
Escuela Politécnica Superior
Departamento de Ingenieŕıa Informática

Multi-feature Construction based on Genetic Algorithms

and Non-algebraic Feature Representation to Facilitate

Learning Concepts with Complex Interactions

Doctoral dissertation by Leila Shila Shafti

under the supervision of Eduardo Pérez

June 17, 2008

Contents

Abstract ix

Resumen xi

Acknowledgements xiii

1 Introduction 1

1.1 Learners and the Problem of Attribute Interaction 2
1.2 CI as a Solution . 7
1.3 Summary of the Research . 10
1.4 Structure of the Dissertation . 11

2 CI: Difficulties and Solutions 13

2.1 CI Problems . 14
2.1.1 Search for Interacting Attributes 14
2.1.2 Search for Interactions . 17
2.1.3 Representing Interactions . 19

2.2 Genetic-based Search as a Global Search 22
2.2.1 A Classical GA . 23
2.2.2 Genetic Programming . 27
2.2.3 Why Genetic Search: Genetic-based Algorithms vs. Heuristic

Algorithms . 30
2.3 Genetic CI . 31
2.4 Conclusion: a CI proposal . 35

3 DCI: Decomposed CI 39

3.1 DCI’s Design . 40
3.1.1 Individual’s Representation . 40
3.1.2 Fitness Function . 43
3.1.3 Genetic Operators . 44
3.1.4 DCI’s Algorithm . 46

3.2 Experiments . 46
3.2.1 Empirical Evaluation . 48

i

ii

3.2.2 Empirical Comparison . 50

3.3 Conclusion . 54

4 MFE2/GA: Multi-Feature Extraction Using GA 57

4.1 Why Multi-feature Construction . 58

4.2 MFE2/GA’s Design . 60

4.2.1 Individual’s Representation . 60

4.2.2 Fitness Function . 64

4.2.3 Genetic Operators . 66

4.2.4 MFE2/GA’s Algorithm . 69

4.3 Evaluating Crossover Operators . 69

4.4 Empirical Comparison . 72

4.4.1 MFE2/GA and DCI . 72

4.4.2 MFE2/GA and Greedy CI Methods 74

4.5 Conclusion . 78

5 MFE2/GA and HINT: Sensitivity to Training Data Size 81

5.1 HINT: Multi-value Feature Construction 82

5.2 MFE2/GA and HINT . 85

5.3 Empirical Evaluation . 87

5.3.1 Concepts Composed of One Complex Interaction 88

5.3.2 Concepts Composed of Several Complex Interactions 91

5.3.3 Experiments with Braille-detection Problem 95

5.4 Conclusion . 98

6 Improving the Fitness Evaluation: MFE3/GA 101

6.1 Fitness Function . 101

6.2 Entropy-based Fitness Function in MFE2/GAE 104

6.3 MDL-based Fitness Function in MFE3/GA 105

6.4 Experiments . 107

6.4.1 Experiments with Synthetic Concepts 107

6.4.2 Experiments with Real-world Domain 109

6.5 Experimental Results on UCI Benchmarks 110

6.6 Conclusion . 116

7 Conclusions and Future Work 117

7.1 Summary of the dissertation . 117

7.2 Contribution of the Research . 122

7.3 Limitations and Future Work . 124

A Concepts Definitions 131

iii

B PGAPack Default Parameters 135

C Comparing DCI and Different Versions of MFE Methods 137

D Conclusión y Trabajo Futuro (Spanish) 141

D.1 Resumen de la Tesis . 141
D.2 Contribución de la Investigación . 147
D.3 Limitaciones y Trabajo Futuro . 149

Bibliography 155

List of Acronyms and Symbols 169

Index 171

List of Figures

1.1 The instance space of two binary concepts with rare cases 3

1.2 Two different generalizations of the rare cases of Figure 1.1(a) 4

1.3 Maximally dispersed binary concept . 4

1.4 The Simplified Health Prediction . 5

1.5 The concept y = (x1 ⊕ x2) ∧ (x3 ⊕ x4) 8

1.6 The new representation of the concept of Figure 1.5 8

2.1 The Karnaugh map . 22

2.2 Main structure of a GA . 24

2.3 Parse tree representation of “a ∗ b + sin(c)” 28

2.4 Crossover in GP . 29

2.5 Mutation in GP . 29

2.6 The decomposed search space . 37

2.7 The decomposition framework for genetic CI 37

3.1 Low-level and high-level phenotypes in DCI 41

3.2 Extracting function fi, defined over Si, from training data in DCI . . . 42

3.3 DCI, S-Search, and FSi-Search algorithms 47

4.1 A concept composed of several complex interactions 59

4.2 GA individuals for concept of Figure 4.1 61

4.3 Extracting function fi, defined over Si, from training data in MFE2/GA 63

4.4 Space of samples defined by attributes in subset Si 64

4.5 Calculating fitness value . 65

4.6 Mutation and crossover in MFE2/GA 67

4.7 MFE2/GA, S-Search, and FSi-Search algorithms 70

4.8 Comparing the use of crossover operators 72

5.1 Function decomposition by HINT . 82

5.2 Inducing features from data by HINT 83

5.3 The classifier generated by HINT for the concept of Figure 5.2 84

5.4 Comparing the functions constructed by MFE2/GA and HINT 86

v

vi

5.5 Braille-detection problem . 96
5.6 Sample features constructed by MFE2/GA for Braille-detection problem 97

6.1 Decision tree constructed by C4.5 for Poker Hand after FC 113
6.2 Relations between attributes represented by constructed features 115

7.1 High-order complex interaction and MFE3/GA 125
7.2 High-order complex interaction and HINT 125

A.1 Functions Ai,i+3, Bi,i+3, Ci,i+3, Di,i+3, and Ei,i+3 133

D.1 Interacción compleja y MFE3/GA . 150
D.2 Interacción compleja y HINT . 150

List of Tables

1.1 The training data for the Simplified Health Prediction 6

2.1 Genetic CI methods . 34

3.1 Modified parameters of PGAPack for DCI 46
3.2 Comparing results of DCI and standard learners 48
3.3 Comparing results of DCI with other CI methods on 5% training data . 51
3.4 Comparing results of DCI with other CI methods on 1% training data . 53

4.1 Modified parameters of PGAPack for MFE2/GA 69
4.2 Comparing results of DCI and MFE2/GA 73
4.3 Comparing results of MFE2/GA with greedy methods 75

5.1 Comparing results over concepts with one complex interaction 89
5.2 Summary of Table 5.1 . 91
5.3 Comparing results over concepts with several complex interactions . . . 93
5.4 Summary of Table 5.3 . 94
5.5 Comparing results over Braille-detection problem 96

6.1 Comparing results over synthetic concepts 109
6.2 Comparing results over Braille-detection problem 110
6.3 Comparing results over UCI benchmarks 112

B.1 PGAPack Default Parameters . 136

C.1 Comparing methods – one interaction 138
C.2 Comparing methods – several interactions 139
C.3 Summary of Tables C.1 and C.2 . 140

vii

Abstract

Attribute selection and feature construction have been used individually or together
to change the primitive representation of data into a new representation in order to
facilitate learning. Most machine learning algorithms assume attribute independence.
Thus, they achieve high accuracy on domains when available domain knowledge provides
a data representation based on highly informative attributes. Real-world data are often
prepared for purposes other than data mining and machine learning, and therefore,
are represented by primitive attributes. Primitive data representation facilitates the
existence of attribute interactions whose complexity makes the relevant information
opaque to most learners. Attribute selection is crucial for highlighting the importance
of the interacting attributes to the learner. However, identifying relevant attributes by
a feature selection method is not sufficient for learning in presence of complex attribute
interactions because regularities are still opaque and difficult to learn. Constructive
Induction (CI) has been introduced to ease learning by restructuring the primitive
representation. When CI is applied to concepts with complex interactions, feature
construction in CI aims to capture and encapsulate interactions into new features to
highlight regularities to the learner. Recently, many progresses have been achieved in
CI; nevertheless, learners still face serious difficulties to succeed when confronted with
complex attribute interactions.

This research aims to ease learning concepts with complex interactions when the
only available knowledge about the concept is the primitive training data. The thesis
describes the major functional requirements that CI methods must satisfy in order to
address this problem. The dissertation proposes a new framework which decomposes
the difficult task of CI into smaller and easier tasks. Two methods, DCI and MFE3/GA,
are designed based on the above framework and requirements. Empirical evaluations
on synthetic and real-world problems show the effectiveness of these methods and the
proposed framework in improving learning accuracy. The proposed framework can be
used as a model for designing a tool to be integrated in a machine learning toolbox in
order to ease learning hard concepts with primitive data.

ix

Resumen

Las técnicas de selección de atributos y construcción de nuevas caracteŕısticas han sido
utilizadas en forma individual o conjunta para transformar la representación primitiva
de los datos en una nueva representación para facilitar el aprendizaje. La mayoŕıa de los
algoritmos de aprendizaje logran una precisión alta en problemas donde el conocimiento
disponible permite una representación de datos basada en atributos muy informativos.
Los datos de problemas reales normalmente se han preparado para fines distintos a
la mineŕıa de datos y el aprendizaje automático, y por lo tanto, se han representado
mediante atributos primitivos. La representación primitiva de los datos facilita la exis-
tencia de interacción entre atributos cuya complejidad hace que la información relevante
quede oculta para la mayoŕıa de los sistemas de aprendizaje. La selección de atributos es
crucial para subrayar la importancia de los atributos relevantes. Sin embargo, la identi-
ficación de los atributos a través de un método de selección de atributos no es suficiente
para el aprendizaje en presencia de interacciones complejas entre atributos porque las
regularidades son todav́ıa opacas y dif́ıciles de aprender. La Inducción Constructiva
(IC) se ha introducido para facilitar el aprendizaje mediante la reestructuración de la
representación primitiva. Cuando IC se aplica a los conceptos con interacciones, la con-
strucción de caracteŕısticas en IC intenta capturar y encapsular las interacciones para
subrayar las regularidades al sistema de aprendizaje. Recientemente, se han obtenido
muchos progresos en IC; sin embargo, los métodos de aprendizaje todav́ıa se enfrentan
a graves dificultades cuando se aplican a conceptos con interacciones complejas.

Esta investigación tiene como objetivo facilitar el aprendizaje de conceptos con inter-
acciones complejas cuando el único conocimiento disponible sobre el concepto sea la
representación primitiva de datos de entrenamiento. La tesis describe los principales
requisitos funcionales que un método de IC deberá cumplir con el fin de afrontar este
tipo de problemas y propone un nuevo marco de trabajo que descompone la tarea
compleja de IC en tareas pequeñas y más fáciles. A parte de este marco y los requisitos
funcionales se ha diseñado dos métodos, DCI y MFE3/GA. Las evaluaciones emṕıricas
sobre problemas sintéticos y problemas reales muestran la eficacia de estos métodos
para mejorar la precisión del aprendizaje. El marco propuesto se puede usar como un
modelo para diseñar una herramienta que pueda integrarse en una caja de herramientas
de aprendizaje automático con el fin de facilitar el aprendizaje de conceptos dif́ıciles con
datos primitivos.

xi

Acknowledgements

This work would not have been possible without the support of many people. I wish to
express my sincere gratitude to all those who gave me the possibility to complete this
thesis.

I would like to give the main credit for this research to my supervisor Eduardo Pérez
for his encouragement, support and constructive criticism, which were the triggers for
much of the work presented in this dissertation. I am deeply indebted to him who
was always there when I needed it. I like to give him special thanks not only for his
professional support through out my research study, but also for all the guidance he
provided me about my personal life. I have learned a lot from him. Hope I continue
receiving his guidance.

I would like to appreciate Alberto Suarez for his helpful comments and technical
discussions. Many thanks are offered to Dr. Alex Freitas for generously providing me
the benefit of his time and knowledge during GECCO’07 conference. I am grateful also
to the Data Mining Research Group of Imperial College of London, UK, with whom I
initiated this research. I also like to thank Prof. Caro Lucas from University of Tehran,
Iran, who helped me make my decision to move to Spain in order to start my PhD.

Many thanks go to all the members of the department who have made EPS-UAM
a special place for me over all these years. I wish to express my gratitude to Juana
Calle, the secretary of the department, for her efficiency and hard working. My special
appreciation goes to my colleagues and officemates who have been my Spanish language,
culture, and history teachers, my emotional supporters, my defenders, and most impor-
tantly, my friends and my family substitute in Spain. They immensely offered me any
help, encouragement, and friendship I needed. I was lucky to have such good colleagues
as Miguel, Germán, Pablo, Estefańıa, Pedro, Manu F., Abraham, Fran, Javi, Enrique,
Maŕıa, Rosa, Alvaro, Manu H., Ruth, Carlos, Diana, Ismael, Abdel, and José. Life in
Spain would have been difficult without them.

Above all, I am very thankful to Farhad, a real big brother, for his advice and tips,
to Azin for being a sister to me and listening to me whenever I needed, and to Ali, the
little brother who helped me to switch off and relax sometimes during the preparation
of this dissertation.

No words can express my gratitude toward my parents.
I was only five years old when a pattern hidden under the apparently random design

xiii

xiv

of the window glass of my aunt’s house amazed me. I now recognize that what I did
in my PhD was in fact inspired from that childhood experience. I therefore have to be
thankful to that window glass as well.

This research has been partially supported by an FPI scholarship from Universidad
Autónoma de Madrid and by the Spanish Ministry of Science and Technology under
grant numbers TIC98-0247-C02-02, TIC2002-1948, and TSI2005-08225-C07-06.

To my father for his determination,
and my mother for her patience;

with these attitudes they taught me to live

... it is important to gain knowledge.
Grasp of the intelligibles determines

the fate of the rational soul in the hereafter,
and therefore is crucial to human activity.

Avicenna, 980–1037, Iran

Chapter 1

Introduction

Most real-word data are prepared for purposes other than knowledge induction and ma-
chine learning; and therefore, their representation is primitive. The low-level primitive
representation sometimes makes relevant information difficult to discover. Analyzing
data for inducing knowledge is nowadays a vital mankind requirement. Learning a con-
cept represented by primitive data requires a technique that eases the task of knowledge
induction for the learner.

The field of machine learning was formed about four decades ago with the aim of
providing computational methods that would be able to induce knowledge from expe-
rience [Samuel, 1959; Griffith, 1966; Minsky and Papert, 1968]. This field now plays a
central role in computer science. Knowledge induction is required specially for prob-
lems that do not have algorithmic solutions such as medical diagnosis, visual concept
recognition, and more generally, detection of interesting regularities in large data sets.
Researchers have made extensive efforts to find ways and means for computers to learn
from experience, which resulted significant achievements in introducing various algo-
rithms for certain kind of learning tasks [Langley and Simon, 1995].

Nevertheless, existing learning systems have difficulty in learning some concepts.
There are various factors that make a concept difficult to learn, such as appearance of
noise in data, absence of a relevant attribute, missing attribute values, etc. However,
sometimes even if all relevant information for learning is included in data, concept is
still difficult to learn. Rendell and Seshu [1990] refer to such concepts as hard concepts,
defined as follows:

“A concept is hard if its attributes have high intrinsic accuracy but the
concept cannot be learned with existing inductive strategies.”

In other words, a concept is hard for a learner if its attributes contain the relevant
information for inducing an appropriate abstract description of the concept but this
information cannot be discovered by the learner. This occurs when the data representa-
tion is primitive and the relationship between attributes and the concept is obscure. The

1

2 Introduction

primitive representation facilitates the existence of attribute interaction, which makes
regularities opaque for the learner (see Section 1.1). Hence, without help of a domain
expert, such data is hard to learn. The growing number of primitive data demands
more research to ease learning concepts that are represented by such data.

Constructive Induction (CI) methods [Matheus and Rendell, 1989; Pagallo and
Haussler, 1990; Ragavan and Rendell, 1993; Hu and Kibler, 1996] have been used to
facilitate learning concepts when interactions exist among attributes. These methods
aim to abstract and encapsulate interactions into new features. This goal is usually
achieved by selecting attributes and defining a function over them to highlight the in-
teraction. Despite many progresses in CI, these methods still have difficulties when
applied to concepts with complex interactions [Perez, 1997; Freitas, 2001], as briefly
referred to in Section 1.2 and fully discussed in Chapter 2. The main problem of
most CI methods is the use of a greedy local search to find interactions [Hu, 1998b;
Dhar et al., 2000]. When several interactions exist among attributes the search space
is large and with high variation. It is, therefore, more likely that a CI method based
on a greedy local search finds one of local optimal solutions. For such search space,
a global search strategy should be applied to find the global optimal solution [Bensu-
san and Kuscu, 1996; Vafaie and DeJong, 1998; Hu, 1998b; Bhanu and Krawiec, 2002;
Freitas, 2003].

This dissertation concentrates on the problem of attribute interaction and proposes
a new method that can deal with concepts with complex interactions. It highlights
weaknesses of some CI methods with the aim of advancing in this field and designing a
new method that can successfully outline interactions to the learner. In order to focus on
interaction problem, other learning difficulties such as dealing with noisy data [Brodley
and Friedl, 1999], discretizing continuous attributes [Liu et al., 2002], and predicting
unknown attribute values [Grzymala-Busse and Hu, 2001] are excluded from the scope
of this investigation. Section 1.1 explains the problem that learning systems usually
encounter when data are described by a primitive representation. Section 1.2 introduces
CI as a solution to this problem and defines some terms in this field. Then, the common
problems of CI methods are mentioned. Finally a summary of the research and an
overview of the thesis structure are given in Sections 1.3 and 1.4.

1.1 Learners and the Problem of Attribute Interaction

Significant improvements have been achieved in certain kind of learning tasks, yet some
concepts represented by primitive data are still difficult to learn. Since most real-world
data are not particularly prepared for machine learning purposes, their representations
are not often appropriate for learning; as it is the case for protein sequences [Qian and
Sejnowski, 1988], image data [Antonie et al., 2001] and raw text [Gelfand et al., 1998].
The primitive representation of real-word data facilitates the existence of attribute in-

1.1 Learners and the Problem of Attribute Interaction 3

rare cases

+

+
++ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ + + +

––

––

––

––

–– –

––

––

–

–

–

––

––

–

–

–

––

–

––

––

–

–

––

––

––

––

– –

–

–

–

–

–– ––

––

––

–– –

––

––

––

–

(a) a concept with rare cases

– –

–

– +

– –

–

– –

+ –

– –

–

– –

– +

– –

– –

– –

– +

–

 +

– –

–

–

–

+ –

 +

– –

–

–

–

–

– +

–

–

–

–

–

–

–

– –

–

–

 +

–

–

– +

–

–

–

–

+

 +

+

 +

 +

+

+

 + +

–

(b) a dispersed concept

Figure 1.1: The instance space of two binary concepts with rare cases: the + and − points in
the instance space represent examples belonging to positive and negative classes.

teractions, whose complexity makes the relevant information opaque to most learners,
as it will be illustrated in this section.

Interaction exists among attributes when the relation between one attribute and the
target concept is not constant for all values of the other attributes [Rendell and Seshu,
1990; Perez, 1997; Freitas, 2001; Jakulin and Bratko, 2003]. The first-order interaction
among two attributes is defined as follows:

Consider Y is the goal to predict using two independent variables or at-
tributes X1 and X2. There is an interaction between X1 and X2 if the
relationship between X1 and Y depends on the value of X2.

Similarly, the higher-order interaction among more than two attributes is defined. Inter-
actions become complex when changing the value of one attribute does not only change
the relation between another attribute and the target concept, but it yields an oppo-
site relation. When complex interaction exists among n attributes, the value of all n

attributes are needed to be considered simultaneously to predict the goal or the target
concept.

One form of complex interaction is referred to as rare case or small disjunct [Holte
et al., 1989; Weiss, 2003]. A rare case is a small region in the instance space that
covers relatively few examples of the same class (as shown in Figure 1.1(a)). When
a large number of rare cases exist, concept is dispersed ; that is, similar class labels
are scattered through the instance space and surrounded by other class labels (see
Figure 1.1(b)). Rare cases are difficult to identify because they contain few data and
are usually misinterpreted as exceptions or noise. Rare cases form small disjuncts (rules
that cover small number of the training examples) in the classifier. Many learning
methods are in favor of discovering large disjuncts (rules covering a large number of
examples). Hence, they do not include small disjuncts in the classifier. When a concept
is dispersed a large number of small disjuncts are needed to cover rare cases. Since
the number of samples covered by the set of small disjuncts is large, the classification

4 Introduction

+

+
++ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ + + +

––

––

––

––

–– –

––

––

–

–

–

––

––

–

–

–

––

–

––

––

–

–

––

––

––

––

– –

–

–

–

–

–– ––

––

––

–– –

––

––

––

–

+

+
++ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ + + +

––

––

––

––

–– –

––

––

–

–

–

––

––

–

–

–

––

–

––

––

–

–

––

––

––

––

– –

–

–

–

–

–– ––

––

––

–– –

––

––

––

–

Figure 1.2: Two different generalizations of the rare cases of Figure 1.1(a): the dashed boxes
show areas in the instance space covered by positive rules

accuracy of such learners is significantly degraded. Schaffer [1993] shows that the
performance of learning methods with overfitting avoidance techniques such as pruning
degrades if they are applied to concepts with rare cases. Moreover, when few training
data are available, even if rare cases are identified, they are difficult to generalize [Weiss,
2005] (see Figure 1.2).

An extreme case of complex interaction is when different class labels are maximally
dispersed across the data space (see Figure 1.3). In Boolean domains, parity concepts
are the maximally dispersed concepts. The simplest parity function is the parity of
two Boolean attributes defined as an exclusive-or (XOR) target concept Y = X1 ⊕X2.
Here, if X2 is false, then X1 being true implies that Y be true (i.e., Y = X1). Changing
the value of X2 to be true leads to an opposite relation between X1 and Y ; that is, X1

being true implies that Y be false (Y = X1). Besides, X1 has an analogous influence
on the relation between X2 and Y . The opposite relations cancel each other if only
X1 (or only X2) is taken into account. Hence, there appears to be no relation between
either individual attribute and the target. The interaction complexity augments with
an increasing number of interacting attributes.

To see better the mutually canceling effects of attributes in such concepts, consider
the Simplified Health Prediction problem in Figure 1.4, where the two independent

+ – + – + – + – + – +

– + – + – + – + – + –

+ – + – + – + – + – +

– + – + – + – + – + –

+ – + – + – + – + – +

– + – + – + – + – + –

+ – + – + – + – + – +

– + – + – + – + – + –

+ – + – + – + – + – +

Figure 1.3: Maximally dispersed binary concept

1.1 Learners and the Problem of Attribute Interaction 5

yes

Tall

Short

Low

weigth

High

weigth

no yes

no

Figure 1.4: The Simplified Health Prediction: the weight of a person seems unrelated to the
health conditions

attributes, weight and height, predict the health of a person. A person is healthy if
he is short and low weight, or tall and high weight. If only the weight of people are
taken into account, then among those whose weight is high, 50% are healthy (those who
are also tall) and 50% are unhealthy (those who are short). In an opposite way, 50%
of those whose weight is low are unhealthy (those who are tall) and 50% are healthy
(those who are short). The opposite relations between each value of the attribute weight
and the target cancel each other. Therefore, there appears to be no relation between
the weight and the healthiness. The same is true for the attribute height. The two
attributes interact with one another in the context of health prediction. Hence, each
attribute by itself does not give enough information to determine the health situation.
The values of both attributes are needed to predict the health of a person.

The mutually canceling effect is more obvious and extreme in maximally dispersed
concepts, but is also appears in different degrees in other complex interactions. As illus-
trated with the above example, because of the mutually canceling effects of interacting
attributes considering attributes individually does not help to uncover the underlying
complex patterns that define the target concept.

Most learners assume attribute independence and consider attributes one by one.
They compute the evidence about the class for each attribute and sum up all these
evidences to predict the target concept. Consequently, these algorithms achieve high
accuracy when available domain knowledge provides a data representation based on
highly informative attributes, as in many of the UC Irvine Databases used to benchmark
machine learning algorithms [Blake and Merz, 1998; Holte, 1993]. Otherwise, their
performance degrades when interaction exists among attributes.

Complex interaction becomes a stronger hindrance for these learners when data
contains irrelevant attributes, since interacting attributes are easily confounded with
irrelevant attributes [Ragavan and Rendell, 1993; Kohavi and John, 1997; Perez, 1997;
Freitas, 2001]. To illustrate this, consider the previous example of Figure 1.4 with
an extra attribute called leapling. This attribute that determines if a person is born
on February 29, is irrelevant to the target concept. Table 1.1 shows training data
of this example. Note that in Figure 1.4 all data samples were presented. Table 1.1

6 Introduction

Table 1.1: The training data for the Simplified Health Prediction
Weight Height Leapling Healthy?

low short no no
low tall no yes
high short no yes
high tall yes no

presents the same data samples with an additional attribute value; thus, it presents 50%
of all data. Suppose the learner evaluates the attribute weight and the condition if

weight=low. This condition does not provide any evidence about the target concept,
since the two examples that match this condition have a class distribution equal to
the whole data class distribution (50% yes and 50% no). Likewise, the other condition
based on this attribute, if weight=high, and also other possible conditions based on
the second attribute, if height=short and if height=tall provide no evidence about
the target. However, the condition based on the leapling, if leapling=yes, perfectly
classifies the only sample that matches this condition. Thus, the learner incorrectly
believes that the attribute leapling is more informative than the other attributes and
selects this attribute to generate the first rule, if leapling=yes then healthy=no.
Recall that in this example 50% of data samples were available. In case that all data is
provided, then, like the previous example of Figure 1.4, none of the attributes by itself
give enough information about data classification.

Other learners which learn concepts by discovering similarities in the instance space,
also find concepts with complex interactions difficult to learn. These learners assume
that cases belonging to the same class are located close to each other. So, they fit a
linear model to the data to classify regions. These algorithms achieve high accuracy
when the data representation of the concept is good enough to maintain the closeness
of instances of the same class. When complex interaction exists among attributes each
class label is scattered through many small regions of the instance space, each covering
relatively few examples of the same class. Thus, regularities are less prominent. This
problem worsens when few training data are available.

As mentioned earlier, interaction prevails in domains where lack of knowledge im-
poses primitive representation. Interactions have been seen in several real-world prob-
lems. Financial data sets involve a considerable amount of attribute interactions [Dhar
et al., 2000]. Jakulin et al. [2003] show evidence of attribute interaction in medical data
analysis for predicting the clinical outcome in hip arthroplasty domain. Danyluk and
Provost [1993] detected interactions in telecommunications data, and found out that
small disjuncts match a large percentage of training data.

Distinguishing interacting attributes from irrelevant ones has recently received at-
tention, and few feature selection methods have been designed to tackle attribute in-
teraction problem [Pappa et al., 2002; Jakulin and Bratko, 2004; Zhao and Liu, 2007].
These methods consider several attributes together and apply heuristics to distinguish

1.2 CI as a Solution 7

between subsets of interacting and redundant attributes. However, when interactions
are complex, identifying relevant attributes may not be sufficient for learning the concept
and improving accuracy. Because of concept dispersion, even if interacting attributes
are identified correctly, regularities are still difficult to detect (see Section 3.2.1 for an
empirical analysis). Moreover, when primitive attributes are provided for representing
data, the concept description that is to be generated using primitive attributes tends
to be complex [Bloedorn and Michalski, 1998]. Therefore, it is likely that the learner
makes mistakes in constructing such description. Hence, its accuracy will be low.

Thus, in spite of correctly identifying interacting attributes, learners fail to learn con-
cepts with complex interactions among attributes. Interactions need to be highlighted
in order to learn these concepts properly. Next section explains how CI, by means of
constructing new attributes, can encode attribute interactions in a new representation
to highlight regularities to the learner.

1.2 Constructive Induction as a Solution

CI methods have been designed to facilitate learning hard concepts when the repre-
sentation space is of poor quality. The original idea of CI was to generate additional,
more relevant and predictive attributes derived from the set of primitive attributes to
improve the performance of a particular learning system [Michalski, 1978]. It is later
extended to any kind of changing representation space such as removing primitive at-
tributes, adding new attributes, and replacing original ones [Matheus and Rendell, 1989;
Ragavan and Rendell, 1993; Liu and Motoda, 1998]. CI aims to automatically transform
the original representation space into a new one where the regularity is more apparent,
by eliminating irrelevant attributes as well as constructing more relevant features (new
attributes) [Aha, 1991; Dietterich and Michalski, 1981].

When the hard concept consists of complex interactions, Feature Construction (FC)
plays the main role in a CI method to alleviate attribute interaction problem. FC aims
to encapsulate the interaction among several attributes into a new one and outline it to
the learner. Matheus and Rendell [1989] define FC as follows:

Feature construction is the application of a set of constructive operators
{o1, o2, . . . , on} to a set of existing features [given attributes] {f1, f2, . . . , fm},
resulting in the construction of one or more new features {f ′1, f ′2, . . . , f ′N}
intended for use in describing the target concept.

FC intends to discover opaque information about the relations between subsets of
attributes and the target concept. The discovered information is abstracted into a
feature (new attribute) and added to the set of original attributes. The new feature
groups samples of the same class, which could be scattered in the original data space. If

8 Introduction

x3

x1

x2

x4

positive examples

negative examples

(a) the instance space in four dimension
using primitive attributes

x1
truefal

se

x2

x3

+

_

+
_

x2

_
x3

+
_

+

x4 x4 x4 x4

__

(b) the decision tree to be generated for the concept

Figure 1.5: The concept y = (x1 ⊕ x2) ∧ (x3 ⊕ x4)

FC finds the appropriate features, after changing the representation the instance space
is less dispersed and highly regular; thus, the concept is easy to learn.

To illustrate how FC can ease the problem of attribute interaction, consider the
concept y = (x1 ⊕ x2) ∧ (x3 ⊕ x4) in Figure 1.5. The concept consists of conjunction of
two complex interactions (two exclusive-ors). As shown in Figure 1.5(a), the concept is
dispersed (i.e., positive examples are scattered and surrounded by negative examples)
and, therefore, hard to learn. Figure 1.5(b) illustrates the classifier to be constructed by
a learner to represent the concept. Due to the complex interactions, usually a learner
fails to discover the exclusive-or relations that exist among attributes and construct the
classifier. FC encapsulates these relations into two features, f1 and f2, as new attributes,
each representing one interaction. Then, CI transforms the instance space into a new one
represented by the new attributes (Figure 1.6). With the new representation of data,
learning system can see regularities and learn the concept easier. After constructing
features, the classifier is smaller and easier to generate.

There are several issues that determine the behavior of a CI algorithm [Hu, 1998a].
The relevant ones to this dissertation are Hypothesis Driven vs. Data Driven and In-
terleaving vs. Preprocessing, which are described bellow.

A hypothesis driven method uses a hypothesis generated by a learner for FC. These

f2

f1

f1

+

f2

_

_
fa
ls
e true

Figure 1.6: The new representation of the concept of Figure 1.5, y = f1 ∧ f2, and the decision
tree to be generated

1.2 CI as a Solution 9

methods may use the hypothesis for constructing and/or evaluating new features. For
instance, CITRE [Matheus and Rendell, 1989] and Fringe [Pagallo and Haussler, 1990]

apply a learner to generate a hypothesis using original attributes, and examine the
hypothesis to construct new features. The new features are then added to the set of
original attributes and data are redescribed. The process of hypothesis generation and
FC is repeated until the desired conditions are obtained. Vafaie and DeJong [1998]

do not make use of a learner for constructing new features; they apply a learner for
evaluating candidate functions as new features. Their method constructs functions
and, then, assesses their effectiveness in classifying data using the hypothesis generated
by the learner. Hypothesis-driven methods use hypotheses to guide CI. So, they can
benefit from the previous knowledge obtained from the hypotheses. However, the FC in
these methods is dependent on the quality of the hypotheses. If the learner is unable to
generate a helpful hypothesis in the first pass, then the method fails to discover useful
features [Hu and Kibler, 1996; Rendell and Ragavan, 1993]. Contrary to these methods,
a data driven method (such as AQ17-DCI [Bloedorn and Michalski, 1998]) directly
analyzes training data to extract relations and construct new features. The constructed
features are then examined using an evaluation function on training data. If they are
evaluated as good features, they are added to the attribute set and data are redescribed
for further processing. These methods do not benefit from any hypothesis generated
previously by a learner. Their strategy helps the method to work independently from
any learner.

An interleaving method (e.g., Greedy3 and Grove [Pagallo and Haussler, 1990])
integrates a learning process with FC; that is, one or more features are constructed,
data are classified and partitioned using new features, and the process is repeated on
each partition of data till the desired solution is achieved. When the process terminates
a classifier has been generated using constructed features. These methods benefit from
the classified data to construct features. However, the FC is affected by the bias of the
data classification. Bias is the assumption of the method regarding the target concept
and the strategy applied to generalize from training data to infer classification of new
unobserved data [Mitchell, 1980; 1997]. If the learning bias does not match with hard
concept, features that are constructed and used in the classifier may not classify new
data correctly. On the contrary, in a preprocessing method (e.g., GALA [Hu and Kibler,
1996]), FC is performed before any learning and independently. When all features are
constructed and data are redescribed by the new set of attributes, the new attribute set
and data can be passed to any standard learner.

In spite of many progresses in CI, the problem of complex attribute interaction has
not been completely solved yet. Current FC systems face difficulties to succeed when
domain contains several complex interactions involving many combinations of attributes.
Three main reasons that cause this failure are as follows (Chapter 2 explains more about
these weaknesses). Firstly, most FC methods apply a local search such as hill climbing

10 Introduction

or beam search to find interacting attributes. When complex high-order interactions
exist among attributes the search space is large and with high variations. Therefore,
a local search may find a local optimum and construct a function over less relevant
attributes [Freitas, 2001]. Secondly, FC methods usually apply a greedy algorithm
to construct features; that is, the construction of each feature depends on the earlier
constructed feature. When complex interactions exist among attributes, such greedy
methods may mistakenly construct an incorrect feature in a primary step [Vafaie, 1998].
If features are constructed incorrectly in the primary steps, the successive features will
be irrelevant because their construction depends on the previously constructed features.
This problem is aggravated when several complex interactions exist in the concept and
more features are needed to be constructed. Finally, FC methods often apply some
algebraic operators such as arithmetic or Boolean operators to represent features. When
concept consists of complex interactions, a complex algebraic expression is required to
capture and encapsulate each interaction into a feature [Zheng, 1995]. In addition, if
no prior domain knowledge is available, it is difficult to define appropriate operators.

This thesis is concerned with these three difficulties of CI methods. Few recently
proposed methods tend to prevent some of these problems (see Chapter 2). However,
there is no CI method that is not affected by at least one of these particular problems.

1.3 Summary of the Research

The main thesis of this research is the following:

When the main difficulty of a learning task is the presence of complex in-
teractions among attributes, few training data are provided, and no prior
domain knowledge is available, a CI method requires a mechanism that:

1. provides a global search to find subsets of interacting attributes

2. applies a feature representation language that reduces the difficulty of
constructing complex features

3. allows simultaneous construction of several features.

The above thesis defines a hypothesis consisting of three parts which determines
three requirements for a CI method when applied to hard concepts with complex interac-
tions. To prove this hypothesis two preprocessing data-driven CI methods are proposed.
The first method, DCI [Shafti and Pérez, 2003a], aims to support the first two parts of
the hypothesis. This method applies a Genetic Algorithm (GA) [Michalewicz, 1999] as
a global search to find interacting attributes and construct a function over them. The
notion of non-algebraic (operator-free) representation of constructed features is intro-
duced as a utility to reduce the difficulty of constructing complex features when no prior
knowledge is available about the concept. The research shows that a GA as a global

1.4 Structure of the Dissertation 11

search can ease the goal of finding interacting attributes and the relation among them.
Also, the experiments support the claim that non-algebraic representation reduces the
difficulty of FC. In addition, the experimental results confirm the need for simultaneous
construction of several features, mentioned as the third requirement in the above hy-
pothesis. The second method, MFE2/GA [Shafti and Pérez, 2005], while maintaining
the advantages of DCI, allows simultaneous construction of more than one feature to
prove the third part of the thesis. The GA in this method provides the ability to con-
struct and evaluate several features at the same time, which is important for a CI when
several complex interactions exist. Experiments illustrate that this characteristic along
with the use of GA and non-algebraic representation make MFE2/GA to outperform
other methods when the learning problem consists of several complex interactions.

1.4 Structure of the Dissertation

The dissertation is organized as follows:

• Chapter 2 studies the requirements for a CI method to handle the complex inter-
action problem. While briefly reviewing some related works, this chapter discusses
the hypothesis that a global search is required for selecting subsets of interacting
attributes, and a non-greedy method is necessary for simultaneously constructing
and evaluating several features together. The application of evolutionary algo-
rithm [Holland, 1975], a stochastic search method based on genetic inheritance, is
proposed as a non-greedy global search technique, and some current genetic-based
CI methods are reviewed. This chapter also explains the problem of represent-
ing features by the use of algebraic operators and suggests the application of a
non-algebraic (operator-free) representation.

• Based on the requirements explained in Chapter 2, DCI is designed and described
in Chapter 3. This CI method applies GA to select a set of interacting attributes
and construct a non-algebraic function over it. The empirical evaluation and
comparisons in this chapter confirm the need to apply a global search. Also, the
advantage of the non-algebraic feature representation is illustrated. This chapter
highlights the need for constructing more than one feature when concept consists
of several interactions.

• Chapter 4 proposes the design of MFE2/GA. This method maintains all the advan-
tages of DCI, while allows simultaneous construction of more features. MFE2/GA
fulfils all the requirements discussed in Chapter 2. Experiments were conducted
to compare this method with some traditional CI methods.

• Chapter 5 analytically and empirically compares the proposed method with a
relevant CI method that applies non-algebraic feature representation. This chapter

12 Introduction

discusses the reasons that each method may outperform the other under different
circumstances, supported by some experiments. The aim of this chapter is to
illustrate the important characteristics of each method that can be integrated
together to achieve better performance, which gives an open-line for future work.

• The experimental results in Chapter 4 lead to improve the method in Chapter 6.
This chapter reviews different kinds of fitness functions and introduces a new
fitness evaluation based on MDL Principle. The MDL-based fitness function is
integrated into a new system called MFE3/GA. Experiments empirically illustrate
that the new fitness function improves the performance of GA. Also experiments on
some machine learning benchmarks illustrate that MFE3/GA outperforms other
methods.

• Chapter 7 summarizes the thesis work, presents the conclusions, and outlines the
open lines for future work.

Chapter 2

Constructive Induction:

Difficulties and Solutions

As described in Chapter 1, the primitive representation of data facilitates the existence
of complex interactions among attributes. Complex interactions hinders a learner from
uncovering regularities. CI aims to ease learning hard concepts by improving data
representation. When complex interaction prevails in data, this aim is achieved by
constructing features as new attributes with greater predictive power.

This chapter describes difficulties of existing CI methods when they are applied to
the attribute interaction problem, and suggests solutions that can be integrated into a
system to provide a more promising method. Section 2.1 argues that most CI methods
apply a greedy local search for finding interacting attributes, while a global search
is more convenient for hard concepts in presence of attribute interactions. Then, it
describes the greedy-based techniques often used by methods to construct features one
by one, and suggests the simultaneous construction and evaluation of several features
when various interactions exist. Section 2.1 also explains that CI methods often apply
an algebraic language for representing interactions as new features, which sometimes
makes construction of features difficult. Non-algebraic operator-free representation is
compared with algebraic representation and preferred for complex concepts when no
prior knowledge is available about the domain. Section 2.2 introduces evolutionary
algorithms, and more particularly, Genetic Algorithms (GAs) and Genetic Programming
(GP) as global search techniques that can be used by CI. These techniques also provide
the ability to construct and evaluate several features simultaneously, which is necessary
for a CI method in presence of several complex interactions. Section 2.3 reviews some
recent CI methods that apply GA or GP, and highlights their weaknesses. Considering
problems of CI methods, a new framework for CI is proposed in the last section.

Throughout this dissertation two terms are used to classify CI methods. The first
term, greedy method , refers to a method that applies a local search to find interacting

13

14 CI: Difficulties and Solutions

attributes and construct features (see Section 2.1). The second one, genetic method is
a method which uses a global search such as GA or GP (see Section 2.3).

2.1 Constructive Induction Problems

When CI is applied to learn concepts with complex interactions, it has to perform three
tasks: searching for interacting attributes, discovering the relations among them and
the target concept, and representing each relation as a function (defined over interacting
attributes) or new feature. Considering these tasks, CI methods are evaluated in the
following sections from three points of view:

1. The strategy applied to identify interacting attributes

2. The strategy applied to discover interactions among identified attributes

3. The language used to define functions that represent interactions.

Note that the first two aspects are related and each one has a direct effect on the
other. In order to identify a subset of interacting attributes, it is necessary to see the
relation among attributes and the target concept. But this relation is not apparent
unless a proper feature outlines it. At the same time, a feature can highlight the
interaction among attributes only when it is discovered using the relevant attributes. If
the chosen subset of attributes is not good enough, the best feature found may not be
helpful. Thus, the two tasks are not independent and should be linked to transfer the
effect of the search space of each task into the other. However, for analyzing weaknesses
of CI methods, these two aspects are studied separately in Sections 2.1.1 and 2.1.2.
The third one, the representation language, has an impact on the way the search is
conducted to achieve the goal. This importance is described in Section 2.1.3

2.1.1 Search for Interacting Attributes

Section 1.1 described that due to the mutually canceling effect of interacting attributes,
the importance of each single attribute is masked. Thus, a major difficulty of a CI
method is to find interacting attributes for constructing features. Researchers have
been experimenting various techniques to automatically identify interacting attributes
for FC when there is no prior knowledge about the domain.

One technique is the use of a learner to guide the search. The learner generates a
hypothesis using original set of attributes. Then, the CI method applies some criteria
to select the most relevant attributes in the hypothesis as interacting attributes, and
generates new features by defining functions over these attributes. The new features
are added to the original attribute set, and the process continues until no new useful

2.1 CI Problems 15

feature can be constructed. Fringe-like algorithms [Pagallo and Haussler, 1990; Pagallo,
1990; Yang et al., 1991] apply this technique. They generate a decision tree using
C4.5 [Quinlan, 1993], and then, consider the attributes in the fringe of the tree as
candidates for constructing new features. CITRE [Matheus and Rendell, 1989] also
builds a decision tree and selects attributes in branches that lead from the root to the
positively labeled nodes to construct features. These hypothesis-driven methods are
limited by the quality of the hypothesis generated by the learner. When the concept
is complex the primitive representation of data is not good enough for the learner to
generate a high-quality hypothesis. If the hypothesis is improper, irrelevant attributes
are selected, and an irrelevant feature is constructed. Thus, the subsequent features
that are constructed in next iterations will be meaningless.

Other methods, such as MRP [Pérez and Rendell, 1995] and X-of-N [Zheng, 1995],
apply a greedy local search to select interacting attributes one by one. They use a
heuristic function to guide the search algorithm. These methods usually apply one of
the following approaches originally used in statistics [Draper and Smith, 1981; Neter et
al., 1996] to find subset of interacting attributes [John et al., 1994]:

• Forward Selection: starts from an empty subset and selects and evaluates at-
tributes one by one as candidates for inclusion in the subset.

• Backward Elimination: starts from the entire set of attributes and selects and
evaluates attributes one by one as candidates for elimination from the set.

• Forward Stepwise Selection: starts from an empty subset and selects and evaluates
attributes one by one as candidates for inclusion in the subset or elimination from
the subset.

• Backward Stepwise Elimination: starts from the entire set of attributes and selects
and evaluates attributes one by one as candidates for inclusion in the subset or
elimination from the set.

These greedy methods intend to locally search for the best subset of interacting
attributes by adding or removing one attribute at a time. When high interaction exists
among attributes, each interacting attribute by itself does not give enough information
about the concept (see Section 1.1). Thus, the heuristic function cannot see the good-
ness of these attributes. Therefore, it may mistakenly remove relevant attributes or
add irrelevant attributes. Since the selection of each attribute depends on attributes
previously selected, the local search may find a locally optimal subset (i.e., an attribute
subset that is better than all its neighbors in the search space but not globally the best).
This occurs since the search space has high variation and lots of local optima due to
the interaction among attribute (see Section 2.2.3 for more explanation about the local
search problem).

16 CI: Difficulties and Solutions

To illustrate the problem of greedy-based local search, consider data are represented
by six Boolean attributes {x1, . . . , x6} and the target concept is x1 ⊕ x2 ∧ x3 ⊕ x4,
where ⊕ is exclusive-or (XOR). A CI method needs to identify the subset {x1, x2} or
{x3, x4} to construct a function over it. A forward selection method uses a heuristic
function to evaluate attributes and select the best one for for inclusion in the subset.
But since there are complex interactions among attributes the goodness of a relevant
attribute is not apparent on its own. Only when interacting attributes x1 and x2, or
x3 and x4 are considered together the goodness of these attributes is seen. Hence, the
heuristic function may mistakenly evaluate an irrelevant attribute (x5 or x6) as the best
attribute to be included in the subset of interacting attributes. This problem worsens
when more attributes are involved in the complex interaction because a larger number
of attributes are needed to be considered together to identify interacting attributes.
Backward elimination has a similar problem. In the first two steps, elimination of x5

and x6 results in a better subset. But then removing any of relevant attributes x1 to x4

does not improve the goodness of the subset. Thus, the method selects {x1, x2, x3, x4}
as the subset of interacting attributes. Though all attributes in the subset are relevant,
the function that is constructed over this subset represents the relation among four
attributes, that is, x1 ⊕ x2 ∧ x3 ⊕ x4. This function is larger than a function defined
over two interacting attributes (for example, x1⊕ x2). Therefore, it is more complex to
construct. The method, instead of a greedy local search, needs to jump in the search
space from {x1, x2, x3, x4} to {x1, x2}; that is, remove two attributes at the same time
(two steps further in the search space). Then, it could construct a simpler and efficient
function over the subset {x1, x2} and in the next step another simple function over
{x3, x4} to achieve a better result. This problem aggravates when the target is composed
of several interactions among attributes. Same happens with forward stepwise selection
and backward stepwise elimination.

Alternatively, some methods like LFC [Ragavan and Rendell, 1993] use a lookahead
search to reduce problem of local optima. LFC looks ahead through a number of original
attributes and previously constructed features using a beam search. The method keeps
a number of attributes with high information gain [Quinlan, 1983] for the beam. Then
beam attributes and attributes within a specified distance (based on the information
gain value) from the beam attributes are selected as operands for constructing new
features. This technique achieves high accuracy on some real-world problems. However,
it is sensitive to the parameter that specifies the lookahead depth. When high interaction
exists among attributes, many possibly long terms should be constructed. This method
may not be able to form these terms if the lookahead depth is too small. Increasing
this parameter may help. Nevertheless, without having previous knowledge about the
concept the value of the parameter cannot be predicted. Blindly increasing this value is
also computationally inefficient. Another problem of such a method is that the search
is still constrained by a one-by-one evaluation as a heuristic to select an attribute, and

2.1 CI Problems 17

may exclude some promising attributes in earlier steps.

Such kind of one-by-one attribute selection or elimination for constructing features
is not appropriate for hard concepts in presence of complex interactions. CI needs to
consider several attributes at a time to notice their relevancy and avoid the locally
optimal solution.

For this reason some methods search the space of all possible subsets of attributes
to choose the best one. At each step they evaluate a subset of attributes instead of one
attribute. The space of subsets of attributes has a high variation. Therefore, a local
search may not find the global optimum. Some methods [Dzeroski and Lavrac, 1993;
Srinivasan and King, 1999] consider all combinations of attributes and perform an ex-
haustive search procedure. As the search space of subsets of attributes grows exponen-
tially with the number of attributes (2N subsets for N attributes in Boolean domain), an
exhaustive search is computationally expensive. Alternatively, some methods impose
restrictions in exploring the search space and forming subsets to reduce complexity.
HINT [Zupan et al., 2001] performs an exhaustive search over the space of all subsets
of maximum size b (b = 3 by default). Since each function is constructed over a small
subset of attributes, this method has to construct more features to represent an inter-
action over a larger subset of attributes (Chapter 5 studies more about this method).
Furthermore, such methods limit the size of search space, which may result in ignoring
some relevant subsets of attributes.

In order to effectively search the space of all subsets of attributes, CI needs a search
strategy that eventually finds the globally optimal solution in such a complex and enor-
mous search space in a reasonable computation time. A greedy local search approach
may be suitable only when the variation of this excessively large search space is not
high; otherwise, it will find a local optimum.

As an alternative to a local search, a global search such as evolutionary algorithms
can be used. Evolutionary algorithms, which are based on genetic inheritance, are theo-
retically and empirically proven to be more successful in searching through complicated
search spaces [Holland, 1975; Goldberg, 1989; Michalewicz, 1999]. Section 2.2 explains
more about these global searches, and Section 2.3 reviews some recently proposed ge-
netic CI methods.

2.1.2 Search for Interactions

FC in CI aims to capture and encapsulate interaction into a new feature. It generates a
function defined over a subset of candidate attributes and estimates the predictivity of
the function as a new feature. When complex interactions exist among attributes, con-
structing more than one feature becomes necessary. The strategy followed to construct
several features is important in a CI method. Most CI methods are greedy in the sense
that they generate and evaluate features one by one during an iterative process. The

18 CI: Difficulties and Solutions

construction of each new feature depends on the earlier constructed features.

One group of such methods uses a previously constructed feature as a new attribute
to incorporate in construction of the new functions. For instance, LFC applies a beam
of selected original attributes and uses these attributes to construct a feature. Then the
constructed feature is added to the original set of attributes, the beam is reset using
the new attribute set, and the process is repeated. HINT [Zupan et al., 2001] analyzes
data to induce a function. When the function is generated, the attributes used for
constructing the function are removed and the function as a new feature is added to the
original attribute set. Then data are redescribed using the new attribute set and the
process is continued. In such methods the quality of new functions directly depends on
the quality of the previously constructed functions. Since there is a high variation in the
search space of candidate functions, the system may construct a locally best function
in primary steps. Consequently, the successive features will be irrelevant and the whole
process will converge to a local optimum.

Some other greedy methods, such as GALA [Hu and Kibler, 1996], are recursive
splitters. They generate a decision tree while constructing features. At each iteration,
they construct a feature that best splits data and use it as a condition to partition
data. Then the process is repeated for each part of data to generate more features.
This approach is called divide and conquer . These methods use a data-driven measure
such as entropy [Quinlan, 1986] to guide the FC to select the best feature. If the
earlier constructed feature is not good enough, data are split improperly. Therefore,
the data-driven measure misguides the FC in the next step and an improper feature is
selected. Moreover, some of these methods, such as MRP [Pérez and Rendell, 1995],
induce features directly from data. Then, after an improper split of data, there might
not be enough and proper training data for inducing a function with a high predictive
power. Thus, the new constructed function overfits data, that is, fits well with this
small part of data but does not fit well with unseen test data. These methods confront
more difficulties when few training data are available.

Above problems degrade if the number of interacting attributes is high. When more
attributes interact, the feature that encapsulates the high-order interaction is complex
and difficult to construct. A CI method must break down the complex high-order inter-
action into several smaller features. Such set of features works as a theory of interme-
diate concepts that bridge from the primitive data representation to the hard complex
target concept. When more functions are to be constructed, such greedy methods need
more iterations. Each feature that partially shows the interaction, by itself, may not
provide much information about the concept, and may be evaluated as an irrelevant
feature. The greedy method may construct a feature that mistakenly appears to be rel-
evant. Thus, the iterative process is misguided and subsequent features are constructed
incorrectly. For this reason such methods fail when number of interacting attributes
grows and the interactions are complex.

2.1 CI Problems 19

In order to avoid these problems, CI methods need to construct several features at
the same time and evaluate a set of features together as related parts of the theory.
Since, evaluating a set of features is essential, a CI method has to consider all possible
functions and search the space of subsets of candidate features. The major problem is
that the search space is huge. CI needs to find out which functions over which attribute
subsets (among 22N

functions in case of N attributes in a Boolean domain) are more
predictive. Then, the challenge is to design a cost-effective CI method that can construct
and evaluate several features together.

In Section 2.1.1, genetic-based search is referred to as a global search to apply over
the space of subsets of attributes. Genetic-based search also provides the ability to
evaluate several constructed features as one single individual as it will be seen later in
Sections 2.2 and 2.3.

2.1.3 Representing Interactions

In addition to the problems described in Sections 2.1.1 and 2.1.2, a CI method may also
confront difficulties when representing interactions as functions or features. The repre-
sentation language has an impact on the way the search space is conducted. It should
reduce the difficulty of constructing functions that represent complex interactions. Also,
the language should provide the capability of representing all complex functions or fea-
tures of interests. It has an important role in convergence of a CI method to the optimal
solution in less time.

There are two alternative groups of languages for representing features: algebraic
form and non-algebraic form.

Algebraic form is the common form used by most CI methods. In algebraic form,
an interaction is represented by a function defined by means of algebraic operators
such as arithmetic or Boolean operators. When using this form of representation, the
operators should be defined properly. If prior knowledge is available about the functions
that represent interactions, methods can use this information to define operators before
applying FC to the problem. For instance, FICUS [Markovitch and Rosenstein, 2002]

and LAGRAMGE [Todorovski and Dzeroski, 1997] enable the user to define any kind
of operators using domain knowledge.

Some other methods use a fix set of complex operators designed for a specific kind
of problems. ID2-of-3 [Murphy and Pazzani, 1991] uses M-of-N operator (which returns
true if at least M of N conditions are true; otherwise returns false), and Zheng [1995]

uses the operator X-of-N (which returns the number of conditions that are true among
N conditions). LMDT [Utgoff and Brodley, 1991] and Swap-1 [Indurkhya and Weiss,
1991] use hyperplane representation. These complex operators simplify construction of
some features, yet they are designed for specific problems and do not cover all kind of
relations among attributes. They can be applied only to problems which are known to

20 CI: Difficulties and Solutions

contain interactions that match with this form of representation. For example, if the
problem contains interactions in form of complex DNF (Disjunctive Normal Form) with
long terms, X-of-N or M-of-N are not sufficient to represent interactions [Zheng, 2000].

In order to make FC applicable to a wide range of problems, some methods use a fix
set of simple and general operators. For instance, Fringe, CITRE and GALA use the set
of Boolean operators conjunction and negation (∧ and ¬). These two simple operators
are sufficient to represent all Boolean relations among attributes; though, they are not
efficient. The disjunction (∨) is represented by the negation of conjunction. Thus, if
the feature must represent several disjunctions, it is excessively complex and harder to
construct. Some methods such as LFC include disjunction in the set of operators in
order to construct features easier. However, still construction of complex interactions is
difficult when using simple operators since these operators have a limited expressiveness
power.

To better illustrate this point, assume that the interaction to be represented is the
parity of four Boolean attributes. This interaction can be represented as bellow using
the Boolean operator ⊕ (i.e., exclusive-or):

(x1 ⊕ x2)⊕ (x3 ⊕ x4) .

But if the set of predefined operators are conjunction, disjunction, and negation, the
function that represents the interaction may have the following form:

(x1x2 + x1x2)(x3x4 + x3x4) + (x1x2 + x1x2)(x3x4 + x3x4) .

Note that, in this representation, a + b, ab, and a are equivalent to a ∨ b, a ∧ b, and
¬a, respectively. It can be seen that this representation is more complex; therefore, the
function is more difficult to construct. A complex feature is required to capture and
encapsulate the interaction using these simple operators.

If there is prior information about the kind of operators needed for representing
interactions then algebraic representation can ease the task of constructing functions.
Otherwise, defining operators without any domain knowledge may limit the search space
or make it more difficult to explore. Thus, if there is no prior domain knowledge avail-
able, methods with algebraic representation may fail to construct promising functions.
In this case an operator-free representation is preferable.

In addition to the problem of defining operators, an algebraic form of representation
may introduce redundancy in the representation; that is, each function is represented in
several forms. An example of redundancy can be seen in the following, where the three
functions are conceptually equivalent but represented differently:

x1x2

2.1 CI Problems 21

((x1x2) + x1)x1

((((x1x2) + x1)x1) + x2)x2 .

Redundancy in representation increases the size of search space and may produce
an unlimited search space if any feature can be represented in infinite forms. When
redundant representation is applied a CI method needs a restriction to limit the search
space and avoid redundant solutions. Therefore, such representation is less efficient.

These problems of algebraic representation cause CI methods to fail when complex
features are needed to represent a high-order complex interaction among attributes.
Note that the genetic CI methods also apply algebraic representation typically using
parse trees [Koza, 1992](see Section 2.3).

Alternatively, interactions can be represented in a non-algebraic form, which means
no operator is used for the representation. For instance, for a Boolean attribute set
such as {x1, x2} the exclusive-or interaction x1x2 + x1x2 can be represented by a non-
algebraic feature such as R = 〈0110〉, where the jth element in R represents the outcome
of the function for jth combination of attributes x1 and x2 according to the following
table:

x1 x2 f

0 0 0

0 1 1

1 0 1

1 1 0

Note that the representation in this example is not the only one in non-algebraic form.
Also, for simplicity, a Boolean concept is chosen for the example but the non-algebraic
representation can be used for any domain after discretizing continuous attributes.

A non-algebraic form is simpler to apply in a CI method since there is no need to
specify any operator and it does not introduce any redundancy in representation. Be-
sides, all functions defined over a subset of attributes have equal degree of complexity
when they are represented in a non-algebraic form. For instance, using the non-algebraic
representation of the above example, two algebraic features like f(x1, x2) = x1x2 +x1x2

and f ′(x1, x2) = x1 are represented as R(x1, x2) = 〈0110〉 and R′(x1, x2) = 〈0011〉,
which are equivalent in terms of complexity. Note that for problems with high interac-
tion, CI needs to construct features more like the first feature in this example, which
are complex in algebraic form, but not more complex than others when represented
non-algebraically. Hence, if there is no prior knowledge about the kind of functions we
are looking for, a non-algebraic operator-free representation is preferable.

There are few methods that use such kind of representation. One of them is MRP,
which represents features by sets of tuples using multidimensional relational projec-
tion [Pérez and Rendell, 1995]. Pazzani’s method [1998] generates features constructed

22 CI: Difficulties and Solutions

1 1

1

0

0

0

1

0

1

1

1

1 0

1

1

0

x3

x4

x2

x1

Figure 2.1: The Karnaugh map for function R(x1, x2, x3, x4) = 〈1001001101011111〉

by Cartesian product of two interacting attributes. HINT considers all tuples in the
Cartesian product of interacting attributes and assigns a label to compatible tuples [Zu-
pan et al., 2001] (see Chapter 5 for more details about this method). The good perfor-
mance of these methods over complex problems proves the advantages of non-algebraic
features. However, these methods are greedy. As illustrated in Sections 2.1.1 and 2.1.2
greedy methods have difficulties in presence of several complex interactions.

It may be argued that non-algebraic form of representation is more difficult to com-
prehend by experts comparing to algebraic form. However, some existing tools and
simple algorithms, such as Karnaugh map or Quine-McCluskey algorithm [Chan and
Mourad, 1994], can be applied as a post-procedure to interpret constructed features in
algebraic form. As an example in a Boolean domain, consider a non-algebraic function
defined over four Boolean attributes as R(x1, x2, x3, x4) = 〈1001001101011111〉. This
function can easily be interpreted by Karnaugh map (see Figure 2.1) as the following
DNF function:

f(x1, x2, x3, x4) = x1x2 + x2x3 + x3x4 + x4x1 + x1x2x3x4

which is easier to comprehend. C4.5-Rules [Quinlan, 1993] can also be used to receive
a data set representing the non-algebraic function and generate rules expressing the
function.

Thus, non-algebraic form of representation in addition to be sufficient and efficient
to represent complex high-order interactions, is easily interpretable.

2.2 Genetic-based Search as a Global Search

Section 2.1 described that the search space for finding interacting attributes and con-
structing functions is large and has high variation; therefore, a global search such as
a genetic-based search is more likely to be successful. Evolutionary algorithms are
stochastic search algorithms based on genetic inheritance inspired by Darwinian theo-

2.2 Genetic-based Search as a Global Search 23

ries of fighting for survival. They are theoretically and empirically proven to provide
robust search in complex spaces [Holland, 1975; Goldberg, 1989; Michalewicz, 1999]. It
was also explained in Section 2.1 that CI requires constructing and evaluating several
features together, since each feature by itself may not be evaluated correctly due to
the complex interaction in data. An evolutionary algorithm allows simultaneously con-
structing and evaluating several features represented as a single individual, which turns
out to be essential for concepts with high complex interactions.

Genetic Algorithm (GA), introduced initially by Holland [1975], and Genetic Pro-
gramming (GP) [Koza, 1992] are specific types of evolutionary algorithms, which have
been applied successfully to a variety of learning problems [Freitas, 2003] as well as to
other tasks such as solving optimization problems. These genetic methods are computa-
tionally simple but powerful. They are not limited to a specific search space. They are,
like other search methods, looking for the optimal solution through the search space;
however, they search simultaneously from several points in the space. The reason for
their success is that these methods search in intractable search spaces by retaining
a balance between the exploitation and exploration of the search space [Michalewicz,
1999].

Genetic-based algorithms work on individuals where each individual usually repre-
sents a hypothesis in the space of possible solutions. Individuals consist of genes, where
each gene specifies one or several characteristics of the individual. Like in natural life,
genes control the inheritance of individual’s characters (properties or characteristics).
The aim of a genetic-based algorithm is to search for the optimal solution by performing
an evolution process on the population of individuals. By means of genetic operations,
relatively good solutions survive and relatively bad solutions die after some generations.
The goodness or badness of each individual is measured by a function called fitness.

Before analyzing genetic CI methods (Section 2.3), a description of GA and GP are
given and some terms are defined. Section 2.2.1 describes a classical GA, which is the
simplest genetic-based search. Section 2.2.2 describes GP, the global search often used
by genetic CI methods. Section 2.2.3 explains why these algorithms are expected to
perform better than other methods.

2.2.1 A Classical Genetic Algorithm

GA deals with a population of possible solutions and intends to converge this population
to the optimal solution. Figure 2.2 shows the main structure of a GA. Each individual of
the population P (t) in iteration t represents a potential solution to the problem. Each
iteration is referred to as a generation. As shown in this figure, first P (0) is initialized
and evaluated. Then, while the stopping conditions are not fulfilled, iterations are
repeated. At each iteration, a new population is generated from the previous one and the
fitness of each individual of the population is evaluated. If the desired stopping condition

24 CI: Difficulties and Solutions

begin
t = 0
initialize P (t)
evaluate P (t)
do while not desired condition achieved

t = t + 1
generate P (t) from P (t− 1)
evaluate P (t)

end do
end

Figure 2.2: Main structure of a GA

is not achieved, the next population is generated and the procedure is repeated. When
the procedure is terminated, the best individual of the population represents an optimal
solution.

As Figure 2.2 shows, the main procedure of GA consists of three basic parts: ini-
tializing the first population, evaluating individuals, and generating next populations,
which are described next.

Individuals and the Initial Population

Each individual in GA has a genotype and a phenotype representation. A genotype
is the coded form of the individual in GA. In classical GA, it is a fixed-length bit-
string such as < a1, a2, . . . , an >, where each bit ai is called a gene and determines a
characteristic of the individual. The phenotype is the decoded form (the meaning) of the
individual, which represents a potential solution to a particular problem. For example,
if the problem is to search for an optimal subset of a set of five attributes, each potential
solution is an attribute subset. Then, each individual can be coded in a string of five
bits, where the ith bit (gene) of the string indicates the presence or absence of attribute
xi in the subset. The bit-string is the genotype representation of the individual, and its
meaning, that is a subset, is the phenotype representation. For instance, the genotype
< 1, 0, 1, 0, 0 > is interpreted as the phenotype {x1, x3}. Note that genotypes are used
for the process of generating new population, while phenotypes are used for the process
of evaluating individuals, as illustrated next.

In a classical GA, the population size p, that is the number of individuals in the
population, does not change during the generations. The initial population P (0) is
generated by producing p random bit-strings of fixed length n. If some knowledge
is available about potential solutions, it can be considered in generating the initial
population.

The design of individuals has an important influence on convergence of a GA. The

2.2 Genetic-based Search as a Global Search 25

representation of individuals can change the complexity of searching task and may cause
a GA to converge to a local solution [Rothlauf, 2006].

Fitness Function and Evaluation

When a population P (t) is initialized or generated from the previous one (i.e., P (t−1)),
individuals in P (t) are evaluated by the fitness function and rated with a numeric fitness
value. The fitness function evaluates the goodness of each phenotype. This function
estimates how close the proposed solution is to the optimal solution. For example, if the
problem is to approximate an unknown function given training examples of its input
and output, the fitness function could be defined as the accuracy of the individuals
over this training data. Fitness function guides the search process toward an optimal
solution. Genetic operators will then use the fitness values for selecting individuals of
the population P (t) and producing new ones to generate P (t + 1), as described next.

The purpose of GA is to optimize the fitness value of individuals in the population
using genetic operators. Without loss of generality, it can be supposed that the aim of
GA is to maximize the fitness. This is because, if the fitness function is f(x) and the
optimal solution is the minimal value, then we can substitute f(x) by g(x) = −f(x).
Therefore, the minimization problem converts to maximization problem. It can be
supposed also that f(x) always takes positive values. If it is not, then we can add a
positive constant C to the fitness to transfer it to be positive, assuming that −C ≤
min(f(x)) which is typical in practical cases. Although GA might not find an optimal
solution, it often succeeds in finding a solution with high fitness [Mitchell, 1997].

Generating a New Population

When the fitness of each individual in P (t) is determined, genotypes are ready for
producing the next generation by means of genetic operators. A simple GA applies
three operators: reproduction, crossover and mutation.

Reproduction: this operator selects individuals according to their fitness value and
copies them to a mating pool for further genetic operations. The mating pool has the
same size as the population. Reproduction tends to choose individuals in the population
that have a higher fitness value. Thus, some individuals are chosen more than once for
the mating pool. Individuals in the pool will be selected later, and their genes will be
altered using crossover and mutation to produce new individuals.

In classical GA, reproduction applies proportional selection for selecting individuals,
as follows. A biased roulette wheel is used for selection whose p slots are sized according
to the fitness values of individuals. The roulette wheel is spined p times and each time
an individual is selected and copied to the mating pool. So, the probability that an

26 CI: Difficulties and Solutions

individual Ii with fitness fitness(Ii) in a population of size p is selected is:

Pr(Ii) =
fitness(Ii)∑p

j=1 fitness(Ij)
,

that is, proportional to individual’s own fitness and the inverse of the total fitness of
the population.

The biased roulette wheel is simulated as follows. For each individual Ii, the value
qi, which is the value of cumulative distribution function for Ii (i.e., the probability that
an individual Ij where 1 ≤ j ≤ i is selected), is calculated as:

qi =
i∑

j=1

Pr(Ij) .

Then, for selecting each individual, a random number r between 0 and 1 is generated
according to a uniform distribution, and the individual is selected using the following
function:

Select(r) =

{
I1 if r ≤ q1

Ii if qi−1 < r ≤ qi

The selected individual is then copied to the mating pool and the selection is repeated
until p individuals are copied to the pool.

Note that, highly fit individuals are more likely to be selected and copied to the
mating pool and, therefore, will tend to produce more offspring, while worse individuals
are more likely to die.

The next two genetic operators are, then, applied to the mating pool to generate
new individuals (offspring).

Crossover Operator: when mating pool is prepared, individuals are selected for
crossover operation. The probability that each individual in the pool is selected for
crossover is pc, that is called crossover rate. This predefined parameter determines the
expected number of individuals that undergo crossover operation (i.e., pc × p). This
operator swaps segments (genes) of two selected individuals as parents to form two new
offspring as new individuals. It is performed as follows. First, for each individual in the
mating pool, a uniform random number r between 0 and 1 is generated. If r < pc, the
individual is selected for crossover. Then, selected individuals are randomly chosen to
form pairs of parents. Finally, segments of parents are exchanged, as described next, to
produce pairs of offspring, and parents in the pool are replaced by new pairs.

In classical GA, one-point crossover is used. For each pair of parents, this operator
randomly generates a number between 1 and n − 1 (where n is the length of individ-
uals) as the crossover point. Then, parts of parents, separated by crossover point, are

2.2 Genetic-based Search as a Global Search 27

exchanged to form two new individuals.

To illustrate how one-point crossover forms new individuals, suppose two parents
are:

I1 =< a1, . . . , an >

and
I2 =< b1, . . . , bn > .

Let the crossover point be i, where 1 ≤ i < n. The offspring would then be:

I ′1 =< a1, . . . , ai, bi+1, ..., bn >

and
I ′2 =< b1, . . . , bi, ai+1, ..., an > .

Then I1 and I2 in the pool are replaced by I ′1 and I ′2.

By crossover operator, new individuals inherit some characteristics of parents. The
intention is to exchange information between different potential solutions and achieve
construction of better individuals (i.e., exploitation of the search space).

Mutation Operator: after crossover, mutation is applied to the mating pool. This
operator generates a new individual by making a small change in a selected individual
of the mating pool. The probability that each individual in the pool is selected for
mutation is pm, that is called mutation rate. Similarly to crossover, for each individual
in the pool a random number between 0 and 1 is generated. If this number is less than
pm, the individual is selected for mutation operation. Thus, the expected number of
individuals that undergo mutation operation is pm× p. The operator changes the value
of a randomly selected gene (according to a uniform distribution) of the individual from
1 to 0 or vice versa. It aims to introduce some extra variability into the population and
provide more diversity (i.e., exploration of the search space).

When both operators have been applied to the mating pool, the resulting mating
pool is used as the new population P (t + 1).

2.2.2 Genetic Programming

It is not always convenient to handle problems with binary representations and classical
crossover and mutation [Davis, 1989]. GP algorithms have been developed to deal with
these problems. GP, like GA follows the idea of genetic-based search, but with more
complex representation of individuals and operations. Most genetic CI methods use GP
algorithms, as described in Section 2.3.

Individuals in GP are computer programs. Any abstract task can be thought of as
requiring discovery of a program or a function that produces some desired output for a

28 CI: Difficulties and Solutions

+

sin

cba

Figure 2.3: Parse tree representation of “a ∗ b + sin(c)”

particular input. Therefore, solving these tasks can be reformulated as a search in the
space of all possible computer programs to find the fittest program.

Programs are composed of functions and their arguments or terminals. Depending on
the problem, functions can be arithmetic operations, programming operations, logical
functions, and so on. Terminals are variables or constants. Koza [1991] represents
individuals in GP as parse trees. Operators form the internal nodes of the tree and
terminals are in the leaves of the tree. For example, an expression like “a ∗ b + sin(c)”
is represented as shown in Figure 2.3.

To apply GP algorithm to a particular problem, we need to define the set of functions
and terminals. The GP algorithm then uses a genetic-based search to explore the space
of programs that can be described using this set.

The fitness of each individual is measured in terms of how well it performs in the
particular problem environment. For many problems, it is measured by the error pro-
duced by the computer program. For example, when the aim is to classify examples,
the fitness can be the number of examples that the program classifies incorrectly.

Reproduction in GP is the same as in GA. But genetic crossover and mutation
are different as individual’s representation is not binary. Many approaches have been
introduced for implementing these operators. The most common approach, introduced
by Koza [1992], is as follows.

Crossover operator replaces a randomly chosen sub-tree of one parent by a sub-tree
from the other parent. Parental crossover points are selected randomly. Figure 2.4 shows
crossover operator applied to two parents. The mutation operator randomly selects a
node of the parent and replaces it by a new sub-tree as Figure 2.5 shows.

The performance of GP strongly depends on the representation of individuals, fit-
ness function and genetic operators. Research has been done to improve these factors,
yielding variations in GP design. Researchers tried to explain different designs of GP
by schema theory [Koza, 1992; O’Reilly and Oppacher, 1994; Poli and Langdon, 1998;
Langdon and Poli, 2002]. Though, empirical analysis shows that in spite of variations
in designing GP algorithms, they have potential to find the solution.

2.2 Genetic-based Search as a Global Search 29

+

sin

cba

+

b

/

ac %

ad

+

sin

c

ba

+

b

/

ac

%

ad

Parent 1 Parent 2

Offspring 1 Offspring 2

Figure 2.4: Crossover in GP

+

sin

cba

c+

da

Before

mutation

New substring

+

ba

After

mutation

c+

da

Figure 2.5: Mutation in GP

30 CI: Difficulties and Solutions

2.2.3 Why Genetic Search: Genetic-based Algorithms vs. Heuristic

Algorithms

A genetic-based algorithm may be viewed as a stochastic algorithm with a strange per-
formance. As explained in Sections 2.2.1 and 2.2.2, it starts from a random population,
applies genetic operators to copy individuals, swap and mutate fragments of individuals,
and eventually it is expected to find the solution. The schema theory [Holland, 1968;
1975; Michalewicz, 1999] explains how different components of a GA or GP guide these
methods to converge to optimal solution (see [Langdon and Poli, 2002] for a survey of
schema theories introduced for different designs of GA and GP). This section explains
why genetic-based search is preferred to other search methods.

A heuristic local search such as hill-climbing starts from a (sometimes randomly)
selected state of the search space. It evaluates the state by the fitness function (i.e.,
heuristic function), and looks at all neighbors of the state to select the neighbor with
the best value of the fitness function. Neighbors are next states from the current state
in the search path defined by the search strategy. If the best neighbor is better than
the current state, it replaces the current state. Then, the procedure is repeated until
no better state is found. Such algorithm might fail to find a solution by getting to a
state from which no better neighbors can be selected. In this case, the program may
be trapped by a local optimum. Local optimum is a state that is better than all its
neighbors, but is not the best. This happens when there are varieties in search space,
and many local optima exist. Finding a local optimum depends on selection of the
starting state, because the best state to select depends on the previous selections.

Beam search tries to solve this problem by keeping m best members of the search
space for future consideration. However, the possibility of missing the global solution
still exists if the beam size, m, is not large enough. A small beam size can reduce
the computational overhead, but it may rule out some promising solutions in the early
stages. Moreover, this method still depends on the selection of a single starting point.

The genetic-based search differs from these methods in moving through the search
space from one state to another. It starts from several states and jumps from one state
to another that is not necessarily in neighborhood. It initiates from a population of
randomly selected states instead of one state, and applies genetic operators to each
state to jump to another possibly distant state, stay in the same state, or die. Genetic-
based algorithms are also different from random algorithms. They are directed by a
stochastic strategy, while random algorithms are blindly looking for the solution. In
other words, genetic-based algorithms are a kind of multi-directional search.

Heuristic algorithms, therefore, are not effective when search space is complicated.
Genetic-based algorithms will have more chance to be successful in searching through
an intractable search space. As explained in Section 2.1.1, the search space of complex
learning problems with interactions has a lot of variety and many local optima. Thus, a

2.3 Genetic CI 31

genetic method can be more effective for these problems to find the interacting attributes
and construct a function that represents the interaction.

Another important property of genetic-based algorithms, which is of interest for a
CI system, is the ability to design individuals in the population in a way to adapt best to
the problem. It was explained in Section 2.1.2 that CI needs to construct more than one
feature at the same time and evaluate several features together. Individuals in a genetic
CI can be designed to represent sets of attributes and constructed features. Then, the
fitness function evaluates various features and attributes together as a single individual.
This property is necessary for FC when several interactions need to be discovered.

Nevertheless, the performance of genetic-based algorithms depend on a number of
factors including: the choice of genetic representation and operators, the fitness function,
user-defined parameters such as population size and crossover and mutation rates; yet,
they are preferred to heuristic local search methods when the search space is intractable
and complicated. If a proper representation language, genetic operators and fitness
function are provided, a genetic CI method has the potential to generate useful features.

It should be noted that genetic CI methods usually take longer to run than greedy
methods, which could be considered as a disadvantage when applied to large train-
ing data. However, the running time can be reduced by parallel processing. Most
part of the genetic-based algorithms such as fitness evaluation, crossover or mutation,
can be implemented as parallel procedures to be executed for several individuals si-
multaneously [Neri and Giordana, 1995; Anglano et al., 1997; Araujo et al., 1999;
Freitas and Lavington, 1997].

2.3 Genetic CI

Previous sections argued that when the search space is complex a global search such
as GA is more promising in convergence to optimal solution. Genetic methods have
been applied successfully to a variety of learning problems [DeJong et al., 1993; Fre-
itas, 2002]. Their success in achieving higher accuracy proves the advantage of genetic
search over greedy search. Several genetic CI methods have been designed for changing
the data representation by selecting the best subset of attributes and removing irrele-
vant attributes [Yang and Honavar, 1998; Hsu et al., 2002; Sierra and Corbacho, 2002;
Pappa et al., 2002]. However, when complex interactions exist, identifying interacting
attributes is not sufficient to ease learning; interactions still need to be highlighted by
constructing features (see Sections 1.1 and 3.2.1). There are few CI methods that use ge-
netic search strategy for FC. Their partial success in constructing useful features proves
the effectiveness of genetic-based search. This section reviews some of these methods
and then highlights their weaknesses.

Most genetic CI methods apply GP. They usually represent functions as parse trees

32 CI: Difficulties and Solutions

with algebraic operators in internal nodes and attributes in leaves (see Section 2.2.2)
and apply some restrictions to control the unnecessary growth of the tree. However,
these methods differ in aspects such as the definition of algebraic operators, the number
of constructed features in each individual, fitness function, and other GP parameters.

GCI is a CI method proposed by Bensusan and Kuscu [1996]. Each individual in
GCI represents a single function with domain specific operators. It is a preprocessing
CI; at the end, the best pair of individuals is added to the original set of attributes
as new features, and data samples are updated to proceed learning. This method is
limited to construct only two features. So, it cannot break down a complex high-order
interaction into several smaller features. GP in GCI uses a hypothesis-driven fitness
function. The accuracy of the hypothesis generated by a learner is used for evaluating
the fitness of each function. Thus, the convergence to optimal solution directly depends
on the performance of the learner.

Otero et al. [2003] apply a similar representation of GP individuals; however, uses
the fix set of arithmetic operators and two relational comparison “≤” and “≥” for
constructing features. The fitness function is a data-driven function using information
gain measures [Quinlan, 1983]. Thus, this method is faster than GCI, which uses a
learner as fitness.

GPCI [Hu, 1998b] is the genetic version of GALA (see Section 2.1). Instead of a
greedy search, it uses GP to find interacting attributes and construct features. Be-
fore starting GP, original attributes are Booleanized, that is transformed to Boolean
attributes (for details see [Hu and Kibler, 1996]). Each individual in GP represents a
single function. Operands are Booleanized attributes and operators are AND and NOT.
Information gain is used for evaluating the fitness of each function. GPCI does not apply
mutation operator and, therefore, suffers from lack of variation. Mutation is one of the
essential genetic operators, which provides random diversity in the population, while
crossover is used for construction and survival [Spears, 1992]. These two operators to-
gether keep the balance between exploration (diversity) and exploitation (construction).
Therefore, GPCI is expected to fail when the concept is complicated. Like GALA, this
method applies a divide and conquer strategy to produce more than one new feature.
After each performance of GP, the best individual, as a new feature, is used for splitting
data. Then a new and independent GP is performed for each division of data. At the
end of the procedure, one feature for each splitting of data exists which is added to the
original set of attributes. In fact GPCI performs GP several times to construct several
features. Yet, similarly to GALA, the whole process of constructing a set of features is
greedy. The construction of each feature depends on the feature previously constructed.
If the previous feature is not good enough it may misguide the whole process toward a
locally optimal solution.

To solve the problem of constructing several features at a time, Bhanu and Kraw-
iec [2002] designed two GP-based methods. In the first method, each individual rep-

2.3 Genetic CI 33

resents a set of functions instead of a single one. Thus, a combination of features are
constructed and evaluated together as an individual. The second method uses a co-
evolutionary system where several GPs are interacting with each other [Michalewicz,
1999]. The method maintains m populations each aiming to generate one feature. The
fitness of individuals in each population affects the behavior of other populations. The
whole system constructs m features, each generated by a GP in co-evolution. For both
methods C4.5 [Quinlan, 1993] is used as a hypothesis-driven fitness function. Data
are redescribed using new features and the accuracy of C4.5 is measured to evaluate
features.

Gabret [Vafaie and DeJong, 1998] also constructs and evaluates several features
simultaneously. It consists of two genetic-based modules: feature selection and feature
construction. Each module is performed separately and independently from the other.
The feature selection module uses GA to search the space of all possible subsets of
the given attribute set. Individuals are bit-strings representing subsets of attributes in
current set. The feature construction module, similar to previous methods, uses GP
with parse trees. Each individual in this module is a set of attributes and features.
Genetic operators aim to generate the best set of attributes and functions. Thus, the
classical GP operators are modified to be applied in two levels: feature-set level and
feature-construction level. For both modules, the fitness is the accuracy obtained by
C4.5 [Quinlan, 1993] on transformed training data using features and attributes in the
individual. The two modules are applied sequentially by starting from feature selection.
The best individual generated by each module is used as the given attribute set for
the other module. The sequence of running modules is terminated when no new set is
produced. When high interaction exists, the feature selection module cannot see the
interaction among primitive attributes due to using a hypothesis-driven fitness function.
Therefore, this module often excludes some relevant attributes from the search space
that should be used later for constructing new features. GAP [Smith and Bull, 2003]

applies a similar strategy.

The hybrid method of Ritthoff et al. [2002] applies GA for selecting attributes. Each
individual is a set of attributes and constructed functions. A new genetic operator is
defined. This operator arbitrarily constructs a feature from current sets of attributes
and a set of predefined constructive operators. Though features are constructed during
the GA search of good attributes the method does not apply any genetic operator or
search strategy in feature-construction level. Therefore, it explores the space of features
without having a strategy to guide the method toward constructing better features.
This method also uses a hypothesis-driven fitness function.

Larsen et al. [2002] apply GA to the X-of-N system of Zheng (see Section 2.1). They
did not use parse trees. Each individual is a set of attribute-value pairs representing
N conditions in X-of-N function (which returns the number of conditions that are true
among N conditions). So, this method is convenient for problems that match this

34 CI: Difficulties and Solutions

Table 2.1: Genetic CI methods
Method/ Fitness Num. of features Feature
Authors function constructed evaluation
GCI Hypothesis-driven Two one-by-one
Bhanu and Krawiec Hypothesis-driven Several simultaneously
GABRET Hypothesis-driven Several simultaneously
GAP Hypothesis-driven Several simultaneously
Ritthoff et al. Hypothesis-driven Several simultaneously
Otero et al. Data-driven One one-by-one
Larsen et al. Data-driven One one-by-one
GPCI Data-driven Several one-by-one

bias. Information gain ratio is applied as fitness function. Genetic operators aim to
change both attributes and values in attribute-value pairs of X-of-N to generate different
combination of pairs. When GA is finished the best individual is selected as new feature.

Table 2.1 summarizes the important characteristics of the reviewed genetic CI meth-
ods: the fitness function applied, and the number of features constructed and evaluated
by GA or GP. Most of these methods use a hypothesis generated by a learner to evaluate
constructed features in combination with other attributes. These methods add the new
feature to the set of attributes and redescribe data. Then, they apply a learner like C4.5
to measure the accuracy. This kind of hypothesis-driven evaluation relies on the perfor-
mance of the learner. When complex interaction exists in concept, a hypothesis-driven
fitness function may incorrectly assign a low or high fitness value to individuals. Hence,
it will mislead the genetic search to a local solution. Moreover, performing a learn-
ing system for evaluating each individual increases the execution time of the genetic
search. The computation time of fitness function is very important for the system’s
performance, since this function is called for every individual during many generations.

Alternatively a data-driven evaluation formula like entropy can be used. This ap-
proach, contrary to hypothesis-driven approach, only depends on data. In addition, its
computation time is less than a hypothesis-driven function. Muharram and Smith [2005]

performed experiments to evaluate the effect of different data-driven fitness functions
on performance of a genetic CI method. They used GP with parse trees as individuals,
using a fix set of arithmetic operators. They showed that the improvement in perfor-
mance is not significantly dependent on which data-driven fitness measure is used. This
illustrates the genetic-search robustness to this kind of fitness function.

Another problem of some genetic methods is the strategy applied to construct fea-
tures. Section 2.1.2 argued that when complex interaction exists among attributes, CI
needs to break down the interaction into several smaller features. Then, evaluating a
combination of features together is essential for a CI, as each attribute or constructed
feature alone may not be evaluated correctly. A genetic method provides the ability to
evaluate a set of constructed features as an individual. However, many CI methods do

2.4 Conclusion: a CI proposal 35

not exploit this capability of genetic search. Four methods reviewed in this section eval-
uate several features at the same time (see Table 2.1); though, Ritthoff et al.’s method
does not apply genetic operators to evolve features. Individuals in these methods usu-
ally represent a set of features. Bhanu and Krawiec have also used a co-evolutionary
system to construct and evaluate several features at the same time.

In addition to these problems, all genetic CI methods reviewed have the deficiency
of using an algebraic representation of features. As explained in Section 2.1.3, the use of
simple predefined algebraic operators makes the method applicable to a wide range of
problems. However, a complex feature is required to capture and encapsulate the inter-
action using simple operators. Using domain-specific operators may ease construction
of complex function; though, specifying these operators properly cannot be performed
without any prior information about the target concept. In addition, algebraic repre-
sentations may produce redundant solutions and, therefore, increase the size of search
space. Conversely, non-algebraic representation does not need any operator and is not
redundant. Moreover, it reduces the difficulty of constructing complex features. This
form of representation is more convenient when no knowledge is available about the
concept.

Considering the above problems a CI framework is proposed in the next section.
Chapter 3 introduces a new GA CI method using this framework.

2.4 Conclusion: a CI proposal

So far, this chapter has explained that a CI method aims to find subsets of interacting
attributes and functions defined over these subsets that encapsulate interactions. The
search space for finding interacting attributes and constructing functions is large and
has high variation when complex interactions exist in concept. Thus, a global search
is preferred to search this deceptive space. GA and GP are stochastic search methods
based on genetic inheritance, which can be used as global search techniques for CI
methods.

It was also explained that CI requires constructing and evaluating several features
together, since each feature by itself may not be evaluated correctly due to the complex
interaction in data. A genetic method allows simultaneously constructing and evaluating
several features represented as a single individual, which turns out to be necessary for
concepts with high complex interaction.

Two types of feature representation were made concrete, which are: algebraic and
non-algebraic. It was described that when no prior domain knowledge is available, it
is difficult to define appropriate operators; therefore, non-algebraic operator-free repre-
sentation is preferred to algebraic representation. Also algebraic representations may
produce redundant features and increase the size of search space and, therefore, be less

36 CI: Difficulties and Solutions

efficient. Moreover, a complex algebraic expression is required to capture and encapsu-
late complex interaction into a feature, while non-algebraic representation reduces the
difficulty of constructing complex features.

Some deficiencies of existing genetic CI methods were reviewed. First, most of these
methods apply a hypothesis-driven fitness function, which depends on the performance
of the learner applied. Moreover, using a learner as fitness slows down the performance of
the genetic CI. Thus, a data-driven fitness function is preferable. Second, it is necessary
to construct and evaluate several features simultaneously when complex interactions
exist among attributes. Some genetic methods reviewed in this chapter do not exploit
GA or GP to construct and evaluate several features as an individual. Third, genetic
CI methods often apply algebraic form of representation.

Considering the problems of genetic and non-genetic CI methods, a new framework
is designed. This framework applies non-algebraic feature representation and uses a
genetic search with data-driven fitness evaluation to construct features that represent
interactions. The space of functions defined over all subsets needs to be explored to
construct features. This space grows exponentially with the number of attributes (22N

functions for N input attributes in Boolean domain) and is difficult to explore. Searching
this space is computationally prohibited. To ease the searching task, the search space
can be decomposed into two spaces: SS the space of all subsets of attributes, and SFi

the space of all functions defined over a given subset of attributes Si (Figure 2.6). The
decomposition of the search space into two spaces allows a specific method to be adjusted
for each search space. This strategy divides the main goal of CI into two easier sub-
goals: finding the subset of interacting attributes (S-Search) and looking for a function
that represents the interaction among attributes in a given subset (FSi-Search).

As explained in Section 2.3, Gabret [Vafaie and DeJong, 1998] also divides the search
space into two spaces. It applies a feature selection module before and independently
from the feature construction module to filter out irrelevant attributes. However, when
high interaction exists among attributes, the feature selection module cannot see the
interaction among primitive attributes. Therefore, this module often excludes some
relevant attributes from the search space that should be used later for constructing new
features. The two tasks, detecting interacting attributes and discovering a function
that represents the interaction are related. The importance of attributes in subset Si

is not apparent unless a function fi, that outlines the interaction, is defined over the
proper subset of attributes. Hence, to guide S-Search to find a relevant subset Si, it is
necessary to find and highlight the relation among attributes by FSi-Search.

Therefore, the two tasks, S-Search and FSi-Search, should be integrated together
to reflect the effect of each search space on the other. Based on this idea a framework
is illustrated in Figure 2.7. Genetic search is used for S-Search to find interacting
attributes. Each subset Si generated in S-Search is evaluated by a function that is
constructed by FSi-Search over the subset. Non-algebraic form is used for representing

2.4 Conclusion: a CI proposal 37

{x1, ..., xn}

...

Ø

...

fi

SFi : Space of

functions

defined over

subset Si

Si

The function

that represents

interactions

Subset of

interacting

attributes

SS: Space

of subsets

of attributes

Figure 2.6: The decomposed search space

constructed functions. This form of representation permits inducing functions directly
from data instead of searching for them (see Sections 3.1.1 and Section 4.2.1). FSi-
Search analyzes training data to construct a function over the given attribute subset.
The constructed functions are then evaluated to measure the goodness of the generated
subsets of attributes in S-Search. Thus, each subset is mapped into a function by FSi-
Search and the goodness of a subset is determined by the function defined over it. If
FSi-Search finds a promising relation among given attributes represented by a function,
the subset of attributes is considered as a good subset. By this strategy the link between
two tasks, S-Search and FSi-Search, and their effects to each other are maintained, while
improving each of them.

This framework is a major contribution of this thesis. Next chapter introduces
DCI, an implementation of a method based on the proposed framework. This method
constructs and evaluates one feature at a time. Later, Chapter 4 proposes a more

Set of attributes

S-Search

FSi-Search

subset of

attributes Si

best function

Training data

Updated data using

constructed functions

Figure 2.7: The decomposition framework for genetic CI

38 CI: Difficulties and Solutions

complete method, MFE2/GA, that allows simultaneous construction of more features.
The new method fulfils all the requirements discussed in this chapter. MFE2/GA is
theoretically and empirically compared with a relevant CI method in Chapter 5 and
improved in Chapter 6.

Chapter 3

DCI: Decomposed Constructive

Induction

Chapter 2 reviewed some CI methods and highlighted their deficiencies when they are
applied to concepts with complex interactions. Most CI methods apply a greedy search
to change the representation of hard concepts. Therefore, they suffer from the local
optima problem when the search space is large and with high variation. When concept
is complex because of the interaction among attributes, the search space for constructing
new features has more variation. The CI method needs a global search strategy such as
GA to skip local optima and find global optimal solutions. Some recently introduced CI
methods based on genetic search were reviewed. Their partial success in constructing
useful features indicates the effectiveness of genetic-based search for CI. However, these
methods still have some limitations and deficiencies: namely, the use of a hypothesis-
driven fitness function, applying algebraic feature representation, and constructing and
evaluating one feature at a time (see Section 2.3).

To overcome deficiencies of current CI methods, DCI (Decomposed Constructive In-
duction) was proposed [Shafti and Pérez, 2003a]. This primary approach aims to evalu-
ate the utility of genetic search, data-driven fitness function, and non-algebraic feature
representation when a complex interaction exists among attributes. This method con-
structs only one feature. Therefore, it fails to improve learning when several interactions
exist and more than one feature is needed. Later, this approach will be extended by a
multi-feature construction method introduced in Chapter 4.

There are important factors that should be defined carefully when designing a
genetic-based search, including individual’s representation, genetic operators, and fit-
ness function. These determine the behavior of the genetic search in converging to
optimal solution. Section 3.1 explains the design of DCI and details these factors. Sec-
tion 3.2 describes experiments performed to evaluate features constructed by DCI. This
section also empirically compares this method with relevant greedy CI methods. Last

39

40 DCI: Decomposed CI

section sums up the results and highlights problems of the proposed method, which will
be tackled in Chapter 4 by introducing a new CI method called MFE/GA.

3.1 DCI’s Design

DCI is a preprocessing CI method. It receives original attributes and training data
set and constructs a function that represents the interaction among attributes. This
function is then added to the original attribute set, and data samples are redescribed
to proceed learning.

DCI needs to search for a function that highlights interactions. The space of all
functions defined over all subsets of attributes grows exponentially with the number of
attributes. As shown at the end of previous chapter, this space can be decomposed into
two spaces: SS the space of all subsets of attributes, and SFi the space of all functions
defined over a particular subset (see Figure 2.6). Similarly, the goal of FC is broken
down into two subgoals: searching subset of interacting attributes and finding a function
that defines the interaction, S-Search and FSi-Search respectively. These two tasks are,
however, not independent and should be integrated together to reflect the effect of each
search space on the other, as illustrated in Figure 2.7. Since the space of subsets of
attributes is large and has several local optima, S-Search in DCI applies genetic search,
more precisely, GA. Each attribute subset generated in S-Search is given to FSi-Search
for further proceeding. FSi-Search finds the best function over a given subset through
analyzing the training data and inducing the relation among given attributes. The
induced function is then evaluated to determine the fitness of the subset in S-Search.

Details about DCI are given in the next sections. Section 3.1.1 describes individual’s
representation in S-Search. This section also explains how FSi-Search is performed for
each generated individual. Sections 3.1.2 and 3.1.3 describe fitness function and genetic
operators respectively. Section 3.1.4 details about GA parameters and explains the DCI
algorithm as an integration of S-Search and FSi-Search.

3.1.1 Individual’s Representation

S-Search uses GA to find the subset of interacting attributes. Each individual in the
GA is an attribute subset represented by a bit-string of length N , where N is the
number of original attributes. Each bit represents presence or absence of an attribute
in the subset. For instance, if the original attribute set is S = {x1, x2, . . . , x12}, then
an individual such as Ind i = 〈001000100100〉 indicates that only the third, seventh,
and tenth attributes are included in the subset; that is, Si = {x3, x7, x10}. This kind
of representation allows the use of a classical GA. The first population is initialized by
generating p (i.e., the population size) random bit-strings of length N .

Each individual as a subset is associated with a function. FSi-Search, the FC module

3.1 DCI’s Design 41

subsets

features

su
b

se
t

subset
evaluation

High-level
Phenotypes

Low-level
Phenotypes

bit-strings
genetic

operators
Genotypes

b
it

-s
tr

in
g fitn

ess

feature
evaluation

FSi-Search

S-Search

fitn
ess

Figure 3.1: Low-level and high-level phenotypes in DCI

in DCI, aims to capture and encapsulate the relation among given attributes in a feature
fi defined as a function over Si, as explained next. Thus, each individual Si actually
represents a function fi. Bearing in mind that the constructed function is then used for
determining the fitness of the subset as a GA individual, FSi-Search has the main role
in guiding the method toward optimal solution.

Note that FSi-Search can be viewed as a function F : SS → SFi that maps each
subset onto a feature; that is, for each subset there is one and only one feature. Each bit-
string as a genotype represents a subset Si, which in turn represents a feature fi. In fact,
GA in DCI has two levels (Figure 3.1): a lower level, where genotypes are mapped onto
attribute subsets as low-level phenotypes; and a higher level, where subsets are mapped
onto features as high-level phenotypes. The fitness of each genotype is determined by
evaluating corresponding phenotypes in both levels (for details about fitness function
see Section 3.1.2). During mutation and crossover operations over genotypes, subsets
(low-level phenotypes) are evolved to generate better ones. Meanwhile, the integration
of FSi-Search into S-Search provides the ability to link search spaces so that if a subset
is changed, the associated function (high-level phenotype) is also changed. Therefore,
GA not only is used for attribute selection in the lower level, but also indirectly evolves
functions in the higher level to construct better ones. The mapping of genotypes onto
low-level phenotypes, and then low-level phenotypes onto high-level phenotypes allows
the decomposition of the FC task into two easier tasks: finding interacting attributes
and discovering interactions.

42 DCI: Decomposed CI

01110

11100

00010

01000

01011

1

0

1

0

11

100

Classx1

1

x2 x3 x4

?01

?11

010

10 0

x1 x2 fi

Si={x1, x2}

fi= < 1 , 0 , 0 , 0 >

1

0

?

Training

Samples
Extracted

Function

gap

Figure 3.2: Extracting function fi, defined over Si, from training data in DCI: for (x1, x2) =
(0, 0) and (x1, x2) = (0, 1) the majority labels are ‘1’ and ‘0’ respectively. No sample in data
matches with (x1, x2) = (1, 0) and there is no majority label for samples that match with
(x1, x2) = (1, 1). The outcomes of fi for these two tuples are determined stochastically with the
probability of 0.6 for ‘0’ and 0.4 for ‘1’.

The proposed representation of individual as genotype and two levels of phenotypes
also permits the use of GA instead of GP, because genetic operators are performed over
genotypes which are bit-strings (while they indirectly evolve functions). As described
in Section 2.3, most genetic CI methods use GP with algebraic feature representation,
often parse trees, which adds difficulties to FC. The proposed representation is expected
to reduce problems related to FC.

FSi-Search constructs functions by extracting the relations among attributes from
data. For any given subset Si = {xi1, . . . , xim}, it defines a function by assigning a class
label (as outcome of the function) to each tuple in Cartesian product xi1 × . . . × xim

(as input of the function). FSi-Search analyzes data to induce the tuples’ labels. For
each tuple tj , that represents the jth combination of attribute values in the Cartesian
product, the label is determined by the majority label in set of examples in training
data that match with this combination of attribute values. If there is a gap, that is,
there is not such a majority or no example in data matches with this combination of
attributes, then FSi-Search generalizes the label from all training data. For each gap
a label is selected stochastically according to label’s probability ratio in training data.
When all tuples’ labels are determined, then the function fi is represented by a vector of
values that shows the outcome of the function for each combination of attribute values
in subset Si. As an example, see Figure 3.2, which shows a training data set and a
function defined over subset Si = {x1, x2} and induced from data. Once labels are
stochastically selected for gaps, fi can be defined as fi = 〈1, 0, 0, 0〉.

Note that the proposed method with non-algebraic representation does not search
for a function, but directly constructs the function by analyzing data, inducing a relation
among given attributes, and generalizing the relation with its bias (labeling gaps).

3.1 DCI’s Design 43

3.1.2 Fitness Function

An attribute subset, as an individual of the GA population, is assigned a fitness value
estimated by means of the fitness of the function defined over attributes and the number
of attributes participating in constructing the function (attributes in the subset). If the
fitness of the function fi defined over Si is Fitness(fi), then the fitness of individual
Ind i is calculated as:

Fitness(Ind i) = Fitness(fi) + ε× |Si|
|S| , (3.1)

where |Si| is the size of attribute subset Si, and |S| is the size of the original set of
attributes. GA aims to minimize this formula. The first term of the formula uses the
entropy concept [Quinlan, 1993; Shannon, 1948] as explained next. This term has the
major influence on fitness value of the individual. The last term estimates the complexity
of the new feature, by measuring the amount of attributes participating in the feature
construction. It is multiplied by ε = 0.01 to have effect only when two subsets Sj and
Sk perform equally well in FSi-Search; that is, Fitness(fj) = Fitness(fk). Therefore,
between two equally good subsets, this formula assigns a better fitness value to the
smaller.

The fitness of the constructed function can be determined by a hypothesis-driven or
a data-driven evaluation. Recalling, from Section 2.3, the problem of hypothesis-driven
fitness evaluation, a data-driven evaluation is preferred. The fitness of the new feature
fi, for the training data T , is measured by the following formula:

Fitness(fi) = Entropy(T |fi) , (3.2)

where Entropy(T |fi) is the conditional entropy [Quinlan, 1986] defined as follows:

Entropy(T |fi) =
∑

v∈Values(fi)

|Tv|
|T | Entropy(Tv) . (3.3)

Tv in this formula is the subset of data for which the outcome of the feature fi is v. |T |
and |Tv| are the number of samples in T and Tv. Entropy(Tv) is the average amount of
information needed to identify the class of a case in Tv, calculated as:

Entropy(Tv) = −
k∑

j=1

freq(Cj , Tv)
|Tv| × log2

(
freq(Cj , Tv)

|Tv|
)

, (3.4)

where freq(Cj , Tv) is the number of cases in Tv belonging to class Cj , and k is the
number of classes.

Conditional entropy (Formula 3.3) measures amount of uncertainty produced by the
new feature fi. GA tries to minimize this amount. This measure does not consider the

44 DCI: Decomposed CI

complexity of the new feature. If only this measure is taken into account in Formula 3.1,
features with small entropies are constructed. These features classify training data
perfectly. But when they are evaluated on test data, they may produce errors. This
is because GA does not consider the complexity of functions in fitness evaluation; and
therefore, it constructs large functions that overfit training data and produce errors on
test data. The second term in 3.1 is added to avoid overfitting and force GA to prefer
small features to large features.

When fitness of individuals is measured, genetic operators are applied to generate a
new population of attribute subsets.

3.1.3 Genetic Operators

DCI uses the following genetic operators: reproduction, crossover, and mutation. These
operators are slightly different from those used in the classical GA of Section 2.2.1.

Reproduction

Section 2.2.1 explained that in a classical GA, genetic operators replace the whole
population by a new one. This approach is called non-overlapping population model,
which is useful for optimization problems. However, for machine learning and FC,
it is more appropriate to apply overlapping population model; that is, to maintain
good solutions while better solutions are constructed during each generation [Goldberg,
1989]. This approach, contrary to the classical approach, only replaces a few individuals
in the population. If the population size is p, the new population contains m most fit
individuals of the previous population (where m 6= p) and p−m individuals are replaced
using crossover and mutation operations.

Overlapping approach is used in DCI. First, reproduction operator copies m best
individuals to the next population. Then, it selects p−m individuals and copies them
to mating pool for mutation and crossover operations. Proportional selection is used
for choosing individuals (see Section 2.2.1).

Crossover and Mutation

When individuals are copied to the mating pool, crossover and mutation is applied.
The crossover operator, explained in Section 2.2.1, is the simplest crossover called one-
point crossover. It exchanges substrings (segments) of parents. DCI uses uniform
crossover [Spears and DeJong, 1991], which is a generalization of one-point crossover.
The uniform crossover exchanges bits of parents rather than substrings. For each bit
in the first offspring, this operator decides with a probability pu whether this bit is
inherited from the first parent or the second parent. The second offspring inherits from

3.1 DCI’s Design 45

the other parent for that bit. As an example consider two parents are:

parent1 =< a1, a2, a3, a4, a5, a6, a7, a8 >

and
parent2 =< b1, b2, b3, b4, b5, b6, b7, b8 > .

Then, two offspring may be generated as follows, where first, third, forth, and sixth bits
of the first child are from the first parent, and the rest are from the second parent; and
vice versa for the second child:

child1 =< a1, b2, a3, a4, b5, a6, b7, b8 >

and
child2 =< b1, a2, b3, b4, a5, b6, a7, a8 > .

This form of crossover provides the ability to explore the search space in an unbiased
manner, which turns out to be more useful for large search spaces [Spears and DeJong,
1991; Spears and Anand, 1991]. To illustrate this point, assume that two parents are:

parent1 =< 0, 0, 0, 0, 0, 0, 0, 0 >

and
parent2 =< 1, 1, 1, 1, 1, 1, 1, 1 > .

One-point crossover can produce seven different children for seven crossover points.
Uniform crossover can produce any child anywhere in the search space. So, the uniform
crossover produces more diversity. However, for problems where the relative location
of bits is important, the uniform crossover may destroy the good characteristics of par-
ents by exchanging bits. In DCI, the relative location in the string is not important.
Therefore, the uniform crossover will not have disruptive effect. So, it provides both
exploitation (constructing offspring with characteristics similar to parents) and explo-
ration (diversity) in the search space. The pu parameter controls the balance between
exploration and exploitation. pu À 0.5 or pu ¿ 0.5 results in a child more similar to the
first or second parent respectively (a small jump in search space). pu ' 0.5 produces
a child that inherits almost half of one parent and half of another (a bigger jump in
search space). For DCI this parameter is set to 0.6, which is the default value in the
GA library [Levine, 1996] used for implementation.

Mutation in DCI is similar to the one in the classical GA (see Section 2.2.1). The only
difference is that more than one bit may be changed by this operator. The probability
that a bit is negated by mutation is equal to the reciprocal of the bit-string length.

46 DCI: Decomposed CI

Table 3.1: Modified parameters of PGAPack for DCI
GA Parameter New Value
Population Size (p) 50
Max Iteration 100
Max no Change Iter. 25
Max Similarity Value 80%
No. of Strings to be Replaced (p−m) 46
Selection Type Proportional
Crossover Type Uniform
Mutation and/or Crossover And

3.1.4 DCI’s Algorithm

Figure 3.3 summarizes DCI’s algorithm. PGAPack library [Levine, 1996] is used for
implementing GA, with default parameters except those indicated in Table 3.1 (see Ap-
pendix B for default parameters of PGAPack). In this table “Max Iteration”, “Max
no Change Iter”, and “Max Similarity Value” determine three stopping conditions
as termination criteria of GA. The first condition is when a maximum number of iter-
ations, “Max Iteration”, is reached. The second one is when no change in the best
solution is found in a given number of iterations, specified by “Max no Change Iter”.
The last one is when a percentage of individuals in the population, defined by “Max
Similarity Value”, have the same fitness value. “No of Strings to be Replaced”
determines the mating pool size. “Selection Type” specifies how individuals are se-
lected for reproduction, which is set to proportional selection that is the most common
form in classical GA (Section 2.2.1). The last parameter is used to decide whether in-
dividuals in mating pool undergo both crossover and mutation (And) or undergo either
crossover or mutation and not both of them (Or). It is set to “And” that is similar to
what in classical GA is traditionally used; after applying crossover operator, the pair of
offspring undergoes mutation. For reproducibility purposes the PGAPack random seed
is initialized to one.

When any of the three stopping conditions is fulfilled GA is terminated. Then,
DCI adds the constructed function associated with the best GA’s individual (attribute
subset) to the original set of attributes and updates data using the new set of attributes.
The updated data are then given to a standard learner for learning.

3.2 Experiments

The following sections describe experiments conducted to evaluate DCI and compare
it with other methods. Section 3.2.1 explains primary experiments performed to em-
pirically evaluate the performance of DCI in terms of accuracy. The purpose of these
experiments is to examine whether the feature that is constructed by DCI improves the

3.2 Experiments 47

DCI
Receives: training and test data and the set of N original attributes
Returns: a new representation of training and test data

1. call S-Search.

2. add the output of S-Search as a new feature to the set of original attributes,
and redescribe training and test data.

3. return new attribute set and data.

S-Search
Receives: training data and a set of N original attributes
Returns: a new feature

1. Generate a population of bit-strings of length N each representing an at-
tribute subset Si.

2. For each individual Si, call FSi-Search, assign the function generated by
FSi-Search to Si, and calculate the fitness according to Formula 3.1.

3. Unless predefined stopping conditions are achieved, apply genetic operators,
generate a new population, and go to step 2.

4. Return the function defined over the best individual.

FSi-Search
Receives: training data and subset Si

Returns: fi

1. Given the subset Si, consider Cartesian product of attributes in Si and for
each tuple t in the product do:

(a) if there is a majority label in samples that match with t, assign this
label to fi(t).

(b) if there is no such a majority or there are no training samples that
match t, assign a class label to fi(t) stochastically, according to the
class distribution in the training data.

2. return fi

Figure 3.3: DCI, S-Search, and FSi-Search algorithms

48 DCI: Decomposed CI

Table 3.2: Comparing average accuracies of DCI and standard learners
Concept Relev. Irrel. Maj C4.5 C4.5-Rules C4.5 C4.5-Rules DCI +

atts atts % Org. Atts Org. Atts Rel. Atts Rel. Atts C4.5

∧(P1,4, P3,6) 6 6 75.0 72.1(3.6) 70.9(2.9) 87.9(5.5) 94.4(4.8) 97.7(2.2)

∧(P1,6, P3,8) 8 4 75.0 72.2(3.3) 69.0(3.5) 73.2(2.4) 69.7(2.4) 81.7(1.3)

∧(P1,3, P3,5, P4,6) 6 6 87.5 87.4(1.5) 85.1(3.2) 91.7(3.6) 96.4(2.8) 99.2(1.4)

∧(P1,4, P2,5, P3,6) 6 6 87.5 87.5(0.1) 84.2(2.0) 90.6(2.5) 95.8(3.9) 99.4(0.8)

∧(P1,4, P3,6, P5,8) 8 4 87.5 87.5(0.1) 84.2(3.0) 87.5(0.1) 85.4(1.8) 89.2(1.2)

∧(P1,6, P2,7, P3,8) 8 4 87.5 86.5(2.2) 83.9(2.7) 87.0(1.6) 86.2(1.9) 89.0(1.1)

Average 7 5 83.3 82.2(1.8) 79.6(2.9) 86.3(2.6) 89.0(2.9) 92.7(1.3)

performance of a standard leaner such as C4.5 [Quinlan, 1993] in presence of complex
attribute interaction. Section 3.2.2 empirically compares the method with other CI
methods to highlight advantages and deficiencies of DCI.

Synthetic concepts with complex interactions are used for experiments. These con-
cepts represent sources of difficulty that appear in real-world domains when primitive
attributes are used for representing data. The use of synthetic concepts allows analyz-
ing system’s behavior deeply before moving on to try to solve real-world problems with
difficulties similar to those exemplified by these synthetic concepts.

3.2.1 Empirical Evaluation

For empirical analysis of DCI, synthetic concepts are defined over a set of twelve Boolean
attributes {x1, x2, . . . , x12}. Appendix A gives the definition of each concept. These
concepts are conjunctions of two or three parity functions. Parity is an extreme case of
complex attribute interaction where each class label is scattered across the data space
(Section 1.1).

Columns one to four of Table 3.2 give a summary of these concepts. The numbers
of relevant and irrelevant attributes for each concept are shown in columns 2 and 3,
respectively. All relevant attributes participate in interactions. The main characteristic
of these concepts is that there are shared attributes in concepts; that is, there are some
attributes that participate in more than one complex interaction, which makes the
concept more difficult to learn by greedy methods. For example, x3 and x4 in ∧(P1,4,

P3,6) are shared by P1,4 and P3,6. In all concepts some irrelevant attributes exist. The
existence of irrelevant attributes makes concept difficult since relevant attributes are
easily confounded with irrelevant attributes. The forth column shows the majority
class percentage as a trivial baseline performance to compare accuracy with.

The accuracy of standard learners are compared before and after adding constructed
features to the set of original attributes. C4.5 and C4.5-Rules [Quinlan, 1993] are used
as standard learners, with default parameter’s values. Each experiment is run 10 times
over 10 sets of shuffled data and the average accuracy is calculated. For each trial, 5%
of all 212 data are used for training and the rest (95%) are kept unseen as test data for

3.2 Experiments 49

evaluating predictive accuracy.

Three sets of experiments are performed over each concept. For the first set of
experiments C4.5 and C4.5-Rules are performed over original training data set and the
accuracies are measured using the 95% unseen data as test data. The average accuracies
of 10 runs are shown in the fifth and sixth columns of Table 3.2. The second set of
experiments intends to ease the learning task for the learners. C4.5 and C4.5-Rules
are forced to only use attributes that are manually marked as relevant. The purpose
is to evaluate the utility of a perfect preprocessing feature selection for learning these
concepts. The results are shown in columns 7 and 8. The last set of experiments is
performed using DCI to construct a feature. Then, the new feature is added to the set of
original attributes, data are redescribed, and the predictive accuracy of C4.5 [Quinlan,
1993] on modified 95% test data is measured. The result is presented in the last column
of Table 3.2. For all experiments results for C4.5 are obtained after tree pruning since for
all concepts the average accuracy with pruning was better than those without pruning.
Numbers between parentheses in the table indicate standard deviations.

As it can be seen from the table, the accuracy of C4.5 and C4.5-Rules using original
attribute set is lower than or equal to the majority class percentage for all concepts.
Thus, if data are classified using the label of majority class, a better result is obtained,
which means the learners do not learn the concepts. This shows the complexity of these
concepts for standard learners.

Forcing C4.5 and C4.5-Rules to only consider relevant attributes helps them to
achieve higher accuracy compared to the results in columns 5 and 6. However, the
average accuracies for three of six concepts is still not better than the majority class
percentage. This implies that guiding the learner to only consider interacting attributes
does not help it to learn these complex concepts.

Comparing results in the last column with those in columns 7 and 8 shows that fea-
tures constructed by DCI result in higher accuracies. This means FC improves accuracy
over the standard learners preceded by a perfect feature selection phase. DCI outper-
forms other accuracies for all concepts with a significant level of 0.01, except for concept
∧(P1,4, P3,6) that it outperforms C4.5-Rules preceded by manual feature selection with
a significant level of 0.1 (using t-distribution test).

Two importance are concluded from these primary experiments. First, even if a
feature selection method successfully detects all interacting attributes, still the under-
lying relation among attributes and the target concept is opaque to the learner. FC is
needed to abstract the interactions into new features and highlight them to the learner.
Second, the results show that the new genetic method considerably facilitates learning
these concepts by constructing new features. However, it is necessary to compare this
method with other CI methods.

50 DCI: Decomposed CI

3.2.2 Empirical Comparison

This section describes experiments performed to empirically compare DCI with other CI
methods. The purpose is to evaluate the utility of two main characteristics of DCI which
are genetic-based search and non-algebraic representation of features. DCI is compared
with methods that do not have at least one of these two characteristics. These methods
are Fringe, Grove and Greedy3 [Pagallo and Haussler, 1990], LFC [Ragavan and Rendell,
1993], and MRP [Pérez and Rendell, 1995]. All these methods are greedy CI methods.
Fringe, LFC and MRP are briefly studied in Chapter 2. Grove and Greedy3 evaluate
attributes individually to select the best attribute to be incorporated into the current
feature under construction. Grove constructs features to generate a decision list, while
Greedy3 aims to construct a DNF expression. All the methods apply an algebraic
form for representing features except MRP. This method applies backward elimination
(Section 2.1.2) to find subset of interacting attributes. For each subset Si it constructs
a feature that is represented by all positive or negative tuples obtained by projecting
data onto attributes in Si. Similar to DCI, this method extracts the label of each tuple
from data. But different criteria are used by each method. Results are also compared
with C4.5 and C4.5-Rules using original attribute set as the baseline performance.

Since the implementation of the greedy CI methods were not available, same experi-
ments as those reported in [Perez, 1997] are performed over same synthetic concepts and
the accuracy values are compared. All concepts are defined over 12 Boolean attributes
and consist of complex interactions (see Appendix A for definition of each concept). The
main point about these concepts is that their underlying interactions are too complex to
be represented by an algebraic form. However, they can be represented by non-algebraic
representation easily regardless of how complex they are. A summary of these concepts
is given in Table 3.3. Number of relevant and irrelevant attributes and the majority
class percentage for each concept are shown in columns 2, 3, and 4, respectively. Con-
cepts are grouped according to the number of complex interactions in the concept and
ordered by the number of relevant attributes. The top part of table includes concepts
with one complex interaction and the bottom part includes those with two or more
complex interactions.

Experiments are similar to those in Section 3.2.1, but this time, each trial is run 20
times instead of 10 times, over 20 sets of shuffled data to make the results comparable
to those in [Perez, 1997]. For each experiment 5% of all 212 data are used for training
and the rest are kept unseen as test data for final evaluation.

The fifth column of Table 3.3 shows the accuracy of C4.5 using original attribute set.
Column 6 represents the best results among C4.5-Rules, Fringe, Grove, Greedy3 and
LFC as reported in [Perez, 1997]. The letters cr, fr, gr, g3, and lf indicate that the
best competitor is C4.5-Rules, Fringe, Grove, Greedy3 or LFC respectively. Since MRP
applies non-algebraic representation, comparing its accuracy with DCI is challenging.

3.2 Experiments 51

Table 3.3: Comparing average accuracies of DCI with other CI methods on 5% training data
Concept Relev. Irrel. Maj C4.5 Prior best MRP DCI +

atts atts % Org. Atts result C4.5

P1,4 4 8 50.0 60.7(9.3) 99.6 fr 100(0.0)/ 100(0.0)/

gw5,8 4 8 68.8 100(0.0)/ 100 g3/ 100(0.0)/ 100(0.0)/

sw5,8 4 8 62.5 71.6(9.0) 100 fr/ 100(0.0)/ 100(0.0)/

mx6c6,7 4 8 50.0 87.1(5.8) 98.7 fr 100(0.0)/ 100(0.0)/

mj4,8 5 7 50.0 96.0(2.8) 99.0 gr 99.8(0.7)/ 99.7(1.5)

P1,6 6 6 50.0 48.8(1.2) 51.1 fr 97.0(1.6) 98.0(1.8)/

mx6c5,8 6 6 50.0 71.1(2.3) 76.4 fr 96.4(3.7) 97.8(1.8)/

mj3,9 7 5 50.0 80.4(1.4) 86.6 gr 85.2(5.1) 89.1(2.7)/

nm4,5,7 7 5 56.3 70.6(2.8) 74.1 fr 86.7(7.6) 89.9(1.6)/

rk5,7 7 5 83.6 81.3(1.6) 89.9 gr 91.4(4.7) 95.1(1.7)/

rk6,7 7 5 94.5 94.1(0.7) 95.6 gr 96.8(2.3) 98.3(1.3)/

P1,8 8 4 50.0 48.5(0.2) 49.4 cr 75.1(1.4) 76.7(2.7)/

Average 6 6 59.6 75.9(3.1) 85.0 94.0(2.3) 95.4(1.3)/

cp5,8 4 8 75.0 78.4(7.5) 100 fr/ 100(0.0)/ 100(0.0)/

mx6 6 6 50.0 94.9(3.1) 100 fr/ 96.1(7.3) 97.8(2.1)

cdp3,11 6 6 62.5 81.3(8.2) 98.4 fr/ 97.3(3.9) 97.6(1.6)

cp4,9 6 6 75.0 73.1(2.7) 86.1 fr 99.0(1.6)/ 97.2(1.8)

cp3,10 8 4 75.0 73.1(2.6) 73.4 cr 88.9(1.2)/ 81.6(1.6)

cdp2,10 9 3 62.5 66.0(9.8) 78.1 fr 92.0(6.5)/ 67.7(2.0)

P3,6 ∨ (2) 10 2 61.7 59.4(5.0) 70.5 fr 97.1(2.9)/ 57.9(2.2)

P3,6 ∨ (3or2) 10 2 77.3 75.5(2.2) 75.1 fr 80.4(6.0)/ 69.5(2.2)

P3,6 ∨ (3) 10 2 65.6 60.9(2.9) 68.0 fr 95.9(4.4)/ 59.3(1.7)

cdp1,9 12 0 62.5 56.6(4.9) 65.5 cr 81.3(3.0)/ 56.4(2.5)

Average 9 3 70.5 73.8(4.0) 80.8 91.2(3.9)/ 76.8(1.8)

For this reason the accuracy values of MRP are separated from other greedy CI methods
and shown in column 7. Features constructed by DCI are evaluated by running C4.5
and obtaining its predictive accuracy on modified test data. This result is shown in
the last column of table. Numbers between parentheses indicate standard deviations.
The highest average accuracy is marked by / for each concept. Bold means that with
a significant level of 0.02 this accuracy is the best between MRP and DCI, using t-
distribution test.

It can be seen from Table 3.3 that for both groups of concepts when few attributes
are involved in interactions most CI methods, including DCI, improve accuracy. When
the ratio of relevant attributes to total number of attributes is low (less than 1

2), concept
is easier to learn by a CI method because there is enough data to see the whole structure
of the interaction in concept. Although only 5% of all 212 data, that is 205 samples, are
available for training, there are enough replications of the relation among attributes in
data. For instance, if the number of interacting attributes is 4, a sample set of 24 = 16
cases can be enough to represent all the interaction. Since 205 samples are provided
for learning, there is a high probability that the relation is repeated in data several
times. This replication makes the interaction more apparent for a CI method. Hence,
CI easily discovers the structure of the relation and learns the concept. The important
point here is that MRP and DCI obtain 100% accuracy for all concepts with four
relevant attributes. This is because these methods apply non-algebraic representation

52 DCI: Decomposed CI

and extract functions from data. They easily see the replication of the interaction in
data and induce a non-algebraic function that represents the interaction. Other CI
methods which apply algebraic representation sometimes cannot construct functions
correctly since the algebraic representation of these interactions is complex and more
difficult to construct.

When the number of interacting attributes is increased, the accuracy of most CI
methods is scaled down. MRP slightly gives better accuracy on concepts with high
number of interacting attributes comparing to CI methods of column 6 because of its
non-algebraic representation of features. DCI outperforms MRP for almost all concepts
of the top part of Table 3.3. This shows that when one complex interaction exists among
attributes, DCI successfully finds interacting attributes and constructs a function over
them to encapsulate interaction into a new feature and improve accuracy. The higher
accuracy of DCI comparing to MRP in almost all such concepts shows the advantage of
using GA for finding subset of interacting attributes. MRP applies backward elimination
search. As explained in Section 2.1.1, this form of one-by-one attribute elimination is
not appropriate when complex interaction exists among several attributes since the
method may lead to local optima for the high variation in the search space. As it can
be seen from table, in cases that MRP achieves lower accuracy than DCI, the standard
deviation is usually high, which indicates that in some trials of 20 experiments, this
method could not find the proper subset of interacting attributes due to its local search.
The global search of DCI reduces the local optima problem. For this reason, when the
number of interacting attributes is high and the search space has high variation, the
accuracy of DCI is better than MRP and other methods. In fact, in all experiments in
this group of concepts, DCI successfully finds the subset of interacting attributes except
for one of 20 experiments over concept rk6,7.

However, in the bottom part of table the results are vice versa. For these concepts
MRP obtains significantly higher accuracy than DCI when number of interacting at-
tributes is increased. This is due to the structure of these concepts. They consist of
two or more complex interactions. For instance, cpi,j is composed of conjunction of
two parities. The underlying high-order interaction, that is conjunction of parities, can
be represented by two smaller interactions, each representing a parity function. MRP,
in spite of using greedy search, sometimes successfully breaks down the difficult task
of constructing one complex function that represents all interactions into easier tasks
of constructing several smaller functions, each representing one interaction. In case of
cpi,j , for example, MRP first constructs a function that represents one of two parities.
Then, it uses this function to split data and construct the other function that repre-
sents the second parity. As explained in Section 2.1.2, sometimes constructing more
than one function is necessary to ease learning concept with several interactions. For
these concepts, DCI successfully detects all attributes involved in interactions in almost
all experiments due to its global search. But then, it tries to construct a single function

3.2 Experiments 53

Table 3.4: Comparing average accuracies of DCI with other CI methods on 1% training data
Concept Relev. Irrel. Maj C4.5 Prior best MRP DCI +

atts atts % Org. Atts result C4.5

P1,4 4 8 50.0 50.9(4.0) 50.7 81.7(16.0) 94.6(11.1)/
gw5,8 4 8 68.8 83.6(6.1) 90.3 81.6(11.1) 93.2(7.7)/
sw5,8 4 8 62.5 59.1(7.2) 58.6 76.9(18.3) 95.6(4.1)/
mx6c6,7 4 8 50.0 59.7(5.5) 61.8 81.2(17.4) 96.5(3.8)/
cp5,8 4 8 75.0 68.4(7.3) 74.4 88.6(12.1) 95.6(4.1)/

Average 4 8 61.3 64.3(6.0) 67.2 82.0(15.0) 95.1(6.2)/

that encapsulates several interactions. When few attributes participate in interaction
and enough data are available, this method can discover the interaction and construct a
function that abstract it, as seen for cp5,8. But constructing a feature that represents in-
teractions becomes difficult for this method when the number of interacting attributes
grows and few training data are available. In spite of correctly detecting interacting
attributes, DCI cannot construct a proper function that represents all complex inter-
actions in the concept. For this reason, its performance degrades while the number of
interacting attributes grows. However, it still improves the accuracy of C4.5 by con-
structing new features for some concepts in this group. In cases that the accuracy of
C4.5 using original data set is better than the accuracy obtained by DCI, the results
are lower than majority class percentages.

For the same reason, DCI’s accuracy degrades rapidly for concepts in Table 3.2 of the
previous section when the number of interacting attributes is increased. These concepts
are also composed of several complex interactions.

Note that MRP outperforms DCI only for second group of concepts. For concepts in
the first group such as Pi,j , MRP cannot break down interaction into parts. Therefore,
similarly to DCI, MRP constructs only one feature to represent the interaction; and due
to its local search obtains lower accuracy than DCI.

The good performance of all CI methods for concepts with small number of inter-
acting attributes in Table 3.3 implies that the concepts are easy for these methods. In
order to compare the methods over these concepts experiments are repeated but only
1% of data are used for training and 99% are kept unseen for final evaluation. The size
of training data is reduced to make the concepts more difficult to learn. This is closer
to the situation of real-world problems. The results are shown in Table 3.4 with the
same format as Table 3.3.

Since the size of training data is very small (41 samples), the standard deviation
is increased for all methods. The differences among accuracies of CI methods are now
clearer. The results in Table 3.4 show that when a complex interaction exists among
attributes, with a small number of training data, most CI methods with algebraic form
of representation fail to construct a useful feature. These methods obtain an accuracy
value almost equal to the majority class percentage for 3 of 5 concepts. DCI and
MRP, due to their non-algebraic representation, are less sensitive to data size than

54 DCI: Decomposed CI

methods with algebraic feature representation. DCI outperforms MRP because of its
global search for selecting attributes. The small number of training data produces
more variation in search space; therefore, the local search of MRP fails to find optimal
subset of interacting attributes. DCI successfully finds the interacting attributes in
all experiments except one of 20 experiments over concepts gw5,8 and P1,4. The high
accuracy of DCI comparing to other CI methods indicates that the size of training
data is less problematic for DCI than the others. As the bold accuracies in Table 3.4
show, the accuracy of DCI is significantly better than all methods in most cases with a
significant level of α = 0.02, using t-distribution test.

3.3 Conclusion

As the primary step to analyze the first two parts of the hypothesis of this dissertation
(Section 1.3), this chapter proposed a new CI method, DCI. DCI is a method based
on genetic-search and non-algebraic representation of features, whose goal is to ease
learning problems with complex attribute interaction. The method decomposes the
search space into two spaces: the space of subsets of attributes, and the space of features.
The integration of two searching tasks in DCI maintains the effect of each search space
to the other while improving each task. The design of DCI made the method capable to
apply GA instead of GP. GA is used to search the space of subsets of attributes. Since
each subset is associated with a function defined over it, GA indirectly evolves features
to construct better ones.

Empirical results showed that DCI performs well on concepts with complex interac-
tion and outperforms other CI methods in terms of accuracy when concept is composed
of one complex interaction. The genetic approach of DCI makes this method more
promising than other methods in finding interacting attributes and functions over them
when the search space is large and with high variation.

The non-algebraic representation of features used by DCI assigns an equal degree
of complexity to features regardless of the size or complexity of their symbolic repre-
sentation. This reduces the difficulty of constructing complex features. Furthermore,
this form of representation provides the ability to extract features directly from train-
ing data. For this reason, when few data are available for learning, the non-algebraic
representation of DCI and MRP makes these methods more promising than other CI
methods. Though, since MRP applies a greedy search to find interacting attributes, its
accuracy is lower than DCI with a global search. The non-algebraic representation along
with GA make DCI work better than the other methods when concepts are composed
of one complex interaction.

Experiments over synthetic concepts allowed a deep analysis of system’s behavior
that highlights an important requirement for CI methods (mentioned as the third part of

3.3 Conclusion 55

the hypothesis of this dissertation in Section 1.3), which was not considered in DCI. As
explained in Section 2.1.2, when concept consists of several complex interactions and the
number of interacting attributes is high, the function that encapsulates the interaction
is complex and difficult to construct. A CI method needs to break down the high-order
interaction into smaller interactions each represented by a function. Then, each function
works as an intermediate concept that partially represents the whole interaction.

DCI is incapable of constructing more than one feature. When the concept consists
of several interactions, it tries to find the subset of interacting attributes and construct a
single function over it to abstract interactions among attributes. Although it successfully
detects interacting attributes due to its global search, if the size of training data is small
and the number of interacting attributes is high, DCI constructs a function that is not
good enough to outline all the interactions.

Next chapter presents a new CI method that constructs a set of new features. This
method maintains all advantages of DCI that are non-algebraic representation of fea-
tures and genetic-based search for finding interacting attributes. However, the GA
aspects of this method differ from those in DCI. Also the algorithm for feature induc-
tion in this method is improved to construct more proper features. Since this method
is capable of breaking down the difficult task of constructing one complex function into
smaller tasks, its performance is expected to be better than DCI. Also, since the new
method applies a global search too, it is anticipated to outperform greedy methods.
Experiments empirically prove this theory.

Chapter 4

MFE2/GA: Multi-Feature

Extraction Using Genetic

Algorithms

The previous chapter presented DCI, a genetic CI method with non-algebraic repre-
sentation of features. It was shown that when complex interaction exists in concept,
few training data are available, and no prior knowledge is provided, an FC method
with non-algebraic operator-free representation of features is more convenient. Also,
it was observed that a global search such as GA is more appropriate for searching the
intractable space of attribute subsets. DCI reduced the problem of learning in presence
of complex interactions for some concepts. Because of its global search, DCI success-
fully recognizes interacting attributes from irrelevant ones. However, this method is
incapable of constructing more than one feature. It was illustrated in Section 3.2.2
that when a large number of attributes participate in interactions and few training data
are provided, DCI fails to construct a proper function over interacting attributes. The
function that encapsulates all interactions among attributes is complex and difficult to
construct. This difficulty augments when few training data are available. CI methods
should evaluate several features together as related parts of the theory that represents
interactions in concept.

Motivated by this deficiency of DCI, this chapter presents MFE2/GA [Shafti and
Pérez, 2005]. This CI method intends to construct a set of features representing several
interactions. The method is an improved version of MFE/GA (Multi-feature Extraction
based on GA) presented in [Shafti and Pérez, 2004]. Since MFE2/GA gives better
results than its predecessor, this chapter focuses on the later version. The dissimilarities
between the two versions are explained in Section 4.2.1. As the differences are not
significant, the empirical comparison between these two is moved to Appendix C.

Section 4.1 explains the need for constructing and evaluating several features to-

57

58 MFE2/GA: Multi-Feature Extraction Using GA

gether when few training data are available. Section 4.2 describes MFE2/GA, and
details the representation of GA’s individuals, genetic operators, and fitness evaluation.
Experiments to evaluate genetic operators in MFE2/GA are described in Section 4.3.
Section 4.4 empirically compares MFE2/GA with other CI methods. The experiments
in this section result in improving the method in Chapter 6 to conform to MDL Prin-
ciple [Rissanen, 1983; Grunwald, 2007]. Conclusions are summerized in Section 4.5.

4.1 Why Multi-feature Construction

It was illustrated in Section 3.2.2 that when several complex interactions exist among
attributes and few data samples are provided, DCI fails to construct a function that
properly represents interactions. Figure 4.1 presents an example of such concepts. The
target in this figure is ∧(WL31,4,WL33,6,WL35,8), that is the conjunction of three in-
teractions of form WL3i,j (Weight Less than 3), each one involving the four Boolean
attributes xi through xj . The three interactions in this example are analogous and
correspond to the condition that less than three of the four involved attributes, xi to
xj , are set to one. Each box in the figure shows the positive tuples for each interaction.
The concept has eight relevant attributes (x1 to x8) and four irrelevant attributes (x9

to x12). There are some attributes shared by two interactions. For instance, attributes
x3 and x4 participate in both WL31,4 and WL33,6. This concept is hard because of com-
plex interactions among attributes and existence of irrelevant attributes. The relevant
attributes are likely to be mistaken as redundant attributes, and irrelevant attributes
may be misinterpreted as relevant. Also, the existence of shared attributes makes in-
teractions more difficult to discover. But more importantly, the FC difficulty augments
because the concept is composed of, not just one, but three complex interactions.

The underlying regularities in this concept are complex when represented by a single
function using eight primitive relevant attributes. DCI successfully finds the subset of
eight relevant attributes, and then, intends to construct a function defined over this
subset and extracted from data. In order to extract this function correctly, DCI needs
to see the structure of the function in data. The function is defined by 28 = 256
tuples. The repetition of these tuples in data highlights the structure of the function.
If few training data are available this structure may not be apparent; therefore, the
constructed function may not properly represent regularities in the concept.

This function can be broken down into three functions, each defined over four at-
tributes and abstracting one interaction (i.e., WL3i,j). Each function is represented by
24 = 16 tuples, which is considerably less than the number of tuples needed for rep-
resenting a function over eight attributes. It is more likely that the training data set
contains the replication of these 16 tuples. Then, an FC can successfully construct a
function representing the interaction of four attributes. Hence, when few data are pro-
vided for this concept, construction of such functions each defined over four interacting

4.1 Why Multi-feature Construction 59

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

x3 x4 x5 x6

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

x1+x2+x3+x4<3 x3+x4+x5+x6<3 x5+x6+x7+x8<3

Target (x1, x2, x3, …, x12)

relevant

attributes

irrelevant

attributes

positive

tuples

x5 x6 x7 x8 x9 x1 0 x11 x1 2x1 x2 x3 x4

Figure 4.1: A concept composed of several complex interactions

attributes is preferred.

A CI method needs to break down the difficult task of constructing one complex
feature into several easier tasks of constructing smaller features, each representing one
interaction. Each constructed feature works as an intermediate concept, which forms
part of the theory that highlights interactions in primitive data representation.

When several new features are required, each feature that partially shows interac-
tions, by itself, may not give enough information about the concept. Hence, a CI method
may consider the feature as an irrelevant one. Most CI methods construct features suc-
cessively and evaluate them one by one; the construction of each feature depends on
those previously constructed (see Section 2.1.2). If several complex interactions exist
among attributes and few training data are available, it is more likely that such CI
methods fail in constructing relevant features in early steps. Then, all successively con-
structed features will be irrelevant too. Constructing and evaluating several features
together as a set of related parts of the theory is essential for a CI method in order to
see the importance of each one.

Considering this requirement, MFE2/GA is designed. This method, like DCI, is a
preprocessing CI method that uses GA search and non-algebraic form of representing
features. However, it differs from DCI in other aspects. The main difference is in the
number of functions constructed by each method. MFE2/GA aims to find a set of
functions that best represent interactions, while DCI abstracts interactions into one
single function. The GA in MFE2/GA provides the ability to generate and evaluate
several features represented as one individual. This multi-feature construction property

60 MFE2/GA: Multi-Feature Extraction Using GA

of MFE2/GA provides better experimental results than DCI and other CI methods
when concept is composed of several interactions, as illustrated in Section 4.4. The
construction of features is also improved in MFE2/GA. Next section describes the design
of this method.

4.2 MFE2/GA’s Design

MFE2/GA is a CI method that applies GA to construct a set of functions as new
features. Due to following a different goal, GA design in MFE2/GA is different from
DCI. The goal of DCI is to find a subset of interacting attributes, Si, and a function fi

defined over subset Si. So it searches the space of all functions defined over all attribute
subsets. MFE2/GA’s goal is to find a set of subsets of interacting attributes {S1, . . . , Sk}
and a set of functions {f1, . . . , fk}, each function fi defined over an attribute subset Si.
Hence, the search space for the new method is the space of different sets of functions
defined over different sets of attribute subsets.

MFE2/GA follows the same framework presented in Section 2.4. However, the search
space, here, is different; and therefore, the decomposition of the space is different too.
Thus, the tasks S-Search and FSi-Search in the framework of Figure 2.7 are defined
differently here. For this method, the search space of all sets of functions is decomposed
into two spaces: SSS , the space of all sets of attribute subsets; and SSFi , the space of
all sets of functions defined over given attribute subsets. Thus, the task of constructing
a set of functions is divided into two tasks: searching through SSS to find the set of
subsets of interacting attributes, S-search; and looking for a proper set of functions in
SSFi defined over a given set of subsets, FSi-Search. As shown in Figure 2.7, the two
tasks are integrated together. GA is used for S-Search. Each set of attribute subsets as
an individual in S-Search is given to FSi-Search for constructing features. FSi-Search
analyzes data and induces the best functions that can be defined over attribute subsets.
The fitness of individuals in S-Search is measured by evaluating functions constructed
in FSi-Search.

The rest of Section 4.2 explains the design of GA individuals, fitness function, and
genetic operators in MFE2/GA. The current version of the method assumes that the
class labels are binary and all continuous attributes have been converted to nominal
attributes before running the system. Chapter 7 suggests techniques, as future work,
for developing the system to be applicable to a wider range of domains.

4.2.1 Individual’s Representation

S-Search in MFE2/GA uses GA to search the space of all sets of attribute subsets, SSS .
Like DCI, two levels of phenotypes are maintained (see Section 3.1.1). But this time,
if S is the set of original attributes, each low-level phenotype is a set of subsets of S,

4.2 MFE2/GA’s Design 61

Ind1 = 〈101100101101:010101001011:000101110010:011010011001〉
Ind2 = 〈111111000000:001111110000〉
Ind3 = 〈111100000000:001111000000:000011110000〉

Figure 4.2: GA individuals for concept of Figure 4.1

Ind = {S1, . . . , Sk}, where Si ⊂ S and |Si| > 1. Each high-level phenotype is a set
of functions such as {f1, . . . , fk}, where fi is defined over Si and extracted from data.
Fitness evaluation is performed over high-level phenotypes, and genetic operators are
performed over low-level phenotypes (for details about fitness evaluation and genetic
operators see Sections 4.2.2 and 4.2.3 respectively).

Each subset Si in an individual is represented by a bit-string of length N , where
N is the number of original attributes; each bit showing the presence or absence of
the attribute in the subset. Therefore, each genotype is a bit-string of length k.N

(k > 0) such as Ind = 〈b11 . . . b1N . . . bk1 . . . bkN 〉. Since each individual has different
number of subsets, the length of individuals is variable. To avoid unnecessary growth
of individuals, the number of subsets in individuals is made limited to the up bound
K = 5 by default. K is a parameter that can be adjusted if it seems necessary.

For producing each individual in the first population, a random number k between
1 and K is generated (according to a uniform distribution) to determine the number
of subsets in the individual. Then, a random bit-string of length k.N is generated to
represent the individual.

Note that if the genotype representation of an individual contains a subset Si where
|Si|=1 or Si = S, then Si is ignored in the phenotype representation; and therefore, it
does not participate in the fitness measurement (Section 4.2.2). However, it is considered
in the genotype representation for GA operations to produce diversity in the population.

Figure 4.2 shows examples of three individuals generated by MFE2/GA for the
concept of Figure 4.1. Colons are used to separate subsets in each individual. Ind1

represents a set of three irrelevant subsets. Ind2 represents two subsets of interacting
attributes. The function that is constructed over the first subset encapsulates two
interactions WL31,4 and WL33,6. The second function defined over the other subset
represents interactions WL33,6 and WL35,8. Ind3 corresponds to the best individual
since its three attribute subsets match perfectly those involved in the three complex
interactions shown in Figure 4.1. Functions defined over subsets in Ind3 are smaller
and easier to construct comparing to those defined over subsets in Ind2.

FSi-Search assigns a high-level phenotype to each low-level phenotype by construct-
ing new features as functions defined over attribute subsets. It receives a set of attribute
subsets and for each subset analyzes data to capture and abstract the relation among
attributes in the subset into a new function. FSi-Search is a function that maps each in-
dividual as a set of attribute subsets onto a set of new features; that is, F : SSS → SSFi .

62 MFE2/GA: Multi-Feature Extraction Using GA

Thus, for each set of attribute subsets, there is one and only one set of features (recall
that in the low-level phenotype representation, a subset Si where |Si| = 1 or Si = S is
not appeared and, therefore, does not participate in FC). Non-algebraic form is applied
for representing functions. This form of representation permits extracting the function
directly from data. The function fi for any given subset Si = {xi1, . . . , xim} is defined
by assigning binary class labels (as outcomes of the function) to all the tuples in the
Cartesian product xi1× . . .×xim (as inputs of the function). The class assigned to each
tuple tj depends on the class labels of the training samples that match the tuple. A
training sample matches a tuple tj if its values for attributes in Si are equal to the cor-
responding values in the jth combination of attribute values in the Cartesian product.
The class labels are assigned as discussed case by case next:

Case 1: Unknown tuple. If there are no training samples matching tj , a class
label is assigned to fi(tj) stochastically, according to the class distribution in the
training data.

Case 2: Pure tuple. If all training samples matching tj belong to the same class,
this is the class assigned to fi(tj).

Case 3: Mixed tuple. If there is a mixture of classes in the samples matching tj ,
the class assigned to fi(tj) depends on the numbers of tuples labeled by Case 2 as
positive (class label ‘1’) and negative (class label ‘0’), p2 and n2 respectively. If
p2 > n2, the negative class is assigned; and otherwise, the positive class is assigned
to fi(tj) (i.e., the opposite label of the majority label in function).

Note that, FSi-Search does not search for a function. It induces the function directly
from data with a bias for labeling pure, mixed, and unknown tuples.

Comparing MFE2/GA and DCI, the pure and unknown tuples are labeled in the
same manner in both methods. The label of mixed tuples in DCI is determined by the
majority label in the training data; if there is no majority, the tuple is considered as an
unknown tuple. In MFE2/GA the label of mixed tuples depends on the definitive labels
in the function under construction, which are the labels of pure tuples. The opposite
label to the most frequent label among pure tuples is selected. Figure 4.3 illustrates how
MFE2/GA constructs a function defined over subset Si = {x1, x2} using the training
data set of Figure 3.2.

Recall that MFE2/GA is an improved version of MFE/GA. These two versions only
differ in labeling tuples; more precisely, in Case 3, which is labeling mixed tuples. Both
determine the label of mixed tuples by the label of pure tuples, but behave differently
when there is no pure tuples; that is, when p2 = n2 = 0. In that case, MFE/GA con-
siders mixed tuples as unknown tuples (Case 1). Hence, all the tuples in the Cartesian
product of attributes are labeled stochastically. Selecting labels stochastically may gen-
erate a function that is accidentally consistent with the training data (i.e., overfits the

4.2 MFE2/GA’s Design 63

01110

11100

00010

01000

01011

1

0

1

0

11

100

Classx1

1

x2 x3 x4

?01

111

010

10 0

x1 x2 fi

Si={x1, x2}

fi= < 1 , 0 , 0 , 1 >

mixed

pure

mixed

Training

Samples
Extracted

Function

unknown

Figure 4.3: Extracting function fi, defined over Si, from training data in MFE2/GA: (x1, x2) =
(0, 0) and (x1, x2) = (1, 1) are mixed tuples. Their labels are set to the opposite label of the
majority label in pure tuples. There is only one pure tuples (x1, x2) = (0, 1) with defined label
‘0’. So, ‘1’ is assigned to mixed tuples. No sample in data matches with (x1, x2) = (1, 0). The
outcome of fi for this tuple is determined stochastically with the probability of 0.6 for ‘0’ and
0.4 for ‘1’.

training data). Thus, the individual that contains this function and its corresponding
attribute subset is evaluated as a good individual, but results in a low predictive accu-
racy when evaluated by unseen data. In fact, if none of the tuples in a function are pure
tuples, the attribute subset used for constructing the function is an irrelevant subset
and should be discarded. Therefore, the label assignment for Case 3 is improved in the
new version; when there are no pure tuples (p2 = n2 = 0), the positive label is assigned
to mixed tuples, which are all the tuples that match with the training data. Then,
the function will be equivalent to ‘always true’ function. Its outcome will be consistent
only with positive samples in data. So, the individual that includes this function and
its corresponding attribute subset is not evaluated as a good individual by the fitness
function. Consequently, the irrelevant subset will disappear after generations. Apart
from this improvement, the other parts of MFE/GA are kept unchanged in MFE2/GA.
Appendix C provides an empirical comparison of the two versions of the method.

The procedure for extracting the definition of fi from data partitions the subspace
defined by Si into four areas, as illustrated in Figure 4.4. Each fi identifies similar
patterns of interaction among attributes in Si and compresses them into the negative or
positive area (Case 2). The unseen area (Case 1) is covered by stochastically predicting
the most frequent class. Covering unseen areas means generalization, and thus may
involve prediction errors.

Note that GA aims to generate an individual that encapsulates interactions into
several features. The representation of individuals in MFE2/GA permits constructing
several features simultaneously. Moreover, the fitness function in MFE2/GA evalu-
ates each individual composed of a set of attribute subsets and their corresponding
functions, as described in the next section. Thus, features are also evaluated simulta-

64 MFE2/GA: Multi-Feature Extraction Using GA

Positive area
(Case 2)

Negative area
(Case 2)

Mix area
(Case 3)

Unseen area
(Case 1)

+

+ +
+
+

+

_

_
_

_
_

_
_
++

Figure 4.4: Space of samples defined by attributes in subset Si

neously. The multi-feature construction and evaluation helps MFE2/GA to outperform
other CI methods in presence of several complex interactions in data (as illustrated in
Section 4.4).

4.2.2 Fitness Function

The fitness function in MFE2/GA considers each individual in its high-level phenotype
representation, evaluating the constructed features. Section 2.3 showed that genetic
CI methods which construct and evaluate several features together usually apply a
hypothesis-driven fitness function, applying a learning system for evaluating each in-
dividual. This form of evaluation, in addition to being limited by the quality of the
learner, increases the execution time of the genetic search. Since the computation time
of a data-driven fitness measure is usually less than a hypothesis-driven one, the former
is applied in MFE2/GA.

The fitness function estimates both the goodness of the individual as a set of new
features and the complexity of each feature in the individual. When functions f1 to fk

corresponding to individual {S1, . . . , Sk} are defined, training data are projected onto
the new feature set {f1, . . . , fk} and fitness is evaluated by the following formula:

Fitness(Ind) =
min(|π+ − π−|, |π− − π+|)k + ||π+ ∩ π−||(k + 1)

N(k + 1)
+

∑ |Si|
k|S| . (4.1)

In this formula, π+ is set of positive tuples and π− is set of negative tuples obtained
by projecting data onto {f1, . . . , fk}. N is the total number of samples in training data.
The single bars |z| denote the number of attributes (or tuples) in subset (or relation) z;
and the double bars ||r|| denote the number of samples in training data that match with
tuples in relation r. The formula consists of two terms. The first term approximates the
cost of representing data using new features. In this term, min(|π+ − π−|, |π− − π+|)
calculates the minimum between the number of positive and the number of negative
tuples after removing inconsistent tuples (which are those belonging to both π+ and
π−). This value is actually the minimum between pure positive and pure negative
tuples. It is multiplied by the number of features to roughly measure the minimum

4.2 MFE2/GA’s Design 65

01110

11100

00010

01000

01011

1

0

1

0

11

100

Classx1

1

x2 x3 x4

10

11

00

11

10

1

1 1

1

f1 f2

1

0

0

0

Class

11

11

10

0 0

f1 f2

Projecting samples

onto f1 and f2
negative

tuples

positive

tuple

Genotype = <1110 : 0101>

High-level phenotype = {f1 , f2}

f1= < 1 , 1 , 0 , 0 , 0 , 1, 0, 1 >

f2= < 1 , 1 , 0 , 1 >

Low-level phenotype = {S1 , S2}

S1={x1, x2, x3}

S2={x2, x4}

pure

negative

tuples

mixed

tuples

Figure 4.5: Calculating fitness value for features f1 and f2 defined over S1 and S2 using training
data of Figure 4.3: fitness(Ind) = 2×2+4×3

7×3 + 5
2×4 = 1.387

code length required to classify data using new features. ||π+ ∩π−|| denotes the number
of samples in training data that match with inconsistent tuples (i.e., mixed tuples). To
discriminate these samples, at least one more attribute (k + 1) is required. The sum
min(|π+−π−|, |π−−π+|)+||π+∩π−|| is divided by N(k+1) to be normalized. The second
term evaluates the complexity of features by measuring the fraction of attributes that
participate in constructing features. Including k in denominator of fractions in both
terms favors individuals with larger number of subsets. The aim is to prefer several
simple features, that are, features defined over smaller attribute subsets (e.g., Ind3 in
Figure 4.2) to few complex features, that are, features defined over larger subsets of
attributes (e.g., Ind2 in Figure 4.2). Figure 4.5 illustrates how fitness of the individual
〈1110:0101〉 is evaluated using training data of Figure 4.3. GA intends to minimize the
value of Fitness(Ind). Formula 4.1 will be improved in Chapter 6 by introducing an
MDL-based fitness function [Rissanen, 1983; Grunwald, 2007].

It is important to point out that features are not evaluated individually. They form
a set of related parts of a theory that is used for representing interactions. Each feature
by itself may not give enough information about regularities in data. For this reason,
features are evaluated together, as a set of characteristics. Data are projected onto the
set of features to measure how well features, as a set, represent the regularities in the
concept. Evaluating several features together is essential when data contains several
complex interactions.

Recall from Section 4.2.1 that a subset Si where Si = 1 or Si = S is ignored in
the phenotype representation and FC; therefore, it will not be considered in fitness
measurement. In case that none of subsets in an individual participate in FC, the worst
value (a large number) is assigned to the individual as its fitness to force GA to ignore
this individual.

66 MFE2/GA: Multi-Feature Extraction Using GA

4.2.3 Genetic Operators

When fitness of individuals is calculated, genetic operators are applied to generate a
new population. Reproduction, crossover, and mutation are used for generating next
population as follows.

Reproduction

Similarly to DCI, overlapping approach is used for reproduction. If the population size
is p, then m best individuals are copied to the next population and p −m individuals
are selected for mating pool to undergo mutation and crossover operations.

However, the individual selection differs in DCI and MFE2/GA. DCI uses pro-
portional selection. This form of selection causes two main problems [Bäck, 1996;
Michalewicz, 1999; Freitas, 2002]. Firstly, it may cause premature convergence to a
local optimum due to diversity reduction in the population. Super individuals, which
are individuals with a fitness much better than population’s average fitness, are much
more likely to be selected than other individuals. These individuals do not allow the
others to contribute in reproduction. Thus, population is dominated by these individ-
uals and loses diversity. The domination by super individuals is desirable if it occurs
in later generations when such individuals approximate the global optimal solution.
Otherwise, it causes a premature convergence to a local optimum. Then, either GA ter-
minates with a local optimal solution or requires so many generations that eventually
some diversity is reintroduced in the population by mutation and better individuals are
reproduced. Secondly, when GA is converging to the optimal solution, most individuals
have almost the same fitness values and, therefore, have the same probability of being
selected. Thus, proportional selection becomes almost equivalent to a random selection
which ignores differences in fitness values.

To avoid above problems binary tournament selection [Goldberg, 1989] is applied
in MFE2/GA. This approach randomly picks two individuals from the population, and
then, selects the one with better fitness value to be copied to the mating pool. It limits
the amount of selection in favor of super individuals and also exaggerates the difference
between close fitness values (see [Bäck, 1996] for a comparison of selection methods).
Although binary tournament selection could be seen to hinder the influence of super
individuals, since overlapping approach is used, super individuals are copied to the next
population; and therefore, their influence is maintained.

Crossover and Mutation

Crossover and mutation operators in MFE2/GA are distinct from those in DCI since
GA’s goal changes. MFE2/GA searches through the spaces SSS and SSFi (as described
at the beginning of Section 4.2). GA intends to generate different sets of attribute

4.2 MFE2/GA’s Design 67

Mutation in Attributes Level Mutation in Subsets Level
(Mutation Type-1) (Mutation Type-2)

Parent1 = 〈10010010:01010100:00010111〉 Parent2 = {S1, S2, S3, S4, S5}
Child1 = 〈10010010:01010100:00000111〉 Child2 = {S1, S′2, S3, S4, S5}

Crossover in Attributes Level Crossover in Subsets Level
(Crossover Type-1) (Crossover Type-2)

Parent3 = 〈1001|0010:010|10100:00010111〉 Parent5 = {S11, S12} Mask1= 〈10〉
Parent4 = 〈0010|1011:10010001:111|01100〉 Parent6 = {S21, S22, S23, S24, S25} Mask2= 〈01101〉

Child3 = 〈10011011:10010001:11110100:00010111〉 Child5 = {S11, S22, S23, S25}
Child4 = 〈00100010:01001100〉 Child6 = {S12, S21, S24}

Figure 4.6: Mutation and crossover in MFE2/GA: colons are used to separate subsets of at-
tributes, bars mark the crossover points, and underlined are genes in the parents that will be
substituted by the operators.

subsets with their associated functions and alter them by genetic operators to eventually
find the proper set of subsets of interacting attributes and functions defined oven them.

Crossover and mutation operators change segments of information in parents to gen-
erate better offspring. There are two kinds of information incorporated in individuals:
attributes that form a subset, and subsets that form an individual. The operators are
required to generate better subsets of attributes and better sets of subsets. To achieve
this aim, they are applied in two complementary levels. One level is attributes level,
where individuals are considered as bit-strings representing presence or absence of at-
tributes in subsets. In this level the intention is to generate better attribute subsets
and corresponding functions by changing segments of bits (attributes). The other one
is subsets level, where individuals are considered as sets of attribute subsets. Segments
of information here are subsets. In this level, different sets of attribute subsets and
features are produced. Hence, two types of mutation and two types of crossover are
designed, as explained next and illustrated by examples in Figure 4.6.

Mutation in attributes level, Mutation Type-1, considers the individual as a bit-
string of size k.N , where k is the number of subsets and N is the number of original
attributes. It randomly negates bits in the string. Bits are selected with a probability
equal to 0.01. By negating a bit, we eliminate (add) an attribute from (to) any subset
in any given individual. This operation aims to introduce a new subset by a tiny change
in the previously generated subset.

The Mutation Type-2, that is, mutation in subsets level, considers an individual as a
sequence of subsets. This operator randomly selects a subset and replaces it with a new
one, which is a randomly generated bit-string of length N . Thus, after this operation,
a subset is eliminated from the given individual and a new subset is added to produce
a new set of subsets. This operator introduces more variability into the population and
gives more diversity than Mutation Type-1.

Similarly, two types of crossover operators are designed. Crossover Type-1, that is,

68 MFE2/GA: Multi-Feature Extraction Using GA

crossover in attributes level, exchanges segments of individuals considering them as bit-
strings. It applies two-point crossover . This operator is similar to one-point crossover
(Section 2.2.1) except that two points are selected and bits between them in each parent
are swapped. The two crossover points in the first parent are selected randomly. In
the second parent, the crossover points are selected randomly, subject to the restriction
that these points must have the same distance from the subsets boundary (in bit-string
representation) as the crossover points in the first parent had [DeJong et al., 1993].
Then the segments separated by points are exchanged between parents. This operator
may change the length of the individual. But the limitation of k ≤ K is imposed, where
k is the number of subsets in individual (see Section 4.2.1). If the produced offspring
has more than K subsets, new crossover points are selected in the parents until the
produced offspring have k ≤ K subsets. Depending on where the crossing points are
situated this operator may generate new subsets from subsets in the parents and/or
exchange subsets.

Crossover in subsets level, Crossover Type-2, aims to generate different sets of sub-
sets by exchanging subsets in the parents. It considers individuals as sequences of
subsets and performs uniform crossover. A crossover mask is randomly generated for
each parent to determine whether a subset in a parent is given to the first or the sec-
ond child. Each mask is a bit-string with a length equal to the number of subsets in
the corresponding parent. Each bit equal to one (zero) in the ith position of the mask
means the first (second) child inherits the ith subset of this parent. The probability
that a subset is inherited from the first or the second parent (i.e., the probability that a
bit in masks is set to one or zero) is pu = 0.5. This operation may change the length of
the individuals and, therefore, has the restriction of k ≤ K, same as above. Crossover
Type-2 only exchanges subsets to produce new sets of subsets. It does not generate any
new attribute subset.

Mutation operators in MFE2/GA, similar to other GAs, play a secondary role [Gold-
berg, 1989]. They introduce small changes in the population to produce diversity.
Crossover operators have the main role in constructing more promising solutions and
converging GA to the optimal solution. As mentioned earlier, applying operators in two
levels is required for MFE2/GA to converge faster to the optimal solution. This claim
is empirically supported in Section 4.3.

It is important to note that genetic operators are performed over low-level phe-
notype representation of individuals, that is, a set of attribute subsets. Changing an
individual implies modifying attribute subsets and/or generating a new set of subsets.
Furthermore, each attribute subset in low-level phenotype representation determines a
function in high-level phenotype representation that is extracted from data (as explained
in Section 4.2.1). Hence, a modified attribute subset means a new constructed feature.
Similarly, a modified set of attribute subsets means a new set of features. Therefore, the
application of genetic operators to low-level phenotype representation of MFE2/GA’s

4.3 Evaluating Crossover Operators 69

Table 4.1: Modified parameters of PGAPack for MFE2/GA
GA Parameter New Value
Max Iteration 350
Max no Change Iter. 100
No. of Strings to be Replaced (p−m) 90

population indirectly produces evolution of features and the set of features in high-level
phenotype representation. Recall that the fitness evaluation is performed over high-level
phenotypes.

4.2.4 MFE2/GA’s Algorithm

To implement GA, PGAPack library [Levine, 1996] is used with default parameters,
except those indicated in Table 4.1 (see Appendix B for default parameters of PGA-
Pack). Two stopping rules are applied as termination conditions of GA. The first rule
is to stop when reaching the maximum number of iterations limit, determined by “Max
Iteration”. The second one is to stop when no change in the best solution is found
in a given number of iterations, specified by “Max no Change Iter”. When either
condition is satisfied, GA is terminated. The mating pool size (see Section 4.2.3) is
determined by “No of Strings to be Replaced” (PGAPack default population size,
p, is 100 individuals). Note that the mutation and crossover operators in PGAPack
are replaced with those described in Section 4.2.3. For reproducibility purposes the
PGAPack random seed is initialized to one.

DCI and MFE2/GA are designed based on the framework of Figure 2.7. Hence, they
have similar algorithms. Figure 4.7 summarizes MFE2/GA’s algorithm (see Figure 3.3
for DCI’s algorithm). MFE2/GA receives training data and original attribute set and
performs GA to find the set of functions that best represent interactions among at-
tributes. To reduce overfitting, 90% of training data are used for constructing functions
and all training data, for fitness evaluation using Formula 4.1. When GA is finished
the best individual represents the set of functions constructed to highlight interactions.
The constructed functions as new features are added to the original attribute set and
data are redescribed using the new set of attributes. The new data are then given to a
learner for learning.

4.3 Evaluating Crossover Operators

Section 4.2.3 described the genetic operators used in MFE2/GA, namely two types
of mutation and two types of crossover. These operators aim to generate the set of
attribute subsets with their corresponding functions that best represent interactions
among attributes. Crossover plays an important role in convergence of GA to optimal

70 MFE2/GA: Multi-Feature Extraction Using GA

MFE2/GA
Receives: training and test data and the set of N original attributes
Returns: a new representation of training and test data

1. call S-Search.

2. add the output of S-Search as new features to the set of original attributes,
and redescribe training and test data.

3. return new attribute set and data.

S-Search
Receives: training data and a set of N original attributes
Returns: a set of new features

1. Generate a population of bit-strings Ind i of length ki.N , each representing
a set of attribute subsets {Si1, . . . , Siki}, where ki ≤ K.

2. For each individual Ind i, call FSi-Search, assign the set of functions gener-
ated by FSi-Search to the individual, and calculate the fitness according to
Formula 4.1.

3. Unless predefined stopping conditions are achieved, apply genetic operators,
generate a new population, and go to step 2.

4. Return the set of functions assigned to the best individual.

FSi-Search
Receives: 90% of training data and a set of k attribute subsets {S1, . . . , Sk}
Returns: {f1, . . . , fk}

1. For each Si in {S1, . . . , Sk} define fi as follows:

(a) consider Cartesian product of attributes in Si and classify each tuple
in the product as pure, unknown, or mixed tuple according to the
samples’ labels in training data.

(b) for each tuple t in the product do:

i. if t is an unknown tuple, assign a class label to fi(t) stochastically,
according to the class distribution in the training data

ii. if t is a pure tuple, assign the label of matching samples to fi(t)
iii. if t is a mixed tuple, there are p pure positive tuples and n pure

negative tuples, and p > n, then assign negative class to fi(t);
otherwise, assign positive class

2. return {f1, . . . , fk}

Figure 4.7: MFE2/GA, S-Search, and FSi-Search algorithms

4.3 Evaluating Crossover Operators 71

solution, while mutation plays a secondary role [Goldberg, 1989]. This section empiri-
cally analyzes crossover operators in attributes level and in subsets level. The effects of
these two operators on performance of MFE2/GA and their importance for converging
GA to optimal solution are evaluated.

To empirically compare operators, MFE2/GA is run in three different ways: with
crossover in attributes level (Type-1) only, with crossover in subsets level (Type-2) only,
and with both crossover operators, named Xover-1, Xover-2, and Both Xovers respec-
tively. When both crossovers are permitted, each time that individuals are selected
for crossover operation, the type of crossover is randomly selected for application by
flipping a coin. Both mutation operators are applied together in all experiments. For
each individual that undergoes mutation, the type of mutation is determined randomly.

Synthetic concepts are used for experiments. Concepts consist of several complex
interactions. Appendix A gives definitions of these concepts. For each concept, each
experiment is run 20 times independently over 20 sets of shuffled data. For each ex-
periment 5% of all data are used for training and the rest (95%) are kept unseen as
test data for final evaluation. When GA is finished the new features are added to the
original set of attributes and data are updated. C4.5 with default parameters is applied
as a standard learner for final evaluation. The new representation of training data are
used for learning by C4.5 and the prediction accuracy is measured after tree pruning
using modified 95% unseen data.

Figure 4.8 shows the average results for each concept obtained by the three ways
of running MFE2/GA described above (Xover-1, Xover-2, and Both Xovers). The
horizontal axes represent synthetic concepts. In Figures 4.8(a) the vertical axis shows
the average predictive accuracy of C4.5 on 95% test data using the features constructed
by MFE2/GA. This axis in Figure 4.8(b) shows the average number of generations
needed by GA in order to achieve the result for each concept.

The figure illustrates that Xover-1 (MFE2/GA with crossover in attributes level), in
most cases, results in lower accuracy and slower performance than Xover-2 (MFE2/GA
with crossover in subsets level). Recall from Section 4.2.3 that the crossover in attributes
level is a two-point crossover that may generate new attribute subsets as well as new
sets of subsets. Two point crossover has a lower recombination potential and produces
less diversity in the population than uniform crossover [Spears and DeJong, 1991]. Due
to applying two-point approach, this operator does not explore the search space as well
as crossover in subsets level, which is a uniform crossover. For this reason, Xover-1’s
performance is worse than Xover-2’s.

However, crossover in subsets level does not produce any new subset of attributes,
but exchanges subsets. Thus, it is not enough for exploiting the search space to generate
possible solutions. Generation of new subsets is achieved only by mutation. Since,
mutation produces minor changes in the population, Xover-2 takes longer to converge

72 MFE2/GA: Multi-Feature Extraction Using GA

 75

 80

 85

 90

 95

 100

cd
p 1

,9

cd
p 2

,1
0

cd
p 3

,1
1

cp
4,

9

cp
3,

10

cp
2,

11

P
3,

6a
n
d

(2
)

P
3,

6a
n
d

(3
)

P
3,

6a
n
d

(2
o
r

3)

P
3,

6o
r

(2
)

P
3,

6o
r

(3
)

P
3,

6o
r

(2
o
r

3)

Both Xovers
Xover-1
Xover-2

(a) Accuracy

 120

 140

 160

 180

 200

 220

 240

cd
p 1

,9

cd
p 2

,1
0

cd
p 3

,1
1

cp
4,

9

cp
3,

10

cp
2,

11

P
3,

6a
n
d

(2
)

P
3,

6a
n
d

(3
)

P
3,

6a
n
d

(2
o
r

3)

P
3,

6o
r

(2
)

P
3,

6o
r

(3
)

P
3,

6o
r

(2
o
r

3)

Both Xovers
Xover-1
Xover-2

(b) Number of generations

Figure 4.8: Comparing the use of crossover operators

to optimal solution comparing to Both Xovers.

Applying both crossovers provides a balance of exploitation and exploration of the
search space and guides MFE2/GA toward better solutions. Using crossover in at-
tributes level or in subsets level alone causes GA to fail sometimes. Although the
differences are not significant in Figure 4.8(a), Both Xovers gives a higher accuracy for
most concepts. Also, comparing the results in Figure 4.8(b) illustrates that using two
operators together helps GA to converge faster to the optimal solution. As expected,
the results support the claim that the two crossover operators defined in Section 4.2.3
complement each other to accelerate the convergence of MFE2/GA to the optimal so-
lution. After having chosen the best way to run MFE2/GA, the method will now be
compared with other systems.

4.4 Empirical Comparison

This section describes experiments conducted to empirically analyze MFE2/GA. Sec-
tion 4.4.1 explains primary experiments performed to compare MFE2/GA with DCI to
evaluate the multi-feature construction property of MFE2/GA. Section 4.4.2 explains
experiments conducted to compare MFE2/GA with other CI methods. Similarly to
Section 3.2, experiments use synthetic concepts, which allow analyzing results deeply
before moving on to deal with real-world problems.

4.4.1 MFE2/GA and DCI

Chapter 3 showed that the main characteristics of DCI, namely genetic-based search and
non-algebraic representation of features, make this method work better than others if

4.4 Empirical Comparison 73

Table 4.2: Comparing average predictive accuracies of DCI and MFE2/GA
Concept Relev. Irrel. Maj C4.5 DCI + MFE2/GA+

atts atts % Org. Atts C4.5 C4.5

mx6 6 6 50 94.9(3.1) 97.8(2.1) 98.8(1.8)

cdp3,11 6 6 62.5 81.3(8.2) 97.6(1.6) 100(0.0)

cdp2,10 9 3 62.5 66.0(9.8) 67.7(2.0) 85.8(8.6)

cdp1,9 12 0 62.5 56.6(4.9) 56.4(2.5) 71.7(3.8)

cp4,9 6 6 75.0 73.1(2.7) 97.2(1.8) 100(0.0)

cp3,10 8 4 75.0 73.1(2.6) 81.6(1.6) 100(0.0)

cp2,11 10 2 75.0 72.6(4.0) 68.0(1.2) 96.7(6.1)

P3,6 ∧ (2) 10 2 88.3 87.9(1.6) 81.0(1.5) 93.1(5.7)

P3,6 ∧ (3or2) 10 2 72.7 68.7(2.0) 65.4(2.6) 89.3(5.7)

P3,6 ∧ (3) 10 2 84.4 84.4(0.1) 75.9(2.4) 93.8(5.2)

P3,6 ∨ (2) 10 2 61.7 59.4(5.0) 57.9(2.2) 89.7(5.5)

P3,6 ∨ (3or2) 10 2 77.3 75.5(2.2) 69.5(2.2) 92.5(5.7)

P3,6 ∨ (3) 10 2 65.6 60.9(2.9) 59.3(1.7) 91.1(7.6)

Average 8.6 3.4 70.5 73.8(4.0) 76.8(1.8) 93.0(4.0)

the target concept is composed of one complex interaction. However, DCI is incapable of
constructing more than one feature. When several complex interactions exist in concept
a CI method needs to construct and evaluate several features simultaneously to highlight
interactions to the learner. MFE2/GA is designed to fulfil this requirement. This section
compares MFE2/GA with DCI by conducting experiments over synthetic concepts that
are known to be difficult for DCI (see Section 3.2.2). Concepts are composed of several
interactions and the total number of interacting attributes for each concept is high (see
Appendix A for concept definitions).

Similar experiments to those described in Section 3.2.2 and reported in [Perez, 1997]

are performed. For each concept, MFE2/GA is run 20 times independently over 20 sets
of shuffled data. For each trial, 5% of all data are used for training and the rest (95%)
are kept unseen for final evaluation. When MFE2/GA is finished its performance is
evaluated by the predictive accuracy of C4.5 [Quinlan, 1993] on modified data after
adding constructed features, using 95% unseen data as test data. Similar experiments
are performed with DCI. The results are also compared with the predictive accuracy of
C4.5 using the original attribute set as a baseline performance.

Table 4.2 gives a summary of concepts and the average results obtained by each
method. Columns two and three show the number of relevant and irrelevant attributes
for each concept, and column four shows the majority class percentage. The average
predictive accuracies of C4.5, DCI, and MFE2/GA are shown in fifth, sixth, and seventh
columns respectively. Numbers between parentheses indicate standard deviations. Bold
means that with a significant level of 0.02 MFE2/GA’s accuracy is better than DCI’s,
using t-distribution test.

Comparing the results of the fifth and sixth columns in Table 4.2 illustrate that, as
expected, DCI cannot ease learning task when the number of interacting attributes in-
creases since this method is incapable of constructing more than one feature. MFE2/GA

74 MFE2/GA: Multi-Feature Extraction Using GA

intends to find subsets of interacting attributes and their corresponding functions, each
encapsulating one interaction. It generates individuals representing sets of attribute
subsets and their corresponding functions as potential solutions. Constructing and
evaluating several features at a time allows MFE2/GA to successfully break down the
high-order interaction into smaller interactions represented by several features. Thus,
it significantly outperforms DCI for almost all concepts.

4.4.2 MFE2/GA and Greedy CI Methods

MFE2/GA is also compared with some greedy methods used in Section 3.2.2. These
methods are C4.5 and C4.5-Rules [Quinlan, 1993], which are similarity-based learners,
Fringe, Grove and Greedy3 [Pagallo and Haussler, 1990], and LFC [Ragavan and Ren-
dell, 1993], which are CI methods that use algebraic representation of features, and
MRP [Pérez and Rendell, 1995], which is a CI method with non-algebraic form of fea-
ture representation. Among greedy CI methods, only Fringe constructs several features
at once. Other methods construct and evaluate features one at a time.

Experiments are similar to those in the previous section and in [Perez, 1997]. For
each experiment, 5% of shuffled data are used for training and the rest are kept unseen
for test data. Table 4.3 gives a summary of concepts used for experiments in columns
one to four and the average accuracies over 20 runs obtained by different methods
in columns five to seven. Concepts are divided into two groups. The top part of
the table groups concepts composed of several complex interactions and the bottom
part shows those composed of one complex interaction. In each group concepts are
ordered by the number of relevant attributes. The best results among C4.5, C4.5-
Rules, Fringe, Grove, Greedy3, and LFC are shown in the fifth column of the table,
as reported in [Perez, 1997]. The letters c4, cr, fr, gr, g3, and lf indicate that the
best competitor is C4.5, C4.5-Rules, Fringe, Grove, Greedy3, or LFC respectively. The
average predictive accuracy of MRP, the only greedy method in these experiments with
non-algebraic feature representation, is shown in column six. Last column represents
the predictive accuracy of C4.5 after adding features constructed by MFE2/GA to the
original attribute set and updating data. This result is marked by † when it is equal or
better than the one in column five (Prior best result) and by / when it is equal or better
than the one in column six (MRP). The overall average of the results of each group
of concepts is also given. Numbers between parentheses indicate standard deviations.
Bold means that, with a significant level of 0.02 with t-distribution test, the accuracy
is higher between MRP and MFE2/GA using.

Table 4.3 shows that MRP and MFE2/GA achieve better results than other greedy
methods. This is due to their form of representing features. When a complex interaction
exists among attributes, a more complex algebraic feature is needed to abstract the
interaction (see Section 2.1.3). A non-algebraic representation captures the structure of

4.4 Empirical Comparison 75

Table 4.3: Comparing average predictive accuracies of MFE2/GA with greedy methods
Concept Relev. Irrel. Maj Prior best MRP MFE2/GA

atts atts % result + C4.5
cp5,8 4 8 75.0 100 fr 100(0.0) 100(0)†/
mx6 6 6 50.0 100 fr 96.1(7.3) 98.8(1.8) /

cdp3,11 6 6 62.5 98.4 fr 97.3(3.9) 100(0)†/
cp4,9 6 6 75.0 86.1 fr 99.0(1.6) 100(0)†/
cp3,10 8 4 75.0 73.4 cr 88.9(1.2) 100(0)†/
cdp2,10 9 3 62.5 78.1 fr 92.0(6.5) 85.8(8.6)†
cp2,11 10 2 75.0 73.9 c4 91.7(5.7) 96.7(6.1)†/
P3,6 ∧ (2) 10 2 88.3 88.1 c4 90.4(4.5) 93.1(5.7)†/
P3,6 ∧ (3or2) 10 2 72.7 70.4 fr 79.0(2.3) 89.3(5.7)†/
P3,6 ∧ (3) 10 2 84.4 83.4 c4 87.6(5.4) 93.7(5.2)†/
P3,6 ∨ (2) 10 2 61.7 70.5 fr 97.1(2.9) 89.7(5.6)†
P3,6 ∨ (3or2) 10 2 77.3 75.1 fr 80.4(6.0) 92.5(5.7)†/
P3,6 ∨ (3) 10 2 65.6 68.0 fr 95.9(4.4) 91.1(7.6)†
cdp1,9 12 0 62.5 65.5 cr 81.3(3.0) 71.7(3.8)†
Average 8 3 70.5 80.8 91.2 93.0†/
P1,4 4 8 50.0 99.6 fr 100(0.0) 100(0)†/
gw5,8 4 8 68.8 100 g3 100(0) 100(0)†/
sw5,8 4 8 62.5 100 fr 100(0) 100(0)†/
mx6c6,7 4 8 50.0 98.7 fr 100(0) 100(0)†/
mj4,8 5 7 50.0 99.0 gr 99.8(0.7) 100(0)†/
P1,6 6 6 50.0 51.1 fr 97.0(1.6) 98.0(1.5)†/
gw4,9 6 6 65.6 93.3 gr 95.1(8.2) 98.1(2)†/
sw4,9 6 6 68.8 73.1 fr 98.5(1.6) 98.6(1.4)†/
mx6c5,8 6 6 50.0 76.4 fr 96.4(3.7) 97.6(1.7)†/
mj3,9 7 5 50.0 86.6 gr 85.2(5.1) 90.1(2.4)†/
nm4,5,7 7 5 56.2 74.1 fr 86.7(7.6) 89.8(2.5)†/
rk5,7 7 5 83.6 89.9 gr 91.4(4.7) 93.7(3.7)†/
rk6,7 7 5 94.5 95.6 fr 96.8(2.3) 95.9(2.7)†
P1,8 8 4 50.0 49.4 cr 75.1(1.4) 74.7(7.7)†
gw3,10 8 4 63.7 84.9 gr 80.7(3.9) 76.5(5.1)

sw3,10 8 4 72.7 71.8 lf 87.8(1.3) 75.9(5.4)†
mx6c4,9 8 4 50.0 73.5 fr 80.6(5.2) 75.5(5.2)†
Average 6 6 61.0 83.4 92.4 92.0†
† no worse than Prior best result
/ no worse than MRP

the interaction and abstracts it more easily. For this reason MFE2/GA and MRP have
less difficulty to construct features than other methods that apply algebraic form.

In the top part of the table, MFE2/GA outperforms MRP for most of the concepts.
These concepts are composed of several interactions. It was illustrated in Section 3.2.2
that in spite of using a genetic-based search and finding interacting attributes, DCI
could not construct an appropriate feature that encapsulates all interactions. Thus, its
accuracy was lower than MRP. Multi-feature construction in MFE2/GA overcomes the
problem and beats MRP. MFE2/GA breaks down the difficult task of constructing one
function defined over interacting attributes into two or more easier tasks of constructing
simpler functions over smaller subsets of interacting attributes using a GA. This method
successfully groups attributes involved in each interaction into subsets and constructs
a function over each subset to capture and abstract each interaction. It simultaneously
constructs and evaluates several features at a time, which is necessary in presence of

76 MFE2/GA: Multi-Feature Extraction Using GA

several complex interactions. Thus, it achieves better results.

MRP considers attributes individually when searching for subsets of interacting at-
tributes, and constructs features one by one. Backward elimination approach in MRP
eliminates irrelevant attributes one at a time to find interacting attributes. As explained
in Section 2.1.1, once it eliminates all irrelevant attributes, due to one-by-one elimina-
tion, it may not go forward to get a smaller subset of those attributes that participate
only in one interaction. So, it remains with the subset of all interacting attributes and
constructs a function over this larger subset. Constructing a function that outlines all
interactions is complex. Thus, MRP fails to achieve high accuracy if one-by-one at-
tribute elimination does not allow this method to find a smaller subset of interacting
attributes. Even if MRP successfully goes forward and finds the subset of attributes
that participate only in one interaction, it still may fail to achieve high results due to
its greedy FC. When concepts are composed of several complex interactions and few
training data are available one-by-one construction of features produces problems. MRP
constructs a function over the subset, splits data using this function, and continues look-
ing for attributes that participate in other interactions. Since the number of interacting
attributes is high and few training data are available, FC is difficult, and is likely to fail.
If the feature constructed in the first step is not appropriate all the subsequent features
will be irrelevant to. Therefore, even if this method correctly finds the proper subset of
attributes, it still may construct an incorrect feature and converge to a local optimum
due to its greedy FC. For this reason, while the number of interacting attributes grows,
concepts become harder to be learned by MRP. Thus, its performance degrades most
of the time comparing to MFE2/GA.

Note that in the top part of the table, Fringe outperforms all CI results summarized
by the column “Prior best result” for 9 out of 14 concepts. This could be due to its
strategy for constructing features. As mentioned before, among these methods, Fringe
is the only one that constructs and evaluates several features together, which proves
to be essential for this group of concepts. For the remaining 5 concepts, C4.5 or C4.5-
Rules outperform other methods in the column “Prior best result”, although often its
accuracy is lower than the majority class percentage. This means classifying data by
the label of majority class gives better result; that is, the learner did not learn these
concepts.

The concepts cdpi,j illustrates well the different behaviors and advantages of MRP
and MFE2/GA. Each of the concepts cdp1,9, cdp2,10, and cdp3,11 involves three parity
interactions combined by simple relations (conjunction and disjunction). The three
concepts differ in the degree of parity involved (4, 3, and 2, respectively); but perhaps
more importantly, they also differ in the ratio of relevant attributes (12/12, 9/12, and
6/12, respectively). This is the reason why, obviously, all results in Table 4.3 indicate
that cdp1,9 is the most difficult concept to learn: it has no irrelevant attributes that
when projected away allow the complex structure of the intermediate concepts (parities)

4.4 Empirical Comparison 77

to become apparent, when learning from only 5% of data.

This affects MFE2/GA in a higher degree than it affects MRP, probably due to dif-
ferences between both systems’ biases. In particular, considering cdp1,9, that is defined
as:

Parity(a1, . . . , a4) ∧ [Parity(a5, . . . , a8) ∨ Parity(a9, . . . , a12)] ,

MRP’s focus on learning one single best relation probably guides learning toward
Parity(a1, . . . , a4). So MRP easily finds its way toward that parity feature, which
captures most of the concept. Had it used only that single feature to classify unseen
data, it would have obtained even higher accuracy than it does (up to 87%). Perhaps,
due to overfitting, MRP’s heuristic function does not allow the system to reach such
theoretically best possible performance on this concept. However, MRP’s bias gets it
closer to the goal than MFE2/GA.

MFE2/GA’s bias is, in some sense, opposite to MRP’s. It focuses on learning multi-
ple features at once to evaluate them in combination. This higher flexibility in searching
a large and complex feature space makes the system more dependent on data quality
(since features are extracted from training data). MFE2/GA exploits better than MRP
the redundancy in data for cdp3,11. Since this concept is defined over 6 attributes of
a total of 12 attributes, the 5% training data is likely to contain repeated parts of the
concept structure, that become more apparent when projecting away the irrelevant at-
tributes. However, this does not make the concept easy to learn by non-CI methods,
due to the complexity of the interactions involved. MRP tries to learn this concept as a
single relation, whereas MFE2/GA beats it by seeing the multiple features involved at
once. On the other hand, for cdp2,10, 9 attributes of 12 attributes are relevant, so there
is little or no redundancy in the 5% training data. Therefore, MFE2/GA’s more flexible
search gets trapped in a local minimum, overfitting data; whereas MRP is favored by
its strong bias for one best relation, which in this case, does indeed exists and it is easy
to find.

For the second group of concepts, MFE2/GA gives higher accuracy than MRP when
the number of interacting attributes is small. But when more attributes are involved
in interaction MFE2/GA’s performance degrades. Nevertheless, differences are not
as significant as in the top part of the table. These concepts are composed of one
high-order complex interaction. For these concepts, MFE2/GA cannot take advantage
of its multi-feature construction property to break down the interaction into smaller
ones. So, it becomes similar to DCI; that is, when number of interacting attributes
grows its performance is scaled down. MRP tries to eliminate one attribute at a time
to find interacting attributes. Because of the structure of these concepts one-by-one
elimination of attributes is less problematic for MRP here than in the first group of
concepts. Once MRP finds the interacting attributes, it constructs a function defined
over these attributes and induced from data. The greedy FC of MRP is not a problem

78 MFE2/GA: Multi-Feature Extraction Using GA

here since there is only one function to be constructed. Note that these concepts were
designed to evaluate MRP and match well with the bias of this method [Perez, 1997].
MFE2/GA’s flexibility in finding interacting attributes causes this method to overfit
data and fail to find the correct subset of attributes when more attributes interact.

It is important to mention that in all experiments MFE2/GA generates close approx-
imations to the set of subsets of interacting attributes; in more than 81% of experiments
this method successfully finds the exact subsets of interacting attributes. However, the
19% failure indicates that GA is not always guided properly toward optimal solution.
Chapter 6 proposes a new fitness function based on MDL Principle, which improves the
performance of GA in MFE2/GA and reduces the failure amount to 11%.

4.5 Conclusion

This chapter presented MFE2/GA, a CI method that maintains all the advantages of
DCI, while allows constructing and evaluating several features together. MFE2/GA
uses genetic-based search to find the set of subsets of interacting attributes and the set
of functions that abstract interactions. Each individual is a bit-string that represents
a set of attribute subsets as a low-level phenotype, which in turn represents a set of
constructed functions as a high-level phenotype (Section 4.2.1). This kind of represen-
tation allows the application of GA, which is simpler than GP. Moreover, it prevents
the corresponding problems related to GP with algebraic form of representing features
(Section 2.3). The individual’s representation in MFE2/GA also provides the facility
to capture and encapsulate interactions into several features.

Genetic operators in MFE2/GA aim to generate better attribute subsets and set of
attribute subsets in low-level phenotypes. Since each low-level phenotype represents a
high-level phenotype, that is a set of functions defined over attribute subsets, genetic
operators indirectly evolve the set of constructed functions. Two types of mutation and
two types of crossover operators are designed (Section 4.2.3). These operators comple-
ment each other and provide a balance of exploitation and exploration (Section 4.3).

Another important aspect of MFE2/GA is the data-driven fitness function. Genetic
methods that evaluate several features as an individual usually apply a hypothesis-
driven fitness evaluation (Section 2.3). A new data-driven fitness function is proposed
for MFE2/GA, which is faster than a hypothesis-driven fitness function. This fitness
function allows evaluating features together as a set of characteristics that highlight
regularities.

The genetic approach of MFE2/GA along with its individual’s representation, fitness
evaluation, and genetic operators provide the ability of constructing and evaluating
several features at once which is necessary for a CI method (Section 4.1). This method
fulfills all requirements for a CI method mentioned in Chapter 2.

4.5 Conclusion 79

Experiments illustrates that multi-feature construction in MFE2/GA facilitates the
task of FC when concept is composed of several interactions and few training data
are available (Section 6.4.1). Thus, MFE2/GA overcomes the deficiencies of DCI (Sec-
tion 3.2.2). Empirical comparison of MFE2/GA and greedy methods clearly outlines the
advantages of this method (Section 6.4.2). The non-algebraic representation eases the
construction of complex features; therefore, MFE2/GA outperforms methods that apply
algebraic feature representation. Also, experiments shows that in presence of several
complex interactions in concepts a greedy strategy for one-by-one selecting attributes
and constructing features fails. MFE2/GA successfully constructs and evaluates several
features together, which proves to be essential for concepts with several interactions.

However, experiments show that GA sometimes fails to conduct MFE2/GA toward
the optimal solution. Fitness function has the main role in guiding GA to converge
to the optimal solution. Chapter 6 reviews different kinds of fitness functions and
introduces a new fitness evaluation based on MDL Principle. The MDL-based fitness
function is integrated into a new system called MFE3/GA [Shafti and Pérez, 2007a;
2007b].

Before that, Chapter 5 compares MFE2/GA with the relevant non-algebraic method,
HINT [Zupan et al., 2001]. It analyzes design aspects that highlight similarities and dif-
ferences between two systems. Since both systems heavily depend on data to construct
features, the chapter focuses the empirical evaluation of both systems on their sensitiv-
ity to training data size when learning hard concepts with different types of complex
interactions, and relates the empirical results to prior analysis of system designs.

Chapter 5

Data-based FC by MFE2/GA

and HINT: Sensitivity to

Training Data Size

Chapter 2 described requirements for success of a CI method when confronted with com-
plex interactions. It explained that a global search strategy based on genetic algorithms
facilitates both identifying interacting attributes and constructing features. Chapter 2
also described that a CI method needs to simultaneously construct and evaluate several
features together; such requirement was not considered in DCI, as illustrated in Sec-
tion 3.2.2. In addition, a non-algebraic (operator-free) form of representing features is
required to facilitate constructing features in a CI method when the only available in-
formation about the problem is training data. Based on these requirements, Chapter 4
proposed MFE2/GA and illustrated that this method outperforms greedy CI methods
which apply algebraic feature representation.

MFE2/GA was also compared, in Chapter 4, with MRP that uses non-algebraic
representation. It was shown that MRP’s performance degrades when several complex
interactions exist among attributes, as a consequence of applying backward elimination
search to find interacting attributes one by one. Due to complex interactions, each
attribute by itself does not give enough information and, therefore, may be considered
as an irrelevant attribute by MRP’s search strategy.

Alternatively, some methods avoid one-by-one attribute selection or elimination by
evaluating subsets of attributes as candidates and selecting heuristically the best sub-
set. Since the search space grows exponentially with the number of attributes, some
limitations are usually imposed in forming subsets to reduce complexity. Among these
methods the most relevant to this thesis is HINT [Zupan et al., 2001], which also uses
non-algebraic form of representing constructed features. This method considers all sub-
sets of a predefined bound size, and successively selects attribute subsets and constructs

81

82 MFE2/GA and HINT: Sensitivity to Training Data Size

F

y

S

G

y

A´c

H

A

decomposed as

Figure 5.1: Function decomposition by HINT

features, by labeling data samples represented using attributes in the subset, as will be
detailed in this chapter.

This chapter theoretically and empirically compares HINT and MFE2/GA. Since
both methods extract features directly from data, they depend heavily on training
data to construct features. Data-based non-algebraic representation may require more
training data samples. The focus of this chapter is on the sensitivity to training data
size of these two methods. HINT is reviewed in Section 5.1. The design properties of the
two systems are compared in Section 5.2, and empirically evaluated in Section 5.3, using
problems where attribute interaction is a major difficulty. Experiments indicate that
both methods have some important functionalities that could be combined to obtain
better results. Conclusions of this chapter are summarized in Section 5.4.

5.1 HINT: Multi-value Feature Construction

HINT is a greedy CI method that generates a classifier represented by a hierarchy of
intermediate concepts, which are constructed features. HINT assumes that the class
labels and attributes are nominal. It applies a function decomposition step recursively
to induce features directly from training data and represent them by a set of labeled
samples, as shown bellow.

Consider the target concept is y = F (S), where S is the set of given attributes and y

is the class label. The function decomposition aims to partition S into subset A and its
complementary A′ (i.e., A ∩A′ = ∅ and A ∪A′ = S) and to define functions H and G,
such that c = H(A) and y = G(A′, c) (Figure 5.1). Functions H and G are represented
by sets of attribute values with assigned labels as explained next. Then, S is replaced
by S′ = A′ ∪ {c} and the decomposition step is recursively applied to y = G(S′) and to
c = H(A). The attribute partition is determined by evaluating all possible partitions
of S into A and A′. To reduce the complexity, the size of A is limited to the bound
size b ≤ 3. The partition that minimizes some complexity measure defined over G and
H is selected (see [Zupan and Bohanec, 1998] for details). If there is no such partition,
function decomposition is terminated.

5.1 HINT: Multi-value Feature Construction 83

1100

1

1010

1

10

0 0

x1

x2
x4x3

0

1

––01

0––0

––––

1–01

0010c = H (A)

01110

11100

00010

01000

01011

1

0

1

0

11

100

Classx1

1

x2 x3 x4

Training

Samples

Partition

Matrix

001

110

00 0

x1 x2 c

New Training

Samples

011 1

111 0

000 1

010 0

010 0

1

0

10

10 0

y = G(A´, c)

1

cx3 x4

Constructed

Function c = H (A)

A
A´

011

Figure 5.2: Inducing features from data by HINT: Considering the concept y = F (S) represented
by the training data of Figure 4.3, HINT constructs c = H(A) and y = G(A′, c), where A =
{x1, x2} and A′ = {x3, x4}.

The function c = H(A) is derived from training samples as follows. A partition
matrix is defined, where each column and row correspond to a distinct combination of
values of attributes in A and A′ respectively. Each element mkj in the matrix shows the
class label of the samples whose attributes in A and A′ take the values identifying column
j and row k respectively. If there is no such sample, a “don’t know” symbol is assigned
to mkj , indicating that this cell of matrix is empty. Two non-empty columns j and l

are called compatible if there is no contradiction between them; that is, mkj = mkl or
mkj =“don’t know” or mkl =“don’t know” for each k. The function c = H(A) is then
defined by labeling (coloring) columns of the matrix. Each group of mutually compatible
columns is labeled equally. This is performed by generating column incompatibility
graph and applying Color Influence Method [Wan and Perkowski, 1992] to assign a
color or label to each vertex in a way that two incompatible vertices have different colors
and the optimal number of colors is used (for details see [Zupan et al., 1999]). When
all non-empty columns are labeled, the default rule is used for labeling empty columns
that assigns the most frequent label (color) of non-empty columns. The function c

is, then, represented by attribute values in each column and the assigned label. The
function y = G(A′, c) is the set of training samples redescribed using the new attribute
set S′ = A′ ∪ {c}.

To better illustrate the function decomposition step of HINT, recall the training data
of Figure 4.3, representing concept y = F (S), where S = {x1, x2, x3, x4}. Figure 5.2
shows how HINT generates a partition matrix, constructs a function and redescribes
training data. The function decomposition partitions S into sets A = {x1, x2} and
A′ = {x3, x4}, and generates a partition matrix where each column corresponds to
values of x1 and x2, and each row corresponds to values of x3 and x4. Each element
of the partition matrix shows the label of each sample in training data (represented in
italics in the figure). The “don’t know” elements are marked by “–”. Then, HINT
identifies compatible columns and assigns colors (labels, in boldface) to them. The first
and forth columns are compatible and the same color, represented by ‘0’, is assigned to

84 MFE2/GA and HINT: Sensitivity to Training Data Size

y

G´ c c

H x1 x2 H x3 x4

x1 x2 x3 x4

c c

Figure 5.3: The classifier generated by HINT for the concept of Figure 5.2

them. The second column is colored as ‘1’. The third column is an empty column. The
default rule assigns ’0’ (i.e., the most frequent color) to this column. The bottom row
in the matrix shows the colors assigned to each column (represented in Boldface), which
determines the outcome of the function c = H(A) for different values of attributes in
A = {x1, x2}. Then, the set of attributes S is replaced by the new one S′ = {x3, x4, c},
and data samples are redescribed to generate the new sample set y = G(x3, x4, c) using
the constructed function c = H(A). The decomposition step is then applied to the new
attribute set and training data recursively. At the end, HINT generates a classifier by
a hierarchy of constructed functions as shown in Figure 5.3.

Note that in this example, only two labels were needed for coloring columns, though,
HINT is capable of constructing multi-value functions by assigning more than two colors
to columns (as described in Section 5.2). Because of its ability to generate multi-value
features by multi coloring, HINT achieves high accuracy on many artificial and real-
world domains of UC Irvine Database [Blake and Merz, 1998]. However, to achieve
these results, HINT requires to have enough data samples available.

It is important to mention that the decomposition step generalizes labels for “don’t
know” elements. If mkj =“don’t know” and column j is non-empty and compatible
with column l, then the same label as mkl is given to mkj . If mkj =“don’t know” for
all k in column j, that is the column j is empty, the most frequent label of non-empty
columns is assigned to mkj .

Note also that attribute xi may be irrelevant if, for A = {xi}, all columns are
compatible. Thus, during a preprocessing attribute-redundancy remover, HINT applies
the decomposition step, partitioning attribute set into Ai = {xi} and A′i = S − {xi}
in order to remove all irrelevant attributes. Since the order in which attributes are
selected for evaluating their redundancy may affect the outcome, attributes are pro-
cessed in the reverse order of their relevancy measure as estimated by the ReliefF algo-
rithm [Kononenko, 1994].

5.2 MFE2/GA and HINT 85

5.2 MFE2/GA and HINT

HINT and MFE2/GA share two important factors. First, they apply non-algebraic form
to represent constructed features, which is preferred when concept is complex and no
prior information is available for choosing the appropriate algebraic operators. Second,
both methods induce features directly from data to represent them by non-algebraic
representation. However, they are different in many aspects.

The first important difference between two systems is the procedure applied for
inducing features from data. The procedure used by each method differs, mainly, in the
labeling of cases or samples. HINT groups compatible samples and assigns a label to
each group (Section 5.1). It represents features by the set of labeled samples. MFE2/GA
groups samples into pure, mixed and unknown cases and labels each case differently
(Section 4.2.1). The feature is represented by a vector of values, which indicates the
outcome of the function for each combination of attribute values.

MFE2/GA creates features with binary labels (no more labels than the target con-
cept itself), whereas HINT can use more labels. This property allows HINT to break
down a high-order complex interaction into smaller interactions (as empirically shown
in Section 5.3.1). When there is an interaction among smaller interactions, there are
several mixed cases that should be treated differently. Thus, different labels are needed
for different mixed cases.

To illustrate how HINT differs from MFE2/GA in constructing functions, consider
the concept F1(x1, x2, x3, x4)

def= w(x1, x2) > w(x3, x4), where w(xi, xj) is weight of
Boolean attributes xi and xj . The complex interaction F1 can be considered as an
interaction (i.e., “being greater than”) between two smaller interactions w(x1, x2) and
w(x3, x4). Partitioning the attribute set into A = {x1, x2} and A′ = {x3, x4} gives a
partition matrix as shown in Figure 5.4(a). The first column of the matrix is considered
as a pure case, and columns 2, 3, and 4 as mixed cases. After projecting data onto A,
MFE2/GA labels the first column as ‘0’, and the three impure columns as ‘1’. Such
labeling gives an irrelevant feature equivalent to x1 ∨ x2. Thus, MFE2/GA ignores this
subset eventually and projects data onto the larger set S = {x1, x2, x3, x4} to extract a
function representing F1. Since the size of S is larger, more training data are needed to
extract the function from S itself. HINT, after partitioning attribute set into A and A′

and considering columns compatibility, assigns three different color labels to columns:
‘0’ to the first column, ‘1’ to compatible second and third columns, and ‘2’ to the forth
column. Note that this labeling is equivalent to the interaction w(x1, x2). Since HINT
can break down the function F1 into smaller ones, it needs less data to construct better
features.

Note that for this example all data were available only for the purpose of illustration.
When few data samples are provided, multi-coloring may not work as expected. Multi-
coloring may cause overfitting, making HINT sensitive to data size. For example, con-

86 MFE2/GA and HINT: Sensitivity to Training Data Size

1100

1

1010

1

10

0 0

x1

x2
x4x3

0

1

1110

1000

1000

0000

1110MFE2/GA labels

2110HINT labels

(a) F1
def
= w(x1, x2) > w(x3, x4)

1100

1

1010

1

10

0 0

x1

x6
x5x4

0

1

1–0–

0000

0000

0000

x3x2

0

0

00

0 0

0

0

1

1

10

0 0

0

1

0000

0000

–0–1

0000

0

0

10

0 1

1

1

1

1

10

0 0

0

1

0000

–0–1

0000

0000

1

1

01

1 0

0

0

1

1

10

0 0

0

1

0000

0000

0000

1–0–

1

1

11

1 1

1

1

1001MFE2/GA labels

1100HINT labels

(b) F2
def
= (x1 = x6)∧ (x2 = x5)∧ (x3 = x4)

Figure 5.4: Comparing the functions constructed by MFE2/GA and HINT

sider the partition matrix illustrated in Figure 5.4(b) for the concept F2(x1, x2, . . . , x6),
which is true if x1 = x6, x2 = x5, and x3 = x4 (palindrome of six Boolean attributes).
F2 is composed of a simple relation among three complex interactions. In spite of eight
missing values (88% training data), MFE2/GA projects data onto A = {x1, x6}, and
labels second and third columns (pure cases) as zero and first and forth columns (mixed
cases) as one, which is equivalent to x1 = x6. HINT, because of missing data, cannot
see the incompatibility between first and second columns; therefore, it may assign the
same color label to these columns and other color label to columns three and four, which
gives a function equivalent to attribute x1 itself. Note that in many real-world domains
fewer training data will be available, which is worsening the problem (see Section 5.3.2
for empirical results).

HINT needs to see two samples with different labels in the same row to see the
incompatibility of columns. When the number of different class labels in two columns is
small and few data are available, HINT colors columns incorrectly. This problem affects
MFE2/GA less than HINT because it looks at all cases in each column. If the column
is a pure, in spite of missing data, MFE2/GA classifies it as pure case. If the column
is a mixed, then MFE2/GA misclassifies it only when it cannot see the mixture of class
labels, i.e., either all positive cases or all negatives are missed. Therefore, MFE2/GA is
less sensitive to data size in this case.

Labeling of empty columns (which are cases that are not seen in training data)
differs also in HINT and MFE2/GA. HINT assigns the most frequent color of non-
empty columns to an empty column. MFE2/GA considers the empty column as an
unknown case and assigns a label stochastically, according to the class distribution in
the training data. As an example see the constructed functions by MFE2/GA and
HINT in Figures 4.3 and 5.2.

The second important difference between these two systems relates to subset se-

5.3 Empirical Evaluation 87

lection and feature construction. HINT successively selects subsets of attributes and
constructs features one by one. If, in early steps, attributes are selected incorrectly and
irrelevant features are constructed, all successive features will be irrelevant too. This
greedy technique of HINT degrades its performance when several complex interactions
among attributes exists. Conversely, through the use of GA, MFE2/GA is able to gener-
ate individuals, each composed of several subsets of attributes with their corresponding
functions. Thus, several functions are generated and evaluated together in MFE2/GA.
This multi-feature construction is very important when the target concept is complex
and few data samples are provided. Section 5.3.2 empirically shows the advantage of
multi-feature construction.

The third important distinction to note is the way the two methods deal with irrel-
evant attributes. HINT, during its preprocessing attribute-redundancy remover, elim-
inates irrelevant attributes and represents the concept y = F (S) as y = F ′(S′), where
S′ is set of relevant attributes. Since attributes are evaluated and removed one by one,
when complex interaction exists among attributes, a relevant attribute may be consid-
ered irrelevant and eliminated from set of attributes. MFE2/GA generates features F1

to Fk in parallel, where y = R(F1(A1), ..., Fk(Ak)),
⋃

Ai ⊆ S, Ai ∩ Aj is the set of at-
tributes shared between two interactions, and S−⋃

Ai is the set of irrelevant attributes.
Thus, MFE2/GA implicitly ignores irrelevant attributes by selecting subsets of relevant
attributes.

Another distinction relates to the attributes participating in more than one interac-
tion, which are called shared attributes. When the problem consists of several interac-
tions that share attributes, parallel feature construction allows MFE2/GA to discover
and highlight interactions. HINT, due to its greediness for constructing features one by
one, cannot discover interactions with shared attributes since this kind of interactions
cannot be represented by a hierarchy of constructed functions.

Finally, HINT imposes construction of functions over attribute subsets of a limited
size to reduce the search complexity. Recall that HINT explores all partitions of S into A

and A′ where |A| is bellow the limit established by a system parameter. This limitation
may leave out some promising functions. MFE2/GA does not need this restriction. GA
in MFE2/GA allows a broader search yet in a reasonable computation time.

5.3 Empirical Evaluation

This section presents an empirical analysis of MFE2/GA and HINT performed [Shafti
and Pérez, 2007c] to support the theoretical comparison given in Section 5.2. It studies
the performance of the two systems over concepts of synthetic and real-world domains, to
evaluate different functionalities of these methods when few training data are provided.
The synthetic problems are divided into two groups whose complexity has different

88 MFE2/GA and HINT: Sensitivity to Training Data Size

nature: concepts that are composed of one complex interaction, and concepts that
are composed of several complex interactions. They represent sources of difficulty that
appear in real-world problems where primitive attributes are used for representing data.
The concept defined over real-world domain is the Braille-detection problem.

For each problem, target concept, and size of training data, each system is run 20
times independently over 20 sets of shuffled data, and the performance is evaluated by
calculating the average predictive accuracy using unseen test data. Default parameters
are used for HINT1 and MFE2/GA, unless otherwise stated. When MFE2/GA finishes,
data modified after adding the constructed features are used by C4.5 [Quinlan, 1993]

for learning and accuracy is evaluated by unseen data. To see the utility of features
constructed by HINT and MFE2/GA, experiments are repeated with C4.5 and C4.5-
Rules [Quinlan, 1993] on original data as baseline performance.

5.3.1 Concepts Composed of One Complex Interaction

A first set of experiments is performed over synthetic concepts with one complex inter-
action among attributes. Concepts, which were previously used in [Pérez and Rendell,
1995], are defined over 12 Boolean attributes. Most of these concepts are also used for
experiments of Section 4.4.2. See Appendix A for their definition. To observe the effect
of training data size, four sets of experiments are run using 1%, 3%, 5%, and 10% of all
212 instances as training data, and the rest (99%, 97%, 95%, and 90% respectively) are
kept unseen as test data for final evaluation.

Table 5.1 presents the average predictive accuracies of C4.5, C4.5-Rules, HINT, and
MFE2/GA over different size of training data. Concepts are ordered increasingly by
the number of interacting attributes shown in column 2. The majority class percentage
of each concept is given in the third column. The higher of the two average accuracies
obtained by C4.5 and C4.5-Rules is reported in columns 4, 7, 10, and 13. This result is
marked by c if obtained by C4.5, or by r if obtained by C4.5-Rules. Numbers between
parentheses denote standard deviations. When using 1% training data, the accuracy
of MFE2/GA is marked by † when it is better than HINT’s average accuracy. The
highest average accuracy, within each training size section, is marked by /, but only
when it is not lower than the majority class percentage. MFE2/GA’s average accuracy
is significantly better than those in bold and significantly worse than those in italic;
the significantly higher accuracy of the two results obtained by HINT and C4.5/R is
marked by ◦ (using t-distribution test, with α = 0.02). “N/A” means that HINT’s
attribute-redundancy remover regards all attributes as irrelevant, due to small size of
data for this concept. The overall average accuracy for each method is shown in the
last row of the table.

When 1% data (41 samples) are used for training, for some concepts, none of the

1as implemented in Orange data mining library [Demsar et al., 2004].

5.3 Empirical Evaluation 89

T
ab

le
5.

1:
C

om
pa

ri
ng

av
er

ag
e

pr
ed

ic
ti

ve
ac

cu
ra

ci
es

ov
er

co
nc

ep
ts

w
it

h
on

e
co

m
pl

ex
in

te
ra

ct
io

n
R

el
.
M

a
j

1
%

D
a
ta

3
%

D
a
ta

5
%

D
a
ta

1
0
%

D
a
ta

C
o
n
ce

p
t

a
tt

s
%

C
4
.5

/
R

H
IN

T
M

F
E

2
/
G

A
C

4
.5

/
R

H
IN

T
M

F
E

2
/
G

A
C

4
.5

/
R

H
IN

T
M

F
E

2
/
G

A
C

4
.5

/
R

H
IN

T
M

F
E

2
/
G

A

P
1
,4

4
5
0
.0

r5
0
.3

(2
.8

)
6
9
.1

(2
5
.9

)◦
9
7
.8

(3
.7

)†
/

r
5
4
.6

(5
.5

)
9
2
.1

(1
9
.2

)◦
/

1
0
0
(0

.0
)/

r6
7
.9

(1
2
.9

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

r9
1
.8

(1
0
.5

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

g
w

5
,8

4
6
8
.8

r
8
5
.3

(6
.0

)◦
7
2
.8

(1
0
.8

)
9
0
.7

(9
.6

)†
/

r
1
0
0
(0

.0
)

/
9
8
.9

(4
.8

)
1
0
0
(0

.0
)/

r
1
0
0
(0

.0
)

/
9
9
.0

(4
.6

)
1
0
0
(0

.0
)/

c
1
0
0
(0

.0
)/

1
0
0
(0

.0
)

/
1
0
0
(0

.0
)/

sw
5
,8

4
6
2
.5

c
5
8
.3

(5
.2

)
6
8
.3

(2
1
.3

)
9
6
.5

(4
.8

)†
/

r7
4
.5

(1
4
.2

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

r
8
5
.0

(7
.5

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

r
9
9
.1

(2
.9

)
1
0
0
(0

.0
)

/
1
0
0
(0

.0
)/

m
x
6
c 6

,7
4

5
0
.0

c
6
0
.0

(4
.6

)
5
8
.7

(1
6
.5

)
9
7
.2

(3
.8

)†
/

r
8
6
.3

(5
.3

)
9
5
.3

(1
4
.3

)◦
1
0
0
(0

.0
)/

r
9
3
.7

(6
.2

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

r
1
0
0
(0

.0
)/

1
0
0
(0

.0
)

/
1
0
0
(0

.0
)/

m
j 4

,8
5

5
0
.0

r
7
8
.6

(4
.0

)
/

7
2
.1

(1
2
.2

)
7
8
.0

(9
.0

)†
r

8
9
.4

(4
.0

)
9
4
.6

(1
0
.8

)
9
8
.9

(1
.6

)/
r

9
8
.8

(1
.9

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

c
1
0
0
(0

.0
)/

1
0
0
(0

.0
)

/
1
0
0
(0

.0
)/

P
1
,6

6
5
0
.0

r
4
9
.7

(0
.1

)
5
3
.7

(1
5
.9

)
5
4
.2

(9
.9

)†
/

r
4
9
.3

(0
.2

)
8
6
.9

(2
3
.2

)◦
9
3
.8

(2
.7

)/
r

4
8
.9

(0
.3

)
1
0
0
(0

.0
)◦

/
9
8
.0

(1
.5

)
r

4
9
.1

(2
.0

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

g
w

4
,9

6
6
5
.6

r
7
6
.3

(3
.4

)◦
/

7
0
.2

(9
.0

)
7
4
.1

(5
.0

)†
r

8
4
.4

(2
.9

)
8
4
.1

(1
3
.9

)
9
1
.3

(4
.2

)/
r

9
0
.6

(2
.6

)
9
5
.9

(9
.3

)
9
8
.0

(2
.0

)/
r

9
9
.2

(0
.9

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

sw
4
,9

6
6
8
.8

c
6
0
.3

(5
.4

)
5
9
.1

(1
0
.0

)
6
2
.5

(4
.7

)†
c

6
3
.1

(2
.9

)
8
7
.5

(1
9
.0

)◦
9
2
.3

(2
.3

)/
c

6
6
.2

(3
.1

)
9
9
.8

(0
.5

)◦
/

9
8
.6

(1
.4

)
r

7
9
.0

(9
.1

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

m
x
6
c 5

,8
6

5
0
.0

r
6
7
.7

(4
.5

)
/

6
3
.6

(1
2
.9

)
6
0
.9

(5
.9

)
c

7
0
.8

(1
.4

)
8
2
.5

(1
9
.6

)◦
9
2
.9

(2
.7

)/
c

7
1
.3

(1
.6

)
9
9
.4

(1
.1

)◦
/

9
7
.6

(1
.6

)
r

7
7
.3

(2
.9

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

m
j 3

,9
7

5
0
.0

r
7
1
.8

(5
.4

)◦
/

6
4
.6

(6
.3

)
6
6
.8

(6
.2

)†
r

8
0
.4

(2
.7

)
8
6
.3

(1
5
.0

)
/

7
5
.7

(7
.8

)
r

8
4
.8

(1
.7

)
9
6
.0

(8
.0

)◦
/

9
0
.0

(2
.4

)
r

9
0
.9

(1
.5

)
9
9
.9

(0
.3

)◦
/

9
7
.7

(1
.2

)

n
m

4
,5

,7
7

5
6
.2

r
6
4
.6

(3
.5

)
/

6
0
.0

(8
.0

)
6
1
.6

(5
.5

)†
r

7
0
.5

(3
.6

)
8
4
.1

(1
7
.7

)◦
/

7
3
.3

(7
.7

)
r

7
4
.3

(3
.9

)
9
6
.0

(1
0
.0

)◦
/

8
9
.8

(2
.5

)
r

8
4
.0

(3
.1

)
9
9
.8

(0
.5

)◦
/

9
8
.3

(0
.9

)

rk
5
,7

7
8
3
.6

c
8
0
.5

(4
.2

)◦
7
1
.9

(5
.6

)
7
7
.6

(3
.6

)†
c

8
1
.7

(2
.1

)
8
3
.4

(1
1
.3

)
8
5
.0

(5
.2

)/
c

8
1
.7

(1
.5

)
9
3
.5

(9
.2

)◦
9
3
.7

(3
.7

)/
r

8
4
.8

(1
.5

)
9
9
.8

(0
.5

)◦
/

9
8
.7

(1
.1

)

rk
6
,7

7
9
4
.5

c
9
3
.5

(3
.2

)
N

/
A

9
0
.6

(4
.0

)†
c

9
4
.1

(2
.0

)◦
9
0
.1

(3
.0

)
9
2
.7

(1
.4

)
c

9
4
.1

(0
.6

)
9
3
.1

(4
.0

)
9
5
.9

(2
.7

)/
r

9
5
.2

(1
.1

)
9
8
.5

(2
.6

)◦
9
9
.4

(1
.1

)/

g
w

3
,1

0
8

6
3
.7

r
7
3
.2

(3
.0

)◦
/

6
6
.9

(5
.3

)
6
8
.9

(4
.1

)†
r

7
9
.7

(2
.3

)
8
5
.3

(1
2
.2

)
/

7
3
.7

(5
.3

)
r

8
3
.4

(1
.5

)
9
6
.0

(8
.0

)◦
/

7
6
.5

(5
.1

)
r

8
7
.2

(1
.1

)
9
9
.5

(0
.5

)◦
/

8
9
.1

(3
.6

)

sw
3
,1

0
8

7
2
.7

c
6
4
.7

(7
.4

)◦
5
6
.5

(4
.9

)
6
3
.0

(4
.8

)†
c

6
8
.7

(3
.9

)
8
3
.9

(1
9
.1

)◦
/

6
8
.5

(4
.1

)
c

6
8
.0

(3
.5

)
9
3
.2

(1
3
.6

)◦
/

7
5
.9

(5
.4

)
c

6
9
.4

(2
.3

)
9
9
.7

(0
.4

)◦
/

8
8
.1

(7
.6

)

m
x
6
c 4

,9
8

5
0
.0

c
7
3
.5

(1
.8

)◦
/

6
4
.1

(8
.3

)
5
8
.1

(6
.6

)
c

7
3
.8

(0
.1

)
8
8
.2

(1
4
.8

)◦
/

6
6
.7

(3
.4

)
c

7
3
.2

(1
.3

)
9
5
.2

(8
.3

)◦
/

7
5
.5

(5
.2

)
c

7
2
.8

(0
.2

)
9
8
.9

(0
.6

)◦
/

8
5
.0

(8
.3

)

m
j 2

,1
0

9
5
0
.0

r
7
0
.5

(3
.4

)◦
/

6
1
.3

(6
.4

)
6
4
.1

(7
.1

)†
r

7
6
.4

(2
.4

)
/

7
2
.0

(8
.3

)
6
5
.8

(5
.5

)
r

7
9
.3

(1
.5

)
9
2
.2

(1
0
.1

)◦
/

6
7
.3

(3
.5

)
r

8
3
.1

(1
.0

)
9
9
.5

(0
.5

)◦
/

7
6
.0

(2
.9

)

n
m

5
,6

,9
9

5
9
.0

r
5
9
.4

(2
.6

)◦
/

5
5
.7

(4
.9

)
5
8
.7

(4
.4

)†
r

6
5
.2

(2
.1

)
7
1
.7

(1
5
.0

)
/

5
9
.8

(3
.6

)
r

6
6
.2

(1
.9

)
9
0
.5

(1
5
.2

)◦
/

6
5
.9

(3
.4

)
r

7
1
.4

(3
.1

)
9
9
.3

(0
.6

)◦
/

7
3
.6

(4
.5

)

rk
6
,9

9
8
3
.6

c
7
9
.6

(4
.8

)◦
7
2
.5

(5
.2

)
7
4
.9

(4
.4

)†
c

8
0
.6

(3
.0

)
7
3
.0

(4
.5

)◦
7
9
.6

(3
.3

)
c

8
1
.0

(2
.3

)
8
9
.4

(1
0
.4

)◦
/

8
0
.5

(2
.2

)
c

8
2
.7

(1
.4

)
9
9
.6

(0
.6

)◦
/

8
3
.3

(3
.4

)

rk
7
,9

9
9
3
.0

c
9
2
.6

(1
.5

)◦
8
6
.4

(3
.9

)
8
8
.5

(3
.9

)†
c

9
2
.5

(1
.3

)
8
7
.5

(2
.1

)◦
9
0
.0

(1
.4

)
c

9
2
.7

(0
.8

)◦
8
9
.5

(1
.8

)
9
1
.3

(1
.1

)
c

9
2
.7

(0
.8

)
9
8
.2

(1
.1

)◦
/

9
2
.0

(1
.7

)

m
x
6
c 3

,1
0

1
0

5
0
.0

c
7
3
.4

(4
.4

)◦
/

6
5
.8

(9
.8

)
6
2
.2

(8
.7

)
r

7
4
.3

(0
.1

)
/

6
6
.9

(1
5
.3

)
5
5
.9

(5
.7

)
c

7
4
.0

(0
.1

)
9
6
.8

(8
.2

)◦
/

5
7
.6

(4
.4

)
c

7
3
.4

(0
.2

)
9
9
.4

(0
.5

)◦
/

6
5
.9

(7
.3

)

A
v
er

a
g
e

7
6
3
.0

c
7
0
.1

(3
.8

)
6
5
.7

(1
0
.2

)
7
3
.7

(5
.7

)†
/

r
7
6
.1

(3
.0

)
8
5
.4

(1
2
.5

)
/

8
3
.6

(3
.2

)
r

7
9
.4

(2
.8

)
9
6
.0

(5
.8

)
/

8
8
.2

(2
.3

)
r

8
4
.5

(2
.2

)
9
9
.6

(0
.4

)
/

9
2
.7

(2
.1

)
c

re
su

lt
s

o
b
ta

in
ed

b
y

C
4
.5

r
re

su
lt

s
o
b
ta

in
ed

b
y

C
4
.5

-R
u
le

s
N

/
A

re
su

lt
s

a
re

n
o
t

a
v
a
il
a
b
le

/
h
ig

h
es

t
a
v
er

a
g
e

a
cc

u
ra

cy
†

b
et

te
r

th
a
n

H
IN

T
◦

si
g
n
ifi

ca
n
tl

y
h
ig

h
er

b
et

w
ee

n
H

IN
T

a
n
d

C
4
.5

/
R

B
o
ld

fa
c
e
:

M
F
E

2
/
G

A
’s

a
cc

u
ra

cy
is

si
g
n
ifi

ca
n
tl

y
b
et

te
r

th
a
n

th
is

a
cc

u
ra

cy
It

a
li
c
:

M
F
E

2
/
G

A
’s

a
cc

u
ra

cy
is

si
g
n
ifi

ca
n
tl

y
w

o
rs

e
th

a
n

th
is

a
cc

u
ra

cy

90 MFE2/GA and HINT: Sensitivity to Training Data Size

methods obtain an accuracy better than the majority class percentage. In these cases,
classifying samples by the label of the majority class gives better results than those
obtained by the methods. When that is not the case, for most concepts the best sys-
tem is C4.5/R. MFE2/GA and HINT use data samples to induce new functions, so
they are sensitive to the data quantity. Due to small data size, for most concepts,
the methods cannot construct proper functions to improve learning task and achieve
better accuracy than C4.5/R. However, if few attributes participate in interaction (i.e.,
four attributes), MFE2/GA achieves higher accuracy than the others and significantly
outperforms HINT. For these concepts, MFE2/GA discovers relevant attributes and
successfully constructs proper functions since 41 samples are enough for this method to
capture and encapsulate the interaction among four attributes. But, for HINT, this data
size is not enough for learning as well as C4.5/R or MFE2/GA. Note that for almost
all concepts MFE2/GA gives better results than HINT. The small data size along with
the presence of irrelevant attributes make these concepts difficult to learn by HINT.

When the training data size is increased to 3%, both CI methods get more advantage
from data and obtain better results than C4.5/R. MFE2/GA achieves higher accuracy
than HINT and significantly outperforms C4.5/R, when the ratio of relevant attributes
to total number of attributes is not high (less than seven interacting attributes). For
these concepts, HINT cannot generate functions as properly as MFE2/GA due to over-
fitting. It breaks down the high-order complex interaction into smaller interactions
represented by functions that are consistent with training data but produce errors when
evaluated by unseen test data (as seen also by en example in Figure 5.4(b)). However,
when the number of interacting attributes increases, the result changes. As explained
in Section 5.2, MFE2/GA cannot break down these concepts into smaller interactions
because of its bias for extracting functions from data. The function that represents
the smaller interaction has different mixed cases that should be labeled differently.
MFE2/GA cannot assign different labels to mixed cases. So, it tries to encapsulate
the whole interaction by constructing a unique function. But, the training samples
are not enough for capturing the interaction among all relevant attributes. On the
other hand, HINT, by means of multi-coloring, successfully groups mixed cases into
compatible columns and assigns a label to each group of compatible columns. So, it
breaks down the high-order complex interaction into smaller ones connected to each
other by another interaction. Since the underlying hierarchy of intermediate concepts is
not complex, despite the small size of training data, HINT constructs proper functions.
Hence, it significantly outperforms MFE2/GA for most concepts with high number of
interacting attributes. It also significantly obtains better results then C4.5/R.

With 5% data the differences among methods are more visible. HINT significantly
achieves higher accuracy than MFE2/GA and C4.5/R for most concepts since it has
enough training samples for extracting functions. However, MFE2/GA still achieves an
accuracy equal to or higher than HINT when few attributes participate in interaction;

5.3 Empirical Evaluation 91

Table 5.2: Summary of Table 5.1
Description Frequency (out of 19)
of the event 1% Data 3% Data 5% Data 10% Data

MFE2/GA/HINT 7/1 4/8 3/11 0/11

MFE2/GA/C4.5/R 3/9 9/8 13/4 11/2

HINT/C4.5/R 1/12 11/1 17/1 17/0

and significantly outperforms C4.5/R. With 10% data similar results obtained, though,
for concepts with small number of interacting attributes now there are enough data
samples for HINT to avoid overfitting and achieve a predictive accuracy as high as
MFE2/GA.

Note that for most concepts the standard deviation of the accuracies obtained by
HINT is high. Further analysis of the results shows that there are some trials of 20
runs where HINT cannot achieve good results because it confounds irrelevant attributes
with interacting ones and, consequently, constructs irrelevant functions. This illustrates
that the attribute-redundancy remover of HINT sometimes cannot detect irrelevant
attributes.

Table 5.2 summarizes the results of the experiments. It shows the number of times
a method significantly outperformed the other method for different data sizes. For an
event “method1/method2”, a frequency “a/b” means method1 outperformed method2

for a number of concepts out of 19 concepts, and method2 outperformed method1 for
b number of concepts. As explained before and showed in this summary, when few
training data is provided C4.5/R achieves better results; and MFE2/GA outperforms
HINT. When the size of training data increases, both CI methods start to get more
advantage of the training data and achieve better accuracy comparing to C4.5/R. HINT
due to its multi-coloring outperforms MFE2/GA.

Concepts used for these experiments are composed of one complex interaction among
four to ten attributes. Since MFE2/GA cannot break down complex interactions into
smaller ones it fails to improve accuracy when more attributes participate in interactions.
Next section presents experiments performed over concept that are composed of several
interactions over smaller sets of attributes, that is, the number of interacting attributes
is high (from six to eighteen attributes) but interactions are small (among three to six
attributes each).

5.3.2 Concepts Composed of Several Complex Interactions

This section evaluates the two systems when there are more than one complex inter-
actions in the concept. The synthetic concepts are designed to focus the empirical
study on situations were multiple complex attribute interactions make FC necessary for

92 MFE2/GA and HINT: Sensitivity to Training Data Size

learning and difficult to achieve due to complex underlying hierarchy of intermediate
concepts. Table 5.3 summarizes concepts used for the experiments and the results. For
all concepts, attributes are Boolean except in the last four concepts, where for Monk1
attributes are 2 to 4-valued and for the other three concepts attributes are 3-valued.
The number of relevant and irrelevant attributes is reported in columns 2 and 3 of the
table. The majority class percentage is denoted in column 4. Note that for some con-
cepts there are attributes participating in more than one underlying interaction (shared
attributes). For example, in ∧(P1,4, P3,6), x3 and x4 are shared by P1,4 and P3,6. See Ap-
pendix A for definition of concepts, including a description of the complex interactions
underlying these concepts.

Similar experiments to those in Section 5.3.1 are performed. As these concepts are
more complex than those in the previous section, more data samples are needed for
learning. Experiments are performed using 1%, 5% and 10% of all possible instances as
training data and the rest of them as test data. Results of experiments over 3% data
are not reported here because they are not so relevant for our empirical comparison.
The average accuracy of C4.5, C4.5-Rules, HINT, and MFE2/GA over different size of
training data are reported in Table 5.3 with the same format and notation as Table 5.1.

With 1% data, for almost all cases, HINT’s accuracy is significantly lower than
C4.5/R. MFE2/GA’s result is also lower than C4.5/R, sometimes significantly. However,
C4.5/R achieves accuracies still not higher than the majority class percentages for most
cases; that is, there are few / symbols in the 1% data section. Thus, if we classify all data
by the label of majority class, we obtain a higher accuracy than these methods in most
cases due to lack of data. These concepts are composed of six to eighteen interacting
attributes. Thus, 1% of data is not enough for learning, using any of methods. Note that
in spite of having few data, MFE2/GA obtains higher accuracy than HINT (significantly
for most cases), although both are often below majority class percentage.

With 5% data, the result is quite different. Now, in almost all cases MFE2/GA has
an accuracy significantly better than other methods. Providing more training data also
helps HINT to improve its accuracy. However, the overall average accuracy of HINT
in this section is almost the same as the one obtained by C4.5/R. When 10% data are
used, HINT starts to get more advantage of the size of data and improves its accuracy,
but still MFE2/GA has an overall average accuracy better than HINT. This indicates
that HINT needs more data than MFE2/GA for learning these concepts.

As explained in Section 5.2 and empirically illustrated in Section 5.3.1, one of the
main characteristics of HINT is multi-coloring, that is, assignment of labels to groups
of compatible columns. When there is one high-order interaction among attributes,
lots of variations exist among columns. Thus, the incompatibility across columns is
discovered by HINT; then, interacting attributes are selected and labels are assigned
correctly. For this reason HINT achieved higher accuracy in experiments of the pre-
vious section. However, this is not the case for concepts in this section; thus, HINT

5.3 Empirical Evaluation 93

T
ab

le
5.

3:
C

om
pa

ri
ng

av
er

ag
e

pr
ed

ic
ti

ve
ac

cu
ra

ci
es

ov
er

co
nc

ep
ts

w
it

h
se

ve
ra

l
co

m
pl

ex
in

te
ra

ct
io

ns
R

el
.
Ir

re
l.

M
a
j

1
%

D
a
ta

5
%

D
a
ta

1
0
%

D
a
ta

C
o
n
ce

p
t

a
tt

s
a
tt

s
%

C
4
.5

/
R

H
IN

T
M

F
E

2
/
G

A
C

4
.5

/
R

H
IN

T
M

F
E

2
/
G

A
C

4
.5

/
R

H
IN

T
M

F
E

2
/
G

A
∧(

P
1
,4

,P
3
,6

)
6

6
7
5
.0

c
6
8
.2

(7
.1

)◦
N

/
A

6
6
.2

(6
.4

)
c
7
2
.5

(3
.2

)
1
0
0
(0

.0
)◦

/
9
9
.1

(1
.6

)
r

7
8
.7

(6
.1

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

∧(
P
1
,6

,P
3
,8

)
8

4
7
5
.0

c
6
6
.3

(7
.0

)◦
5
9
.1

(6
.9

)
6
4
.9

(3
.9

)
c
7
3
.4

(2
.7

)
9
8
.6

(6
.3

)◦
/

9
2
.8

(5
.7

)
c

7
4
.4

(1
.2

)
1
0
0
(0

.0
)◦

/
9
9
.3

(0
.7

)

∧(
P
1
,6

,P
7
,1
2
)

1
2

0
7
5
.0

c
6
7
.3

(8
.0

)◦
5
8
.5

(6
.3

)
6
3
.5

(4
.2

)
c
7
2
.6

(3
.9

)
8
2
.5

(1
6
.5

)◦
8
7
.4

(8
.2

)/
c

7
4
.8

(1
.4

)
1
0
0
(0

.0
)◦

/
9
7
.8

(1
.6

)

∧(
P
1
,3

,P
3
,5

,P
4
,6

)
6

6
8
7
.5

c
8
6
.7

(2
.5

)◦
7
6
.5

(5
.1

)
8
0
.2

(4
.1

)
c
8
7
.6

(1
.2

)
9
4
.1

(9
.6

)◦
9
9
.8

(0
.7

)/
r

9
2
.3

(3
.9

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

∧(
P
1
,4

,P
2
,5

,P
3
,6

)
6

6
8
7
.5

c
8
6
.7

(2
.5

)◦
7
6
.2

(6
.0

)
8
2
.0

(4
.7

)
c
8
7
.5

(0
.3

)
9
7
.2

(7
.2

)◦
9
9
.6

(0
.7

)/
r

8
9
.4

(3
.1

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

∧(
P
1
,4

,P
3
,6

,P
5
,8

)
8

4
8
7
.5

c
8
6
.6

(4
.2

)◦
7
0
.5

(5
.7

)
7
6
.2

(5
.8

)
c
8
7
.5

(0
.1

)
9
0
.3

(1
1
.0

)
9
6
.4

(1
.8

)/
c

8
7
.5

(0
.2

)
1
0
0
(0

.0
)◦

/
9
9
.3

(0
.8

)

∧(
P
1
,4

,P
5
,8

,P
9
,1
2
)

1
2

0
8
7
.5

c
8
6
.1

(4
.7

)◦
7
2
.9

(6
.8

)
7
8
.6

(4
.2

)
c

8
7
.5

(0
.1

)◦
7
8
.4

(4
.1

)
9
0
.8

(7
.4

)/
c

8
7
.5

(0
.2

)
9
8
.3

(5
.1

)◦
1
0
0
(0

.0
)/

∧(
P
1
,6

,P
2
,7

,P
3
,8

)
8

4
8
7
.5

c
8
6
.7

(2
.5

)◦
7
3
.8

(5
.7

)
8
3
.1

(3
.8

)
c
8
6
.6

(1
.8

)
9
2
.3

(1
0
.0

)◦
/

9
2
.2

(3
.3

)
c

8
7
.2

(0
.8

)
9
9
.0

(4
.3

)◦
/

9
7
.2

(1
.6

)

∧(
W
L
3
1
,5

,W
L
3
3
,7

)
7

5
6
4
.1

r
7
5
.1

(5
.0

)◦
6
9
.9

(6
.8

)
7
5
.3

(5
.7

)/
r9

0
.1

(3
.0

)
9
1
.2

(1
1
.6

)
9
3
.6

(5
.3

)/
r

9
7
.1

(1
.4

)
9
9
.2

(3
.0

)◦
/

9
8
.8

(1
.0

)

∧(
W
L
3
1
,5

,W
L
3
4
,8

)
8

4
6
8
.0

r
7
5
.4

(4
.8

)◦
/

6
7
.5

(8
.9

)
7
5
.3

(4
.8

)
r8

6
.7

(2
.0

)
8
8
.8

(8
.9

)
9
5
.5

(6
.5

)/
r

9
6
.0

(1
.8

)
9
9
.4

(0
.7

)◦
/

9
9
.4

(2
.4

)

∧(
W
L
3
1
,5

,W
L
3
5
,9

)
9

3
7
1
.5

r
7
3
.9

(3
.2

)◦
/

6
7
.7

(6
.1

)
7
3
.6

(3
.9

)
r8

4
.9

(2
.6

)
8
8
.0

(1
0
.1

)
9
5
.3

(5
.4

)/
r

9
1
.8

(2
.9

)
9
9
.9

(0
.3

)◦
/

9
9
.6

(0
.9

)

∧(
W
L
3
1
,5

,W
L
3
6
,1
0
)

1
0

2
7
5
.0

c
7
5
.1

(2
.8

)◦
/

6
9
.0

(5
.9

)
7
4
.2

(2
.6

)
r8

2
.2

(2
.1

)◦
7
8
.6

(5
.2

)
9
1
.1

(8
.2

)/
r

8
8
.6

(3
.3

)
9
8
.4

(4
.1

)◦
9
9
.1

(4
.1

)/

∧(
W
L
3
1
,4

,W
L
3
3
,6

,W
L
3
5
,8

)
8

4
5
7
.8

r
7
2
.6

(5
.6

)◦
/

6
3
.5

(5
.8

)
6
6
.9

(6
.0

)
r8

9
.2

(4
.1

)
8
9
.3

(1
2
.0

)
9
7
.5

(2
.0

)/
r

9
9
.1

(1
.7

)
9
9
.6

(0
.6

)
/

9
9
.6

(0
.9

)

∧(
W
L
3
1
,4

,W
L
3
5
,8

,W
L
3
9
,1
2
)

1
2

0
6
7
.5

r
6
9
.4

(2
.8

)◦
/

6
3
.3

(3
.8

)
6
6
.5

(4
.9

)
r7

9
.5

(3
.2

)◦
7
1
.8

(4
.5

)
9
1
.5

(1
1
.0

)/
r

9
3
.0

(3
.2

)◦
8
6
.4

(8
.8

)
1
0
0
(0

.0
)/

∧(
W
2
3
1
,6

,W
2
3
7
,1
2
)

1
2

0
7
0
.9

c
6
4
.1

(4
.3

)◦
5
9
.0

(4
.2

)
6
3
.6

(3
.0

)
r6

8
.2

(2
.3

)◦
6
5
.9

(3
.3

)
8
0
.1

(8
.9

)/
r

7
2
.5

(3
.2

)
9
2
.4

(1
0
.7

)◦
9
6
.2

(6
.1

)/

∧(
W
2
3
1
,4

,W
2
3
5
,8

,W
2
3
9
,1
2
)

1
2

0
7
5
.6

c
6
9
.9

(5
.4

)◦
6
3
.2

(4
.7

)
6
7
.0

(4
.8

)
r7

4
.7

(1
.9

)◦
6
9
.7

(3
.0

)
8
7
.8

(1
1
.2

)/
r

8
5
.1

(3
.5

)
8
5
.1

(1
0
.4

)
1
0
0
(0

.0
)/

∧(
W
2
3
1
,5

,W
2
3
6
,1
0
,W
2
3
1
1
,1
5
)

1
5

0
7
6
.0

c
7
2
.3

(1
.8

)◦
6
5
.3

(3
.4

)
7
6
.8

(5
.7

)/
r8

8
.5

(3
.1

)
9
8
.9

(2
.8

)◦
1
0
0
(0

.0
)/

r
9
5
.5

(2
.7

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

∧(
W
2
3
1
,6

,W
2
3
7
,1
2
,W
2
3
1
3
,1
8
)

1
8

0
8
4
.0

r8
2
.7

(1
.6

)◦
7
4
.1

(2
.9

)
9
8
.8

(3
.1

)/
r9

8
.1

(0
.9

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

r
1
0
0
(0

.0
)

/
1
0
0
(0

.0
)

/
1
0
0
(0

.0
)/

∧(
A
1
,4

,A
5
,8

,A
9
,1
2
)

1
2

0
8
2
.2

c
7
9
.2

(4
.4

)◦
7
2
.1

(5
.2

)
7
6
.0

(4
.7

)
r

8
9
.8

(5
.0

)◦
7
9
.7

(3
.1

)
9
4
.2

(7
.0

)/
r

1
0
0
(0

.0
)◦

/
8
9
.6

(6
.5

)
9
9
.9

(0
.2

)

∧(
B
1
,4

,B
5
,8

,B
9
,1
2
)

1
2

0
8
7
.5

c
8
6
.2

(3
.0

)◦
7
5
.4

(6
.3

)
7
8
.7

(4
.0

)
c
8
6
.9

(1
.3

)◦
8
1
.1

(2
.1

)
8
9
.8

(4
.3

)/
r

9
2
.8

(3
.1

)◦
8
5
.8

(4
.1

)
1
0
0
(0

.0
)/

∧(
C
1
,4

,C
5
,8

,C
9
,1
2
)

1
2

0
5
7
.8

c
5
6
.0

(3
.7

)◦
5
2
.8

(3
.2

)
5
6
.1

(3
.7

)
r6

6
.2

(3
.8

)
6
4
.6

(7
.8

)
9
8
.1

(8
.7

)/
r

7
9
.3

(5
.7

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

∧(
D
1
,4

,D
5
,8

,D
9
,1
2
)

1
2

0
8
7
.5

c
8
5
.8

(3
.1

)◦
N

/
A

8
2
.3

(4
.1

)
r

9
0
.6

(2
.8

)◦
8
3
.7

(1
.9

)
9
1
.0

(3
.5

)/
r

9
8
.6

(2
.7

)◦
8
9
.0

(3
.0

)
9
8
.9

(2
.4

)/

∧(
E
1
,4

,E
5
,8

,E
9
,1
2
)

1
2

0
7
5
.6

c
7
0
.1

(5
.9

)◦
6
2
.2

(5
.3

)
6
8
.1

(3
.9

)
r7

7
.0

(3
.0

)◦
7
2
.2

(4
.8

)
9
0
.7

(1
0
.7

)/
r

9
1
.5

(5
.1

)
9
3
.9

(1
1
.1

)
1
0
0
(0

.0
)/

∧(
A
1
,4

,C
5
,8

,E
9
,1
2
)

1
2

0
7
3
.6

c
6
9
.3

(4
.4

)◦
6
4
.0

(6
.3

)
6
8
.1

(3
.6

)
r8

2
.2

(3
.4

)◦
7
3
.7

(5
.6

)
9
7
.8

(4
.9

)/
r

8
7
.3

(4
.3

)
9
4
.1

(8
.7

)◦
1
0
0
.0

(0
.2

)/

∧(
A
1
,4

,B
5
,8

,D
9
,1
2
)

1
2

0
8
5
.9

c
8
4
.2

(2
.6

)◦
N

/
A

7
9
.7

(4
.3

)
r

8
7
.6

(3
.6

)◦
8
1
.5

(3
.4

)
9
0
.4

(4
.5

)/
r

9
6
.2

(3
.4

)◦
9
1
.3

(6
.2

)
9
9
.8

(0
.7

)/

∧(
A
1
,4

,B
5
,8

,C
9
,1
2
)

1
2

0
7
8
.9

c
7
1
.6

(5
.6

)◦
6
7
.5

(4
.8

)
6
9
.9

(3
.8

)
r8

6
.3

(3
.5

)◦
7
5
.8

(4
.3

)
9
4
.0

(7
.1

)/
r

8
9
.0

(2
.8

)
9
6
.2

(6
.3

)◦
1
0
0
(0

.0
)/

∧(
B
1
,4

,C
3
,6

,A
7
,1
0
,D

9
,1
2
)

1
2

0
8
6
.5

c
8
4
.0

(4
.7

)◦
7
7
.4

(4
.8

)
8
0
.1

(4
.1

)
r

8
8
.5

(2
.0

)◦
8
3
.2

(2
.8

)
9
0
.2

(2
.9

)/
r

9
4
.4

(1
.8

)◦
8
9
.0

(3
.9

)
9
8
.0

(2
.0

)/

∧(
A
1
,4

,B
5
,8

,C
9
,1
2
,E

1
3
,1
6
)

1
6

0
8
7
.0

r8
9
.5

(2
.4

)◦
8
1
.3

(2
.4

)
9
6
.5

(5
.4

)/
r9

4
.8

(2
.1

)
9
9
.8

(1
.1

)◦
1
0
0
(0

.0
)/

r
9
8
.7

(1
.2

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

∧(
C
1
,4

,W
L
3
5
,8

,W
2
3
9
,1
2
)

1
2

0
6
7
.8

r
6
3
.3

(3
.6

)
6
0
.8

(4
.5

)
6
3
.5

(3
.3

)
r7

4
.2

(3
.1

)
7
0
.6

(7
.2

)
9
7
.9

(6
.3

)/
r

8
3
.2

(4
.5

)
9
3
.8

(1
0
.2

)◦
1
0
0
(0

.0
)/

∧(
W
2
3
1
,5

,C
5
,8

,W
L
3
8
,1
2
)

1
2

0
7
6
.6

c
7
1
.9

(3
.9

)◦
6
6
.6

(5
.4

)
7
0
.5

(4
.6

)
c
7
6
.4

(1
.2

)◦
7
1
.2

(2
.4

)
8
0
.7

(6
.3

)/
r

8
0
.4

(3
.0

)
8
4
.0

(7
.8

)
9
8
.4

(3
.3

)/

∧(
W
2
3
1
,5

,C
4
,7

,W
L
3
6
,1
0
)

1
0

2
7
6
.6

c
7
3
.0

(3
.6

)◦
6
6
.6

(5
.5

)
7
0
.5

(4
.0

)
r7

7
.4

(2
.8

)
7
5
.9

(6
.6

)
8
4
.4

(6
.3

)/
r

8
3
.9

(2
.3

)
9
6
.4

(4
.6

)◦
9
8
.5

(1
.8

)/

M
o
n
k
1

6
0

5
0
.0

r
4
9
.7

(2
.8

)◦
N

/
A

5
0
.6

(8
.1

))
/

r6
5
.2

(8
.3

)
7
0
.1

(1
3
.4

)
7
7
.0

(1
0
.6

)/
r8

1
.0

(1
1
.7

)
8
9
.5

(6
.0

)◦
9
9
.6

(1
.8

)/

p
a
l
i
n
d
r
o
m
e
6
+

2
6

2
9
6
.0

c
9
6
.3

(0
.0

)◦
/

N
/
A

9
3
.9

(2
.2

)
c
9
6
.3

(0
.1

)◦
9
3
.2

(2
.0

)
9
9
.6

(0
.7

)/
c

9
6
.3

(0
.1

)
9
9
.0

(1
.8

)◦
1
0
0
(0

.0
)/

∨(
p
a
l
1
,4

,p
a
l
3
,6

,p
a
l
5
,8

)
8

0
7
0
.0

c
6
7
.6

(4
.3

)◦
5
7
.8

(3
.4

)
6
5
.4

(3
.2

)
r

7
1
.2

(2
.6

)◦
/

6
3
.8

(4
.1

)
7
0
.6

(3
.1

)
r

8
2
.0

(3
.7

)◦
/

7
4
.7

(9
.1

)
7
6
.3

(4
.0

)

∨(
p
a
l
1
,4

,p
a
l
4
,7

,p
a
l
7
,1
0
)

1
0

0
7
0
.0

r
7
2
.2

(3
.1

)◦
/

6
5
.1

(6
.3

)
7
1
.1

(1
.2

)
r9

7
.5

(2
.3

)
1
0
0
(0

.0
)◦

/
1
0
0
(0

.0
)/

r
9
9
.9

(0
.3

)
1
0
0
(0

.0
)

/
1
0
0
(0

.0
)/

A
v
er

a
g
e

1
0

2
7
6
.6

c
7
5
.7

(3
.9

)
6
7
.3

(5
.3

)
7
3
.5

(4
.3

)
r

8
2
.2

(3
.1

)
8
3
.3

(5
.7

)
9
2
.5

(5
.0

)/
r

8
8
.5

(3
.1

)
9
5
.0

(4
.9

)
9
8
.7

(1
.0

)/

94 MFE2/GA and HINT: Sensitivity to Training Data Size

Table 5.4: Summary of Table 5.3
Frequency (out of 34)

Description of the event 1% Data 5% Data 10% Data

MFE2/GA/HINT 28/0 23/2 13/3

MFE2/GA/C4.5/R 3/11 28/0 28/1

HINT/C4.5/R 0/33 10/16 22/7

cannot take advantage of its multi-coloring to outperform MFE2/GA. So, for almost
all cases MFE2/GA has significantly better accuracy than HINT. The result of concept
palindrome6+2 empirically illustrates what was predicted in Section 5.2 regarding the
problem of multi-coloring when few data are available.

The low accuracy of HINT is due to these concepts being composed of two or more
interactions of three or more attributes each. The underlying hierarchy of intermediate
concepts is large and complex. HINT applies a greedy strategy for constructing this
hierarchy. The goodness of the feature constructed in each step has a direct effect on
the construction of other features in next steps. As explained in Section 5.2, when few
data are available, it is more probable that HINT overfits data by selecting attributes
and constructing features incorrectly. Therefore, the feature constructed by HINT is
irrelevant to the concept; and subsequently, the other features constructed in the next
steps are irrelevant too. This explains the high standard deviation of HINT’s result for
most of these concepts when the size of training data is small. Either HINT gets the
chance to select attributes correctly in early steps and construct a correct hierarchy, or
its early mistakes misguide it toward an irrelevant hierarchy.

Additional study and analysis of the features generated by HINT indicates that
HINT’s attribute-redundancy remover fails for some concepts due to selecting attributes
one by one for redundancy evaluation. When few data are available a relevant attribute
may be considered as redundant and removed from original attribute set. In addition
to losing information, removing a relevant attribute causes irrelevant attributes to be
considered as relevant.

MFE2/GA overcomes these problems caused by few data, by selecting several sub-
sets of attributes simultaneously, which are then used to construct several features; and
constructed features are also evaluated together. Note that for all concepts the majority
of attributes participate in interactions (for some cases all attributes), but they can be
represented by a relation among smaller interactions. Thus, MFE2/GA successfully
breaks down the relation among attributes into small interactions represented by con-
structed functions. Hence, it can find the exact target concept or a close approximation
to it due to its multi-feature construction. For this reason, the standard deviation of its
accuracy is lower than HINT’s.

Table 5.4 summarizes the results with the same format as Table 5.2. It can be

5.3 Empirical Evaluation 95

seen that when few training data is provided the result is similar to those shown in
Table 5.2. But when the size of training data increases the results are quit different.
MFE2/GA significantly outperforms other methods due to its multi-feature construc-
tion. HINT cannot take advantage of its multi-coloring property and, therefore, outper-
forms MFE2/GA only for few concepts. It outperform C4.5/R when enough training
data samples (i.e., 10% data) are provided.

5.3.3 Experiments with Braille-detection Problem

This section reports on a similar empirical comparison of the two systems, but this time
based on a task defined over a real-world domain. A Braille code is a 3× 2 matrix of
raised/unraised dots. Figure 5.5(a) shows the Braille code as it was originally invented
for French alphabet (which did not include the w), where raised and unraised dots
are shown by black and white circles respectively. The target concept is to distinguish
Braille-coded text from randomly generated codes, using a windowing of three codes.
Each sample consists of three codes, each represented by six Boolean attributes forming
a total of 18 attributes. If all three codes are Braille, the sample is classified as true, and
otherwise, it is classified as false. Figure 5.5(b) shows a valid sample in Braille-detection
Problem.

The Braille-detection concept is composed of complex interactions among attributes,
which are not easily represented by an algebraic form. For each code (a matrix of six
attributes), the third and sixth attributes determine that the code pertains to which
group: the first group that consists of letters a to j , the second group that is k to t ,
or the third one that is u to z . The other four attributes determine the position of
the code in the group. Note that if the code belongs to the third group then only the
first five positions are valid, as shown in Figure 5.5(a). Thus, each code is represented
by several interactions among attributes. Since the concept is composed of three codes
(three sets of interactions), the underling hierarchy of intermediate concepts is complex,
and hard to discover by a greedy method such as HINT when few training data samples
are available.

A total of 20 data sets of 31250 samples are generated with majority class of 50%.
These data sets are used to carry out a set of experiments similar to those from the
previous section. Experimental results showed that the tree generated by C4.5 using
features constructed by MFE2/GA has the new features near the root, but still uses
many primitive attributes at deeper levels. This indicates that the features generated
were not enough for abstracting all interactions. So, the parameter K that is the
maximum number of features in each individual (Section 4.2.1) is increased from five
to nine, allowing MFE2/GA to generate more features. This requires more CPU time,
but a single learning trial still takes only a few minutes (for 5% data about two minutes
on a Pentium 4).

96 MFE2/GA and HINT: Sensitivity to Training Data Size

Table 5.5: Comparing results over Braille-detection problem
Data Size C4.5 C4.5-Rules HINT MFE2/GA

1% 90.7(1.9)◦ 94.8(2.2)◦/ 75.9(4.1) 89.9(4.6)

5% 97.6(0.4)◦ 99.6(0.3)◦/ 90.2(3.4) 99.1(2.0)

10% 98.6(0.3)◦ 99.9(0.2)◦ 95.9(3.4) 100.0(0.1)/

15% 99.0(0.2) 99.9(0.1)◦ 99.0(0.8) 100.0(0.0)/

20% 99.4(0.1) 100.0(0.0)◦ 99.4(0.6) 100.0(0.0)/

/ highest average accuracy
◦ significantly better than HINT
Boldface: MFE2/GA is significantly better than this accuracy
Italic: MFE2/GA is significantly worse than this accuracy

Experiments are performed increasing training data from 1% to 20% to see how
data size affects these methods. Table 5.5 shows accuracies of C4.5, C4.5-Rules, HINT,
and MFE2/GA for different size of training data. MFE2/GA’s accuracy is significantly
better than those in bold and worse than those in italic, and ◦ means this accuracy is
significantly better than HINT (using t-distribution test, with α = 0.02). As shown in
the table, MFE2/GA outperforms HINT and C4.5 for all data sizes except for 1%, where
MFE2/GA gets slightly lower accuracy than C4.5. C4.5-Rules’s accuracy is similar to
MFE2/GA’s, except for 1% data, where it is significantly higher and 15% data, where
it is significantly lower than MFE2/GA.

The low accuracy and high standard deviation of MFE2/GA with 1% training data
indicates that this method most of the times overfits data due to its dependency to
data quantity for extracting new features (though it is not as sensitive as HINT). But
if enough data is provided, MFE2/GA can achieve better accuracy comparing to other
methods. With 10% data this method achieves 100% predictive accuracy over test data,
whereas C4.5-Rules needs two times more data (20% data) to properly learn the concept
and obtain 100% accuracy.

It is interesting to note that, although C4.5-Rules performs similarly to MFE2/GA,

a b c d e f g h i j

k l m n o p q r s t

u v x y z

(a) Braille code representation

x1

x6x3

x5x2

x4 x7

x12x9

x11x8

x10 x13

x18x15

x17x14

x16

(b) a sample classified as a valid
code

Figure 5.5: Braille-detection problem

5.3 Empirical Evaluation 97

OROROR

F
1
(x

3
, x

6
) =

#

#

#

#

#

F
2
(x

1
, x

2
, x

4
, x

5
, x

6
) =

Figure 5.6: Sample features constructed by MFE2/GA for Braille-detection problem

it generates a large number of rules (often more than 35 rules for 5% data) that are
difficult to interpret. Features generated by MFE2/GA and used in the tree can be
easily interpreted. For all experiments MFE2/GA successfully discovers that there are
three relations, of six attributes each, in the training data and constructs functions to
highlight these three relations. Each relation corresponds to one position in the 3-code
window. MFE2/GA usually constructs two functions for each relation of six attributes,
representing the definition of a Braille code, in total six functions for a sequence of three
Braille codes. Figure 5.6 shows the two functions that are usually constructed to define
the valid codes represented by the first six attributes. Similar functions are found for
the other groups of six attributes. The solid line in the figure shows the domain of
each function. A black circle indicates the attribute value is ‘1’ (raised dot), a white
circle means the attribute value is ‘0’ (unraised dot), a ‘#’ means “don’t care”, i.e.,
it can be either ‘0’ or ‘1’. The first function, F1, highlights all codes with unraised
dot 3 and raised dot 6, as invalid codes to be excluded from the target. The second
function, F2, is a disjunction of four rules to define all Braille letters ignoring dot 3.
The conjunction, F 1 ∧ F2, classifies all Braille codes. In algebraic form, F 1 ∧ F2 is
equivalent to (x3x6) ∧ (x1x2 ∨ x1x2x4x6 ∨ x1x2x6 ∨ x1x2x4x5x6)), which will be longer
when converted to DNF form. This phrase represents only one third of the concept
(one code of three codes). The concept is the conjunction of three phrases like this.
Therefore, a large number of rules are needed to represent this concept. Note also that
when more data is available, MFE2/GA encapsulates the relation among six attributes
and represents it by a single function. Thus, it constructs a total of just three functions,
one function for each subset of six attributes, to represent a sequence of three Braille
codes.

In spite of using non-algebraic representation similarly to MFE2/GA, HINT needs
more data than the others to uncover the underlying concept structure and improve
accuracy. Several interactions exist among 18 attributes in this concept. HINT needs to
construct a complex hierarchy of functions representing interactions, which is a difficult
task for its greedy procedure. MFE2/GA, due to use of genetic search and evaluation
of multiple candidate features simultaneously, achieves better results than HINT. It can
be observed from table that HINT’s accuracy is significantly lower than C4.5-Rules and

98 MFE2/GA and HINT: Sensitivity to Training Data Size

MFE2/GA for all data sizes.

Experiments on the Braille-detection problem shows that there are real-world prob-
lems with multiple complex interactions which make FC necessary for learning and
difficult to achieve by greedy methods.

5.4 Conclusion

This chapter focused on analytically and empirically comparison of two systems based
on non-algebraic feature representation, MFE2/GA and HINT, when few training data
are provided. Several distinctive aspects of these systems’ design are identified and
related to the functionality expected and observed from each system.

One of the main differences between these two methods and most FC methods is that
the former extract features directly from data and represent them as data sets or vector
of values. This becomes important when complex interaction exists and no domain
knowledge is available for defining operators. However, because of this characteristic
both methods depend heavily on training data to construct features.

The empirical evaluation shows that MFE2/GA is less sensitive to size of train-
ing data than HINT due to its multi-feature construction functionality. MFE2/GA
constructs and evaluates several features simultaneously, as GA’s individuals, which is
convenient when concepts involve several complex interactions and few data are avail-
able. HINT applies a greedy strategy for constructing multiple features; therefore, if
it fails to construct relevant features in early steps, features constructed in subsequent
steps will be affected.

However, when the target depends mainly on one complex interaction, HINT out-
performs MFE2/GA because of its multi-coloring functionality. It successfully breaks
down the complex interaction into smaller parts. MFE2/GA’s multi-feature construc-
tion is not an advantage when one interaction suffices to express the target, and does
not help to decompose a complex interaction into parts. Although, multi-coloring of
HINT sometime makes this method more sensitive to the quantity of training data than
MFE2/GA.

The two methods also differ in the procedure for selecting interacting attributes.
HINT applies a preprocessing method to remove irrelevant attributes. Then, it considers
all attribute subsets of a predefined bound size to construct features. MFE2/GA uses
GA to select attributes which makes this method more promising when the search space
has high variation.

Comparing the results obtained by MFE2/GA with C4.5-Rules on Braille-detection
problem shows that their accuracies are similar. But, it is important to point out that
the number of rules generated by C4.5-Rules is large and, therefore, hard to comprehend
while MFE2/GA encapsulates relations among attributes into a small number of features

5.4 Conclusion 99

which are more easy to interpret.

This study suggests that the integration of both functionalities, multi-coloring and
multi-feature construction, may create a synergy that improves learning performance
(see Section 7.3).

Chapter 6

Improving the Fitness

Evaluation: MFE3/GA

Fitness has a major role in guiding a genetic-based search to converge to the optimal
solution. The fitness function intends to conduct the GA toward its goal and accelerate
its convergence by providing a good estimate of the quality of each individual in the pop-
ulation. A simple fitness evaluation was proposed in Section 4.2.2 for MFE2/GA. This
measure approximates the cost of representing data using new features and the com-
plexity of the constructed features. Experiments over synthetic concepts in Section 4.4.2
illustrated that sometimes the fitness function does not perfectly guide MFE2/GA to-
ward the global optimal solution.

Considering the importance of fitness, this chapter aims to improve the fitness eval-
uation in MFE2/GA to achieve better results. Section 6.1 reviews three types of fitness
measures commonly used by genetic CI methods for constructing features. Sections 6.2
and 6.3 propose two new fitness functions based on entropy and the Minimum Descrip-
tion Length (MDL) Principle to be incorporated in MFE2/GA, leading to new versions
of the method called MFE2/GAE and MFE3/GA, respectively [Shafti and Pérez, 2007a;
2007b]. Section 6.4 describes experiments performed to evaluate the new systems, show-
ing that MFE3/GA with MDL-based fitness outperforms other methods. Once the ap-
propriate fitness function is chosen, MFE3/GA is applied to real-world problems and
the experimental results are reported in Section 6.5. Conclusions are described in Sec-
tion 6.6.

6.1 Fitness Function

When a GA is applied to perform FC, the goal is to generate new features that facilitate
more accurate learning when they are used to change the representation of training
data. Thus, the fitness function should estimate the quality of the constructed features.

101

102 Improving the Fitness Evaluation: MFE3/GA

Constructed features may be evaluated in different ways. Three common forms of
evaluating features are classifier error rate measure, entropy-based measure, and MDL-
based measure, as described next.

Classifier Error Rate Measure

Since the main goal of CI is to improve the learning task and achieve higher predictive ac-
curacy, most genetic CI methods apply classifier error rate as fitness measurement (i.e., a
hypothesis-driven fitness function, as in [Vafaie and DeJong, 1998; Ritthoff et al., 2002;
Estébanez et al., 2007]). These methods use the hypothesis generated by a learner to
assess the usefulness of constructed features in classifying data. This approach is also
referred to as a wrapper model by Kohavi and John in [1997]. For each individual,
training data are redescribed using the new feature(s) in the individual. Then, the new
training data is used for learning and measuring the predictive accuracy to determine
the fitness function of the individual. These methods usually divide the training data
into two sets: train-train data and train-test data. Then, the learner uses train-train
data for learning and train-test data for evaluating the predictive accuracy. Some meth-
ods apply k-fold cross validation instead of dividing data into two sets. They partition
training data into k sets. Then, learning and evaluation is repeated k times, each time
using k − 1 sets as training and one set as test, so that each set is used exactly once
as test data. Then the average accuracy is calculated as the fitness of the individual.
Methods with hypothesis-driven fitness function usually choose a learner with a good
performance in terms of speed and accuracy, such as C4.5 [Quinlan, 1993]. According
to Kohavi and John [1997], the advantage of using a learner is that, first, features are
adapted to the bias of the learner; and second, this approach provides the ability to eval-
uate features together with original attributes. However, it is not the most appropriate
for genetic-based search since it is computationally expensive comparing to other fitness
measurements. The fitness is evaluated for each individual in each generation. There-
fore, an accurate fitness measure with less computation time is preferable to reduce the
execution time of a genetic method.

Entropy-based Measure

Some other methods (for instance, [Hu and Kibler, 1996; Larsen et al., 2002; Otero
et al., 2003]) apply entropy-based fitness measure such as information gain or gain
ratio [Quinlan, 1993]. Entropy measures the average amount of bit of information
needed to identify the class of a sample in data [Shannon, 1948]. The entropy of a
training data set, T , with c different class labels is measured as follows:

Entropy(T) = −
c∑

i=1

pi log2 pi , (6.1)

6.1 Fitness Function 103

where pi is the probability that a sample belongs to the ith class. Entropy identifies the
impurity of data; a smaller entropy means less information is needed to classify data
since data is purer; hence, the data classification is easier. Entropy-based FC methods
use entropy to evaluate the effectiveness of constructed features in reducing impurity
in data and improving classification. Such methods usually apply information gain,
which measures the amount of reduction in entropy given the value of new feature(s)
(see [Quinlan, 1993] for details about information gain and gain ratio).

MDL-based Measure

The Minimum Description Length (MDL) Principle [Rissanen, 1983; Grunwald et al.,
2005; Grunwald, 2007] has been also used for evaluating constructed features. The MDL
Principle was originally described in terms of optimizing a communication problem.
A sender has to communicate some data to a receiver. In order to send minimum
information, he compresses regularities in data into a “theory” to be communicated.
This theory may not cover all data and produce some “exceptions”. So, the sender also
has to communicate exceptions to the receiver. He may send a complex theory with few
exceptions or a simpler theory with more exceptions. The MDL Principle establishes
that:

the optimal solution is obtained by selecting a theory that minimizes the
sum of the code lengths corresponding to theory and exceptions.

This introduces a trade-off between a very simple theory that produces many errors
(exceptions) and a more complex one that accounts for almost all data and makes only
a few errors.

The MDL Principle has been applied in several learning methods. For instance, it
has been used to control the growth of decision trees [Quinlan and Rivest, 1989] and
decision rules [Quinlan, 1993]. In order to apply it to learning, the learning task has
to be described as a communication problem. Thus, the learner (sender) has a table
of pre-classified training data that needs to be sent to the receiver. As an alternative
to sending the whole table, that is, each data sample with its classification, the learner
can compress the table into a hypothesis (theory), such as a decision tree, a set of rules
or any other form of classifier, and send it to the receiver. Such theory may not be
perfect and, hence, make errors when classifying some of the training data. So, to make
the communication correct, the errors (exceptions) should also be sent to the receiver
along with the theory. The learner has to choose a theory that minimizes the number
of bits needed to encode both the theory and errors produced by the theory. Note that
according to the MDL Principle, when two theories fit the problem equally (produce
same errors), the simpler in terms of theory code length is chosen. Thus, the MDL
Principle includes Occam’s razor principle, which states: “prefer the simplest hypothesis
that fits data”.

104 Improving the Fitness Evaluation: MFE3/GA

The integration of the MDL Principle into the evolutionary approach is not as fre-
quent as it is in other machine learning approaches. Most genetic methods have fo-
cused on optimizing a fitness based on classification errors or entropy. An exception is
found in DOGMA [Hekanaho, 1997], a genetic-based theory revision system that ad-
justed the MDL Principle into a fitness measure suitable for evaluating sets of rules as
fragments of the theory being revised. Also, there are several examples of using MDL-
based fitness for GP systems [Lin and Bhanu, 2005; Zhang and Mühlenbein, 1995;
Kazakov, 1997]. In these cases, since fitness is applied to individuals that represent
programs or symbolic expressions that may grow unnecessarily large and complex, it
becomes important to control their growth by an MDL-based fitness.

Similarly, when a genetic-based approach is used for FC and, so, individuals rep-
resent constructed features, the MDL Principle may become necessary to evaluate the
complexity of constructed features and their inconsistency with the training data. This
is regardless of whether the new features are represented as symbolic algebraic expres-
sions (as in [Muharram and Smith, 2005; Otero et al., 2003; Vafaie and DeJong, 1998])
or non-algebraically (as in MFE2/GA). In both cases, the proposed features correspond
naturally to a theory that can grow too large and complex to produce no errors in the
training data, and that we may prefer to keep simpler as long as it does not produce
too many errors. In spite of this, none of the genetic CI systems integrates the MDL
Principle into their fitness function. MFE2/GA is a partial exception since its fitness
function measures both the cost of representing data using constructed features and
the complexity of features (theory), and the cost of representing inconsistencies in data
produced by new features (error) (Section 4.2.2). However, this fitness measurement is
not explicitly designed as an approximation to the MDL Principle, as it will be done in
Section 6.3.

Although many genetic CI methods use classification error rate as fitness function,
this approach is not suitable for a genetic search due to its high computation time, as
mentioned above. In addition, some preliminary experiments not reported in this thesis
show that an implemented genetic CI method with entropy-based fitness function results
in a slightly better accuracy than the same method with a fitness based on classification
error rate [Shafti and Pérez, 2003b]. Hence, in the rest of this chapter only the last two
forms of fitness measure based on entropy and MDL Principle are evaluated.

6.2 Entropy-based Fitness Function in MFE2/GAE

MFE2/GA is modified to apply a fitness function based on entropy. The new system
is called MFE2/GAE . For each individual, the fitness is measured by calculating the
entropy of the concept given the values of new features [Quinlan, 1993; Shannon, 1948].
Training data are projected onto the new feature set {f1, . . . , fk} and fitness is evaluated

6.3 MDL-based Fitness Function in MFE3/GA 105

by the following formula:

Fitness(Ind) =
2k∑

i=1

|Ti|
|T |Entropy(Ti), (6.2)

where T is set of training data samples and Ti is set of samples whose values for the
new attributes f1 to fk are equal to the ith tuple in the Cartesian product f1× . . .× fk.
Recall that there are 2k tuples since constructed features are binary.

As an example, consider the data set and constructed features of Figure 4.5. The En-
tropies for each set of samples matching with tuples T1 = (0, 0), T2 = (0, 1), T3 = (1, 0),
and T4 = (1, 1) are as follows respectively1:

Entropy(T1) = −1
1 × log2

1
1 − 0

1 × log2
0
1 = 0 ,

Entropy(T2) = −2
2 × log2

2
2 − 0

2 × log2
0
2 = 0 ,

Entropy(T3) = 0 ; due to no matching data samples ,
Entropy(T4) = −3

4 × log2
3
4 − 1

4 × log2
1
4 = 0.811 .

Thus, the fitness of this individual is |T4|
|T | Entropy(T4) = 4

7 ∗ 0.811 = 0.463.

To reduce overfitting, part of training data are used for constructing features and
all training data are used for entropy-based fitness evaluation. Keeping part of data for
fitness evaluation helps GA to construct individuals with smaller functions.

6.3 MDL-based Fitness Function in MFE3/GA

A new fitness function based on MDL Principle is proposed to be incorporated in
MFE2/GA to improve its performance. The new system is called MFE3/GA. Before
describing how fitness is computed, the notion of function length is introduced. As
described in Section 4.2.2, each function fi, defined over subset Si = {Xi1 . . . Xim}, is
represented by binary labels of tuples in Cartesian product of attributes in Si. Thus,
each fi can be represented by

∏m
j=1 |Xij | bits, which is referred to as the length of

function, len(fi), where m is the number of attributes in Si, and |Xij | is the number
of values that attribute Xij can take. Since all constructed functions are defined over
proper subsets of S, the longest function fl is one defined over Sl = S − {Xs}, where
Xs is the attribute that can take fewest values. The length of fl is

∏N
i=1,i6=s |Xi|. To

reduce the complexity of constructing functions, the length of each function is limited
by a parameter of the system, B. By default the limit is set to 2B, where B = 16, that
is, 64 Kbits. In case of binary attributes, this is equivalent to a function defined over
16 attributes. Then, the longest function that can be constructed for a given training
data is of length MAXLEN = min(

∏N
i=1,i6=s |Xi|, 2B). If

∏m
j=1 |Xij | > MAXLEN for

1In entropy calculation, 0× log2 0 is defined to be 0.

106 Improving the Fitness Evaluation: MFE3/GA

a subset Si, the subset is not considered in FC and fitness evaluation by the system
to reduce the complexity, but is considered for genetic operations to produce diversity.
This is similar to the technique suggested in Sections 4.2.1 and 4.2.2 when Si = S or
|Si| = 1. In case that none of subsets in an individual are considered in FC, the worst
value (a large number) is assigned to the individual as its fitness to force GA to ignore
this individual.

The fitness of each individual Ind = 〈S1, . . . , Sk〉 is determined by evaluating the set
of corresponding functions {f1, . . . , fk} as a theory and measuring two factors based on
MDL Principle: the inconsistency of the set with the training data (exceptions produced
representing data with the theory) and its complexity (the code needed to represent the
theory).

The inconsistency measure drives GA to generate more accurate functions. For
measuring the inconsistency of the set of functions with training data, the training data
are projected onto the set of constructed features {f1, . . . , fk}. Then, each tuple in the
projection that matches with both positive and negative samples in data is considered
as an inconsistent tuple. The inconsistency of the set of functions, ||E||, is measured by
the total number of samples that match inconsistent tuples in the projection. This value
is normalized by dividing it by the maximum inconsistency, that is, the total number
of samples in the training data, M .

The consistency of the individual is not the only factor to drive GA toward its
goal. Recall the goal of MFE3/GA is to ease the complex relation among interacting
attributes by constructing several functions each representing one complex interaction
in the concept. To achieve this goal, the fitness function prefers a consistent individual
with several small functions to a consistent individual with few large functions by mea-
suring their complexities based on MDL Principle. The complexity of each individual is
determined by the theory code, that is, the sum of length of functions (in bits) defined
over subsets in the individual. The complexity factor is normalized by dividing it by its
maximum value (code length) that is K ×MAXLEN.

Then, the fitness of the individual is evaluated by the following formula and GA
aims to minimize this value:

Fitness(Ind) =
||E||
M

+
∑k

i=1 len(fi)
K ×MAXLEN

. (6.3)

Therefore, given two individuals equally consistent with the training data, the fitness
function prefers the one with several functions defined over smaller subsets of attributes,
rather than one function defined over the union of subsets. To illustrate this, recall
individuals in Figure 4.2. Among these individuals, Ind2 and Ind3 include subsets
of interacting attributes. Thus, functions defined over Ind2 and Ind3 are consistent
with the given training data. However, since Ind2 has a subset of eight interacting
attributes, more training data are needed to correctly construct the function defined

6.4 Experiments 107

over it. Thus, if few training data are available, the function constructed over this subset
overfits training data and will be inconsistent with unseen test data. Ind3 consists of
three subsets, each one containing attributes of one of the three interactions in the
concept. Since each subset has four attributes, less data are needed comparing to Ind2

to construct the corresponding functions properly. Thus, Ind3 is better (more fit) than
Ind2. Assuming that both individuals are equally consistent with the training data,
the fitness function measures the complexity of each individual and prefers Ind3 with
complexity of 24 + 24 + 24 = 48 to Ind2 with complexity equal to 28 + 23 = 264. Note
that the complexity evaluation corresponds to measuring the length of functions and
not length of individuals.

As an example, consider the constructed functions in Figure 4.5. For these concepts,
there are four samples that are inconsistent with functions (those match with the mixed
tuple (f1, f2) = (1, 1)). Thus, the inconsistency is ||E|| = 4. The total length of functions
is 8 + 4. For this data set MAXLEN = 23, M = 7, and by default K = 5. Thus, the
fitness is calculated as 8+4

5×23 + 4
7 = 0.871.

Recall from Section 4.2.4 that MFE2/GA uses 90% of training data for constructing
functions and all training data, for fitness evaluation to reduce overfitting. Keeping part
of training data for fitness evaluation is not necessary in MFE3/GA because the MDL-
based fitness evaluation of this method intends to conduct GA toward less complex
individuals and, therefore, reduces overfitting. Hence, MFE3/GA uses all training data
for constructing functions and evaluating fitness.

6.4 Experiments

This section empirically compares results obtained by two systems: MFE3/GA with
MDL-based fitness, and MFE2/GAE with entropy-based fitness. Results are also com-
pared with two learners: the standard learner C4.5 (trees and rules) [Quinlan, 1993],
and HINT [Zupan et al., 2001] (see Chapter 5 for details about HINT). The first part
of these experiments uses synthetic concepts designed for experiments in Section 5.3.2.
The second part reports on experiments performed on Braille-detection problem of Sec-
tion 5.3.3. The MDL-based fitness function of MFE3/GA has improved its performance;
and therefore, the new method obtains better results than MFE2/GA. See Appendix C
for empirical comparison of the two versions.

6.4.1 Experiments with Synthetic Concepts

The synthetic concepts used as a benchmark for these experiments are composed by
several complex interactions. For all concepts, attributes are Boolean except in the last
four concepts, where for Monk1 attributes are 2 to 4-valued and for the other three
concepts attributes are 3-valued. Table 6.1 gives a summary of these concepts and the

108 Improving the Fitness Evaluation: MFE3/GA

experimental results. See Appendix A for a detailed definition of concepts. Columns
2 and 3 show the number of relevant and irrelevant attributes for each concept. The
majority class percentage of each concept is given in the forth column.

All experiments are run 20 times independently, each using 5% of all possible in-
stances as training data and the rest as test data. For MFE2/GAE , only part of the
5% training data are used for constructing features and all training data for fitness
evaluation using entropy. The previous experimental evaluation showed that on av-
erage, MFE2/GAE achieves higher accuracy when 30% of training data are used for
constructing features. So 30% of 5% training data are used for FC and all 5% training
data for feature evaluation. Note that doing this is of benefit to MFE2/GAE , and yet,
the MDL-based MFE3/GA is believed to be able to outperform it.

Table 6.1 illustrates a summary of the empirical study. The higher of the two
average accuracies obtained by C4.5 and C4.5-Rules is reported in column 5. This
result is marked by c if obtained by C4.5, or by r if obtained by C4.5-Rules. The
average accuracies of HINT, MFE2/GAE , and MFE3/GA are reported in columns 6
to 8 respectively. Columns 9 and 10 show the average number of GA’s generations
for each genetic method. Numbers between parentheses indicate standard deviations.
The highest average accuracy is marked by /, but only when it is not lower than the
majority class percentage. The accuracy of MFE2/GAE is marked by † when it is
significantly better than the accuracy of HINT; MFE3/GA’s result is significantly better
than those in bold and significantly worse than those in italic (using t-distribution test
with α = 0.02).

As it can be seen from Table 6.1, the MDL-based fitness function of MFE3/GA
guides this method toward better solutions as expected; and therefore, it significantly
outperforms MFE2/GAE for most concepts. MFE2/GAE in most cases overfits data. It
constructs set of features with very small entropy (most of the time with zero entropy),
which means the set of features classifies training data perfectly. But when they are
evaluated on test data, they produce errors. This is because entropy does not consider
the complexity of the theory proposed by the constructed features. It constructs large
functions that perfectly match training data and produce overfitting.

Also, comparing the average number of generations of both GA methods illustrates
that MDL-based fitness function helps GA to converge to optimal solution faster than
the entropy-based method.

Comparing results of MFE2/GAE and HINT indicates that, although entropy-based
FC achieves lower accuracy than MDL-based FC, its overall average accuracy is still
better than HINT. This shows the advantage of using GA for FC when concepts are
composed by several complex interactions and few training data are available. Even
a genetic FC method with not a good fitness function outperforms the greedy FC.
Comparing the overall average accuracy of MFE3/GA in Table 6.1 with the one obtained

6.4 Experiments 109

Table 6.1: Comparing results over synthetic concepts
Rel. Irr. M Accuracy No. Generations

Concept atts atts % C4.5/R HINT MFE2/GAE MFE3/GA MFE2/GAE MFE3/GA

∧(P1,4, P3,6) 6 6 75.0 c72.5(3.2) 100(0.0)/ 98.3(2.1) 99.8(0.5) 137(35.7) 125(18.4)

∧(P1,6, P3,8) 8 4 75.0 c73.4(2.7) 98.6(6.3)/ 91.8(6.5) 94.1(2.8) 219(47.0) 131(18.1)

∧(P1,6, P7,12) 12 0 75.0 c72.6(3.9) 82.5(16.5) 77.1(6.0) 89.8(6.8)/ 230(82.4) 144(16.0)

∧(P1,3, P3,5, P4,6) 6 6 87.5 c87.6(1.2) 94.1(9.6) 96.7(4.9) 99.8(0.7)/ 130(24.0) 141(27.6)

∧(P1,4, P2,5, P3,6) 6 6 87.5 c87.5(0.3) 97.2(7.2) 96.5(4.6) 99.6(0.7)/ 153(46.9) 130(29.6)

∧(P1,4, P3,6, P5,8) 8 4 87.5 c87.5(0.1) 90.3(11.0) 91.7(5.4) 98.6(1.7)/ 207(54.0) 173(43.7)

∧(P1,4, P5,8, P9,12) 12 0 87.5 c87.5(0.1) 78.4(4.1) 86.4(4.4)† 92.4(7.2)/ 212(63.0) 199(53.9)

∧(P1,6, P2,7, P3,8) 8 4 87.5 c86.6(1.8) 92.3(10.0) 86.7(4.1) 93.8(2.4)/ 174(43.4) 169(40.9)

∧(WL31,5, WL33,7) 7 5 64.1 r 90.1(3.0) 91.2(11.6) 90.9(3.8) 93.1(5.9)/ 201(65.7) 132(28.8)

∧(WL31,5, WL34,8) 8 4 68.0 r 86.7(2.0) 88.8(8.9) 89.2(6.1) 89.9(9.6)/ 230(72.9) 156(51.8)

∧(WL31,5, WL35,9) 9 3 71.5 r84.9(2.6) 88.0(10.1) 88.5(6.2) 93.5(7.0)/ 213(55.4) 154(37.6)

∧(WL31,5, WL36,10) 10 2 75.0 r82.2(2.1) 78.6(5.2) 83.3(3.5)† 88.1(8.4)/ 233(80.5) 167(43.4)

∧(WL31,4, WL33,6, WL35,8) 8 4 57.8 r89.2(4.1) 89.3(12.0) 92.9(5.7) 97.5(2.2)/ 208(60.2) 162(50.2)

∧(WL31,4, WL35,8, WL39,12) 12 0 67.5 r79.5(3.2) 71.8(4.5) 81.1(6.5)† 92.3(10.5)/ 239(60.9) 177(49.1)

∧(W231,6, W237,12) 12 0 70.9 r68.2(2.3) 65.9(3.3) 72.8(3.1)† 83.4(9.3)/ 215(65.5) 159(40.1)

∧(W231,4, W235,8, W239,12) 12 0 75.6 r74.7(1.9) 69.7(3.0) 80.4(4.3)† 94.1(9.4)/ 250(75.0) 207(67.3)

∧(W231,5, W236,10, W2311,15) 15 0 76.0 r88.5(3.1) 98.9(2.8) 98.5(2.5) 100(0.0)/ 228(66.6) 187(24.2)

∧(W231,6, W237,12, W2313,18) 18 0 84.0 r98.1(0.9) 100(0.0)/ 99.5(0.5) 100(0.0)/ 215(57.0) 200(24.9)

∧(A1,4, A5,8, A9,12) 12 0 82.2 r89.8(5.0) 79.7(3.1) 89.1(4.0)† 97.8(4.3)/ 243(77.0) 225(69.1)

∧(B1,4, B5,8, B9,12) 12 0 87.5 c86.9(1.3) 81.1(2.1) 88.0(1.3)† 89.6(4.0)/ 231(68.9) 190(70.3)

∧(C1,4, C5,8, C9,12) 12 0 57.8 r66.2(3.8) 64.6(7.8) 84.6(16.0)† 98.5(6.9)/ 254(75.4) 170(24.0)

∧(D1,4, D5,8, D9,12) 12 0 87.5 r 90.6(2.8) 83.7(1.9) 89.7(1.4)† 92.3(3.4)/ 217(77.6) 194(45.2)

∧(E1,4, E5,8, E9,12) 12 0 75.6 r77.0(3.0) 72.2(4.8) 81.4(6.8)† 93.0(10.5)/ 232(62.1) 200(65.7)

∧(A1,4, C5,8, E9,12) 12 0 73.6 r82.2(3.4) 73.7(5.6) 84.2(7.4)† 97.5(6.1)/ 232(77.6) 197(50.8)

∧(A1,4, B5,8, D9,12) 12 0 85.9 r87.6(3.6) 81.5(3.4) 88.7(2.7)† 92.0(4.7)/ 209(65.2) 206(54.3)

∧(A1,4, B5,8, C9,12) 12 0 78.9 r86.3(3.5) 75.8(4.3) 87.2(4.2)† 94.6(7.2)/ 248(57.1) 209(71.8)

∧(B1,4, C3,6, A7,10, D9,12) 12 0 86.5 r88.5(2.0) 83.2(2.8) 88.6(1.3)† 90.8(3.6)/ 195(41.7) 199(48.5)

∧(A1,4, B5,8, C9,12, E13,16) 16 0 87.0 r94.8(2.1) 99.8(1.0) 99.2(1.2) 100(0.0)/ 214(64.7) 235(35.1)

∧(C1,4, WL35,8, W239,12) 12 0 67.8 r74.2(3.1) 70.6(7.2) 80.7(7.3)† 93.7(11.1)/ 231(68.2) 178(47.4)

∧(W231,5, C5,8, WL38,12) 12 0 76.6 c76.4(1.2) 71.2(2.4) 78.1(2.6)† 84.0(8.7)/ 219(71.8) 169(43.1)

∧(W231,5, C4,7, WL36,10) 10 2 76.6 r77.4(2.8) 75.9(6.6) 80.5(3.4)† 88.7(8.9)/ 232(53.1) 193(55.0)

Monk1 6 0 50.0 r65.2(8.3) 70.1(13.4) 66.0(10.0) 80.0(11.7)/ 108(29.5) 109(21.6)

palindrome6 + 2 6 2 96.0 c96.3(0.1) 93.2(2.0) 97.6(1.8)† 99.6(0.7)/ 162(60.7) 133(19.4)

∨(pal1,4, pal3,6, pal5,8) 8 0 70.0 r 71.2(2.6) 63.8(4.1) 70.0(3.6)† 71.4(1.7)/ 213(55.2) 138(28.1)

∨(pal1,4, pal4,7, pal7,10) 10 0 70.0 r97.5(2.3) 100(0.0)/ 95.7(5.4) 100(0.0)/ 228(70.1) 149(13.0)

Average 10 2 76.6 r 82.2(3.1) 83.3(5.7) 87.2(4.6)† 93.2(5.1)/ 210.3(60.9) 171.6(40.8)

/ highest accuracy Boldface: MFE3/GA’s result is significantly better than this
† significantly better than HINT Italic: MFE3/GA’s result is significantly worse than this
c results obtained by C4.5
r results obtained by C4.5-Rules

by MFE2/GA in Table 5.3 shows that the MDL-based fitness function improves the
accuracy of the method. See Appendix C for detail comparison of the two versions of
the method.

6.4.2 Experiments with Real-world Domain

This section reports on empirical comparison of the methods based on a task defined
over the real-world domain. The Braille code detection problem of Section 5.3.3 is used
and similar experiments to that section are performed.

Recall from Section 5.3.3 that for this concept the parameter K (explained in Sec-

110 Improving the Fitness Evaluation: MFE3/GA

Table 6.2: Comparing results over Braille-detection problem
Data Size C4.5 C4.5 Rules HINT MFE2/GAE MFE3/GA
1% 90.7(1.9) 94.8(2.2)/ 75.9(4.1) 63.6(7.4) 87.4(8.6)

5% 97.6(0.4) 99.6(0.3) 90.2(3.4) 96.5(5.0) 99.8(0.3)/

10% 98.6(0.3) 99.9(0.2) 95.9(3.4) 98.2(3.0) 100.0(0.1)/

15% 99.0(0.2) 99.9(0.1) 99.0(0.8) 97.1(4.9) 100.0(0.0)/

20% 99.4(0.1) 100.0(0.0) 99.4(0.6) 99.4(1.4) 100.0(0.0)/

tion 4.2.1) is required to change from 5 to 9 for both MFE2/GAE and MFE3/GA,
allowing them to generate more features.

A total of 20 data sets of 31250 samples were used for experiments and average
accuracies over 20 runs are calculated. Experiments were performed increasing training
data from 1% to 20% to see how data size affects the performance of the methods.
Table 6.2 shows the accuracies of C4.5, C4.5Rules, HINT, MFE2/GAE , and MFE3/GA.
MFE3/GA’s accuracy is significantly better than those in bold and worse than those in
italic (using t-distribution test with α = 0.02).

Consider the results corresponding to 1% data in Table 6.2. For this size of training
data, all FC methods achieve lower accuracies than C4.5 and C4.5Rules. MFE2/GAE

gets the lowest accuracy comparing to other FC methods because this method uses only
30% of 1% training data for feature generation and overfits data. MFE3/GA overfits
data less than other FC methods due to its MDL-based fitness function.

When the number of training data increases all FC methods take the advantage of
training data size and improve their accuracies. However, MFE3/GA is the only FC
method in the table that gets higher accuracy than C4.5 and C4.5Rules. It significantly
outperforms all other methods except for 20% data when both MFE3/GA and C4.5Rules
get 100% accuracy. Comparing the results obtained by MFE2/GAE when 15% and 20%
training data size are used, shows that when more data are provided, this method overfits
data and achieves lower accuracy.

6.5 Experimental Results on UCI Benchmarks

Sections 6.2 and 6.3 presented two fitness evaluations integrated into MFE2/GAE and
MFE3/GA respectively; and, experiments in Section 6.4 showed the better performance
of MFE3/GA. Now that an appropriate fitness is designed, this section evaluates the
new method in real-world applications using the UC Irvine machine learning bench-
marks [Asuncion and Newman, 2007; Blake and Merz, 1998]. Note that the difficulty
of most problems in Irvine databases is noise and lack of relevant attributes instead
of complex attribute interaction. However, these sources of difficulties are outside of
the scope of this thesis. For experiments in this section, Irvine databases which are
expected to be closer to the learning problem addressed in this research are selected.

The first learning problem is SPECT Heart data set which contains information

6.5 Experimental Results on UCI Benchmarks 111

related to the cardiac Single Proton Emission Computed Tomography (SPECT) images
of patients and the cardiologist’s diagnoses. The concept consists of 22 binary attributes
that summarize the SPECT’s images. Each case is classified into two categories: normal
and abnormal. The data set has 267 cases, which is divided into two sets: the training
data with 80 cases and the test data with 187 cases.

The second problem is the German Credit data set. This data set contains infor-
mation about the status of persons’ accounts and their classification as good or bad
credit risk. Each case is described by 20 attributes: 7 continuous and 13 nominal. All
continuous attributes are discretized to nominal attributes before performing experi-
ments. Since the data set is not partitioned into training and test, experiments are run
20 times, each time data is shuffled and 90% of samples are used for training and the
rest are used for testing. Then, the average accuracy is calculated.

The next two data sets are Monks problems which are well-known artificial problems
used to benchmark machine learning methods. These concepts are defined on a domain
of 6 nominal attributes. Monk1 has an underlying concept x1 = x2 ∧ x5 = 1 with 124
training samples and 432 test samples. Monk2 concept is “exactly two of six attributes
are equal to one” with 169 training and 432 test samples. Monk3 problem has noise
and, therefore, is not used for these experiments. Recall that Monk1 was also used for
experiments in Sections 5.3.2 and 6.4.1.

The last Irvine concept used for experiments is Poker Hand data set. Each sample
in this data set is a set of five playing cards drawn from a standard deck of 52. Each
card is described using two attributes, rank (with 13 nominal values) and suit (with
4 nominal values). Thus, 10 nominal attributes are used for describing each sample.
The attribute x2k−1 represents the suit of card k and the attribute x2k represents the
rank of card k for 1 ≤ k ≤ 5 (i.e., attributes x1, x3, x5, x7, x9 are suit attributes and
x2, x4, x6, x8, x10 are rank attributes). The training data contains 25010 samples and the
test data is 1,000,000 samples. Note that the complete domain of this concept contains
311,875,200 samples. Thus, the proportion of data available for learning is very small.
The original data set in Irvine database has 10 class labels classifying samples into
Nothing in hand, One pair, Two pairs, Three of a kind, Straight, Flush, Full house,
Four of a kind, Straight flush, and Royal flush. Since MFE3/GA assumes that the
class labels are binary, the concept is converted to a binary class concept determining
whether a sample is a valuable set of poker hand (i.e., One pair, Two pairs, Three of a
kind, Straight, Flush, Full house, Four of a kind, Straight flush, or Royal flush) or not
(i.e., Nothing in Hand).

Table 6.3 shows the results of running C4.5, C4.5Rules, HINT and MFE3/GA for
each concept. Since the underlying interactions in these concepts were not clear, the
parameter K (explained in Section 4.2.1) is increased from 5 to 12 for MFE3/GA,
allowing this method to generate more features. Default parameters are used for other
methods. The average result for each method is reported in the last row.

112 Improving the Fitness Evaluation: MFE3/GA

Table 6.3: Comparing results over UCI benchmarks
Concept C4.5 C4.5 Rules HINT MFE3/GA
SPECT Heart 66.8 77.0 74.3 73.8
German Credit 71.8 71.1 59.0 68.4
Monk1 75.7 100 100 100
Monk2 65.0 66.2 100 78.9
Poker Hand 62.8 99.4 50.2 99.6
Average 68.4 82.7 76.7 84.1

As it can be seen from Table 6.3, MFE3/GA improves the accuracy of C4.5 and
achieves similar result as HINT on SPECT Heart; but, it outperforms HINT on German
Credit. However, the accuracy of both HINT and MFE3/GA is lower than C4.5Rules on
SPECT Heart and German Credit concepts. Both CI methods fail to improve learning
accuracy over these two concepts. These concepts are expected to contain complex
interactions; however, there are other sources of difficulties which make them harder for
the CI methods. Thus, neither HINT nor MFE3/GA facilitate learning these concepts.
The existence of noise in data might be a source of difficulty for these methods. Note that
the SPECT Heart data set available in Irvine was obtained by processing images and
extracting 44 continuous attributes which were then preprocessed to obtain 22 Boolean
attributes. These preprocessing steps may have added noise to data or eliminated some
important information. Also, discretization of attributes performed on German Credit
for these experiments might have removed relevant information. Note that in spite of
these difficulties, the accuracy of MFE3/GA is similar to or better than HINT on these
two concepts.

The result on Monk1 shows that this concept is an easy one for most methods.
The main reason is that enough training data were provided for all methods. Recall
from Sections 5.3.2 and 6.4.1 that with smaller data size the differences among methods
are clearer and MFE3/GA significantly outperforms other methods, which shows the
advantage of this method when few training samples are provided.

MFE3/GA improves learning Monk2. However, HINT and other CI methods [Thrun
et al., 1991] achieve better results for this concept. The reason is that this concept con-
sists of one complex interaction over all given attributes. MFE3/GA assumes that the
concept consists of several interactions. Thus, it establishes the limitation of not per-
mitting the construction of a function over all attributes. It looks for smaller functions
over subsets of original attributes. However, in spite of this limitation, MFE3/GA still
achieves better accuracy than C4.5 and C4.5Rules on Monk2. It tries to highlight the
interaction in this concept by constructing five features defined over subsets {x1, x2, x5},
{x1, x3, x4, x5, x6}, {x1, x2, x3, x6}, {x2, x3, x4, x5}, and {x1, x2, x4, x6}. These features
outline the interaction among attributes in each subset; but, they are not enough to
highlight the whole interaction in the concept.

6.5 Experimental Results on UCI Benchmarks 113

_

falsetrue f6

f7

f1

f3

f5

f4

f9

+

+

+

+

+

+

+

Figure 6.1: Decision tree constructed by C4.5 for Poker Hand after FC

The result on Poker Hand is quite different. For this concept HINT achieves the low-
est accuracy and MFE3/GA the highest. This concept is a good example of real world
to illustrate the need for a system like MFE3/GA. The concept consists of several com-
plex interactions which are difficult to discover if not enough data samples are provided.
C4.5 generates a pruned tree of 4822 nodes giving 62.8% accuracy. C4.5Rules improves
accuracy to 99.4%. However, it generates a large set of rules (250 rules) which are hard
to interpret. HINT due to its greedy search finds a local optimal solution and overfits
training data resulting in 50.2% accuracy. MFE3/GA achieves the highest accuracy
by capturing and compacting interactions into few features. This method successfully
discovers the interactions by means of the global search, non-algebraic representation,
and multi-feature construction.

A deep analysis of the features constructed by MFE3/GA for Poker Hand concept
is important for this research. MFE3/GA constructs nine features, {f1, f2, . . . , f9},
to highlight interactions in the concept. After adding these features to the original
attribute set and updating training and test data, C4.5 generates an unpruned decision
tree of 376 nodes with constructed features near to the root and original attributes close
to leaves. Then, pruning in C4.5 reduces the size of the tree to 15 nodes using 7 out
of 9 constructed features (ignoring f2 and f8) and none of the original attributes, as
shown in Figure 6.1. The pruned tree, which is equivalent to the disjunction of the
seven features, classifies the test data with 99.6% accuracy.

It is challenging to analyze the seven features constructed by MFE3/GA and see
how they help learning the Poker Hand concept. Features are defined over two or three
attributes in {x2, x4, x6, x8, x10} (rank attributes) except the last feature, f9, which is
defined over {x1, x3, x5, x7, x9} (suit attributes). Recall that features in MFE3/GA are
represented non-algebraically (Section 4.2.1). Each feature is represented by a vector
of values that shows the outcome of the function for each combination of attribute
values. Most of the features could easily be analyzed only by studying their vector

114 Improving the Fitness Evaluation: MFE3/GA

of values. However, when the feature contains a relation among many attributes, its
vector is long and not easy to interpret. C4.5 is used as a tool to interpret these long
vectors. For each vector a complete data set (i.e., a set of attribute values and their
corresponding outcome of the function) is generated and given to C4.5 for learning.
The tree produced by C4.5 for each data set clearly shows the interaction encapsulated
into each feature. Note that this process is not a learning process since all the data set
representing the function is available and is given to C4.5. This process is performed
only for the interpretation of long functions.

Among the seven features, f9 is the only function that is defined over five suit
attributes. This function returns true when x1 = x3 = x5 = x7 = x9. So, it represents
a hand which contains five cards of the same suit. This function perfectly abstracts and
encapsulates the interaction Flush (a hand of same suit).

The other six functions represent relations among two or three rank attributes. They
jointly abstract seven poker hands: One pair, Two pairs, Three of a kind, Full house,
Four of a kind, Straight flush, and Royal flush, which are interactions among rank
attributes. Features f1, f3, f4, and f5 are defined over subsets of two rank attributes,
S1 = {x2, x10}, S3 = {x6, x10}, S4 = {x2, x4}, and S5 = {x4, x6}, respectively. They
are true if the two attributes in the subset have the same value, that is two cards with
the same rank. Features f6 and f7 are defined over subsets of three rank attributes,
S6 = {x4, x8, x10} and S7 = {x2, x6, x8}. The feature f6 is true if at least two of the
three attributes have the same value, that is two or three cards with the same rank.
The feature f7 is constructed with two errors in the non-algebraic representation due to
the small size of Poker Hand training data. This function is true if at least two of the
three attributes in {x2, x6, x8} have the same value or if x2 = 11, x6 = 3, and x8 = 0,
or if x2 = 12, x6 = 8, and x8 = 2. The last two conditions are errors in f7 which cause
misclassification of 572 cases of 1,000,000 test data that is less than 0.06% error.

Figure 6.2 illustrates the relations among attributes represented by the six features.
These features together contain the relation between any pair of attributes (shown by
lines connecting pairs of vertices in the pentagon). The interesting point is that the
relation between each pair is not contained in more than one feature (i.e., there is only
one line connecting each pair of vertices). This implies that the relation between any
pair of interacting rank attributes is contained in the constructed features and there is
no repeated information encapsulated in the features. MFE3/GA perfectly compacts
the interactions between rank attributes into six features, while the interaction among
suit attributes is abstracted in f9.

It is interesting to note that the error occurred in the construction of f7 produces
only 572 misclassification out of 1,000,000 test samples. Recall from Section 4.2.1 that
each feature is represented by a vector of values or labels, each label showing the out-
come of the constructed function for a combination of attribute values. An error in
each label misclassifies only cases that match with the combination of attribute values

6.5 Experimental Results on UCI Benchmarks 115

x2

x10

x8 x6

x4

f5 (x4, x6)

f6 (x4, x8, x10)

f7 (x2, x8, x6)

f1 (x2, x10)

f3 (x6, x10)

f4 (x2, x4)

Figure 6.2: Relations between attributes represented by constructed features

corresponding to the incorrect label. Two labels in the vector representing f7 were
induced incorrectly; and only 572 cases in test data match with the attribute values
corresponding to these two labels. If instead of the non-algebraic representation, an
algebraic representation is applied for expressing features, an error in feature construc-
tion happens when an incorrect operator or operand is selected in an algebraic term in
the feature. This error may produce a larger amount of misclassification comparing to
an error in non-algebraic representation since usually more cases are covered by each
algebraic term in the constructed features. This shows the advantage of non-algebraic
representation.

Note that in addition to 572 misclassified cases of the test data due to the error in
f7, there are 93 cases in the training data and other 3885 cases in the test data, which
are also classified incorrectly. These cases correspond to Poker hands containing five
cards of sequential rank (Straight hand). MFE3/GA fails to capture this interaction.
In order to encapsulate this interaction a feature defined over five attributes, each of
13 values (i.e., rank attributes), is required; that is, a feature of length 135 = 371, 293.
Recall from Section 6.3 that the length of each feature is limited to 2B, where B = 16,
MFE3/GA cannot construct such feature to represent the interaction Straight. For this
reason, it cannot achieve an accuracy higher than 99.6% (i.e., 3885

1,000,000 error) on Poker
Hand.

The analysis of the constructed features and the decision tree of Figure 6.1 illustrate
how MFE3/GA can capture and highlight interactions to the learner. MFE3/GA by
means of constructing 7 features helped C4.5 to generate a decision tree of only 15 nodes
achieving 99.6% accuracy. Although, C4.5Rules’s accuracy is close to MFE3/GA, the set
of 250 rules generated by C4.5Rules are not easy to comprehend. MFE3/GA compacts
the underlying relations in the concept into highly informative features. The features
constructed by MFE3/GA and the resulting decision tree are easily interpretable and
help the expert to understand the underlying complex interactions in the concept. Note
that two factors, existence of several complex interactions and the small size of train-
ing data made the Poker Hand concept hard for HINT due to its greedy strategy for
searching interacting attributes and constructing features.

116 Improving the Fitness Evaluation: MFE3/GA

6.6 Conclusion

In Chapter 4, the accuracy advantage of the MFE2/GA approach was related to the
structure of the individuals in the GA population. Each individual provides a collection
of new features intended to change the representation of data, in a way that highlights
the underlying complex attribute interactions and, hence, simplifies learning. However,
the fitness function of MFE2/GA sometimes does not guide GA to converge to the
optimal solution. The purpose of Chapter 6 was to improve fitness function of the
method. Different types of fitness functions are reviewed and two of them are suggested
for integration into the system.

First, a fitness function based on the entropy notion is designed in a new system
called MFE2/GAE . This fitness evaluates the effectiveness of each individual, as a set of
constructed features, in reducing impurity of data and improving classification. Second,
the use of the MDL Principle is proposed for evaluating the fitness of each individual.
The new MDL-based fitness function implemented in the MFE3/GA method includes
two terms: one that approximates the complexity of the collection of new features
(theory), and a second one that accounts for the misclassifications produced by those
features (errors).

To assess the advantages introduced by new fitness functions, an empirical study is
performed using a benchmark of synthetic concepts designed to involve several combina-
tions of complex attribute interactions. The study shows that the proposed MDL-based
fitness yields significantly better predictive learning accuracy than other fitness solely
based on entropy. Moreover, the MDL-based fitness helps GA to converge to opti-
mal solution faster than the entropy-based fitness. Comparing the results obtained by
MFE3/GA in this chapter with those obtained by MFE2/GA in Chapter 4 and Chap-
ter 5 shows that the MDL-based fitness function improves the accuracy of the method
(see Appendix C for detailed empirical comparison). In addition, our empirical results
show that even without the improvement of an MDL-based fitness, the MFE2/GAE

approach with an entropy-based fitness measure retains most of its accuracy advantage
over two relevant learners: a standard learner as C4.5 (trees and rules), and HINT,
a non-GA CI method that, like MFE2/GA, uses non-algebraic representation for con-
structed features. Similar empirical results were found using Braille code detection
problem defined over a real-world domain.

Finally, MFE3/GA is evaluated by performing experiments over some machine learn-
ing benchmarks from UC Irvine databases. The results show that when complex in-
teractions among attributes exist this method successfully abstracts and encapsulates
interactions into constructed features to highlight them to the learner.

Chapter 7

Conclusions and Future Work

This chapter summarizes the important achievements of the research and describes some
possible directions for future work. Section 7.1 provides a summary of the dissertation;
Section 7.2 describes the contribution of the research; and finally, Section 7.3 discusses
the limitations and proposes possible ways in which the work can be further extended.

7.1 Summary of the dissertation

Complex interactions and Constructive Induction (CI): This research focused
on the problem of learning in presence of complex attribute interactions in concepts.
The low-level primitive representation of real-world data facilitates the existence of in-
teractions. Chapter 1 explained how attribute interaction complicates learning. When
complex interactions among attributes exist, the importance of each interacting at-
tribute is masked to the learner; moreover, even if important attributes are identified
by the learner, regularities are still hard to discover (Section 1.1). CI has been intro-
duced to ease the problem of learning hard concepts. When CI is applied to concepts
with complex interactions, FC in CI aims to capture and encapsulate interactions into
new features to outline regularities to the learner (Section 1.2).

Greedy CI and genetic CI: In spite of many progresses in CI, current CI methods
still have difficulties when learning concepts with complex interactions. Chapter 2 briefly
reviewed related works and studied the requirements for a CI method when applied to
such concepts. It classified CI methods into two groups. The first group consists of
greedy CI methods, which apply a greedy local search to find interacting attributes and
construct features (Section 2.1). The second group includes genetic CI methods which
are those that apply a global search such as GA or GP (Section 2.3).

Greedy CI – Weaknesses: Three main weaknesses of current greedy CI methods
were highlighted in Section 2.1, which are as follows. First, these methods apply a

117

118 Conclusions and Future Work

greedy local search to find interacting attributes (Section 2.1.1). The search space for
finding interacting attributes is large and with high variation. Thus, a local search may
find a local optimal solution. Second, most CI methods apply a greedy strategy to
construct and evaluate features one by one (Section 2.1.2). So, the construction of each
feature depends on those previously constructed. When several complex interactions
exist in the target concept, a CI method may construct an incorrect feature in a primary
step and mistakenly evaluate it as a correct feature. Therefore, all subsequent features
constructed using this feature will be irrelevant. Third, most CI methods apply an
algebraic language to represent new features by using algebraic operators (Section 2.1.3).
A complex algebraic feature is required to encapsulate a complex interaction. Moreover,
if no prior knowledge is provided about the concept, it is difficult to define algebraic
operators.

CI requirements: Considering these weaknesses, three requirements for a CI method
were specified. These requirements are as follows. First, a CI method needs a global
search to skip local optimal solutions and find the global optimal solution (the optimal
subset of interacting attributes). Section 2.2 presented GA and GP as global search
techniques which can be applied for CI. Second, a CI method needs to construct and
evaluate several features together to facilitate learning in presence of several complex
interactions in the concept. A search method based on GA or GP permits construct-
ing and evaluating several features together as a single genetic individual. Third, a CI
method requires a proper representation language when interactions are complex and
no prior information is provided about the concept. Section 2.1.3 introduced the notion
of non-algebraic operator-free representation as a form of representing features, which
is preferred to algebraic form when no prior knowledge is available to define operators.
Non-algebraic representation permits extracting features directly from data, which is
necessary if the training data is the only information provided about the concept. This
form of representation also reduces the size of search space and the difficulty of con-
structing complex features.

Genetic CI – Weaknesses: Section 2.3 reviewed relevant genetic CI methods and
outlined their deficiencies. The major problem of these methods is the use of algebraic
form such as parse trees to represent features, which produces difficulties, as explained
in Section 2.1.3. The other problem of most genetic methods is the evaluation of con-
structed features by means of a hypothesis-driven fitness evaluation; that is, a hypothesis
generated by a learner is used as the fitness evaluation to guide the search toward the
optimal solution. The success of these methods strongly depends on the learner. More-
over, using a learner for fitness evaluation slows down the performance of the method.
Thus, a data-driven fitness evaluation is preferred to a hypothesis-driven one. Another
deficiency of some of genetic methods is that they do not exploit GA or GP to construct

7.1 Summary of the dissertation 119

and evaluate several features together as a genetic individual. In spite of using a genetic
search, their strategy for constructing features is, still, greedy and one by one.

A CI framework – Decomposition: Considering the deficiencies of reviewed meth-
ods and the requirements for a CI, Section 2.4 introduced a framework for designing
a CI method. This framework simplifies the CI task of searching the huge and com-
plex search space. A CI method needs to search the space of functions defined over
subsets of attributes. This space grows exponentially with the number of attributes
and has high variation. The proposed framework suggests partitioning this space into
two spaces: the space of attribute subsets and the space of functions defined over a
given attribute subset. Thus, the task of CI is divided into two smaller tasks: searching
for subsets of interacting attributes and finding a function that represents interactions
among attributes in a given subset. GA is used for the first task. For each attribute
subset produced by genetic operators a function is constructed by analyzing data and
inducing a relation among attributes in the subset and the target concept. This rela-
tion is represented non-algebraically using a vector of values that specifies the outcome
of the function for each combination of attribute values. A data-driven measurement
evaluates the utility of the function. If the function represents a promising relation
among given attributes, the attribute subset is considered a good subset in GA. Thus,
generated subsets are used to induce functions from data; and, functions are used to
evaluate subsets and guide GA toward better subsets. By this strategy the dependency
between the two tasks is maintained while improving each of them.

DCI – The first instance of the framework: The rest of the dissertation focused
on two new methods designed to evaluate the framework. Chapter 3 introduced DCI.
This CI method was designed to analyze the utility of global search and non-algebraic
feature representation when complex interaction exists in the target concept. Following
the framework proposed in Chapter 2, this method applies GA to find interacting at-
tributes. For each attribute subset as a genetic individual, DCI analyzes data to induce
a non-algebraic function. The fitness of each individual is determined by evaluating the
constructed feature. An entropy-based fitness evaluation, that is a data-driven measure-
ment, was presented. It measures the amount of uncertainty introduced by constructed
feature and its complexity. Genetic operators are performed on attribute subsets to
generate better ones. Since each attribute subset is associated with an induced func-
tion, when subsets are changed by genetic operators, functions are changed too. Thus,
GA indirectly evolves functions to construct better ones. This strategy allows DCI to
decompose the search space and divide the main task of CI into two, while maintaining
the effect of each one on the other. DCI meets the first and third requirements specified
in Chapter 2.

120 Conclusions and Future Work

DCI evaluation – Advantages: Chapter 3, then, explained experiments conducted
to evaluate the use of GA and non-algebraic feature representation in DCI. Empirical
results showed three important points. First, when complex interactions exist among
attributes feature selection is not enough for improving accuracy of a learner; features
that highlight regularities are needed to be constructed to ease learning. Features con-
structed by DCI significantly improve the accuracy of a standard learner such as C4.5
when a complex interaction exists among attributes. Second, when concept consists of
complex interactions, non-algebraic representation helps a CI method to construct more
promising features and achieve better results comparing to CI methods with algebraic
representation. Third, the global search in DCI successfully finds the subset of inter-
acting attributes and its corresponding function when concepts are composed of one
complex interaction.

DCI evaluation – Weaknesses: The experiments showed a requirement for a CI
method which was specified earlier in Chapter 2 but is not considered in DCI, that is
the need for constructing and evaluating several features. DCI intends to abstract all
interactions into one feature. Experiments showed that when number of interacting at-
tributes is high, in spite of correctly detecting relevant attributes, DCI cannot construct
a proper function that represents all interactions.

MFE2/GA – Overcome deficiencies of DCI: Chapter 4 explained the need for
constructing more than one feature. When several interactions exist in concept, a
function that encapsulates them tends to be complex and difficult to construct. This
difficulty augments when few training data samples are provided. A CI method needs
to break down the function into several smaller ones. Then, functions form a set of
related parts of a theory that represents interactions. Each function by itself may not
be evaluated properly; functions should be evaluated together as a set of characteristics.
Section 4.2 introduced MFE2/GA, the second instance of the proposed framework. This
method, while maintaining all the advantage of DCI, permits constructing and evaluat-
ing several features at the same time. MFE2/GA takes advantage of GA to construct
and evaluate several features together. Each individual in MFE2/GA represents a set
of attribute subsets; each subset is associated with a function that is induced from data.
The aim of GA is to find the best set of attribute subsets and the best set of functions.
The data-driven fitness measurement in MFE2/GA evaluates the set of constructed
functions together as a theory (Section 4.2.2). Special genetic operators are designed
to allow producing both new attribute subsets and new sets of attribute subsets with
their corresponding functions (Section 4.2.3). These operators are empirically analyzed
to show their importance for GA convergence to optimal solution (Section 4.3).

7.1 Summary of the dissertation 121

MFE2/GA – Empirical Evaluation: MFE2/GA fulfills all the requirements for a
CI method specified in Chapter 2. Empirical evaluation showed that the multi-feature
construction and evaluation helps MFE2/GA to outperform other relevant methods
when several complex interactions among attributes exist (Section 4.4). The experi-
ments outlined the importance of constructing and evaluating several features together
as parts of a theory. These experiments illustrated that MFE2/GA successfully finds
the set of subsets of interacting attributes and constructs a set of functions representing
complex interactions. Therefore, it outperforms DCI and other relevant methods when
concept consists of several complex interactions.

MFE2/GA – Analyzing its sensitivity to the training data: The MFE2/GA’s
flexibility in decomposing and searching a large and complex space of functions makes
this method dependent on the quality of data. MFE2/GA is a data-based CI method.
It needs to see the replication of the structure of the function in data in order to ex-
tract it properly from data. Chapter 5 aimed to evaluate the sensitivity of MFE2/GA
to the training data size by comparing the method with HINT, a relevant data-based
CI method. Both MFE2/GA and HINT are strongly dependent on the training data
size. The designs of the two methods are theoretically studied (Section 5.2) and em-
pirically compared (Section 5.3). Both methods have some important functionalities.
The multi-value feature construction of HINT (Section 5.1) allows this method to break
down a complex interaction into smaller ones. Thus, it needs less training data to
construct functions when concept consists of a high-order complex interaction. How-
ever, if the concept consists of several low-order complex interactions this property of
HINT may cause overfitting. The multi-feature construction of MFE2/GA along with
its global search help this method to exploit data better than HINT. These properties
of MFE2/GA are very important for its success when several complex interactions exist
among attributes and few training data are provided.

MFE3/GA – Improving MFE2/GA with an MDL-based fitness: Experiments
in Chapter 4 indicated that the GA in MFE2/GA is not always guided properly toward
the optimal solution; therefore, MFE2/GA sometimes fails to find interacting attributes.
Chapter 6 analyzed different types of fitness measurement and suggested the use of two
of them with the aim of improving MFE2/GA’s accuracy. The first fitness measure was
designed based on entropy notion and integrated to the system, resulting a new version
called MFE2E/GA. This measure evaluates the goodness of the set of constructed fea-
tures in reducing impurity in data and improving classification. The second measure is
designed based on MDL Principle. It measures the sum of two values: the complexity of
constructed features (theory) and the amount of misclassification produced using new
features (errors). This measure is integrated into a new version of the method called
MFE3/GA. An empirical analysis was performed to compare and evaluate both fitness

122 Conclusions and Future Work

measures. The results indicate that the MDL-based fitness guides GA significantly bet-
ter than the entropy-based fitness. In addition, the MDL-based fitness helps GA to
converge to the solution faster than the other one. This measure also improves the ac-
curacy of the method comparing with the results obtained by MFE2/GA in Chapters 4
and 5.

MFE3/GA – Final evaluation on machine learning benchmarks: For final
evaluation of MFE3/GA, some experiments over UC Irvine machine learning bench-
marks were performed and explained in Section 6.5. These experiments showed that
the new method can successfully be applied to real-world domains to abstract and high-
light relations among attributes and ease learning task despite complex interactions in
concepts.

7.2 Contribution of the Research

This research contributes to the fields of machine learning, constructive induction, fea-
ture selection, feature construction, and genetic and evolutionary computation. The
work aimed to ease the learning task when the low-level primitive representation of
real-world concepts produces complex interactions among attributes. Concepts with
complex interactions pose a problem to learners. Current CI methods cannot improve
learning in presence of several complex interactions when the only information available
is the training data set. The research answered two important questions:

1. What are the requirements for a CI method to improve learning such concepts?

2. How these requirements can be met?

Three important requirements are specified for a CI:

1. A global search to find subsets of interacting attributes and functions that repre-
sent interactions in each subset

2. A proper representation language for abstracting and expressing interactions

3. A strategy that permits construction and evaluation of several functions together

The research discussed that previously introduced CI methods do not fulfill all these
requirements; and, if a method satisfies these requirements, facilitates learning such
complex concepts when the only information provided is training data.

In order to meet these requirements, the work aimed to simplify the huge and com-
plex search space needed to be explored for constructing appropriate features. A new
framework is designed to decompose the search space into two smaller spaces, while
reflecting the effect of each one on the other one. The framework uses GA as a global

7.2 Contribution of the Research 123

search to find subsets of interacting attributes and induces functions directly from train-
ing data. This framework allows searching the optimal set of subsets of interacting
attributes and the optimal set of functions that represent interactions, fulfilling the first
and third requirements specified for a CI method. The research also intended to ease FC
by defining a proper language for representing interactions. The notion of non-algebraic
(operator-free) representation language is introduced and used in the framework. It
was shown that when no prior knowledge is available about the domain this form of
feature representation facilitates constructing complex interactions and is more appro-
priate than the algebraic feature representation traditionally used by other CI methods.
The proposed framework can be used for designing a new machine learning application
or a new tool to be integrated into a machine learning system.

Two experimental methods, DCI and MFE2/GA are designed to evaluate the util-
ity of the framework for machine learning. DCI distinguishes interacting attributes
from irrelevant attributes and defines a function over subset of interacting attributes to
abstract and encapsulate interactions into a new feature. MFE2/GA in addition to de-
tecting interacting attributes, groups them into subsets, each containing attributes that
participate in one complex interaction. It also simultaneously constructs and evaluates
several functions together, each defined over one subset.

MFE2/GA meets all the specified requirements and therefore differs from other CI
methods. Experimental analysis showed that this method facilitates the learning task
more than the others when concept consists of several complex interactions and no prior
information is provided about the concept.

Proposing this CI method raised a new question to answer that is how sensitive
MFE2/GA is to the training data size. The method is a data-based CI and its per-
formance depends strongly on the training data. Theoretical and empirical analysis
showed that the design of the method makes it less sensitive to data comparing to a
relevant data-based CI method.

Finally the research proposed a new version of the method, MFE3/GA. This method
has the advantage of using an MDL-based measure for evaluating constructed features
more accurately.

The result of the research is a multi-feature construction method based on GA and
non-algebraic feature representation that eases learning concepts with several complex
interactions when few data samples are available and no expert knowledge is provided.
This method can be integrated into machine learning systems to facilitate learning under
the specified conditions. However, like any other method, MFE3/GA has its limitations
and cannot be applied to all learning problems, as explained in the next section.

124 Conclusions and Future Work

7.3 Limitations and Future Work

This thesis illustrated that a CI method that satisfies the specified requirements facil-
itates learning despite complex interactions. Nevertheless, MFE3/GA like any other
method has some limitations and cannot be applied to all problems. This section high-
lights MFE3/GA’s limitations and suggests approaches to overcome them. Note that
these limitations relate to MFE3/GA and not the proposed CI framework and CI re-
quirements. This section also discusses some directions for future research.

Decomposing a Complex Interaction

This research illustrated that MFE3/GA successfully facilitates learning in presence of
several complex interactions by decomposing the concept into a set of functions, each
representing one complex interaction. However, MFE3/GA cannot further decompose
each complex interaction into smaller parts. As illustrated in Sections 4.4.2 and 5.3.1,
when the number of attributes involved in the complex interaction grows, the FC task
in MFE3/GA becomes more difficult. Therefore, its accuracy degrades. Recall from
Section 4.2.1 that MFE3/GA induces a function by classifying tuples in the Cartesian
product of attribute values into pure, unknown, and mixed tuples. If a complex in-
teraction is broken down into smaller parts, all the tuples will be classified as mixed.
However, there are different mixed tuples which can be treated differently. To illustrate
this, consider the concept P1,4

def= (x1 ⊕ x2) ⊕ (x3 ⊕ x4) that consists of a complex
interaction of four attributes (parity of four). This interaction can be broken down
into two smaller ones, x1 ⊕ x2 and x3 ⊕ x4. However, MFE3/GA cannot discover these
smaller interactions. It projects data onto subset Si = {x1, x2}, classifies all the tuples
in the Cartesian product of attributes in Si as mixed tuples, and assigns the same label
to them, as illustrated in Figure 7.1, resulting in an irrelevant function f = T (i.e.,
“always true”).

The careful analysis of data in Figure 7.1 shows that there are dissimilarities among
tuples which can be considered for classifying them. Projecting data onto Si grouped
training samples into four sets resulting in four mixed tuples. Considering data class
labels, it can be seen that the first and forth group of samples have the same pattern
of class labels 〈1, 0, 0, 1〉 (boldface labels in Figure 7.1), and the second and third group
follow another pattern, 〈0, 1, 1, 0〉 (italic labels in the figure). This information can be
used to further classify mixed tuples into two subgroups (mixed tuples type 1 and mixed
tuples type 2 in the figure), assigning a different label to each. MFE3/GA cannot distin-
guish different mixed tuples to assign different labels to them. Thus, it tries to capture
the whole interaction at once by constructing a function over all interacting attributes,
which is more complex to construct. This limitation may cause difficulty for MFE3/GA
if the number of attributes involved in the complex interaction is high and few training
data samples are provided (as experiments in Section 5.3.1 showed). For such concepts

7.3 Limitations and Future Work 125

00010

00100

11100

01000

11010

1

0

0

0

11

100

Classx1

0

x2 x3 x4

Training

Samples

01101

11001

10101

00001

10011

0

1

1

0

01

011

1

00111

11 11 1

01

11

10

10 0

x1 x2 f

1

1

1

mixed

mixed

mixed

mixed

Si={x1, x2}

mixed type 1

mixed type 1

mixed type 2

mixed type 2

Figure 7.1: High-order complex interaction and MFE3/GA

a strategy that allows classifying mixed tuples would be useful. HINT overcomes this
limitation by means of multi-coloring property (Section 5.1), assigning different labels
to mixed tuples. It considers the rest of attributes, x3 and x4, to determine compatible
tuples of attribute values in Si = {x1, x2} and assign same label to them, as shown in
italic and boldface in Figure 7.2.

It would be challenging to integrate the multi-coloring of HINT into multi-feature
construction of MFE3/GA. However, if there are other attributes in the concept in
addition to those participating in the complex interaction, the task would be more
complex. HINT partitions the original attribute set into a subset and its complementary
in order to label tuples of attribute values in the subset. For example, if the concept is
∧(P1,4, P5,8)

def= [(x1 ⊕ x2) ⊕ (x3 ⊕ x4)] ∧ [(x5 ⊕ x6) ⊕ (x7 ⊕ x8)], HINT partitions the
original attribute set into Si = {x1, x2} and Sc

i = {x3, x4, x5, x6, x7, x8} and labels the
tuples in Si by considering the value of all the attributes in Sc

i . But, considering only
he value of two attributes, x3 and x4, is enough for labeling tuples in Si. It would be
easier to construct functions for this concept if the method could extract two subsets,

1100

1

1010

1

10

0 0

x1

x2
x4x3

0

1

1001

0110

0110

1001

0110c

Figure 7.2: High-order complex interaction and HINT

126 Conclusions and Future Work

Si = {x1, x2} and S′i = {x3, x4}, from original set of attributes to construct two functions
representing x1 ⊕ x2 and x3 ⊕ x4. But, due to its local search, HINT cannot achieve
this. This limitation is not convenient for concepts with several interacting attributes
when few training data samples are provided, as shown in Section 5.3.

In order to overcome this limitation, GA in MFE3/GA can be modified to generate
individuals in the form of groups of subsets; each group is used for constructing a
group of functions representing one complex interaction. For example, for concept
∧(P1,4, P5,8), the best individual can be Ind = 〈{x1, x2}, {x3, x4}; {x5, x6}, {x7, x8}〉,
where the semicolon separates groups of subsets. Then, a set of two functions are
generated over the first group of subsets, representing x1⊕x2 and x3⊕x4, and another
set of two functions are generated over the second group, representing x5 ⊕ x6 and
x7 ⊕ x8. However, this modification makes the search space larger and more complex.
A careful analysis of the search space and search strategy is required to further develop
this enhancement.

Multi-value Class Labels and Continuous Attributes

Another limitation of MFE3/GA is that the current version of the method can be
used only for concepts with binary class labels. Thus, for learning a concept with n-
value class labels, MFE3/GA must be repeated n − 1 times to learn each class label.
In order to overcome this limitation, MFE3/GA needs to assign multi-value labels to
tuples. Labeling pure and unknown tuples can be easily modified to include multi-value
labels. But extending the binary label of mixed tuples to multi-value labels needs more
studies. The current version selects the opposite label to the most frequent label among
pure tuples as the label of mixed tuple (Section 4.2.1). When multi-value labels are
assigned to pure tuples, there is no opposite label as it was in binary label assignment.
A solution could be to select the label of mixed tuples stochastically according to the
inverse distribution of pure tuples’ labels, so that the less frequent label has more chance
to be assigned to the mixed tuple.

MFE3/GA is also limited to concepts with nominal attribute values. Thus, a dis-
cretization preprocessing algorithm [Liu et al., 2002; Boulle, 2004; Kurgan and Cios,
2004] is required to transform continuous attributes into nominal ones.

Noisy Data

The other issue is sensitivity of MFE3/GA to noisy data. Real-world data is often
noisy. The noise might be due to missing or incorrect attribute values or class labels.
MFE3/GA induces new features directly from data. Thus, the quality of constructed
features depends strongly on the quality of the training data. This method aims to con-
struct features that are consistent with the training data. When training data contains
noise, samples itself may be inconsistent, that is two samples with the same attribute

7.3 Limitations and Future Work 127

values are labeled differently. It would be interesting to evaluate and improve the per-
formance of MFE3/GA when applied to such data.

In case that the noise is in class labels, one approach that can be applied is a prepro-
cessing mechanism to remove or relabel mislabeled samples before running MFE3/GA.
Many research have been realized to design such mechanism [Zeng and Martinez, 2001;
Muhlenbach et al., 2004; Venkataraman et al., 2004; Malossini et al., 2006; Sun et
al., 2007]. However, if few training samples are provided, such preprocessing mech-
anism may not improve accuracy. Another approach is to integrate noise handling
into MFE3/GA. Some methods use statistical measures to associate a class member-
ship probability to each sample and consider this probability in learning [Lawrence and
Schölkopf, 2001; Rebbapragada and Brodley, 2007]. Zupan et al. in [2000] introduced
a similar mechanism to be included in HINT. Their extended version of HINT aims to
construct functions that minimize expected classification error. In their new approach,
instead of grouping compatible columns (Section 5.1), they merge columns in a way
that minimizes the training data classification error using m-error estimate [Cestnik
and Bratko, 1991]. However this approach is computationally expensive and cannot be
used for MFE3/GA.

In case that the noise is in attribute values, the correct value of a noisy attribute may
be predictable using other samples and attributes. Then, a preprocessing mechanism
is applied to modify noisy attributes [Van Hulse et al., 2007]. Another approach is to
switch the attribute with the class and apply the same mechanism used for noisy class
labels [Teng, 1999; Zhu and Wu, 2004]. More research is required in order to extend
MFE3/GA that can be applied to noisy data.

Note that the method was designed for problems when the only available infor-
mation about the concept is the primitive training data. When no other knowledge is
provided about the concept, enough correct data is expected to be available for learning;
otherwise, an accurate learning is not possible.

Comparison with Other methods

This research did not empirically compare MFE3/GA with other genetic CI methods
on concepts with complex interactions; however, a theoretical comparison is realized in
Section 2.3. Genetic CI methods apply algebraic representation (often parse trees) for
constructing new features. Thus, they have difficulties in learning concepts with complex
interactions when the only available knowledge about the concept is the training data.
Still, empirical comparison of MFE3/GA with these methods can be interesting for
further study and improvement of the method. Also, it would be interesting to see how
MFE3/GA can improve accuracy of other learners apart from C4.5.

128 Conclusions and Future Work

Make Use of Domain knowledge

Another direction for future work is to extend MFE2/GA to accept domain knowledge
for improving its performance. This research focused on problems when no domain
knowledge is provided. One may consider integrating the domain knowledge into the
system. For example, if the domain expert has some information about attributes,
this information can be used when generating the first population or during genetic
operations to guide the search toward more promising solutions.

GA Parameters, Parallel GA, and Other Search Techniques

The other important direction for future research relates to GA aspects of MFE3/GA.
The most important one is the computation time of the proposed method. A parallel
MFE3/GA on a computer with multiprocessor or a network of computers can speed up
this method [Nowostawski and Poli, 1999]. Operations in GA such as fitness evalua-
tion, crossover and mutation can be performed in parallel. The feature extraction of
MFE3/GA is also a procedure that can be run in parallel for several attribute subsets.
PGAPack library [Levine, 1996] used for implementing MFE3/GA supports parallel
GA and can be used to improve the method in terms of computation time. Also,
more studies about GA parameters may result in a better performance. This research
did not aim to optimize these parameters. Studying other search techniques such as
Particle swarm optimization [Kennedy, 1995] could be of interest too. The use of co-
evolutionary GA [Bhanu and Krawiec, 2002] or multi objective optimization [Goldberg,
1989] to perform the two tasks, constructing features and finding attribute subsets, is
another challenging issue.

Up from Earth’s Center through the Seventh Gate
I rose, and on the Throne of Saturn sate,

And many knots unravel’d by the road,
But not the Master-Knot of Human Fate.

Omar Khayyam, 1048–1131, Iran

Appendix A

Concepts Definitions

This appendix defines synthetic concepts used for experiments in this dissertation. All
the concepts are composed of one or more complex interactions.

The first group of concepts includes those previously used by Perez [1997]. These
concepts are defined over 12 Boolean attributes x1 to x12. Let w(xi..j)

def= weight of
attributes xi to xj ; that is, the number of ones in {xi, . . . , xj}, then:

• Pi,j
def= w(xi..j) is an odd number ; i.e., parity(xi, . . . , xj),

• cpi,j
def=Pi,6∧ P7,j ,

• cdpi,j
def=Pi,4∧(P i+j

2
,8∨ Pj,12),

• gwi,j
def= w(xi..6) > w(x7..j),

• swi,j
def= w(xi..6) = w(x7..j),

• nmi,j,k
def= w(x7−bk/2c..7+bk/2c) ∈ {i, j},

• rki,j
def= w(x7−bj/2c..7+bj/2c) = i,

• mji,j
def= w(xi..j) ≥ b(j − i)/2c+ 1),

• mx6
def= mx(x1, x2, x3, x6, x9, x12), where:

mx(0, 0, x3, x6, x9, x12) = x3,

mx(0, 1, x3, x6, x9, x12) = x6,

mx(1, 0, x3, x6, x9, x12) = x9,

mx(1, 1, x3, x6, x9, x12) = x12,

• mx6ci,j
def= mxc(x1, x2, xi..j), where:

mxc(0, 0, xi..j) = ∧(xi, . . . , xj),

131

132 A. Concepts Definitions

mxc(0, 1, xi..j) = ∨(xi, . . . , xj),

mxc(1, 0, xi..j) = parity(xi, . . . , xj),

mxc(1, 1, xi..j) = ¬parity(xi, . . . , xj),

• Pi,j ∨ (l) def=Pi,j ∨ w(x7..12) = l,

• Pi,j ∧ (l) def=Pi,j ∧ w(x7..12) = l.

The second group of concepts includes those specially designed for experiments to
illustrate the difficulty of learning in presence of several complex interactions. These
concepts are defined over Boolean attributes except palindrome family of concepts where
attributes are 3-valued.

The concept palindrome6+2 is palindrome of six attributes with two additional
irrelevant attributes. The other concepts are defined as conjunctions ∧(f1, . . . , fn) or
disjunctions ∨(f1, . . . , fn) where fm is one of the followings:

• WL3i,j
def= w(xi..j) < 3,

• W23i,j
def= w(xi..j) ∈ {2, 3},

• pali,j
def= palindrome of xi to xj ,

• Any of functions Ai,i+3 Bi,i+3, Ci,i+3, Di,i+3, and Ei,i+3, defined over four Boolean
attributes xi to xi+3 as explained below (see Figure A.1).

Functions Ai,i+3, Bi,i+3 and Ei,i+3 consider their four attributes as a 2-by-2 bitmap
and are true if and only if the bitmap contains the following patterns: function Ai,i+3

detects if any two (vertically or horizontally) adjacent bits are set to one; function Bi,i+3

is as A but excluding the case of all bits set to one; and function Ei,i+3 is as A but
including the case of all bits set to zero. Functions Ci,i+3 and Di,i+3 consider their four
attributes as a 4-by-1 bitmap (or just a sequence) and are true if and only if the bitmap
contains the following patterns: function Ci,i+3 detects if any two adjacent bits are set
to identical values but not all bits have the same value; and function Di,i+3 detects if
there are any two adjacent bits set to one.

To illustrate the complexity of these concepts, note for instance that the DNF of
function A1,4 is x1x2 + x2x3 + x3x4 + x4x1. Some concepts are conjunction of A1,4,
A5,8, and A9,12, or other three such functions from above. So the DNFs of concepts are
complex and difficult to construct and represent using algebraic representation (Sec-
tion 2.1.3).

The last group of concepts, Monk concepts, from UC Irvine repository [Blake and
Merz, 1998], are defined over 6 attributes with 3, 3, 4, 3, 4, and 2 values, respectively,
as follows:

133

• Monk-1 def= (x1 = x2) ∨ (x5 = 1)

• Monk-2 def= exactly two of six attributes are equal to one.

Ai, i+3

xi xi+1

xi+3 xi+2

xi xi+1 xi+2 xi+3

Bi, i+3

Ci, i+3

Di, i+3

Ei, i+3

Figure A.1: Functions Ai,i+3, Bi,i+3, Ci,i+3, Di,i+3, and Ei,i+3

Appendix B

PGAPack Default Parameters

Table B.1 illustrates default parameters of PGAPack [Levine, 1996] that are used for
CI methods in this work. Some of these parameters are modified for implementing
the methods. These parameters are marked in columns three and four for DCI and
MFE2/GA, respectively. Same parameters as MFE2/GA are used for MFE3/GA and
MFE2/GAE . For more information about these parameters and other aspects of PGA-
Pack see [Levine, 1996]. For modified parameters of DCI and MFE2/GA see Sec-
tions 3.1.4 and 4.2.4, respectively.

135

136 B. PGAPack Default Parameters

Table B.1: PGAPack Default Parameters
GA Parameter Default Value DCI MFE2/

GA
Population size (p) 100 ×
Copied for population replacement Most fit individuals
Stopping rule Max. iteration limit exceeded × ×
Max iteration 1000 × ×
Max no change iter. 100 ×
Max similarity value 95% ×
No. of strings to be replaced (p−m) 10 × ×
Mutation and/or crossover Or ×
Crossover type Two point crossover × ×
Probability of crossover 0.85
Uniform crossover bias (pu) 0.6 ×
Mutation probability Reciprocal of the string length ×
Selection type Binary tournament selection ×
Not allow duplicate strings False
Fitness type Raw fitness value
Randomly initialize population True
Probability of initializing a bit to one 0.5
Seed random number with clock True × ×
m is the number of individuals copied to the next population

Appendix C

Comparing DCI and Different

Versions of MFE Methods

This appendix compares the experimental results obtained using DCI (Chapter 3),
MFE/GA and MFE2/GA (Chapter 4), and MFE3/GA (Chapter 6). The dissimilarities
among DCI, MFE/GA and MFE2/GA are described in Section 4.2, and those among
MFE3/GA and MFE2/GA are described in Section 6.3. Since the performance differ-
ences were not significant for some experiments, their empirical comparison is moved to
this appendix. Table C.1 reports the results over synthetic concepts that are composed
of one complex interaction. Note that MFE/GA is the older version of MFE2/GA and,
therefore, is not used for these experiments. Table C.2 reports the results over concepts
composed of several complex interactions. These experiments were also not performed
with MFE/GA and DCI over some concepts (marked by N/A).

All experiments are run over 20 sets of shuffled data (5% training and 95% test data)
and average accuracies are reported; except those results marked by * in Table C.2
which are average results of performing experiments over 10 sets of data. Accuracies
are compared using t-distribution test with α = 0.1.

As it can be seen from Table C.1 the results obtained by MFE2/GA and MFE3/GA
are not significantly better than DCI since concepts in this table are composed of one
complex interaction. The multi-feature construction property of these MFE methods
does not help to construct better features than DCI. However, in Table C.2 all versions
of MFE significantly outperform DCI for almost all concepts.

Table C.3 summarizes the results of Tables C.1 and C.2. It shows the number of times
a method significantly outperformed the other method for each group of concepts. This
table has a similar format as Tables 5.2 and 5.4. For an event “method1/method2”, a
frequency “a/b out of c” means method1 outperformed method2 for a number of concepts
out of c concepts, and method2 outperformed method1 for b number of concepts. It can
be seen that MFE3/GA is the best competitor for almost all concepts.

137

138 C. Comparing DCI and Different Versions of MFE Methods

Table C.1: Comparing methods – one interaction
Concept Relev. Irrel. Maj DCI MFE2/GA MFE3/GA

atts atts % +C4.5 +C4.5 +C4.5

gw5,8 4 8 68.8 100(0)/ 100(0)/ 100(0)/

mj3,9 7 5 50.0 89.1(2.7) 90.1(2.4)J 89.4(2.3)

mj4,8 5 7 50.0 99.7(1.5) 100(0)/ 100(0)/

mx6c5,8 6 6 50.0 97.8(1.8) 97.6(1.7) 98.5(1.5)J
mx6c6,7 4 8 50.0 100(0)/ 100(0)/ 100(0)/

nm4,5,7 7 5 56.2 89.9(1.6) 89.8(2.5) 90.8(2.6)J
rk5,7 7 5 83.6 95.1(1.7)J 93.7(3.7) 92.5(5.2)

rk6,7 7 5 94.5 98.3(1.3)J 95.9(2.7) 94.2(1.9)

sw5,8 4 8 62.5 100(0)/ 100(0)/ 100(0)/

p4 4 8 50.0 100(0)/ 100(0) 100(0)

p6 6 6 50.0 98.0(1.8) 98.0(1.5)J 98.1(1.5)

p8 8 4 50.0 76.7(2.7)/ 74.7(7.7) 76.7(2.7)/

gw3,10 8 4 63.7 N/A 76.5(5.1) 79.9(3.3)J
gw4,9 6 6 65.6 N/A 98.1(2) 98.3(1.5)J
mj2,10 9 3 50.0 N/A 67.3(3.5) 70.8(4.9)J
mx6c4,9 8 4 50.0 N/A 75.5(5.2) 77.5(2.6)J
mx6c3,10 10 2 50.0 N/A 57.7(4.4)J 56.8(3.1)

nm5,6,9 9 3 59.0 N/A 65.9(3.4) 66.9(3.1)J
rk6,9 9 3 83.6 / N/A 80.5(2.2) 81.6(1.4)J
rk7,9 9 3 93.0 / N/A 91.3(1.1) 91.5(0.9)J
sw3,10 8 4 72.7 N/A 75.9(5.4) 77.6(5.9)J
sw4,9 6 6 68.8 N/A 98.6(1.4)J 98.1(1.7)

AVERAGE 7 5 62.36 N/A 87.60 88.15J
N/A results are not available
/ the higher accuracy
J absolutely the highest
Boldface significantly higher between MFE3/GA and MFE2/GA
underline significantly higher between MFE3/GA and DCI
italic significantly higher between MFE2/GA and DCI

139

Table C.2: Comparing methods – several interactions
Concept Rel. Irr. Maj DCI MFE/GA MFE2/GA MFE3/GA

atts atts % +C4.5 +C4.5 +C4.5 +C4.5

cdp3,11 6 6 62.5 97.6(1.6) 99.2(3.1) ◦ 100(0.0)J◦ 99.7(0.7) ◦
cdp2,10 9 3 62.5 67.7(2.0) 86.6(10.3) ◦ 85.8(8.6) ◦ 90.3(5.7)J◦
cdp1,9 12 0 62.5 56.4(2.5) 71.1(7.4) ◦ 71.7(3.8)J◦ 71.1(3.5) ◦
cp5,8 4 8 75 100(0.0)/ 100(0.0)/ 100(0.0)/ 100(0.0)/

cp4,9 6 6 75 97.2(1.8) 98.9(4.0) ◦ 100(0.0)/ ◦ 100(0.0)/ ◦
cp3,10 8 4 75 81.6(1.6) 95.7(8.9) ◦ 100(0.0)/ ◦ 100(0.0)/ ◦
cp2,11 10 2 75 68.0(1.2) 97.1(4.8) ◦ 96.7(6.1) ◦ 97.3(6.1)J◦
P3,6 ∧ (2) 10 2 88.3 81.0(1.5) 95.9(2.9)J◦ 93.1(5.7) ◦ 92.8(6.2) ◦
P3,6 ∧ (3or2) 10 2 72.7 65.4(2.6) 90.8(5.6) ◦ 89.3(5.7) ◦ 93.2(4.2)J◦
P3,6 ∧ (3) 10 2 84.4 75.9(2.4) 94.1(5.4) ◦ 93.8(5.2) ◦ 95.4(3.9)J◦
P3,6 ∨ (2) 10 2 61.7 57.9(2.2) 90.3(6.6) ◦ 89.7(5.5) ◦ 93.1(2.0)J◦
P3,6 ∨ (3or2) 10 2 77.3 69.5(2.2) 92.5(7.5) ◦ 92.5(5.7) ◦ 95.7(1.7)J◦
P3,6 ∨ (3) 10 2 65.6 59.3(1.7) 92.1(7.1) ◦ 91.1(7.6) ◦ 93.7(1.8)J◦
mx6 6 6 50 97.8(2.1) N/A 98.8(1.8) 99.1(2)J◦
∧(P1,4, P3,6) 6 6 75 * 97.7(2.2) N/A 99.1(1.6) ◦ 99.8(0.5)J◦
∧(P1,6, P3,8) 8 4 75 * 81.7(1.3) N/A 92.8(5.7) ◦ 94.1(2.8)J◦
∧(P1,3, P3,5, P4,6) 6 6 87.5 * 99.2(1.4) N/A 99.8(0.7)/ ◦ 99.8(0.7)/ ◦
∧(P1,4, P2,5, P3,6) 6 6 87.5 * 99.4(0.8) N/A 99.6(0.7)/ 99.6(0.7)/

∧(P1,4, P3,6, P5,8) 8 4 87.5 * 89.2(1.2) N/A 96.4(1.8) ◦ 98.6(1.7)J◦
∧(P1,6, P2,7, P3,8) 8 4 87.5 * 89.0(1.1) N/A 92.2(3.3) ◦ 93.8(2.4)J◦
∧(P1,6, P7,12) 12 0 75 N/A N/A 87.4(8.2) 89.8(6.8)J
∧(P1,4, P5,8, P9,12) 12 0 87.5 N/A N/A 90.8(7.4) 92.4(7.2)J
∧(WL31,5, WL33,7) 7 5 64.1 N/A N/A 93.6(5.3)J 93.1(5.9)

∧(WL31,5, WL34,8) 8 4 68 N/A N/A 95.5(6.5)J 89.9(9.6)

∧(WL31,5, WL35,9) 9 3 71.5 N/A N/A 95.3(5.4)J 93.5(7.0)

∧(WL31,5, WL36,10) 10 2 75 N/A N/A 91.1(8.2)J 88.1(8.4)

∧(WL31,4, WL33,6, WL35,8) 8 4 57.8 N/A N/A 97.5(2)J 97.5(2.2)

∧(WL31,4, WL35,8, WL39,12) 12 0 67.5 N/A N/A 91.5(11) 92.3(10.5)J
∧(W231,6, W237,12) 12 0 70.9 N/A N/A 80.1(8.9) 83.4(9.3)J
∧(W231,4, W235,8, W239,12) 12 0 75.6 N/A N/A 87.8(11.2) 94.1(9.4)J
∧(W231,5, W236,10, W2311,15) 15 0 76 N/A N/A 100(0)/ 100(0.0)/

∧(W231,6, W237,12, W2313,18) 18 0 84 N/A N/A 100(0)/ 100(0.0)/

∧(A1,4, A5,8, A9,12) 12 0 82.2 N/A N/A 94.2(7) 97.8(4.3)J
∧(B1,4, B5,8, B9,12) 12 0 87.5 N/A N/A 89.8(4.4)J 89.6(4.0)

∧(C1,4, C5,8, C9,12) 12 0 57.5 N/A N/A 98.1(8.7) 98.5(6.9)J
∧(D1,4, D5,8, D9,12) 12 0 87.5 N/A N/A 91(3.5) 92.3(3.4)J
∧(E1,4, E5,8, E9,12) 12 0 75.6 N/A N/A 90.7(10.7) 93.0(10.5)J
∧(A1,4, C5,8, E9,12) 12 0 73.6 N/A N/A 97.8(4.9)J 97.5(6.1)

∧(A1,4, B5,8, D9,12) 12 0 85.9 N/A N/A 90.4(4.5) 92.0(4.7)J
∧(A1,4, B5,8, C9,12) 12 0 78.9 N/A N/A 94(7.1) 94.6(7.2)J
∧(B1,4, C3,6, A7,10, D9,12) 12 0 86.5 N/A N/A 90.2(2.9) 90.8(3.6)J
∧(A1,4, B5,8, C9,12, E13,16) 16 0 87 N/A N/A 100(0)/ 100(0.0)/

∧(C1,4, WL35,8, W239,12) 12 0 67.8 N/A N/A 97.9(6.3)J 93.7(11.1)

∧(W231,5, C5,8, WL38,12) 12 0 76.6 N/A N/A 80.7(6.4) 84.0(8.7)J
∧(W231,5, C4,7, WL36,10) 10 2 76.6 N/A N/A 84.4(6.4) 88.7(8.9)J
∨(pal1,4, pal3,6, pal5,8) 8 0 70 N/A N/A 70.6(3.1) 71.4(1.7)J
∨(pal1,4, pal4,7, pal7,10) 10 0 70 N/A N/A 100(0)/ 100(0.0)/

palindrome6 + 2 6 2 96 N/A N/A 99.6(0.7)/ 99.6(0.7)/

AVERAGE 10 2 75.4 N/A N/A 92.97 93.85J
∗ average accuracy over 10 runs ◦ significantly better than DCI
N/A results are not available Boldface significantly higher between MFE3/GA and MFE2/GA
/ the higher accuracy underline significantly higher between MFE3/GA and MFE/GA
J absolutely the highest italic significantly higher between MFE2/GA and MFE/GA

140 C. Comparing DCI and Different Versions of MFE Methods

Table C.3: Summary of Tables C.1 and C.2
Frequency

Description Concepts with Concepts with
of the event one interaction several interactions

MFE3/GA/MFE2/GA 4/1 out of 22 10/2 out of 48

MFE3/GA/MFE/GA N/A 3/1 out of 13

MFE3/GA/DCI 0/2 out of 12 18/1 out of 20

MFE2/GA/MFE/GA N/A 1/1 out of 13

MFE2/GA/DCI 0/1 out of 13 17/0 out of 20

MFE/GA/DCI N/A 12/0 out of 13

Apéndice D

Conclusión y Trabajo Futuro

(Spanish)

Este caṕıtulo resume los logros importantes de la investigación realizada y describe
algunas posibles orientaciones para el trabajo futuro. La Sección D.1 proporciona un
resumen de la tesis; la Sección D.2 describe la contribución de la investigación; y por
último, la Sección D.3 analiza las limitaciones y propone posibles formas para ampliar
el trabajo.

D.1 Resumen de la Tesis

Interacciones complejas e Inducción Constructiva (IC): Esta investigación se
centró en el problema del aprendizaje automático en presencia de interacciones comple-
jas entre atributos en el concepto. La representación de bajo nivel y primitiva de los datos
en problemas reales facilita la existencia de interacciones. El Caṕıtulo 1 explicó cómo
la interacción complica el aprendizaje. Cuando existen interacciones complejas entre los
atributos, la importancia de cada atributo relevante está oculta al sistema de apren-
dizaje; además, aunque los atributos relevantes se identifiquen por el aprendizaje, las
regularidades son todav́ıa dif́ıciles de descubrir (Sección 1.1). IC ha sido introducida
para aliviar el problema de aprendizaje de conceptos dif́ıciles. Cuando IC se aplica a
los conceptos con interacciones complejas, la construcción de caracteŕısticas en IC tiene
como objetivo capturar y encapsular las interacciones en unas nuevas caracteŕısticas
para destacar las regularidades del concepto al sistema de aprendizaje (Sección 1.2).

IC ávida e IC genética: A pesar de muchos avances en IC, los métodos IC actuales
todav́ıa tienen dificultades a la hora de aprender conceptos con interacciones complejas.
El Caṕıtulo 2 revisó brevemente los trabajos relacionados y estudió los requisitos de un
método de IC cuando se aplica a tales conceptos. Este caṕıtulo clasificó los métodos

141

142 D. Conclusión y Trabajo Futuro (Spanish)

de IC en dos grupos. El primer grupo contiene los métodos de IC ávidas (greedy),
que aplican una búsqueda ávida local para encontrar los atributos que interactúan y
para construir caracteŕısticas (Sección 2.1). El segundo grupo incluye los métodos de IC
genética que son los que aplican una búsqueda global como Algoritmos Genéticos (AG)
o Programación Genética (PG) (Sección 2.3).

IC ávida - Debilidades: Se resaltaron tres debilidades principales de los actuales
métodos ávidos de IC en la Sección 2.1. En primer lugar, estos métodos aplican una
búsqueda ávida local para encontrar los atributos que interactúan (Sección 2.1.1). El
espacio de búsqueda para encontrar los atributos es grande y con gran variación. En-
tonces, una búsqueda local puede encontrar una solución óptima local. En segundo
lugar, la mayoŕıa de los métodos IC aplican una estrategia ávida para construir y evalu-
ar las caracteŕısticas una por una (Sección 2.1.2). Aśı, la construcción de cada elemento
depende de los que previamente se hayan construido. Cuando existan varias interac-
ciones complejas en el concepto objetivo, un método IC puede construir una función
incorrecta en un paso primario y evaluarla erróneamente como una función correcta. Por
lo tanto, todas las subsiguientes caracteŕısticas construidas usando esta función serán
irrelevantes. En tercer lugar, la mayoŕıa de los métodos IC aplican un lenguaje algeb-
raico para representar las nuevas caracteŕısticas, utilizando los operadores algebraicos
(Sección 2.1.3). Para encapsular una interacción compleja se requiere una caracteŕıs-
tica algebraica compleja. Además, si no se proporciona conocimientos previos sobre el
concepto, es dif́ıcil definir los operadores algebraicos.

Los requisitos para IC: Teniendo en cuenta estas debilidades, se especificaron tres
requisitos para un método de IC. Estos requisitos son los siguientes. Primero, un método
IC necesita una búsqueda global para saltar las soluciones óptimas locales y encontrar
la solución óptima global (el subconjunto óptimo de atributos que interactúan). La Sec-
ción 2.2 presentó AG y PG como las técnicas de búsqueda global que pueden aplicarse
para IC. Segundo, un método de IC tiene que construir y evaluar varios elementos a
la vez para facilitar el aprendizaje en presencia de varias interacciones complejas en
el concepto. Un método de búsqueda basado en AG o PG permite la construcción y
evaluación de varias caracteŕısticas representadas como un solo individuo en la evolu-
ción genética. En tercer lugar, un método de IC requiere un lenguaje de representación
adecuado cuando las interacciones son complejas y no se dispone de información previa
sobre el concepto. La Sección 2.1.3 introdujo la noción de representación no-algebraica
(libre de operadores) como una forma de representar las caracteŕısticas. Esta repre-
sentación se prefiere a la representación algebraica cuando el conocimiento previo no
está disponible para definir los operadores. La representación no-algebraica permite la
extracción directa de caracteŕısticas a partir de los datos, lo cual es necesario si los
datos de entrenamiento son la única información facilitada sobre el concepto. Esta for-

D.1 Resumen de la Tesis 143

ma de representación también reduce tanto el tamaño del espacio de búsqueda como la
dificultad de construir las caracteŕısticas complejas.

IC Genética - Debilidades: La Sección 2.3 revisó los métodos genéticos de IC y
marcó sus deficiencias. El problema principal de estos métodos es el uso de la repre-
sentación algebraica como árboles sintácticos (parse trees [Koza, 1992]) para representar
caracteŕısticas, lo que produce dificultades, como se explicó en la Sección 2.1.3. El otro
problema de la mayoŕıa de los métodos genéticos es la evaluación de caracteŕısticas
nuevas a través de una función de evaluación derivada de una hipótesis para orientar
la búsqueda hacia la solución óptima; es decir, la hipótesis generada por un sistema de
aprendizaje auxiliar se usa para la evaluación de las caracteŕısticas construidas. El éxito
de estos métodos depende en gran medida de dicho sistema de aprendizaje auxiliar.
Además, utilizando un sistema de aprendizaje para la evaluación dentro de AG dis-
minuye el rendimiento del método. Por lo tanto, una evaluación derivada de los datos se
prefiere a una evaluación derivada de una hipótesis. Otra deficiencia de algunos métodos
genéticos es que no emplean AG o PG para construir y evaluar varias caracteŕısticas jun-
tamente como un individuo de la población. A pesar de utilizar una búsqueda genética,
su estrategia para la construcción de funciones es, todav́ıa, ávida (greedy), construyendo
funciones una a una.

Un marco de IC - Descomposición: Teniendo en cuenta las deficiencias de los
métodos revisados y los requisitos para la IC, la Sección 2.4 presentó un marco para
diseñar un método de IC. Este marco simplifica la tarea de buscar en el inmenso y com-
plejo espacio de búsqueda de IC. Un método de IC debe buscar en el espacio de funciones
definidas sobre subconjuntos de atributos. Este espacio crece exponencialmente con el
número de atributos y tiene una variación alta. El marco propuesto sugiere partir este
espacio en dos: el espacio de subconjuntos de atributos y el espacio de funciones definidas
sobre un determinado subconjunto de atributos. Por lo tanto, la tarea de IC se divide
en dos pequeñas tareas: buscar los subconjuntos de atributos que interactúan y encon-
trar una función que representa la interacción entre los atributos de un determinado
subconjunto. Se utiliza AG para la primera tarea. Para cada subconjunto de atributos
producidos por operadores genéticos se construye una función mediante el análisis de
los datos e induciendo una relación entre atributos en el subconjunto y el concepto obje-
tivo. Esta relación se representa no-algebraicamente utilizando un vector de valores que
especifica la salida de la función para cada combinación de valores de atributo. Una me-
dida derivada por los datos evalúa la utilidad de la función. Si la función representa una
prometedora relación entre los atributos, el subconjunto de atributos se considera un
buen subconjunto en AG. De este modo subconjuntos generados se utilizan para inducir
funciones a partir de los datos, y estas funciones se utilizan para evaluar subconjuntos
y orientar el AG hacia mejores subconjuntos. Mediante esta estrategia se mantiene la

144 D. Conclusión y Trabajo Futuro (Spanish)

dependencia entre las dos tareas mientras se mejora cada una de ellas.

DCI - La primera instancia del marco: El resto de la tesis se centró en dos nuevos
métodos diseñados para evaluar el marco. El Caṕıtulo 3 introdujo el DCI. Este méto-
do de IC se diseño para analizar la utilidad de la búsqueda global y la representación
no-algebraica de las funciones cuando en el concepto objetivo existe una interacción
compleja. Tras el marco propuesto en el Caṕıtulo 2, este método aplica AG para encon-
trar los atributos que interactúan. Para cada subconjunto de atributos como individuo
genético, DCI analiza los datos para inducir a una función no-algebraica. La aptitud
de cada individuo se determina evaluando la función construida. Se presentó una eval-
uación basada en entroṕıa, es decir, una medida derivada de los datos. Esta evaluación
mide la cantidad de incertidumbre introducida por cada caracteŕıstica construida y su
complejidad. Los operadores genéticos se aplican sobre los subconjuntos de atributos
para generar mejores individuos. Dado que cada subconjunto de atributos se asocia con
una función inducida, cuando se cambian los subconjuntos por los operadores genéticos,
las funciones también se cambian. Por lo tanto, AG indirectamente evoluciona funciones
para construir mejores funciones. Esta estrategia permite DCI a descomponer el espacio
de búsqueda y dividir la tarea principal de IC en dos, manteniendo al mismo tiempo el
efecto de cada uno sobre el otro. DCI cumple el primero y el tercero de los requisitos
especificados en el Caṕıtulo 2.

Evaluación de DCI - Ventajas: El Caṕıtulo 3 explicó los experimentos realizados
para evaluar el uso de AG y la representación no-algebraica de las caracteŕısticas en
DCI. Resultados emṕıricos demuestran tres puntos importantes. Primero, cuando exis-
ten interacciones complejas entre los atributos, un método de selección atributos no es
suficiente para mejorar la precisión del sistema de aprendizaje; se necesita construir unas
caracteŕısticas que subrayen las regularidades para facilitar aprendizaje. Caracteŕısticas
construidas por DCI mejoran significativamente la precisión de un sistema de apren-
dizaje estándar como C4.5 [Quinlan, 1993] cuando existe sólo una interacción compleja
entre los atributos. Segundo, cuando el concepto consiste en varias interacciones com-
plejas, la representación no-algebraica ayuda al método de IC a construir caracteŕısticas
más prometedoras y lograr mejores resultados en comparación con los métodos de IC
que usan la representación algebraica. Tercero, la búsqueda global de DCI encuentra
con éxito el subconjunto de los atributos que interactúan y su correspondiente función
cuando los conceptos se componen de una sola interacción compleja.

Evaluación de DCI - Debilidades: Los experimentos mostraron un requisito para
un método de IC que se especificó anteriormente en el Caṕıtulo 2, pero no se consideró en
DCI, que es la necesidad de construcción y evaluación de varias caracteŕısticas. DCI in-
tenta resumir todas las interacciones en una sola función. Los experimentos mostraron

D.1 Resumen de la Tesis 145

que cuando el número de atributos que interactúan sea alto, a pesar de detectar cor-
rectamente los atributos, DCI no puede construir una función que representa todas las
interacciones.

MFE2/GA - Superar las deficiencias de DCI: El Caṕıtulo 4 explicó la necesidad
de construir más de una función. Cuando existen varias interacciones en el concepto,
una función que encapsula las interacciones tiende a ser compleja y dif́ıcil de construir.
Esta dificultad aumenta cuando se dispone de pocos datos de entrenamiento. Un méto-
do de IC tiene que romper la función en varias funciones más pequeñas. Entonces, estas
funciones forman un conjunto de las partes relacionadas de una teoŕıa que representa
las interacciones. Cada función por śı misma no puede ser evaluada adecuadamente;
las funciones deben ser evaluadas conjuntamente como un conjunto de caracteŕısticas.
La Sección 4.2 presentó MFE2/GA, la segunda instancia del marco propuesto. Este
método, mientras que mantiene todas las ventajas de DCI, permite la construcción y
la evaluación de varios elementos al mismo tiempo. MFE2/GA emplea AG para con-
struir y evaluar múltiples caracteŕısticas. Cada individuo en MFE2/GA representa un
conjunto de subconjuntos de atributos; cada subconjunto se asocia con una función que
es inducida a partir de los datos. El objetivo de AG es encontrar el mejor conjunto de
subconjuntos de atributos y el mejor conjunto de funciones. La evaluación de individuos
en MFE2/GA derivada de los datos evalúa el conjunto de funciones construidas como
una teoŕıa (Sección 4.2.2). Se diseñaron operadores genéticos especiales para permitir la
producción tanto de nuevos subconjuntos de atributos como de nuevos conjuntos de sub-
conjuntos de atributos previamente construidos. Recuérdese que la evolución genética de
subconjuntos de atributos lleva asociada impĺıcitamente la evolución de sus correspon-
dientes funciones (Sección 4.2.3). Estos operadores son analizados emṕıricamente para
demostrar su importancia para la convergencia de AG a la solución óptima (Section 4.3).

MFE2/GA - evaluación emṕırica: MFE2/GA cumple todos los requisitos especi-
ficados en el Caṕıtulo 2 para un método de IC. La evaluación emṕırica mostró que la
construcción y evaluación de múltiples caracteŕısticas ayudan a MFE2/GA a superar a
otros métodos relevantes cuando varias interacciones complejas existan entre los atrib-
utos (Sección 4.4). Los experimentos resaltaron la importancia de la construcción y la
evaluación de multiples caracteŕısticas juntas como partes de una teoŕıa. Estos exper-
imentos demuestran que MFE2/GA encuentra con éxito el conjunto de subconjuntos
de atributos que interactúan y construye un conjunto de funciones que representan in-
teracciones complejas. Por lo tanto, supera DCI y otros métodos relevantes cuando el
concepto contiene varias interacciones complejas.

MFE2/GA - El análisis de sensibilidad a los datos de entrenamiento: La
flexibilidad de MFE2/GA en descomposición y búsqueda de un espacio grande y com-

146 D. Conclusión y Trabajo Futuro (Spanish)

plejo de funciones hace que este método dependa de la calidad de los datos. MFE2/GA
es un método de IC basado en los datos. Este método necesita ver la replicación de la
estructura de la función en los datos con el fin de extraerla correctamente. El Caṕıtu-
lo 5 tuvo el objetivo de evaluar la sensibilidad de MFE2/GA al tamaño de los datos de
entrenamiento mediante la comparación con el método HINT [Zupan et al., 2001], un
método relevante de IC basado a los datos. Ambos MFE2/GA y HINT dependen del
tamaño de los datos de entrenamiento en gran medida. Los diseños de los dos métodos se
estudiaron anaĺıticamente (Sección 5.2) y se compararon emṕıricamente (Sección 5.3).
Cada método tiene unas funcionalidades importantes. La construcción de caracteŕısticas
de múltiples valores en HINT (Sección 5.1) le permite romper una interacción compleja
en interacciones más pequeñas. Por lo tanto, necesita menos datos de entrenamiento
para construir funciones cuando el concepto consiste en una sola interacción compleja
de orden alto. Sin embargo, si el concepto está compuesto de varias interacciones com-
plejas de orden bajo, esta propiedad de HINT puede causar sobreajuste (overfitting).
La propiedad de construcción de múltiples caracteŕısticas de MFE2/GA junto con su
búsqueda global ayuda a este método a aprovechar los datos mejor que HINT. Estas
propiedades de MFE2/GA son muy importantes para su éxito cuando existen varias in-
teracciones complejas entre los atributos y se dispone de pocos datos de entrenamiento.

MFE3/GA - Mejorar MFE2/GA con una evaluación basada en MDL: Los
experimentos del Caṕıtulo 4 indican que el AG en MFE2/GA no siempre es guiado
correctamente hacia la solución óptima, por lo que MFE2/GA a veces no encuentra
atributos relacionados. El Caṕıtulo 6 analizó los diferentes tipos de funciones de eval-
uación de aptitud (fitness) y sugirió el uso de dos de ellos con el objetivo de mejorar
la exactitud de MFE2/GA. La primera evaluación de fitness se diseñó usando el con-
cepto de entroṕıa y se integró en el sistema, resultando una nueva versión llamada
MFE2E/GA. Esta medida evalúa la aptitud del conjunto de caracteŕısticas constru-
idas para reducir la impureza en los datos y para mejorar la clasificación. La segunda
medida se diseñó basada en los principios de la descripción mı́nima (MDL [Grunwald,
2007]). Esta evaluación mide la suma de dos valores: la complejidad de caracteŕısticas
construidas (la teoŕıa) y la cantidad de errores de clasificación producidos por nuevas
caracteŕısticas (error). Este fitness se integró en una nueva versión del método llamada
MFE3/GA. Se realizó un análisis emṕırico para comparar y evaluar ambas medidas de
aptitud. Los resultados indican que el fitness basado en MDL gúıa AG significativa-
mente mejor que el fitness basado en la entroṕıa. Además, el fitness basado en MDL
ayuda a AG a converger a la solución más rápido que el basado en entroṕıa. Este fitness
también mejora la exactitud del método comparando con los resultados obtenidos por
MFE2/GA en los Caṕıtulos 4 y 5.

D.2 Contribución de la Investigación 147

MFE3/GA - Evaluación final con los bancos de pruebas de aprendizaje: Para
la evaluación final de MFE3/GA, se realizaron y se explicaron en la Sección 6.5 unos
experimentos sobre los bancos de pruebas (benchmarks) de UCI (UC Irvine Machine
Learning Repository [Blake and Merz, 1998]). Estos experimentos mostraron que el
nuevo método se puede aplicar con éxito a los problemas reales para encapsular y
subrayar las relaciones entre los atributos y facilitar la tarea de aprendizaje a pesar
de existencia de interacciones complejas en los conceptos.

D.2 Contribución de la Investigación

Esta investigación contribuye a los campos de aprendizaje automático, inducción con-
structiva, selección de atributos, construcción de caracteŕısticas, y computación genética
y evolutiva. El trabajo facilita la tarea de aprendizaje cuando la representación prim-
itiva y de bajo nivel de los problemas reales produce interacciones complejas entre los
atributos. Los conceptos con interacciones complejas suponen un problema para los sis-
temas de aprendizaje. Los métodos actuales de IC no pueden mejorar el aprendizaje en
presencia de varias interacciones complejas cuando la única información disponible son
los datos de entrenamiento. La investigación responde a dos importantes preguntas:

1. ¿Cuáles son los requisitos para un método de IC para mejorar el aprendizaje de
tales conceptos?

2. ¿Cómo deben cumplirse estos requisitos?

Se especificaron tres importantes requisitos para un método de IC:

1. Una búsqueda global para encontrar subconjuntos de atributos que interactúan y
funciones que representan las interacciones en cada subconjunto,

2. Un lenguaje adecuado para encapsular y expresar las interacciones,

3. Una estrategia que permita la construcción y evaluación de varias funciones a la
vez.

La investigación argumentó que los métodos de IC presentados anteriormente no
cumplen todos los requisitos; y si un método cumple estos requisitos, facilita el apren-
dizaje de los conceptos complejos cuando la única información proporcionada son datos
de entrenamiento.

Con el fin de satisfacer estos requisitos, el trabajo simplifica el enorme y complejo
espacio de búsqueda que se debe explorar con el fin de construir caracteŕısticas apropi-
adas. Se ha diseñado un nuevo marco para descomponer el espacio de búsqueda en dos
espacios más pequeños, mientras que se refleja el efecto de cada uno sobre el otro. El
marco utiliza AG como la búsqueda global para encontrar subconjuntos de atributos

148 D. Conclusión y Trabajo Futuro (Spanish)

que interactúan e induce funciones directamente de los datos de entrenamiento. Este
marco permite buscar el conjunto óptimo de subconjuntos de atributos que interactúan
y el conjunto óptimo de funciones que representan dichas interacciones, cumpliendo
el primero y el tercer requisito especificados para un método de IC. La investigación
también intentó facilitar la construcción de caracteŕısticas utilizando un lenguaje ade-
cuado para representar las interacciones. La noción de lenguaje no-algebraico (libre de
operadores) se presentó y se utilizó en el marco propuesto. Se demostró que cuando el
conocimiento previo sobre el dominio no está disponible, esta forma de representación
de caracteŕısticas facilita la construcción de interacciones complejas y es más apropiada
que una representación algebraica tradicionalmente utilizada por otros métodos de IC.
El marco propuesto se puede utilizar para diseñar una nueva aplicación de aprendiza-
je automático o una nueva herramienta para integrarse en un sistema de aprendizaje
automático.

Se diseñaron dos métodos experimentales, DCI y MFE2/GA, con el objetivo de
evaluar la utilidad del marco para el aprendizaje automático. DCI distingue los atributos
que interactúan de los atributos irrelevantes y define una función sobre un subconjunto
de atributos que interactúan para resumir y encapsular las interacciones en una nueva
caracteŕıstica. MFE2/GA además de detectar los atributos que interactúan, los agrupa
en subconjuntos, cada uno conteniendo los atributos que participan en una interacción
compleja. El método también construye y evalúa varias funciones a la vez como un
individuo de la población del AG, cada una definida sobre un subconjunto de atributos.

MFE2/GA cumple todos los requisitos especificados y, por tanto, difiere de otros
métodos de IC. Los análisis experimentales mostraron que este método facilita la tarea
de aprendizaje más que otros cuando el concepto se compone de varias interacciones
complejas y se proporciona ninguna información previa sobre el concepto.

Proponiendo este método de IC surgió una nueva cuestión a responder que es qué sen-
sibilidad muestra MFE2/GA frente al tamaño de los datos de entrenamiento. El método
es una IC basada en los datos y su rendimiento depende en gran medida a los datos de
entrenamiento. Los estudios anaĺıticos y emṕırico mostraron que el diseño del método
hace que sea menos sensible a los datos que otros método de IC basado en los datos.

Por último, la investigación propone una nueva versión del método, MFE3/GA.
Este método tiene la ventaja de utilizar una medida basada en MDL (Longitud de
Descripción Mı́nima) para evaluar con mayor precisión las caracteŕısticas construidas.

El resultado de esta investigación desarrolla un método de construcción de múltiples
caracteŕısticas basado en AG y la representación no-algebraica de caracteŕısticas para
facilitar el aprendizaje de conceptos con varias interacciones complejas cuando pocos
datos de entrenamiento están disponibles y no está proporcionado ningún conocimiento
de experto. Este método puede ser integrado en los sistemas de aprendizaje automático
para facilitar el aprendizaje en las condiciones especificadas. Sin embargo, al igual que

D.3 Limitaciones y Trabajo Futuro 149

cualquier otro método, MFE3/GA tiene sus limitaciones y no puede aplicarse a todos
los problemas de aprendizaje, como se explicará en la siguiente sección.

D.3 Limitaciones y Trabajo Futuro

La tesis demostró que un método de IC que satisfaga los requisitos especificados en el
marco propuesto facilita el aprendizaje a pesar de complejas interacciones. Sin embargo,
MFE3/GA, igual que cualquier otro método, tiene algunas limitaciones y no puede
aplicarse a todos los problemas. Esta sección destaca las limitaciones de MFE3/GA y
sugiere enfoques para superarlas. Nótese que estas limitaciones son de MFE3/GA y no
del marco de IC propuesto ni de los requisitos de IC. Esta sección también describe
algunas ĺıneas para futuras investigaciones.

Descomposición de una Interacción Compleja

Esta investigación ilustró que MFE3/GA facilita con éxito el aprendizaje en presen-
cia de varias interacciones complejas a través de descomposición del concepto en un
conjunto de funciones, cada una representando una interacción compleja. Sin embargo,
MFE3/GA no puede descomponer aún más cada interacción compleja en partes más
pequeñas. Como se ilustró en las Secciones 4.4.2 y 5.3.1, cuando el número de atributos
que participan en la interacción compleja crezca, la tarea de constricción de caracteŕısti-
cas en MFE3/GA se hará más dif́ıcil. Por lo tanto, su exactitud se degradará. Recordar
de la Sección 4.2.1 que MFE3/GA induce una función mediante la clasificación de las
tuplas en el producto Cartesiano de los atributos en tres grupos: tuplas puras, tuplas
desconocidas, y tuplas mixtas. Si una interacción compleja se descompone en partes más
pequeñas, todas las tuplas serán clasificadas como mixtas. Sin embargo, hay diferentes
tuplas mixtas que pueden tratarse de maneras diferentes. Para ilustrar esto, considérese
el concepto P1,4

def= (x1 ⊕ x2) ⊕ (x3 ⊕ x4), que consiste en una interacción compleja de
cuatro atributos (la paridad de cuatro atributos). Esta interacción puede desglosarse
en dos más pequeñas, x1 ⊕ x2 y x3 ⊕ x4. Sin embargo, MFE3/GA no puede descubrir
estas interacciones de orden menor. Este método proyecta los datos en subconjunto
Si = {x1, x2}, clasifica todas las tuplas en el producto Cartesiano de atributos en Si

como tuplas mixtas, y asigna la misma etiqueta a ellas, como se ilustra en la Figura D.1,
dando la función irrelevantef = T (es decir, “siempre verdadero”).

El análisis de los datos en la Figure D.1 indica que hay diferencias entre las tuplas que
se pueden utilizar para su clasificación. La proyección de datos en Si agrupa las muestras
de entrenamiento en cuatro conjuntos resultando cuatro tuplas mixtas. Teniendo en
cuenta las etiquetas de los datos, se puede observar que el primer y el cuarto grupo de
los ejemplos tienen el mismo patrón de las etiquetas de clases, 〈1, 0, 0, 1〉 (las etiquetas en
negritas en la Figura D.1), y el segundo y el tercer grupo siguen otro patrón, 〈0, 1, 1, 0〉

150 D. Conclusión y Trabajo Futuro (Spanish)

00010

00100

11100

01000

11010

1

0

0

0

11

100

Classx1

0

x2 x3 x4

Training

Samples

01101

11001

10101

00001

10011

0

1

1

0

01

011

1

00111

11 11 1

01

11

10

10 0

x1 x2 f

1

1

1

mixed

mixed

mixed

mixed

Si={x1, x2}

mixed type 1

mixed type 1

mixed type 2

mixed type 2

Figura D.1: Interacción compleja y MFE3/GA

(las etiquetas cursivas en la figura). Esta información puede utilizarse para clasificar
aún más las tuplas mixtas en dos subgrupos (tuplas mixtas de tipo 1 y tuplas mixtas
de tipo 2 en la figura), asignando una etiqueta diferente a cada uno de ellos. MFE3/GA
no puede distinguir entre diferentes tuplas mixtas para asignarles etiquetas distintas.
Entonces, intenta capturar toda la interacción a la vez mediante la construcción de
una función definida sobre todos los atributos que interactúan, lo cual es más dif́ıcil de
conseguir. Esta limitación puede causar dificultades para MFE3/GA si el número de
atributos que participan en la interacción compleja es alto y se dispone de pocos datos
de entrenamiento (como se mostró en los experimentos de la Sección 5.3.1). Para estos
conceptos una estrategia que permita la clasificación de tuplas mixtas seŕıa útil. HINT
supera esta limitación con la propiedad de coloración múltiple (Sección 5.1), asignando
diferentes etiquetas a las tuplas mixtas. Este método considera el resto de atributos, x3 y
x4, para determinar la compatibilidad de tuplas de valores de atributo en Si = {x1, x2}
y asignar misma etiqueta a tuplas compatibles, como se muestra en cursiva y negrita
en la Figura D.2.

1100

1

1010

1

10

0 0

x1

x2
x4x3

0

1

1001

0110

0110

1001

0110c

Figura D.2: Interacción compleja y HINT

D.3 Limitaciones y Trabajo Futuro 151

Seŕıa un reto integrar la propiedad de coloración múltiple de HINT con la propiedad
de construcción de múltiples caracteŕısticas de MFE3/GA. Aunque, si hay otros atrib-
utos en el concepto además de los que participan en la interacción compleja, la tarea
será más compleja. HINT, para etiquetar las tuplas de valores de atributos en el subcon-
junto, divide el conjunto original de atributos en un subconjunto y su complementario.
Por ejemplo, si el concepto es ∧(P1,4, P5,8)

def= [(x1⊕x2)⊕(x3⊕x4)]∧[(x5⊕x6)⊕(x7⊕x8)],
HINT divide el conjunto original en Si = {x1, x2} y Sc

i = {x3, x4, x5, x6, x7, x8} y eti-
queta las tuplas en Si considerando los valores de los atributos en Sc

i . Sin embargo,
teniendo en cuenta sólo los valores de dos atributos x3 y x4 es suficiente para etiquetar
las tuplas en Si. Seŕıa más fácil construir funciones para este concepto si el método
pudiera extraer dos subconjuntos, Si = {x1, x2} y S′i = {x3, x4}, del conjunto original
de atributos para la construcción de dos funciones que representan x1⊕x2 y x3⊕x4. No
obstante, debido a su búsqueda local, HINT no puede lograr esto. Esta limitación no es
conveniente cuando el concepto contenga varios atributos que interactúen y se disponga
de pocos datos de entrenamiento, como se mostró en la Sección 5.3.

Para superar esta limitación de MFE3/GA, AG en este método puede modifi-
carse para generar individuos en forma de grupos de subconjuntos de atributos, cada
grupo se utiliza para construir un grupo de funciones que representan una interac-
ción compleja. Por ejemplo, para el concepto ∧(P1,4, P5,8), el mejor individuo puede ser
Ind = 〈{x1, x2}, {x3, x4}; {x5, x6}, {x7, x8}〉, donde el punto y coma separa los grupos.
Entonces, un conjunto de dos funciones se genera sobre el primer grupo de subconjun-
tos, representando x1 ⊕ x2 y x3 ⊕ x4, y otro conjunto de dos funciones se genera sobre
el segundo grupo, representando x5⊕x6 y x7⊕x8. Sin embargo, esta modificación hace
que el espacio de búsqueda sea más grande y más complejo. Un profundo análisis del
espacio de búsqueda y la estrategia de búsqueda es necesario para desarrollar y ampliar
esta mejora.

Clases con Etiquetas de Múltiples Valores y Atributos Continuos

Otra limitación de MFE3/GA es que la versión actual del método puede utilizarse
únicamente para los conceptos con las etiquetas de clase binarias. Entonces, para un
concepto con n valores de etiquetas de clase, MFE3/GA debe repetirse n − 1 veces
para aprender cada etiqueta de clase. Para superar esta limitación, MFE3/GA necesita
poder asignar etiquetas de múltiples valores a las tuplas. El proceso de etiquetar tuplas
puras y desconocidas puede modificarse fácilmente para incluir etiquetas de múltiples
valores. Sin embargo, la ampliación de las etiquetas binarias de tuplas mixtas a etique-
tas de múltiples valores necesita más estudio. La versión actual para etiquetar la tupla
mixta selecciona la etiqueta opuesta a la etiqueta más frecuente entre tuplas puras (Sec-
ción 4.2.1). Pero cuando se asigna etiquetas de múltiples valores a las tuplas puras, no
hay una noción de etiqueta contraria como la que hab́ıa en la asignación de etiquetas

152 D. Conclusión y Trabajo Futuro (Spanish)

binarias. Una solución podŕıa ser seleccionar la etiqueta de las tuplas mixtas estocásti-
camente de acuerdo con la distribución inversa de tuplas etiquetadas como puras, de
modo que las etiquetas menos frecuentes tengan más oportunidad de ser asignadas a las
tuplas mixtas.

MFE3/GA también está limitado a conceptos con atributos nominales. Entonces,
un preprocesamiento de discretización de atributos [Liu et al., 2002; Boulle, 2004;
Kurgan and Cios, 2004] es necesario para transformar los atributos continuos en atrib-
utos nominales.

Datos con Ruido

La otra cuestión es la sensibilidad de MFE3/GA a datos con ruido. Los datos de prob-
lemas reales normalmente tienen errores considerados ruido. El ruido puede ser debido
al valor incorrecto o perdido de un atributo o clase. MFE3/GA induce directamente las
nuevas caracteŕısticas a partir de los datos. Por lo tanto, la calidad de caracteŕısticas
construidas depende en gran medida de la calidad de los datos de entrenamiento. El
objetivo del método es construir caracteŕısticas que sean coherentes con los datos de en-
trenamiento. Cuando los datos contienen ruido, las muestras pueden ser inconsistentes,
es decir, dos muestras con mismos valores de atributos estén etiquetadas diferentemente.
Seŕıa interesante evaluar y mejorar el rendimiento de MFE3/GA cuando se aplica a di-
chos datos.

En caso de que el ruido esté en las etiquetas de clase, se puede aplicar un mecanis-
mo de preprocesamiento para eliminar o volver a etiquetar los ejemplos mal etiquetados
antes de ejecutar MFE3/GA. Varias investigaciones se han realizado para diseñar tal
mecanismo [Zeng and Martinez, 2001; Muhlenbach et al., 2004; Venkataraman et al.,
2004; Malossini et al., 2006; Sun et al., 2007]. Sin embargo, si se proporcionan pocas
muestras de entrenamiento, tal mecanismo de preprocesamiento puede no mejorar la
precisión. Otro enfoque consiste en integrar el manejo de ruido dentro de MFE3/GA.
Algunos métodos utilizan medidas estad́ısticas para asociar a cada una de las muestras
una probabilidad de pertenencia a una clase y consideran esta probabilidad en el pro-
ceso de aprendizaje [Lawrence and Schölkopf, 2001; Rebbapragada and Brodley, 2007].
Zupan et al. en [2000] introdujo un mecanismo similar para integrarlo en HINT. Su
versión ampliada de HINT intenta construir funciones que minimicen el error esperado
de clasificación. En su nuevo enfoque, en lugar de agrupar columnas según su compat-
ibilidad (Sección 5.1), las columnas se agrupan en una forma que minimice el error de
clasificación de los datos de entrenamiento utilizando estimación de m-error [Cestnik
and Bratko, 1991]. Sin embargo, este enfoque es computacionalmente costoso y no se
puede utilizar para MFE3/GA.

En caso de que el ruido esté en atributos, el valor correcto de un atributo con ruido
puede ser previsible utilizando otras muestras y atributos. En este caso, se aplica un

D.3 Limitaciones y Trabajo Futuro 153

mecanismo de preprocesamiento para modificar los atributos con ruido [Van Hulse et
al., 2007]. Otro enfoque consiste en intercambiar el atributo con la clase y aplicar el
mismo mecanismo utilizado para el caso de ruido en la etiqueta de la clase [Teng, 1999;
Zhu and Wu, 2004]. Se necesita más investigaciones para ampliar MFE3/GA con el fin
de poder aplicarse a datos con ruido.

Nótese que MFE3/GA ha sido diseñado para problemas cuando la única información
disponible sobre el concepto proviene de los datos primitivos de entrenamiento. Cuando
no se proporciona conocimientos sobre el concepto, se espera tener disponible bastantes
datos precisos para el aprendizaje; de lo contrario, un aprendizaje preciso no es posible.

Comparación Con otros Métodos

Esta investigación no comparó emṕıricamente MFE3/GA con otros métodos genéticos
de IC sobre los conceptos con interacciones complejas; sin embargo, una comparación
desde punto de vista anaĺıtica se realizó en la Sección 2.3. Los métodos de IC genéticos
aplican la representación algebraica (normalmente árboles sintácticos) para construir
nuevas caracteŕısticas. Por lo tanto, tienen dificultades en aprender conceptos con inter-
acciones complejas cuando el conocimiento disponible sobre el concepto se limita a los
datos de entrenamiento. Sin embargo, la comparación emṕırica de MFE3/GA con estos
métodos puede resaltar de interés y conducir a mejoras en el método actual. Además,
seŕıa interesante ver cómo MFE3/GA puede mejorar la precisión de otros sistemas de
aprendizaje aparte de C4.5.

Hacer Uso de Conocimientos de Dominio

Otra dirección de trabajo futuro es ampliar MFE2/GA para aceptar conocimientos sobre
el dominio con el objetivo de mejorar su rendimiento. Esta investigación se centró en
los problemas cuando no se proporciona tal conocimiento. Se puede considerar la integ-
ración de los conocimientos sobre el dominio. Por ejemplo, si el experto en el dominio
tiene cierta información acerca de los atributos, esta información puede ser utilizada
para generar la primera población o durante las iteraciones genéticas para converger la
búsqueda hacia soluciones más prometedoras.

Los Parámetros de AG, AG paralelo, y Otras Técnicas de Búsqueda

La otra dirección importante para investigación futura se refiere a los aspectos de AG
dentro de MFE3/GA. Lo más importante es el tiempo de ejecución del método prop-
uesto. Un MFE3/GA paralelo en un ordenador con multiprocesadores o una red de
ordenadores puede acelerar este método [Nowostawski and Poli, 1999]. Las operaciones
en AG, como por ejemplo la evaluación de individuos, el cruzamiento y la mutación,
pueden realizarse en paralelo. La extracción de caracteŕısticas de MFE3/GA también es

154 D. Conclusión y Trabajo Futuro (Spanish)

un procedimiento que puede ejecutarse en paralelo sobre varios subconjuntos de atribu-
tos. La libreŕıa PGAPack [Levine, 1996] utilizada para la implementación de MFE3/GA
proporciona AG paralelo y puede utilizarse para mejorar el método en términos de tiem-
po de cálculo. Por otra parte, más estudios sobre los parámetros de AG pueden resultar
en un rendimiento mejor. La investigación presentada en esta tesis no teńıa el obje-
tivo de optimizar estos parámetros. Estudiar las otras técnicas de búsqueda como la
optimización de “Particle Swarm” [Kennedy, 1995] podŕıa ser de interés. El uso de AG
coevolucionario [Bhanu and Krawiec, 2002] u optimización multi-objetiva [Goldberg,
1989] para realizar las dos tareas, la construcción de funciones y encontrar subconjun-
tos de atributos, es otra idea tentadora.

Bibliography

[Aha, 1991] David W. Aha. Incremental constructive induction: An instance-based
approach. In Proceedings of the Eighth International Workshop on Machine Learning,
pages 117–121, Evanston, Illinois, 1991. Morgan Kaufmann Publishers, Inc.

[Anglano et al., 1997] C. Anglano, A. Giordana, and G. Lo Bello L. Saitta. A network
genetic algorithm for concept learning. In Thomas Bäck, editor, Proceedings of the
Seventh International Conference on Genetic Algorithms (ICGA97), San Francisco,
CA, 1997. Morgan Kaufmann Publishers, Inc.

[Antonie et al., 2001] Maria-Luiza Antonie, Osmar R. Zaane, and Alexandru Coman.
Application of data mining techniques for medical image classification. In Proceed-
ings of Second Intl. Workshop on Multimedia Data Mining (MDM/KDD’2001) in
conjunction with Seventh ACM SIGKDD, pages 94–101, San Francisco, USA, 2001.

[Araujo et al., 1999] D. L. A. Araujo, H. S. Lopes, and Alex Alves Freitas. A parallel
Genetic Algorithm for rule discovery in large databases. In K Ilto, editor, Proceed-
ings of 1999 IEEE International Conference on Systems, Man and Cybernetics Conf,
volume 3, pages 940–945, Tokyo, October 1999. IEEE.

[Asuncion and Newman, 2007] A. Asuncion and D.J. Newman. UCI machine learning
repository, 2007.

[Bäck, 1996] Thomas Bäck. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford University Press,
Oxford, UK, 1996.

[Bensusan and Kuscu, 1996] Hilan Bensusan and Ibrahim Kuscu. Constructive induc-
tion using genetic programming. In T. Fogarty and G. Venturini, editors, Proceedings
of Evolutionary Computing and Machine Learning Workshop (ICML’96), Bari, Italy,
July 1996.

[Bhanu and Krawiec, 2002] Bir Bhanu and Krzysztof Krawiec. Coevolutionary con-
struction of features for transformation of representation in machine learning. In
Alwyn M. Barry, editor, Proceedings of the Bird of a Feather Workshops, Genetic

155

156 BIBLIOGRAPHY

and Evolutionary Computation Conference, pages 249–254, New York, 8 July 2002.
AAAI.

[Blake and Merz, 1998] C.L. Blake and C.J. Merz. UCI repository of machine learning
databases, 1998.

[Bloedorn and Michalski, 1998] Eric Bloedorn and Ryszard S. Michalski. Data-driven
constructive induction: Methodology and applications. In Liu and Motoda [1998],
pages 51–68.

[Boulle, 2004] Marc Boulle. Khiops: A statistical discretization method of continuous
attributes. Machine Learning, 55:53–69, 2004.

[Brodley and Friedl, 1999] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled
training data. Journal of Artificial Intelligence Research (JAIR), 11:131–167, 1999.

[Cestnik and Bratko, 1991] Bojan Cestnik and Ivan Bratko. On estimating probabilities
in tree pruning. In Yves Kodratoff, editor, Proceedings of the European Working
Session on Machine Learning (EWSL), Lecture Notes in Computer Science, pages
138–150, London, UK, 1991. Springer-Verlag.

[Chan and Mourad, 1994] Pak K. Chan and Samiha Mourad. Digital Design Using
Field Programmable Gate Arrays. Prentice Hall, 1994.

[Danyluk and Provost, 1993] Andrea Pohoreckyj Danyluk and Foster J. Provost. Small
disjuncts in action: Learning to diagnose errors in the local loop of the telephone
network. In Proceedings of the Tenth International Conference of Machine Learning,
pages 81–88, University of Massachusetts, Amherst, MA, USA, June 1993. Morgan
Kaufmann Publishers, Inc.

[Davis, 1989] L Davis. Adapting operator probabilities in genetic algorithms. In
J. Schaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 61–69, San Mateo, CA, 1989. Morgan Kaufmann Publishers, Inc.

[DeJong et al., 1993] Kenneth A. DeJong, William M. Spears, and Diana F. Gordon.
Using Genetic Algorithms for concept learning. Machine Learning, 13(2-3):161–188,
1993.

[Demsar et al., 2004] L. Demsar, B. Zupan, and G. Leban. Orange: From experimental
machine learning to interactive data mining. White Paper (www.ailab.si/orange),
2004.

[Dhar et al., 2000] Vasant Dhar, Dashin Chou, and Foster Provost. Discovering inter-
esting patterns for investment decision making with glower - a genetic learner overlaid
with entropy reduction. Data Mining and knowledge Discovery, 4(4):251–280, 2000.

BIBLIOGRAPHY 157

[Dietterich and Michalski, 1981] Thomas G. Dietterich and Ryszard S. Michalski. In-
ductive learning of structural descriptions: Evaluation criteria and comparative re-
view of selected methods. Artificial Intelligence, 16(3):257–294, July 1981.

[Draper and Smith, 1981] Norman R. Draper and Harry Smith. Applied Regression
Analysis. Wiley-Interscience, 1981.

[Dzeroski and Lavrac, 1993] Saso Dzeroski and Nada Lavrac. Inductive learning in
deductive databases. IEEE Transactions on Knowledge and Data Engineering,
5(6):939–949, 1993.

[Estébanez et al., 2007] César Estébanez, José M. Valls, and Ricardo Aler. Gppe:
a method to generate ad-hoc feature extractors for prediction in financial domains.
Applied Intelligence, 2007.

[Freitas and Lavington, 1997] Alex A. Freitas and Simon H. Lavington. Mining Very
Large Databases with Parallel Processing. Kluwer Academic Publishers, Norwell, MA,
USA, 1997.

[Freitas, 2001] Alex Alves Freitas. Understanding the crucial role of attribute interac-
tion in data mining. Artificial Intelligence Review, 16(3):177–199, November 2001.

[Freitas, 2002] Alex Alves Freitas. Data Mining and Knowledge Discovery with Evolu-
tionary Algorithms. Springer-Verlag, New York, Inc., 2002.

[Freitas, 2003] Alex A. Freitas. A survey of evolutionary algorithms for data mining
and knowledge discovery. In Ashish Ghosh and Shigeyoshi Tsutsui, editors, Advances
in evolutionary computing: theory and applications, Natural Computing Series, pages
819–845. Springer-Verlag, New York, Inc., New York, NY, USA, 2003.

[Gelfand et al., 1998] B. Gelfand, M. Wulfekuhler, and W. Punch. Discovering concepts
in raw text: Building semantic relationship graphs. In Proceedings of International
Conference on Machine Learning ICML/AAAI workshop on Learning for Text Cat-
egorization, 1998.

[Goldberg, 1989] David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Longman Publishing Co., Inc., 1989.

[Griffith, 1966] Arnold K. Griffith. A new machine-learning techniques applied to the
game of checkers. Technical Report AIM-094, Massachusetts Institute of Technology,
March 1966.

[Grunwald et al., 2005] Peter D. Grunwald, In Jae Myung, and Mark A. Pitt. Advances
in Minimum Description Length: Theory and Applications. The MIT Press, 2005.

[Grunwald, 2007] Peter D. Grunwald. The Minimum Description Length Principle. The
MIT Press, 2007.

158 BIBLIOGRAPHY

[Grzymala-Busse and Hu, 2001] Jerzy W. Grzymala-Busse and Ming Hu. A comparison
of several approaches to missing attribute values in data mining. In RSCTC ’00:
Revised Papers from the Second International Conference on Rough Sets and Current
Trends in Computing, pages 378–385, London, UK, 2001. Springer-Verlag.

[Hekanaho, 1997] Jukka Hekanaho. GA-based rule enhancement in concept learning.
In David Heckerman, Heikki Mannila, Daryl Pregibon, and Ramasamy Uthurusamy,
editors, Proceedings of the Third International Conference on Knowledge Discovery
and Data Mining (KDD-97), pages 183–186. AAAI Press, 1997.

[Holland, 1968] John H. Holland. Hierarchical description of universal spaces and adap-
tive systems. Technical report, University of Michigan, Department of Computer and
Communication Science, Ann Arbor, 1968. ORA Projects 01252 and 08226.

[Holland, 1975] John H. Holland. Adaptation in Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor, Michigan, 1975.

[Holte et al., 1989] Robert Holte, Liane Acker, and Bruce Porter. Concept learning and
the problem of small disjuncts. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), volume 1, pages 813–818, 1989.

[Holte, 1993] Robert C. Holte. Very simple classification rules perform well on most
commonly used datasets. Machine Learning, 11:63–91, 1993.

[Hsu et al., 2002] William H. Hsu, Cecil P. Schmidt, and James A. Louis. Genetic
algorithm wrappers for feature subset selection in supervised inductive learning. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),
page 680, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[Hu and Kibler, 1996] YuhJyh Hu and Dennis F. Kibler. Generation of attributes for
learning algorithms. In Proceedings of the Thirteenth National Conference on Artifi-
cial Intelligence, pages 806–811. AAAI, The MIT Press, August 1996.

[Hu, 1998a] YuhJyh Hu. Constructive induction: Covering attribute spectrum. In Liu
and Motoda [1998], pages 257–272.

[Hu, 1998b] YuhJyh Hu. A genetic programming approach to constructive induction. In
John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo,
editors, Proceedings of the Third Annual Genetic Programming Conference, pages
146–151, University of Wisconsin, Madison, Wisconsin, USA, July 1998. Morgan
Kaufmann Publishers, Inc.

[Indurkhya and Weiss, 1991] Nitin Indurkhya and Sholom M. Weiss. Iterative rule in-
duction methods. Applied Intelligence, 1(1):43–54, June 1991.

BIBLIOGRAPHY 159

[Jakulin and Bratko, 2003] Aleks Jakulin and Ivan Bratko. Analyzing attribute depen-
dencies. In Nada Lavrac, Dragan Gamberger, Hendrik Blockeel, and Ljupco Todor-
ovski, editors, Proceedings of PKDD ’03, volume 2838 of Lecture Notes in Computer
Science, pages 229–240, Cavtat, Croatia, Jan 2003. Springer-Verlag.

[Jakulin and Bratko, 2004] Aleks Jakulin and Ivan Bratko. Testing the significance of
attribute interactions. In Carla E. Brodley, editor, ICML ’04: Proceedings of the
twenty-first international conference on Machine learning, pages 409–416, New York,
NY, USA, 2004. ACM Press.

[Jakulin et al., 2003] Aleks Jakulin, Ivan Bratko, Dragica Smrke, Janez Demsar, and
Blaz Zupan. Attribute interactions in medical data analysis. In Michel Dojat, Elp-
ida T. Keravnou, and Pedro Barahona, editors, Artificial Intelligence in Medicine,
9th Conference on Artificial Intelligence in Medicine in Europe, volume 2780 of Lec-
ture Notes in Computer Science, pages 229–238, Protaras, Cyprus, October 2003.
Springer-Verlag.

[John et al., 1994] George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant features
and the subset selection problem. In Proceedings of the eleventh International Con-
ference on Machine Learning, pages 121–129, New Brunswick, NJ, USA, July 1994.

[Kazakov, 1997] Dimitar Kazakov. Unsupervised learning of naive morphology with
genetic algorithms. In W. Daelemans, A. Van den Bosch, and A. Weijters, editors,
Workshop Notes of the ECML / MLnet Workshop on Empirical Learning of Natural
Language Processing Tasks, pages 105–112, Prague, Czech Republic, April 1997.

[Kennedy, 1995] R. Kennedy, J. Eberhart. Particle swarm optimization. In Proceedings
of IEEE International Conference on Neural Networks, volume 4, pages 1942–1948,
1995.

[Kohavi and John, 1997] Ron Kohavi and George H. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2):273–324, 1997.

[Kononenko, 1994] Igor Kononenko. Estimating attributes: analysis and extensions of
relief. In Proceedings of European Conference on Machine Learning, ECML, Lecture
Notes in Computer Science, pages 171–182, Catania, Italy, 1994. Springer-Verlag,
New York, Inc.

[Koza, 1991] John R. Koza. A hierarchical approach to learning the boolean multiplexor
function. In G.J.E. Rawlins, editor, Foundation of Genetic Algorithms. Morgan Kauf-
mann Publishers, Inc., 1991.

[Koza, 1992] John R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. The MIT Press, 1992.

160 BIBLIOGRAPHY

[Kurgan and Cios, 2004] Lukasz A. Kurgan and Krzysztof J. Cios. Caim discretization
algorithm. IEEE Transactions on Knowledge and Data Engineering, 16(2):145–153,
2004.

[Langdon and Poli, 2002] William B. Langdon and Riccardo Poli. Foundations of Ge-
netic Programming. Springer-Verlag, 2002.

[Langley and Simon, 1995] Pat Langley and Herbert A. Simon. Applications of machine
learning and rule induction. Communications of ACM, 38(11):54–64, 1995.

[Larsen et al., 2002] Otavio Larsen, Alex Alves Freitas, and Júlio C. Nievola. Con-
structing X-of-N attributes with a genetic algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), page 1268, San Francisco, July
2002. Morgan Kaufmann Publishers, Inc.

[Lawrence and Schölkopf, 2001] Neil D. Lawrence and Bernhard Schölkopf. Estimating
a kernel fisher discriminant in the presence of label noise. In ICML ’01: Proceedings
of the Eighteenth International Conference on Machine Learning, pages 306–313, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[Levine, 1996] D. Levine. Users guide to the PGAPack parallel genetic algorithm li-
brary. Technical Report 18, Argonne National Laboratory, 1996.

[Lin and Bhanu, 2005] Yingqiang Lin and Bir Bhanu. Object detection via feature
synthesis using MDL-based genetic programming. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 35(3):538–547, 2005.

[Liu and Motoda, 1998] Huan Liu and Hiroshi Motoda, editors. Feature Extraction,
Construction and Selection: A Data Mining Perspective, volume 453 of The Inter-
national Series in Engineering and Computer Science. Kluwer Academic Publishers,
Norwell, MA, USA, 1998.

[Liu et al., 2002] Huan Liu, Farhad Hussain, Chew Lim Tan, and Manoranjan Dash.
Discretization: An enabling technique. Data Mining and Knowledge Discovery,
6(4):393–423, 2002.

[Malossini et al., 2006] Andrea Malossini, Enrico Blanzieri, and Raymond T. Ng. De-
tecting potential labeling errors in microarrays by data perturbation. Bioinformatics,
22(17):2114–2121, 2006.

[Markovitch and Rosenstein, 2002] Shaul Markovitch and Dan Rosenstein. Feature gen-
eration using general constructor functions. Machine Learning, 49(1):59–98, 2002.

[Matheus and Rendell, 1989] C.J. Matheus and L.A. Rendell. Constructive induction
on decision trees. In Proceedings of the 11’th International Joint Conference on
Artificial Intelligence, pages 645–650, Detroit, MI, 1989.

BIBLIOGRAPHY 161

[Michalewicz, 1999] Zbigniew Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs. Springer-Verlag, New York, Inc., 1999.

[Michalski, 1978] Ryszard S. Michalski. Pattern recognition as knowledge-guided com-
puter induction. Technical Report 927, Department of Computer Science, University
of Illinois, Urbana, June 1978.

[Minsky and Papert, 1968] Marvin Minsky and Seymour Papert. Linear separation and
learning. Technical Report AIM-167, Massachusetts Institute of Technology, October
1968.

[Mitchell, 1980] Tom M. Mitchell. The need for biases in learning generalizations. Tech-
nical Report CBM-TR-117, New Brunswick, New Jersey, 1980.

[Mitchell, 1997] Tom M. Mitchell. Machine Learning. McGraw-Hill Company, Inc.,
1997.

[Muharram and Smith, 2005] Mohammed Muharram and George D. Smith. Evolution-
ary constructive induction. IEEE Transactions on Knowledge and Data Engineering,
17(11):1518–1528, 2005.

[Muhlenbach et al., 2004] Fabrice Muhlenbach, Stéphane Lallich, and Djamel A.
Zighed. Identifying and handling mislabelled instances. Journal of Intelligent In-
formation Systems, 22(1):89–109, 2004.

[Murphy and Pazzani, 1991] P. Murphy and M. Pazzani. ID2-of-3: Constructive in-
duction of m-of-n concepts for discriminators in decision trees. In Proceedings of the
Eighth International Workshop on Machine Learning, pages 183–187, Evanston, IL,
1991. Morgan Kaufmann Publishers, Inc.

[Neri and Giordana, 1995] Filippo Neri and Attilio Giordana. A parallel genetic algo-
rithm for concept learning. In Proceedings of the sixth International Conference on
Genetic Algorithms, pages 436–443, San Francisco, CA, USA, 1995. Morgan Kauf-
mann Publishers Inc.

[Neter et al., 1996] John Neter, Michael H. Kutner, William Wasserman, and Christo-
pher J. Nachtsheim. Applied Linear Statistical Models. McGraw-Hill/Irwin, February
1996.

[Nowostawski and Poli, 1999] M. Nowostawski and Riccardo Poli. Parallel genetic algo-
rithm taxonomy. In Proceedings of the Third International Conference on Knowledge-
based Intelligent Information Engineering Systems KES’99, pages 88–92. IEEE Com-
puter Society, Augost 1999.

[O’Reilly and Oppacher, 1994] Una-May O’Reilly and Franz Oppacher. The troubling
aspects of a building block hypothesis for genetic programming. In L. Darrell Whitley

162 BIBLIOGRAPHY

and Michael D. Vose, editors, Foundations of Genetic Algorithms 3, pages 73–88,
Estes Park, Colorado, USA, 1994. Morgan Kaufmann Publishers, Inc.

[Otero et al., 2003] Fernando E. B. Otero, Monique M. S. Silva, Alex Alves Freitas, and
Júlio C. Nievola. Genetic programming for attribute construction in data mining. In
Conor Ryan, Terence Soule, Maarten Keijzer, Edward P. K. Tsang, Riccardo Poli,
and Ernesto Costa, editors, Proceedings of the Sixth European Conference in Genetic
Programming, volume 2610 of Lecture Notes in Computer Science, pages 384–393.
Springer-Verlag, April 2003.

[Pagallo and Haussler, 1990] Giulia Pagallo and David Haussler. Boolean feature dis-
covery in empirical learning. Machine Learning, 5(1):71–99, 1990.

[Pagallo, 1990] Giulia Pagallo. Adaptive Decision Tree Algorithms for Learning from
Examples. PhD thesis, University of California at Santa Cruz, 1990.

[Pappa et al., 2002] Gisele L. Pappa, Alex Alves Freitas, and Celso A. A. Kaestner.
Attribute selection with a multi-objective genetic algorithm. In SBIA ’02: Proceedings
of the 16th Brazilian Symposium on Artificial Intelligence, Lecture Notes in Computer
Science, pages 280–290, London, UK, 2002. Springer-Verlag.

[Pazzani, 1998] M. Pazzani. Constructive induction of cartesian product attributes. In
Liu and Motoda [1998], pages 341–354.

[Pérez and Rendell, 1995] Eduardo Pérez and Larry A. Rendell. Using multidimen-
sional projection to find relations. In Proceedings of the Twelfth International Confer-
ence on Machine Learning, pages 447–455, Tahoe City, California, July 1995. Morgan
Kaufmann Publishers, Inc.

[Perez, 1997] Eduardo Perez. Learning Despite Complex Interaction: An Approach
Based on Relational Operators. PhD thesis, University of Illinois, Urbana-Champaign,
1997.

[Poli and Langdon, 1998] Ricardo Poli and W. B. Langdon. Schema theory for genetic
programming with one-point crossover and point mutation. Evolutionary Computa-
tion Journal, 6(3):231–252, 1998.

[Qian and Sejnowski, 1988] Ning Qian and Terrence J. Sejnowski. Predicting the sec-
ondary structure of globular proteins using neural network models. Journal of Molec-
ular Biology, 202(4):865–884, August 1988.

[Quinlan and Rivest, 1989] J. Ross Quinlan and R. L. Rivest. Inferring decision trees
using the minimum description length principle. Inf. Comput., 80(3):227–248, 1989.

[Quinlan, 1983] J. Ross Quinlan. Learning efficient classification procedures and their
application to chess end games. In Machine Learning: An Artificial Intelligence

BIBLIOGRAPHY 163

Approach, pages 463–482. Morgan Kaufmann Publishers, Inc., Tioga, Palo Alto, CA,
1983.

[Quinlan, 1986] J. Ross Quinlan. Induction of decision trees. Machine Learning,
1(1):81–106, 1986.

[Quinlan, 1993] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers, Inc., San Mateo, California, 1993.

[Ragavan and Rendell, 1993] Harish Ragavan and Larry A. Rendell. Lookahead fea-
ture construction for learning hard concepts. In Proceedings of the Tenth Interna-
tional Conference on Machine Learning, pages 252–259, University of Massachusetts,
Amherst, MA, USA, June 1993. Morgan Kaufmann Publishers, Inc.

[Rebbapragada and Brodley, 2007] Umaa Rebbapragada and Carla E. Brodley. Class
noise mitigation through instance weighting. In Proceedings of European Conference
on Machine Learning, ECML, pages 708–715. Springer-Verlag, New York, Inc., 2007.

[Rendell and Ragavan, 1993] Larry A. Rendell and Harish Ragavan. Improving the
design of induction methods by analyzing algorithm functionality and data-based
concept complexity. In Proceedings of International Joint Conferences on Artificial
Intelligence, pages 952–959, 1993.

[Rendell and Seshu, 1990] Larry A. Rendell and Raj Seshu. Learning hard concepts
through constructive induction: Framework and rationale. Computational Intelli-
gence, 6:247–270, 1990.

[Rissanen, 1983] Jorma Rissanen. A universal prior for integers and estimation by min-
imum description length. The Annals of Statistics, 11(2):416–431, Jun. 1983.

[Ritthoff et al., 2002] Oliver Ritthoff, Ralf Klinkenberg, Simon Fischer, and Ingo Mier-
swa. A hybrid approach to feature selection and generation using an evolutionary
algorithm. In UK Workshop on Computational Intelligence, Birmingham, U.K.,
September 2002.

[Rothlauf, 2006] Franz Rothlauf. Representations for Genetic and Evolutionary Algo-
rithms. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[Samuel, 1959] Arthur L. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of Research and Developement, 3(3):210–229, July 1959.

[Schaffer, 1993] Cullen Schaffer. Overfitting avoidance as bias. Machine Learning,
10(2):153–178, 1993.

[Shafti and Pérez, 2003a] Leila S. Shafti and Eduardo Pérez. Constructive induction
using non-algebraic feature representation. In Proceedings of the Third IASTED

164 BIBLIOGRAPHY

International Conference on Artificial Intelligence and Applications, pages 134–139,
Benalmadena, Spain, 8-10 September 2003. Acta Press.

[Shafti and Pérez, 2003b] Leila S. Shafti and Eduardo Pérez. Genetic approach to con-
structive induction based on non-algebraic feature representation. In Michael R.
Berthold, Hans-Joachim Lenz, Elizabeth Bradley, Rudolf Kruse, and Christian
Borgelt, editors, Advances in Intelligent Data Analysis V, Proceedings of the Fifth
International Symposium on Intelligent Data Analysis (IDA), Lecture Notes in Com-
puter Science, pages 599–610, Berlin, Germany, 28-30 August 2003. Springer-Verlag.

[Shafti and Pérez, 2004] Leila S. Shafti and Eduardo Pérez. Machine learning by multi-
feature extraction using genetic algorithms. In Christian Lemâıtre, Carlos A. Reyes,
and Jesús A. González, editors, Advances in Artificial Intelligence, Proceedings of the
Ninth Ibero-American Conference on AI (IBERAMIA), Lecture Notes in Computer
Science, pages 246–255, Puebla, México, 22-26 November 2004. Springer-Verlag.

[Shafti and Pérez, 2005] Leila S. Shafti and Eduardo Pérez Pérez. Constructive in-
duction and genetic algorithms for learning concepts with complex interaction. In
Hans-Georg Beyer et al., editor, Proceedings of the 7th Genetic and Evolutionary
Computation Conference (GECCO), pages 1811–1818, New York, NY, USA, 25-29,
june 2005. ACM Press.

[Shafti and Pérez, 2007a] Leila S. Shafti and Eduardo Pérez. Fitness function com-
parison for GA-based feature construction. In Daniel Borrajo, Luis Castillo, and
Juan Manuel Corchado, editors, Current Topics in Artificial Intelligence, Selected
Papers from the 12th Conference of the Spanish Association for Artificial Intelli-
gence (CAEPIA), volume 4788 of Lecture Notes in Computer Science, pages 249–258.
Springer-Verlag, 12-16 November 2007.

[Shafti and Pérez, 2007b] Leila S. Shafti and Eduardo Pérez. MDL-based fitness for
feature construction. In Dirk Thierens, Hans-Georg Beyer, Josh Bongard, Jurgen
Branke, John Andrew Clark, Dave Cliff, Clare Bates Congdon, Kalyanmoy Deb,
Benjamin Doerr, Tim Kovacs, Sanjeev Kumar, Julian F. Miller, Jason Moore, Frank
Neumann, Martin Pelikan, Riccardo Poli, Kumara Sastry, Kenneth Owen Stanley,
Thomas Stutzle, Richard A Watson, and Ingo Wegener, editors, Proceedings of the
9th Genetic and Evolutionary Computation Conference (GECCO), volume 2, page
1875, New York, NY, USA, 7-11 July 2007. ACM Press.

[Shafti and Pérez, 2007c] Leila S. Shafti and Eduardo Pérez. Reducing complex at-
tribute interaction through non-algebraic feature construction. In V. Devedžic, editor,
Proceedings of the 5th IASTED International Conference on Artificial Intelligence and
Applications, pages 359–365, Innsbruck, Austria, 12-14 February 2007. Acta Press.

BIBLIOGRAPHY 165

[Shannon, 1948] Claude E. Shannon. A mathematical theory of communication. Bell
System Tech. Journal, 27:379–423 and 623–656, July 1948.

[Sierra and Corbacho, 2002] Alejandro Sierra and Fernando J. Corbacho. Input and
output feature selection. In Proceedings of the International Conference on Artificial
Neural Networks, Lecture Notes in Computer Science, pages 625–630, London, UK,
2002. Springer-Verlag.

[Smith and Bull, 2003] Matthew G. Smith and Larry Bull. Feature construction and
selection using genetic programming and a genetic algorithm. In Conor Ryan, Ter-
ence Soule, Maarten Keijzer, Edward P. K. Tsang, Riccardo Poli, and Ernesto Costa,
editors, Proceedings of the sixth European Conference in Genetic Programming, vol-
ume 2610 of Lecture Notes in Computer Science, pages 229–237, Essex, UK, April
2003. Springer-Verlag.

[Spears and Anand, 1991] William M. Spears and Vic Anand. A study of crossover
operators in genetic programming. In Proceedings of the 6th International Symposium
on Methodologies for Intelligent Systems, Lecture Notes in Computer Science, pages
409–418, London, UK, 1991. Springer-Verlag.

[Spears and DeJong, 1991] William M. Spears and Kenneth A. DeJong. On the virtues
of parameterized uniform crossover. In Proceedings of the Internationa Conference
on Genetic Algorithms, pages 230–236, 1991.

[Spears, 1992] William M. Spears. Crossover or mutation? In L. Darrell Whitley,
editor, Proceedings of the Second Workshop on Foundations of Genetic Algorithms,
pages 221–237, Vail, Colorado, USA, July 1992. Morgan Kaufmann Publishers, Inc.

[Srinivasan and King, 1999] A. Srinivasan and R. D. King. Feature construction with
inductive logic programming: A study of quantitative predictions of biological activity
aided by structural attributes. Data Mining and knowledge Discovery, 3(1):37–57,
March 1999.

[Sun et al., 2007] Jiang-wen Sun, Feng-ying Zhao, Chong-jun Wang, and Shi-fu Chen.
Identifying and correcting mislabeled training instances. Future generation commu-
nication and networking (FGCN 2007), 1:244–250, December 2007.

[Teng, 1999] Choh-Man Teng. Correcting noisy data. In ICML ’99: Proceedings of
the Sixteenth International Conference on Machine Learning, pages 239–248, San
Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[Thrun et al., 1991] S. B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng,
K. De Jong, S. Džeroski, S. E. Fahlman, D. Fisher, R. Hamann, K. Kaufman,
S. Keller, I. Kononenko, J. Kreuziger, R. S. Michalski, T. Mitchell, P. Pachowicz,
Y. Reich, H. Vafaie, W. Van de Welde, W. Wenzel, J. Wnek, and J. Zhang. The

166 BIBLIOGRAPHY

MONK’s problems: A performance comparison of different learning algorithms. Tech-
nical Report CS-91-197, Carnegie Mellon University, Pittsburgh, PA, 1991.

[Todorovski and Dzeroski, 1997] Ljupco Todorovski and Saso Dzeroski. Declarative
bias in equation discovery. In Proceedings of the Fourteenth International Confer-
ence on Machine Learning, pages 376–384, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc.

[Utgoff and Brodley, 1991] Paul E. Utgoff and Carla E. Brodley. Linear machine deci-
sion trees. Technical Report COINS, 91-10, Department of Computer Science, Uni-
versity of Massachusetts, Amherst, Massachusetts, January 1991.

[Vafaie and DeJong, 1998] Haleh Vafaie and Kenneth DeJong. Feature space transfor-
mation using genetic algorithms. IEEE Intelligent Systems, 13(2):57–65, March-April
1998.

[Vafaie, 1998] Haleh Vafaie. Using genetic algorithms for restructuring feature-based
representation space. PhD thesis, George Mason University, Fairfax, VA, USA, 1998.

[Van Hulse et al., 2007] Jason D. Van Hulse, Taghi M. Khoshgoftaar, and Haiying
Huang. The pairwise attribute noise detection algorithm. Knowledge and Information
Systems, 11:171–190, 2007.

[Venkataraman et al., 2004] Sundara Venkataraman, Dimitris Metaxas, Dmitriy Frad-
kin, Casimir Kulikowski, and Ilya Muchnik. Distinguishing mislabeled data from
correctly labeled data in classifier design. In ICTAI ’04: Proceedings of the 16th
IEEE International Conference on Tools with Artificial Intelligence, pages 668–672,
Washington, DC, USA, 2004. IEEE Computer Society.

[Wan and Perkowski, 1992] Wei Wan and Marek A. Perkowski. A new approach to
the decomposition of incompletely specified multi-output functions based on graph
coloring and local transformations and its application to fpga mapping. In EURO-
DAC ’92: Proceedings of the conference on European design automation, pages 230–
235, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[Weiss, 2003] Gary Mitchell Weiss. The effect of small disjuncts and class distribution
on decision tree learning. PhD thesis, Rutgers, The State University of New Jersey,
New Brunswick, NJ, USA, 2003.

[Weiss, 2005] Gary M. Weiss. Mining with rare cases. In Oded Maimon and Lior
Rokach, editors, The Data Mining and Knowledge Discovery Handbook, pages 765–
776. Springer-Verlag, 2005.

[Yang and Honavar, 1998] Jihoon Yang and Vasant Honavar. Feature subset selection
using a genetic algorithm. In Liu and Motoda [1998], pages 117–136.

BIBLIOGRAPHY 167

[Yang et al., 1991] Der-Shung Yang, Larry A. Rendell, and Gunnar Blix. A scheme
for feature construction and a comparison of empirical methods. In Proceedings of
the twelfth International Joint Conference on Artificial Intelligence, pages 699–704,
Sydney, Australia, August 1991. Morgan Kaufmann Publishers, Inc.

[Zeng and Martinez, 2001] Xinchuan Zeng and Tony R. Martinez. An algorithm for
correcting mislabeled data. Intelligent Data Analysis, 5(6):491–502, 2001.

[Zhang and Mühlenbein, 1995] Byoung-Tak Zhang and Heinz Mühlenbein. MDL-based
fitness functions for learning parsimonious programs. In E. V. Siegel and J. R. Koza,
editors, Working Notes for the AAAI Symposium on Genetic Programming, pages
122–126, MIT, Cambridge, MA, USA, 10–12 1995. AAAI.

[Zhao and Liu, 2007] Zheng Zhao and Huan Liu. Searching for interacting features. In
Manuela M. Veloso, editor, Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI), pages 1156–1161, Hyderabad, India, January 2007.

[Zheng, 1995] Zijian Zheng. Constructing nominal X-of-N attributes. In Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence, volume 2,
pages 1064–1070, Montréal, Québec, Canada, August 1995. Morgan Kaufmann Pub-
lishers, Inc.

[Zheng, 2000] Zijian Zheng. Constructing X-of-N attributes for decision tree learning.
Machine Learning, 40(1):35–75, 2000.

[Zhu and Wu, 2004] Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise:
a quantitative study of their impacts. Artificial Intelligence Revew, 22(3):177–210,
2004.

[Zupan and Bohanec, 1998] Blaz Zupan and Marko Bohanec. Experimental evaluation
of three partition selection criteria for decision table decomposition. Informatica,
22(2), 1998.

[Zupan et al., 1999] Blaz Zupan, Marko Bohanec, Ivan Bratko, and Janez Demsar.
Learning by discovering concept hierarchies. Artificial Intelligence, 109(1-2):211–242,
1999.

[Zupan et al., 2000] Blaz Zupan, Ivan Bratko, Marko Bohanec, and Janez Demsar. In-
duction of concept hierarchies from noisy data. In Proceedings of International Con-
ference on Machine Learning, pages 1199–1206, San Francisco, CA, USA, 2000. Mor-
gan Kaufmann Publishers, Inc.

[Zupan et al., 2001] Blaz Zupan, Ivan Bratko, Marko Bohanec, and Janez Demsar.
Function decomposition in machine learning. Machine Learning and Its Applications,
Advanced Lectures, pages 71–101, 2001.

List of Acronyms and Symbols

CI Constructive Induction
DCI Decomposed Constructive Induction
DNF Disjunctive Normal Form
EC Evolutionary Computation
FC Feature Construction
GA Genetic Algorithm
GP Genetic Programming
MDL Minimum Description Length
MFE Multi-Feature Extraction

2B maximum length of constructed features
fi a function defined over Si

Indi an individual in GA
K maximum number of constructed features
M number of samples in training data
N number of attributes in S

p population size in GA
S original set of attributes
SFi search space of all functions defined over the attribute subset Si

Si a subset of attributes
SS search space of all subsets of attributes
SSi a set of subsets of attributes
SSFi search space of all sets of functions defined over SSi

SSS search space of all sets of subsets of attributes
T training data
xi the ith attribute in S

xij the jth attribute in Si

169

Index

k-fold cross validation, 102

algebraic representation, 19

backward elimination, 15
backward stepwise elimination, 15
bias, 9
binary tournament selection, 66

classifier error rate measure, 102
complex interaction, 3
constructive induction, 2
crossover, 26
crossover mask, 68
crossover rate, 26

data-driven method, 9
decomposed search space, 36
decomposition framework, 36
dispersed concept, 3
divide and conquer, 18
DNF, 20

entropy-based measure, 102
exploitation, 27
exploration, 27

feature construction, 7
fitness, 23, 25
forward selection, 15
forward stepwise selection, 15
function length, 105

gene, 23, 24
generation, 23
genetic method, 14
genetic operators, 23

genotype, 24
greedy method, 13

hard concept, 1
high-order interaction, 3
hypothesis-driven method, 8

individual, 23
interaction, 3
interleaving method, 9

Karnaugh map, 22

local optimum, 30

mating pool, 25
MDL-based measure, 103
MFE/GA, 62, 137
MFE2/GAE , 104
Minimum Description Length, 103
mutation, 27
mutation rate, 27

neighbor, 30
non-algebraic representation, 19
non-overlapping population, 44

Occam’s razor, 103
one-point crossover, 26, 44
overlapping population, 44

parse tree, 28
phenotype, 24
population, 23
population size, 24
preprocessing method, 9
proportional selection, 25

171

172 INDEX

Quine-McCluskey algorithm, 22

rare case, 3
redundancy, 20
reproduction, 25

shared attributes, 48
small disjuncts, 3

two-point crossover, 68

uniform crossover, 44

wrapper model, 102

	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RESUMEN
	ACKNOWLEDGEMENTS
	CHAPTER 1: INTRODUCTION
	1.1 Learners and the problem of attribute interaction
	1.2 Constructive induction as a solution
	1.3 Summary of the Research
	1.4 Structure of the dissertation

	CHAPTER 2: CONSTRUCTIVE INDUCTION: DIFFICULTIES AND SOLUTIONS
	2.1 Constructive induction problems
	2.2 Genetic-based search as a global search
	2.3 Genetic CI
	2.4 Conclusion: a CI proposal

	CHAPTER 3: DCI: DESCOMPOSED CONSTRUCTIVE INDUCTION
	3.1 DCI's design
	3.2 Experiments
	3.3 Conclusion

	CHAPTER 4: MFE2/GA: MULTI-FEATURE EXTRACTION USING GENETIC ALGORITHMS
	4.1 Why multi-feature construction
	4.2 MFE2/GA's design
	4.3 Evaluating crossover operators
	4.4 Empirical comparison
	4.5 Conclusion

	CHAPTER 5: DATA-BASED FC BY MFE2/GA AND HINT
	5.1 HINT: Multi-value feature construction
	5.2 MFE2/GA and HINT
	5.3 Empirical evaluation
	5.4 Conclusion

	CHAPTER 6: IMPROVING THE FITNESS EVALUATION: MFE3/GA
	6.1 Fitness function
	6.2 Entropy-based fitness function in MFE2/GA
	6.3 MDL-based fitness function in MFE3/GA
	6.4 Experiments
	6.5 Experimental results on UCI Benchmarks
	6.6 Conclusion

	CHAPTER 7: CONCLUSIONS AND FUTURE WORK
	7.1 Summary of the dissertation
	7.2 Contribution of the research
	7.3 Limitations and future work

	APPENDIX A: Concepts definitions
	APPENDIX B: PGAPack default parameters
	APPENDIX C: Comparing DCI and different versions of MFE methods
	APÉNDICE D: Conclusiones y trabajo futuro (Spanish)
	BIBLIOGRAPHY
	LIST OF ACRONYMS AND SYMBOLS
	INDEX

