
USING ALGORITHMIC INFORMATION THEORY AND

STOCHASTIC MODELING TO IMPROVE CLASSIFICATION

AND EVOLUTIONARY COMPUTATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

OF THE UNIVERSIDAD AUTONOMA DE MADRID

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Manuel Cebrián Ramos

June 2007

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

Manuel Alfonseca Moreno, Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

Alfonso Ortega de la Puente, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

Francisco Saiz López, Reader

Approved for the Department of Computer Science Committee on Doc-

toral Studies.

ii

Abstract

This thesis presents theoretical and practical contributions in Algorithmic Informa-

tion Theory and (Algorithmic) Stochastic Modeling. Algorithmic Information Theory

is the theory concerned with obtaining an absolute measure of the information con-

tained in an object. Stochastic Modeling is a methodology to improve an algorithm’s

performance by means of the introduction of random elements in its logic.

One of the most interesting advances of Algorithmic Information Theory is the

development of an absolute measure of similarity between objects. This measure can

only be estimated, as it is incomputable by definition. The typical estimation relies on

the use of data compression algorithms, being this estimation known as the compres-

sion distance. The two theoretical contributions of this thesis analyze the quality of

this estimation. The first quantifies the estimation robustness when the information

contained in the objects is noise-altered, concluding that it is considerably resistant

to noise. The second studies the impact of the compression algorithm implementation

on the estimation, yielding some practical recipes for making this choice.

We use variants of the compression distance to develop two applications for clas-

sification and one for evolutionary computation. The first application addresses the

problem of detecting similarities in objects which have been generated by a predeces-

sor common source, independently of whether they use or not the same coding scheme:

this includes detecting document translation and reconstructing phylogenetic threes

from genetic material. We make use of the already proved usefulness of compression

based similarity distances for educational plagiarism detection to develop our second

application: AC, an integrated source code plagiarism detection environment. The

third application makes use of this distance as a fitness function, which is used by

iii

evolutionary algorithms to automatically generate music in a given pre-defined style.

Another three new applications are derived using Stochastic Modeling, two for

evolutionary computation and one for classification. Two of them are intimately re-

lated and make use of the presence of Heavy Tail probability distributions in the

optimization processes involved in the generation of fractals by an evolutionary algo-

rithm, and in the training process of a multilayer perceptron. This discovery is used

to improve the performance of both algorithms by means of restart strategies. The

last application presented in this thesis is a successful story of the use of a special ran-

domized heuristic in a simple genetic algorithm to yield a state-of-the-art evolutionary

algorithm for solving Constraint Satisfaction Problems.

iv

Resumen

Esta tesis presenta contribuciones teóricas y prácticas de la Teoŕıa de Información

Algoŕıtmica y del Modelado Stocástico (Algoŕıtmico). La Teoŕıa de Información Al-

goŕıtmica es la teoŕıa concerniente a la obtención de una medida absoluta de la canti-

dad información contenida en un objeto. El Modelado Estocástico es una metodoloǵıa

para la mejora del rendimiento de algoritmos mediante la introducción de elementos

aleatorios en su lógica.

Una de las más interesantes aportaciones de la Teoŕıa de Información Algoŕıtmica

es el desarrollo de una medida absoluta de similitud entre objetos. Esta medida sólo

puede ser estimada, al ser no computable por definición. La estimación t́ıpica se

basa en el uso de algoritmos de compresión de datos, siendo esta estimación conocida

como la distancia de compresión. Las dos aportaciones teóricas de esta tesis analizan

la calidad de esta estimación. La primera cuantifica la robustez de la estimación

cuando la información contenida en los objetos ha sido alterada por ruido externo,

concluyendo que ésta es considerablemente resistente al mismo. La segunda, estudia

el impacto de la implementación del algoritmo de compresión sobre la estimación,

obteniéndose algunas recetas prácticas para realizar dicha elección.

Usamos variantes de la distancia de compresión para desarrollar dos aplicaciones

para clasificación y una para computación evolutiva. La primera aplicación considera

el problema de la detección de similitudes entre documentos que han sido genera-

dos por una fuente común predecesora, independientemente de si estos usan o no la

misma codificación: esto incluye la detección de traducciones de documentos y la

reconstrucción de árboles filogenéticos a partir de material genético. Hacemos uso

de la ya demostrada utilidad de las distancias de similitud basadas en compresión en

v

la detección de plagio (en el ámbito educacional) para desarrollar nuestra segunda

aplicación: AC, un entorno integrado de detección de plagio en código fuente. La

tercera aplicación hace uso de esta distancia como una función de fitness, que es us-

ada por algoritmos evolutivos para generar de forma automática música con un estilo

predefinido.

Otras tres nuevas aplicaciones derivan del uso de Modelado Estocástico, dos para

computación evolutiva y una para clasificación. Dos de ellas están ı́ntimamente rela-

cionadas y hacen uso de la presencia de distribuciones de probabilidad de Cola Pesada

en los procesos de optimización involucrados en la generación de fractales mediante

un algoritmo evolutivo, y en el proceso de entrenamiento de un perceptrón multi-

capa. Este descubrimiento se usa para mejorar el rendimiento de ambos algoritmos

mediante el uso de estrategias de recomienzo. La última aplicación presentada en

esta tesis es una historia exitosa del uso de una heuŕıstica aleatoria especial en un

algoritmo genético simple, obteniéndose un algoritmo que equivale al estado del arte

para la resolución de Problemas de Satisfacción de Restricciones (CSPs).

vi

Acknowledgements

I really want to thank everybody who has made this thesis possible. Especially my

principal adviser, Manuel Alfonseca, and my co-adviser, Alfonso Ortega. Also, all the

people with whom I have collaborated in research, yielding several publications: they

are Iván Dotú, Kostadin Koroutchev, Álvaro del Val, Iván Cantador, Manuel Freire

and Emilio de Rosal.

I also have to mention the people who have helped in this work by making their

codes available or kindly giving them to us under our demand; they are Peter van

Beek, Xinguang Chen, Stephen Roberts, Pekka Paalanen, Marina de la Cruz and En-

rique Alfonseca, as well as the people who have helped with advice and/or discussions

like Alberto Suárez, Jose Ramón Dorronsoro, Elka Koroutcheva, Gonzalo Mart́ınez,

Ignacio Garćıa, David Camacho, Francisco de Borja, Manuel Garćıa-Herranz and

many others I am unable to remember now.

I would also like to thank the people in my department, specially Juana Calle, for

every little detail. They have always looked for me as if I were their son.

I must mention the grants which have partially supported the research contained

in this thesis: TIC 2000-0539 (MCyT), TIN 2004-07676-G01 (MEC) and TSI 2005-

08225-C07-06 (MEC). I am indebted to Pilar Rodriguez as well, who kindly funded

the initial stage of my research with his project TIC 2001-0685-C02-01 (CICYT). Last

but not least, I thank the CAM for awarding me with the FPI scholarship, without

which I wouldn’t have been able to complete this work.

Finally, I must thank all the people who are around me every day: my family,

friends and girlfriend.

Thank you all!

vii

viii

Contents

Abstract iii

Resumen v

Acknowledgements vii

1 Introduction 1

1.1 Problems addressed and contributions 3

1.1.1 Advances in Algorithmic Information Theory 3

1.1.2 New applications of Algorithmic Information Theory 4

1.1.3 New applications of Algorithmic Stochastic Modeling 5

1.2 Publications . 7

2 Basic concepts 11

2.1 Algorithmic Information Theory . 11

2.1.1 Normalized Compression Distance 14

2.2 Algorithmic Stochastic Modeling . 17

2.2.1 A taxonomy of randomized algorithms 18

2.2.2 Verifying matrix multiplication 18

2.2.3 Many successful stories . 20

2.3 Evolutionary Computation . 21

2.3.1 EAs general functioning . 23

2.3.2 Representation . 23

2.3.3 Evaluation Function . 25

ix

2.3.4 Initial Population . 25

2.3.5 Parent Selection . 25

2.3.6 Reproduction . 26

2.3.7 Mutation . 27

2.3.8 Selection of the new generation 28

2.3.9 Termination . 29

2.3.10 Grammatical evolution . 30

3 Advances in Algorithmic Information Theory 33

3.1 The NCD in the presence of noise . 33

3.1.1 Theoretical Analysis . 34

3.1.2 Experimental results . 35

3.1.3 Discussion . 39

3.2 Analyzing compressors requirements 43

3.2.1 Materials . 44

3.2.2 Results . 45

3.2.3 Discussion . 57

4 Applic. of Algorithmic Information Theory 61

4.1 Common Source Data Detection . 61

4.1.1 Related work . 64

4.1.2 The algorithm . 65

4.1.3 Experimental results . 68

4.1.4 Phenomenological model of human written text similarities . . 77

4.1.5 Discussion . 81

4.2 Source Code Plagiarism Detection . 82

4.2.1 Discussion . 85

4.3 Music Generation . 94

4.3.1 Musical representation: restrictions 95

4.3.2 The NCD as a fitness function 96

4.3.3 The genetic algorithm used to generate music 97

4.3.4 Testing different number of guide pieces 100

x

4.3.5 Testing different recombination procedures 104

4.3.6 Discussion . 107

5 Appplic. of Algorithmic Stochastic Modeling 111

5.1 Accelerated Generation of Fractals 111

5.1.1 An algorithm to determine the dimension of a fractal curve from

its equivalent L system . 115

5.1.2 Heavy tail distributions . 120

5.1.3 Heavy tails in Grammatical Evolution 124

5.1.4 Restart strategies . 132

5.1.5 Discussion . 139

5.2 Accelerated Training of Multilayer Perceptrons 140

5.2.1 A case study: the UCI Thyroid Disease Database 141

5.2.2 Restart strategies . 143

5.2.3 Discussion . 145

5.3 GRASP-Evolution for CSPs . 146

5.3.1 Constraint Satisfaction Problems and EAs 148

5.3.2 Greedy Randomized Adaptive Procedures 149

5.3.3 The Hybrid Evolutionary Algorithm 151

5.3.4 Our benchmark: random binary CSPs 156

5.3.5 Related work . 158

5.3.6 Measures of effectiveness and efficiency 159

5.3.7 Experimental results . 161

5.3.8 Discussion . 164

6 Conclusions and future work 167

6.1 Advances in Algorithmic Information Theory 167

6.1.1 The Normalized Compression Distance in the presence of noise 168

6.1.2 Compressors requirements for the use of the Normalized Com-

pression Distance . 168

6.2 New applic. of Algorithmic Information Theory 169

6.2.1 Common Source Data Detection 170

xi

6.2.2 Souce Code Plagiarim Dectection 171

6.2.3 Music Generation . 172

6.3 New applic. of Algorithmic Stochastic Modelling 173

6.3.1 Accelerated Generation of Fractals of a Given Dimension . . . 174

6.3.2 Accelerated Training of Multilayer Perceptrons 175

6.3.3 GRASP-Evolution for Constraint Satisfaction Problems 175

7 Conclusiones y trabajo futuro 177

7.1 Avances en Teoŕıa de la Información Algoŕıtmica 177

7.1.1 La Distancia de Compresión Normalizada en presencia de ruido 178

7.1.2 Requisitos de los compresores para el uso de la Distancia de

Compresion Normalizada . 178

7.2 Aplic. de la Teoŕıa de Información Algoŕıtmica 180

7.2.1 Detección de Información Proveniente de una Fuente Común . 180

7.2.2 Detección de Plagio en Código Fuente 182

7.2.3 Generación de Música . 183

7.3 Aplic. del Modelado Estocástico Algoŕıtmico 184

7.3.1 Generación Acelerada de Fractales de una Dimensión Dada . . 185

7.3.2 Entrenamiento Acelerado de Perceptrones Multicapa 186

7.3.3 Evolución de tipo GRASP para Problemas de Satisfacción de

Restricciones . 187

A Proofs for the phen. model of translation 189

B Benchmarks for Plagiarism Detection Tools 191

B.1 Introduction . 191

B.2 Automatic generation of benchmarks 192

B.3 Experimental results . 195

B.4 Discussion . 200

B.5 Further work in plagiarism bechmarking 205

Bibliography 207

xii

List of Tables

3.1 Data-fitted values of the model (3.4) and existence of decay for several

experiments performed on texts, mtDNA, songs and face images. . . . 38

3.2 Name, description and size in Kbytes of the files in the Calgary Corpus. 44

3.3 Comparison table over the Calgary Corpus for all compressors and

options used. For a proper use of the NCD, the addition of the sizes

|x| + |y| of the objects x, y involved in the computation of NCD(x, y)

should be in the acceptable region. 57

4.1 The similarity measure M1 in percents, between the texts of the univer-

sal declaration of human rights and “Don Quixote” in different languages

(eng – English, fra – French, rus – Russian, sre – Serbian/Latin, sry – Ser-

bian/Cyrillic/UNICODE). The difference between the Serbian versions is

due to the two or one byte coding of the Cyrillic alphabet in “sry”. . . . 73

4.2 The similarity measure M1 in percents, between two chapters of DQ. The

notation of the languages is the same as in the previous table. 75

4.3 A comparison of the performance of different recombination strategies

for a typical music generation experiment. NP stands for ‘Not Per-

formed.’ . 105

5.1 Number of generations needed to generate a fractal curve with a given

dimension in a set of experiments. 125

5.2 Percentages of observable and non-observable executions for a censor-

ship value τ = 5, 000 generations. 125

xiii

5.3 Estimations of α for dimensions 1.3, 1.5, 1.8 and 2 using the adapted

Hill-Hall estimator. 129

5.4 Estimations of α for fractal dimensions 1.3, 1.5, 1.8 and 2, using the

regression estimator. 131

5.5 Kurtosis computation for dimensions 1.3, 1.5, 1.8 and 2. 131

5.6 Percentage solved and average cost for several threshold values in the

fractal dimension 1.3 experiment. 137

5.7 A comparison between average execution times for each dimension

without restarts, with an optimal fixed threshold strategy and with

the universal strategy. 138

5.8 Average execution times using the Walsh strategy for several values of

γ. 139

5.9 Expectation, deviation (and its ratio) of the number of epochs T spent

in the building of a MLP with n hidden units and training error δ = 0.02.142

5.10 The Smith’s conjecture prediction of the number of solutions as a func-

tion of p. 158

B.1 Statistics of the generation of the four benchmarks (the average pro-

gram size is measured in bytes). 198

B.2 Lowest 15 pairwise distances obtained using the longest-most infre-

quent distance on the benchmark x3 + x2 + x + 1. 202

B.3 Lowest 15 pairwise distances obtained using NCD on the benchmark

log x3. 203

xiv

List of Figures

2.1 A Generic Evolutionary Algorithm 23

2.2 Graphical scheme of a GE process . 31

3.1 Three examples of different types of data which exhibit the typical

decay behavior of the average distortion. We compare the texts “The

Raven” vs. “The Fall of the House of Usher,” (upper left figure) mouse

mtDNA vs. rat mtDNA (upper right) and Mozart’s “Sonata KV545”

vs. “40th Symphony” (lower left). 36

3.2 An example of the typical non-decay behavior of the average distortion

with face images. The two elements in the comparison are subject #1’s

and #2’s face images with a predefined “sad” disposition (subject01-

sad vs. subject02-sad). 37

3.3 NCD-driven clusterings of texts by several authors in which different levels of noise

have been added to each sequence. The first characters in the book labels are the

initials of their authors: “AC” = Agatha Christie, “AP” = Alexander Pope, “EAP”

= Edgar Alan Poe, “WS”= William Shakespeare and “NM” = Nicolò Machiavelli.

The quality of the clustering degrades slowly. 41

3.4 NCD-driven clusterings of mammalian mtDNA sequences in which different levels

of noise have been added to each element. The quality of the clustering degrades

slowly but somewhat faster than in Figure 3.3 due to the faster growth of the

average distortion in this type of data. 42

xv

3.5 Normalized compression distances computed for the first n bytes of

four files (bib, book1, book2 and pic, from left to right and top to

down) of the Calgary Corpus files using the bzip2 compressor with the

--best option. 46

3.6 Rotation matrix for “drdobbsdrdobbs”. 48

3.7 Lexicographically ordered rotation matrix for “drdobbsdrdobbs”. . . . 49

3.8 Rotation matrix for “drdobbsdrd”. 50

3.9 Rotation matrix for “rdobbs”. 50

3.10 Lexicographically ordered rotation matrix for “drdobbsdrd”. 50

3.11 Lexicographically ordered rotation matrix for “rdobbs”. 50

3.12 Normalized compression distances computed for the first n bytes of

four files (bib, book1, book2 and pic, from left to right and top to

down) of the Calgary Corpus files using the bzip2 compressor with the

--fast option. 51

3.13 Normalized compression distances computed for the first n bytes of

four files (bib, book1, book2 and pic, from left to right and top to

down) of the Calgary Corpus files using the gzip compressor with the

--best option. 52

3.14 WS= 7 bytes, WL = 7 bytes. 53

3.15 WS= 7 bytes, WL = 3 bytes. 54

3.16 WS= 6 bytes, WL= 7 bytes. 55

3.17 Normalized compression distances computed for the first n bytes of

four files (bib, book1, book2 and pic, from left to right and top to

down) of the Calgary Corpus files using the gzip compressor with the

--fast option. 56

3.18 Normalized compression distances computed for the first n bytes of

four files (bib, book1, book2 and pic, from left to right and top to

down) of the Calgary Corpus files using the PPMZ compressor. . . . 58

xvi

4.1 The histogram of the lengths of the texts used. The three texts that

are double-byte coded UD are excluded from this graph. They have

length from 20 to 21 kB. However, this does not affect the matching.

It is clear that DQ and UD have similar lengths. 68

4.2 The connectivity of the graph GL for two groups of three languages

each, using UD as text. The left panel represents the concatenation of

the English, French and Russian (KOI8-r coding) version of the UD,

that gives significant cross compression between French and English.

The right panel represents the connectivity matrix of English, Serbian

(Latin) and Russian version. The cross-correlation between the English

and the Serbian version is larger, but actually the Serb language is

much closer to the Russian than to English. 69

4.3 The degrees of the binned nodes of the graphs GL of UD. 71

4.4 The correlations between randomly permuted texts (both between the

permuted texts and the permuted texts and the original ones) and the

distribution of the distances between the original texts. 72

4.5 The histogram representation of the correlation coefficients of the sim-

ilarity distance M1 of UD and DQ. 74

4.6 Left – the correlation between identical set of Bible chapters and dif-

ferent ones. Right – the probabilty of errors of type I and II in the

estimation of the detection, based on Bible chapters detection. Note

that the translations are actually very heterogeneous. 76

4.7 The mtDNA connectivity matrix of three species (two whales and

a human) with L = 12. The dots are smoothed with a Gaussian

smoothing of radius 40. The first row/column corresponds to “Bal-

aenoptera musculus”, the second to “Balaenoptera physalus” and the

last to “Homo sapiens”. We can see that cross-compression (informa-

tion shared between two different strings) prevails over self-compression

(rendundancy in a single string). 77

4.8 Detail of the diagonal of Fig. 4.7 (not smoothed) in the first quadrant

left and in the quadrant to its right. 78

xvii

4.9 Phylogenetic tree for ten species: Balaenoptera musculus (baebw) [21],

Balaenoptera physalus (baefi) [20], Phocoena phocoena (focfo) [19]

Phoca vitulina (focvi) [121], Equus caballus (horse) [121] , Pan troglodytes

(primc) [84] , Gorilla gorilla (primg) [65], Homo sapiens (primh) [37],

Mus musculus (rodms) [9], Rattus norvegicus (rodrt) [68]. 79

4.10 The eigenvalues of the correlation matrix. It is clear that there is one

predominant factor (with eigenvalue 0.08) and the next factor is 4 times

weaker. The diagonal elements of the correlation matrix were zeroed

in the intermediate calculus in order to increase the precision. 81

4.11 Test results visualized as a graph, with a histogram reflecting the fre-

quency of each distance (ranging from 0, most similar, to 1) and a

horizontal slider, used to select the maximum distance that is used for

inclusion in the graph: only pairs of assignments with a distance lower

than this threshold are included. 87

4.12 Test results visualized as individual histograms. Each row represents a

color-coded histogram (blue is low, red is high) of the frequency with

which other assignments have presented a given similarity to this one.

Unexpected gaps in the leftmost side of the histogram suggest existence

of plagiarism . 88

4.13 Test results visualized as a distance table. 89

4.14 Screenshot of the filtering interface 90

4.15 Visual comparison of two assignments 91

4.16 AC gives two threshold recommendations for plagiarism (outlier) de-

tection in the Graph+Histogram visualization. The probability of a

non-plagiarized pairwise distance falling below the threshold is anno-

tated. 92

4.17 AC gives two threshold recommendations for plagiarism (outlier) de-

tection for each Individual Histogram visualization. 93

4.18 Number of generations needed to reach a given distance to the target. 101

4.19 A comparison between three different recombination strategies. ‘Mixed

strategy’ refers to the mixed strategy 1. 107

xviii

4.20 Performance comparisons of another experiment with the same recom-

bination strategies as in Figure 4.19. 108

5.1 Von Koch snowflake curve. 117

5.2 Low kurtosis (platokurtic distribution) vs. high kurtosis (leptokur-

tic distribution). The probability density function on the right has a

higher kurtosis than the one on left: its center part has a higher peak

and its tails are heavier. 124

5.3 Empirical distribution function of the number of generations needed to

reach a solution for several fractal dimensions: 1.3, 1.5, 1.8 and 2. . . 126

5.4 Log-log graph of the tail of (r=20%) distributions for dimensions 1.3,

1.5, 1.8 and 2. 127

5.5 Box-and-whisker type graphs for dimensions 1.3, 1.5, 1.8 and 2. . . . 128

5.6 Evolution of the sample average as a function of the sample size for

dimensions 1.3, 1.5, 1.8 and 2. 130

5.7 Histograms with the execution samples obtained for fractal dimensions

1.3, 1.5, 1.8 and 2. 132

5.8 Function F (x) for several values of the restart threshold θ ∈ {10, 20, 50,∞}

applied to fractal dimension 1.3. 133

5.9 Function F (x) for several values of the restart threshold θ ∈ {10, 20, 50,∞}

applied to fractal dimension 1.5. 134

5.10 Function F (x) for several values of the restart threshold θ ∈ {500, 1000, 2000,∞}

applied to fractal dimension 1.8. 135

5.11 Function F (x) for several values of the restart threshold θ ∈ {1, 2, 5,∞}

applied to fractal dimension 2. 136

5.12 The effect of restarts with fixed θ on the solution costs for fractal

dimension 1.3. 138

5.13 A log-log plot of P [T > t] as a function of t (in epochs). 142

5.14 E[T − τ |T > τ] as a function of τ , E[T] serves as the baseline. 144

5.15 Expected training time using the strategy St with t ∈ [100, 10, 000],

E[T] serves as the baseline. 145

xix

5.16 Expected training time using the Walsh strategy E[SW] for γ = 1, 2, . . . , 10,

E[S∗
t] and E[T] serve as baselines. 146

5.17 The GRASP pseudocode . 149

5.18 The Greedy Randomized Construction pseudocode 150

5.19 Assigning the first variable using the GRASP parameters vector in 6

steps: Step 1 shows the variables available to select. Step 2 applies the

dom/degree heuristic to these variables. Step 3 shows the resultant

RCL list. Step 4 selects the candidate variable that the GRASP pa-

rameters vector indicates. In Step 5 this variable is instantiated with

the best value possible and the last step reflects this selection and in-

stantiation in the first position of a vector that represents an actual

tentative solution of the problem. 155

5.20 Algorithm GA-GRASPV o for CSP problems. 156

5.21 SR and AES measures for the GA-GRASPV o and SAW algorithms. . 162

5.22 Efficacy and efficiency measures from the GA-GRASPV o and Glass-

Box algorithms. 163

5.23 Average time to solution of the GA-GRASPV o for several values of p. 164

B.1 Context free grammar to generate and modify the original APL2 func-

tions. The repetition of a symbol affects the probability of its choice. 193

B.2 Graphical scheme of the whole process 196

B.3 Plagiarism relations of the benchmarks. Round vertices stand for orig-

inal assignments, squares for plagiarism using a single source, rhom-

boids and octagons for the two different types of plagiarism using two

sources. A black solid line between vertices A and B denotes that A

has used B as the unique source of plagiarism; a red dashed lines be-

tween A and B denotes that A has used B as one of the two sources of

plagiarism; a green dotted line denotes that they are indirect copies,

i.e. they share a common source of plagiarism. 197

xx

B.4 The vertices of the graph stand for each assignment of the benchmark

x2 and the edges represent values of pairwise distances calculated using

the longest-most infrequent similarity distance. Only the assignments

whose pairwise distance is lower to the distance chosen by the slider

(below) are shown. In this figure, the slider is set to 0.01. The bigger

and hotter (more red) is the edge between two vertices (assignments),

the smaller is the distance (or the more similar are the sources). . . . 199

B.5 Analog to Fig. B.4 but with threshold increased slider set to 0.02. . . 200

B.6 We explain the first row, the next are analogue. We calculate the

parwise distances between MP10 (leftmost part of the row) and the

rest of submissions of the cos(log x) corpora. We then depict a ‘hue

histogram’ of the distances, i.e. the more red (hotter) is the color at

some point (distance), the higher is the number of submissions lying

at that distance from MP10. The horizontal axis of the hue histogram

ranges from 0 (leftmost part, complete similarity) to 1 (rightmost part,

complete dissimilarity). 201

B.7 Two fragments of code of P15 (left) and MP15 (right) from the cos(log x)

benchmark. Dots “. . . ” stand for code not shown. 204

B.8 Two fragments of code of P10RGP5 (left) and P5 (right) from the

log x3 benchmark. 204

xxi

xxii

Chapter 1

Introduction

The research presented in this thesis is based on two ideas developed around the

1960s: Algorithmic Information Theory and (Algorithmic) Stochastic Modelling.

The first, Algorithmic Information Theory, is the theory concerned with obtaining

an objective and absolute notion of information contained in an individual (non-

stochastic) object. It was independently and simultaneously put forth by Kolmogorov

[97, 96], Solomonoff [144] and Chaitin [31] in the sixties.

The second idea, Algorithmic Stochastic Modelling, deals with the design of Ran-

domized Algorithms, which employ a degree of randomness as part of its logic to solve

computational problems. The foundations of this idea can be attributed to Leew et

al. [51] for with their pioneering work on probabilistic Turing machines in 1955.

Both concepts share similar historical development, which can be divided in three

steps. Initially they were considered as purely theoretical results with limited ap-

plicability. On the one hand, the Kolmogorov Complexity, Algorithmic Information

Theory’s key concept, was an incomputable function due to the Turing’s halting prob-

lem. On the other (Algorithmic Stochastic Modeling), the introduction of stochastic

elements in the computer seemed rather arbitrary and lacking of motivation, not to

talk about the practical impossibility of obtaining truly random number generators

at those times. Nowadays it seems pretty ironical that concepts spawned withing the

computation found their main obstacles in the computation itself.

This initial ‘theoretical’ stage lasted differently for both disciplines. It endured

1

2 CHAPTER 1. INTRODUCTION

from 1955 to 1976 for Algorithmic Stochastic Modeling, with Rabin’s proposal of his

famous probabilistic algorithm for testing primality [132] , the first proof of successful

applicability of randomization. Much time did it took for Algorithmic Information

Theory to become practical, from 1964 to 1997 when a real methodology for estimat-

ing and managing the Kolmogorov Complexity was rigorously presented by Li and

Vitányi [105]

We can speak about a third ‘exploitative’ stage, where applications based on these

two concepts have become the state-of-the-art in several fields.

Randomized algorithms have become prominent not only in the field of Number

Theory, where they were originally used, but also in other areas of computer science

such as Artificial Intelligence and Operations Research. In the recent years, stochastic

local search algorithms such as Simulated Annealing, Tabu Search and Evolutionary

Algorithms have been found to be very successful for solving NP-hard problems from

a broad range of domains (e.g. [95] and [72]). But also a number of systematic search

methods, like some modern variants of the Davis-Putnam algorithm for propositional

satisfiability (SAT) problems, or backtracking-style algorithms for Constraint Satis-

faction Problems (CSPs) and graph coloring problems make use of non-deterministic

decisions (like randomized tie-breaking rules) and can thus be characterized as ran-

domized algorithms

The amalgam of applications using Algorithmic Information Theory is not as large

as the above mentioned due to its slower development. Despite this, ideas based on it

had become the cutting-edge tools for several problems in the last ten years, including

this: Clustering, Statistical Model Selection, Prediction, Average Case Analysis of

Algorithms, Combinatorics and many others (see [105] for a comprehensive review).

This thesis applies ideas from Algorithmic Information Theory and Algorithmic

Stochastic Modeling to improve current approaches to several open problems belong-

ing to two major fields: Classification and Evolutionary Computation. The first is an

umbrella term for the general problem of optimal grouping of objects. The second is

a powerfull methodology for search and optimization which extracts inspiration from

biological evolution.

In the next section we introduce the problems dealt with throughout the whole

1.1. PROBLEMS ADDRESSED AND CONTRIBUTIONS 3

research and we establish the boundaries of our work presenting its main contribu-

tions.

1.1 Problems addressed and contributions

The problems addressed in this thesis and their the resulting contributions are of both

theoretical and practical nature. The theoretical part deals with holes in Algorithmic

Information Theory, and has the whole chapter 3 devoted to it. The practical part

presents new or improved applications for Classification and Evolutionary Compu-

tation derived using Algorithmic Information Theory (chapter 4) and Algorithmic

Stochastic Modeling (chapter 5).

This section gives a summary of the research contained in this thesis using the

just mentioned division.

1.1.1 Advances in Algorithmic Information Theory

Two advances in Algorithmic Information Theory, specially related to the the Nor-

malized Compression Distance (NCD) are presented.

In the first (section 3.1) we analyze the influence of noise on the NCD, a measure

based on the use of compressors to compute the degree of similarity of two files. This

influence is approximated by a first order differential equation which gives rise to

a complex effect, explaining the fact that the NCD may give values greater than 1,

observed by other authors. The model is tested experimentally with good adjustment.

Additionally, the influence of noise on the clustering of files of different types is

explored, finding that the NCD performs well even in the presence of quite high noise

levels.

In the second (section 3.2) we show that the compressors used to compute the

normalized compression distance are not idempotent in some realistic scenarios, being

strongly biased by the size of the objects and window size, and therefore causing a

deviation in the identity property of the distance if we do not take care that the objects

to be compressed fit the windows. The relationship underlying the precision of the

4 CHAPTER 1. INTRODUCTION

distance and the size of the objects is analyzed for several well-known compressors,

and specially in depth for three cases, bzip2, gzip and PPMZ which are examples of

the three main types of compressors: block-sorting, Lempel-Ziv, and statistic.

1.1.2 New applications of Algorithmic Information Theory

Three new applications of Algorithmic Information Theory are presented, which are

specially related to the document similarity framework it provides: Common Source

Data Detection, Source Code Plagiarism Detection and Music Generation.

Common Source Data Detection Compression based similarity distances have

the main drawback of needing the same coding scheme for the objects to be compared.

In some situations, there exists significant similarity with no literal shared informa-

tion: text translations, different coding schemes, etc. To overcome this problem, we

present a similarity measure in section 4.1 which compares the redundancy structure

of the data extracted by means of a Lempel-Ziv compression scheme. Each text is

represented as a graph in which vertices are text positions and edges represent shared

information; two texts are similar with our measure if they have the same referen-

tial topology when compressed. In the same section we give empirical evidence and

phenomenological explanation that this new measure is a robust indicator, detecting

similarity between data coded in different languages. We also regard a textual data

without any structure, but with a common source and find that we can detect such

data and distinguish this situation from the previous one.

Source Code Plagiarism Detection On the one hand, Plagiarism detection in

educational programming assignments is still a problematic issue in terms of resource

waste, ethical controversy, legal risks, and technical complexity. On the other, the

Normalized Compression Distance has proven to be a powerful source code similarity

measure for copy-catching. We have enhanced the Normalized Compression Dis-

tance detection capability and usability by incorporating it into AC, a modular and

open-source plagiarism detection program. The design is portable across platforms

and assignment formats and provides easy extraction into the internal assignment

1.1. PROBLEMS ADDRESSED AND CONTRIBUTIONS 5

representation. Statistical analysis and several graphical visualizations aid in the

interpretation of analysis results.

Music Generation Recent large scale experiments have shown that the Normal-

ized Information Distance is among the best similarity metrics for melody classifica-

tion. Section 5.2 proposes the use of this distance as a fitness function which may

be used by genetic algorithms to automatically generate music in a given pre-defined

style. The minimization of this distance of the generated music to a set of musical

guides makes it possible to obtain computer-generated music which recalls the style

of a certain human author. The recombination operator plays an important role in

this problem and thus several variations are tested to fine tune the genetic algorithm

for this application. The superiority of the relative pitch envelope over other musi-

cal parameters, such as the lengths of the notes, has been confirmed, bringing us to

develop a simplified algorithm that nevertheless obtains interesting results.

1.1.3 New applications of Algorithmic Stochastic Modeling

We present three new applications of Algorithmic Stochastic Modelling, a methodol-

ogy introduced in section 2.2. The first two are intimately related and make use of

the presence of heavy tails in both the optimization process involved in the generation

of fractals and in the training process of a multilayer perceptron.

Accelerated Generation of Fractals of a Given Dimension In a previous

work, Ortega et al. [125] proposed a Grammatical Evolution algorithm to auto-

matically generate Lindenmayer Systems which represent fractal curves with a pre-

determined fractal dimension. Section 5.1 gives strong statistical evidence that the

probability distribution of the execution time of that algorithm exhibits a heavy tail

with a hyperbolic probability decay for long executions, which explains the erratic

performance of different executions of the algorithm. Three different restart strategies

have been incorporated in the algorithm to mitigate the problems associated to heavy

tail distributions: the first assumes full knowledge of the execution time probability

distribution, the second and third assume no knowledge. These strategies exploit the

6 CHAPTER 1. INTRODUCTION

fact that the probability of finding a solution in short executions is non-negligible,

yielding a severe reduction, both in the expected execution time (up to one order of

magnitude) and in its variance, which is reduced from an infinite to a finite value.

Accelerated Training of Multilayer Perceptions The random initialization of

weights of a multilayer perceptron makes it possible to model its training process

as a Las Vegas algorithm, i.e. a randomized algorithm which stops when some re-

quired training error is obtained, and whose execution time is a random variable.

This modelling is used in section 5.2 to perform a case study on a well-known pattern

recognition benchmark: the CI Thyroid Disease Database. Empirical evidence is pre-

sented of the training time probability distribution exhibiting a heavy tail behavior,

meaning a big probability mass of long executions. This fact is exploited to reduce

the training time cost by applying two simple restart strategies. The first assumes

full knowledge of the distribution yielding a 40% cut down in expected time with re-

spect to the training without restarts. The second, assumes null knowledge, yielding

a reduction ranging from 9% to 23%.

The third Algorithmic Stochastic Modeling application presented in this thesis is a

success story of the use of a special randomized heuristic in a simple genetic algorithm

to yield a state-of-the art evolutionary algorithm for solving Constraint Satisfaction

Problems (CSPs).

GRASP-Evolution for Constraint Satisfaction Problems There are several

evolutionary approaches for solving random binary Constraint Satisfaction Problems.

In most of these strategies we find a complex use of information regarding the problem

at hand. In section 5.3 we present a hybrid Evolutionary Algorithm that outperforms

previous approaches in terms of effectiveness and compares well in terms of efficiency.

Our algorithm is conceptual and simple, featuring a GRASP-like (GRASP stands

for Greedy Randomized Adaptive Search Procedure) mechanism for genotype-to-

phenotype mapping, and without considering any specific knowledge of the problem.

Therefore, we provide a simple algorithm that harnesses generality while boosting

1.2. PUBLICATIONS 7

performance.

1.2 Publications

We present the main publications that this thesis yielded. We classify them into the

chapters to which the research is related. The ‘Under submission’ sections refers to

manuscripts which have been submitted for consideration for publication in a journal.

Finally, the ‘Others’ section indicates papers published during the Ph.D. period which

are not included in this thesis.

Advances in Algorithmic Information Theory

M. Cebrián, M. Alfonseca, A. Ortega. The normalized compression distance is re-

sistant to noise. IEEE Transactions on Information Theory, 53(5):1895–1900, May

2007.

M. Cebrián, M. Alfonseca, A. Ortega. Common pitfalls using normalized compression

distance: what to watch out for in a compressor. Communications in Information

and Systems, 5(4):367–384, 2005.

New applications of Algorithmic Information Theory

M. Alfonseca, M. Cebrián, A. Ortega. A simple genetic algorithm for music gener-

ation by means of algorithmic information theory. To appear in Proceedings of the

IEEE Congress on Evolutionary Computation (CEC), Singapore, September 25-28,

2007.

M. Cebrián, M. Alfonseca, A. Ortega. Automatic generation of benchmarks for

plagiarism detection tools using grammatical evolution. To appear in Proceedings of

the 9th ACM Genetic and Evolutionary Computation Conference (GECCO), London,

UK, July 7-11, 2007. arXiv:cs.NE/0703134.

8 CHAPTER 1. INTRODUCTION

K. Koroutchev, M. Cebrián. Detecting translations of the same text and data with

common source. Journal of Statistical Mechanics: Theory and Experiments, P10009,

October 2006.

K. Koroutchev, M. Cebrián. Detecting the same text in different languages. In Pro-

ceedings of the IEEE Information Theory Workshop (ITW), pages 337–341, Chengdu,

China, October 22-26, 2006.

M. Alfonseca, M. Cebrián, A. Ortega. A fitness function for computer-generated

music using genetic algorithms. WSEAS Transactions on Information Science and

Applications, 3(3):518–525, March 2006.

M. Alfonseca, M. Cebrián, A. Ortega. Testing genetic algorithm recombination

strategies and the normalized compression distance for computer-generated music.

In Proceedings of the 5th WSEAS International Conference on Artificial Intelligence,

Knowledge Engineering and Data Bases (AIKED), pages 15–17, Madrid, Spain, Febru-

ary 15–17, 2006.

M. Alfonseca, M. Cebrián, A. Ortega. Evolving computer-generated music by means

of the normalized compression distance. WSEAS Transactions on Information Sci-

ence and Applications, 2(9):1367–1372, September 2005.

New applications of Algorithmic Stochastic Modeling

M. Cebrián, I. Dotú. GRASP-Evolution for constraint satisfaction problems. In Pro-

ceedings of the 8th ACM Genetic and Evolutionary Computation Conference (GECCO),

pages 531–538, Seattle, USA, July 8-12, 2006.

M. Cebrián, I. Dotú. A simple hybrid GRASP-Evolutionary algorithm for CSPs. In

Proceedings of the 2nd International Workshop on Local Search Techniques in Con-

straint Satisfaction (LSCS), pages 2–15, Sitges, Spain, October 1st, 2005.

1.2. PUBLICATIONS 9

M. Cebrián, I. Cantador. Estrategias de recomienzo para el entrenamiento de per-

ceptrones multicapa. En Actas del 1er IEEE CIS Simposio de Inteligencia Computa-

cional (SICO), páginas 55–62, Granada, España, 13-16 Septiembre, 2005.

M. Cebrián, A. Ortega, M. Alfonseca. Acceleration of a procedure to generate fractal

curves of a given dimension through the probabilistic analysis of execution time.

Volume 14 of Intelligent Engineering Systems Through Artificial Neural Networks,

pages 265–270. ASME Press, New York, USA, November 2004.

Under submission

M. Freire, M. Cebrián, E. del Rosal. AC: An integrated source code plagiarism de-

tection environment. May 2007. arXiv:cs.IT/0703136.

M. Cebrián, M. Alfonseca, A. Ortega. Grammatical evolution with restarts for fast

fractal generation. Submitted to International Journal of General Systems, April

2007.

M. Cebrián, I. Cantador. Exploiting heavy tails in training times of multilayer

perceptrons. A case study with the UCI thyroid disease database Submitted to

IEEE Computational Intelligence Magazine, April 2007. arXiv:0704.2725.

Others

I. Dotú, A. del Val, M. Cebrián. Redundant modeling for the quasigroup comple-

tion problem. Volume 2833 of Lecture Notes in Computer Science, pages 288–302,

Springer-Verlag, Berlin/Heidelberg, Germany, September 2003.

I. Dotú, A. del Val, M. Cebrián. Channeling constraints and value ordering in the

quasigroup completion problem. In Proceedings of the International Joint Conference

on Artificial Intelligence (IJCAI), pages 1372–1373, Acapulco, Mexico, August 9-15,

10 CHAPTER 1. INTRODUCTION

2003.

Chapter 2

Basic concepts

In this chapter we introduce the basic concepts which provide the basement for the

improvements presented in this thesis: Algorithmic Information Theory, Algorith-

mic Stochastic Modeling and Evolutionary Computation. We briefly describe the

most important features and results of each and then we detail, with more attention,

elements which are key to the advances coming in the following chapters.

2.1 Algorithmic Information Theory

Algorithmic Information Theory (AIT) is the theory concerned with obtaining an

objective and absolute notion of information contained in an individual object. It

was independently (and almost simultaneously) put forth by Andrey Kolmogorov

[97, 96], Ray Solomonoff [144] and Gregory Chaitin [31] in the 1960s.

AIT principally studies Kolmogorov complexity and other complexity measures

on strings (or other data structures) derived from it. Because most mathematical

objects can be described in terms of strings, or as the limit of a sequence of strings, it

can be used to study a wide variety of mathematical objects, including integers and

real numbers. It is usual in AIT to consider without loss of generality that all strings

are binary.

AIT is generally regarded as the deterministic converse of the, more classical,

(Stochastic) Information Theory initiated by Shannon in [140], which is concerned

11

12 CHAPTER 2. BASIC CONCEPTS

with measuring information quantities of random variables and whose central concept

is the (stochastic) entropy. This measure depends on the probability distribution of

the variable, while the algorithmic entropy is a measure for deterministic objects.

Here we only outline the basic notation along with some results used in our re-

search. Reference [39] contains an excellent introduction. A very deep treatment with

all details and mathematical proofs can be found in the the book by Li and Vitányi

[105].

As mentioned earlier, the central concept in AIT is the Kolmogorov complexity or

Algorithmic Entropy of a string x, K(x), defined as the length of the shortest binary

program for generating x in some Universal Turing Machine. Although the Turing

formalism is the paradigmatic one, it would be equivalent to consider the length of

the shortest binary program to generate x in some general purpose programming

language such as LISP, C or Java. Formally stated:

Definition 2.1. The Kolmogorov complexity KU(x) of a string x with respect to

some universal machine U is defined as:

KU(x) = min
p:U(p)=x

l(p), (2.1)

where l(p) is the length of p and U(z) is the output of the machine U when fed with

input z.

Intuitively, K(x) represents the minimum amount of information required to gen-

erate x by means of an algorithm. Put it differently, if x̃ denotes the shortest program

which generates x (if there were more than one, the smallest and first in lexicograph-

ical order is chosen) then K(x) = l(x̃).

We use the notation K(x, y) for the length of the shortest program which generates

x and y. The next theorem states that, although the function K(·) is defined in terms

of a particular universal machine, it is independent on the computation model and

has universal sense thanks to the ability of universal machines to simulate any other

machine (and then execute any computable procedure).

Theorem 2.1. If U is a universal Turing machine, then for any other universal

2.1. ALGORITHMIC INFORMATION THEORY 13

machine A,

KU(x) ≤ KA(x) + cA (2.2)

Constant cA is the length of the program which machine U needs to simulate A

and can, in certain cases, be very large. For example, A can be a modern computer

with a high number of built-in functions embedded in the system and, on the other

hand, machine U can be the least powerful microprocessor in the market (but still

universal). The program simulating machine A in U must contain all implementation

details of all A’s functions.

The crucial point is that the length of program needed to simulate A in U is

independent of x, the string which is going to be generated. For x large enough,

cA becomes negligible, allowing us to use the Kolmogorov complexity to describe its

inherent complexity and leave constants out. This is stated in the next theorem. If

A and U are both universal, then we have

|KA(x)−KU(x)| < c

for all x. Therefore, from now onwards we will assume the use of a fixed machine U

without loss of generality.

The second most important concept in this field is the Conditional Kolmogorov

Complexity K(x|y) of x conditioned to y, defined as the length of the shortest program

generating x when the universal Turing machine is fed with y as an input for the

computation.

Finally, we define the Algorithmic Mutual Information I(x : y) between two strings

x and y as I(x : y) = K(x)−K(x|y). A very deep and (as we will see in the following

subsection) useful result by Gacs [67] proves that, up to an additive constant term,

K(x) + K(y|x) = K(y) + K(x|y). (2.3)

and therefore the algorithmic mutual information is symmetric.

I(x : y) = I(y : x).

14 CHAPTER 2. BASIC CONCEPTS

Once we have presented the basics, we are prompted to talk about computability.

Any function which involves the calculation of the Kolmogorov complexity is in-

computable. This is just a consequence of the non-existence of an algorithm for the

halting problem: the only way to find the shortest program generating string x in

general is to try all short programs and see which of them can do the job. However,

at any time some of the short programs may not have halted and there is no effective

way to tell whether they will halt or not and what they will print out. Hence, there

is no effective way to find the shortest program to print a given string.

It turns out that this is not a drawback for using AIT in practical applications.

This is because in spite of the fact that we are not able to find the shortest program,

we can still find one which is very near in length to it by using a data compression

algorithm: the compressed length C(x) of a program is (for practical purposes) a good

approximation of K(x) [34]. Many reasonable compression algorithms like those in

the core of GZIP, BZIP, PPMZ can do the job.

In the following subsection we present a similarity measure based on compressors

which uses the theoretical framework of AIT.

2.1.1 Normalized Compression Distance

A natural measure of similarity assumes that two objects x and y are similar if the

basic blocks of x are in y and vice versa. If this happens we can describe object x by

making reference to the blocks belonging to y, thus the description of x will be very

simple using the description of y.

This is partially what a compressor does to code the catenated xy sequence: a

search for information shared by both sequences in order to cut back the redundancy

of the whole sequence. If the result is small, it means that a lot of information

contained in x can be used to code y, following the similarity conditions described

in the previous paragraph. This was formalized by Rudi Cilibrasi and Paul Vitányi

[34] using ideas presented in Section 2.1, giving rise to the concept of Normalized

Compression Distance (NCD), which is based on the use of compressors to provide

a measure of the similarity between the objects. This distance may then be used to

2.1. ALGORITHMIC INFORMATION THEORY 15

cluster those objects.

This idea is very powerful, because it can be applied in the same way to all kind

of objects, such as music, texts or gene sequences. There is no need to use specific

features of the objects to cluster. The only thing needed to compute the distance

from one object x to another object y, is to measure the ability of x to turn the

description of y simple and vice versa.

Cilibrasi and Vitányi have perfected this idea in two ways, by stating the condi-

tions that a compressor must hold to be useful in the computation of the NCD, and

by giving a formal expression to the quality of the distance in comparison with an

ideal distance proposed by Li and others in [102].

The following definitions describe the conditions under which the NCD is a quasi-

universal normalized admissible distance.

Definition 2.2. A compressor C is normal if it satisfies, up to an additive O(log n)

term, with n the maximal binary length of an element involved in the (in)equality

concerned, the following axioms:

1. Idempotency: C(xx) = C(x), and C(λ) = 0, where λ is the empty string.

2. Monotonicity: C(xy) ≥ C(x).

3. Symmetry: C(xy) = C(yx).

4. Distributivity: C(xy) + C(z) ≤ C(xz) + C(yz).

Definition 2.3. A distance d(x, y) is a normalized admissible distance or similarity

distance if it takes values in [0, 1] and satisfies the following conditions for all objects

x, y, z:

1. Identity: d(x, y) = 0 if x = y.

2. Symmetry: d(x, y) = d(y, x).

3. Triangular inequality: d(x, y) ≤ d(x, z) + d(z, y).

4. Density constraint as in [34].

16 CHAPTER 2. BASIC CONCEPTS

Definition 2.4. A normalized admissible distance f is quasi-universal if for every

computable normalized admissible distance d and for all sequences x, y it satisfies the

following condition:

f(x, y) = O(d(x, y)), (2.4)

which means that two objects (of any kind) are similar (i.e. they have a small distance)

with respect to a specific feature (pitch for music, sequence alignment for DNA, etc)

when they are also similar with respect to a quasi-universal distance.

This universal (or quasi-universal) distance is the final goal for universal clustering,

because in principle it will be as good as any other distance specialized in measuring

some specific feature.

Reference [102] proposes an incomputable distance that fulfills that goal, the nor-

malized information distance (NID):

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
(2.5)

Inspired by this incomputable distance, the following normalized compression dis-

tance was designed [34], which would make the role of a quasi-universal distance:

NCD(x, y) =
max{C(xy)− C(x), C(yx)− C(y)}

max{C(x), C(y)}
(2.6)

C(xy) is the compressed size of the catenation of x and y. NCD generates a non-

negative number 0 ≤ NCD(x, y) ≤ 1. Distances near 0 indicate similarity between

objects, while those near 1 reveal dissimilarity.

As we are assuming simmetry in the compressors, i.e. C(xy) = C(yx), the equa-

tion 2.6 may be found in the literature as:

NCD(x, y) =
C(xy)−min{C(x), C(y}

max{C(x), C(y)}
(2.7)

If x = y, NCD becomes

NCD(x, x) =
C(xx)− C(x)

C(x)
(2.8)

2.2. ALGORITHMIC STOCHASTIC MODELING 17

The next lines summarize the most important results proved on this distance.

Theorem 2.2. If the compressor is normal, the NCD is a normalized admissible

distance satisfying the metric inequalities.

Theorem 2.3. Let d be a normalized admissible distance and C be a normal compres-

sor. Then, NCD(x, y) ≤ αd(x, y) + ǫ where α and ǫ are well-defined constants which

depend on the distance between the compression-estimated Kolmogorov complexities

and the real complexities [34].

The last theorem states that, if the compressor is chosen properly (i.e. normal

and with good compression power), then the NCD may approximate the behavior of

a quasi-universal normalized similarity distance.

2.2 Algorithmic Stochastic Modeling

One of the most amazing discoveries in the algorithm design area is that the incor-

poration of stochastic elements in a computation process can lead to a significant

acceleration over purely deterministic methods. This insight has lead to a widespread

effort to the stochastic modelling of algorithms, giving birth to the so-called random-

ized algorithms.

A randomized algorithm is an algorithm which employs a degree of randomness

as part of its logic. In common practice, this means that the machine implementing

the algorithm has access to a pseudo-random number generator. The algorithm typ-

ically uses the random bits as an auxiliary input to guide its behavior, in the hope

of achieving a good performance in the average case. Formally, the algorithm’s per-

formance will be a random variable determined by the random bits, with (hopefully)

good expected value; this expected value is called the expected runtime. In successful

randomized algorithms, the worst case is typically so unlikely to occur that it can be

ignored.

There are two principal advantages of randomized algorithms. The first is perfor-

mance. For many problems, randomized algorithms run faster than the best known

18 CHAPTER 2. BASIC CONCEPTS

deterministic algorithm. Secondly, many randomized algorithms are simpler to de-

scribe and implement than deterministic ones of comparable performance.

2.2.1 A taxonomy of randomized algorithms

There are two different types of randomized algorithms las Vegas and Monte Carlo

algorithms.

If the algorithm always gives the correct solution and the the only variation from

one run to another is its running time, the algorithm is called a las Vegas algorithm.

A good example of this is the famous QuickSort algorithm for sorting arrays of k

numbers, which chooses a pivotal number randomly. This algorithm always yields a

sorted array and its running time can range from 2 log(k) steps to k2 depending on

the random choices made.

In contrast, other randomized algorithms can sometimes produce a solution which

is incorrect, i.e. with some random choices the output reaches a correct solution

and with others not. If it is possible to bound the probability of such an incorrect

solution, the algorithm is called a Monte Carlo algorithm. If these algorithms are run

repeatedly (on the same input) with independent random choices at each time, the

failure probability can be made arbitrarily small, at the expense of running time. We

will see an example of this in the following subsection.

For decision problems, for which the answer to an instance is YES or NO, there

are two kinds of Monte Carlo algorithm: those with one-sided error, and those with

two-sided errors. It has two-sided error if there is a non-zero probability that it fails

when it outpus either YES or NO. On the other hand, it is said to have a one-sided

error if the probability that it fails is zero for at least one of the possible outputs.

It is also possible to find algorithms in which both the running time and the

correctness of the solution are random variables.

2.2.2 Verifying matrix multiplication

In this subsection we want to illustrate the general functioning and advantages of

randomized algorithms with a simple example. We propose a Monte Carlo algorithm

2.2. ALGORITHMIC STOCHASTIC MODELING 19

for verifying matrix multiplication.

Suppose we are given three n x n matrices A, B and C whose values can only be

0 or 1. We want to verify whether

AB = C.

One way to accomplish this is to multiply A and B and compare the result to

C. The simple matrix multiplication algorithm takes Θ(n3) operations, altough more

sophisticated algorithms are known to take Θ(n2.37) operations.

We may use a Monte Carlo algorithm which allows for faster verification, at the

expense of returning a wrong answer with a small probability. The algorithm chooses

a random vector r̄ = (r1, r2, . . . , rn) ∈ {0, 1}n. It then computes A(Br̄) and Cr̄. If

A(B(r̄) 6= Cr̄, then it outputs AB 6= C. Otherwise, it returns that A(Br̄) = Cr̄.

This algorithm requires three matrix-vector multiplications, which can be done

in time θ(n2). It can be proven that the probability of the algorithm returning

A(B(r̄)) = C when they are actually not equal is has an upper bound of 1
2
.

To improve on the error probability we can use that fact that the algorithm has a

one-sided error and run the algorithm multiple times. If we ever find an r̄ such that

ABr̄ 6= Cr̄, then the algorithm will correctly return that AB 6= C. If we always find

ABr̄ = Cr̄, then the algorithm returns that AB = C and there is some probability of

a mistake. Choosing r with replacement from {0, 1}n for each trial, we obtain that,

after k trials, the probability of the error is at most 2−k. Repeated trials increase the

running time to θ(kn2).

Suppose we attempt this verification 100 times. The running time of the ran-

dom checking algorithm is still θ(n2), which is faster than the known deterministic

algorithm for matrix multiplication for sufficiently large n. The probability that an

inequality passes the verification test 100 times is 2−100, an astronomically small num-

ber. In practice, the computer is much more likely to crash during the execution of

the algorithm than to return a wrong answer.

20 CHAPTER 2. BASIC CONCEPTS

2.2.3 Many successful stories

An excellent example of the success of algorithmic stochastic modeling can be found

in the Primality Testing problem: finding out whether a given number n is a prime or

not. It was formulated in ancient times and has caught the interest of mathematicians

again and again for centuries. Only with the advent of cryptographic systems, which

use large prime numbers, did it turn out to be of practical importance.

Algorithms were provided which solved the problem very efficiently and satisfac-

torily for all practical purposes, like the the Miller-Rabin [132], Solovay-Strassen [145]

or Adleman-Huang [10] tests, and provably enjoyed a polynomial time bound in the

number of digits needed to write down the number n. The only ‘drawback’ of these

algorithms is their stochastic nature, i.e. the computer that carries out the algorithm

performs random experiments, and there is a slight chance that the outcome might be

wrong. If we force the algorithm to always yield a correct answer, then the running

time might not be polynomial.

The scientific community had to wait until 2004 for the first worst-case polyno-

mial, error-free algorithm by Agrawal and Saxena [12]. Although the news of this

amazing result spread very fast worldwide, in practical terms, not much has changed.

In cryptographic applications, the fast randomized algorithms for primality testing

continue to be used, since they are superior in running time and the error can be kept

so small that it is irrelevant for practical applications [55]. The new algorithm does

not seem to imply that we can factor numbers fast, and no cryprographic system

has been broken. This fact reflects the great importance of algorithmic stochastic

modelling in real-world applications.

Randomized algorithms are prominent not only in the field of Number Theory,

were they were originally used, but also in other areas of computer science such as

Artificial Intelligence and Operations Research. In the recent years stochastic local

search algorithms such as Simulated Annealing [95], Tabu Search [72], and Evolution-

ary Algorithms have been found to be very successful for solving NP-hard problems

from a broad range of domains. But also a number of systematic search methods, like

some modern variants of the Davis-Putnam algorithm for propositional satisfiability

2.3. EVOLUTIONARY COMPUTATION 21

(SAT) problems, or backtracking-style algorithms for Constraint Satisfaction Prob-

lems (CSPs) and graph coloring problems make use of non-deterministic decisions

(like randomized tie-breaking rules) and can thus be characterized as randomized

algorithms [78].

A compendium of fields where randomization has been successful can be found in

[120] and [117].

2.3 Evolutionary Computation

Evolutionary Computation (EC) is an umbrella term used to describe computer-

based problem solving systems which use computational models of some of the known

mechanisms of evolution as key elements in their design and implementation.

Many different kinds of Evolutionary Algorithms (EAs) have been proposed. The

major ones are: Genetic Algorithms, Evolutionary Programming ,Evolution Strate-

gies, Classifier Systems , and Genetic Programming. They all share a common concep-

tual base of simulating the evolution of individual structures via processes of selection,

mutation, and reproduction. The processes depend on the perceived performance of

the individual structures as defined by an environment.

More precisely, EAs maintain a population of structures, that evolve according

to rules of selection and other operators, that are referred to as search operators

or genetic operators, such as recombination and mutation. Each individual in the

population receives a measure of its fitness in the environment. Reproduction focuses

attention on high fitness individuals, thus exploiting the available fitness information.

Recombination and mutation perturb those individuals, providing general heuristics

for exploration. Although simplistic from a biologist’s viewpoint, these algorithms are

sufficiently complex to provide robust and powerful adaptive search mechanisms.

We briefly describe the five main paradigms in EC:

• Evolutionary Programming: An evolutionary algorithm developed in the

mid 1960s by Fogel, Owens and Walsh [64]. Implementations typically use

fixed-length character strings to represent their genetic information, together

22 CHAPTER 2. BASIC CONCEPTS

with a population of individuals which undergo crossover and mutation in order

to find interesting regions of the search space.

• Evolution Strategies: A type of evolutionary algorithm developed in the

early 1960s by Rechenberg and Schwefel in Germany [133]. It employs real-

coded parameters, and in its original form, it relied on mutation as the search

operator, and a population size of one. Since then it has evolved to share many

features with genetic algorithms.

• Genetic Algorithms: A type of EA devised by John Holland [83] in the 1970s.

It is a stochastic optimization strategy similar to Evolutionary Programming,

but instead places emphasis on seeking to emulate specific genetic operators as

observed in nature rather than the behavioral linkage between parents and their

offspring.

• Classifier Systems: First described by John Holland in the 1970s, a (Learn-

ing) Classifier System consists of a population of binary rules on which a genetic

algorithm alters and selects the best rules. Instead of using a fitness function,

rule utility is decided by a reinforcement learning technique.

• Genetic Programming: Developed by Koza in the 1990s [99] it can be de-

scribed as a genetic algorithm applied to the evolution of computer programs.

Subsection 2.3.10 gives a brief introducion on Grammatical Evolution, one of

the most promising genetic programming approaches at present, which is ex-

tensively used throughout this thesis.

Besides this leading crop, there are numerous other different approaches, alongside

hybrid local search experiments called Metaheuristics [119].

An excellent introduction and overview of the EC subfields can be found in [58]. If

the reader is interested in the history of EC we recommend consulting the EC Fossil

Record [63].

2.3. EVOLUTIONARY COMPUTATION 23

2.3.1 EAs general functioning

The Algorithm Template

1. function GenericEvolutionaryAlgorithm()
2. pop ← InitialPopulation();
3. Evaluate(pop);
4. while not Termination()
5. parents ← SelectParents(pop);
6. descendants ← Combine(parents);
7. Mutate(descendants);
8. Evaluate(pop);
9. pop ← SelectPopulation(pop,descendants);

Figure 2.1: A Generic Evolutionary Algorithm

Figure 2.1 shows the generic Evolutionary Algorithm template. The population

‘pop’ is initialized in line 2 and evaluated in line 3. Then, a certain number of it-

erations is repeated until a termination criterion is reached (line 4). During these

iterations the individuals are selected (line 5) to be combined (line 6) and their de-

scendants are mutated (line 7) and evaluated (line 8). Afterwards, a new population

is generated from the previous one and the descendants (line 9) although sometimes

the previous population can be completely forgotten and only new individuals are

considered for the next iteration.

In the next sections we are going to detail each one of these steps.

2.3.2 Representation

This is an issue that is prior to the development of the algorithm. Typically, EAs

use a string of numbers as a representation, and frequently it is only a binary string.

However, we should not forget that choosing the right representation of a problem is

key to the algorithm’s performance. Thus, it is well worth to devote some time to

representation.

The first issue which arises in some EAs is to link the real problem to the problem

representation. This mimics biology where a genotype encodes the information that

24 CHAPTER 2. BASIC CONCEPTS

yields a phenotype which is the transformation happening in the nature.

Sometimes, this distinction does not appear if the information and the represen-

tation are one and the same thing, which happens rarely both in genetics and EC.

Nevertheless, as we will latter see, it is important to explicitly make this distinction

since the genotype is used for individuals interaction, but the phenotype is needed to

calculate the actual value of the evaluation function, i.e., the fitness of an individual.

Every unit of information stored in the genotype is typically named gene.

The second issue is what kind of structures we need to use to represent our genotype

and/or phenotype (Note that, many times, the phenotype is not actually implemented,

and it might be only calculated when the evaluation function needs it). In general,

we can distinguish several types of representation:

Binary Representation: this is the simplest representation we can find. It consists

on a binary sequence, i.e., a sequence of 1’s and 0’s. While this technique is very

commonly used, it is not always the best suited approach. Its main drawback is

based on the genotype-to-phenotype mapping. For example, when the 1’s and

0’s represent boolean variables, the genotype-to-phenotype mapping is direct:

a 1 represents a true variable and a 0 represents a false one. Instead if, for

example, we are representing numbers with binary sequences, we can encounter

problems derived from the fact that the distances between the numbers and

between their representations do not match. Observe that the distance between

3 and 4 is only 1 in the integers, while if we are representing the numbers as a

4-bits sequence, the distance between 0011 and 0100 is not 1 anymore. Here, as

in the next types of representation, we have to decide the length of the string.

Integer Representation: to avoid problems like the one previously stated, we can

safely represent the individuals as sequences of integers. This is probably a

better suited representation for complex problems like the combinatorial ones.

Real or Floating-Point Representation: which consists of a string of real values.

This approach is typically better suited for genes that come from a continuous

distribution.

2.3. EVOLUTIONARY COMPUTATION 25

There are other more complex representations such as: strings of letters (which

is basically equivalent to that of a finite integer representation) and permutation

representations (see [58, pages 41–42]).

2.3.3 Evaluation Function

Closely related to the representation is the issue of the evaluation function. This func-

tion associates a value to every individual in the population, and corresponds to the

quality of that individual. Thus, different representations of the same problem may

have different evaluation functions, since this is typically calculated from the values

of the genes of each individual and through the genotype-to-phenotype mapping.

The evaluation function is often referred to as fitness function in EC.

2.3.4 Initial Population

Once the representation is fixed, the first issue is developing the construction of an

initial population. This is typically performed by randomly generating individuals so

that the population can cover wider areas of the search space.

Nonetheless, there are other more specialized methods. A very common approach

is to generate the individuals in a greedy manner, which means that every individual

is constructed in such a way that, at every time the next gene is given the value that

optimizes the evaluation function for that individual. Occasionally, the solutions may

be somehow seeded in areas where solutions are likely to be found.

2.3.5 Parent Selection

Selection mimics the survival-of-the-fittest phenomenon available in the nature. By

this method, certain elements in the population are chosen to pass to the next gener-

ation and are usually combined to form the offspring. This selection mechanism tries,

in general, to choose parents that are likely to produce a high-quality descendant.

Typically, two individuals are chosen to reproduce and yield descendants. Different

kinds of selection mechanism are:

26 CHAPTER 2. BASIC CONCEPTS

Fitness Proportional Selection: consists of giving a certain probability to be cho-

sen for every individual. This probability depends directly on the absolute fit-

ness of the individual. The main drawback of this mechanism is that the best

candidates are very likely to take over the whole population very quickly. This

method is often called roulette-wheel selection.

Ranking Selection: this method is very similar to the previous one. The difference

is that, in this case, individuals are ranked according to their fitness, and then

probabilities are given based on the ranking rather than on the fitness itself (see

[22]).

Tournament Selection: this is maybe the simplest mechanism, and also the least

time-consuming. It consists on choosing k individuals completely at random,

and then selecting the two individuals with highest fitness function. Obviously,

the complexity of this method depends on the value of k.

There are many other methods, mainly variations of the ones described above [58].

2.3.6 Reproduction

This operator is in charge of combining the parents in such a way that a high quality

individual (descendant) is obtained. This mechanism is also known as crossover. In

some EAs, this operator is able to generate more than one descendant (usually two),

but we will assume from now on that only one is generated. Thus, different crossover

operators are:

One point crossover: this is the most popular method. It consists of choosing a

point randomly, and copying the genes of a parent, from the beginning until

this point, to the descendant, and the genes of the other parent from that point

till the end.

As an example, assume we have two parents of the form:

σ1 = 〈 0 1 0 0 1 1 1 1 0 〉

σ2 = 〈 0 0 0 1 1 0 1 0 0 〉

2.3. EVOLUTIONARY COMPUTATION 27

and k = 5 is the crossover point, the descendant would either be

〈 0 1 0 0 1 / 0 1 0 0 〉

or

〈 0 0 0 1 1 / 1 1 1 0 〉

Note that extending this operator to generate two descendants is trivial.

Multiple point crossover: is based on the previous operator, and its only differ-

ence is that instead of 1 point, several k points are chosen randomly. Then, to

generate a descendant it would copy the genes of each parent in turns after each

crossover point.

Uniform crossover: is slightly different than the previous one. It treats each

gene independently and decides from which parent it is going to be inherited

(typically with the same probability).

These methods are the most common ones in the literature. Other more complex ones

can also be found. It is also very common to implement a smart uniform crossover

where instead of proabilities, the decision criterion is based on the fitness of the

descendant.

2.3.7 Mutation

This operator is the main source of diversity. It is based in the biological fact that

some genes can mutate for different reasons, and thus, the descendant can acquire

genes that are from none of its parents. The most common ones are:

• Random bit modification: consists on changing the value of some bits with

a given probability. The operator changes the value of every bit in the sequence

with a certain probability. If the representation is binary, the effect is that of

flipping a bit, either from 0 to 1 or from 1 to 0.

28 CHAPTER 2. BASIC CONCEPTS

• Swap mutation: simply selects two genes (at random) in the sequence and

swaps their values. Imagine the individual:

〈 0 [1] 0 [0] 1 0 1 0 0 〉

and the swapping genes 1 and 3, the mutated individual would be

〈 0 [0] 0 [1] 1 0 1 0 0 〉

• Insert mutation: chooses two genes at random and moves the second one

next to the first. Again, if we have the individual

〈 0 [1] 0 0 [1] 0 1 0 0 〉

and the inserting genes 1 and 4, the mutate individual would be

〈 0 [1] [1] 0 0 0 1 0 0 〉

• Scramble mutation: selects a region in the sequence and randomly scrambles

its values. For example,

〈 [0 1 0 0] 1 0 1 0 0 〉

and the region from 0 to 3, a possible mutate individual would be

〈 [1 0 0 0] 1 0 1 0 0 〉

Note that all these operators can be applied to any kind of representation, even

though the illustrations assume a binary representation.

Many other complex and specialized mutation operators can be found in the lit-

erature, including the ones where the mutation is not random but biased by the

subsequent value of the fitness function of the individual.

2.3.8 Selection of the new generation

As we have previously introduced, this mechanism replaces the last population by a

new one. In order to do so, some algorithms completely replace the previous popula-

tion by the new set of descendants (offspring). However, this type of selection, known

2.3. EVOLUTIONARY COMPUTATION 29

as generational replacement, is usually not a very effective technique, and EAs usu-

ally implement mechanisms to generate the new population from both the previous

population and the offspring. Among these mechanism we can distinguish:

Fitness based: selection focuses on keeping some percentage of the individuals with

the highest fitness for the next generation.

Steady state: this is a particular case of fintess based selection, when only a small

number of the individuals with the lowest fitness are replaced from generation

to generation.

Generations based: selection takes into account the number of generations passed

since its creation, and replaces then those individuals which have been in the

population for a larger amount of generations.

A technique associated with this operator (independent of the mechanism type) is to

always maintain the highest quality individual in the population. This technique is

usually referred to as elitism.

2.3.9 Termination

The termination condition indicates when it is time for the algorithm to stop. At this

point, the algorithm will usually return the best individual (according to its fitness

function) found in the whole execution. We can distinguish two kinds of termination

condition:

• Objective reached: when an EA is implemented to reach a certain goal (i.e.,

a solution of a certain quality), reaching that goal should be the indication for

the algorithm to stop.

• External conditions: However, the previous case is very rarely achieved,

due to the stochastic nature of these algorithms. Therefore, a different criterion

must be used. Different conditions include:

– Fixed number of generations reached.

30 CHAPTER 2. BASIC CONCEPTS

– Maximum time allowed reached.

– Fitness improvement does not occur for a certain number of generations.

– Manual inspection.

– A combination of the above.

2.3.10 Grammatical evolution

Grammatical evolution [122] (GE) is the latest, most promising Genetic Programming

string-based approach. Genotypes are represented by strings of integers (each of which

is called a codon) and the context-free grammar of the target programming language is

used to deterministically map each genotype into a syntactically correct phenotype (a

program). In this way, GE avoids one of the main difficulties in Genetic Programming,

as the results of applying genetic operators to the individuals in a population are

guaranteed to be syntactically correct. The following scheme shows the way in which

GE combines traditional genetic algorithms with genotype-to-phenotype mapping.

1. A random initial population of genotypes is generated.

2. Each member of the population is translated into its corresponding phenotype.

3. The genotype population is sorted by their fitness (computed from the pheno-

types).

4. If the best individual is a solution, the process ends.

5. The next generation is created: the mating-pool is chosen with a fitness-proportional

parent selection strategy; the genetically modified offspring is generated, and

the worst individuals in the population are replaced by them.

6. Go to step 2.

This procedure is similar in many respects to biological evolution. There are three

different levels. Figure 2.2 shows a graphical scheme of the process in the particular

case studied in chapter 5: the automatic generation of fractal curves with a given

dimension.

2.3. EVOLUTIONARY COMPUTATION 31

• The genotype (nucleic acids), is represented in GE by vectors of integers.

• The intermediate level (proteins), is represented in GE by words in a given

alphabet, which in our case describe an L system (see below). The translation

from the genotype to the intermediate level is performed by means of a fixed

grammar (the equivalent of the fixed genetic code).

• The phenotypic (organisms), in our case represented by the fractal curves ob-

tained from the intermediate-level words by means of a graphical interpretation.

For a more technical and comprehensive treatment on Evolutionary Computation we

recommend the reader to consult [23].

Figure 2.2: Graphical scheme of a GE process

32 CHAPTER 2. BASIC CONCEPTS

Chapter 3

Advances in Algorithmic

Information Theory

In this chapter we present two advances in Algorithmic Information Theory, specially

related to the the Normalized Compression Distance (NCD). Both are of theoretical

nature.

3.1 The Normalized Compression Distance in the

presence of noise

The current massive use of Internet has enormously increased the traffic of files across

potentially noisy channels which can change their original contents. NCD is a simi-

larity measure based on the use of compressors, so noise could make NCD get wrong

results: a clustering application using NCD as a measure of distance would classify

as dissimilar two similar files corrupted by noise.

The experiments described in this subsection have been designed in the following

way: all the files contain bytes in a certain range (i.e. genomes can only belong to

{A,C,G,T}; texts can contain any ASCII character; music uses MIDI files and images

use GIF format, both with their bytes in the range [0,255]).

Noise is applied with certain probability independently to individual bytes, by

33

34 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

integer addition of an uniform random positive (non-zero) value, in such a way that

the resulting byte belongs to their appropriate above mentioned ranges. This model

of comunication with noise is known in the literature as the symmetric channel [39,

chapt. 8].

The experimental tests show how the NCD changes when applied to two files, one

of which is distorted by an increasing noise ratio (i.e. several percentages of noise are

added during the experiments), while the other remains unchanged.

3.1.1 Theoretical Analysis

Let us consider a file of size a which is compressed by a given compressor into another

file of size b. If we add noise to the original file and compress it, as the amount of

noise increases, the compressor will be able to reduce less and less the file size, until

it will be unable to reduce it at all, once the contents of the file become fully random.

Therefore the size of the compressed file will start at b, when no noise is added, and

will increase steadily to a, which will be reached when the whole initial file has been

replaced by random noise.

At a given point in this procedure, if we add ∆x noise to the file (i.e. change

randomly the values of ∆x bytes in the file), the size increase (the compression loss)

we may expect will be proportional to the amount of the file which has not yet been

replaced by noise. Therefore, the evolution of the compressed size y will be defined by

∆y = γ(a − y)∆x. When ∆x → 0, this equation becomes the first-order differential

equation dy/dx = γ(a − y). The solution of this equation, taking into account the

indicated initial conditions, is:

y = a− (a− b)e−γx (3.1)

where x is the amount of noise added and the value of y (the size of the compressed

file) is b for x = 0, a for x→∞.

Consider the definition (2.7, page 16) and assume that we want to study the

variation of the distance NCD(p, q) between a fixed file p, and another file q which is

being contaminated by growing amounts of noise. Without loss of generality, we may

3.1. THE NCD IN THE PRESENCE OF NOISE 35

assume that C(p) ≤ C(q). Therefore, the above distance becomes

NCD(p, q) =
C(pq)− C(p)

C(q)
(3.2)

We have seen that, as the amount of noise x introduced in file q grows, C(q) =

a − (a − b)e−γx. It is easy to see that C(pq) will evolve in a similar way, although

with different constants, because the noise introduced in the second part of the file

not only destroys redundancies in that section of the file, but also prevents possible

cross-compressions with the first part, which does not receive noise. So, C(pq) =

c − (c − d).e−φx. Finally, C(p) is a constant. Replacing these values, under certain

conditions the NCD formula can be approximated by the equation:

NCD(p, q) = α + βe−γx − δe−φx, (3.3)

where the values of the constants depend on the actual files p and q compressed; x

continues being the amount of noise added. With certain values of the constants,

this function reaches values greater than 1 (usually smaller than 1.1). This effect

provides a different explanation of the anomaly, signalled in [34], that the value of

the NCD may be greater than 1, without any reference to the presence of defects in

the compressor implementation.

3.1.2 Experimental results

In the last section we obtained a model (Eq. 3.3) for the NCD in the presence of

noise. If we compute the average distortion introduced by a noise level l, we come to

a similar equation, since NCD(p, q) is a constant:

∆l(p, q) ≡ E[NCD(p, q + nl mod r)− NCD(p, q)]

≈ α′ + β′e−γ′l − δ′e−φ′l (3.4)

where nl is a random string whose length is equal to the length of q and whose i-th

character is non-zero with probability l; r is the size of the file type range (i.e. 4

36 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

probabilty error per byte

av
er

ag
e

di
st

or
tio

n

The Raven vs. The Fall of the House of Usher

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

probabilty error per byte

av
er

ag
e

di
st

or
tio

n

mouse mtDNA vs. rat mtDNA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

probabilty error per byte

av
er

ag
e

di
st

or
tio

n

Sonata KV545 vs. Symphony 40

Figure 3.1: Three examples of different types of data which exhibit the typical decay
behavior of the average distortion. We compare the texts “The Raven” vs. “The Fall
of the House of Usher,” (upper left figure) mouse mtDNA vs. rat mtDNA (upper
right) and Mozart’s “Sonata KV545” vs. “40th Symphony” (lower left).

for DNA, 93 for ASCII and 256 for the rest). The modulo operation is performed to

maintain each value in its proper range.

In this subsection we test the goodness of the model (3.4) by adjusting it over

experiments with real data: ASCII texts [81], mitochondrial DNA (mtDNA, obtained

from [34]), songs in WAV format and face images in GIF format [5]. For each two

files p and q we estimate ∆l(x, y) averaging over 10 realizations of the random vector

nl, computing distances by means of the CompLearn Toolkit [34], which implements

the NCD and NCD-driven clustering; default CompLearn parameters were used in

all experiments.

3.1. THE NCD IN THE PRESENCE OF NOISE 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20
x 10

−3

probabilty error per byte

av
er

ag
e

di
st

or
tio

n

subject01−sad vs. subject02−sad

Figure 3.2: An example of the typical non-decay behavior of the average distortion
with face images. The two elements in the comparison are subject #1’s and #2’s face
images with a predefined “sad” disposition (subject01-sad vs. subject02-sad).

In all the experiments performed, the model obtained a very accurate fit with a

squared 2-norm of the residuals always below 10−3. An interesting result is that, for

some data types, the average distortion increases until it reaches a maximum at some

l < 1 and later decays steadily converging towards a smaller value when the level of

noise is increased; texts, mtDNA and songs follow this behavior (Figure 3.1). This

phenomenon explains the already mentioned fact that the NCD can sometimes reach

values greater than 1 when comparing files that share very little information: the

region in which ∆l(x, y) has a value greater than ∆1(x, y) (distortion with full noise)

coincides with the region in with the NCD(p, q + nl mod r) is greater than 1.

Other data types like face images (Figure 3.2) increase continuously without any

posterior decay. In Table 3.1 we show some results of the experiments performed and

their classification according to whether a decay exists or not; 200 experiments were

performed for each pair p, q, 10 realizations of nl for each l, with 20 different values

of l ∈ {0.05, 0.10, 0.15, . . . , 1}.

38
C

H
A

P
T

E
R

3
.

A
D

V
A

N
C

E
S

IN
A

L
G

O
R

IT
H

M
IC

IN
F
O

R
M

A
T

IO
N

T
H

E
O

R
Y

p q α′ β′ γ′ δ′ φ′ decay
Secret Adversary The Mysterious Affair at Styles 0.0720 0.9036 2.2057 0.9696 3.0468 yes
Antony and Cleopatra Hamlet 0.0617 0.9159 2.0486 0.9689 2.6575 yes
An Essay on Criticism The Fall of the House of Usher 0.0712 0.9116 1.5148 0.9787 2.3714 yes
Hamlet Secret Adversary -0.0846 1.0324 1.0488 0.9414 1.4349 yes
The Raven The Fall of the House of Usher 0.0396 0.9503 1.7972 0.9855 2.1636 yes

mouse rat -0.0918 0.8437 1.3972 0.7414 3.0697 yes
finWhale blueWhale -0.8439 1.2250 0.1565 0.3683 7.5895 yes
graySeal Harbor Seal -0.7520 1.2352 0.1215 0.4693 10.698 yes
human Blue Whale -0.2372 0.9206 1.0215 0.6772 2.6497 yes
rat horse -0.2220 0.8756 1.0162 0.6464 2.7148 yes
chimpanzee Gray Seal -0.2047 0.8422 1.0461 0.6302 2.8282 yes

(Chopin) Prelude 15 (Chopin) Prelude 7 1.4075 -1.1543 0.4476 0.2546 -0.7388 yes
(Chopin) Prelude 15 Begin the Beguine 1.2717 -1.0224 0.3340 0.2508 -0.5981 yes
(Mozart) Sonata KV545 (Mozart) Symphony 40 1.3465 -0.8083 0.6904 0.5388 -0.4068 yes
Begin the Beguine My heart belongs to daddy 1.3838 -1.0255 0.5251 0.3595 -0.5916 yes

subjec01.centerlight subject03.centerlight 0.0171 0.6498 6.4166 0.6663 6.2745 no
subject02.happy subject04.happy 0.0178 0.6501 6.2037 0.6672 6.0454 no
subject01.sad subject02.sad 0.0193 0.6498 6.2472 0.6684 6.0887 no
subject01.centerlight subject01.normal 0.6447 0.6705 0.0325 1.3116 0.0305 no
subject02.sleepy subject02.wink 0.6325 0.6764 0.0334 1.3051 0.0332 no
subject05.surprised subject05.glasses 0.6441 0.6709 0.0226 1.3111 0.0256 no

Table 3.1: Data-fitted values of the model (3.4) and existence of decay for several experiments performed on texts,
mtDNA, songs and face images.

3.1. THE NCD IN THE PRESENCE OF NOISE 39

It is worthwile to consider whether other models with the same number of free

parameters could fit the experimental data. It is possible, for instance, to get a good

4-th degree polynomial adjustment of these curves in the [0, 1] noise interval, but this

would be a consequence of the fact that we are measuring noise as the rate of original

information changed. If we had chosen to measure it as the number of changes made

in the original streams, the range of our independent variable would be [0, ∞) (see

Section 3.1.1). In this case, our model would still be able to fit it without problems,

while a polynomial cannot reproduce the asymptotic behavior . Thus, our model is

as good as other simpler models with the same number of free parameters, but also

shows a correct asymptotic behavior difficult to express with them.

Finally, we show two real clustering experiments performed with the CompLearn

Toolkit in the presence of noise. In Figure 3.3 several dendrograms result from cluster-

ings texts by several authors in which several levels of noise have been added to each

text. Similar experiments are repeated in Figure 3.4 but this time with mammalian

mtDNA.

3.1.3 Discussion

When the NCD is used to compute the distance between two different files, the second

file can be considered as a noisy version of the first. Therefore, the effect on the NCD

of the progressive introduction of noise in a file can provide information about the

measure itself. In this work, we forward a theoretical reasoning of the expected effect

of noise introduction, which explains why the NCD can get values greater than 1 in

some cases.

A first batch of our experiments confirm the theoretical model. A second batch

explores the effects of noise on the precision of clusterings based on the use of the

NCD. It can be noticed that the clustering process is qualitatively resistant to noise,

for the results do not change much with quite large amounts of it. Different types

of files are differently affected, however, which is not surprising: mtDNA files, for

instance, which are built on a 4-letter alphabet, are degraded faster than human text,

which uses a larger alphabet.

40 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

In the future, we intend to tackle a quantitative demonstration of the NCD resis-

tance to noise. We shall also try other metrics and clustering procedures, appropriate

to the different file types, to compare their resistance to noise with our NCD results.

3.1. THE NCD IN THE PRESENCE OF NOISE 41

k0

AP-AEoC

AP-TRotLaOP

k2

AP-AEoM

k10

k9

k5
k3

k4

WS-H

WS-AaC

k8 k6

k1

MdC-DQ

MdC-TENoC

k11

NM-DotFDoTL

NM-HoFaotAoI

NM-TP

k7

AC-TMAaS

AC-SA

EAP-TFotHoU

EAP-TR

0.912

0.933

0.976

0.983

1.005

0.960

0.975

0.961

0.968

0.986

0.939

0.986

0.966

0.948

0% noise

k0EAP-TFotHoU

EAP-TR

k6

k4

k7

WS-AaC

WS-H

k8
AP-AEoM

k10

k2 k11

AC-TMAaS

AC-SA
k5

k3

k1

MdC-DQ

MdC-TENoC

k9

NM-DotFDoTL

NM-HoFaotAoI

NM-TP

AP-TRotLaOP

AP-AEoC

0.999

0.999

0.999

1.000

1.000

0.999

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.999

75% noise

k0

AP-TRotLaOP

AP-AEoC

k1

EAP-TR

k7

k6

EAP-TFotHoU

k5

k4

k2

AC-TMAaS

AC-SA

k3

NM-TP

k10

NM-HoFaotAoI

NM-DotFDoTL

k9

MdC-TENoCMdC-DQ

k11

k8

WS-AaC

WS-H

AP-AEoM

0.994

0.995 0.997

0.998
0.990

0.999

0.995

0.992

0.995

0.994

1.0010.998

0.996

0.995

25% noise

k0

AP-TRotLaOP k7

k3

k9

k5

AP-AEoM

WS-H

WS-AaC

k10

k2

MdC-DQ

k4

MdC-TENoC

k8

NM-DotFDoTL

NM-HoFaotAoI

NM-TP

k11

AC-TMAaS

AC-SA

k6

k1

EAP-TFotHoU
EAP-TR

AP-AEoC

0.999

0.999

0.999

1.000

0.999
0.998

0.998

0.999

1.000

0.997
1.000

0.998

0.998

0.999

50% noise

Figure 3.3: NCD-driven clusterings of texts by several authors in which different levels of noise
have been added to each sequence. The first characters in the book labels are the initials of their
authors: “AC” = Agatha Christie, “AP” = Alexander Pope, “EAP” = Edgar Alan Poe, “WS”=
William Shakespeare and “NM” = Nicolò Machiavelli. The quality of the clustering degrades slowly.

42 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

k0

k5

human

chimpanzee

k3

rat

mouse

k4

k1

k2

k6

k7

harborSeal

graySeal

cat

horse

blueWhale
finWhale

0.851

0.969

0.938

0.968

0.689

0.943

0.953

0.956

0.822

0.969

0% noise

k0

blueWhale

k6

horse

human

k1

mouse

k4

k5

k2

k3

harborSeal
graySeal

cat

k7 chimpanzee

finWhale

rat
0.992

0.993

0.996

0.995

0.990

0.992

0.992

0.991

0.993
0.992

25% noise

k0

mouse

rat

k3

k1blueWhale

k6

finWhale

human

k4

k2

k5

chimpanzee

cat

k7

horse

harborSeal

graySeal0.996

0.995

0.995

0.994

0.996

0.996

0.996

0.994

0.996

0.996

50% noise

k0

chimpanzee

k7

mouse

cat

k6

k1

k3

k2

k5

rat

finWhale

blueWhale

k4

graySeal

harborSeal

horse
human

0.995

0.994

0.997

0.996

0.995

0.996

0.995

0.995

0.995

0.996

75% noise

Figure 3.4: NCD-driven clusterings of mammalian mtDNA sequences in which different levels of
noise have been added to each element. The quality of the clustering degrades slowly but somewhat
faster than in Figure 3.3 due to the faster growth of the average distortion in this type of data.

3.2. ANALYZING COMPRESSORS REQUIREMENTS 43

3.2 Analyzing compressors requirements

In Subsection 2.1.1 (page 14) we introduced the necessary conditions for a distance

to be a normalized similarity distance. One implicit need for the NCD to accomplish

those conditions is to use compressors which are invariant with respect to the size of

the objects. Although this is rather natural, it does not hold for some well-known

compressors such as bzip2, gzip, pkzip and many others if the object size exceeds the

window size. However, as shown by our results, in the range of usefulness of these

compressors, the NCD is very good for its purposes.

Stated formally, we are interested in determining the precision up to which simple

conditions like the identity, i.e. NCD(x, y) = 0 ⇐⇒ x = y hold for different

compressors. It turns out that for compressors using a certain window size, or block

size, we obtain NCD(x, x) close to 1 once we significantly exceed the window size,

as the compressors no longer compress. Trivially, in computing the NCD(x, y) the

concatenation xy should comfortably fit the window size or block size. Note that the

behavior on (x, x) is possibly different from that on (x, y), with respect to window

size. Namely, a window of size |x| sliding over xx has mostly all of x in the window

(suffix of first instance, prefix of the next instance). The way in which the identity

(of the metric) and the idempotency (of the compressor) are related is the following:

x = y ⇒ C(xy)− C(x) = O(log |x|)⇒ NCD(x, y) = O

(
log |x|

C(x)

)
−−−−→
|x|→∞

0

These deficiencies observed when measuring identical objects (the easiest sce-

nario) are obviously generalized to any pair of objects. In this way, speaking about

identity-idempotency problems is the same as speaking about deficiencies in the whole

distance.

In Subsection 3.2.1 we describe the materials we have used to perform our ex/-pe/-

ri/-ments. Subsection 3.2.2 presents our results for the bzip2 and gzip compressors,

and the anomalous behavior of the distance is analyzed in detail. Finally, in the

discussion at the end of this section discussion (Subsection 3.2.3), we provide empirical

advice for the correct use of the NCD.

44 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

bib Bibliographic files (refer format) 109
book1 Hardy: Far from the madding crowd 751
book2 Witten: Principles of computer speech 597
geo Geophysical data 100
news News batch file 369
obj1 Compiled code for Vax: compilation of progp 21
obj2 Compiled code for Apple Macintosh: Knowledge support system 242
paper1 Witten, Neal and Cleary: Arithmetic coding for data compression 52
paper2 Witten: Computer (in)security 81
paper3 Witten: In search of “autonomy” 46
paper4 Cleary: Programming by example revisited 13
paper5 Cleary: A logical implementation of arithmetic 12
paper6 Cleary: Compact hash tables using bidirectional linear probing 38
pic Picture number 5 from the CCITT Facsimile test files (text + drawings) 502
progc C source code: compress version 4.0 39
progl Lisp source code: system software 70
progp Pascal source code: prediction by partial matching evaluation program 49
trans Transcript of a session on a terminal 92

Table 3.2: Name, description and size in Kbytes of the files in the Calgary Corpus.

3.2.1 Materials

This section analyzes the behavior of two real implementations of the distance. The

CompLearn toolkit1 is a package implemented by Rudy Cilibrasi for clustering pur-

poses. The latest version of this package (0.6.2)2 was used in our experiments. The

bzip2 and the gzip compressors can be selected in the toolkit. Our results cover both.

On the other hand, our experimental set is the well known Calgary Corpus, a

benchmark for compression algorithms since 1989. Nine different types of text are

represented, and to confirm that the performance of schemes is consistent for any

given type, many of the types have more than one representative (see table 3.2).

Normal English, both fiction and non-fiction, is represented by two books and

six papers (labeled book1, book2, paper1, paper2, paper3, paper4, paper5, paper6).

More unusual styles of English writing are found in a bibliography (bib) and a batch

of unedited news articles (news). Three computer programs represent artificial lan-

guages (progc, progl, progp). A transcript of a terminal session (trans) is included

to indicate the increase in speed that could be achieved by applying compression

1All the experiments published in [34] were performed using this toolkit.
2Available in the Internet at http://www.complearn.org.

3.2. ANALYZING COMPRESSORS REQUIREMENTS 45

to a slow line in a terminal. All of the files mentioned so far use ASCII encoding.

Some non-ASCII files are also included: two files of executable code (obj1, obj2),

some geophysical data (geo), and a bit-map black and white picture (pic). File geo

is particularly difficult to compress, because it contains a wide range of data values,

while file pic is highly compressible, because of large amounts of white space in the

picture, represented by long runs of zeros. More reasons for choosing this benchmark

are explained in reference [146].

3.2.2 Results

In our experiments, all the objects are considered strings of bytes. If x is an object,

then xn is the object composed by the first n bytes of x. Figures 3.5 and 3.13 show

the distance NCD(xn, xn) as a function of n in four (bib, book1, book2, pic) of the

eighteen files of the Calgary Corpus3 The files book1 and book2 are selected to be

shown because they are the largest ones, while the file bib is selected because of its

average size. The reason for showing the file pic is because it is a large but highly

compressible file. To analyze the idempotency property, all the objects are compared

with themselves.

bzip2

The plots in Figure 3.5, together with many more similar experiments we have per-

formed, show that NCD(x, x) is between 0.2 and 0.3 in the region where bzip2 can

be used properly, while it gives values between 0.25 and 0.9 outside that region.

Two plots in Figure 3.5 (book1 and book2) show two visually different modes of

dependency as a function of n. We call weak dependency the region starting in 1

Kbytes and ending in 450 Kbytes (the bib and pic files only show this dependency

because of the small size of the first one and the high compressibility of the second

one). From that point onwards we call it strong dependency.

The weak dependency displays a fluctuating slowly-increasing dependence with

3The reason for choosing only four of the eighteen files is purely aesthetic. The remaining (not
displayed) graphs are available by request to the author.

46 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
BIB

Kbytes

N
C

D
(X

n,
X

n)

50 100 150 200 250 300 350 400 450 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Kbytes

N
C

D
(X

n,
X

n)

BOOK1

50 100 150 200 250 300 350 400 450 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Kbytes

N
C

D
(X

n,
X

n)

BOOK2

50 100 150 200 250 300 350 400 450 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Kbytes

N
C

D
(X

n,
X

n)

PIC

Figure 3.5: Normalized compression distances computed for the first n bytes of four
files (bib, book1, book2 and pic, from left to right and top to down) of the Calgary
Corpus files using the bzip2 compressor with the --best option.

n. On the other hand, the strong dependence is logarithmic and almost without

fluctuations. Both dependencies indicate that the distance is biased by the size of

the objects and therefore displays idempotency-identity deviations (see Definitions 1

and 2).

The bzip2 compression algorithm uses three main ideas. In the first stage of the

compression, the data suffers a Burrows-Wheeler transform; in the second, the move

to front coding is applied to the output of the transformation; finally a statistical

compressor (usually Huffman) is used for redundancy extraction. The default block

size of the bzip2 compressor is 900 Kbytes which means that, if the size of the object

is greater than 900 Kbytes, the object is divided into parts smaller than 900 Kbytes

3.2. ANALYZING COMPRESSORS REQUIREMENTS 47

before being compressed. A more detailed explanation of the algorithms in bzip2 can

be found in [28].

Let us start with the weak dependency, which can be observed in the [1 Kbyte,

450 Kbytes] interval, exactly the half size of the block. In this zone, the size of the

catenated objects is smaller than 900 Kbytes, thus they do not need to be split.

A simplified example will show how the weak dependency works. Let us assume

that the block size is 16 bytes and the object to compress is the string “drdobbs”.

We need to compute the distance:

NCD(drdobbs, drdobbs) =
C(drdobbsdrdobbs)− C(drdobbs)

C(drdobbs)
(3.5)

The size of the catenated string is 14 bytes, so it fits in a single block. Let us

analyze the algorithm step by step:

Burrows-Wheeler transform: A rotation matrix is created from the string “dr-

dobbsdrdobbs” (Figure 3.6). It can be observed that the lower half of the

matrix is a repetition of the upper half. Then the matrix is lexicographically

sorted and the output for the transformation is the last column of the matrix

“oobbrrssddddbb” (Figure 3.7).

move to front coding: the coding is applied and the output is “20103040400030”

(see [28]).

Huffman coding: The frequencies of the characters are measured as 0:8, 1:1, 2:1,

3:2, 4:2 and the compressed string is built using 26 bits (see [87]).

Using the same scheme, the string “drdobbs” is compressed using 17 bits, so the

distance is NCD = 26−17
17

= 0.529.

Now another symbol “w” is added to the string, so that the new string whose

distance with itself we want to measure is “drdobbsw”. When the rotation matrix of

“drdobbswdrdobbsw” is built and ordered, the first row whose last column has the

“w” value will be followed by another row that ends in “w” (in fact both rows will

be identical).

48 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

d r d o b b s d r d o b b s
r d o b b s d r d o b b s d
d o b b s d r d o b b s d r
o b b s d r d o b b s d r d
b b s d r d o b b s d r d o
b s d r d o b b s d r d o b
s d r d o b b s d r d o b b
d r d o b b s d r d o b b s
r d o b b s d r d o b b s d
d o b b s d r d o b b s d r
o b b s d r d o b b s d r d
b b s d r d o b b s d r d o
b s d r d o b b s d r d o b
s d r d o b b s d r d o b b

Figure 3.6: Rotation matrix for “drdobbsdrdobbs”.

Just by looking at the string (even without constructing the rotation matrix)

we can see that, when the string is coded using move to front, the second “w” of

“drdobbswdrdobbsw” will get the value 0. This means that the cost of adding “w” to

the string will be the cost of coding the first “w” plus the cost of coding the second

(only one bit), due to the symmetry of the rotation matrix.

In this way, when we add a symbol π to a string x giving y, the expected difference

C(yy) − C(y) will be larger that the expected difference C(xx) − C(x) by just one

bit. The codings should not differ too much, because the information of the symbol

is the same in both strings, log(1
p(π)

) in Shannon terms. This explains that the weak

dependency increases very slowly with n and fluctuates.

In the example, C(drdobbswdrdobbsw) = 33, i.e. after adding two “w” to the

original string (16 bits) the size of the compressed version only increases by 7 bits.

The new distance is NCD = 33−22
22

= 0.5, almost identical to that in the original

string. The compressor has noticed that the second half of the string is identical to

the first, not in a direct way, but by detecting the redundancy of the second half of

the string, and therefore coding that half with very few bits.

Let us now explain the strong dependency. The objects in this zone have a size

greater than 450 Kbytes, therefore the catenated object has a size greater than the

3.2. ANALYZING COMPRESSORS REQUIREMENTS 49

b b s d r d o b b s d r d o
b b s d r d o b b s d r d o
b s d r d o b b s d r d o b
b s d r d o b b s d r d o b
d o b b s d r d o b b s d r
d o b b s d r d o b b s d r
d r d o b b s d r d o b b s
d r d o b b s d r d o b b s
o b b s d r d o b b s d r d
o b b s d r d o b b s d r d
r d o b b s d r d o b b s d
r d o b b s d r d o b b s d
s d r d o b b s d r d o b b
s d r d o b b s d r d o b b

Figure 3.7: Lexicographically ordered rotation matrix for “drdobbsdrdobbs”.

block size of bzip2 (900 Kbytes). In our explanation, we will assume that the block

size is 8 bytes, and will use a string that, catenated to itself, is bigger than that size.

We use the string “drdobbs” again, so when compressing “drdobbsdrdobbs” it must

be split in the two strings “drdobbsd” and “rdobbs”. Let us apply the compression

algorithm to both:

Burrows-Wheeler transform: The rotation matrix for the two strings (Figures 3.8

and 3.9) is built and ordered (Figures 3.10 and 3.11). There is a big difference

between having the whole string in one block or in two: the upper-lower half

symmetry is lost due to the splitting, and much redundancy achieved in the

weak dependence zone is not achieved here. The outputs are “obsrdddb” and

“obrdsb”, whose equal characters are much less grouped4 than in the previous

example “oobbrrssddddbb”.

move to front coding: The coding of both strings is “21444003” and “213343”.

Huffman coding: The character frequencies are 0:2, 1:1, 2:1, 3:1, 4:3 for the first

string and 1:1, 2:1, 3:3, 4:1 for the second one. The resulting output built using

4Grouping identical characters is the main purpose of the Burrows-Wheeler transform.

50 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

d r d o b b s d
r d o b b s d d
d o b b s d d r
o b b s d d r d
b b s d d r d o
b s d d r d o b
s d d r d o b b
d d r d o b b s

Figure 3.8: Rotation matrix
for “drdobbsdrd”.

r d o b b s
d o b b s r
o b b s r d
b b s r d o
b s r d o b
s r d o b b

Figure 3.9: Rotation matrix
for “rdobbs”.

b b s d d r d o
b s d d r d o b
d d r d o b b s
d o b b s d d r
d r d o b b s d
o b b s d d r d
r d o b b s d d
s d d r d o b b

Figure 3.10: Lexicographi-
cally ordered rotation ma-
trix for “drdobbsdrd”.

b b s r d o
b s r d o b
d o b b s r
o b b s r d
r d o b b s
s r d o b b

Figure 3.11: Lexicographi-
cally ordered rotation ma-
trix for “rdobbs”.

Huffman coding has a size of 30 bits (4 more than when using a single block).

The main question is not the final size of the string, but the fact that the

second half of the string has been coded using 16 bits, while it was coded using

only 8 bits in the single block example (exactly double). Splitting the string

has caused a worse character-grouping when the Burrows-Wheeler transform is

performed. The long distance redundancies of the string have been lost, and

this introduces a bias in the distance: the same objects are now farther apart:

NCD = 30−17
17

= 0.765.

If the string is divided in two blocks, the expected compression cost of adding

a symbol π to x will be 2 log(1
p(π)

), therefore an expected increase of log(1
p(π)

) in

C(xx)− C(x). This explains the logarithmic growth of the strong dependency zone.

In order to compare both dependencies, it should be remembered that the expected

3.2. ANALYZING COMPRESSORS REQUIREMENTS 51

compression cost of adding one symbol is log(1
p(π)

) + 1, therefore the expected value

of C(xx)− C(x) is 1 bit when the concatenated string fits into a single block.

5 10 15 20 25 30 35 40 45 50 55 60
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
BIB

Kbytes

N
C

D
(X

n,
X

n)

10 15 20 25 30 35 40 45 50 55 60
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Kbytes

N
C

D
(X

n,
X

n)

BOOK1

10 15 20 25 30 35 40 45 50 55 60
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Kbytes

N
C

D
(X

n,
X

n)

BOOK2

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Kbytes

N
C

D
(X

n,
X

n)

PIC

Figure 3.12: Normalized compression distances computed for the first n bytes of four
files (bib, book1, book2 and pic, from left to right and top to down) of the Calgary
Corpus files using the bzip2 compressor with the --fast option.

We have repeated our experiments with bzip2 in a different situation, by selecting

the --fast option rather than the --best option (see Figure 3.12). In this case, the

block size used by the compressor can be seen to be much smaller (about 100 Kbytes,

vs. 900 in the --best case) which means that files over 50 Kbytes are not properly

managed. Even the small files in our examples suffer now from this effect and show

a strong dependency region.

52 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Kbytes

N
C

D
(X

n,
X

n)

BIB

10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Kbytes

N
C

D
(X

n,
X

n)

BOOK1

10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Kbytes

N
C

D
(X

n,
X

n)

BOOK2

10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Kbytes

N
C

D
(X

n,
X

n)

PIC

Figure 3.13: Normalized compression distances computed for the first n bytes of four
files (bib, book1, book2 and pic, from left to right and top to down) of the Calgary
Corpus files using the gzip compressor with the --best option.

gzip

The plots in Figure 3.13, together with many more similar experiments we have

performed, show that NCD(x, x) is between 0.0 and 0.1 in the region where gzip can

be used properly, while it gives values which grow to 1 outside that region.

The experimental results obtained using the gzip compressor in the NCD are

displayed in Figure 3.13. We can observe an initial slow-fluctuating growth with n,

followed by a strong discontinuity, with a jump to 0.9 at 32 Kbytes, and finally a

new slow (but slightly faster) growth, until the distance saturates in 1. We will call

again the two zones weak dependency and strong dependency, for analogy with the

3.2. ANALYZING COMPRESSORS REQUIREMENTS 53

previous subsubsection.

The kernel of gzip [3] uses a variant of the LZ77 algorithm [155] for preprocessing

and a statistical compressor (usually Huffman) as post-processing. The bias caused by

the object size is fully explained by the compression scheme of the LZ77 algorithm5.

As in the previous subsubsection, the two modes will be explained by means of

three simple examples. The string to be compared with itself is again “drdobbs”. This

time there are two parameters that play the same role as the block size in the bzip2

compressor: the sliding window and the lookahead window. The sliding window WS

is a buffer that contains the previous |WS| characters to the character that is being

compressed. On the other side, the lookahead window WL is the buffer that contains

the next |WL| characters that follow the character being coded. The LZ77 algorithm

searches the longest string that begins in the current coding character and is contained

in both windows.

current coding character WS WL coded string

d
◦
rdobbsdrdobbs empty drbobbs 01

dr
◦
dobbsdrdobbs d rbobbsd 0101

drd
◦
obbsdrdobbs dr bobbsdr 010121

drdo
◦
bbsdrdobbs drd obbsdrd 01012101

drdob
◦
bsdrdobbs drdo bbsdrdo 0101210101

drdobb
◦
sdrdobbs drdob bsdrdob 010121010111

drdobbs
◦
drdobbs drdobb sdrdobb 01012101011101

drdobbsd
◦
rdobbs drdobbs drdobbs 0101210101110177

Figure 3.14: WS= 7 bytes, WL = 7 bytes.

In our first example, let’s assume that |WS| = |WL| = 7 bytes. Remember that

we want to compute C(xx)−C(x)
C(x)

. The LZ77 algorithm is applied to the string “drdobb-

sdrdobbs”. The sliding window and the lookahead window were large enough, and

the compressor realized that the second half of the string is an exact repetition of

the first. Let us assume that each compression chunk offsetlength has a size of 2 bytes

5The Huffman coding does not have a relevant influence in the bias, so it is left out of this
explanation.

54 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

current coding character WS WL coded string

d
◦
rdobbsdrdobbs empty drd 01

dr
◦
dobbsdrdobbs d rdo 0101

drd
◦
obbsdrdobbs dr dob 010121

drdo
◦
bbsdrdobbs drd obb 01012101

drdob
◦
bsdrdobbs drdo bbs 0101210101

drdobb
◦
sdrdobbs drdob bsd 010121010111

drdobbs
◦
drdobbs drdobb sdr 01012101011101

drdobbsd
◦
rdobbs drdobbs drd 0101210101110173

drdobbsdrdo
◦
bbs obbsdrd obb 010121010111017373

drdobbsdrdobbs
◦

sdrdobb s 01012101011101737371

Figure 3.15: WS= 7 bytes, WL = 3 bytes.

(Figure 3.14). In this way C(xx)−C(x)
C(x)

= 2
14

= 0.143. We can generalize: whatever the

size of x, if the windows are large enough, C(xx)− C(x) = 2.

A new scenario is proposed: now |WS| = 7 and |WL| = 3 (see Figure 3.15).

In this example, the compressor was unable to extract all the redundancy from the

string, due to the insufficient size of the lookahead window. Rather than detecting

that the second half of the string is identical to the first, the compressor only detects

three substrings identical to three other substrings in the sliding window. This is what

underlies the weak dependency. For the Calgary Corpus, the window size (32 Kbytes)

is larger than the size of the object, but the lookahead window is smaller. This is

why the NCD increases slightly with n in this zone: C(xx)−C(x) is proportional to
|x|

|WL|
. In our example, the distance has significantly increased: NCD = 20−14

14
= 0.428.

This is a deviation in the distance, which depends little on the size of the objects.

It remains to explain the most important feature, the discontinuity point at 32

Kbytes. In this point, the size of the catenated object overflows the size of the sliding

window.

In our last example, we will assume that |WS| = 6 and |WL| = 7. The results are

shown in Figure 3.16. The insufficient size of the sliding window causes the first byte

of the string to be unreachable by the compressor, which loses all the redundancy

3.2. ANALYZING COMPRESSORS REQUIREMENTS 55

current coding character WS WL coded string

d
◦
rdobbsdrdobbs empty drdobbs 01

dr
◦
dobbsdrdobbs d rdobbsd 0101

drd
◦
obbsdrdobbs dr dobbsdr 010121

drdo
◦
bbsdrdobbs drd obbsdrd 01012101

drdob
◦
bsdrdobbs drdo bbsdrdo 0101210101

drdobb
◦
sdrdobbs drdob bsdrdob 010121010111

drdobbs
◦
drdobbs drdobb sdrdobb 01012101011101

drdobbsd
◦
rdobbs rdobbs drdobbs 0101210101110151

drdobbsdr
◦
dobbs dobbsd rdobbs 010121010111015101

drdobbsdrd
◦
obbs obbsdr dobbs 01012101011101510121

drdobbsdrdo
◦
bbs bbsdrd obbs 0101210101110151012101

drdobbsdrdob
◦
bs bsdrdo bbs 010121010111015101210161

drdobbsdrdobb
◦
s sdrdob bs 01012101011101510121016111

drdobbsdrdobbs
◦

drdobb s 0101210101110151012101611101

Figure 3.16: WS= 6 bytes, WL= 7 bytes.

detection. A very small change (only 1 byte) in the sliding window size can cause

the compressor to be absolutely blind (the NCD calculation in this example gives
28−14

14
= 1. This is what causes the discontinuity at 32 Kbytes. When the size of the

object is one byte more than the sliding window, the first byte of the first object is lost,

and the compressor becomes unable to detect the full redundancy of the catenation,

giving rise to an NCD value near to absolute dissimilarity (0.9 for almost all files in

the Calgary Corpus).

The purpose of using the LZ77 algorithm in the NCD is based on the fact that

it can use the sequences that appear in the first object to make the coding of the

second object less expensive. If the size of the sliding window is significantly smaller

than the size of any of the objects, the blind effect will outperform the redundancy

detection task.

From all performed experiments (those described in this subsubsection and many

others not shown) we can extract the following conclusion: if |WS| ≪ |x| or |WS| ≪ |y|

56 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8
BIB

Kbytes

N
C

D
(X

n,
X

n)

10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Kbytes

BOOK1

10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Kbytes

N
C

D
(X

n,
X

n)

BOOK2

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

Kbytes

N
C

D
(X

n,
X

n)

PIC

Figure 3.17: Normalized compression distances computed for the first n bytes of four
files (bib, book1, book2 and pic, from left to right and top to down) of the Calgary
Corpus files using the gzip compressor with the --fast option.

then NCD(x, y) ≈ 1 for any possible value of max{K(x|y), K(y|x)}/ max{K(x), K(y)},

i.e. for any similarity degree between x and y.

We have also repeated our experiments with gzip, by selecting the --fast option

rather than the --best option (see Figure 3.17). In this case, the size of the sliding

window used by the compressor does not change, so the results obtained are very

similar to those with the --best option. Only the compression ratio obtained is

affected (see table 3.3).

3.2. ANALYZING COMPRESSORS REQUIREMENTS 57

compressor options comp. ratio acceptable region (Kbytes)
ppmz none 25% (0, ∞)
bzip2 --best 27% [1, 900]
bzip2 --fast 29% [1, 100]
gzip --best 32% [1, 64]
gzip --fast 38% [1, 64]

Table 3.3: Comparison table over the Calgary Corpus for all compressors and options
used. For a proper use of the NCD, the addition of the sizes |x| + |y| of the objects
x, y involved in the computation of NCD(x, y) should be in the acceptable region.

3.2.3 Discussion

In this section we have analyzed the impact on the NCD quality of some features of

two compressors: the block size in bzip2, and the sizes of the two windows (sliding

and lookahead) used by gzip. The well-known Calgary Corpus has been used as a

benchmark. Any similarity distance should measure a 0 distance (or, at least, a very

small value) between two identical objects. The empirical results obtained with both

compressors for the Calgary Corpus reveal that the NCD is biased by the size of

the objects, independently of their type. For object sizes smaller than certain values

(related to the block and window sizes in the compressors), the distance between two

identical objects is usually quite small, which proves that the NCD is a good tool for

this purpose. However, for larger sizes, when the inner limitations of the compressors

are violated, obviously the distance between two identical objects grows to very high

values, making the NCD practically unusable. Other widely used compressors (such

as winzip and pkzip) also show the same limitations.

The use of block and window sizes in the compressors aims to increasing the com-

putation speed at the expense of the compression ratio. This section proves that

this balance between quality and speed should be treated carefully for clustering,

where quality is tantamount. When considering clustering problems, all considera-

tions about speed should be left apart if they imply exceeding the system parameters.

The proper use of this powerful distance depends on selecting compression algorithms

without limiting factors related to the size of the objects, such as the high compres-

sion Markov predictive coder PPMZ [91], which does not set any window or block

58 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

10 20 30 40 50 60 70 80 90 100 110
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
BIB

Kbytes

N
C

D
(X

n,
X

n)

50 100 150 200 250 300 350 400 450 500 550 600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Kbytes

N
C

D
(X

n,
X

n)

BOOK1

50 100 150 200 250 300 350 400 450 500 550 600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Kbytes

N
C

D
(X

n,
X

n)

BOOK2

100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Kbytes

N
C

D
(X

n,
X

n)

PIC

Figure 3.18: Normalized compression distances computed for the first n bytes of four
files (bib, book1, book2 and pic, from left to right and top to down) of the Calgary
Corpus files using the PPMZ compressor.

limit, but is much slower than those mentioned above. The results of using PPMZ

in our experiments are shown in Figure 3.18 and are coherent with our conclusions:

the distance computed with PPMZ does not depend on the size of the objects and is

always between zero and a very small value (0.1043). On the other hand, this also

confirms that the NCD is a very good distance measurement, when used in the proper

way.

In the case of bzip2 and gzip, the block, the sliding window and the lookahead

window should be at least as large as the sum of the sizes of the objects to be

compared. The table in Figure 3.3 summarizes the results obtained for all three

compressors under different circumstances, both as regards the compression ratio

3.2. ANALYZING COMPRESSORS REQUIREMENTS 59

obtained and the size limits where the use of the NCD is acceptable for each. For a

proper use of the NCD, the addition of the sizes |x|+ |y| of the objects x, y involved

in the computation of NCD(x, y) should be in the acceptable region.

60 CHAPTER 3. ADVANCES IN ALGORITHMIC INFORMATION THEORY

Chapter 4

New applications of Algorithmic

Information Theory

In this chapter we present three new applications of Algorithmic Information The-

ory, which are specially related to the document similarity framework it provides:

Common Source Data Detection, Source Code Plagiarism Detection and Music Gen-

eration.

4.1 Common Source Data Detection

Because the common text compression algorithms are based on the presence of rep-

etitions in the text, it is clear that the only situation detectable by the compression

algorithms is when literal repetitions of the texts are present.

This essentially leads to a paradoxical situation. Namely, one and the same

text, written using two different, non-intersecting alphabets, are classified as to-

tally different, because the compression of the catenation of the texts t1 and t2 is

C(t1 ◦ t2) = C(t1) + C(t2) and thus NCD(t1, t2) = 1. This can be very easily tested,

for example, using the Cyrillic and the Latin version of the Universal Declaration of

the Human Rights in Serbian1. If we care to eliminate the structure, imposed by the

1Serbian language has the peculiarity, that it can use both alphabets – Latin and Cyrillic usually
not mixing them in one and the same text.

61

62 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

formatting rules of the document (white space and enumeration), we actually find

these texts very dissimilar. But the two texts, on the other side, are exactly the

same.

Therefore, the interesting question arises: Can we find an algorithm that can

detect translations of one and the same text?

In this article we present a Lempel-Ziv (LZ) [155], inspired algorithm, that can

detect whether some text is a translation of another text.

To make the introduction clearer, we explain LZ in a few sentences: LZ parses the

string in one direction. If the string is coded up to some position p, the next portion of

the string is coded by finding the position q in the already coded portion such that (1)

the substrings starting at the positions p and q coincide; (2) the coinciding substring

has the maximal length of all such strings and (3) if there exist more than one positions

q with these properties, the maximal q is chosen. Thus, the portion of the text that

is coded is represented as a triplet (p − q, l, s), consisting of the displacement from

the current position p− q, the length l of the substring that coincides and the symbol

s, that follows the coinciding part of the text.

There are two very different types of textual string data. The first type is text

data, usually produced by humans, in which some concept is represented by using

unidimensional character strings. This type of textual data, essentially includes cross

references and therefore repetitions imposed by the nature of the concept, as well as

structure imposed by the rules of description of the concept, as for example language

syntax and morphology. Examples of these kinds of string data are the textual data

produced directly by humans and computer programs. Usually, this type of data is

compressed well by LZ. The compression is due to the high degree of predictability

of the future of the text, looking at its past.

Actually, there are two sources of the ability to achieve compression in these texts.

On the one side, the rules that ought to be imposed to transmit the information, as

for example, formatting rules and the grammar (how many “the” in this text!) and on

the other side, the structure of the concept itself that ought to be transmitted (how

many “compress...” in this text!). Using LZ, the grammar can achieve coding, with

low displacements p− q, e.g. short-range coding. The context can achieve long-range

4.1. COMMON SOURCE DATA DETECTION 63

coding.

On the other hand, there are text-like data that are of very different nature. This

type of data does not include any grammar2 and the coding of the text is usually

the product of some stochastic process. The common characteristic is that the next

symbol is very unpredictable from the previous string. Usually, algorithms as LZ

do not function on this type of data. A common characteristic of these type of

data is that, coding the data using entropy coding symbol by symbol, for example,

by using arithmetic coding [7], we achieve better compression than using structure

based algorithms as LZ, BWT [28] or PPM [91]. Such kinds of data are, for example

DNA sequences and financial series of fluid markets. Usually, for these types of data

there exist some common “reason” for the string. For example, in the DNA sequence,

this “reason” can be the common predecessor and in the case of the financial data

one of the reasons can be the political environment. In the examples given, it seems

that the representation is preserved (the genetic code is the same), but the structure

of the underlying “concept”, if existing, is poorly expressed. For example, in the case

of genetic material, the cross-similarities between the whole genomes of two different

species are higher than the intra-similarities between two pieces of the genome of the

the same organism, because this material is a result of a random evolution process

with restrictions (the survival of the organism).

Nevertheless, the measure NCD(t1, t2) is useful in these cases, because although

the separate strings do not compress in any way, the concatenation of the two strings

compresses well, due to the fact that the texts are clearly similar and the cross-

references between t1 and t2 prevail in the compression of the second string in t1 ◦

t2. Therefore, the compression of this type of strings is a consequence of its cross-

similarity due to the common process that generates the data.

Summarizing, the reasons for the compression of some set of similar strings is the

structure, imposed due to (1) the coding rules, the structure, imposed due to (2) the

intrinsic structure of the transmitted concept and the structure imposed due to (3)

the common initial source of the data. In all the cases, we can regard that one of the

strings is in a way a translation of the other. In this translation, the coding rules

2Except trivial ones like [agtc]∗ for the genetic code.

64 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

can change, but the common source and the intrinsic structure of the concept are

preserved.

It is clear, that detecting and separating the effect of these sources is, at least, an

interesting task.

In this section we are trying to find these effects, using LZ code representation of

the string and ignoring the characters from the alphabet (the member s in the triplet).

We will process the LZ code of a concatenation of a set of strings L(t1 ◦ t2 ◦ t3... ◦ tn),

where we suppose that ti is a translation of tj. We extract all the information from

the LZ coding and try to separate the types of compressibility from this information.

In this work we attempt to diminish the influence of the coding rules of the string

(e.g. the grammar and the morphology).

This section is organized as follows: Subsection 4.1.1 briefly surveys existing ap-

proaches. Subsection 4.1.2 explains the concepts and the algorithms used. Subsec-

tion 4.1.3 describes the data and the computer experiments that were carried out

and gives a brief comment of each of them. Subsection 4.1.4 gives a rather simplified

phenomenological model of the text translation similarity observed and Subsection

4.1.5 offers a summary of the results.

4.1.1 Related work

The problem of automatic translation detection, known in the literature as parallel

text, parallel corpora or bitext detection, dates from 1998 with Resnik’s seminal pa-

per [134]. Since that moment, efforts towards solving this problem can be clearly

separated in two classes: structure based and content based.

All structure based proposals are strongly oriented to text documents with ma-

chine oriented markups, specially Web pages, and are generally divided in three stages:

1. Locating pages: Web pages which contain links to its information translated

into other languages are searched trough Web search engines like AltaVista and

Google. This process is automatic and is achieved trough predefined queries to

the search engines.

2. Generating candidate pairs: the Web pages obtained from the previous step are

4.1. COMMON SOURCE DATA DETECTION 65

investigated by means of several techniques: automatic language identification

[89], intelligent URL-matching [134, 135] or document length filtering [142].

3. Structural filtering: the HTML markups are used to create a syntax skeleton

of the document on which several matching algorithms can be applied. Most

of the non-markup contents of the document are ignored. Several measures of

matching quality are obtained, and according to some hand-tuned or machine-

learned thresholds, documents are classified as translations from another.

Some examples of this architecture are STRAND [134, 135], PTMiner [32] and BITS

[110].

The content based approach, was developed latter and with the aim to fill the

gap of translations where markups are absent. The most representative work is the

derivation of the tsim similarity score [143]; in that article, Smith proposes two levels

of matching. First, a translation lexicon is used to find the best matching of words

in text pairs, posed as a bipartite matching problem. The second level matches the

documents according to their similarity score.

Both approaches were synergistically joint in [136] by the leading authors of the

two approaches, Resnik and Smith. In that article the authors use machine learning

to design decision trees that classify the text as translated or not using the features

extracted from the markup matching algorithm (structure based) and the tsim score

(content based).

Up to our knowledge of the literature, these approaches are the most similar

to ours in tackling this problem. In this section we are trying to design a simpler

algorithm that relies only on the statistical properties of text, which is not necessarily

human written and does not use lexicon.

4.1.2 The algorithm

We are going to measure the similarity between two texts t1 and t2. To begin with,

we apply the LZ algorithm to each text obtaining the typical LZ-triple set {(p −

q, l, s)} consisting of the displacement of the current position p − q, the length l of

the substrings that coincide at positions p and q and the symbol s, that follows the

66 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

coinciding part of the text. We do not care about the alphabet but only about its

compression structure, so we can leave apart the symbol s, obtaining an equivalent

set GLZ = {(q, p, l)}, which can be interpreted as a graph with the positions of the

text p and q as vertices, and edges between them, with weight l > 0 which is the

length of the identical string in the positions p and q. This graph is extremely sparse.

If the substrings with length l in the positions p and q are identical, then the

substrings at position p + 1 and q + 1 are also identical with length l − 1, the same

happens with p + 2, q + 2, l − 2 and so on. Therefore, we can increase the density of

the graph, by defining:

G0 = {(q + i, p + i, l − i), (p + i, q + i, l − i) |(p, q, l) ∈ GLZ, 0 ≤ i < l}

Members of G0 with small l are generally imposed by the grammar and also by

random matches between short strings due to the limited alphabet. Although the

grammar is an interesting aspect, we prefer to ignore it in the present work and

we prune the graph by deleting the edges with small weights. We can simplify the

consideration by regarding all edges of weight more than some limit L as equivalent

and thus, instead of regarding the weighted graph G0, we consider a normal graph

G1
L defined as:

G1
L = {(q, p) | (q, p,m) ∈ G0, m ≥ L}.

Some edges remain to be added to complete our graph: if we have edges (p, q) and

(q, r) in G1
L, it is clear that we have to add edges (q, p), (p, r) and (r, p) because of

two reasons: (i) p can be compressed with position r, (ii) p and r belong to substrings

with lengths greater than L which LZ identified as useful for achieving compression.

This process can continue iteratively, until finally each node will be connected to all

its reachable nodes, which is the transitive closure of the graph:

GL = {(q, p) | there exists a path from p to q in G1
L}.

In order to compare the structure of two texts t1, t2, strictly speaking, we must

compare the structure of the graphs GL(t1) and GL(t2). However, as we will see, this

4.1. COMMON SOURCE DATA DETECTION 67

level of detail is not necessary when dealing with human written texts. In these cases

we will compare instead of GL(t1) and GL(t2) just the degrees of the nodes of the

graphs. As the two texts t1 and t2 may have different length (number of positions)

their number of nodes may be different and therefore their degree functions may have

different ranges, which can be a drawback for a direct comparison. For example,

the Russian version of the universal declaration of human rights can be coded with

KOI8-r, which means that each character will occupy 1 byte. The same text coded

using UTF-8 will use two bytes per Cyrillic character and therefore the length of the

text will be almost doubled.

To overcome situations like this, we choose an arbitrary but fixed number of bins

B ≪ N and unite several text positions of the text (vertices of GL) in one vertex.

More exactly, we define the function degL,B(t; k) as the number of edges in GL(t)

of the vertices p with k = ⌊Bp/(N + 1)⌋. We will omit the parameter k if we refer

it as a vector index. Of course, we have to choose the same B for the objects being

compared. In this way, the two binned degree functions of both Russian versions will

be very similar.

The scale parameter B can be chosen in a way to achieve enough statistics for the

estimation of the density of each bin k which in practical terms means to have some

10 edges per bin [126].

Once we have degL,B(t1) and degL,B(t2) in the same, unidimensional range, [0, B−

1], we can compute the distance between these two values in many different ways.

However, for this study even a simple correlation ρ of the smooth averages of these

these functions ρ(degL,B(t1), degL,B(t2)) serves in order to demonstrate the proof of

concept. Thus we have a similarity measure:

M1(t1, t2; L,B) ≡ ρ(degL,B(t1), degL,B(t2)), (4.1)

where with ρ(x, y) is by the definition the correlation between x and y:

ρ(x, y) ≡
〈xy〉k − 〈x〉k〈y〉k√

(〈x2〉k − 〈x〉2k)(〈y
2〉k − 〈y〉2k)

.

68 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

4.1.3 Experimental results

We have explored the following sets of data:

1) The Universal Human Rights Declaration (UD) [4].

2) The first two chapters of four translations of “Don Quixote”, by Miguel de

Cervantes (DQ) [48, 49, 47, 46].

3) The Chapters 11 to 20 of the Bible book Exodus [2].

4) Mitochondrial DNA data (mtDNA).

8000 10000 12000 14000 16000
Length of the text

0

1

2

3

4

5

6

7

N
o

of
 te

xt
s

DQ
UD

Figure 4.1: The histogram of the lengths of the texts used. The three texts that are
double-byte coded UD are excluded from this graph. They have length from 20 to
21 kB. However, this does not affect the matching. It is clear that DQ and UD have
similar lengths.

All these datasets have a reasonable size of about 10 Kbytes per text (See Fig.4.1).

With the first and the second set we are trying to see whether we can detect the

similarity in the structure and differentiate it from the influence of the grammar and

the formatting of the document.

In all cases of human-written text (UD and DQ) the parameter L was set to 5

4.1. COMMON SOURCE DATA DETECTION 69

letters, which seams to eliminate many speech particles that carry essentially gram-

matical and morphological information, such as particles that determine the gender,

definitive and indefinite particles, etc.

Figure 4.2: The connectivity of the graph GL for two groups of three languages
each, using UD as text. The left panel represents the concatenation of the English,
French and Russian (KOI8-r coding) version of the UD, that gives significant cross
compression between French and English. The right panel represents the connectivity
matrix of English, Serbian (Latin) and Russian version. The cross-correlation between
the English and the Serbian version is larger, but actually the Serb language is much
closer to the Russian than to English.

Fig. 4.2 (left) represents a typical result of compression of the concatenation of

the texts of the UD in three languages – English, French and Russian. The grey

levels represent the presence of a link between the nodes that are placed in the axes

of the graph. The graph is blurred, converting each point in a Gaussian bump with

radius of about 40 text positions. The total length of the concatenated text is about

30K, so each third is represented by a square-like area. The upper left quadrant

represents the result of compression of UD English, compressed with UD English, the

quadrant at the center represents the UD of French, compressed with itself and the

lower right quadrant represents the Russian version, compressed with itself. Two of

the concatenated texts use one and the same alphabet and belong to similar language

70 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

groups. Therefore, we can observe significant cross-compression pattern in the middle

quadrant of the first raw (and the second quadrant of the first column, which is the

same). However, we can not see any cross-compression between the Russian version

of the UD and the two other versions, due to the non-intersecting codes of the Cyrillic

and Latin alphabets, with the exception of the formatting information (white spaces,

capture enumeration and similar).

Using the NCD, we observe a small distance between the English and French ver-

sions, but large distances between Russian and both of them that seems a reasonable

result.

However, on the right panel of the same figure, Fig. 4.2, we see the UD text

compression of the concatenation of English, Serbian (Latin alphabet) and Russian.

We see that the dissimilarity between the English and the Serbian version, using the

NCD is smaller (0.9466) than the dissimilarity between the Serbian and the Russian

version (0.9944), which can be observed also by the density of the middle quadrant

of the first row. But in reality, the Russian and the Serbian belong to one and the

same language group and ought to group closer.

The compression in either cases (English - French - Russian) and (English - Serbian

- Russian) is dominated by the compression within the same text, e.g. the structure

and the vocabulary of each language are predominant factors in the compression.

The connectivity matrices of GL have a typical block-diagonal structure. Therefore,

we can try to compare the similarity of the texts, using the unidimensional measure

M1, Eq.(4.1). Fig. 4.3 (the two bottom panels) represents the smoothed degrees of

each graph e.g. degL,B(UDFrench) and degL,B(UDRussian). The correlation coefficient

is rather large, 52.3%. In all cases of the human rights declaration, written in dif-

ferent languages, we can observe similar values (with the exception of very similar

languages).

The results for several translations of the UD are represented in Table 4.1 (right-

down quadrant). The correlations vary from 51.6% to 66.8%.

To check that what is compared is not just the dictionary, we shuffle by random

permutation the words of 4 texts of UD and measure the correlation. Fig. 4.4 shows

the result. The shuffled versions are grouped near a zero correlation (actually it is

4.1. COMMON SOURCE DATA DETECTION 71

0 100 200 300 400 500
bin number B

0

de
g

L,
B

DQ French

DQ Russian

HR French

HR Russian

x4

x4

Figure 4.3: The degrees of the binned nodes of the graphs GL of UD.

not exactly zero, because the distributions of the words is highly non-uniform), but

the difference between the distributions is clear.

In order to see that what is captured is the structure of the text, and not the

particular language coding, we can contrast the results of UD with another text. We

choose as a different text the translations of the first chapter of DQ and we calculate

the same similarity measure M1 for English, French, Russian and Spanish versions of

DQ and UD. The results are represented in Table 4.1 and as an histogram — in Fig.

4.5.

All pairings between the same text and different languages has M1 > 0.17. In

contrast, all pairings between different texts, including different texts in the same

language, give M1 ∈ [−0.2, 0.06], which corresponds to random match. The smoothed

node-degrees of the French and the Russian version of DQ are represented in the two

72 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

−0.5 −0.3 −0.1 0.1 0.3 0.5 0.7 0.9
Correlation

0

2

4

6

8

N
um

be
r

of
 c

as
es

Permutated texts pairs
Original text pairs

Figure 4.4: The correlations between randomly permuted texts (both between the
permuted texts and the permuted texts and the original ones) and the distribution
of the distances between the original texts.

upper panels of Fig.4.3. There exists a clear distinction between DQ and UD texts

and a similarity between the Russian and the French version of one and the same text

(either DQ or UD).

Because the UD and DQ texts are very different in style, one can argue that what

is actually captured is the specific dictionary of each text and not the structure of

the text itself. In order to discard such a possibility, we also compare two chapters

of DQ with similar lengths. The results are represented in Table 4.2, where it can be

clearly seen that the distinction is between different texts and not between different

writing styles, dictionaries or authors.

Furthermore, in order to get more statistics we use several chapters of the Bible

[2]. However, caution must be taken with old versions of the Bible because these are

usually literal translations from other literal translations and sometimes the result

is quite different from the original. For example, the ancient Reina-Valera Spanish

4.1. COMMON SOURCE DATA DETECTION 73

DQ UD
eng fra rus spa eng fra rus spa sre sry

DQ eng 100 31 18 34 5 2 -10 4 -6 -3
fra 31 100 24 51 -1 -6 -10 -17 -9 -5
rus 18 25 100 17 -16 4 -6 5 6 -2
spa 34 51 17 100 6 -4 -5 -13 -10 -9

UD eng 5 -1 -16 6 100 58 52 34 56 56
fra 2 -6 4 -4 58 100 52 56 64 50
rus -10 -10 -6 -5 52 52 100 27 58 42
spa 4 -17 5 -13 34 56 27 100 50 34
sre -6 -9 6 -10 56 64 58 50 100 67
sry -3 -5 -2 -9 56 50 42 34 67 100

Table 4.1: The similarity measure M1 in percents, between the texts of the universal dec-
laration of human rights and “Don Quixote” in different languages (eng – English, fra –
French, rus – Russian, sre – Serbian/Latin, sry – Serbian/Cyrillic/UNICODE). The dif-
ference between the Serbian versions is due to the two or one byte coding of the Cyrillic
alphabet in “sry”.

version and the New International version differ significantly due to the very distinct

translational history that have suffered, Hebrew-Latin-Greek-Spanish the first, and

direct translation the last. Therefore, we tried, up to our knowledge, to use only

direct translations from Hebrew.

To evaluate the performance on this benchmark we choose 31 translations of

the Exodus, concatenating the chapters to form 4 corpora of reasonable magnitude,

namely (A) Chap. 11 and 12; (B) Chap. 13,14 and 20; (C) Chap. 15, 16 and 17;

and finally (D) Chap. 18 and 19. All these sets are more or less 10000 characters in

length. We measure, on one side, the similarity between different chapter sets and

on the other side, similarities between one and the same chapter set, excluding the

trivial comparisons of identical text (same languages and same chapters set). As in

the previous examples, it is expected that languages do not play an important role.

The results are presented in Fig. 4.6, left. The figure shows that, in this corpus, we

can judge whether the texts are translations with probability of about 95% and 5%

error. The probabilities of errors of type I and II are presented in Fig.4.6, right.3

3We have noticed that relatively small correlation between one and the same text is observed

74 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

−0.2 0 0.2 0.4 0.6 0.8
Correlation

0

10

20

30

40

50

%
 o

f a
ll

ca
se

s
DQ/UD
UD/UD
DQ/DQ
UD/UD+DQ/DQ

Figure 4.5: The histogram representation of the correlation coefficients of the simi-
larity distance M1 of UD and DQ.

As a conclusion we can see that the structure of the text is captured by the

similarity measure M1, Eq. (4.1) and the measure can effectively detect human-like

text translations.

On the other side, if we apply the same procedure, used for UD, to mtDNA set,

we can see that the similarities in a one-dimensional comparison are purely random.

Compressing the concatenation of mtDNA of “Balaenoptera musculus” (BM) [21],

“Balaenoptera physalus” (BF) [20] and “Homo sapiens” (HS) [37] and representing

in the same manner the connectivity graph GL, as for the UD (Fig. 4.2), we can see

that the situation depicted now (Fig. 4.7) differs radically from that of the human

generated text. Namely, the compression of the concatenation is achieved exclusively

by the cross-similarities between the genetic material of different species. Internal

similarities whiting a single mtDNA string are negligible in our experiments. This

if different translational histories of the Bible were selected, even if we compare one and the same
language. We suspect that the overlaps below 20% are probably due to that reason, but because this
reflects the particular history of that text we are not trying to extend the discussion in this article.

4.1. COMMON SOURCE DATA DETECTION 75

C1 C2
eng fra rus spa eng fra rus spa

C1 eng 100 14 10 13 -5 -5 -1 -3
fra 14 100 16 34 -4 4 2 -4
rus 10 16 100 10 -13 0 -2 3
spa 13 34 10 100 -4 -1 -2 -2

C2 eng -5 -4 -13 -4 100 24 15 24
fra -5 4 0 -1 24 100 25 32
rus -1 2 -2 -2 15 25 100 20
spa -3 -4 3 -2 24 32 20 100

Table 4.2: The similarity measure M1 in percents, between two chapters of DQ. The
notation of the languages is the same as in the previous table.

can be observed by the fact that the density of points in the block-diagonal is very

small, while the non-diagonal blocks display the typical diagonal structure.

As it is natural, the species BM and BF are very similar between them and very

dissimilar with respect to HS.

On the smoothed version one can observe self-similarities, concentrated in the

diagonal, in the genetic material of BM. In order to see in more detail the behaviour

of the connectivity of the graph in these points, we represent zoomed version of the

diagonals of the connectivity (Fig.4.8), once within BM (left) and between the two

whales – BF and BM (right). We can see that the self-similarities within BM are very

short-range, which are absent in BF and HS species. The zoomed cross diagonal, on

the other hand, shows very solid structure corresponding to the randomness of the

process of evolution.

In Fig.4.8 we can see that the cross-diagonals are predominant in the compression

of the concatenation of the genetic material, due to the nature of the evolution pro-

cess and to the fact that mtDNA-s practically have no structure but only common

predecessor.

Up to this moment we have ignored the non-diagonal blocks because no literal

information was shared, which compelled us to focus on the structure of each text.

Using genetic material, we can not extract information from the block-diagonal ele-

ments, as explained above, but we do have information in the non-diagonal blocks,

76 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

-0.2 0 0.2 0.4 0.6 0.8
Correlation

0

10

20

30

40

P
ro

b.
 %

Same text
Different texts

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Correlation

er
ro

r
pr

ob
ab

ili
ty

Type II

Type I

Figure 4.6: Left – the correlation between identical set of Bible chapters and different
ones. Right – the probabilty of errors of type I and II in the estimation of the
detection, based on Bible chapters detection. Note that the translations are actually
very heterogeneous.

reflecting literal similarities between the elements. Thus, we can try to reconstruct

a phylogenetic tree using as similarity measure some measure based on that blocks.

In this thesis we use just the mass of these non-diagonal blocks, i.e., the distance

between mtDNA t1 and mtDNA t2 is postulated to be 1/|GL(t1 ◦ t2)|.

Once the distance matrix is obtained, we feed it into a novel quartet-based heuris-

tic for clustering trees proposed in [34] and which implementation is available at

http://www.complearn.org. The result is shown in Fig.4.9 for ten species and the ob-

tained tree is equivalent to the one obtained with the NCD, being considered correct

in the taxonomy literature.

Although we can not state that the results using just the density of the non-

diagonal elements introduce some novel method, the consideration of the mtDNA

using the same construct, GL, as for human texts, serves as a proof of concept of the

versatility of the approach: on one hand the information contained in the diagonal

blocks can be used to compare objects in the scenario of non-literal information

shared, while on the other hand, the information contained in the non-diagonal blocks

can be used to measure the literal information shared between the objects.

4.1. COMMON SOURCE DATA DETECTION 77

Figure 4.7: The mtDNA connectivity matrix of three species (two whales and a
human) with L = 12. The dots are smoothed with a Gaussian smoothing of radius
40. The first row/column corresponds to “Balaenoptera musculus”, the second to
“Balaenoptera physalus” and the last to “Homo sapiens”. We can see that cross-
compression (information shared between two different strings) prevails over self-
compression (rendundancy in a single string).

4.1.4 Phenomenological model of human written text simi-

larities

In this section we give a phenomenological model of one dimensional comparison of

the structure of texts degL,B.

Let us assume that one and the same concept, expressed is some text, is translated

to two different languages. We can regard one of the texts t1 as original and the other

t2, as a translated version.

If the grammar is exactly the same, then we simply must change the words of the

78 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

Figure 4.8: Detail of the diagonal of Fig. 4.7 (not smoothed) in the first quadrant
left and in the quadrant to its right.

text in order to “translate” it. This morphological level of translation, in practice,

never occurs4, but it is a good starting point to analyze the problem. In this level

of translation we can observe a weak change in the positions of the string that are

compressed, due to the different word lengths in the vocabularies of t1 and t2. We can

also observe accidental edges of GL deleted or added due to causal coincidences in the

modified or the original text. However, the word order of the text will be preserved.

Therefore, choosing for each text a different L, proportional to the length of the text,

Li ∝ |ti| and looking at the structure of the graph GLi
(ti), we can expect to observe

only fluctuations of the degrees of each group of nodes in degL,B(t).

As a first approximation, we can introduce an elementary operation on degL,B(t)

called HM(degL,B(t); σM), equivalent to adding Gaussian noise with zero mean and

variance σ2
M to the degree of each node.

If the grammar is changed, then one must make the translation usually sentence

by sentence, analyzing the grammatical structure of the text, building a parser tree,

adding additional arcs in order to recover the semantic structure and finally, building

another tree out of this graph.

Let us imagine that we can change the grammar, without changing the morphol-

ogy. Then the only operations that would be performed on the text are: exchange

of the order of the morphemes, repeat of a morpheme and delete of a morpheme.

4With one notable exception — the change of alphabet coding

4.1. COMMON SOURCE DATA DETECTION 79

k0

baefi

baebw

k2

focfo

k7

k5

focvi

k6

k4

k3

rodms

rodrt

k1

primh

primg
primc

horse
0.000

0.001

0.001

0.003
0.001

0.004

0.000

0.000

0.001
0.002

Figure 4.9: Phylogenetic tree for ten species: Balaenoptera musculus (baebw) [21],
Balaenoptera physalus (baefi) [20], Phocoena phocoena (focfo) [19] Phoca vitulina
(focvi) [121], Equus caballus (horse) [121] , Pan troglodytes (primc) [84] , Gorilla
gorilla (primg) [65], Homo sapiens (primh) [37], Mus musculus (rodms) [9], Rattus
norvegicus (rodrt) [68].

Because the number of the words is more or less the same in almost any language,

we can rise the hypothesis that changing the order of the words by far prevails on the

deletion or the duplication of words, with the exception of the particles that carry

the grammatical information, which are usually ignored, choosing L properly.

Therefore, in a rather simplified phenomenological model we can assume that the

operation of changing the grammar is the operation of word permutation. We can

emulate this by introducing an exchange operation on degL,B(t) consisting of incre-

menting the degree of one node and decrementing the degree of another node. We can

suppose that the exchanging nodes are near-by nodes, because usually the transla-

tion can be done sentence by sentence. The exchange is equal to the difference in the

80 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

frequencies of the words exchanged in each node. Let us introduce an elementary ex-

change operation that supposes that the two nodes are exchanging words of difference

of referential frequency of the words δ with a probability that in first approximation

can be supposed to have Gaussian distribution G(0, σG) and introduce this operation

as HG(degL,B(t); σG, δ).

Combining the morphological and the parser-like translator, and once again as-

suming as an approximation that the grammatical and the morphological operations

are independent, we can state the problem:

Calculate the correlation coefficient between the original text t1 and the translated

text t2, on which the operations HG(.) and HM(.) are performed.

Because the operations do not need the graph itself, but only the degrees of each

node, we can safely perform the calculations using only the degrees of the nodes of

the graph. In other words, we ought to calculate the quantity:

ρ(HM(HG(deg(t1); σG, δ); σM), deg(t1)).

In order to calculate it we assume that the distribution dk of deg(t1; k) has variance

σ1, where we abuse slightly of the notation by omitting the indices Li, B. There is

no requirement to have some particular distribution; only the existence of the second

momentum is required, which is guaranteed for any stochastic source (the length of

the compressed text becomes proportional to the length of the original).

After some simple algebra, consisting of calculation of the quantities:

〈R(da)R(db)〉k, R ∈ {HG, HM , E}, a, b ∈ {1, 2},

where E means identity and dx is an abbreviation of deg(tx), the result is:

ρ(HM(HG(deg(t1); σG, δ); σM), deg(t1)) =
[
1 + (2δ2σ2

G + σ2
M)/σ1

2
]−1/2

. (4.2)

Details of the calculations are given in appendix A. We can observe that, actually, all

the factors mentioned above enter as a single factor, (2δ2σ2
G + σ2

M), which measures

the divergence of the texts.

4.1. COMMON SOURCE DATA DETECTION 81

0 5 10 15 20
eigenvector number

0

0.02

0.04

0.06

0.08

0.1

ei
ge

nv
al

ue

Figure 4.10: The eigenvalues of the correlation matrix. It is clear that there is one
predominant factor (with eigenvalue 0.08) and the next factor is 4 times weaker. The
diagonal elements of the correlation matrix were zeroed in the intermediate calculus
in order to increase the precision.

It is easy to check on the experimental data of the UD, using linear factor analy-

sis, that only one factor predominates in the correlation. Checking the eigenvectors

of the resulting covariance matrix, Fig.4.10, one can see that the first eigenvector

(the rightmost one), clearly predominates, which shows that even such a simple phe-

nomenological model captures the most important characteristics of the translation.

4.1.5 Discussion

As a conclusion, the experimental data confirm the hypothesis that by using LZ

inspired structures, we can detect similarities in the texts even if the alphabet is dif-

ferent and we can also detect the type of the similarities, namely if the similarities are

from common concepts with well-defined structure or from common data predecessor

with poorly expressed or missing structure.

The measure M1 works reliably in texts larger than 10 KB. However, when using

82 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

short texts, of length inferior to 5 KB we can not achieve good results. It would be

interesting to find a representation of short texts that can give a reliable similarity

measure. As a first attempt the measure is good enough. Further consideration shows

that measures based on dynamical programming are promising.

The comparison of correlations in order to judge the similarity between texts as

the only similarity measure is of course, prone to errors. First of all we must choose

the parameters L and B in a way that allows us to have sufficient, but not too many

arcs of the graphs within one bin. In practice, we are looking for some 5-15 arcs in

500 bins. But this implies that having some reasonable L for texts (about the length

of one word, e.g. 4-8 symbols), we need significant length of the text. Actually this

is observed also empirically. The method works well with texts of length 5-15 KB.

To avoid this limited text length range, one can use much more sophisticated

methods, based in general on statistical physics conformation analysis, that is beyond

the scope of this thesis and subject of an ongoing work.

The challenging question is whether the grammar can also be captured using

similar methods. The grammar is an element may be in use when a text is compressed.

As an example, let us consider some arbitrary Spanish phrase, for example “las chicas

altas son buenas bailarinas” (the tall girls are good dancers). The gender/plural

information is carried by the ending of the word “-as” and the string “as” should be

coded according to this.

4.2 Source Code Plagiarism Detection

The development of the World Wide Web and the increasing standardization of elec-

tronic documents has lead to a greater incidence of plagiarism in many aspects of

life. According to a recent article in Nature [70], incidence of plagiarism has also

reached the scientific community. However, it is much more widespread in the case of

undergraduate students, where educators are generally ill-equipped to face the tech-

nological challenges posed by plagiarism detection. Realizing this, different national

educational authorities (for instance, those of the United Kingdom [45, 27]) have be-

gun funding projects dedicated to study the impact and growth of plagiarism, and to

4.2. SOURCE CODE PLAGIARISM DETECTION 83

propose adequate measures.

Exact figures are unknown, since successful plagiarism is by definition not de-

tected, but are believed to be high and growing [36, 90]. Alex Aitken, one of the

leading experts in operating plagiarism detection software, asserted in a personal

communication prior to 2001 that for any (USA) student corpus, 10% of submissions

are plagiarized [45, p. 4].

Two major types of documents are being targeted by undergraduate plagiarism:

essays and computer assignments, although plagiarism cases in art degrees have also

been reported [153, p. 4]. This thesis section focuses on source code plagiarism.

Plagiarism detection in programming courses is tedious and extremely time con-

suming for graders. Additionally, it is emotionally and legally risky for student and

educator alike [80]. University experience also shows that even minor plagiarism levels

can cause a mistrust for the work of students which can lead to baroque examinations

to prove the authenticity of each student’s work, or to the relative weight of possibly-

plagiarized practical assignments in the final grade being far lower than the actual

share of effort they truly required from the student. Ignoring the problem posed by

plagiarism results in unfair grading, and can have an avalanche effect in plagiarism

incidence levels.

There are two facets to the the prevention of plagiarism in computer programs.

The first is of ethical and normative nature, and involves fighting the deeper causes

of plagiarism, selecting appropriate academic and legal deterrents, and related issues.

This facet is examined, for example, in [26] and [115]. The second facet is directly

related with software engineering, and addresses the technical measures required to

detect plagiarism within a set of assignments.

The present work is focused on this second facet, and seeks to assist educators in

the task of plagiarism detection by following the approach of [93]: monitoring excesses

of collaboration which can signal anomalous behaviors in students and/or lecturers.

Among the most usual causes for plagiarism, we may find the following:

• Low ethical and/or technical preparation of the students.

• Ambiguity in assignments: poorly understood exercises are more likely to suffer

84 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

plagiarism.

• Low clarity in the university’s guidelines on student collaboration.

• Bad course planning causing an excessive work load.

In this light, a plagiarism detection tool can be considered as a sanity check, to be

used in the diagnosis of the relative health of the teaching environment. If this check

is to be objective, we feel that plagiarism detection tools should be updated and

augmented with modern technologies.

The main contribution of this research is the design and development of AC, a

novel plagiarism detection tool available at

http://tangow.ii.uam.es/ac

Notable features of AC include the following:

• Intuitive display of results, providing visualizations such as graphs and different

types of histograms, allows visual exploration of analysis results . From the

visualizations, plagiarism suspects can be selected in order to perform detailed

manual analysis (see as an example figs. 4.11, 4.12, 4.13 and 4.15).

• Extraction/filtering utility designed to ease the initial task of preparing assign-

ment submissions for analysis. Submission preprocessing would otherwise be

a repetitive and error-prone task; this utility seeks to automate the process

without being specific to any particular institution (fig. 4.14).

• Altough AC’s design was initially planed to improve the NCD plagiarism de-

tection power, it currently implements a novel distance integration architecture,

allowing other similarity distance algorithms to be combined, compared and re-

fined. Many distance algorithms found in the scientific literature on plagiarism

detection are included, together with several others developed by our research

group.

• It incorporates a novel threshold recommendation system based on statistical

outlier detection. Distances lower than this threshold are suggested for manual

4.2. SOURCE CODE PLAGIARISM DETECTION 85

analysis, establishing an heuristic starting point to help grader’s unveiling of

plagiarism patterns (figs. 4.16 and 4.17).

• Open Source code, featuring a modular design that allows easy customization

of both algorithms and visualizations. AC can therefore be analyzed, extended

and adapted for any particular requirements.

• Stand-alone platform-independent program which can be executed in any com-

puter with a Java runtime environment. There is no need to send the submis-

sions to a server in a different institution, avoiding privacy concerns. Further-

more, a desktop application can deliver interactive visualizations which would

be difficult to perform online.

• Has been tested by using special plagiarism detection benchmarks. These bench-

marks are computer generated, and make it possible to deploy aritificial sub-

mission corpora in which the assignment nature, the plagiarism pattern, and

the corpus size is set by the tester (see appendix B).

• Intended to be a long-term supported tool by means of facilities such as version

source-control system, bug-tracking record, forums and an updated website.

Transition to Sourceforge or other Open Source collaborative software manage-

ment portals is currently under study.

4.2.1 Discussion

The problem of plagiarism detection is a difficult one. The frontier between, on

one side, random similarity or simple inspiration from anothers’ work and, on the

other side, blind cut+paste plagiarism is not clear-cut, and certain cases will always

require a human grader to distinguish between what is acceptable and what is not.

However, different algorithms and heuristics can be used to identify suspects of blatant

plagiarism and flag the more complex cases, greatly simplifying the grader’s task.

This section has presented AC, a plagiarism detection tool which also doubles as

a framework for research into source code plagiarism detection. Even though AC was

86 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

initially designed as an enviroment to increase the NCD applicability to plagiarism

detection, it has suffered a great development, currently offering many improvements

over other tools described in current literature: the use of rich visualization greatly

simplifies the task of analyzing the result of similarity tests; its stand-alone, cross-

platform implementation does not raise privacy concerns found in web-based systems;

and preparation of assignment submissions for automated plagiarism detection, over-

looked by many systems, can be automated with a graphical user interface.

AC is released as open source software, and full implementation details are avail-

able to any interested parties. Lack of comparable information for other plagiarism

detection tools makes their results difficult to replicate or improve. Furthermore, the

availability of AC under an open source license guarantees that other researchers can

follow the project and participate in its development. Due to the modular design

of the program, it is easy to integrate new similarity distance algorithms, allowing

graders or researchers to compare or complement their performance. Many of these

algorithms have been already incorporated into AC, including two novel approaches.

Finally, AC includes the first application of outlier statistical methods to plagiarism

detection, proving fast initial identification of suspicious assignments. The analysis of

related experiments has revealed interesting aspects of the patterns found in typical

assignment corpora.

For an in-depth technical presentation of all AC’s implemented features, please

consult reference [66].

4.2. SOURCE CODE PLAGIARISM DETECTION 87

Figure 4.11: Test results visualized as a graph, with a histogram reflecting the fre-
quency of each distance (ranging from 0, most similar, to 1) and a horizontal slider,
used to select the maximum distance that is used for inclusion in the graph: only
pairs of assignments with a distance lower than this threshold are included.

88 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

Figure 4.12: Test results visualized as individual histograms. Each row represents a
color-coded histogram (blue is low, red is high) of the frequency with which other
assignments have presented a given similarity to this one. Unexpected gaps in the
leftmost side of the histogram suggest existence of plagiarism

4.2. SOURCE CODE PLAGIARISM DETECTION 89

Figure 4.13: Test results visualized as a distance table.

90 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

Figure 4.14: Screenshot of the filtering interface

4.2. SOURCE CODE PLAGIARISM DETECTION 91

Figure 4.15: Visual comparison of two assignments

92 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

Figure 4.16: AC gives two threshold recommendations for plagiarism (outlier) de-
tection in the Graph+Histogram visualization. The probability of a non-plagiarized
pairwise distance falling below the threshold is annotated.

4.2. SOURCE CODE PLAGIARISM DETECTION 93

Figure 4.17: AC gives two threshold recommendations for plagiarism (outlier) detec-
tion for each Individual Histogram visualization.

94 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

4.3 Music Generation

The automatic generation of musical compositions is a long standing, multi disci-

plinary area of interest and research in computer science, with over thirty years history

at its back.

Some of the current approaches try to simulate how the musicians play [116] or

improvise [24], while others do not deal with the time spent in the process. Many of

them apply models and procedures of theoretical computer science (cellular automata

[25], parallel derivation grammars [116], or evolutionary programming [106, 100, 85,

92]) to the generation of complex compositions. The models are then assigned a

musical meaning. In some cases, the music may be automatically found (composed)

by means of genetic programming.

In a previous paper [15] we proposed the use of the well-known Normalized Com-

pression Distance, an algorithmic information measure [34], as a fitness function which

may be used by genetic algorithms to automatically generate music in a given pre-

defined style. The superiority of the relative pitch envelope over other musical pa-

rameters, such as the lengths of the notes, has been confirmed in [104], bringing us

to develop a simplified algorithm that nevertheless obtains interesting results.

In this thesis we start on the results of the previous work and refine them, trying

to increase the efficiency of the procedures described in the above mentioned paper.

This is done by testing several variations of the recombination operator to fine tune

the genetic algorithm for this application, as it has been observed that this operator

plays an important role in this procedure.

This section is organized thus: the first subsection provides a short introduction

to musical concepts needed to better understand the remainder, with a description of

the restrictions applied in our experiments and an enumeration of different ways of

representing music. The second subsection introduces the idea of using the Normal-

ized Compression Distance for computing the distance of the results of the genetic

algorithm from the target musical pieces. The third subsection describes the genetic

algorithm we have used for music generation. In the fourth and fifth subsections

we describe our experiments, where we have compared the use of one or two target

4.3. MUSIC GENERATION 95

guides, and six different recombination procedures for the genetic algorithm. Finally,

the last subsection presents a discussion of the results and several possibilities for

future work.

4.3.1 Musical representation: restrictions

Melody, rhythm and harmony are considered the three fundamental elements in music.

In the experiments performed in this thesis, we shall restrict ourselves to melody,

leaving the management of rhythm and harmony as future objectives. In this way, we

can forget about different instruments (parts and voices) and focus on monophonic

music: a single performer executing, at most, a single note on a piano at a given

point in time. Melody consists of a series of musical sounds (notes) or silences (rests)

with different lengths and stresses, arranged in succession in a particular rhythmic

pattern, to form a recognizable unit.

In Western music, the names of the notes belong to the set {A, B, C, D, E, F, G}.

These letters represent musical pitches and correspond to the white keys on the piano.

The black keys on the piano are considered as modifications of the white key notes,

and are called sharp or flat notes. From left to right, the key that follows a white

key is its sharp key, while the previous key is its flat key. To indicate a modification,

a symbol is added to the white key name (as in A# or A+ to represent A sharp, or

in Bb or B-, which represent B flat). The distance from a note to its flat or sharp

notes is called a half step and is the smallest unit of pitch used in the piano, where

every pair of two adjacent keys are separated by a half step, no matter their color.

Two consecutive half steps are called a whole step. Instruments different from the

piano may generate additional notes; in fact, flat and sharp notes may not coincide;

also, in different musical traditions (such as Arab or Hindu music) additional notes

exist. However, in these experiments, we shall restrict to the Western piano lay-up,

thus simplifying the problem to just 88 different notes separated by half steps. An

interval may be defined as the number of half steps between two notes.

Notes and rests have a length (a duration in time). There are seven different

standard lengths (from 1, corresponding to a whole or round note, to 1/64), each

96 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

of which has duration double than the next. Their names are: whole, half, quarter,

quaver, semi-quaver, quarter-quaver and half quarter-quaver. Intermediate durations

can be obtained by means of dots or periods. The complete specification of notes and

silences includes their lengths.

A piece of music can be represented in several different, but equivalent ways:

1. With the traditional Western bi-dimensional graphic notation on a pentagram.

2. By a set of character strings: notes are represented by letters (A-G), silence by

a P, sharp and flat alterations by + and - signs, and the lengths of notes by

a number (0 would represent a whole note, 1 a half note, and so on). Adding

a period provides intermediate lengths. Additional codes define the tempo,

the octave and the performance style (normal, legato or staccato). Polyphonic

music is represented with sets of parallel strings.

3. By numbering (1 to 88) the pitches of the notes in the piano keyboard. Another

number can represent the length of the note as a multiple of the minimum unit

of time. A voice in a piece of music would be a series of integer pairs representing

notes and lengths. Note 0 would represent a silence. Polyphonic music may be

represented by means of parallel sets of integer pairs.

4. Other coding systems are used to keep and reproduce music in a computer or a

recording system, with or without compression, such as wave sampling, MIDI,

MP3, etc.

In our experiments, we represent melodies by the second and third notation sys-

tems.

4.3.2 The NCD as a fitness function

Li and Sleep have reported that this distance, together with a nearest neighbor or

a cladistic classifier, outperforms some of the finest (more complex) algorithms for

clustering music by genre [104]. Earlier research have also reported a great success

in clustering tasks with the same distance [35]. These results suggest that the NCD

4.3. MUSIC GENERATION 97

although not achieving the universality of its incomputable predecessor (the NID),

works well to extract features shared between two musical pieces.

On the other hand, genetic algorithms need to define a fitness function to com-

pare different individuals, subject to simulated evolution, and classify them according

to their degree of adaptation to the environment. In many cases, fitness functions

compute the distance from each individual to a desired goal.

Suppose we are to generate a composition that resembles a Mozart symphony; in

this situation, we can elaborate a natural fitness measure: an individual (representing

a composition) has a high fitness if it shares many features with as many as possible

of the Mozart’s symphonies. We propose to use a genetic algorithm (with musical

compositions as individuals of the population) which uses the NCD as the fitness

measure to compute these shared features between the individuals and the target

musical guides which, in this example, would be the set of Mozart’s symphonies.

It remains to choose the compressor used to estimate the NCD. Li and Sleep

compute it by counting the number of blocks generated by executing the LZ78 com-

pression algorithm ([155]) on an input . In our initial experiments, we used both the

LZ78 and LZ77 algorithms, and found that LZ77 performs better, which agrees with

theoretical results from Kosaraju and Manzini [98]; therefore LZ77 has been used as

our reference compressor in all the experimental results presented in this thesis.

4.3.3 The genetic algorithm used to generate music

Our genetic algorithm generates music coded as pairs of integers, the third format

described in subection 4.3.1, which is specially fitted for our purpose. This notation

can then be transformed to a note string (the second representation) for reproduction.

We also decided to start with monophonic music, leaving harmony for a latter

phase ad working with melodies.

Finally, we made the decision, in this first stage of experiments, to apply the

genetic algorithm only to the relative pitches of the notes in the melody (i.e. we

only consider the relative pitch envelope), ignoring the absolute pitches and the note

lengths, because our own studies and others [104] suggest that a given piece of music

98 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

remains recognizable when the lengths of its notes are replaced by random lengths,

while the opposite does not happen (the piece becomes completely unrecognizable if

its notes are replaced by a random set, while maintaining their lengths).

The proposed genetic algorithm scheme is now described. It includes a previous

pre-process step, made of the following parts:

• One or more (M) musical pieces of the same style/author are selected as targets

or guides for music generation. We define each of the guides as gi and the guide

set as G = {gi}
M
i=1.

• All the guides must be coded in the same way, as pairs of integers, as described

above.

• The individuals in the population are coded in the same way as the guides.

• The fitness function for an individual x and a guide set G is defined as

f(x) =

(
∑

gi∈G

NCD(x, gi)

)−1

(4.3)

By maximizing f(x) (minimizing the sum of the distances), we expect to max-

imize the number of features shared by the evolving individuals with the guide

set.

The remaining steps of the genetic algorithm are:

1. The program generates an initial random population of 64 vectors of N pairs of

integers, where N is the length of the first piece of music in the guide set. The

first integer in each pair is in the [24,48] interval and represent the note interval.

The second is in the [1,16] interval and represents its length as multiple of the

minimum unit of time. Each vector represents a genotype.

2. The fitness of the genotypes is computed as in Eq. 4.3.

3. The genotypes are ordered by their increasing distance to the guide set, i.e.,

decreasing fitness..

4.3. MUSIC GENERATION 99

4. If some perdetermined fitness has been reached, the genetic algorithm stops.

The notes in the target genotype are paired with a function of the lengths of

the guide piece(s).

5. The 16 genotypes with lowest fitness are removed. The 16 genotypes with

highest fitness are paired randomly. Each pair generates a pair of children, a

copy of the parents modified by four genetic operators. The children are added

to the population to make again 64, and their fitness is computed as in step 2.

6. Go to step 3.

We need to say some words about our coding choice. The use of only two octaves

for the notes (i.e. [24,48]) does not represent an important restriction (actually many

real melodies comply with it), while it reduces significantly the size of the search space.

The fact that absolute notes are later converted to intervals has the consequence that

a piece of music becomes invariant under transposition, which is proper, because

human ear recognizes transposed pieces as the same.

The second number, belonging to the [1,16] interval in each pair, represents the

length of the note and is currently ignored (remember that these lengths are replaced

by a function of the lengths of the guide pieces). In this way, however, the system is

ready for the future objective of automatically generating the lengths.

The four genetic operators mentioned in the algorithm are:

• Recombination (applied to all generated genotypes). The genotypes of both

parents are combined using different procedures to generate the genotypes of

the progeny. Different recombination procedures have been tested in this set of

experiments to find the best combination (see Sect. VI).

• Mutation (one mutation was applied to every generated genotype, although

this rate may be modified in different experiments). It consists of replacing a

random element of the vector by a random integer in the same interval.

• Fusion (applied to a certain percentage of the generated genotypes, which in

our experiments was varied between 5 and 10). The genotype is replaced by

100 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

a catenation of itself with a piece randomly broken from either itself or its

brothers genotype.

• Elision (applied to a certain percentage of the generated genotypes, in our

experiments between 2 and 5). One integer in the vector (in a random position)

is eliminated.

The last two operations, together with some recombination procedures, allow

longer or shorter genotypes to be obtained from the original N element vectors.

4.3.4 Testing different number of guide pieces

In our first experiments, we selected the simplest recombination procedure (strategy

1 of Sect. VI) and tested the effect of varying the number of guide pieces and the

functions which generate the lengths of the notes in the best output pieces.

First, we used as the guide a single piece of music, Yankee doodle, represented

(using representation 2 of Sect. II) by the following string:

M2T2O3L2C+4C+4D+4F4C+4F4D+4O2G+4O3C+4C+4D+4F4C+3C4P4C+4C+4D+4F4F+4F4D+

4C+4C4O2G+4A+4O3C4C+3C+4P4O2A+4.O3C5.O2A+4G+4A+4O3C4C+4P4O2G+4.A+5.G+4

F+4F3G+4P4A+4.O3C5.O2A+4G+4A+4O3C4C+4O2A+4G+4O3C+4C4D+4C+3C+3

The WAV formated file of Yankee doodle ready for listening, Yankee.wav, as well

as the rest of the music files referenced in this section can be found at

http://www.eps.uam.es/˜mcebrian/music

In this case, the fitness function was straightforward: the objective was to min-

imize the NCD of the vectors of note intervals of the evolving individuals to the

corresponding vector in the guide piece.

After applying the genetic algorithm, the succession of notes obtained was com-

pleted by adding length information in the following way: each note was assigned the

length of the note in the same position in the guide piece (the guide piece was short-

ened or circularly extended, if needed, to make it the same length as the generated

piece, which could be shorter or longer).

4.3. MUSIC GENERATION 101

Figure 4.18: Number of generations needed to reach a given distance to the target.

In successive executions of the algorithm, we obtained different melodies at differ-

ent distances from the guide. It was observed that a lower distance made the generated

music more recognizable to the ear, as related to the guide piece For instance, the

distance to the guide of the following generated piece, named Yankee NEW.wav is

0.43:

T5O3D+2O2G+2O3C+2C+2D+2F2F+2F2E2C2D2E2O2F1D2E2D2C2D2E2F+2G2G2A2B2O3C2O

2B2O3D2E1O2F2D+2F2.G3.G+2F2D+2G+2F+2E2F+2.F3.C+2C2D+1C+2C+2A+2.O3C3.C+

2O2G+2A+2G+2F+2O3D+2B2O3D+2C+2

The number of generations needed to reach a given distance to the guide depends

on the guide length and the random seed used in each experiment, and follows an

approximate Poisson curve, as shown in 4.18, which represents the result of one

experiment.

In our second experiment, we used two guide pieces simultaneously: Begin the

beguine (Begin.wav), and My heart belongs to daddy (Heart.wav), both by Cole

Porter. In this case, the fitness function to be minimized was the sum of the NCDs

of the note intervals of the evolving individuals to the note intervals of the two guide

pieces.

102 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

The following represents one of the results we obtained, which we named as

Porter NEW.wav, which happens to be at a distance of 0.67 from the first guide

piece, and 0.72 from the second, while the NCD between both guide pieces is 0.81,

i.e. the generated piece was nearer to both guides than they are among themselves:

T5O3C+3.D3.O2A3.O3F+1.F+3.D+3.O2G+3.O3C+1O2G+3.C+3.D+3.D3.F1D+3.C+3.C3.

C3.C+3.D+1O3C3.D3.F3.D1F3.E3.O2G+3.O3D+2C2O2A+1O3C3.O2A+3.A+3.A+1A+1G+3

.E1.F+3.O4C3.O3F3.G1.F+3.C+3.D+3.E1G+3.E3.E3.O2C3.D+1C+3.D+3.O3C3.C3.G+

3.C+1D+2E2F+3.E1.O2B3.O3G+3.O2C3.C+3.C+1C+3.F3.G3.G1F1D+3.O3C1C3.O2A3.D

3.A+3.O3C1D3.O2F+3.F+3.D3.G3.F1O3D3.E2D+2E1.D+3.G+3.O2D+3.D+1G3.A3.G+3.

O3C3.O2A1A3.E3.F+3.G3.B3.G1D+3.D+3.F3.A+3.B1O3D+3.C+3.F+3.F+1.E3.D+3.D+

3.C2O2B1O3D+3.C3.O2B2O3E2O2A1A2G+3.G+3.E2.F+3.F3.D+2F1D3.D+3.O3F2D+3.F+

3.D1O2A2G+3.O3C+3.G+2F2C+2O2A2F1O3F+3.B2.O2F+3.E3.G3.F+1E3.E3.D+3.C+3.O

3C+1.O+2G+1C+3.C+1D+3.F3.A+2G+2G+3.F+1D+2E3D0D+2F3.D+3O3G3.D2B2O2D+2O3C

3C3C3.C2O2B0A3.A3A3.B2.O3C3.F+1G3.A+3.G+3F+3A3.F1.C2O2G+3.G+3.O3G+0A+3.

B3.B0B3.O2E3A+3B3.O3D3.D3.O2A+1O3D+3F+3F0F+3.D+3F3G3.G3.G3.G+2A+3O4C3O3

A3A+2G+0O2F+3G+3F+3.F3.F+3.O3G+2F+3A3A+3G+3.F+1D+3.C+3.C3.O2A+3.A+0A+3.

O3C3.O2A+3.O3C3.C+0D3.C3.O2C3.

To obtain the preceding piece, we completed the succession of notes generated

by the genetic algorithm with the required length information, in the following way:

each note was assigned the average lengths of the two notes in the same position in

the two guide pieces (the guide pieces were shortened or circularly extended to make

them the same length as the generated piece).This approach happens to provide a

more esthetically appealing result than the one obtained when the length of only one

of the guide pieces is used.

In our third experiment, Chopin preludes numbers 4 (Chopin4.wav) and 7

(Chopin7.wav) were used as simultaneous guides. The result (Chopin47 NEW.wav)

came to be at distances of 0.61 and 0.74 from the two guide pieces, which are separated

from one another by a distance of 0.96. The length of the notes was generated in the

same way as in the preceding experiment. Compared with this, the piece obtained

using as guides two works by Cole Porter has a distinctly lighter sound.

4.3. MUSIC GENERATION 103

T5O3G+2.O2A+2O3G1.O2A+1O3G0O3F+1.O3C0O2B2.O3D+1.O3F+1O2F+0O2F+1.O2G0O2

F+2.O2F1.O2E2.O2E2O2E0O2B1.O3C2O3D+3.O3D+2.O3D+2.O3D1O3C+2.O2A+1.O2A2O

2G+0O2G+2O2A1O3C2.O3E2O3G3.O2B2.O3D2.O3C1O4C2.O4C2O2C3O2D0O2F1O2D+0O2A

1O3F+1.O3G2O3E2.O2F+2O2B1.O2B2O2B3.O2D+4O2G+2O2F1O2G+1O2F2O2F+2O2A+3.O

2A+2.O2A+2.O2C+1O2A+2.O2A+2O2A3.O2A+2.O3C+2.O3F1O2B2O2B2O3C+2.O2B2.O3B

0O3B1O2B2.O3F+1.O3G2O3B2O2B0O3C+1.O2B0O3C+2.

We performed another two experiments which the reader can also find available

online.

The third (in the order presented in this section) generates a piece

(Chopin7 NEW.dat) at distance 0.39 from its guide, the Chopins’s seventh prelude.

The lengths were generated as in the first experiment.

T5O4C1O3E2.C+3A+1A+1A+0O2A+1O3C+2.O2B3O3B1B1B0D+1D+2.E3G+1O4C1O3E0C+1D

2.F3F1F1O2B0C+1A+2.B3G+1G+1G+0O3G+1G+2.G+3O2B1O3E1E0E1O2B2.O3F+3D+1E1A

0A1A2.

Finally, in the last experiment, two pieces by Mozart were used as simultaneous

guides: a few bars of the first movement in symphony 40 (Mozart40.wav), and a part of

the second movement in sonata KV545 (KV545.wav). The result (Mozart NEW.wav),

which sounds like a mixture of both sources to the ear in some parts, happens to be

at distances of 0.65 and 0.58 from the two guide pieces, which on the other hand differ

from one another by a distance of 0.90.

T5O4G+0F+3B3.A+3A3G+2.G+3B1F1G+1.F3.D+3D+3D3.C3O3A+3O4F2.G+3F1C+1F+2.D

+3.F+2E2D2C+2O3F2.F+3.G+1O4C1O3A3.F3.O4F3.G3F3F3.G3E3G3.B3O3E3G3.F2.G+

3G4G+2A2O4G2G+2G1G+3.F3.G+3.O5C3O4A+3G+3.A+3.A+2.G+3.G3.G3.E3D+3O3F+3F

3F+3.G3.G+3.A3.A3.G3F+3F+3.D+3.D3.O4D3.C+2C+3E2O3A+2O4C+3C2O3B2G1B1O4D

3.C3.O3G3.O4D+3G3D3.D+3D3D+3.D3E3F3.G3.F3.E3F3G1O3D+3E3D+3.D+3B3B3.A+3

.O4F3.G2.G+3A+3.G3

The length of the notes was generated in the same way as in the second experiment.

104 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

4.3.5 Testing different recombination procedures

As it happens in many genetic programming applications, we have evidence that that

the recombination operator plays a key role in our approach both in the quality of

the generated musical pieces and in the time the algorithm takes for it.

In order to to fine tune the genetic algorithm for this application, we devote a

subsection to present and discuss several variations tested experimentally. The fol-

lowing strategies were used:

Strategy 1: given a pair of genotypes, (x1, x2, . . . , xn) and (y1, y2, . . . , ym), a random

integer is generated in the interval [0, min(n,m)], let it be i. The resulting recombined

genotypes are: (x1, x2, . . . , xi−1, yi, yi+1, . . . , ym) and (y1, y2, . . . , yi−1, xi, xi+1, . . . , xn).

This is the base case (the simplest recombination strategy) which was used in all the

experiments described in the preceding subsection.

Strategy 2: given a pair of genotypes, (x1, x2, . . . , xn) and (y1, y2, . . . , ym), two ran-

dom integers are generated in the interval [0, n] (let us call them i, j, i < j) and

another two in the interval [0,m] (let us call them p, q, p < q). The resulting recom-

bined genotypes are: (x1, x2, . . . , xi−1, yp, yp+1, . . . , yq−1, xj, xj+1, . . . , xn) and

(y1, y2, . . . , yp−1, xi, xi+1, . . . , xj−1, yq, yq+1, . . . , ym).

Strategy 3: given a pair of genotypes, (x1, x2, . . . , xn) and (y1, y2, . . . , ym), four

random ordered integers are generated in the interval [0, n], [0,m] for each parent

genotype. Each genotype is then cut into the five corresponding pieces, which are

shuffled together (one of them is reversed). Finally, the genotypes of the progeny are

obtained by concatenating five of the pieces in the shuffled set

Strategy 4: similar to the preceding one, but only three random ordered integers are

used to divide the parent genotypes into four pieces, which are then joined, shuffled,

and used (four at a time) to generate the genotypes of the progeny.

4.3. MUSIC GENERATION 105

numb. strategy strategy strategy strategy mixed
gener. 1 2 3 4 strategy 1

1 0.930 0.930 0.930 0.930 0.930

100 0.782 (-0.148) 0.766 (-0.164) 0.807 (-0.123) 0.791 (-0.139) 0.766 (-0.164)

200 0.734 (-0.048) 0.710 (-0.056) 0.756 (-0.051) 0.744 (-0.047) 0.697 (-0.069)

300 0.714 (-0.020) 0.692 (-0.018) 0.740 (-0.016) 0.712 (-0.032) 0.676 (-0.021)

400 0.702 (-0.012) 0.692 (-0.000) 0.722 (-0.018) 0.704 (-0.008) 0.659 (-0.017)

500 0.690 (-0.012) 0.689 (-0.003) 0.722 (-0.000) 0.704 (-0.000) 0.648 (-0.011)

600 0.681 (-0.009) 0.683 (-0.006) 0.716 (-0.006) 0.704 (-0.000) 0.643 (-0.005)

1000 0.663 (-0.018) 0.682 (-0.001) NP NP NP

1500 0.658 (-0.005) 0.666 (-0.016) NP NP NP

2000 0.656 (-0.002) 0.658 (-0.008) NP NP NP

2500 0.644 (-0.012) 0.652 (-0.006) NP NP NP

Table 4.3: A comparison of the performance of different recombination strategies for
a typical music generation experiment. NP stands for ‘Not Performed.’

The one-point crossing-over strategy 1 has the property that the lengths of the

parent genomes are invariant under recombination in the progeny. Since mutation

also keeps the length of the genome, only fusion and elision change it. In fact, we

did notice that, in our preceding experiments, fusion almost never leads to a fitter

genome, while elision sometimes does, which means that the version of our genetic

algorithm described in the previous subsection, which starts with a genome length

copied from one of the target pieces of music, leads to genome lengths usually reduced

by a little from their initial value.

Strategies 2, 3 and 4, however, all lead to progeny genomes with lengths usually

quite different from those of their parents (even when both parent genomes had the

same length), which provides the population with a larger genome length diversity

than strategy 1.

After performing several experiments we noticed that, at the beginning of the

evolution, the second recombination strategy converges more quickly towards the

target, but after a certain number of generations (usually between 150 and 200),

the first and fourth strategies becomes better, while beyond about 500 generations

after the beginning of the process the first strategy is clearly the best. Above 1000

generations, the first two strategies tend to converge, i.e. to obtain similar distances

106 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

to the goal after the same number of generations.

This brought us to our add two new strategies to the testbed which are simple

combinations of the four described above:

Mixed strategy 1: In the first 150 to 200 generations, the algorithm uses the sec-

ond strategy (the two point recombination procedure with four different crossing-over

points between both parents). During all the remaining generations, the first strategy

is used instead (i.e., the one point recombination procedure with a single crossing-over

point for both parents).

Mixed strategy 2: In the first 200 generations, the program uses the second strat-

egy; between generations 200 and 500 it switches to the fourth strategy, and above

500 generations it uses the first strategy.

The data in Table 4.3 corresponds to a typical experiment in which two Mozart’s

pieces were used as the guide set: Symphony 40 and KV545. The results of the

combined strategies are much better than those of any of the four strategies applied

separately. It can be observed that the mixed strategy 1 reaches, in just 600 gener-

ations, target distances similar to those attained by the first two strategies in over

2500 generations.

Tabulated values for the mixed strategy 2 are not shown in Table 4.3 due to its

great similarity in performance to the mixed strategy 1. In case of strategy 3 and

4, no data is shown for more than 600 generations; now the reason is that they are

clearly outperformed by strategy 1 and 2 in all executions before that point and no

further improvement was experimentally observed.

Figure 4.19 shows a graphical representation of the results. Figure 4.20 shows the

results of a different experiment with the same three strategies on the same guide set.

Summarizing, the improvement of the mixed strategies is quite impressive. On the

other hand, the two mixed strategies attain comparable results.

In our analysis of the reasons for this behavior, we come to the conclusion that,

4.3. MUSIC GENERATION 107

Figure 4.19: A comparison between three different recombination strategies. ‘Mixed
strategy’ refers to the mixed strategy 1.

with the first strategy, the population reaches a small genetic variability where favor-

able mutations have a great probability of appearing. On the other hand, the second

strategy generates large genetic variability, both with respect to genome lengths and

contents, where favorable mutations are much hard to come by. This means that, on

the long range, the first strategy should work better than the second, which on the

other hand gets faster results during the first part of the process by evolving simul-

taneously in many directions and testing widely different genomes at the same time.

Thus, the mixed strategies makes the best use of both recombination procedures,

which is the reason for its outstanding performance success.

4.3.6 Discussion

We have found that that the Normalized Compression Distance is a promising fitness

function for genetic algorithms used in automatic music generation. Some of the

pieces of music thus generated recall the style of well-known authors, in spite of the

fact that the fitness function only takes into account the relative pitch envelope. Our

108 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

Figure 4.20: Performance comparisons of another experiment with the same recom-
bination strategies as in Figure 4.19.

results have been qualitatively superior to those obtained previously with a different

fitness function [124].

Several recombination operators have been tested to fine tune the genetic algo-

rithm for this application, finding that mixed strategies which promote diversity in

the first generations and then change to a more exploitative strategy give the best

results. This scheme of initial exploration and posterior exploitation is analogue to

the idea behind Simulated Annealing [95].

In the future we intend to combine our results with those of other authors [104, 35]

to use as the target for the genetic algorithm, not one or two pieces of music by a

given author, but a cluster of pieces by the same author, thus trying to capture the

style in a more general way.

Although we have introduced the information about note duration in the genetic

process, we have ignored it so far. As the current design of our algorithm facilitates

this (the NCD can easily deal with integers representing note lengths) we intend to

perform a new set of experiments to evolve the note length information along with

the melody.

4.3. MUSIC GENERATION 109

We shall also work with a standard and richer system of music representation,

such as MIDI.

The results presented in this section serve as a proof-of-concept. As future re-

search, we plan to provide a comparison with state-of-the-art music composition

techniques from machine learning to reveal both the strengths and weaknesses of

our proposal.

110 CHAPTER 4. APPLIC. OF ALGORITHMIC INFORMATION THEORY

Chapter 5

New applications of Algorithmic

Stochastic Modeling

In this chapter we present three new applications of Algorithmic Stochastic Modelling,

a methodology introduced in Section 2.2 (page 17).

5.1 Accelerated Generation of Fractals of a Given

Dimension

In the last decades, genetic algorithms, which emulate biological evolution in com-

puter software, have been applied to ever wider fields of research and development

and have given rise to a few astounding successes, together with a certain amount of

disappointment, frequently related to the apparently inherent slowness of the proce-

dure. This is not a surprise, as biological evolution, which serves as the source for

most of the ideas used by the research in genetic algorithms, is an extremely slow

and difficult to experiment field, where actual processes require millions of years in

many cases. This slowness is in part a consequence of the fact that randomness is a

basic underlying of the search performed by genetic algorithms. For this reason, the

discovery and proposal of general procedures to accelerate their execution time is one

of the most interesting open questions in this field.

111

112 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

The procedure we propose in this thesis has made it possible to increase by an

order of magnitude the performance of at least one application of genetic algorithms:

the use of grammatical evolution to generate fractal curves of a given dimension. It is

probable that the application of the same procedure may be useful to accelerate many

other applications of similar techniques, although there are cases where it cannot

provide any improvement [15]. This work offers ways to predict the situations where

this procedure may be useful, and recognize those where it will not provide any

improvement, by analyzing the statistical distributions of the execution time of the

algorithms. In fact, the family of heavy-tail distributions embodies those applications

where the best improvement can be attained by the application of re-start techniques,

while another family (leptokurtic distributions) also offer a significant acceleration.

The remainder of this introduction contains a simple exposition of the two main

fields affecting the experiment we have used as the template for the experimentation

of the acceleration techniques: fractal curves and their dimension; and L systems,

which provide an easy way to represent the former and making their computation

straightforward.

Subsection 5.1.1 summarizes an algorithm we have developed and described in a

previous publication, which makes it possible to compute the dimension of a fractal

curve from its equivalent L system. Subsection 5.1.1 describes the concrete case we

have used as the benchmark for our acceleration techniques: a genetic algorithm

which generates a fractal curve with a given dimension. This algorithm has also been

previously published in the scientific literature.

Subsection 5.1.2 describes the families of heavy tail and leptokurtic distributions,

where the acceleration techniques proposed in this work are most useful. Subsection

5.1.3 proves that the experiment described in subsection 5.1.1 gives rise to execution

time distributions belonging to those families. Subsection 5.1.4 describes the restart

strategy whose use significantly accelerates the execution time of our algorithm and

all others with a distribution in the same families. Finally, subsection 5.1.5 offers the

conclusions of this thesis chapter and proposes several lines of future work.

5.1. ACCELERATED GENERATION OF FRACTALS 113

Fractals and fractal dimension

The concept of dimension is very old and seems easy and evident: sometimes it can

be clearly and elegantly defined as the number of directions in which movement is

allowed: with this interpretation, dimensions are consecutive integers: 0 (a point), 1

(a line), 2 (a surface), 3 (a volume), with no doubtful cases. This is called a topological

dimension. However, as Mandelbrot et al. describe in his seminal article [113], some

doubtful cases exist: depending on the size of the observer, a ball of thread can be

considered as a point (dimension 0, for a large observer), a sphere (dimension 3, for an

observer comparable to the ball), a twisted line (dimension 1, for a smaller observer),

a twisted cylinder (dimension 2, for an even smaller observer), and so forth.

There is a class of apparently one-dimensional curves for which the concept of di-

mension is tricky: in 1890, Giuseppe Peano defined a curve which goes through every

point in a square, and therefore can be considered as two-dimensional. In 1904, Helge

von Koch devised another, whose shape reminds a snowflake and whose longitude is

infinite, although the surface it encloses is limited. Von Koch’s snowflake does not fill

a surface, therefore its dimension should be greater than 1 but less than 2. In 1919,

Hausdorff proposed a new definition of dimension, applicable to such doubtful cases:

curves such as those just described may have a fractional dimension, between 1 and

2. Peano’s curve has a Hausdorff dimension of 2; Von Koch’s snowflake has a Haus-

dorff dimension of 1.2618595071429... Other alternative definitions of dimension were

proposed during the twentieth century, such as the Hausdorff-Besicovitch dimension,

the Minkowsky dimension, or the boxcounting dimension (see [60, 154]). They differ

only in details and are known as fractal dimensions.

The name fractal was introduced in 1975 by Mandelbrot and applies to objects

with some special properties, such as a fractal dimension different from their integer

topological dimension, self-similarity (containing copies of themselves), and/or non-

differentiability at every point.

Fractal curves have been generated or represented by different means, such as

fractional Brownian movements, recursive mathematical families of equations (such

as those that generate the Mandelbrot set), and recursive transformations (generators)

applied to an initial shape (the initiator). They have found applications in antenna

114 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

design, the generation of natural-looking landscapes for artistic purposes, and many

other fields. The generation of fractals with a given dimension can be useful for some

of these applications.

This work discusses only the initiator-generator family of fractals.

L systems

L systems, devised by [107], also called parallel-derivation grammars, differ from

Chomsky grammars because derivation is not performed sequentially (a single rule is

applied at every step) but in parallel (every symbol is replaced by a string at every

step). L systems are appropriate to represent fractal curves obtained by means of

recursive transformations [44]. The initiator maps to the axiom of the L system; the

generator becomes the set of production rules; recursive applications of the generator

to the initiator correspond to subsequent derivations of the axiom. The fractal curve

is the limit of the word derived from the axiom when the number of derivations tends

to infinity.

Something else is needed: a graphic interpretation which makes it possible to con-

vert the words generated by the L system into visible graphic objects. Two different

families of graphic interpretations of L systems have been used: turtle graphics and

vector graphics. In [16], we have proved an equivalence theorem between two fami-

lies of L systems, one associated with a turtle graphics interpretation and the other

with vector graphics. Our theorem makes it possible to focus only on turtle graphics

without a significant loss of generality.

The turtle graphics interpretation was first proposed by [127] as the trail left by an

invisible turtle, whose state at every instant is defined by its position and the direction

in which it is looking. The state of the turtle changes as it moves a step forward or

as it rotates by a given angle in the same position. Turtle graphics interpretations

may exhibit different levels of complexity. We use here the following version:

• The angle step of the turtle is α = (2kπ/n), where k and n are two integers.

• The alphabet of the L system is expressed as the union of the four disjoint

subsets: N (non-graphic symbols), D (visible graphic symbols, which move the

5.1. ACCELERATED GENERATION OF FRACTALS 115

turtle one step forward, in the direction of its current angle, leaving a visible

trail), M (invisible graphic symbols, which move the turtle one step forward, in

the direction of its current angle, leaving no visible trail) and extra symbols such

as {+,−}, which increase/decrease the turtle angle by α, or a parenthesis pair,

which are used in conjunction with a stack to add branches to the images. These

symbols usually are associated with L system trivial rules such as + ::= +. In

the following, the trivial rules will be omitted but assumed to be present.

A string is said to be angle-invariant with a turtle graphics interpretation if the

directions of the turtle at the beginning and the end of the string are the same.

In this work we only consider angle-invariant D0L systems (where D0L describes

a deterministic context-free L system), i.e. the set of D0L systems such that the

right-hand side of all of their rules is an angle-invariant string.

Summarizing: a fractal curve can be represented by means of two components:

an L system and a turtle graphics interpretation, with a given angle step. The length

of the moving step (the scale) is reduced at every derivation in the appropriate way,

so that the curve always occupies the same space.

5.1.1 An algorithm to determine the dimension of a fractal

curve from its equivalent L system

Several classic techniques make it possible to estimate the dimension of a fractal curve.

All attempt to measure the ratio between how much the curve grows in length, and

how much it advances. The ruler dimension estimation computes the dimension of a

fractal curve as a function of two measurements taken while walking the curve in a

number of discrete steps. The first measurement is the pitch length (pl), the length of

the step used, which is constant during the walk. The second is the number of steps

needed to reach the end of the walk by walking around the fractal curve, N (pl). The

fractal dimension, Dpl
, is defined as

Dpl
= lim

pl→0+

− log N(pl)

log pl

(5.1)

116 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

In a previous work [17] we presented an algorithm that reaches the same result

by computing directly from the L system that represents the fractal curve, without

performing any graphical representation. The L system is assumed to be an angle-

invariant D0L system with a single draw symbol. The production set consists of

a single rule, apart from trivial rules for symbols +, −, (, and). Informally, the

algorithm takes advantage of the fact that the right side of the only applicable rule

provides a symbolic description of the fractal generator, which can be completely

described by a single string. The algorithm computes two numbers: the length N of

the visible walk followed by the fractal generator (equal in principle to the number

of draw symbols in the generator string), and the distance d in a straight line from

the start to the endpoint of the walk, measured in turtle step units (this number can

also be deduced from the string). The fractal dimension is:

D =
log N

log D
(5.2)

The scale is reduced at every derivation in such a way that the distance between

the origin and the end of the graphical representation of the strings is always the

same. For instance, the D0L scheme associated with the rule

F ::= F + F −−F + F

with axiom F −−F −−F and a turtle graphic interpretation, where F is a visible

graphic symbol and the step angle is 60, represents the fractal whose fifth derivation

appears in figure 5.1.

The string F + F −−F + F describes the fractal generator. The number of steps

along the walk (N) is the number of draw symbols in the string, 4 in this case. The

distance d between the extreme points of the generator, computable from the string

by applying the turtle interpretation, is 3. Therefore, the dimension is

D =
log 4

log 3
= 1.2618595074129 . . . (5.3)

This is the same dimension obtained with other methods, as specified in [113,

p. 42].

This algorithm can be easily extended to fractals whose L systems contain more

5.1. ACCELERATED GENERATION OF FRACTALS 117

Figure 5.1: Von Koch snowflake curve.

than one draw symbol and more than one rule, if all the rules preserve the ratio

between N and d in the previous expression. Most of the initiator-iterator fractals

found in the literature can be represented by angle-invariant D0L systems whose draw

symbols-contribute to the dimension in this way. The algorithm was also refined to

successfully include fractal curves which overlap, either in the generator itself, or

after subsequent derivations. In those cases, the definition of the fractal dimension is

replaced by

D = lim
log N

log d
(5.4)

where the limit is taken when the number of derivations goes to infinity. Our algorithm

computes this case by computing the dimension of a certain number of derivations

until the quotient converges.

Grammatical evolution to design fractal curves with a given dimension

Designing fractal curves with a given dimension is relatively easy for certain values

of the desired dimension (for instance, 1.261858... or log 4/ log 3), but very difficult

for others (the reader can try to hand design a fractal curve with a dimension of

1.255). To do it, one has to find two integer numbers, a and b, such that 1.255 =

118 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

log a/ log b. Then one has to design a geometrical iterator such that it would take a

steps to advance a distance equal to b.

This problem can be solved automatically by means of grammatical evolution.

Our genetic algorithm acts on genotypes consisting of vectors of integers and makes

use of a fixed grammar to translate the genotypes into an intermediate level, which can

be interpreted as a single rule for an L system which, together with a turtle graphic

interpretation, generates the final phenotype: a fractal curve with a dimension as

approximate as desired to the desired value. The algorithm can be described as

follows:

1. Generate a random population of 64 vectors of eight integers in the [0, 10] or

the [0, 255] interval (the latter case introduces genetic code degeneracy). All

the genotypes in the initial population have the same length. Subsequent pop-

ulations may contain individuals with genotypes of different lengths.

2. Translate every individual genotype into a word in the alphabet F, +,− as

indicated below.

3. Using the algorithm described in section 5.1.1, compute the dimension of the

fractal curve represented by the D0L system which uses the preceding word as

a generator.

4. Compute the fitness of every genotype as (target− dimension)−1.

5. Order the 64 genotypes from higher to lower fitness.

6. If the highest-fitness genotype has a fitness higher than the target fitness, stop

and return its phenotype.

7. From the ordered list of 64 genotypes created in step 5, remove the 16 genotypes

with least fitness (leaving 48) and take the 16 genotypes with most fitness. Pair

these 16 genotypes randomly to make eight pairs. Each pair generates another

pair, a copy of their parents, modified according to four genetic operations (see

below). The new 16 genotypes are added to the remaining population of 48 to

make again 64, and their fitness is computed as in steps 2 to 4.

5.1. ACCELERATED GENERATION OF FRACTALS 119

8. Go to step 5.

The algorithm has three input parameters: the target dimension (used in step 4),

the target minimum fitness (used in step 6) and the angle step for the turtle graphics

interpretation (used in step 3).

In step 2, the following grammar is used to translate the genotype of one individual

into its equivalent intermediate form (the generator for an L system representing a

fractal curve):

0 : F ::= F

1 : F ::= FF

2 : F ::= F+

3 : F ::= F−

4 : F ::= +F

5 : F ::= −F

6 : F ::= F + F

7 : F ::= F − F

8 : F ::= +

9 : F ::= −

10 : F ::= λ

The translation is performed according to the following developmental algorithm:

1. The axiom (the start word) of the grammar is assumed to be F .

2. As many elements from the remainder of the genotype are taken (and removed)

from the left of the genotype as the number of times the letter F appears in the

current word. If there remain too few elements in the genotype, the required

number is completed circularly.

3. Each F in the current word is replaced by the right-hand side of the rule with

the same number as the integers obtained by the preceding step. With genetic

code degeneracy, the remainder of each integer modulo 11 is used instead. In

any derivation, the trivial rules + ::= + and − ::= − are also applied.

4. If the genotype is empty, the algorithm stops and returns the last derived word.

120 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

5. If the derived word does not contain a letter F , the whole word is replaced by

the axiom.

6. Go to step 2.

The four genetic operations mentioned in step 7 of the genetic algorithm are the

following:

• Recombination (applied to all the generated genotypes). Given a pair of geno-

types, (x1, x2, ..., xn) and (y1, y2, ..., ym), a random integer is generated in the

interval [0, min(n,m)]. Let it be i. The resulting recombined genotypes are

(x1, x2, ..., xi−1, yi, yi+1, ..., ym) and

(y1, y2, ..., yi−1, xi, xi+1, ..., xn).

• Mutation, applied to n1 per cent of the generated genotypes if both parents are

equal, to n2 per cent if they are different. It consists of replacing a random

element of the genotype vector by a random integer in the same interval.

• Fusion, applied to n3 per cent of the generated genotypes. The genotype is

replaced by a catenation of itself with a piece randomly broken from either

itself or its brother’s genotype. (In some tests, the whole genotype was used,

rather than a piece of it.)

• Elision, applied to 5 per cent of the generated genotypes. One integer in a

random position of the vector is eliminated. The last two operations make it

possible to generate longer or shorter genotypes from the original eight element

vectors.

5.1.2 Heavy tail distributions

Heavy tail distributions are probabilistic distributions which exhibit an asymptotic

hyperbolic decrease, usually represented as

Pr{|X| > x} ∼ Cx−α, (5.5)

5.1. ACCELERATED GENERATION OF FRACTALS 121

where α is a positive constant. Distributions with this property have been used to

model ramdom variables whose extreme values are observed with a relatively high

probability.

Work on these probability distributions can be traced to Pareto’s work on the

earning distribution (1965) or to Levy’s work on the properties of stable distribu-

tions (1937). A fundamental advance in the use of heavy tail distributions for was

provided by Mandelbrot’s work [111, 112] on the application of fractal behavior and

self-similarity to the modeling of real-world phenomena, which he used to introduce

stable distributions to model price changes in the stock exchange. Heavy tail distri-

butions have also been used in areas such as statistical physics, wheather prediction,

earthquake prediction, econometrics and risk theory [59, 113]. In more recent times,

these distributions have been used to model waiting times in the World Wide Web

[152] or the computational cost of random algorithms [73, 74, 75, 76].

For many purposes, the only relevant parameter of a heavy tail distribution is its

characteristic exponent α, which determines the ratio of decrease of the tail and the

probability of occurrence of extreme events. In this thesis we only consider heavy tail

distributions where α belongs to the (0, 2) interval, with positive support (Pr{0 ≤

X <∞} = 1).

The existence or inexistence of the different moments of a distribution is fully

determined by the behavior of its tail: α can also be regarded as the exponent of

the maximum finite moment of the distribution, in the sense that moments of X of

order less than α are finite, while moments of order equal or greater are infinite. For

instance, when α = 1.5, the distribution has a finite average and an infinite variance,

while for α = 0.6 both average and variance are infinite.

Estimation of the characteristic exponent

Many procedures have been used to estimate α [88, 11, 43]. Two of them have received

the most extensive usage. The first uses a maximum likelihood estimator, the second

applies a simple regression method.

An important issue while estimating α is how to tackle censored observations when

extreme data are not available. Consider, for instance, physical phenomena such as

122 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

wind velocity or earthquake magnitude, where heavy tail distributions have been

considered appropriate. In these cases, extreme measures are non-observable, since

very strong hurricanes or highly destructive earthquakes will damage the measuring

instruments. In the process of financial data, such as stock exchange rates, heavy tail

models have also been used [52]. In moments of high volatility, when extreme data

usually appear, many stock exchange markets introduce rules to limit transactions

or even close the market, to prevent them from taking place. Consider finally the

case of random algorithms: the computational costs of some problems are so high,

that the algorithms have no alternative but to interrupt the execution and start again

with a different random seed. In those cases, computational costs are not observable

beyond a certain threshold [77]. Thus the censorship of extreme values needs to be

considered by available estimators.

Let Xn1 ≤ Xn2 ≤ . . . Xnn be the ordered statistics, i.e. the ordered values in the

sample X1, X2, . . . , Xn. Let r < n be the truncation value which separates normal

from extreme observations.

The adapted Hill-Hall estimator for censored observations is:

α̂r,u = (
1

r

r−1∑

j=1

ln Xn,n−r+j +
u + 1

r
ln Xn,n −

u + r

r
ln Xn,n−r)

−1. (5.6)

In this notation, n is the number of observed data, r + 1 is the number of larger

observations selected and u is the number of non-observed extreme values. If all the

data are observable, u = 0 and equation 5.6 becomes the classic Hill-Hall estimator.

In heavy tail distributions, the ratio of decay of the estimated density is hyperbolic

(slower than a exponential decay). Thus the one-complement of the accumulated

distribution function, F (·), also shows a hyperbolic decay.

F (x) = 1− F (x) = Pr{X > x} ∼ Cx−α. (5.7)

Therefore, for a heavy-tail variable, a log-log graph of the frequency of observed values

larger than x should show an approximately linear decay in the tail. Moreover, the

slope of the linear decaying graph is in itself an estimation of α. This can be contrasted

5.1. ACCELERATED GENERATION OF FRACTALS 123

with a exponentially decaying tail, where a log-log graph shows a faster-than-linear

tail decay.

This simple property, besides giving visual evidence of the presence of a heavy

tail, also gives place to a natural regression estimator based on equation 5.7, the

least-squares estimator [11], which can be expressed in terms of a selected number

of extreme observations. Assume that we have a sample of k = n + u independent

identically distributed random variables. Assume also that we only observe the n

smallest values of random variable X and therefore have the ordered statistics Xn1 ≤

Xn2 ≤ . . . ≤ Xnn. Assume that, for Xn,n−r ≤ X ≤ Xnn, the tail distribution has a

hyperbolic decay. The least-square regression estimator for the α exponent is

α̂ = −

∑
li log Xni −

∑
li
∑

log Xni/(r + 1)∑
(log Xni)2 −

∑
(log Xni)2/(r + 1)

, (5.8)

where li = log n+u−i
n+u

and the sums go from i = n− r to i = n. If all the values in the

sample k = n + u can be observed, then u = 0 and k = n.

Leptokurtic distributions vs. heavy tail distributions

The name heavy tail, applied to a class of distributions, expresses their main property:

the large proportion of total probability mass concentrated in the tail, which reflects

its (hyperbolic) slow decay and is the reason why all the moments of a heavy tail

distribution are infinite, starting at a given order.

The concept of kurtosis is also related to the tail heaviness. The kurtosis of a

distribution is the amount µ4/µ
2
2, where µ2 and µ4 are the second and fourth cen-

tralized moments (µ2 is the variance). The kurtosis is independent of the localization

and scale parameters of a distribution. Kurtosis is high, in general, for a distribution

with a high central peak and long tails.

The kurtosis of the standard normal distribution is 3. A distribution with a

kurtosis higher than 3 is called leptokurtic as opposite to platokurtic (see fig. 5.2).

In a similar way to heavy tail distributions, a leptokurtic distribution has long tails

with a considerable concentration of probability. However, the tail of a leptokurtic

distribution decays faster than that of a heavy tail distribution: all the moments

124 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

Figure 5.2: Low kurtosis (platokurtic distribution) vs. high kurtosis (leptokurtic
distribution). The probability density function on the right has a higher kurtosis
than the one on left: its center part has a higher peak and its tails are heavier.

in a leptokurtic distribution can be finite, in a strong contrast with a heavy tail

distribution where, at most, the first two moments are finite.

5.1.3 Heavy tails in Grammatical Evolution

Randomized algorithms with a high execution time variability are suspetc of hiding a

heavy tail distribution. In the present subsection we provide empirical evidence that

our GE algorithm for the automatic generation of fractal curves may exhibit a heavy

tail behavior which can be exploited to improve the performance.

[125] provides data about different executions of the same algorithm to generate

fractal curves with the same dimensions, using different random seeds. The numbers

of generations needed to reach the target differ in up to two orders of magnitude (see

table 5.1).

Figure 5.3 shows the empirical distribution of the number of generations needed

to find a solution, i.e.

F (x) = Pr{number of generations to reach a solution ≤ x} (5.9)

for four different fractal dimensions: 1.3, 1.5, 1.8 and 2. The empirical distribution

5.1. ACCELERATED GENERATION OF FRACTALS 125

dimension angle (degrees) # experiments # generations range
1.1 45 10 [37, 9068]
1.1 60 4 [119, 72122]
1.2 45 8 [188, 11173]
1.2 60 10 [21, 750]
1.3 45 9 [50, 18627]
1.3 60 4 [14643, 66274]
1.25 60 2 [1198, 3713]
1.255 60 15 [1, 2422]
1.2618595... 60 4 [1, 2]
1.4 45 10 [79, 781]
1.4 60 10 [33, 1912]
1.5 45 11 [52, 11138]
1.5 60 8 [12, 700]
1.6 45 5 [275, 3944]
1.6 60 1 [116, 913]
1.7 45 2 [585, 1456]
1.7 60 8 [18, 1221]
1.8 45 2 [855, 2378]
1.8 60 13 [69, 3659]

Table 5.1: Number of generations needed to generate a fractal curve with a given
dimension in a set of experiments.

functions have been obtained by running 1,000 executions with 1,000 different in-

dependent random seeds. At the end of each execution, the number of generations

needed to reach a solution is recorded. We took a censorship value equal to τ = 5, 000

generations, meaning that, if an execution needs over 5,000 generations, it is stopped

and marked as non-observable.

dimension 1.3 1.5 1.8 2
observable 80.5% 88.3% 66.2 % 100%

non-observable 19.5% 12.7% 38.2 % 0%

Table 5.2: Percentages of observable and non-observable executions for a censorship
value τ = 5, 000 generations.

Table 5.2 shows the percentages of non-observable executions in our experiments.

This percentage is quite high, specially for dimensions 1.8 and 1.3. The empirical

126 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.2

0.4

0.6

0.8

1

Data

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

2
1.8
1.5
1.3

Figure 5.3: Empirical distribution function of the number of generations needed to
reach a solution for several fractal dimensions: 1.3, 1.5, 1.8 and 2.

distribution functions may be used to test whether the distribution has a heavy tail.

In the previous subsection (definition 5.5) we saw that a random variable has a

heavy tail behavior if it shows an asymptotic hyperbolic decay, although that behavior

can also be shown in its whole support. In the figures displayed in this subsection, only

the extreme values are shown, therefore we had to choose a parameter r to truncate

the non-extreme observations. Usually r takes values in the [1%, 25%] interval; we

will use the set {1%, 2.5%, 5%, 10%, 15%, 20%}, as recommended by [43].

Figure 5.4 shows the log-log graphs of the distribution tails for fractal dimensions

1.3, 1.5, 1.8 and 2. Notice the linear decay of function log F (x), in contrast with

exponential decay distributions, where the decay of log F (x) is faster than linear.

5.1. ACCELERATED GENERATION OF FRACTALS 127

10
3.4

10
3.5

10
3.6

10
−0.6

10
−0.5

10
−0.4

generations

1−
F

(x
)

1.3

10
3.3

10
3.4

10
3.5

10
3.6

10
−0.8

10
−0.7

10
−0.6

10
−0.5

generations

1−
F

(x
)

1.5

10
3.5

10
3.6

10
−0.29

10
−0.27

10
−0.25

10
−0.23

10
−0.21

10
−0.19

10
−0.17

generations

1−
F

(x
)

1.8

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

generations

1−
F

(x
)

2

Figure 5.4: Log-log graph of the tail of (r=20%) distributions for dimensions 1.3, 1.5,
1.8 and 2.

The averages for dimensions 1.3, 1.5 and 1.8 are E(X1.3) = 1, 173, E(X1.5) = 1, 108

and E(X1.8) = 1, 721. It can be seen that, with a number of generations almost 5

times above their averages, respectively over 10%, 20% and 30% executions have not

finished.

Figure 5.5 displays four box-and-whisker graphs, which give rise to three remark-

able conclusions:

• The median (the dashed line within the box in fig. 5.5) is much smaller than

the average (the cross ‘+’ within the box) for dimensions 1.3, 1.5 and 1.8. This

suggests that the average of these distributions is biased by the size of the

sample, which means that they may have an infinite asymptotic average typical

of heavy tail distributions.

128 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

Figure 5.5: Box-and-whisker type graphs for dimensions 1.3, 1.5, 1.8 and 2.

• The sample distribution is strongly biased towards high execution times, indi-

cating a right-hand-side heavy tail. This can be seen in the fact that the lower

interquartilic distance (the difference between the first quartile - the lower seg-

ment of the box - and the the median - the green line) is shorter than the

upper interquartilic distance (the difference between the median and the third

quartile - the upper segment of the box). Besides this, the distance between

the minimum and the first quartile is much less than the distance between the

maximum (the highest point of the graph) and the third quartile.

5.1. ACCELERATED GENERATION OF FRACTALS 129

Estimating the characteristic exponent

The preceding subsection provides visual evidence for a heavy tail behavior in di-

mensions 1.3, 1.5, 1.8. Evidence for this behavior is weaker in dimension 2, but also

present in, for instance, the linear decay observed in figure 5.4. In this subsection

we estimate the characteristic exponent for these distributions, using the estimators

presented in subsection 5.1.2.

First we compute the Hill-Hall estimator adapted for censored observations, (equa-

tion 5.6).

dimension
r

1% 2.5% 5% 10% 15% 20%
1.3 0.7827 0.6796 0.8312 0.7953 0.7634 0.7084
1.5 1.1765 1.2400 1.0952 1.0595 0.9952 0.9418
1.8 0.3649 0.4855 0.6746 0.5759 0.5657 0.5705
2 0.7656 0.6043 1.0403 1.0463 0.7732 1.0309

Table 5.3: Estimations of α for dimensions 1.3, 1.5, 1.8 and 2 using the adapted
Hill-Hall estimator.

Table 5.3 confirms that these distributions are heavy tailed, since all the values in

the table are less than 2, the limit for heavy tail distributions.

For dimension 1.3, all the estimations (for all values of r) are less than 1, which

means that this distribution does not have neither a finite average nor a finite variance.

The same happens for dimension 1.8 even in a stronger way, as the values of α are

even smaller (all are below 0.7).

Dimensions 1.5 and 2 provide examples of heavy tail distributions with a charac-

teristic exponent α between 1 and 2. These distributions have a finite average, but

an infinite variance, indicating that their right heavy tail is lighter than in the other

two distributions.

Figure 5.6 displays the erratic behavior of the sample average as a function of the

sample size.

To verify the reliability of our characteristic exponent estimation, table 5.4 shows

the estimations obtained using the regression estimator described in a previous sub-

section (equation 5.8), which is considered slightly less robust than the maximum

130 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

900

1000

1100

1.3

sample size

sa
m

pl
e

av
er

ag
e

0 200 400 600 800 1000 1200
500

1000

1500

2000

2500

3000

3500

sample size

sa
m

pl
e

av
er

ag
e

1.5

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

sample size

sa
m

pl
e

av
er

ag
e

1.8

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

sample size

sa
m

pl
e

av
er

ag
e

2

Figure 5.6: Evolution of the sample average as a function of the sample size for
dimensions 1.3, 1.5, 1.8 and 2.

likelihood estimator (adapted Hill-Hall). The results of this estimator can be seen to

be consistent with those of the adapted Hill-Hall estimator.

Tail truncation

As mentioned before, in practice one has to select the GE maximum number of

generations for specially difficult problems. In other words, an appropriate censorship

value τ must be chosen, so that the algorithm does not become stagnated in the

extreme values of the distribution tail. As a consequence, the tail is truncated. The

selection of the value of τ depends on the problem and the algorithm. Ideally, only

a small portion of tail should be truncated, but this may be prohibitive from the

computational point of view.

If the truncation is set at a small number of generations, it will be harder to

distinguish between heavy tail and leptokurtic distributions. From a practical point

5.1. ACCELERATED GENERATION OF FRACTALS 131

dimension
r

1% 2.5% 5% 10% 15% 20%
1.3 0.6952 0.7528 0.7715 0.7904 0.7692 0.7345
1.5 1.1318 1.3790 1.0886 0.9664 0.9786 0.9721
1.8 0.3310 0.5220 0.7285 0.6424 0.5762 0.5762
2 ≈0 ≈0 0.2554 0.4821 0.6008 0.6667

Table 5.4: Estimations of α for fractal dimensions 1.3, 1.5, 1.8 and 2, using the
regression estimator.

of view, this is not a problem, if there are strong indications that the tail exhibits at

least one of the two behaviors. A heavy tail behavior is not a necessary condition to

accelerate randomized search methods. In fact, it has been proved that the efficiency

of the search in leptokurtic distributions can be improved by randomized backtracking

[73]. However, with a heavy tail distribution, the occurrence of long executions will

be more frequent than with a leptokurtic distribution, making it possible to obtain a

higher potential acceleration.

dimension 1.3 1.5 1.8 2
µ2 1.6171e+06 1.3532e+06 1.5496e+06 69.9039
µ4 9.0640e+12 7.6389e+12 6.0015e+12 9.6330e+05

kurt(x) 3.4575 4.1642 2.4817 197.1335

Table 5.5: Kurtosis computation for dimensions 1.3, 1.5, 1.8 and 2.

Table 5.5 shows the kurtosis for the 4 fractal dimensions considered. Remember

that, if this value is greater than 3 (the kurtosis for a normal distribution) the distri-

bution is leptokurtic (with abrupt peaks and heavy tails), otherwise it is platokurtic

(with smooth peaks and light tails). In our case, fractal dimensions 1.3, 1.5 and 2

are seen to be leptokurtic, while dimension 1.8 is platokurtic. Figure 5.7 shows the

histograms built for the execution samples for dimensions 1.3, 1.5, 1.8 and 2.

This subsection ends with the conclusion that there exists an application of GE,

automatic fractal generation, whose distributions exhibit a heavy tail behavior, be-

sides being leptokurtic in many cases. In the next subsection we show that it is

possible to take advantage of this probabilistic characterization to increase the per-

formance of GE and yield a fast fractal generation algorithm.

132 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

250

300

350

400
1.3

generations
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

50

100

150

200

250

300

350

400

450

500

generations

1.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

generations

1.8

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

800

900

1000

generations

2

Figure 5.7: Histograms with the execution samples obtained for fractal dimensions
1.3, 1.5, 1.8 and 2.

5.1.4 Restart strategies

We have shown that our algorithm may give rise to computational efforts with a

leptokurtic or heavy tail distribution. This may be due to the fact that the algorithm

makes bad choices more frequently than expected, leading the search to a dead-end

in the search space, where no solution of the required fitness exists.

The algorithm seems to be more efficient at the beginning of the search, which

suggests that a sequence of short executions, compared to a single long execution,

may give rise to a better use of the computational resources. In this subsection we

show that the algorithm may be accelerated by the use of several restart strategies.

5.1. ACCELERATED GENERATION OF FRACTALS 133

Figure 5.8: Function F (x) for several values of the restart threshold θ ∈
{10, 20, 50,∞} applied to fractal dimension 1.3.

Restarts with a fixed threshold

Figure 5.8 displays the result of a restart strategy with a fixed threshold applied to the

generation of a fractal curve with dimension 1.3. This is the simplest strategy: once

the algorithm has been working for a predefined number of generations θ, without

reaching the desired goal, a new execution is started with a different random seed. As

the figure shows, the failure rate after 500 generations is 70% (F (500) = 0.3), while

this percentage falls to 10% using restarts with a threshold θ = 10 generations.

Such an improvement is typical of heavy tail distributions. The fact that the

experimental curve has been so dramatically moved towards the beginning of the

support is a clear indication that the heavy tail character of the original distribution

134 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

has disappeared in the modified algorithm.

Figure 5.9: Function F (x) for several values of the restart threshold θ ∈
{10, 20, 50,∞} applied to fractal dimension 1.5.

Figures 5.9, 5.10 and 5.11 clearly show that the restarts make the tail of the

distributions lighter, thus providing a mechanism to handle heavy tail and leptokurtic

distributions.

Different fixed thresholds give rise to different average times needed to reach a

solution. Table 5.6 and figure 5.12 show that the threshold value θ = 6 minimizes

the expected cost for fractal dimension 1.3, making it the optimal threshold θ∗. For

threshold values larger than the optimal, the heavy tail behavior at the right of

the median dominates the average cost, while below the optimal value the success

5.1. ACCELERATED GENERATION OF FRACTALS 135

Figure 5.10: Function F (x) for several values of the restart threshold θ ∈
{500, 1000, 2000,∞} applied to fractal dimension 1.8.

percentage is too small and too many restarts are required. Anywhere, many non-

optimal choices provide a considerable acceleration of the algorithm.

It has been proven that the use of a fixed restart threshold θ with a heavy tail

distribution eliminates this behavior in such a way that all the moments of the new

distribution become finite [74].

Restart sequences

The idea of a fixed threshold comes from theoretical results in [109], which describe

optimal restart policies. It can be proven that if the time distribution of the execution

136 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

generations

F
(x

)

θ=1
θ=2
θ=5
θ = ∞

Figure 5.11: Function F (x) for several values of the restart threshold θ ∈ {1, 2, 5,∞}
applied to fractal dimension 2.

is completely known and therefore θ∗ can be calculated a priori, restarting every θ∗

generations yields the minimum average execution time.

[109] also provide a strategy (a universal strategy applicable to every distribution)

to minimize the expected cost of random procedures in the case where no a priori

knowledge is available. It consists of sequences of executions whose values are powers

of two. After two executions with a given threshold, the threshold is changed to its

double value. Let ti be the number of generations of the i-th execution; the universal

5.1. ACCELERATED GENERATION OF FRACTALS 137

θ % solved average cost
2 100% 382.6740
4 100% 277.5730
8 100% 207.8240

16 100% 271.3980
32 100% 345.2680
64 100% 407.2460

128 100% 621.1770
256 99.8% 830.4220
512 98.5% 985

1024 96.4% 1,367
2048 93.7% 1,909

Table 5.6: Percentage solved and average cost for several threshold values in the
fractal dimension 1.3 experiment.

strategy is defined as:

ti =





2k−1 if i = 2k − 1

ti−2k−1+1, if 2k−1 ≤ i < 2k − 1,

yielding strategies of the form

(1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . .).

[109] presents two theorems which together prove the asymptotic optimality of

this procedure for an unknown distribution.

Table 5.7 summarizes the results of the application of both strategies. The average

time using restarts with the universal strategy is approximately twice the time needed

using fixed restarts with the optimal threshold. Both yield a considerable acceleration

against the algorithm without restarts.

In several problems whose execution times had heavy tail distributions, the univer-

sal strategy was found to grow ‘too slowly.’ This happens because, in those problems,

the restart sequence takes too many iterations to reach a value near θ∗ [30, 94]. A

138 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

θ

av
er

ag
e

nu
m

be
r

of
 g

en
er

at
io

ns

Figure 5.12: The effect of restarts with fixed θ on the solution costs for fractal di-
mension 1.3.

correction was proposed by [149], with a new restart strategy which was applied suc-

cessfully to constraint satisfaction problems. In this simple strategy, each new restart

is a constant factor γ greater than the preceding value:

(1, γ, γ2, γ3, . . .), γ > 1. (5.10)

This strategy has a high probability of success when the restart value ti = γi−1

is near the optimal restart threshold value. Increasing the restart threshold geomet-

rically makes sure that the optimal value will be reached in a few generations. The

dimension no restart optimal fixed threshold universal
1.3 1,173 164.9655 (θ∗ = 6) 294.867
1.5 1,108 374.2069 (θ∗ = 10) 622.181
1.8 1,443 248.5263 (θ∗ = 17) 625.334

2 5.4360 1.1655 (θ∗ = 1) 1.1701

Table 5.7: A comparison between average execution times for each dimension without
restarts, with an optimal fixed threshold strategy and with the universal strategy.

5.1. ACCELERATED GENERATION OF FRACTALS 139

solution is expected to be found within a few restarts after the value of ti has sur-

passed the optimal. This strategy has the advantage of being less sensitive to the

actual distribution it is applied to.

Figure 5.8 displays the average execution times using Walsh strategy for several

values of γ. It can be seen that γ = 1.2 provides the fastest acceleration; with this

parameter, fractal dimension 2 reaches the performance of fixed restarts with optimal

threshold. The average times for fractal dimensions 1.3 and 1.5 are approximately

double of those obtained with the universal strategy, although much less than those

without any restart strategy. A special case is fractal dimension 1.8, where Walsh

strategy worsens the performance.

5.1.5 Discussion

Heavy tail probability distributions have been used to model several real world phe-

nomena, such as weather patterns or delays in large communication networks. In this

section we have shown that these distributions may be also suitable to model the exe-

cution time of an algorithm which uses Grammatical Evolution for automatic fractal

generation. Heavy tail distributions help to explain the erratic behavior of the mean

and variance of this execution time and the large tails exhibited by the distribution.

We have proved that restart strategies mitigate the inconveniences associated with

heavy tail distributions and yield a considerable acceleration on the previous algo-

rithm. These strategies exploit the non-negligible probability of finding a solution in

short executions, thus reducing the variance of the execution time and the possibility

that the algorithm fails, which improves the overall performance.

dimension Walsh
γ = 1.2 γ = 1.4 γ = 1.6 γ = 1.8 γ = 2

1.3 441.5138 639.0714 846.0743 773.4603 898.4630
1.5 654.5434 773.9020 845.0908 905.0780 938.3790
1.8 3,115 2,695 2,527 2,437 2,372

2 1.167 1.1827 1.1729 1.1979 1.1783

Table 5.8: Average execution times using the Walsh strategy for several values of γ.

140 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

We have given evidence that several restart strategies are of practical value, even

in scenarios with no a priori knowledge about the probability distribution of the

execution time.

So far, we have considered situations of complete or inexistent knowledge. In

real situations, the execution time or the resources are bounded, so that some partial

knowledge about the execution time is available. In this scenario, we suspect that

our algorithm would take advantage of dynamic restart strategies based on predictive

models, which have been used successfully to tackle decision and combinatorial prob-

lems [86, 94, 139]. Further research along this line would be focused on pinpointing

the real time knowledge about the behavior of the algorithm which would make it

possible to build predictive models for its execution time, thus providing a further

acceleration.

Finding the conditions for the execution time of a particular Grammatical Evo-

lution experiment to exhibit a heavy tail distribution would also make an interesting

research line: is the fractal generation optimization exhibiting a typical behavior or

is it just an exception?

5.2 Accelerated Training of Multilayer Perceptrons

The training time of a Multilayer Perceptron (MLP), understood as the time needed

to obtain some required training error, is a random variable which depends on the

random initialization of the MLP weights.

These weights are commonly initialized according to a given probability distri-

bution, having this choice a significant impact on the training time distribution (see

[53, 56, 101]). To address this problem, some weight initialization methods have been

proposed (e.g. [56, 150]). They attempt to reduce the training time by applying dif-

ferent probability distributions on the initial weights of the MLP based on knowledge

about the training set.

In this work, a simpler and more general approach which does not make use of

the mentioned information is presented. To do this, we model the learning process

of a MLP as a las Vegas algorithm [109], i.e. a randomized algorithm which meets

5.2. ACCELERATED TRAINING OF MULTILAYER PERCEPTRONS 141

three conditions: (i) it stops when some pre-defined training error δ is obtained, (ii)

its only measurable observation is the training time, and (iii) it only has either full

or null knowledge about the training time probability distribution.

Using this modeling, we perform a case study with the UCI Thyroid Disease

database1, revealing that the time distribution for learning this pattern recognition

benchmark belongs to the heavy tail distribution family.

This work adapts restart estrategies to the MLP context: the MLP is trained

during a number of epochs t1. If the required training error δ is achieved before t1,

then the execution finishes. Otherwise, we initialize again the weights in a randomized

way, and re-train the MLP during t2 epochs. The process is iteratively repeated until

the training error δ is reached.

Two different strategies are applied for the determination of optimal restarting

times. The first assumes full knowledge of the distribution yielding a 40% cut down

in expected time with respect to the training without restarts. The second assumes

null knowledge, yielding a reduction ranging from 9% to 23%.

The rest of the section is organized as follows. Subsection 5.2.1 presents the

Thyroid Disease database and provides evidence of heavy tail behavior when a MLP

is trained on it. Subsection 5.2.2 tests the condition to be satisfied by the probability

distribution to profit from restart strategies, providing an empirical evaluation of two

strategies on the particular case study. Finally, some discussion and future research

lines are given in subsection 5.2.3.

5.2.1 A case study: the UCI Thyroid Disease Database

To motivate the use of restarts in MLP learning, we firstly present the existence of a

high variability in its training time, indicative of an underlying heavy tail behavior.

The evaluation was performed using the UCI Thyroid Disease database, as a case

study.

Table 5.9 shows the expectations, deviations (and its ratio) of the numbers of

epochs T spent in building a single hidden layer MLP with n = 1, . . . , 8 units. The

1The UCI Repository of Machine Learning Databases, available online at
http://www.ics.uci.edu/˜mlearn/MLRepository.html

142 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

MLP was trained using the well-known Back-Propagation technique with a target

training error δ = 0.02. The results shown were computed using 10-fold 10-cross

validation.

n 1 2 3 4 5 6 7 8
E[T] 8551.7 5516.8 888.5 2339.7 1680.2 587.6 482.4 490.5
σ[T] 2547.5 3885.6 1565.5 2848.8 1355.6 55.1 296.9 464.1

σ[T]/E[T] 30% 70% 156% 106% 79% 10% 60% 95%

Table 5.9: Expectation, deviation (and its ratio) of the number of epochs T spent in
the building of a MLP with n hidden units and training error δ = 0.02.

The obtained deviations are very large respect to the expectations for most of the

architectures. For the rest of the experiments, we shall use a MLP with n = 3 hidden

units, which has the highest relative variability. This will serve as a proof of concept,

although the same behavior is observed in MLPs with other number of hidden units.

In the following, we give visual evidence that T is heavy tailed.

8 8.2 8.4 8.6 8.8 9 9.2
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

P
[T

>
t]

Figure 5.13: A log-log plot of P [T > t] as a function of t (in epochs).

Figure 5.13 presents a log-log plot of P [T > t] for the 10% largest values (t >

3, 000). The plot confirms the polynomial decay by displaying a straight line with

5.2. ACCELERATED TRAINING OF MULTILAYER PERCEPTRONS 143

slope−α. As we informally mentioned in last chapter, for sufficiently large t, log P [T >

t] = −α log C.t⇒ log P [T > t]/ log C.t ≈ −α.

Finally, we verify that α belong to the (0, 2) interval by computing the (this time

non-adapted) Hill estimator (see [82]):

α̂r =

(
r−1

r∑

j=1

ln Tm,m−j+1 − ln Tm,m−r

)
,

where Tm,1 ≤ Tm,2 ≤ . . . ≤ Tm,m are the m ordered training completion times, and

r < m is a cutoff that allows to observe only the highest values (the tail). We use

the typical cutoff r = 0.1m and obtain α̂r = 1.942, which is consistent with our

hypothesis.

This polynomial decay, which yields a big probability mass for long executions,

is due to the fact that certain initial weights entail a convergence to local minima of

the target function, requiring very long (even infinite) training periods, while others

yield a convergence to global minima in a few epochs.

5.2.2 Restart strategies

A las Vegas algorithm may profit from restarting if, at some point of the execution

τ , the expected completion time conditioned to the already employed execution time

(E[T−τ |T > τ]) is larger than the (unconditioned) expected completion time (E[T]),

i.e. if ∃τ, E[T] < E[T − τ |T > τ] (see [148]).

Figure 5.14 shows that the majority of τ values met the condition for the MLP to

profit of restart strategies.

Restart strategies when the distribution is known

Luby el at. prove the existence of an optimal restart strategy for a Las Vegas algorithm

which minimizes the expected running time when the execution time distribution

q(t) = Pr(T < t) is assumed known (see [109]).

144 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

τ

ep
oc

hs
E[T− τ | T>τ]
E[T]

Figure 5.14: E[T − τ |T > τ] as a function of τ , E[T] serves as the baseline.

This optimal strategy is of the form ti = t∗ ∀i, where

t∗ = arg min
t

E[St] = arg min
t

1

q(t)

(
t−
∑

t′<t

q(t′)

)
(5.11)

and St is the restart strategy where ti = t ∀i for some t. This strategy is thus a fixed

strategy, as it is presented in the previous chapter.

Simple calculations yield t∗ = 418, with an optimal expected time E[S∗
t] =

546.876. This provides a 40% cut down in expected time with respect to the training

without restarts (see Table 5.9). Figure 5.15 displays the expected time for strategies

of the form St with t ∈ [100, 10, 000]. As it can be seen, many non-optimal t choices

provide a time reduction as well.

Restart strategy when the time distribution is unknown

In some scenarios it is not possible to assume full knowledge of the distribution, e.g.

if the MLP is to be trained a single time. In this subsubsection we assume null

5.2. ACCELERATED TRAINING OF MULTILAYER PERCEPTRONS 145

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

600

800

1000

1200

1400

1600

1800

2000

t

ep
oc

hs

E[S
t
]

E[T]

Figure 5.15: Expected training time using the strategy St with t ∈ [100, 10, 000],
E[T] serves as the baseline.

knowledge.

We now use the Walsh strategy SW , described in the previous chapter.

Figure 5.16 displays the expected values of SW using several standard γ values

γ = 2, 3, . . . , 10. Training is speeded with all choices, with improvements ranging

from 9% (γ = 2) to 23% (γ = 8). The expected times were computed running 1, 000

times the training algorithm for each γ.

5.2.3 Discussion

In this work, MLP training algorithm is modelled as a Las Vegas algorithm, perform-

ing a case study on the UCI Thyroid Disease Database. We give statistical evidence

that the probability distribution of the training time belongs to the heavy tail fam-

ily, meaning a polynomial probability decay for long executions. This property is

exploited to reduce the training time cost by two simple restart strategies. The first

assumes full knowledge of the distribution yielding a 40% cut down in expected time

with respect to the training without restarts. The second, assumes null knowledge,

146 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

2 3 4 5 6 7 8 9 10
500

550

600

650

700

750

800

850

900

γ

ep
oc

hs
E[SW]
E[T]
E[S

t*
]

Figure 5.16: Expected training time using the Walsh strategy E[SW] for γ =
1, 2, . . . , 10, E[S∗

t] and E[T] serve as baselines.

yielding a reduction ranging from 9% to 23%.

As a future research, we plan to determine whether further improvements can be

obtained by relaxing the two Las Vegas algorithms assumptions (see the introducion

of this section). This could make it possible to incorporate dynamic restart strategies

(see [94]) capable of exploiting epoch-by-epoch information about the training time

distribution, using various algorithm behavior measurements besides the execution

time.

5.3 GRASP-Evolution for Constraint Satisfaction

Problems

Random binary CSPs is a widely used benchmark within the constraint programming

community as an efficiency test for several algorithms and solvers. However, we can

also find a wide spectrum of evolutionary approaches for solving random binary CSPs.

5.3. GRASP-EVOLUTION FOR CSPS 147

In [42] we find a comprehensive comparison of those methods, such as SAW [41],

Glass-box [114], MID, CCS, among others.

This section presents the hybrid evolutionary algorithm GA-GRASPV o for solv-

ing random binary CSPs. The algorithm is conceptual, simple and uses a key modeling

based on the ideas in [38]. GA-GRASPV o specifically applies the idea of a GRASP-

like mechanism to perform genotype-to-phenotype mapping for solving random binary

CSPs.

The main difference between our algorithm and that of [38], in terms of introducing

a GRASP-like genotype-to-phenotype mapping, is that the genotypes represent two

completely different aspects. In [38], the genotype represents values to assign to

variables, while in our algorithm the genotype represents the order in which the

variables will be tentatively assigned. This is a novel approach to solve CSPs, and it

will be explained in more detail in the next subsections.

We provide a comparison with two of the most successful state-of-the-art evo-

lutionary algorithms as shown in [42]. Our simple algorithm outperforms the best

approach in terms of effectiveness (measured by success rate, mean error at ter-

mination and average champion error) while outdoing it also in terms of efficiency

(measured by the average number of evaluations to find a solution). Furthermore,

it compares with the best approach in terms of efficiency, while outperforming it in

terms of effectiveness.

The main contributions of this section are:

• A novel representation which focuses on finding an optimal variable ordering,

and that borrows ideas from [38] for a GRASP-like genotype-to-phenotype map-

ping.

• A general evolutionary algorithm which can be easily suited to solve any kind

of CSP problem without considerable implementation effort.

• Outstanding results that outperform and compare with the best evolutionary

algorithms which usually involve complex heuristics and fitness adjustment func-

tions.

148 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

• Showing that a simple algorithm can yield outstanding results if an appropri-

ate modeling is chosen; therefore, stating the importance of representation in

evolutionary strategies.

The rest of the section is organized as follows: first we briefly introduce constraint

satisfaction problems for Evolutionary Algorithms (EAs). We then introduce the

GRASP framework and present our hybrid algorithm. The following subsections are

devoted to the experimental comparison with other methods: in section 5.3.4 we

define our test-suite problem (random binary CSPs), in section 5.3.5 we introduce

the methods against which our algorithm will be compared, section 5.3.6 describes

the measures we use for the comparison, and section 5.3.7 shows the experimental

results and the comparison itself. The section ends with some discussion and future

work.

5.3.1 Constraint Satisfaction Problems and EAs

In a constraint satisfaction problem (CSP) we are given a set of variables, where each

variable has a domain of values, and a set of constraints acting between variables.

The problem consists of finding an assignment of values to variables in such a way

that the restrictions imposed by the constraints are satisfied.

We can also define a CSP as a triplet < X,D,C >, where X = {x1, . . . , xn}

is the set of variables, D = {D1, . . . , Dn} is the set of nonempty domains for each

variable xi, and C = {C1, . . . , Cm} is the set of constraints. Each constraint is defined

over some subset of the original set of variables {x1, . . . , xn} and specifies the allowed

combinations of these variable values. Thus, solving the CSP is equivalent to finding

a complete assignment for the variables in X with values from their respective domain

set D, such that no constraint Ci ∈ C is violated.

The evolutionary framework presents the issue of constraint handling: constraints

can either be handled directly or indirectly [57].

• Indirect handling involves transforming the constraint into an optimization

objective which the EA will pursue; while,

5.3. GRASP-EVOLUTION FOR CSPS 149

• Direct handling leaves the constraint as it is, and enforces it somehow during

the execution of the algorithm.

Direct handling is not oriented for EA due to the lack of an optimization function

in the CSP, which would result in no guidance towards the objective. Thus, indirect

handling is the best suited approach for EA, although a mixed strategy where some

constraints are enforced and some are transformed into an optimization criteria is

suited as well.

5.3.2 Greedy Randomized Adaptive Procedures

procedure GRASP(maxIt,seed)
1. Read Input()
2. for k=1,. . . , maxIt do
3. Solution ← Greedy Randomized Construction(seed);
4. Solution ← Local Search(Solution);
5. Update Solution(Solution);
6. end;
7. return Best Solution;
end GRASP

Figure 5.17: The GRASP pseudocode

The GRASP (Greedy Randomized Adaptive Search Procedure) metaheuristic can

be viewed as an iterative process, each iteration consisting of two phases: construction

and local search [62]. The construction phase builds a solution whose neighborhood

is investigated by the local search procedure. During the whole process, the best

solution is updated and returned at the end of a certain number of iterations. Figure

5.17 illustrates the basic GRASP procedure.

Any local search algorithm can be incorporated to improve a solution: tabu search

and simulated annealing [54, 108], large neighborhoods [13] or variable neighborhood

search [118]. However, we are interested in the greedy construction phase, where a

tentative solution is built in a greedy fashion.

150 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

Randomly generated solutions are usually of a poor quality, while greedy generated

solutions tend to be attracted by local optima, due to the less amount of variability.

A greedy randomized heuristic [61] adds variability to the greedy algorithm. A certain

greedy function yields a ranked candidate list, which is called restricted candidate list

(RCL). An element from that list is randomly selected and added to the solution.

procedure Greedy Randomized Construction(seed)
1. Solution ← ∅
2. Evaluate the incremental costs of candidate elements
3. While Solution is not complete do
4. Build the restricted candidate list RCL
5. Select element s from RCL at random
6. Solution ← Solution ∪ {s};
7. Reevaluate the incremental costs;
8. end;
9. return Solution;
end Greedy Randomized Construction

Figure 5.18: The Greedy Randomized Construction pseudocode

The procedure to construct the greedy randomized solution is depicted in Figure

5.18. A key step in this pseudocode is the selection of an attribute from the RCL.

This can be performed using a qualitative or quantitative criterion. In the former,

the element is selected among the k best elements; while in the latter, the element is

selected among the elements with a quality α% of the greedy value. Note that k = 1

or α = 100 yields a pure greedy selection.

Reactive GRASP

As can be seen in the procedure described below, the selection of the k parameter is

problematic. The use of a fixed value for this parameter could hinder high quality

solutions [128]. A learning-based strategy named reactive GRASP was introduced

in [129], selecting a different value in each iteration from a finite set of values. The

selection of a certain value in a given iteration can be chosen on the basis of the

5.3. GRASP-EVOLUTION FOR CSPS 151

goodness of the best solution generated by this parameter. A possibility is to maintain

a vector of parameter values to use in each iteration, where a position pi denotes the

value of the parameter that serves to choose the i − th candidate. From now on we

will refer to this vector as GRASP parameters vector.

For example, a certain position of the GRASP parameters vector pi = 3 makes us

choose a random candidate among the four best candidates, for the i − th decision,

in the RCL list (from now on we will consider that the first value in the RCL is in

position 0 and the last one n− 1, where n would be the length of the RCL).

5.3.3 The Hybrid Evolutionary Algorithm

We now turn to the hybrid evolutionary algorithm for solving CSP problems. The

algorithm maintains a population of GRASP parameters and performs a number of

iterations until a solution is found. In each iteration it selects two individuals of the

population and, with some probabilities, crosses and/or mutates them. The next

population will be obtained in an elitist fashion.

Following the framework presented in [42], our algorithm consists of a genera-

tional evolutionary model with an elitist selection of the new generations, a one-point

crossover recombination operator, and a mutation operator which selects, for each si

(each single GRASP parameter in the vector), a uniformly random new value (sub-

ject to a given probability); the parent selection is performed in a binary tournament

fashion and the constraint handling is purely indirect by using GRASP parameters. It

presents neither fitness adjustments nor use of heuristics. Each of these characteristics

is now reviewed in more detail.

Evolutionary model

The algorithm consists of a generational strategy where new populations are selected

in an elitist fashion, which means that in each new generation, the population is

calculated by maintaining the best individuals among the previous population and

the offspring.

152 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

Fitness function

In order to calculate the fitness of a certain individual, we will take into account how

many variables are in conflict with the rest. Thus, the fitness function would be as

follows:

f(s) =
n∑

j=1

υ(s, Cj), where,

υ(s, Cj) =

{
1, if s violates at least one c ∈ Cj;

0, otherwise.

Where s is a complete assignment of values to variables , Cj is the set of constraints

containing variable vj and n is the number of variables.

Note that, even though we name it fitness function, we want to minimize its value,

since this is equivalent to reducing the number of violated variables in the problem.

Indeed, if f(s) = 0 then the assignment s produces no violations, and, therefore, it is

a solution.

Crossover

The hybrid EA uses a one-point crossover for crossing two individuals σ1 and σ2. It

selects a random number r in 1..n and the child is obtained by selecting the first r

genes from σ1 and the remaining n− r genes from σ2.

Mutation

The mutation here is achieved by, with a given probability, randomly selecting a new

value for each single GRASP parameter in the vector that defines the individual.

Parent selection

In each iteration the algorithm selects two individuals in the population (the parents).

This is performed in a binary tournament fashion: randomly selecting two individuals

from the population and choosing the best of them; the same is carried out for the

second parent.

5.3. GRASP-EVOLUTION FOR CSPS 153

Representation

This is the most important feature in our algorithm, in fact, the rest of the character-

istics are common in simple evolutionary schemes. However, the representation of the

CSP is a key factor in the algorithm efficiency. In order to define our implementation,

we must introduce some basic concepts.

GRASP parameters vector Our population is then, a set of GRASP parameter

vectors. In [38] a Hybrid GRASP - Evolutionary algorithm for finding Golomb rulers

is introduced. Our representation makes the same use of the GRASP features as in

the mentioned algorithm. In the same manner, the value of each parameter defines

the exact candidate to select, instead of a range for a random selection as defined in

the GRASP section.

The value of each parameter reflects the decision to take in this step, forcing us to

make the decision ranked in the position indicated by the value. Decisions are ranked

according to some quality criteria, thus, a parameter value 0 will involve making the

“best” decision. A vector with all parameters set to 0 corresponds to a plain greedy

strategy.

Parameters concordance Solving a CSP usually implies assigning values to vari-

ables iteratively until either a consistent solution has been reached, or the problem

has been proved to be unsolvable. Every time a variable is instantiated with a value,

a consistency test is performed to ensure that the rest of the variables will have con-

sistent values to be assigned to. If this test fails, the procedure will backtrack to the

previous decision (to the last consistent variable instantiation) and try to assign a

different value to the current variable. If the test is positive the procedure will choose

a new variable to instantiate.

However, there is a crucial element on the efficiency of this solving procedure: the

order in which the variables are chosen for instantiation. This is called the variable

ordering heuristic. According to [69], the ordering heuristic for assigning variables

is a key factor in quickly finding a feasible solution. Based on that, we will assume

that it is possible to assign the variables in a certain order such that we will be able

154 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

to find a solution assigning values that do not generate conflicts. This can seem

a fuzzy assumption, and perhaps an optimistic statement; however, it is true. If

you could know beforehand the search tree of a solution, you could reproduce it by

assigning a value that yields no violations (the value that appears in the solution) to

every variable in the order that the search tree indicates. This will produce a valid

solution.

Let us exemplify this with a toy CSP. Imagine we have three variables x, y and z.

The common domain of the variables is D = 0, 1, 2. The variables are subject to two

constraints:
c0 :: x + y = 2

c1 :: z + y = 1

Now we are going to try to solve the problem (finding a consistent assignment of

values to variables) by instantiating the variables in lexicographic order. Very briefly,

we will assign x = 0, then y = 2 to be consistent with c0 and we would not be able to

assign a value to z that satisfies c1. However, if we would have ordered the variables

y, x, z, we would have assigned y = 0, then x = 2 to satisfy c0, and finally z = 1

satisfying c1. Note that the order in which we assign the values is also important.

In our approach we assume a static lexicographic ordering, and we will always assign

the first value that yields no violations.

Therefore, we are going to transform the problem of finding values for the variables

(approach followed in [38]) into finding an optimal ordering for the variables that will

yield a feasible solution. Our vector of GRASP parameters will allow us to choose,

among the ranked variables, which one we want to instantiate next. The variables will

be dynamically ranked using the dom/degree ordering heuristic [69] (quality criteria),

which gives more weight to variables with few available values in its domain, and

that take place in a greater amount of constraints (Note that this heuristic will yield

the ordering introduced in the example above where we were able to immediately

find a solution). The values that the parameters can take, will fall within the range

[0, n−posi], where posi ∈ 1..n is the position of the given parameter within the vector.

In this case, the last parameter will always be 0, since there is just one variable left

to assign. Once we have selected a variable we will instantiate it with the best value

5.3. GRASP-EVOLUTION FOR CSPS 155

possible (the value that yields the least amount of constraint violations). In Figure

5.19 this process is explained in 6 steps.

V2

V3

V0

V1

2 1 0 02

V1

BV

dom/degree

V1 = BV (Value yielding the least number of violations)

VO

V1

V3

V2

V4 V4

2

4

5

1 3

vars ranked vars

GRASP parameters vector

temptative solution (var/value)

6

Figure 5.19: Assigning the first variable using the GRASP parameters vector in 6
steps: Step 1 shows the variables available to select. Step 2 applies the dom/degree
heuristic to these variables. Step 3 shows the resultant RCL list. Step 4 selects
the candidate variable that the GRASP parameters vector indicates. In Step 5 this
variable is instantiated with the best value possible and the last step reflects this
selection and instantiation in the first position of a vector that represents an actual
tentative solution of the problem.

It is worth mentioning that, opposite to [38], we allow non-feasible instantiations.

This follows immediately from the fact that we are considering a feasibility problem,

instead of an optimization problem. In the latter we are searching for the best feasible

solution, hence, we can restrict the search to feasible solutions; while in the former

we are searching for the best unfeasible solution, which corresponds to a feasible

solution–a valid solution which does have zero constraint violations.

The Hybrid Algorithm

We are now ready to present the hybrid EA GA-GRASPV o which is depicted in

Figure 5.20. Lines 2-4 perform the initializations. In particular, the population is

randomly generated in lines 2-3 and the generation counter g is initialized in line 4.

The core of the algorithm is in lines 5-21. They generate new generations of

individuals for a number of iterations or until a solution is found. The new generation

is initialized in line 7, while lines 8-19 create the new generation. The new individuals

156 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

1. GA-GRASPV o(csp)
2. forall i ∈ 1..populationSize
3. Σ← Σ ∪ {randomConfiguration(csp.n)};
4. g ← 0;
5. while g ≤ maxGen & v(Σ) > 0 do
6. i← 0;
7. Σ+ ← ∅;
8. while i ≤ populationSize do
9. select (σ1, σ2) ∈ Σ;
10. with probability Pc

11. σ∗ ← crossover(σ1, σ2);
12. if υ(σ∗) == 0
13. return σ∗;
14. with probability Pm

15. σ∗ ← mutate(σ∗);
16. if υ(σ∗) == 0
17. return σ∗;
18. Σ+ ← Σ+ ∪ {σ∗};
19. i← i + +;
20. Σ← select(Σ+, Σ);
21. g ← g + 1;

Figure 5.20: Algorithm GA-GRASPV o for CSP problems.

are generated by selecting the parents in line 9, applying a crossover with probability

Pc (lines 10-11), and applying a mutation with probability Pm (lines 14-15). The

new individuals are added to the new population in line 18. The current population

is selected among the previous and the new population in line 20. Note that after

crossover and mutation we need to calculate the cost of the individual in order to

detect solutions and/or keep track of the cost in order to properly select parents and

next population.

5.3.4 Our benchmark: random binary CSPs

In this work we consider random binary constraint satisfaction problems, since their

properties in terms of difficulty to be solved are well-understood and hence such

5.3. GRASP-EVOLUTION FOR CSPS 157

problems have been used for testing the performance of algorithms for solving binary

CSPs. In [138] it was shown that any CSP can be equivalently transformed to a

binary CSP, thus without a loss of generality.

Various problem instance generators have been developed for the class of binary

CSPs, based on several theoretical models. All of these models are parameterized by

n, m, D, and k, where n is the number of variables, m is the number of constraints,

D is the number of values in each domain and k is the arity of each constraint. In a

binary constraint network, the value of k is fixed to 2.

There are four traditional models, called A, B, C and D developed from a general

framework presented in [131] and [141], all of which are unsolvable with high proba-

bility. In our work we use the E model proposed by Achioptlas et al. [8], which has

the advantage that it generates solvable benchmarks. This model is usually specified

as E(n, p,D, k) with p defined as p = m[
(

n
k

)
Dk]−1 and works by choosing uniformly,

independently and with repetitions, conflicts between two values of two different vari-

ables. We are aware of the existence of another good random binary CSPs generator,

Model F [40], and we plan to use it as a benchmark generator in future experiments.

Our test suit consists of 250 solvable problem instances available on the Web

http://www.cs.vu.nl/˜bcraenen/resources/csps modelE v20 d20.tar.gz

and used also as a benchmark in [42]; they are generated using the model E(20, p, 20, 2)

with 25 solvable instances for each value of p in {0.24, 0.25, 0.26, 0.27, 0.28, 0.29,

0.30, 0.31, 0.32, 0.33}. By using the conjecture of Smith [141] we show that the

range for p in model E actually runs through the mushy region. The term mushy

region is used to indicate the region where the probability that a problem is soluble

changes from almost zero to almost one. Within the mushy region, problems are in

general difficult to solve or to prove unsolvable. In Table 5.10 it can be seen that

the predicted number of solutions drops bellow one when moving from p = 0.31 to

p = 0.32, precisely what defines the mushy region.

158 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

p E(solutions)
0.24 1707299.07
0.25 258652.614
0.26 38984.6092
0.27 5600.99655
0.28 838.870129
0.29 125.400589
0.30 19.6420135
0.31 2.79148238
0.32 0.42173145
0.33 0.06618763

Table 5.10: The Smith’s conjecture prediction of the number of solutions as a function
of p.

5.3.5 Related work

There are several evolutionary algorithms focused on solving random binary CSPs

[42]. Most of them use knowledge of the problem, either to develop heuristics or to

implement a fitness adjustment technique. The nice feature of our algorithm is that

no knowledge about the problem is taken advantage of, hence, harnessing generality

without a loss in efficiency or effectiveness.

In this section we are going to briefly introduce the two most successful approaches

according to [42], which will be later used to compare against our algorithm.

SAW

The basic idea behind the SAW (Stepwise Adaptation of Weights) algorithm lies in the

way that the fitness function is evaluated. Each k evaluations2 the variables causing

the constraint violations in the best individual of the current population are given

a high weight (penalty), because they are considered to be harder than the others.

These weighted-up variables will have a greater impact in the fitness of the following

evaluations. A comprehensive study of different parameters and genetic operators of

SAW can be found in [41].

2In [42] the period k is set to 25 evaluations.

5.3. GRASP-EVOLUTION FOR CSPS 159

Glass-box

Glass-box works by decomposing complex constraints in two steps: elimination of

functional constraints and decomposition of the CSP into primitive constraints, usu-

ally of the form α· pi−β· pj 6= γ where pi and pj are the values of variables vi and vj.

A common repair rule used is the following

if α· pi − β· pj = γ then change vi or vj (5.12)

Repairing a violated constraint can result in the production of new violated con-

straints, thus at the end of the repairing process, the chromosome will not in general

be a solution. An extensive work on this constraint processing technique is presented

in [114] and [147].

5.3.6 Measures of effectiveness and efficiency

Genetic algorithms are random algorithms, therefore the behavior of the optimization

in a problem instance varies from execution to execution. In order to obtain a more

accurate idea of the performance of an algorithm in a concrete binary CSP instance,

we are going to run it 10 times for each problem instance, thus having 250 executions

for each p value (10 executions for each 25 problem instances belonging to a concrete

p value). The set of executions for each p value is denoted by Sp.

An execution is finished when the genetic algorithm finds the solution or when a

given number of evaluations is reached. An evaluation is the calculation of the fitness

of an individual (in this case the number of variables violating a constraint).Thus,

we define θ as the maximum number of evaluations for each execution. Now, we are

ready to define some effectiveness and efficiency measures as a function of p.

Effectiveness

Effectiveness is measured by the success rate (SR), the mean error at termination

(ME) and the average champion error (ACE).

We define S+
p as the executions of Sp that found a solution before θ evaluations,

160 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

and S−
p = Sp − S+

p . The SR over p is the percentage of runs that find a solution in

no more than θ evaluations.

SR(p) = 100
|S+

p |

|Sp|

The error at termination (ET) is defined for a single run as the number of constraints

violated by the best candidate solution in the population when the execution reaches

θ evaluations. If an execution finishes before θ evaluations, then its ET is considered

0, thus the mean error at termination (ME) is defined as

ME(p) =
1

|Sp|

∑

s∈S−

p

EAT (s)

We use another effectiveness measure that focuses on the convergence speed of the

algorithm. We define the champion error (CE) as the number of constraints violated

by the best individual found up to a given time (measured in evaluations) during a

run, thus the average champion error is defined as

ACE(p, t) =
1

|Sp|

∑

s∈Sp

CE(s, t)

If s has finished before t evaluations, then CE(s, t) = 0.

Efficiency

In our experiments, we use the average number of evaluations to find a solution (AES)

in order to measure efficiency. The AES is the average number of evaluations to find

a solution (ES) over the successful runs S+
p .

AES(p) =
1

|S+
p |

∑

s∈S+
p

ES(s)

It is important to note that if S+
p ≪ S−

p then AES is statistically unreliable.

Another interesting efficiency measurement is the average conflict checks needed to

find a solution, used in [42]. Unfortunately, it is not possible to find a correspondence

5.3. GRASP-EVOLUTION FOR CSPS 161

between the typical conflict check and the way in which our algorithm computes

constraint violations.

5.3.7 Experimental results

We have chosen the SR, ME, ACE and AES measures in order to compare the

measures obtained from our algorithm GA-GRASPV o with same measures of the best

ones of the algorithms analyzed in [42]. The test suite (the 250 instances generated

from model E), the limit of evaluations (θ = 100000)3 and our mutation probability

parameter (set to 0.3 in all the experiments) are also the same.

In the following two subsubsections we compare our algorithm with the winners

of effectiveness and efficiency of the analysis performed in [42].

Comparing against the most effective algorithm: SAW

The most important measure in evaluating effectiveness is the success rate, because

the main goal of an algorithm for solving CSPs is to obtain a solution. In [42] it is

shown that the overall winner regarding success rates is the SAW algorithm.

In Figure 5.21 we give a comparison of the SR measures between the GA-GRASPV o

and SAW algorithms. SAW is outperformed by GA-GRASPV o in all p values. More-

over, if we consider the global success rate for all p’s, we obtain an overall SR of 55%

for GA-GRASPV o and 44% for SAW, which implies more than a 10% of successful

executions.

Unfortunately, due to the way in which the fitness function is computed in SAW,

its ME and ACE measures cannot be compared to those from GA-GRASPV o. This

is explained because the fitness of the SAW algorithm is not the number of constraint

violations, but a weights-scaled function.

We include an efficiency comparison in Figure 5.21, the average number of eval-

uations to a solution. In all but two values of p the GA-GRASPV o requires less

3This limit is achieved by a population size of 1000 individuals, a maximum generations limit of 50
and two evaluations for each individual and generation: after crossover and after mutation. Similar
results can be achieved with a smaller population size and with a larger amount of generations by
means of a simple restarting policy. Thus, diversity is very important for the performance of the
algorithm in this benchmark.

162 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33
0

10

20

30

40

50

60

70

80

90

100

p in model E (csp difficulty)

su
cc

es
s

ra
te

(S
R

)

GA−GRASP(Vo)
SAW

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33

1

2

3

4

5

6

7

8

x 10
4

p in model E (csp difficulty)

av
er

ag
e

ev
al

ua
tio

ns
 to

 a
 s

ol
ut

io
n

(A
E

S
)

GA−GRASP(Vo)
SAW

Figure 5.21: SR and AES measures for the GA-GRASPV o and SAW algorithms.

evaluations than SAW. Curiously, from p = 0.24 to p = 0.30 the two algorithms seem

to converge, but from that point onwards the AES for SAW growths exponentially

while having only a slight increase for GA-GRASPV o.

Comparing against the most efficient algorithm: Glass-box

In [42] it is shown that the winner regarding Efficiency, measured by the number of

fitness evaluations, is the Glass-box genetic algorithm.

In Figure 5.22 we give a comparison of the efficiency measure (AES) between

the GA-GRASPV o and Glass-box algorithm. In the easy region (0.24 to 0.27) GA-

GRASPV o needs a comparable number of evaluations, but is surpassed in terms of

efficiency by Glass-Box in the mushy region. The average number of solutions over

all p’s is 24077 for GA-GRASPV o and 7889 for Glass-box, being the last a 32% more

efficient.

In efficacy terms, the two algorithms are more balanced. GA-GRASPV o outdoes

Glass-box in the whole easy region and in the beginning of the mushy region (0.24 to

0.31), with an equilibrium in the rest of the values. In overall terms the Glass-Box

successfully finishes a 40% of the executions, a 15% less than GA-GRASPV o.

Observing the ME and ACE of Figure 5.22 it can be see that the quality of the

partial solutions during the execution is slightly better for Glass-box, specially in the

5.3. GRASP-EVOLUTION FOR CSPS 163

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33

10

20

30

40

50

60

70

80

90

100

p in model E (csp difficulty)

su
cc

es
s

ra
te

(S
R

)

GA−GRASP(Vo)
Glass−Box

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

p in model E (csp difficulty)

av
er

ag
e

ev
al

ua
tio

ns
 to

 a
 s

ol
ut

io
n

(A
E

S
)

GA−GRASP(Vo)
Glass−Box

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33
0

0.5

1

1.5

2

2.5

3

3.5

4

p in model E (csp difficulty)

m
ea

n
er

ro
r

at
 te

rm
in

at
io

n
(M

E
)

GA−GRASP(Vo)
Glass−Box

0 1 2 3 4 5 6 7 8 9 10

x 10
4

2

3

4

5

6

7

8

9

10

11

evaluations

av
er

ag
e

ch
am

pi
on

 e
rr

or
 (

C
E

)

GA−GRASP p = 0.31
Glass−Box p = 0.31
GA−GRASP p = 0.32
Glass−Box p = 0.32
GA−GRASP p = 0.33
Glass−Box p = 0.33

Figure 5.22: Efficacy and efficiency measures from the GA-GRASPV o and Glass-Box
algorithms.

mushy region, where it has 1 less violated constraint on average at the end of the run.

For all efficiency measures we have used the evaluation as the unit of computational

effort. In order to obtain a more realistic picture about the efficiency of the algorithms,

we have computed an average of the CPU time consumed by an evaluation: 0.0062±

0.0028 seconds on a Pentium IV at 2.8 GHz with 512 MBytes of RAM.

Finally, we display in figure 5.23 the average time to solution (in seconds) of

GA-GRASPV o for several values of p .

164 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33

50

100

150

200

250

p in model E (csp difficulty)

se
co

nd
s

Figure 5.23: Average time to solution of the GA-GRASPV o for several values of p.

5.3.8 Discussion

In this section we have presented an hybrid evolutionary algorithm for solving random

binary CSPs, which yields outstanding results, as it outperforms the best previous

approach in terms of effectiveness, and compares with the best strategy in terms of

efficiency.

Our hybrid algorithm incorporates features of GRASP, in a similar way as in [38],

where a GRASP-like mechanism is applied to genotype-to-phenotype mapping. How-

ever, our approach features a novel representation which focus on finding a variable

ordering instead of a value to variable assignment.

The rest of the algorithm is conceptual and simple, making no use of information

regarding the problem, which harnesses generality. It also demonstrates that modeling

(or representation) is a key factor in evolutionary strategies.

Moreover, we believe there is a large space for improvement. Learning techniques

and restart policies should be introduced and tested. We are also studying hybridiza-

tions with local search techniques that are already yielding very promising results.

Finally, we are interested in using real life CSP benchmarks in order to compare

5.3. GRASP-EVOLUTION FOR CSPS 165

results with constraint programming techniques and other evolutionary approaches

available. Binary CSPs are not very common in real life applications and even though

any CSP can be transformed into a binary CSP in polynomial time [138], we plan to

generalize our solver to deal with n-ary CSPs.

166 CHAPTER 5. APPPLIC. OF ALGORITHMIC STOCHASTIC MODELING

Chapter 6

Conclusions and future work

Throughout this thesis we have adressed questions of theoretical nature in Algorithmic

Information Theory, and developed new or improved applications for Classification

and Evolutionary Computation, which borrow the ideas from this theory and from

Algorithmic Stochastic Modeling. This chapter gives a summary of the conclusions

and research lines proposed in each one.

6.1 Advances in Algorithmic Information Theory

One of the most interesting advances of Algorithmic Information Theory is the devel-

opment of an absolute measure of similarity between objects. This measure can only

be estimated, as it is incomputable by definition. The typical estimation relies on the

use of data compression algorithms, being this estimation known as the compression

distance. The two theoretical contributions of chapter 3 analyze the quality of this

estimation. The first quantifies the estimation robustness when the information con-

tained in the objects is noise-altered, concluding that it is considerably resistant to

noise. The second studies the impact of the compression algorithm implementation

on the estimation, yielding some practical recipes for making this choice.

167

168 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1.1 The Normalized Compression Distance in the presence

of noise

When the Normalized Compression Distance (NCD) is used to compute the distance

between two different files, the second file can be considered as a noisy version of the

first. Therefore, the effect on the NCD of the progressive introduction of noise in

a file can provide information about the measure itself. In this work, we forward a

theoretical reasoning of the expected effect of noise introduction, which explains why

the NCD can get values greater than 1 in some cases.

A first batch of our experiments confirm the theoretical model. A second batch

explores the effects of noise on the precision of clusterings based on the use of the

NCD. It can be noticed that the clustering process is qualitatively resistant to noise,

for the results do not change much with quite large amounts of it. Different types

of files are differently affected, however, which is not surprising: mtDNA files, for

instance, which are built on a 4-letter alphabet, are degraded faster than human text,

which uses a larger alphabet.

In the future, we intend to tackle a quantitative demonstration of the NCD resis-

tance to noise. We shall also try other metrics and clustering procedures, appropriate

to the different file types, to compare their resistance to noise with our NCD results.

6.1.2 Compressors requirements for the use of the Normal-

ized Compression Distance

We have analyzed the impact on the NCD quality of some features of two compressors:

the block size in bzip2, and the sizes of the two windows (sliding and lookahead)

used by gzip. The well-known Calgary Corpus has been used as a benchmark. Any

similarity distance should measure a 0 distance (or, at least, a very small value)

between two identical objects. The empirical results obtained with both compressors

for the Calgary Corpus reveal that the NCD is biased by the size of the objects,

independently of their type. For object sizes smaller than certain values (related to

the block and window sizes in the compressors), the distance between two identical

objects is usually quite small, which proves that the NCD is a good tool for this

6.2. NEW APPLIC. OF ALGORITHMIC INFORMATION THEORY 169

purpose. However, for larger sizes, when the inner limitations of the compressors

are violated, obviously the distance between two identical objects grows to very high

values, making the NCD practically unusable. Other widely used compressors (such

as winzip and pkzip) also show the same limitations.

The use of block and window sizes in the compressors aims to increasing the com-

putation speed at the expense of the compression ratio. Our experiments prove that

this balance between quality and speed should be treated carefully for clustering,

where quality is tantamount. When considering clustering problems, all considera-

tions about speed should be left apart if they imply exceeding the system parameters.

The proper use of this powerful distance depends on selecting compression algorithms

without limiting factors related to the size of the objects, such as the high compres-

sion Markov predictive coder PPMZ [91], which does not set any window or block

limit, but is much slower than those mentioned above. The results of using PPMZ in

our experiments are shown in Figure 3.18 (page 58 and are coherent with our conclu-

sions: the distance computed with PPMZ does not depend on the size of the objects

and is always between zero and a very small value (0.1043). On the other hand, this

also confirms that the NCD is a very good distance measurement, when used in the

proper way.

In the case of bzip2 and gzip, the block, the sliding window and the lookahead

window should be at least as large as the sum of the sizes of the objects to be

compared. The table in Figure 3.3 (page 57) summarizes the results obtained for

all three compressors under different circumstances, both as regards the compression

ratio obtained and the size limits where the use of the NCD is acceptable for each.

6.2 New applications of Algorithmic Information

Theory

In chapter 4 we used variants of the compression distance to develop two applica-

tions for classification and one for evolutionary computation. The first application

addresses the problem of detecting similarities in objects which have been generated

170 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

by a predecessor common source, independently of whether they use or not the same

coding scheme: this includes detecting document translation and reconstructing phy-

logenetic threes from genetic material. We make use of the already proved usefulness

of compression based similarity distances for educational plagiarism detection to de-

velop our second application: AC, an integrated source code plagiarism detection

environment. The third application makes use of this distance as a fitness function,

which is used by evolutionary algorithms to automatically generate music in a given

pre-defined style.

6.2.1 Common Source Data Detection

The experimental data confirm the hypothesis that by using Lempel-Ziv inspired

structures, we can detect similarities in the texts even if the alphabet is different and

we can also detect the type of the similarities, namely if the similarities are from

common concepts with well-defined structure or from common data predecessor with

poorly expressed or missing structure.

The measure M1 (page 67) works reliably in texts larger than 10 KB. However,

when using shorter texts, of length inferior to 5 KB we can not achieve good results. It

would be interesting to find a representation of short texts that can give reliable simi-

larity measure. As a first attempt the measure is good enough. Further consideration

shows that measures, based on dynamical programming are more precise.

The comparison of correlations in order to judge the similarity between text as

the only similarity measure is of course, prone of errors. First of all we must choose

the parameters L and B in a way that allows as to have sufficient, but not too many

arcs of the graphs within one bin. In practice, we are looking for some 5-15 arcs in

500 bins. But this implies that having some reasonable L for texts (about the length

of one word, e.g. 4-8 symbols), we need significant length of the text. Actually this is

observed also empirically. The method works well with text of length 5-15 KB, which

is the range we have proved experimentally. It may be supposed to work with larger

texts as well.

To avoid this limited text length range, one can use much more sophisticated

6.2. NEW APPLIC. OF ALGORITHMIC INFORMATION THEORY 171

methods, based in general on statistical physics conformation analysis, that is beyond

the scope of this thesis and subject of ongoing work.

The challenging question is whether the grammar can also be captured using

similar methods. The grammar is an element may be in use when a text is compressed.

As an example, let us consider some arbitrary Spanish phrase, for example “las chicas

altas son buenas bailarinas” (the tall girls are good dancers). The gender/plural

information is carried by the ending of the word “-as” and the string “as” should be

coded according to this.

6.2.2 Souce Code Plagiarim Dectection

The problem of plagiarism detection is a difficult one. The frontier between, on

one side, random similarity or simple inspiration from anothers’ work and, on the

other side, blind cut+paste plagiarism is not clear-cut, and certain cases will always

require a human grader to distinguish between what is acceptable and what is not.

However, different algorithms and heuristics can be used to identify suspects of blatant

plagiarism and flag the more complex cases, greatly simplifying the grader’s task.

This thesis has presented AC, a plagiarism detection tool which also doubles as a

framework for research into source code plagiarism detection. Even though AC was

initially designed as an enviroment to increase the NCD applicability to plagiarism

detection, it has suffered a great development, currently offering many improvements

over other tools described in current literature: the use of rich visualization greatly

simplifies the task of analyzing the result of similarity tests; its stand-alone, cross-

platform implementation does not raise privacy concerns found in web-based systems;

and preparation of assignment submissions for automated plagiarism detection, over-

looked by many systems, can be automated with a graphical user interface.

The use of statistical methods has opened different lines for further research.

Greater insight into the Hampel identifier threshold choice could be obtained from a

student controlled experiment or by further work on an ongoing project where assign-

ments corpora are artificially developed [29]. A second line of research is concerned

172 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

with the surprisingly high accuracy of the normal distribution in outlier identifica-

tion, even when confronted with different corpora and different similarity distance

algorithms.

Once two assignments have been deemed to be “very similar” to each other, a

human grader is currently expected to visually compare both for evidence of plagia-

rism. In other systems, similar fragments from both assignments are highlighted for

side-by-side inspection, but AC currently lacks this feature. The Substring similarity

distance test is a good candidate to identify such areas. Further refinement of the test

itself and an extension to facilitate identification of hot areas during visual inspection

is pending.

Although source code plagiarism detection is a relatively veteran field of research,

few systems have undergone experimental validation. A typical approximation is to

use a corpus of already-graded set of assignments (where cases of plagiarism were

manually identified) and compare these cases to those found using the tool to be

tested. However, both the original grader and the tool may fail to correctly iden-

tify all cases of plagiarism; and false positives are also possible. A better approach

would require asking a group of students to write plagiarized versions of randomly

selected assignments within a carefully selected corpus where no plagiarism had oc-

curred. This would allow experiments to be performed with a fully annotated corpus.

An alternative and less labor-intensive approach is to use automatic programming

to generate artificial sets of assignments; initial steps using this method have been

described in [29]. Whatever the approach, validation will continue to be one of the

main lines of inquiry.

6.2.3 Music Generation

We have found that that the NCD is a promising fitness function for genetic algorithms

used in automatic music generation. Some of the pieces of music thus generated recall

the style of well-known authors, in spite of the fact that the fitness function only takes

into account the relative pitch envelope. Our results have been qualitatively superior

to those obtained previously with a different fitness function [124].

6.3. NEW APPLIC. OF ALGORITHMIC STOCHASTIC MODELLING 173

Several recombination operators have been tested to fine tune the genetic algo-

rithm for this application, finding that mixed strategies which promotes diversity in

the first generations and then change to a more exploitative strategy give the best

results. This scheme of initial exploration and posterior exploitation is analogue to

the idea behind Simulated Annealing [95].

In the future we intend to combine our results with those of other authors [104, 35]

to use as the target for the genetic algorithm, not one or two pieces of music by a

given author, but a cluster of pieces by the same author, thus trying to capture the

style in a more general way.

Although we have introduced the information about note duration in the genetic

process, we have ignored it so far. As the current design of our algorithm facilitates

this (the NCD can easily deal with integers representing note lengths) we intend

perform a new set of experiments to evolve the note length information along with

the melody.

We shall also work with a standard and richer system of music representation,

such as MIDI.

The results presented in this thesis serve as a proof-of-concept. As future research,

we plan to provide a comparison with state-of-the-art music composition techniques

from machine learning to reveal both the strengths and weaknesses of our proposal.

6.3 New applications of Algorithmic Stochastic Mod-

elling

Another three new applications were derived in chapter 5, by means of Stochastic

Modeling, two for evolutionary computation and one for classification. Two of them

are intimately related and make use of the presence of Heavy Tail probability dis-

tributions in the optimization processes involved in the generation of fractals by an

evolutionary algorithm, and in the training process of a multilayer perceptron. This

discovery is used to improve the performance of both algorithms by means of restart

strategies. The last application presented in this thesis is a successful story of the use

174 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of a special randomized heuristic in a simple genetic algorithm to yield a state-of-the

art evolutionary algorithm for solving Constraint Satisfaction Problems.

6.3.1 Accelerated Generation of Fractals of a Given Dimen-

sion

Heavy tail probability distributions have been used to model several real world phe-

nomena, such as weather patterns or delays in large communication networks. In this

thesis we have shown that these distributions may be also suitable to model the exe-

cution time of an algorithm which uses Grammatical Evolution for automatic fractal

generation. Heavy tail distributions help to explain the erratic behavior of the mean

and variance of this execution time and the large tails exhibited by the distribution.

We have proved that restart strategies mitigate the inconveniences associated with

heavy tail distributions and yield a considerable acceleration on the previous algo-

rithm. These strategies exploit the non-negligible probability of finding a solution in

short executions, thus reducing the variance of the execution time and the possibility

that the algorithm fails, which improves the overall performance.

We have given evidence that several restart strategies are of practical value, even

in scenarios with no a priori knowledge about the probability distribution of the

execution time.

So far, we have considered situations of complete or inexistent knowledge. In

real situations, the execution time or the resources are bounded, so that some partial

knowledge about the execution time is available. In this scenario, we suspect that

our algorithm would take advantage of dynamic restart strategies based on predictive

models, which have been used successfully to tackle decision and combinatorial prob-

lems [86, 94, 139]. Further research along this line would be focused on pinpointing

the real time knowledge about the behavior of the algorithm which would make it

possible to build predictive models for its execution time, thus providing a further

acceleration.

Finding the conditions for the execution time of a particular Grammatical Evo-

lution experiment to exhibit a heavy tail distribution would also make an interesting

6.3. NEW APPLIC. OF ALGORITHMIC STOCHASTIC MODELLING 175

research line: is the fractal generation optimization exhibiting a typical behavior or

is it just an exception?

6.3.2 Accelerated Training of Multilayer Perceptrons

In this thesis, MLP training algorithm is modelled as a Las Vegas algorithm, perform-

ing a case study on the UCI Thyroid Disease Database. We give statistical evidence

that the probability distribution of the training time belongs to the heavy tail fam-

ily, meaning a polynomial probability decay for long executions. This property is

exploited to reduce the training time cost by two simple restart strategies. The first

assumes full knowledge of the distribution yielding a 40% cut down in expected time

with respect to the training without restarts. The second, assumes null knowledge,

yielding a reduction ranging from 9% to 23%.

As a future research, we plan to determine whether further improvements can be

obtained by relaxing the two Las Vegas algorithms assumptions (see sect. 5.2). This

could make it possible to incorporate dynamic restart strategies (see [94]) capable of

exploiting epoch-by-epoch information about the training time distribution by using

various algorithm behavior measurements besides the execution time.

6.3.3 GRASP-Evolution for Constraint Satisfaction Problems

In this thesis we have presented an hybrid evolutionary algorithm for solving random

binary CSPs, which yields outstanding results, as it outperforms the best previous

approach in terms of effectiveness, and compares with the best strategy in terms of

efficiency.

Our hybrid algorithm incorporates features of GRASP, in a similar way as in [38],

where a GRASP-like mechanism is applied to genotype-to-phenotype mapping. How-

ever, our approach features a novel representation which focus on finding a variable

ordering instead of a value to variable assignment.

The rest of the algorithm is conceptual and simple, making no use of information

regarding the problem, which harnesses generality. It also demonstrates that modeling

(or representation) is a key factor in evolutionary strategies.

176 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Moreover, we believe there is a large space for improvement. Learning techniques

and restart policies should be introduced and tested. We are also studying hybridiza-

tions with local search techniques that are already yielding very promising results.

Finally, we are interested in using real life CSP benchmarks in order to compare

results with constraint programming techniques and other evolutionary approaches

available. Binary CSPs are not very common in real life applications and even though

any CSP can be transformed into a binary CSP in polynomial time [138], we plan to

generalize our solver to deal with n-ary CSPs.

Chapter 7

Conclusiones y trabajo futuro

A lo largo de esta tesis, hemos tratado cuestiones de naturaleza teórica en Teoŕıa de la

Información Algoŕıtmica, y desarrollado aplicaciones novedosas (o que suponen una

mejora a las ya existentes) para problemas de Clasificación y Computación Evolutiva,

usando ideas de esta teoŕıa y del Modelado Estocástico Algoŕıtmico. Este caṕıtulo

resume las conclusiones y lineas futuras propuestas para cada avance.

7.1 Avances en Teoŕıa de la Información Algoŕıtmica

Una de las más interesantes aportaciones de la Teoŕıa de Información Algoŕıtmica es

el desarrollo de una medida absoluta de similitud entre objetos. Esta medida sólo

puede ser estimada, al ser no computable por definición. La estimación t́ıpica se

basa en el uso de algoritmos de compresión de datos, siendo esta estimación conocida

como la distancia de compresión. Las dos aportaciones teóricas presentadas en el

caṕıtulo 3 analizan la calidad de esta estimación. La primera cuantifica la robustez

de la estimación cuando la información contenida en los objetos ha sido alterada por

ruido externo, concluyendo que ésta es considerablemente resistente al mismo. La

segunda, estudia el impacto de la implementación del algoritmo de compresión sobre

la estimación, obteniéndose algunas recetas prácticas para realizar dicha elección.

177

178 CHAPTER 7. CONCLUSIONES Y TRABAJO FUTURO

7.1.1 La Distancia de Compresión Normalizada en presencia

de ruido

Cuando usamos la distancia de compresión normalizada (NCD) para calcular la dis-

tancia entre dos ficheros diferentes, podemos considerar el segundo fichero como una

versión ruidosa del primero. Por tanto, el efecto que la adición progresiva de ruido

en un fichero puede tener sobre la NCD puede darnos información sobre el compor-

tamiento mismo de esta medida. En este trabajo, damos un razonamiento teórico del

efecto esperado de esta introducción de ruido, que logra explicar por qué la NCD da

valores mayores que 1 en algunos casos.

Un primer conjunto de nuestros experimentos confirma el modelo teórico pro-

puesto. Un segundo conjunto explora los efectos que el ruido tiene sobre el clustering

basado en NCD. Es posible concluir que los procesos de clustering son cualitativa-

mente resistentes al ruido, ya que no se aprecia que los cluster resultantes tengan

cambios sustanciales respecto al cluster sin ruido, incluso cuando se añade un gran

nivel del mismo. Sin embargo, distintos tipo de datos se ven afectados de forma di-

ferente por el ruido, lo cual no es sorprendente: el ADN mitocondrial, por ejemplo,

que se construye sobre un alfabeto de 4 letras, se degrada más rápido (con respecto

a la NCD) que los textos escritos por humanos, con un alfabeto mucho mayor.

Como trabajo futuro, planeamos dar una demostración cuantitativa de resistencia

al ruido de la NCD. También debemos probar otras métricas y procedimientos de

clustering espećıficos para cada tipo de fichero, y comparar su resistencia al ruido con

nuestros resultados sobre la NCD.

7.1.2 Requisitos de los compresores para el uso de la Distan-

cia de Compresion Normalizada

Hemos analizado el impacto sobre la precisión de la NCD de dos aspectos de dos

compresores reales: el tamaño de bloque en bzip2 y los tamaños de las dos ventanas

(sliding y lookahead) de gzip. El bien conocido Calgary Corpus se ha usado como

benchmark. Usamos como referencia de precisión la siguiente propiedad: cualquier

medida de similitud debe dar una distancia cercana a 0 entre dos objetos idénticos.

7.1. AVANCES EN TEORÍA DE LA INFORMACIÓN ALGORÍTMICA 179

Los resultados emṕıricos que hemos obtenido muestran que la NCD tiene un sesgo

con el tamaño de los objetos respecto a dicha propiedad, independientemente del

tipo de datos que éstos contengan: para tamaños de objetos menores que ciertos

valores (relacionados éstos con los tamaños de bloque y ventana de los compresores),

la distancia entre dos objetos idénticos es normalmente baja, lo que prueba que la

NCD es una buena herramienta para similitud en estas condiciones; sin embargo, para

tamaños moderadamente grandes de ficheros, la distancia entre dos ficheros idénticos

crece hasta valores muy altos (cercanos a 1, la máxima disimilitud), provocando que

el valor devuelto por la NCD carezca de valor informativo. Otros compresores muy

usados (como winzip y pkzip) muestran las misma problemática.

La implementación de compresores con limitaciones (e.g. de bloque y ventana)

tiene como objetivo aumentar el rendimiento de dichos algoritmos, a expensas de

una posible pérdida en la capacidad de compresión. Nuestros experimentos prueban

que este compromiso entre calidad y velocidad debe tratarse con cuidado si estos

compresores se usan en aplicaciones de clustering, donde la precisión es vital. En

estos casos, toda consideración sobre rapidez de compresión deben dejarse de lado, si

tal cosa supone una limitación sobre los ficheros involucrados en el clustering. El uso

apropiado de la distancia de compresión depende fuertemente de saber seleccionar

compresores sin factores limitantes sobre, al menos, el tamaño de los ficheros. Un

ejemplo de dichos compresores es es el codificador predictivo marcoviano PPMZ [91],

que no establece ningún limite de tipo bloque o ventana, a costa de obtener una

velocidad de compresión considerablemente menor que bzip2 y gzip. Los resultados

del uso de PMMZ sobre nuestro conjunto experimental se muestran en la figura

3.18 (página 58), siendo estos coherentes con nuestras conclusiones: distancias entre

objetos idénticos calculadas usando este compresor siempre son menores que un valor

próximo a 0 (0.1043). Estos exprimentos también confirman que la NCD es una

distancia robusta si se usa de forma adecuada.

Si se desea usar compresores más rápidos como bzip2 y gzip, el tamaño de bloque,

aśı como el de la sliding y lookahead window, debe ser tan grandes como la suma

de los tamaños de los objetos a comparar. La tabla en la figura 3.3 (página 57)

resume las regiones aceptables de funcionamiento usando distintas opciones con los

180 CHAPTER 7. CONCLUSIONES Y TRABAJO FUTURO

tres compresores, aśı como el ratio de compresión obtenido en cada región.

7.2 Nuevas aplicaciones de la Teoŕıa de Información

Algoŕıtmica

En el caṕıtulo 4 usamos variantes de la distancia de compresión para desarrollar

dos aplicaciones para clasificación y una para computación evolutiva. La primera

aplicación considera el problema de la detección de similitudes entre documentos

que han sido generados por una fuente común predecesora, independientemente de si

estos usan o no la misma codificación: esto incluye la detección de traducciones de

documentos y la reconstrucción de árboles filogenéticos a partir de material genético.

Hacemos uso de la ya demostrada utilidad de las distancias de similitud basadas

en compresión en la detección de plagio (en el ámbito educacional) para desarrollar

nuestra segunda aplicación: AC, un entorno integrado de detección de plagio en

código fuente. La tercera aplicación hace uso de esta distancia como una función

de fitness, que es usada por algoritmos evolutivos para generar de forma automática

música con un estilo predefinido.

7.2.1 Detección de Información Proveniente de una Fuente

Común

Los datos experimentales confirman la hipótesis de que es posible la dección de simi-

litudes en información textual usando estructuras inspiradas en el algoritmo Lempel-

Ziv, incluso si sus alfabetos son diferentes. También es posible detectar el tipo de

similitud, esto es, si las similitudes vienen de conceptos comunes subyacentes con

una estructura bien definida, o si estos vienen de una fuente de información común

predecesora con una estructura pobremente expresada o incluso inexistente.

La medida M1 (página 67) funciona fiablemente bien en textos mayores de 10 KB.

Sin embargo, cuando se usan textos más cortos, de longitud inferior a 5 KB, no

logramos obtener buenos resultados. Seŕıa interesante encontrar una representación

de estos textos cortos que pueda dar una medida de similitud igualmente fiable a

7.2. APLIC. DE LA TEORÍA DE INFORMACIÓN ALGORÍTMICA 181

cuando son suficientemente largos. En cualquier caso, consideramos que nuestra

medida sirve como una primera aproximación al problema. Un análisis más fino,

todav́ıa por confirmar, muestra que medidas relacionadas con la nuestra aumentadas

con programación dinámica podŕıan ser más precisas.

La comparación de correlaciones para juzgar la similitud entre información textual

tiene la ventaja de ser simple, pero precisamente por ello, puede estar sujeta a errores

si no se hacen las elecciones deseadas. Primeramente, debemos elegir los parámetros

L y B de forma que tengamos suficientes, (pero no demasiadas) aristas en cada bin.

En la práctica, esto se traduce en tener de 5 a 15 aristas en unos 500 bins. Eso

implica que para encontrar algún L razonable para textos (como por ejemplo L igual

a la longitud t́ıpica de las palabras en el texto, e.g. de 4 a 8 śımbolos para la mayoŕıa

de los idiomas) necesitamos que la longitud de estos sea significativamente grande.

Es posible verificar estos requerimientos de forma emṕırica, encontrando que este

método funciona bien para textos cuya longitud está entre 5 y 15 KB, que es rango

que hemos manejado en los experimentos. Es de prever que tambin funcione con

textos más largos.

Con el fin de evitar esta limitación en el rango de longitudes de los textos,

planeamos usar métodos más sofisticados basados en statistical physics conforma-

tion analysis. Estos métodos están más allá del objetivo de esta tesis y son objeto de

una investigación en curso.

También estamos interesados en una cuestión desafiante: ¿es posible capturar la

gramática subyacente a un texto usando metodos análogos a los propuestos en este

trabajo? La gramática es un elemento que puede usarse de forma impĺıcita en la

compresión de textos. Por ejemplo, consideremos la siguiente frase en español “las

chicas altas son buenas bailarinas”. La información de género y de número está

contenida en el sufijo “-as”, de manera que un algoritmo de compresión inteligente

codificará la cadena “as” de acuerdo con dicha información.

182 CHAPTER 7. CONCLUSIONES Y TRABAJO FUTURO

7.2.2 Detección de Plagio en Código Fuente

La detección de plagio es un problema dif́ıcil. La frontera entre, por un lado, similitud

casual o simple inspiración en el trabajo de otro y, por otro, el simple corta y pega,

no está bien delimitada, de manera que ciertos casos requerirán siempre un experto

humano que distinga lo que es aceptable de lo que no lo es. Sin embargo, se pueden

usar varios algoritmos y heuŕısticas para identificar sospechosos de plagio evidente y

señf otros casos más complejos, simplificando de forma evidente la tarea del profesor

eliminando comparaciones futiles.

Esta tesis ha presentado AC, una herramienta de detección de plagio que también

sirve como framework de investigación en detección de plagio en código fuente. A

pesar de que AC fue inicialmente diseñado como un entorno para aumentar la apli-

cabilidad de la NCD para la detección de plagio, ésta ha experimentado un gran

desarrollo, ofreciendo en la actualidad muchas mejoras sobre otras herramientas que

conforman el estado del arte: el uso de visualizaciones enriquecidas simplifica enorme-

mente el análisis de los resultados de los test de similitud; su implementación in situ e

independiente de plataforma evita la problemática legal de privacidad existente en los

sistemas basados en web. Asimismo, la preparación de ejercicios para su suministro

al sistema puede ser automatizado mediante una intuitiva interfaz gráfica de usuario.

El uso de métodos estad́ısticos para detección de plagio ha abierto varias lineas de

investigación. Un mejor uso del umbral proporcionado por el identificador de Hampel

puede conseguirse a través de un experimento controlado con estudiantes y copias

reales, o a través de nuestro proyecto en desarrollo para generar benchmarks artificiales

de plagio [29]. Una segunda ĺınea de trabajo consiste en explicar la sorprendente

adecuación de la distribución normal para modelos de detección de outliers, incluso

cuando nos encontramos con tipos muy distintos de ejercicios de programación (en

tipo de tarea y lenguaje requerido) y distintas medidas de similitud.

Una vez dos ejercicios de programación han sido marcados como “muy similares”

por alguna medida, se espera que el corrector humano compare visualmente ambos

códigos en busca de una evidencia de plagio. En otras herramientas para detección

de plagio es común que los fragmentos similares de código sean marcados de alguna

forma especial para facilitar la inspección humana. AC carece de esta facilidad en

7.2. APLIC. DE LA TEORÍA DE INFORMACIÓN ALGORÍTMICA 183

la actualidad. Consideramos que la medida de similitud Substring es una buena can-

didata para señalar dichas áreas de similitud. Por tanto, queda pendiente un mayor

refinamiento de dicho test y la subsecuente extensión para facilitar la identificación

de zonas de posible plagio.

A pesar de que la detección de plagio en código fuente es un campo relativamente

veterano, muy pocas de estas herramientas han sido objeto de una verdadera vali-

dación experimental . El único esfuerzo en este sentido es el uso de varios corpus

de ejercicios que contienne algunos plagios detectados en la fase de corrección por

parte de los profesores. Estos corpus se suministran a la herramienta de plagio para

verificar si ésta es capaz de detectar de nuevo los plagios ya detectados por el humano.

Desafortunadamente, es común que ambos, herramienta y corrector humano,

fallen en la correcta identificación de plagio, o incluso que incurran en falsos posi-

tivos. Un enfoque más experimental requeriŕıa involucrar a un grupo de estudiantes

en un experimento de plagio real de algunos ejercicios cuidadosamente seleccionados,

mientras que a otro grupo de estudiantes se le pediŕıa soluciones originales. Esto

permitiŕıa a los experimentadores disponer de un corpus con autoŕıa completamente

conocida. Una alternativa a esto, menos costosa en términos económicos y humanos,

es usar programación automática para generar conjuntos artificiales de ejercicios que

resuelvan una tarea concreta: los primeros pasos en esta linea se describen en [29].

Sea cual sea el enfoque, la validación de herramientas continua siendo una de nuestras

principales lineas de mejora.

7.2.3 Generación de Música

Hemos aportado evidencia de que la NCD es una prometedora función de fitness para

que los algoritmos genéticos puedan generar música de forma automática. Algunas

de las piezas generadas de esta forma recuerdan al estilo de los autores que se usa-

ron como objetivo, a pesar del hecho de que dicha función de fitness sólo toma en

cuenta el intervalo entre los tonos. Nuestros resultados mejoran otros obtenidos con

anterioridad usando una función de fitness diferente [124].

Se han evaluado varios operadores de recombinación para refinar el algoritmo

184 CHAPTER 7. CONCLUSIONES Y TRABAJO FUTURO

genético en esta aplicación concreta, encontrando que los mejores resultados se ob-

tienen mediante estrategias mixtas que promuevan la diversidad en las primeras ge-

neraciones y luego cambien a una estrategia más focalizada. Este esquema basado en

exploración inicial y posterior focalización es análoga a la idea subyacente al Simulated

Annealing [95].

Planeamos combinar nuestros resultados con los de otros autores (e.g [104, 35])

para usar como target del algoritmo genético no sólo una o dos piezas, sino un gran

cluster de obras del mismo autor, intentando capturar el estilo de una forma más

general.

A pesar del hecho de que ya hemos introducido información sobre la duración

de los tonos en el algoritmo genético, no hemos hecho uso de ella hasta el momento.

Como el diseño actual de nuestro algoritmo facilita dicha incorporación (la NCD puede

manejar fácilmente los enteros que representan la duración de los tonos) pretendemos

realizar un nuevo conjunto de experimentos para evolucionar la duración de los tonos

junto a la melod́ıa.

También planeamos trabajar con estándares de representación musical más ricos,

tales como MIDI.

Los resultados presentados en estas tesis sirven como prueba de concepto. Como

investigación futura, planeamos realizar una comparación de nuestro método con

técnicas de machine learning que sean el estado del arte en composición automática

de música, para aśı revelar los puntos fuertes y débiles de nuestro enfoque.

7.3 Nuevas aplicaciones del Modelado Estocástico

Algoŕıtmico

Las tres aplicaciones presentadas en el caṕıtulo 5 derivan del uso de Modelado Es-

tocástico, dos para computación evolutiva y una para clasificación. Dos de ellas están

ı́ntimamente relacionadas y hacen uso de la presencia de distribuciones de probabil-

idad de Cola Pesada en los procesos de optimización involucrados en la generación

de fractales mediante un algoritmo evolutivo, y en el proceso de entrenamiento de

7.3. APLIC. DEL MODELADO ESTOCÁSTICO ALGORÍTMICO 185

un perceptrón multicapa. Este descubrimiento se usa para mejorar el rendimiento de

ambos algoritmos mediante el uso de estrategias de recomienzo. La última aplicación

presentada en esta tesis es una historia exitosa del uso de una heuŕıstica aleatoria

especial en un algoritmo genético simple, obteniéndose un algoritmo que equivale

al estado del arte para la resolución de Problemas de Satisfacción de Restricciones

(CSPs).

7.3.1 Generación Acelerada de Fractales de una Dimensión

Dada

Las distribuciones de probabilidad de cola pesada ya han sido usadas para modelar

fenómenos de la naturaleza tales como patrones climáticos o retrasos en grandes redes

de comunicaciones. En esta tesis hemos mostrado que estas distribuciones pueden

modelar el tiempo de ejecución de un algoritmo que usa Evolución Gramatical para

la generación automática de fractales. Las distribuciones de cola pesada contribuyen a

explicar el errático comportamiento de la media y la varianza del tiempo de ejecución

de dicho algoritmo, aśı como las largas colas del que exhibe su función de distribución.

Hemos demostrado que las estrategias de recomienzo pueden mitigar los problemas

asociados con las distribuciones de cola pesada y producir una considerable aceleración

con respecto al algoritmo sin recomienzos. Estas estrategias explotan la probabilidad

no despreciable de encontrar soluciones en ejecuciones cortas, reduciendo la variabi-

lidad de tiempo de una ejecución a otra, aśı como la posibilidad de que el algoritmo

no encuentre solución en grandes tandas de ejecuciones, mejorando por tanto su

rendimiento de forma general.

Damos evidencia experimental del valor práctico de aplicar distintas estrategias

de recomienzos, incluso en escenarios donde no se tiene conocimiento a priori sobre

la distribución de probabilidad del tiempo de ejecución.

Hasta el momento sólo hemos considerado situaciones de conocimiento completo

o nulo. En situaciones reales, el tiempo de ejecución o los recursos computacionales

están limitados, de manera que sólo se posee conocimiento parcial sobre dicha varia-

ble. Conjeturamos que, en este escenario, nuestro algoritmo puede sacar provecho de

186 CHAPTER 7. CONCLUSIONES Y TRABAJO FUTURO

estrategias de recomienzo dinámicas basados en modelos predictivos, que ya han sido

usadas de forma exitosa en problemas combinatorios y de decisión [86, 94, 139]. La

futura investigación sobre esta linea estará focalizada en determinar qué conocimiento

en tiempo real sobre el comportamiento del algoritmo haŕıa posible construir modelos

predictivos para el tiempo de ejecución que produzcan una aceleración aún mayor que

la conseguida hasta el momento.

Encontrar las condiciones en las que el tiempo de ejecución de un algoritmo de

Evolución Gramatical exhibe colas pesadas supone una ĺınea de investigación desafi-

ante ¿tiene la generación de fractales un comportamiento t́ıpico o se trata sólo de una

excepción?

7.3.2 Entrenamiento Acelerado de Perceptrones Multicapa

En esta tesis se modela el entrenamiento de un perceptrón multicapa (MLP) como

un algorimo de tipo Las Vegas, realizando un caso de estudio sobre la UCI Thyroid

Disease Database. Damos evidencia estad́ıstica sólida de que la distribución de proba-

bilidad del tiempo de entrenamiento pertenece a la familia de distribuciones de colas

pesadas, significando esto un decaimiento (sólo) polinómico de probabilidad para eje-

cuciones largas. Esta propiedad es explotada para reducir el coste de entrenamiento

usando dos estrategias simples de recomienzo. La primera supone conocimiento com-

pleto de la distribución, obteniendo una reducción del 40% en el tiempo esperado con

respecto al entrenamiento sin recomienzos. La segunda supone conocimiento nulo,

provocando un ahorro en tiempo que va del 9% al 23%.

Como investigación futura, queremos averiguar si es posible conseguir una mayor

aceleración relajando los dos supuestos en los que trabajan los algoritmos Las Vegas

(ver secc. 5.2). Esto permitiŕıa incorporar las ya mencionadas estrategias dinámicas

de recomienzo (ver [94]) capaces de explotar información época a época sobre la

distribución del tiempo de entrenamiento, usando mediciones del comportamiento

del algoritmo más allá del tiempo de ejecución.

7.3. APLIC. DEL MODELADO ESTOCÁSTICO ALGORÍTMICO 187

7.3.3 Evolución de tipo GRASP para Problemas de Satis-

facción de Restricciones

Presentamos en esta tesis un algoritmo h́ıbrido evolutivo para la resolución de Pro-

blemas de Satisfacción de Restricciones Aleatorias Binarias (Random Binary CSPs)

que obtiene resultados excepcionales, superando al enfoque más efectivo actual (en

términos del número de problemas resueltos) y siendo comparable con el mejor en-

foque en términos de eficiencia (en términos del tiempo medio para la resolución).

Nuestro algoritmo h́ıbrido incorpora aspectos GRASP (Greedy Randomized Adap-

tive Search Procedures) de una manera similar a como se hace en [38], donde un

mecanismo tipo GRASP se aplica para la traducción genotipo-fenotipo. Nuestro en-

foque se diferencia de éste en su novedosa representación, focalizada en encontrar un

ordenamiento de variables en lugar de asignaciones variable-valor.

El resto del algoritmo es conceptual y simple, además de no hacer uso de infor-

mación espećıfica de los problemas de Satisfacción de Restricciones Aleatorias Bi-

narias, lo que aumenta su aplicabilidad en otros problemas. La solución propuesta

muestra claramente que el modelado (o representación) es un factor clave en los al-

goritmos evolutivos.

Creemos que, a pesar de los excelentes resultados obtenidos, hay todav́ıa un gran

espacio para la mejora. Consideramos introducir y probar técnicas de aprendizaje y

estrategias de recomienzos en nuestro algoritmo. También estamos estudiando hibri-

daciones con búsqueda local que están comenzado a dar resultados muy prometedores.

Finalmente, y a pesar de que los problemas de Satisfacción de Restricciones Aleato-

rias Binarios sean un benchmark altamente usado, estamos interesados en utilizar

CSPs que modelen problemas más realistas, con el propósito de comparar nuestros

resultados con otras técnicas tales como Constraint Programming u otros algoritmos

evolutivos. Los CSPs binarios no son muy comunes en la vida real, y a pesar de que

cualquier CSP se puede transformar a un CSP binario en tiempo polinómico [138],

planeamos generalizar nuestro algoritmo para que maneje CSPs n-arios.

188 CHAPTER 7. CONCLUSIONES Y TRABAJO FUTURO

Appendix A

Mathematical proofs for the

phenomenological model of

translation

Let us suppose that some text with a histogram (d2) is a translation of another text

with a histogram (d1), according to the model in the phenomenological section:

d2 ≡ HM(HG(d1; σG, δ))

The degree of each pair of nodes, d1(x) and d1(x + dx) changes according to this

model as:

{d(x), d(x + dx)} →

{d(x) + G(0, σM) + δG(dx, σG), d(x) + G′(0, σM)− δG(dx, σG)}. (A.1)

Note that due to the exchange nature of HG, G(dx, σG) means one and the same

number for x and for x + dx. Of course we must sum over dx to get d2 out of d1.

We have to calculate:

ρ(d2, d1) = ρ(HM(HG(d1; σG, δ)), d1) =
〈d1d2〉 − 〈d1〉〈d2〉√

〈d2
2〉 − 〈d2〉2

√
〈d1

2〉 − 〈d1〉2
.

189

190 APPENDIX A. PROOFS FOR THE PHEN. MODEL OF TRANSLATION

The variance of the initial text can not be calculated and we take it for given

D = σ1 ≡
√
〈d1

2〉 − 〈d1〉2.

The effect of the HG and HM in the covariation term vanishes because of the linear

nature of the terms in (A.1) and the covariation is exactly equal to σ1
2.

The only term left to calculate is actually the variance of d2. For this term we

obtain:

σ2
2 = 〈d2

2〉 − 〈d2〉
2 =

= var[d(x) + G(0, σM) +
∑

dx

δG(dx, σG)] = (A.2)

= σ1
2 + 2δ2σG

2 + σM
2.

Note that the term corresponding to the grammar counts twice, because of its ex-

change nature. From Eq. A.3 the derivation of Eq. 4.2 (page 80) is straightforward.

Appendix B

Benchmarks for Plagiarism

Detection Tools

B.1 Introduction

Every computer science lecturer knows that plagiarism detection (copy-catch) is a

difficult and extremely time consuming. Several plagiarism detection tools have been

implemented since the 1960s: MOSS [14], SIM [79], YAP [153], JPlag [130], SID [33]

and AC (presented in this thesis), to name the most widespread in the academic

community.

The problem we are interested in occurs when facing the assessment of such tools.

Quoting Whale [151, p. 145]: “Assessing different techniques for similarity detection

is possible only on a relative scale”. The reason is very simple: it is almost impossible

to determine whether an assignment solution is a plagiarism of another. What is

more, in some cultures, a student will deny a plagiarism even in the most blatant

cases. The decision of whether a solution is original is a matter of judgment and

generally depends on the sensibility of the grader to find abnormally similar works.

This subjectivity contaminates all benchmarks constructed in this way, thus little

accuracy can be expected in the assessment.

Two main attempts have been done to ameliorate this issue. The first [71] consists

of editing operations on a solution to obtain a plagiarized one: variable and function

191

192 APPENDIX B. BENCHMARKS FOR PLAGIARISM DETECTION TOOLS

name renaming, comment removal, inversion of adjacent statements, permutation of

function, etc. The problem with this approach is that these modifications are usually

done by researchers, who have a depth understanding of the assignment solution,

while students have a very poor understanding of it. Another problem is due to the

handicraft nature of this task, generally resulting in benchmarks of very small size.

The second attempt (less ambitious) [33] builds plagiarized assignment solutions by

means of random insertion of irrelevant statements into the original code in hopes

that such insertions will confuse the detection mechanism.

We feel that a more principled approach is necessary to perform a fair comparison

of detection tools. In this appendix we present a technique which, fed with some re-

alistic specifications and the grammar of a programming language, is able to generate

benchmarks of the desired size, made of a subset containing independent solutions to

the specifications, coded from scratch, and another subset - the plagiarized solutions

- built from one or two solutions taken from the original subset. Both the authentic

and the plagiarized sets are built by means of evolutionary techniques adapted from

Grammatical Evolution [123], whose suitability for automatic programming is well

established.

In this appendix we try to show that having an arbitrary number of large solutions

to an assignment, with a priori knowledge of their phylogeny, is the first step towards

a benchmark for plagiarism.

The remainder of the appendix is organized as follows: in Sect. B.2 we detail

the benchmark generation technique; in Sect. B.3 we give experimental evidence of

the suitability of this technique by means of several examples. Sect. B.4 describes

the reasons why we think that our approach to the generation of benchmarks is

appropriate. Sect. B.5 proposes some conclusions and possibilities for improvement.

B.2 Automatic generation of benchmarks

Our benchmarks simulate the answers of different students to a practical assignment.

In this work, each benchmark consists of APL2 functions which fit a set of points gen-

erated by applying one particular function to the set of inputs (values of x) 1, 2, 3, 4, 5.

B.2. AUTOMATIC GENERATION OF BENCHMARKS 193

Four benchmarks have been generated, corresponding to the following toy problem

functions: x2, 1 + x + x2 + x3, cos(log x) and log(x3).

To mimic the solutions of the students to this assignment, two sets of programs are

generated for each benchmark: the first is considered original, the second contains

plagiarisms. Both sets are built by means of a genetic engine in two phases: in

the first, 30 original programs are generated using grammatical evolution (GE)[123].

Then 14 solutions are generated by applying several selected genetic operators, trying

to reproduce the basic plagiarizing techniques performed by students.

Figure B.1: Context free grammar to generate and modify the original APL2 func-
tions. The repetition of a symbol affects the probability of its choice.

All the solutions consist of an APL2 function with the same header: the name of

the function is F , their input is argument X, and they return the value of variable

Z. The first instruction assigns the value of X to Z to guarantee F always returns a

proper value. In the ‘original’ solutions, F contains a number of additional instruc-

tions between 0 and 255. Every one assigns the value of an expression to variable Z.

These expressions are generated by means of GE. Figure B.1 shows the context free

grammar used to generate the expressions. E is the axiom. A genotype consists of a

number (between 100 and 200) of integers (codons) in the [0,255] interval. The first

codon indicates the number of instructions to be added to the function. The geno-

type is mapped in the usual way, deriving the number of expressions indicated by the

first codon from the initial word E. The alternate execution mechanism provided by

APL2 has been used to intercept semantic errors in the generated expressions, thus

avoiding program failures and unexpected end conditions. Each instruction is exe-

cuted in the same way and occupies a single line, therefore the size of the generated

194 APPENDIX B. BENCHMARKS FOR PLAGIARISM DETECTION TOOLS

APL2 function is equal to the value of the first codon plus one.

The fitness function is the mean quadratic error of the generated APL2 function

applied to the set of control points, as compared with the set of control results, scaled

by a factor to punish long genotypes (size(genotype)/100), to favor parsimonial an-

swers. The fitness optimum value is 0. The experiment stops when the solution found

has a fitness value less than 1 or when the number of generations equals 1000. The ge-

netic operators used are taken from mutation with elision, mutation with elongation,

genotypic recombination and phenotypic recombination.

In the generation of the 30 original solutions we have used 30 different popula-

tions with one independently generated genotype each (corresponding to 30 different

random seeds), which is equivalent to performing a hill-climbing local search. The

genotype of the next population is obtained by applying mutation with elision to the

previous individual, which is either mutated or shortened with the same probability

(0.5). Elision deletes a codon in an arbitrary location on the genotype. The new

genotype replaces the old one only if its fitness is better.

Mutation with elongation is similar to mutation with elision: an arbitrary codon

is added in a random location on the genotype, rather than being deleted. Each time

the genotype suffers this operator, the process is repeated 5 times.

One single point recombination is used in genotypic and phenotypic recombina-

tion. In our approach, only the child that begins like its first parent is taken into

account. If we want to get two children, the same parents may be used in the opposite

order, although in the second case the recombination point will usually be different.

The procedure is performed 5 times and the child with the best fitness is selected as

the result of the recombination.

Phenotypic recombination acts directly on the APL2 functions, so each child will

contain the first lines of one parent and the remaining instructions of the other parent.

We have included this approach to compensate the well-known tendency to phenotypic

disruption caused by the ripple crossover operator used in GE program generation

[123].

We have applied three different techniques to plagiarize one or two original func-

tions. First the 5th, 10th, 15th, 20th, 25th and 30th original solutions are plagiarized

B.3. EXPERIMENTAL RESULTS 195

using mutation with elongation to generate 6 new APL2 solutions. This technique

mimics plagiarism from a single source, where the source is changed by adding and

replacing a few fragments. The second and third techniques simulate plagiarisms from

two sources (two different originals are mixed to produce a new solution) by means of

recombination. The second technique generates 4 new APL2 functions through the

genotypic recombination of the following couples of originals: 5th and 10th, 10th and

5th, 15th and 20th and 20th and 15th. The third technique mixes the 20-15, 7-14,

5-22, and 30-1 couples using phenotypic recombination. Figure B.2 shows a graphic

scheme of the whole process.

Figure B.3 shows the plagiarism relations existing in the benchmarks. Round

vertices stand for original assignments, squares for plagiarism using a single source,

rhomboids and octagons for the two different types of plagiarism using two sources.

A black solid line between vertices A and B denotes that A has used B as the unique

source of plagiarism; a red dashed lines between A and B denotes that A has used

B as one of the two sources of plagiarism; a green dotted line denotes that they are

indirect copies, i.e. they share a common source of plagiarism.

B.3 Experimental results

Summarizing: we have generated 4 benchmarks, each consisting of 44 assignments

coded in APL2. Each benchmark is divided in the same manner:

• 30 original solutions, named P1 to P30.

• 6 mutational plagiarized results, named MPx, where x stands for the original

source for the plagiarism (5, 10, 15, 20, 25 and 30).

• 4 genotypic recombination plagiarized results, named PxRGPy, where x and y

represent the two source genotypes used as parents in genotypic recombination.

y is considered the first parent.

• 4 phenotypic recombination plagiarized results, named PxRFPy, where x and y

represent the two source genotypes used as parents in phenotypic recombination.

196 APPENDIX B. BENCHMARKS FOR PLAGIARISM DETECTION TOOLS

Figure B.2: Graphical scheme of the whole process

y is considered the first parent.

As indicated in the previous Section, the specifications of the 4 benchmarks were

the functions x2, x3+x2+x+1, cos(log x) and log x3. Some statistic of the generation

process are shown in Table B.1. Executions took about one hour per benchmark on

a 2.5 GHz computer with 512 MBytes memory.

Now we want to check whether the sets generated with this process match our

idea of typical plagiarism. To do this, we are going to feed our 4 benchmarks into

the plagiarism detection tool AC [66], which works in two steps: in the first, one of

the similarity metrics available must be selected, all giving results ranging between

0 (complete similarity) to 1 (complete dissimilarity). Then, once pairwise distances

between all assignments have been obtained, several graphical interfaces are displayed

to point abnormal low distances which could imply a plagiarism.

B.3. EXPERIMENTAL RESULTS 197

MP5

P5

MP10

P10

MP15

P15

MP20

P20
MP25

P25

MP30

P30

P10RGP5

P5RGP10

P15RGP20

P20RGP15

P14RFP7

P14

P7

P15RFP20

P22RFP5

P22

P1RFP30

P1
P15GFP20

Figure B.3: Plagiarism relations of the benchmarks. Round vertices stand for original
assignments, squares for plagiarism using a single source, rhomboids and octagons for
the two different types of plagiarism using two sources. A black solid line between
vertices A and B denotes that A has used B as the unique source of plagiarism; a red
dashed lines between A and B denotes that A has used B as one of the two sources of
plagiarism; a green dotted line denotes that they are indirect copies, i.e. they share
a common source of plagiarism.

198 APPENDIX B. BENCHMARKS FOR PLAGIARISM DETECTION TOOLS

ave. program size ave. instructions

x2 1889 120.25
x3 + x2 + x + 1 1954 126

cos(log x) 2349 140
log x3 1735 108

Table B.1: Statistics of the generation of the four benchmarks (the average program
size is measured in bytes).

In Fig. B.4 we display a similarity graph obtained by computing a novel similarity

distance on the benchmark x2. This distance looks for the longest-most infrequent

string which two assignments have in common; the longer and the more infrequent

the string, the lower the distance between solutions. A graph is provided by the

tool, whose vertices stand for each assignment solution and whose edges represent

the distance between each couple of solutions. Only the distances less than a value

chosen with a slider are shown. The bigger and hotter the edge, the smaller is the value

(or the more similar are the sources). This graph constructs and displays minimum

spanning trees (MSTs) built only with those distances below the threshold, 0.01 in

this Figure. It can be seen that the obtained MSTs are exactly what one would desire:

plagiarized versions clustered with their sources, in all but assignment P17, which is

a paradigmatic case of an accidental coincidence. In Fig B.5, where the threshold

has been increased to 0.02, the overwhelming majority of the plagiarized versions

have been detected (13 out of 14), against only one additional non-plagiarized MST

(P3-P28), i.e. plagiarized versions tend to appear long before non-plagiarized ones.

Fig. B.6 shows results for a different benchmark, function cos(log x). The distance

used is the normalized compression distance (NCD, see [103]) which, in simple terms,

gives a low distance to sources which compress well together, i.e. which share a

large amount of literal coincidence. Finally, the visualization is based on individual

temperature histograms, meaning that the hotter the color, more elements are in this

range. Each row displays the histogram of NCD distances between the assignment

in the leftmost part of the row and the rest of the benchmark. It can be seen that

plagiarized versions are nearer to their sources than to others at distances usually

outlying from the rest of the sample.

B.3. EXPERIMENTAL RESULTS 199

Figure B.4: The vertices of the graph stand for each assignment of the benchmark
x2 and the edges represent values of pairwise distances calculated using the longest-
most infrequent similarity distance. Only the assignments whose pairwise distance is
lower to the distance chosen by the slider (below) are shown. In this figure, the slider
is set to 0.01. The bigger and hotter (more red) is the edge between two vertices
(assignments), the smaller is the distance (or the more similar are the sources).

Another option available in AC provides a raw list of pairs sorted by their increas-

ing chosen distance. In Tables B.2 and B.3 we display the 15 lowest distances for

benchmarks log x3 and x3 + x2 + x + 1 , where the NCD and the longest-most infre-

quent distances are used respectively. In both, authentic-plagiarized or plagiarized-

plagiarized-from-the-sameassignment sources are generally top ranked, specially in

the case of log x3, where no non-plagiarized pair appears in the table. Therefore,

even if no graphical help is used, plagiarized pairs manifest by themselves.

200 APPENDIX B. BENCHMARKS FOR PLAGIARISM DETECTION TOOLS

Figure B.5: Analog to Fig. B.4 but with threshold increased slider set to 0.02.

B.4 Discussion

Language APL2 has been selected to program our benchmarks for the following rea-

sons:

• APL2 is a very powerful language, especially for the generation of expressions,

with a large number of primitive functions and operators available.

• The APL2 expression grammar is very simple and can be implemented with just

three non-terminal symbols, which simplifies the grammatical evolution process.

• APL2 instructions can be protected to prevent semantic and execution errors

from giving rise to program failures. In this way, we can rest assured that all

the programs in the benchmark will execute (although their results may not

be a good answer to the assignment). grammatical evolution is also simplified,

because we don’t need to include any semantic information, such as attribute

grammars or Chistiansen’s grammars [50, 6].

B.4. DISCUSSION 201

Figure B.6: We explain the first row, the next are analogue. We calculate the parwise
distances between MP10 (leftmost part of the row) and the rest of submissions of
the cos(log x) corpora. We then depict a ‘hue histogram’ of the distances, i.e. the
more red (hotter) is the color at some point (distance), the higher is the number
of submissions lying at that distance from MP10. The horizontal axis of the hue
histogram ranges from 0 (leftmost part, complete similarity) to 1 (rightmost part,
complete dissimilarity).

• APL2 makes it possible to define new programming functions in execution time,

thus providing the feasibility of integrating the fitness computation with the

genetic algorithms which generate the benchmark. With a compilable language,

such as C, this would be very difficult. For a short introduction of the APL2

language see [18].

In Sections B.2 and B.3 we have tried, first conceptually and then empirically, to

show that copies generated by our procedure match the intuitive idea of plagiarism:

an improbable high similarity between works done by different authors. If we consider

this definition in depth, we find that a philosophical problem shows up:

202 APPENDIX B. BENCHMARKS FOR PLAGIARISM DETECTION TOOLS

x3 + x2 + x + 1
9.881421E-4 P10 MP10
0.0014822131 P15RFP20 P15
0.0014822131 P20RGP15 P15
0.0014822131 P20RGP15 P15RFP20
0.0019762842 P30 P1RFP30
0.0019762842 MP20 P20RGP15
0.0024703552 P15RGP20 P20RGP15
0.0029644263 MP30 P1RFP30
0.0029644263 MP30 P30
0.0039525684 P10RGP5 MP10
0.004446639 P18 P7
0.004446639 P18 P14RFP7
0.0049407105 P26 P4
0.0049407105 P26 P12
0.0049407105 P26 P18

Table B.2: Lowest 15 pairwise distances obtained using the longest-most infrequent
distance on the benchmark x3 + x2 + x + 1.

Assume that students have some specifications for an assignment and there exists

only an optimal way to code the solution. This is what we consider as optimal:

• Perfect functionality: for every input, the computer program must produce the

specified output.

• Maximal parsimony: the program must be as simple as possible. During the

generation process solutions with a high number of lines are penalized, although

other measures of parsimony could have been used (e.g. [137]).

In this way, there may exist only one solution with perfect functionality and

maximal parsimony. These conditions are not very restrictive if, for example, we

consider the way in which programming challenges are qualified (see for example [1]).

In this situation, two students delivering the optimal solution to the grader could

incur in the already mentioned definition of plagiarism: absolute coincidence. What

could the grader do in this situation? It could be argued that it is highly improb-

able that two students end up with the same code and consider them plagiarisms,

B.4. DISCUSSION 203

log x3

0.01538462 P1 P1RFP30
0.02339181 P15RFP20 P15
0.02339181 MP15 P15
0.02339181 MP15 P15RFP20
0.02469136 MP25 P25
0.13580246 P25 P20RGP15
0.13580246 MP25 P20RGP15
0.15789473 P20RGP15 P15
0.15789473 P20RGP15 P15RFP20
0.16374269 MP15 P25
0.16428572 P10RGP5 P5
0.16959064 P25 P15
0.16959064 P25 P15RFP20
0.16959064 MP15 P20RGP15
0.16959064 MP25 P15

Table B.3: Lowest 15 pairwise distances obtained using NCD on the benchmark log x3.

but the students can reject this argument with the easy explanation that they have

optimized the program independently until no further improvement was possible. If

the programmers are good enough, the probability of reaching the same optimal or

quasi-optimal solution is very high.

The solution to this problem is provided by the experience of the grader at copy-

catching: plagiarism is usually detected much more by observing abnormal coinci-

dences in trash code, i.e. erroneous or spurious code, than for finding coincidences

like similar variable or function names in correct portions of the code. The under-

lying idea is that there are few ways of doing things correctly, but many of doing it

inaccurately, so why should two students have chosen the same way of making mis-

takes? Reported cases of copy-catching talk about shared lines of code that simply

do nothing or two compiled codes which produce the same errors when executed.

This happens because plagiarists have a poor understanding of the code and tend

to incorporate trash code from the source into their code. Even those most daring

who try to change some fragments of code usually fail to do it usually worsening that

code.

204 APPENDIX B. BENCHMARKS FOR PLAGIARISM DETECTION TOOLS

Figure B.7: Two fragments of code of P15 (left) and MP15 (right) from the cos(log x)
benchmark. Dots “. . . ” stand for code not shown.

Figure B.8: Two fragments of code of P10RGP5 (left) and P5 (right) from the log x3

benchmark.

To simulate the plagiarism process, one has to take this into account. It turns out

that there is a strong correspondence of these ideas with search and optimization:

perfect solutions are equivalent to global optima, while approximate solutions, those

which include trash code, are equivalent to local optima.

Our proposed generation process can be seen in this light. We perform a light

optimization, i.e., we try to maximize functionality and parsimony, without seeking

the global optimum. This is done by limiting the number of optimization steps. In a

second step the counterfeits are created. Using genotypical mutation with elongation,

a new solution is created which will share a big percentage of code with the original.

The shared code will consist of both useful and trash code. On the other hand, the

new code generated by the mutation/elongation will probably worsen the fitness of

the assignment.

Figure B.7 shows code fragments of assignments P5 and MP5 from benchmark

cos(log x). Shared code and trash code are annotated to the right. Detection is

B.5. FURTHER WORK IN PLAGIARISM BECHMARKING 205

possible precisely due to the shared trash code, not the useful code, because the

latter can be the same in both cases with a high probability. The same happens if

we consider genotypical (Fig. B.8) or phenotypical (Fig. not shown) recombination.

The obtained codes are mixtures of the sources where trash code has been inherited

from both. As it can be seen in all examples, the trash code is the fingerprint for

plagiarism detection.

B.5 Further work in automatic plagiarism bench-

mark generation

Copy-catching computer tools are difficult to evaluate, because actual work by real

students is always subject to uncertainty. To help in their evaluation for the field

of computer programming assignment plagiarism, we offer a procedure which auto-

matically generates different benchmarks which may be useful for this purpose. A

benchmark for a given assignment is made of a number of original solutions, together

with another set of plagiarized solutions, generated in such a way to mimic the way in

which students act. We have used these benchmarks to assess the performance of one

state-of-the-art detection tool (AC) with satisfactory results. The APL2 program-

ming language has been selected for the implementation of the benchmarks because

of certain properties which make it very applicable as a first instance of this process.

Benchmarks for programming in other programming languages, such as C or Java,

will be attempted in the next step of our research. We will also improve the gener-

ational mechanism, so that it can code bigger and more complex assignments, not

just toy problems: for instance, assignments which imply building several functions

or source files. This can be achieved by using smarter genetic operators and/or other

different automatic programming techniques (classic GP trees [99], etc).

We also intend to perform direct comparisons between the tools by using bench-

marks generated with our procedure. This could be done by making some statistical

analysis of the number of plagiarized sources correctly detected by each tool. It would

be also possible to weight the different types of plagiarism for that analysis because,

206 APPENDIX B. BENCHMARKS FOR PLAGIARISM DETECTION TOOLS

in real docent environments, the detection of single source plagiarism is usually less

challenging that when several sources are mixed.

and will dedicate some effort to further study in depth the role of trash code in

plagiarism identification.

The APL2 program used to generate the benchmarks and the four benchmarks

themselves can be found at

http://www.eps.uam.es/˜mcebrian/plagiarism-benchmark

Bibliography

[1] ACM International Collegiate Programming Contest [Online]. Available:

http://icpc.baylor.edu/icpc/.

[2] BibleGateway: A searchable online Bible in over 50 versions and 35 languages

[Online]. Available: http://www.biblegateway.com

[3] DEFLATE Compressed Data Format Specification [Online]. Available:

ftp://ds.internic.net/rfc/rfc1951.txt.

[4] The Universal Declaration of Human Rights [Online]. Available:

http://www.unhchr.ch/udhr/index.htm.

[5] Yale Face Database [Online]. Available: http://cvc.yale.edu/projects/

yalefaces/yalefaces.html.

[6] M. de la Cruz A. Ortega and M. Alfonseca. Christiansen Grammar Evolu-

tion: grammatical evolution with semantics. Accepted for publication in IEEE

Transactions on Evolutionary Computation.

[7] N. Abramson. Information Theory and Coding. McGraw-Hill, New York, 1963.

[8] D. Achlioptas, M.S.O. Molloy, L.M. Kirousis, Y.C. Stamatiou, E. Kranakis,

and D. Krizanc. Random Constraint Satisfaction: A More Accurate Picture.

Constraints, 6(4):329–344, 2001.

[9] R. Aćın-Pérez, M.P. Bayona-Bafaluy, M. Bueno, C. Machicado, P. Fernández-

Silva, A. Pérez-Martos, J. Montoya, MJ López-Pérez, J. Sancho, and J.A.

207

208 BIBLIOGRAPHY

Enŕıquez. An intragenic suppressor in the cytochrome c oxidase I gene of mouse

mitochondrial DNA. Human Molecular Genetics, 12(3):329–339, 2003.

[10] L.M. Adleman and M.D.A. Huang. Primality testing and abelian varieties over

finite fields. Lecture notes in mathematics, 1992.

[11] R. Adler, R. Feldman, and MS Taqqu. A Practical Guide to Heavy Tails: Sta-

tistical Techniques for Analyzing Heavy Tailed Distributions, Birkaüser. 2000.

[12] K. Agrawal and N. Saxena. PRIMES is in P. Annals of Mathematics, 160:781–

793, 2004.

[13] R.K. Ahuja, J.B. Orlin, and D. Sharma. New neighborhood search structures

the capacitated minimum spanning tree problem. Technical report, University

of Florida, 1998.

[14] A. Aiken et al. Moss: A system for detecting software plagiarism [Online].

University of California–Berkeley. Available: http://www.cs.berkeley.edu/

aiken/moss.html

[15] M. Alfonseca, M. Cebrian, and A. Ortega. Evolving Computer-Generated Music

By Means of the Normalized Compression Distance. WSEAS Transactions on

Information Science and Applications, 2(9):1367–1372, 2005.

[16] M. Alfonseca and A. Ortega. A study of the representation of fractal curves by

L systems and their equivalences. IBM Journal of Research and Development,

41(6):727–736, 1997.

[17] M. Alfonseca and A. Ortega. Determination of fractal dimensions from equiv-

alent L systems. IBM Journal of Research and Development, 45(6):797–805,

2001.

[18] M. Alfonseca and D. Selby. APL2 and PS/2: the Language, the Systems, the

Peripherals. APL Quote Quad (ACM SIGAPL), 19(4):1–5, Aug. 1989.

BIBLIOGRAPHY 209

[19] U. Arnason, A. Gullberg, and A. Janke. Mitogenomic analyses provide new

insights into cetacean origin and evolution. Gene, 333:27–34, 2004.

[20] U. Arnason, A. Gullberg, and B. Widegren. The complete nucleotide sequence

of the mitochondrial DNA of the fin whale, Balaenoptera physalus. Journal of

Molecular Evolution, 33(6):556–568, 1991.

[21] U. Arnason, A. Gullberg, and B. Widegren. Cetacean mitochondrial DNA

control region: sequences of all extant baleen whales and two sperm whale

species. Molecular Biology and Evolution, 10(5):960–970, 1993.

[22] J.E. Baker. Reducing bias and inefficiency in the selection algortihm. In 2nd

Int. Conference on Genetic Algorithms and Their Applications, pages 14–21,

1987.

[23] H-G. Beyer and H-P. Schwefel. Evolution strategies. Natural Computing, 1:3–52,

2002.

[24] J.A. Biles. GenJam: A Genetic Algorithm for Generating Jazz Solos. Pro-

ceedings of the 1994 International Computer Music Conference, pages 131–137,

1994.

[25] E. Bilotta and P. Pantano. Synthetic Harmonies: An Approach to Musical

Semiosis by Means of Cellular Automata. LEONARDO, 35(2):153–159, 2002.

[26] B.F. Braumoeller and B.J. Gaines. Actions Do Speak Louder than Words: De-

terring Plagiarism with the Use of Plagiarism-Detection Software. PS: Political

Science and Politics, 34(04):835–839, 2002.

[27] J. Bull, C. Collins, E. Coughlin, S. Developer, D. Sharp, and P. Square. Tech-

nical review of plagiarism detection software report [Online]. CAA University

of Luton. Available: http://online.northumbria.ac.uk/faculties/art/

information studies/Imri/ Jiscpas/docs/jisc/luton.pdf.

210 BIBLIOGRAPHY

[28] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-

rithm. Technical report, Systems Research Center of Digital Equipment Cor-

poration, Technical Report 124, Palo Alto, California, 1994.

[29] M. Cebrian, M. Alfonseca, and A. Ortega. Automatic Generation of Bench-

marks for Plagiarism Detection Tools using Grammatical Evolution. In Pro-

ceedings of the 9th ACM Genetic and Evolutionary Computation Conference

(GECCO’2007), London, UK, July 2007. ACM SIGEVO. arXiv:cs.NE/0703134.

[30] Manuel Cebrián and Iván Cantador. Exploiting heavy tails in training times

of multilayer perceptrons. a case study with the uci thyroid disease database.

arXiv:0704.2725, 2007.

[31] G.J. Chaitin. On the Length of Programs for Computing Finite Binary Se-

quences. Journal of the ACM (JACM), 13(4):547–569, 1966.

[32] J. Chen and J.Y. Nie. Web parallel text mining for Chinese-English cross-

language information retrieval. International Conference on Chinese Language

Computing, Chicago, Illinois, 2000.

[33] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker. Shared information

and program plagiarism detection. Information Theory, IEEE Transactions on,

50(7):1545–1551, 2004.

[34] R. Cilibrasi and PMB Vitani. Clustering by Compression. Information

Theory, IEEE Transactions on, 51(4):1523–1545, 2005. Software available:

http://www.complearn.org.

[35] R. Cilibrasi, P. Vitanyi, and R. de Wolf. Algorithmic clustering of music. Web

Delivering of Music, 2004. WEDELMUSIC 2004. Proceedings of the Fourth

International Conference on, pages 110–117, 2004.

[36] J. Clare. Computer plagiarism threatens the value of degrees. Daily Telegraph,

3(7):2000, 2000.

BIBLIOGRAPHY 211

[37] M.D. Coble, R.S. Just, J.E. OCallaghan, I.H. Letmanyi, C.T. Peterson, J.A. Ir-

win, and T.J. Parsons. Single nucleotide polymorphisms over the entire mtDNA

genome that increase the power of forensic testing in Caucasians. International

Journal of Legal Medicine, 118(3):137–146, 2004.

[38] C. Cotta and A.J. Fernández. A hybrid grasp - evolutionary algorithm approach

to golomb ruler search. In Xin Yao et al., editors, Parallel Problem Solving From

Nature VIII, number 3242 in Lecture Notes in Computer Science, pages 481–

490. Springer, 2004.

[39] T.M. Cover and J.A. Thomas. Elements of information theory. Wiley New

York, 1991.

[40] B. G. W. Craenen. Javacsp: a random binary constraint satisfaction problem in-

stance generator in java [Online]. Available: http://www.xs4all.nl/˜bcraenen/

JavaCsp/download.html.

[41] BGW Craenen and AE Eiben. Stepwise adaption of weights with refinement

and decay on constraint satisfaction problems. Proceedings of Genetic and Evo-

lutionary Computation Conference, pages 291–298, 2001.

[42] B.G.W. Craenen, A.E. Eiben, and J.I. van Hemert. Comparing evolutionary

algorithms on binary constraint satisfaction problems. IEEE Transactions on

Evolutionary Computation, 7(5):424–445, 2003.

[43] N. Crato. Estimation Of The Maximal Moment Exponent With Censored Data.

Communications in Statistics–Simulation and Computation, Vol29 No4, pages

1239–1254, 2000.

[44] K. Culik II and S. Dube. L-systems and mutually recursive function systems.

Acta Informatica, 30(3):279–302, 1993.

[45] F. Culwin, A. MacLeod, and T. Lancaster. Source Code Plagiarism in UK

HE Computing Schools, Issues, Attitudes and Tools. South Bank University

Technical Report SBUCISM-01-02, 2001.

212 BIBLIOGRAPHY

[46] Miguel de Cervantes. Don kihot [Online]. Translated by N. Ljubimov, Hudozh-

estvenaya literatura, Moskva, 1988, Available: http://lib.ttknet.ru/koi/

INOOLD/SERVANTES/donkihot1.txt.

[47] Miguel de Cervantes. Don quichotte [Online]. Translated by L. Viardot. Avail-

able: http://www.gutenberg.org/files/16066/16066-8.txt.

[48] Miguel de Cervantes. Don quijote [Online]. Available: http://cvc.cervantes.es

/obref/quijote/edicion/parte1/parte01/cap01/default.htm .

[49] Miguel de Cervantes. Don quixote [Online]. Translated by J. Ormsby. Available:

http://www.gutenberg.org/etext/996.

[50] A. de la Cruz, M. Ortega and m. Alfonseca. Attribute grammar evolution.

Lecture notes in computer science, pages 182–191.

[51] K. de Leeuw, E.F. Moore, C.E. Shannon, and N. Shapiro. Computability by

probabilistic machines. Automata Studies, Ann. Math. Studies, 34:183–212.

[52] PJF de Lima. On the robustness of nonlinearity tests to moment condition

failure. Journal of Econometrics, 76(1):251–280, 1997.

[53] WH Delashmit and MT Manry. Enhanced robustness of multilayer perceptron

training. In Proceedings of the 36th Asilomar Conference on Signals, Systems

and Computers, pages 1029–1033, 2002.

[54] H. Delmaire, J.A. Dı́az, E. Fernández, and M. Ortega. Reactive grasp and tabu

search based heuristics for the single source capacitated plant location problem.

INFOR, 37:194–225, 1999.

[55] M. Dietzfelbinger. Primality Testing in Polynomial Time: From Randomized

Algorithms to ’Primes are in P’. Springer, 2004.

[56] W. Duch, R. Adamczak, and N. Jankowski. Initialization and optimization

of multilayered perceptrons. In Proceedings of the 3rd Conference on Neural

Networks and their Applications, pages 99–104, Kule, Poland, Oct. 1997.

BIBLIOGRAPHY 213

[57] AE Eiben. Evolutionary algorithms and constraint satisfaction: Definitions,

survey, methodology, and research directions. Theoretical Aspects of Evolution-

ary Computing, pages 13–30, 2001.

[58] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer,

2003.

[59] P. Embrechts, T. Mikosch, and C. Klèuppelberg. Modelling Extremal Events

for Insurance and Finance. Springer, 1997.

[60] K.J. Falconer. Fractal Geometry: Mathematical Foundations and Applications.

Mathematical Foundations and Applications, 1990.

[61] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally

difficult set covering problem. Operations Research Letters, 8:67–71, 1989.

[62] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures.

Journal of Global Optimization, 6:109–133, 1995.

[63] DB Fogel. Evolutionary Computation–The Fossil Record 1998. IEEE Press,

1998.

[64] L.J. Fogel, A.J. Owens, M.J. Walsh, et al. Artificial Intelligence Through Sim-

ulated Evolution. Wiley, 1966.

[65] DR Foran, JE Hixson, and WM Brown. Comparisons of ape and human se-

quences that regulate mitochondrial DNA transcription and D-loop DNA syn-

thesis. Nucleic Acids Res, 16(13):5841–5861, 1988.

[66] M. Freire, M.Cebrian, and E. del Rosal. Ac: An integrated source code plagia-

rism detection environment, 2007. arXiv:cs.IT/0703136.

[67] P. Gacs. On the symmetry of algorithmic information. Soviet Math. Dokl,

15(1477-1780):1–3, 1974.

214 BIBLIOGRAPHY

[68] G. Gadaleta, G. Pepe, G. De Candia, and C. Quagliariello. Sibisa. E. & Sac-

cone, C.(1989). The complete nucleotide sequence of the Rattus norvegicus mi-

tochondrial genome: cryptic signals revealed by comparative analysis between

vertebrates. Journal of Molecular Evolution, 28:497–516.

[69] I.P. Gent, E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh. An Empirical

Study of Dynamic Variable Ordering Heuristics for the Constraint Satisfaction

Problem. Principles and Practice of Constraint Programming, pages 179–193,

1996.

[70] J. Giles. Preprint analysis quantifies scientific plagiarism. Nature 444, pages

524–525, 2006.

[71] D. Gitchell and N. Tran. Sim: a utility for detecting similarity in computer

programs. Technical Symposium on Computer Science Education, pages 266–

270, 1999.

[72] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[73] C. Gomes. Constraint and Integer Programming: Toward a Unified Methodol-

ogy, chapter Complete randomized backtrack search, pages 233–283. Kluwer

Academics, 2003.

[74] C. Gomes, B. Selman, and N. Crato. Heavy-tailed phenomena in satisfiability

and constraint satisfaction problems. Journal of Automated Reasoning, 24(1–

2):67–100, 2000.

[75] C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through

randomization. In Proceedings of the 15th National Conference onon Artificial

Intelligence, pages 431–437, 1998.

[76] C.P. Gomes, B. Selman, and N. Crato. Heavy-tailed distributions in combinato-

rial search. Principles and Practice of Constraint Programming, pages 121–135,

1997.

BIBLIOGRAPHY 215

[77] C.P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-Tailed Phenomena

in Satisfiability and Constraint Satisfaction Problems. Journal of Automated

Reasoning, 24(1):67–100, 2000.

[78] C.P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through

randomization. Proceedings of the Fifteenth National Conference on Artificial

Intelligence (AAAI-98), pages 431–437, 1998.

[79] D. Grune and M.H. Vakgroep. Detecting copied submissions in computer science

workshops. Informatica Faculteit Wiskunde & Informatica, Vrije Universiteit,

1989.

[80] J.K. Harris. Plagiarism in computer science courses. Proceedings of the confer-

ence on Ethics in the computer age, pages 133–135, 1994.

[81] M. Hart. The Gutemberb Project [Online]. Available: http://www.gutenberg.org.

[82] B.M. Hill. A Simple General Approach to Inference About the Tail of a Distri-

bution. The Annals of Statistics, 3(5):1163–1174, 1975.

[83] J.H. Holland. Adaptation in natural and artificial systems. MIT Press Cam-

bridge, MA, USA, 1992.

[84] S. Horai, Y. Satta, K. Hayasaka, R. Kondo, T. Inoue, T. Ishida, S. Hayashi,

and N. Takahata. Man’s place in hominoidea revealed by mitochondrial DNA

genealogy. Journal of Molecular Evolution, 35(1):32–43, 1992.

[85] D. Horowitz. Generating rhythms with genetic algorithms. Proceedings of the

twelfth national conference on Artificial intelligence (vol. 2) table of contents,

1994.

[86] E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and M. Chickering. A

Bayesian approach to tackling hard computational problems. Proceedings the

17th Conference on Uncertainty in Artificial Intelligence (UAI-2001), 2001.

216 BIBLIOGRAPHY

[87] D. Huffman. A method for the construction of minimum redundancy codes. In

Proc. IRE, volume 40, 401952.

[88] RL Hughey. A survey and comparison of methods for estimating extreme

right tail-area quantiles. Communications in statistics. Theory and methods,

20(4):1463–1496, 1991.

[89] N.C. Ingle. Language Identification Table. Technical Translation International,

1980.

[90] R. Irving. Plagiarism Detection: Experiences and Issues. JISC Fifth Informa-

tion Strategies Conference, Focus on Access and Security, 2000.

[91] A. C. Calgary J. Cleary, I. Witten. Data compression using adaptive coding

and partial matching. IEEE Trans. Communications, 32:396–402, 1984.

[92] B.L. Jacob. Composing with genetic algorithms. Proceedings of the 1995 Inter-

national Computer Music Conference, pages 452–455, 1995.

[93] E.L. Jones. Metrics based plagiarism monitoring. Proceedings of the Sixth

Annual CCSC Northeastern Conference, Middlebury, Vermont, pages 1–8, 2001.

[94] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic restart

policies. In Proceedings of the 18th American Association on Artificial Intelli-

gence, pages 674–681, 2002.

[95] S. Kirkpatrick, CD Gelatt Jr, and MP Vecchi. Optimization by Simulated

Annealing. Science, 220(4598):671, 1983.

[96] A. Kolmogorov. Logical basis for information theory and probability theory.

Information Theory, IEEE Transactions on, 14(5):662–664, 1968.

[97] A.N. Kolmogorov. Three approaches to the quantitative definition of informa-

tion. Problems of Information Transmission, 1(1):1–7, 1965.

[98] S.R. Kosaraju and G. Manzini. Some entropic bounds for Lempel-Ziv algo-

rithms. Proceedings of the Conference on Data Compression, 1997.

BIBLIOGRAPHY 217

[99] J.R. Koza. Genetic Programming: on the programming of computers by means

of natural selection. Bradford Books, 1992.

[100] P. Laine and M. Kuuskankare. Genetic algorithms in musical style oriented

generation. Evolutionary Computation, 1994. IEEE World Congress on Com-

putational Intelligence., Proceedings of the First IEEE Conference on, pages

858–862, 1994.

[101] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Mueller. Efficient backprop. Lecture

Notes in Computer Science, 1524:5–50, 1998.

[102] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi. The similarity metric.

IEEE Transactions on Information Theory, 50(12):3250–3264, 2004.

[103] M. Li, X. Chen, X. Li, B. Ma, and P.M.B. Vitányi. The Similarity Metric.

Information Theory, IEEE Transactions on, 50:12, 2004.

[104] M. Li and R. Sleep. Melody Classification using a Similarity Metric Based on

Kolmogorov Complexity. Sound and Music Computing, 2004.

[105] M. Li and PMB Vitanyi. An Introduction to Kolmogorov Complexity and Its

Applications. Springer, 1997.

[106] D. Lidov and J. Gabura. A melody writing algorithm using a formal language

model. Computer Studies in the Humanities, 4(3-4):138–148, 1973.

[107] A. Lindenmayer. Mathematical models for cellular interactions in development.

I. Filaments with one-sided inputs. J Theor Biol, 18(3):280–99, 1968.

[108] X. Liu, P.M. Pardalos, S. Rajasekaran, and M.G.C. Resende. A grasp for

frequency assignment in mobile radio networks. Mobile networks and computing,

52:195–201, 2000.

[109] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algo-

rithms. In Proceedings of the 2nd Israel Symposium on the Theory and Com-

puting Systems, pages 128–133, 1993.

218 BIBLIOGRAPHY

[110] X. Ma and M. Liberman. BITS: A Method for Bilingual Text Search over the

Web. Machine Translation Summit VII, 1999.

[111] B. Mandelbrot. The Pareto-Lévy Law and the Distribution of Income. Inter-

national Economic Review, 1:79–106, 1960.

[112] B. Mandelbrot. The Variation of Certain Speculative Prices. The Journal of

Business, 36(4):394–419, 1963.

[113] B.B. Mandelbrot and J.A. Wheeler. The Fractal Geometry of Nature. American

Journal of Physics, 51:286, 1983.

[114] E. Marchiori. Combining constraint processing and genetic algorithms for con-

straint satisfaction problems. In 7th International Conference on Genetic Al-

gorithms, pages 330–337, San Francisco, CA, 1997.

[115] B. Martin. Plagiarism: a misplaced emphasis. Journal of Information Ethics,

3(2):36–47, 1994.

[116] J. McCormack. Grammar based music composition. Complex Systems, 1996.

[117] M. Mitzenmacher, E. Upfal, et al. Probability And Computing: an introduc-

tion to randomized algorithms and probabilistic analysis. Cambridge University

Press, 2005.

[118] M. Mladenovic and P. Hansen. Variable neighborhood search. Computers in

Operations Research, 24:1097–1100, 1997.

[119] P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. Hand-

book of Metaheuristics, pages 105–144, 2003.

[120] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.

[121] M.A. Nilsson, A. Gullberg, A.E. Spotorno, U. Arnason, and A. Janke. Radia-

tion of Extant Marsupials After the K/T Boundary: Evidence from Complete

Mitochondrial Genomes. Journal of Molecular Evolution, 57:3–12, 2003.

BIBLIOGRAPHY 219

[122] M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary Automatic Pro-

gramming in an Arbitrary Language. Kluwer Academic Publishers, 2003.

[123] M. O’Neill, C. Ryan, M. Keijzer, and M. Cattolico. Crossover in Grammatical

Evolution. Genetic Programming and Evolvable Machines, 4(1):67–93, 2003.

[124] A. Ortega, R.S. Alfonso, and M. Alfonseca. Automatic composition of music by

means of grammatical evolution. Proceedings of the 2002 conference on APL:

array processing languages: lore, problems, and applications, pages 148–155,

2002.

[125] A. Ortega, A.A. Dalhoum, and M. Alfonseca. Grammatical evolution to design

fractal curves with a given dimension. IBM Journal of Research and Develop-

ment, 47(4):483–493, 2003.

[126] L. Paninski. Estimation of Entropy and Mutual Information. Neural Compu-

tation, 15(6):1191–1253, 2003.

[127] S. Papert. Mindstorms: children, computers, and powerful ideas. 1980. Basic

Books, New York.

[128] M. Prais and C.C. Ribeiro. Parameter variation in grasp procedures. Investi-

gación Operativa, 9:1–20, 2000.

[129] M. Prais and C.C. Ribeiro. Reactive grasp: an application to a matrix decom-

position problem in tdma traffic assignment. INFORMS Journal on Computing,

12:164–176, 2000.

[130] L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among a set of

programs with JPlag. Journal of Universal Computer Science, 8(11):1016–1038,

2002.

[131] P. Prosser. An Empirical Study of Phase Transitions in Binary Constraint

Satisfaction Problems. Artificial Intelligence, 81(1-2):81–109, 1996.

220 BIBLIOGRAPHY

[132] M.O. Rabin. Probabilistic algorithm for testing primality. J. Number Theory,

12(1):128–138, 1980.

[133] I. Rechenberg. Evolutionsstrategie: Optimierung technischer systeme nach

prinzipien der biologischen evolution. Stuttgart: Fromman-Holzboog, 1973.

[134] P. Resnik. Parallel strands: A preliminary investigation into mining the web

for bilingual text. In Proceedings of the Third Conference of the Association

for Machine Translation in the Americas on Machine Translation and the In-

formation Soup, pages 72–82, 1998.

[135] P. Resnik. Mining the Web for bilingual text. Association for Computational

Linguistics Morristown, NJ, USA, 1999.

[136] P. Resnik and N.A. Smith. The Web as a parallel corpus. Computational

Linguistics, 29(3):349–380, 2003.

[137] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471,

1978.

[138] F. Rossi, C. Petrie, V. Dhar, and L.C. Aiello. On the Equivalence of Constraint

Satisfaction Problems. ECAI’90: Proceedings of the 9th European Conference

on Artificial Intelligence, pages 550–556, 1990.

[139] Y. Ruan, E. Horvitz, and H. Kautz. Restart policies with dependence among

runs: A dynamic programming approach. Proceedings of the Eighth Interna-

tional Conference on Principles and Practice of Constraint Programming (CP-

2002), pages 573–586, 2002.

[140] C.E. Shannon and W. Weaver. The Mathematical Theory of Communication.

University of Illinois Press, 1998.

[141] BM Smith and ME Dyer. Locating the phase transition in binary constraint

satisfaction problems. Artificial Intelligence, 81(1):155–181, 1996.

BIBLIOGRAPHY 221

[142] NA Smith. Detection of translational equivalence, 2001 Undergraduate Honors

Thesis. University of Maryland, College Park.

[143] N.A. Smith. From words to corpora: recognizing translation. Proceedings of

the ACL-02 conference on Empirical methods in natural language processing-

Volume 10, pages 95–102, 2002.

[144] R.J. Solomonoff. A formal theory of inductive inference. Information and

Control, 7(1):1–22, 1964.

[145] R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAM

Journal on Computing, 6:84, 1977.

[146] I. H. Witten T. C. Bell, J. G. Cleary. Text compression. Prentice Hall,

[147] P. Van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in cc

(FD). Constraint Programming: Basics and Trends, A. Podelski (Ed.), LNCS,

910, 1991.

[148] A. van Moorsel and K. Wolter. Analysis and algorithms for restart. In Proceed-

ings of the 1st International Conference on Quantitative Evaluation of Systems,

pages 195–204, 2004.

[149] T. Walsh. Search in a small world. In Proceedings of the 16th International

Joint Conference on Artificial Intelligence, pages 1172–1177, 1999.

[150] N. Weymaere and J. P. Martens. On the initialization and optimization of

multilayer perceptrons. IEEE Transactions on Neural Networks, 5:738–751,

1994.

[151] G. Whale. Identification of Program Similarity in Large Populations. The

Computer Journal, 33(2):140, 1990.

[152] W. Willinger, M.S. Taqqu, W.E. Leland, and D.V. Wilson. Self-Similarity in

High-Speed Packet Traffic: Analysis and Modeling of Ethernet Traffic Measure-

ments. Statistical Science, 10(1):67–85, 1995.

222 BIBLIOGRAPHY

[153] M.J. Wise. Detection of similarities in student programs: YAP’ing may be

preferable to plague’ing. ACM SIGCSE Bulletin, 24(1):268–271, 1992.

[154] M. Yamaguti, M. Hata, and J. Kigami. Mathematics of fractals. AMS Transl.

Math. Monographs, 1997.

[155] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.

Information Theory, IEEE Transactions on, 23(3):337–343, 1977.

	Abstract
	Resumen
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1 Problems addressed and contributions
	1.1.1 Advances in Algorithmic Information Theory
	1.1.2 New applications of Algorithmic Information Theory
	1.1.3 New applications of Algorithmic Stochastic Modeling

	1.2 Publications

	Chapter 2. Basic concepts
	2.1 Algorithmic Information Theory
	2.1.1 Normalized Compression Distance

	2.2 Algorithmic Stochastic Modeling
	2.2.1 A taxonomy of randomized algorithms
	2.2.2 Verifying matrix multiplication
	2.2.3 Many successful stories

	2.3 Evolutionary Computation
	2.3.1 EAs general functioning
	2.3.2 Representation
	2.3.3 Evaluation Function
	2.3.4 Initial Population
	2.3.5 Parent Selection
	2.3.6 Reproduction
	2.3.7 Mutation
	2.3.8 Selection of the new generation
	2.3.9 Termination
	2.3.10 Grammatical evolution

	Chapter 3. Advances in Algorithmic Information Theory
	3.1 The Normalized Compression Distance in the presence of noise
	3.1.1 Theoretical Analysis
	3.1.2 Experimental results
	3.1.3 Discussion

	3.2 Analyzing compressors requirements
	3.2.1 Materials
	3.2.2 Results
	3.2.3 Discussion

	Chapter 4. New applications of Algorithmic Information Theory
	4.1 Common Source Data Detection
	4.1.1 Related work
	4.1.2 The algorithm
	4.1.3 Experimental results
	4.1.4 Phenomenological model of human written text similarities
	4.1.5 Discussion

	4.2 Source Code Plagiarism Detection
	4.2.1 Discussion

	4.3 Music Generation
	4.3.1 Musical representation: restrictions
	4.3.2 The NCD as a fitness function
	4.3.3 The genetic algorithm used to generate music
	4.3.4 Testing di�erent number of guide pieces
	4.3.5 Testing di�erent recombination procedures
	4.3.6 Discussion

	Chapter 5. New applications of Algorithmic Stochastic Modeling
	5.1 Accelerated Generation of Fractals of a Given Dimension
	5.1.1 An algorithm to determine the dimension of a fractal curve from its equivalent L system
	5.1.2 Heavy tail distributions
	5.1.3 Heavy tails in Grammatical Evolution
	5.1.4 Restart strategies
	5.1.5 Discussion

	5.2 Accelerated Training of Multilayer Perceptrons
	5.2.1 A case study: the UCI Thyroid Disease Database
	5.2.2 Restart strategies
	5.2.3 Discussion

	5.3 GRASP-Evolution for Constraint Satisfaction Problems
	5.3.1 Constraint Satisfaction Problems and EAs
	5.3.2 Greedy Randomized Adaptive Procedures
	5.3.3 The Hybrid Evolutionary Algorithm
	5.3.4 Our benchmark: random binary CSPs
	5.3.5 Related work
	5.3.6 Measures of e�ectiveness and efficiency
	5.3.7 Experimental results
	5.3.8 Discussion

	Chapter 6. Conclusions and future work
	6.1 Advances in Algorithmic Information Theory
	6.1.1 The Normalized Compression Distance in the presence of noise
	6.1.2 Compressors requirements for the use of the Normalized Compression Distance

	6.2 New applications of Algorithmic Information Theory
	6.2.1 Common Source Data Detection
	6.2.2 Souce Code Plagiarim Dectection
	6.2.3 Music Generation

	6.3 New applications of Algorithmic Stochastic Modelling
	6.3.1 Accelerated Generation of Fractals of a Given Dimension
	6.3.2 Accelerated Training of Multilayer Perceptrons
	6.3.3 GRASP-Evolution for Constraint Satisfaction Problems

	Chapter 7. Conclusiones y trabajo futuro
	7.1 Avances en Teoría de la Información Algorítmica
	7.1.1 La Distancia de Compresión Normalizada en presencia de ruido
	7.1.2 Requisitos de los compresores para el uso de la Distancia de Compresion Normalizada

	7.2 Nuevas aplicaciones de la Teoría de Información Algorítmica
	7.2.1 Detección de Información Proveniente de una Fuente Común
	7.2.2 Detección de Plagio en Código Fuente
	7.2.3 Generación de Música

	7.3 Nuevas aplicaciones del Modelado Estocástico Algorítmico
	7.3.1 Generación Acelerada de Fractales de una Dimensión Dada
	7.3.2 Entrenamiento Acelerado de Perceptrones Multicapa
	7.3.3 Evolución de tipo GRASP para Problemas de Satisfacción de Restricciones

	Appendix A. Mathematical proofs for the phenomenological model of translation
	Appendix B. Benchmarks for Plagiarism Detection Tools
	B.1 Introduction
	B.2 Automatic generation of benchmarks
	B.3 Experimental results
	B.4 Discussion
	B.5 Further work in automatic plagiarism benchmark generation

	Bibliography

