \rightarrow \text{Si(OH)}_4(\text{OR})_{4-n} + n\text{ROH} \quad \text{Reacción I- 4} \\
 (R = \text{C}_2\text{H}_5)
 \]

- **Policondensación (autocondensación y copolimerización)**

 Autocondensación del TEOS

 \[
 (-\text{O-})_3\text{Si-OR} + \text{HO-Si(-O-)}_3 \rightarrow (-\text{O-})_3\text{Si-O-Si(-O-)}_3 + \text{H}_2\text{O} \quad \text{Reacción I- 5} \\
 R = \text{H}, \text{Et}
 \]

Esta reacción puede tener lugar entre dos grupos silanol o entre un grupo silanol y un grupo alcóxido de las moléculas de TEOS, produciéndose, por lo tanto, entre moléculas de TEOS total o parcialmente hidrolizadas.
Al principio la hidrólisis y autocondensación del TEOS son los procesos mayoritarios, y a medida que la reacción evoluciona comienza la copolimerización entre el TEOS y el PDMS. Además de las especies de copolimerización entre el TEOS y PDMS se detecta la presencia de oligómeros cíclicos, si bien, a medida que evoluciona la reacción disminuye la cantidad de unidades cíclicas y lineales en detrimento de la formación de especies copolimerizadas entre el TEOS y el PDMS. Esto parece indicar que durante el proceso sol-gel, bajo la acción de la catálisis ácida, las cadenas de PDMS se rompen en cadenas más cortas u oligómeros cíclicos de cuatro eslabones. Esto también está indicando que las moléculas que proceden de la hidrólisis del TEOS pueden reaccionar con las cadenas lineales de PDMS, tanto a partir de los silanoles terminales de dichas cadenas como en mitad de la cadena, y de la misma manera con los oligómeros cíclicos.

El polímero bajo condiciones ácidas se encuentra en equilibrio entre especies lineales (80-85 %) y cíclicas (15-20 %).91 De entre los oligómeros cíclicos, los que se forman de manera mayoritaria son los de cuatro eslabones. La relación entre unidades lineales y cíclicas de PDMS se mantiene constante durante la reacción.
Capítulo I

En la Figura I- 5 se ha esquematizado el equilibrio que se produce, bajo condiciones ácidas, entre las unidades lineales y cíclicas, independientemente de si se parte de una cadena lineal de PDMS ó de oligómeros cíclicos tipo octametilciclosiloxano (D_{4C}).

A medida que progresa la reacción, tanto las cadenas lineales como los oligómeros cíclicos pueden participar en la copolimerización con las moléculas procedentes de la hidrólisis del TEOS. Los oligómeros cíclicos pueden reaccionar mediante un mecanismo de polimerización con apertura de anillo y, a medida que los ciclos se van utilizando, éstos son regenerados continuamente hasta que concluye la reacción y el polímero se consume completamente.

Existen numerosos trabajos que estudian cómo influyen las condiciones de síntesis en la estructura/microestructura y propiedades de los híbridos obtenidos a partir de TEOS/PDMS. Los parámetros generalmente estudiados son; temperatura, tiempo de reacción, contenido en agua, ácido (catálisis) y disolvente, longitud de la cadena de PDMS, proporción de este último, e incluso cómo afecta si primero se autocondensa el TEOS y posteriormente se adiciona el PDMS. Aunque todos estos parámetros no pueden estudiarse de forma independiente, ya que afectan unos sobre otros, en los párrafos siguientes quieren darse unas pequeñas nociones de cómo afectan estos parámetros en los híbridos obtenidos.
Introducción

Al aumentar el contenido en ácido se aumenta la velocidad de hidrólisis del alcóxido y se disminuye la velocidad de las reacciones de autocondensación pero se promueve en mayor medida las reacciones de copolimerización entre el TEOS y el PDMS y por lo tanto mejora la dispersión e incorporación del polímero en la red vítrea.92,93

Cuando se emplean condiciones de catálisis básica se favorece la condensación entre el TEOS y el PDMS.99

Para elevados porcentajes de TEOS se obtiene un sistema homogéneo, donde se aprecia un gran entrecruzamiento de la red vítrea tridimensional. A medida que se va incorporando el PDMS se va rompiendo la continuidad de esta red vítrea hasta llegar al caso extremo, es decir cuando la cantidad de PDMS es mayoritaria, en el que las cadenas de PDMS son una fase continua parcialmente interrumpida por pequeños nódulos de silice. En la Figura I- 6 puede apreciarse cómo varía la microestructura en el híbrido en función del porcentaje de PDMS.97

\textit{Figura I- 6: Variación de la microestructura de híbridos del sistema TEOS/PDMS en función del porcentaje de PDMS. Extraído de la referencia 97.}
Por otro lado, a medida que disminuye la longitud de la cadena de PDMS, la solubilidad del polímero aumenta así como la tendencia a reaccionar con el TEOS, lo que disminuye la separación de fases en el híbrido.96,97,98

La temperatura también es un factor decisivo en esta reacción. A medida que aumenta se ven favorecidos los procesos de copolimerización del TEOS con el PDMS, en detrimento de la autocondensación del TEOS.

El tiempo de reacción también es un factor determinante, ya que como se ha comentado, en los primeros momentos de la reacción los procesos favorecidos son la hidrólisis y la autocondensación de las moléculas de TEOS y, posteriormente, a medida que dicha reacción progresa, comienza la copolimerización del TEOS con el PDMS.96

El contenido en agua prácticamente no influye en la copolimerización del TEOS con el PDMS, pero aumenta la autocondensación de las especies que provienen de la hidrólisis de TEOS, provocando una estructura más abierta y porosa.96,98

Las propiedades finales100 de los geles están gobernadas por sus microestructuras. En el caso concreto de los geles del sistema TEOS/PDMS, varios parámetros van a influir en dicha microestructura como la temperatura de reacción, contenido en agua y concentración de HCl. Cuando estos parámetros aumentan, la estructura es más abierta, siendo la porosidad mayor. La estructura celular que caracteriza los ormosiles cambia con las diferentes condiciones de reacción, así como el grado de conectividad. El tiempo de gelificación aumenta cuando todos estos parámetros disminuyen. De la misma manera, la porosidad disminuye y el grado de conectividad aumenta, lo que se traduce en una mejora de las propiedades mecánicas.

I.2.2.3 Otros sistemas. Materiales híbridos orgánico-inorgánicos que contienen enlaces Si-H.

La incorporación de enlaces Si-H en el híbrido orgánico-inorgánico introduce características adicionales tanto a dichos híbridos como a los productos que se obtienen
a partir de éstos. Los geles obtenidos mediante la hidrólisis y condensación de trialcoxisilanos (TREOS, *es decir* trietoxisilano, o TMOS, *es decir* trimetoxisilano) presentan un área superficial excepcionalmente elevada (desde 300-900 m²/g), además presentan una naturaleza hidrófoba y una menor densidad con respecto a geles de sílice obtenidos mediante tetralalcoxisilanos. Sin embargo, una de las características más atractivas que presentan este tipo de geles es que, gracias a las suaves condiciones del proceso sol-gel, los enlaces Si-H permanecen en el gel y esta funcionalización puede ser utilizada para reacciones específicas en estado sólido.

Los enlaces Si-H cuando son tratados térmicamente en aire se oxidan a los correspondientes Si-OH que posteriormente se condensaran para formar uniones siloxano. Por otro lado, en atmósfera de NH₃ conducen a la formación de vidrios de oxinitruro. Este tipo de materiales pueden ser interesantes a la hora de fabricar nanocomposites metal/sílice, (donde el metal puede ser Pt, Ni, Cu, Co) el empleo de las condiciones térmicas adecuadas produciría la ruptura de los enlaces Si-H generando hidrógeno que a su vez provocaría la reducción de especies metálicas y que además generaría porosidad.

Este tipo de materiales pueden ser interesantes a la hora de fabricar nanocomposites metal/sílice, (donde el metal puede ser Pt, Ni, Cu, Co) el empleo de las condiciones térmicas adecuadas produciría la ruptura de los enlaces Si-H generando hidrógeno que a su vez provocaría la reducción de especies metálicas y que además generaría porosidad.

Por otro lado, también se ha estudiado el empleo de híbridos orgánico-inorgánicos que contienen enlaces Si-H como precursores de vidrios de oxicarburo. Los enlaces Si-H favorecen la incorporación de carbono en la red vítrea minimizando las pérdidas de carbono, ya sean a través de la formación de especies volátiles o mediante la formación de carbono libre. El sistema más estudiado para este caso en concreto es el formado a partir de TREOS (es decir; HSi(OEt)₃) y MDES (es decir; HMeSi(OEt)₂).

También es muy común el empleo de polímeros que contienen grupos Si-H, como por ejemplo PHMS (es decir, polimetilsiloxano [CH₃SiHO]ₙ) en el diseño de resinas u otro tipo de materiales precerámicos. Este tipo de enlaces aumenta la reactividad en los precursores y se utilizan en reacciones de entrecruzamiento, mediante la reacción del grupo silano (Si-H) con dobles enlaces, con moléculas tipo DVB (es decir, divinilbenceno) empleando una catálisis adecuada.
Capítulo I

1.3 Pirólisis de híbridos orgánico-inorgánicos.

La pirólisis es un tratamiento térmico necesario para transformar el precursor híbrido de partida en un vidrio inorgánico. Los enlaces siloxano (O-Si-O) ya están formados en el híbrido, mientras que la formación de estructuras tipo $≡Si-C-Si≡$, es decir la incorporación de carbono en la red inorgánica, se produce fundamentalmente como resultado de las elevadas temperaturas acontecidas durante la pirólisis.

1.3.1 Factores que Influyen en el Proceso de Pirólisis.

Existen numerosos factores que influyen, en mayor o menor medida, en todas las reacciones que tienen lugar durante el proceso de pirólisis. A continuación se comentan cada uno de ellos.

- Naturaleza del precursor híbrido orgánico-inorgánico.

La composición química del material formado depende fuertemente del gel precursor, de la naturaleza de los grupos orgánicos que lo forman y de la relación (O/Si).

La naturaleza de los radicales orgánicos influye notablemente en el oxicarburo obtenido. Por ejemplo, es conocido23,40,105 que los grupos alifáticos de cadena larga y los grupos vinilo o fenilo, aumentan mucho el contenido en carbono del gel, pero no de la misma manera el contenido en carbono de la fase oxicarburo. Por un lado, la fase oxicarburo que se forma es independiente del grupo orgánico, ya que solamente se incorpora el carbono unido directamente al silicio. Por otro lado, la presencia de grupos insaturados aumenta mucho el contenido en carbono libre.

Cuando el híbrido presenta enlaces $Si-H$, al ser éstos de elevada reactividad, se produce un mayor entrecruzamiento de la red, así como una aceleración de todas las reacciones que conducen al vidrio de oxicarburo de silicio y una disminución de la temperatura de inclusión del carbono en la red vitrea, aumentando la incorporación de carbono en el vidrio. Los precursores que presentan enlaces $Si-H$ pueden favorecer, a bajas temperaturas de tratamiento, la siguiente reacción ($Reacción I-7$).
Reacción I- 7

\[\equiv Si-CH_3 + H-Si \equiv \rightarrow \equiv Si-CH_2-Si \equiv + H_2 \]

Existen numerosos trabajos que estudian el efecto que produce la incorporación de otros elementos tales como boro,108,109,110,111,112,113,114,115 zirconio,116,117,118,119 titanio,116,119,120,121,122 aluminio,108,116,119,123 níquel,124,125 cobalto,126 hierro,127,128 etc., tanto en el híbrido orgánico-inorgánico formado como en el vidrio que se obtiene tras la pirólisis. En función de los elementos que se incorporan se pueden conseguir propiedades muy diversas en los materiales obtenidos, como por ejemplo la obtención de nanofibras de carbono generadas \textit{in situ}, tras el proceso de pirólisis mediante la adición de níquel en el híbrido,125 o materiales con propiedades luminiscentes.129

Cuando se adicionan pequeñas cantidades de boro en el híbrido,109 se modifica sustancialmente el proceso de pirólisis, ya que aumenta el entrecruzamiento de la red híbrida a bajas temperaturas, lo que se traduce en un rendimiento cerámico muy alto así como en una buena incorporación de carbono en la red vítrea. Por otro lado, la presencia de pequeñas cantidades de boro en el oxicarburo favorece la velocidad de cristalización del carburo de silicio aumentando el tamaño del cristal de β-SiC obtenido,113 pero disminuye la reorganización turbostática del carbono libre114 con respecto a oxicarburos que no presentan este elemento. Esto es debido a que la presencia de boro en el vidrio, que disminuye la viscosidad y facilita la movilidad de las especies.

- **Atmósfera durante el tratamiento térmico.**

La atmósfera empleada en el tratamiento térmico puede ser inerte, oxidante o reactiva. En los procesos de pirólisis la atmósfera suele ser inerte de N_2, Ar, etc. y conduce a la incorporación de carbono en la red vítrea mediante la formación de oxicarburos de silicio, que llevan asociada una fase adicional de carbono tipo grafito. Recientemente se ha hecho un estudio de la influencia de diferentes tipos de atmósferas inertes (Ar e H_2) en la formación del vidrio de oxicarburo y en la fase de carbono libre, encontrándose una mayor eliminación de carbono libre a medida que aumenta la cantidad de H_2.130 Una atmósfera oxidante no forma vidrio de oxicarburo de silicio sino un vidrio óxido clásico, ya que se produce la combustión de los grupos orgánicos. Finalmente, las
atmósferas reactivas, como por ejemplo amoníaco (NH_3) dan lugar a oxinitruros de silicio.131 La pirólisis en amoníaco de geles de sílice produce una pobre incorporación de nitrógeno en la red vitrea (<0.5 %), sin embargo, cuando esta pirólisis se produce sobre híbridos orgánico-inorgánicos, la incorporación de nitrógeno en la red vitrea es elevada obteniéndose los correspondientes vidrios de oxinitruro. El amoníaco reacciona con los grupos orgánicos del híbrido ($Si-R$), mientras que las uniones siloxano no reaccionan en manera alguna. Mediante un reemplazo de los grupos orgánicos del híbrido ($≡Si-R$) por el amoníaco se inserta el nitrógeno en la red vitrea formándose grupos $≡Si-NH_2$. Estos grupos se irán entrecruzando y formando estructuras puenteadas tipo $≡Si-NH-Si≡$, que seguirán evolucionando para dar lugar a estructuras tipo $N(Si≡)_3$, las cuales son las unidades estructurales presentes en los vidrios de oxinitruro.132

Además del tipo de atmósfera también influye el flujo o caudal empleado.

- **Temperatura, velocidad de calentamiento y tiempo de permanencia a dicha temperatura.**
 Se requieren unas temperaturas mínimas de pirólisis del orden de 900-1100 °C para obtener el vidrio de oxicarbururo de silicio. La velocidad y el tiempo de permanencia a esta temperatura de pirólisis influyen fundamentalmente en la microestructura del material final obtenido. Elevadas velocidades de calentamiento generan una gran porosidad y disminuyen el rendimiento cerámico.63 Por otro lado, largos tiempos de permanencia a la temperatura máxima reducen dicha porosidad, ya que se consigue una mayor densificación del material a partir de un proceso de sinterización mediante flujo viscoso. Este proceso se dará en mayor medida al aumentar la temperatura de tratamiento.

- **Tamaño de partícula del precursor, ya sea monolito o partículas finamente divididas.**
 A medida que disminuye el tamaño de partícula, todos los procesos suceden de una forma más rápida ya que se aumenta la superficie de reacción.
• **Microestructura del híbrido/vidrio.**
De la misma manera que el caso anterior, en materiales porosos o con elevada superficie específica, los procesos que tienen lugar durante el tratamiento térmico estarán más favorecidos que para el caso contrario de materiales no porosos o con una superficie específica pequeña. Por otro lado, el mayor o menor entrecruzamiento de la red híbrida influirá notablemente en el proceso de pirólisis.\(^{133,134}\)

La composición y estructura, y en definitiva las propiedades finales de vidrio obtenido, dependen de la composición y estructura del híbrido orgánico-inorgánico de partida, así como de las condiciones experimentales del proceso de pirólisis. De acuerdo con esto, el diseño de un precursor adecuado (según las solicitudes del sistema) requiere el extenso conocimiento del proceso de pirólisis y todas las reacciones involucradas en él.

I.3.2 Mecanismo de Pirólisis.

Existe un gran número de trabajos que describen el proceso de pirólisis de materiales híbridos orgánico-inorgánicos o polímeros precerámicos para la obtención de vidrios de oxicarbururo de silicio.\(^{132,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149}\) En estos trabajos se tiene en cuenta fundamentalmente el tipo de precursores híbridos/polímeros empleados, así como la temperatura de tratamiento, dándose una menor importancia a aspectos también importantes y que van a influir en el material final formado, como son la velocidad de calentamiento, tiempo de permanencia a la temperatura máxima, tamaño de partícula y microestructura, entre otros.

Estos estudios se basan en diversas técnicas que han ido complementando la información unas con otras. Las técnicas más ampliamente utilizadas para poder interpretar el proceso han sido: análisis termogravimétrico sencillo o bien acoplado a otras técnicas instrumentales (*TG-DTG, TG-MS, TG-FT-IR*), análisis térmico diferencial (*ATD*), cromatografía de gases (*CG, CG-MS*), resonancia de spin electrónico (*EPR*), resonancia magnética nuclear generalmente en estado sólido para los diferente núcleos presentes (*\(^{29}\text{Si-MAS-RMN}, \, ^{13}\text{C-CPMAS-RMN} y \, ^{1}\text{H MAS-RMN}*), espectroscopía infrarroja (*FT-IR*), espectroscopía Raman, fotoluminiscencia (PL), espectroscopía fotoelectrónica de rayos X (*XPS*), difracción de rayos X (*DRX*) y análisis químico.
Capítulo I

Figura I-7: Representación de la notación convencional comúnmente empleada para designar los diferentes entornos químicos del silicio: X, Mᵡ, Dᵡ, Tᵡ y Qᵡ, en donde X, M, D, T y Q se refieren a las unidades SiC₄₋ₓOₓ, siendo x = 0, 1, 2, 3 ó 4 respectivamente y el subíndice n representa el número de átomos de oxígeno puente que rodean el átomo de silicio. Por otro lado, el superíndice H, indica el número de carbonos que han sido reemplazados por hidrógeno. Esta nomenclatura es la que se empleará a lo largo de esta memoria.

a) Representación esquemática de las diferentes unidades Q, T, D, M y X.

b) Representación para una mejor comprensión de las unidades Q con diferentes números de oxígenos puente, variando desde 0 hasta 4. Esta representación es extrapolable para el resto de las unidades.

c) Representación para una mayor clarificación de diferentes unidades donde se han reemplazado carbonos por hidrógenos.
Para referirse a las diferentes unidades estructurales de las que están formados los materiales, a lo largo de esta memoria se va a emplear la nomenclatura convencional siguiente: X, M_n, D_n, T_n y Q_n, donde X, M, D, T y Q se refieren a las unidades $SiC_{4-x}O_x$, siendo $x = 0, 1, 2, 3$ ó 4 respectivamente y el subíndice n representa el número de átomos de oxígeno puente que rodean el átomo de silicio. Por otro lado, estas unidades también pueden presentar el superíndice H; en este caso indicaría el número de carbonos que han sido reemplazados por hidrógeno.

Para intentar clarificar esta nomenclatura, en la Figura I-7 se han representado las diferentes unidades estructurales que van a ser objeto de estudio a lo largo de esta Tesis Doctoral.

Durante la pirólisis de híbridos orgánico-inorgánicos, para la obtención de vidrios de oxicarburo de silicio, se producen un gran número de procesos los cuales se van a comentar a continuación. La complejidad reside en que muchas veces los diferentes tipos de reacciones que acontecen coinciden total o parcialmente en los intervalos de temperaturas en los que se producen.

En la Figura I-8 se recogen los intervalos de temperaturas aproximados donde suceden todos los procesos que tienen lugar, tales como condensación de silanol y/o grupos alcoxido, reacciones de redistribución ($Si-O/Si-O$, $Si-H/Si-O$, $Si-O/Si-C$) y ceramización.

![Figura I-8: Reactividad de los grupos funcionales durante la conversión de híbrido orgánico-inorgánico al vidrio de oxicarburo. Extraído de referencia 148.](image-url)
I.3.2.1 Condensación de silanoles residuales.

La mayoría de los híbridos orgánico-inorgánicos contienen grupos silanoles residuales, grupos que, además de reaccionar entre sí también pueden reaccionar con grupos alcóxido que no hayan sido hidrolizados. Mediante estas reacciones de hidrólisis/condensación se producen uniones siloxano que aumentan el entrecruzamiento de la red del híbrido (Reacción (I-8) y (I-9)). Estas reacciones suelen producirse hasta los 400º C.

\[
\equiv\text{Si} - \text{OH} + \text{HO} - \text{Si} \equiv \rightarrow \equiv\text{Si} - \text{O} - \text{Si} \equiv + \text{H}_2\text{O} \quad \text{Reacción I-8}
\]

\[
\equiv\text{Si} - \text{OR'} + \text{HO} - \text{Si} \equiv \rightarrow \equiv\text{Si} - \text{O} - \text{Si} \equiv + \text{R'}\text{OH} \quad \text{Reacción I-9}
\]

\(R' = \text{generalmente Et, pero pueden ser grupos alquilo, vinilo, arilo, etc.}\)

Dichas reacciones de condensación de silanoles se pueden extender a los grupos Si-R (Reacción (I-10)). Para el caso concreto en el que el sistema presente enlaces de Si-H, (Reacción (I-11) y (I-12)), y debido a la elevada reactividad de dichos enlaces, la ruptura de Si-H por los grupos silanol ocurre para temperaturas bajas, del orden de 200-250º C.\(^{141,148}\) Por otro lado, la ruptura del enlace Si-Ph ocurre a temperaturas del orden de los 300-575 ºC,\(^{136,150}\) mientras que la ruptura del enlace Si-Me tiene lugar a temperaturas más elevadas, comprendidas en el intervalo de 450-650º C.\(^{148}\)

\[
\equiv\text{Si} - \text{OH} + \text{R} - \text{Si} \equiv \rightarrow \equiv\text{Si} - \text{O} - \text{Si} \equiv + \text{R-H} \quad \text{Reacción I-10}
\]

\(R = \text{H, Me, Ph, etc.}\)

\[
\equiv\text{Si} - \text{OH} + \text{H} - \text{Si} \equiv \rightarrow \equiv\text{Si} - \text{O} - \text{Si} \equiv + \text{H}_2 \quad \text{Reacción I-11}
\]

\[
\equiv\text{Si} - \text{OR'} + \text{H} - \text{Si} \equiv \rightarrow \equiv\text{Si} - \text{O} - \text{Si} \equiv + \text{R'}\text{-H} \quad \text{Reacción I-12}
\]

Algunos autores\(^{141}\) han detectado mediante CG-MS pequeñas cantidades de eteno a temperaturas de alrededor de los 500º C. Su presencia puede ser explicada mediante la Reacción (I-13).

\[
\equiv\text{Si} - \text{O} - \text{CH}_2 - \text{CH}_2 - \text{H} \rightarrow \equiv\text{Si} - \text{O} - \text{H} + \text{CH}_2=\text{CH}_2(g) \quad \text{Reacción I-13}
\]
I.3.2.2 Reacciones de redistribución o de intercambio.

Las reacciones de redistribución101,151,152,153,154 son equilibrios en los que se produce el intercambio de sustituyentes unidos a un metal. Estas reacciones pueden ser inducidas bajo catálisis ácida, básica o bien térmicamente. Parece ser que este tipo de reacciones transcurre vía un intermedio activado de cuatro centros (Reacción (I-14)). Aunque inicialmente tales reacciones fueron observadas en estado líquido, posteriormente también se han observado en estado sólido para este tipo de sistemas.151 Sin embargo, se observan diferencias entre ambos estados debidas, probablemente, a la movilidad reducida que presentan los átomos en estado sólido. Por lo tanto, el mecanismo de redistribución en estado sólido estará supeditado a que las unidades estén suficientemente próximas para poder formar especies intermedias y así producir este tipo de reacciones.

\[
\text{Si}_2 X \leftrightarrow \text{Si}_2 Y \leftrightarrow \text{Si}_2 X \leftrightarrow \text{Si}_2 Y \quad \text{Reacción I-14}
\]

\[X, Y = \text{H, Cl, Si, OR, NR}_2, \text{NRSi, Ph, Me,}\]

Para un átomo central dado, como por ejemplo el Si, las reacciones de intercambio de enlaces Si-C son mucho más lentas que las que involucran enlaces Si-H o Si-O. Por lo tanto, para un híbrido que contenga enlaces Si-H y Si-C se observan fundamentalmente las reacciones de redistribución de enlaces Si-O/Si-H. Cuando se hayan consumido los enlaces Si-H entonces se observarán las reacciones de intercambio entre Si-O/Si-C.

Estas reacciones pueden conducir a la formación de especies volátiles como consecuencia de sucesivas etapas de redistribución, de modo que la formación de dichas especies gaseosas desplazará los equilibrios mediante el principio de \textit{Le Chatelier}.

Tanto las especies volátiles formadas de este modo, como la cantidad de ellas, dependen de la naturaleza de los precursores que forman el gel, así como de las condiciones de síntesis y de secado.
Las especies volátiles de silanos que pueden formarse son por ejemplo: \(\text{SiH}_4 \), \(\text{MeSiH}_3 \), \((\text{Me})_3\text{SiH} \), \((\text{MeH}_2\text{Si})_2\text{O} \), \((\text{Me}_3\text{Si})_2\text{O} \), \(\text{Me}_4\text{Si} \). Estas reacciones son muy comunes en la química de organosilanos y están bien documentadas en la literatura.\(^{141,142,151,152,154}\) Como consecuencia de la descomposición de estas especies volátiles de silicio se puede formar metano e hidrógeno.

La pérdida de estas especies volátiles de compuestos de silicio es la causa fundamental de que disminuyan los rendimientos cerámicos y de que se produzca un aumento de la relación \(O/Si \) en el residuo con respecto al precursor. La formación de estas especies volátiles se puede minimizar aumentando el grado de entrecruzamiento del gel y mediante la eliminación de catalizadores o grupos residuales monofuncionales (tipo \(\text{Si-OH} \), \(\text{Si-OEt} \), \(\text{Si-Cl} \)) que disminuyen el grado de entrecruzamiento y experimentan muy fácilmente reacciones de redistribución.

Para este tipo de sistemas, las reacciones de redistribución más importantes son aquellas que involucran los enlaces \(\text{Si-O/Si-H} \), \(\text{Si-O/Si-C} \) y \(\text{Si-O/Si-O} \) y debido a la importancia de éstas serán tratadas de forma separada.

\subsection{I.3.2.2.1 Redistribución de enlaces \(\text{Si-O/Si-H} \).}

Los híbridos orgánico-inorgánicos contienen frecuentemente grupos \(\text{Si-H} \) debido a la elevada reactividad que presenta el enlace \(\text{Si-H} \) en comparación a otros enlaces tales como \(\text{Si-C} \). En cuanto a la pirólisis de estos híbridos que presentan grupos \(\text{Si-H} \), se ha observado que se pueden obtener vidrios de oxicarburo con una mayor incorporación de carbono en la fase vítrea con respecto a la que se consigue con híbridos que solo contienen enlaces \(\text{Si-Me} \).\(^{39}\)

Para el caso concreto de un gel que contenga unidades \(\text{T}^\text{II} \), a partir de trietoxisilano, se ha observado\(^{151,101,152}\) la eliminación de gases tales como \(\text{SiH}_4 \) y \(\text{H}_2 \). La eliminación de \(\text{SiH}_4 \) se ha detectado a temperaturas de 300-350 ºC y puede ser explicada mediante sucesivas reacciones de redistribución de enlaces \(\text{Si-O/Si-H} \) (Esquema (I-1)), mientras que la presencia de hidrógeno se ha detectado a partir de 450 ºC-500 ºC como resultado de la ruptura del enlace \(\text{Si-H} \). Los gases han sido analizados mediante TG/MS, mientras
que las reacciones de redistribución han sido corroboradas mediante el análisis de los residuos por $^{29}\text{Si-MAS-RMN}$ y FT-IR.

\[
2\text{[HSiO}_3\text{]} \leftrightarrow \text{[SiO}_4\text{]} + \text{[H}_2\text{SiO}_2\text{]}
\]

Esquema I-1

\[
\text{[H}_2\text{SiO}_2\text{]} + \text{[HSiO}_3\text{]} \leftrightarrow \text{[SiO}_4\text{]} + \text{[H}_3\text{SiO}\text{]}
\]

\[
\text{[H}_3\text{SiO}\text{]} + \text{[HSiO}_3\text{]} \leftrightarrow \text{[SiO}_4\text{]} + \text{SiH}_4(g)
\]

Recientemente155 se ha estudiado la pirólisis en geles obtenidos a partir de trimetoxisilano (TH), mediante FT-IR, TG-MS y TG-CG-MS. A partir de los resultados obtenidos se determinan tres etapas: en la primera, hasta 200 °C, se produce la eliminación de disolventes atrapados en el gel; una segunda, hasta 400 °C, se detecta agua como consecuencia de la condensación de silanoles residuales y una tercera, desde 400 hasta 500 °C, donde se aprecia la evolución de pequeñas moléculas de silanos y siloxanos como consecuencia de las reacciones de redistribución Si-O/Si-H. De forma muy mayoritaria se determina la formación de SiH_4 (78.30 %) y en menores proporciones $\text{H}_3\text{SiOSiH}_3$ (12.08%) y H_3SiOCH_3 (2.24 %). Como consecuencia de este tipo de reacciones se consumen rápidamente los enlaces Si-H y dan como resultado un aumento de la porosidad en el gel.

I.3.2.2.2 Redistribución de enlaces Si-O/Si-C.

Estas reacciones han sido estudiadas mediante el análisis de las especies gaseosas que se generan, para lo cual se ha utilizado la técnica TG/MS, así como la evolución estructural de los residuos obtenidos para diferentes temperaturas, y para ello se ha utilizado la técnica $^{29}\text{Si-MAS RMN}$. La continua variación del espectro de $^{29}\text{Si-MAS RMN}$ indica que estas reacciones se producen desde 500 hasta 1400 °C.153 Por lo tanto, no solamente están involucrados los enlaces Si-C orgánicos sino también los enlaces Si-C inorgánicos que se forman como consecuencia de las reacciones de mineralización que se comentarán más adelante.

Para un híbrido constituido por unidades D y Q se ha observado la formación de unidades T,22 lo cual puede ser explicado por la siguiente ecuación (Reacción I-15).
De la misma manera, en un gel constituido únicamente por unidades T,151,152 se ha observado la formación de unidades D y Q como consecuencia de la reacción inversa, poniendo de manifiesto la reversibilidad en este tipo de reacciones. También para este tipo de sistemas se han observado, entre 630-690 °C, especies volátiles tales como $Me_3SiOsiMe_3$, mediante TG-MS. Éstas, pueden ser explicadas como sucesivas reacciones de redistribución entre enlaces $Si-O/Si-C$ y $Si-O/Si-O$ (Esquema (I-2)).

$$2[MeSiO_3] \leftrightarrow [Me_2SiO_2] + [SiO_4] \quad \text{Esquema I-2}$$

$$[Me_2SiO_2] + [MeSiO_3] \leftrightarrow [Me_3SiO] + [SiO_4]$$

$$2[Me_3SiO] \leftrightarrow Me_3SiOSiMe_3(g) + [SiO_4]$$

En la Reacción (I-16) se representan todas las reacciones que se pueden producir en función de las unidades estructurales de las que esté constituido el híbrido.

$$SiO_{x}C_{4-x} + SiO_{y}C_{4-y} \leftrightarrow SiO_{x-1}C_{5-x} + SiO_{y+1}C_{3-y} \quad O < x \leq 4, 0 \leq y < 4 \quad \text{Reacción I-16}$$

De acuerdo con la ecuación general (reacción (I-16)) se pueden producir seis reacciones (Esquema (I-3)).144

$$2[SiO_2C_2] \leftrightarrow [SiOC_3] + [SiO_3C] \quad \text{Esquema I-3}$$

$$[SiO_2C_2] + [SiOC_3] \leftrightarrow [SiC_4] + [SiO_3C]$$

$$[SiO_2C_2] + [SiO_3C] \leftrightarrow [SiO_4]$$

$$2[SiOC_3] \leftrightarrow [SiC_4] + [SiO_2C_2]$$

$$[SiOC_3] [SiO_3C] \leftrightarrow [SiC_4] + [SiO_4]$$

$$2[SiO_3C] \leftrightarrow [SiO_2C_2] + [SiO_4]$$

Estas reacciones producen un cambio drástico en el entorno del silicio y son determinantes de la composición final del vidrio de oxicarburo. Para temperaturas de pirólisis comprendidas entre 900-1200 ºC, el vidrio de oxicarburo puede verse como una distribución aleatoria de enlaces $Si-O$ y $Si-C$ (y una fase de carbono libre) que
determinará la formación de las diferentes unidades estructurales de las que está compuesto el material. Para temperaturas superiores a 1200° C, estas reacciones de redistribución tenderán a formar las especies más estables termodinámicamente, es decir, se favorece la formación de las unidades \([SiO_4]\) y \([SiC_4]\). La redistribución de estas especies \((SiO_xC_{4-x})\) depende de la composición de los vidrios y, más concretamente, de la relación \(O/Si\). Como los átomos de silicio están unidos a carbono y oxígeno en la fase oxicarburo, la proporción relativa de estas unidades \((SiO_xC_{4-x})\) vendrá determinada por la relación \(Si/O\) de los precursores. La relación \(C/Si\) en el vidrio no es un factor adecuado debido ya que una parte de los átomos de carbono forman parte de la fase de carbono libre, mientras que todos los átomos de oxígeno están unidos a átomos de silicio formando uniones \(Si-O-Si\). La temperatura de pirólisis también influye notablemente, ya que para temperaturas elevadas, entre 1400-1500 °C, la matriz de vidrio de oxicarburo puede ser descrita como una mezcla de sílice y carburo de silicio.

Corriu et al. establecen una conexión entre los diferentes entornos del silicio en el vidrio de oxicarburo y la relación \(O/Si\) de dichos vidrios, para valores desde 1.2 a 1.8. A partir de los datos experimentales estos investigadores aprecian que, a medida que la relación \(O/Si\) en el vidrio disminuye (determinada mediante análisis químico), la cantidad de carbono en red aumenta. El modelo estructural de la proporción de las diferentes unidades estructurales del oxicarburo simplemente consiste en una distribución aleatoria de los enlaces \(Si-O\) y \(Si-C\), donde la disposición de los diferentes entornos depende de la probabilidad de encontrar dichos enlaces en la fase oxicarburo.

En la *Figura I-9* puede apreciarse la buena concordancia del espectro de \(^{29}\text{Si-RMN}\) experimental y simulado, según este modelo, para diferentes materiales donde se ha variado la relación \(O/Si\).
I.3.2.2.3 Redistribución de enlaces Si-O/Si-O.

La redistribución de enlaces siloxano es la principal reacción que sucede en la degradación térmica de polisiloxanos. La pirólisis de polisiloxanos lineales no produce altos rendimientos en la obtención de materiales cerámicos y vitreos, ya que se degrada produciendo una mezcla de oligómeros cíclicos (de tres y cuatro eslabones fundamentalmente) (Reacción (I-17)).

La presencia de grupos silanóles (Reacción (I-18)) al final de la cadena, en otra cadena o en otra especie, disminuye la estabilidad térmica de los polisiloxanos lineales. Esto
Introducción

puede ser atribuido al ataque nucleófilo de los grupos silanoles seguido de la transferencia de un protón156 o a la redistribución de enlaces $Si-O/Si-OH$.153

Si O Si O Si O

Reacción I-17

Si O Si O Si

Reacción I-18

Por otro lado, la pirólisis de polisiloxanos con alto grado de entrecruzamiento da lugar a mayores rendimientos. Las reacciones de despolimerización, aunque también tienen lugar, están impedidas debido a la falta de movilidad de las cadenas. Estas reacciones requieren varias etapas para fragmentar la red del polímero y además los fragmentos que se forman tienen menor volatilidad ya que son generalmente estructuras policíclicas.

La redistribución de enlaces $Si-O/Si-O$ y el ataque de grupos silanoles no modifica la funcionalización de las unidades de siloxano. Los fragmentos que se forman están constituidos por las mismas unidades estructurales que el polímero, de manera que el alcance de estas reacciones no puede ser medido por algunas técnicas; por eso algunas veces pueden ser subestimadas.

Para el caso concreto del polidimetilsiloxano lineal ($PDMS$),156,157 las reacciones de despolimerización en atmósfera de aire y vacío tienen lugar en el intervalo de 400-650$^\circ$ C, produciendo una mezcla de oligómeros cíclicos. El trimer es el más abundante, seguido del tetramer y en menor medida, del pentamer, hexamer y otros oligómeros cíclicos y lineales.

Aunque el enlace $Si-C$ es el más débil, desde el punto de vista termodinámico (78 kcallmol$^{-1}$), la formación de oligómeros cíclicos sugiere la participación del enlace $Si-O$
(108 kcal mol\(^{-1}\)). La degradación térmica del PDMS ocurre mediante la formación de un estado de transición cíclico\(^{158}\) favorecido por la participación de los orbitales \(d\) vacíos del silicio (Reacción (I-19)). Finalmente, se produce la eliminación de oligómeros cíclicos de dimetilsiloxano, recortando la longitud de la cadena inicial. Este estado de transición se puede producir en cualquier punto de la cadena y se repite hasta que la longitud de ésta es demasiado corta como para producir el ciclado.

\[
\begin{align*}
\text{Si} & \quad \text{Si} & \quad \text{Si} \\
\text{O} & \quad \text{Si} & \quad \text{O} \\
\text{Si} & \quad \text{O} & \quad \text{Si} \\
\text{O} & \quad \text{Si} & \quad \text{O} \\
\end{align*}
\]

Reacción I-19

I.3.2.3 Reacciones de mineralización (o Reacciones de ceramización).

A temperaturas elevadas 500-1000\(^{\circ}\) C se producen reacciones que involucran la ruptura de enlaces \(\text{Si-C}, \text{C-C}\) y \(\text{C-H}\), dando lugar a la formación de especies volátiles tales como hidrógeno y alcanos (generalmente metano), las cuales conducen a la transformación orgánico-inorgánica del material.\(^{137,138,159}\)

Las elevadas temperaturas y los resultados observados mediante la técnica RSE indican que este proceso ocurre a través de un mecanismo radicálico.\(^{137}\) Estas especies gaseosas pueden ser explicadas mediante la formación de radicales libres por ruptura homolítica de los enlaces \(\text{Si-C}\) y \(\text{C-H}\), seguida por abstracción del hidrógeno y posterior combinación y reorganización (Esquema I-4).

\[
\begin{align*}
\equiv \text{Si} - \text{R} & \rightarrow \equiv \text{Si}^\bullet + \text{R}^\bullet & (R= H, \text{Ph}, \text{Me}) \\
\equiv \text{C} - \text{H} & \rightarrow \equiv \text{C}^\bullet + \text{•H} \\
\text{R}^\bullet + \equiv \text{C} - \text{H} & \rightarrow \equiv \text{C}^\bullet + \text{R} - \text{H} \\
\text{H}^\bullet + \equiv \text{C} - \text{H} & \rightarrow \equiv \text{C}^\bullet + \text{H}_2 \\
\end{align*}
\]

Esquema I-4

La formación de la fase oxicarburo puede ser justificada mediante la combinación de radicales \(\equiv \text{Si}^\bullet\) y \(\equiv \text{C}^\bullet\). Al principio, la reacción más favorecida es la abstracción del hidrógeno pero, a medida que éste se va consumiendo debido a la reorganización de
radicales para la formación de hidrógeno y alcanos, se producen en mayor medida otras rupturas de enlaces. La probabilidad de combinación entre radicales \(\equiv Si \cdot \) y \(\equiv C \cdot \) crece y tras sucesivas rupturas de enlace, combinaciones y reorganizaciones, se produce la formación de unidades \([SiC_4]\). Las reacciones de mineralización han sido estudiadas mediante diversas técnicas, las cuales han servido para detectar intermedios que ayudan a comprender los procesos que tienen lugar. Uno de estos intermedios son las estructuras puente tipo \(\equiv Si-CH_2-Si \equiv \) que han sido detectadas mediante \textit{FT-IR} a 750 °C.

\[
\equiv Si-CH_3 \rightarrow \equiv Si-CH_2 \cdot + \cdot H \quad \text{(Esquema I-5)}
\]

\[
\equiv Si-CH_3 \rightarrow \equiv Si \cdot + CH_3 \cdot
\]

\[
\equiv Si-CH_2 \cdot + \equiv Si \rightarrow \equiv Si-CH_2-Si \equiv \rightarrow \equiv Si-CH \cdot -Si \equiv + \cdot H
\]

\[
\equiv Si-CH \cdot -Si \equiv + \cdot Si \equiv \rightarrow CH(Si \equiv)_3 \rightarrow \cdot C(Si \equiv)_3 + \cdot H
\]

\[
\cdot C(Si \equiv)_3 + \cdot Si \equiv \rightarrow C(Si \equiv)_4
\]

Estas estructuras concuerdan perfectamente dentro del mecanismo radicálico propuesto (\textit{Esquema (I-5)}) y pueden ser las responsables de la inserción de carbono dentro de la red de sílice a temperaturas menores de 1000 °C.

Algunos autores han detectado la presencia de grupos silanoles131,137,160 y agua136 a temperaturas situadas alrededor de los 800 °C. La presencia de estos grupos se puede explicar a partir de la ruptura homolítica de enlaces Si-O (\textit{Esquema I-6}).

\[
\equiv Si-O-Si \equiv \rightarrow \equiv Si \cdot + \equiv SiO \cdot \xrightarrow{\text{abstracción } H} \equiv Si-OH \quad \text{Esquema I-6}
\]

\[
\equiv Si-OH \rightarrow \equiv Si \cdot + \cdot OH \xrightarrow{\text{abstracción } H} H_2O
\]

La variación de la relación O/Si no cambia mucho en este intervalo de temperatura lo que sugiere que las reacciones no son muy importantes.

Estos autores131,137,160 también han detectado a 800 °C y mediante \textit{FT-IR}, la presencia de grupos Si-H, para sistemas que inicialmente no los contenían. La presencia de estos grupos puede ser explicada mediante la abstracción de hidrógeno de \(\equiv Si \cdot \) (Reacción (I-20)).
Capítulo I

\[\equiv \text{Si} \rightarrow \text{Si-H} \]

Reacción I-20

Cuando el material presenta enlaces Si-H, éstos toman parte en la ruptura del enlace Si-C, actuando como iniciadores de la reacción\(^{147,148}\) (Esquema (I-7)) y como consecuencia se disminuye la temperatura de formación de la fase oxicarburo en aproximadamente 100º C con respecto a sistemas que no presentan enlaces Si-H, situándose la formación entre 650 y 750º C.

Iniciación:
\[\equiv \text{Si-H} \rightarrow \equiv \text{Si}^\bullet + \text{H}^\bullet \]

Propagación:
\[\equiv \text{Si-CH}_3 + \text{H}^\bullet \rightarrow \equiv \text{Si}^\bullet + \text{CH}_2^\bullet + \text{H}_2 \]
\[\equiv \text{Si-CH}_2^\bullet + \equiv \text{Si-CH}_3 \rightarrow \equiv \text{Si-CH}_2^\bullet \equiv + \text{CH}_3 \]
\[\equiv \text{Si-CH}_2^\bullet \equiv + \text{CH}_3 \rightarrow \equiv \text{Si}^\bullet \equiv + \text{CH}_4 \]

Finalización
\[\equiv \text{Si}^\bullet + \equiv \text{Si}^\bullet \equiv \rightarrow \text{CH} (-\equiv \equiv) \]

Durante el proceso de mineralización también se forma una fase de carbono poliaromático similar al que se obtiene durante la pirólisis de polímeros orgánicos. La formación de esta fase de carbono tipo grafito se puede explicar como una combinación de radicales alifáticos, seguida de una deshidrogenación que conducirá finalmente a una fase de carbono pirolítico, normalmente conocido como carbono libre. El comienzo del proceso podría ser explicado por estructuras tipo \[\equiv \text{Si-CH}_2^\bullet \equiv \] (Reacción I-21),\(^{160}\) las cuales son detectadas mediante FT-IR por la aparición de una banda situada a 1385 cm\(^{-1}\).\(^{161}\) Estas estructuras, una vez formadas, pueden evolucionar hacia la formación de \[\equiv \text{Si-CH}_2 \equiv \]\(^{149}\) y \text{CH}_4, que formarán la fase de vidrio de oxicarburo y carbono libre, respectivamente (Reacción I-22).

\[\equiv \text{Si-CH}_3 + \text{CH}_3 \equiv \rightarrow \equiv \text{Si}^\bullet + \text{CH}_2^\bullet + \text{CH}_2^\bullet + \text{H}_2 \] Reacción I-21
\[\equiv \text{Si-CH}_2^\bullet \equiv + \text{H}_2 \rightarrow \equiv \text{Si}^\bullet + \text{CH}_4 \] Reacción I-22
Esta fase de carbono tipo grafito también ha sido detectada mediante las técnicas HR-TEM,162,163 13C MAS RMN y espectroscopia Raman.160

La cantidad de carbono libre que se forma depende de la naturaleza de los grupos orgánicos presentes en el material precursor40,62,105. Mientras que sustituyentes saturados, tipo metilo o alquilos lineales, producen una fase de carbono libre moderada, esta fase de carbono libre es mucho mayor cuando el híbrido está compuesto de radicales insaturados tipo vinilo, alilo y fenilo. Solamente los átomos de carbono unidos directamente al silicio en el gel son retenidos en la fase de vidrio de oxicarburo.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figura10}
\caption{Figura I-10: Espectros 29Si RMN de los vidrios de oxicarburo empleando metil-, etil-, propil-, y feniltrimetoxisilanos como precursores. Extraído de la referencia 23.}
\end{figure}

Cuando el precursor presenta radicales alifáticos con diferente longitud de cadena ($RSiO_{1.5}$ donde R = metilo, etilo y propilo), el contenido en carbono en el precursor híbrido aumenta con la longitud de la cadena y, tras pirólisis en atmósfera inerte, los vidrios de oxicarburo obtenidos presentan porcentajes de carbono y una composición de la fase oxicarburo muy similares en todos los casos, independientemente de número de
capitul o I

Los espectros de 29Si MAS RMN de los vidrios de oxicarburo obtenidos a partir de precursores con radicales alifáticos de diferente longitud de cadena están representados en la Figura I-10.23 Si se comparan los resultados obtenidos mediante TGA, para un precursor tipo \((RSiO_{1.5})\) donde \(R =\) propilo o alilo62, que contiene el mismo número de átomos de carbono, puede apreciarse que durante la pirólisis a bajas temperaturas (400-800 °C), mientras se está formando el vidrio de oxicarburo, se produce una mayor pérdida en peso asociada al precursor que contiene grupos propilo, ya que éstos se descomponen más fácilmente en alcanos durante el proceso de mineralización. A medida que la temperatura de pirólisis aumenta (1400-1500 °C) los vidrios de oxicarburo formados a partir de precursores con radicales alílicos experimentan, en mayor medida, una pérdida en peso que está asociada a la reducción carbotérmica y que indica que estos vidrios de oxicarburo contienen una mayor fracción de carbono libre tipo grafito. A partir de estos resultados se puede concluir que los precursores que contienen grupos insaturados en su estructura forman vidrios de oxicarburo con un mayor contenido en carbono, aunque este aumento de carbono no está asociado a la fase oxicarburo sino que es carbono tipo grafito. Como consecuencia del gran contenido en carbono libre, a temperaturas en torno a 1500 °C se produce la reducción carbotérmica y, debido a que tiene lugar mediante intermedios gaseosos, conduce a la síntesis de \(\beta\)-SiC con elevada superficie específica.

Para el caso concreto de que el radical sea tipo fenilo, el oxicarburo obtenido incorpora la mayor cantidad de carbono en el vidrio de oxicarburo, carbono que se encuentra presente fundamentalmente como fase de carbono libre. Mediante estudios llevados a cabo para polisilsesquioxanos de fórmula general \(RSiO_{1.5}\), donde \(R =\) metilo y/o fenilo,136 se ha comparado el efecto que produce el tipo de radical en el vidrio de oxicarburo obtenido para mezclas de copolímeros, donde se ha variado el porcentaje de ambos grupos. Mediante TGA se observa que los enlaces Si-Ph se rompen a temperaturas más bajas (555-575 °C) que los enlaces Si-Me (738 °C) y que el rendimiento cerámico disminuye con el contenido en grupos fenilo en el híbrido. Por otro lado, el contenido en carbono en el material obtenido aumenta al incrementarse la
proporción de grupos aromáticos en el precursor, pero esta mayor proporción de carbono se asocia, sobre todo, a carbono libre y no a la fase de vidrio de oxicarburo.

En base a todo lo comentado, este tipo de materiales puede ser descrito como un material compuesto formado por una matriz de vidrio de oxicarburo donde se encuentra dispersa una fase de carbono libre. De manera que el poder controlar la composición de ambas dos fases sería muy valioso, ya que permitiría poder diseñar este tipo de materiales en función de las necesidades requeridas. Aunque debe ser tomado con cierta precaución, puede establecerse una relación entre el \((O/Si)_{gel} \) y \((C/Si)_{SiOC} \), de manera que menores valores de \((O/Si)_{gel} \) aumentan la relación \((C/Si)_{SiOC} \). Soraru et al. \(^{37}\) establecen una relación para ajustar teóricamente la relación \((C/Si) \) a partir del valor de \((O/Si)_{gel} \), de manera que se pueda estimar de forma teórica la relación \((C/Si) \) en el vidrio de oxicarburo de silicio \((\text{Ecuación I-1})\). Esta consideración asume que el número de enlaces Si-O se mantiene constante durante el proceso de pirólisis pero, como se ha comentado, este hecho a veces no es cierto y depende mucho del propio gel, ya que durante la pirólisis y dependiendo de éste pueden producirse reacciones que modifiquen la relación \((O/Si) \) a lo largo del tratamiento térmico.

\[
(C/Si)_{SiOC} = \frac{[2-(O/Si)_{gel}]}{2}
\]

\(\text{Ecuación I-1}\)

En estos estudios se sugiere que cuando el contenido en carbono del gel \(((C/Si)_{gel})\) es mayor que la cantidad necesaria para formar el vidrio de oxicarburo \(((C/Si)_{SiOC})\), de acuerdo con la \textit{Ecuación I-I}, hay un exceso de carbono que se pierde a partir de las especies gaseosas generadas durante la pirólisis (reacciones de redistribución y mineralización) o que se consume para la formación de la fase de carbono libre.

\subsection{I.3.2.3.1 Efecto de los enlaces Si-H en las reacciones de mineralización.}

La presencia de grupos Si-H\(^{106,107}\) en el híbrido favorece la incorporación de carbono en la red vítrea gracias a la formación de estructuras \(\equiv Si–CH_2–Si\equiv \) mediante reacción con \(\equiv Si–CH_3 \) \textit{(Esquema (I-7))}. La formación de estas estructuras puente aumenta el entrecruzamiento de la red y facilita la incorporación del carbono en la red inorgánica.
ya que minimiza las pérdidas de carbono, ya sea en forma de especies volátiles o mediante la formación de carbono libre.

Singh et al.\(^{40}\) comparan el efecto que producen los enlaces Si-H para oxicarbouros obtenidos a partir de MTMS/TEOS (es decir: MeSi(OMe)\(_3\)/Si(OMe)\(_4\)) y MDMS/TEOS (es decir: HMeSi(OMe)\(_2\)/Si(OMe)\(_4\)). Mediante FT-IR comprueban que los enlaces Si-H sobreviven a las condiciones del proceso sol-gel y además encuentran la formación de estructuras puenteadas \(\equiv\text{Si}−\text{CH}_2−\text{Si}≡\). Mediante RMN verifican que la cantidad de carbono en red es mayor para el vidrio de oxicarburio obtenido mediante geles de MDMS. Adicionalmente observan que si los dos precursores que forman el gel contienen enlaces Si-H (MDMS/TREOS (es decir: HMeSi(OMe)\(_2\)/HSi(OEt)\(_3\)) se aumenta todavía más el contenido en carbono de la fase oxicarburio en detrimento de la fase de carbono libre.

Todo lo comentado se puede poner en práctica mediante la síntesis de precursores que proceden de la mezcla de HSi(OEt)\(_3\) (TREOS) y HMeSi(OEt)\(_2\) (MDES),\(^{39}\) ya que ofrecen la posibilidad de variar la relación (O/Si)\(_{gel}\) cambiando las proporciones de cada uno de ellos. Así, si se diseñan tres composiciones de manera que tras la pirólisis conduzcan a la formación de: (a) un SiOC con carbono en exceso (carbono libre), (b) un SiOC con una composición estequiométrica y por último (c) un SiOC con defecto de carbono (dando lugar a enlaces Si-Si), se puede comprobar que el segundo de ellos presenta una mayor estabilidad composicional a elevadas temperaturas debido a que la reducción carbotérmica no tiene lugar porque prácticamente está exento de fase de carbono libre.

En otros estudios posteriores\(^{143}\) se demuestra que a mayor cantidad de enlaces Si-H en el híbrido y manteniendo constante la cantidad de enlaces Si-C, se obtienen vidrios de oxicarburio con una fase vítrea más enriquecida en carbono, debido a que durante la pirólisis los híbridos con una mayor cantidad de enlaces Si-H retendrán más cantidad de dichos enlaces durante el tratamiento térmico, lo que repercutirá en un mayor entrecruzamiento y formación de estructuras puenteadas, dando como resultado, una mayor formación de fase de vidrio de oxicarburio. Los sistemas estudiados han sido MDES/TREOS (es decir: HMeSi(OEt)\(_2\)/HSi(OEt)\(_3\)), MDES/TEOS (es decir: HMeSi(OEt)\(_2\)/Si(OEt)\(_4\)), MTES/TREOS (es decir: MeSi(OEt)\(_3\)/HSi(OEt)\(_3\)) y MTES/TEOS (es decir: MeSi(OEt)\(_3\)/Si(OEt)\(_4\)), donde la mayor proporción de enlaces
Si-H corresponde al sistema MDES/TREOS, que se traduce en la mayor formación de fase SiOC (Figura I-11).

![Figura I- 11: Espectros de 29Si MAS-RMN de los vidrios de oxicarburo obtenidos a 1000 ºC.](image)

En otros trabajos se emplean híbridos obtenidos mediante el proceso sol-gel a partir de policarboxilanos/siloxanos que poseen en su estructura inicial estructuras puentes tipo \equivSi–CH$_2$–Si\equiv, y se ha estudiado su evolución durante la pirólisis y se han comparando los resultados con otros materiales que no poseen este tipo de enlaces. En un principio se piensa que el mayor entrecruzamiento del híbrido, gracias a la presencia de estas estructuras puente, aumentará la proporción de carbono introducido en la red vitrea y, por lo tanto, minimizará la pérdida de carbono mediante las reacciones de redistribución o mediante la formación de carbono libre. La cantidad de especies con carbono en el vidrio de oxicarbururo depende de la relación O/Si del precursor, siempre y cuando ésta se mantenga constante durante el proceso de pirólisis.

Por lo tanto, en los precursores que contienen \equivSi–CH$_2$–Si\equiv, la relación O/Si disminuye con respecto a los que no presentan estos enlaces y se obtienen vidrios de
oxicarburo con un mayor porcentaje de carbono en red. Sin embargo el contenido en carbono libre es similar independientemente del precursor empleado.

Cuando este tipo de híbridos (con estructuras tipo $≡\text{Si}-\text{CH}_2-\text{Si}≡$) contiene una gran cantidad de grupos OH (debido a la no finalización del proceso sol-gel), durante la pirólisis se favorece la redistribución de enlaces Si-O/Si-C y, debido a esto, se produce una gran pérdida de carbono en el SiOC, ya sea como hidrocarburo volátil o mediante la formación de carbono libre. Por lo tanto, los geles que contengan una mayor cantidad de grupos silanoles presentarán una relación O/Si mayor y como consecuencia de esto una menor cantidad de carbono en red.

Persiguiendo la misma finalidad Belot et al. emplean geles de sílice modificados orgánicamente, que contienen grupos metilos y enlaces Si-Si que disminuyen la relación O/Si para favorecer la incorporación de carbono tetravalente en el vidrio. En los primeros estadios de la pirólisis los enlaces Si-Si se hidrolizan generando Si-H y Si-OH que darán lugar a nuevos enlaces $O\text{-Si-O}$ aumentando la relación O/Si.

I.3.2.4 **Reducción carbotérmica.**

El vidrio de oxicarburo de silicio es una fase metaestable pero, para temperaturas elevadas, comienza a segregarse hasta producir la formación de zonas enriquecidas en sílice y $\beta\text{-SiC}$. Como ya se ha comentado anteriormente, para temperaturas superiores a 1200º C se produce una reordenación de enlaces Si-O/Si-C y como resultado se favorece la formación de las especies $[\text{SiO}_4]$ y $[\text{SiC}_4]$. Esta segregación favorece la reducción carbotérmica donde la sílice reacciona con carbono tipo grafito para formar carburo de silicio. La temperatura a la que tiene lugar el proceso (1500º C aproximadamente) y la mayor o menor evolución de la reducción carbotérmica, dependen de muchos factores, entre los que se encuentran la composición del vidrio de oxicarburo, así como de la fase de carbono libre.

La ecuación global que describe la reducción carbotérmica es la siguiente: (Reacción (I-23)):

$$\text{SiO}_2 + 3\text{C} \rightarrow \text{SiC} + 2\text{CO(g)}$$

Reacción I-23
Introducción

Se ha observado que el monóxido de silicio es un intermedio de esta reacción, por lo que algunos autores132,137 creen que la reacción se puede describir en varios pasos (Reacciones (I-24) y (I-25)):

\[\text{SiO}_2 (s) + C(s) \rightarrow \text{SiO}(g) + \text{CO} (g) \quad \text{Reacción I-24} \]
\[\text{SiO} (g) + 2 \text{C}(s) \rightarrow \text{SiC}(s) + \text{CO} (g) \quad \text{Reacción I-25} \]

Para el caso concreto de oxicarburos con una gran cantidad de carbono libre, se completará la reducción cuantitativa de sílice a carburo de silicio.

En el caso de oxicarburos con poca cantidad de carbono tipo grafito, está favorecida la Reacción I-24. El monóxido de silicio es un intermedio importante y, debido a la cantidad insuficiente de carbono tipo grafito, no se produce la reducción completa de la sílice a carburo de silicio.32

Cuando la fase oxicarburo tiene defecto de carbono y exceso de Si, análogamente a la formación de una fase de carbono libre, se forma una fase de Si libre que puede reaccionar, a elevadas temperaturas, con la sílice de la siguiente manera (Reacción (I-26)).3

\[\text{SiO}_2(s) + \text{Si}(s) \rightarrow 2 \text{SiO}(g) \quad \text{Reacción I-26} \]

Para temperaturas superiores a 1500 °C la sílice puede reaccionar con el β-SiC de la siguiente manera (Reacción (I-27)).4

\[2\text{SiO}_2 + \text{SiC} \leftrightarrow 3 \text{SiO}(g) + \text{CO} (g) \quad \text{Reacción I-27} \]

\textit{Pantano et al.}40,165,166 llevan a cabo varios estudios del efecto que produce la aplicación de presión externa en la estabilidad de los vidrios de oxicarburo para temperaturas superiores a 1400 °C. Estos trabajos se centran en la comparación de la evolución con la temperatura, sobre todo desde el punto de vista estructural, para diversos vidrios de oxicarburo, donde los tratamientos térmicos se producen con ausencia o presencia de especies gaseosas, es decir, bajo condiciones de pirólisis normales o mediante ensayos de prensado en caliente (Hot-Press).
Los vidrios de oxicarburo obtenidos a 1000 °C, están compuestos por una distribución de las diferentes unidades que forman el vidrio de oxicarburo [SiCO_3], [SiC_2O_2] y [SiC_3O] y de las unidades estructurales que constituyen los vidrios convencionales [SiO_4], siendo estas últimas, normalmente, las más abundantes. A medida que aumenta la temperatura, hasta 1400 °C, se produce una reorganización de enlaces Si-O/Si-C que no conlleva un cambio composicional, pero que transforma estas unidades en [SiO_4] y [SiC_4] mediante reacciones de redistribución o de intercambio. A partir DRX se aprecia que los materiales obtenidos a 1000 °C presentan una naturaleza eminentemente vítrea, mientras que a medida que aumenta la temperatura (a partir de 1400 °C), generalmente además, se aprecia la presencia de nanocristales de β-SiC.

En primer lugar, se llevaron a cabo estudios de diferentes series de vidrios de oxicarburo obtenidos tras pirólisis a 1000 °C, en atmósfera de Ar, a partir de sus correspondientes geles (PTMS/PhSi(OEt)_3) y posteriormente fueron sometidos a otros tratamientos térmicos, bajo atmósfera de Ar, para las temperaturas de 1600, 1700 y 1750 °C. Se observó que para las temperaturas de 1600 y 1700 °C se apreciaban pequeñas pérdidas en peso, mientras que para 1750 °C la pérdida es mucho mayor. De hecho los espectros de ²⁹Si-RMN, para las temperaturas inferiores, están formados por sílice y carburo de silicio, mientras que para la temperatura mayor, únicamente se aprecia la presencia del pico de carburo de silicio (Figura I- 12(a)). Mediante espectroscopía Raman se aprecia, para las temperaturas menores, la presencia de las bandas asociadas a carbono tipo grafito, mientras que para la temperatura de 1750 °C solamente está presente la banda asociada a carburo de silicio (Figura I- 12(b)). Aunque el grado de cristalinidad del SiC aumenta mucho desde 1600 a 1750 °C, el tamaño del cristal sigue siendo bastante pequeño, ya que la fase de carbono libre limita el crecimiento del tamaño del cristal. Para estas temperaturas de tratamiento, el proceso mayoritario es la reducción carbotérmica, proceso en el que la sílice reacciona con el carbono tipo grafito para formar especies gaseosas y SiC. En ausencia de una presión externa la formación de las especies gaseosas (CO fundamentalmente), hace que la reacción se desplace hacia la formación de SiC y CO. Para temperaturas superiores a 1700 °C, la reducción carbotérmica produce la completa descomposición del vidrio de oxicarburo en carburo de silicio.
En segundo lugar, se realizaron ensayos empleando prensado en caliente, proceso que limita la evolución de especies gaseosas del material durante su consolidación a elevadas temperaturas y por lo tanto ralentiza la descomposición de la fase metaestable de vidrio de oxicarburo. Los estudios se llevaron a cabo para diferentes series de vidrios de oxicarburo, siendo estos vidrios de oxicarburo pirolizados a 1200 ºC, molidos y, posteriormente, se procedió al tratamiento de prensado en caliente para temperaturas comprendidas entre 1600 ºC y 1750 ºC. Aunque la aplicación de una presión externa frena la descomposición de la fase metaestable del vidrio de oxicarburo, para dichas temperaturas de tratamiento se ha segregado casi completamente en unidades [SiO₄] y [SiC₄] como puede apreciarse mediante ²⁹Si MAS RMN (Figura I-13(a)). Sin embargo, la reducción carbotérmica no se ha completado ni para temperaturas de tratamiento tan elevadas como 1750 ºC, ya que mediante espectroscopía Raman (Figura I-13(b)) se siguen apreciando las bandas características de carbono tipo grafito. Estos análisis, junto con los llevados a cabo mediante microscopía electrónica de transmisión, indican que estos materiales están formados por una matriz vítrea de sílice en la que se encuentran dispersados dominios microcristalinos de carburo de silicio y carbono tipo grafito.

Figura I-12: (a) Espectros ²⁹Si MAS-RMN y (b) Espectros Raman de los vidrios de oxicarburo obtenidos tras pirólisis de geles de PTMS a elevadas temperaturas en atmósfera de argón.
Los polímeros tipo siloxano pueden convertirse en carburo de silicio y carbono (T > 1500 °C), lo que les hace buenos candidatos para su empleo como aglomerantes en la sinterización de monolitos de carburo de silicio. Además, este tipo de materiales ofrece una serie de ventajas con respecto a otros tipos de procesado, como son: mediante la ruta polimérica se puede controlar la cantidad de carbono en exceso y, de esta manera, limitar el tamaño de grano, facilitar el manejo y procesado en verde; el tratamiento térmico forma SiC, lo que hace innecesaria la etapa de eliminación del aglomerante y reducción de la contracción asociada al proceso de sinterización. Burns et al.32 estudian cómo influye el tipo y porcentaje del grupo orgánico en la cantidad de carbono tipo grafito obtenido a partir de la mezcla de polímeros tipo $RSiO_{1.5}$, donde $R =$ metilo, fenilo y vinilo. Al hacer ensayos a diferentes temperaturas se aprecia que los materiales obtenidos son composicionalmente estables hasta 1500 °C y para 1600 °C la reducción carbotérmica se produce en gran medida y, a 1800 °C, ya se ha completado.

Figura I-13: (a) Espectros 29Si MAS-RMN y (b) Espectros Raman de los vidrios de oxicarburo obtenidos tras pirólisis de geles de PTMS tras un tratamiento de prensado en caliente a elevadas temperaturas.
II- PROCEDIMIENTO EXPERIMENTAL.
II PROCEDIMIENTO EXPERIMENTAL.

II.1 Procedimiento experimental.

Los vidrios de oxicarburo de silicio se han obtenido mediante pirólisis en atmósfera inerte de híbridos orgánico-inorgánicos. Dichos materiales híbridos han sido sintetizados mediante el proceso sol-gel a partir de la mezcla de los precursores seleccionados: dos alcóxidos de silicio y un polímero orgánico con grupos OH terminales. A continuación se describe el proceso experimental empleado.

II.1.1 Síntesis de Materiales Híbridos Orgánico-Inorgánicos Precursores de Vidrios de Oxicarburo de Silicio.

Los híbridos orgánico-inorgánicos se han obtenido mediante el proceso sol-gel a partir de la mezcla de alcóxidos de silicio, cuya fórmula general es $R_nSiOR'_{4-n}$ (donde $R = H$, grupos alquilo y $R' =$ grupos alquilo), y polímeros orgánicos tipo polisiloxanos con grupos hidroxilo terminales.

II.1.1.1 Materias primas.

Las materias primas empleadas son los alcóxidos de silicio tetraetilortosilicato (TEOS) y trietoxisilano (TREOS) y el polímero orgánico polidimetilsiloxano (PDMS).

El TEOS presenta cuatro enlaces etóxidos hidrolizables a partir de los cuales puede polimerizar y formar una estructura tridimensional (Figura II-1 (a)). El TREOS presenta tres grupos etóxido fácilmente hidrolizables y un grupo Si-H que le confiere una elevada reactividad (Figura II-1 (b)). El PDMS es un polímero lineal de la familia de las siliconas habiéndose empleado en este caso un PDMS con peso molecular medio de 1750 g/mol (1500-2000 g/mol), que presenta grupos hidroxilo al final de la cadena y una viscosidad de 45-85 cSt. (Figura II-1 (c)).
Capítulo II

Además se utiliza isopropanol (i-PrOH) como disolvente, agua destilada y ácido clorhídrico como catalizador. En la Tabla II-1 se detallan algunas propiedades de todos ellos.

![Fórmulas de los reactivos empleados en la síntesis de los híbridos orgánico-inorgánicos.]

Tabla II-1: Propiedades de los reactivos empleados en la síntesis de los híbridos orgánico-inorgánicos.

<table>
<thead>
<tr>
<th>Reactivos</th>
<th>PM (g/mol)</th>
<th>Densidad (g/cc)</th>
<th>Pureza (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEOS</td>
<td>208.33</td>
<td>0.94</td>
<td>≥ 98</td>
</tr>
<tr>
<td>TREOS</td>
<td>164.28</td>
<td>0.87</td>
<td>97</td>
</tr>
<tr>
<td>PDMS</td>
<td>1750</td>
<td>0.96</td>
<td>-</td>
</tr>
<tr>
<td>i-PrOH</td>
<td>60.10</td>
<td>0.79</td>
<td>>99.7</td>
</tr>
<tr>
<td>HCl</td>
<td>36.46</td>
<td>1.16</td>
<td>32</td>
</tr>
<tr>
<td>H₂O</td>
<td>18.01</td>
<td>1.00</td>
<td>>99.9</td>
</tr>
</tbody>
</table>

II.1.1.2 Composiciones.

En esta memoria se ha estudiado cómo afecta la naturaleza del alcóxido de silicio, tanto en el híbrido orgánico-inorgánico obtenido, como en el vidrio de oxicarburo finalmente formado mediante el tratamiento térmico de pirólisis. Para ello se han estudiado dos composiciones. En la primera de ellas se ha empleado TEOS, un alcóxido de silicio con sus cuatro grupos hidrolizables y denominada a lo largo de toda la memoria como sistema TEOS/PDMS, con una relación en peso TEOS/PDMS = 60/40 y unas relaciones molares TEOS/ i-PrOH/H₂O /HCl = 1/6/3/0.3, que va a ser estudiada en el Capítulo III y Capítulo IV. Y en la segunda composición estudiada se ha reemplazado el TEOS por
Procedimiento Experimental

TREOS, que tiene tres grupos hidrolizables y un enlace Si-H y es llamada a lo largo de toda la memoria como sistema TREOS/PDMS. Ésta presenta una relación en peso de TREOS/PDMS = 60/40 y una relación molar de TREOS/ i-PrOH/H2O/HCl = 1/6/3/0.01. Este sistema va a ser analizado en el Capítulo V.

II.1.1.3 Condiciones de síntesis del híbrido orgánico-inorgánico.

Las condiciones de síntesis empleadas para la obtención de los materiales del sistema TEOS/PDMS y del sistema TREOS/PDMS son muy similares. Los híbridos orgánico-inorgánicos se sintetizaron mediante el proceso sol-gel, tal y como sigue. Para cada uno de los dos sistemas se prepararan dos disoluciones: La primera contiene el volumen total de TEOS (o TREOS), PDMS y la mitad del volumen de i-PrOH. La segunda contiene la otra mitad del volumen de i-PrOH, el H2O y el HCl. Las dos disoluciones se agitan a temperatura ambiente durante 20 minutos para conseguir una buena homogenización. El volumen de la reacción total se calcula para 300 ml. Posteriormente, las disoluciones se añaden en un matraz de tres bocas, sumergido en un baño termostatizado a 80º C. Una de las bocas se conecta a un refrigerante de reflujo. En la boca central se ajusta una varilla de agitación, con pala de media luna de teflón conectada a un rotor. La reacción se realiza con una agitación mecánica de 600 r.p.m.. El tiempo total de la reacción es de 60 minutos. Transcurrido este tiempo, el sol obtenido es vertido en un contenedor de plástico que se cierra herméticamente a temperatura ambiente permitiendo que se produzca la gelificación.

En el caso del sistema TEOS/PDMS la gelificación se produce a los 60 minutos, obteniéndose un gel blanquecino que se contrae ligeramente apreciándose, desde el mismo momento de la gelificación, la presencia de exudados. El recipiente se deja cerrado y los exudados se van retirando a lo largo de una semana. Posteriormente comienza la etapa de secado que primero se realiza a temperatura ambiente y después a 50 y 120 ºC (el tiempo de secado aproximado en cada temperatura es de una semana). Tras el secado se obtuvieron piezas blancas, monolíticas, que no presentan grietas.

Para el sistema TREOS/PDMS la gelificación se produce a las 24 horas aproximadamente. El gel resultante es bastante transparente y no se produce contracción.
debido a que no se generan exudados. Transcurrida una semana se produce una alta exudación del gel y como consecuencia se produce una gran contracción. Se van eliminando los exudados, fundamentalmente H_2O, HCl, i-PrOH y EtOH (generado durante la hidrólisis del TREOS). Los exudados se van retirando pero el recipiente permanece cerrado durante un tiempo aproximado de dos semanas. Posteriormente el gel se seca lentamente a temperatura ambiente (durante otras dos semanas más aproximadamente) donde se fractura y posteriormente se termina de secar en una estufa a 50 y $120 \, ^\circ\text{C}$ durante una semana más a cada temperatura. El ormosil resultante es transparente, no se obtiene de forma monolítica, sino que se originan grietas durante el secado que generan trozos de diversos tamaños.

II.1.2 Obtención de Vidrios de Oxicarburo de Silicio.

Los vidrios de oxicarburo de silicio se obtienen mediante pirólisis en atmósfera inerte de materiales híbridos orgánico-inorgánicos, de manera que durante el tratamiento térmico se produce una transformación desde el material híbrido hasta el material inorgánico. Los híbridos orgánico-inorgánicos obtenidos a partir del sistema TEOS/PDMS, tal y como se ha descrito en el apartado anterior, serán analizados de dos formas diferentes. En el Capítulo III, se estudiará exhaustivamente el proceso de pirólisis y en el Capítulo IV se desarrollará lo que se ha denominado “Vía cerámica”, que fundamentalmente consiste en la eliminación de la porosidad mediante molienda, prensado y sinterización.

Por otro lado, para el caso de los híbridos del sistema TREOS/PDMS, en el Capítulo V también se estudiará cómo influyen los diferentes parámetros del proceso de pirólisis en el material finalmente obtenido.

II.1.2.1 Condiciones experimentales del tratamiento térmico.

Para la obtención de los vidrios de oxicarburo de silicio se realiza la pirólisis del híbrido en un horno tubular de alúmina no porosa en atmósfera controlada. En este caso, la
atmósfera inerte empleada es de nitrógeno. El flujo de nitrógeno está regulado mediante un controlador masico, mientras que las condiciones del tratamiento térmico, temperatura, velocidad de calentamiento y tiempo de permanencia a la temperatura máxima, están gobernadas por un controlador de temperatura.

SISTEMA TEOS/PDMS

Capítulo III

En el Capítulo III, con el fin de estudiar en profundidad el proceso de pirólisis y analizar cómo afectan la temperatura, velocidad de calentamiento, caudal de la atmósfera inerte, y tiempo de residencia a la temperatura máxima y tipo de procesamiento, para el caso concreto del sistema TEOS/PDMS, se han variado cada uno de ellos de la forma que se detalla a continuación.

Las condiciones que se consideran estándar son: velocidad de calentamiento, 2 °C/min, temperatura máxima, 1100 °C, tiempo de permanencia a temperatura máxima, 2 horas, y flujo de nitrógeno, 50 ml/min. Además, en todos los tratamientos existe una etapa inicial de 30 minutos de purga con nitrógeno a temperatura ambiente.

- **Variación de la temperatura de Pirólisis.**
 Se han realizado ensayos desde 200 hasta 1200 °C con una variación de la temperatura de 100 °C. Para todos los ensayos se mantienen fijos el resto de los parámetros, es decir, velocidad de calentamiento 2°C/min, flujo de nitrógeno 50 ml/min y tiempo de permanencia a la temperatura máxima 2 horas.

- **Variación de la velocidad de calentamiento.**
 Se han realizado ensayos a 0.5, 1, 2, 4, 8 y 12 °C/min. El resto de las variables son las que se han considerado estándar, es decir, 1100 °C, 2 h, y 50 ml/min de nitrógeno.
Capítulo II

- **Variación del flujo de nitrógeno.**
Se han realizado ensayos con 25, 50, 100 y 150 ml/min de nitrógeno. El resto de las condiciones de pirólisis son las que se han considerado estándar, es decir, velocidad de calentamiento 2 ºC/min, temperatura 1100 ºC y tiempo de permanencia 2 horas.

- **Variación de tiempo de permanencia a la temperatura máxima.**
Se han realizado ensayos a 0.5, 1, 2, 4 y 8 horas de tiempo de permanencia a la temperatura máxima. El resto de las condiciones de tratamiento son las mismas que las consideradas estándar, es decir, velocidad 2 ºC/min, temperatura 1100 ºC y flujo de nitrógeno 50 ml/min.

- **Variación del tipo de procesamiento.**
Se han realizado diferentes ensayos donde se ha variado el tipo de procesamiento, en primer lugar se lleva a cabo la pirólisis del híbrido orgánico-inorgánico de una muestra en monolito, tal cual se obtiene del proceso sol-gel. En segundo lugar, se realiza el graneado del híbrido para obtener fragmentos de una tamaño aproximado de 10 mm que posteriormente también se pirolizan. En los siguientes casos con el fin de disminuir el tamaño de grano se lleva a cabo la molienda en un mortero de ágata o en un molino de atrición, respectivamente. Para facilitar dicha molienda se realiza inicialmente un pretratamiento del híbrido a 600 ºC (2ºC/min, 2h y un flujo de nitrógeno de 50 ml/min). En el tercer caso, la muestra pretatada a 600 ºC se muele con la ayuda de un mortero de ágata y posteriormente se piroliza. En el cuarto caso, la muestra tras ser molida en un mortero de ágata se muele en un mortero de atrición (véase sección siguiente) y posteriormente se piroliza.

Independientemente de todo esto las condiciones de pirólisis son las mismas en todos los casos, es decir: velocidad de calentamiento, 2 ºC/min, temperatura máxima, 1100 ºC, tiempo de permanencia a temperatura máxima, 2 horas, y flujo de nitrógeno, 50 ml/min.
Capítulo IV

En el Capítulo IV se ha llevado a cabo lo que se ha denominado “Vía cerámica”, compuesta por las siguientes etapas:

- **Pretratamiento del híbrido del sistema TEOS/PDMS.**
 El híbrido del sistema TEOS/PDMS una vez secado es pretratado a 600 °C con una velocidad de calentamiento de 2 °C/min, durante 2 horas y con un flujo de nitrógeno de 50 ml/min.

- **Molienda.**
 Las piezas monolíticas obtenidas son reducidas a polvo y posteriormente se muelen en un molino de atrición empleando unas bolas de acero y etanol como disolvente. Se determina que el tiempo de molienda óptimo es de dos horas. Una vez transcurrido el tiempo de molienda, los polvos se cuelan sobre un recipiente empleando una malla que permite separar las bolas de los polvos. Posteriormente estos polvos se secan en una estufa a 50 °C durante dos días. Una vez secos se desaglomeran en un mortero de ágata y se pasan por unos tamices de un diámetro de malla de 100 micrómetros para evitar aglomerados.

- **Pirólisis de los polvos.**
 Los polvos son pirolizados en un horno tubular de alúmina a 1100 °C durante dos horas con una velocidad de calentamiento de 2 °C/min y con un caudal de nitrógeno de 50 ml/min. Los polvos son introducidos en el horno en unas navecillas de alúmina.

- **Conformado**
 El conformado se lleva a cabo empleando dos aglomerantes diferentes (PARALOID B-67 y PDMS), dos tipos de geometrías (prismática y cilíndrica) y dos tipos de prensado (uniaxial e isostático). El polvo tras ser compactado recibe el nombre de pieza en verde o compactado crudo.

El PARALOID B-67 es un aglomerante empleado generalmente para materiales cerámicos, constituido fundamentalmente por polimetilmetacrilato (PMMA). De aquí en
adelante, para simplificar la nomenclatura, nos referiremos al Paraloid B-67 únicamente como Paraloid. Por otro lado, el PDMS (polidimetilsiloxano) es el mismo que se ha empleado para la síntesis de los materiales híbridos de esta memoria, es decir PDMS con un peso molecular de 1750 g/mol y con grupos OH terminales.

Los aglomerantes, Paraloid o PDMS, se añaden en una proporción de un 6% en peso con respecto a los polvos de oxicarburo obtenidos en la etapa anterior. Para homogeneizar bien los polvos con el aglomerante, se pesa en un vidrio de reloj el aglomerante y posteriormente se añade acetona, cuando la mezcla es homogénea se adicionan los polvos y se remueve hasta que se consigue la uniformidad de la mezcla así como la eliminación de la acetona.

Para hacer las probetas con las formas seleccionadas se emplean dos troqueles de acero, uno que dará lugar a probetas prismáticas y otro que formará probetas cilíndricas. Se pesan cantidades de aproximadamente 2-3 g (probetas cilíndricas y prismáticas respectivamente) de los polvos y se rellenan los troqueles, posteriormente se prensa uniaxialmente ejerciendo una presión de 2 TM de manera que, en el caso de las probetas cilíndricas, se ha ejercido una fuerza de 636 kg/cm² y para las probetas prismáticas una fuerza de 500 kg/cm².

Parte de las probetas obtenidas después del prensado uniaxial serán sinterizadas, pero otras volverán a ser prensadas mediante prensado isostático. Mediante el prensado uniaxial la presión se ejerce en una única dirección, mientras que mediante el prensado isostático los polvos se introducen herméticamente en moldes elásticos (goma) y se les somete a una presión hidrostática mediante un fluido (agua o aceite). Las piezas en verde así obtenidas son uniformes e isótropas.

Para llevar a cabo el prensado isostático, se emplean probetas que ya han sido prensadas uniaxialmente. Dichas probetas se introducen dentro de unos moldes de goma y se cierran herméticamente. Posteriormente se introducen dentro del fluido y se ejerce una presión de 500 kg/cm².

- **Sinterización de las piezas en verde.**

Una vez obtenidas las preformas deseadas, en función de las diferentes condiciones de procesamiento, se lleva a cabo la sinterización de dichas probetas en un horno tubular de alúmina bajo atmósfera de nitrógeno a una temperatura de 1550 ºC, con una
velocidad de calentamiento de 2 °C/min y un tiempo de permanencia que se varía para observar la manera en la que éste influye, desde 4 hasta 16 horas.

A modo de resumen en la Tabla II- 2 se recogen los diferentes parámetros estudiados durante el conformado y la sinterización en el Capítulo IV (“Via Cerámica”).

Tabla II- 2: Diferentes condiciones experimentales llevadas a cabo en la “Via Cerámica”.

<table>
<thead>
<tr>
<th>Aglomerante</th>
<th>PARALOID</th>
<th>PDMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. uniaxial</td>
<td>P. Isostático</td>
</tr>
<tr>
<td>Prensado</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Tiempo 1550 °C (h)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

SISTEMA TREOS/PDMS

Capítulo V

En el Capítulo V se estudia de una manera detallada el proceso de pirólisis en dicho sistema para lo que se llevará a cabo un análisis en profundidad de cómo influyen en el proceso de pirólisis la temperatura, velocidad de calentamiento, caudal de la atmósfera inerte y tiempo de residencia a la temperatura máxima. Las condiciones experimentales son iguales que las seguidas para el sistema TEOS/PDMS en el Capítulo III (véase apartado anterior).
III-EL SISTEMA TEOS/PDMS.
III EL SISTEMA TEOS/PDMS

III.1 Híbrido orgánico-inorgánico: Características estructurales, textura y microestructura.

Los materiales del sistema TEOS/PDMS estudiados en este capítulo presentan una relación en peso TEOS/PDMS 60/40, así como una relación molar TEOS/i-PrOH/H₂O/HCl de 1/6/3/0.3. Estos híbridos orgánico-inorgánicos son materiales monolíticos, elastoméricos, porosos y de color blanco.

En este capítulo se van a utilizar híbridos orgánico-inorgánicos obtenidos a partir de TEOS y PDMS, mediante el proceso sol-gel empleando condiciones de catálisis ácida. Seguidamente se exponen los resultados obtenidos tras la caracterización mediante diversas técnicas experimentales.

III.1.1 Análisis Químico.

El ormosil de partida está formado por una relación 60/40 (% en peso) de TEOS/PDMS. El TEOS durante el proceso sol-gel se hidroliza y condensa de la siguiente manera:

\[Si(OEt)₄ \rightarrow Si(OH)₄ \rightarrow SiO₂ \]

Como consecuencia de esta hidrólisis y condensación, el TEOS pierde gran parte de su masa inicial, de tal manera que la relación en peso de 60/40 ya no se mantiene en el híbrido.

\[%\, Si = \frac{1 \times 28 \times 60}{208} = 8,07 \]
\[%\, O = \frac{2 \times 16 \times 60}{208} = 9,23 \]

La suma de todos ellos representa ahora el 17.3 % en peso frente al 60 % en peso inicial.
Se supone que el PDMS mantiene su masa íntegramente durante el proceso sol-gel ya que no se hidroliza. Por otro lado, el PDMS puede escribirse de la siguiente manera; donde para un PDMS con un peso molecular de 1750 se calcula el valor de n.

$$HO-[Si(Me)_2-O]_nH = 1750 \quad n = 23.40$$

A partir de esto se puede calcular el porcentaje de cada elemento, considerando que la relación en peso de TEOS/PDMS es 60/40:

- $\% C = 2n \times 12 \times 40/1750 = 12.84$
- $\% H = (1+6n+1) \times 1 \times 40/1750 = 3.25$
- $\% Si = n \times 28 \times 40/1750 = 14.98$
- $\% O = (1+n) \times 16 \times 40/1750 = 8.92$

Como no se ha considerado la condensación del PDMS la suma de todos ellos representa el 39.99%.

En primer lugar se recalcula la proporción de unidades Q y D, que para el ormosil son 30 y 70%.

En segundo lugar se calculan los porcentajes teóricos para este ormosil:

- $\% O = 31.68$
- $\% Si = 40.23$
- $\% C = 22.41$
- $\% H = 5.67$

A partir de estos datos se obtiene la siguiente composición teórica del ormosil:

$$SiO_{1.38}C_{1.36}H_{3.94}$$

A continuación se exponen los porcentajes obtenidos a partir del análisis químico y la fórmula del ormosil.

- $\% O = 38.31$
- $\% Si = 33.52$
- $\% C = 22.54$
- $\% H = 5.63$

$$SiO_{2.00}C_{1.57}H_{4.71}$$

Las discrepancias encontradas están asociadas fundamentalmente a que el proceso sol-gel no ha finalizado completamente.
El valor de % C es ligeramente superior, indicando la presencia de restos alcóxidos o alcohol retenidos en la estructura del híbrido, tal y como se ha comprobará mediante otras técnicas (Raman y RMN).

En cuanto a los valores obtenidos experimentalmente para el oxígeno y silicio, están indicando, tal y como se corroborará mediante 29Si RMN y que será comentado más adelante, que las unidades Q no se han condensado completamente, lo que explica el aumento de % O (disminución del % Si) experimental con respecto a los valores teóricos.

III.1.2 Caracterización Estructural.

III.1.2.1 Espectroscopía infrarroja.

El TEOS y el PDMS son los precursores del híbrido orgánico-inorgánico, por ello en el espectro infrarrojo se observan bandas que corresponden a la red inorgánica del TEOS, a la estructura orgánica del PDMS, así como de los dos. El espectro del híbrido del sistema TEOS/PDMS está representado en la Figura III-1. En la Tabla III-1 se recogen las vibraciones más importantes que ayudarán en la elucidación estructural del híbrido.

![Figura III-1: Espectro de infrarrojo del híbrido del sistema TEOS/PDMS.](image)
Tabla III: Vibraciones más representativas de espectroscopía IR y Raman para los grupos funcionales presentes en el híbrido orgánico-inorgánico, en el oxicarburo de silicio, así como en las especies intermedias formadas durante el proceso de pirólisis. * 800 cm\(^{-1}\) PDMS lineal y 815 cm\(^{-1}\) oligómeros cíclicos que provienen de la estructura del PDMS

<table>
<thead>
<tr>
<th>Enlaces</th>
<th>Tipo</th>
<th>Asignación</th>
<th>FT-IR</th>
<th>Raman</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-H</td>
<td>Tensión</td>
<td>Si-OH</td>
<td>3640</td>
<td></td>
</tr>
<tr>
<td>O-H</td>
<td>Tensión</td>
<td>H(_2)O</td>
<td>3434</td>
<td></td>
</tr>
<tr>
<td>C-H</td>
<td>Tensión as.</td>
<td>CH(_3)</td>
<td>2964</td>
<td>2966</td>
</tr>
<tr>
<td>C-H</td>
<td>Tensión s.</td>
<td>CH(_3)</td>
<td>2929</td>
<td>2908</td>
</tr>
<tr>
<td>C-H</td>
<td>Tensión as.</td>
<td>CH(_2)</td>
<td>2918</td>
<td>-</td>
</tr>
<tr>
<td>C-H</td>
<td>Tensión s.</td>
<td>CH(2)/ D({4c})</td>
<td>2856</td>
<td>-</td>
</tr>
<tr>
<td>Si-H</td>
<td>Tensión</td>
<td>T(^{Hi})</td>
<td>2253</td>
<td>2250</td>
</tr>
<tr>
<td>Si-H</td>
<td>Tensión</td>
<td>D(^{2Hi})</td>
<td>2200</td>
<td></td>
</tr>
<tr>
<td>Si-H</td>
<td>Tensión</td>
<td>D(^{Hi})</td>
<td>2189/2172</td>
<td>2134</td>
</tr>
<tr>
<td>Si-H</td>
<td>Tensión</td>
<td>M(^{Hi})</td>
<td>2120</td>
<td></td>
</tr>
<tr>
<td>C-C</td>
<td>Tensión</td>
<td>Csp(^{3})</td>
<td>-</td>
<td>Banda D 1350</td>
</tr>
<tr>
<td>C-C</td>
<td>Tensión</td>
<td>Csp(^{2})</td>
<td>-</td>
<td>Banda G 1580-1600</td>
</tr>
<tr>
<td>OH</td>
<td>Deformación</td>
<td>H(_2)O</td>
<td>1630</td>
<td></td>
</tr>
<tr>
<td>Si-C</td>
<td>Deformación as.</td>
<td>SiMe(_2) (D)</td>
<td>1410</td>
<td>1411</td>
</tr>
<tr>
<td>Si-C</td>
<td>Si-CH(_2)CH(_2)-Si</td>
<td>1380</td>
<td>1380</td>
<td></td>
</tr>
<tr>
<td>Si-C</td>
<td>Si-CH(_2)-Si</td>
<td>1360</td>
<td>1360</td>
<td></td>
</tr>
<tr>
<td>Si-C</td>
<td>Deformación s.</td>
<td>SiMe(_2) (T)</td>
<td>1270</td>
<td>1262</td>
</tr>
<tr>
<td>Si-C</td>
<td>Deformación</td>
<td>SiMe (D, D(^{Hi}))</td>
<td>1260</td>
<td>1262</td>
</tr>
<tr>
<td>Si-O</td>
<td>Tensión as. LO</td>
<td>1187 -/1175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-O</td>
<td>Tensión as. TO</td>
<td>1070 -/1075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-OH</td>
<td>Tensión</td>
<td>950</td>
<td>980</td>
<td></td>
</tr>
<tr>
<td>Si-H</td>
<td>Deformación</td>
<td>T(^{Hi}/D^{Hi})</td>
<td>880/875</td>
<td></td>
</tr>
<tr>
<td>CH(_3)</td>
<td>Rocking</td>
<td>864</td>
<td>855</td>
<td></td>
</tr>
<tr>
<td>Si-C</td>
<td>D(Q)</td>
<td>850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-H</td>
<td>Deformación</td>
<td>828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-C</td>
<td>Tensión as.</td>
<td>800-810*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si-O</td>
<td>Tensión s.</td>
<td>800</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>Si-C</td>
<td>Tensión s.</td>
<td>720</td>
<td>706</td>
<td></td>
</tr>
<tr>
<td>CH(_3)</td>
<td>Rocking</td>
<td>660</td>
<td>662</td>
<td></td>
</tr>
<tr>
<td>Siloxano</td>
<td>Breathing anillo</td>
<td>Ciclos 3(D({2}))/ (D({3c}))</td>
<td>-</td>
<td>594/586</td>
</tr>
<tr>
<td>Si-O-Si</td>
<td>Tensión</td>
<td>560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siloxano</td>
<td>Breathing anillo</td>
<td>Ciclos 4 (D({1}))/ (D({4c}))</td>
<td>490/480</td>
<td></td>
</tr>
<tr>
<td>O-Si-O</td>
<td>Deformación</td>
<td>433-460</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>CH(_3)</td>
<td>Wagging</td>
<td>-</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>CH(_3)</td>
<td>Twist</td>
<td>-</td>
<td>165</td>
<td></td>
</tr>
</tbody>
</table>
En la Tabla III-1 se recogen las vibraciones más importantes de espectroscopía infrarroja (y Raman que serán empleados más adelante) de los grupos funcionales presentes tanto en el híbrido orgánico-inorgánico como en el oxicarburo, así como las especies intermedias que se van formando durante el proceso de pirólisis, que serán de suma utilidad para establecer el mecanismo de transformación del híbrido en el material vitreo.

Centradas a 3434 y 1630 cm\(^{-1}\) se encuentran la tensión y deformación del enlace \(\text{OH}\), provenientes fundamentalmente del agua absorbida durante la elaboración de la pastilla de \(\text{KBr}\). Mediante esta técnica no se detecta la presencia de grupos étoxidos, etanol (hidrólisis del \(\text{TEOS}\), 880 cm\(^{-1}\)) o isopropanol (disolvente, 950 cm\(^{-1}\)), que indicarían una hidrólisis de \(\text{TEOS}\) o secado, incompletos.

Para las frecuencias de 2964 y 2903 cm\(^{-1}\) se encuentran la tensión asimétrica y simétrica del enlace \(\text{C-H}\) de los grupos metilos del \(\text{PDMS}\). Para frecuencias más bajas se encuentran las bandas situadas a 1411 y 1266 cm\(^{-1}\) atribuidas a la deformación asimétrica y simétrica del enlace \(\text{Si-Me}_2\), también de la estructura del polímero.

Situadas a frecuencias menores se encuentran las bandas más intensas del espectro. Esta zona corresponde con la vibración de tensión asimétrica de las uniones siloxano. En el híbrido se solapan las que provienen de la estructura del \(\text{TEOS}\) así como las del \(\text{PDMS}\), y además cada una de estas vibraciones tiene dos modos activos; el longitudinal (\(\text{LO} \sim 1175\) cm\(^{-1}\)) y el transversal (\(\text{TO} \sim 1080\) cm\(^{-1}\)).

Como resultado de todo esto, en la zona comprendida entre 1180-1070 cm\(^{-1}\), se encuentra una banda ancha que incluye muchas más.

Una de las bandas más importantes del híbrido es la situada a 850 cm\(^{-1}\), que indica que las especies de \(\text{TEOS (Q)}\) y \(\text{PDMS (D)}\) han copolimerizado para formar uniones \(D(Q)\).

A frecuencias aún más bajas se encuentra una banda situada entre 800-810 cm\(^{-1}\), la cual es asignada a la tensión asimétrica del enlace \(\text{Si-C}\). Esta banda es muy susceptible de la conformación en la que este dispuesto el polímero, indicando si éste se encuentra en forma lineal o cíclica. Cuando el polímero presenta una conformación lineal, la banda
Capítulo III

está centrada en 800 cm$^{-1}$ y cuando el polímero está dispuesto en una forma cíclica, se desplaza hasta 810-815 cm$^{-1}$.

Centrada a 800 cm$^{-1}$ también se encuentra la vibración de tensión simétrica del enlace $Si-O-Si$, en el modo longitudinal y transversal, que además coincide con la asignación de los modos vibracionales de la estructura del anillo en el tetraedro de sílice.167,170

Para 700 cm$^{-1}$ aparece una banda asociada a la tensión simétrica del enlace $Si-C$.

Desplazándose hacia frecuencias menores se encuentra la tensión $rocking$ de los metilos del $PDMS$ (\sim 660 cm$^{-1}$).

La banda centrada a 560 cm$^{-1}$, es la conocida como banda de defecto.131,133 Corresponde con la formación de ciclos de uniones siloxano de 4 eslabones más favorables desde un punto de vista termodinámico y en detrimento de los de ciclos de 6 eslabones que están más favorecidos desde un punto de vista cinético.

En sistemas híbridos orgánico-inorgánicos y en geles de sílice obtenidos a partir del proceso sol-gel179 se ha detectado la formación de estos ciclos de 4 eslabones en lugar de los de 6 eslabones que normalmente son los considerados como constituyentes mayoritarios de la sílice vítrea. Esta asignación ha sido realizada mediante la comparación de los espectros de $FT-IR$ de distintos compuestos, como los silicatos minerales cohesita o anortita que presentan esta banda (constituidos de anillos de 4 eslabones), cuarzo (constituido de anillos de 6 eslabones) y aceite de silicona (cadena lineal de uniones siloxano) que no la presentan.

Diversos autores encuentran la formación de esta banda debido a la discontinuidad que produce la introducción del polímero en la red inorgánica. Como consecuencia de ello el $PDMS$ ejerce un impedimento estérico que hace que se generen estos ciclos de cuatro eslabones en vez de los de 6 eslabones. También se pueden formar ciclos de 3 eslabones, muy tensionados, como consecuencia de la condensación entre silanolés geminales.

El polímero dificulta las reacciones de condensación, y parte de estos ciclos de 4 eslabones se quedan retenidos en la estructura del híbrido, generando una gran porosidad.

Por último, la banda localizada a 433 cm$^{-1}$ se asigna a la deformación $Si-O-Si$. Para geles constituidos únicamente de unidades D, esta banda está centrada a 390 cm$^{-1}$.
mientras que en geles que sólo presentan unidades Q se localiza en 460 cm$^{-1}$. La presencia de una única banda, con un desplazamiento intermedio, también está indicando, según algunos autores,22,177 la copolimerización entre la unidades $D(Q)$.

III.1.2.2 Espectroscopía Raman.

El híbrido orgánico-inorgánico presenta un espectro Raman (*Figura III- 2*) que incluye las bandas que corresponden a los precursores de partida, es decir del *TEOS* y del *PDMS*. En la *Tabla III- 1* se recogen las vibraciones más importantes encontradas en este tipo de sistemas.161,167,174,175,176,180,181,182

Las bandas más intensas del espectro están situadas a 2966 y 2908 cm$^{-1}$ y corresponden a la tensión asimétrica y simétrica del enlace C-H de los grupos metilo del *PDMS*. En esta misma zona se pueden observar unos pequeños picos situados a 3112 y 3074 cm$^{-1}$ que se atribuyen a los grupos metilo de final de cadena en el *PDMS*. También se encuentran unas bandas situadas ~ 2500 y ~2800 cm$^{-1}$ que son los sobretonos de las bandas situadas a 1266 y 1414 cm$^{-1}$ que se asignan a la deformación simétrica y asimétrica del enlace Si-Me$_2$.

Figura III- 2: Espectro Raman del híbrido del sistema TEOS/PDMS. La intensidad de las señales de la zona espectral comprendida entre 2500 y 3500 cm$^{-1}$ se ha dividido entre 10.
Centradas en 1452 y 1485 cm\(^{-1}\) se sitúan dos pequeñas bandas que corresponden a la deformación C-H de restos alcóxidos que provienen de una hidrólisis incompleta del TEOS durante el proceso sol-gel.\(^{183}\) Como no se encuentran restos de grupos silanoles (banda situada a 980 cm\(^{-1}\)) y, sin embargo, si se encuentran los citados grupos alcóxidos, se puede concluir que la etapa limitante de este proceso sol-gel es la hidrólisis del TEOS y por lo tanto dicho proceso no ha finalizado completamente. Para las frecuencias comprendidas entre 1170 y 1060 cm\(^{-1}\) se sitúan el modo transversal (TO) y longitudinal (LO) de la tensión asimétrica del enlace (Si-O-Si), al contrario que sucedía en espectroscopía infrarroja, para espectroscopía Raman estas bandas aparecen con muy poca intensidad.

En 855 cm\(^{-1}\) se encuentra una banda ancha que contiene la vibración rocking de los metilos y la tensión simétrica del enlace Si-O-Si en el modo longitudinal (LO). A 792 cm\(^{-1}\) se encuentra el modo transversal (TO) de esta vibración, que para vidrios con estructura tridimensional se presenta mucho más ancha. Para estos sistemas híbridos orgánico-inorgánicos el crecimiento de la red vítrea se pierde parcialmente por la incorporación del PDMS y por lo tanto la señal se vuelve más estrecha.\(^{183}\) En esta misma frecuencia se encuentra la tensión asimétrica del enlace Si-C, pero la intensidad de esta banda en espectroscopía Raman es pequeña y puede ser despreciada, considerando que esta banda está asociada fundamentalmente a uniones siloxano.

La vibración simétrica del enlace Si-C y la vibración rocking de los metilos se encuentra como una banda muy intensa y un hombro, situados a 706 y 662 cm\(^{-1}\) respectivamente.

A 493 cm\(^{-1}\) se encuentra la tensión asimétrica del enlace Si-O para anillos de cuatro eslabones (\(D_1\)). Esta banda puede aparecer con otra banda situada a 607 cm\(^{-1}\) asociada a ciclos planos de tres eslabones (\(D_2\)). Galleener\(^{184}\) encuentra la formación de estas dos bandas en el cuarzo y las asigna a bandas indicativas de defecto, proponiendo la formación de ciclos de cuatro y tres miembros en lugar de los de seis eslabones (439 cm\(^{-1}\)) que son los que forman la estructura tridimensional del vidrio. Por otro lado, Tallant et al.\(^{185,186}\) corroboran la hipótesis de Galleener, empleando derivados sol-gel y asignando inequívocamente las estructuras cíclicas de tres y cuatro miembros mediante experimentos de MAS RMN y Raman, explicando la formación de ciclos de cuatro eslabones, debido a que se ve favorecida desde un punto de vista...
Termodinámico bajo condiciones de catálisis ácida. Así, para sistemas híbridos orgánico-inorgánicos, como es el presente caso, las largas cadenas de PDMS pueden producir un impedimento estérico e inhibir parcialmente la formación de ciclos de seis eslabones más voluminosos, que aparecen timidamente como una pequeña banda centrada a 439 cm\(^{-1}\).

Por último, la formación de ciclos de tres eslabones se explica mediante la condensación entre silanolés vecinales, asumiendo a su aparición a la desaparición de silanolés, en cualquier caso para el híbrido de partida no se han detectado ninguna de estas dos especies.

Tallant et al. sintetizan derivados sol-gel que posteriormente son sometidos a diferentes temperaturas de tratamiento (50, 200 600 y 1100 ºC). Mediante espectroscopía Raman aprecian que los ciclos de 4 eslabones están presentes para todas las temperaturas de tratamiento, de igual manera que en la sílice fundida. Sin embargo, los ciclos de tres eslabones aparecen cuando se aumenta la temperatura de tratamiento hasta 400 ºC y su concentración es máxima para 600 ºC, temperatura a partir de la cual dicha concentración comienza a disminuir. Además se encuentra relación entre la presencia de silanolés y los ciclos de tres eslabones.

Los ciclos de seis eslabones son más estables desde un punto de vista cinético y los de cuatro eslabones son más favorables desde el punto de vista termodinámico. La formación de los ciclos de seis eslabones se ve parcialmente inhibida por la presencia de las cadenas de PDMS en la estructura del híbrido que producen un cierto impedimento estérico. Además el TEOS y el PDMS se copolimerizan durante el proceso sol-gel y como consecuencia forman ciclos favorecidos termodinámicamente pero más constreñidos, como los de cuatro eslabones.

Para las frecuencias más bajas se encuentran dos bandas que provienen de la estructura del PDMS situadas a 190 y 165 cm\(^{-1}\) que corresponde a vibraciones C-Si-C (scissors, twist, rock y wagging).
III.1.2.3 Resonancia magnética nuclear.

La caracterización estructural mediante RMN de los materiales híbridos se ha realizado a partir de los espectros en estado sólido de ^{29}Si y ^{13}C, empleando la técnica de giro del ángulo mágico (Magic Angle Spinning-MAS), para el caso concreto del espectro de ^{13}C además se ha empleado polarización cruzada (Cross Polarisation- CP). Los espectros, para cada uno de los átomos estudiados, están recogidos en la Figura III- 3 a) y b), respectivamente.

III.1.2.3.1 $^{29}\text{Si MAS RMN}$.

En la Tabla III- 2 están recogidas las asignaciones de las unidades estructurales que van a servir para la elucidación estructural de los materiales recogidos en esta memoria, gracias a la gran cantidad de estudios publicados en la literatura por numerosos autores.

Los híbridos del sistema TEOS/PDMS fueron estudiados mediante RMN de líquidos por Mackenzie et al.89,90,193 En estos estudios se identificaron diversas especies en la región de las unidades D y Q.

Por un lado, en la zona relativa a las unidades D (\textasciitilde -25 ppm), se apreciaron tres tipos diferentes de unidades correspondientes a cadenas lineales de PDMS, estructuras cíclicas (ciclos de 4 eslabones) y estructuras copolimerizadas entre unidades $D(Q)$.

Y por otro lado, en la zona que corresponde a las unidades Q (\textasciitilde -100 ppm), se observaron especies con distinto grado de condensación también encontradas en geles de sílice.

Babonneau et al.194,195 corroboran la asignación de las unidades $D(Q)$ mediante experimentos de polarización cruzada para los espectros de RMN de los híbridos obtenidos mediante el proceso sol-gel a partir de TEOS y PDMS ($^{29}\text{Si CP MAS RMN}$). Cuando se hace el experimento con polarización cruzada se observa un aumento de la señal inicialmente asignada a la copolimerización de las unidades $D(Q)$, (-16.6 hasta -
17.7 ppm). Esta diferencia en la respuesta es debida a la diferencia de movilidad de los grupos metilos, dando como consecuencia una variación de las interacciones dipolares entre los núcleos de silicio y los protones. Esto explicaría la asignación de esta señal a unidades \(D \) en un entorno constreñido cerca de los puntos de entrecruzamiento, es decir, las unidades de copolimerización entre unidades \(D(Q) \).

Tabla III- 2: Desplazamientos característicos para los diferentes entornos químicos presentes para los híbridos y oxicarburos estudiados a lo largo de la memoria.

<table>
<thead>
<tr>
<th>Desplazamiento químico de las unidades presentes en el híbrido*</th>
<th>Q</th>
<th>Q_0</th>
<th>Q_1</th>
<th>Q_2</th>
<th>Q_3</th>
<th>Q_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{SiO}_4])</td>
<td>-79 a -82</td>
<td>-85 a -89</td>
<td>-91 a -97</td>
<td>-100 a -103</td>
<td>-108 a -110</td>
<td></td>
</tr>
<tr>
<td>(T)</td>
<td>(T_0)</td>
<td>(T_1)</td>
<td>(T_2)</td>
<td>(T_3)</td>
<td>(T^{\prime\prime})</td>
<td></td>
</tr>
<tr>
<td>([\text{SiCO}_3])</td>
<td>-45</td>
<td>-50</td>
<td>-57</td>
<td>-66</td>
<td>-85.5</td>
<td></td>
</tr>
<tr>
<td>(D)</td>
<td>(D_0)</td>
<td>(D_1)</td>
<td>(D_2)</td>
<td>(D^{\prime})</td>
<td>(D^{\prime\prime})</td>
<td></td>
</tr>
<tr>
<td>([\text{SiC}_2\text{O}_2])</td>
<td>-5 a -10</td>
<td>-12 a -15</td>
<td>-20 -22</td>
<td>-39</td>
<td>-47.2 a -49.2</td>
<td></td>
</tr>
<tr>
<td>PDMS</td>
<td>D lineales</td>
<td>(D(Q))</td>
<td>(D_{4c})</td>
<td>(D_{3c})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-21 to -23</td>
<td>-16.7 a -17.7</td>
<td>-19.4 a -19.9</td>
<td>-8.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>(M)</td>
<td>(M^{\prime\prime})</td>
<td>(X)</td>
<td>(X)</td>
<td>(X^{\prime})</td>
<td></td>
</tr>
<tr>
<td>([\text{SiC}_3\text{O}])</td>
<td>6 - 8.5</td>
<td>-5.3 a -7.6</td>
<td>(\text{[SiC_4]})</td>
<td>-0.6 a 0</td>
<td>-16</td>
<td></td>
</tr>
</tbody>
</table>

A medida que acontece la transformación orgánico-inorgánica del material las unidades estructurales, excepto las unidades \(Q \), experimentan un apantallamiento hacia campo alto de al menos 15 ppm.

Desplazamiento químico aproximado SiOC

<table>
<thead>
<tr>
<th>Unidades</th>
<th>(\delta) (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q/\text{[SiO}_4])</td>
<td>-105 a-110</td>
</tr>
<tr>
<td>(T/\text{SiCO}_3)</td>
<td>-70 a-75</td>
</tr>
<tr>
<td>(D/\text{SiC}_2\text{O}_2)</td>
<td>-30 a -40</td>
</tr>
<tr>
<td>(M/\text{SiC}_3\text{O})</td>
<td>0 a -10</td>
</tr>
<tr>
<td>(X/\text{SiC}_4)</td>
<td>-10 a -15 ((\beta)-SiC-15)</td>
</tr>
</tbody>
</table>

En la **Tabla III- 4 (página 103)**, se ha representado el porcentaje de cada una de las especies que forman el híbrido teniendo en cuenta el diferente grado de condensación de
Capítulo III

las distintas unidades estructurales. Para el híbrido orgánico-inorgánico, que es el que corresponde con la temperatura de 120 ºC, se aprecian dos tipos de señales bien diferenciadas; por un lado las que se encuentran desde -16 hasta -22 ppm, atribuidas a las unidades \(D \) y que corresponden con unidades estructurales \(O_2Si(CH_3)_2 \) no terminales de la estructura del PDMS, y por otro lado, las que están situadas desde -100 hasta -110 ppm, atribuidas a las unidades \(Q \) y que son asignadas como unidades estructurales \(SiO_4 \) que provienen de la estructura del TEOS.

Un análisis en profundidad de cada una de estas señales hace que mediante deconvolución se aprecie que están formadas cada una de ellas por más de una señal. En primer lugar, en la región atribuida a las unidades \(Q \), tras deconvolución, se puede apreciar que está constituida por unidades \(Q_0, Q_1, Q_2, Q_3 \) y \(Q_4 \), situadas a -80, -91, -101, -104 -109 ppm respectivamente, donde el subíndice representa el número de oxígenos puente que están situados alrededor del silicio en la matriz de sílice. Estas especies se forman a partir de la hidrólisis del TEOS \((Q_0) \), que formaría grupos silanoles que posteriormente se condensarían para formar enlaces \(Si-O-Si \) en el transcurso de la reacción.

![Figura III- 3: Espectros de resonancia magnética nuclear del híbrido del sistema TEOS/PDMS. a) \(^{29}Si \) MAS RMN y b) \(^{13}C \) CP MAS RMN.](image)

La región perteneciente a las unidades \(D \) puede ser dividida en tres picos situados a -18, -20 y -22 ppm. Cada una de las especies asignadas a cada uno de estos picos están representadas a modo de ejemplo en la Figura III- 4.
El pico situado a -18 ppm está asignado a las unidades \(D(Q) \) que derivan de la copolimerización entre las especies de TEOS y PDMS o, mejor dicho, entre los grupos silanoles derivados de la hidrólisis del TEOS y las cadenas de PDMS.

El pico situado entre -20 ppm está atribuido a oligómeros cíclicos de cuatro miembros, provenientes de la estructura del PDMS.

Por último, la señal que corresponde a las cadenas lineales de PDMS, que está situada a -22 ppm.

Para cadenas lineales largas de PDMS \((n >> 10)\) esta banda se sitúa para -23 ppm, mientras que cuando las cadenas lineales son más cortas \((n \approx 5)\) desplaza su máximo hasta -22 ppm.\(^{194,195}\)

Los espectros de RMN están indicando que el híbrido está compuesto de cadenas de PDMS \((n \approx 5)\) entrecruzadas con la red de sílice. Durante el proceso sol-gel además de la formación de unidades de copolimerización entre TEOS y PDMS también se forman oligómeros cíclicos a partir de las cadenas lineales del polímero.

![Diagrama](image.png)

Figura III-4: Representación de las diferentes especies derivadas de las cadenas lineales del PDMS que pueden estar presentes en el híbrido orgánico-inorgánico.

En los primeros estadios de la reacción (tal y como se ha comentado en el *Capítulo I* página 24) el proceso favorecido es la autocondensación de las moléculas hidrolizadas del TEOS. Posteriormente se produce la copolimerización entre unidades de TEOS y
PDMS, si bien ésta puede producirse a partir de los grupos silanoles de final de cadena o en medio de la cadena. Como consecuencia de esto, las cadenas de PDMS se rompen en cadenas más pequeñas y/o tetrámeros cíclicos, que son muy estables para estas condiciones de reacción (catálisis ácida).

El híbrido está compuesto de una estructura tridimensional de unidades estructurales de sílice y unidades copolimerizadas \(D(Q) \), pero esta estructura tridimensional además puede contener restos de polímero que no ha copolimerizado, ya sea en forma de pequeñas cadenas y/o oligómeros de cuatro eslabones.

La cuantificación de las señales \(D \) y \(Q \), a partir del espectro de RMN, nos da unas proporciones aproximada de 33 % frente a 67 %. Aunque estos valores no encajan con los que a priori cabría esperar, ya que se parte de una relación en peso de TEOS/PDMS 60/40, hay que tener presente que durante el proceso sol-gel el TEOS se hidroliza y condensa y pierde una gran cantidad de masa, mientras que el PDMS no se hidroliza y su masa permanece prácticamente constante.

En el apartado anterior se ha recalculado esta masa obteniéndose unos valores teóricos de 30/70 que encajan mucho mejor con los obtenidos a partir del espectro de resonancia magnética nuclear.

A partir de los datos obtenidos mediante deconvolución del espectro de RMN del híbrido, se puede calcular el grado de condensación (G.C) del híbrido orgánico-inorgánico (Ecuación III-I).

\[
G.C = \frac{\sum_{j=0}^{4} j^* (%Q_j)}{4} + \frac{\sum_{j=0}^{3} j^* (%T_j)}{3} + \frac{\sum_{j=0}^{2} j^* (%D_j)}{2} + \frac{\sum_{j=0}^{1} j^* (%M_j)}{1}
\]

Donde \(Q_j, T_j, D_j \) y \(M_j \), son las proporciones de las diferentes unidades estructurales obtenidas a partir de la simulación de RMN; \(j \) indica el número de puentes de oxígeno de cada especie. Aplicando esta fórmula se obtienen unos valores próximos del 94 %.

La condensación incompleta con la presencia en el híbrido de otras especies con menor grado de condensación, además de unidades \(Q_4 \), es típica del proceso sol-gel. Esto puede estar asociado a impedimentos estéricos que experimentan los grupos funcionales
a medida que se está formando la estructura tridimensional y que impiden que la reacción progrese completamente.

III.1.2.3.2 ^{13}C MAS RMN

El espectro de resonancia magnética nuclear considerando los diferentes entornos químicos que presenta el carbono en el híbrido orgánico-inorgánico está recogido en la Figura ***III-3 b***.

El espectro del híbrido está compuesto fundamentalmente de la señal que se asigna a los metilos de las unidades D provenientes de la estructura del PDMS (0 ppm). Esto confirma la integridad de los enlaces $Si-CH_3$ durante el proceso sol-gel.

También aunque de manera muy minoritaria se observa la presencia de restos de alcohol así como grupos alcóxidos que no han sido hidrolizados/condensados durante el proceso sol-gel (CH_3-CH_2-OR ($R = H$, $Si≡$), 16 (CH_3) y 58 (CH_2) ppm; ($CH_3)_2CH-OH$), 24 (CH_3) y 64 (CH) ppm. Este resultado concuerda, con que los valores obtenidos mediante análisis químico del $%C$ fuesen superiores con respecto a los teóricos.

III.1.2.4 Difracción de RX.

El material híbrido orgánico-inorgánico presenta un difractograma característico de materiales vitreos basados en sílice (véase página 119 Figura ***III-20***). El híbrido en esta figura corresponde con la temperatura de 120 °C que es la temperatura máxima de secado.

III.1.3 Caracterización Microstructural y Textural.

III.1.3.1 Porosimetría de mercurio.

El análisis de la distribución de poros del híbrido orgánico-inorgánico del sistema TEOS/PDMS se presenta, junto con las respectivas curvas de intrusión-extrusión de
mercurio, en la *Figura III- 5*. A partir de estos datos se puede apreciar la naturaleza eminentemente macroporosa del híbrido orgánico-inorgánico del sistema TEOS/PDMS. La distribución de poros obtenida indica que el híbrido presenta macroporos centrados alrededor de los 10 micrómetros.

Figura III- 5: (a) Curvas de intrusión-extrusión de mercurio y (b) distribuciones de tamaño de poro obtenidas mediante porosimetría de mercurio para el híbrido del sistema TEOS/PDMS.

III.1.3.2 Adsorción de nitrógeno.

A partir de los resultados obtenidos mediante adsorción de nitrógeno puede apreciarse que el híbrido muestra una isoterma tipo II correspondiente a materiales que no presentan poros detectables mediante esta técnica. La distribución de poros determinada a partir del método *BJH* en la rama de desorción apoya estos resultados (*Figura III- 6(a) y (b)).

Figura III- 6: (a) Isoterma de adsorción de nitrógeno y (b) distribuciones de tamaño de poro del híbrido del sistema TEOS/PDMS.
III.1.3.3 Microscopía electrónica de barrido.

Las micrografías que se presentan en la Figura III- 7 vienen a confirmar los resultados obtenidos mediante porosimetría de mercurio y adsorción de nitrógeno, indicando que el híbrido es, fundamentalmente macroporoso con un tamaño de poro de aproximadamente 10 micrómetros.

El híbrido del sistema TEOS/PDMS presenta una morfología típica de agregado de partículas, dando como resultado grandes cavidades (del orden de los macroporos) que interconectan unas zonas con otras.

Figura III- 7: Micrografías de microscopía electrónica de barrido del híbrido del sistema TEOS/PDMS.

III.2 Pirólisis y mecanismos de reacción.

En esta memoria se ha estudiado cómo afectan la temperatura, velocidad de calentamiento, flujo de la atmósfera inerte y tiempo a la temperatura máxima (1100 ºC) en la transformación orgánico-inorgánica que experimenta el híbrido orgánico-inorgánico hasta convertirse en vidrio de oxicarbururo de silicio durante el proceso de pirólisis.

La evolución desde el híbrido orgánico-inorgánico hasta el vidrio de oxicarbururo de silicio se ha seguido desde los puntos de vista estructural y microestructural-textural, para lo cual se han empleado diversas técnicas. Así se ha hecho un seguimiento de la estructura mediante espectroscopía Infrarroja, espectroscopía Raman, MAS RMN de ^{13}C...
y ^{29}Si, difracción de RX, análisis elemental y análisis termogravimétrico, y el estudio de la microestructura y textura se ha realizado mediante porosimetría de mercurio, adsorción de nitrógeno, microscopia electrónica de barrido (MEB) y densidad real por picnometría de helio.

A continuación se presentan y discuten los resultados obtenidos.

A medida que aumenta la temperatura el híbrido cambia; inicialmente va perdiendo el carácter elastómerico (esto es más acusado a medida que las reacciones de despolimerización se producen en mayor medida) que se ve acompañado del ennegrecimiento del material (debido a la formación de la fase de carbono libre). A partir de 900 ºC estos materiales son monolitos negros y bastante duros.

III.2.1 Influencia de la Temperatura de Tratamiento.

La temperatura de pirólisis, como ya se ha comentado en el Capítulo II, se ha variado desde 200 ºC (la temperatura de secado del híbrido orgánico-inorgánico es 120 ºC) hasta 1200 ºC, en intervalos de 100 ºC. La velocidad de calentamiento para todos los casos es 2 ºC/min, el tiempo de permanencia a la temperatura máxima 2 horas y el flujo de nitrógeno 50 ml/min.

III.2.1.1 Caracterización estructural.

III.2.1.1.1 Estudio mediante espectroscopía infrarroja.

La evolución estructural desde el híbrido orgánico-inorgánico hasta el vidrio de oxicarbururo de silicio ha sido estudiada mediante diversas técnicas. En este primer apartado se comentan los resultados más importantes obtenidos mediante espectroscopía infrarroja. Los espectros obtenidos mediante dicha técnica para el sistema TEOS/PDMS, para todas las temperaturas de tratamiento estudiadas, están representados en la Figura III-8. El híbrido de partida corresponde con la temperatura de 120 ºC que es la temperatura máxima de secado de la muestra.
Figura III-8: Espectros de infrarrojo del sistema TEOS/PDMS para todas las temperaturas de tratamiento comprendidas en el intervalo 120-1200 °C.
Capítulo III

A medida que aumenta la temperatura de tratamiento se producen cambios estructurales que producen, entre otros, la transformación orgánico-inorgánico desde el híbrido hasta el oxicarbururo. Debido a la complejidad del proceso de pirólisis, este cambio estructural está acompañado de otros tales como: reacciones de hidrólisis/condensación de grupos etóxidos/silanolres residuales, reacciones de redistribución y formación de la fase de carbono libre, entre otras.

Tal y como se ha comentado en párrafos anteriores, para hacer más fácil el seguimiento de todos los procesos involucrados, se ha subdividido en tres intervalos: Hasta 400 °C, desde 500-800 °C y desde 900-1200 °C.

Debido a la gran cantidad de procesos que ocurren durante la pirólisis y para hacer un seguimiento más detallado de ellos los espectros FT-IR se comentarán dividiéndolos en tres sub-intervalos: Desde 120-400 °C (Figura III- 9), desde 500-800 °C (Figura III- 10 y Figura III- 11) y desde 900-1200 °C (Figura III- 12).

- **Hasta 400 °C.**

No se aprecian demasiados cambios en el espectro de infrarrojo hasta 400 °C (Figura III- 9). En este rango de temperaturas suelen producirse las reacciones que involucran las reacciones de hidrólisis/condensación de grupos etóxidos/silanolres residuales (Capítulo I reacción I-8 y reacción I-9). En el espectro de FT-IR del híbrido no se ha detectado la presencia de silanolres o grupos alcóxidos, indicando que este tipo de reacciones no van a tener demasiada relevancia.

La deformación del enlace O-Si-O se desplaza desde 433 hasta 460 cm⁻¹ (para la temperatura de 400 °C) indicando un aumento del entrecruzamiento de la estructura por efecto de la temperatura. Este aumento del entrecruzamiento debe ser asociado con la aparición de una pequeña banda situada a 2856 cm⁻¹, atribuida a ciclos de octametilciclosiloxano (D₄c),¹⁷⁸ que es uno de los oligómeros cíclicos mayoritarios a través de los cuales se produce la degradación térmica del PDMS (Capítulo I /página 42-44). El comienzo de las reacciones de despolimerización hace que se produzca un aumento en el entrecruzamiento del material híbrido, coincidiendo con el desplazamiento de la banda asociada a la deformación O-Si-O a frecuencias mayores.
Figura III- 9: Espectros de infrarrojo del sistema TEOS/PDMS para el intervalo de temperaturas comprendido entre 120 y 400 °C.

- **Desde 500-800 °C.**

 Este es el intervalo donde confluyen la mayoría de los procesos; estos son: reacciones de despolimerización (redistribución del enlaces Si-O/Si-O), redistribución de enlaces Si-O/Si-C y reacciones de mineralización.

 Los espectros de infrarrojo para estas temperaturas se presentan en la Figura III- 10. Una ampliación de diferentes zonas espectrales está recogida en la Figura III- 11 (a) 3500-2000 cm⁻¹, (b) 1500-1250 cm⁻¹ y (c) 950-750 cm⁻¹.

 La extensión de las reacciones de despolimerización, donde se produce la redistribución de enlaces Si-O/Si-O, no puede ser determinada mediante esta técnica, ya que se rompen y se forman enlaces de la misma naturaleza, siendo necesarias otras técnicas. Se puede hacer un seguimiento indirecto observando cómo se produce una disminución de las bandas asociadas al polímero debido, en su mayoría y para estas temperaturas de tratamiento, a las reacciones de despolimerización.
Además, como ya se ha comentado, para el intervalo de temperaturas anterior, la presencia de la banda asociada a oligómeros cíclicos \(D_{4c} \) es también un indicativo de que estas reacciones se están produciendo.

Para estas temperaturas se espera que se produzcan las reacciones de redistribución de enlaces \(Si-O/Si-C \). Mediante FT-IR se puede determinar la transformación de las unidades \(D \) en \(T \) (Capítulo I (reacción I-15)) gracias al desplazamiento que experimenta (700-800 ºC) la banda situada a 1260 cm\(^{-1}\) asignada a \(SiMe_2 \) (de las unidades \(D \)) hasta números de onda mayores \(\sim 1273 \) cm\(^{-1}\) que corresponde a \(SiMe \) de las unidades \(T \) (Figura III- 11(b)).\(^{133,169}\)

El comienzo de las reacciones de mineralización puede observarse por la presencia de estructuras tipo puente,\(^{137,196} \equiv Si-CH=Si\equiv \), que quedan evidenciadas por la aparición de una nueva banda situada a 1360 cm\(^{-1}\). Esta banda se intuye a partir de 600 ºC, siendo máxima para 700-800 ºC (Figura III- 11(b)).

Las vibraciones asociadas a los grupos metileno aparecen en la misma zona que las de los grupos metilos del \(PDMS \) (2970 y 2929 cm\(^{-1}\)) para las frecuencias de 2918 y 2856 cm\(^{-1}\).\(^{131,135,160}\) La vibración del enlace \(C-H \) para los \(-CH_2- \) (2856 cm\(^{-1}\)) coincide con la de los oligómeros cíclicos \(D_{4c} \), hecho que explica que esta banda se aprecie a partir de 400 ºC.

Otro hecho que indica el comienzo de la transformación orgánico-inorgánica del material es la aparición de grupos \(Si-H \) para 700 y 800 ºC (\(\delta Si-H \sim 880 \) cm\(^{-1}\) y \(\nu Si-H \sim 2253 \) y 2189 cm\(^{-1}\)). Esta banda se encuentra como doblete indicando que el enlace \(Si-H \) presenta diferentes entornos químicos (posiblemente como unidades \(T^H \) y \(D^H \)).

La presencia de estos grupos funcionales ha sido encontrada\(^{131,135,137,160}\) en sistemas que inicialmente no los contenían, lo que ha sido explicado mediante procesos radicálicos que se producen durante el proceso de pirólisis (Capítulo I, Reacción I-20).

El siguiente fenómeno que indica este cambio es la transformación de la bandas comprendidas entre 800-850 cm\(^{-1}\) que corresponden al híbrido, al \(PDMS \) y a la red vitrea (Figura III- 11(c)). Estas bandas se transforman en una única banda ancha centrada en los alrededores de 810 cm\(^{-1}\) que corresponde a las vibraciones de tensión \(SiX_2 \) (\(X = O \) y \(C \)) para la red mixta del oxicarburo. Ésta es bastante ancha debido a que contiene las vibraciones de silicio, oxígeno y carbono.
Figura III-10: Espectros de FT-IR del sistema TEOS/PDMS, para el intervalo de temperaturas comprendido entre 500 y 800 ºC.

Figura III-11: Ampliación de las zonas espectrales: (a) zona comprendida entre 3500-2000 cm⁻¹; (b) zona comprendida entre 1500-1250 cm⁻¹ y (c) zona comprendida entre 950-750 cm⁻¹. En el intervalo de temperaturas que corresponde desde 500 hasta 800 ºC para el sistema TEOS/PDMS.
Capítulo III

Para este intervalo de temperaturas se observa un elevado crecimiento de las bandas asociadas al agua. Esto es debido fundamentalmente al agua adsorbida del ambiente durante la elaboración de la pastilla de KBr.196

Las bandas del agua aparecen a \(\sim3400\) y \(\sim1630\) cm\(^{-1}\), tensión y deformación respectivamente. Por otro lado, para los grupos silanoles libres, la tensión OH aparece \(\sim3740\) cm\(^{-1}\) (más baja si forma enlaces de hidrógeno) y la tensión Si-OH \(\sim980-950\) cm\(^{-1}\). De acuerdo a lo propuesto por Hidalgo y Ilharco171 la frecuencia a la que aparece la vibración Si-OH de los grupos silanoles varía notablemente dependiendo de si se encuentran en forma libre o formando enlaces de hidrógeno.

Cuando los grupos silanoles están aislados presentan una banda aguda localizada \(\sim3740\) cm\(^{-1}\). Esta frecuencia se desplaza a números de onda menores cuando el silanol está formando enlaces de hidrógeno. Si el silanol está alterado por un átomo de oxígeno (donor) la frecuencia se sitúa entre 3740 y 3300 cm\(^{-1}\), pero cuando lo está por un átomo de hidrógeno (aceptor) la tensión Si-OH se desplaza hasta \(\sim3300\) cm\(^{-1}\). Para el caso que lo está por ambos átomos aparece contigua a esta última ensanchando la señal. Existen otro tipo de interacciones más concretas que también contribuyen al ensanchamiento de las señales, como por ejemplo las interacciones entre silanoles geminales (\(\sim3650\) cm\(^{-1}\)) o adyacentes (\(\sim3550\) cm\(^{-1}\)) que se encuentran formando enlaces de hidrógeno entre ellos mismos. La vibración Si-OH de los silanoles internos también aparecen a estas frecuencias (\(\sim3650\) cm\(^{-1}\)) y se puede diferenciar de la vibración de Si-OH de los grupos silanoles superficiales.69,70

A partir de 700 ºC (hasta 900 ºC) se aprecia un hombro a \(\sim3640\) cm\(^{-1}\) que correspondería a la formación de grupos silanoles, cuya aparición parece estar asociada a la aparición de otro hombro situado a 950 cm\(^{-1}\) atribuido a la deformación del enlace Si-OH. Para temperaturas inferiores, a partir de 500 ºC aparece un hombro \(\sim3250\) cm\(^{-1}\) que pertenece a silanoles formando enlaces de hidrógeno posiblemente con el agua adsorbida durante la elaboración de la pastilla de KBr, ya que para estas temperaturas se rompen una gran cantidad de enlaces que generarán una gran porosidad en el material.196 Estos últimos son generados por moléculas de agua y se generan fundamentalmente en la superficie del material. Cabe destacar que para las temperaturas donde la banda de agua adsorbida es más intensa, la banda que corresponde a la deformación para la molécula de agua se desdobla apareciendo dos bandas situadas a
1700 y 1630 cm\(^{-1}\). La primera de ellas podría estar asociada a las moléculas de agua que forman enlaces de hidrógeno con los grupos silanoles.

Algunos autores\(^{131,135,137,160}\) observan la formación de grupos silanoles para este intervalo de temperaturas (700-800 ºC) y explican su formación a partir de procesos radicálicos, (igual que para los enlaces \(\text{Si-H}\)) que se producen durante la mineralización para estas temperaturas (Capítulo I/Esquema I-6). Sin embargo otros autores\(^{196}\) tras hacer un seguimiento mediante FT-IR “\textit{in situ}” a 900 ºC, no observan bandas asociadas a grupos silanoles, mientras que tras someter al material a una atmósfera rica en agua, los grupos silanoles se forman al reaccionar la estructura vítrea con el agua.

En esta memoria, para este intervalo de temperaturas se han encontrado dos tipos diferentes de silanoles: los que se sitúan como un hombro ~3250 cm\(^{-1}\) que son los más abundantes debidos a la quimisorción de agua en la superficie del material (siendo su aparición extensible desde 500 hasta 1200 ºC) y en segundo lugar los que observan por la aparición de sendos hombros situados a ~3640 cm\(^{-1}\) y ~950 cm\(^{-1}\) que se encuentran en pequeña proporción y pueden ser asociados a la formación de silanoles mediante procesos radicalarios (desde 700-900 ºC).

La banda situada a 550 cm\(^{-1}\) asociada a la formación de ciclos de siloxano cuatro eslabones (banda de defecto) va disminuyendo de intensidad al aumentar la temperatura de tratamiento, esto es debido a la ruptura de enlaces y a la eliminación de los metilos (ya sea vía despolimerización o mineralización) que permiten la formación de ciclos de seis eslabones. Esto se ve acompañado con la detección de \(\text{Si-OH}\) y \(\text{Si-H}\) indicando que los ciclos de cuatro eslabones se están rompiendo y como consecuencia se están formando nuevas uniones siloxano que generan ciclos de seis eslabones. La escasa detección de estas últimas especies es debida a su baja concentración y a su elevada reactividad a estas temperaturas. Estas especies, a medida que se van generando, reaccionan rápidamente no dejando tiempo suficiente para ser detectadas. La formación de ciclos de seis eslabones lleva asociada el fortalecimiento de la red vítrea que se está formando.
Figura III-12: Espectros de infrarrojo del sistema TEOS/PDMS para el intervalo de temperaturas comprendido entre 900-1200 °C.

- **Desde 900-1200 °C.**

A partir de 900 °C la presencia de las bandas asociadas al polímero es prácticamente nula. Siguen estando presentes las estructuras puente situadas a 1360 cm⁻¹ así como grupos Si-H (~880 cm⁻¹) y Si-OH (3640 y 950 cm⁻¹). Los fenómenos que se producen fundamentalmente son las reacciones de deshidrogenación del material.

La formación de la fase de carbono libre no puede ser evaluada mediante FT-IR, ya que las vibraciones asociadas son mucho menos intensas que las del resto de grupos funcionales, por lo que su formación debe ser seguida mediante otras técnicas tales como espectroscopía Raman y ¹³C RMN.

Aunque el carbono tipo grafito, en sí, no se detecta, sí se detectan especies intermedias que pueden evolucionar hasta el carbono grafito, como por ejemplo ≡Si-CH₂-CH₂-Si≡. La presencia de estas bandas ha sido encontrada recientemente¹⁶¹ centrada en 1380 cm⁻¹.
A partir de 1000 ºC el material presenta el espectro típico de vidrio de oxicarburo de silicio las bandas más importantes son la tensión asimétrica del enlace Si-O-Si (1170 y 1080 cm\(^{-1}\)), la del tetraedro SiX\(_4\) (X = C, O) (810 cm\(^{-1}\)) y la deformación del enlace O-Si-O situada a 460 cm\(^{-1}\). A partir de 1100 ºC aparece un desdoblamiento de la banda situada a 810 cm\(^{-1}\) atribuido a silicio unido, al menos, a dos átomos de carbono, indicando una fase de vidrio de oxicarburo con una mayor incorporación de carbono dentro de ella. En el carburo de silicio esta banda se desplaza hasta 880 cm\(^{-1}\).

Las bandas que se asignan a las uniones siloxano experimentan un desplazamiento hacia frecuencias mayores a medida que se produce un aumento de la temperatura como consecuencia del cambio tridimensional que se produce al evolucionar el material. Este desplazamiento es debido inicialmente al entrecruzamiento que experimenta la estructura del híbrido hasta el oxicarburo (120-1000 ºC) y posteriormente este cambio está asociado con la densificación del vidrio de oxicarburo.

Se producen cambios en el desplazamiento y la intensidad de las bandas asociadas al enlace siloxano, para la deformación O-Si-O (460 cm\(^{-1}\)), tensión simétrica Si-O-Si en el modo LO (810 cm\(^{-1}\)), tensión asimétrica Si-O-Si en el modo TO (1080 cm\(^{-1}\)) y la tensión asimétrica en el modo LO (hombro a 1180 cm\(^{-1}\)).

La banda situada a 1080 cm\(^{-1}\) es un indicador de tridimensionalidad. En los vidrios de sílice se sitúa en 1100 cm\(^{-1}\) para los geles se sitúa en 1080 indicando una red más débil o con un menor crecimiento tridimensional que los vidrios de sílice.\(^{179}\)

III.2.1.1.2 Estudio mediante espectroscopía Raman.

A continuación se van a discutir los cambios estructurales deducidos a partir de esta técnica a medida que aumenta la temperatura de tratamiento y que van a ser muy útiles para complementar la información obtenida mediante espectroscopía infrarroja.

Los espectros para todas las temperaturas de tratamiento comprendidos entre 120-600 ºC y 700-1200 ºC están recogidos en la **Figura III- 13, Figura III- 14 y Figura III- 15**, respectivamente.
Al aumentar la temperatura de tratamiento (a partir de 400-500 ºC), se observa la desaparición de las bandas centrales en 1452 y 1485 cm$^{-1}$ asociadas a una hidrólisis incompleta del TEOS. Esta desaparición es debida a la hidrólisis/condensación que experimentan estos grupos alcóxidos residuales por efecto de la temperatura de tratamiento. Una justificación de la condensación de estos grupos alcóxidos residuales es la aparición, de forma casi imperceptible, de los intermediarios involucrados tales como grupos silanóles (1000 cm$^{-1}$), agua (1553 cm$^{-1}$) y etanol (1495 cm$^{-1}$).

De la misma manera que se apreciaba mediante FT-IR, a medida que aumenta la temperatura de tratamiento se produce una disminución de las bandas atribuidas al PDMS.

También, a través de la espectroscopía infrarroja, se ha observado, para la temperatura de 600 ºC, la formación de estructuras tipo puente \equivSi-CH$_2$-Si\equiv gracias a la aparición de una banda situada a 1360 cm$^{-1}$. Por lo tanto no sorprende hallar una pequeña banda mediante espectroscopía Raman a esta misma temperatura situada a 1350 cm$^{-1}$ y que

![Figura III-13: Espectros Raman para el intervalo de temperaturas comprendido desde 120 - 600 ºC para el sistema TEOS/PDMS, la zona espectral comprendida entre 2000-3500 cm$^{-1}$ se ha dividido entre 10.](image)
puede ser asignada a este mismo tipo de estructuras, indicando también el comienzo de las reacciones de mineralización.

Como consecuencia, esta transformación orgánico-inorgánica (sobre todo apreciable para 600 ºC) que experimenta el material, se produce un ensanchamiento de la banda situada en 792 cm\(^{-1}\) que se asigna a \(\sigma_a (Si-O-Si)_{TO}\), indicando de nuevo el comienzo de la formación del vidrio de oxicarburo de silicio y, por lo tanto, de su estructura tridimensional que estaba parcialmente interrumpida en el híbrido por la presencia de las cadenas de PDMS. Independientemente de la naturaleza del material vitreo esta banda no se desplaza, únicamente sufre un ensanchamiento simétrico a medida que aumenta la red tridimensional del vidrio.

![Figura III- 14: Ampliación de los espectros Raman para el intervalo de temperaturas comprendido entre 120-600 ºC para el sistema TEOS/PDMS.](image)

Debido a todos los procesos involucrados en los primeros estadios de la pirólisis (hidrólisis/condensación de grupos alcóxidos/silanoles residuales, comienzo de las reacciones de despolimerización y mineralización) se observan grandes cambios en la zona que corresponde a las estructuras cíclicas de Si-O-Si. En un principio, el híbrido presenta de forma mayoritaria especies cíclicas de cuatro miembros (490 cm\(^{-1}\)) y en menor medida las de seis miembros (439 cm\(^{-1}\)). A partir de 300 ºC, coincidiendo con la
Capítulo III

presencia de grupos silanoles que se han formado por la hidrólisis/condensación de grupos alcóxidos residuales, se intuye la formación de ciclos de tres eslabones, gracias a la aparición de una pequeña banda situada a 590 cm\(^{-1}\).

A partir de esta temperatura, pero sobre todo apreciable para 400-600 °C, se produce un aumento de los ciclos de seis eslabones en detrimento de los de cuatro eslabones. Se apoya la formación de especies favorecidas desde un punto de vista cinético, ayudado por el comienzo de las reacciones de despolimerización que eliminan parte del impedimento estérico que producían las cadenas de PDMS.

Otra posible explicación a este fenómeno, es que los ciclos de cuatro eslabones pertenezcan tanto a las unidades cíclicas de la red inorgánica unidades estructurales de defecto), como a oligómeros ciclicos de 3 \((D_{3c})\) y 4 \((D_{4c})\) miembros procedentes de las despolimerización del PDMS, es decir de su despolimerización. A medida que evolucionan las reacciones de despolimerización, parte de estos oligómeros se pueden haber quedado retenidos dentro de la estructura porosa del material. Esto supondría un ensanchamiento de las señales que se encuentran en esta zona debido a que pertenecerían a varias especies.

Es sabido\(^{178}\) que las unidades \(D_{3c}\) presentan bandas en este intervalo centradas para 587 y 456 cm\(^{-1}\), mientras que las unidades \(D_{4c}\) presentan una banda intensa situada a 480 cm\(^{-1}\). De hecho, Gallener\(^{184}\) apoya su hipótesis asignando las especies cíclicas de defecto de 3 y 4 eslabones (anillos cíclicos de uniones siloxano) utilizando como modelos estructurales especies cíclicas de hexametiilciclosiloxano \((D_{3c})\) y octametilciclosiloxano \((D_{4c})\).

El hexametilciclosiloxano \((D_{3c})\) presenta una banda a 587 cm\(^{-1}\), comparable con la de las unidades \(D_2\) (ciclos de siloxano de 3 miembros) que aparece a 606 cm\(^{-1}\). Lo mismo sucede con el octametilciclosiloxano \((D_{4c})\) con una banda a 480 cm\(^{-1}\) que puede ser comparada con la que presentan las unidades \(D_1\) (ciclos de cuatro miembros) centrada a 495 cm\(^{-1}\).

Otro dato que indica la pertenencia de estas señales a varios grupos funcionales, es que el desplazamiento de la bandas asociada a estas unidades estructurales de defecto se mantienen relativamente constante con la temperatura\(^{185,186}\) y no se puede explicar el ensanchamiento experimentado por dichas señales para 500-600 °C.
Finalmente se puede concluir, que el ensanchamiento de la banda situada en 450-500 cm\(^{-1}\), debe corresponder tanto a unidades estructurales cíclicas de "defecto" de cuatro miembros (de la red inorgánica), como a oligómeros cíclicos de tres y cuatro miembros que provienen de la estructura del PDMS.

La desaparición de las bandas de defecto indica un aumento en el entrecruzamiento del híbrido debido en gran medida a las reacciones de despolimerización y mineralización.

A partir de 600 °C (Figura III- 15) el espectro Raman muestra una gran fluorescencia causada por el comienzo de la formación de la fase de carbono libre, carbono tipo grafito. Algunos autores\(^39,140,197\) piensan que es debida a la presencia de radicales libres.

Mediante Resonancia de Spin Electrónico (RSE)\(^39,140,197,198\) se ha determinado la formación de radicales libres durante el proceso de pirólisis. Esta formación se ha detectado incluso para temperaturas bastante bajas del orden de los 300 °C, alcanzándose un máximo para el intervalo de temperaturas comprendido entre 700-1200 °C. Para temperaturas superiores (1500 °C) el contenido en radicales libres disminuye notablemente.

A partir de \(^{13}C\)-MAS RMN\(^40,198,199,1\), se ha determinado el comienzo de la formación de la fase de carbono libre a temperaturas superiores a 600 °C por lo que el aumento de la intensidad de la señal obtenida mediante RSE para el intervalo de temperaturas comprendido entre 700-800 °C está asociada a la formación de carbono sp\(^2\). Para temperaturas superiores, esta gran concentración de radicales libres está asociada a la deshidrogenación que experimenta el material de vidrio de oxicarburo de silicio una vez formado, sobre todo la que experimentan los hidrógenos que están presentes en la fase de carbono libre, recientemente formada. Por otro lado, para temperaturas superiores a 1200 °C, ha concluido casi completamente la deshidrogenación del material y se produce una disminución de las especies radicálicas que se ve reflejada en una disminución de la fluorescencia detectada en el espectro Raman.

Sin embargo, otros autores\(^200,201\) opinan que para que el espectro Raman muestre la fase grafítica la fase de carbono libre debe tener un diámetro mínimo de ~ 2.5 nm. Por lo tanto, aunque la fase de carbono libre haya sido detectada mediante \(^{13}C\)-MAS RMN para temperaturas > 600 °C y no sea detectada mediante espectroscopía Raman, únicamente indicaría que el tamaño de los dominios es menor de 2.5 nm.
Por lo comentado en los párrafos anteriores, los espectros Raman para las temperaturas de 700, 800 y 900 ºC únicamente presentan una gran fluorescencia, no pudiendo ser apreciadas el resto de las bandas características del material.

A partir de 1000 ºC se encuentra el espectro Raman típico de carbono tipo grafito turbostático, que únicamente está compuesto de las denominadas bandas G y D. Si bien es cierto, estas bandas aumentan en intensidad al incrementarse la temperatura de tratamiento hasta 1100 y 1200 ºC.

La espectroscopía Raman es muy empleada para conocer la evolución estructural de la fase de carbono libre dentro de la matriz de vidrios de oxicarburo de silicio.

El grafito está constituido de láminas construidas de anillos de 6 eslabones de enlaces $C-C$ con hibridación sp^2. El enlace entre los distintos anillos es más fuerte que entre las distintas capas, por lo que existe un gran orden en las láminas (con unas distancias de enlace $C-C$ muy cortas) pero una gran tendencia al desorden entre las distintas capas (con distancias entre capas muchísimo mayores). Esto hace que las distintas capas estén dispuestas de una manera aleatoria y que este orden-desorden se conozca como ordenación turbostática.
El espectro Raman del grafito cristalino, en el modo hexagonal está constituido por una única banda denominada G y situada a 1580 cm$^{-1}$. Está causada por las vibraciones de tensión del enlace C-C en el plano asociada a los modos doblemente degenerados E_{2g}. Este modo es activo para todas las hibridaciones sp2 que no tienen porque ser necesarimamente ciclos de seis eslabones.

En estructuras de grafito desordenado la banda G se ensancha y desplaza hasta 1600 cm$^{-1}$. Además aparece una banda adicional la denominada banda D situada a 1360 cm$^{-1}$. La banda D, cuya intensidad aumenta a medida que disminuye el tamaño de los dominios, está asociada a imperfecciones estructurales en el carbón. Se atribuye al modo A_{1g}, activo para espectroscopía Raman cuando el tamaño de los dominios es pequeño, rompiendo las reglas de selección por la pérdida de simetría en las estructuras desordenadas de carbono. Pero su origen es bastante incierto y ha originado una gran controversia.202,203,204,205,206

La intensidad, anchura y frecuencia de estas bandas proporciona una información muy valiosa acerca de la evolución estructural de la fase de carbono libre presente dentro de la estructura del oxicarburo.

La relación de intensidades de estas dos bandas $I(D)/I(G)$ es inversamente proporcional al tamaño de los dominios de grafito.200,201,202,206

Esta relación de intensidades $I(D)/I(G)$ permite calcular el tamaño de los dominios de grafito según la ecuación propuesta por Tunistra y Koening:202

$$L(nm) = C(\lambda) \times \left[\frac{I(D)}{I(G)} \right]^{-1}$$

Ecuación III- 2

Donde C depende de la longitud de onda de la radiación monocromática empleada. Para el caso concreto que $\lambda = 514.5$ nm, que corresponde al láser de ión Ar, C tiene un valor de 4.4 nm.

La anchura de las bandas es inversamente proporcional al grado de ordenación. La frecuencia a la que está situada la banda G también indica el grado de orden que presenta el material. Cuanto más alejado sea éste del valor original de 1580 cm$^{-1}$ menos se parece a carbono tipo grafito monocristalino.
En realidad la banda G no se desplaza hacia frecuencias más altas, sino que aparece una nueva banda; la denominada banda $D'(1620 \text{ cm}^{-1})$ que también está asociada al desorden.207 En carbonos altamente desordenados generalmente se suele apreciar una única banda centrada en torno a 1600 cm\(^{-1}\) (contribución de la banda G y D') y a medida que aumenta el orden se aprecia la banda G y un pequeño hombro asociado a la banda D'.

También mediante un análisis más exhaustivo del espectro Raman, analizando lo que es conocido con el espectro Raman de segundo orden (el situado a frecuencias mayores $>2700 \text{ cm}^{-1}$), se puede conocer el grado de grafitización200 del material. En la Figura III-16 están representados los espectros Raman de carbono tipo grafito cristalino y no cristalino.

![Figura III-16: (a) Espectro Raman de carbono cristalino y (b) espectro Raman de carbono grafito no cristalino. Extraído de la referencia 201.](image)

Los espectros Raman obtenidos para el sistema TEOS/PDMS presentan un elevado grado de desorden, no presentando bandas para el espectro Raman de segundo orden.
Los espectros Raman para el sistema TEOS/PDMS para el intervalo de temperaturas comprendido entre 700-1200 ºC están representados en la Figura III-15. A partir de 1000 ºC se pueden observar la banda D y G, las cuales son muy anchas y se presentan con bastante ruido, indicando un elevado grado de desorden del carbono libre dentro de la matriz del oxicarburo de silicio. Además se observa un fuerte solapamiento situado a 1450 cm⁻¹, también indicativo de este desorden.

La presencia de estas dos bandas indica la segregación del carbono para la formación de clusters de carbono desordenado o carbono nanocristalino.

<table>
<thead>
<tr>
<th>T (³C)</th>
<th>I(D)/I(G)</th>
<th>L (nm)</th>
<th>Banda D (cm⁻¹)</th>
<th>FWHM* Banda D</th>
<th>Banda G (cm⁻¹)</th>
<th>FWHM* Banda G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1.18</td>
<td>3.71</td>
<td>1347</td>
<td>145</td>
<td>1579</td>
<td>80</td>
</tr>
<tr>
<td>1100</td>
<td>1.29</td>
<td>3.44</td>
<td>1337</td>
<td>150</td>
<td>1586</td>
<td>90</td>
</tr>
<tr>
<td>1200</td>
<td>1.27</td>
<td>3.45</td>
<td>1339</td>
<td>135</td>
<td>1584</td>
<td>88</td>
</tr>
</tbody>
</table>

*FWHM = Full Width Height Medium (Anchura de la banda a mitad de altura)

En la Tabla III-3 se puede observar como varía el tamaño de los dominios de grafito en función de la temperatura de tratamiento. Para 1000 ºC se observa el valor más grande, cuando se pasa de 1100 a 1200 ºC se produce un ligero descenso en el tamaño de los dominios.

Estos hechos pueden ser explicados de la siguiente manera: para 1000 ºC, la fase de carbono libre se acaba de formar; es relativamente grande ya que los planos de grafito están dispersos y distribuidos de una forma aleatoria. Para 1100 ºC se produce una disminución del tamaño de los clusters de carbono tipo grafito debido a la deshidrogenación que experimenta el material para estas temperaturas. Como consecuencia de ello se produce una interconexión del carbono tipo grafito con la red vitrea contribuyendo a una posterior incorporación de carbono dentro de ella haciendo que el material finalmente formado presente una excelente homogeneidad.
Se puede concluir que el tamaño de los dominios de carbono tipo grafito, formado para las temperaturas de tratamiento comprendidas entre 100 y 1200 °C se encuentra entre 3.45-3.71 nm y corresponde con carbono tipo grafito con un elevado grado de desorden.

III.2.1.1.3 Estudio mediante resonancia magnética nuclear.

En la caracterización estructural de los materiales del sistema TEOS/PDMS se ha seguido estudiando cómo varían los entornos químicos del silicio y el carbono mediante resonancia magnética nuclear en estado sólido, empleando la técnica de giro en ángulo mágico (Magic Angle Spinning - MAS).

\(^{29}\text{Si MAS NMR} \).

En la Tabla III-2 se encuentran recogidas las asignaciones más importante de los diferentes entornos químicos presentes tanto en el híbrido orgánico-inorgánico como en los vidrios de oxicarburo formados durante la pirólisis.

En la Figura III-17 a) se presenta el espectro de \(^{29}\text{Si MAS NMR} \) para el sistema TEOS/PDMS para todas las temperaturas de tratamiento estudiadas, el híbrido de partida es el que se corresponde con la temperatura de 120 °C que es la máxima temperatura de secado. De la misma manera en las Tabla III-4 y Tabla III-6 están recogidos los porcentajes y desplazamientos químicos de cada especie obtenidos mediante deconvolución de dichos espectros.

En la Tabla III-4 se muestran las diferentes unidades estructurales con distinto grado de condensación para las temperaturas iniciales del tratamiento térmico, de manera que se pueda apreciar cómo, al aumentar la temperatura, se produce la condensación de los silanoles residuales que presenta el híbrido, así como la redistribución de enlaces Si-O/Si-C que dan como resultado la formación de unidades T y M que no estaban presentes en el híbrido de partida.
Tabla III- 4: Deconvolución de las unidades estructurales que forman el material, en los primeros estadios de la pirólisis para las temperaturas comprendidas entre 120 y 600 ºC.

<table>
<thead>
<tr>
<th>T (ºC)</th>
<th>Unidades</th>
<th>Qₜ/Q₂/Q₃/Q₄</th>
<th>T₂/T₃</th>
<th>D₄/D₃C/D(Q)/D₃C</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>%</td>
<td>21/6/4/1/2</td>
<td>/-</td>
<td>19/16/32/-/-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>δ (ppm)</td>
<td>(-109/-104/-101/-91/-80)</td>
<td>/-</td>
<td>(-/-)</td>
<td>(-)</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>30/6/3/-/-</td>
<td>6/-</td>
<td>9/20/24/1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>δ (ppm)</td>
<td>(-110/-104/-97/-/-)</td>
<td>(-64/-)</td>
<td>(-22/-21/-19/-)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>50/2/-/-/-</td>
<td>11/-</td>
<td>-4/27/3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>δ (ppm)</td>
<td>(-111/-103/-/-/-)</td>
<td>(-67/-)</td>
<td>(-/-22/-19/-11)</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>42/9/-/-/-</td>
<td>19/-</td>
<td>/-18/10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>δ (ppm)</td>
<td>(-109/-101/-/-/-)</td>
<td>(-65/-)</td>
<td>(-/-18/-15)</td>
<td>(10)</td>
</tr>
</tbody>
</table>

La resonancia magnética nuclear es una técnica muy adecuada para seguir la evolución de los entornos locales del silicio durante el proceso de pirólisis.

Esta técnica ha servido para conocer de una manera detallada las reacciones de redistribución que involucran enlaces Si-H/Si-O y Si-C/Si-O. La redistribución Si-O/Si-O no puede ser estudiada mediante RMN, ya que para este caso en concreto se rompen y se generan enlaces de la misma naturaleza, haciendo difícil conocer el alcance que tienen; muchas veces son subestimadas. Por lo tanto es necesario el empleo de otras técnicas de caracterización.

Tal y como se determinó para el híbrido, la cantidad de grupos silanoles no es demasiado alta, lo que le confiere una buena estabilidad térmica al híbrido orgánico-inorgánico.

Hasta 400 ºC la estructura del híbrido permanece prácticamente igual. En la zona de las unidades Q se encuentra una disminución de las unidades con menor grado de condensación (Q₀, Q₁, Q₂ y Q₃) debido a que el aumento de la temperatura hace que las reacciones de condensación puedan completarse, transformando estas unidades con menor grado de condensación en unidades Q₄. Para esta temperatura también se aprecia aunque de forma muy tímida el comienzo de las reacciones de redistribución Si-O/Si-C que forman unidades T y M.
Figura III- 17: Espectros de resonancia magnética nuclear para el sistema TEOS/PDMS para todas las temperaturas de tratamiento estudiadas, a) 29Si MAS RMN, b) 13C CP MAS RMN.* Lineas de rotación laterales (Spinning Side Bands SSB), aunque sólo se han señalado para el espectro de 700 ºC aparecen desde esta temperatura hasta 1200 ºC.

Hasta la temperatura de 600 ºC se sigue apreciando un aumento del grado de condensación de las unidades Q, para esta temperatura la proporción de las unidades Q_4 (Q_4 -107 ppm) frente a Q_3 (-99 ppm) es 42 % y 9 % (del total), respectivamente. Además se aprecia una mayor progresión de las reacciones de redistribución que sobre todo generan un gran aumento de las unidades T (-65 ppm; 19 %) aunque también pueden encontrarse la presencia de unidades M (10 ppm; 2%).
La formación de estas especies ha sido explicada por las, denominadas, reacciones de redistribución entre enlaces Si-C/Si-O, en las que a partir de unidades D y Q se forman unidades T.

Las unidades M pueden explicarse tras sucesivas reacciones de redistribución de unidades Q, T y D.

Para las temperaturas comprendidas entre 500 y 600 ºC (sobre todo para 600 ºC), el proceso, que ocurre de forma mayoritaria, es la redistribución de enlaces Si-O/Si-O. Como consecuencia del aumento de la temperatura se produce la despolimerización del PDMS. A partir de los porcentajes calculados mediante deconvolución de los picos (Tabla III- 4) en la temperatura de 600 ºC se puede apreciar que las unidades que se asignan, tanto a las cadenas lineales como a las cíclicas de cuatro eslabones, prácticamente han desaparecido para esta temperatura de tratamiento, Sin embargo las unidades atribuidas a la copolimerización $D(Q)$ disminuyen considerablemente con respecto a temperaturas inferiores pero están presentes en un 18%.

También para esta temperatura se encuentra la presencia de especies cíclicas de tres eslabones (10 %) que han quedado parcialmente retenidas en la estructura porosa del material mientras éste experimenta la despolimerización (fenómeno también apreciado mediante FT-IR y Raman).

Las unidades D que están copolimerizadas experimentan en menor medida las reacciones de despolimerización. El entrecruzamiento le confiere una cierta estabilidad al híbrido, además los grupos metilos que permanecen en la estructura son los que posteriormente se incorporarán en la estructura vítrea y formarán el vidrio de oxicarburo de silicio.

\[
\begin{align*}
\text{Redistribución de enlaces Si – C / Si – O} \\
D + Q & \rightarrow 2T \\
2D & \rightarrow M + T \\
D + T & \rightarrow M + Q \\
D + M & \rightarrow T + X \\
\end{align*}
\]

\[\text{Esquema III- 1}\]

\[
\begin{align*}
\text{Redistribución de enlaces Si – O / Si – O} \\
D & \rightarrow D_{4C(g)} + D_{3C(g)} \\
\end{align*}
\]
En el Esquema III-) se muestran las distintas reacciones de redistribución que tienen lugar para el sistema TEOS/PDMS, constituido inicialmente por unidades \(Q \) y \(D \) y que dan como consecuencia una mezcla de las distintas especies que posteriormente están presenten en el vidrio de oxicarburó.

A medida que aumenta la temperatura de tratamiento, para temperaturas mayores de 600 °C, entran en juego otro tipo de reacciones causantes de la transformación orgánico-inorgánica del material. Como consecuencia de estas reacciones se desprenden especies volátiles tales como metano e hidrógeno. Estas reacciones producen la inserción de carbono en la red vitrea, pero también sigue disminuyendo el número de enlaces Si-C (mediante la generación de especies gaseosas) y como consecuencia se produce un aumento de las especies más ricas en enlaces Si-O, es decir, aumenta la proporción de unidades \(Q \).

El espectro de 1100 °C muestra un gran cambio en la estructura del material. Se aprecia un ensanchamiento de los picos debido a la transformación orgánica-inorgánica del material, lo que indica un aumento del desorden. Los desplazamientos químicos que presenta este espectro son característicos de la presencia de oxo puentes (Si-O-Si). Además del ensanchamiento de las señales, los desplazamientos químicos de las unidades experimentan un apantallamiento (desplazamiento hacia valores más negativos). Este cambio se produce sobre todo a 700-900 °C, y la variación de los desplazamientos a campo alto puede ser atribuida tanto a condensación entre grupos silanoles (formados a estas temperaturas),\(^{208}\) como a la transformación orgánica inorgánica del material debida a cambios en el entorno químico de los átomos de carbono unidos a silicio que, a medida que progresa la pirólisis, están menos protonados.\(^{137}\)

Para esta temperatura se encuentran en mayor o menor proporción todas las especies que forman el vidrio de oxicarburó de silicio. Las unidades \(Q \) son las que se encuentran en una mayor proporción (-107 ppm; 61 %). El resto de las unidades que indican la incorporación de carbono en la red vitrea representan los siguientes porcentajes: unidades \(T \) (-74 ppm; 25 %), unidades \(D \) (-41 ppm; 7 %), unidades \(X \) (-26 ppm; 4 %) y unidades \(M \) (-10 ppm; 3 %).

Las reacciones de redistribución han producido la reestructuración de las especies y junto con las reacciones de mineralización conducen al espectro típico de un vidrio de oxicarburó con una distribución aleatoria de unidades \(SiC_xO_{4-x} \). A temperaturas
superiores, estas especies experimentan una nueva reestructuración, estando favorecida la formación de unidades Q y X. Esto conduce a una separación de fases y para temperaturas aún mayores se produce la reducción carbotérmica ($T > 1500$ °C) en la que la sílice reaccionará con la fase de carbono libre formando carburo de silicio. Dependiendo de la cantidad de carbono libre, esta reducción tendrá mayor o menor relevancia, pudiendo desaparecer completamente la fase de sílice y únicamente presentar carburo de silicio.

Para 1100 °C las unidades X representan un 4 % del total. Para temperaturas superiores, estas especies en las que el silicio está rodeado de cuatro carbonos, evolucionarán hacia la formación de especies nanocristalinas de carburo de silicio. Además, para temperaturas superiores a 1500 °C, la sílice reaccionará con el carbono tipo grafito (carbono libre) lo que también formará especies cristalinas de carburo de silicio, especialmente β-SiC. Como consecuencia de esto, a altas temperaturas el vidrio de oxicarburo puede ser descrito como una matriz de sílice en la que están embebidas una fase de β-SiC y carbono tipo grafito.

En la Figura III-18 se ha hecho una representación de la evolución de las especies involucradas con la temperatura. En dicha figura se aprecia cómo las unidades Q aumentan con la temperatura de tratamiento, creciendo de una manera progresiva y continua durante todo el tratamiento térmico.

Las unidades D disminuyen drásticamente en el intervalo de temperaturas comprendido entre 500-700 °C como consecuencia de las reacciones de redistribución y despolarimerización y posteriormente de forma mucho más suave como consecuencia de las reacciones de mineralización.

Las unidades T aparecen para la temperatura de 400 °C y su cantidad aumenta hasta 700-800 °C debido fundamentalmente a las reacciones de redistribución, pero para temperaturas superiores la mineralización también disminuye su cantidad.

La proporción de las unidades M y X muchas veces se presenta como un dato en conjunto debido a la dificultad de asignación de las bandas, ya que los intervalos a los que aparecen son bastante pequeños y los picos son muy anchos.

En esta memoria se ha optado por intentar separar las señales pero estos valores obtenidos deben ser tomados con cierto cuidado ya que pueden estar mezclados. De cualquier manera la proporción de estas unidades para las temperaturas estudiadas en este capítulo es bastante pequeña.
Estas unidades (M y X) aparecen a temperaturas próximas a los 600 ºC y aunque su proporción aumenta al aumentar la temperatura, para estas condiciones de pirólisis no supera el 7 %.

Para la temperatura de 1200 ºC, se aprecia una ligera disminución de las unidades T y un ligero aumento de las unidades D. Como ya se ha comentado en párrafos anteriores para esta temperatura se comienza a producir una separación de fases del oxicarburo que lleva implícita en un primer momento el crecimiento de las fases que presenta una mayor cantidad de átomos de carbono. (Disminuye T y se favorece el aumento de D, que posteriormente evolucionará para formar unidades X y M).

A partir de los espectros de cada una de las temperaturas estudiadas se han extraído los porcentajes de cada una de las especies presentes. Mediante estas proporciones se ha calculado la cantidad de enlaces Si-C por cada átomo de silicio según la siguiente relación:

\[N_{Si-C} = (\%T + 2\%D + 3\%M + 4\%X) \]

Ecuación III-3
De la misma manera el número de enlaces Si-O ha sido calculado a partir de los porcentajes de las especies que los contienen según esta otra relación:

\[N_{Si-O} = \left(\frac{4}{2}[%Q] + \frac{3}{2}[%T] + \frac{2}{2}[%D] + \frac{1}{2}[%M] \right) \]

Ecuación III- 4

Los valores obtenidos se han representado conjuntamente en la Figura III- 19, de manera que se pueda apreciar de forma paralela la evolución de los enlaces Si-C y Si-O durante todo el proceso de pirólisis.

![Figura III- 19: Evolución del número de enlaces Si-C y Si-O por átomo de silicio para el sistema TEOS/PDMS para todas las temperaturas de tratamiento estudiadas.](image)

Para el híbrido, estas proporciones determinadas mediante los datos obtenidos a partir de los espectros de RMN, se adecuan bastante bien a las determinadas mediante análisis químico. Mediante una representación de la cantidad de enlaces Si-O y Si-C, durante todo el proceso térmico, puede apreciarse que, salvo por el descenso que se produce en los enlaces Si-C asociado a las reacciones de despolimerización y mineralización (desde 400-700 ºC aproximadamente), la proporción de los enlaces se mantiene relativamente constante hasta 1200 ºC.

Las reacciones de redistribución de enlaces Si-C/Si-O que se producen para casi todo el tratamiento térmico, transforman unas unidades en otras haciendo que la composición del oxicarburo sea una distribución aleatoria de enlaces Si-O y Si-C.

Como se ha comentado en párrafos anteriores, para temperaturas superiores a 1200 ºC, éstas, dejan de ser equilibrios y se produce una segregación de fases para la formación
de sílice y carburo de silicio. Para temperaturas aún mayores (1500 °C), mediante la reducción carbotérmica, la sílice reaccionará con la fase de carbono grafito embebido dentro de ella, y formará carburo de silicio y especies volátiles.

Desde 400-700 °C el número de enlaces Si-C disminuye considerablemente a causa de las reacciones de despolimerización vía oligómeros cíclicos de tres y cuatro miembros. Fundamentalmente entre 700-800 °C, únicamente se aprecia un ligero descenso de los enlaces Si-C asociado a las reacciones de mineralización en las que se produce la ruptura homolítica de enlaces Si-C, y se generan especies volátiles, tipo metano e hidrógeno, siendo las responsables de la formación de oxicarburo.

A partir de los datos obtenidos y corroborando lo apreciado mediante otras técnicas, se puede concluir que el híbrido es estable hasta los 300 °C. A partir de aquí, y hasta los 1000 °C, los metilos se pierden, las unidades D se transforman en T y posteriormente en Q y en menor medida en unidades M y X. La muestra puede ser descrita como una matriz de sílice que contiene carbono. Parte de éste está unido directamente a la matriz vitrea y otra parte está embebida dentro en forma de carbono tipo grafito.

Las reacciones de redistribución Si-C/Si-O explican que el vidrio de oxicarburo esté formado por una distribución aleatoria de enlaces Si-O y Si-C, formando las distintas unidades estructurales SiC_xO_{4-x}, donde no están presentes otro tipo de enlaces como $C-O$ o $Si-Si$.38

La continua evolución del espectro de ^{29}Si MAS RMN indica que estas reacciones de redistribución se producen en todo el intervalo de 500-1400 °C, involucrando no solamente enlaces $Si-C_{orgánico}$ sino también enlaces $Si-C_{inorgánico}$, presente en el vidrio de oxicarburo tras el proceso de mineralización.

Esto explica que a partir de un híbrido constituido por unidades D/Q se formen fundamentalmente unidades T y, en menor, medida unidades M y X. Según apuntan Mutin et al.38 la composición de la fase metaestable del oxicarburo está gobernada fundamentalmente por la relación O/Si del vidrio, lo que explica que las unidades M y X se encuentren en tan pequeña proporción. La probabilidad, P, de encontrar SiC_xO_{4-x} (es decir $P(SiC_xO_{4-x})$) depende sólo de las probabilidades de encontrar enlaces Si-O y Si-C en la fase de oxicarburo. Por lo tanto, la distribución de cada una de las unidades
estructurales presente en el vidrio de oxicarburo se calcula a partir de la siguiente ecuación:

\[
P(\text{SiO}_x\text{C}_{4-x}) = \frac{4!}{x!(4-x)!} (P_{\text{Si-O}})^x (P_{\text{Si-C}})^{4-x}
\]

Ecuación III- 5

Considerando que, prácticamente, todos los átomos de oxígeno en el oxicarburo están unidos a silicio y que el silicio está unido, única y exclusivamente, a oxígeno y carbono, se puede calcular la cantidad de enlaces Si-O, y a partir de este valor calcular la cantidad de enlaces Si-C.

\[
P_{\text{Si-O}} = (O/\text{Si})/2 \quad y \quad P_{\text{Si-C}} = 1 - P_{\text{Si-O}}
\]

Ecuación III- 6

A partir de los buenos resultados obtenidos por este modelo, los autores concluyen que todas las unidades SiC_xO_{4-x} presentes en el oxicarburo; incluidas las unidades SiO_4, pertenecen a una única fase de vidrio de oxicarburo de silicio.154

Para temperaturas superiores a 1200 °C, esta distribución deja de ser aleatoria, desplazándose los equilibrios hacia la formación de unidades Q y X. Para estas temperaturas se rompe el equilibrio metaestable y mediante un proceso de difusión tiene lugar la formación de especies estables como son las de sílice y de carburo de silicio.

El oxicarburo ahora puede ser descrito como una mezcla de sílice vítrea y carburo de silicio, fases que puede presentar una cierta cristalización (el tamaño de los cristales dependerá de muchos factores, tales como el contenido en carbono libre, microestructura, etc.).

La separación de fases puede ser vista en términos de una continuación de las reacciones de redistribución. Estas reacciones son consideradas equilibrios, sin embargo la cristalización del carburo de silicio desplaza el equilibrio haciendo que la distribución de los entornos deje de ser aleatoria, ya que consume enlaces Si-C. La formación de carburo de silicio cristalino puede verse como un consumo de las unidades X, que hacen desplazar los equilibrios del resto de las reacciones de redistribución.
La composición de vidrio tendrá un papel determinante en la formación de las fases cristalinas de carburo de silicio. Para relaciones O/Si bajas, la proporción de unidades X que se forma es pequeña, y por lo tanto la probabilidad de que se encuentren varias unidades adyacentes, para dar lugar al crecimiento de cristales, es bajo. Otros factores tales como la presencia de grupos $C-H$ residuales o radicales libres, así como la fase de carbono libre, pueden también impedir la cristalización del SiC.

En la Tabla III-5 se comparan los porcentajes para cada una de las unidades estructurales del vidrio de oxicarburo de silicio, determinados mediante el modelo propuesto por Mutin et al.,38 y los obtenidos a partir del espectro de RMN para la temperatura de 1100 ºC. Se aprecia una buena concordancia entre los resultados obtenidos por ambos métodos.

Tabla III-5: a) Estimación de los porcentajes de cada una de las especies presentes en el oxicarburo del sistema TEOS/PDMS a 1100 ºC a partir del modelo propuesto por Mutin et al.,38 y los obtenidos a partir del espectro de 29Si MAS RMN mediante deconvolución de los picos a esa misma temperatura.

<table>
<thead>
<tr>
<th>SiOC (1100 ºC)</th>
<th>O/Si</th>
<th>Q(%)</th>
<th>T(%)</th>
<th>D(%)</th>
<th>M(%)</th>
<th>X(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Análisis químico a)</td>
<td>1.72</td>
<td>55</td>
<td>36</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>29Si MAS RMN b)</td>
<td>1.63</td>
<td>61</td>
<td>25</td>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Para finalizar, a partir de los espectros de 29Si MAS RMN, se puede calcular la fórmula del vidrio de oxicarburo de silicio. De nuevo se asume que únicamente existen enlaces Si-O y Si-C y que cada átomo de carbono está unido a cuatro átomos de silicio. De esta manera se obtiene el número total de átomos de oxígeno por átomo de silicio en la red del oxicarburo y el número total de átomos de carbono por átomo de silicio en la red del oxicarburo de silicio. Queda representado por las siguientes ecuaciones:

Átomos de oxígeno = $(4/2[\%Q] + 3/2[\%T] + 2/2[\%D] + ½[\%M])$
Ecuación III-7

Átomos de carbono = $(1/4[\%T] + 2/4[\%D] + 3/4[\%M] + 4/4[\%X])$
Ecuación III-8
La estimación del carbono libre se obtiene comparando el valor del carbono en red, obtenido mediante el análisis de los espectros de 29Si MAS RMN, con el carbono total, obtenido del análisis químico.

Las fórmulas para el oxicarburo obtenidas mediante resonancia magnética nuclear están recogidas en la Tabla III- 6. En el apartado siguiente se calculan, a partir de los datos obtenidos mediante análisis químico las composiciones de los vidrios de oxicarburo de silicio. Para la temperatura de 1100 °C se encuentra una muy buena concordancia con sendos análisis.

Tabla III- 6: Desplazamientos químicos y porcentajes de las diferentes unidades estructurales del sistema TEOS/PDMS para todas las temperaturas estudiadas. La fórmula RMN se calcula mediante los datos obtenidos a partir de los espectros y la comparación con los valores obtenidos mediante análisis químico, de manera que se pueda evaluar el carbono unido a la red y el carbono libre. * La fórmula del SiOC y el % C libre se ha calculado a partir de la temperatura de 800 °C.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Q (%)</th>
<th>T(%)</th>
<th>D/D${4C}$/D(Q)/D${3C}$(%)</th>
<th>M(%)</th>
<th>X(%)</th>
<th>Fórmula RMN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ (ppm)</td>
<td>δ (ppm)</td>
<td>δ (ppm)</td>
<td>δ (ppm)</td>
<td>δ (ppm)</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>33</td>
<td>-</td>
<td>67</td>
<td>-</td>
<td>-</td>
<td>SiO${1.33}$C${0.33}$</td>
</tr>
<tr>
<td>400</td>
<td>39</td>
<td>6</td>
<td>54</td>
<td>1</td>
<td>-</td>
<td>SiO${1.66}$C${0.17}$</td>
</tr>
<tr>
<td>500</td>
<td>52</td>
<td>11</td>
<td>34</td>
<td>3</td>
<td>-</td>
<td>SiO${1.56}$C${0.22}$</td>
</tr>
<tr>
<td>600</td>
<td>51</td>
<td>19</td>
<td>28</td>
<td>2</td>
<td>-</td>
<td>SiO${1.59}$C${0.20}$</td>
</tr>
<tr>
<td>700</td>
<td>51</td>
<td>32</td>
<td>14</td>
<td>2</td>
<td>-</td>
<td>SiO${1.66}$C${0.17}$</td>
</tr>
<tr>
<td>800</td>
<td>57</td>
<td>35</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>SiO${1.71}$C${0.14}$</td>
</tr>
<tr>
<td>1000</td>
<td>68</td>
<td>28</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>SiO${1.90}$C${0.10}$</td>
</tr>
<tr>
<td>1100</td>
<td>61</td>
<td>25</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>SiO${1.69}$C${0.16}$</td>
</tr>
<tr>
<td>1200</td>
<td>70</td>
<td>14</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>SiO${1.75}$C${0.13}$</td>
</tr>
<tr>
<td></td>
<td>(-110)</td>
<td>(-75)</td>
<td>(-41)</td>
<td>(-6)</td>
<td>(-22)</td>
<td>+0.38C (74%)</td>
</tr>
</tbody>
</table>
Capítulo III

13C CP MAS NMR.

Así como en el apartado anterior se ha realizado un seguimiento minucioso de la variación de los entornos del silicio durante el proceso de pirólisis, en este apartado se hace lo propio para los diferentes entornos del carbono, es decir, se seguirá la transformación orgánico-inorgánica del material, así como la formación de la fase de carbono tipo grafito que se constituye a la par que el propio material vítreo. Los espectros 13C CP MAS RMN para el sistema TEOS/PDMS, donde se ha variado la temperatura de tratamiento desde 120 hasta 1200 ºC están representados en la Figura III-17 b), correspondiendo 120 ºC con el híbrido de partida.

Los experimentos de polarización cruzada resuelven parcialmente el problema que presentan los núcleos que tienen tiempos de relajación muy elevados. Estos elevados tiempos de relajación, junto con que el experimento se realiza en estado sólido, se traduce en tiempos para la realización de los ensayos muy grandes y que dan como resultado unos espectros con mucho ruido, que presentan picos mal definidos y de baja intensidad.

Mediante polarización cruzada, estos núcleos se aprovechan de los tiempos de relajación que tienen los protones, lo que se traduce en un aumento de las señales. Si bien, este aumento es proporcional a la cantidad de protones de cada entorno, por lo que, en la mayoría de las condiciones experimentales los espectros obtenidos mediante polarización cruzada pierden su cuantitatividad.

La asignación de los diferentes entornos químicos fue realizada por Gualandris et al. mediante ensayos de 13C MAS RMN con una variante de la polarización cruzada (CP), denominada polarización cruzada con recuperación invertida (inversion recovery cross polarisation (IRCP)).

En estos experimentos se polarizan todos los grupos CH_n, empleándose un tiempo de contacto relativamente elevado. Posteriormente, en la fase de inversión, la polarización de los espines es progresivamente invertida.

Este ensayo se basa en los mismos principios que la polarización cruzada, por lo que depende enormemente del acoplamiento dipolar $^{13}\text{C}^{-1}\text{H}$, siendo muy sensible al entorno local de los protones y a la movilidad de los grupos. Por lo tanto, mediante estos
ensayos fueron resueltos los diferentes entornos químicos $^{13}CH_x$ para cada valor de x, pero además se puede discernir entre entornos químicos rígidos o móviles.

Las bandas asignadas a los restos etóxidos, o grupos alcoholes (etanol o isopropanol) encontradas en el espectro del híbrido, desaparecen al aumentar la temperatura de tratamiento, ya que este aumento provoca la finalización de las reacciones de hidrólisis/condensación que no se habían completado durante el proceso sol-gel y además se eliminan los restos de disolvente atrapados en la estructura porosa del material.

A medida que aumenta la temperatura de tratamiento se va apreciando un ensanchamiento simétrico de la señal asignada a los metilos del PDMS, debido a la transformación de las unidades D en T, así como un ensanchamiento asimétrico para desplazamientos químicos mayores debido a la inserción del carbono en la red vítrea, ya que este desapantallamiento de la señal está indicando la presencia de grupos CH_2 y CH.53,209

La mala relación señal/ruido para los espectros obtenidos a partir de 800 ºC está indicando un drástico descenso del contenido en protones, impidiendo una buena transferencia de la magnetización entre los protones y los espines de ^{13}C. Aún para esta temperatura se aprecian atisbos de restos alifáticos, en consonancia con la buena estabilidad a elevadas temperaturas de estos grupos. Sin embargo esta señal se vuelve más y más ancha lo que sugiere la participación de los diferentes entornos de C presentes en el vidrio de oxicarburo.

Al aumentar la temperatura confluyen numerosos fenómenos tales como la redistribución de enlaces que transforma las unidades D en T y la mineralización que forma estructuras puenteadas que introducen el carbono en la red vítrea.

La transformación de las unidades D en T se atribuye al ensanchamiento simétrico que experimenta la señal a esta temperatura (Me unidades $T = -3.5$ ppm y Me unidades $D = 0$ ppm)210.

La transformación orgánico-inorgánica del material se corrobora por el ensanchamiento asimétrico hacia campo bajo que experimenta la señal a esta temperatura ($Si-CH_2-Si = 7.7$ ppm).34,210
El comienzo de las reacciones de mineralización mediante la presencia de estructuras puente se encuentra a 600 °C, esta temperatura también había sido determinada como comienzo de las reacciones de mineralización mediante FT-IR y Raman.

Según puede apreciarse en la Figura III-17 (b), a medida que aumenta la temperatura de pirólisis, la señal asignada a carbono alifático (sp3) se vuelve más ancha, estando comprendida entre -5 y 20 ppm, debido fundamentalmente a la evolución de los grupos CH_x. La mayoría de los grupos metilos se han consumido ($x = 3$) y se han formado estructuras puente (inicialmente $x = 2$) que pueden evolucionar desde -Si-CH$_2$-Si- hasta estructuras menos protonadas (-Si$_3$-CH) e incluso siendo posibles carbonos cuaternarios (Si$_4$-C).

Mediante deconvolución de las señales del espectro, asignadas a los carbonos alifáticos, se puede determinar la proporción de cada uno de ellos para cada una de las temperaturas estudiadas y así poder estimar la conversión de los grupos metilos en estructuras puente. En la Tabla III-7 están recogidos los porcentajes y los desplazamientos químicos de todas las señales encontradas en el espectro de 13C CP MAS RMN para estas temperaturas.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Si-CH$_3$ (ppm)</th>
<th>% CH$_3$ vs CH$_2$</th>
<th>Estructuras puente tipo ≡Si-CH$_2$-Si≡ (ppm)</th>
<th>% CH$_3$ vs CH$_2$</th>
<th>C sp2 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>-0.19</td>
<td>100</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>400</td>
<td>-0.31</td>
<td>100</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>-1.15</td>
<td>100</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>600</td>
<td>-2.20</td>
<td>95</td>
<td>5.58</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>700</td>
<td>-4.61</td>
<td>60</td>
<td>4.8</td>
<td>40</td>
<td>≈ 130</td>
</tr>
<tr>
<td>800</td>
<td>-3.96</td>
<td>6</td>
<td>6.68-21.45</td>
<td>94</td>
<td>≈ 130</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≈ 130</td>
</tr>
<tr>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≈ 130</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≈ 130</td>
</tr>
</tbody>
</table>

A partir de estos espectros también se puede determinar el comienzo de la formación de la fase de carbono libre. Aunque el comienzo de las reacciones de mineralización se aprecia a 600 °C, la formación de la fase de carbono tipo grafito no se aprecia hasta 700
°C mediante la presencia de una banda ancha centrada en aproximadamente 130 ppm asignada a grupos aromáticos.

III.2.1.1.4 Estudio mediante difracción de RX.

Los difractogramas de RX para el sistema TEOS/PDMS, para todas las temperaturas de tratamiento, están presentados en la Figura III-20. Todos ellos presentan las bandas típicas de materiales vítreos basados en silice, con un halo bastante ancho situado para $2\theta \approx 22^\circ$. No se aprecia la presencia de otras bandas, como por ejemplo las asociadas al β-CSI, que aparecen para $2\theta = 35^\circ$, indicando que no se produce el comienzo de la cristalización de dicho material o bien que el tamaño de estos cristales es tan pequeño que no puede ser detectado mediante esta técnica. Tampoco se observa la cristalización de especies asociadas a la red vítrea como, por ejemplo, la cristobalita (la desvitrificación de la sílice se produce para temperaturas inferiores a 1350 °C).

![Figura III-20: Difractogramas de RX para el sistema TEOS/PDMS para el intervalo de temperaturas comprendido entre 120 y 1200 °C.](image-url)
Algunos autores detectan la presencia de la fase de carbono tipo grafito para vidrios de oxicarburo obtenidos a 1000 ºC mediante difracción de rayos X, ya que encuentran las bandas características para carbono tipo grafito que están centradas para 2θ = 26.5, 44.6 y 54.7 º. Aunque todos los materiales de vidrio de oxicarburo de silicio descritos en este capítulo presentan un elevado porcentaje de carbono tipo grafito (carbono libre) no se ha determinado su presencia mediante difracción de rayos X, lo que concuerda con el elevado grado de desorden determinado para la fase de carbono libre mediante espectroscopía Raman.

III.2.1.2 Contenido en carbono y análisis químico.

La variación del contenido en carbono está representada en la Figura III-21. Como puede apreciarse, el contenido en carbono permanece prácticamente constante hasta los 300 ºC, a partir de aquí comienzan las reacciones de despolimerización, responsables de la mayor pérdida asociada a carbono, para todo el tratamiento térmico. La mayor pérdida en carbono está comprendida entre 400-700 ºC, cuando suceden en mayor medida las reacciones de despolimerización. Para temperaturas superiores la pérdida de peso es mucho más moderada. Como ya se ha comentado anteriormente, entre 600-900 ºC confluyen la mayoría de los procesos y una parte de la pérdida en contenido en carbono corresponde a la pérdida de alcanos, sobre todo metano, como consecuencia de la ruptura homolítica de enlaces Si-C por efecto de la temperatura.

A partir de 900 ºC aproximadamente, una vez formado el oxicarburo y la fase de carbono libre, únicamente se producen pérdidas de hidrógeno y, por lo tanto, la deshidrogenación de dicho material no afecta al contenido en carbono, haciendo que permanezca prácticamente constante.

En la Figura III-21 se ha representado la variación del contenido en carbono versus la pérdida en peso durante el proceso de pirólisis. Se puede observar que siguen la misma tendencia, ya que la mayor pérdida (500-700 ºC) corresponde a las reacciones de despolimerización.
En la Tabla III- 8 se presentan los porcentajes de carbono, silicio, oxígeno e hidrógeno, para todas las temperaturas estudiadas, obtenidos a partir de análisis químico. A partir de estos valores se ha determinado la composición del material para todas las temperaturas de tratamiento.

La estequiometría teórica de la fase oxicarburo se obtiene asumiendo que los átomos de carbono están presentes en la estructura vítrea formando una distribución aleatoria de enlaces Si, O y C y que además en esta fase no se encuentran presentes enlaces Si-Si ni C-O, teniendo en cuenta esto puede ser representada mediante la ecuación:

\[\text{Si}_x \text{C}_y \text{O}_{2(1-x)} \] \hspace{2cm}\text{Ecuación III- 9}

A partir de esta ecuación la cantidad de carbono que forma parte del oxicarburo puede ser calculada por la siguiente relación:

\[(C/Si)_{\text{Oxicarburo}} = \left[2 - (O/Si)_{\text{Oxicarburo}} \right] / 2 \] \hspace{2cm}\text{Ecuación III- 10}
El carbono libre que no está unido a la estructura y se forma conjuntamente con el vidrio de oxicarburo puede ser estimado a partir de la cantidad de carbono total y el presente en la fase oxicarburo, según la siguiente ecuación:

\[
C_{\text{libre}} = 100\left(\frac{C_{\text{Total}} - C_{\text{Oxicarburo}}}{C_{\text{Total}}}\right)
\]

Ecuación III-11

El contenido en oxígeno ha sido estimado mediante diferencia con respecto al resto de los elementos, es decir:

\[
%O = 100 - \left(\%C + \%H + \%Si\right)
\]

Ecuación III-12

La presencia de hidrógeno ha sido desestimada para el cálculo de la fórmula estequiométrica del oxicarburo a partir de 1100 ºC debido a que su valor es muy bajo (<0.1%). Además se asume que el hidrógeno se encuentra fundamentalmente unido a la fase de carbono libre.

Tabla III-8: C (%), Si (%), O (%) e H (%), así como cálculo de la fórmula del SiOC y % en carbono libre para el sistema TEOS/PDMS para todas las temperaturas de tratamiento comprendidas entre 120 y 1200 ºC.

<table>
<thead>
<tr>
<th>T (ºC)</th>
<th>C (%)</th>
<th>Si (%)</th>
<th>O (%)</th>
<th>H (%)</th>
<th>Fórmula SiOC</th>
<th>C libre (%)</th>
<th>Pérdida en peso (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>22.54 ± 0.07</td>
<td>33.52</td>
<td>38.31</td>
<td>5.63</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>22.62 ± 0.02</td>
<td>35.73</td>
<td>36.01</td>
<td>5.64</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>22 ± 0.3</td>
<td>36.48</td>
<td>36.16</td>
<td>5.36</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>20.02 ± 0.02</td>
<td>36.80</td>
<td>38.18</td>
<td>5.00</td>
<td>-</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>14.7 ± 0.2</td>
<td>42.0</td>
<td>39.79</td>
<td>3.51</td>
<td>-</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>13.64 ± 0.06</td>
<td>44.0</td>
<td>39.18</td>
<td>3.18</td>
<td>-</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>10.60 ± 0.01</td>
<td>44.3</td>
<td>43.28</td>
<td>1.82</td>
<td>-</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>9.68 ± 0.08</td>
<td>45.2</td>
<td>43.83</td>
<td>1.29</td>
<td>SiC<sub>0.15</sub>O<sub>1.70</sub> + 0.35C-</td>
<td>70</td>
<td>45</td>
</tr>
<tr>
<td>900</td>
<td>9.65 ± 0.04</td>
<td>43.72</td>
<td>45.86</td>
<td>0.77</td>
<td>SiC<sub>0.08</sub>O<sub>1.84</sub> + 0.44C-</td>
<td>85</td>
<td>45</td>
</tr>
<tr>
<td>1000</td>
<td>9.63 ± 0.01</td>
<td>43.0</td>
<td>46.57</td>
<td>0.80</td>
<td>SiC<sub>0.05</sub>O<sub>1.90</sub> + 0.47C-</td>
<td>90</td>
<td>46</td>
</tr>
<tr>
<td>1100</td>
<td>9.86 ± 0.05</td>
<td>45.78</td>
<td>44.36</td>
<td><0.10</td>
<td>SiC<sub>0.15</sub>O<sub>1.70</sub> + 0.35C-</td>
<td>70</td>
<td>46</td>
</tr>
<tr>
<td>1200</td>
<td>10.06 ± 0.08</td>
<td>45.8</td>
<td>44.14</td>
<td><0.10</td>
<td>SiC<sub>0.15</sub>O<sub>1.69</sub> + 0.36C</td>
<td>70</td>
<td>47</td>
</tr>
</tbody>
</table>
Figura III-22: Comparación entre los valores obtenidos mediante RMN y análisis químico para: a) contenido en carbono del oxicarburo y libre y b) el porcentaje de carbono libre para el sistema TEOS/PMDS para las temperaturas de tratamiento desde 800-1200 ºC.

Para temperaturas superiores a 800 ºC, donde ya se ha producido la transformación orgánico-inorgánica del material, se ha calculado la fórmula estequiométrica del vidrio de oxicarburo y el porcentaje en carbono libre. A partir de los datos representados en la Tabla III-8 se puede apreciar que los oxicarburos obtenidos mediante el sistema TEOS/PMDS presentan un elevado porcentaje de carbono libre.

Cuando aumenta la temperatura de tratamiento, una vez que ya se ha formado el vidrio de oxicarburo de silicio desde 800 hasta 1100 ºC, no se aprecia variación ni en el carbono incorporado a la red vítrea, ni del carbono tipo grafito.

Existe una cierta anomalía en las muestras obtenidas a 900 y 1000 ºC, las cuales muestran una escasa formación de la fase de vidrio de oxicarburo. Esto puede ser explicado a priori con una cierta “inmadurez” de la fase metaestable del oxicarburo a
Estas temperaturas parecen tener un efecto crítico y la permanencia durante dos horas a dichas temperaturas hace que el material evolucionese hacia la formación de sílice y carbono tipo grafito.

Mediante la comparación de las fórmulas obtenidas a partir de los datos obtenidos a partir de los espectros de RMN y los que se han obtenido del análisis químico se aprecia una muy buena concordancia de los valores de carbono perteneciente al oxicarburo y carbono libre, excepto para la temperatura de 1000 ºC donde los valores se alejan un ligeramente (véase Figura III-22).

III.2.1.3 Caracterización microestructural y textural.

III.2.1.3.1 Estudio mediante porosimetría de mercurio.

Las curvas de intrusión-extrusión de mercurio para el sistema TEOS/PDMS, en todo el intervalo de temperaturas estudiado, están representadas en la Figura III-23.

Estas curvas de intrusión-extrusión se engloban dentro del modelo de curvas tipo 3, las cuales están caracterizadas por una etapa de intrusión en la que la rama de intrusión posee un claro límite, y una rama de extrusión que es prácticamente horizontal que indica que una gran cantidad de mercurio ha quedado atrapada dentro de la estructura. Este tipo de curvas son características de materiales complejos que presentan una distribución de poros bastante amplia o entradas muy estrechas a cavidades muy amplias.

Hasta 600 ºC el volumen de intrusión de mercurio es muy parecido para todas las temperaturas de tratamiento incluidas hasta aquí, pero a partir de 700 ºC el volumen de intrusión de mercurio disminuye como consecuencia de la mineralización que experimenta el material.

El hecho de que el volumen de intrusión de mercurio sea mayor en el híbrido orgánico-inorgánico (para las temperaturas comprendidas desde 120 hasta 600 ºC) puede asociarse, simplemente, a que el material experimenta una compresión como consecuencia de las elevadas presiones que se ejercen al realizar el análisis. Esta compresión es debida al carácter elastomérico que presentan estos materiales híbridos.
orgánico-inorgánicos y que se pierde a medida que se produce la transformación orgánico-inorgánica del material.

Las distribuciones de poros determinadas mediante porosimetría de mercurio para el sistema TEOS/PDMS en el intervalo de temperaturas comprendido entre 120 y 1200 ºC, quedan recogidas en la Figura III-24.

El material híbrido orgánico-inorgánico es un material macroporoso y su distribución de poros es bastante estrecha, con un tamaño de poro en torno a 15 µm, manteniéndose hasta 500 ºC.

Para esta temperatura, las reacciones de despolimerización del PDMS están en pleno apogeo y como consecuencia de la eliminación de oligómeros cíclicos (de tres y cuatro miembros fundamentalmente) se genera nueva porosidad de mayor y menor diámetro de poro. La forma indiscriminada en la que se producen las reacciones de despolimerización hace que la distribución de tamaño de poro sea muchísimo más ancha.

A partir de 600 ºC (esta temperatura ha sido determinada mediante las técnicas estructurales) comienzan a producirse las reacciones de mineralización, de manera que la despolimerización y mineralización del material coinciden a partir de esta temperatura. La mineralización del material también produce la ruptura de enlaces y la subsiguiente eliminación de especies volátiles que siguen generando porosidad. Como las especies que se eliminan en este estadio de la pirólisis son más pequeñas, sobre todo metano e hidrógeno, la distribución de poros se desplaza momentáneamente hacia diámetros de poro más pequeños.

Para la temperatura de tratamiento de 800 ºC, donde ya no se producen las reacciones de despolimerización, se puede apreciar el efecto que produce la mineralización en el diámetro de poro del material, que se desplaza hacia los diámetros de tamaño de poro medio más pequeños para todo el intervalo de temperaturas.
Figura III- 23: Curvas de intrusión-extrusión determinadas mediante porosimetría de Hg, para el sistema TEOS/PDMS en el intervalo de temperaturas comprendido entre 120-1200 ºC.

Figura III- 24: Distribuciones de tamaño de poro determinadas mediante porosimetría de Hg para el sistema TEOS/PDMS en el intervalo de temperaturas comprendido entre 120-1200 ºC.
Esto es debido, como ya se ha comentado anteriormente, a la ruptura homolítica de enlaces, acontecida a esta temperatura, que genera especies gaseosas de menor tamaño que durante la degradación térmica del polímero y, por lo tanto, los poros son más pequeños.

A medida que avanzan y finalizan las reacciones de mineralización, a partir de 900 ºC se produce la transformación orgánica-inorgánica del material que va cerrando la estructura de éste, produciendo un entrecruzamiento que elimina los poros más pequeños y reduce el tamaño de los grandes que se habían generado a lo largo de todo el tratamiento térmico. Para las temperaturas superiores de tratamiento, la sinterización también contribuirá a una disminución del tamaño del poro y a una disminución de la porosidad, tal y como puede apreciarse para la temperatura de 1200 ºC.

En geles porosos, los poros más pequeños son los que sinterizan a temperaturas más bajas. Para una temperatura dada un grupo de partículas comienzan a coalescer de manera que los poros son cada vez más pequeños y la velocidad de sinterización se acelera hasta que la porosidad desaparece. Por otro lado, en poros grandes la distancia que separa a las partículas es amplia y la velocidad de sinterización es mucho más lenta.

Por otro lado, una vez concluidas las reacciones de mineralización se produce una eliminación de los restos de hidrógeno aún presentes en el vidrio de oxicarburo recién formado. Esta deshidrogenación también reduce ligeramente la porosidad total del material final obtenido, y también contribuye a la disminución del diámetro de poro.

Esta disminución de la porosidad y del diámetro de poro se aprecia sobre todo cuando se pasa de 1000 a 1200 ºC, siendo asociado fundamentalmente a la densificación del vidrio de oxicarburo de silicio.

En la Tabla III-9 están recogidos los datos de porosidad, diámetro de poro y densidad real y aparente que han sido obtenidos mediante porosimetría de mercurio. Esta misma tabla también recoge los valores de densidad real determinados mediante picnometría de helio que serán comentados posteriormente.
El híbrido presenta un valor de porosidad muy elevado que se sitúa alrededor del 80 %, manteniéndose prácticamente constante para todo el tratamiento térmico. Únicamente cuando se alcanza la temperatura de 1200 ºC se produce un descenso de la porosidad, asociado a una reducción del tamaño de poro como consecuencia de un mayor progreso de la sinterización.

Tabla III- 9: Datos de porosidad total, diámetro de poro, densidad aparente, esqueleto(determinadas mediante porosimetría de mercurio) y real(determinada mediante picnometría de helio) para el sistema TEOS/PDMS para el intervalo de temperaturas comprendido entre 120 y 1200 ºC.

<table>
<thead>
<tr>
<th>T</th>
<th>Porosidad (%)</th>
<th>D.poro (μm)</th>
<th>D.Aparente (g/cc)</th>
<th>D.Esqueleto (g/cc)</th>
<th>D.Real (g/cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>80</td>
<td>14.96</td>
<td>0.30</td>
<td>1.46</td>
<td>1.22</td>
</tr>
<tr>
<td>200</td>
<td>74</td>
<td>16.91</td>
<td>0.31</td>
<td>1.19</td>
<td>1.21</td>
</tr>
<tr>
<td>300</td>
<td>70</td>
<td>16.96</td>
<td>0.36</td>
<td>1.20</td>
<td>1.23</td>
</tr>
<tr>
<td>400</td>
<td>77</td>
<td>14.62</td>
<td>0.30</td>
<td>1.31</td>
<td>1.26</td>
</tr>
<tr>
<td>500</td>
<td>74</td>
<td>14.31</td>
<td>0.35</td>
<td>1.34</td>
<td>1.42</td>
</tr>
<tr>
<td>600</td>
<td>75</td>
<td>10.74</td>
<td>0.30</td>
<td>1.23</td>
<td>1.48</td>
</tr>
<tr>
<td>700</td>
<td>72</td>
<td>12.11</td>
<td>0.40</td>
<td>1.40</td>
<td>2.11</td>
</tr>
<tr>
<td>800</td>
<td>74</td>
<td>8.21</td>
<td>0.41</td>
<td>1.60</td>
<td>2.21</td>
</tr>
<tr>
<td>900</td>
<td>76</td>
<td>13.54</td>
<td>0.47</td>
<td>1.92</td>
<td>2.14</td>
</tr>
<tr>
<td>1000</td>
<td>78</td>
<td>16.27</td>
<td>0.48</td>
<td>2.12</td>
<td>2.22</td>
</tr>
<tr>
<td>1100</td>
<td>77</td>
<td>11.85</td>
<td>0.51</td>
<td>2.27</td>
<td>2.33</td>
</tr>
<tr>
<td>1200</td>
<td>68</td>
<td>12.63</td>
<td>0.57</td>
<td>1.76</td>
<td>2.34</td>
</tr>
</tbody>
</table>

III.2.1.3.2 Estudio mediante adsorción de nitrógeno.

El estudio de la variación de microestructura mediante adsorción de nitrógeno durante el proceso de pirólisis para las temperaturas de tratamiento comprendidas entre 120 y 1200 ºC, da como resultado las isotermas de adsorción de nitrógeno (Figura III- 25), las distribuciones de tamaño de poro (Figura III- 26) y los valores de superficie específica (Figura III- 27 yTabla III- 10) para este intervalo de temperaturas.
Figura III-25: Isotermas de adsorción de nitrógeno para el sistema TEOS/PDMS para las temperaturas de tratamiento comprendidas entre 120 y 1200 ºC.

Figura III-26: Distribución del tamaño de poros obtenido a partir de la rama de desorción mediante el método BJH para el sistema TEOS/PDMS para todas las temperaturas de tratamiento comprendidas entre 120 y 1200 ºC.
Capítulo III

Como ya se comentó al principio de este capítulo, el híbrido orgánico-inorgánico presenta una isoterma tipo II característica de materiales macroporosos. Este tipo de isoterma se mantiene hasta la temperatura de 400 °C, que es cuando comienzan a producirse las reacciones de despolimerización de las cadenas de PDMS presentes en la estructura del híbrido. Como consecuencia de esto, el tipo de isoterma cambia y pasa a ser tipo I, típica de materiales microporosos.

La isoterma tipo I se mantiene hasta la temperatura de 800 °C, alcanzándose un máximo de volumen adsorbido de nitrógeno para la temperatura de 600 °C. Como se ha determinado mediante el estudio de la evolución de la estructura (mediante FT-IR, Raman, RMN), a esta temperatura se produce el comienzo de las reacciones de mineralización. Por lo tanto en este intervalo de temperaturas confluyen estos dos fenómenos que generan una gran microporosidad y como consecuencia se produce un gran aumento de volumen de nitrógeno adsorbido.

Una vez finalizados estos procesos, a partir de 900 °C, la isoterma vuelve a ser tipo II característica de materiales macroporosos, debido a procesos de densificación y deshidrogenación del material. Este resultado sigue teniendo lugar al aumentar la temperatura hasta los 1200 °C lo que implica que el volumen de nitrógeno adsorbido disminuya ligeramente.

Las isotermas tipo II son típicas de materiales macroporosos o no porosos (para este caso en concreto se sabe que el material es macroporoso gracias a los resultados obtenidos mediante porosimetría de mercurio), y se caracterizan por una pequeña cantidad de volumen de nitrógeno adsorbido para el intervalo de bajas presiones, seguido de un crecimiento gradual y continuo, que finaliza en un crecimiento exponencial a altas presiones cuando \(P/P_0 \) está próximo a 1, y que está asociado a grandes mesoporos. En este tipo de isotermas se produce una adsorción monocapa-multicapa sin restricciones. El comienzo del tramo lineal generalmente corresponde al momento en el que la monocapa se completa y comienza la adsorción en multicapa.

Por otro lado, las isotermas tipo I son típicas de materiales microporosos, y presentan un perfil radicalmente diferente donde se produce una adsorción de nitrógeno muy pronunciada a presiones bajas, seguido de un intervalo prácticamente constante que aumenta ligeramente para presiones relativas próximas a 1. El mecanismo de llenando de poros pequeños (microporos), próximos a las dimensiones moleculares, es diferente
que para el resto de los casos. Debido a la proximidad de las paredes en dicho poros se produce un aumento en las interacciones adsorbente-adsorbato lo que se traduce en un llenado de los microporos a presiones parciales bajas.

Confirmando lo comentado en párrafos anteriores, la distribución de poros (mesoporos) calculada mediante el método BJH, el cual no es muy recomendable para este tipo de isotermas, utilizando la rama de desorción (Figura III-26), indica que únicamente presentan porosidad, detectable por esta técnica, las muestras que han sido tratadas a 500, 600, 700 y 800 ºC.

Como se podría deducir, a partir del tipo de isoterma que presenta el material para estas temperaturas, los poros que tienen se encuentran fundamentalmente por debajo de los 2 nm. Presentan una distribución exponencial creciente para diámetros de poro por debajo de los 5 nm. Según la clasificación de la I.U.P.A.C. el límite de los microporos se encuentra justamente por debajo de los 2 nm.

Aunque no existe actualmente ninguna teoría capaz de describir matemáticamente el mecanismo de llenado de los microporos y los datos obtenidos deber ser interpretados con cierta cautela, la ecuación de Dubinin-Radushkevich213 es una ecuación relativamente sencilla que aplicada a la isoterma de adsorción en un determinado intervalo de p/p^0 y a una única temperatura, permite conocer por ejemplo el volumen de microporos.

Existen otros métodos que permiten calcular el volumen de microporos, los más empleados son el método t y el método α 214 que consisten únicamente en la comparación de una isoterma de un sólido estandar no poroso con la de la muestra a estudiar. La representación del estandar no poroso en cualquiera de los dos métodos da lugar a una línea recta y si se compara esta representación con la de la muestra a estudiar se puede analizar la presencia de microporos y mesoporos cuando se observan desviaciones de esta linearidad ascendentes o descendentes, respectivamente. En el método t se representa el espesor (t) calculado mediante las ecuaciones de Halsey o Harkins-Jura frente al volumen adsorbido. En el método α, cada valor de α se calcula siguiendo la siguiente relación $\alpha_s = V/V_{0.4}$, donde V y $V_{0.4}$ representan los volúmenes adsorbidos para cada p/p^0 y para $p/p^0 = 0.4$, respectivamente, para un material estandar no poroso. En los dos métodos se obtienen representaciones muy similares, de manera
que si la muestra presenta microporos, desviación descendente, al hacer un ajuste del tramo lineal de la curva se obtiene una intersección positiva con el eje y, que se corresponde con el volumen de microporos y de la misma manera el valor de la pendiente de este ajuste es el área externa no asociada a microporos.

Carrot y Sing215 establecen diferencias en el mecanismo de llenado de los microporos en función de su tamaño. Mientras que para microporos muy pequeños el llenado se produce por un aumento entre las interacciones entre el adsorbente-absorbato, sin embargo en microporos más grandes (o mesoporos pequeños) se produce un proceso cooperativo. Esto se traduce según estos autores en diferencias en la representación de V_α de tal manera que se puede determinar la cantidad y tipo de microporos presentes en la muestra a estudiar.

\textit{Tabla III-10: Valores de superficie específica (BET), Superficie externa y asociada a los microporos, V_micro, V_meso y V_macro determinados mediante adsorción de nitrógeno y porosimetría de mercurio.}

\begin{table}[h]
\begin{tabular}{ccccccccc}
\hline
T (°C) & SE & BET & Sext & Smicro & Vmicro & BJHads/des & Vmicro+Vmeso & Vmacro \\
 & (m2/g) & (m2/g) & (m2/g) & (ml/g) & (ml/g) & (ml/g) & (ml/g) \\
\hline
120 & 0.52 & - & - & - & - & - & 2.66 \\
200 & 0.54 & - & - & - & - & - & 2.34 \\
300 & 0.45 & - & - & - & - & - & 1.96 \\
400 & 2.04 & - & - & - & - & - & 2.59 \\
500 & 313.00 & 14.92 & 298.70 & 0.17 & 0.05/0.09 & 0.19 & 2.11 \\
600 & 403.72 & 10.67 & 393.05 & 0.22 & 0.04/0.08 & 0.23 & 2.47 \\
700 & 369.46 & 3.58 & 365.87 & 0.20 & 0.02/0.04 & 0.21 & 1.81 \\
800 & 302.47 & 1.76 & 300.71 & 0.16 & 0.01/0.02 & 0.17 & 1.83 \\
900 & 0.48 & - & - & - & - & - & 1.62 \\
1000 & 0.42 & - & - & - & - & - & 1.62 \\
1100 & 1.35 & - & - & - & - & - & 1.50 \\
1200 & 0.87 & - & - & - & - & - & 1.18 \\
\hline
\end{tabular}
\end{table}

Se ha empleado el método t para calcular el volumen de microporos de las muestras que presentan una isoterma tipo I, es decir las que corresponden con las temperaturas de tratamiento comprendidas entre 500 y 800 °C, para el resto de temperaturas que presentan una isoterma tipo II se ha considerado que el volumen de los microporos es...
despreciable. Los valores obtenidos están recogidos en la Tabla III- 10. En esta tabla también se han añadido el volumen total de mesoporos obtenido mediante el método B.J.H (adsorción y desorción), el volumen total de poros obtenido mediante adsorción de nitrógeno para \(p/p^0 \approx 0.95 \) (que debería coincidir con la suma del volumen de mesoporos \(V_{meso} \) y volumen de microporos \(V_{micro} \)) y volumen de macroporos \(V_{macro} \) determinado mediante porosimetría de mercurio. En la tabla también se han recogido los valores de superficie específica BET, superficie externa \(S_{ext} \) y superficie asociada a los microporos. \(S_{micro} \)

A partir de los datos recogidos en la Tabla III- 10 puede apreciarse como tanto el híbrido orgánico-inorgánico como el vidrio de oxicarburo obtenido tras es proceso de pirólisis son fundamentalmente macroporosos, sin embargo, para las temperaturas comprendidas entre 500-800 ºC debido a las reacciones de despolimerización y mineralización se forman especies volátiles que generan una gran microporosidad y en menor medida mesoporosidad. A medida que van finalizando estos procesos se produce una sinterización los poros pequeños (micro y meso) y el material vuelve a ser macroporoso. Finalmente para la temperatura de 1200 ºC puede aprecirse como disminuye el volumen de poro como consecuencia también de un proceso de sinterización ahora de los poros de mayor tamaño.

La variación de la superficie específica en todo el intervalo de temperaturas estudiado queda representada en la Figura III- 27.

El híbrido orgánico-inorgánico presenta unos valores de superficie específica prácticamente nulos.

Desde 400-700 ºC, debido a las reacciones de despolimerización del PDMS vía oligómeros cíclicos, se genera una gran microporosidad acompañada de un espectacular aumento de la superficie específica.

A partir de 600 ºC comienzan las reacciones de mineralización que generan especies volátiles de menor tamaño y, por lo tanto, la superficie específica alcanza el valor máximo para esta temperatura de tratamiento, al rededor de los 400 m²/g.

A medida que la temperatura de pirólisis sigue aumentando, las especies volátiles son cada vez menos abundantes y la estructura va entrecruzándose y transformándose en un material inorgánico y, por lo tanto, la superficie específica disminuye progresivamente con el aumento de la temperatura. A medida que aumenta la temperatura de tratamiento
Capítulo III

se cierra la estructura como consecuencia de la sinterización que experimenta el material, para estas temperaturas de tratamiento este fenómeno afecta sobre todo a los poros más pequeños.

Para temperaturas superiores a 900 ºC el material está fundamentalmente formado y los fenómenos mayoritarios son el comienzo de la sinterización del material (de los poros de mayor tamaño) así como la deshidrogenación tanto de la fase oxicarbonuro como de la fase de carbono libre; esto hace disminuir de una manera menos acusada la superficie específica. Finalmente el vidrio de oxicarbonuro obtenido presenta unos valores de superficie específica próximos a cero.

![Gráfico de la superficie específica vs. temperatura](https://via.placeholder.com/150)

Figura III- 27: Variación de la superficie específica en el sistema TEOS/PDMS para el intervalo de temperaturas comprendido entre 120-1200 ºC.
Figura III-28: Micrografía de la superficie de fractura para los materiales del sistema TEOS/PDMS donde se ha variado la temperatura de tratamiento desde 120 hasta 600 ºC.
Figura III- 29: Micrografías de la superficie de fractura para los materiales del sistema TEOS/PDMS donde se ha variado la temperatura de tratamiento desde 700 hasta 1200 ºC.
III.2.1.3.3 Estudio mediante microscopía electrónica de barrido.

Las micrografías de la superficie de fractura de los materiales del sistema TEOS/PDMS en función de la temperatura de tratamiento están representadas en la Figura III-28 y en la Figura III-29.

En estas figuras se ofrece una visión de la evolución de la superficie de fractura del material desde el híbrido hasta el vidrio de oxicarburo de silicio en función de las distintas temperaturas de tratamiento estudiadas. No se aprecian grandes cambios durante el proceso de pirólisis y en todos los casos independientemente de la temperatura de tratamiento, los materiales están formados por una red tridimensional de partículas esferoidales interconectadas. En todos los casos se aprecian cavidades que dan lugar a poros del orden de los 10 micrómetros que están de acuerdo con los resultados obtenidos mediante porosimetría de mercurio y adsorción de nitrógeno. Para las temperaturas de 700-900 °C se aprecia una especie de película que podría corresponder con restos de PDMS que han quedado retenidos en la estructura porosa del material como resultado de las reacciones de despolimerización.

III.2.1.3.4 Variación de la densidad real.

Como consecuencia de la transformación orgánico-inorgánica que experimenta el material durante la pirólisis, la densidad real experimenta grandes cambios, en general se produce un incremento de la densidad a medida que aumenta la temperatura de tratamiento (Figura III-30).

Los valores de densidad, al igual que pasaba con la perdida en peso y en contenido en carbono, permanecen prácticamente constantes hasta 400 °C, temperatura a partir de la cual comienzan las reacciones de despolimerización.

Tal y como se ha determinado mediante cambios estructurales, las reacciones de mineralización comienzan a partir de 600 °C, pero el progreso de las mismas es máximo
Capítulo III

para 700-800 ºC. Esto coincide con los valores de densidad real, que experimentan un gran aumento desde 500 hasta 800 ºC.

A partir de 900 ºC la transformación ya se ha producido y el aumento en la densidad es mucho más moderado. Ésto puede ser atribuido a una densificación ulterior del material recientemente formado.

![Gráfico III-30: Variación de la densidad real para el sistema TEOS/PDMS en el intervalo de temperaturas comprendido entre 120-1200 ºC.](image)

Figura III-30: Variación de la densidad real para el sistema TEOS/PDMS en el intervalo de temperaturas comprendido entre 120-1200 ºC.

III.2.2 **Influencia de la Velocidad de Calentamiento.**

En esta segunda serie se ha variado la velocidad de calentamiento para ver la repercusión de dicho parámetro en el material final formado. La velocidad de calentamiento, a priori, afectará fundamentalmente en la mayor o menor evolución de las reacciones de despolimerización del PDMS, que influirá fundamentalmente en términos de cantidad de carbono incorporado a la red y en la porosidad generada en el material final formado (microestructura.).

Como se ha comentado en el capítulo II, la velocidad de calentamiento se ha variado desde 0.5 hasta 12 ºC/min, para la temperatura máxima de 1100 ºC, temperatura en la
cual el material ha permanecido durante 2 horas con un flujo de nitrógeno en todos los casos de 50 ml/min.

En esta serie también se ha empleado como técnica de apoyo el análisis termogravimétrico, que simula el proceso del pirólisis y permite conocer en que intervalos de temperaturas se están produciendo pérdidas en peso, la magnitud de éstas, así como la identificación de las mismas.

III.2.2.1 Caracterización Térmica.

III.2.2.1.1 Estudio mediante Análisis Termogravimétrico.

Este tipo de análisis resulta bastante útil a la hora de estudiar la conversión desde los híbridos orgánico-inorgánicos hasta los vidrios de oxicarburo de silicio.

En la Figura III- 31 se representan los termogramas y su derivada para los híbridos del sistema TEOS/PDMS, donde se ha variado la velocidad de calentamiento desde 2 hasta 20 ºC/min, para la temperatura máxima de 1100 ºC bajo corriente de nitrógeno. Por otro lado, en la Tabla III- 11 se han extraído los intervalos de temperaturas y las temperaturas máximas, así como las pérdidas en peso de cada intervalo y las que corresponden a la temperatura máxima, para cada uno de los mínimos encontrados de las derivadas de las curvas del análisis termogravimétrico para todas las temperaturas estudiadas.

De forma general, la pirólisis en atmósfera inerte de los híbridos orgánico inorgánicos del sistema TEOS/PDMS, produce pérdidas en peso que pueden ser divididas en las siguientes etapas:

- Desde temperatura ambiente hasta 300-400 ºC, la pérdida en peso está asociada fundamentalmente a la eliminación de moléculas de agua y etanol que proceden de grupos \(Si-OH \) y \(Si-OEt \) que están todavía presentes en la estructura del gel.
- Desde 300-400 hasta 600 ºC, acontecen fundamentalmente las reacciones de redistribución que involucran enlaces \(Si-O/Si-O \) (reacciones de despolimerización) y enlaces \(Si-O/Si-C \). Para sistemas que no contengan cadenas poliméricas, tipo PDMS, esta clase de reacciones no produce grandes pérdidas en peso y únicamente se detectan
diferentes estructuras de bajo peso molecular que contienen uniones siloxano. Sin embargo, para el sistema en estudio, en este intervalo de temperaturas es donde se aprecia la mayor pérdida en peso asociada fundamentalmente a las reacciones de despolimerización del PDMS.

- Para temperaturas superiores, desde 600 hasta 800 °C, tienen lugar las reacciones de mineralización donde se produce la ruptura homolítica de enlaces $C-H$, $Si-C$ con la formación de H_2 y CH_4, siendo las causantes de la transformación orgánico-inorgánica del material.
- Para temperaturas superiores (hasta 1500 °C aproximadamente dependiendo de cada material en función de la temperatura de comienzo de la reducción carbotérmica) el material permanece prácticamente estable, detectándose ligeras pérdidas en peso, si acaso asociadas a la deshidrogenación del vidrio de oxicarburo recién formado.

![Figura III- 31: Curvas de termogravimetría y sus correspondientes derivadas para el sistema TEOS/PDMS, donde se ha variado la velocidad de calentamiento desde 2 hasta 20 °C/min para una Temperatura de 1100 °C y bajo corriente de nitrógeno.](image)
Como ya se ha comentado anteriormente, se ha variado la velocidad de calentamiento desde velocidades bajas hasta altas para poder estudiar la influencia de este parámetro en los intervalos donde se producen cada uno de los procesos anteriormente relatados, y cómo afectará al material finalmente formado.

A priori, y de forma muy genérica, puede apreciarse que a medida que aumenta la velocidad de calentamiento se aumenta la temperatura a la que comienzan a producirse los distintos fenómenos que suceden durante el proceso de pirólisis.

Independientemente de la velocidad de calentamiento empleada, el material es estable hasta los 300 ºC, y desde esta temperatura hasta aproximadamente los 400 ºC se produce la hidrólisis/condensación de los grupos \(Si-OH/Si-OEt \) que están presentes en la estructura del gel, tal y como se determinó mediante espectroscopía Raman y \(RMN \).

Este resultado corrobora que este tipo de reacciones no han finalizado completamente durante el proceso sol-gel.

A continuación se observa la mayor pérdida del termograma, asociada fundamentalmente a las reacciones de despolimerización de \(PDMS \), que se producen desde \(\sim 400 \) hasta 597-710 ºC dependiendo de la velocidad de calentamiento empleada en el análisis. Debe tenerse presente que es durante este proceso donde se produce la mayor pérdida en peso. Si se observa de manera detenida la derivada de la curva, puede apreciarse que esta pérdida puede ser dividida en dos; una muy mayoritaria que se corresponde con el grueso de las reacciones de despolimerización (2º mínimo) y otra posterior más pequeña que puede ser debida a un proceso conjunto de despolimerización y comienzo de la mineralización (3er mínimo).

Estas conclusiones vienen apoyadas con los datos obtenidos mediante otras técnicas estructurales tales como \(FT-IR \), Raman y \(^{13}C\ RMN \), que indican tanto la presencia, para estas temperaturas, de grupos que pertenecen a restos de \(PDMS \), como de estructuras tipo puente que indican el comienzo de la mineralización.

La siguiente pérdida en peso (4º mínimo) se asocia a la finalización de las reacciones de mineralización. Hay que destacar que para la velocidad de calentamiento mayor, esta pérdida en peso se extiende hasta 860 ºC y lleva asociada una pérdida en peso del 3 %, la mayor de todas las velocidades de calentamiento estudiadas. Esta mayor pérdida en
peso debida al hecho de que para esta velocidad de calentamiento los procesos se prolongan hasta 860 °C. Pueden entrar en juego otros procesos tales como la pérdida de grupos silanolés, detectados para estas temperaturas mediante FT-IR, pudiendo explicar esta pérdida en peso.

Para temperaturas superiores (5º mínimo) la pérdida en peso es muy pequeña, en torno al 1 %, y está asociada fundamentalmente a las reacciones de deshidrogenación del material.

<table>
<thead>
<tr>
<th>(V) (°C/min)</th>
<th>1er mínimo</th>
<th>2º mínimo</th>
<th>3er mínimo</th>
<th>4º mínimo</th>
<th>5º mínimo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T_{max}/P.P)</td>
</tr>
<tr>
<td></td>
<td>(T_{f}-T_{i}) / (P.P_{1er min})</td>
<td>(T_{f}-T_{i}) / (P.P_{2er min})</td>
<td>(T_{f}-T_{i}) / (P.P_{3er min})</td>
<td>(T_{f}-T_{i}) / (P.P_{4er min})</td>
<td>(T_{f}-T_{i}) / (P.P_{5er min})</td>
</tr>
<tr>
<td>2</td>
<td>320/3</td>
<td>459/23</td>
<td>577/40</td>
<td>703/42</td>
<td>791/42</td>
</tr>
<tr>
<td>t.a-346/4</td>
<td>346-538/34</td>
<td>538-597/2</td>
<td>597-742/1</td>
<td>742-883/1</td>
<td>791/42</td>
</tr>
<tr>
<td>4</td>
<td>317/3</td>
<td>474/21</td>
<td>630/37</td>
<td>717/38</td>
<td>868/39</td>
</tr>
<tr>
<td>t.a-371/6</td>
<td>371-601/29</td>
<td>601-669/2</td>
<td>669-786/1</td>
<td>786-939/1</td>
<td>791/42</td>
</tr>
<tr>
<td>8</td>
<td>342/4</td>
<td>488/22</td>
<td>657/38</td>
<td>746/40</td>
<td>905/41</td>
</tr>
<tr>
<td>t.a-375/6</td>
<td>375-648/33</td>
<td>648-714/1</td>
<td>714-817/1</td>
<td>816-989/1</td>
<td>791/42</td>
</tr>
<tr>
<td>12</td>
<td>337/4</td>
<td>457/21</td>
<td>620/37</td>
<td>754/39</td>
<td>931/39</td>
</tr>
<tr>
<td>t.a-370/6</td>
<td>370-565/29</td>
<td>565-697/2</td>
<td>697-816/1</td>
<td>816-1022/1</td>
<td>791/42</td>
</tr>
<tr>
<td>20</td>
<td>349/4</td>
<td>514/23</td>
<td>677/38</td>
<td>765/39</td>
<td>950/40</td>
</tr>
<tr>
<td>t.a-401/6</td>
<td>401-648/31</td>
<td>648-710/1</td>
<td>710-860/3</td>
<td>859-1015/1</td>
<td>791/42</td>
</tr>
</tbody>
</table>

\(T_{max} \) = Temperatura máxima, \(P.P \) = pérdida en peso asociada a la temperatura máxima; \(T_{f}-T_{i} \) = Temperatura inicial y final y \(P.P_{min} \) = pérdida en peso asociada al pico.

La ecuación general de degradación de polímeros y resinas viene definida por la

Ecuación III-13.

\[
\frac{d\alpha}{dt} = k(T) f(\alpha)
\]

Ecuación III- 13
Donde \(\alpha \) es el grado de conversión, \(k(T) \) es la constante de velocidad (tipo Arrhenius) que depende de la temperatura y \(f(\alpha) \) es una función que depende del mecanismo de la degradación térmica de cada material. El grado de conversión \(\alpha \) puede definirse mediante la Ecuación III-14.

\[
\alpha = \frac{(m_i - m)}{(m_i - m_f)} \quad \text{Ecuación III-14}
\]

Donde \(m_i \) y \(m_f \) son la masa inicial y final en un instante dado.

Como el cambio de masa es función de la temperatura de acuerdo con Arrhenius:

\[
K(T) = Ae^{-E/RT} \quad \text{Ecuación III-15}
\]

Donde \(A \) representa el factor pre-exponencial, \(E \) es la energía de activación del proceso, \(R \) la constante de los gases ideales y \(T \) la temperatura.

Combinando las Ecuaciones III-13 y III-15 y considerando un régimen dinámico donde la temperatura aumenta con una velocidad de calentamiento constante \(\beta \) (ºC/min) se llega a la siguiente ecuación:

\[
\frac{d\alpha}{dT} \frac{dT}{dt} = \frac{d\alpha}{dT} \beta = Ae^{-E/RT} f(\alpha) \quad \text{Ecuación III-16}
\]

La resolución de la Ecuación III-16 mediante análisis termogravimétrico se puede llevar a cabo mediante los métodos diferenciales y los integrales. En los métodos diferenciales se asume que la función \(f(\alpha) \) es \((1-\alpha)^n\) siendo \(n \) el orden de reacción.

Uno de los métodos diferenciales más empleados es el método de Kissinger.\(^{216}\) Se parte de la ecuación general anteriormente descrita (Ecuación III-16), dicha ecuación se deriva y reorganiza y finalmente se obtiene:

\[
\frac{d\alpha}{dT} = \frac{A}{\beta} e^{-E/TR} (1-\alpha)^n \Rightarrow \ln\left(\frac{\beta}{T_{\max}^2}\right) = \ln\left(\frac{AR}{E}n(1-\alpha_{\max})^{(n-1)}\right) - \frac{E}{RT_{\max}} \quad \text{Ecuación III-17}
\]
Donde T_{max} corresponde con la temperatura máxima de degradación, es decir el mínimo del pico. Si además se considera que $n(1-\alpha_{max})^{(n-1)} \approx 1$, se llega a la Ecuación III-18 De la cual mediante la representación de $\ln(\beta/T_{max}^2)$ frente a $1000/T_{max}$ de los valores obtenidos para todas las velocidades de calentamiento se obtiene una representación lineal de la cual se extraen el valor de la energía de activación (E) y el factor pre-exponencial (A), a partir del valor de la pendiente y la ordenada en el origen respectivamente.

$$\ln\left(\frac{\beta}{T_{max}^2}\right) = \ln\left(\frac{AR}{E}\right) - \frac{E}{RT_{max}}$$ \hspace{1cm} \text{Ecuación III-18}$$

Para completar el estudio se ha evaluado la cinética de degradación del PDMS durante la pirólisis, ya que este proceso es el que acontece de forma mayoritaria durante el tratamiento térmico, para ello se ha empleado el método de Kissinger descrito en párrafos anteriores.

La energía de activación obtenida para el segundo proceso es 189 kJ/mol que es ligeramente superior al descrito por la literatura para el PDMS lineal que se sitúa en 180 kJ/mol.211 Esto indica por un lado, que en el híbrido existe una gran cantidad de polímero que se degrada térmicamente casi de la misma forma que lo hace el PDMS lineal y por otro lado que a medida que aumenta la temperatura, el PDMS que no se ha despolimerizado es susceptible de experimentar la transformación orgánico/inorgánica e introducir carbono dentro de la estructura vítrea (tercer y cuarto proceso).

\textit{Tabla III-12: Valores obtenidos de la aplicación del método de Kissinger al sistema TEOS/PDMS.}

<table>
<thead>
<tr>
<th>Coeficiente de correlación</th>
<th>E (kJ/mol)</th>
<th>A(min$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99771</td>
<td>189</td>
<td>2.65×10^{12}</td>
</tr>
</tbody>
</table>
III.2.2.2 Caracterización estructural.

III.2.2.2.1 Estudio mediante espectroscopía infrarroja.

En la Figura III-32 están representados los espectros de FT-IR de los oxicarburos de silicio obtenidos a 1100 °C, donde se ha variado la velocidad de calentamiento desde 0.5 hasta 12 °C/min. Todos ellos presentan un espectro típico de vidrio de oxicarburo de silicio, pero a medida que aumenta la velocidad de calentamiento se produce un ensanchamiento de la banda que corresponde al tetraedro SiX₄ (X = O, C), así como a partir de la velocidad de 2 °C/min se intuye el desdoblamiento de dicha banda (812 cm⁻¹) que como ya se ha comentado indica una mayor incorporación de carbono en la red vitrea.

Estos dos hechos ponen de manifiesto que, a medida que aumenta la velocidad de calentamiento (para velocidades mayores o iguales a 2 °C/min), se produce una mayor incorporación de carbono en la red mixta del oxicarburo. Para las velocidades de 0.5 y 1 °C/min, las reacciones de despolimerización están favorecidas sobre el resto de los procesos, siendo ésta la razón por la que el material formado presenta una fase oxicarburo con una menor cantidad de carbono incorporado en ella.

Figura III-32: Espectros de FT-IR para los vidrios de oxicarburo del sistema TEOS/PDMS obtenidos para las velocidades de calentamiento comprendidas entre 0.5 y 12 °C/min.
III.2.2.2.2 Estudio mediante espectroscopía Raman.

Los espectros Raman de los oxicarburos obtenidos para las distintas velocidades de calentamiento, se presentan en la Figura III-33. Para todos los casos se observan las bandas D y G, características para este tipo de materiales debido a la presencia de la fase de carbono libre embebido dentro de la matriz del oxicarburo de silicio.

![Espectros Raman para los oxicarburos obtenidos a 1100 °C para el sistema TEOS/PDMS, donde se ha variado la velocidad de calentamiento desde 0.5 hasta 12 °C/min.](image)

Figura III-33: Espectros Raman para los oxicarburos obtenidos a 1100 °C para el sistema TEOS/PDMS, donde se ha variado la velocidad de calentamiento desde 0.5 hasta 12 °C/min.

Las relaciones de intensidades $I(D)/I(G)$ (Tabla III-13) son muy similares para todas las velocidades de calentamiento estudiadas, y por lo tanto el tamaño de los dominios de grafito obtenido a partir de la Ecuación III-2 de Tunistra y Koening es muy similar en todos los casos, situándose ~ 3.5 nm.

Analizando más exhaustivamente estos valores se puede concluir que existe una ligera disminución del tamaño de los dominios cuando aumenta la velocidad de calentamiento. Para las velocidades de calentamiento más bajas, 0.5 y 1 °C/min, se ven favorecidas las
reacciones de despolimerización y se producen en una mayor extensión de las mismas, que con respecto a velocidades superiores. Parte de esta materia orgánica que se elimina vía oligómeros cíclicos puede transformarse en la fase de carbono libre, y por lo tanto, como las reacciones de despolimerización ocurren de una manera preferencial se forman clusters de tamaño mayor.

La forma de los espectros, es decir, la relación de intensidades entre banda D y G así como su desplazamiento y anchura, son características de materiales grafíticos con un elevado grado de desorden.

Tabla III-13: Información más relevante obtenida de los espectros Raman de los oxicarburos del sistema TEOS/PDMS pirolizados a 1100 ºC, donde se ha variado la velocidad de calentamiento desde 0.5 hasta 12 ºC/min.

<table>
<thead>
<tr>
<th>v. calent (ºC/min)</th>
<th>I(D)/I(G)</th>
<th>L (nm)</th>
<th>Banda D (cm⁻¹)</th>
<th>FWHM* Banda D</th>
<th>Banda G (cm⁻¹)</th>
<th>FWHM* Banda G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.24</td>
<td>3.55</td>
<td>1350.2</td>
<td>151</td>
<td>1588.52</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>1.24</td>
<td>3.54</td>
<td>1347.9</td>
<td>140</td>
<td>1588.52</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>1.28</td>
<td>3.44</td>
<td>1337.50</td>
<td>150</td>
<td>1594.90</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>1.22</td>
<td>3.61</td>
<td>1347.8</td>
<td>132</td>
<td>1595.16</td>
<td>95</td>
</tr>
<tr>
<td>8</td>
<td>1.28</td>
<td>3.43</td>
<td>1345.6</td>
<td>141</td>
<td>1590.0</td>
<td>96</td>
</tr>
<tr>
<td>12</td>
<td>1.28</td>
<td>3.44</td>
<td>1344.2</td>
<td>145</td>
<td>1590.9</td>
<td>93</td>
</tr>
</tbody>
</table>

*FWHM = Full Width Height Medium (Anchura de la banda a mitad de altura)

III.2.2.3 Estudio mediante difracción de RX.

En la Figura III-34 se presentan los DRX para los oxicarburos de silicio obtenidos con distintas velocidades de calentamiento. En todos ellos se aprecia, para \(2\theta \sim 22^\circ\), un halo característico de materiales vitreos basados en silice, no observándose ningún tipo de cristalización.
Capítulo III

III.2.2.3 Contenido en carbono y análisis químico.

La variación del contenido en carbono total se presenta en la Figura III-35. Estos datos indican que a mayor tiempo de tratamiento (velocidades de calentamiento más bajas) los productos volátiles que se generan durante la pirólisis experimentan un mayor arrastre por la corriente de nitrógeno, dando como resultado unos menores contenidos en carbono total.

A medida que aumenta la velocidad de calentamiento aumenta el contenido en carbono del material final formado, ya que para velocidades bajas (0.5 y 1 °C/min) el material híbrido orgánico-inorgánico está más tiempo expuesto en el intervalo de temperaturas desde 400-800 ºC, que es cuando se produce una mayor pérdida en peso, asociada fundamentalmente a las reacciones de despolimerización y mineralización.

Figura III-34: Difractogramas de RX para los oxicarburos del sistema TEOS/PDMS, obtenidos a partir de las velocidades de calentamiento comprendidas entre 0.5 y 12 °C/min.
Figura III- 35: Variación del contenido en carbono para los oxicarburos del sistema TEOS/PDMS pirolizados a 1100 ºC, obtenidos para las velocidades de calentamiento comprendidas entre 0.5 y 12 ºC/min.

Tabla III- 14: Composición química, fórmula del oxicarburo y contenido en carbono libre, para los oxicarburos obtenidos a 1100 ºC correspondientes al sistema TEOS/PDMS, donde se ha variado la velocidad de calentamiento desde 0.5-12 ºC/min. En base a los resultados obtenidos para la serie de temperatura se asume que %H es menor del 0.10%.

<table>
<thead>
<tr>
<th>v.calent (ºC/min)</th>
<th>C (%)</th>
<th>Si (%)</th>
<th>O (%)</th>
<th>H (%)</th>
<th>Fórmula SiOC</th>
<th>C libre (%)</th>
<th>Pérdida en peso (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>9.1 ± 0.3</td>
<td>45.49</td>
<td>45.39</td>
<td><0.10</td>
<td>SiC₀.₁₂O₁.₇₅ + 0.₃₅C</td>
<td>74</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>8.9 ± 0.1</td>
<td>45.62</td>
<td>45.48</td>
<td><0.10</td>
<td>SiC₀.₁₂O₁.₇₅ + 0.₃₄C</td>
<td>73</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>9.86 ± 0.05</td>
<td>45.78</td>
<td>44.36</td>
<td><0.10</td>
<td>SiC₀.₁₅O₁.₇₀ + 0.₃₅C⁻</td>
<td>70⁻</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>10.03 ± 0.06</td>
<td>46.69</td>
<td>43.28</td>
<td><0.10</td>
<td>SiC₀.₁₉O₁.₆₃ + 0.₃₁C</td>
<td>63</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>10.44 ± 0.04</td>
<td>45.90</td>
<td>43.66</td>
<td><0.10</td>
<td>SiC₀.₁₇O₁.₆₇ + 0.₃₆C</td>
<td>69</td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>10.38 ± 0.03</td>
<td>45.22</td>
<td>44.4</td>
<td><0.10</td>
<td>SiC₀.₁₄O₁.₇₂ + 0.₄C</td>
<td>74</td>
<td>48</td>
</tr>
</tbody>
</table>

Esta disminución del contenido en carbono, para las velocidades de calentamiento menores, está asociada con una menor incorporación del carbono en red, según puede deducirse de los datos obtenidos del análisis químico (Tabla III- 14). Estos datos están de acuerdo con lo deducido a partir de espectroscopía infrarroja para las velocidades de calentamiento donde no se apreciaba el desdoblamiento de la banda situada a 880 cm⁻¹, indicativa de una mayor incorporación de carbono en el oxicarburo.
Para velocidades de calentamiento mayores (2 y 4 °C/min) se produce una confluencia de las reacciones de despolimerización y mineralización para un intervalo de temperaturas dado, lo que provoca un aumento del carbono en red, así como una disminución del carbono libre. Sin embargo, al aumentar aún más la temperatura, los procesos ocurren cada vez más rápidamente, de manera que las reacciones involucradas (despolimerización y mineralización) no conviven el tiempo suficiente, haciendo que el carbono unido a la red vítrea disminuya ligeramente y por la misma razón el carbono libre aumente un poco a partir de 4 °C/min.

III.2.2.4 Caracterización microestructural y textural.

III.2.2.4.1 Estudio mediante porosimetría de mercurio.

En la Figura III-36 y Figura III-37 están representadas las curvas de intrusión-extrusión de mercurio, así como la distribución de tamaño de poro respectivamente, para los oxicarburos obtenidos a una temperatura de pirólisis de 1100 °C en el sistema TEOS/PDMS, donde se ha variado la velocidad de calentamiento desde 0.5 hasta 12 °C/min.

A partir de estos datos puede observarse cómo, para velocidades de calentamiento bajas, como ya se ha comentado anteriormente en el apartado de variación de la estructura, se favorecen las reacciones de despolimerización sobre el resto de los procesos. Las reacciones de despolimerización ocurren de forma indiscriminada en cualquier parte de la cadena del polímero.
Para la velocidad de calentamiento más baja (0.5 °C/min) se generan poros muy grandes. La evolución de gran parte de los oligómeros cíclicos para temperaturas inferiores a las que se producen las reacciones de mineralización, hace que estos oligómeros no se queden retenidos en la estructura y se eliminan, dando como resultado unos poros muy grandes.
Para la velocidad de calentamiento de 1 °C/min, se encuentra una distribución bimodal, que puede ser explicada de la siguiente manera: aunque las reacciones de despolimerización siguen estando favorecidas dando como resultado poros grandes, parte de los oligómeros de PDMS que se están evaporando se han quedado ocluidos en
la estructura porosa del material y dan lugar a un entrecruzamiento que, como consecuencia, origina poros más pequeños.

Figura III- 36: Curvas de intrusión-extrusión determinadas mediante porosimetría de Hg para los oxicarburos del sistema TEOS/PDMS, donde se ha variado la velocidad de calentamiento desde 0.5 hasta 12 ºC/min.

Figura III- 37: Distribuciones de tamaño de poro obtenidas a partir de los datos de intrusión de mercurio para los oxicarburos del sistema TEOS/PDMS, donde se ha variado la velocidad de calentamiento desde 0.5 hasta 12 ºC/min.

Al aumentar la velocidad de calentamiento por encima de 2 ºC/min las reacciones de despolimerización confluyen con el resto de los procesos, obteniéndose unas
distribuciones de poro más estrechas con un diámetro comprendido entre 8 y 15 micrómetros.

Es importante destacar que a medida que se aumenta la velocidad de calentamiento, por un lado, se favorece que coincidan todos los procesos involucrados para el mismo intervalo de temperaturas y que, por lo tanto, se favorezca la incorporación de carbono en la red vítrea. Pero por otro lado, este aumento en la velocidad de calentamiento hace que estos procesos ocurran de una manera más rápida, de forma que sea más difícil controlar la porosidad generada. Para el caso concreto de 2 °C/min, la distribución de tamaño de poro es muy estrecha, pero al aumentar la velocidad, la porosidad generada es difícilmente controlable, haciendo que las distribuciones de tamaño de poro sean mucho más amplias.

La porosidad de estos oxicarburos obtenidos a diferentes velocidades de calentamiento es muy similar en todos los casos (*Tabla III-15*). Para las velocidades de calentamiento bajas, las reacciones de despolimerización se producen de forma indiscriminada generando una gran porosidad. Al aumentar la velocidad de calentamiento todos los procesos se aceleran confluyendo para el mismo intervalo de temperaturas y generando una gran porosidad en un intervalo de temperaturas más definido, pero que se traduce en un material que también presenta una gran porosidad.

III.2.2.4.2 Estudio mediante adsorción de nitrógeno.

El estudio mediante adsorción de nitrógeno conduce a la obtención de las isotermas y las distribuciones de poro, representadas en la *Figura III-38* y *Figura III-39* respectivamente.

Los oxicarburos obtenidos a diferentes velocidades de calentamiento presentan isotermas tipo II, características de materiales macroporosos, idénticas a las encontradas en la serie donde se ha variado la temperatura de tratamiento.

Las distribuciones de poro obtenidas mediante esta técnica no dan demasiada información ya que estos materiales son fundamentalmente macroporosos y esta técnica es usada para obtener información de meso y microporos. Se puede observar que, independientemente de la velocidad de calentamiento usada en el procesamiento del
material híbrido, se obtienen unos vidrios de oxicarburó que prácticamente no presentan porosidad que pueda ser medida mediante adsorción de nitrógeno.

Figura III-38: Isotermas de adsorción de nitrógeno para los oxicarburó del sistema TEOS/PDMS obtenidos para las velocidades de calentamiento comprendidas entre 0.5 y 12 °C/min.

Figura III-39: Distribución del tamaño de poros obtenido a partir de la rama de desorción mediante el método BJH, para los oxicarburó del sistema TEOS/PDMS para las velocidades de calentamiento comprendidas entre 0.5 y 12 °C/min.
Los valores de superficie específica (BET) para toda esta serie están recogidos en la Tabla III-15. En todos los casos son próximos a cero, indicando de nuevo la naturaleza macroporosa de estos materiales.

Tabla III-15: Datos de porosidad total, diámetro medio de poro, densidad aparente y de esqueleto (determinada mediante porosometría de mercurio) y real (determinada mediante picinometría de helio) y superficie específica (BET) para el sistema TEOS/PDMS para las velocidades de calentamiento comprendidas entre 0.5 y 12 ºC/min.

<table>
<thead>
<tr>
<th>v.calent (ºC/min)</th>
<th>Porosidad (%)</th>
<th>D.poro (µm)</th>
<th>D.Aparente (g/cc)</th>
<th>D.Esqueleto (g/cc)</th>
<th>D.Real (g/cc)</th>
<th>SE BET (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>74</td>
<td>14.23</td>
<td>0.53</td>
<td>2.05</td>
<td>2.30</td>
<td>0.27</td>
</tr>
<tr>
<td>1</td>
<td>68</td>
<td>8.81</td>
<td>0.54</td>
<td>1.69</td>
<td>2.30</td>
<td>0.55</td>
</tr>
<tr>
<td>2</td>
<td>77</td>
<td>11.85</td>
<td>0.51</td>
<td>2.27</td>
<td>2.33</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>13.87</td>
<td>0.49</td>
<td>1.84</td>
<td>2.27</td>
<td>0.67</td>
</tr>
<tr>
<td>8</td>
<td>75</td>
<td>14.50</td>
<td>0.49</td>
<td>2.02</td>
<td>2.31</td>
<td>0.77</td>
</tr>
<tr>
<td>12</td>
<td>74</td>
<td>10.89</td>
<td>0.47</td>
<td>1.84</td>
<td>2.30</td>
<td>1.39</td>
</tr>
</tbody>
</table>

III.2.2.4.3 Estudio mediante microscopía electrónica de barrido.

Las micrografías de la superficie de fractura de los vidrios de oxicarburo del sistema TEOS/PDMS donde se ha variado la velocidad de calentamiento hasta 1100 ºC están recogidas en la Figura III-40. En dichas micrografías puede apreciarse la microestructura de agregado de partículas que presentan estos materiales. Aunque las micrografías obtenidas son muy similares en todos los casos puede apreciarse como a medida que aumenta la velocidad de calentamiento, sobre todo apreciable a partir de 4 ºC/min, las partículas se van deformando y pierden parte de su esfericidad debido fundamentalmente a que los procesos que acontecen suceden de una manera muy rápida coincidiendo en los mismos intervalos, lo que provoca que se genere poros que abarcan un mayor intervalo de diámetros de poro tal y como ya se apreció mediante porosimetria de mercurio.
Figura III- 40: Micrografías para los vidrios de oxicarbono obtenidos para el sistema TEOS/PDMS donde se ha variado la velocidad de calentamiento desde 0.5 hasta 12 ºC/min.
III.2.2.4.4 Variación de la densidad real.

Los valores de densidad real están recogidos en la Tabla III-15 y representados en la Figura III-41. No se observa ninguna tendencia clara, por lo que se considera que la densidad real no varía de una manera apreciable con la velocidad de calentamiento empleada para la obtención de estos materiales.

![Figura III-41: Variación de la densidad real para los oxicarburos del sistema TEOS/PDMS obtenidos para las velocidades de calentamiento comprendidas entre 0.5 y 12 °C/min.](image)

III.2.3 Influencia del Flujo de Nitrógeno.

En el proceso de pirólisis, la atmósfera gaseosa es inerte y no participa en las reacciones que suceden. Por esto no se ha estudiado la influencia del caudal de la atmósfera inerte empleada desde un punto de vista no reactivo, sino desde el punto de vista del arrastre que experimentan las especies volátiles que se generan y cómo influye en el material final formado.

Como ya se comentó en el Capítulo II, los flujos estudiados han sido 25, 50, 100 y 150 ml/min, manteniendo el resto de las variables constantes, es decir, para una temperatura final de 1100 ºC durante 2 horas y con una velocidad de calentamiento de 2 ºC/min.
III.2.3.1 Caracterización estructural.

III.2.3.1.1 Estudio mediante espectroscopía infrarroja.

Los espectros de los oxicarburos obtenidos a 1100 ºC, donde se ha variado el flujo de nitrógeno, quedan representados en la Figura III- 42. Todos ellos son los característicos de vidrio de oxicarburo de silicio, pero puede apreciarse cómo, a medida que aumenta el flujo de nitrógeno, la banda situada a 810 cm\(^{-1}\), asociada a la red mixta de silicio-oxígeno-carbono del oxicarburo, se vuelve más aguda. También puede apreciarse cómo todos los flujos, excepto el mayor (150 ml/min), presentan un hombro a 880 cm\(^{-1}\), indicando que, a medida que aumenta el flujo de nitrógeno, la incorporación de carbono en la red vítrea es menor. Esto último debe ser comprobado mediante otras técnicas como el análisis químico.

![Figura III- 42: Espectros de infrarrojo de los oxicarburos de silicio del sistema TEOS/PDMS, donde se ha variado el flujo de N\(_2\) desde 25 hasta 150 ml/min.](image-url)
III.2.3.1.2 Estudio mediante espectroscopía Raman.

En la Figura III- 43 y en la Tabla III- 16, se presentan los espectros Raman y la información más relevante obtenida a partir de ellos para los oxicarburados obtenidos empleando diferentes flujos de nitrógeno durante la pirólisis a 1100 ºC. Todos ellos presentan la banda D y G, característica de carbono tipo grafito, presente en la fase de carbono libre del oxicarbono.

El tamaño de los dominios de grafito aumenta con el flujo.

Para 25 y 50 ml/min el tamaño de los dominios es muy similar (~ 3.4 nm), pero al aumentar más el caudal se produce un aumento de la longitud de los clusters de carbono libre formados durante la pirólisis.

Sin embargo este aumento en el tamaño de los dominios no se ve acompañado por un aumento de orden, ya que tanto las frecuencias de las bandas D y G como el ancho de las mismas es muy similar para todos los casos y además indica un elevado grado de desorden para todos ellos. Como en las series anteriores los espectros Raman indican que la fase de carbono libre es carbono tipo grafito con elevado grado de desorden.

Figura III- 43: Espectros Raman de los oxicarburados obtenidos donde se ha variado el flujo de N_2 desde 25 hasta 150 ml/min, para el sistema TEOS/PDMS.
Tabla III-16: Datos de los espectros Raman de los oxicarburos obtenidos a 1100 °C, donde se ha variado el flujo de N2 desde 25 hasta 150 ml/min para el sistema TEOS/PDMS.

<table>
<thead>
<tr>
<th>Flujo N2 (ml/min)</th>
<th>I(D)/I(G)</th>
<th>L (nm)</th>
<th>Banda D (cm⁻¹)</th>
<th>FWHM Banda D</th>
<th>Banda G (cm⁻¹)</th>
<th>FWHM Banda G</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.29</td>
<td>3.40</td>
<td>1346.8</td>
<td>150</td>
<td>1585.1</td>
<td>110</td>
</tr>
<tr>
<td>50</td>
<td>1.27</td>
<td>3.44</td>
<td>1337.5</td>
<td>150</td>
<td>1594.9</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>1.16</td>
<td>3.79</td>
<td>1346.8</td>
<td>151</td>
<td>1590.82</td>
<td>105</td>
</tr>
<tr>
<td>150</td>
<td>1.23</td>
<td>3.57</td>
<td>1346.1</td>
<td>146</td>
<td>1585.27</td>
<td>98</td>
</tr>
</tbody>
</table>

*FWHM = Full Width Height Medium (Anchura de la banda a mitad de altura)

III.2.3.1.3 Estudio mediante difracción de RX.

En la Figura III-44 se muestran los difractogramas de RX para los oxicarburos, obtenidos empleando distinto caudal de nitrógeno. En todos los casos se obtiene una gran banda ancha situada alrededor de 22 °, característica de materiales vítreos basados en sílice, indicando como en casos anteriores, el carácter vítreo de estos materiales.

Figura III-44: Difractogramas de RX para los oxicarburos del sistema TEOS/PDMS obtenidos a 1100 °C para flujos de Nitrógeno comprendidos entre 25 y 150 ml/min.
III.2.3.2 Contenido en carbono y análisis químico.

La variación del contenido en carbono total está representada en la Figura III- 45. En dicha Figura puede apreciarse como el contenido en carbono total disminuye al aumentar el flujo de nitrógeno debido a un mayor arrastre de las especies volátiles que se generan durante el proceso.

![Figura III- 45: Variación del contenido en carbono para los oxicarburos obtenidos a 1100 ºC del sistema TEOS/PDMS donde se ha variado el flujo de nitrógeno desde 25 hasta 150 ml/min.](image)

Al aumentar el flujo hasta 150 ml/min, el porcentaje en carbono que se pierde pertenece tanto a la fase oxicarburo como a la fase de carbono libre que el porcentaje de carbono libre (Tabla III- 17). Estos datos están en consonancia con los obtenidos mediante FT-IR que sugerían una menor incorporación del carbono en la red vítrea para el flujo de 150 ml/min de nitrógeno.

Al aumentar el flujo de nitrógeno se produce un mayor arrastre de las especies volátiles que se generan y por lo tanto se producen de una manera menos eficaz las reacciones de mineralización que suponen la formación de la red mixta del oxicarburo. Sin embargo, las especies volátiles generadas, debido a las elevadas temperaturas experimentadas durante la pirólisis, se transforman en carbono tipo grafito que ya no está interconectado
sino embebido dentro de la red del oxicarburio. Esto se encuentra en consonancia con los resultados obtenidos mediante espectroscopía Raman, que mostraban un ligero aumento del tamaño de los dominios al aumentar el flujo de nitrógeno.

Tabla III- 17: Composición química, fórmula del oxicarburio y contenido en carbono libre para los oxicarburios obtenidos a 1100 ºC para el sistema TEOS/PDMS, donde se ha variado el flujo de N$_2$ desde 25 hasta 150 ml/min. En base a los resultados obtenidos para la serie de temperatura se asume que %H es menor del 0.10%

<table>
<thead>
<tr>
<th>Flujo N$_2$ (ml/min)</th>
<th>C (%)</th>
<th>Si (%)</th>
<th>O (%)</th>
<th>H (%)</th>
<th>Fórmula SiOC</th>
<th>C libre (%)</th>
<th>Pérdida en peso (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>9.88 ± 0.08</td>
<td>45.45</td>
<td>44.62</td>
<td><0.10</td>
<td>SiC${0.14}$O${1.72}$ + 0.37C</td>
<td>73</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>9.86 ± 0.05</td>
<td>45.78</td>
<td>44.36</td>
<td><0.10</td>
<td>SiC${0.15}$O${1.70}$ + 0.35C</td>
<td>70</td>
<td>46</td>
</tr>
<tr>
<td>100</td>
<td>9.70 ± 0.02</td>
<td>46.1</td>
<td>44.2</td>
<td><0.10</td>
<td>SiC${0.16}$O${1.68}$ + 0.33C</td>
<td>68</td>
<td>47</td>
</tr>
<tr>
<td>150</td>
<td>9.44 ± 0.03</td>
<td>45.2</td>
<td>45.36</td>
<td><0.10</td>
<td>SiC${0.12}$O${1.76}$ + 0.37C</td>
<td>76</td>
<td>47</td>
</tr>
</tbody>
</table>

III.2.3.3 Caracterización microestructural y textural.

III.2.3.3.1 Estudio mediante porosimetría de mercurio.

En la Figura III- 46 están representadas las curvas de intrusión-extrusión de los oxicarburios del sistema TEOS/PDMS donde se ha variado el flujo de nitrógeno desde 25 hasta 150 ml/min. De la misma manera, en la Figura III- 47, quedan representadas las distribuciones de poro obtenidas para esta serie.

Las curvas de intrusión son todas tipo 3 para todos los casos.212 Las distribuciones de poro indican que al aumentar el flujo de nitrógeno por encima de 50 ml/min se produce un ligero aumento del diámetro medio obtenido en los oxicarburios de silicio finalmente obtenidos.

Esto es debido, fundamentalmente, a un mayor arrastre de las especies volátiles, generadas durante la pirólisis, producido al aumentar el flujo de nitrógeno. Este mayor arrastre implica un menor entrecruzamiento de la estructura, es decir un tamaño de poro mayor.
Figura III- 46: Curvas de intrusión-extrusión determinadas mediante porosimetría de Hg para los oxícarburos del sistema TEOS/PDMS, donde se ha variado el flujo de nitrógeno desde 25 hasta 150 ml/min.

Figura III- 47: Distribuciones de tamaño de poro obtenidas a partir de los datos de intrusión de mercurio para los oxícarburos del sistema TEOS/PDMS, donde se ha variado el flujo de nitrógeno desde 25 hasta 150 ml/min.

Los valores de porosidad total no varían y son prácticamente iguales para todos los flujos de nitrógeno (*Tabla III- 18*).
Tabla III-18: Datos de porosidad total, diámetro medio de poro, densidad aparente y de esqueleto (determinada mediante porosimetría de mercurio) y real (determinada mediante picnometría de helio) y superficie específica (BET) para los oxicarburos del sistema TEOS/PDMS, donde se ha variado el flujo de nitrógeno desde 25 hasta 150 ml/min.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Flujo N₂ (ml/min)</th>
<th>Porosidad (%)</th>
<th>D.poro (μm)</th>
<th>D.Aparente (g/cc)</th>
<th>D.Esqueleto (g/cc)</th>
<th>D.Real (g/cc)</th>
<th>SE BET (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>III-68</td>
<td>25</td>
<td>72</td>
<td>13.51</td>
<td>0.57</td>
<td>2.07</td>
<td>2.33</td>
<td>0.58</td>
</tr>
<tr>
<td>III-52</td>
<td>50</td>
<td>77</td>
<td>11.85</td>
<td>0.51</td>
<td>2.27</td>
<td>2.33</td>
<td>1.35</td>
</tr>
<tr>
<td>III-70</td>
<td>100</td>
<td>71</td>
<td>16.75</td>
<td>0.54</td>
<td>1.85</td>
<td>2.34</td>
<td>0.61</td>
</tr>
<tr>
<td>III-71</td>
<td>150</td>
<td>74</td>
<td>15.65</td>
<td>0.53</td>
<td>2.06</td>
<td>2.33</td>
<td>0.53</td>
</tr>
</tbody>
</table>

III.2.3.3.2 Estudio mediante adsorción de nitrógeno.

Las isotermas de adsorción de nitrógeno y las distribuciones de tamaño de poro están representadas en la Figura III-48 y Figura III-49 respectivamente. Todas las isotermas son tipo II, características de materiales macroporosos.

La muestra con un flujo de nitrógeno de 50 ml/min presenta un volumen adsorbido ligeramente superior al resto de los flujos estudiados. Como consecuencia de ello, la distribución de poro muestra una pequeña cantidad de poros por debajo de 100 nm, centrados sobre todo para 4 nm. El resto de las muestras no presentan prácticamente porosidad detectable mediante esta técnica.

Los valores de superficie específica (BET) obtenidos (Tabla III-18), son muy similares en todos los casos y cercanos a cero.
Figura III- 48: Isotermas de adsorción de nitrógeno para los oxicarburos del sistema TEOS/PDMS, donde se ha variado el flujo de nitrógeno empleado desde 25 hasta 150 ml/min.

Figura III- 49: Distribución del tamaño de poros obtenido a partir de la rama de desorción mediante el método BJH para los oxicarburos del sistema TEOS/PDMS, donde se ha variado el flujo de nitrógeno desde 25 hasta 150 ml/min.
III.2.3.3.3 Estudio mediante microscopía electrónica de barrido.

Las micrografías de la superficie de fractura de los oxicarburos del sistema TEOS/PDMS obtenidos tras ser pirolizados a 1100 ºC bajo diferentes caudales de nitrógenos están recogidas en la Figura III- 50. Tras el análisis de dichas micrografías no se aprecian diferencias notables en la microestructura de los vidrios de oxicarburoid:

<table>
<thead>
<tr>
<th>Flujo de nitrógeno (ml/min)</th>
<th>Micrografía 1</th>
<th>Micrografía 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura III- 50: Micrografías obtenidas mediante microscopía electrónica de barrido para los oxicarburos obtenidos del sistema TEOS/PDMS donde se ha variado el flujo de la atmósfera inerte desde 25 hasta 150 ml/min.
III.2.3.3.4 Variación de la densidad real

La densidad real en esta serie permanece constante y parece ser independiente del caudal de flujo de nitrógeno empleado. Los datos están recogidos en la Tabla III- 18 y los valores están representados en la Figura III- 51.

![Figura III- 51: Variación de la densidad real para los oxicarburos obtenidos a 1100 °C del sistema TEOS/PDMS, donde se ha variado el flujo de nitrógeno desde 25 hasta 150 ml/min.](image)

III.2.4 Influencia del Tiempo de Pirólisis.

En esta serie se ha variado el tiempo de permanencia a 1100 °C, de manera que pueda determinarse por un lado la estabilidad de la fase metaestable del vidrio de oxicarburo de silicio a esta temperatura y, por otro lado, la evolución de las reacciones de deshidrogenación del material y la densificación del mismo que afectarán sobre todo a la microestructura.

Como ya se ha comentado en el Capítulo II, se ha variado el tiempo de pirólisis a 1100 °C, desde 0.5 hasta 8h, con una velocidad de 2 °C/min y un flujo de nitrógeno de 50 ml/min.
III.2.4.1 Caracterización estructural.

III.2.4.1.1 Estudio mediante espectroscopía infrarroja.

En la Figura III- 52 están representados los espectros de FT-IR de los oxicarburos, donde se ha variado el tiempo de pirólisis a 1100 ºC, desde 0.5 hasta 8 horas. Todos los espectros son muy similares, presentando las bandas típicas del vidrio de oxicarburo de silicio.24

![Espectros de FT-IR para los oxicarburos obtenidos con tiempos de pirólisis a 1100 ºC que varían desde 0.5 hasta 8 horas para el sistema TEOS/PDMS.](image)

Figura III- 52: Espectros de FT-IR para los oxicarburos obtenidos con tiempos de pirólisis a 1100 ºC que varían desde 0.5 hasta 8 horas para el sistema TEOS/PDMS.

III.2.4.1.2 Estudio mediante espectroscopía Raman.

Los espectros Raman de los oxicarburos obtenidos con distintos tiempos de pirólisis a 1100 ºC, están presentados en la Figura III- 53. Como era lógico esperar en todos ellos, únicamente están presentes las bandas D y G, características de carbono tipo grafico y que se atribuye a la fase de carbono libre adicional, que se ha generado conjuntamente con el oxicarburo de silicio durante el proceso de pirólisis.
Para el tiempo de permanencia a 1100 ºC menor (0.5 horas), el tamaño del dominio calculado a partir de la relación de intensidades $I(D)/I(G)$ corresponde con el mayor obtenido de toda la serie (~ 3.83 nm). Para tiempos de permanencia superiores el tamaño es muy similar en todos los casos (~ 3.4 nm).

 Esto indica que una vez formado el material, para temperaturas superiores a 1000 ºC se produce fundamentalmente la eliminación de hidrógeno remanente del material recién formado. Esta cantidad de hidrógeno remanente puede estar presente en la fase oxicarburo y en la fase de carbono libre, por lo tanto y como consecuencia de su eliminación gracias al aumento del tiempo de permanencia a 1100 ºC, se puede explicar una disminución en el tamaño de los dominios de carbono tipo grafito.

 El aspecto de los espectros, es decir, la relación de intensidades $I(D)/I(G)$, el desplazamiento y la anchura de las bandas D y G (Tabla III-19), indican que para todos los casos el carbono presenta una naturaleza muy desordenada, indicando que prolongados tiempos a 1100 ºC no provocan una reorganización de las fases presentes, lo que está indicando el elevado grado de estabilidad del material a esta temperatura.

Figura III-53: Espectros Raman para los oxicarburos obtenidos con tiempos de pirólisis comprendidos entre 0.5 y 8 horas para el sistema TEOS/PDMS.
Tabla III- 19: Datos más relevantes obtenidos a partir de los espectros Raman de los oxicarburos del sistema TEOS/PDMS obtenidos, con tiempos de pirólisis a 1100 ºC, comprendidos entre 0.5 y 8 horas.

<table>
<thead>
<tr>
<th>t pirólisis (h)</th>
<th>(I(D)/I(G))</th>
<th>L (nm)</th>
<th>Banda D (\text{cm}^{-1})</th>
<th>FWMH Banda D (\text{cm}^{-1})</th>
<th>Banda G (\text{cm}^{-1})</th>
<th>FWMH Banda G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.14</td>
<td>3.83</td>
<td>1338</td>
<td>125</td>
<td>1586</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>1.26</td>
<td>3.48</td>
<td>1348</td>
<td>160</td>
<td>1578</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>1.28</td>
<td>3.44</td>
<td>1338</td>
<td>150</td>
<td>1586</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>1.29</td>
<td>3.41</td>
<td>1345</td>
<td>146</td>
<td>1583</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>1.27</td>
<td>3.47</td>
<td>1348</td>
<td>155</td>
<td>1583</td>
<td>90</td>
</tr>
</tbody>
</table>

*FWHM = Full Width Height médium (Anchura de la banda a mitad de altura)

III.2.4.1.3 Estudio mediante difracción de RX.

Los difractogramas de RX para los oxicarburos obtenidos con distintos tiempos de pirólisis se presentan en la Figura III- 54. Todos ellos presentan una banda ancha situada alrededor de 22 º, característica de materiales vítreos basados en sílice, no encontrando presentes otras especies. Estos resultados indican un elevado grado de estabilidad de la estructura del oxicarburo a esta temperatura.

Figura III- 54: Difractogramas de RX para los oxicarburos del sistema TEOS/PDMS obtenidos con tiempos de pirólisis comprendidos entre 0.5 y 8 horas.
III.2.4.2 Contenido en carbono y análisis químico.

El contenido en carbono permanece prácticamente constante al variar el tiempo de pirólisis a 1100 ºC, desde 0.5 hasta 8 horas (Figura III-55). La pérdida mayoritaria de carbono está asociada al intervalo de temperaturas comprendido entre 400-800 ºC, donde confluyen fundamentalmente las reacciones de despolimerización y mineralización. Por lo tanto, no sorprende que el tiempo de permanencia a 1100 ºC no repercuta en el contenido en carbono, ya que para esta temperatura, fundamentalmente, están asociadas las reacciones de deshidrogenación que no influyen en el contenido en carbono.

Figura III-55: Variación del contenido en carbono para los oxicarburos del sistema TEOS/PDMS, donde se ha variado el tiempo de pirólisis a 1100 ºC desde 0.5 hasta 8 horas.

Tabla III-20: Composición química, composición del oxicarburo y contenido en carbono libre para los oxicarburos para el sistema TEOS/PDMS, donde se ha variado el tiempo de pirólisis a 1100 ºC desde 0.5 hasta 8 horas. En base a los resultados obtenidos para la serie de temperatura se asume que %H es menor del 0.10%

<table>
<thead>
<tr>
<th>t.pirólisis (h)</th>
<th>C (%)</th>
<th>Si (%)</th>
<th>O (%)</th>
<th>H (%)</th>
<th>Formula SiOC</th>
<th>C libre</th>
<th>Pérdida en peso (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>9.8 ± 0.08</td>
<td>45.92</td>
<td>44.28</td>
<td><0.10</td>
<td>SiC_{0.15}O_{1.69} + 0.35C</td>
<td>69</td>
<td>47</td>
</tr>
<tr>
<td>1</td>
<td>9.78 ± 0.03</td>
<td>45.93</td>
<td>44.29</td>
<td><0.10</td>
<td>SiC_{0.15}O_{1.69} + 0.35C</td>
<td>69</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>9.86 ± 0.05</td>
<td>45.78</td>
<td>44.36</td>
<td><0.10</td>
<td>SiC_{0.15}O_{1.70} + 0.35C-</td>
<td>70</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>10.22 ± 0.02</td>
<td>45.73</td>
<td>44.05</td>
<td><0.10</td>
<td>SiC_{0.15}O_{1.69} + 0.37C</td>
<td>70</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>9.6 ± 0.09</td>
<td>45.86</td>
<td>44.54</td>
<td><0.10</td>
<td>SiC_{0.15}O_{1.70} + 0.34C</td>
<td>70</td>
<td>47</td>
</tr>
</tbody>
</table>
Los datos obtenidos a partir del análisis químico (*Tabla III- 20*) están en consonancia, mostrando unos valores muy similares para el carbono en red y el carbono libre, independientemente del tiempo de pirólisis a 1100 ºC.

III.2.4.3 Caracterización microestructural y textural.

III.2.4.3.1 Estudio mediante porosimetría de mercurio.

Las curvas de intrusión-extrusión y las distribuciones de tamaño de poro de los vidrios de oxicarburo obtenidos donde se ha variado el tiempo de pirólisis a 1100 ºC están representados en la *Figura III- 56* y en la *Figura III- 57*, respectivamente. Al aumentar el tiempo de pirólisis a 1100 ºC disminuye el volumen de mercurio introducido. Además puede apreciarse a partir de las distribuciones de tamaño de poro para estos tiempos de pirólisis, cómo al aumentar el tiempo de pirólisis desde 0.5 hasta 8 horas se produce una disminución del tamaño de poro en el vidrio de oxicarburo formado asociada sobre todo a que al aumentar el tiempo de permanencia a 1100 ºC el material experimenta una mayor sinterización entre las partículas lo que se traduce en una disminución del tamaño de poro.

Cuando se varía el tiempo de pirólisis a 1100 ºC desde 0.5 hasta 2 horas ºC se produce una disminución gradual del tamaño de poro. Para el tiempo de 4 horas la distribución de tamaño es bimodal, encontrando poros centrados en 15 y 9 micrómetros aproximadamente. Para el tiempo de pirólisis mayor, 8 horas, la distribución vuelve a ser monomodal aunque bastante amplia, centrada a 12 micrómetros aproximadamente. Esta disminución está asociada fundamentally a una densificación del material asociada al comienzo de la sinterización entre partículas y a reacciones de deshidrogenación.

Esto se apoya con una disminución de la porosidad total apreciada para el tiempo de pirólisis de 8 horas (*Tabla III- 21*).
Figura III- 56: Curvas de intrusión-extrusión determinadas mediante porosimetría de Hg para los oxicarburos del sistema TEOS/PDMS, donde se ha variado el tiempo de pirólisis a 1100 ºC desde 0.5 hasta 8 horas.

Figura III- 57: Distribuciones de tamaño de poro obtenidas a partir de los datos de intrusión de mercurio para los oxicarburos del sistema TEOS/PDMS, donde se ha variado el tiempo de pirólisis a 1100 ºC desde 0.5 hasta 8 horas.
Tabla III- 21: Datos de porosidad total, diámetro medio de poro, densidad aparente y de esqueleto (determinada mediante porosimetría de mercurio) y real(determinada mediante picnometría de helio) y superficie específica (BET) para los oxicarbores del sistema TEOS/PDMS, donde se ha variado el tiempo de pirólisis desde 0.5 hasta 8 horas.

<table>
<thead>
<tr>
<th>t.pirólisis (h)</th>
<th>Porosidad (%)</th>
<th>D.poro (μm)</th>
<th>D.Aparente (g/cc)</th>
<th>D.Esqueleto (g/cc)</th>
<th>D.Real (g/cc)</th>
<th>SE BET (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>77</td>
<td>15.63</td>
<td>0.49</td>
<td>2.08</td>
<td>2.27</td>
<td>0.43</td>
</tr>
<tr>
<td>1</td>
<td>78</td>
<td>14.62</td>
<td>0.50</td>
<td>2.25</td>
<td>2.28</td>
<td>0.51</td>
</tr>
<tr>
<td>2</td>
<td>77</td>
<td>11.85</td>
<td>0.51</td>
<td>2.27</td>
<td>2.33</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td>13.88</td>
<td>0.49</td>
<td>2.16</td>
<td>2.35</td>
<td>0.61</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>12.46</td>
<td>0.53</td>
<td>1.74</td>
<td>2.37</td>
<td>0.65</td>
</tr>
</tbody>
</table>

III.2.4.3.2 Estudio mediante adsorción de nitrógeno.

Las isotermas de adsorción de nitrógeno y las distribuciones de tamaño de poro para los oxicarbores obtenidos a 1100 ºC, donde se ha variado el tiempo de pirólisis a dicha temperatura desde 0.5 hasta 8 horas, están representadas en la Figura III- 58 y Figura III- 59 respectivamente.

Para todos los tiempos de pirólisis las isotermas obtenidas son de tipo II, características de materiales macroporosos. El volumen adsorbido para un tiempo de 2 horas es ligeramente superior. Este aumento no tiene gran relevancia, ya que los volúmenes absorbidos son muy pequeños para todos los tiempos estudiados. En la Tabla III- 21 están recogidos los valores de superficie específica; todos ellos son próximos a cero.

III.2.4.3.3 Estudio mediante microscopía electrónica de barrido.

Las micrografías de la superficie de fractura de los vidrios de oxicarbuoro obtenidos tras variar el tiempo de permanencia a la temperatura máxima desde 0.5 hasta 8 horas para el sistema TEOS/PDMS esta representadas en la Figura III- 60. En todos los casos, los vidrios de oxicarbuoro siguen presentando una microestructura de agregado de partículas con unas cavidades entre estos agregados de partículas del orden de 10 micrómetros tal y como se ha visto mediante porosimetría de mercurio y adsorción de nitrógeno. Para el
tiempo mayor se puede intuir una disminución de dichas cavidades así como el comienzo de la sinterización entre partículas.

Figura III- 58: Isotermas de adsorción de nitrógeno para los oxicarbouros del sistema TEOS/PDMS obtenidos para tiempos de pirólisis a 1100 ºC y que varían desde 0.5 hasta 8 horas.

Figura III- 59: Distribución del tamaño de poros obtenido a partir de la rama de desorción mediante el método BJH, para los oxicarbouros del sistema TEOS/PDMS obtenidos para tiempos de pirólisis a 1100 ºC y que varían desde 0.5 hasta 8 horas.
Figura III- 60: Micrografías de la superficie de fractura de los oxicarburo obtenidos del sistema TEOS/PDMS donde se ha variado el tiempo de pirólisis a 1100 ºC desde 0.5 hasta 8 h.
III.2.4.3.4 Variación de la densidad real.

La densidad real experimenta un ligero incremento al aumentar el tiempo de pirólisis a 1100 ºC. Estos datos quedan recogidos en la Tabla III- 21 y representados en la Figura III- 61.

Ponen de manifiesto la densificación que experimenta el material para tiempo de pirólisis a 1100 ºC por encima de 2 horas.

\[\text{Figura III- 61: Variación de la densidad real para los oxicarburos del sistema TEOS/PDMS obtenidos para tiempos de pirólisis que varían desde 0.5 hasta 8 horas.} \]

III.2.5 Influencia del Tipo de Procesamiento.

De la misma manera que se ha evaluado la influencia de otros parámetros ahora se determinará la influencia que tiene el tipo de procesamiento en el vidrio de oxicarburo obtenido. Con este fin se han pirolizado híbridos orgánico-inorgánicos obtenidos mediante diversas rutas de tal manera que tras ser pirolizados se han obtenido vidrios de oxicarburo monolíticos, en trozos o en polvo en función del tipo de tratamiento al que hayan sido sometidos, es decir, granceado o molidos en mortero de ágata y atrición.
III.2.5.1 Caracterización estructural.

III.2.5.1.1 Estudio mediante espectroscopía infrarroja.

En la Figura III-62 están representados los espectros de FT-IR de los oxicarbuluros obtenidos a 1100 °C, dependiendo del tipo de procesamiento empleado, es decir, ya sea la muestra monolítica, graceada, molida en un mortero de ágata o mediante molino de atrición. Todos ellos presentan las bandas típicas de vidrio de oxicarburo de silicio. Si bien únicamente en el obtenido como monolito o con molino de atrición se puede intuir un hombro a 880 cm⁻¹, que, como ya se ha comentado anteriormente, es indicativo de una mayor incorporación de carbono en la red mixta del oxicarburo.

![Espectros de FT-IR](image)

Figura III-62: Espectros de FT-IR para los oxicarburos del sistema TEOS/PDMS, obtenidos a 1100 °C donde se ha variado el tipo de procesamiento.

III.2.5.1.2 Estudio mediante espectroscopia Raman.

En la Figura III-63 están representados los espectros Raman para los oxicarburos obtenidos a 1100° C, en los cuales se ha variado el tipo de procesamiento. Estos
espectros son similares a los que se han obtenido para todo el sistema TEOS/PDMS, observándose las bandas D y G, características del carbono tipo grafito de la fase de carbono libre, embebida dentro de la matriz del oxicarburo.

A partir de la relación de intensidades de las bandas D y G, se ha calculado el tamaño de dominios (Tabla III-22), siendo muy similar en toda esta serie e independientemente de si el híbrido ha sido pirolizado como monolito o si ha sido previamente granceado o molido.

Tabla III-22: Información de los espectros Raman para los oxicarburos obtenidos a 1100 ºC del sistema TEOS/PDMS, donde se ha variado el tipo de procesamiento.

<table>
<thead>
<tr>
<th>Tipo de procesamiento</th>
<th>$I(D)/I(G)$</th>
<th>L (nm)</th>
<th>Banda D (cm$^{-1}$)</th>
<th>FWHM D (cm$^{-1}$)</th>
<th>Banda G (cm$^{-1}$)</th>
<th>FWHM G (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monolito</td>
<td>1.28</td>
<td>3.44</td>
<td>1338</td>
<td>150</td>
<td>1586</td>
<td>90</td>
</tr>
<tr>
<td>Granceado</td>
<td>1.24</td>
<td>3.56</td>
<td>1340</td>
<td>157</td>
<td>1581</td>
<td>100</td>
</tr>
<tr>
<td>M. ágata</td>
<td>1.33</td>
<td>3.30</td>
<td>1351</td>
<td>161</td>
<td>1577</td>
<td>110</td>
</tr>
<tr>
<td>M. atrición</td>
<td>1.20</td>
<td>3.66</td>
<td>1332</td>
<td>156</td>
<td>1573</td>
<td>100</td>
</tr>
</tbody>
</table>

*FWHM = Full Width Height médium (Anchura de la banda a mitad de altura)
III.2.5.1.3 Estudio mediante difracción de RX.

En la Figura III- 64 están representados los difractogramas de RX para los oxicarburos obtenidos a 1100 ºC en función del tipo de procesamiento que haya experimentado. Para todos los casos los difractogramas son muy similares, con la única peculiaridad de presentar un halo centrado para 22 º, indicativo de materiales vítreos basados en sílice.

Figura III- 64: Difractogramas de RX para los oxicarburos del sistema TEOS/PDMS, donde se ha variado el tipo de procesamiento.

III.2.5.2 Contenido en carbono y análisis químico.

En la Figura III- 65 y en la Tabla III- 23 están representadas la variación del contenido en carbono y el análisis químico para toda esta serie.

En cuanto al contenido en carbono, a medida que comienza la molienda/granceado disminuye el contenido en carbono. Los valores menores se obtienen para la muestra granceada y la molida con mortero de ágata. Sorprendentemente este valor aumenta de nuevo para la muestra obtenida mediante molienda en un molino de atrición.

Al disminuir el tamaño de partícula a unos pocos micrómetros, en torno a 4 µm, (molino de atrición) se ha producido una excelente homogeneidad en la muestra y por eso se ha minimizado la pérdida de carbono en las reacciones de despolimerización del PDMS.
durante el proceso de pirólisis. Esta homogeneidad no se ha alcanzado en el resto de los casos, granceado y molienda en mortero de ágata, pero si se ha aumentado la superficie reactiva y por ello se produce una mayor pérdida de carbono durante las reacciones de despolimerización.

Este aumento o disminución del contenido en carbono total se traduce en un aumento o disminución del carbono incorporado a la red o embebido dentro de ella en forma de carbono libre (Tabla III-23).

Figura III-65: Variación del contenido en carbono en función del tipo de procesamiento para el sistema TEOS/PDMS.

<table>
<thead>
<tr>
<th>Tipo de procesamiento</th>
<th>C (%)</th>
<th>Si (%)</th>
<th>O (%)</th>
<th>H (%)</th>
<th>Fórmula SiOC</th>
<th>C libre (%)</th>
<th>Pérdida en peso (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monolito</td>
<td>9.86 ± 0.05</td>
<td>45.78</td>
<td>44.36</td>
<td><0.10</td>
<td>SiC_{0.15}O_{1.70} + 0.35C_ -</td>
<td>70</td>
<td>46</td>
</tr>
<tr>
<td>Graceado</td>
<td>8.54 ± 0.045</td>
<td>46.42</td>
<td>45.04</td>
<td><0.10</td>
<td>SiC_{0.15}O_{1.70} + 0.28 C</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>m. agata</td>
<td>8.25 ± 0.08</td>
<td>45.59</td>
<td>46.16</td>
<td><0.10</td>
<td>SiC_{0.11}O_{1.77} + 0.31 C</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>m. atrición</td>
<td>9.5 ± 0.06</td>
<td>46.06</td>
<td>44.44</td>
<td><0.10</td>
<td>SiC_{0.15}O_{1.69} + 0.33 C</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>
III.2.5.3 Caracterización microestructural y textural.

III.2.5.3.1 Estudio mediante porosimetría de mercurio.

Para llevar a cabo el estudio de la porosidad mediante porosimetría de mercurio se ha realizado una corrección de la ecuación de Washburn, donde además de considerar la intrusión del mercurio dentro de los poros del material se ha tenido presente el efecto que producen las elevadas presiones alcanzadas durante el análisis, sobre todo en las muestras en polvo. Mediante esta corrección propuesta por Pirard217,218 (véase Anexo I), se determinan dos regímenes diferentes: en un primer lugar (para presiones menores) se produce una compactación de las partículas o colapso de la estructura y posteriormente se da paso a la intrusión de mercurio dentro de los huecos o poros del material. La primera etapa está regida por lo que se denomina ecuación de densificación y tras alcanzarse una presión de transición (P_t) tiene validez la ecuación de Washburn.

Para el caso aquí tratado, la aplicación de esta corrección ha sido especialmente útil para la muestra que ha sido molida en el molino de atrición. Se calculó el tamaño de partícula, siendo de 4 micrómetros, y mediante porosimetría de mercurio se estimó que el tamaño de poro era de 0.88 micrómetros. Estos valores parecen un poco incongruentes aunque los valores de porosidad total obtenidos son cercanos al 66 %. Tras hacer la corrección mediante la ecuación de la densificación se pueden interpretar los resultados obtenidos de otra manera: Para valores de presión bajos ($P<P_t$) los granos se compactan experimentando una compresión elástica. Por otro lado, a presiones mayores ($P> P_t$), la intrusión se produce dentro de los huecos que han dejado los granos que han sido compactados.

A expensas de ser confirmado mediante otras técnicas, se puede hacer la hipótesis de que la molienda en molino de atrución ha eliminado la macroporosidad del híbrido y, por lo tanto, se han obtenido oxicarburos de silicio que no presenta macroporosidad, debido al tamaño de grano tan pequeño que poseen.
Figura III- 66: Curvas de intrusión-extrusión determinadas mediante porosimetría de Hg, para los oxicarburos del sistema TEOS/PDMS, donde se ha variado el tipo de procesamiento.

Figura III- 67: Distribuciones de tamaño de poro obtenidas a partir de los datos de intrusión de mercurio, para los oxicarburos del sistema TEOS/PDMS, donde se ha variado el tipo de procesamiento.

La muestra monolítica presenta una distribución de poros monomodal con un diámetro de poro en torno a los 12 micrómetros. Cuando se pasa a las muestras que han sido trituradas/molturas en mayor o menor medida, se produce una disminución del volumen de mercurio acumulado (Figura III- 66), lo que implica una disminución del tamaño de poro (Figura III- 67). Esto, lógicamente, también se traduce en una disminución de la porosidad total (Tabla III- 24).
La muestra que ha sido granceada presenta una distribución de poros bimodal centrada para 12 y 8 micrómetros. Posteriormente la muestra que ha sido molida en un mortero de ágata (a la cual también se le ha aplicado la corrección) vuelve a ser monomodal, los poros más grandes han desaparecido y únicamente quedan los que se sitúan entorno a 8 micrómetros. Por último, la muestra molida con molino de atrición presenta un pico centrado en 0.77 micrómetros que se asocia fundamentalmente a espacio entre partículas.

Tabla III- 24: Datos de porosidad total, diámetro medio de poro, densidad aparente y de esqueleto(determinada mediante porosimetría de mercurio) y real(determinada mediante picnometría de helio) y superficie específica (BET) para los oxicarburos del sistema TEOS/PDMS donde se ha variado el tipo de procesamiento.

<table>
<thead>
<tr>
<th>Tipo de procesamiento</th>
<th>Porosidad (%)</th>
<th>D.poro (μm)</th>
<th>D.Aparente (g/cc)</th>
<th>D.Esqueleto (g/cc)</th>
<th>D.Real (g/cc)</th>
<th>SE BET (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monolito</td>
<td>77</td>
<td>11.85</td>
<td>0.51</td>
<td>2.27</td>
<td>2.33</td>
<td>1.35</td>
</tr>
<tr>
<td>Granceado</td>
<td>43</td>
<td>9.40</td>
<td>0.51</td>
<td>1.68</td>
<td>2.30</td>
<td>0.83</td>
</tr>
<tr>
<td>M. Ágata</td>
<td>46</td>
<td>7.67</td>
<td>0.69</td>
<td>1.68</td>
<td>2.32</td>
<td>0.47</td>
</tr>
<tr>
<td>M. Atrición</td>
<td>66</td>
<td>0.77</td>
<td>0.80</td>
<td>2.37</td>
<td>2.32</td>
<td>8.01</td>
</tr>
</tbody>
</table>

III.2.5.3.2 Estudio mediante adsorción de nitrógeno.

Las isotermas de adsorción de nitrógeno y las distribuciones de tamaño de poro para los oxicarburos obtenidos a 1100 ºC, donde se ha variado el tipo de procesamiento en el híbrido de partida, están representadas en la Figura III- 68 y la Figura III- 69 respectivamente.

El pequeño tamaño de partícula conseguido mediante molienda en molino de atrición, repercute en un aumento, tanto del volumen adsorbido de nitrógeno como de la superficie específica, con respecto a los otros oxicarburos de esta misma serie. Independientemente de esto, para todos los casos las isotermas obtenidas son de tipo II, características de materiales macroporosos (o no porosos, ya que mediante adsorción de nitrógeno únicamente se pueden detectar mesoporos y microporos).
Figura III- 68: Isotermas de adsorción de nitrógeno para los oxicarburos del sistema TEOS/PDMS, donde se ha variado el tipo de procesamiento.

Figura III- 69: Distribución del tamaño de poros obtenido a partir de la rama de desorción mediante el método BJH para los oxicarburos del sistema TEOS/PDMS, donde se ha variado el tipo de procesamiento.

En la Tabla III- 24 están recogidos los valores de superficie específica. Exceptuando el obtenido mediante molino de atrición que se sitúa en 8 m2/g, para el resto están próximos a cero.

Para esta muestra también se aprecia la presencia de poros por debajo de 10 nm, mayoritariamente constituidos por poros de un diámetro de 4 nm aproximadamente.
III.2.5.3.3 Variación de densidad real.

A medida que disminuye el tamaño de partícula, se aprecia un ligero descenso de la densidad real, de nuevo se aprecia que para el tamaño de partícula más pequeño, que corresponde al obtenido mediante molienda con molino de atrición, el valor vuelve a aumentar, siendo similar que el obtenido para la muestra en monolito. Esto también puede ser atribuido a la gran homogeneidad conseguida con dicha molienda que hace que el híbrido y el oxicarburo, subsiguientemente formado, estén uniformemente distribuidos dando como consecuencia un aumento de la densidad real en el material obtenido. La variación de la densidad real, así como los valores, están recogidos en la Figura III-70 y en la Tabla III-24 respectivamente.

![Figura III-70: Variación de la densidad real para los oxicarburos del sistema TEOS/PDMS donde se ha variado el tipo de procesamiento.](image-url)
III.3 Conclusiones del sistema TEOS/PDMS.

Los materiales híbridos obtenidos mediante el proceso sol-gel para el sistema TEOS/PDMS, presentan una red tridimensional inorgánica, procedente del TEOS, que se encuentra parcialmente interrumpida mediante copolimerización con el PDMS, que está dispuesto en forma de pequeños oligómeros cíclicos (cuatro eslabones) o lineales ($n \approx 5$).

Mediante FT-IR y Raman se ha determinado la formación de anillos de 4 eslabones a partir de la presencia de bandas de “defecto”. Estos anillos de 4 eslabones se forman, en lugar de los de 6 eslabones (que son los que se encuentran de forma mayoritaria en la sílice vítrea), debido al impedimento que sufre la red vítrea cuando se está formando por la presencia de las cadenas del polímero.

Estos materiales presentan una microestructura característica de agregados de partícula, siendo fundamentalmente macroporosos, con uno tamaño de poro en torno a los 15 micrómetros.

Para estudiar de una manera completa la transformación orgánico-inorgánica que experimentan estos híbridos y que conduce hacia la formación de vidrios de oxicarbono de silicio, se ha analizado el efecto que produce la temperatura, la velocidad, el flujo de la atmósfera inerte, el tiempo de pirólisis y el tipo de procesamiento.

- **Temperatura**

Los híbridos del sistema TEOS/PDMS son estables hasta 400 ºC, temperatura hasta la cual se completan las reacciones de hidrólisis y condensación que no ha llegado a su fin durante el proceso sol-gel. El grado de condensación del híbrido es del 94 %.

A partir de 500 ºC y hasta 800 ºC aproximadamente, se producen las reacciones de despolimerización (redistribución de enlaces Si-O/Si-O) del PDMS, que supone una gran pérdida de masa y carbono vía oligómeros cíclicos de 3 y 4 eslabones fundamentalmente. La mayor o menor evolución de estas reacciones repercutirá notablemente en el material inorgánico finalmente formado.

Para este intervalo de temperaturas, se producen otros fenómenos como son las reacciones de redistribución de enlaces Si-O/Si-C que hacen que se generen a partir del
Sistema TEOS/PDMS

híbrido que únicamente está constituido por unidades D y Q, otras especies tales como T, M y X que son las que posteriormente formarán el vidrio de oxicarburo de silicio. La presencia de estas especies ha sido determinada fundamentalmente mediante $^{29}\text{Si} \text{RMN}$.

Dentro de este intervalo, para temperaturas comprendidas entre 600-900 °C suceden las reacciones de mineralización mediante ruptura homolítica de enlaces Si-C y C-H, que son las responsables de la incorporación de carbono en la red vitrea y que generan como subproductos especies volátiles tales como H_2 y CH_4. El comienzo de estas reacciones ha sido determinado a 600 °C mediante FT-IR, Raman y $^{13}\text{C} \text{RMN}$, por la presencia de estructuras tipo puente ($\equiv\text{Si-CH}_2\equiv\text{Si}$).

Al mismo tiempo (a partir de 700 °C), conjuntamente con la mineralización del material se produce la formación de una fase de carbono libre adicional que es carbono tipo grafito y está embebido dentro de la fase de oxicarburo. La aparición y la naturaleza de esta fase grafitica ha sido seguida mediante $^{13}\text{C} \text{RMN}$ y Raman. En todos los casos, esta fase se corresponde con carbono grafito altamente desordenado con unos tamaños de dominio en torno a los 3 – 4 nm.

Para temperaturas superiores a 900 °C la transformación orgánico-inorgánica ha concluido. Las reacciones de redistribución han producido la reestructuración de las especies y junto con la mineralización conducen a la formación del vidrio de oxicarburo, constituido por una distribución aleatoria de unidades $\text{Si}_x\text{O}_{4-x}$. Desde estas temperaturas y hasta 1100 °C el material fundamentalmente se deshidrogena.

Los materiales obtenidos al igual que los híbridos precursores son macroporosos, con unos diámetros de poro entorno a los 10-15 micrómetros. Para temperaturas intermedias desde 500-800 °C, se rompen y se forman muchos enlaces y se generan una gran cantidad de especies gaseosas debido a las reacciones de redistribución y mineralización, como resultado para estas temperaturas se produce un gran aumento de superficie específica y los materiales presentan una gran microporosidad. Posteriormente esta porosidad se cierra y el vidrio de oxicarburo obtenido únicamente presenta macroporos. La densidad experimenta un gran aumento para este mismo intervalo, debido a la transformación orgánico-inorgánica que sufre el híbrido.
Capítulo III

- **Velocidad de calentamiento.**
 Para velocidades bajas, 0.5 y 1 ºC/min, el proceso más favorecido durante la pirólisis es la degradación térmica del polímero, como consecuencia las reacciones de despolimerización ocurren de una manera preferencial y la incorporación de carbono en la red vítrea disminuye.
 Al aumentar la velocidad de calentamiento (para 2, 4 y 8 ºC/min) se produce una conjunción de todos los procesos involucrados durante la pirólisis, de manera que se favorece la incorporación de carbono en la red vítrea. Sin embargo, para velocidades muy altas (12 ºC/min) el tiempo en el que coinciden todos los procesos es muy pequeño y el carbono introducido en la red mixta de Si-O-C disminuye ligeramente.

- **Flujo de Nitrógeno.**
 Debido a la naturaleza porosa del híbrido el flujo de nitrógeno empleado durante la pirólisis, también influye en el material finalmente obtenido.
 Al aumentar el flujo de nitrógeno se produce un mayor arrastre de las especies volátiles generadas a lo largo de la pirólisis, lo que provoca una menor incorporación de carbono en la red vítrea. Esto se aprecia fundamentalmente para el flujo mayor, de 150 ml/min.

- **Tiempo de pirólisis.**
 El tiempo de pirólisis a 1100 ºC, influye en una mayor o menor evolución de las reacciones de deshidrogenación de material. Mediante espectroscopía Raman, se observa que el tamaño de los dominios de carbono libre disminuye al aumentar el tiempo de pirólisis a 1100 ºC, desde 3.83 hasta 3.47 nm. La porosidad del material formado también disminuye pasando desde 77 hasta 70 %, como consecuencia de la densificación que experimenta el oxicarburo.

- **Tipo de procesamiento.**
 Cuando se produce la molienda en el molino de atrición se llega a unos tamaños de partícula tan pequeños que se ha conseguido eliminar la macroporosidad del vidrio de oxicarburo obtenido tras la pirólisis. Esto ha sido determinado mediante porosimetria de mercurio, aplicando una corrección de la ecuación de Washburn, que tiene en cuenta el espacio entre partículas para muestras analizadas en polvo.
IV-EL PROCESADO POR LA “VÍA CERÁMICA. LA “VÍA CERÁMICA” NUEVA ALTERNATIVA DE PROCESADO.
IV EL PROCESADO POR LA “VÍA CERÁMICA”/ LA “VÍA CERÁMICA” NUEVA ALTERNATIVA DE PROCESADO.

En el Capítulo III se han obtenido vidrios de oxicarburo de silicio altamente porosos a partir de la pirólisis de híbridos orgánico-inorgánicos del sistema TEOS/PDMS. Con el fin de eliminar parcial o totalmente dicha porosidad y de esta manera obtener materiales densos se ha desarrollado lo que se denomina “Vía Cerámica”. Esta nueva alternativa de procesado se compone de las siguientes etapas: Pretratamiento del híbrido orgánico-inorgánico del sistema TEOS/PDMS a 600 ºC, molienda en molino de atrición, pirólisis a 1100 ºC, conformado para la obtención de la pieza en “verde” y sinterización a alta temperatura. Como resultado de todo este proceso se pretende conseguir un material altamente densificado.

La etapa clave es la eliminación de la porosidad que se consigue tras molienda en molino de atrición, dicha porosidad estaba presente en el híbrido orgánico-inorgánico de partida y permanecía en el oxicarburo obtenido tras el proceso de pirólisis (Véase Capítulo III).

La necesidad de eliminar la porosidad del vidrio de oxicarburo radica en su posible empleo como materiales estructurales, debido a que los vidrios de oxicarburo presentan unas muy buenas propiedades térmicas, químicas y mecánicas que les hacen buenos candidatos para ello.
IV.1 Obtención de la pieza en “verde”

IV.1.1 Preparación de Polvos Para la Obtención de Piezas en “Verde”.

IV.1.1.1 Tratamiento térmico previo.

El híbrido orgánico inorgánico empleado tiene la misma composición que el utilizado en el Capítulo III, es decir TEOS/PDMS 60/40 (% en peso) y TEOS/i-PrOH/H₂O/HCl 1/6/3/0.3 (relación molar).

El híbrido orgánico-inorgánico muestra carácter elastomérico conferido por la presencia del PDMS en su estructura híbrida: Para facilitar la molienda de dicho material éste es pretratado a 600 °C, ya que sin dicho tratamiento térmico la pulverización sería muy tediosa.

IV.1.1.2 Molienda.

El híbrido tras ser sometido a 600 °C, pierde gran parte de su carácter plástico y su molienda es muy sencilla. Una vez reducido a polvo, dicho híbrido se muele en un molino de atrición con el fin de eliminar la macroporosidad que presenta dicho material, lo que se consigue disminuyendo lo máximo posible el tamaño de partícula. La reducción de la macroposidad facilitará la sinterización del material y permitirá la obtención de piezas densas (lo óptimo sería obtener piezas con porosidad cero). Para determinar el tiempo necesario de molienda se ha realizado un estudio de cómo influye dicho tiempo en el tamaño de partícula de los polvos obtenidos.

- Variación del tamaño de partícula en función del tiempo de molienda.

En la Figura IV-1 está representada la variación del tamaño de partícula para el ormosil pretratado a 600 °C, con respecto al tiempo de molienda en un molino de atrición desde 2 hasta 12 horas. Como puede observarse en dicha figura el material inicial (que ha sido
molturado en un mortero de ágata y tamizado) presenta un tamaño de partícula de aproximadamente 20 micrómetros, tras las primeras dos horas de molienda dicho tamaño se reduce hasta ≈ 4 micrómetros y este tamaño se reduce sólo ligeramente cuando han transcurrido 12 horas de molienda. Por lo tanto, dos horas molienda son las que se van a emplear debido a que tiempos mayores de molienda son innecesarios, ya que la reducción de tamaño de partícula en mínima.

![Gráfico](image)

Figura IV-1: Variación del tamaño de partícula en función del tiempo de molienda en molino de atrición, para el híbrido del sistema TEOS/PDMS pretratado a 600 °C.

IV.1.1.3 Pirólisis 1100 °C

La pirólisis a 1100 °C conduce a la obtención de polvos de vidrio de oxicarburo de silicio que tras la molienda presentan un tamaño de partícula muy pequeño (aproximadamente 3 micrómetros) y cuya porosidad a priori se ha reducido considerablemente (en relación a las piezas monolíticas obtenidas en el Capítulo III donde la porosidad se situaba en torno al 70 %).

Se decide realizar esta primera pirólisis a 1100 °C antes de hacer el conformado y no realizar directamente el conformado sobre los polvos pretratados a 600 °C, ya el procesado de estos polvos obtenidos a 600 °C no sería una buena idea, debido a que el oxicarburo no se ha formado todavía y al hacerlo llevaría asociado una elevada...
Capítulo IV

contracción de la pieza en “verde”. Por otro lado, si se realiza el conformado de la pieza en “verde” sobre polvos de vidrio de oxicarburo (obtenidos a 1100 ºC), solamente se producirá la contracción debida a la sinterización entre las partículas del oxicarburo.

Por otro lado, la molienda no se ha realizado sobre los vidrios de oxicarburo, ya que estos son bastante más duros y el proceso habría sido más complicado necesitando también mayores tiempos de molienda.

IV.1.1.4 Conformado de la pieza en “verde”.

Los polvos de vidrio de oxicarburo pirolizados a 1100 ºC han sido procesados empleando dos tipos diferentes de aglomerantes PARALOID y PDMS, y dos tipos de prensado uniaxial e isostático. Además se han obtenido dos tipos diferentes de geometrías: pastillas cilíndricas y prismáticas.

Tanto el PARALOID como el PDMS se añaden en un 6% en peso con respecto a los polvos de vidrio de oxicarburo.

Mediante prensado uniaxial, la fuerza ejercida sobre las probetas cilíndricas es de 640 kg/cm² y para las probetas prismáticas de 500 kg/cm².

Mediante prensado isostático las probetas experimentan una fuerza de 2000 kg/cm².

IV.1.2 Caracterización de los Productos Intermedios Hasta la Pieza en “Verde”.

IV.1.2.1 Variación del contenido en carbono y análisis químico.

La representación de la variación del contenido en carbono a lo largo de todo el proceso, así como los valores obtenido del contenido en carbono y análisis químico están recogidos en la Tabla IV-1 y en la Figura IV-11 respectivamente.
Tabla IV-1: Variación del contenido en C, H, Si y O, así como cálculo de la fórmula de oxicarburo y en carbono libre de los productos intermedios hasta la obtención de la pieza en “verde”.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>C (%)</th>
<th>H (%)</th>
<th>Si (%)</th>
<th>O (%)</th>
<th>Fórmula oxicarburo</th>
<th>C libre (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>22.3</td>
<td>5.36</td>
<td>36.61</td>
<td>35.73</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>600</td>
<td>13.39</td>
<td>2.99</td>
<td>42.88</td>
<td>40.74</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1100</td>
<td>9.5</td>
<td>0.10</td>
<td>46.06</td>
<td>44.44</td>
<td>SiC<sub>0.15</sub>O<sub>1.69</sub> + 0.33 C</td>
<td>68</td>
</tr>
</tbody>
</table>

Al pasar del ormosil de partida al pretratado a 600 °C se produce un gran descenso en el contenido en carbono como consecuencia de las reacciones de despolimerización del PDMS que son el proceso mayoritario para estas temperaturas de tratamiento.

La molienda no modifica este contenido en carbono siendo similar al obtenido para el material que no ha sido molido (*Véase Capítulo III*). Cuando estos polvos son sometidos a una pirólisis a 1100 °C se produce un descenso más moderado del contenido en carbono asociado a la mineralización del material.

El análisis químico completo permite calcular la fórmula del oxicarburo (*Tabla IV-1*), es decir es posible estimar el carbono que forma parte del oxicarburo y el que está presente como una fase de carbono libre adicional. Los valores calculados están muy próximos a los obtenidos mediante el procedimiento normal (*Capítulo III*), si bien el contenido en carbono que forma parte del oxicarburo es ligeramente superior y el contenido en carbono libre ligeramente inferior. Este hecho puede ser explicado de la siguiente manera y está asociada tanto al pretratamiento a 600 °C que elimina el carbono en exceso (*PDMS*), como a la molienda que disminuye el tamaño de partícula. El pequeño tamaño de partícula alcanzado con la molienda hace que el material sea muy homogéneo a escala micrométrica, además debido a este pequeño tamaño de partícula aumenta la superficie reactiva del material lo que se traduce en una formación más efectiva del vidrio de oxicarburo en detrimento de la fase de carbono libre.
IV.1.2.2 Caracterización estructural

- Estudio mediante espectroscopía infrarroja

Los espectros de infrarrojo para los productos intermedios desde el híbrido orgánico-inorgánico del sistema TEOS/PDMS hasta los polvos de vidrio de oxicarburo, están representados en la Figura IV-2.

Figura IV-2. Espectros de infrarrojo para los materiales intermedios hasta la obtención de la pieza en “verde”, es decir, híbrido de partida, pretratado a 600 ºC y molido en molino de atrición (2h) y el oxicarburo en polvo obtenido tras pirólisis a 1100 ºC.

Mediante dichos espectros se comprueba que las variaciones estructurales que se producen son las normales que ocurren para estas temperaturas de tratamiento, y que por lo tanto todos los procesos intermedios involucrados (pretratamiento a 600 ºC, molienda y posterior pirólisis) no afectan a la formación del vidrio de oxicarburo que ocurre de una forma normal.

Al pasar desde el híbrido hasta el pretratado, fundamentalmente se aprecia una disminución de las bandas asociadas al PDMS (por ejemplo deformación de Si-CH$_3$ situada a 1260 cm$^{-1}$) como consecuencia de las reacciones de despolimerización. Para los polvos de oxicarburo obtenidos tras pirólisis a 1100 ºC el material presenta el espectro típico de vidrio de oxicarburo de silicio24; las bandas más importantes son la
tensión asimétrica del enlace Si-O-Si (1170 y 1080 cm$^{-1}$), la del tetraedro SiX$_4$ ($X = C$, O) (810 cm$^{-1}$) y la deformación del enlace O-Si-O situada a 460 cm$^{-1}$, así como el desdoblamiento de la banda situada a 810 cm$^{-1}$ atribuido a silicio unido, al menos, a dos átomos de carbono, indicando que la fase de vidrio de oxicarburo se ha formado con una buena incorporación de carbono dentro de ella.

IV.1.2.3 Caracterización microestructural.

- **Estudio mediante porosimetría de mercurio.**

Las curvas de intrusión-extrusión, así como las distribuciones de tamaño de poro para el híbrido orgánico-inorgánico, el pretratado a 600 ºC y posteriormente molido en molino de atrición y finalmente para los polvos de vidrio de oxicarburo obtenido mediante pirólisis a 1100 ºC de los anteriores están representados en la Figura IV-3 y la Figura IV-4.

Dado que con las muestras en polvo (el ormosil pretratado a 600 ºC y molido en molino de atrición y el oxicarburo obtenido a 1100 ºC) se ha aplicado la corrección propuesta por Pirard217,218 (véase Anexo I) se tiene en cuenta la contribución del volumen entre partículas.

Puede apreciarse como disminuye el volumen acumulado de mercurio al pasar del híbrido de partida al pretratado a 600 ºC y posteriormente molido, debido a que la microestructura se ha roto como consecuencia de la molturación. Los polvos del híbrido molido y los del oxicarburo obtenido tras pirólisis de éstos presentan un volumen de mercurio muy similar (Figura IV-3).

A partir de las distribuciones de tamaño de poro Figura IV-4 y Tabla IV-2 se aprecia como debido a la molienda en molino de atrición el diámetro de poro pasa de estar en torno a los 14 micrómetros, (en el híbrido de partida), a situarse por debajo de 1 micrómetro.

Para el caso aquí tratado, la aplicación de la corrección propuesta por Pirard (ecuación de densificación)217,218 (Anexo I) ha sido especialmente útil para las muestras que han sido molidas en el molino de atrición, la pretratada a 600 ºC y la pirólizada a 1100 ºC.
Se calculó el tamaño de partícula (*Tabla IV- 2*), siendo de 4 y 3 micrómetros, respectivamente y, mediante porosimetría de mercurio se estimó que el tamaño de po ro era de 0.88 y 0.77 micrómetros, respectivamente. Estos valores parecen un poco incongruentes aunque los valores de porosidad total obtenidos son cercanos al 64-66 %. Tras hacer la corrección mediante la ecuación de densificación se pueden interpretar los resultados obtenidos de otra manera: Esta corrección considera que algunas curvas de intrusión son una contribución de dos fenómenos: la densificación (compactación) del material y la intrusión del mercurio dentro de los poros o partículas (donde es válida la interpretación tradicional mediante la ecuación de *Washburn*), estos fenómenos están delimitados por una presión de transición (*P*ₚ) característica de cada material. Para valores de presión bajos (*P*<*P*ₚ) los granos se compactan experimentando una compresión elástica. Por otro lado, a presiones mayores (*P* > *P*ₚ), la intrusión se produce dentro de los huecos que han dejado los granos que han sido compactados (o dentro de los poros del material).

Tabla IV- 2: Variación de algunas de las propiedades en función del tamaño de partícula y temperatura de tratamiento, tales como tamaño de partícula, diámetro de poro, porosidad, superficie específica y densidad real.

<table>
<thead>
<tr>
<th></th>
<th>Monolito Ormosil</th>
<th>Monolito Δ 600</th>
<th>Monolito 1100 °C</th>
<th>Monolito Mortero Agata Δ 600</th>
<th>Monolito Mortero Agata 1100 °C</th>
<th>Monolito Molino Atrición Δ 600</th>
<th>Monolito Molino Atrición 1100 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño de part. (µm)</td>
<td>monolito</td>
<td>monolito</td>
<td>monolito</td>
<td>18.52</td>
<td>16.39</td>
<td>4.51</td>
<td>2.88</td>
</tr>
<tr>
<td>Tamaño de Poro (µm)</td>
<td>14.29</td>
<td>11.11</td>
<td>11.85</td>
<td>3.70</td>
<td>4.41</td>
<td>0.88</td>
<td>0.77</td>
</tr>
<tr>
<td>Porosidad (%)</td>
<td>87</td>
<td>84</td>
<td>77</td>
<td>56</td>
<td>55</td>
<td>64</td>
<td>66</td>
</tr>
<tr>
<td>SE (m²/g)</td>
<td>0.56</td>
<td>403.72</td>
<td>1.35</td>
<td>420.23</td>
<td>0.47</td>
<td>430.17</td>
<td>8.01</td>
</tr>
<tr>
<td>Densidad real (g/cc)</td>
<td>1.23</td>
<td>-</td>
<td>-</td>
<td>1.52</td>
<td>2.32</td>
<td>1.47</td>
<td>2.27</td>
</tr>
</tbody>
</table>

A expensas de ser confirmado mediante otras técnicas, se puede aventurar la hipótesis de que la molienda en molino de atrición ha eliminado los macroporos de 10 micrómetros del híbrido y, por lo tanto, se han obtenido oxicarbouros de silicio que no presentan estos macroporos, debido al tamaño de grano tan pequeño que muestran.
Figura IV-3: Curvas de intrusión-extrusión mediante porosimetría de mercurio para el híbrido orgánico-inorgánico, el pretratado a 600 °C y molido en molino de atrición durante 2 h y los polvos de oxicarburo obtenidos mediante pirólisis a 1100 °C.

Figura IV-4: Distribuciones de tamaño de poro obtenidas mediante porosimetría de mercurio para el híbrido orgánico-inorgánico, el pretratado a 600 °C y molido en molino de atrición durante 2 h y los polvos de oxicarburo obtenidos mediante pirólisis a 1100 °C.
También se ha estudiado cómo varía el tamaño de poro del híbrido orgánico-inorgánico pretratado a 600 ºC, en función del tamaño de partícula, es decir la pieza monolítica y los polvos tras molienda en mortero de ágata y molino de atrición. En la Figura IV- 5 se aprecia que a medida que se consigue un tamaño de partícula más pequeño en función de la molienda empleada se produce una disminución del volumen acumulado de mercurio. Las distribuciones de poro también experimentan el mismo fenómeno dando
un tamaño de poro menor a medida que disminuye el tamaño de partícula (Figura IV-6). A medida que disminuye el tamaño de partícula y, en el caso concreto, cuando se ha empleado el molino de atrición, la distribución de poros es bastante compleja pudiendo ser dividida en tres tramos: Poros centrados alrededor de 1 micrómetro aproximadamente, poros comprendidos entre 1 y 0.1 micrómetros, y poros menores de 0.1 micrómetros. Si se sigue el mismo razonamiento empleado anteriormente, el primer tramo no corresponde con poros reales sino con el volumen de mercurio introducido en el espacio entre partículas; el segundo tramo podría corresponder con porosidad real o rugosidad del material, y el tercero indica la presencia de poros más pequeños (meso y microporos) generados durante las reacciones de despolimerización del PDMS.

- **Estudio mediante Adsorción de nitrógeno**

En la Figura IV-7 se representan las isotermas de adsorción de nitrógeno y las distribuciones de poro del híbrido de partida, del híbrido pretratado a 600 ºC tras dos hora de molienda en molino de atrición y del oxicarburo obtenido tras pirólisis de éste a 1100 ºC en atmósfera de nitrógeno.

La isotema del híbrido es de tipo II, característica de materiales no porosos según esta técnica de análisis (con la cual solo es posible determinar micro y mesoporos) y lo que está de acuerdo con la naturaleza macroporosa del material. El ormosil pretratado a 600 ºC, presenta una isotema tipo I, característica de materiales microporosos, poros que se generan como consecuencia de las reacciones de despolimerización del PDMS las cuales son las reacciones mayoritarias que se producen para esta temperatura. El oxicarburo obtenido tras pirólisis del híbrido pretatado a 600 ºC y molido en molino de atrición presenta de nuevo una isotema tipo II característica de materiales no porosos, resultado que es debido a que durante la pirólisis, además de producirse la transformación orgánico-inorgánica del material, se cierra toda la microporosidad que se ha generado durante las reacciones de despolimerización.

Las distribuciones de poro están de acuerdo con las isotermas y únicamente el híbrido pretratado a 600 ºC y molido presenta una cantidad de poros relevante; estos poros se encuentran por debajo de 4 nm (claramente indicando la presencia de microporos).
La superficie específica varía notablemente para estos tres materiales (*Tabla IV*-2 mostrada anteriormente), el híbrido presenta una superficie próxima a $1 \text{ m}^2/\text{g}$, pero para el híbrido pretratado y molido aumenta considerablemente debido a la ruptura de enlaces que implican la generación de microporosidad ($430.17 \text{ m}^2/\text{g}$). La superficie disminuye de nuevo para el oxicarburo debido a la eliminación de estos poros durante la pirólisis.

![Figura IV-7: Isotermas de adsorción de nitrógeno y distribución de tamaño de poro determinadas a partir de la rama de desorción por el método BJH, del híbrido de partida, del pretratado a $600 \, ^\circ\text{C}$ y molido durante 2h en molino de atrición, y de los polvos de vidrio de oxicarburo finalmente obtenido tras pirólisis a $1100 \, ^\circ\text{C}$]
Es importante destacar que si se comparan las superficies específicas de las muestras monolíticas del Capítulo III a las mismas temperaturas de tratamiento, es decir 600 ºC y 1100 ºC, con las aquí presentes obtenidas a estas mismas temperaturas pero tras molienda en molino de atrición, los valores son moderadamente mayores debido al pequeño tamaño de partícula que se consigue tras la molienda (4 y 3 micrómetros, para 600 y 1100 ºC respectivamente)

- Microscopía electrónica de barrido.

Las micrografías obtenidas mediante microscopía electrónica del barrido desde el ormosil de partida hasta los polvos de vidrio de oxicarburo empleados para el conformado de la pieza en “verde” están recogidas en la Figura IV- 8.

El híbrido orgánico-inorgánico muestra una estructura típica de agregado de partículas presentando una naturaleza eminentemente macroporosa (con tamaño de poro de aproximadamente 10 micrómetros), como ya ha sido comentada ampliamente en el Capítulo anterior (Capítulo III). Esta estructura macroporosa se mantiene cuando éste es pretratado a 600 ºC. Tras la molienda en molino de atrición la microestructura de agregado de partículas se pierde prácticamente, dando lugar a partículas con una forma irregular con un tamaño que se asemeja al determinado mediante dispersión láser (4 micrómetros aproximadamente). Los grandes macroporos que presentaba el híbrido, tal y como se intuía mediante adsorción de nitrógeno y porosimetría de mercurio, se ha perdido completamente debido a que tras la molienda se ha conseguido un tamaño de partícula inferior al que presentaban los poros del material inicial que estaban centrados entorno a 10 micrómetros, observándose sólo la porosidad debida al espacio entre partículas y/o rugosidad de las mismas. Tras la pirólisis a 1100 ºC no se encuentran diferencias, el oxicarburo obtenido está constituido por partículas con geometría irregular pero con un tamaño de partícula bastante homogéneo que se sitúa en 3 micrómetros.
Figura IV-8: Micrografías obtenidas mediante microscopía electrónica de barrido desde el ormosil hasta los polvos de vidrio de oxicarburo, en función del tamaño de partícula y temperatura de tratamiento.
Variación de la densidad real

En la Tabla IV-2 están recogidos los valores de densidad real para el híbrido orgánico-inorgánico, el que ha sido pretratado y molido a 600 ºC y los polvos de oxicarburo obtenidos mediante pirólisis de los anteriores a 1100 ºC. La densidad aumenta progresivamente a medida que aumenta la temperatura de tratamiento y está asociado fundamentalmente a la transformación orgánico inorgánica que experimenta el material. Hasta la temperatura de 600 ºC el incremento es muy suave, ya que para estas temperaturas de tratamiento fundamentalmente se producen las reacciones de despolimerización del PDMS, pero para la temperatura de 1100 ºC la transformación ya ha concluido y el incremento de la magnitud es mucho mayor. En todos los casos, como era lógico esperar, estos valores se asemejan enormemente a los obtenidos para las mismas temperaturas de tratamiento para los materiales del Capítulo III (véase página 126 Tabla III-9).

Para el vidrio de oxicarburo obtenido a 1100 ºC, el análisis mediante picnometría de helio muestra una densidad real mayor que la de la sílice (2.2 g/cm³). Esto viene a indicar, si se tiene en cuenta lo comentado anteriormente, un empaquetado más eficiente de la red de Si-O-C, como consecuencia de la incorporación de carbono en la red vitrea se traduce en unos valores mayores de densidad real.

IV.2 Sinterización de polvos de oxicarburo.

IV.2.1 Microscopía de Calefacción

Mediante microscopía de calefacción se quiere determinar la temperatura de trabajo para la sinterización de polvos de oxicarburo cuya finalidad es obtener piezas monolíticas con “porosidad cero”.

Este ensayo se realiza no a partir de la probeta masiva sino a partir de una probeta obtenida mediante prensado de los polvos de oxicarburo obtenidos en el apartado anterior. En dicho ensayo no se pretenden determinar los puntos fijos de viscosidad del material (punto de deformación, esfera, media esfera y fluencia), que de cualquier forma no se han conseguido determinar para estas temperaturas de análisis, sino la simulación
Capítulo IV

de la sinterización para determinar las temperaturas de comienzo y fin de la contracción del material.

En la Figura IV-9 está representada la variación del área con la temperatura para la probeta de polvos de vidrio de oxicarburo obtenidos a 1100 ºC. En esta figura se puede apreciar que la sinterización del material comienza aproximadamente a 1100 ºC. Hasta 1500 ºC aproximadamente la densificación del material produce una disminución del área de aproximadamente un 10 %, estando asociada a la sinterización entre las partículas de vidrio de oxicarburo. Para temperaturas superiores a 1550 ºC la densificación continúa de una manera mucho más acusada si bien esta ulterior densificación se produce como consecuencia de la evolución masiva de la reducción carbotérmica que genera especies volátiles y produce nueva porosidad en el material tratado a esta temperatura. Esta sinterización para temperaturas superiores a 1500 ºC se producirá hasta que concluya la reducción carbotérmica, o mejor dicho hasta que se consuma todo el carbono tipo grafito presente en el material.

En la Figura IV-10 se muestran la micrografías de las probetas para diferentes temperaturas del análisis, pudiendo apreciarse mediante los perfiles de dicha probeta, que incluso para la temperatura más alta del análisis (1640 ºC) no se aprecia deformación de la probeta indicando que para estas temperaturas solamente se produce la contracción del material y apoyando todo lo comentado en el párrafo anterior.

Figura IV-9 : Variación del área con respecto a la temperatura durante el análisis de microscopia de calefacción, para el vidrio de oxicarburo en polvo pirolizado a 1100 ºC.
Figura IV-10: Perfiles de la probeta de vidrio de oxicarburo de silicio en polvo pirolizado a 1100 ºC para las diferentes temperaturas de tratamiento durante el análisis de microscopía de calefacción.

Mediante trabajos anteriores llevados a cabo en este departamento se estableció mediante análisis termogravimétrico (TGA) que una vez formado el vidrio de oxicarburo (900-1000 ºC) éste es estructuralmente estable, es decir, no experimenta ninguna pérdida en peso hasta temperaturas superiores a los 1500 ºC que es cuando se produce la reducción carbotérmica, esto coincide plenamente con lo deducido anteriormente, donde se suponía una primera sinterización del material hasta 1500 ºC y una posterior sinterización a medida que va evolucionando la reducción carbotérmica como consecuencia de la generación de especies volátiles y por lo tanto nueva porosidad.

En base a esto se establece como temperatura de trabajo para la sinterización de los polvos de oxicarburo 1550 ºC, ya que a temperaturas inferiores no se alcanza la completa densificación del material y temperaturas superiores provocan una evolución excesiva de la reducción carbotérmica que repercute en la formación de porosidad nueva y que se traduciría en una degradación de las propiedades del material ya que por un lado, no se alcanzaría la completa densificación del mismo y por otro lado la estabilidad composicional también se vería alterada. La obtención de un material totalmente denso de vidrio de oxicarburo de silicio, es lo que se pretende conseguir mediante el empleo de la “Vía Cerámica” como nueva alternativa de procesado.

Además también se estudiará como afectan, sobre todo al progreso de la densificación del material tres tiempos diferentes a 1550 ºC, 4, 8 y 16 horas.
IV.2.2 Caracterización de los Materiales Densos de Vidrio de Oxicarburo Obtenidos.

IV.2.2.1 Variación del contenido en carbono y análisis químico.

En la Figura IV-11 se ha hecho una representación de la variación del contenido en carbono durante todo el tratamiento térmico, así como una ampliación de los porcentajes de carbono para la temperatura de 1550 °C, con las diferentes condiciones de procesado, todos estos valores están recogidos en la Tabla IV-3.

A medida que aumenta el tiempo de permanencia a 1550 °C de la pieza en “verde”, el contenido en carbono disminuye como consecuencia de una mayor evolución de la reducción carbotérmica. Este efecto es más acusado para las probetas obtenidas mediante un prensado uniaxial debido a la presencia de poros e imperfecciones que hacen que dicha reducción se produzca en mayor extensión. El tipo de aglomerante también influye en el contenido en carbono del material final, encontrándose los valores mayores para las muestras obtenidas empleando PDMS como aglomerante y mediante prensado isostático.

El PARALOID, es un polimetilmetacrilato (PMMA) que no contiene enlaces Si-C, ni Si-O, por lo tanto durante la pirólisis genera especies volátiles que forman carbono tipo grafito y poros, que producen discontinuidades en la matriz haciéndola más accesible a la reducción carbotérmica, ya que facilita la difusión de las especies gaseosas a través de ella.

El PDMS (polidimetilsiloxano) contiene en su estructura enlaces Si-C y Si-O, que son los enlaces que constituyen la red mixta de oxicarburo de silicio. Al aumentar la temperatura de pirólisis, parte del PDMS se pierde vía reacciones de despolimerización, pero también una parte forma vidrio de oxicarburo y carbono tipo grafito que se unen a la matriz que ya estaba formada haciéndola continua y homogénea.
Figura IV- 11: Variación del contenido en carbono durante todo el proceso térmico. En la figura superior se ha representado la variación desde el ormosil hasta el material sinterizado a 1550 ºC, en la figura superior se ha hecho una ampliación solamente incluyendo el material sinterizado a 1550 ºC, desglosando todas las variables (tipo de aglomerante, presado y tiempo de permanencia a 1550 ºC).

A partir de los datos del análisis químico completo se ha calculado la fórmula del oxicarburo y el contenido en carbono libre (Tabla IV- 4). Estos valores apoyan lo dicho hasta entonces, es decir, los materiales que experimentan en menor medida la reducción carbotérmica son los que han sido obtenidos mediante un presado isostático y con PDMS como aglomerante. El contenido en carbono libre varía desde un 68 % para la pieza en “verde” hasta un 57, 63 y 59 % para 4, 8 y 16 horas de tratamiento.
respectivamente, lo que está indicando en poco alcance de la reducción carbotérmica bajo estas condiciones de procesamiento incluso después de 16 horas de permanencia a 1550 ºC.

Estos valores también corroboran la excelente estabilidad térmica de estos materiales a elevadas temperaturas independientemente de las condiciones de procesado, ya que en el peor de los casos la reducción carbotérmica disminuye la cantidad de carbono tipo grafito desde un 68 (Oxicarburo 1100 ºC) a un 50 % (Oxicarburo 1550 ºC (16 h), pero el resto de la composición, es decir la cantidad de sílice y carburo de silicio, permanece prácticamente constante.

La composición química no varía mucho desde el oxicarburo de 1100 ºC hasta las piezas obtenidas a 1550 ºC, esto está indicando que a pesar de que el material presenta una gran cantidad de carbono tipo grafito, la reducción carbotérmica no está completándose, ya que únicamente se produce una variación del contenido en carbono libre del 68 al 50 %.

Como ya se comentó en la introducción la reducción carbotérmica de la sílice con carbono tipo grafito puede ser descrita en dos etapas (Capítulo I, Reacción I-24 y I-25). Cuando existe gran cantidad de carbono tipo grafito las dos etapas se completan y la reducción produce de una manera cuantitativa carburo de silicio. Sin embargo cuando existe una cantidad moderada de carbono tipo grafito, fundamentalmente se produce la primera etapa generando especies gaseosas intermedias tales como SiO y CO. Como existe defecto de carbono tipo grafito, el SiO no reacciona prácticamente y se desprende junto con el CO en forma gaseosa por lo que la reducción de la sílice a carburo de silicio no se completa. De hecho algunos autores han detectado en las zonas frías del horno la condensación de SiO lo que indica el destacado papel de éste como intermedio de la reacción y que la reducción carbotérmica no se está completando. Cabe destacar también, que la eliminación de SiO no modifica sustancialmente la relación Si/O lo que encajaría con los resultados de análisis químicos experimentales obtenidos.
Tabla IV-3: Variación del contenido en carbono total para el material obtenido a 1550 ºC, en función de cada una de las variables estudiadas (tipo de aglomerante, prensado y tiempo de permanencia a 1550 ºC).

<table>
<thead>
<tr>
<th>Aglomerante</th>
<th>Paraloid</th>
<th>PDMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prensado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 1550 ºC (h)</td>
<td>4</td>
<td>7.80</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.24</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6.69</td>
</tr>
</tbody>
</table>

Tabla IV-4: Análisis químico, fórmula del oxicarburo y porcentaje de carbono libre, para los materiales obtenidos a 1550 ºC para las distintas condiciones de procesamiento.

<table>
<thead>
<tr>
<th>Prensado*/Aglomerante**</th>
<th>T (h)</th>
<th>%C</th>
<th>%H</th>
<th>%Si</th>
<th>%O</th>
<th>Fórmula</th>
<th>C libre</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU/PARALOID 4</td>
<td>7.80</td>
<td>0.10</td>
<td>47.11</td>
<td>45.09</td>
<td>SiC_{0.16}O_{1.68} + 0.23 C</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>PU/PARALOID 8</td>
<td>7.24</td>
<td>0.10</td>
<td>47.22</td>
<td>45.54</td>
<td>SiC_{0.15}O_{1.65} + 0.20 C</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>PU/PARALOID 16</td>
<td>6.69</td>
<td>0.10</td>
<td>47.80</td>
<td>45.51</td>
<td>SiC_{0.16}O_{1.67} + 0.16 C</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>PU/PDMS 4</td>
<td>7.8</td>
<td>0.14</td>
<td>46.70</td>
<td>45.5</td>
<td>SiC_{0.14}O_{1.71} + 0.25 C</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>PU/PDMS 8</td>
<td>7.18</td>
<td>0.12</td>
<td>47.20</td>
<td>45.62</td>
<td>SiC_{0.15}O_{1.70} + 0.21 C</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>PU/PDMS 16</td>
<td>6.53</td>
<td>0.09</td>
<td>47.62</td>
<td>45.85</td>
<td>SiC_{0.15}O_{1.69} + 0.17 C</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>PI/PARALOID 4</td>
<td>7.53</td>
<td>0.10</td>
<td>47.14</td>
<td>45.33</td>
<td>SiC_{0.16}O_{1.69} + 0.21 C</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>PI/PARALOID 8</td>
<td>7.6</td>
<td>0.10</td>
<td>47.65</td>
<td>44.75</td>
<td>SiC_{0.16}O_{1.65} + 0.19 C</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>PI/PARALOID 16</td>
<td>7.47</td>
<td>0.10</td>
<td>47.72</td>
<td>44.81</td>
<td>SiC_{0.16}O_{1.65} + 0.19 C</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>PI/PDMS 4</td>
<td>7.69</td>
<td>0.08</td>
<td>47.29</td>
<td>45.57</td>
<td>SiC_{0.16}O_{1.67} + 0.21 C</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>PI/PDMS 8</td>
<td>7.75</td>
<td>0.10</td>
<td>46.68</td>
<td>45.02</td>
<td>SiC_{0.14}O_{1.71} + 0.24 C</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>PI/PDMS 16</td>
<td>7.71</td>
<td>0.10</td>
<td>47.04</td>
<td>45.25</td>
<td>SiC_{0.16}O_{1.69} + 0.23 C</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>9.5</td>
<td>0.10</td>
<td>46.06</td>
<td>44.44</td>
<td>SiC_{0.15}O_{1.69} + 0.33 C</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>13.39</td>
<td>2.99</td>
<td>42.88</td>
<td>40.74</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>22.3</td>
<td>5.36</td>
<td>36.61</td>
<td>35.73</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

* Tipo de Prensado donde P.U = Prensado uniaxial y P.I = Prensado Isostático.
** Tipo de Aglomerante que puede ser PARALOID o PDMS.
*** Calculada a partir de SiC_{x}O_{2(1-x)}
**** \(C_{libre} = 100(C_{Total} - C_{SiOC})/C_{Total}\)

"Vía Cerámica"
Las pérdidas en peso para piezas obtenidas tras sinterización a 1550 ºC están recogidas en la Tabla IV-5. Aunque estas pérdidas en peso son bastante pequeñas y muy similares, los valores obtenidos concuerdan con las suposiciones hechas hasta el momento y presentan la misma tendencia encontrada mediante el análisis con otras técnicas experimentales, independientemente de las diferentes condiciones de procesamiento. Las muestras obtenidas mediante prensado isostático y PDMS como aglomerante son más homogéneas incluso para tiempos de permanencia menores, lo que se traduce en una mayor estabilidad haciendo que el material obtenido para estas condiciones de procesamiento, sea menos vulnerable a la evolución de la reducción carbotérmica y por lo tanto presente una menor pérdida en peso.

Tabla IV-5: Pérdidas en peso de los materiales tras el tratamiento térmico a 1550 ºC, según las diferentes condiciones de procesamiento.

<table>
<thead>
<tr>
<th>Aglomerante</th>
<th>Paraloid</th>
<th>PDMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. uniaxial</td>
<td>P. Isostático</td>
</tr>
<tr>
<td>Prensado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T 1550 ºC (h)</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>22</td>
</tr>
</tbody>
</table>

IV.2.2.2 Estructura de los oxicarbonuros obtenidos a 1550 ºC.

- **Estudio mediante espectroscopía infrarroja.**

Los espectros de FT-IR para el material obtenido 1550 ºC, donde se ha variado el tipo de prensado (uniaxial e isostático), aglomerante (PARALOID y PDMS) y tiempo de permanencia a 1550 ºC (4, 8 y 16 horas), están representados en la Figura IV-12, Figura IV-13, Figura IV-14 y Figura IV-15.

Los espectros de infrarrojo presentan las mismas bandas que las encontradas para el sistema TEOS/PDMS para la temperatura de pirólisis de 1100 ºC (capítulo III/Tabla III-1). Fundamentalmente se encuentran las señales que corresponden al enlace siloxano, donde como consecuencia de la temperatura se produce una ordenación tridimensional
evidenciada por un desplazamiento de las bandas a mayores frecuencias así como un estrechamiento de las mismas.

Independientemente de la variable estudiada, en todos ellos como consecuencia de la reordenación de la fase oxicarbonuro y de la mayor o menor extensión de la reducción carbotérmica (T> 1500 ºC), el desdoblamiento de la banda situada a 810 cm\(^{-1}\) que presentaban los oxicarbonuros para la temperatura de 1100 ºC evoluciona a una banda situada a 880 cm\(^{-1}\). Esta banda se asocia a la formación de \(\beta\)-CSi para estas temperaturas de tratamiento (capítulo I). La segregación de la fase oxicarbonuro, hacia la formación de sílice y carburo de silicio, se produce a temperaturas más bajas que la reducción carbotérmica (T> 1200 y T>1500 ºC, respectivamente). Por la tanto, para estas temperaturas de trabajo (1550 ºC) las diferencias halladas en los materiales, se asignan fundamentalmente a la mayor o menor evolución de la reducción carbotérmica en función de las diferentes condiciones de procesado.

En primer lugar, cuando se compara el tipo de aglomerante se puede apreciar que durante la sinterización el PARALOID y el PDMS se comportan de manera diferente y hacen que el material obtenido a 1550 ºC sufra en distinto grado la reducción carbotérmica. El PARALOID durante el proceso de pirólisis se descompone en especies volátiles, que generan porosidad así como carbono tipo grafito. Esta generación de porosidad expone en mayor medida al material y hace que la reducción carbotérmica ocurra de una mayor manera. El PDMS aunque también genera especies volátiles durante el tratamiento térmico además forma nuevo oxicarbonuro y carbono libre, obteniéndose como consecuencia materiales finales más homogéneos debido a que presentan menos imperfecciones y como consecuencia la reducción carbotérmica tiene una menor extensión.

Si se comparan los tipos de prensado podemos observar las siguientes diferencias:
El prensado uniaxial deja huecos e imperfecciones en el material inicial que tras ser sinterizado a 1550 ºC da lugar a porosidad, esta porosidad en el material le hace ser más susceptible a la reducción carbotérmica. Sin embargo, al emplear prensado isostático se eliminan prácticamente estos huecos e imperfecciones.
Capítulo IV

Figura IV-12: Espectros de FT-IR para las probetas obtenidas a 1550 ºC, con prensado uniaxial y PARALOID como aglomerante.

Figura IV-13: Espectros de FT-IR para las probetas obtenidas a 1550 ºC, con prensado uniaxial y PDMS como aglomerante.
Figura IV- 14: Espectros de FT-IR para las probetas obtenidas a 1550 °C, con prensado isostático y PARALOID como aglomerante.

Figura IV- 15: Espectros de FT-IR para las probetas obtenidas a 1550 °C, con prensado isostático y PDMS como aglomerante.
Las muestras que contienen PARALOID como aglomerante Figura IV- 12 y Figura IV-14 son más vulnerables a la reducción carbotérmica, ya que el propio PARALOID genera una gran cantidad de porosidad durante el tratamiento térmico. Debido a esto, la muestra con PARALOID, presinado uniaxial y tiempo de permanencia a 1550°C de más duración (16 horas), es la que experimenta en mayor medida la reducción carbotérmica. En el extremo opuesto se encuentran las muestras que contienen PDMS como aglomerante y que han sido obtenidas mediante un prensado isostático, donde no se aprecia la evolución de la reducción carbotérmica al aumentar el tiempo de permanencia a 1550 °C.

En resumen, durante la pirólisis el PDMS puede formar oxicarburo y carbono tipo grafito, mientras que el PARALOID únicamente carbono tipo grafito. Por lo tanto, los materiales que se han obtenido con PARALOID presentan mayor cantidad de carbono libre y por esto son más susceptibles de experimentar la reducción carbotérmica en una mayor medida.

- **Estudio mediante espectroscopía Raman.**

Los espectros obtenidos mediante espectroscopía Raman, para los materiales tratados a 1550 °C, dependiendo el tipo de prensado (uniaxial o isostático), aglomerante empleado (PARALOID o PDMS) y tiempo de pirólisis (4, 8 y 16 horas) están presentados en las Figura IV- 16, Figura IV- 17, Figura IV- 18 y Figura IV- 19.

Si se comparan estos espectros con los de los oxicarburos obtenidos a 1100 °C, para el sistema TEOS/PDMS (Capítulo III), independientemente de las condiciones de procesado o tiempos de permanencia a 1550 °C, se aprecian notables diferencias.

1) La más obvia, es la disminución del ruido en el espectro.
2) Desaparición del solapamiento existente entre la banda D y G, así como una mejor definición de las señales, esto es, las bandas se vuelven más agudas.
3) La relación de intensidades \(I(D)/I(G)\) aumenta.
4) Se muestra sin lugar a dudas una banda situada ~ 1600 cm\(^{-1}\), en los aledaños de la banda G (indicativa de desorden en la estructura cristalina de grafito).
5) Aparición de varias señales en lo que se conoce como espectro Raman de segundo orden (>2700 cm⁻¹).

Todos estos fenómenos están indicando lo mismo, una reorganización de la fase de carbono grafítico el cual es independiente del tamaño de los dominios de grafito y sólo revela un ordenamiento de la fase de carbono libre desde un punto de vista bidimensional y tridimensional.

Para carbones grafíticos altamente desordenados la relación de intensidades mide el tamaño de los dominios de grafito (el tamaño de la extensión de las láminas de grafito).

Por otro lado, para carbones grafíticos más ordenados esta relación de intensidades está midiendo el tamaño del cristal y la presencia de señales en el espectro de segundo orden está indicando una ordenación tridimensional.

Lespade et al. establecen cuatro índices de grafitización: El desplazamiento de la banda G desde 1600 hasta 1580 cm⁻¹, la anchura de la banda G, la relación de intensidades \(I(D)/I(G) \) y la anchura de la banda situada a 2700 cm⁻¹.

La validez de estos cuatro índices de grafitización ha sido comprobada por medidas de susceptibilidad magnética, así como por la determinación del tamaño del espaciado entre las distintas capas medido mediante difracción de Rayos X.

El proceso de grafitización conlleva una disminución de la relación de intensidades \(I(D)/I(G) \) que tiende a ser cero cuando la grafitización ha concluido. Por lo que lleva implícita la desaparición de la banda \(D \), que es indicativa de desorden.

Otro indicador de la evolución de la grafitización es el desplazamiento de la banda \(G \) desde 1600 hasta 1580 cm⁻¹, así como el estrechamiento de la misma. Para carbono grafito cristalino, normalmente la banda \(G \) está situada a 1582 cm⁻¹, por lo tanto, parece claro que en este tipo de materiales, la banda \(G \) está acompañada de otra banda adicional (generalmente se la conoce como Banda \(D' \)) que se atribuye al desorden y como resultado final produce un ensanchamiento de la señal (Banda \(G \)) y un desplazamiento total hacia frecuencias mayores. Como consecuencia de esto, a medida que la grafitización progresa, la banda \(G \) se sitúa en su desplazamiento normal (1580 cm⁻¹). Lo mismo ocurre con su anchura, el grafito presenta una banda muy aguda por lo que a medida que progresa la grafitización la banda se estrecha (20 cm⁻¹).
Y ya por último, la aparición, así como la disminución de la anchura de la banda situada a 2700 cm\(^{-1}\), está indicando la finalización del proceso de grafitización. Para un desplazamiento basal de 34.0 nm, esta banda alcanza un mínimo de anchura de \(\sim 50\) cm\(^{-1}\) y posteriormente para una distancia de 33.8 nm (que es la que se encuentra entre los distintos planos para el grafito monocristalino) aumenta hasta \(\sim 75\) cm\(^{-1}\). Esto es debido a que esta banda experimenta un desdoblamiento al final de la grafitización dando como resultado un aumento de su anchura.\(^{200}\)

Se debe considerar el desplazamiento y la anchura de la banda G como los índices de la organización bidimensional de la estructura grafitica. Se produce una disminución en el desplazamiento y en la anchura de banda hasta alcanzar los valores de desplazamiento basal del grafito monocristalino situados en 33.8 nm. Por otro lado, la anchura de la banda a 2700 cm\(^{-1}\) en torno a 50-75 cm\(^{-1}\) indican el orden cristalino tridimensional. Se produce un mínimo para 34.0 nm y posteriormente un ligero ensanchamiento de la banda para desplazamientos basales de 33.8 nm, indicando la instauración progresiva del orden de cristalización tridimensional.

Los carbonos altamente desordenados como carbón vegetal o coque, presentan un espectro Raman que contiene las bandas D y G muy anchas. A medida que aumenta el grado de ordenación estas bandas se estrechan como es el caso de carbono vitéreo y grafito altamente cristalino.\(^{194}\)

Además como consecuencia de este aumento del orden, aparecen bandas en el espectro Raman de segundo orden,\(^{197,221}\) Estas bandas suelen ser sobretonos o combinaciones lineales de las bandas del espectro de primer orden. La banda situada \(\sim 2700\) cm\(^{-1}\) (banda \(G'\)), se asocia al sobretono de la banda D (2 veces 1355 cm\(^{-1}\)). Si bien ésta es la más importante, pueden aparecer otras bandas, como la situada \(\sim 3200\), que se asocia al sobretono de la banda G (2 veces 1580 cm\(^{-1}\)). Además para carbono vitéreo dependiendo del tamaño del cristal puede aparecer otra banda \(\sim 2955\) cm\(^{-1}\) que se puede atribuir a una combinación lineal de la banda D y la situada a \(\sim 1600\) cm\(^{-1}\).

Se puede concluir que, la posición de la banda G y su anchura caracterizan la extensión de los tamaños de grafito en dos dimensiones, y la anchura de la banda a 2700 cm\(^{-1}\), es necesaria para la estimación tanto del crecimiento bidimensional de la capas de grafito como de orden tridimensional entre las distintas láminas.
Figura IV-16: Espectros Raman de primer y segundo orden para el material obtenido a 1550 °C, obtenido con prensado unaxial y PARALOID como aglomerante, para tiempos de pirólisis de 4, 8 y 16 horas.

Figura IV-17: Espectros Raman de primer y segundo orden para el material obtenido a 1550 °C, obtenido con prensado unaxial y PDMS como aglomerante, para tiempos de pirólisis de 4, 8 y 16 horas.
Figura IV- 18: Espectros Raman de primer y segundo orden para el material obtenido a 1550 °C, obtenido con prensado isostático y PARALOID como aglomerante, para tiempos de pirólisis de 4, 8 y 16 horas.

Figura IV- 19: Espectros Raman de primer y segundo orden para el material obtenido a 1550 °C, obtenido con prensado isostático y PDMS como aglomerante, para tiempos de pirólisis de 4, 8 y 16 horas.
Tabla IV- 6 Información más importante obtenida de los espectros Raman, para el material tratado a 1550 ºC, mediante un prensado unaxial y PARALOID como aglomerante.

<table>
<thead>
<tr>
<th>t pirólisis (h)</th>
<th>I(D)/I(G)</th>
<th>L (nm)</th>
<th>Banda D (cm(^{-1}))</th>
<th>FWHM Banda D</th>
<th>Banda G (cm(^{-1}))</th>
<th>FWHM Banda G</th>
<th>Banda G’ (cm(^{-1}))</th>
<th>FWHM Banda G’</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.24</td>
<td>1.96</td>
<td>1354</td>
<td>43</td>
<td>1603</td>
<td>47</td>
<td>2698</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>2.36</td>
<td>1.86</td>
<td>1354</td>
<td>44</td>
<td>1602</td>
<td>46</td>
<td>2702</td>
<td>90</td>
</tr>
<tr>
<td>16</td>
<td>2.85</td>
<td>1.54</td>
<td>1354</td>
<td>41</td>
<td>1599</td>
<td>51</td>
<td>2698</td>
<td>90</td>
</tr>
</tbody>
</table>

Tabla IV- 7: Información más importante obtenida de los espectros Raman para el material tratado a 1550 ºC, mediante un prensado unaxial y PDMS como aglomerante.

<table>
<thead>
<tr>
<th>t pirólisis (h)</th>
<th>I(D)/I(G)</th>
<th>L (nm)</th>
<th>Banda D (cm(^{-1}))</th>
<th>FWHM Banda D</th>
<th>Banda G (cm(^{-1}))</th>
<th>FWHM Banda G</th>
<th>Banda G’ (cm(^{-1}))</th>
<th>FWHM Banda G’</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.34</td>
<td>1.88</td>
<td>1353</td>
<td>48</td>
<td>1601</td>
<td>54</td>
<td>2697</td>
<td>117</td>
</tr>
<tr>
<td>8</td>
<td>2.61</td>
<td>1.68</td>
<td>1354</td>
<td>45</td>
<td>1602</td>
<td>51</td>
<td>2697</td>
<td>110</td>
</tr>
<tr>
<td>16</td>
<td>2.67</td>
<td>1.65</td>
<td>1354</td>
<td>42</td>
<td>1599</td>
<td>49</td>
<td>2699</td>
<td>99</td>
</tr>
</tbody>
</table>

Tabla IV- 8: Información más importante obtenida de los espectros Raman para el material tratado a 1550 ºC, mediante un prensado isostático y PARALOID como aglomerante.

<table>
<thead>
<tr>
<th>t pirólisis (h)</th>
<th>I(D)/I(G)</th>
<th>L (nm)</th>
<th>Banda D (cm(^{-1}))</th>
<th>FWHM Banda D</th>
<th>Banda G (cm(^{-1}))</th>
<th>FWHM Banda G</th>
<th>Banda G’ (cm(^{-1}))</th>
<th>FWHM Banda G’</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.05</td>
<td>2.15</td>
<td>1355</td>
<td>46</td>
<td>1605</td>
<td>45</td>
<td>2706</td>
<td>113</td>
</tr>
<tr>
<td>8</td>
<td>2.65</td>
<td>1.67</td>
<td>1353</td>
<td>44</td>
<td>1600</td>
<td>49</td>
<td>2695</td>
<td>112</td>
</tr>
<tr>
<td>16</td>
<td>2.60</td>
<td>1.69</td>
<td>1353</td>
<td>44</td>
<td>1600</td>
<td>54</td>
<td>2697</td>
<td>94</td>
</tr>
</tbody>
</table>

Tabla IV- 9: Información más importante obtenida de los espectros Raman para el material tratado a 1550 ºC, mediante un prensado isostático y PDMS como aglomerante.

<table>
<thead>
<tr>
<th>t pirólisis (h)</th>
<th>I(D)/I(G)</th>
<th>L (nm)</th>
<th>Banda D (cm(^{-1}))</th>
<th>FWHM Banda D</th>
<th>Banda G (cm(^{-1}))</th>
<th>FWHM Banda G</th>
<th>Banda G’ (cm(^{-1}))</th>
<th>FWHM Banda G’</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.48</td>
<td>1.76</td>
<td>1352</td>
<td>47</td>
<td>1600</td>
<td>52</td>
<td>2693</td>
<td>122</td>
</tr>
<tr>
<td>8</td>
<td>2.35</td>
<td>1.87</td>
<td>1354</td>
<td>43</td>
<td>1602</td>
<td>48</td>
<td>2699</td>
<td>92</td>
</tr>
<tr>
<td>16</td>
<td>2.46</td>
<td>1.79</td>
<td>1342</td>
<td>46</td>
<td>1577</td>
<td>55</td>
<td>2675.5</td>
<td>96</td>
</tr>
</tbody>
</table>
Los espectros Raman de los materiales obtenidos a 1550 ºC corresponden con el de carbono vítreo194,221 (Figura IV- 16, Figura IV- 17, Figura IV- 18 y Figura IV- 19). En todos ellos se aprecian las denominadas banda \(D \) y \(G \), así como el sobretono de la banda \(D \) (\(\sim 2700 \text{ cm}^{-1} \)) y la combinación lineal de \(D \) y \(G \) (\(\sim 2950 \text{ cm}^{-1} \)). Como se ha comentado anteriormente la presencia de la banda \(\sim 2700 \text{ cm}^{-1} \), se atribuye a estructuras de carbono tipo grafito que presentan ordenación tridimensional.

Los materiales a estas temperaturas de tratamiento experimentan dos fenómenos diferentes, por un lado las altas temperaturas de tratamiento provocan una reorganización de la fase de carbono libre aumentando el orden. Pero por otro lado, para temperaturas superiores a 1500 ºC, estos materiales son susceptibles de experimentar la reducción carbotérmica, en la que la sílice reacciona con el carbono tipo grafito para formar carburo de silicio y especies volátiles (\(CO, SiO \)), etc.) \((\text{Capítulo I/Reacción I-24 y I-25} \)). Como consecuencia de lo primero se produce un estrechamiento de las señales y la aparición de las bandas del espectro Raman de segundo orden, y como consecuencia de lo segundo, al aumentar los tiempos de pirólisis se produce una mayor extensión de la reducción carbotérmica que provoca un aumento de la relación de intensidades \(I(D)/I(G) \), que lleva implícito una disminución del tamaño de los dominios de grafito.

La relativa poca variación de los tamaños de los dominios de grafito, al variar las condiciones de procesado (tiempo a 1550 ºC, prensado y aglomerante) \((\text{Tabla IV- 6, Tabla IV- 7, Tabla IV- 8, Tabla IV- 9}) \) pone de manifiesto la elevada estabilidad de estos materiales, apreciándose la inhibición parcial de la cristalización a elevadas temperaturas. Algunos autores8,222 apuntan que la fase de carbono libre, es decir el carbono tipo grafito, ralentiza la evolución de los procesos de oxidación a altas temperaturas. Estos apuntes deben ser tenidos en cuenta en estos sistemas aunque las condiciones de tratamiento sean diferentes.

El tipo de prensado influye en la microestructura del material final obtenido, esto hace pensar a priori, que los materiales obtenidos con un prensado uniaxial, deberán poseer más poros, imperfecciones y porosidad que los obtenidos mediante presado isostático. Este hecho repercute en el tamaño final de los dominios de grafito que está representado en la \textit{Figura IV- 20}. Como consecuencia de lo anterior, cuando se comparan los materiales donde se ha empleado \textit{PARALOID} como aglomerante y los dos diferentes
tipos de prensado, se observa que para los tiempos de 16 y 4 horas, el tamaño de los dominios es mayor cuando se ha empleado prensado isostático. Los poros e imperfecciones hacen más accesible al carbono tipo grafito para que se produzca en una mayor manera las reacciones de reducción carbotérmica. Para los dos tipos de prensado, el tamaño de los dominios disminuye con el tiempo de permanencia a 1550 ºC.

Cuando se emplea PDMS como aglomerante, la tendencia es muy similar. Sin embargo, se observa que cuando se emplea prensado uniaxial el tamaño de los dominios va disminuyendo progresivamente con el tiempo de pirólisis. Esto no se observa con el prensado isostático, donde el tamaño de los dominios disminuye drásticamente, para el tiempo de pirólisis menor, pero ya no experimenta ningún descenso para tiempos de pirólisis mayores. Esto está indicando un elevado grado de homogeneidad en el material final formado con prensado isostático y PDMS, incluso para tiempos de pirólisis a 1550 ºC de 4 horas.

En cuanto al tipo de aglomerante, cuando se emplea PDMS se obtienen los dominios de carbono tipo grafito mayores, esto puede ser debido a que durante el tratamiento térmico el PDMS forma más oxicarburo, carbono libre y especies volátiles, mientras que el PARALOID (polimetilmetacrilato) sólo forma carbono libre y especies volátiles. La cantidad de especies volátiles generadas por el PARALOID produce imperfecciones haciendo más accesible a los materiales obtenidos, siendo más susceptibles de experimentar en una mayor extensión la reducción carbotérmica. Estos hechos concuerdan con lo observado mediante FT-IR, donde se apreciaba una mayor evolución de la reducción carbotérmica en los materiales donde se había empleado PARALOID.

Para concluir, los materiales obtenidos mediante un prensado isostático presentan unos dominios mayores, esto es debido a que dichos materiales presentan menos poros e imperfecciones y la reducción carbotérmica ocurre con mayor dificultad. En la misma línea, los materiales obtenidos con PDMS y este tipo de prensado presentan menos imperfecciones haciéndolos más resistentes frente a la reducción carbotérmica.
Figura IV-20: Tamaño de los dominios de grafito para los materiales obtenidos a 1550 °C en función de las distintas condiciones de procesamiento.

Dejando el tamaño de los dominios aparte, si se observan el resto de los parámetros (Tabla IV-6, Tabla IV-7, Tabla IV-8 y Tabla IV-9) se puede analizar el grado de ordenación de la fase de carbono libre.

El desplazamiento de la banda D y su anchura son muy similares en todos los casos, en torno 1353 y 43 cm$^{-1}$, respectivamente. Si estos valores se comparan con los obtenidos para un oxicarburido obtenido a 1100 °C (1347 y 145 cm$^{-1}$), se puede observar la gran ordenación que ha experimentado la fase de carbono libre.

El desplazamiento de la banda G y su anchura son indicadores inequívocos de la ordenación bidimensional del carbono tipo grafito. Para estos materiales el desplazamiento está situado alrededor de 1600 cm$^{-1}$ y su anchura aproximadamente en 47 cm$^{-1}$. Al compararlos con los del oxicarburido del sistema TEOS/PDMS obtenido a 1100 °C, (1579 y 80 cm$^{-1}$ datos extraídos del Capítulo III) se puede apreciar el gran ordenamiento bidimensional que ha experimentado el material como consecuencia del tratamiento térmico.

El indicador del ordenamiento tridimensional es la presencia y anchura de la banda G' (sobretono de D). Su posición y anchura son prácticamente constantes para todos los materiales obtenidos a 1550 °C, en torno a 2700 y 90-100 cm$^{-1}$ respectivamente. El ancho de dicha banda está indicando un elevado grado de ordenación. Lespade et al220.

Lespade et al220.
indicar que en el final del proceso de grafitización la anchura de la banda G' está en torno a 50-75 cm$^{-1}$.

Existe una cierta similitud entre los materiales obtenidos a partir de la “Vía cerámica” y las fibras de carbono tipo Nicalon. Esta concordancia se refiere fundamentalmente en cuanto a los componentes mayoritarios silice (o vidrio de oxicarburo), carbono tipo grafito y carburo de silicio y no en cuanto a la proporción de cada uno de ellos (ya que varía notablemente y en las fibras tipo Nicalon la proporción de oxígeno es mucho más pequeña) o la forma (los aquí obtenidos son piezas monolíticas y las otras son fibras).

Las fibras de origen de SiC tipo NICALON (obtenidas a partir de la pirólisis de policarbosilanos según la ruta de Yajima223) están constituidas por nanocristales de SiC (1-2nm) y carbono tipo grafito con ordenación turbostática (altamente desordenado con un tamaño de dominio de 4 nm) embebidas dentro de una fase vítrea de oxicarburo.28 (Figura IV- 21) Por efecto de la temperatura de tratamiento (superior a 1200 ºC) se aprecia el crecimiento de cristales de SiC, que lleva asociada la disminución de las propiedades mecánicas. Al aumentar la temperatura de tratamiento, para temperaturas de hasta 1250 ºC fundamentalmente se produce la deshidrogenación del material asociado fundamentalmente al carbono grafítico lo que se traduce en una mayor compactación del material. Sin embargo para temperaturas superiores comienza a producirse la reducción carbotérmica, donde la silice (o vidrio de oxicarburo) reacciona con el carbono tipo grafito produciendo además de nuevo carburo de silicio especies volátiles tales como CO y SiO, que aumentan la porosidad del material disminuyendo las propiedades mecánicas del mismo.30 El contenido en oxígeno en la fibra también está asociado a un detrimento de las propiedades mecánicas con la temperatura. De hecho, las fibras tipo Hi-Nicalon que presentan porcentajes más bajos que las Nicalon convencionales no presentan cristalización hasta temperaturas del orden de los 1600 ºC.

Los cambios que se producen en la fibra tipo Nicalon o en el composite formado con dicha fibra pueden ser seguidos a partir de los cambios que tienen lugar en la fase grafitica, presente en este tipo de materiales. De hecho Colomban et al.224,225 han realizado numerosos estudios mediante espectroscopía Raman de la degradación del material con la temperatura en diferentes atmósferas (oxidantes y reductoras) para distintos tipos de fibras tipo Nicalon, así como en composites que contienen dichas fibras. El espectro Raman de este tipo de fibras únicamente presenta las bandas D y G
características de carbono tipo grafito. Estos autores interpretan dicho espectro de la siguiente manera: una banda situada a 1345 cm\(^{-1}\) asignada a C sp\(^3\) del enlace C-C (banda \(D\)), una pequeña banda a 1530 cm\(^{-1}\) y otra centrada a 1600 cm\(^{-1}\) (banda \(G\)) asociadas a C sp\(^2\). La banda \(D\) la asocian a C sp\(^3\) del vidrio de oxicarburo que está uniendo la fibra de SiC y el carbono grafito, la banda \(G\) a precipitados de carbono tipo grafito y la banda a 1530 cm\(^{-1}\) la relacionan a la presencia de heteroátomos o nanoporosidad unidos a dichos precipitados. A veces puede aparecer otra banda a 1140 cm\(^{-1}\) atribuida a C sp\(^3\) desordenado e hidrogenado.

Las huellas dactilares del SiC no son visibles en las fibras de partida y aparecen tras ser tratadas a 1300 °C. Consisten en dos bandas situadas a 796 y 973 cm\(^{-1}\). La eficiencia de la dispersión Raman de las especies de carbono es diez veces mayor que las de los materiales de SiC. Esto podría estar indicando que la fase de carburo de silicio cristalino podría estar presente para temperaturas de tratamiento menores. Por eso, Colomban et al.\(^{224,225}\) se sirven del desplazamiento y anchura de las bandas, sobre todo de la banda \(D\), para determinar en qué punto comienza la cristalización de las especies y por lo tanto la degradación del material.

Para temperaturas superiores a 1300 (entre 1500 y 2000 °C), cuando se pueden apreciar las bandas asociadas al carburo de silicio Colomban et al.\(^{224}\) examinando la zona de las huellas dactilares del carburo de silicio determinan dos tipos diferentes de dicho material, por un lado β-SiC con tamaño de cristal \(\approx 10\) nm que proviene de la coalescencia del carburo de silicio de la fibra de origen y por otro lado diferentes politipos de SiC altamente desordenados con una tamaño de cristal del orden de 1 nm que proceden de la reducción carbotérmica de la fase vítrea (o vidrio de oxicarburo).

La estructura cristalina del carburo de silicio presenta más de 170 politipos aunque solamente cinco (3C, 2H, 4H, 6H, 15R) son los que generalmente se observan. El politipo 3C-SiC es considerado como referencia estructural y presenta una estructura cúbica, mientras que los otros tienen estructura hexagonal o romboédrica. El politipo 3C se conoce como β-SiC, y el resto, es decir 2H, 4H, 6H y 15R, se conocen colectivamente como α-SiC. Hasta 2000 °C el β-SiC es el observado más frecuentemente y presenta dos bandas en espectroscopía Raman que corresponden con el modo transversal óptico (TO) y longitudinal óptico (LO) situadas a 796 y 973 cm\(^{-1}\), respectivamente. Cuando el ancho
del pico es menor de 20 cm\(^{-1}\) el tamaño de partícula o del cristal debe ser mayor de 10 nm. El resto de los politipos presentan bandas en esta misma zona, por ejemplo \(6H-SiC\) presenta dos bandas centradas a 796 y 967 cm\(^{-1}\).

![Figura IV- 21: Representación esquemática de una fibra tipo Nicalon. Extraído de la referencia 30.](image)

- \(^{29}\text{Si} \text{ MAS RMN}\)

En la Figura IV- 22 están representados los espectros de \(^{29}\text{Si} \text{ MAS RMN}\) para los materiales obtenidos mediante sinterización de polvos de vidrio de oxicarburo a 1550 °C para tiempos de tratamiento de 4, 8 y 16 horas. Sólo se presentan los que han sido obtenidos con PARALOID como aglomerante y prensado isostático.

Los espectros de \(^{29}\text{Si} \text{ RMN}\) de los diferentes politipos de \(SiC\) presentan bandas centradas para distinto desplazamiento químico.\(^{192,226}\)

El \(\beta-SiC\) presenta una única banda cuya posición y anchura varían dependiendo de la naturaleza química y grado de cristalinidad del mismo. El desplazamiento varía desde -16 hasta -18/-19 ppm dependiendo de si la muestra analizada es monocristal, policristalina, polvo, discos o monolitos combustionados. Estas diferencias en el desplazamiento químico están asociadas al apilamiento desordenado de las partículas de
SiC. Su anchura es muy sensible al tamaño del cristal por lo que es muy ancha para muestras con un bajo orden de cristalinidad y a medida que aumenta el tamaño del cristal esta banda se va estrechando. También se ha observado que para temperaturas del orden de 1400-1500 ºC el carburo de silicio presentan una banda mayoritaria centrada a -15 ppm asignada al β-SiC y que ésta se desplaza a campo alto (-19 ppm) al aumentar la temperatura de tratamiento o el tiempo de permanencia, este hecho ha sido explicado como una desprotonación de los carbonos que provoca el cambio del desplazamiento químico de los átomos de silicio, aunque el contenido en hidrógeno para estas muestras sea muy pequeño.201 El pico a -15 ppm puede ser asociado a pequeños cristales de β-SiC, mientras que el pico a -19 ppm puede ser debido a una fase desordenada de β-SiC relacionada con defectos de apilamiento durante su generación. Este segundo pico aparece para temperaturas superiores a 1400 ºC donde comienza un crecimiento moderado de los pequeños cristales de β-SiC asociado a la formación de defectos de apilamiento que pueden promover también la nucleación de pequeños cristales de α-SiC.227

El α-SiC o mejor dicho los diferentes politipos que engloba esta nomenclatura suelen presentar diversos picos, por ejemplo el $6H$ y $15R$ presentan tres picos situados aproximadamente a -14, -20 y -25 ppm, el $4H$ dos centrados en -20 y -22 ppm y el $2H$ un único pico centrado a -20 ppm. En base a esta asignación podemos concluir que a pesar de la gran distorsión que presentan los espectros obtenidos para las muestras sinterizadas a 1550 ºC, estos espectros están constituidos fundamentalmente por dos bandas centradas aproximadamente para -110 y -17/-18 ppm que podemos asignar a las unidades Q y unidades X que proceden del vidrio de oxicarburo de silicio.

Las unidades Q se asignan a la red vítrea (unidades $[SiO_4]$) que proceden del vidrio de oxicarburo de silicio y las unidades X características de β-SiC con un elevado grado de desorden que provienen fundamentalmente de la reorganización de enlaces Si-O/Si-C de la fase oxicarburo ($T > 1200$ ºC) y en menor medida de la reducción carbotérmica de la sílice (o vidrio de oxicarburo) con el carbono tipo grafito.
Figura IV-22: Espectros de resonancia magnética nuclear (1^{29}Si MAS RMN) de los materiales obtenidos mediante sinterización a 1550 °C, para 4, 8 y 16 horas con PARALOID como aglomerante y prensado isostático.

Estos espectros han sido deconvolucionados para extraer los porcentajes de cada una de las especies que están recogidos en la Tabla IV-10. A partir de esta información se puede apreciar el espectacular aumento que han experimentado las unidades X desde la pieza en “verde” (oxicarburo a 1100 °C) hasta el material obtenido tras la sinterización a 1550 °C. También puede apreciarse que aún para estas temperaturas de tratamiento se siguen observando trazas de unidades T y D, pero la mayoría se han transformado en unidades Q y X, a partir de la redistribución de los enlaces Si-O/Si-C para la formación de las especies favorecidas termodinámicamente.

De la misma manera que se hizo en el Capítulo III, a partir de los espectros se han extraído los porcentajes de enlaces Si-O y Si-C para calcular la fórmula obtenida a partir de los datos obtenidos mediante RMN, y si bien, para los materiales obtenidos en el Capítulo III y V (como se verá más adelante) existe una muy buena concordancia de éstos con los obtenidos mediante análisis químico, para los materiales obtenidos a 1550 °C se observa una sobreestimación de las señales debidas al SiC (ver datos de la Tabla
Capítulo IV

IV- 4 que recoge los valores del análisis químico y la fórmula de oxicarburo). Este hecho que también ha sido observado por otros autores,190 y hace que estos datos deban ser tratados con precaución indicando únicamente la tendencia que experimenta el material con la temperatura de tratamiento.

Tabla IV- 10: Desplazamientos químicos y porcentajes de las diferentes unidades estructurales de los materiales obtenidos mediante sinterización a 1550 °C y los del oxicarburo a 1100 °C

<table>
<thead>
<tr>
<th>Prensado /Aglomerante</th>
<th>T 1500 °C (h)</th>
<th>Q (%)</th>
<th>T(%)</th>
<th>D(%)</th>
<th>X(%)</th>
<th>Fórmula RMN SiOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI/PARALOID 4</td>
<td>4</td>
<td>48</td>
<td>11</td>
<td>1</td>
<td>39</td>
<td>SiC0.43O1.15</td>
</tr>
<tr>
<td>PI/PARALOID 8</td>
<td>8</td>
<td>-113</td>
<td>-76</td>
<td>-44</td>
<td>-18</td>
<td>SiC0.44O1.12</td>
</tr>
<tr>
<td>PI/PARALOID 16</td>
<td>16</td>
<td>54</td>
<td>1</td>
<td>2</td>
<td>43</td>
<td>SiC0.41O1.18</td>
</tr>
<tr>
<td>SiOC1100 °C</td>
<td>-</td>
<td>61</td>
<td>25</td>
<td>7</td>
<td>4/3*</td>
<td>SiC0.16O1.69 + 0.43 C</td>
</tr>
</tbody>
</table>

*Para el oxicarburo obtenido a 1100 °C también se aprecia la presencia de unidades M, que se representan conjuntamente en el esta tabla.

- Estudio mediante difracción de RX.

En la Figura IV- 23 están representados los difractogramas de RX del material obtenido por tratamiento a 1550 °C, donde se han variado las condiciones de procesamiento tales como tipo de aglomerante (PARALOID o PDMS), prensado empleado (uniaxial o isostático) y tiempo de permanencia a la temperatura máxima (4, 8 y 16 horas).

Para todos los casos se observan dos picos anchos centrados para θ = 25 y 65 °, típicos de materiales vitreos basados en sílice. Estas señales coexisten con las características de β-SiC que se encuentran para θ = 35, 60 y 75 °. No se detecta la presencia de los distintos politipos α- SiC, cuyos picos de difracción aparecen muy próximos a los del β-SiC, por ejemplo el 4H presenta picos de difracción para 33.6 ° y el politipo 6H presenta dos picos de difracción a 34.2 y 38.3 °.226
Para temperaturas superiores a 1500 ºC comienza a producirse la reducción carbotérmica, en la que la sílice (para este caso en concreto el SiOC) reacciona con carbono tipo grafito y forma SiC y especies gaseosas (*Capítulo I/Reacción I-23, I-24 y I-25*).

Es importante comentar que, independientemente de las horas de tratamiento a 1550 ºC, el material experimenta aproximadamente el mismo grado de crecimiento de cristal para el carburo de silicio. Este grado de cristalización, aún a estas temperaturas, es bastante bajo indicando la gran estabilidad a elevadas temperaturas de estos materiales una vez formados.

El tamaño de los cristales de β-SiC se ha evaluado empleando la ecuación de *Scherrer*\(^{228}\) (*véase Anexo I/Ecuación A.I-7*).

![Difractogramas de RX del material obtenido a 1550 ºC, donde se ha variado el tipo de aglomerante, prensado y tiempo de permanencia a 1550 ºC.](image)

Figura IV- 23: Difractogramas de RX del material obtenido a 1550 ºC, donde se ha variado el tipo de aglomerante, prensado y tiempo de permanencia a 1550 ºC.
Como puede apreciarse en la Figura IV-24, el tamaño de los cristales es muy parecido para todos los casos. Se aprecian ligeras variaciones pero el valor obtenido se sitúa en un valor de aproximadamente 1.5 nm.

Se aprecia un ligero aumento del tamaño de los cristales al aumentar la duración del tratamiento a 1550 ºC.

Cuando se emplea PDMS como aglomerante, el tipo de prensado ejerce una influencia adicional en el crecimiento del cristal. Al emplear prensado isostático como consecuencia de una mayor homogeneidad en “verde” que se traduce en una densificación más rápida, el material obtenido presenta una mayor resistencia frente al crecimiento del cristal para tiempos de tratamiento más pequeños. Para el tiempo de tratamiento mayor esta resistencia no perdura y el tamaño de cristal se iguala para los dos tipos de prensado.

Sin embargo, cuando se emplea PARALOID como aglomerante, el comportamiento es algo diferente. El PARALOID durante la pirólisis genera una gran cantidad de especies volátiles que dan lugar a poros e imperfecciones en el material. Esto es más acusado en el caso del prensado uniaxial que también ha dejado más imperfecciones que el isostático. Por lo tanto la cristalización del material se produce en mayor intensidad cuando se utiliza PARALOID que con PDMS, y por otro lado, y para todos los casos una vez alcanzada la densificación (para el tiempo de tratamiento mayor) el tamaño del cristal es muy similar.

Estos materiales presentan una excelente resistencia frente a la cristalización, o mejor dicho una gran estabilidad frente a elevadas temperaturas, del orden de los 1550 ºC.

La formación de nanodominios de β-SiC con un tamaño de cristal de ≈ 1.5 nm se produce a la temperatura de pirólisis de 1550 ºC. Este tamaño se mantiene prácticamente constante cuando se pasa de tiempos de tratamiento de 4 a 16 horas, lo que está sugiriendo una velocidad de crecimiento de cristal muy lenta. Esto está de acuerdo con la idea de que la movilidad de los átomos en la red del SiOC se reduce por la presencia de la fase de carbono libre y de esta manera se retarda la separación de fases hacia la formación de SiO$_2$ y SiC y posterior formación de especies cristalinas de SiO$_2$ y SiC.
Figura IV-24: Variación del tamaño del cristal de β-SiC para temperaturas de tratamiento de 1550 ºC, donde se han variado las condiciones de procesamiento, aglomerante, prensado y duración del tratamiento a 1550 ºC.

Estudios del comportamiento de los vidrios de oxicarburo de silicio a elevadas temperaturas realizados por otros autores, dan como resultando una mayor evolución de especies cristalinas de SiC incluso para temperaturas y tiempos de permanencia inferiores. Según apuntan estos autores la fase de carbono libre parece tener un papel destacado en la mayor o menor evolución de las especies cristalinas ya que, como se observa en estos trabajos, los oxicarburos que presentan una mayor cantidad de carbono libre experimentan un menor crecimiento de cristal, debido al efecto estabilizador de la fase de carbono tipo grafito en la fase metaestable de vidrio de oxicarburo. El carbono libre hace de barrera física entre los núcleos de SiC y la matriz vitrea de SiOC. Por otro lado los propios enlaces Si-C de la fase oxicarburo también ralentizan el proceso de cristalización ya que aumentan la viscosidad y disminuyen la difusión de las especies.

En otros trabajos, para vidrios de oxicarburo sin prácticamente carbono libre, se observa que prácticamente la cristalización del carburo de silicio ha terminado a 1300 ºC. Durante el progreso de la cristalización se aprecia que tiene lugar un incremento en
la cantidad de pequeños cristales de carburo de silicio, que sin embargo no aumentan de tamaño. Dicho incremento se asocia a una mejora de las propiedades mecánicas.

En ninguno de los casos se aprecia la presencia de especies cristalinas que procedan de la matriz vitrea, una posible explicación es que dicha matriz de silice está interrumpida continuamente y sólo se puedan formar pequeños clusters (1-2 nm), cuyas dimensiones no sean lo suficientemente grandes como para nuclear cristobalita.190 Incluso para temperaturas del orden de 1650 °C Renlund et al.24 no encuentran evidencias del crecimiento de fases cristalinas de cristobalita (siendo 1673 °C la temperatura de máxima cristalización de la silice vítrea). Esta gran estabilidad estructural y química a temperaturas tan elevadas hace que los vidrios de oxicarburo sean unos excelentes candidatos para su empleo a alta temperatura.

La asimetría que presenta el ancho pico asociado a silice vítrea, hace pensar que puede contener otra banda asignada a carbono tipo grafito que se sitúa para $2\theta = 26^\circ$.166 De acuerdo con esto, recientemente se ha publicado un trabajo231 donde a partir de diferentes series de vidrios de oxicarburo se ha llevado a cabo la extracción casi completamente de la silice con ácido fluorhídrico, de manera que la fase de carbono tipo grafito ha podido ser observada mediante DRX por la presencia de un pico situado para $2\theta = 26^\circ$

Para finalizar en conveniente puntualizar que estos materiales obtenidos a 1550 °C están constituidos por β-SiC, aunque se puede apreciar una deformación de las señales que podría corresponder a una pequeña proporción del otro politipo. Estos datos deben ser analizados con mucha prudencia ya que el β-SiC aquí determinado en ningún caso corresponde con β-SiC cristalino sino con SiC que presenta una incipiente cristalización u orden.

\textit{Burns et al.}32 obtienen carburo de silicio mediante pirólisis de siloxanos, en este trabajo se cree que el crecimiento de los cristales de SiC está ralentizado por la presencia de carbono tipo grafito. Además la presencia de carbono libre en el material una vez que se ha formado el carburo de silicio minimiza la contracción durante la sinterización. También en dicho artículo emplean las resinas como aglomerantes para polvos cerámicos con un porcentaje de 10 al 20 % dependiendo de la resina y el proceso implicado.
El material que obtienen es composicionalmente estable hasta 1500 ºC, para 1600 ºC la reducción carbotérmica se produce de una forma severa y para 1800 ºC el material ha perdido todo su oxígeno y sólo está formado por carburo de silicio y carbono tipo grafito.

Estos autores proponen que el carburo de silicio que se forma hasta 1400 ºC no es debido a la reducción carbotérmica sino a una continuación de las reacciones de redistribución Si-C/Si-O, esto puede ser demostrado ya que no se produce ni cambio composicional ni pérdida en peso detectada mediante TG y que indicaría el comienzo de la reducción carbotérmica. Para este caso concreto, otra evidencia de que prácticamente la reducción carbotérmica no haya tenido lugar es que el contenido en carbono libre ha disminuido ligeramente y que el espectro de resonancia presenta un ligero crecimiento de la banda asociada al carburo de silicio indicando la poca participación de esta reducción en el material final obtenido.

Como se ha comentado a lo largo de esta memoria y en este capítulo a partir de 1200 ºC el vidrio de oxicarburo experimenta una separación de fases como consecuencia de que las reacciones de redistribución de enlaces Si-O/Si-C dejan de ser equilibrios para estas temperaturas y se desplazan hacia la formación de especies más estables como son la sílice y el carburo de silicio. Aunque existe una cierta separación de fases a estas temperaturas los materiales pueden ser descritos como una matriz homogénea que contiene sílice vítrea (o vidrio de oxicarburo), carburo de silicio y grafito con un elevado grado de desorden. Para temperaturas más altas, como son las que aquí se estudian, comienza a producirse la reducción carbotérmica donde la sílice y el grafito se consumen a expensas de la formación de carburo de silicio.

La fase de sílice sigue manteniendo su naturaleza vítrea, mientras que la fase de carbono grafito y carburo de silicio presentan una incipiente cristalización debido probablemente a la coalescencia de las pequeñas partículas dispersas en el material por efecto de la temperatura. Sin embargo mediante el empleo de diversas técnicas estructurales se ha determinado un “tamaño de cristal” tanto para el carburo de silicio como para el grafito de 1.5 nm aproximadamente.
IV.2.2.3 Microestructura y tectura de los oxicarburos obtenidos a 1550 ºC.

IV.2.2.3.1 Estudio mediante porosimetría de mercurio.

A partir de los datos obtenidos mediante porosimetría de mercurio se elaboran las curvas de intrusión de mercurio (Figura IV- 25), así como las distribuciones de tamaño de poro (Figura IV- 26) de los materiales sinterizados a 1550 ºC, para cada una de las variables estudiadas.

El volumen de intrusión de mercurio es muy pequeño lo que se traduce en una baja porosidad, (al menos de los poros detectables mediante esta técnica) indicando un elevado grado de densificación del material debido sobre todo a la sinterización que experimenta como consecuencia de la elevada temperatura de pirólisis.

Teniendo en cuenta el tipo de aglomerante empleado, el PARALOID genera porosidad y carbono tipo grafito durante su degradación en el tratamiento térmico, mientras que el PDMS, también origina porosidad pero debido a sus unidades estructurales, puede formar SiOC y carbono grafito, de manera que se espera un material que presente menos porosidad que el obtenido con PARALOID. Si se tiene en cuenta el tipo de prensado, las muestras más homogéneas en “verde” son las que han sido obtenidas con un prensado isostático, por eso durante el tratamiento térmico conducirán a materiales más homogéneos (menos poros o grietas).

De acuerdo a lo explicado en los párrafos anteriores, no sorprende que los volúmenes más pequeños de intrusión de mercurio sean los que se observan para el caso concreto del material obtenido con PDMS, como aglomerante y prensado isostático. Esto está indicando, que estas condiciones de procesado son las que conducen a un material con mayor homogeneidad y densificación, incluso para tiempos de tratamiento a 1550 ºC menores.
Figura IV-25: Curvas de intrusión-extrusión de mercurio, para el material obtenido a 1550 ºC, donde se ha variado el tipo de presado, aglomerante y tiempo de permanencia a 1550 ºC.

Figura IV-26: Distribuciones de tamaño de poro determinadas mediante porosimetría de mercurio, para el material obtenido a 1550 ºC, donde se ha variado el tipo de presado, aglomerante y tiempo de permanencia a 1550 ºC.
IV.2.2.3.2 Estudio mediante adsorción de nitrógeno.

A continuación se presentan las isotermas de adsorción de nitrógeno (Figura IV- 27) y las distribuciones de tamaño de poro obtenidas mediante el método BJH a partir de la rama de desorción (Figura IV- 28), para los materiales obtenidos a 1550 ºC donde se ha variado las condiciones de procesado.

Independientemente de las condiciones utilizadas, en todos los casos se obtienen materiales que presentan isotermas tipo II, características de materiales no porosos. Enlazando con esto, las distribuciones de poro indican que estos materiales no presentan prácticamente poros detectables mediante esta técnica experimental.

Las muestras que presentan un mayor volumen de nitrógeno adsorbido corresponden con las que han sido procesadas con PARALOID como aglomerante mediante prensado uniaxial. En el lado opuesto se encuentran las muestras obtenidas con PDMS y prensado isostático, que son las que poseen un menor volumen de nitrógeno adsorbido, siendo prácticamente independiente del tiempo de permanencia a 1550 ºC, denotando la gran homogeneidad de los materiales obtenidos con estas condiciones de procesamiento.

Estos datos coinciden con lo expuesto anteriormente, donde se apuntaba la repercusión del tipo de aglomerante empleado, ya sea PARALOID o PDMS, o el tipo de prensado, uniaxial o isostático, en el material final obtenido. A partir de las distribuciones de poro (Figura IV- 28), se observa que el tratamiento del oxicarburo a 1550 ºC produce la eliminación prácticamente total de la porosidad obteniéndose un material denso. Según puede deducirse, la porosidad remante, prácticamente nula, esta situada por debajo de 10 nm.

En la Tabla IV- 11 están representados los valores de superficie específica de los materiales obtenidos a 1550 ºC. Independientemente de las condiciones de tratamiento, los materiales presentan unos valores de superficie específica por debajo de 1m²/g. Enlazando con el resto de los resultados, de nuevo los materiales obtenidos con PDMS y prensado isostático son los que poseen unos valores más pequeños, valores que son prácticamente independientes del tiempo de permanencia a 1550 ºC.
Figura IV-27: Isotermas de adsorción de nitrógeno, para el material obtenido a 1550 °C donde se ha variado el tipo de presado, aglomerante y tiempo de permanencia a 1550 °C.

Figura IV-28: Distribuciones de tamaño de poro determinadas por el método BJH a partir de la rama de desorción, para el material obtenido a 1550 °C donde se ha variado el tipo de presado, aglomerante y tiempo de permanencia a 1550 °C.
Tabla IV-11: Valores de superficie específica BET (m²/g), para el material obtenido a 1550 °C, donde se han variado los distintos parámetros de procesado.

<table>
<thead>
<tr>
<th>Aglomerante</th>
<th>Paraloid</th>
<th>PDMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 1550 °C (h)</td>
<td>4</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.23</td>
</tr>
</tbody>
</table>

IV.2.2.3.3 Estudio mediante microscopía electrónica de barrido.

Para completar el análisis microestructural se realizó el estudio de la superficie de fractura de los materiales obtenidos a 1550 °C mediante microscopía electrónica de barrido.

Las micrografías para todas las condiciones estudiadas están recogidas en la Figura IV-29 y la Figura IV-30. En la Figura IV-29 se encuentran representadas las correspondientes a un prensado uniaxial con PARALOID y PDMS, mientras que en la Figura IV-30 las que corresponden a un prensado isostático empleando PARALOID y PDMS como aglomerante.

De acuerdo a lo dicho hasta ahora, cuando se utiliza presado uniaxial el material en “verde” obtenido presenta imperfecciones que se traducen después del tratamiento térmico en un material que no alcanza una densificación completa o necesita tratamientos más largos a 1550 °C para conseguirla. Ahora bien, si se emplea PARALOID como aglomerante la no densificación se intensifica aún más ya que durante la pirolisis dicho aglomerante se degrada térmicamente y genera especies volátiles y carbono tipo grafito.

Debido a esto a medida que aumenta el tiempo de permanencia a 1550 °C, el material experimenta la sinterización de los granos, apreciándose como progresa considerablemente para 4, 8 y 16 horas, sin embargo el aglomerante ha introducido una mayor cantidad de carbono tipo grafito lo que hace que el material sea más susceptible a la reducción carbotérmica y se genera nueva porosidad que se aprecia sobre todo en el material obtenido para 16 horas de tratamiento.
Si se emplea PDMS como aglomerante, debido fundamentalmente a que el PDMS no suele ser utilizado como tal, la muestra en “verde” presenta mayor cantidad de imperfecciones macroscópicas, que no desaparecen completamente ni para los tiempos de tratamientos mayores, sin embargo este tipo de imperfecciones no tienen nada que ver con las presentadas por la muestra procesada con PARALOID. Debido a la falta de adhesión entre los granos de la muestra en “verde”, existen zonas con grandes grietas o huecos, que se traducen en zonas radicalmente diferentes después del tratamiento térmico. Cuando se realiza la fractura del material para hacer el análisis se aprecian zonas mates y zonas brillantes, las zonas mates corresponden a zonas de baja sinterización y alta sinterización respectivamente. Sin tener en cuenta estas imperfecciones macroscópicas, a partir de 8 horas el material presenta una muy buena sinterización entre las partículas, mientras que cuando se empleaba PARALOID eran necesarias 16 horas para apreciar una buena sinterización del material. Estas imperfecciones macroscópicas aumentan la superficie reactiva y hacen vulnerable al material frente a la reducción carbotérmica, que evoluciona en mayor medida para mayores tiempos de tratamiento.

El aspecto de las muestras cambia completamente cuando se ha empleado un prensado isostático (Figura IV-30), ya que mediante este tipo de procesado se han eliminado prácticamente todas las imperfecciones (huecos y grietas) en la muestra en “verde” y se consiguen materiales finales, densificados completamente para tiempos menores de permanencia a 1550 ºC.

De nuevo cuando se emplea PARALOID debido a que genera mayor cantidad de especies gaseosas durante su degradación térmica son necesarias al menos tratamientos de 8 horas para conseguir una densificación completa del material.

Al emplear PDMS como aglomerante con 4 horas de tratamiento a 1550 ºC ya se ha conseguido un material completamente densificado, además el aspecto de este es muy similar para todas las horas de tratamiento. La superficie de fractura muestra una superficie lisa, completamente densificada y libre de imperfecciones.
Figura IV-29: Micrografías de microscopía electrónica de barrido para el material obtenido a 1550 ºC, mediante prensado uniaxial, empleando PARALOID o PDMS como aglomerante para 4, 8 y 16 de tratamiento.
Figura IV-30: Micrografías de microscopía electrónica de barrido para el material obtenido a 1550 °C, mediante prensado uniaxial, empleando PARALOID o PDMS como aglomerante para 4, 8 y 16 de tratamiento.
Los resultados obtenidos mediante MEB confirman de nuevo que los materiales más homogéneos son los que se han obtenido con la pareja prensado isostático/PDMS, siendo necesarias solamente 4 horas para conseguir un material con una excelente densificación.

Los poros e imperfecciones se han cerrado mediante un proceso de sinterización viscosa por encima de la temperatura de transformación del vidrio de oxicarbururo de silicio la cual, según algunos autores, se sitúa entre 1350 y 1400 ºC, mientras que para la sílice vitrea este valor es de 1190 ºC. Si se compara la variación de la viscosidad con la temperatura para vidrios de oxicarbururo con respecto a la sílice vitrea se puede apreciar que esta propiedad es mayor de 1 a 3 veces de orden magnitud.

Para temperaturas superiores a 1100 ºC y hasta 1400-1500 ºC, fundamentalmente se produce una reordenación de la fase oxicarbururo, que favorece la formación de unidades Q y X, debido a una extensión de las reacciones de redistribución del enlaces Si-O/Si-C. Además para estas temperaturas de tratamiento estas reacciones dejan de ser equilibrios y se produce una segregación de las fases hacia la formación de sílice y nanocristales de carburo de silicio.

Para temperaturas mayores (a partir de 1500 ºC aproximadamente) se produce la reducción carbotérmica, cuya extensión está supeditada a la cantidad de carbono tipo grafito y sin restar importancia a la microestructura que presenten los vidrios de oxicarbururo. La descomposición térmica de estos materiales puede ser promovida o inhibida, en el caso de materiales porosos o densos respectivamente. En los materiales que presentan alta superficie específica o porosidad, a medida que se van generando los productos volátiles tales como CO o SiO, éstos pueden ser eliminados con facilidad de la muestra, y de esta manera desplazar los equilibrios de las reacciones hacia la derecha, favoreciendo que la reducción carbotérmica se produzca en mayor medida.

Sin embargo los vidrios de oxicarburo densos no favorecen la eliminación de especies gaseosas. La difusión de las especies a través de un sólido no poroso es difícil y por lo tanto la degradación está impedida, lo que repercute en un aumento de la estabilidad a elevadas temperaturas.
Capítulo IV

La elevada integridad que mantienen estos materiales junto con la moderada extensión de la reducción carbotérmica pueden ser explicados en base a la elevada densificación que presentan, ya que una vez sinterizados, la homogeneidad y densificación es tal que la reducción carbotérmica está parcialmente inhibida, ya que es muy difícil la difusión de las especies gaseosas a través de dicho material y por lo tanto la evolución de dicha reducción carbotérmica.

Un hecho que viene a corroborar lo anteriormente expuesto se basa en experimentos realizados anteriormente en nuestro grupo:43 En dichos trabajos realizados a partir de vidrios de oxicarburo porosos, obtenidos mediante TEOS/PDMS/silice, se apreciaba como la reducción carbotérmica a la temperatura de 1500 ºC ha consumido la mayor parte de la cantidad de carbono libre que presentaba el material a 1000ºC. Esto no ocurre en los materiales que se están siendo estudiados en esta tesis, lo que viene a ratificar la gran importancia que tiene la microestructura de estos materiales la cual, en este caso en concreto, inhibe parcialmente la reducción carbotérmica y por lo tanto la degradación del material.

IV.2.2.3.4 Variación de la densidad real.

La fórmula del oxicarburo $SiC_xO_{2/(1-x)} + C_{libre}$ (véase Capítulo III/ecuación III-9) en la que se considera que el material está formado por la fase oxicarburo y una fase de carbono libre se ha reescrito considerando que todos los enlaces Si-C del oxicarburo forman SiC, pudiendo ser descrito el material como una mezcla de carburo de silicio, sílice y carbono tipo grafito (Ecuación IV-1).

$$SiC_xO_{2/(1-x)} + C_{libre} \rightarrow xSiC + (1-x)SiO_2 + C_{libre}$$

Ecuación IV-1

A partir de las relaciones moleares calculadas para cada uno de ellos, obtenidas a partir del análisis químico (Tabla IV-4), y aplicando la regla de las mezclas se ha calculado el volumen (%) para cada uno de estos componentes y la densidad teórica del material final obtenido (Ecuación IV-2) Se han empleado los siguientes valores para cada componente: $\rho SiC = 3.0\ g/cc; \rho SiO_2 = 2.20\ g/cc; \rho C$ grafito turbostático $= 2.20\ g/cc.$
Tabla IV-12: Composiciones del material obtenido a 1550 ºC así como % en volumen y densidad teórica y módulo de Young teórico aplicando la regla de las mezclas.

<table>
<thead>
<tr>
<th>Prensado*/Aglomerante**</th>
<th>T (h)</th>
<th>Fórmula</th>
<th>Volumen (%)</th>
<th>ρ_t****</th>
<th>E_t*****</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU/PARALOID 4</td>
<td>4</td>
<td>0.16 SiC + 0.84 SiO2 + 0.23 C</td>
<td>8.11 SiC + 87.17 SiO2 + 4.71 C</td>
<td>2.26</td>
<td>87.10</td>
</tr>
<tr>
<td>PU/PARALOID 8</td>
<td>8</td>
<td>0.15 SiC + 0.85 SiO2 + 0.21 C</td>
<td>7.79 SiC + 87.94 SiO2 + 4.26 C</td>
<td>2.26</td>
<td>86.70</td>
</tr>
<tr>
<td>PU/PARALOID 16</td>
<td>16</td>
<td>0.16 SiC + 0.84 SiO2 + 0.16 C</td>
<td>8.46 SiC + 88.09 SiO2 + 3.43 C</td>
<td>2.27</td>
<td>88.84</td>
</tr>
<tr>
<td>PU/PDMS 4</td>
<td>4</td>
<td>0.14 SiC + 0.86 SiO2 + 0.25 C</td>
<td>7.26 SiC + 87.70 SiO2 + 5.04 C</td>
<td>2.26</td>
<td>84.92</td>
</tr>
<tr>
<td>PU/PDMS 8</td>
<td>8</td>
<td>0.15 SiC + 0.85 SiO2 + 0.20 C</td>
<td>7.70 SiC + 88.06 SiO2 + 4.24 C</td>
<td>2.26</td>
<td>86.50</td>
</tr>
<tr>
<td>PU/PDMS 16</td>
<td>16</td>
<td>0.15 SiC + 0.85 SiO2 + 0.17 C</td>
<td>7.94 SiC + 88.58 SiO2 + 3.48 C</td>
<td>2.26</td>
<td>87.60</td>
</tr>
<tr>
<td>PI/PARALOID 4</td>
<td>4</td>
<td>0.16 SiC + 0.84 SiO2 + 0.22 C</td>
<td>7.90 SiC + 87.57 SiO2 + 4.51 C</td>
<td>2.26</td>
<td>86.79</td>
</tr>
<tr>
<td>PI/PARALOID 8</td>
<td>8</td>
<td>0.18 SiC + 0.82 SiO2 + 0.20 C</td>
<td>9.04 SiC + 86.80 SiO2 + 4.16 C</td>
<td>2.27</td>
<td>89.63</td>
</tr>
<tr>
<td>PI/PARALOID 16</td>
<td>16</td>
<td>0.18 SiC + 0.82 SiO2 + 0.19 C</td>
<td>9.06 SiC + 86.92 SiO2 + 4.01 C</td>
<td>2.27</td>
<td>89.78</td>
</tr>
<tr>
<td>PI/PDMS 4</td>
<td>4</td>
<td>0.15 SiC + 0.85 SiO2 + 0.23 C</td>
<td>7.80 SiC + 87.52 SiO2 + 4.68 C</td>
<td>2.26</td>
<td>86.42</td>
</tr>
<tr>
<td>PI/PDMS 8</td>
<td>8</td>
<td>0.15 SiC + 0.85 SiO2 + 0.23 C</td>
<td>7.75 SiC + 87.40 SiO2 + 4.85 C</td>
<td>2.26</td>
<td>86.17</td>
</tr>
<tr>
<td>PI/PDMS 16</td>
<td>16</td>
<td>0.16 SiC + 0.84 SiO2 + 0.23 C</td>
<td>7.88 SiC + 87.40 SiO2 + 4.71 C</td>
<td>2.26</td>
<td>86.57</td>
</tr>
<tr>
<td>1100</td>
<td></td>
<td>0.15 SiC + 0.85 SiO2 + 0.33 C</td>
<td>7.58 SiC + 85.75 SiO2 + 6.66 C</td>
<td>2.26</td>
<td>84.49</td>
</tr>
</tbody>
</table>

* Tipo de Prensado donde P.U = Prensado uniaxial y P.I = Prensado Isostático.
** Tipo de Aglomerante que puede ser PARALOID o PDMS.
*** Calculada a partir de $SiC_{(1-x)}O_2$ reescrita como $xSiC + (1-x)SiO_2$
**** Se aplica la regla de las mezclas para calcular la densidad teórica $\rho_t = \Sigma V_i \rho_i$
Se emplea $\rho SiC = 3.0$ g/cc; $\rho SiO_2 = 2.20$ g/cc; ρ Cgrafito turbostático = 2.20 g/cc
***** $E_t = (\Sigma E_i V_i)/100$, donde $E SiC =300$ MPa; $E SiO_2 =72$ MPa; $EC_{libre} = 0$ MPa.

Todos estos valores están recogidos en la Tabla IV-12 y concuerdan bastante bien con los valores de densidad real obtenidos mediante picnometría de helio (Tabla IV-13 y representados en la Figura IV-31).

El análisis mediante picnometría de helio muestra que estos materiales presenta una densidad real mayor que la de la sílice (2.2 g/cm³).

Los valores en todos los casos independientemente de las condiciones de procesado empleadas son muy similares, en torno a 2.3. g/cm³. Las pequeñas fluctuaciones que
experimentan los valores pueden ser interpretadas como el error experimental de la técnica. En algunas ocasiones algunos autores han apreciado una disminución de la densidad a elevadas temperaturas, asociado al comienzo de la degradación del material, en esta memoria no se aprecia este fenómeno lo que apoya de nuevo la elevada integridad de estos materiales a elevadas temperaturas.

Tabla IV- 13: Variación de la densidad real para los materiales obtenidos a 1550 ºC, donde han sido variadas las condiciones de procesamiento a dicha temperatura.

<table>
<thead>
<tr>
<th>Aglomerante</th>
<th>Paraloid</th>
<th>PDMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prensado</td>
<td>P. uniaxial</td>
<td>P. Isostático</td>
</tr>
<tr>
<td>T 1550 ºC (h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.30</td>
<td>2.29</td>
</tr>
<tr>
<td>8</td>
<td>2.34</td>
<td>2.31</td>
</tr>
<tr>
<td>16</td>
<td>2.32</td>
<td>2.32</td>
</tr>
</tbody>
</table>

Figura IV- 31: Representación de la variación de la densidad real en todo el proceso, hasta la pieza en verde y para la sinterización a 1550 ºC en función de las diferentes condiciones de procesado a dicha temperatura.
Tabla IV- 14: Variación de la densidad aparente medida por inmersión en Hg, para los materiales obtenidos a 1550 ºC, donde han sido variadas las condiciones de procesamiento.

<table>
<thead>
<tr>
<th>Aglomerante</th>
<th>Paraloid</th>
<th>PDMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prensado</td>
<td>P. uniaxial</td>
<td>P. Isostático</td>
</tr>
<tr>
<td>T 1550 ºC (h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.29</td>
<td>2.30</td>
</tr>
<tr>
<td>8</td>
<td>2.18</td>
<td>2.34</td>
</tr>
<tr>
<td>16</td>
<td>2.31</td>
<td>2.34</td>
</tr>
</tbody>
</table>

A partir de los valores de densidad aparente (Tabla IV- 14 y Tabla IV- 15) se ha estimado la porosidad de estos materiales en función de las diferentes condiciones de procesamiento. Si se comparan estos valores con los obtenidos mediante porosimetría de mercurio se observa una gran similitud y para casi todas las condiciones de procesamiento se alcanza una porosidad prácticamente nula (Tabla IV- 16).

Tabla IV- 15: Variación de la densidad aparente medida con H₂O, para los materiales obtenidos a 1550 ºC, donde han sido variadas las condiciones de procesamiento.

<table>
<thead>
<tr>
<th>Aglomerante</th>
<th>Paraloid</th>
<th>PDMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prensado</td>
<td>P. uniaxial</td>
<td>P. Isostático</td>
</tr>
<tr>
<td>T 1550 ºC (h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.30</td>
<td>2.29</td>
</tr>
<tr>
<td>8</td>
<td>2.19</td>
<td>2.33</td>
</tr>
<tr>
<td>16</td>
<td>2.30</td>
<td>2.33</td>
</tr>
</tbody>
</table>

Tabla IV- 16: Variación de la porosidad calculada a partir de los datos de densidad real (picnometría de He) y densidad aparente (inmersión en Hg o H₂O) y los datos obtenidos mediante porosimetría de Hg, para los materiales obtenidos a 1550 ºC donde han sido variadas las condiciones de procesamiento.

<table>
<thead>
<tr>
<th>Aglomerante</th>
<th>Paraloid</th>
<th>PDMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prensado</td>
<td>P. uniaxial</td>
<td>P. Isostático</td>
</tr>
<tr>
<td>T 1550 ºC (h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0*/5**</td>
<td>0/0</td>
</tr>
<tr>
<td>8</td>
<td>6/1</td>
<td>0/7</td>
</tr>
<tr>
<td>16</td>
<td>1/9</td>
<td>0/0</td>
</tr>
</tbody>
</table>

*Porosidad calculada mediante D.real y D. aparente a partir de P = 1-(D. aparente/D. real)

**Porosidad obtenida mediante el análisis de porosimetría de mercurio.
IV.2.2.4 Evaluación de las propiedades de los materiales obtenidos a 1550 ºC.

IV.2.2.4.1 Propiedades mecánicas.

- **Microdureza Vickers.**

Una vez caracterizado el material desde los punto de vista estructural y microestructural se ha estudiado como varían algunas de sus propiedades mecánicas, tales como microdureza Vickers y tensión de fractura. En primer se presentan los valores obtenidos de microdureza Vickers, que quedan recogidos en la Figura IV-32 y en la Tabla IV-17.

La dispersión de las medidas es mínima lo cual indica un elevado grado de homogeneidad. Esta homogeneidad conjuntamente con la elevada densificación que presenta el material obtenido se traduce en unos valores de microdureza extraordinariamente elevados, siendo máximos para las muestras obtenidas empleando PDMS como aglomerante y prensado isostático, que son las condiciones de procesamiento que daban lugar a unos materiales mejores (más homogéneos, densos y libres de imperfecciones macroscópicas). Cabe destacar, que la sílice presenta unos valores de 6.0-6.5 GPa, por lo que en todas las condiciones estudiadas se superan ampliamente estos valores.

Como ya se ha commentando anteriormente para temperaturas superiores a 1350 ºC, se produce la sinterización viscosa del material conduciendo a un material completamente densificado a esta temperatura, gracias en parte al pequeño tamaño de grano del que se partía en la muestras en “verde”. Esta elevada densificación, así como la ausencia prácticamente total de porosidad, influyen notablemente haciendo que los valores de microdureza obtenidos para todas las condiciones de procesamiento sean tan elevados.
Tabla IV-17: Valores de microdureza Vickers (GPa) para los materiales obtenidos a 1550 ºC, donde se han variado las condiciones de procesado.

<table>
<thead>
<tr>
<th>Aglomerante</th>
<th>Paraloid</th>
<th>PDMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. uniaxial</td>
<td>P. Isostático</td>
</tr>
<tr>
<td>T 1550 ºC (h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.1 ± 0.2</td>
<td>9.2 ± 0.4</td>
</tr>
<tr>
<td>8</td>
<td>10.4 ± 0.2</td>
<td>9.9 ± 0.3</td>
</tr>
<tr>
<td>16</td>
<td>10.0 ± 0.4</td>
<td>9.7 ± 0.3</td>
</tr>
</tbody>
</table>

En nuestro departamento, se ha hecho un estudio acerca de la influencia de la porosidad en las medidas de microdureza para este tipo de materiales, estimándose una microdureza teórica de alrededor de 7.4 GPa para vidrios de oxicarburo que no presenten porosidad.

Por otro lado, Walter et al. obtienen unos valores ligeramente inferiores a los que aquí se están presentando e interpretan sus resultados de microdureza, indicando que ésta es mayor, cuanto mayor sea la cantidad de enlaces Si-C en el oxicarburo, y al aumentar la temperatura de tratamiento hasta unos valores máximos de temperatura a
partir de los cuales la microdureza comienza a disminuir. Esta temperatura, entorno a 1400-1500 ºC, depende de la naturaleza del oxicarburo, que influye sobre todo de la temperatura a la que comience a degradarse vía reducción carbotérmica, que genera además de carburo de silicio especies gaseosas que disminuyen las propiedades mecánicas del material. De nuevo el hecho de que no se aprecie una disminución de los valores de microdureza con el tiempo de permanencia a 1550 ºC, vuelve a indicar el pequeño progreso de la reducción carbotérmica en los materiales aquí estudiados.

El aumento encontrado para los valores de microdureza con respecto a los teóricos determinados en el departamento, se asocia fundamentalmente a la elevada integridad que mantienen los materiales, para estas condiciones de procesamiento, asociada casi completamente a la elevada densificación alcanzada que ralentiza la progresión de la reducción carbotérmica y por tanto la degradación del material. Además debe tenerse presente que, para estas temperaturas de tratamiento, el material final obtenido está formado por una matriz vítrea en la que se encuentran dispersados homogéneamente carburo de silicio y carbono tipo grafito en forma nanocristalina, cuya presencia produce una mejora de las propiedades mecánicas.

- **Tensión de fractura en flexión a tres puntos.**

En la Figura IV-33 se presentan los valores de tensión de fractura en flexión a tres puntos de los materiales obtenidos a 1550 ºC, para las diferentes condiciones de procesamiento. Dichos valores, son bastante buenos debido a la gran homogeneidad y densificación que presentan los materiales, atribuida fundamentalmente a la elevada temperatura de tratamiento empleada y a las condiciones de procesamiento (pequeño tamaño de partícula de la pieza en “verde”). El valor más alto ha sido el obtenido con PDMS y prensado isostático. Estos datos no sorprenden ya que a lo largo de este capítulo se ha ido comentando una y otra vez que bajo estas condiciones de procesamiento se conseguían lo materiales más homogéneos y con una menor cantidad de defectos o grietas macroscópicas. Para estas condiciones se obtienen unos valores máximos de 153 MPa, que superan notablemente los 110 MPa que presenta la sílice vítrea. 232
Figura IV- 33: Representación de los valores de tensión de fractura en flexión a tres puntos para los materiales obtenidos a 1550 ºC, donde han sido variadas las condiciones de procesamiento.

Independientemente de esto, los valores obtenidos para el resto de las condiciones de procesamiento son también buenos. Para el caso concreto cuando se emplea PDMS y prensado uniaxial, los bajos valores obtenidos están indicando únicamente la presencia de defectos y grietas que originan imperfecciones en el material, que ya presentaban las muestras en “verde” y que se traducen en una disminución de la tensión de fractura.

Cuando se emplea PARALOID como aglomerante, este si suele ser empleado como aglomerante y como consecuencia el material en “verde” prácticamente no presenta grietas e imperfecciones. Sin embargo, debido a las elevadas condiciones de procesamiento, el PARALOID se degrada y genera especies volátiles y carbono tipo grafito, en mayor cantidad que cuando se emplea PDMS, esto hace que el material obtenido con PARALOID tenga tendencia a experimentar en mayor medida la reducción carbotérmica que se traduce en un ligero descenso de los valores de tensión de fractura. Además debido a la naturaleza eminentemente vítrea del material y debido a la fragilidad de estos materiales, los valores obtenidos tienen una gran dispersión.
Capítulo IV

- **Módulo elástico.**

Los valores de módulo elástico calculados de forma teórica están recogidos en la Tabla IV-12. Para calcular dichos valores se ha empleado la regla de las mezclas, de la misma manera que se hizo con la densidad real utilizando la \(Ecuación \ IV-3 \).

\[
ESiOC = (ESiC VSiC + ESiO2 VSiO2 + EClibre VClibre)
\]

\(Ecuación \ IV-3 \)

Se ha considerado \(ESiC = 300 \, GPa \), \(ESiO2 = 72 \, GPa \) y considerando la contribución de la fase de carbono libre como nula.\(^{30}\)

En todos los casos se han obtenidos valores superiores a los de la sílice vitrea (72 MPa) siendo muy similares independientemente de las condiciones de procesamiento y situándose alrededor de 90 MPa.

Este mismo procedimiento ha sido empleado por varios autores\(^1,233\) que tras comparar los valores obtenidos de forma teórica y experimental encontraban una buena concordancia. El valor obtenido estaba en torno a 100 MPa que es muy similar al que aquí se ha obtenido.\(^1,24,233\)

IV.2.2.4.2 Resistencia frente a la oxidación.

Se evaluó la resistencia frente a la oxidación a elevadas temperaturas de una muestra obtenida empleando PDMS como aglomerante, mediante prensado isostático y con un tiempo de permanencia a 1550 °C de 8 horas.

Dicha resistencia resultó ser muy buena tras someterlos a un tratamiento a 1550 °C, durante 100 horas, en atmósfera oxidante.

El material experimenta una pérdida en peso del 4 % y un aumento dimensional también del 4%.

El material sigue conservando son color negro, si bien en la superficie externa se aprecia un cierta coloración grisácea debida a la formación de una capa superficial blanquecina. No se aprecia la presencia de poros, en la superficie, que indique que se ha degradado el material de una forma masiva.
Capítulo IV

Figura IV- 34: Estudio de la evaluación de la resistencia a la oxidación del material obtenido a 1550 ºC. a) Difracción de RX en la superficie externa e interna y b) micrografía de la superficie de fractura de la parte interior del material obtenidazas mediante M.E.B..

Estudios sobre la degradación térmica de este tipo de materiales proponen que los fenómenos que se producen dependen de la temperatura que se este considerando. Para temperaturas desde 400-800 ºC la reacción que se produce fundamentalmente es la combustión de la fase de carbono libre que da lugar a la eliminación de dióxido de carbono y agua, según la siguiente ecuación:

\[C_{\text{libre}} + O_2 \rightarrow CO_2 + H_2O \]

Ecuación IV- 4

El hecho de que el carbono tipo grafito este distribuido a lo largo del material de una manera homogénea dificulta su oxidación.

Para temperaturas mayores de 800 ºC, algunos autores en experimentos de resistencia frente a la oxidación de vidrios de oxicarburo de silicio fundamentalmente, aprecian una ligera ganancia en peso asociada a la degradación de la fase oxicarburo, según se representa en la siguiente ecuación:
El carburo de silicio, también puede ser vulnerable a la oxidación a estas temperaturas, teniendo en cuenta, como es el caso que aquí se trata, que dichos materiales han sido obtenidos a temperaturas muy elevadas, y estando formados fundamentalmente por sílice, carburo de silicio y carbono tipo grafito. La oxidación del carburo de silicio, se puede expresar en la siguiente ecuación:

\[
\text{SiC} + \text{O}_2 \rightarrow \text{SiO}_2 + \text{CO}_x
\]

Gracias a los resultados obtenidos mediante diversos autores, se sugiere que la microestructura\(^{35,134}\) (porosidad y superficie específica), la forma física de la muestra (por ejemplo polvos finos o gruesos) y la historia térmica de las muestras (temperatura a la que han sido tratados/obtenidos los vidrios de oxicarburo\(^{140,166}\) influyen de una forma notable en el comportamiento de estos materiales a elevadas temperaturas, ya sea en atmósferas oxidantes o inertes. Por un lado, para materiales porosos o con elevada superficie específica, así como muestras en polvo finamente divididas se favorecerá la degradación del material, ya que las especies gaseosas que se van generando se eliminan con facilidad de las muestras y todo lo contrario sucede para muestras densas o polvos más gruesos. Por otro lado, en el caso de oxicarburos obtenidos a elevadas temperaturas (T >1400 °C) la segregación de las especies hacia la formación de sílice, carburo de silicio y carbono tipo grafito produce una mejora en la estabilidad térmica de estos materiales.

En este caso en concreto, se aprecia una pérdida en peso asociada a la degradación de la fase de carbono libre, pero también se aprecia mediante estudios de difracción de RX, que en la superficie externa del material se forma una capa de cristobalita (Figura IV-34), que está indicando que también se produce la degradación del vidrio de oxicarburo y/o del carburo de silicio. Para este tipo de sistemas, a partir de los resultados obtenidos mediante TGA y DTA, se puede establecer que inicialmente se produce la oxidación de la fase de carbono libre y a medida que aumenta la temperatura se produce la oxidación de los enlaces Si-C.\(^{136}\)

Independientemente de esto, la resistencia del material es muy buena, lo que sugiere que la formación de la fase de cristobalita hace de barrera térmica\(^{6,8}\) y dificulta que se
produzca la difusión de las especies gaseosas \((O_2\ y\ CO_x)\) y por lo tanto hace, que el material prácticamente permanezca como al principio, antes de la oxidación, ya que el estudio de la superficie de fractura mediante microscopía electrónica de barrido y de nuevo mediante difracción de \(RX\), así lo confirman (Figura IV-34).

De nuevo, la microestructura y la historia térmica del material juegan un papel muy importante, la elevada densificación junto con la formación superficial de cristobalita ralentizan muchísimo la difusión de las especies gaseosas y por lo tanto la oxidación del material prácticamente no tiene lugar.

Capítulo IV

IV.3 Conclusiones.

La etapa clave del proceso que ha sido llamado “Vía Cerámica” se encuentra en la obtención de la pieza en “verde”, y es la eliminación de la porosidad que presenta el híbrido orgánico-inorgánico de partida que se consigue a través de la molienda en molino de atrición. Dicha molienda va más allá del tamaño de poro del híbrido consiguiéndose unos tamaños de partícula muy pequeños y que facilitan la densificación del material en la posterior etapa de sinterización.

El material obtenido a partir de la “Vía Cerámica” a partir de piezas en “verde” de polvos de vidrio de oxicarburo pirolizados a 1100 ºC y tras sinterización a 1550 ºC está constituido mayoritariamente por una matriz vítrea, así como grafito y carburo de silicio, distribuidos uniformemente en dicha matriz, que presentan una incipiente reordenación con un tamaño de cristal para el carbono tipo grafito y el carburo de silicio situado en torno a 1.5 nm.

La leve evolución de la reducción carbotérmica para estas elevadas condiciones de obtención de los materiales, está atribuida a la presencia de la fase de carbono tipo grafito y a la elevada densificación de los materiales que dificultan la difusión de las especies gaseosas a través del material y ralentizan enormemente dicha reducción carbotérmica.

Los materiales que presentan una mayor homogeneidad y densificación incluso para tiempos de permanencia a 1550 ºC menores, son los obtenidos mediante prensado isostático y PDMS como aglomerante. Esto radica fundamentalmente en que las piezas en “verde” obtenidas mediante prensado isostático presenta un menor número de grietas e imperfecciones y en que el PDMS durante el tratamiento térmico aparte de generar especies volátiles y grafito también genera vidrio de oxicarburo adicional que mejora la estabilidad y las propiedades del material final formado.

Los materiales obtenidos presentan una elevada densificación lo que se traduce en unas muy buenas propiedades mecánicas (para el material obtenido a 1550 ºC; $H_v = 11.7$ GPa y $\sigma_f = 153$ MPa y para la sílice vítrea $H_v = 6-7$ GPa y $\sigma_f = 110$ MPa) y resistencia frente a la oxidación a elevadas temperaturas (1550 ºC (100h)), lo que les hace muy buenos
candidatos para el empleo de dichos materiales como materiales estructurales donde además se requieran buenas propiedades mecánicas, así como un buen comportamiento a elevadas temperaturas, tanto en atmósferas oxidantes como neutras. También es remarcable la estabilidad composicional de los materiales para estas temperaturas (1550 °C).
V-EL SISTEMA TREOS/PDMS.
V EL SISTEMA TREOS/PDMS

V.1 Híbrido orgánico-inorgánico: Características estructurales, textura y microestructura.

Los materiales del sistema TREOS/PDMS estudiados en este capítulo presentan una relación en peso TREOS/PDMS 60/40, así como una relación molar TREOS/i-PrOH/H₂O/HCl de 1/6/3/0.01. Estos híbridos orgánico-inorgánicos son materiales monolíticos, densos y transparentes. La caracterización se ha llevado a cabo mediante diversas técnicas y a continuación se exponen los resultados obtenidos. Inicialmente se comentan los resultados obtenidos de contenido en carbono y análisis químico, seguidamente la información acerca de su estructura y finalmente los datos microestructurales.

V.1.1 Análisis Químico.

Tal y como se hizo en el Capítulo III, se va a calcular la composición teórica esperada para el híbrido del sistema TREOS/PDMS. El ormosil de partida está formado por una relación 60/40 (% en peso) de TREOS/PDMS.

El TREOS durante el proceso sol-gel se hidroliza y condensa de la siguiente manera:

\[H\text{-Si(OEt)}_3 \rightarrow H\text{-Si(OH)}_3 \rightarrow H\text{SiO}_{1.5} \]

Como consecuencia de esta hidrólisis y condensación el TREOS pierde gran parte de su masa inicial de tal manera que la relación en peso 60/40 ya no se mantiene en el híbrido.

\[
% H = 1 \times 1 \times 60/164 = 0.36 \\
% Si = 1 \times 28 \times 60/164 = 10.24 \\
% O = 1.5 \times 16 \times 60/164 = 8.78
\]

La suma de todos ellos representa ahora el 19.38 % en peso del 60 % en peso inicial.
Se supone que el PDMS mantiene su masa íntegramente durante el proceso sol-gel ya que éste no se hidroliza, únicamente se condensa. En una primera aproximación no se va a tener en cuenta la condensación. El PDMS puede escribirse de la siguiente manera:

$$HO-[Si(Me)2-O]_n-H = 1750 \quad n = 23.40$$

para un PDMS con un peso molecular de 1750 se calcula el valor de n. A partir de esto se puede calcular el porcentaje de cada elemento, considerando que la relación en peso de TREOS/PDMS es 60/40:

\[
\begin{align*}
\% C &= 2n \times 12 \times 40 / 1750 = 12.84 \\
\% H &= (1+6n+1) \times 1 \times 40 / 1750 = 3.25 \\
\% Si &= n \times 28 \times 40 / 1750 = 14.98 \\
\% O &= (1+n) \times 16 \times 40 / 1750 = 8.92 \\
\end{align*}
\]

Como no se ha considerado la condensación del PDMS, la suma de todos ellos representa el 39.99 %.

En primer lugar se recalcula la proporción de unidades T^H y D, que en el ormosil son 32.64 y 67.35 %, respectivamente.

En segundo lugar se calculan los porcentajes teóricos de cada elemento, que para este ormosil son los siguientes:

\[
\begin{align*}
\% O &= 29.81 \\
\% Si &= 42.48 \\
\% C &= 21.63 \\
\% H &= 6.08 \\
\end{align*}
\]

A partir de estos datos se obtiene la siguiente composición teórica del ormosil:

$$SiO_{1.22}C_{1.18}H_4$$

Los porcentajes y la composición obtenidos son los siguientes:

\[
\begin{align*}
\% O &= 45.42 \\
\% Si &= 28.78 \\
\% C &= 20.05 \\
\% H &= 5.75 \\
\end{align*}
\]

$$SiO_{2.77}C_{1.63}H_{5.61}$$
Al comparar los valores obtenidos mediante análisis químico se aprecia una gran discrepancia (*Tabla V- 5*). La desviación encontrada entre la fórmula teórica y la experimental radica fundamentalmente en que no se ha tenido en cuenta la descomposición de los enlaces Si-H del *TREOS* que forman unidades *Q* y que aumenta el porcentaje de oxígeno así como en una falta de finalización de las reacciones de condensación.

V.1.2 Caracterización Estructural.

V.1.2.2 Espectroscopía infrarroja.

El espectro de *FT-IR* del híbrido orgánico-inorgánico de partida del sistema *TREOS/PDMS* se presenta en la *Figura V- 1*, en esta figura pueden observarse las bandas características del *TREOS* asociadas a la estructura vítrea y al enlace Si-H, así como las bandas asociadas al *PDMS* que fundamentalmente son las bandas correspondientes al enlace Si-CH₃. Todas estas bandas están recogidas en la *Tabla III-I* en el *Capítulo III*.

![Figura V- 1: Espectro de infrarrojo del híbrido del sistema TREOS/PDMS.](image)

Este espectro muestra unas bandas localizadas a 3440 y 1635 cm⁻¹ que corresponden a la tensión y deformación del enlace *OH* del agua absorbida durante la elaboración de la
pastilla de KBr. La intensidad de estas bandas es bastante pequeña, lo que pone de manifiesto el carácter hidrofóbico del material debido a la presencia del enlace Si-H y los grupos metilos del PDMS.

Mediante la espectroscopía IR, como ya sucedía en el híbrido del sistema TEOS/PDMS, no se encuentran restos de grupos etóxido o grupos silanoles, lo que indica que la hidrólisis/condensación del TREOS durante el proceso sol-gel se ha completado casi prácticamente. Tampoco se observan bandas relacionadas con restos de disolventes (i-PrOH) y etanol.

Las bandas situadas a 2250 y 828 cm⁻¹ corresponden al enlace Si-H (vibración y deformación, respectivamente) de las unidades TH del TREOS.²³⁴,²³⁵ Por otro lado, las bandas situadas a 1166, 1090 y 460 cm⁻¹ corresponden a la tensión asimétrica (en el modo longitudinal y transversal) y a la deformación del enlace Si-O respectivamente. En la misma zona se encuentran las bandas que provienen de la estructura del PDMS, que se sitúan a 1093 y 1020 cm⁻¹.

Otras bandas que también provienen de la estructura del polímero son las que se deben al enlace Si-CH₃. Las vibraciones de tensión, simétrica y asimétrica, del enlace C-H se encuentran a 2966 y 2905 cm⁻¹ respectivamente. Las deformaciones, asimétrica y simétrica del enlace Si-CH₃ se asignan a las bandas situadas a 1412 y 1260 cm⁻¹ respectivamente.

El hombro que aparece a 867 cm⁻¹ se asocia a la vibración rocking de los metilos del PDMS. La vibración del enlace Si-C se presenta como una banda intensa a 801 cm⁻¹. Esta banda indica si las especies de polidimetilsiloxano están distribuidas en conformaciones lineales o cíclicas.¹⁸³ Como ya se comentó en el Capítulo III, para polisiloxanos lineales, esta banda aparece a 800 cm⁻¹; sin embargo para los oligómeros cíclicos de 3 a 7 unidades se sitúa a 815 cm⁻¹. El desplazamiento de esta banda hace suponer que las condiciones de catálisis (muchísimo menos ácidas que para el híbrido del sistema TEOS/PDMS) hacen que los restos de PDMS (tanto los que forman parte de la estructura del híbrido como los que no) estén dispuesto de forma lineal. Para el híbrido del sistema TEOS/PDMS esta banda estaba situada en torno a 810 cm⁻¹, lo cual indicaba una conformación del PDMS en forma lineal y cíclica.

La banda situada a 800 cm⁻¹ también se asigna a la vibración simétrica del enlace Si-O y la del tetraedro SiO₄.
Situadas para 700 y 660 cm\(^{-1}\), se encuentran la tensión simétrica del enlace Si-C y la tensión *rocking* de los metilos de la estructura del polímero.

Al igual que en sistema *TEOS/PMDS*, centrada a 560 cm\(^{-1}\), aparece la denominada banda de *defecto*,\(^{131,201}\) que está asociada a la formación de ciclos de 4 eslabones en lugar de los de 6 eslabones, debido al impedimento estérico que introduce el polímero en la red vítrea.

Para finalizar, la banda asociada a la deformación Si-O-Si se encuentra desplazada a números de onda superiores con respecto al sistema *TEOS/PDMS* (se aumenta la frecuencia desde 430 hasta 460 cm\(^{-1}\)). Este desplazamiento está indicando un aumento del entrecruzamiento de la red, asociado a una disminución de la porosidad.

V.1.2.3 Espectroscopia Raman.

El espectro Raman del material híbrido orgánico-inorgánico para el sistema *TREOS/PDMS* es muy similar al que se observa para los materiales híbridos orgánico-inorgánicos del sistema *TEOS/PDMS* (Figura III-2), pero aparecen unas nuevas bandas, no incluidas en éste, asociadas a los enlaces Si-H del *TREOS*. Son las situadas a 2250, 911 y 826 cm\(^{-1}\) que corresponden con la tensión asimétrica y deformación del enlace Si-H respectivamente.\(^{161}\) La asignación de las bandas más importantes se encuentra en la *Tabla III-1 (Capítulo III)*.

El híbrido orgánico-inorgánico presenta una banda situada a 490 cm\(^{-1}\) que también aparecía en el híbrido del sistema *TEOS/PDMS*. Esta banda se asocia a ciclos de uniones siloxano de 4 miembros en vez de los 6 eslabones (430 cm\(^{-1}\)) que son los que normalmente forman la sílice; por lo tanto es indicativa de defectos estructurales y es conocida como banda de defecto.\(^{187}\) En el *Capítulo III* además de la banda del defecto (ciclos de 4 eslabones) se apreciaba ligeramente la banda asociada a ciclos de 6 eslabones, sin embargo para el híbrido del sistema *TREOS/PDMS* esta banda no se aprecia lo que está indicando que la red formada a partir del *TREOS* se ve muy alterada con la incorporación del *PDMS*.
Figura V- 2: Espectro Raman del híbrido del sistema TREOS/PDMS. La intensidad de las señales de la zona espectral comprendida entre 2000 y 3500 cm$^{-1}$ se ha dividido entre 10.

V.1.2.4 Resonancia magnética nuclear.

V.1.2.4.1 29Si MAS RMN.

El híbrido orgánico-inorgánico que proviene de la estructura del TREOS/PDMS presenta, como puede apreciarse en la Figura V-3(a), tres grupos diferenciados de señales correspondientes a unidades Q (-114 ppm) y que provienen de la descomposición de las unidades T^{II} del TREOS durante el proceso sol-gel, de las propias unidades T^{II} (-88 ppm), y por último de unidades D, que provienen a su vez de la estructura del PDMS (-24 ppm).

A partir del espectro del híbrido se comprueba que la mayoría de los enlaces Si-H sobreviven después del proceso sol-gel. A partir de las áreas se puede cuantificar el porcentaje de cada una de estas especies. Estos valores están recogidos en la Tabla V-1. Los resultados obtenidos mediante la deconvolución de los picos presentes en el espectro de resonancia magnética nuclear indican que las unidades Q representan un 6% frente a un 37% de las unidades T^{II}, el resto corresponde a las unidades D, resultando una composición aproximada de 43% de especies que proceden del TREOS frente a un
58 % de unidades que proceden del PDMS. El híbrido se obtiene a partir de una composición en peso inicial del TREOS/PDMS 60/40.

Esta aparente controversia también surgió para el híbrido del sistema TEOS/PDMS, siendo explicada de la siguiente manera; el TREOS durante el proceso sol-gel se hidroliza y condensa perdiendo gran parte de su masa mientras que la masa del PDMS permanece prácticamente constante.

En un apartado anterior, referente al análisis químico, se ha calculado la relación en peso teórica inicial del híbrido, siendo 33/67 y adecuándose bastante bien con los porcentajes obtenidos mediante RMN.

![Espectro de resonancia magnética nuclear del híbrido del sistema TREOS/PDMS](image)

Figura V-3: Espectros de resonancia magnética nuclear del híbrido del sistema TREOS/PDMS. a) ²⁹Si MAS RMN y b) ¹³C CP MAS RMN.

Soraru et al.²³⁴ estudian la copolimerización entre híbridos obtenidos a partir de TREOS (TH) y MDES (metildietoxisilano; DH). Realizan varios experimentos de resonancia magnética nuclear encontrando, en la zona asignada a las unidades TH la aparición de nuevas bandas que atribuyen a especies de copolimerización entre unidades TH y DH, además de las propias de las unidades TH (que aparecen con distinto grado de condensación, es decir T₁H, T₂H y T₃H). Para el caso concreto de las unidades T₃H, encuentran dos tipos diferentes de señales situadas a -85.3 ppm y -84.1 ppm que asignan a unidades T₃H autocondensadas y unidades T₃H copolimerizadas con unidades DH, respectivamente. Posteriormente, Gualandris et al.²³⁶ emplean la misma filosofía para otros precursores, encontrando nuevas bandas en los espectros de RMN y, por lo tanto,
evidencias de copolimerización en otros sistemas. Esta misma idea se aprovecha en esta memoria para la interpretación de los híbridos del sistema TREOS/PDMS. En la zona que corresponde a las unidades T^H se encuentra una banda que se descompone mediante deconvolución en dos bandas que se asignan a las unidades T_3^H autocondensadas (-91 ppm; 11 % del total) y a unidades de copolimerización entre T_3^H/D (-88 ppm; 26 % del total).

Tal y como se discutió en el Capítulo III, en la zona de las unidades D se pueden encontrar las que corresponden a la copolimerización entre unidades de TEOS/PDMS que aparecen para -16 ppm aproximadamente, es lógico pensar que las unidades de copolimerización entre unidades de TREOS/PDMS deben aparecer para desplazamientos químicos muy próximos, si bien el efecto que introduce el enlace Si-H no se sabe muy bien cómo afectará en el desplazamiento químico de estas unidades de copolimerización. De acuerdo con lo observado mediante espectroscopía infrarroja a la hora de hacer la deconvolución de los picos consideramos que el híbrido presenta una proporción despreciable de PDMS conformado en especies cíclicas de cuatro eslabones. Considerando esto, la señal está constituida por dos señales; una atribuida a las cadenas lineales bastante largas ($n>>10$) (-24 ppm; 22 % del total) y otra atribuida a la copolimerización de las unidades D (-23 ppm; 35 % del total). El porcentaje de unidades copolimerizadas de PDMS extraído a partir de las unidades D (35 %) encaja bastante bien si se tiene en cuenta que el PDMS se puede copolimerizar con unidades T^H (26 % supuestamente copolimerizadas con unidades D) y con unidades Q (6%).

En la zona de las unidades D aparece una pequeña señal centrada a -7 ppm que representa el 1% del total y que se asocia a especies cíclicas de tres eslabones que proceden de la cadena de PDMS.

Las condiciones de síntesis menos ácidas empleadas para el sistema TREOS/PDMS en relación a las condiciones utilizadas para el sistema del Capítulo III hacen que el híbrido orgánico inorgánico obtenido sea completamente diferente.

Se han empleado condiciones menos ácidas ya que el TREOS presenta mayor reactividad que el TEOS y de esta manera se ha favorecido la copolimerización del TREOS con el PDMS, puesto que con mayores contenidos de ácido hubiese sido
inviable, ya que se hubiese favorecido fundamentalmente la autocondensación del TREOS. La presencia del grupo Si-H de pequeño tamaño no dificulta el ataque de las moléculas de agua o grupos silanoles a la molécula de TREOS y por lo tanto favorece las reacciones de hidrólisis y autocondensación de dicha molécula. Sin embargo cuando las moléculas no presentan este tipo de enlaces, como es el caso de la molécula de TEOS, a medida que las reacciones de condensación van evolucionando se producen impedimentos estéricos que ralentizan el proceso.

Por un lado, al igual que para el caso del sistema TEOS/PDMS en los primeros estadios del proceso sol-gel, la hidrólisis y autocondensación del TREOS son el proceso mayoritario. En segundo lugar, se produce la copolimerización del TREOS con el PDMS. Las condiciones de catálisis menos ácidas hacen que las cadenas de PDMS estén dispuestas fundamentalmente de forma lineal haciendo posible el ataque de los grupos silanoles de las unidades TH. Esto hace que el híbrido esté formado por unidades TH copolimerizadas con cadenas de PDMS lineales bastante largas (n>>10), una red vítrea formada a partir de unidades TH y Q (formadas por descomposición de las unidades TH), así como restos de polímero que no han copolimerizado y que fundamentalmente están dispuestos en forma lineal, aunque también se ha detectado una pequeña proporción de ciclos de tres eslabones.

De la misma manera que se realizó en el Capítulo III, a partir de la Ecuación III-1 (página 80) y de los porcentajes de cada uno de los componentes, se ha calculado el grado de condensación del híbrido que se sitúa en un valor próximo al 100 %.

Para el sistema TREOS/PDMS la presencia de alcóxidos que presentan enlaces Si-H, que son más reactivos que los que no presentan dichos enlaces, aumenta el grado de condensación con respecto al sistema TEOS/PDMS.

V.1.2.4.2 \(^{13}\text{C} \text{CP MAS RMN}\)

El espectro de \(^{13}\text{C} \text{CP MAS RMN}\) para el híbrido está recogido en la Figura V-3 (b), en dicho espectro fundamentalmente se aprecia situado alrededor de 4 ppm una única señal que es debida a los grupos metilo de las cadenas de PDMS. También se pueden intuir, pero con una intensidad muchísimo más pequeña comparada con el espectro para el híbrido del sistema TEOS/PDMS, las bandas que corresponden a restos alcóxidos que
Capítulo V

no han sido hidrolizados/condensados durante el proceso sol-gel o que no se han eliminado durante el secado (28 y 69 ppm). Esto estaría indicando un elevado grado de condensación en el híbrido tal y como se había concluido anteriormente mediante otras técnicas.

V.1.2.5 Difracción de RX.

El híbrido orgánico-inorgánico del sistema TREOS/PDMS presenta un difractograma típico de materiales amorfos basados en sílice. Este difractograma está representado en la Figura V-19 y corresponde con la temperatura de 120 ºC.

V.1.3 Caracterización Microestructural y Textural.

V.1.3.1 Porosimetría de mercurio.

Las curvas de intrusión-extrusión, así como las distribuciones de tamaño de poro para el híbrido orgánico-inorgánico del sistema TREOS/PDMS, están representadas en la Figura V-4(a) y (b) respectivamente. El híbrido orgánico-inorgánico no presenta porosidad detectable mediante esta técnica. Presenta una rama de intrusión que crece exponencialmente hasta llegar a un máximo y luego la rama de extrusión decrece y practicalmente se superpone en la rama de intrusión, no quedando mercurio retenido dentro del material (Figura V-4(a)). Como resultado se obtienen unas distribuciones de poro, que indican poros por debajo de 100 nm (Figura V-4(b)).

Este fenómeno de las curvas de intrusión-extrusión y las distribuciones de tamaño de poro puede ser atribuido únicamente a la naturaleza elastomérica del híbrido, y a la compresión que experimenta al aumentar la presión durante el análisis.
Figura V- 4: (a) Curvas de intrusión-extrusión de mercurio y (b) distribuciones de tamaño de poro obtenidas mediante porosimetría de mercurio para el híbrido del sistema TREOS/PDMS.

V.1.3.2 Adsorción de nitrógeno.

En las Figura V- 5(a) y (b), están representadas la isoterma de adsorción de nitrógeno así como las distribuciones de tamaño de poro para el híbrido del sistema TREOS/PDMS. El híbrido presenta una isoterma tipo II, que se corresponde con materiales no porosos.

Los datos extraídos a partir de las distribuciones de poro y el valor obtenido de superficie específica (prácticamente despreciable, véase Tabla V- 7) concuerdan, indicando que el híbrido de partida es muy compacto y no presenta poros detectables ni mediante porosimetría de mercurio, ni a partir de adsorción de nitrógeno.

Figura V- 5: (a) Isoterma de adsorción de nitrógeno y (b) distribuciones de tamaño de poro del híbrido del sistema TREOS/PDMS.
Capítulo V

V.1.3.3 Microscopía electrónica de barrido.

Al contrario de lo que sucedía para el híbrido del sistema TEOS/PDMS, que presentaba una morfología típica de agregado de partículas, estos materiales son muy densos. Para el híbrido de partida, Figura V-6, se presupone una gran compacidad, que es corroborada si además de estas micrografías se tienen en cuenta los resultados obtenidos mediante porosimetría de mercurio y adsorción de nitrógeno. La morfología de la superficie de fractura es bastante homogénea y rugosa, pero esta homogeneidad se pierde parcialmente por aglomerados circulares (Figura V-6 (b)) que a priori podrían corresponder a restos de PDMS lineales que se han quedado retenidos en la estructura del material durante el proceso sol-gel.

Figura V-6: Micrografías de microscopía electrónica de barrido del híbrido del sistema TREOS/PDMS.

V.2 Pirólisis y mecanismos de reacción.

Tal y como se hizo para el sistema TEOS/PDMS en el Capítulo III, se aborda la transformación que experimenta el híbrido orgánico-inorgánico del sistema TREOS/PDMS hasta el vidrio oxicarburo de silicio. Para ello se ha seguido desde los puntos de vista estructural y microestructural-textural, para lo cual se han empleado diversas técnicas. Así se ha hecho un seguimiento de la estructura mediante espectroscopia infrarroja, espectroscopía Raman, resonancia magnética nuclear (\(^{29}\)Si-MAS RMN y \(^{13}\)C-CP MAS RMN), análisis químico (\%C, \%Si y \%O), difracción de Rayos X (DRX) y análisis termogravimétrico (ATG/DTG), y el estudio de la microestructura y textura se ha realizado mediante adsorción de nitrógeno, porosimetría.
de mercurio, microscopía electrónica de barrido (MEB) y densidad real por picnometría de Helio.

A continuación se presentan y discuten los resultados obtenidos.

El cambio estructural de estos híbridos durante la pirólisis ha sido seguido mediante la preparación y posterior caracterización de muestras sometidas a diferentes condiciones de tratamiento. Se han realizado diversas series en las que se han variado los parámetros que influyen en la transformación orgánico-inorgánica de estos materiales. Los parámetros variados han sido: temperatura, velocidad de calentamiento, flujo de nitrógeno y tiempo de pirólisis a la temperatura máxima.

V.2.1 Influencia de la Temperatura de Tratamiento.

Para hacer un estudio lo más detallado posible y poder observar todos los cambios estructurales que se producen desde el híbrido hasta el vidrio de oxicarburo de silicio en esta primera serie se ha variado la temperatura desde 200º C hasta 1200º C en intervalos de 100º C (la temperatura de secado del híbrido corresponde con la de 120 ºC). El resto de los parámetros se mantienen fijos para toda la serie, es decir, velocidad de calentamiento 2 ºC/min, tiempo de pirólisis a temperatura máxima 2 horas y flujo de nitrógeno 50 ml/min. Una descripción más detallada del proceso experimental se encuentra en el Capítulo II.

V.2.1.2 Caracterización estructural.

V.2.1.2.1 Estudio mediante espectroscopía infrarroja.

En la *Figura V- 7* se presentan los espectros de infrarrojo a todas las temperaturas. A partir de éstos se detallan los cambios estructurales experimentados para cada una de las temperaturas estudiadas. Para hacer un mejor seguimiento del proceso global se han vuelto a representar para los siguientes intervalos: Hasta 400º C (*Figura V- 8*), desde 400 a 800º C (*Figura V- 10 y Figura V- 11*) y desde 900-1200º C (*Figura V- 12*). Estos
intervalos también han sido tomados para ir describiendo los distintos procesos que acontecen.

Figura V-7: Espectros de FT-IR para el sistema TREOS/PDMS donde se ha variado la temperatura de pirólisis desde 120-1200 ºC.
La asignación de las bandas más importantes para todos estos espectros está recogida en la Tabla III-I (Capítulo III).

Hasta 400 ºC.

Tal y como se explicó en el Capítulo I, hasta los 400º C se suelen producir las reacciones de hidrólisis/condensación entre grupos silanoles residuales y/o grupos Si-OEt presentes todavía en la estructura del híbrido y que no han sido hidrolizados/condensados durante el proceso sol-gel. Los enlaces Si-H también pueden ser susceptibles del ataque de los silanoles para temperaturas del orden de los 200º C. Como consecuencia de estas reacciones de hidrólisis/condensación se produce un mayor entrecruzamiento de la red que forma el híbrido orgánico-inorgánico. En el espectro del híbrido de partida no se observa la presencia de grupos Si-OH o Si-OEt, lo que muestra a priori que estas reacciones no van a tener demasiada relevancia.

Para este intervalo de temperaturas también se producen las reacciones de redistribución entre enlaces Si-O/Si-H y Si-O/Si-O.

Como se explicará en los párrafos siguientes, las diferencias que se aprecian en los espectros de infrarrojo, fundamentalmente se asocian a la redistribución de enlaces Si-H/Si-O.

Mediante FT-IR se observan ligeros cambios cuando se pasa de 120 a 400º C (Figura V-8). Estos cambios que se producen están relacionados fundamentalmente con los enlaces Si-H provenientes de las unidades TH del TREOS. Como consecuencia de la participación activa de estos enlaces Si-H, en las reacciones que tienen lugar para estas temperaturas, se produce una disminución de las bandas asociadas a este enlace; como son las situadas a 2250 y 828 cm⁻¹. La disminución de estas bandas se observa fundamentalmente para la temperatura de 400º C.

La disminución de las bandas asociadas al TREOS puede ser explicada mediante redistribución de enlaces Si-H/Si-O que da lugar a la formación de nuevos enlaces Si-H de unidades [H₂SiO₂] (D²H) y [HC₂SiO] (M²H).
El híbrido tiene una composición TREOS/PDMS (% en peso) 60/40 y por lo tanto la redistribución de enlaces Si-H/Si-O se puede producir entre Si-H (TREOS)/Si-O(TREOS) y Si-H(TREOS)/Si-O(PDMS).

Como consecuencia de la redistribución entre unidades [HSiO₃] del TREOS se forman unidades [H₂SiO₂] según el Esquema V-(1). En los espectros de FT-IR para las temperaturas de 300 y 400º C, las unidades [H₂SiO₂] quedan evidenciadas por la aparición de las bandas de deformación del enlace Si-H situadas a 990 y 940 cm⁻¹. También se produce un ensanchamiento de la banda asociada a la tensión del enlace Si-H (2249 cm⁻¹), debido a que incluye las tensiones para las unidades T₁₁ (2250 cm⁻¹) y D₂H (2200 cm⁻¹). En la Figura V-9 se ha realizado una ampliación de esta zona espectral para poder apreciar mejor todo lo comentado en este párrafo.

Figura V-8: FT-IR para el sistema TREOS/PDMS para las temperaturas de tratamiento 120, 200, 300 y 400 ºC.
Figura V- 9: Ampliación de la zona espectral comprendida entre 2600-1800 cm\(^{-1}\) para el sistema TREOS/PDMS para el intervalo de temperaturas comprendido entre 120 y 400 °C.

Sin embargo estas bandas no se encuentran para temperaturas superiores a 400° C como consecuencia de la evolución hacia especies volátiles tales como \(\text{SiH}_4\)\(^{151}\) (Esquema V- (I)).

\[
\begin{align*}
2[\text{HSiO}_3] &\leftrightarrow [\text{SiO}_4] + [\text{H}_3\text{SiO}_2] \\
[\text{H}_2\text{SiO}_2] + [\text{HSiO}_3] &\leftrightarrow [\text{SiO}_4] + [\text{H}_3\text{SiO}] \\
[\text{H}_3\text{SiO}] + [\text{HSiO}_3] &\leftrightarrow [\text{SiO}_4] + \text{SiH}_4(\text{g})
\end{align*}
\]

Esquema V- 1

Por otro lado, la redistribución entre las unidades \([\text{HSiO}_3]\) del TREOS y las unidades \([\text{C}_2\text{SiO}_2]\) del PDMS está ilustrada en el Esquema V- 2. La presencia de estas nuevas unidades \(M^{\Pi} [\text{HC}_2\text{SiO}]\) puede ser corroborada por la presencia de dos bandas que aparecen a 400° C asociadas a la vibración asimétrica del enlace \(\text{Si-H}\) que aparece a 2104 cm\(^{-1}\) y la deformación de dicho enlace localizada a 880 cm\(^{-1}\).\(^{137,237}\)
La vibración del enlace Si-H aparece normalmente entre 2150-2100 cm\(^{-1}\). Cuando el silicio tiene sustituyentes electronegativos, tales como oxígeno o halógenos, esta banda se desplaza hasta \(\approx 2260\) cm\(^{-1}\) (unidades TH, \([HSiO_3]\) 2250 cm\(^{-1}\); unidades D\(^2\)H, \([H_2SiO_2]\) 2200 cm\(^{-1}\)). A medida que disminuye el número de sustituyentes electronegativos unidos al silicio la banda se desplaza a frecuencias más bajas (unidades D\(^H\), \([HCSiO_2]\)\(^{109}\) 2180 cm\(^{-1}\); unidas D\(^H\), \([HC_3SiO]\) 2120 cm\(^{-1}\)).

De la misma manera que ocurría en el sistema TEOS/PDMS, para la temperatura de 400 ºC se aprecia una pequeña banda situada a 2856 cm\(^{-1}\) que se asigna a las unidades cíclicas de octametilciclosiloxano (D\(_4\))\(^{183}\) que, junto con el hexametilciclosiloxano (D\(_3\)), son las unidades mayoritarias a través de las cuales se despolimeriza el PDMS. Esto está indicando que la despolimerización de polímero comienza a 400 ºC.

- **Desde 500 a 800º**

Para este intervalo de temperaturas confluyen varios fenómenos. Por un lado, se producen las reacciones de despolimerización del PDMS (redistribución de enlaces Si-O/Si-O). Por otro la redistribución de enlaces Si-C/Si-O y finalmente las reacciones de mineralización, que para sistemas que presenta enlaces Si-H suceden a temperaturas inferiores con respecto a sistemas que no presentan este tipo de enlaces (Ecuación I-(7)). Los espectros de infrarrojo están representados en la Figura V- 10, y en la Figura V- 11. Esta última corresponde a una ampliación de distintas zonas espectrales para este intervalo de temperaturas.

Como consecuencia de las reacciones de despolimerización, a partir de 500º C se observa la disminución de las bandas asociadas al polímero (Figura V- 10). Otro fenómeno a tener en cuenta es que la banda asociada a la tensión asimétrica del enlace Si-C se desplaza desde 800 a 807 cm\(^{-1}\). Este dato indica que para temperaturas bajas de
unos 300° C las unidades estructurales que pertenecen al polímero están en forma lineal, mientras que al aumentar la temperatura y debido a las reacciones de despolimerización estas unidades se van ciclando y eliminando como consecuencia de la degradación térmica. Parte de estos oligómeros cíclicos \((D_4)\) quedan retenidos en la estructura del híbrido, de ahí que se detecte su presencia por una pequeña banda situada a 2856 cm\(^{-1}\).

Los restos de polímero que aún quedan presentes en el híbrido sufren en primer lugar las reacciones de redistribución de enlaces \(Si-C/Si-O\), formando unidades \(T\). Esto queda determinado por el desplazamiento de la banda asociada a la deformación del enlace \(Si-CH_3\) desde 1265 a 1276 cm\(^{-1}\), correspondientes a unidades \(D\) y \(T\) respectivamente. A 700° C prácticamente todas las unidades \(D\) del polímero se han transformado en unidades \(T\) (Figura V-11).

El segundo fenómeno que experimentan los restos de \(PDMS\), simultáneamente con el anterior, son las reacciones de mineralización, aceleradas por la asistencia de los enlaces \(Si-H\).

La transformación orgánico-inorgánica del material se pone de manifiesto por la sutil aparición de estructuras puenteadas \(\equiv Si-CH_2-Si\equiv\) hacia los 500° C (Figura V-11 (b)). Este tipo de estructuras queda corroborado mediante la aparición de una pequeña banda situada alrededor de 1360 cm\(^{-1}\). La intensidad de esta banda aumenta notablemente para las temperaturas de 700 y 800° C, lo que denota que la transformación orgánico-inorgánica fundamentalmente ocurre para estas temperaturas.

También asociadas con estas estructuras aparecen las bandas correspondientes a la tensión simétrica y asimétrica del enlace \(C-H\) de los \(CH_2\) que se encuentran para 2913 y 2851cm\(^{-1}\) respectivamente. Esta última, como ya se comentó en el Capítulo III, coincide con la de los oligómeros cíclicos de 4 miembros, hecho que explica que esta banda se intuya a partir de 400 °C (Figura V-11 (a)).

Como consecuencia de las reacciones de despolimerización y mineralización las bandas asociadas al polímero disminuyen de intensidad hasta extinción total para las temperaturas de 800-900° C (Figura V-11 (c)). La banda situada a \(\sim 805\) cm\(^{-1}\) atribuida a la vibración asimétrica del enlace \(Si-C\) y al tetraedro de silice desaparece y, en su lugar, aparece una nueva a 812 cm\(^{-1}\) que corresponde a esta tensión \(SiX_4 (X = O, C)\) en el oxicarburo recién formado. Otras bandas que desaparecen son las de 850 cm\(^{-1}\)
(rocking metilos PDMS) y la de 1275-1266 cm\(^{-1}\) (deformación enlace Si-CH\(_3\), para las unidades T y D respectivamente) (Figura V-11 (b)).

 Debido a esta elevada reactividad de los enlaces Si-H, éstos se reducen drásticamente en cantidad y, prácticamente, son imperceptibles para la temperatura de 600° C (tanto los que corresponden a unidades \(M^H\) como los que corresponden a unidades \(T^H\)). La banda centrada a 880 cm\(^{-1}\) asociada a la tensión del enlace Si-H decrece considerable a partir de 500° C. Sin embargo para la temperatura de 800° C se produce un crecimiento de dicha banda situada a 880 cm\(^{-1}\). El crecimiento de ésta va en paralelo con el aumento que experimenta la que corresponde a las estructuras puenteadas (1360 cm\(^{-1}\)). Esto hace pensar que una vez consumidos los enlaces Si-H, que provienen de la estructura del híbrido, se forman unos nuevos como consecuencia de la abstracción de un hidrógeno por radicales tipo \(\equiv Si\bullet\) (reacción I-(20)). La presencia de enlaces Si-H fue encontrada para el sistema TEOS/PMDS a temperaturas similares (800 °C).

 No se ha indicado hasta ahora, pero de la misma manera que las unidades D eran susceptibles de producir reacciones de redistribución con los enlaces Si-H, las nuevas unidades T también pueden producirlas y como consecuencia se formarán unidades \(D^H\) \([HCSiO_2]\), que presentan bandas de FT-IR para la tensión Si-H (2180 cm\(^{-1}\)) y bandas atribuidas al enlace Si-CH\(_3\) (1265 y 760 cm\(^{-1}\)). Devido a la baja concentración de las especies que contienen enlaces Si-H para estas temperaturas es muy difícil poder determinar estas especies mediante FT-IR.

 Tal y como se encontró para el sistema TEOS/PDMS, las bandas asociadas al agua y a los grupos silanoles varían enormemente para este intervalo de temperaturas. Lo comentado en el Capítulo III puede ser aplicado aquí también. Se encuentran dos tipos de silanoles los que se forman a partir de 700 °C (~3640 cm\(^{-1}\)) debido a procesos radicálicos durante la mineralización y los que se forman a partir de 500 °C (~3250 cm\(^{-1}\)) como consecuencia de la formación de enlaces de hidrógeno con el agua superficial durante la elaboración de la pastilla de KBr.
Figura V-10: Espectros de FT-IR para el sistema TREOS/PDMS para el intervalo de temperaturas desde 500-800 ºC.

Figura V-11: Ampliación de FT-IR para el sistema TREOS/PDMS para el intervalo de temperaturas 500-800 ºC: (a) zona 3500-2000 cm⁻¹, (b) zona 1600-1260 cm⁻¹ y (c) zona 860-760 cm⁻¹.
La banda asociada a defectos estructurales de la sílice (550 cm$^{-1}$) disminuye de intensidad al aumentar la temperatura de pirólisis. Esto es debido en gran medida a las reacciones de despolimerización que eliminan parte del impedimento estérico que producían las cadenas de PDMS en el híbrido y a la ruptura de enlaces durante la etapa de mineralización.

Estos hechos permiten la creación de ciclos de 6 eslabones en vez de los de 4 presentes en el híbrido.

Figura V-12: FT-IR para el sistema TREOS/PDMS para el intervalo de temperaturas 900-1200 °C.

- **Desde 900 a 1200° C**

Para estas temperaturas el vidrio de oxicarburo está prácticamente formado aunque para la temperatura de 900° C se siguen observando las bandas correspondientes a las estructuras puenteadas con la banda asociada a 1360 cm$^{-1}$. Por lo tanto, a estas temperaturas, fundamentalmente se producen las reacciones de deshidrogenación del material.
Para las temperaturas de 900 y 1000 ºC se sigue apreciando la presencia de silanoles terminales (hombro ~ 3640 cm\(^{-1}\)) y grupos Si-H (880 cm\(^{-1}\)).

A partir de 1000º C el material presenta un espectro típico de vidrio de oxicarburo de silicio (Figura V- 12)\(^{24}\) Aparecen las bandas centradas a 1080 y 460 cm\(^{-1}\) que corresponden a la tensión simétrica del enlace Si-O y a la deformación del enlace O-Si-O, respectivamente. Por otro lado aparece una banda centrada en 812 cm\(^{-1}\), asociada a Si\(X_4\) (X =O, C), en la red mixta de vidrio de oxicarburo de silicio.

A partir de 1100º C se aprecia el desdoblamiento de la banda situada a 812 cm\(^{-1}\), que indica que algunos átomos de silicio están unidos al menos a dos átomos de carbono,\(^{24}\) lo que esta asociado a un aumento de las especies que contienen carbono en el oxicarburo. En el carburo de silicio esta banda se desplaza hasta 880 cm\(^{-1}\).

V.2.1.2.2 Estudio mediante espectroscopía Raman.

La intensidad relativa de las bandas asociadas al polímero y al enlace Si-H disminuye a medida que aumenta la temperatura de tratamiento. Este fenómeno ya se había observado mediante FT-IR en el apartado anterior. La asignación de las bandas más importantes para todos estos espectros está recogida en la Tabla III-I (Capítulo III). Los espectros para todas las temperaturas de tratamiento estudiadas están recogidas en la Figura V- 13 y Figura V- 14, desde 120 hasta 600 ºC, y en la Figura V- 15 desde 700 hasta 1200 ºC.

Tal y como puede apreciarse en la Figura V- 13, hasta 600 ºC algunos de los cambios estructurales más importantes observados corresponden a las reacciones de redistribución de enlaces Si-H/Si-O.

Como ya se comentó, cuando se estaban interpretando los espectros de FT-IR para el sistema TREOS/PDMS, las unidades \(T_H\) del TREOS pueden experimentar reacciones de redistribución Si-H/Si-O entre unidades de TREOS/TREOS y unidades de TREOS/PDMS. Como resultado de esto se forman unidades \(D_H\) y \(M_H\) evidenciadas por la aparición de nuevas bandas en el espectro Raman, de la misma manera que ya se había detectado mediante FT-IR.
Las unidades D^{2H} se evidencian sobre todo a partir de 200 ºC porque la banda asociada a la vibración del enlace $Si-H$ de las unidades T^H situada a 2256 cm$^{-1}$ experimenta un desplazamiento hasta 2248 cm$^{-1}$, así como un ensanchamiento. Esto indica que contiene las vibraciones de las unidades T^H y D^{2H}.

Se ha encontrado para FT-IR que el desplazamiento de estas últimas se sitúa en 2200 cm$^{-1}$, por lo que se espera un desplazamiento similar para espectroscopía Raman.

La formación de las especies M^H parece clara tras la aparición de una banda a partir de 400 ºC centrada en 2140 cm$^{-1}$ y similar a la que se observó mediante FT-IR.137,237

La deformación del enlace $Si-H$ para las unidades estructurales del TREOS corresponde a las bandas centradas para 912 y 827 cm$^{-1}$; Estos números de onda son muy próximos a los encontrados para FT-IR. Como consecuencia de las reacciones de redistribución aparecen nuevas especies que también presentan enlaces $Si-H$ y por lo tanto las bandas que aparecen a estas frecuencias experimentan un engrosamiento que corresponde a las diferentes vibraciones para las distintas especies formadas.

Por otro lado, como consecuencia de la elevada reactividad de los enlaces $Si-H$, todas las bandas atribuidas a las vibraciones de estos enlaces, independientemente de si son unidades T^H, D^{2H} ó M^H, experimentan una gran disminución y para la temperatura de 600 ºC únicamente se aprecian bandas de muy pequeña intensidad.

Como ya se había observado anteriormente, para el sistema TEOS/PDMS, en el híbrido del sistema TREOS/PDMS se pueden apreciar unas pequeñas bandas asociadas a una hidrólisis incompleta del TREOS (1451 y 1481 cm$^{-1}$), así como la presencia de grupos silanoles residuales (~ 980 cm$^{-1}$) que indica que el proceso sol-gel no ha concluido completamente. La presencia de restos silanoles en el híbrido está indicando que el impedimento estérico que produce el polímero es el causante de que no finalicen las reacciones de condensación. Por efecto de la temperatura estos restos etóxido desaparecen, no ocurriendo así con los restos $Si-OH$ que se siguen apreciando en el espectro. Las cantidades de estas especies deben ser muy pequeñas ya que mediante FT-IR no se han apreciado para estas temperaturas de tratamiento.
Figura V-13: Espectros Raman para el sistema TREOS/PDMS para el intervalo de temperaturas comprendido entre 120 y 600 ºC.

Figura V-14: Ampliación de los espectros Raman para el sistema TREOS/PDMS para el intervalo de temperaturas comprendido entre 120 y 600 ºC.
Capítulo V

Como ya se ha comentado anteriormente, debido a la gran reactividad de los enlaces Si-H, todos los procesos involucrados durante la de pirólisis ocurren para unas temperaturas menores con respecto a sistemas que no los contienen. Un hecho indicativo de esto es la aparición de la banda correspondiente a estructuras puente ≡ Si-CH2-Si ≡ (1380 cm⁻¹), detectada a 500 ºC. Cabe destacar que esta banda crece notablemente a partir de 600 ºC igual que sucedía en el espectro de infrarrojo análogo.

Es importante resaltar que, gracias a la presencia de enlaces Si-H en el híbrido, las reacciones de mineralización comienzan a producirse a 500º C; es decir 100º C antes de lo que sucede en sistemas que no presentan este tipo de enlaces.

Con el incremento de la temperatura de tratamiento la región espectral que contiene las bandas características de las uniones siloxano (~ 500 cm⁻¹) experimenta grandes cambios (Véase Figura V-14) El híbrido presenta únicamente una banda situada a 490 cm⁻¹ asociada a ciclos de 4 miembros favorecidos desde un punto de vista termodinámico y en sistemas híbridos por la presencia de polímeros que ejercen un gran impedimento estérico.

Para el sistema TEOS/PDMS (Capítulo III) se ha observado la formación de ciclos de 4 y 6 miembros (bandas situadas a 490 y 439 cm⁻¹, respectivamente), aunque los ciclos de 4 están presentes de una forma muy mayoritaria.

El hecho de que no se detecte la formación de ciclos de 6 eslabones indica que el híbrido del sistema TREOS/PDMS está muchísimo más influido por el volumen del polímero, ya que a priori cabe pensar que la estructura del híbrido formada a partir del TREOS va a ser más pequeña que la del TEOS.

Además de la discontinuidad que introduce el polímero también se produce en la propia molécula de TREOS, ya que el TREOS presenta tres enlaces que pueden experimentar hidrólisis/condensación frente a los cuatro que presenta el TEOS, hecho que debe quedar reflejado en el crecimiento de la estructura híbrida tridimensionalmente hablando. La ausencia del pico asociado a los ciclos de 6 eslabones está también indicando que la mayoría de los enlaces de la estructura Si-H del TREOS se mantienen inalterados durante el proceso sol-gel.

Como consecuencia del aumento de la temperatura de tratamiento los enlaces Si-H experimentan reacciones de redistribución en las que se van consumiendo paulatinamente. Los enlaces Si-H siguen produciendo discontinuidad en la red que sigue
Sistema TREOS/PDMS

esta constituida por ciclos de 4 eslabones. Para 600 ºC estos enlaces se han consumido prácticamente y la red ya puede ser continua a base de enlaces Si-O-Si.

En segundo lugar, para esta temperatura las reacciones de despolimerización del PDMS han eliminado gran parte del impedimento estérico originado por la molécula de PDMS y por lo tanto se comienza a formar la red tridimensional que antes estaba parcialmente interrumpida también por el polímero (PDMS).

En tercer lugar, el comienzo de la transformación orgánico-inorgánica también repercute en la estructura tridimensional que se está formando y también es responsable del ensanchamiento de la banda situada a 800 cm⁻¹ así como de la aparición de la banda a 450 cm⁻¹. La transformación orgánico-inorgánica del material produce un aumento del entrecruzamiento de la estructura como consecuencia de la formación de la red vítrea, que en el caso concreto de los oxicarbouros ha introducido carbono dentro de dicha red.

Para 600 ºC, la presencia de la banda a 593 cm⁻¹ puede ser atribuida a la formación de especies cíclicas de tres miembros a partir de la condensación de silanolos geminales. Esta es una posibilidad pero otra más plausible es que corresponda a unidades cíclicas de 3 eslabones de hexametilciclosiloxano (D₃C), que son las especies mayoritarias vía las cuales, es bien sabido, se despolimeriza el PDMS. Estas pueden haber quedado parcialmente atrapadas dentro de la estructura del híbrido. Este dato concuerda con la detección mediante espectroscopía infrarroja de oligómeros cíclicos de cuatro eslabones para la temperatura de 400 ºC, indicando que las reacciones de despolimerización comienzan a esta temperatura.

Si se compara esta región espectral en el intervalo de temperaturas comprendido entre 400-600 ºC, para el sistema TEOS/PDMS (Figura III-14(Capítulo III)) y el sistema TREOS/PDMS, pueden encontrarse algunas diferencias:

- En el sistema TEOS/PDMS los ciclos de 6 eslabones de enlaces Si-O-Si están presentes en el híbrido y se forman de una manera más apreciable a partir de 400 ºC, coincidiendo con las reacciones de despolimerización que eliminan gran parte de impedimento estérico.

Por otro lado, en el sistema TREOS/PDMS la formación de los ciclos ocurre a una temperatura muy superior, 600 ºC, después de que se eliminen prácticamente todos los enlaces Si-H y las reacciones de despolimerización hayan degradado una gran parte del polímero.
En el sistema TEOS/PDMS las bandas son muy anchas, indicando la participación de ciclos de 3 y 4 miembros de uniones siloxano (bandas de defecto D_2 y D_1 respectivamente) y de oligómeros cíclicos de 3 y 4 miembros que provienen de la despolimerización del PDMS (D_{3C} y D_{4C} respectivamente).

Sin embargo, en el sistema TREOS/PDMS hasta 500 ºC estas bandas son muchísimo más estrechas y son asignadas fundamentalmente a anillos de 3 y 4 miembros de uniones siloxano. Para la temperatura de 600 ºC se produce un ensanchamiento de las bandas que hace pensar en la participación de las mismas unidades estructurales que para el sistema TEOS/PDMS.

El material del sistema TEOS/PDMS tiene la estructura tridimensional parcialmente interrumpida por el polímero, pero la estructura es muy abierta (flexible y con grandes poros) y cuando comienzan las reacciones de despolimerización empiezan a formarse los anillos de 6 eslabones.

De manera contraria, el sistema TREOS/PDMS presenta una estructura muy compacta que está muy influida por la discontinuidad/impedimento estérico que producen los enlaces Si-H y las cadenas del PDMS. Esto ralentiza las reacciones de despolimerización y hace que los ciclos de 6 miembros no se formen hasta la temperatura de 600 ºC cuando ya se han consumido los enlaces Si-H y la degradación del polímero está muy avanzada.

Para temperaturas superiores (Figura V-15) la transformación que experimenta el material hace que los espectros cambien drásticamente. Los espectros para las temperatura comprendidas entre 700-900 ºC no dan apenas información, únicamente presentan una elevada fluorescencia debida a la presencia de una gran cantidad de radicales libres219 para este intervalo de temperaturas que corresponde entre otros con la formación de la fase de carbono libre, que se vislumbra para este intervalo de temperaturas partir de 1000 ºC.

De la misma manera que se ha observado para los oxicarburos obtenidos mediante el sistema TEOS/PDMS (capítulos III y IV), los espectros Raman para temperaturas de pirólisis elevadas únicamente dan información de la fase de carbono libre, caracterizada por la presencia de las bandas D y G del carbono tipo grafito.
Figura V- 15: Espectros Raman para el sistema TREOS/PDMS para el intervalo de temperaturas comprendido entre 700-1200 ºC.

Cabe destacar que mientras los espectros Raman de los oxicarburos del sistema TEOS/PDMS para temperaturas del orden 1000-1200 ºC eran típicos de carbono altamente desordenado (Capítulo III), los oxicarburos obtenidos mediante el sistema TREOS/PDMS a estas mismas temperaturas son característicos de carbono vítreo, presentando una mayor ordenación. Este orden es menor, sin embargo, con respecto al que se encontraba para los materiales obtenidos mediante “Vía Cerámica” sinterizados a 1550 ºC (Capítulo IV).

Por lo tanto, los espectros Raman de estos materiales para temperaturas comprendidas entre 1000-1200 ºC, presentan las denominadas bandas D y G; si bien la intensidad de éstas es muchísimo mayor para 1100-1200 ºC que para 1000 ºC.

Como ya se ha comentado a lo largo de esta memoria, hay que tener presente que para carbonos “desordenados” la relación de intensidades $I(D)/I(G)$ está informando de la extensión de los dominios de grafito desordenado, mientras que para carbonos con un cierto orden esta relación de intensidades informa de la ordenación bidimensional del
Capítulo V

tamaño de los dominios de carbono grafito de las diferentes láminas. Para estos últimos la presencia de la banda G' (~2700 cm$^{-1}$) además está indicando una ordenación tridimensional.

El tamaño de los dominios calculado por la formula de Tunistra y Koenig224 está indicando que disminuye al aumentar la temperatura de tratamiento (Tabla V-18). Para 1000 °C, de la misma manera que sucedía para el sistema TEOS/PDMS, el tamaño de los dominios es mayor (4.14 nm) que para temperaturas mayores lo cual podría estar indicando que las reacciones de deshidrogenación no han concluido aún y por eso el valor de los dominios de carbono tipo grafito es mayor. A medida que estas reacciones van evolucionando el tamaño de los dominios va disminuyendo, alcanzando el valor más pequeño para la temperatura de 1200 °C (3.41 nm).

Cabe destacar que aunque el tamaño de los dominios se encuentra en el mismo intervalo que para los análogos del sistema TEOS/PDMS (3.41 nm frente 3.45 nm a la temperatura de 1200 °C para sistema TREOS/PDMS y TEOS/PDMS respectivamente), en el sistema TREOS/PDMS la anchura de la banda G (88 frente a 66cm^{-1} a la temperatura de 1200 °C para el sistema TREOS/PDMS y TEOS/PDMS respectivamente), así como la presencia de la banda de 2700 cm$^{-1}$, están indicando que para el primer caso el material es similar a carbono altamente desordenado y para el segundo que corresponde a carbono vítreo.223

Aunque la fase de carbono libre para los materiales obtenidos a partir del sistema TREOS/PDMS así como los obtenidos mediante la “Vía cerámica” se corresponde con carbono vítreo, mediante la comparación fundamentalmente de la anchura de los picos D, G y G' se puede apreciar una mayor evolución de la ordenación tridimensional para los obtenidos mediante “Vía cerámica” (“Vía cerámica”: Banda D ~ 45cm^{-1}, Banda G ~ 50cm^{-1} y Banda G' ~ 100cm^{-1}; Sistema TREOS/PDMS: Banda D ~ 140cm^{-1}, Banda G ~ 65cm^{-1} y Banda G' ~ 190cm^{-1}).
V.2.1.2.3 Estudio mediante resonancia magnética nuclear.

$^{29}\text{Si MAS NMR}$.

La resonancia magnética nuclear es una técnica muy potente a la hora de estudiar los diferentes entornos químicos que rodean al núcleo estudiado, para este caso concreto el silicio. Los desplazamientos químicos de las especies involucradas están recogidos en la Tabla III-2 del Capítulo III.

Figura V- 16: Espectros de resonancia magnética nuclear para el sistema TREOS/PDMS para todas las temperaturas de tratamiento estudiadas, a) $^{29}\text{Si MAS RMN}$, b) $^{13}\text{C CP MAS RMN}$.

*Lineas de rotación laterales (Spinning Side Bands SSB), aunque sólo se han colocado para el espectro de 700 °C, éstas se encuentran a partir de esta temperatura hasta 1200 °C.
En la Figura V-16 a) se representan los espectros de 29Si MAS RMN para el sistema TREOS/PDMS para todas las temperaturas estudiadas. En la Tabla V-1 se detalla de manera pormenorizada cada una de las especies obtenidas mediante deconvolución de los espectros para las temperaturas de tratamiento más bajas (desde 120 hasta 600 ºC), mientras que en la Tabla V-4 están recogidos los desplazamiento químicos así como los porcentajes relativos de todas las especies químicas formadas en el proceso de pirólisis de una manera más general.

Tabla V-1: Deconvolución de las unidades estructurales Q, T^H y D en los primeros estadios de la pirólisis, para las temperaturas comprendidas desde 120 hasta 600 ºC.

<table>
<thead>
<tr>
<th>Temperatura (ºC)</th>
<th>Q_4/Q_3 (%)</th>
<th>T_{3}^H/T_{3}^D (D)/T(%)</th>
<th>$D_2/D(T^H/Q)/D_{2H}/D_{2H}(%)$</th>
<th>M/M^H(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ (ppm)</td>
<td>δ (ppm)</td>
<td>δ (ppm)</td>
<td>δ (ppm)</td>
</tr>
<tr>
<td>120</td>
<td>6</td>
<td>11/26/ -</td>
<td>22/35/1/ -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-114</td>
<td>-91/-88/-</td>
<td>-24/-23/-7/-</td>
<td>-</td>
</tr>
<tr>
<td>400</td>
<td>17</td>
<td>9/12/2</td>
<td>26/33/-1/-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-113</td>
<td>-89/-87/-69</td>
<td>-24/-23/-1/-54/-</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>34</td>
<td>7/4</td>
<td>13/34/3/3/1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-111</td>
<td>(-86/-67)</td>
<td>(-24/-22/-10/-37/-31)</td>
<td>-</td>
</tr>
<tr>
<td>600</td>
<td>38/4</td>
<td>1/20</td>
<td>-/26/2/1/3</td>
<td>4/1</td>
</tr>
<tr>
<td></td>
<td>(-111/-101)</td>
<td>(-89/-67)</td>
<td>(-/-22/-10/-42/-33)</td>
<td>(4/-4)</td>
</tr>
</tbody>
</table>

En los primeros estadios de la pirólisis, hasta 400 ºC aproximadamente, a medida que aumenta la temperatura de tratamiento, corroborando lo que ya había sido observado mediante espectroscopía infrarroja y Raman, se produce un consumo de los enlaces Si-H vía reacciones de redistribución Si-H/Si-O. Como ya se explicó cuando se discutían los resultados obtenidos mediante FT-IR, estas reacciones de redistribución dan lugar a unidades estructurales D^{2H} (redistribución de unidades T^H/T^H) y M^H (redistribución de unidades (T^H/D) que presentan unos desplazamientos químicos de -49 y -7 ppm, respectivamente. Las unidades D^{2H} se aprecian de forma muy somera (1%) para el espectro de 400 ºC (ya que se descomponen para estas temperaturas vía SiH_4 (véase Esquema V-1), mientras que las unidades M^H no se aprecian prácticamente para esta temperatura pero sí para la de 600 ºC.
Como consecuencia de la evolución de estas reacciones se producen más unidades Q (-113 ppm; 17%) a partir de unidades TH,101,151 y estas a su vez pueden producir unidades T (-69 ppm; 2%) mediante redistribución con unidades D.

Para 400 ºC las unidades Q ya representan un 17 %, porcentaje muy próximo al de las unidades TH, que se sitúa en un 22 %. También se aprecian en pequeñas proporciones unidades D2H (1 %) y T (2 %). La máxima proporción sigue correspondiendo a las unidades D (59 %).

Hasta 400 ºC el proceso más relevante es el que implica la redistribución de enlaces Si-H/Si-O de las unidades TH copolimerizadas con unidades D, dando como resultado especies D2H que evolucionan hacia la formación de especies volátiles (SiH₄) y unidades Q. Estas especies pasan de representar un 26 % en el híbrido a un 12 % en el material tratado a 400 ºC.

Esta mayor reactividad de las especies TH copolimerizadas con el polímero frente a las autocondensadas consigo mismas, radica en que las copolimerizadas forman una red que presenta mayor movilidad, atribuida a la presencia de las cadenas de PDMS dentro de la misma, frente a la red vítrea formada a partir de las unidades TH autocondensadas, que es mucho más compacta y rígida.

Para la temperatura de 600 ºC se aprecia un ensanchamiento de todas las señales detectadas mediante ²⁹Si MAS RMN que corresponde a la menor movilidad de la estructura debido al comienzo de la transformación orgánico-inorgánica del material. Para esta temperatura de 600 ºC, y corroborando lo observado mediante FT-IR y Raman, no se aprecia prácticamente la presencia de unidades estructurales que contengan enlaces Si-H. Estas señales experimentan un descenso muy acusado en su intensidad debido a la elevada reactividad de este tipo de enlaces. Fundamentalmente se detectan restos de unidades TH (-89 ppm; 1%), D2H (-42 ppm; 1%) M₄H (-5 ppm; 1%) y D₄H (-33 ppm; 3%).

También a esta temperatura se aprecia redistribución de enlaces Si-O/Si-C a partir de unidades D (-22 ppm; 26%) y Q (-110 ppm; 42%), que dan como resultado una gran cantidad de unidades T (-67 ppm; 20 %).
Como consecuencia de una mayor extensión de estas reacciones de redistribución se aprecia la formación de una pequeña cantidad de unidades M (5 ppm; 4%). Las unidades T, también pueden experimentar reacciones de redistribución de enlaces $Si-H/Si-O$ con los restos de unidades T^H aún presentes en la estructura del híbrido dando como consecuencia unidades D^H.

Sin lugar a dudas el proceso más importante a esta temperatura de tratamiento, en términos de cantidad de enlaces involucrados, son las reacciones de despolimerización que experimenta el $PDMS$ (redistribución de enlaces $Si-O/Si-O$). Estas reacciones son responsables, no completamente pero sí en su mayoría, de que el porcentaje de unidades D pase de 59 % a un 31 %. Otra consecuencia de estas reacciones de despolimerización es que se detecte la presencia de oligómeros cíclicos de tres eslabones parcialmente retenidos en el material para estas temperaturas (-10 ppm; 3%). Estos oligómeros cíclicos son el producto mayoritario, por el cual se despolimeriza el $PDMS$, ya habían sido apreciados a 600 ºC mediante $FT-IR$ y Raman.

Un hecho que debe ser tenido en cuenta es que las unidades D que se han despolimerizado corresponden fundamentalmente con las que no estaban copolimerizadas. La copolimerización infunde una estabilidad térmica adicional a estas unidades, que las hace resistir frente a la despolimerización hasta 600 ºC.

A medida que aumenta la temperatura de tratamiento se produce un ensanchamiento de las señales debido a que los grupos siloxano presentan una menor movilidad en la red ya que ésta se va volviendo más y más rígida. Además, este ensanchamiento de las señales también es debido a un aumento del desorden, asociado a la transformación orgánico-inorgánica del material. Como ya se ha comentado en más de una ocasión, el vidrio de oxicarburo puede ser descrito como una distribución aleatoria de enlaces Si, O y C, que formarán las diferentes unidades estructurales Q, T, D, M y X.

Además del ensanchamiento de las señales, las que corresponden a unidades T, D, X y M experimentan un desplazamiento hacia valores más negativos de al menos 5 ppm, correspondiente al cambio progresivo que experimentan los enlaces durante la mineralización, donde los carbonos unidos directamente a silicio evolucionan desde enlaces $C-H$ a enlaces $C-Si$ durante dicho proceso, vía estructuras puente ($\equiv Si-CH_2-Si\equiv$).
Para temperaturas superiores siguen evolucionando las reacciones de mineralización y se forma completamente la fase metaestable de vidrio de oxicarburo. La proporción de estas especies se mantiene prácticamente constante hasta 1100 ºC, temperatura a partir de la cual se favorece la formación de unidades Q y X.

Para la temperatura de 800 ºC, tal y como se observo mediante FT-IR, se aprecian especies que presentan enlaces $Si-H$ que viene a corroborar lo dicho entonces. Estos enlaces para temperaturas de hasta 600 ºC provenían de las estructura del TREOS. Para temperaturas superiores (800 ºC), debido a las reacciones de mineralización, se forman nuevos enlaces $Si-H$ debido a rupturas homolíticas de enlaces $Si-O$ y subsiguiente abstracción de hidrógeno favorecidas para estas temperaturas.137,135 Para temperaturas superiores a 800 ºC el vidrio de oxicarburo está ya prácticamente formado; de manera que hasta 1200 ºC se puede apreciar que las unidades estructurales que forman el vidrio de oxicarburo se mantienen en un equilibrio metaestable.

En el Esquema V-2 se recogen a modo de resumen todas las reacciones de redistribución involucradas durante el proceso de pirólisis para el híbrido orgánico-inorgánico del sistema TREOS/PDMS.

\[
\text{Re\,distribución de enlaces } Si - H \, /\, Si - O \\
T'' + T'' \rightarrow Q + D^{2H} \rightarrow Q + SiH_{4(g)} \\
T'' + D \rightarrow M'' \\
T'' + T \rightarrow D''
\]

\[
\text{Re\,distribución de enlaces } Si - C \, /\, Si - O \\
Q + D \rightarrow T \\
D + T \rightarrow Q + M \\
M + T \rightarrow Q + X
\]

\[
\text{Re\,distribución de enlaces } Si - O \, /\, Si - O \\
D \rightarrow D_{3C(g)} + D_{4C(g)}
\]

Esquema V-3
En la Figura V-17 se representa la evolución de las especies mayoritarias para todo el tratamiento térmico. Para mayor claridad no se han representado las unidades que presentan Si-H exceptuando las unidades T^I que están presentes en mayor proporción. Hasta 800 ºC los porcentajes varían mucho, y a partir de esta temperatura los cambios detectados son mucho más suaves.

En esta figura queda reflejado todo lo comentado hasta ahora. Para temperaturas bajas de pirólisis las unidades Q se forman a expensas de las unidades T^I, y por otro lado las unidades D disminuyen hasta permanecer prácticamente constantes debido a las reacciones de despolimerización y redistribución con la unidades Q que forman oligómeros cíclicos volátiles y unidades T. Una mayor extensión de estas reacciones de redistribución genera también unidades M y X, en una menor proporción.

Para las temperaturas de tratamiento más altas (1200 ºC) las reacciones de redistribución dejan de ser equilibrios y se comienza a favorecer la formación de unidades Q y X.

En la Figura V-18 se ha representado cómo varía la cantidad de enlaces Si-X (para X = O y C) por cada átomo de silicio (Estos valores se han obtenido tal y cómo se explicó en el Capítulo III página 108-109). En dicha figura puede apreciarse cómo hasta 400 ºC los valores permanecen constantes, a temperaturas superiores el número de enlaces Si-C disminuye drásticamente (debido a las reacciones de redistribución de enlaces Si-O/Si-O.

Figura V-17: Representación de los porcentajes de las distintas especies obtenidos a partir de los espectros de RMN, para el sistema TREOS/PDMS para todas las temperaturas estudiadas.
y Si-C/Si-O), mientras que el número de enlaces Si-O experimenta el fenómeno contrario. Una vez formado el oxicarburo, el número de enlaces permanece constante hasta 1200 ºC donde se aprecia un ligero descenso de los enlaces Si-O y lo contrario para los Si-C, que puede ser atribuido a una ulterior incorporación de carbono en la red vitrea a partir de carbono que proviene de la fase de carbono libre.

Como ya se comentó en el Capítulo III, para este tipo de sistemas, las reacciones de redistribución son de suma importancia, ya que influyen en todos los estadios del tratamiento térmico. Estas reacciones son equilibrios y se comportan como tal a no ser que los productos formados desplacen dichos equilibrios (p.e SiH₄ u otras especies gaseosas). Si no entran en juego otros factores, la proporción de especies formadas dependerá de la proporción de enlaces Si-O y Si-C que tenga el material. Una vez formado el oxicarburo estos equilibrios siguen produciéndose hasta temperatura altas, en torno a 1400 ºC. Pero a partir de 1200 º aproximadamente estos equilibrios se desplazan hacia la formación de especies más estables como la sílice y el carburo de silicio. Es decir, la fase oxicarburo se segrega hacia la formación de sílice y carburo de silicio. Para temperaturas aun mayores, por encima de los 1500 ºC, la sílice reacciona con la fase de carbono libre, carbono tipo grafito, para formar carburo de silicio y especies volátiles, tal y como se ha visto en el Capítulo IV.

![Figura V-18: Evolución del número de enlaces Si-C y Si-O por átomo de silicio para el sistema TREOS/PDMS para todas las temperaturas de tratamiento estudiadas.](image-url)
En la Tabla V-2 se comparan los porcentajes para cada una de las unidades estructurales del vidrio de oxicarburo de silicio, para el sistema TREOS/PDMS, que han sido determinados mediante el modelo propuesto por Mutin et al.,³⁸ tal y como se explicó en el Capítulo III (véase página 111), y los obtenidos a partir del espectro de RMN para la temperatura de 1100 ºC. Se aprecia una buena concordancia entre los resultados obtenidos por ambos métodos, que viene a confirmar lo propuesto por los autores que piensan que la distribución de las diferentes especies es aleatoria y depende únicamente de la cantidad de enlaces Si-O y Si-C en el vidrio de oxicarburo formado.

<table>
<thead>
<tr>
<th>SiOC (1100 ºC)</th>
<th>O/Si</th>
<th>Q(%)</th>
<th>T(%)</th>
<th>D(%)</th>
<th>M(%)</th>
<th>X(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Análisis químico ³⁹</td>
<td>1.66</td>
<td>48</td>
<td>38</td>
<td>12</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>²⁹Si MAS RMN ³⁹</td>
<td>1.64</td>
<td>55</td>
<td>24</td>
<td>17</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

A partir de los porcentajes de las diferentes unidades estructurales, extraídos de los espectros de resonancia magnética nuclear, se ha calculado la composición de cada material, tal y como se explicó en el Capítulo III (véase página 112). Estos valores están recogidos en la Tabla V-3. Para los materiales obtenidos a partir de 700 ºC se ha calculado la fórmula del oxicarburo, el contenido en carbono total y carbono libre. Se encuentra una buena concordancia con la estimación hecha a partir de los datos de análisis químico y se comentarán conjuntamente en el apartado siguiente.

El sistema TEOS/PDMS y el sistema TREOS/PDMS difieren fundamentalmente en que el segundo contiene enlaces Si-H en el híbrido precursor, éstos van a facilitar la inserción de carbono en la red vitérea durante el proceso de pirólisis y dan como resultado oxicarbonuros completamente diferentes.

Los materiales híbridos en el sistema TREOS/PDMS presentan una mayor proporción de las unidades que contienen carbono en la red mixta del oxicarburo, sobre todo unidades X, esto conlleva una mayor incorporación de carbono en la red vitérea y una menor proporción de carbono libre.
Tabla V-3: Desplazamientos químicos, porcentajes de las diferentes unidades estructurales del sistema TREOS/PDMS y fórmula para todas las temperaturas estudiadas.

<table>
<thead>
<tr>
<th>T (ºC)</th>
<th>Q (%)</th>
<th>T(T)/T(%)</th>
<th>D;D(T°);D3C/D2H;DH(%)</th>
<th>M/M° (%)</th>
<th>X(%)</th>
<th>Fórmula RMN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ (ppm)</td>
<td>δ (ppm)</td>
<td>δ (ppm)</td>
<td>δ (ppm)</td>
<td>δ (ppm)</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>6</td>
<td>37/-</td>
<td>58/-</td>
<td>-</td>
<td>-</td>
<td>SiO1.24C1.14</td>
</tr>
<tr>
<td>(-114)</td>
<td>(-89/-)</td>
<td>(-24/-23/-7/-)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>17</td>
<td>22/2</td>
<td>59/1</td>
<td>-</td>
<td>-</td>
<td>SiO1.29C1.18</td>
</tr>
<tr>
<td>(-113)</td>
<td>(-88/-69)</td>
<td>(-24/-23/-/54/-)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>34</td>
<td>7/4</td>
<td>50/4</td>
<td>-</td>
<td>-</td>
<td>SiO1.41C1.07</td>
</tr>
<tr>
<td>(-111)</td>
<td>(-86/-67)</td>
<td>(-24/-22/-10/-37/-31)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>42</td>
<td>1/20</td>
<td>28/4</td>
<td>4/1</td>
<td>-</td>
<td>SiO1.49C0.95</td>
</tr>
<tr>
<td>(-111 a-101)</td>
<td>(-89/-67)</td>
<td>(-1/-22/-10/-42/-33)</td>
<td>(4/-4)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>56</td>
<td>-24</td>
<td>10/-3</td>
<td>5</td>
<td>-</td>
<td>SiO1.63C0.15 +</td>
</tr>
<tr>
<td>(-107)</td>
<td>(-66)</td>
<td>(-/-26/-/-/-36)</td>
<td>(-4)</td>
<td>-</td>
<td>0.36 (70 %)</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>57</td>
<td>1/21</td>
<td>11/-1</td>
<td>5</td>
<td>4</td>
<td>SiO1.62C0.18</td>
</tr>
<tr>
<td>(-109)</td>
<td>(-78/-68)</td>
<td>(-/-32/-/-/-42)</td>
<td>(-1)</td>
<td>(-19)</td>
<td>+0.35C (66 %)</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>66</td>
<td>15</td>
<td>-6/-</td>
<td>10</td>
<td>3</td>
<td>SiO1.66C0.17</td>
</tr>
<tr>
<td>(-109)</td>
<td>(-73)</td>
<td>(-/-38)</td>
<td>(-9)</td>
<td>(-22)</td>
<td>+0.23 (58 %)</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>55</td>
<td>24</td>
<td>17/-</td>
<td>3</td>
<td>1</td>
<td>SiO1.64C0.18</td>
</tr>
<tr>
<td>(-108)</td>
<td>(-76)</td>
<td>(-/-38)</td>
<td>(-13)</td>
<td>(-21)</td>
<td>+0.4C (69%)</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>61</td>
<td>16</td>
<td>12/-</td>
<td>6</td>
<td>5</td>
<td>SiO1.61C0.20</td>
</tr>
<tr>
<td>(-109)</td>
<td>(-76)</td>
<td>(-/-36)</td>
<td>(-8)</td>
<td>(-18)</td>
<td>+0.34C (63%)</td>
<td></td>
</tr>
</tbody>
</table>

^{13}C CP MAS RMN.

El espectro de ^{13}C RMN informa de los diferentes entornos químicos vistos desde los átomos de carbono y ayudará a determinar la temperatura, tanto, de la transformación orgánico-inorgánica del material, así como de la formación de la fase de carbono libre. Los espectros han sido realizados por la técnica del giro en ángulo mágico empleando polarización cruzada. Todos ellos están recogidos en la Figura V-16 b).

Para la temperatura de 400 ºC, las señales que correspondían a restos etóxido o grupos alcoholes han desaparecido completamente, indicando un aumento de entrecruzamiento de la estructura. Para temperaturas superiores, la banda asignada sin lugar a dudas a los metilos de las cadenas de PDMS se va ensanchando de una manera simétrica y asimétrica hacia campo bajo. Al igual que en el caso del sistema TEOS/PDMS, esto
Capítulo V

debes ser explicado de la siguiente manera; esta señal es contribución de diferentes entornos químicos.

En primer lugar, el ensanchamiento simétrico de la señal se debe a que ésta contiene tanto grupos metilos, de las unidades \(D \), como grupos metilos, de la unidades \(T \), formados para estas temperaturas a partir de las reacciones de redistribución de enlaces \(Si-C/Si-O \), tal y como se ha determinado a partir de \(^{29}Si \) MAS RMN.

En segundo lugar, el desapantallamiento de la señal así como el ensanchamiento asimétrico que experimenta es debido a estructuras puente tipo \(Si-CH_2-Si \).\(^ {147} \) Mediante espectroscopía infrarroja y Raman se ha determinado el comienzo de las reacciones de mineralización a partir de 500 °C gracias a la aparición de una banda asociada a estas especies. Si bien a medida que aumenta la temperatura hasta 700-800 °C la intensidad de esta banda aumenta notablemente indicando que la transformación ocurre fundamentalmente para estas temperaturas.

Estas estructuras indican la incorporación del carbono en la red vítrea. Estos intermedios son producidos mediante la ruptura homolítica de enlaces \(Si-C, C-H \), acelerados por la presencia de grupos \(Si-H \) que facilitan el proceso, rebajando la temperatura a la que comienza a producirse dicha transformación.

Tal y como se explicó en el Capítulo I (Esquema I-5), las estructuras \(Si-CH_2-Si \) pueden seguir evolucionando hacia la formación de \(CH-(Si)_3 \) y \(C(Si)_4 \).

Aunque la polarización cruzada no permite hacer un análisis cuantitativo de las señales de \(RMN \), ya que aumenta la intensidad de las señales que presentan mayor proporción de hidrógeno, se han deconvolucionado los picos de las señales situadas en torno a los 0-15 ppm para hacer un seguimiento cuasi-cuantitativo de la evolución de los grupos metilos (de unidades \(D \) y \(T \)) y estructuras puente para las temperaturas comprendidas entre 400-900 °C. Aunque este análisis no sea del todo correcto, indicará la tendencia de conversión de unos en otros.

En la Tabla V-4 están recogidos los desplazamientos así como los porcentajes de cada especie para las temperaturas analizadas. Estos datos corroboran la información obtenida mediante espectroscopía infrarroja y Raman. Aunque la transformación comienza a 500 °C ocurre de una manera mayoritaria a 700-800 °C. Para esta última temperatura prácticamente la mayoría de los grupos metilos se han transformado en estructuras puente (2% frente a un 98 %). Es importante darse cuenta que al pasar de
600 a 800 ºC las señales asociadas a grupos metilos se desplazan desde 2.20 hasta -4.31 ppm lo que esta indicando que a 600 ºC una gran cantidad de metilos pertenece a unidades D, mientras que a 800 ºC éstos corresponden a unidades T (Metilos unidades T = -3.5 ppm y metilos unidades D = 0 ppm).245 Es también muy importante tener presente que para estas mismas temperaturas las estructuras puente experimentan un desplazamiento desde 7.2 hasta 13.87 ppm que está indicando un progreso desde $\equiv Si-CH_{2}-Si\equiv$ hasta $CH-(Si)_{3}$ y $C(Si)_{4}$.

Tabla V- 4: Evolución de los diferentes entornos del carbono detectados mediante 13C CP MAS RMN, para el sistema TREOS/PDMS para todas las temperaturas de tratamiento estudiadas.

<table>
<thead>
<tr>
<th>T (ºC)</th>
<th>Si-CH$_3$ (ppm)</th>
<th>CH$_3$ vs CH$_2$</th>
<th>Estructuras puente tipo</th>
<th>CH$_3$ vs CH$_2$</th>
<th>C sp2 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>4.29</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>400</td>
<td>3.99</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>89</td>
<td>6.5</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>600</td>
<td>2,20</td>
<td>41</td>
<td>7.27</td>
<td>59</td>
<td>-</td>
</tr>
<tr>
<td>700</td>
<td>-1,85</td>
<td>10</td>
<td>7.86</td>
<td>90</td>
<td>130</td>
</tr>
<tr>
<td>800</td>
<td>-4,31</td>
<td>2</td>
<td>13.87</td>
<td>98</td>
<td>130</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>130</td>
<td>-</td>
</tr>
</tbody>
</table>

Dependiendo de la naturaleza de los precursores en el híbrido, la fase de carbono tipo grafito se formará a una temperatura u otra. Por ejemplo, algunos autores236 encuentran la formación de la fase de carbono libre a partir de 600 ºC. Para este sistema no se ha detectado la formación de la fase de carbono libre hasta 700 - 800 ºC. Este dato apoya la elección del TREOS que presenta enlaces $Si-H$ que favorecen la creación de la fase oxicarburó y no la formación de fase de carbono libre. La fase de carbono libre se corrobora por la aparición de una banda centrada para 130 ppm, que aparece, para estas condiciones de análisis, junto con sus correspondientes líneas de rotación laterales (spinning side bands).

La formación de la fase de carbono libre está asociada a la descomposición de los grupos orgánicos de las cadenas del PDMS.

Como ya se ha comentado, para la realización de estos experimentos se ha empleado la técnica de polarización cruzada, por eso, a medida que disminuye la concentración de hidrógeno en la muestra, las señales presentan más y más ruido. Para temperaturas
superiores a 800 ºC se aprecia la evolución de las estructuras puente hasta \(C(Si)_4 \). Todo lo comentado se refiere al carbono \(sp^3 \), pero en la zona de carbonos \(sp^2 \) sigue estando presente el carbono tipo grafito centrado para 130 ppm.

Es muy difícil discernir algo más para estos espectros debido al gran ruido que presentan, debido, como ya se ha comentado, a la pequeña concentración de hidrógeno en la muestra, que hace que la polarización cruzada ya no sea eficaz.

Para las temperaturas tales en las que la transformación orgánico-inorgánica ya se ha producido, se puede apreciar la presencia de enlaces \(Si-C \) \((C \; sp^3) \) en el material, gracias a la aparición de nuevas bandas que aparecen distribuidas para un amplio margen de desplazamiento químico, centradas para 25 y 15 ppm. Estas bandas han sido asignadas inicialmente a unidades \(C-Si_4 \).\(^{238}\)

Esta señal es muy ancha lo que puede significar la contribución de varias señales que tentativamente podría ser asignado a las diferentes unidades estructurales que presentan enlaces \(Si-C \) en el vidrio de oxicarburo de silicio.

![Difractogramas de RX para el sistema TREOS/PDMS para el intervalo de temperaturas comprendido entre 120 y 1200 ºC.](image)

Figura V-19: Difractogramas de RX para el sistema TREOS/PDMS para el intervalo de temperaturas comprendido entre 120 y 1200 ºC.
V.2.1.2.4 Estudio mediante difracción de Rayos X.

En la Figura V- 19 se presentan los difractogramas de RX para el sistema TREOS/PDMS, para las temperaturas de tratamiento comprendidas entre 120 y 1200 ºC. Todos ellos son muy similares y solamente contienen un halo ancho situado para $2\theta \sim 22^\circ$ característico de materiales vítreos basados en sílice.

Aunque la presencia de enlaces Si-H en la estructura inicial ha rebajado la temperatura de la transformación orgánico-inorgánica del material, no ha producido el mismo efecto para el comienzo de la aparición de especies cristalinas.

V.2.1.3 Contenido en carbono y análisis químico.

En la Figura V- 20 se muestra la variación del contenido en carbono para todo el tratamiento térmico.

Hasta 400° C el contenido en carbono es prácticamente constante. Este dato corrobora el elevado grado de entrecruzamiento de estos materiales y la poca extensión que tienen las reacciones de condensación de silanolres residuales, que son los esperados para este intervalo de temperaturas.

Sin embargo, no se puede saber el alcance de las reacciones de redistribución entre enlaces Si-H/Si-O, ya que no modifican el contenido en carbono de la muestra.

A partir de esta temperatura se produce una disminución drástica del contenido en carbono asociada a la despolimerización del PDMS. Se puede apreciar la gran extensión de estas reacciones de despolimerización, que hacen que prácticamente el 50 % del contenido total de carbono se pierda.

A partir de 700° C el contenido en carbono permanece prácticamente constante. Como ya se comentó anteriormente las reacciones de mineralización comienzan a 500° C. Esto frena las reacciones de despolimerización del PDMS, aumentando el entrecruzamiento de la red que conduce a la formación de vidrio de oxicarburo de silicio y la fase de carbono libre. Como consecuencia de la confluencia de todos los fenómenos para este intervalo de temperaturas se pierde una menor cantidad de oligómeros cíclicos.
de PDMS, conjuntamente con metano e hidrógeno, hasta que se completan las reacciones de mineralización.

Una vez concluido este proceso el único fenómeno que se produce es la reordenación de enlaces Si-O/Si-C, cuya extensión no puede ser tratada aquí ya que no se varia el contenido en carbono del vidrio de oxicarburo de silicio.

Si se compara esta variación del contenido en carbono con la experimentada por el sistema TEOS/PDMS (Figura III-21 (Capítulo III)) puede apreciarse que la red formada a partir de TREOS es más densa y retrasa en casi 100 ºC las reacciones de despolimerización, y por lo tanto disminuye la extensión de éstas reacciones. Esto, conjuntamente con el hecho de que las reacciones de mineralización también ocurren 100 ºC antes, hace pensar que, a priori, contribuirá a una mayor incorporación de carbono en la red vítrea.

En la Figura V-20 se ha representado la variación del contenido en carbono versus la pérdida en peso que experimenta el material. Se puede observar que siguen la misma tendencia ya que la mayor pérdida en peso (500-700º C) corresponde a las reacciones de despolimerización, lo que también supone la mayor variación del contenido en carbono.
Tabla V- 5: Composición química, fórmula del oxicarburo y contenido en carbono libre del sistema TREOS/PDMS para temperaturas desde 120 hasta 1200 ºC.

<table>
<thead>
<tr>
<th>T (ºC)</th>
<th>%C</th>
<th>Si(%)</th>
<th>O(%)</th>
<th>H (%)</th>
<th>Fórmula SiOC</th>
<th>C libre (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>20.05</td>
<td>28.78</td>
<td>45.42</td>
<td>5.75</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>19.98</td>
<td>35.16</td>
<td>39.34</td>
<td>5.52</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>19.81</td>
<td>35.65</td>
<td>38.90</td>
<td>5.64</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>400</td>
<td>20.20</td>
<td>32.01</td>
<td>42.18</td>
<td>5.61</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>17.84</td>
<td>40.88</td>
<td>36.52</td>
<td>4.76</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>600</td>
<td>14.16</td>
<td>44.51</td>
<td>37.83</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>700</td>
<td>10.05</td>
<td>45.99</td>
<td>42.68</td>
<td>1.28</td>
<td>SiC0.18O1.63 + 0.33 C</td>
<td>64</td>
</tr>
<tr>
<td>800</td>
<td>10.38</td>
<td>45.77</td>
<td>42.87</td>
<td>0.98</td>
<td>SiC0.18O1.64 + 0.35 C</td>
<td>66</td>
</tr>
<tr>
<td>900</td>
<td>7.49</td>
<td>43.66</td>
<td>48.28</td>
<td>0.57</td>
<td>SiC0.03O1.94 + 0.37 C</td>
<td>93</td>
</tr>
<tr>
<td>1000</td>
<td>7.48</td>
<td>44.05</td>
<td>48.08</td>
<td>0.39</td>
<td>SiC0.94O1.92 + 0.36 C</td>
<td>89</td>
</tr>
<tr>
<td>1100</td>
<td>11.33</td>
<td>45.53</td>
<td>42.91</td>
<td>0.23</td>
<td>SiC0.17O1.65 + 0.41 C</td>
<td>70</td>
</tr>
<tr>
<td>1200</td>
<td>10.64</td>
<td>46.01</td>
<td>43.03</td>
<td>0.32</td>
<td>SiC0.18O1.64 + 0.36 C</td>
<td>67</td>
</tr>
</tbody>
</table>

En la Tabla V- 5 están recogidos los porcentajes de todos los elementos, determinados mediante contenido en carbono y análisis químico así como las fórmulas experimentales calculadas a partir de dichos valores para todas las temperaturas de tratamiento estudiadas.

Cuando se comparan estos resultados con los obtenidos para el sistema TEOS/PDMS se puede apreciar que debido a la presencia de enlaces Si-H en el híbrido precursor se ha conseguido una mayor incorporación de carbono en la red vítrea en detrimento de la fase de carbono libre. Sin embargo, la cantidad de carbono libre todavía es bastante elevada ya que el PDMS produce una gran cantidad de carbono tipo grafito durante la pirólisis.

A partir de 700 ºC se ha calculado la fórmula teórica del oxicarburo, tal y como se hizo en el Capítulo III. Puede apreciarse que a partir de esta temperatura el oxicarburo está fundamentalmente formado y los porcentajes de carbono que está incorporado en red, carbono total y carbono libre se mantienen prácticamente invariables y que además estos valores están muy próximos a los estimados mediante resonancia magnética nuclear. En la Figura V- 21 se han representado todos estos valores y mediante comparación se observa que, excepto para la temperatura de 1000 ºC, la concordancia es excelente.
Figura V- 21: Comparación entre los valores obtenidos mediante RMN y análisis químico para a) contenido en carbono del oxicarburo y libre; y b) el porcentaje de carbono libre para el sistema TREOS/PMDS para las temperaturas de tratamiento desde 700-1200 ºC.

Para la temperatura de 900 y 1000 ºC, el oxicarburo está formado pero dicho material no ha alcanzado la resistencia que le conferirán temperaturas de pirólisis mayores, esto hace que para las muestras obtenidas a estas temperaturas con un tiempo de permanencia de 2 horas pierdan una gran parte del carbono incorporado en la red vítrea, lo que aumenta en sobremanera el contenido en carbono libre. Este mismo fenómeno ha sido apreciado para el sistema TEOS/PDMS y actualmente se sigue estudiando.
V.2.1.4 Caracterización microestructural y textural.

V.2.1.4.1 Estudio mediante porosimetría de mercurio.

El análisis mediante porosimetría de mercurio del sistema TREOS/PDMS de las diferentes temperaturas estudiadas conduce a las curvas de intrusión de mercurio presentadas en la Figura V-22 y a las distribuciones de poro presentadas en la Figura V-23.

El volumen de intrusión de mercurio es prácticamente despreciable excepto para la muestra tratada a 600 ºC, lo cual indica que tanto los híbridos como los oxicarburos no presentan poros mayores de 6 nm, que es el tamaño mínimo de poro que detecta la porosimetría de mercurio.

La forma de las curvas de intrusión es muy diferente dependiendo de la temperatura considerada. Hasta 400º C son muy parecidas, presentando una rama de intrusión que crece exponencialmente hasta llegar a un valor máximo. Este tipo de comportamiento puede asociarse simplemente a que el material experimenta una compresión como consecuencia de las elevadas presiones que se ejercen al realizar el análisis. Esta compresión es debida al carácter elastomérico que presentan estos materiales híbridos orgánico-inorgánicos.

Una segunda posibilidad es que, debido a las elevadas presiones del análisis, se rompa el material y deje accesible porosidad cerrada que antes no podía ser analizada. Una consecuencia de esta segunda consideración es que el diámetro de los poros no sería el correcto. El análisis nos daría un diámetro de poro menor del real debido a las elevadas presiones empleadas que en parte se han empleado para romper el material.

Como consecuencia de estas curvas de intrusión de mercurio, las distribuciones de poro obtenidas para estos materiales (Figura V-23) son unas curvas que crecen exponencialmente para diámetros de poro menores de 100 nm. Esto, de acuerdo con los resultados obtenidos mediante adsorción de nitrógeno, que se exponen más adelante, hace pensar que los poros son producidos por la compresibilidad que experimenta el material y no a verdadera porosidad, ya que mediante adsorción de nitrógeno no se observan estos poros.
A partir de 500º C, como consecuencia de las reacciones de despolimerización y mineralización, se genera porosidad y aumenta muchísimo el volumen de mercurio intruído. Para la temperatura de 600º C se alcanza un máximo de volumen de intrusión. A partir de aquí empieza a disminuir el volumen de intrusión como consecuencia de la transformación orgánico-inorgánica que va cerrando la estructura porosa que se ha generado. La forma de las curvas de intrusión-extrusión cambia, inicialmente se produce una intrusión hasta alcanzarse un valor máximo y posteriormente durante la
extrusión la mayor parte del mercurio se queda atrapado en la muestra, lo que puede estar sugiriendo poros tipo cuello de botella, con diámetro de entrada pequeños y grandes cavidades internas o también porosidad cerrada no interconectada. Para temperaturas a partir de 900º C el volumen de intrusión de mercurio es prácticamente inapreciable.

Las distribuciones de poros obtenidas para las temperaturas comprendidas entre 500-900º C, forman una curva que crece exponencialmente para diámetros de poro menores de 100 nm.

Los datos obtenidos para este intervalo de temperaturas sí coinciden con los valores obtenidos mediante adsorción de nitrógeno, aunque en parte también pueden ser atribuidos a la compresión que experimenta el material.

Para temperaturas superiores a 900º C el material no presenta poros en el intervalo detectable mediante esta técnica.

Tabla V- 6: Variación de la porosidad (determinada mediante porosimetría de mercurio), densidad real, pérdida en peso y %C para el sistema TREOS/PDMS donde se ha variado la temperatura desde 120-1200 ºC.

<table>
<thead>
<tr>
<th>T (ºC)</th>
<th>Porosidad (%)</th>
<th>D. real (g/cc)</th>
<th>P. peso (%)</th>
<th>% C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>8</td>
<td>1.18</td>
<td>0</td>
<td>20.05</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
<td>1.21</td>
<td>1</td>
<td>19.98</td>
</tr>
<tr>
<td>300</td>
<td>9</td>
<td>1.21</td>
<td>1</td>
<td>19.81</td>
</tr>
<tr>
<td>400</td>
<td>8</td>
<td>1.21</td>
<td>2</td>
<td>20.20</td>
</tr>
<tr>
<td>500</td>
<td>12</td>
<td>1.21</td>
<td>7</td>
<td>17.84</td>
</tr>
<tr>
<td>600</td>
<td>22</td>
<td>1.58</td>
<td>23</td>
<td>14.16</td>
</tr>
<tr>
<td>700</td>
<td>4</td>
<td>2.08</td>
<td>22</td>
<td>10.05</td>
</tr>
<tr>
<td>800</td>
<td>2</td>
<td>2.25</td>
<td>22</td>
<td>10.38</td>
</tr>
<tr>
<td>900</td>
<td>0</td>
<td>2.2</td>
<td>27</td>
<td>7.49</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>2.34</td>
<td>26</td>
<td>7.48</td>
</tr>
<tr>
<td>1100</td>
<td>0</td>
<td>2.30</td>
<td>27</td>
<td>11.33</td>
</tr>
<tr>
<td>1200</td>
<td>0</td>
<td>2.43</td>
<td>26</td>
<td>10.65</td>
</tr>
</tbody>
</table>
Capítulo V

V.2.1.4.2 Estudio mediante adsorción de nitrógeno.

En la Figura V-24 se presentan las isotermas de adsorción-desorción de nitrógeno para el sistema TREOS/PDMS, donde se ha variado la temperatura de tratamiento desde 120 hasta 1200º C.

El ormosil de partida no contiene poros detectables mediante esta técnica. Este material presenta una isoterma tipo II característica de materiales no porosos. Este tipo de isoterma se mantiene hasta la temperatura de 400º C; temperatura a partir de la cual cambia drásticamente la forma pasando a ser tipo IV (característica de materiales mesoporosos). Este tipo de isotermas se caracterizan por presentar un ciclo de histéresis y por su forma que para presiones relativas bajas es similar a la isoterma tipo II donde se produce la adsorción en monocapa-multicapa y posteriormente para presiones relativas altas se alcanza un valor máximo de adsorción que se mantiene constante. El ciclo de histéresis que presentan está asociado con la condensación capilar que ocurre en los mesoporos. Este tipo de isoterma se mantiene de aquí en adelante para todo el tratamiento térmico, incluso para las temperaturas mayores. El bucle de histéresis es tipo H2 según la clasificación hecha por la I.U.P.A.C239. Aunque este tipo de bucles son difíciles de interpretar, se piensa que la diferencia de mecanismo entre la condensación y la evaporación es debido a poros con cuellos estrechos que dan lugar a amplias cavidades, generalmente denominados poros de “cuello de botella”.

A 400º C se empiezan a producir las reacciones de despolimerización del PDMS que suceden vía eliminación de oligómeros cíclicos de tres eslabones fundamentalmente. Dicho fenómeno hace que se genere una porosidad en el híbrido que explicaría el cambio de isoterma.

Como se ha observado mediante las técnicas estructurales, las reacciones de mineralización suceden a partir de 500º C. Estas reacciones hacen que se generen más especies volátiles (H₂ y CH₄ fundamentalmente), que siguen generando porosidad en el material, alcanzándose el valor máximo de volumen de nitrógeno adsorbido por la muestra tratada a 600 ºC de temperatura.
Figura V-24: Isotermas de adsorción-desorción de N₂ para el sistema TREOS/PDMS, donde se ha variado la temperatura desde 120-1200 ºC.

Figura V-25: Distribución de tamaño de poro calculado por el método BJH a partir de la rama de desorción para el sistema TREOS/PDMS, donde se ha variado la temperatura desde 120-1200 ºC.
A partir de esta temperatura, cada vez se van generando menos especies volátiles y esto produce que el volumen de nitrógeno adsorbido disminuya de forma progresiva al aumentar la temperatura de tratamiento a la vez que empieza a sinterizar el material.

En la Figura V-25 se representan las distribuciones de poro obtenidas a partir de la rama de desorción de la isoterma de nitrógeno mediante el método BJH para el sistema TREOS/PDMS, donde se ha variado la temperatura de tratamiento desde 120 hasta 1200º C.

Como consecuencia de las reacciones de despolimerización (para la temperatura de 500º C), se generan poros de alrededor de 4 nm de diámetro que se mantienen para todo el tratamiento térmico. Por otro lado, las reacciones de mineralización generan poros de menor tamaño (posiblemente del orden de los microporos) y, a medida que aumenta la temperatura, estos poros (meso y microporos) se van perdiendo debido a la reestructuración que experimenta el material ya que se va formando el vidrio de oxicarburo de silicio gracias a procesos de densificación y sinterización.

Para evaluar la cantidad de microporos presentes en el material a las diferentes temperaturas de tratamiento se ha aplicado el método t (véase capítulo III página 129) para las temperaturas superiores a 400 ºC y hasta 1200 ºC.

En la Tabla V-7 se recogen los resultados obtenidos de volumen de microporos (V_{micro}). Además, para poder tener una visión global de la porosidad presente en este tipo de materiales, se han representado conjuntamente el volumen de macroporos determinado mediante porosimetria de mercurio (V_{macro}), el volumen total de meso y microporos determinado a p/p^0 cercanas a la unidad, el volumen de mesoporos (V_{meso}) determinado mediante BJH (adsorción y desorción) de la misma manera que se hizo en el capítulo III.
Tabla V-7: Parámetros obtenidos para el sistema TREOS/PDMS donde se ha variado la temperatura desde 120 hasta 1200 ºC: Superficie específica BET, así como superficie externa y la asociada a los microporos, Volumen de microporos por el método t, Volumen de mesoporos mediante el método BJH (adsorción y desorción), Volumen total de poro determinado mediante adsorción de nitrógeno (p/p° ≈ 1) y Volumen de macroporos obtenido mediante porosimetría de mercurio.

<table>
<thead>
<tr>
<th>T (ºC)</th>
<th>SE BET (m²/g)</th>
<th>S_{ext} (m²/g)</th>
<th>S_{micro} (m²/g)</th>
<th>V_{micro} (ml/g)</th>
<th>V_{meso BJH} (ads/des) (ml/g)</th>
<th>V_{meso+V_{micro}} (ml/g)</th>
<th>V_{macro} (ml/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>0.12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.07</td>
</tr>
<tr>
<td>200</td>
<td>0.09</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.07</td>
</tr>
<tr>
<td>300</td>
<td>0.18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.08</td>
</tr>
<tr>
<td>400</td>
<td>0.69</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.07</td>
</tr>
<tr>
<td>500</td>
<td>63</td>
<td>17.64</td>
<td>45.55</td>
<td>0.03</td>
<td>0.039/0.043</td>
<td>0.058</td>
<td>0.10</td>
</tr>
<tr>
<td>600</td>
<td>781.64</td>
<td>164.06</td>
<td>617.58</td>
<td>0.41</td>
<td>0.39/0.48</td>
<td>0.64</td>
<td>0.26</td>
</tr>
<tr>
<td>700</td>
<td>617.41</td>
<td>87.84</td>
<td>529.57</td>
<td>0.34</td>
<td>0.25/0.31</td>
<td>0.47</td>
<td>0.03</td>
</tr>
<tr>
<td>800</td>
<td>530.87</td>
<td>101.73</td>
<td>429.14</td>
<td>0.28</td>
<td>0.24/0.49</td>
<td>0.43</td>
<td>0.01</td>
</tr>
<tr>
<td>900</td>
<td>392.72</td>
<td>65.97</td>
<td>326.74</td>
<td>0.21</td>
<td>0.18/0.36</td>
<td>0.31</td>
<td>0.00</td>
</tr>
<tr>
<td>1000</td>
<td>344.86</td>
<td>73.30</td>
<td>271.57</td>
<td>0.18</td>
<td>0.17/0.32</td>
<td>0.29</td>
<td>0.00</td>
</tr>
<tr>
<td>1100</td>
<td>313.62</td>
<td>63.81</td>
<td>249.80</td>
<td>0.16</td>
<td>0.15/0.29</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>1200</td>
<td>223.03</td>
<td>55.37</td>
<td>167.66</td>
<td>0.13</td>
<td>0.14/0.22</td>
<td>0.20</td>
<td>0.00</td>
</tr>
</tbody>
</table>

A partir de los datos de la Tabla V-7 se aprecia que los híbridos del sistema TREOS/PDMS no presentan prácticamente porosidad de ningún tipo. Por otro lado, a medida que aumenta la temperatura de pirólisis se va generando porosidad (micro y meso) que va a perdurar incluso para las temperaturas más elevadas. Se puede decir que el material no presenta macroporosidad apreciable, para ninguna de las temperaturas estudiadas.

A partir de 500 ºC las reacciones de despolimerización y mineralización generan micro y mesoporos. Las reacciones de mineralización generan especies de menor tamaño lo que se traduce en una mayor cantidad de microporos, esto es para 600 y 700 ºC.

A temperaturas superiores los procesos van finalizando y la transformación orgánica-inorgánica del material prácticamente se ha completado, la estructura del material se va cerrando y como consecuencia parte de los poros sinterizan. Este fenómeno reduce considerablemente tanto a los meso como a los microporos, pero la cantidad remanente, incluso para una temperatura de tratamiento de 1200 ºC, es bastante elevada tanto en meso como en microporos.
En la Tabla V-7 se presentan los valores obtenidos de superficie específica del sistema TREOS/PDMS para todo el tratamiento térmico.

El ormosil de partida presenta una superficie específica muy baja que puede ser atribuida al elevado grado de condensación que presenta el híbrido orgánico-inorgánico. La superficie específica aumenta enormemente durante la transformación orgánico-inorgánica debido a la ruptura de enlaces, así como la volatilización de especies. Se alcanza un máximo para la temperatura de 600º C (781,64 m²/g) y a partir de aquí comienza a disminuir como consecuencia sobre todo de la eliminación de los poros más pequeños generados durante la mineralización, la estructura se va cerrando. No obstante para la temperatura de 1200º C sigue presentando un valor muy elevado (223,03 m²/g). A temperaturas superiores también comienza a producirse un proceso de sinterización, esto se aprecia sobre todo cuando se pasa de 1100 a 1200 °C, se observa una disminución del volumen de nitrógeno adsorbido, de la cantidad de poros y de la superficie específica. Esta última magnitud es la más destacable pasando de 313,62 a 223,03 m²/g.

El hecho de que no se produzca la eliminación total de la porosidad es probablemente debido a la lenta velocidad de sinterización dada la elevada viscosidad que presentan los vidrios de oxicarburo a estas temperaturas, asociada a la incorporación de carbono tetravalente en la red de sílice y a la presencia de la fase secundaria de carbono libre que dificulta la deformación viscosa del material.

V.2.1.4.3 Estudio mediante microscopía electrónica de barrido.

La variación de la microestructura durante el proceso de pirólisis también se ha seguido mediante el análisis de la superficie de fractura por microscopía electrónica de barrido. Las micrografías obtenidas a partir de la superficie de fractura para todas las temperaturas estudiadas están recogidas en la Figura V-27 y en la Figura V-28.

En el híbrido se supuso que las gotículas que rompían la continuidad de la red vítrea correspondían a una cierta separación de fases asociada a restos de PDMS que no habían copolimerizado con el TREOS. Esta suposición se confirma ya que al aumentar la temperatura de tratamiento estas aglutinaciones, a medida que progresan las reacciones.
de despolimerización, se vacían dando lugar a porosidad cerrada. A medida que va transcurriendo la despolimerización, parte de los oligómeros cíclicos que se generan a partir del PDMS pueden degradarse “in situ” dando lugar a sílice o quedarse parcialmente retenidos dentro de estas oquedades, como puede observarse en las micrografías que corresponden para las temperaturas de tratamiento de 600 y 700 °C respectivamente. Este último hecho se había observado durante la caracterización estructural del material, donde se había identificado la presencia de oligómeros cíclicos provenientes de la degradación térmica del polímero, retenidos parcialmente en la estructura compacta del material.

A medida que progresa el proceso de pirólisis, incluso para temperaturas de tratamiento relativamente bajas, se produce un cambio de la microestructura del material. En primer lugar a partir de 200 °C se puede distinguir un aumento de la rugosidad del material asociado al comienzo de las reacciones de redistribución de enlaces Si-H/Si-O que lleva asociada la descomposición de parte de las unidades T^H del TREOS en silanos volátiles e hidrógeno. La naturaleza orgánica del híbrido se va perdiendo a medida que aumenta la temperatura de tratamiento, cada vez la estructura es más rígida y con menos tendencia a la deformación. Este cambio desde híbrido orgánico-inorgánico al material vítreo es muy evidente para la temperatura de 500 °C.

Independientemente del tipo de proceso que se dé, durante la pirólisis se rompe una gran cantidad de enlaces lo que provoca un gran aumento de la superficie específica. Esto se traduce en una estructura abierta, pero a medida que aumenta la temperatura de tratamiento la estructura se va cerrando y parte de estos poros, sobre todo los más pequeños, desaparecen. Esta evolución se puede apreciar observando la micrografia para la temperatura de 1100 °C, donde han disminuido en gran manera todos estos poros pequeños. Es importante darse cuenta que aparentemente la micrografia que corresponde con la temperatura de tratamiento de 1200 °C parece presentar mayor porosidad que la que corresponde con 1100 °C. Esto puede estar indicando el comienzo de la segregación de la fase oxicarburo hacia la formación de unidades Q y X, tal y como ya se ha visto mediante resonancia magnética nuclear.

Estos poros han sido determinados mediante adsorción de nitrógeno, presentando un diámetro de poro de ~ 4nm que no puede ser determinado mediante esta técnica.
Debido a todo lo comentando en párrafos anteriores, el vidrio de oxicarburo de silicio presenta una matriz muy homogénea y densa, con cierta macro y mesoporosidad. La macroporosidad aparece en forma de porosidad cerrada que se genera tras la eliminación de cadenas de PDMS que no han copolimerizado con el TREOS y que se encuentran formando aglutinados en el híbrido. La mesoporosidad también proviene de la despolimerización del PDMS, pero del que estaba copolimerizado con las moléculas de TREOS, generando poros de 4nm de diámetro que no pueden ser determinados mediante esta técnica.

V.2.1.4.4 Variación de la densidad real.

Durante el proceso de pirólisis se produce una gran variación en la densidad real (Figura V-26). Se observa que al aumentar la temperatura se produce un aumento de la densidad. Este aumento en la densidad está asociado en un principio a la transformación orgánico-inorgánica que experimenta el material. Posteriormente, el aumento de la densidad, más moderado, es atribuido a una compactación y sinterización del mismo.

![Gráfica de variación de densidad real con temperatura](attachment:image.png)

Figura V- 26: Valores de densidad real obtenidos mediante picnometría de He del sistema TREOS/PDMS, donde se ha variado la temperatura de tratamiento de pirólisis desde 120 ºC hasta 1200 ºC. Los datos se recogen en la Tabla V- 6.
Figura V-27: Micrografías obtenidas mediante microscopía electrónica de barrido para la superficie de fractura para el sistema TREOS/PDMS donde se ha variado la temperatura de tratamiento desde el híbrido hasta 600 ºC.
Figura V- 28: Micrografías obtenidas mediante microscopía electrónica de barrido para la superficie de fractura para el sistema TREOS/PDMS donde se ha variado la temperatura de tratamiento desde 700 hasta 1200 ºC.
V.2.2 Influencia de la Velocidad de Calentamiento.

Tal y como se hizo en el capítulo III se ha variado la velocidad de calentamiento con el fin de estudiar cómo influye este parámetro fundamentalmente en la mayor o menor evolución de las reacciones de despolimerización y por lo tanto cómo afecta tanto en la cantidad de carbono (en red y libre) así como en la microestructura del vidrio de oxicarburo formado.

La velocidad de calentamiento se ha variado desde 0.5 hasta 12 ºC/min manteniéndose constantes es resto de los parámetros es decir, 1100 ºC (2h) y 50 ml/min de nitrógeno.

V.2.2.2 Caracterización térmica.

V.2.2.2.1 Análisis Termogravimétrico.

El estudio mediante TG/DTG en atmósfera de nitrógeno de las muestras del sistema híbrido TREOS/PDMS ha sido realizado para simular la pirólisis, mostrando los intervalos de temperatura donde se producen las pérdidas en peso más significativas durante todo el tratamiento térmico, que ayudará a clarificar el grueso de los procesos que se producen durante la transformación orgánico-inorgánica del material.

En un primer ensayo (Figura V-29) se ha estudiado el efecto que produce en el análisis la naturaleza de la muestra. Cuando la muestra ha sido triturada presenta una pérdida en peso total que se aproxima mucho a la obtenida experimentalmente ($\approx 25\%$). Sin embargo ésta comienza en unos valores muy bajos de temperatura (250º C) si se compara con la muestra analizada en monolito. Esta disminución en la temperatura de degradación del híbrido está producida, debido a la molienda de la muestra, por la pérdida de parte del entrecruzamiento de la red, que ha permitido que las reacciones de despolimerización, vía oligómeros cíclicos, sean el proceso que se produce fundamentalmente.
Por otro lado, la muestra que ha sido analizada en monolito presenta una pérdida de masa total ligeramente superior a la observada experimentalmente (35%). Dicha pérdida se puede dividir en varios intervalos que serán discutidos más adelante.

![Gráfico de TG y DTG](image)

Figura V-29: TG/DTG del híbrido orgánico-inorgánico del sistema TREOS/PDMS para la muestra triturada y en monolito, para una velocidad de calentamiento de 8 ºC/min bajo corriente de nitrógeno.

Los termogramas que presentan los híbridos del sistema TREOS/PDMS son algo más complicados de interpretar que los que presentaban los análogos del sistema TEOS/PDMS. Estas diferencias radican sobre todo en la presencia de los grupos Si-H, que experimentan reacciones de redistribución con los enlaces Si-O y hacen que la red híbrida sea más compacta y el PDMS esté presente hasta temperaturas mayores.

En un segundo ensayo se ha variado la velocidad de calentamiento como ya se hizo para el sistema TEOS/PDMS y así poder analizar cómo afecta al proceso de pirólisis.

Se pueden apreciar a *grosso modo* que a medida que aumenta la velocidad de calentamiento las temperaturas en la que comienzan los procesos aumenta y además los procesos se observan de forma más independientes unos de otros. Los termogramas y
las derivadas de estos para todas las velocidades de calentamiento estudiadas están recogidos en la Figura V-30.

Las pérdidas en peso más importantes han sido clasificadas en función de los procesos mayoritarios involucrados, pudiendo ser clasificadas de la siguiente manera:

- **Hasta 275-400 °C/ Redistribución de enlaces Si-H/Si-O**
 La primera pérdida en peso está comprendida entre 200-400 °C dependiendo de la velocidad de calentamiento. Este primer cambio en la masa está asociado fundamentalmente a la elevada reactividad de los enlaces Si-H y como consecuencia debida a las reacciones de redistribución de enlaces Si-H/Si-O que conllevan la eliminación de especies volátiles, fundamentalmente SiH₄. *(Capítulo I Esquema I-(1)).*
 El alcance de estas reacciones es muy pequeño en torno al 1 %, lo que refleja de nuevo el elevado grado de compactación del material. Según ha sido determinado *(FT-IR, Raman, RMN)* en el principio de capítulo estas reacciones de redistribución de enlaces Si-H/Si-O serán las que involucran moléculas de TREOS/TREOS, ya que son las que se producen a menor temperatura.
 La estabilidad térmica del híbrido es menor que la que presentaba el sistema TEOS/PDMS debido a la gran reactividad que presentan los enlaces Si-H.
 En esta primera zona también podría haberse apreciado la condensación de grupos silanoles residuales. El alcance de la misma es prácticamente inexistente ya que como se ha determinado mediante otras técnicas *(FT-IR, Raman,²⁹Si RMN)* durante el proceso sol-gel han concluido prácticamente todas las reacciones de hidrólisis y condensación.

- **Desde 275-400 hasta ~ 600 °C / Reacciones de despolimerización**
 Para temperaturas superiores se suceden diversas pérdidas en peso que se superponen unas con otras y que además varían bastante en función de la velocidad de calentamiento empleada. Independientemente de esta velocidad, para estas temperaturas, el proceso que involucra una mayor pérdida de masa es el asociado a las reacciones de despolimerización del PDMS.
Capítulo V

Cuando la velocidad de calentamiento es muy pequeña (1 °C/min) esta pérdida en peso es muy ancha y engloba el resto de las reacciones de redistribución de enlaces Si-H/Si-O, así como de enlaces Si-O/Si-O (reacciones de despolimerización). Para esta velocidad se extiende desde 275-514 y supone un 19 %.

A medida que aumenta la velocidad de calentamiento este intervalo se estrecha y la pérdida en peso asociada disminuye. El incremento de la velocidad aumenta la estabilidad térmica del híbrido, haciendo que se degrade en varias etapas y que son explicadas de la siguiente manera:

A medida que aumenta la temperatura el híbrido se va degradando aunque experimenta un entrecruzamiento adicional y produce que la parte orgánica no se degrade completamente, siendo necesarias temperaturas más altas para degradarlo en su totalidad.

El entrecruzamiento, y por tanto la estabilidad del híbrido, aumenta cuanto mayor es la velocidad de calentamiento, de manera que para velocidades superiores a 1 °C/min la degradación del polímero se produce claramente en al menos dos etapas.

El híbrido presenta enlaces Si-H que pueden reaccionar con el polímero también produciendo un entrecruzamiento de la estructura que conlleva un aumento de la estabilidad térmica del polímero.

A medida que aumenta la velocidad de calentamiento la pérdida observada para este intervalo es menor (primera etapa de degradación); para 1 °C/min supone el 19 % mientras que para 20 °C únicamente supone el 2 %. Los valores para todas las velocidades de calentamiento están recogidos en la Tabla V-8.

Esta primera etapa de degradación del polímero se extiende aproximadamente desde 275-500 °C (dependiendo de la velocidad de calentamiento) y subsiguientemente se produce la segunda etapa de degradación que coincide con el comienzo de las reacciones de mineralización (alrededor de 500 °C), según ha sido determinado mediante otras técnicas experimentales (FT-IR, Raman, 13C-RMN).

Los intervalos así como la extensión de esta segunda degradación del polímero dependen bastante de la velocidad de calentamiento empleada; para 1°C/min se produce entre 514-573 °C con un 6 % de pérdida en peso. Por otro lado para 20 °C/min se produce entre 516-627 °C con un 6 % de masa asociada.
Para velocidades bajas la degradación de polímero se produce en una mayor extensión y sobre todo en la primera etapa de degradación, mientras que a medida que aumenta la velocidad de calentamiento se retrasa la degradación del polímero que sucede fundamentalmente en la segunda etapa de degradación, lo que posibilita la confluencia con los procesos de mineralización y que, a priori, supondría una mayor incorporación de carbono en la red vítrea.

Una expresión de estos conceptos de una manera más intuitiva podría ser la siguiente:
El híbrido presenta dos tipos diferentes de PDMS el que está aglutinado y el que está copolimerizado con el TREOS. El “PDMS libre es el que se despolimeriza a temperaturas inferiores, y por otro lado, el PDMS copolimerizado permanece hasta temperaturas más altas, a parte a medida que aumenta la temperatura el PDMS que todavía este presente puede reaccionar con los grupos Si-H que se traduce en una mayor estabilidad térmica al polímero. Para velocidades bajas la despolimerización ocurre toda a la vez, mientras que para velocidades altas la degradación del polímero sucede para temperaturas mayores y en al menos dos etapas.

- Desde 585-900° C/ Reacciones de mineralización.
El entrecruzamiento ha aumentado la estabilidad térmica del residuo ya que dificulta cada vez más la movilidad de las cadenas remanentes de PDMS y las hace vulnerables para que se produzcan otros fenómenos; que son fundamentalmente las reacciones de redistribución de enlaces Si-C/Si-O (diferentes de las reacciones de despolimerización, que pueden generar especies volátiles) y las reacciones de mineralización (que generan metano e hidrógeno).
Para velocidades de calentamiento bajas el híbrido ha experimentado una degradación térmica severa y estas reacciones tienen menor repercusión que para velocidades de calentamiento altas. Para 1 °C/min supone el 8 % mientras que para 20 °C/min el 11 %.
Enlazando con lo anterior, a medida que aumenta la velocidad de calentamiento por la estabilidad térmica adquirida por el híbrido, al aumentar la velocidad de calentamiento a estas temperaturas llega una mayor cantidad de restos orgánicos, lo que hace que la participación de estas reacciones sea mayor.

Aunque la pérdida en peso mayoritaria involucrada en este intervalo correspondería a metano e hidrógeno, originados a partir de las reacciones de mineralización, también
para este intervalo podría estar asociada la formación de grupos silanoles y posterior eliminación de los mismos, que podrían llevar asociadas pequeñas pérdidas de masa para temperaturas cercanas a 900 ºC.

- **Desde 900º C/Deshidrogenación del material.**

La pérdida en peso es mínima y corresponde fundamentalmente a la deshidrogenación del material.

![Diagrama de termogravimetría y sus correspondientes derivadas](image.png)

Figura V-30: Curvas de termogravimetría y sus correspondientes derivadas, para el sistema TREOS/PDMS donde se ha variado la velocidad de calentamiento desde 2 hasta 20 ºC/min hasta 1100 ºC y bajo corriente de nitrógeno.
Tabla V-8 Temperaturas y pérdidas en peso asociadas a cada uno de los intervalos de las curvas DTG para el sistema TREOS/PDMS, donde las temperaturas están expresadas en °C y las pérdidas en peso (PP) están expresadas en %.

<table>
<thead>
<tr>
<th>v. calentamiento</th>
<th>1º Proceso</th>
<th>2º Proceso</th>
<th>3º Proceso</th>
<th>4º Proceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>(°C/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>251/1</td>
<td>457/13</td>
<td>531/22</td>
<td>593/23</td>
</tr>
<tr>
<td></td>
<td>206-275/1</td>
<td>275-514/19</td>
<td>514-573/6</td>
<td>573-900/8</td>
</tr>
<tr>
<td>4</td>
<td>285/1</td>
<td>472/9</td>
<td>546/15</td>
<td>639/23</td>
</tr>
<tr>
<td></td>
<td>205-313/1</td>
<td>331-499/10</td>
<td>499-600/9</td>
<td>600-900/10</td>
</tr>
<tr>
<td>8</td>
<td>308/1</td>
<td>478/9</td>
<td>543/17</td>
<td>631/26</td>
</tr>
<tr>
<td></td>
<td>239-354/1</td>
<td>354-521/14</td>
<td>521-578/6</td>
<td>578-900/12</td>
</tr>
<tr>
<td>12</td>
<td>384/3</td>
<td>457/5</td>
<td>564/14</td>
<td>676/26</td>
</tr>
<tr>
<td></td>
<td>243-432/4</td>
<td>432-486/2</td>
<td>486-607/13</td>
<td>607-900/12</td>
</tr>
<tr>
<td>20</td>
<td>368/1</td>
<td>469/2</td>
<td>578/7</td>
<td>679/14</td>
</tr>
<tr>
<td></td>
<td>272-417/1</td>
<td>417-516/2</td>
<td>516-627/6</td>
<td>627-939/11</td>
</tr>
</tbody>
</table>

V.2.2.3 Caracterización estructural.

V.2.2.3.1 Estudio mediante espectroscopía infrarroja.

A partir de los espectros de infrarrojo pueden apreciarse grandes diferencias al variar la velocidad de calentamiento desde 0.5 hasta 12 °C/min. Cuando la velocidad de calentamiento es muy baja, menor de 2° C/min, el espectro de FT-IR (Figura V-31) recuerda al de la sílice, por lo que puede decirse que se ha producido una mínima incorporación de carbono en la red vitrea. Sin embargo, para velocidades de calentamiento más altas, desde 2-12 °C/min, se favorece la incorporación de carbono en la red vitrea, presentando para todas estas velocidades el espectro típico de estos materiales (Figura V-31). Las bandas más relevantes son la asociada a la tensión Si-C a 880 cm⁻¹ y el ensanchamiento de la banda centrada a 810 cm⁻¹ asociada a SiX₄ (X = C, O).

Para velocidades bajas se ha favorecido la despolimerización del PDMS sobre el resto de los procesos. Para la velocidad de 0.5 °C/min se ha producido una separación de fases. Por un lado, las zonas más externas han sufrido la despolimerización total del PDMS y únicamente ha quedado la red vitrea formada a partir del TREOS. Por el otro,
en las zonas más internas, como consecuencia de una menor accesibilidad (y debido a la gran compactación de la red del híbrido) se ha producido la despolimerización del PDMS, pero parte de éste se ha quedado dentro y ha dado lugar a la formación de la fase oxicarburo de silicio y carbono libre. Al aumentar la velocidad de calentamiento se incrementa la temperatura a la que empieza a degradarse el polímero en la estructura del híbrido pudiendo entrar en juego el resto de los procesos que finalmente forman el vidrio de oxicarburo.

![Espectro FT-IR](Figura V-31)

Figura V-31: Espectros de FT-IR para los vidrios de oxicarburo del sistema TREOS/PDMS para las velocidades de calentamiento comprendidas entre 0.5 y 12 ºC/min.

V.2.2.3.2 Estudio mediante espectroscopía Raman.

En la Figura V-32 se han representado los espectros Raman de primer y segundo orden para todas las velocidades de calentamiento estudiadas. Según se puede observar en la Figura V-32 y Tabla V-19 el tamaño de los dominios parece ser independiente de la velocidad de calentamiento. Las principales diferencias radican en la anchura de la banda D que es notablemente más ancha para la velocidad de calentamiento de 0.5 ºC/min que para el resto de las velocidades estudiadas. Como ya se ha comentado anteriormente para 0.5 ºC/min se favorecen, sobre todos los procesos, las reacciones de despolimerización del PDMS en detrimento de la formación de oxicarburo de silicio. Esto implica que el material final esté formado fundamentalmente por sílice con
pequeñas cantidades de vidrio de oxicarburo y carbono libre. No sorprende que en el espectro Raman para esta velocidad (0.5 °C/min) que presenta una menor cantidad de carbono total y por lo tanto de carbono tipo grafito tal y como se corroborará más adelante, se puedan adivinar otras bandas que no pertenecen a la fase de carbono tipo grafito. De ahí que el ensanchamiento de la banda D puede ser debido a que además contiene las vibraciones de tensión del enlace $Si-O$ situadas a 1200 cm$^{-1}$ asociadas a la red vitrea.

![Figura V- 32: Espectros Raman para los oxicarburos obtenidos del sistema TREOS/PDMS donde se ha variado la velocidad de calentamiento desde 0.5 hasta 12 °C/min.](image)

Para todos los casos la forma de los espectros está indicando que corresponden a carbono vitreo bastante más ordenado que el que presentaban los análogos del sistema TEOS/PDMS. Esta diferente ordenación de la fase de carbono libre puede ser debida a diversos factores tales como: la presencia de los enlaces $Si-H$ o la microestructura más cerrada y con una elevada superficie reactiva (elevada superficie específica) debido a la presencia de micro-mesoporosidad.

La banda situada alrededor de 2700 cm$^{-1}$ (banda G'), presenta los valores de anchura de pico mayores para las velocidades mayor y menor. Esto puede estar indicando que tanto una velocidad de calentamiento muy lenta o una muy rápida, hacen que se forme una
Capítulo V

fase de carbono tipo grafito más desordenada con respecto a las otras velocidades de calentamiento, ya que los procesos involucrados durante la pirólisis no se producen con la velocidad adecuada para que se establezca dicho ordenamiento.

No se repite la misma tendencia que la apreciada para el sistema TEOS/PDMS en las mismas condiciones. Esto se debe fundamentalmente a que el sistema TEOS/PDMS, que es una estructura constituida por grandes macroporos, para velocidades de calentamiento bajas, se producen las reacciones de despolimerización de una manera preferencial. Los oligómeros formados antes de evaporarse tienen que recorrer la estructura porosa del híbrido y parte se quedan retenidos. A medida que aumenta la velocidad de calentamiento, se favorecen el resto de los procesos para el mismo intervalo de temperaturas y se forma de una manera más efectiva el oxicarburo y por lo tanto una fase de carbono libre de menor tamaño. Sin embargo para el sistema TREOS/PDMS, influye notablemente la microestructura del material. Este material es muy compacto. Para velocidades de calentamiento bajas se favorece la despolimerización aunque se produce de una manera preferencial en las zonas externas del material (que son blanquecinas) que son las más accesibles, de manera que se produce la despolimerización total y únicamente queda la red vítrea formada por el TREOS.

Por otro lado en las zonas más internas, por efecto de la temperatura, se favorece la despolimerización pero los oligómeros quedan atrapados hasta temperaturas superiores donde se produce la mineralización.

Para velocidades mayores, sin embargo, todos los procesos confluyen y esto se traduce en la formación de la fase oxicarburo/carbono libre de una manera homogénea en todo el material.

Esto hace que la velocidad de calentamiento no tenga un efecto determinado en el tamaño de los dominios de carbono ya que está supeditado fundamentalmente a la microestructura del material; es decir, a la elevada compactación que éste presenta.
V.2.2.3.3 Estudio mediante difracción de rayos X.

Los difractogramas de RX para los oxicarburos pirolizados a diferentes velocidades de calentamiento quedan presentados en la Figura V-33. En ellos se puede observar que, independientemente de la velocidad de calentamiento, presentan una única banda situada a 22 ° (típica de materiales vítreos basados en silice). Esto pone de manifiesto que aún para las velocidades más bajas que favorecen las reacciones de despolimerización y por lo tanto una baja formación de la fase oxicarburo no se detecta la formación de fases cristalinas.

![Difractogramas de RX](image)

Figura V-33: Difractogramas de RX, para los oxicarburos del sistema TREOS/PDMS, donde se ha variado la velocidad de calentamiento desde 0.5 hasta 12 °C/min.

V.2.2.4 Contenido en carbono y análisis químico.

En la Figura V-34 se presenta la variación del contenido en carbono del sistema TREOS/PDMS donde se ha variado la velocidad de calentamiento del proceso de pirólisis.

Como consecuencia de la mayor evolución de las reacciones de despolimerización del PDMS, que se ven favorecidas para velocidades de calentamiento lentas, el contenido en carbono aumenta con la velocidad de calentamiento.
Cabe destacar que para las velocidades de calentamiento de 0.5 °C/min el contenido en carbono es extremadamente pequeño, poniendo de manifiesto la escasa formación de la red mixta de vidrio de oxicarburo de silicio. A partir de 2 °C/min el contenido en carbono total es prácticamente constante para toda la serie.

![Gráfico de contenido de carbono vs velocidad de calentamiento](image)

Figura V-34: Variación del contenido en carbono para el sistema TREOS/PDMS, donde se ha variado la velocidad de calentamiento desde 0.5 a 12 °C/min para las condiciones de tratamiento: 1100 °C(2h), 50 ml/min N₂. Los datos se encuentran en la Tabla 4.

A partir de los datos obtenidos mediante análisis químico (*Tabla V-9*), se puede apreciar cómo al aumentar la velocidad de calentamiento se produce un aumento del carbono unido a la red vitrea. Para las velocidades de calentamiento más bajas la cantidad de carbono introducida en la red mixta del oxicarburo es muy pequeña; cuando
se pasa de 1 °C/min a 2 °C/min el cambio experimentado es muy grande. A partir de esta velocidad el contenido en carbono que forma parte de oxicarburo sigue aumentando pero de una manera discreta. Por otro lado, el carbono libre, en contraposición disminuye a medida que aumenta la velocidad de calentamiento. De igual manera, esta disminución es más brusca cuando se pasa de las velocidades más bajas (0.5 y 1 °C/min) a 2 °C/min pero a partir de este punto la disminución se produce de una manera más suave.

V.2.2.5 Caracterización microestructural y textural.

V.2.2.5.1 Estudio mediante porosimetría de mercurio.

En la Figura V-35 y en la Figura V-36 están representadas las curvas de intrusión de mercurio y las distribuciones de poro obtenidas para el sistema TREOS/PDMS, donde se ha variado la velocidad de calentamiento.

Tal y como se ha visto para la serie de temperatura, los oxicarburos obtenidos no presentan prácticamente porosidad, detectable mediante esta técnica. Para todos los casos, las curvas de intrusión experimentan una subida muy abrupta hasta alcanzar un máximo a partir del cual se obtiene un valor constante. Como consecuencia se obtienen unas distribuciones de poro bastante definidas.

El volumen de intrusión de mercurio disminuye al aumentar la velocidad de calentamiento. Para velocidades mayores de 1° C/min el volumen de intrusión de mercurio se puede considerar despreciable. Aunque los vidrios de oxicarburo de silicio obtenidos para el sistema TREOS/PDMS presentan una porosidad pequeña (hablando en términos de macroporos), los oxicarburos obtenidos para velocidades de calentamiento bajas (0.5 y 1° C/min) presentan un mayor volumen de macroporos (Figura V-36). Esta macroporosidad se genera como consecuencia de una mayor evolución de las reacciones de despolimerización del PDMS, produciendo poros muy grandes.

En la Tabla V-10 están recogidos los valores de porosidad total en toda la serie. Exceptuando las muestras obtenidas para las velocidades de calentamiento más bajas,
que presentan valores de 3 y 1 % respectivamente de porosidad, para el resto de las velocidades de calentamiento se obtiene un valor de cero de porosidad.

Figura V- 35: Curvas intrusión de mercurio para el sistema TREOS/PDMS, donde se ha variado la velocidad de calentamiento desde 0.5-12 °C/min.

Figura V- 36: Distribuciones de poros determinadas mediante porosimetría de mercurio para el sistema TREOS/PDMS, donde se ha variado la velocidad de calentamiento (0.5-12 °C/min).
Tabla V-10: Variación de la porosidad, densidad real, pérdida en peso y % C, para el sistema TREOS/PDMS donde se ha variado la velocidad de calentamiento desde 0.5-12 °C/min.

<table>
<thead>
<tr>
<th>v.calent (°C/min)</th>
<th>Porosidad (%)</th>
<th>D. real (g/cc)</th>
<th>P. peso (%)</th>
<th>% C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3</td>
<td>2.18</td>
<td>30</td>
<td>2,864</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2.28</td>
<td>23</td>
<td>7.55</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2.30</td>
<td>27</td>
<td>11.33</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2.53</td>
<td>24</td>
<td>10.74</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2.41</td>
<td>25</td>
<td>11.67</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>2.44</td>
<td>24</td>
<td>12.3</td>
</tr>
</tbody>
</table>

V.2.2.5.2 Estudio mediante adsorción de nitrógeno.

En la Figura V-37 y Figura V-38 se presentan las isotermas de adsorción-desorción de nitrógeno y las distribuciones de poro obtenidas para el sistema TREOS/PDMS, en las cuales se ha variado la velocidad de calentamiento para poder estudiar cómo afecta esta magnitud en la pirólisis para la obtención de vidrios de oxicarburo de silicio. Para todos los casos se obtienen isotermas tipo IV, características de materiales mesoporosos.

Se puede apreciar cómo, a medida que aumenta la velocidad de calentamiento, es mayor el volumen de nitrógeno adsorbido (Figura V-37). Cuando se pasa de 0.5 hasta 4 °C/min se alcanza un máximo y de aquí en adelante, para velocidades de calentamiento superiores, no se observan grandes cambios.

Cuando se analizan las distribuciones de poro mediante el método BJH (Figura V-38) se encuentran poros alrededor de ~ 4 nm, así como la posible presencia de microporos para todas las velocidades de calentamiento. En el caso de la velocidad de calentamiento más lenta (0.5° C/min) son menos abundantes que para el resto. Por otro lado, al aumentar la velocidad de calentamiento, se genera una mayor cantidad de poros de menor tamaño (microporos).

El volumen de microporos ha sido determinado mediante el método t, los resultados tanto del volumen de microporos así como mesoporos y macroporos están recogidos en la Tabla V-11.
Para velocidades bajas debido a la gran extensión de las reacciones de despolimerización se forman poros más grandes y una menor cantidad de meso y microporos. Como puede apreciarse a medida que aumenta la velocidad desaparecen los macroporos y aumentan los meso y microporos, la proporción de cada uno de ellos es muy similar para velocidades de calentamiento superiores a 2°C/min.

Figura V-37: Isotermas de adsorción-desorción de N$_2$ para el sistema TREOS/PDMS, donde se ha variado la velocidad de calentamiento desde 0.5-12 ºC/min.

Figura V-38: Distribución de tamaño de poro calculado por el metodo BJH a partir de la rama de desorción para el sistema TREOS/PDMS, donde se ha variado la velocidad de calentamiento desde 0.5-12 ºC/min.
Tabla V-11: Valores de superficie específica (BET), V_{micro}, V_{meso} y V_{macro} determinados mediante adsorción de nitrógeno y porosimetría de mercurio.

<table>
<thead>
<tr>
<th>V_{calent} ($°C/min$)</th>
<th>SE BET (m2/g)</th>
<th>Sext (m2/g)</th>
<th>Smicro (m2/g)</th>
<th>Vmicro (ml/g)</th>
<th>Vmeso BJH (ads/des) (ml/g)</th>
<th>Vmeso+Vmicro (ml/g)</th>
<th>Vmacro (ml/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>60.07</td>
<td>15.14</td>
<td>44.93</td>
<td>0.03</td>
<td>0.03/0.06</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>1</td>
<td>208.74</td>
<td>51.41</td>
<td>157.31</td>
<td>0.11</td>
<td>0.11/0.20</td>
<td>0.18</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>313.62</td>
<td>63.81</td>
<td>249.80</td>
<td>0.16</td>
<td>0.15/0.29</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>373.09</td>
<td>101.44</td>
<td>271.64</td>
<td>0.20</td>
<td>0.22/0.30</td>
<td>0.34</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>356.52</td>
<td>94.18</td>
<td>262.33</td>
<td>0.19</td>
<td>0.20/0.34</td>
<td>0.32</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>360.58</td>
<td>91.37</td>
<td>269.21</td>
<td>0.18</td>
<td>0.19/0.34</td>
<td>0.31</td>
<td>0.00</td>
</tr>
</tbody>
</table>

La superficie específica sigue la misma tendencia (Tabla V-11); aumenta hasta alcanzar un máximo a 4° C/min y a partir de aquí disminuye ligeramente.

Para velocidades bajas, sobre todo para 0.5° C/min y en menor medida para 1° C/min, se ha favorecido la despolimerización del PDMS. Esto se traduce en la formación de poros más grandes y por lo tanto en la disminución de la superficie específica. Al aumentar la velocidad de calentamiento entran en competencia otros procesos (redistribución Si-H/Si-O y Si-C/Si-O, reacciones de mineralización, etc.) con la despolimerización del PDMS y finalmente se produce el vidrio de oxicarburo de silicio, que presenta poros más pequeños sobre todo centrados para ~4 nm y por lo tanto aumenta notablemente la superficie específica.

V.2.2.5.3 Microscopía electrónica de barrido.

Las micrografías obtenidas mediante microscopía electrónica de barrido a partir de la superficie de fractura de todos los materiales obtenidos para las distintas velocidades de calentamiento estudiadas están representadas en la Figura V-39. Estas micrografías vienen a corroborar lo deducido mediante otras técnicas, para la velocidad de calentamiento de 0.5 °C/min se ha favorecido la despolimerización del polímero lo que ha generado la formación de dos fases claramente diferenciadas en la micrografía y que se han denominas como (a) y (b). La zona (a) corresponde con la parte externa del material, debido a la despolimerización masiva que ha experimentado esta zona se han formado una fase de sílice vítrea con grandes y abundantes poros. La zona
(b) corresponde con la parte interior del material, en esta región al estar más protegida frente a la gran despolimerización del PDMS se ha formado una fase de vidrio de oxicarburo, mucho más densa y con menos macroporos.

Al aumentar la velocidad de calentamiento la formación del vidrio de oxicarburo está más favorecida y el aspecto de los materiales es muy homogéneo y similar para todas las velocidades de calentamiento.

Es importante destacar que la porosidad cerrada generada como consecuencia de la evolución de las reacciones de despolimerización y que queda en el vidrio de oxicarburo formado a 1100 ºC puede encontrarse vacía o llena, dependiendo de la velocidad de calentamiento empleada. Se puede apreciar que a partir de 8 ºC/min estos poros están vacíos mientras que para el resto de las velocidades están llenos o parcialmente llenos.

Los poros contienen restos de sílice que se ha formado al degradarse térmicamente el PDMS. El hecho de que para unas velocidades se aprecien y para otras no únicamente puede ser atribuido de nuevo a la elevada densificación del material que opone resistencia a que estos oligómeros se eliminen completamente del material y, únicamente para las mayores velocidades de calentamiento, cuando los procesos ocurren de una forma más rápida estos oligómeros se pueden eliminar completamente.
Figura V-39: Micrografías para los vidrios de oxicarburo obtenidos para el sistema TREOS/PDMS donde se ha variado la velocidad de calentamiento desde 0.5 hasta 12 ºC/min.
Capítulo V

V.2.2.5.4 Variación de la densidad real.

Al aumentar la velocidad de calentamiento se produce un aumento en la densidad real (Figura V-40).

Para la velocidad de calentamiento de 0.5º C/min se observa un valor muy bajo debido a una incorporación pequeña de carbono en la red vitrea.
Esta muestra presentaba una capa externa blanquecina (silice) y un núcleo interno negro (fase oxicarburo y carbono libre). La gran extensión de las reacciones de despolimerización, debido a la baja velocidad de calentamiento, hace que se formen zonas muy enriquecidas en silice que se forma a partir del TREOS.
La pequeña fracción de PDMS que se entrecruza con el TREOS produce la fase de vidrio de oxicarburo.
A medida que aumenta la velocidad de calentamiento la formación del oxicarburo es más eficaz lo que se traduce en un aumento de la densidad, que se sitúa en torno a 2.35 g/cc que es el valor teórico de densidad para este material.

Figura V-40: Valores de densidad real obtenidos mediante picnometría de Helio del sistema TREOS/PDMS, donde se ha variado la velocidad de calentamiento desde 0.5 a 12 ºC/min. Los datos se encuentran en la Tabla V-10.
V.2.3 Influencia del Flujo del Gas de Pirólisis.

En esta serie se ha variado el flujo del gas de pirólisis desde 25 hasta 150 ml/min de nitrógeno, donde el resto de las variables se han mantenido constantes es decir, 1100 ºC (2h) con una velocidad de calentamiento de 2 ºC/min.

V.2.3.2 Caracterización estructural.

V.2.3.2.1 Estudio mediante espectroscopía infrarroja.

En la Figura V- 41 están representados los espectros de FT-IR para la temperatura de pirólisis de 1100º C, donde se ha estudiado cómo influye el flujo de nitrógeno en la formación del oxicarburo de silicio. Para el flujo de nitrógeno más bajo (25 ml/min), a priori se piensa en una menor incorporación de carbono en la red vítrea, ya que para este flujo se aprecia un hombro 880 cm$^{-1}$, y para el resto de los flujos se aprecia un desdoblamiento de la banda lo que indica que al menos algunos átomos de silicio están unidos a dos átomos de carbono significando una mayor incorporación de carbono en la red vítrea. Estos resultados se corroborarán más tarde (véase Tabla V- 12).

Esto puede ser interpretado de la siguiente manera:

Para un flujo demasiado pequeño, cuando se producen las reacciones de despolimerización, los oligómeros cíclicos no son arrastrados de la misma manera que para flujos superiores y se degradan térmicamente “in situ” (formando SiOC pero sobre todo carbono tipo grafito), disminuyendo la cantidad de carbono incorporado dentro de la red mixta (Si-O-C).
V.2.3.2.2 Estudio mediante espectroscopía Raman.

En la Figura V-42 y Tabla V-20, están recogidos los espectros Raman de primer y segundo orden, así como la información más importante sacada a partir de estos espectros para los oxicarburos obtenidos del sistema TREOS/PDMS, donde se ha variado el flujo de nitrógeno. Según puede apreciarse, el flujo de nitrógeno no influye prácticamente en el tamaño de los dominios, siendo del mismo intervalo para todos los casos y no apreciándose variación ni en el tamaño de los dominios, ni en el desplazamiento, ni en la anchura de las bandas D y G.

La banda G', sin embargo es bastante más ancha cuando se emplea un flujo de nitrógeno muy bajo, esto indica un mayor desorden tridimensional de la fase de carbono libre, que concuerda bastante bien con la hipótesis de que para un flujo de nitrógeno demasiado lento no se produce de manera adecuada el arrastre de los oligómeros cíclicos generados, de manera que éstos se degradan “in situ”. La difusión del nitrógeno dentro de la estructura del híbrido es escasa, de ahí que éste no influya en el tamaño de los dominios de grafito formados durante el proceso de pirólisis. En todos los casos corresponden a carbono vitreo (Véase Figura III-16).
V.2.3.2.3 Estudio mediante difracción de rayos X.

Los difractogramas de RX para los oxicarburos del sistema TREOS/PDMS, donde se ha variado el flujo de Nitrógeno (Figura V-43), sólo contienen una banda ancha centrada para 22 °; típica de materiales vítreos basados en sílice.
V.2.3.3 Estudio del contenido en carbono y análisis químico.

Cuando se comparan los datos del contenido en carbono, al variar el flujo de nitrógeno, no se aprecian diferencias al comparar los distintos oxicarboxilos obtenidos (Figura V-44).

Esto pone de manifiesto la elevada compactación de los materiales híbridos de partida, ya que no se ven influidos por el flujo de nitrógeno. Es lógico pensar que al aumentar el flujo de nitrógeno se aumente el arrastre de las especies volátiles que se van generando (oligómeros cíclicos). Cuando el material no presenta apenas porosidad, el nitrógeno pasa a través del horno sin introducirse apenas en el interior de la muestra y por lo tanto no aumenta la cantidad de especies volátiles arrastradas, que haría disminuir el contenido en carbono en el oxicarburo final formado.

No obstante, se ha observado mediante FT-IR que para el flujo más bajo (25 ml/min de N_2) se produce una menor incorporación de carbono en la red vítrea. Como aquí se está midiendo el contenido en carbono total, la diferencia no puede ser apreciada y sería necesario completar el estudio mediante el análisis del resto de los elementos para poder calcular el carbono que forma parte del oxicarburo y el que es carbono libre.

![Gráfica de contenido en carbono vs flujo de nitrógeno](image)

Figura V-44: Variación del contenido en carbono para el sistema TREOS/PDMS, donde se ha variado el flujo de nitrógeno desde 25-150 ml/min., para las condiciones de tratamiento: 2°C/min, 1100 ºC(2h). Los datos se encuentran recogidos en la Tabla V-12.
Para flujos a partir de 50 ml/min, el contenido en carbono total parece ser independiente con el flujo de nitrógeno. El análisis químico completo para estos oxicarbururos (*Tabla V-12*) revela que a medida que aumenta el caudal del flujo empleado durante la pirólisis el contenido en carbono del oxicarburo también aumenta de una forma moderada.

El flujo menor presenta los menores contenidos de carbono tanto en red y los mayores contenidos de carbono libre, lo que indica que el caudal menor arrastra de manera insuficiente los oligómeros cíclicos que se generan durante las reacciones de despolimerización haciendo que estos oligómeros cíclicos se queden en el material y evolucionen hacia la formación de carbono libre fundamentalmente. Esto mismo había sido deducido mediante *FT-IR* donde no se apreciaba el desdoblamiento de la banda a 812 cm$^{-1}$, asociada a una buena incorporación de carbono en la red vítrea.

Para flujos mayores de 50 ml/min, a partir de los datos extraídos del análisis químico se aprecia como se produce un ligero aumento del carbono introducido en la red vítrea al aumentar el flujo de nitrógeno. Se aprecia el efecto contrario que el observado con el sistema *TEOS/PDMS*, que debe ser explicado de nuevo en términos de microestructura. La gran compactación del sistema *TREOS/PDMS* necesita unos flujos de nitrógeno mayores de 25 ml/min que le ayuden a eliminar parte de los oligómeros que se generan durante la despolimerización ya que de lo contrario producen un aumento de la fase de carbono tipo grafito.

Tabla V-12: Composición química, fórmula del oxicarburo y contenido en carbono libre para el sistema *TREOS/PDMS* para los flujos de N_2 comprendidos entre 25 y 150 ml/min. En base a los resultados obtenidos para la serie de temperatura se asume que %H es menor del 0.5%.

<table>
<thead>
<tr>
<th>Flujo N_2 (ml/min)</th>
<th>C (%)</th>
<th>Si (%)</th>
<th>O (%)</th>
<th>H (%)</th>
<th>Fórmula SiOC</th>
<th>C libre</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>10.96</td>
<td>45.33</td>
<td>43.71</td>
<td><0.50</td>
<td>$\text{SiC}{0.15}\text{O}{1.69} + 0.41 \text{C}$</td>
<td>73</td>
</tr>
<tr>
<td>50</td>
<td>11.33</td>
<td>45.53</td>
<td>43.14</td>
<td><0.50</td>
<td>$\text{SiC}{0.17}\text{O}{1.66} + 0.41 \text{C}$</td>
<td>71</td>
</tr>
<tr>
<td>100</td>
<td>11.18</td>
<td>46.08</td>
<td>42.74</td>
<td><0.50</td>
<td>$\text{SiC}{0.18}\text{O}{1.63} + 0.39 \text{C}$</td>
<td>67</td>
</tr>
<tr>
<td>150</td>
<td>11.54</td>
<td>46.11</td>
<td>42.35</td>
<td><0.50</td>
<td>$\text{SiC}{0.19}\text{O}{1.61} + 0.39 \text{C}$</td>
<td>67</td>
</tr>
</tbody>
</table>
Capítulo V

V.2.3.4 Caracterización microestructural y textural.

V.2.3.4.1 Estudio mediante porosimetría de mercurio.

En la Figura V- 45 y Figura V- 46 se presentan las curvas de intrusión de mercurio, así como las distribuciones de poro en el sistema TREOS/PDMS, donde se ha variado el flujo de nitrógeno durante la pirólisis desde 25 a 150 ml/min.

Figura V- 45: Curvas intrusion de mercurio para el sistema TREOS/PDMS, donde se ha variado el flujo de nitrógeno desde 25-150 ml/min.

Figura V- 46: Distribuciones de poros determinadas mediante porosimetría de mercurio para el sistema TREOS/PDMS, donde se ha variado el flujo de nitrógeno desde 25-150 ml/min.
Como se viene observando para este tipo de oxicarboncillos, las curvas de intrusión experimentan un incremento muy rápido para un intervalo de diámetros de poro muy definido, lo que da unas distribuciones de poro bien definidas.

En segundo lugar, en esta serie, al aumentar el flujo de nitrógeno aumentan los valores de intrusión de mercurio. La muestra obtenida para un flujo de nitrógeno con 150 ml/min es la única que presenta uno valores de intrusión de mercurio observables. Para el resto, los volúmenes de intrusión serían prácticamente inapreciables.

Como consecuencia de lo anterior, para 150 ml/min de nitrógeno, se obtiene una distribución de poros situada entre 5-30 micrómetros. La presencia de estos poros es atribuida a un mayor arrastre de las especies volátiles que se van generando durante la pirólisis. Estos poros de mayor tamaño, aunque no son demasiado abundantes, pueden producir imperfecciones en el material final obtenido. Debido a esto la porosidad para esta muestra se sitúa en el 6 %, bastante superior respecto al resto de la serie que presenta unos valores prácticamente nulos de porosidad (Tabla V-13).

<table>
<thead>
<tr>
<th>Flujo N₂ (ml/min N₂)</th>
<th>Porosidad (%)</th>
<th>D. real (g/cc)</th>
<th>Pérdida en peso (%)</th>
<th>Contenido en C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0</td>
<td>2.51</td>
<td>25</td>
<td>10,96</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>2.30</td>
<td>27</td>
<td>11.33</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>2.44</td>
<td>26</td>
<td>11.18</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
<td>2.47</td>
<td>26</td>
<td>11.54</td>
</tr>
</tbody>
</table>

V.2.3.4.2 Estudio mediante adsorción de nitrógeno.

En la Figura V-47 y Figura V-48 se representan las isotermas de adsorción-desorción de nitrógeno y la distribución de poros del sistema TREOS/PDMS, donde se ha variado el flujo de nitrógeno desde 25-150 ml/min.

En todos los casos, tanto las isotermas (que son de tipo IV, características de materiales mesoporosos) como las distribuciones de poro (sobre todo poros alrededor de ~ 4 nm), son muy similares para todos los flujos de nitrógeno empleados. Se ha evaluado el
volumen de microporos mediante el método t. Finalmente los valores obtenidos de volumen de poro (micro, meso y macro) determinados mediante adsorción de nitrógeno y porosimetría están recogidos en la Tabla V-14. Los valores obtenidos son muy similares independientemente del flujo de nitrógeno empleado.

Figura V-47: Isotermas de adsorción-desorción de N₂ para el sistema TREOS/PDMS, donde se ha variado el flujo de nitrógeno desde 25-150 ml/min.

Figura V-48: Distribución de tamaño de poro calculado por el método BJH a partir de la rama de desorción para el sistema TREOS/PDMS, donde se ha variado el flujo de nitrógeno desde 25-150 ml/min.
Tabla V-14: Valores de superficie específica (BET), V_{micro}, V_{meso} y V_{macro} determinados mediante adsorción de nitrógeno y porosimetría de mercurio.

<table>
<thead>
<tr>
<th>Flujo N₂ (ml/g)</th>
<th>SE BET (m²/g)</th>
<th>Sext (m²/g)</th>
<th>Smicro (m²/g)</th>
<th>Vmicro (ml/g)</th>
<th>Vmeso BJH (ads/des) (ml/g)</th>
<th>Vmeso+Vmicro (ml/g)</th>
<th>Vmacro (ml/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>357.88</td>
<td>78.11</td>
<td>279.76</td>
<td>0.18</td>
<td>0.17/0.33</td>
<td>0.29</td>
<td>0.00</td>
</tr>
<tr>
<td>50</td>
<td>313.62</td>
<td>63.81</td>
<td>249.80</td>
<td>0.16</td>
<td>0.15/0.29</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>100</td>
<td>316.12</td>
<td>60.84</td>
<td>255.28</td>
<td>0.17</td>
<td>0.15/0.29</td>
<td>0.26</td>
<td>0.01</td>
</tr>
<tr>
<td>150</td>
<td>333.27</td>
<td>74.87</td>
<td>258.40</td>
<td>0.18</td>
<td>0.17/0.31</td>
<td>0.28</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Los valores obtenidos para superficie específica BET (Tabla V-14), están muy próximos en todos los casos, observándose un valor ligeramente superior para la muestra obtenida con un flujo de nitrógeno de 25 ml/min.

A priori, el flujo de nitrógeno debería haber influido en las muestras, ya que a mayor flujo se produce un mayor arrastre de las especies gaseosas que se van generando, sobre todo de los oligómeros cíclicos de bajo peso molecular generados durante la despolimerización del PDMS.

Como consecuencia, se debería haber producido una mayor extensión de la despolimerización del PDMS, reflejada por un aumento de la superficie específica o de volumen de poro al aumentar el flujo de nitrógeno, pero se observa que no ha influido. Se puede concluir que esta poca dependencia del flujo de nitrógeno con el mecanismo de pirólisis es debida al elevado grado de compactación del híbrido orgánico-inorgánico.

V.2.3.4.3 Microscopía electrónica de barrido.

Las micrografías obtenidas a partir de la superficie de fractura para los oxicarburos del sistema TREOS/PDMS donde se ha variado el flujo de nitrógeno están representadas en la Figura V-49. En todas ellas puede apreciarse un elevado grado de compactación y homogeneidad que únicamente se pierde por unos ciertos macroporos que aparecen distribuidos a lo largo del material y que proceden de aglomerados de polímero en el híbrido, tal y como se ha visto anteriormente.
Flujo de nitrógeno (ml/min)

25

50

100

150

La diferencia fundamental de estas micrografías se distingue precisamente al apreciar esta porosidad cerrada. En el caso de los flujos intermedios, estos poros no están vacíos si no que contienen sílice que procede de la degradación térmica del PDMS que ha quedado parcialmente retenido en la estructura compacta del híbrido durante el proceso de pirólisis. Sin embargo, para el flujo mayor estos poros están completamente vacíos, y si además se tiene en cuenta que estos materiales son los que presentan mayor porosidad en toda la serie, las micrografías están indicando que el flujo de nitrógeno mayor es
Sistema TREOS/PDMS
capaz de arrastrar los oligómeros que se generan como consecuencia del proceso de pirólisis aumentando la porosidad desde 0 hasta el 6 %.

De nuevo se encuentran distintos comportamientos para el sistema TEOS/PDMS y el sistema TREOS/PDMS. Estos comportamientos radican en las grandes diferencias que presentan sus microestructuras. El sistema TEOS/PDMS es muy poroso y, como es lógico, a mayor flujo de nitrógeno se produce un mayor arrastre de las especies volátiles generadas, y que repercute en una menor incorporación de carbono en la red vítrea. Por otro lado, la ausencia de poros hace que el sistema TREOS/PDMS sea prácticamente independiente en este sentido. Únicamente para el flujo menor implica que hace que parte de los oligómeros se degraden “in situ” y esto se traduzca en una menor incorporación de carbono en la red vítrea.

El flujo de nitrógeno no influye en el tamaño de los clusters, de carbono tipo grafito, debido a la baja difusión de éste dentro de la estructura del híbrido. En el sistema TEOS/PDMS sí influye; de nuevo la estructura porosa juega un papel importante. El aumento del flujo produce un mayor arrastre de las especies volátiles formadas, dificultando la interconexión sílice-carbono para la formación del oxicarburo, aunque no puede impedir la degradación térmica de estas especies volátiles generadas con la subsiguiente formación de carbono libre.

El flujo de nitrógeno no influye en esta magnitud. Se ha observado mediante otras técnicas que la variación del flujo de nitrógeno no repercute prácticamente en el proceso de pirólisis para el sistema TREOS/PDMS, poniendo de manifiesto el elevado grado de compactación de la red híbrida (Figura V- 50).

V.2.3.4.4 Variación de la densidad real.

El flujo de nitrógeno no influye en esta magnitud. Se ha observado mediante otras técnicas que la variación del flujo de nitrógeno no repercute prácticamente en el proceso de pirólisis para el sistema TREOS/PDMS, poniendo de manifiesto el elevado grado de compactación de la red híbrida (Figura V- 50).
Capítulo V

Figura V-50: Valores de densidad real obtenidos mediante picnometría de Helio del sistema TREOS/PDMS, donde se ha variado el flujo de Nitrógeno desde 25 a 150 ml/min. Los datos se recogen en la Tabla V-13

V.2.4 Influencia del Tiempo de Pirólisis.

La variación del tiempo de pirólisis va a ser muy útil a la hora de evaluar la evolución de la fase oxicarburo a 1100 ºC, tanto desde un punto de vista estructural como microestructural.

El tiempo de pirólisis a 1100 ºC se ha variado desde 0.5 hasta 8 horas, con una velocidad de calentamiento de 2 ºC/min y un flujo de nitrógeno de 50 ml/min.

V.2.4.2 Caracterización estructural.

V.2.4.2.1 Estudio mediante espectroscopia infrarroja.

Cuando se varía el tiempo de permanencia a 1100º C no se observan diferencias apreciables en los espectros de FT-IR (Figura V-51). Fundamentalmente, al aumentar el tiempo de permanencia a 1100º C se produce una mayor evolución de las reacciones de redistribución hacia la formación de [SiO₄] y [SiC₄] en detrimento de las otras especies que constituyen el oxicarburo de silicio. Como consecuencia de estas reacciones de redistribución no se forman enlaces diferentes, sino que los mismos se ordenan de
manera distinta y los cambios por tanto podrían ser evaluados mediante otras técnicas tales como RMN la cual da una idea más acertada de las diferentes unidades estructurales de las que forman el material, ya que es capaz de diferenciar entre los diferentes entornos que presentan los átomos, por ejemplo el silicio.

También para estas temperaturas tendrán lugar las reacciones de deshidrogenación del material que influirán sobre todo en la fase de carbono libre, por lo que los cambios tampoco serán detectados mediante esta técnica.

Figura V- 51: Espectros de FT-IR para el sistema TREOS/PDMS para los tiempos de permanencia a temperatura máxima de 0.5, 1, 2, 4 y 8 horas.

V.2.4.2.2 Estudio mediante espectroscopía Raman.

De la misma manera que se había observado para los análogos del sistema TEOS/PDMS, a medida que se aumenta los tiempos de pirólisis se produce una disminución de los dominios de grafito (Figura V- 52 y Tabla V- 21). La principal causa son las reacciones de deshidrogenación del material, que provocan la disminución en tamaño de los dominios.

Es importante recalcar que este descenso se produce de una manera notoria para el tiempo de permanencia mayor, es decir, el de 8 horas. Este hecho es comparable al que
experimentaba el material cuando se pasaban de 1000 a 1200 ºC, donde también se apreciaba un descenso en el tamaño de los dominios de carbono tipo grafito.

Sin embargo, para el sistema \textit{TEOS/PDMS}, esta disminución del tamaño de los dominios de carbono tipo grafito era mucho más rápida y el descenso más acusado se producía desde 0.5 hasta 1 hora.

Por el contrario, para el sistema \textit{TREOS/PDMS}, este descenso es notorio para los tiempos de pirólisis mayores, es decir de 8 horas. Esta diferencia pone de manifiesto la gran compactación de la red del sistema \textit{TREOS/PDMS} en comparación con el sistema \textit{TEOS/PDMS} que presenta una gran porosidad.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figura52.png}
\caption{Espectros Raman para los oxicarburos del sistema \textit{TREOS/PDMS} donde se ha variado de tiempo de pirólisis desde 0.5 hasta 8 horas.}
\end{figure}

Si se estudia de una manera más minuciosa todos los datos extraídos a partir del espectro Raman de primer y segundo orden se aprecia que las bandas D, G y G' experimentan una disminución de su ancho de banda sobre todo para el tiempo de pirólisis de 8 horas, que puede estar indicando que el material además de deshidrogenación experimenta una reestructuración de la fase de carbono libre que se vuelve más ordenada.
V.2.4.2.3 Estudio mediante difracción de rayos X.

Los difractogramas de RX para los oxicarbores obtenidos para el sistema TREOS/PDMS, donde se ha variado el tiempo de pirólisis (Figura V- 53), revelan una vez más que, a estas temperaturas de tratamiento, el material únicamente presenta la banda ($2\theta = 22 ^\circ$), característica de materiales vitreos basados en sílice. Esto pone de manifiesto la elevada estabilidad de estos materiales para la temperatura de 1100 ºC, que no promueve la formación de fases cristalinas, ya sean relativas a la matriz o a la fase de carbono libre.

![Difractogramas de RX para los oxicarbores del sistema TREOS/PDMS, donde se ha variado el tiempo de pirólisis desde 0.5 hasta 8 horas.](image)

Figura V- 53: Difractogramas de RX para los oxicarbores del sistema TREOS/PDMS, donde se ha variado el tiempo de pirólisis desde 0.5 hasta 8 horas.

V.2.4.3 Contenido en carbono y análisis químico.

El contenido en carbono experimenta un ligero descenso al aumentar el tiempo de permanencia (Figura V- 44), que podría estar asociado al comienzo de la degradación del material pero no a la reducción carbotérmica, ya que todavía son temperaturas muy bajas. Como se ha comentado anteriormente, para estas condiciones de tratamiento, el proceso más importante son las reacciones de deshidrogenación que no afectan al contenido en carbono.
Un estudio más detallado de la variación de la composición con el tiempo de pirólisis indica que, inicialmente, a medida que aumenta el tiempo de pirólisis también aumenta el contenido en carbono que pertenece al oxícarburo. Esto puede ser asociado a la reacción del carbono libre con la red de oxícarburo para formar nuevos enlaces Si-C. Sin embargo para el tiempo de pirólisis mayor este fenómeno revierte pudiendo estar asociado a un comienzo de la degradación del material vía segregación hacia fases más estables como son la sílice y el carburo de silicio, lo que se traduce con un ligero descenso, tanto del contenido en carbono total como del contenido en carbono unido directamente a la red vitrea.

Figura V-54: Variación del contenido en carbono para el sistema TREOS/PDMS, donde se ha variado el tiempo de permanencia desde 0.5-8 horas. Los datos se encuentran recogidos en la Tabla V-15.

Tabla V-15: Composición química, fórmula del oxícarburo y contenido en carbono libre para el sistema TREOS/PDMS para los tiempos de pirólisis comprendidos entre 0.5 y 8 horas. En base a los resultados obtenidos para la serie de temperatura se asume que %H es menor del 0.5%.

<table>
<thead>
<tr>
<th>t.pirólisis (h)</th>
<th>C (%)</th>
<th>Si (%)</th>
<th>O (%)</th>
<th>H (%)</th>
<th>Formula SiOC</th>
<th>C libre</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>10.42</td>
<td>45.3</td>
<td>44.28</td>
<td><0.50</td>
<td>SiC_{0.14}O_{1.72} + 0.40 C</td>
<td>73.62</td>
</tr>
<tr>
<td>1</td>
<td>10.78</td>
<td>45.6</td>
<td>43.62</td>
<td><0.50</td>
<td>SiC_{0.14}O_{1.72} + 0.42 C</td>
<td>75.01</td>
</tr>
<tr>
<td>2</td>
<td>11.33</td>
<td>45.53</td>
<td>43.14</td>
<td><0.50</td>
<td>SiC_{0.17}O_{1.66} + 0.41 C</td>
<td>71.1</td>
</tr>
<tr>
<td>4</td>
<td>10.76</td>
<td>45.8</td>
<td>43.44</td>
<td><0.50</td>
<td>SiC_{0.17}O_{1.66} + 0.38 C</td>
<td>69.54</td>
</tr>
<tr>
<td>8</td>
<td>10.29</td>
<td>45.34</td>
<td>44.37</td>
<td><0.50</td>
<td>SiC_{0.14}O_{1.72} + 0.39 C</td>
<td>73.45</td>
</tr>
</tbody>
</table>
V.2.4.4 Caracterización microestructural y textural

V.2.4.4.1 Estudio mediante porosimetría de mercurio.

En la Figura V-55 y Figura V-56 se presentan las curvas de intrusión de mercurio y las distribuciones de poro obtenidas cuando se ha variado el tiempo de permanencia durante la pirólisis del sistema TREOS/PDMS. Como viene ocurriendo para casi todas las muestras, los valores de intrusión de mercurio son tan pequeños que son prácticamente despreciables.

Por lo tanto, se considera que estos oxicarburos obtenidos mediante la variación del tiempo de permanencia no presentan prácticamente macroporos. Esto concuerda con los valores obtenidos de porosidad que son prácticamente despreciables para todos los tiempos de pirólisis a 1100 ºC estudiados (Tabla V-16).

Tabla V-16: Variación de la porosidad, densidad real, pérdida en peso y % C, para el sistema TREOS/PDMS, donde se ha variado el tiempo de permanencia desde 0.5-8 horas.

<table>
<thead>
<tr>
<th>T pirólisis (h)</th>
<th>Porosidad (%)</th>
<th>D.real (g/cc)</th>
<th>Pérdida en peso (%)</th>
<th>Contenido C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0</td>
<td>2.41</td>
<td>24</td>
<td>10.42</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2.29</td>
<td>25</td>
<td>10.78</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2.30</td>
<td>27</td>
<td>11.33</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2.28</td>
<td>24</td>
<td>10.76</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2.27</td>
<td>24</td>
<td>10.29</td>
</tr>
</tbody>
</table>
Figura V- 55: Curvas intrusión de mercurio para el sistema TREOS/PDMS, donde se ha variado el tiempo de permanencia desde 0.5-8 horas.

Figura V- 56: Distribuciones de poros determinadas mediante porosimetría de mercurio para el sistema TREOS/PDMS, donde se ha variado el tiempo de permanencia desde 0.5-8 horas.

5.2.4.4.2 Estudio mediante adsorción de nitrógeno.

En la Figura V- 57 y Figura V- 58 se presentan las isotermas de adsorción-desorción de nitrógeno y las distribuciones de tamaño de poro respectivamente para el sistema TREOS/PDMS, donde se ha variado el tiempo de permanencia a la temperatura máxima desde 0.5-8 horas. También se ha evaluado el volumen de microporos por el método t y
los valores obtenidos están recogidos en la *Tabla V-17* conjuntamente con los volúmenes de meso y macroporos.

![Figura V-57: isotermas de adsorción-desorción de N\textsubscript{2} para el sistema TREOS/PDMS, donde se ha variado el tiempo de permanencia desde 0.5-8 horas.](image)

![Figura V-58: Distribución de tamaño de poro calculado por el método BJH a partir de la rama de desorción para el sistema TREOS/PDMS, donde se ha variado el tiempo de permanencia desde 0.5-8 horas.](image)

Tanto las isotermas como las distribuciones de mesoporos según el método *BJH* son muy similares. Cabe destacar que para el tiempo de permanencia mayor (8 horas) se obtiene una disminución del volumen adsorbido en la isoterma que puede atribuirse a
una disminución del volumen tanto de meso como de microporo (*Tabla V-17*). En los valores de superficie específica (*BET*) se aprecia que todos están comprendidos en el mismo intervalo, salvo para el valor de 8 horas que disminuye con respecto a los anteriores.

Al aumentar el tiempo de permanencia a 1100º C se favorece un aumento en la densificación del material, que se traduce en un descenso del volumen adsorbido de nitrógeno, de volumen de poro y de la superficie específica. La estructura no se cierra completamente debido a que en los vidrios de oxicarburo la sinterización se produce muy lentamente a esta temperatura. Es destacable la integridad microestructural de estos materiales a esta temperatura. *Soraru et al.*\(^{35}\) obtuvieron vidrios de oxicarburo con elevada superficie específica tras pirólisis a 1000 ºC, pero tras aumentar el tiempo de pirólisis observaban un descenso de la superficie específica al menos desde 333 hasta 218 m\(^2\)/g para tiempos de permanencia desde 0 hasta 4 horas. En esta memoria se ha encontrado una disminución de la superficie específica únicamente desde 318 hasta 277 m\(^2\)/g para tiempos de permanencia mucho mayores (la variación es considerando una variación desde 0.5 hasta 8 h).

Tabla V-17: Valores de superficie específica (*BET*), \(V_{\text{micro}}\), \(V_{\text{meso}}\) y \(V_{\text{macro}}\) determinados mediante adsorción de nitrógeno y porosimetría de mercurio.

<table>
<thead>
<tr>
<th>(T_{\text{perm}}) (h)</th>
<th>(S_{\text{BET}}) (m(^2)/g)</th>
<th>(S_{\text{ext}}) (m(^2)/g)</th>
<th>(S_{\text{micro}}) (m(^2)/g)</th>
<th>(V_{\text{micro}}) (ml/g)</th>
<th>(V_{\text{meso}}) BJH (ads/des)</th>
<th>(V_{\text{meso}}+V_{\text{micro}}) (ml/g)</th>
<th>(V_{\text{macro}}) (ml/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>318.14</td>
<td>57.43</td>
<td>262.25</td>
<td>0.18</td>
<td>0.16/0.29</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>324.25</td>
<td>61.55</td>
<td>262.70</td>
<td>0.18</td>
<td>0.16/0.30</td>
<td>0.27</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>313.62</td>
<td>63.81</td>
<td>249.80</td>
<td>0.16</td>
<td>0.15/0.29</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>293.38</td>
<td>75.75</td>
<td>217.62</td>
<td>0.16</td>
<td>0.17/0.28</td>
<td>0.26</td>
<td>0.01</td>
</tr>
<tr>
<td>8</td>
<td>277.24</td>
<td>57.29</td>
<td>219.94</td>
<td>0.16</td>
<td>0.15/0.20</td>
<td>0.24</td>
<td>0.01</td>
</tr>
</tbody>
</table>
V.2.4.4.3 Microscopía electrónica de barrido.

En la Figura V- 59 se muestran las micrografías de la superficie de fractura de los vidrios de oxicarburó obtenidos a 1100 ºC donde se ha variado el tiempo de permanencia desde 0.5 hasta 8 horas. Mediante el análisis de estas micrografías se puede apreciar que a medida que aumenta el tiempo de pirólisis a 1100 ºC tienen lugar dos fenómenos, microestructuralmente hablando:
El primero de ellos se refiere a la matriz, al aumentar el tiempo de pirólisis se aprecia como dicha matriz evoluciona presentando menos poros y una mayor densificación.
Este cambio se observa en mayor medida cuando se pasa del tiempo de pirólisis de 0.5 a 1 hora.
El segundo de ellos se refiere a la zona que contiene macroporos que rompen la homogeneidad de la matriz. Como ya se ha venido observando estos poros no están siempre vacíos si no que pueden contener restos del polímero que se ha degradado posiblemente formando sílice. Dicha sílice, a medida que aumenta el tiempo de pirólisis a 1100 ºC y, fundamentalmente, para el tiempo de 8 horas, comienza a sinterizar disminuyendo el diámetro de estos poros considerablemente.
Estos dos fenómenos son los causantes de que se reduzca la superficie específica.

V.2.4.4.4 Variación de la densidad real.

En la Figura V- 60 está representado como varía la densidad en función del tiempo de pirólisis a 1100 ºC, estos valores también están recogidos en la Tabla V- 16. El tiempo de permanencia no influye en la densidad real. Fundamentalmente se ha comprobado que al aumentar el tiempo de permanencia disminuye la superficie específica. Esto aumenta la compactación del material, disminuyendo el volumen de poros, pero no aumenta la densidad real del material.
Figura V-59: Micrografías de la superficie de fractura de los oxicarburo obtenidos del sistema TREOS/PDMS donde se ha variado el tiempo de pirólisis a 1100 ºC desde 0.5 hasta 8 h.
Figura V- 60: Valores de densidad real obtenidos mediante picnometría de He del sistema TREOS/PDMS, donde se ha variado el tiempo de permanencia a 1100°C desde 0.5 a 8 horas. Los datos están recogidos en la Tabla V- 16.
Tabla V- 18: Información más importante obtenida del espectro Raman del sistema TREOS/PDMS para las temperaturas de 1000-1200 ºC.

<table>
<thead>
<tr>
<th>T (ºC)</th>
<th>I(D)/I(G) L (nm)</th>
<th>Banda D (cm⁻¹)</th>
<th>FWMH Banda D</th>
<th>Banda G (cm⁻¹)</th>
<th>FWMH Banda G</th>
<th>Banda G’ (cm⁻¹)</th>
<th>FWMH Banda G’</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1.06 4.14</td>
<td>1342</td>
<td>123</td>
<td>1600</td>
<td>81</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1100</td>
<td>1.14 3.86</td>
<td>1332</td>
<td>133</td>
<td>1597</td>
<td>68</td>
<td>2686</td>
<td>184</td>
</tr>
<tr>
<td>1200</td>
<td>1.29 3.41</td>
<td>1340</td>
<td>120</td>
<td>1602</td>
<td>66</td>
<td>2660</td>
<td>200</td>
</tr>
</tbody>
</table>

Tabla V- 19: Información más importante obtenida de los espectros Raman del sistema TREOS/PDMS para las velocidades de calentamiento desde 0.5 hasta 12 ºC/min.

<table>
<thead>
<tr>
<th>v.calent. (ºC/min)</th>
<th>I(D)/I(G) L (nm)</th>
<th>Banda D (cm⁻¹)</th>
<th>FWMH Banda D</th>
<th>Banda G (cm⁻¹)</th>
<th>FWMH Banda G</th>
<th>Banda G’ (cm⁻¹)</th>
<th>FWMH Banda G’</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.18 3.73</td>
<td>1326</td>
<td>162</td>
<td>1608</td>
<td>52</td>
<td>2665</td>
<td>290</td>
</tr>
<tr>
<td>1</td>
<td>1.27 3.47</td>
<td>1330</td>
<td>124</td>
<td>1600</td>
<td>59</td>
<td>2666</td>
<td>203</td>
</tr>
<tr>
<td>2</td>
<td>1.14 3.86</td>
<td>1332</td>
<td>133</td>
<td>1597</td>
<td>68</td>
<td>2686</td>
<td>184</td>
</tr>
<tr>
<td>4</td>
<td>1.21 3.64</td>
<td>1332</td>
<td>115</td>
<td>1599</td>
<td>60</td>
<td>2654</td>
<td>222</td>
</tr>
<tr>
<td>8</td>
<td>1.13 3.88</td>
<td>1331</td>
<td>120</td>
<td>1599</td>
<td>62</td>
<td>2680</td>
<td>169</td>
</tr>
<tr>
<td>12</td>
<td>1.23 3.56</td>
<td>1331</td>
<td>122</td>
<td>1598</td>
<td>64</td>
<td>2667</td>
<td>270</td>
</tr>
</tbody>
</table>
Tabla V-20: Información más importante de los espectros Raman del sistema TREOS/PDMS para los flujos de N₂, desde 25 hasta 150 ml/min.

<table>
<thead>
<tr>
<th>Flujo N₂ (ml/min)</th>
<th>I(D)/I(G)</th>
<th>L (nm)</th>
<th>Banda D (cm⁻¹)</th>
<th>FWMH Banda D</th>
<th>Banda G (cm⁻¹)</th>
<th>FWMH Banda G</th>
<th>Banda G’ (cm⁻¹)</th>
<th>FWMH Banda G’</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.16</td>
<td>3.78</td>
<td>1332</td>
<td>144</td>
<td>1596</td>
<td>68</td>
<td>2680</td>
<td>323</td>
</tr>
<tr>
<td>50</td>
<td>1.14</td>
<td>3.86</td>
<td>1332</td>
<td>133</td>
<td>1597</td>
<td>68</td>
<td>2686</td>
<td>184</td>
</tr>
<tr>
<td>100</td>
<td>1.18</td>
<td>3.73</td>
<td>1329</td>
<td>123</td>
<td>1598</td>
<td>62</td>
<td>2664</td>
<td>196</td>
</tr>
<tr>
<td>150</td>
<td>1.13</td>
<td>3.89</td>
<td>1331</td>
<td>116</td>
<td>1598</td>
<td>62</td>
<td>2680</td>
<td>238</td>
</tr>
</tbody>
</table>

Tabla V-21: Información más importante de los espectros Raman del sistema TREOS/PDMS para los tiempos de pirólisis desde 0.5 hasta 8 horas.

<table>
<thead>
<tr>
<th>T pirólisis (h)</th>
<th>I(D)/I(G)</th>
<th>L (nm)</th>
<th>Banda D (cm⁻¹)</th>
<th>FWMH Banda D</th>
<th>Banda G (cm⁻¹)</th>
<th>FWMH Banda G</th>
<th>Banda G’ (cm⁻¹)</th>
<th>FWMH Banda G’</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.11</td>
<td>3.97</td>
<td>1334</td>
<td>144</td>
<td>1597</td>
<td>69</td>
<td>2670</td>
<td>196</td>
</tr>
<tr>
<td>1</td>
<td>1.16</td>
<td>3.80</td>
<td>1338</td>
<td>134</td>
<td>1599</td>
<td>66</td>
<td>2686</td>
<td>210</td>
</tr>
<tr>
<td>2</td>
<td>1.14</td>
<td>3.86</td>
<td>1332</td>
<td>133</td>
<td>1597</td>
<td>68</td>
<td>2686</td>
<td>184</td>
</tr>
<tr>
<td>4</td>
<td>1.16</td>
<td>3.80</td>
<td>1336</td>
<td>141</td>
<td>1597</td>
<td>70</td>
<td>2683</td>
<td>260</td>
</tr>
<tr>
<td>8</td>
<td>1.32</td>
<td>3.34</td>
<td>1331</td>
<td>119</td>
<td>1597</td>
<td>61</td>
<td>2676</td>
<td>168</td>
</tr>
</tbody>
</table>
V.3 Conclusiones

V.3.1 Conclusiones del Sistema TREOS/PDMS.

Los híbridos orgánico-inorgánicos obtenidos mediante el proceso sol-gel a partir de TREOS y PDMS presentan un elevado grado de compactación y condensación (100 %) debido a la elevada reactividad y pequeño tamaño de la molécula de TREOS, dando como resultado una red tridimensional inorgánica formada por especies que proceden del TREOS, mayoritariamente constituida por unidades \(T^H \) (una pequeña proporción se descompone en unidades \(Q \)). Esta red inorgánica está parcialmente interrumpida por copolimerización con moléculas de PDMS, que se encuentran dispuestas en forma lineal \((n>>10)\) no encontrándose especies cíclicas, por las condiciones tan suaves de catálisis que se han empleado para favorecer la copolimerización entre el TREOS y el PDMS.

Mediante FT-IR y Raman se han encontrado las denominadas bandas de “defecto” asociadas a la presencia de anillos de 4 eslabones, en vez de los de 6 presentes de forma mayoritaria en la sílice vítrea. Éstos se han formado debido al impedimento estérico que experimenta la red vítrea cuando se está formando por la presencia del PDMS.

La transformación orgánico-inorgánica que experimenta el material desde el híbrido hasta el vidrio de oxicarburó ha sido seguida mediante la variación de distintos parámetros, la información más relevante obtenida es la siguiente:

- **Temperatura**

El híbrido es estable hasta 300 ºC, temperatura a partir de la cual comienzan a producirse las reacciones de redistribución de enlaces Si-H/Si-O. Como el híbrido está constituido por unidades de TREOS y PDMS estas reacciones de redistribución pueden darse entre Si-H (TREOS)/Si-O (TREOS) y Si-H (TREOS)/Si-O (PDMS), dando lugar a unidades \(D^{2H} \)(presentes hasta 400 ºC) y \(M^{2H} \)(hasta 600 ºC) respectivamente. La formación de estas especies ha sido corroborada mediante FT-IR, Raman y \(^{29}\text{Si-RMN}\).
Para temperaturas superiores (500-700 ºC) comienza la despolimerización del PDMS y como consecuencia de ello se aprecia una disminución de las señales asignadas al polímero. Además en el híbrido el PDMS se encuentra en forma lineal (tensión Si-C a 800 cm⁻¹) y cuando se produce la despolimerización esta banda se desplaza hacia 807 cm⁻¹, que corresponde a oligómeros cíclicos. A partir de FT-IR, Raman y ²⁹Si RMN y MEB, se ha determinado la presencia de oligómeros cíclicos que provienen del PDMS y que quedan parcialmente retenidos en la estructura del híbrido.

Dentro de este intervalo de temperaturas (comprendido entre 500-800 ºC), convergen una gran cantidad de procesos. Los enlaces Si-H en el híbrido, producen un estrecruzamiento de la estructura aumentando la temperatura de degradación del polímero, pero también rebajan la temperatura de mineralización del material hasta 500 ºC, por la aparición de una banda asociada a estructuras puente –Si-CH₂-Si– mediante FT-IR, Raman (1360 cm⁻¹) y ¹³C RMN (7 ppm).

También en este intervalo se produce la redistribución de enlaces Si-O/Si-C, a partir de los cuales mediante unidades Q y D se forman unidades T y en menor medida unidades M y X. Estas reacciones son las responsables de que el vidrio de oxicarburo este formado por una distribución aleatoria de unidades Q, T, D, M y X, que pueden ser consideradas como equilibrios y se producen tanto con enlaces de Si-Corgánico, en los primeros estadios del proceso de pirólisis, como con enlaces Si-Cinorgánico.

Para 1200 ºC estas reacciones dejan de ser equilibrios y se favorece la formación de unidades Q y X, o lo que es lo mismo comienza a producirse una segregación de la fase oxicarburo hacia la formación de sílice y carburo de silicio.

Conjointamente con la formación del vidrio de oxicarburo de silicio se produce la formación de una fase de carbono tipo grafito, que ha sido observada a partir de 700 ºC mediante ¹³C RMN (~ 130 ppm). Mediante espectroscopia Raman, a partir del estudio de las de las denominadas D y G (anchura, desplazamiento, relación de intensidades y espectro de segundo orden (> 2700 cm⁻¹)) se puede determinar que corresponde a carbono vitreo con cierta ordenación tridimensional.
Como consecuencia de la despolimerización del PDMS y la mineralización, se generan macroporos (porosidad cerrada) poco abundantes y que provienen de aglomeraciones de PDMS en el híbrido, así como mesoporos (de aproximadamente 4 nm) y microporos que se mantienen tanto en el híbrido como en el vidrio de oxicarburo de silicio incluso a temperaturas de 1200º C. Dichos fenómenos le confieren unos elevados valores de superficie específica al oxicarburo final obtenido valores que se sitúan en torno a los 300 m²/g. Al pasar de 1100 a 1200º C se produce una disminución de la superficie específica debida al comienzo de la sinterización del material reduciéndose porosidad.

- **Velocidad de calentamiento.**
Para velocidades de calentamiento lentas, 0.5º C/min, se produce en gran medida la despolimerización del PDMS. Como consecuencia se forman zonas muy enriquecidas en sílice formadas a partir del TREOS. Esta gran extensión de la despolimerización del PDMS hace que se forme una pequeña cantidad de la fase oxicarburo de silicio. Al aumentar la velocidad de calentamiento, desde 2 hasta 12 ºC/min, la despolimerización del PDMS ya no se produce de forma tan severa, ya que el aumento de la velocidad de calentamiento produce un aumento en la temperatura en la que comienza a degradarse el polímero, haciendo que puedan confluir el resto de los procesos (reacciones de redistribución y de mineralización).

- **Flujo de nitrógeno.**
Debido a la gran compactación del híbrido, el flujo de nitrógeno no influye en el oxicarburo obtenido en la manera que cabría esperar a priori. Para el flujo de 25 ml/min se ha observado mediante FT-IR una menor incorporación de carbono en la red vítrea, lo que es debida a un arrastre insuficiente de los oligómeros cíclicos generados durante la despolimerización y que se descomponen “in situ”.
Para un flujo de nitrógeno de 150 ml/min se observa una mayor formación de macroporos atribuida al mayor arrastre que experimentan las especies volátiles que se generan durante la pirólisis (reacciones de despolimerización). Estos poros podrían producir imperfecciones en el material final obtenido.
• **Tiempo de pirólisis a 1100 °C.**

La variación del tiempo de permanencia a 1100° C prácticamente no influye en el vidrio de oxicarburo final obtenido. Únicamente para 8 horas de tiempo de permanencia se observa una disminución de la superficie específica como consecuencia de un aumento en la densificación del material (disminución meso y microporos y reducción de diámetro de poro de los macroporos). Para el tiempo de 8 horas se aprecia un ligero descenso del contenido en carbono incorporado a la red vítrea, hecho que puede indicar el comienzo de la degradación del material. (segregación hacia la formación de sílice y carburo de silicio).

V.3.1.2 Diferencias Entre el Sistema Formado a Partir de TEOS y TREOS.

El híbrido del sistema *TREOS/PDMS* presenta un mayor grado de condensación y compactación con respecto al híbrido del sistema *TEOS/PDMS*, debido a la mayor reactividad del *TREOS* frente al *TEOS*.

Debido a esto el *PDMS* interrumpe la estructura vítrea formada de distinta manera. Con el *TEOS* esta dispuesto de forma lineal y cíclica indistintamente formando grandes poros de unos 10 micrómetros. Por otro lado, la elevada reactividad del *TREOS* y las suaves condiciones de síntesis hacen que el polímero esté dispuesto de forma lineal y la estructura sea muy compacta no presentando poros de ningún tipo.

Las reacciones de despolimerización comienzan a 500ºC para el sistema *TREOS/PDMS* mientras que para el sistema *TEOS/PDMS* comienzan a 400 ºC.

La despolimerización ocurre a temperaturas mayores para el *TREOS* debido, sobre todo, al elevado grado de compactación de la red y a que la presencia de enlaces *Si-H* puede producir un fortalecimiento adicional a la red. De hecho se aprecia que la despolimerización del *PDMS* sucede en varias etapas. El aumento de las temperaturas de despolimerización junto con la disminución de las temperaturas en las que comienza la mineralización, asistida por la presencia de los grupos *Si-H*, de nuevo hace que confluyan todos estos procesos en los mismos intervalos de temperaturas y que se produzca una mayor incorporación de carbono en la red vítrea y una menor cantidad de carbono libre con respecto al sistema *TEOS/PDMS*. Las reacciones de mineralización
comienzan a 500 °C para el sistema TREOS/PDMS y a 600 °C para el sistema TEOS/PDMS.

Para el sistema TEOS/PDMS la fase de carbono libre, estudiada mediante espectroscopía Raman, presenta las bandas D y G características de carbono tipo grafito, altamente desordenado. Sin embargo, para el sistema TREOS/PDMS la fase de carbono libre corresponde a carbono vitreo, presentando cierta ordenación tridimensional (espectro de segundo orden).

La pérdida en peso asociada es del orden de 40 % para el TEOS/PDMS y del 30 % para el sistema TREOS/PDMS.

Los vidrios de oxicarburo obtenidos a partir del sistema TREOS/PDMS poseen un elevado grado de densificación, presentando cierta porosidad cerrada que proviene de aglomerados de PDMS formados previamente en el híbrido de partida. Por otro lado, los vidrios que provienen del sistema TEOS/PDMS tienen una estructura típica de agregado de partícula con un tamaño de poro entorno a los 15 micrómetros.

Los vidrios de oxicarburo del sistema TREOS/PDMS tienen una superficie específica bastante elevada alrededor de 300 m2/g, debida a la presencia de unos meso y microporos que se generan como consecuencia de la despolimerización del PDMS. Los obtenidos para el sistema TEOS/PDMS tienen una superficie específica prácticamente nula.
VI- CONCLUSIONES FINALES.
VI CONCLUSIONES FINALES.

En esta memoria se presenta la producción de materiales tecnológicamente viables para la obtención de vidrios de oxicarburo densos que puedan ser empleados como materiales estructurales de altas prestaciones. Para ello se parte de dos sistemas diferentes, el constituido por TEOS/PDMS en combinación con lo que se ha llamado “vía cerámica” y el constituido a partir del sistema TREOS/PDMS.

Tras el estudio del proceso de pirólisis en estos dos sistemas se pueden elegir las condiciones experimentales óptimas que hagan viable el desarrollo tecnológico de estos materiales en función de las solicitaciones requeridas en cada momento.

En primer lugar, a partir del sistema TEOS/PDMS se consiguen vidrios de oxicarburo de silicio altamente porosos. A estos materiales se les ha aplicado lo que se ha denominado “vía cerámica”, que consiste en un pretratamiento térmico, molienda, pirólisis, conformado y sinterización a alta temperatura, a grandes rasgos muy similar al que se emplea para la obtención de materiales cerámicos. Una de las etapas claves del proceso es la eliminación de la porosidad, hecho que se consigue únicamente tras la molienda en molino de atrición. Como consecuencia de todo el proceso se obtiene un material completamente densificado y con muy buenas propiedades tanto térmicas como mecánicas.

En segundo lugar, a partir del sistema TREOS/PDMS mediante pirólisis de los híbridos orgánico-inorgánicos se ha obtenido un material muy denso pero con macroporosidad cerrada remanente así como micro y mesoporosidad que, junto con la dificultad de conseguir piezas monolíticas de un tamaño considerable, no les hace buenos candidatos para ser empleados como materiales estructurales. Sin embargo, aunque no existen estudios que lo avalen, la elevada superficie específica, su elevada densificación y por supuesto la matriz de vidrio de oxicarburo hacen confiar en que estos materiales pueden ser muy útiles para su empleo como filtros o soportes para catalizadores, aislantes acústicos o incluso podrían ser empleados como materiales de refuerzo de materiales compuestos.

Los vidrios de oxicarburo densos son especialmente requeridos por la industria aeronáutica y aeroespacial para el uso de piezas de motor para aviones, como por
Capítulo VI
ejemplo álabes. En trabajos anteriores realizados en nuestro grupo de investigación se consiguió la obtención de piezas monolíticas de vidrio de oxicarburo de silicio, pero aún presentaban una porosidad remanente de alrededor del 20 %, lo que suponía una desventaja para sus propiedades mecánicas. Mediante la “vía cerámica” se ha conseguido la obtención de piezas monolíticas con una porosidad remanente prácticamente nula, lo que supone unos excelentes resultados de estos materiales para ser empleados como materiales estructurales.

Normalmente estas piezas son construidas fundamentalmente a base de aleaciones metálicas o metales, aportando unas elevadas prestaciones en detrimento de un elevado peso. El uso alternativo de vidrios de oxicarburo densos supone una disminución del peso pero no conlleva una disminución de sus propiedades, lo que les hace excelentes candidatos para ser empleados como materiales estructurales donde son requeridas unas elevadas propiedades, tanto de resistencia mecánica como térmica, en atmósferas reductoras u oxidantes.

Como continuación de este trabajo se va a llevar a cabo el prototipado de álabes con una impresora de tres dimensiones empleando como materia prima polvos de vidrio de oxicarburo que, tras adquirir la preforma deseada “en verde”, serán sinterizados para la obtención del material final.

Los materiales obtenidos mediante la “vía cerámica” presentan unas excelentes propiedades térmicas y mecánicas, pero debido a su naturaleza eminentemente vítrea presentan una baja tenacidad, que debe ser corregida mediante el empleo de éstos como matrices para materiales compuestos. Los cuales estarán formados por una matriz de vidrio de oxicarburo de silicio pero reforzados con otro tipo de materiales que mejoren su tenacidad, tales como fibra de carbono.
BIBLIOGRAFÍA.
Bibliografía

Bibliografía

Bibliografía

ANEXO I - TÉCNICAS EXPERIMENTALES.
A-I TÉCNICAS EXPERIMENTALES.

AI.1 Análisis químico.

Contenido en Silicio.
El contenido en silicio de los materiales híbridos y de los vidrios de oxicarburo se determinó mediante gravimetría de SiO_2.

Contenido en Carbono.
El contenido en carbono ha sido determinado mediante un equipo analizador de carbono y azufre de la marca *LECO* y modelo *CS-200*. Se pesan aproximadamente unos 100 mg de muestra y se introduce en un crisol junto con un acelerador. El crisol se introduce dentro de un horno que llega hasta 2300 ºC y, conjuntamente con la atmósfera de oxígeno que hay dentro del horno, se produce la combustión de la muestra. El carbono presente en la muestra se transforma en CO_2 que posteriormente es empleado para cuantificar la cantidad total de carbono en la muestra mediante el empleo de una célula infrarroja.¹

AI.2 Análisis termogravimétrico.

En un análisis termogravimétrico (*TG* o *ATG*) se registra continuamente la masa de la muestra inmersa en una atmósfera controlada, mientras sigue un programa de aumento de temperatura de la muestra con el tiempo, generalmente de forma lineal.² La información que proporcionan los métodos termogravimétricos es relativamente limitada, ya que está supeditada a que la variación de la temperatura tiene que producir un cambio en la masa de muestra. Por otro lado, el análisis termogravimétrico proporciona una medida cuantitativa de la variación del peso en la muestra, asociado a una determinada temperatura. Los cambios de masa son medidos por una microbalanza. El equipo usado es de la marca *Perkin-Elmer*, modelo *Pyris 1 TGA*.
Este tipo de ensayos da como resultado dos tipos diferentes de curvas. Por un lado las curvas obtenidas a partir del propio análisis, donde se muestra la variación en peso de la muestra con respecto a la temperatura para unas condiciones determinadas (TG ó ATG). Por otro lado las derivadas de dichas curvas (DTG), que muestran cada uno de los intervalos donde se producen las diferentes pérdidas en peso en función de la temperatura de tratamiento. Este tipo de curvas resulta bastante útil a la hora de estudiar la conversión desde los híbridos orgánico-inorgánicos hasta los vidrios de oxicarburo de silicio.

Para estudiar cómo afecta la velocidad de calentamiento en el proceso de pirólisis, los materiales híbridos del sistema TEOS/PDMS y los del sistema TREOS/PDMS fueron analizados en atmósfera de nitrógeno con diferentes rampas de calentamiento (1, 2, 4, 8, 12 y 20 ºC/min) hasta la temperatura de 1100 ºC.

Las muestras para el sistema TEOS/PDMS fueron analizadas en polvo (<200 μm), mientras que las muestras del sistema TREOS/PDMS fueron prácticamente todas monolíticas, aunque se realizó un ensayo comparativo entre muestras monolíticas y trituradas (<200 μm).

AI.3 Espectroscopía infrarroja por transformada de Fourier (FT-IR).

Esta técnica se basa en la interacción entre la materia y la radiación infrarroja. Comúnmente la región más empleada corresponde con el infrarrojo cercano (MIR) que abarca desde 4000 a 400 cm⁻¹.³

El espectro infrarrojo se origina por la absorción (o emisión) de fotones con energía correspondiente a la región del infrarrojo, que genera una transición entre los niveles vibracionales en una molécula en el estado electrónico fundamental. El espectro es la representación gráfica de la intensidad de la radiación infrarroja medida en función del número de onda (frecuencia). Este espectro infrarrojo (número, posición e intensidad de las bandas) depende de la naturaleza del material. De forma muy general sólo son activas para espectroscopía infrarroja los modos vibracionales que produzcan un cambio del momento dipolar de la molécula.
Las posiciones relativas de los átomos en una molécula no están fijas, sino que fluctúan continuamente como consecuencia de diferentes tipos de vibraciones. Así, pueden distinguirse dos tipos básicos de vibraciones: las de tensión (stretching), que suponen un cambio continuo en la distancia interatómica a lo largo del eje del enlace entre dos átomos y que a su vez pueden ser asimétrica o simétrica, y las tensiones de deformación (bending), que se caracterizan por un cambio en el ángulo entre dos enlaces y pueden ser de tijereo (scissors), balanceo (rock), aleteo (wagging) y torsión (twist).

Para una molécula formada por más de dos átomos se producen estas vibraciones que pueden verse influenciadas por el entorno químico. Además, este tipo de vibraciones son características del grupo de átomos entre los que se producen.

Los espectros de infrarrojo pueden representarse como espectros de transmitancia T generalmente con $\% T$. Definiéndose la transmitancia como la relación entre la intensidad de radiación que emerge (I) y la intensidad de la radiación incidente (I_o) (Ecuación A.I-1). También se pueden representar como espectros de absorbancia (A) (Ecuación A.I-2).

\[
T = \frac{I}{I_o} \quad \text{(Ecuación A.I-1)}
\]

\[
A = \log \frac{I}{I_o} = -\log T \quad \text{(Ecuación A.I-2)}
\]

En espectroscopía infrarroja se cumple la ley de Lambert-Beer, la cual relaciona la intensidad de la banda con la concentración de la muestra analizada.

\[
A = -\log T = a b c \quad \text{(Ecuación A.I-3)}
\]

Donde A es la absorbancia, T y a son la transmitancia y el coeficiente de absorción a un valor de frecuencia determinado, respectivamente, b es la longitud de paso óptico y c es la concentración de la muestra.

La espectroscopía infrarroja puede emplearse tanto con fines cualitativos como cuantitativos. En esta memoria únicamente se ha empleado para determinación
Anexo I

estructural, tanto de los materiales de partida, como de los productos intermedios y finales.

Los espectros de FT-IR fueron obtenidos en un espectrómetro de infrarrojo por transformada de Fourier (Perkin Elmer modelo 1760X). El análisis de las muestras sólidas se llevó a cabo mediante la técnica de dilución en KBr (1 mg de muestra y 300 mg de KBr), mientras que las muestras líquidas fueron analizadas utilizando ventanas de KRS-5. En todos los casos se realizaron 10 barridos en el intervalo 4000-400 cm$^{-1}$ con una resolución de 1 cm$^{-1}$. Antes de realizar el análisis se hace un purgado del equipo para eliminar CO$_2$ y humedad ambiental, además el equipo permite la sustracción del “background” para que no se produzca interferencia del entorno con la muestra.

AI.4 Espectroscopía Raman.

El fenómeno conocido como efecto Raman fué descrito por el físico indio C.V. Raman en el año 1928. Básicamente es un fenómeno inelástico de dispersión de la luz que permite el estudio de rotaciones y vibraciones moleculares.

Esta espectroscopía se basa en hacer incidir un haz de luz monocromática de frecuencia ν_0 sobre la muestra y examinar la luz dispersada por la muestra. La mayor parte de la luz dispersada presenta la misma frecuencia que la luz incidente (dispersión elástica) pero una pequeña fracción, como resultado de interacción de la luz con la materia, presenta un cambio de frecuencia (dispersión inelástica). La luz que presenta la misma frecuencia se conoce como dispersión Rayleigh y no aporta información sobre la composición de la muestra. La luz dispersada que presenta distinta frecuencia a la radiación incidente ($+\nu_r$ y $-\nu_r$) se conoce como dispersión Raman, la cual es característica de la naturaleza química y estado físico de la muestra e independiente de la radiación incidente. En la dispersión Raman pueden darse dos fenómenos: Stokes, donde el fotón dispersado tiene una frecuencia menor a la incidente y Anti-Stokes en el que la frecuencia es mayor.

Según la ley de distribución de energías de Maxwell-Boltzmann, el 99 % de las moléculas se encuentra en el estado vibracional de menor energía, lo que se traduce en que
generalmente la dispersión Stokes es aproximadamente 100 veces superior a la dispersión Raman Anti-Stokes, por lo que generalmente se trabaja midiendo sólo el efecto Stokes.

La espectroscopía Raman es complementaria de la infrarroja. En las dos técnicas se observan vibraciones moleculares, pero estos procesos son gobernados por diferentes reglas de selección, por lo que generalmente las informaciones obtenidas son complementarias. Generalmente, en la espectroscopía infrarroja se requiere un cambio del momento dipolar del enlace, mientras que el efecto Raman requiere un cambio de polarizabilidad. Por ejemplo, las vibraciones para el enlace C=O presentan una gran intensidad en IR y no en Raman, mientras que para el C=C ocurre lo contrario.

Los espectros se realizaron con un espectrómetro Raman de la marca Renishaw modelo inVia. Dichos espectros se obtuvieron empleando como fuente de radiación un láser de ión Ar (\(\lambda = 514\) nm). Las muestras se enfocan empleando un microscopio óptico Leica (con el objetivo de 50 x) siendo el área de análisis aproximadamente de 1 \(\mu m^2\). El área irradiada de la muestra fue observada antes y después de la medida para comprobar que ésta no había sido degradada por la incidencia del láser sobre ella. El programa se diseñó eligiendo la potencia de láser adecuada (que depende del tipo de muestra sobre todo de la temperatura de tratamiento) haciendo 10 barridos entre 200 y 3200 cm\(^{-1}\) con un tiempo de exposición de 20 s.

El equipo emplea como sistema de calibración silicio metálico que presenta una banda a 520 cm\(^{-1}\).

A.I.5 Resonancia magnética nuclear.

El fenómeno de resonancia magnética nuclear consiste en la absorción de energía de radiación electromagnética por parte de núcleos que tienen momento magnético. La absorción ocurre a frecuencias características que dependen del tipo de núcleo y del entorno molecular en que se encuentran. El momento magnético de los núcleos está relacionado con el espin, de manera que sólo serán activos a RMN los núcleos que no presenten espin nulo. El espin depende del número de protones y de neutrones de cada núcleo, de manera que cuando el número de protones y neutrones es par el número de
espin es nulo, cuando el número de protones es par y el de neutrónes impar el espin es \(\frac{1}{2} \) (con distribución esférica de carga), y finalmente cuando el número de protones es impar y el de neutrónes impar el espin es \(\geq 1 \) (no presentan distribución esférica de carga, son cuadrupolares y su interpretación es más complicada).

En ausencia de un campo magnético externo los momentos magnéticos de los núcleos pueden asumir cualquier dirección, pero cuando se aplica un campo magnético externo los núcleos se comportan como pequeños imanes y se alinean con el campo magnético. Debido a esta interacción se produce un desdoblamiento de los niveles energéticos (inalzadamente degenerados), ocupándose de una forma mayoritaria el nivel de menor energía, según la distribución de Boltzman.

La energía necesaria para pasar de un nivel energético a otro está determinada por la siguiente ecuación (Ecuación A.I-4):

\[
\Delta E = h \nu_0 = \frac{\hbar \gamma_n B_o}{2\pi}
\]

Donde \(\hbar \) es la constante de Planck, \(\nu_0 \) es la frecuencia de Larmor, \(\gamma \) es la constante giromagnética del núcleo \(n \) y \(B_o \) es el campo magnético externo aplicado.

La irradiación de la muestra con un pulso de radiofrecuencias \(B_1(\nu) \) produce la transición entre los niveles de energía consecutivos, así como la modificación de la orientación de la magnetización respecto al campo magnético \(B_o \), siempre y cuando se satisfaga la condición de resonancia y \(\nu \) sea igual a la frecuencia de Larmor \((\nu_0) \).

De manera que, para un campo magnético externo dado, cada núcleo magnéticamente activo tiene una frecuencia de Larmor definida y característica, que dará lugar a la absorción de radiación electromagnética de una frecuencia determinada y que producirá un cambio de spin y, en última instancia, provocará el espectro de resonancia magnética nuclear.

En otras palabras, cuando el pulso cesa los espines nucleares que se encuentran en situación fuera del equilibrio, tienden a recuperar espontáneamente el estado inicial de población de equilibrio. Esto se consigue emitiendo el exceso de energía en forma de una onda de radio a la frecuencia de Larmor de los espines. Esta señal es amplificada y digitalizada convenientemente y se conoce como un espectro de RMN.

\textit{A.I-6}
Aunque la frecuencia de resonancia es característica de cada núcleo, existen efectos locales propios de la estructura, producidos por los átomos vecinos, así como un efecto de apantallamiento de campo debido a la nube de electrones circundantes, que produce que el campo efectivo que experimenta cada núcleo (en una molécula determinada) sea diferente según su entorno químico y menor al propio campo magnético externo \(B_0 \), lo que permite obtener diferentes señales del mismo núcleo en función de su entorno químico haciendo que la resonancia magnética nuclear sea una técnica muy importante para la elucidación de estructural de compuestos. La escala empleada es el desplazamiento químico (\(\delta \)), que mide la frecuencia respecto a un compuesto de referencia que generalmente es el TMS (tetrametilsilano \((CH_3)_4Si)\) que define el cero en la escala (Ecuación A.I-5).

\[
\delta (ppm) = \frac{\nu - \nu_{ref}}{\nu_{ref}} \times 10^6
\]

En muestras sólidas se produce un gran ensanchamiento de las señales, lo que reduce mucho la resolución experimental en comparación con muestras líquidas. Este problema se reduce si el espectro se realiza bajo condiciones de ángulo mágico. Esta técnica que se conoce como MAS (Magic Angle Spinning, giro sobre Angulo Mágico) consiste en girar la muestra entorno a un eje inclinado 54°44' con respecto al campo magnético \(B_0 \). Si la velocidad de giro es menor que la anchura de la banda expresada en Hz aparecen las denominadas bandas laterales de rotación (SSB Spinning Side Bands).

La resonancia magnética nuclear es una técnica de caracterización estructural muy valiosa y ampliamente empleada en numerosos campos. En esta memoria se ha empleado para conocer las diferentes unidades estructurales que forman tanto los híbridos orgánico-inorgánicos como los vidrios de oxicarburo obtenidos tras pirólisis. Esta técnica también ha servido para estudiar cómo se produce la transformación entre ambos materiales. Se realizaron ensayos de los materiales híbridos del Capítulo III y V, así como de los diferentes productos intermedios obtenidos a medida que se aumentaba la temperatura hasta llegar al vidrio de oxicarburo. También se han estudiado los materiales obtenidos en el Capítulo IV. Se han realizado espectros estudiando dos núcleos diferentes, el \(^{29}\)Si y \(^{13}\)C.
Los espectros se realizaron en un equipo *Infinity plus* que trabaja a 400 MHz. Las condiciones de análisis fueron diferentes dependiendo del núcleo analizado; para el caso de 29Si se utilizó una secuencia PDA, con una frecuencia de 79,41 MHz, pulso (Π/2) = 3.5 μs, tiempo de relajación = 60s, con una velocidad de giro de 6kHz. Para 13C los espectros se realizaron en modo *CP* (*Polarización Cruzada= Cross Polarization*) con una frecuencia de 100,525, pulso (Π/2) = 4.5 μs, tiempo de contacto = 3ms, tiempo de relajación = 2s, con una velocidad de giro de 6kHz. Las muestras tienen diferentes acumulaciones en función de la cantidad de protones que presenten variando desde 3000 hasta 25000 acumulaciones, a medida que aumenta la temperatura de pirólisis y disminuye por tanto el contenido en protones.

A.I.6 Difracción de rayos X.

El fenómeno de difracción de *rayos X* se debe al proceso de dispersión elástica que tiene lugar cuando un haz de radiación electromagnética, monocromática y de longitud de onda del orden de la distancia interplanar (*rayos X*), incide sobre una muestra cristalina. A la salida de dicha muestra, la mayor parte de las ondas dispersadas por el cristal interfieren destructivamente, cancelándose la resultante en mayor o menor proporción. Sin embargo, en determinadas direcciones, y debido a la ordenación periódica de los átomos, las ondas dispersadas están en fase, interfiriendo de forma constructiva, dando lugar a la aparición de máximos de intensidad. A este fenómeno se le denomina difracción.

En las sustancias cristalinas existen distintas familias de planos paralelos y equidistantes entre sí (caracterizados por los índices de *Miller (hkl)* y un espaciado característico d) Si sobre estos planos incide un haz de *rayos X* en una dirección que forma un ángulo θ con la superficie de los planos, únicamente se producirá difracción (refuerzo) cuando el ángulo de incidencia, la longitud de onda de la radiación y el espaciado de la familia de planos cumplan la ley de Bragg (*Ecuación A.I-6*).

$$ n\lambda = 2d\sin\theta $$ \hspace{1cm} *Ecuación A.I- 6*
Donde \(n \) es un número entero (1,2,3...), \(\lambda \) es la longitud de onda del haz incidente, \(d \) es el espacio entre planos reticulares sucesivos del cristal y \(\theta \) es el ángulo de incidencia o ángulo de Bragg.

Al hacer incidir un haz de rayos X de longitud de onda determinada sobre un material se produce la difracción y la reflexión con ángulos característicos de los planos de los cristales proporcionando líneas o picos de difracción con diferente intensidad, los cuales son originados por cada una de las diferentes estructuras cristalinas presentes en el material; las intensidades son proporcionales a los porcentajes de los cristales presentes en las muestras.

Un difractograma de rayos X es un conjunto de líneas o picos, cada uno con distinta intensidad y posición (espaciado \(d \) o ángulo de Bragg \(\theta \)). Para cada material la posición e intensidad está tabulada en los patrones de difracción (JPDF) y cada material presenta un patrón de difracción característico. La intensidad de los picos de difracción puede variar de muestra a muestra dependiendo del método de preparación, las posibles orientaciones de ésta y de las condiciones instrumentales y de operación.

Para la determinación de la posible formación de fases cristalinas durante el proceso de pirólisis se realizó la caracterización tanto de los precursors híbridos como de los vidrios de oxicarburo obtenidos tras el tratamiento térmico. Se empleó un difractómetro Siemens con un voltaje de 40 kV y una intensidad de 20 mA. El equipo emplea como fuente de radiación la línea \(K_a \) del Cu (\(\lambda = 1.54060 \) Å).

Para las muestras del Capítulo III y V se empleó un programa de barrido registrado entre 10 y 90° (2\(\theta \)) en incrementos de 0.02° y un tiempo de acumulación de 1s.
Para las muestras del Capítulo IV se empleó un programa de barrido más lento, ya que para las muestras obtenidas a 1550 °C, a partir de estos difractogramas, se ha evaluado el tamaño de los cristales de \(\beta\)-SiC. El programa se registró entre 10 y 90° (2\(\theta \)), en incrementos de 0.02° y un tiempo de acumulación de 10 s.

El tamaño de los cristales de \(\beta\)-SiC se ha evaluado empleando la ecuación de Scherrer\(^4\) \((Ecuación A.I-7)\). Esta relación permite estimar el tamaño de cristales pequeños a partir
Anexo I

de la anchura del pico de difracción. El ancho del pico aumenta a medida que disminuye el tamaño del cristal. Esta ecuación se puede expresar como:

\[D = \frac{K\lambda}{L \cos \theta} \quad \text{Ecuación A.I-7} \]

Donde \(D \) es el tamaño del cristal, \(K \) es una constante que normalmente toma el valor de 0.9, \(\lambda \) es la longitud de onda de la radiación empleada, para este caso en concreto es la correspondiente a la radiación \(K_\alpha \) de Cu (1.54018 Å), \(L \) es la anchura a mitad de altura del pico seleccionado (en unidades de \(2\theta \)) y \(\theta \) es el ángulo de difracción. Normalmente los valores de \(\theta \) y \(2\theta \) van expresados en radianes.
Para calcular el tamaño de los cristales de \(\beta \)-SiC se ha elegido el pico de mayor intensidad, que es el que corresponde a \(2\theta = 35^\circ \).

A.I.7 Adsorción de nitrógeno.

La mayoría de las isotermas que existen pertenecen a los cinco tipos inicialmente introducidos por Brunauer, Deming, Deming y Teller\(^5\), denominados como tipo I, II, III, IV y V, o al tipo VI que fue añadido posteriormente por la IUPAC.
El tamaño de poro se puede clasificar en función de su diámetro:

<table>
<thead>
<tr>
<th>Diámetro de poro</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microporos</td>
<td>0,35-2 nm</td>
</tr>
<tr>
<td>Mesoporos</td>
<td>2-50 nm</td>
</tr>
<tr>
<td>Macroporos</td>
<td>> 50 nm</td>
</tr>
</tbody>
</table>

Cada una de estas isotermas describe los diferentes tipos de sólidos; la isoterma tipo I es característica de materiales microporosos, las II y III de no porosos (o macroporosos) y las de tipo IV y V son características de materiales mesoporosos. La isoterma tipo VI representa una adsorción escalonada en multicapa, propia de sólidos con una estructura compleja.
El área superficial de un sólido finamente dividido o poroso se obtiene normalmente mediante la adsorción de gases. A partir de la isoterma se obtiene el volumen de la
monocapa \((V_m)\) como volumen de gas en condiciones normales y a partir de esto el área superficial \((A)\) se obtiene mediante la siguiente ecuación:

\[
A(m^2\text{g}^{-1}) = \frac{V_m \cdot a_m \cdot N \cdot 10^{-18}}{22414}
\]

Ecuación A.I- 8

donde: \(A\) es el área superficial, \(V_m\) es el volumen de la monocapa en \(\text{cm}^3\) (STP)\(^{-1}\), \(a_m\) es el área de la molécula de adsorbato en \(\text{nm}^2\), \(N\) es el número de Avogadro \((6.022.10^{23})\) y 22414 es el volumen molar de un mol de gas ideal en condiciones normales, en \(\text{cm}^3\).

Mediante la ecuación de Brunauer, Emmett y Teller (BET) \(^6\) se puede calcular el valor de la monocapa a partir de la isoterma de adsorción y conocer el área superficial de un sólido. Esta ecuación es el resultado de una extensión de los trabajos llevados a cabo por Langmuir, basados en el modelo de la monocapa que llegan ahora hasta la adsorción en multicapa. La superficie del sólido se considera como una distribución de lugares de adsorción en equilibrio dinámico con el adsorbato, donde la velocidad de condensación de las moléculas sobre lugares vacíos iguala la velocidad de evaporación de las moléculas en lugares ocupados.

\[
\frac{p}{V(p^o - p)} = \frac{1}{V_m c} + \frac{(c-1)}{V_m c} \times \frac{p}{p^o}
\]

Ecuación A.I- 9

Donde: \(V_m\) es la capacidad de la monocapa, \(c\) es una constante, \(p\) es la presión de equilibrio, \(p^o\) es la presión de saturación del vapor, \(V\) es el volumen de gas adsorbido a una presión relativa \((p/p^o)\) expresado en \(\text{cm}^3\text{g}^{-1}\) en condiciones normales, \(V_m\) y \(c\) se pueden calcular mediante la representación de primer término de la ecuación frente a \(p/p^o\). Como resultado se obtiene una representación lineal para un intervalo de presiones relativas que marca la adsorción de la monocapa, ya que, a partir de la pendiente y la ordenada en el origen, se puede calcular \(V_m\) y \(c\). El intervalo de linealidad varía mucho en función de la naturaleza de la muestra, para isotermas tipo II y IV suele situarse entre 0.05 y 0.35, mientras que, por ejemplo, para las isotermas de tipo I este intervalo se sitúa entre 0.02 y 0.12.

A.I- 11
Anexo I

Uno de los métodos más empleados para la determinación de las distribuciones de poro (de los mesoporos) es el denominado BJH, desarrollado por Barret, Joyner y Halenda.7 El método BJH establece la relación entre las isotermas de desorción a 77K (temperatura del nitrógeno líquido) y la distribución de volumen y área de poros con respecto al radio de los poros, asumiendo que, durante la desorción, el equilibrio entre la fase gaseosa y la fase adsorbida está determinado por dos mecanismos: la adsorción física sobre las paredes de los poros y la condensación capilar.

Considerando un poro cilíndrico con radio r_p, que sobre su superficie tiene una capa físicamente adsorbida de moléculas con un espesor t, que está definiendo el tamaño del capilar interno con un radio r_k donde se puede producir la condensación capilar. Bajo condiciones de equilibrio se puede establecer la siguiente relación entre el volumen de poro (V_p) y el volumen del capilar interno (V_k)

$$V_p = V_k r_p^2 / r_k^2$$ \textit{Ecuación A.I-10}

El bucle de histéresis que presentan las isotermas tipo IV y V se atribuye a la condensación capilar del adsorbato en los poros del sólido. La condensación capilar consiste en el llenado de los poros con líquido condensado a una presión inferior a la de saturación del vapor del adsorbato. Mediante la ecuación de Kelvin se predice la formación de un menisco líquido por debajo de la presión de saturación del vapor y se puede usar para calcular el tamaño de los poros involucrados, ya que establece una relación entre p/p^0 y r_k

$$\ln(p / p^0) = -2(\gamma V_L / r_k R T)$$ \textit{Ecuación A.I-11}

Donde: p/p^0 es la presión relativa, γ es la tensión superficial del nitrógeno líquido, V_L es el volumen molar del adsorbado en forma líquida, R es la constante de los gases, T es la temperatura absoluta y r_k es el radio del capilar interno. Además, de acuerdo con la \textit{Ecuación A.I-10} se pueden obtener representaciones de la variación de t en función de la presión relativa, de acuerdo con:

A.I-12
Mediante un tratamiento matemático se llega a una ecuación que permite relacionar las distribuciones de volumen de poro con el radio de poro.

\[V_{pn} = R_n \Delta V_n - R_n \Delta t_n \sum_{j=1}^{n-1} c_j A_{pj} \]

Donde \(V_n \) es el volumen de poro, \(R_n \) es el radio del poro, \(\Delta V_n \) es el volumen de gas desorbido, \(\Delta t_n \) es el cambio de espesor de la capa físicamente adsorbida y \(c = (r_p^o - t_c)/r_p \) y \(A_p \) es el área de poro.

Las isotermas de adsorción/desorción de nitrógeno, los datos de superficie específica y la distribución del tamaño de poro se evaluaron mediante medidas de adsorción/desorción de nitrógeno en un equipo Micromeritics modelo Tristar 3000. La superficie específica se determinó mediante la representación de la isoterma experimental según la ecuación de Brunauer, Emmett y Teller (BET.) De esta manera se consigue una zona lineal entre P/Po de 0.05 y 0.35. La distribución de tamaño de poro se ha obtenido a partir de la isoterma de desorción a través del análisis BJH (Barret, Joyner y Halenda), donde el intervalo de medida está comprendido entre 1.8 a 100 nm.

Las muestras son trituradas y tamizadas para un tamaño <200 μm (para ormosil o temperaturas de tratamiento bajas) o un tamaño <100 μm (para los vidrios de oxicarbouros o temperaturas de tratamiento elevadas). Posteriormente son sometidas a una desgasificación a 120º C durante 20 horas y después son sumergidos en un baño de nitrógeno líquido y se van inyectando cantidades de nitrógeno, el sistema se deja estabilizar y se mide la presión de equilibrio de manera que se va calculando la cantidad de nitrógeno adsorbido por la muestra.
AI.8 Porosimetría de mercurio.

Mediante esta técnica se caracteriza la porosidad del material tras el análisis del grado de penetración de mercurio en los poros de dicho material al aplicar presiones gradualmente crecientes.

La porosimetría de mercurio es empleada normalmente en la caracterización textural de los materiales porosos. Permite determinar el volumen de poro, superficie específica, así como las distribuciones de poro, tanto volumen de poro como área frente a tamaño de poro. Está aceptada la hipótesis básica de que el mercurio penetra en los poros o cavidades más pequeñas a medida que la presión aumenta. El análisis de los datos es llevado a cabo empleando la ecuación de intrusión propuesta por Washburn (Ecuación A.I-14).8

\[r = -\frac{2\gamma \cos\theta}{P} \]

Ecuación A.I- 14

Donde \(r \) es el radio de los poros cilíndricos, \(P \) es la presión a la cual el mercurio penetra en los poros, \(\gamma \) es la tensión superficial del mercurio (0.485 N/m) y \(\theta \) es el ángulo de contacto entre el menisco que forma el mercurio y una superficie plana y no metálica (\(\theta \approx 140 \, ^\circ \)).

Los materiales analizados en esta memoria presentan una morfología muy diferente, pasando de una muestra monolítica a otras que han sido trituradas/molidas en mayor o menor medida. Debe tenerse en cuenta que la intrusión del mercurio puede ser la suma de la debida al espacio entre partículas y a la intrusión dentro de los propios poros. Para solventar esto se ha recurrido al empleo de una corrección de los valores obtenidos a partir de la ecuación de Washburn. Este método ha sido fundamentalmente empleado en aerogeles9 (materiales porosos obtenidos mediante secado supercrítico de geles, inorgánicos u orgánicos, altamente entrecruzados. Estos materiales presentan unos tamaños de poro/celda ultrafinos, elevada porosidad, elevada superficie específica y una microestructura a base de partículas coloidales interconectadas, o cadenas poliméricas, con diámetros característicos de alrededor de 10 nm), xerogeles10,11,12 (muy parecidos a los anteriores pero son secados a temperatura y presión ambiental y parecen presentar una mayor fortaleza), y negros de carbono,13 para calcular el efecto que producía el
aumento de presión en el experimento de porosimetría de mercurio, ya que, a priori, se apreció visualmente la disminución de volumen de las muestras después de dicho análisis.

Estos materiales, a bajas presiones, experimentan un colapso debido al aumento de la presión del mercurio y, posteriormente, a partir de una presión de transición característica de la composición y microestructura de cada material, el mercurio puede penetrar dentro de los poros pequeños que no han sido destruidos durante la compresión a bajas presiones.

Esto puede ser determinado en la curva de presiones mediante un cambio en la pendiente de dicha curva para una presión de transición dada (P_t). Conocido el valor de esta presión de transición, se puede calcular la constante (K_f) mediante la Ecuación A.I-15, y esto permite conocer la distribución de tamaño (L) durante el período de compactación mediante la Ecuación A.I-16 (ley de “buckling”). Durante el período de compactación, la presión que ejerce el mercurio sobre la muestra rompe los poros mayores de L (determinados mediante Ecuación A.I-16) dejando los poros de menor tamaño invariables.

Para la presión de transición se cumplen tanto la ecuación de Washburn (Ecuación A.I-14) como la ecuación de densificación (Ecuación A.I-16). Por lo tanto, la determinación de K_f en muestras que experimentan este comportamiento mixto de densificación e intrusión es fácil y permite calcular la distribución de tamaño (L) durante la etapa de densificación.

$$K_f = \frac{4\gamma \cos \theta}{P_t^{0.75}} \quad \text{Ecuación A.I-15}$$

$$L = \frac{K_f}{P_t^{0.25}} \quad \text{Ecuación A.I-16}$$

Este tipo de corrección ha sido empleada para muestras en polvo, de manera que se ha calculado la sobreestimación que se produce al considerar el espacio entre partículas de las muestras en polvo, mediante la porosimetría de mercurio. Para muestras hiper-porosas o muestras en polvo, finamente dividido la curva de intrusión de mercurio, presenta una característica común en la rama de intrusión. En dicha rama pueden apreciarse dos zonas claramente diferenciadas. Para presiones bajas (que corresponde con los diámetros de poro mayores) la curva de intrusión aumenta ligeramente a medida...
que aumenta la presión hasta un valor de presión \((P_t)\), donde la curva cambia radicalmente dando como resultado un comportamiento típico de la intrusión-extrusión de mercurio.

Por lo tanto, para presiones \(< P_t\) se cumple la ecuación de densificación \((\text{Ecuación A.I-16})\) y para presiones \(> P_t\) es correcto el empleo de la ecuación de Washburn \((\text{Ecuación A.I-14})\), mientras que para presiones iguales a \(P_t\) son válidas ambas, lo que permite calcular la constante \(K_f\) \((\text{Ecuación A.I-15})\) y a partir de este valor obtener las distribuciones de tamaño de poro para ambas zonas (densificación e intrusión).

Los datos de porosimetría de Hg se obtuvieron en un equipo Autopore II 9215 \((\text{Micromeritics})\).

Esta técnica permite conocer la porosidad de los materiales y la distribución de tamaño de poro en el intervalo de 6 nm a 35 μm (correspondiente a un intervalo de presiones de intrusión de Hg de 206 a 0.03 MPa). Las muestras correspondientes a los Capítulos III y V son analizadas en monolito con un tamaño aproximado de 5 mm, mientras que las muestras del Capítulo IV son analizadas en polvo.

A.I.9 Picnometría de helio.

La determinación de la densidad real de un sólido o de muestras en polvo se lleva a cabo mediante picnometría de Helio que consiste en calcular el volumen ocupado por una muestra de masa conocida a partir de los datos de diferencia de presión; \(P_i\) ejercida por una cantidad de gas Helio en una célula de referencia de volumen conocido \((V_R)\) y \(P_2\) el valor obtenido tras ser introducida en una célula de un determinado volumen conocido \((V_C)\) que contiene la muestra \((V_P)\). Se elige Helio porque debido a su pequeño tamaño puede penetrar en los poros más pequeños. Además, a esto se le suma que es un gas ideal. De manera que el volumen de la muestra se calcula a partir de la siguiente ecuación:

\[
V_P = V_C - V_R [(P_i / P_2) - 1] \quad \text{Ecuación A.I-17}
\]

Donde \(V_P\) es el volumen que ocupa la muestra, \(V_C\) es el volumen del portamuestras, \(V_R\) es el volumen de referencia y \(P_i\) y \(P_2\) son los valores de presión a lo largo del ensayo.
que nos da el equipo. De esta manera, una vez conocido el valor de V_p se puede calcular el valor de la densidad real, ya que el valor de la masa también es conocido.

Las medidas de densidad real se realizaron en un picnómetro de He, de la marca Quantachrome Corporation modelo Monosorb Multipycnometer a partir de los materiales reducidos a polvo y tamizados para un tamaño <200 μm o un tamaño <100 μm.

AI.10 Microscopía electrónica de barrido (MEB).

La microscopía electrónica de barrido consiste en el estudio de una gran variedad de fenómenos físicos que resultan de la interacción de un haz de electrones de alta energía (20-40 kV) con los átomos de un material conductor. La interacción del haz de electrones con la muestra produce efectos elásticos e inelásticos. Las interacciones elásticas provocan un cambio de trayectoria pero no de energía, mientras que las interacciones inelásticas sí provocan un cambio de energía. Este tipo de interacciones dan lugar a la emisión de electrones secundarios, electrones retrodispersados, electrones Auger, rayos-X característicos y continuos, radiación electromagnética de longitud de onda dentro del espectro visible, ultravioleta e infrarrojo, etc.\footnote{15}

En un microscopio electrónico de barrido el haz que pasa a través de las lentes condensadoras y de objetivo, es barrido a lo largo de la muestra por las bobinas de barrido, mientras que un detector cuenta el número de electrones retrodispersados o secundarios (de baja energía) emitidos por cada punto de la superficie. Las lentes en microscopía electrónica de barrido no son parte del sistema de formación de la imagen, sino que se usan para ampliar y enfocar el haz de electrones sobre la superficie de la muestra.

Los electrones secundarios y retrodispersados son de gran interés ya que varían de acuerdo a las diferencias topográficas y composicionales, respectivamente, en la superficie de la muestra y se emplean para producir la imagen superficial de dicha muestra.
Anexo I

Generalmente los detectores pueden discriminar entre unos y otros debido a que se generan por diferentes procesos. Los electrones secundarios se generan mediante fenómenos inelásticos de ionización debido a la colisión con el haz incidente. Estos electrones secundarios son de baja energía (hasta 50 eV) y pueden ser absorbidos por átomos adyacentes, de manera que, únicamente pueden escapar de la muestra aquellos electrones secundarios que hayan sido generados cerca de la superficie, siendo por ello de suma importancia para la caracterización de la superficie de la muestra. Los electrones retrodispersados son electrones de mayor energía ($> 50 \text{ eV}$ hasta la energía del haz incidente). Son una fracción de electrones primarios que han experimentado efectos elásticos con la muestra, de manera que ha disminuido su energía. La energía de los electrones retrodispersados depende del número atómico del elemento en el cual se generan (por choque elástico), siendo más intensa a medida que el elemento es más pesado, generando imágenes más brillantes en las zonas donde se encuentran elementos más pesados.

Otro fenómeno de gran importancia es aquel que se produce entre el haz incidente y los electrones del núcleo de los elementos que forman la muestra, de manera que cuando estos electrones son arrancados del núcleo, el átomo se encuentra en un estado excitado pudiendo recuperar el estado fundamental mediante un salto de los electrones de una capa a otra vacía con la consiguiente emisión de fotones de rayos-X, con energía y longitud de onda característicos de cada elemento que forma la muestra. Mediante el empleo de detectores adecuados se pueden construir imágenes a partir de los rayos-X emitidos. En función del tipo de detectores que se empleen se pueden encontrar equipos con detectores de energías dispersadas de rayos-X (EDS) o con detectores de longitudes de onda (espectrómetros tipo EPMA: Electron Probe X-Ray Microanalysis).

En esta memoria se ha llevado a cabo la caracterización microestructural de la superficie de fractura de las muestras monolíticas de los híbridos orgánico-inorgánicos y de los vidrios de oxicarburo obtenidos en los Capítulos III, IV y V, y de las muestras en polvo del Capítulo IV mediante microscopía electrónica de barrido en un equipo FE-SEM, Hitachi 4700.

En la preparación de la muestra es necesario depositar una fina capa de un conductor para evitar que los electrones irradiados permanezcan en la muestra; en este caso se ha empleado oro.
La distribución de tamaños de partícula tras la molienda en el molino de atrición para las muestras del Capítulo IV se ha llevado a cabo por difracción láser. El equipo empleado es de la casa Malvern Instruments modelo Mastersizer S, empleándose la aproximación de Fraunhofer para la determinación de dichos tamaños de partícula. Las muestras en polvo son dispersadas en etanol inicialmente, mediante el empleo de un baño de ultrasonidos durante unos minutos antes de llevar a cabo la medida.
AI.12 Microdureza Vickers.

La microdureza se define como la resistencia que opone un cuerpo a ser penetrado por otro. Desde el punto de vista físico proporciona una apreciable información acerca del grado de rigidez estructural análoga a la que ofrece el módulo de Young. Debido a que la medida de la magnitud se efectúa normalmente en varios puntos y sobre zonas muy reducidas de la superficie, presenta la ventaja de no resultar afectada ni por el estado de la superficie ni por sus microdefectos, los cuales suelen desvirtuar los valores de la resistencia mecánica obtenidos por otros procedimientos que, en realidad, en vez de medir la resistencia intrínseca del vidrio, miden la de sus puntos más débiles.16

Para medir la microdureza suelen emplearse puntas de diamante talladas piramidalmente con ángulos de inclinación perfectamente definidos. Bajo aplicación de una carga determinada se produce la impresión de una huella. A causa de la fragilidad del vidrio no suelen emplearse cargas muy elevadas que producirían la rotura. Generalmente se utilizan dos tipos diferentes de puntas piramidales, denominadas *Vickers* y *Knoop*, de secciones cuadrada y romboidal respectivamente.

En los dos casos el valor de la microdureza se obtiene en función de la carga aplicada P, de la diagonal l de la huella producida y de una constante que depende de los ángulos de la pirámide. En esta memoria se ha empleado una punta de diamante tipo *Vickers* y la microdureza viene expresada por la siguiente expresión:

$$H_V = \frac{2P \cos \beta}{l^2}$$
Ecuación A.I- 18

Para una pirámide *Vickers* el ángulo β formado por sus caras tiene un valor de 22º, la expresión anterior puede reescribirse como:

$$H_V = \frac{1.854P}{l^2}$$
Ecuación A.I- 19

La microdureza normalmente se expresa en Pa (en este memoria se expresa como GPa) cuando la P se expresa en N y las diagonales en μm.
La microdureza *Vickers* de los materiales obtenidos a 1550 ºC ha sido evaluada a temperatura ambiente mediante medidas de microindentación. Se ha usado un diamante piramidal *Vickers* unido a un analizador *Leitz*. Los valores de microdureza, *H*, se obtienen de la medida de la huella que queda en el material tras 15 s de carga, empleándose una pesa de 4.9 N. Cada ensayo se repitió diez veces mostrándose los resultados como la media de todas las medidas.

AI.13 Tensión de fractura en flexión a tres puntos.

La resistencia mecánica de un material puede definirse como la resistencia que opone a la acción de fuerzas mecánicas externas o internas. Su valor teórico depende de la rigidez de los enlaces entre sus elementos constituyentes.

Los ensayos, para determinar la tensión de fractura en flexión a tres puntos (σf) de los materiales de oxicarburo de silicio del capítulo IV, se llevaron a cabo utilizando una máquina universal de ensayos mecánicos *Instron Microtest* modelo 1114. Los ensayos fueron realizados a una velocidad de aplicación de carga de 0.5 mm/min, una separación entre apoyos, *L*, de 20 mm y una célula de carga de 1000 N. La σf se calcula a partir de la siguiente expresión para este tipo de ensayos y probeta:

\[
\sigma_f = \frac{3.P.L}{2.b.h^2}
\]

Ecuación A.I- 20

donde *P* es la carga máxima aplicada expresada en N, *L* la separación entre puntos de apoyo, *b* y *h* la base y altura de la probeta. Los resultados obtenidos se expresan en MPa.

Estos ensayos se realizaron sobre probetas rectangulares con un tamaño aproximado de 45 x 5x 3 mm. Se realizaron cinco ensayos de cada una de las muestras obtenidas bajo las mismas condiciones de procesamiento.
AI.14 Microscopía de calefacción.

En el microscopio de calefacción la muestra se sitúa dentro de un horno y mediante un sistema óptico sencillo se van observando los cambios en su forma en función de la temperatura. El proceso simula la sinterización o fusión de los materiales de manera que se pueden relacionar los cambios experimentados en la muestra (dimensiones y forma) con diferentes estadios del proceso de sinterización o fusión.

Este ensayo se ha realizado con un microscopio de calefacción de la marca *Leica* modelo *SPT-M122CE* dotado con una cámara de vídeo *CCD Sony*. Para el análisis se utilizaron muestras de vidrio de oxicarbono en polvo. Estos polvos son prensados con un troquel especial, de manera que se obtienen probetas cilíndricas de dimensiones en torno a 2-3 mm. Los experimentos se llevaron a cabo bajo atmósfera de nitrógeno con una velocidad de calentamiento de 7 ºC/min hasta 1600 ºC.
AI.15 Bibliografía.

