
A Flexible Model for the Semi-automatic Location of
Services

A dissertation presented

by

Rubén Lara Hernández

to

The Department of Computer Science

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Universidad Autónoma de Madrid

Madrid, Spain

July 2007

Thesis advisor Author

Pablo Castells Azpilicueta Rubén Lara Hernández

A Flexible Model for the Semi-automatic Location of Services

Abstract

SOA is attracting increasing attention as an architectural paradigm which can enable a

higher reuse of IT assets, their principled and eased integration into more complex services and,

therefore, a more agile adaptation and evolution of IT systems to respond to business needs. The

exposition of functionalities provided by heterogeneous and possibly distributed systems as reusable,

platform-independent, interoperable, and meaningful (from a business point of view) services is the

pillar of SOA; existing and new pieces of functionality are exposed so that they can be seamlessly

accessed by other parties. However, for services to be used, they must be first located. As SOA

adoption increases and more services are available, the difficulty of locating an appropriate service

for solving some particular need can become a bottleneck for the effective exploitation of services

unless appropriate location mechanisms are in place.

Current service technologies rely on purely syntactic descriptions, which limits the precision

of service location mechanisms; as a result, a strong manual intervention from users is demanded,

which hampers an agile usage of services and, especially, the dynamic location of services at run-time.

Therefore, an enhancement of current service location practices in order to enable the effective and

efficient location of available services for their usage, either with the intervention of a human user or

in a fully automatic manner, either inside an organization or specially if organizational boundaries

are crossed to extend the possibilities of cooperation, is required.

In this work, we introduce an explicit conceptual model of services and goals, analyze

the variety of usage scenarios in which the need for enhanced service location mechanisms beyond

current practices arises, and propose an abstract model for the semi-automatic location of services.

This model is designed with flexibility and usability as key principles so that it can be used to cover

diverse usage scenarios in which different requirements might arise and in which users with different

profiles might participate.

While the general service location model proposed is kept abstract, an instantiation which

concretizes aspects left open in the abstract model, such as the particular types of descriptions of

goals and services considered and the matching mechanisms applied to them, is proposed, serving

as a proof of concept of our approach and demonstrating the feasibility of enhancing current service

location mechanisms. This instantiation of the abstract model has the following salient features: a) It

admits both formal and non-formal descriptions of services and goals, and of different types, granting

flexibility to users in choosing what types of descriptions and matchmaking mechanisms are used,

ii

Abstract iii

b) The descriptions used are integrated into an existing framework for the description of services

(WSMO) and formal descriptions are expressed using existing languages with formal semantics (the

WSML family of languages); still, portability of descriptions to other frameworks is possible, c) It

admits formal descriptions with different semantics; in particular, it enables the combined use of

descriptions with first-order and logic programming semantics for matching services and goals, d)

The reasoning support required over formal descriptions is mostly provided by existing reasoning

infrastructure, e) The alternative types of descriptions proposed and their associated matchmaking

methods keep a balance between simplicity and coverage of application needs for different application

types, f) Support to users for describing their services and goals is provided, and g) A prototype

implementation, as well as an evaluation of the model based on this implementation, has been

accomplished.

Contents

Title Page . i
Abstract . ii
Table of Contents . iv
Acknowledgments . vii
Dedication . viii

1 Introduction and summary 1
1.1 Context . 1

1.1.1 The SOA road . 2
1.1.2 The semantic road . 3
1.1.3 Towards a semantic SOA . 5

1.2 Motivation and main objectives . 6
1.3 Reader’s guide . 8

2 Background 10
2.1 The SOA paradigm . 10

2.1.1 Principles . 11
2.1.2 Web services . 12
2.1.3 Challenges . 18

2.2 Logical Foundations and the Semantic Web . 19
2.2.1 Ontologies and the semantic Web . 20
2.2.2 Description Logics . 23
2.2.3 Logic Programming . 33
2.2.4 Transaction Logic . 41
2.2.5 Languages and layering . 48

2.3 Summary . 56

3 Conceptual model of services and goals 57
3.1 Introduction . 57
3.2 Conceptual model . 58

3.2.1 Capabilities . 58
3.2.2 Services . 60
3.2.3 Visibility . 64
3.2.4 Goals . 65

3.3 Formal Characterization . 66
3.3.1 Language . 67
3.3.2 Services . 71

iv

Contents v

3.3.3 Capabilities . 77
3.3.4 Goals . 79

3.4 Frameworks for the description of services . 80
3.4.1 The WSMO Framework . 80
3.4.2 Other frameworks for the semantic description of services 88

3.5 Summary . 91

4 A framework for service discovery based on F-Logic and Transaction Logic 92
4.1 Introduction . 92
4.2 Proof obligations and formalization . 93

4.2.1 Formalization and scalability issues . 94
4.2.2 Proof obligations . 95

4.3 Prototype realization . 98
4.3.1 Goals . 99
4.3.2 Service descriptions . 100
4.3.3 Mediators, discovery and contracting . 101

4.4 Conclusions . 103

5 Abstract model for the location of services 108
5.1 Introduction . 108
5.2 Applications . 109

5.2.1 Design-time location of services for their composition or integration into com-
plex systems or processes . 110

5.2.2 Location and execution of services by end human users 113
5.2.3 Run-time location and usage of services . 115

5.3 An abstract model for the location of services . 120
5.3.1 Description and publication of services . 120
5.3.2 Description of goals . 129
5.3.3 Discovery and selection of services . 135

5.4 Summary . 140

6 Model Instantiation and Prototype Implementation I: Description and Publica-
tion of Services 143
6.1 Introduction . 143
6.2 Types of descriptions of services . 144

6.2.1 Syntactic descriptions . 145
6.2.2 Semantic descriptions . 158

6.3 Description and publication of services . 183
6.3.1 Pre-defined descriptions . 184
6.3.2 Supporting users in the description of services. 196
6.3.3 Publication of descriptions . 206

6.4 Summary . 211

7 Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 212
7.1 Introduction . 212
7.2 Description of goals . 213

7.2.1 Syntactic descriptions . 213
7.2.2 Semantic descriptions . 217

Contents vi

7.2.3 Selection of filters . 222
7.2.4 Support for the description of goals . 223

7.3 Registry-side filters . 230
7.3.1 Pre-processing of goals and submission to the registry 230
7.3.2 Textual filter . 232
7.3.3 Category filter . 234
7.3.4 Capability filter . 235
7.3.5 Combination of registry-side filters . 243

7.4 Consumer-side filters . 244
7.4.1 Input availability filter . 245
7.4.2 Input-dependent effects filter . 247
7.4.3 Combination of filters . 253

7.5 Summary . 255

8 Evaluation and related work 257
8.1 Evaluation . 257

8.1.1 Complexity and experimental evaluation . 257
8.1.2 Coverage of applications . 269
8.1.3 Known limitations . 276

8.2 Related work . 279
8.2.1 Software component retrieval . 279
8.2.2 DL-based matching . 282
8.2.3 Extension of UDDI registries . 287
8.2.4 Approaches with multiple filters . 289
8.2.5 Other related works . 292

9 Conclusion 294
9.1 Major contributions . 295
9.2 Future work . 297
9.3 Concluding remarks . 298

A Complete example of discovery based on Transaction Logic 314

Acknowledgments

I would like to thank all those who have directly or indirectly made this work possible:

Borja Foncillas and Pablo Castells for their trust, support, and endless patience; Sinuhe Arroyo, Jos

de Bruijn, Alice Carpentier, Leonarda Haid-Garcia, Uwe Keller, Holger Lausen, Francisco Martin-

Recuerda, and Axel Polleres for all their support while working at DERI Innsbruck and for con-

tributing to parts of this work; Miguel Corella for his help and ideas for building up the SETA

prototype; Michael Kifer for his major contribution to the model for service discovery based on

transaction logic; the DERI Galway crew for the warm and motivating environment created while

working at DERI Galway; the TIF and AFI crew, especially Daniel Manzano, for their support and

understanding; and, finally, all my friends who gave me the energy and motivation I needed for

ending this long trip.

vii

Dedicated to Elvira

and to my parents.

viii

Chapter 1

Introduction and summary

1.1 Context

Over the last decades, IT has gained an increasingly prominent role in many aspects of

economy, business and society, leading to a massive creation of systems and applications which offer

a vast variety of functionalities targeting at different needs, and which range from in-house solutions

to widely accepted products.

This plethora of different systems and applications have not only being conceived to offer a

huge diversity of functionalities, but they have also been created using different architectural styles

and technologies. The different technology waves we have witnessed in the last decades, from main-

frame centralized solutions to distributed solutions using technologies such as CORBA [COR, 1998],

have left behind in many organizations a number of heterogeneous IT systems that today have to

cooperate in different ways. However, realizing cooperations between such disparate systems is a

challenging and costly endeavor. Even when cooperating systems have been created using the same

technologies, they have often been conceived in isolation without considering their possible use in

conjunction with other systems and applications. This results on e.g. the lack of adequate documen-

tation or clear public interfaces to access the functionality of these systems, which in turn makes their

integration challenging. Furthermore, in a networked economy, cooperation needs have crossed or-

ganizational boundaries and now expand different organizations. As a consequence, systems residing

in different organizations have to interact in order to realize some business cooperation.

In general, the integration of different functionalities (or business services) provided by

different IT systems, possibly located at distributed locations and expanding multiple business do-

mains, has become an extended need. These systems have often been designed in isolation or using

technologies hardly amenable to interaction with other systems and technologies, but still they have

1

Chapter 1: Introduction and summary 2

to be reused and integrated, as existing IT assets and their associated investments cannot be simply

replaced. This is leading to an increasing interest in the service-oriented architectural paradigm [Erl,

2005; Newcomer and Lomow, 2004], which promises an increased reuse of IT systems, a reduction

of the integration burden, and an agile adaptation and evolution of IT assets to respond to business

needs.

Still, some limitations, especially the rigidness of systems and processes built based on the

service-oriented paradigm, are motivating a body of research on the application of formal semantics

to Service-Oriented Architectures (SOA), the so-called semantic SOA view or Semantically Enabled

Service-Oriented Architectures (SESA) [Brodie et al., 2005], as a semantic SOA might overcome

some of the limitations of the current SOA view and potentially increase its benefits.

In the following, we briefly introduce the concept of SOA and its importance, the research

field of Semantic Web and semantic technologies, and how and why these two worlds are starting to

converge.

1.1.1 The SOA road

The exposition of functionalities provided by heterogeneous and possibly distributed sys-

tems as reusable, platform-independent, interoperable, and meaningful (from a business point of

view) services is the pillar of Service-Oriented Architectures, which are receiving increasing at-

tention as an architectural paradigm that can enable the reuse of IT assets and their principled

integration into more complex services, both within and across organizational boundaries. In this

way, previously isolated and heterogeneous pieces of functionality are given visibility and exposed

so that they can be seamlessly located and accessed by other parties.

Common examples used to illustrate the benefits of exposing functionalities provided by

different systems and actors are the following:

Example 1.1 A Virtual Travel Agency (VTA) offers on-line services for searching and booking

travel packages. For that purpose, it integrates services from different providers such as airlines,

car rental companies, hotels, etc, which might be provided by different systems [Stollber et al.,

2004; He et al., 2004; Lara et al., 2004b]. The integration of the offers of these providers could be

considerably eased if each provider would publish interoperable and meaningful services, usable by

cooperating parties without requiring any specific integration effort. For example, an airline could

publish a service for booking its flights using standard, interoperable technologies, thereby easing

its integration into the VTA catalogue.

¤

Chapter 1: Introduction and summary 3

Example 1.2 An on-line book store has to interact not only with customers, but also with shipping

companies and payment systems, among others, in order to provide its service to customers. This

naturally requires integrating different systems used by different providers to e.g. request the ship-

ping or the payment of a good. The publication of the functionalities offered by shipping companies

and payment agencies as interoperable services can considerable reduce the integration effort neces-

sary to establish the cooperation between the on-line book store and business partners. A similar

example is presented in [Kopecky, 2005].

¤

The availability of interoperable and meaningful services enables their composition into

business processes with a dramatically reduced integration effort. By combining Business Process

Management (BPM) [Smith and Fingar, 2003] and SOA, organizations can place their focus on

explicitly defining processes at the business level and automating them based on existing, known

services. This has a two-fold benefit: a) organizations can concentrate their efforts and resources

on defining, managing and improving existing and new processes, as the system integration task is

considerably eased, and b) the alignment of business units and IT departments is improved, so the

communication between business and IT staff is, as requirements are communicated via explicitly

defined (at a business level) processes, which can be automated by IT departments using existing

services.

For these reasons, organizations are increasingly interested in the SOA paradigm as a

promising path towards leveraging their IT systems, gaining flexibility, responding faster to market

changes, and better aligning IT and business (see [Heffner et al., 2006]). This is naturally attracting

the attention of software vendors and business consultants, who are devoting important efforts to

the emerging SOA market [Cearley et al., 2005]. An evidence of this activity is the appearance of a

new brand of products: the Enterprise Service Bus (ESB) [Chappell, 2004], as well as the generalized

support for Web services [Alonso et al., 2003] and other technologies such as JMS [Monson-Haefel

and Chappell, 2000] that can be used for the implementation of services in an SOA.

Following the SOA road is expected to bring an evolution of how IT systems are conceived

today; this evolution will be deeper, and bigger its benefits, if a number of research challenges, such as

the dynamic (re)configuration of architectures, dynamic connectivity, end-to-end security solutions,

dynamic service discovery, automatic replacement of services, automatic service composition, and

other challenges described in [Papazoglou et al., 2006], are properly addressed.

1.1.2 The semantic road

In parallel to the development of the SOA paradigm, the semantic Web vision has attracted

considerable research efforts. The semantic Web has been defined in [Berners-Lee et al., 2001] by

Chapter 1: Introduction and summary 4

Tim Berners-Lee, director of the World-Wide Web Consortium (W3C)1, as:

”an extension of the current Web in which information is given well-defined meaning, better

enabling computers and people to work in cooperation. It is based on the idea of having data on the

Web defined and linked such that it can be used for more effective discovery, automation, integration,

and reuse across various applications”

But, why is an extension of the current Web necessary? In the following, we will try to

provide a brief answer to this question.

The World Wide Web (WWW or Web for short) has been an impressive success, in terms

both of available information and of the growth rate of users [Fensel and Musen, 2001]. This

success has been based to a great extent on its simplicity, making easy for information providers

and consumers to put new information on-line and to access it, respectively. However, the creation

of new information, based solely on simple HTML tags and textual content, has some drawbacks

[Ding et al., 2002]: searches are imprecise, users face the task of reading the documents retrieved in

order to extract the information desired, and the task of maintaining consistency among information

sources is overwhelming, resulting in sites containing inconsistent and/or contradictory information.

Example 1.3 Let us consider a user who wants to search double hotel rooms in Madrid, next to

Sol square, in a 4-stars hotel. On the current Web, an average user would use his preferred search

engine and type some of his requirements, browse the results given, and manually collect information

about hotels which meet these requirements. Another user could also choose to visit a particular

Web site offering search facilities for hotels, and this Web site would perform a more focused search

for him. However, in the latter case the Web site would most likely not be searching the Web, i.e.,

web pages, but directly communicating with some pre-defined hotel information providers.

¤

The idea of providing information on the Web with a well-defined, formal meaning, has

arose as a potential improvement to the current Web, leading to the so-called semantic Web. The

vision of the semantic Web is therefore to go beyond textual Web pages, describing the information

published on the Web based on explicit, shared, and formal vocabularies: the so-called ontologies

[Gruber, 1993].

The use of ontologies gives information a shared, formal meaning, which can enable com-

puters to automatically process information on the Web, thus overcoming the limitations of the

current Web and transforming it from a huge, distributed source of textual information in which

computers only retrieve content from certain locations and visualize it according to some HTML

tags, to a source of well-defined information with a meaning computers can ”understand”, thereby
1http://www.w3.org/

Chapter 1: Introduction and summary 5

providing users with advanced services such as precise information gathering or information consis-

tency checking.

Example 1.4 Let us reconsider the previous example, and let us imagine a (very simplified) tourism

ontology which defines a concept hotel, with properties category and location, and a concept hotel

room, with a property number of occupants. Hotel A can publish on his Web site not only a textual

description of the hotel and its rooms, but also put on-line instances of concepts in the shared

tourism ontology. For example, hotel A can be described as an instance of concept hotel, with its

category property having a 5-stars value, and its location property having value Carmen street,

Madrid. Furthermore, the hotel can provide the detail of the rooms it offers by describing instances

of the hotel room concept and specifying their number of occupants. Similarly, users can describe

their needs using the same terminology provided by the tourism ontology. In this way, information

available on the Web is given a well-defined meaning, overcoming the difficulties of processing textual

information and enabling for better search capabilities, among other features.

¤

1.1.3 Towards a semantic SOA

The application of formal ontologies has transcended the limits of the Web, and it has

also been investigated in other fields such as information integration and management [Alexiev

et al., 2005; Castells et al., 2004; Lara et al., 2006a], development of community portals [Ding

et al., 2004; Lausen et al., 2005], and service-oriented computing. In particular, the application

of formal semantics to SOA has been envisioned as a potential path for addressing some of the

challenges mentioned in the research roadmap given by [Papazoglou et al., 2006]. The reason is

that the SOA paradigm relies on the explicit, interoperable description of the services exposed, but

the languages currently used for this purpose, such as WSDL [Christensen et al., 2001], are purely

syntactic. As a consequence, for example searching services in a service-oriented environment yields

imprecise results, resembling the problems searching on the Web has. Furthermore, the current

descriptions of interaction models of services and of data exchanged between them is also syntactic,

which keeps human users in the loop as they have to interpret these descriptions and to properly

wire services together. The result is that services must be statically assembled, resulting on a highly

rigid composition of services into complex functionalities or processes.

In this setting, the SOA road and the semantic road have started to converge into the

so-called semantic SOA, where formal semantics are exploited to overcome the limitations of current

technologies. The purpose is to increase the flexibility of IT systems, reducing their rigidness to

make them dynamically adapt to changes on the environment (errors on services, required quality

of service, etc.) or on business requirements (price constraints, constraints on cooperating partners,

Chapter 1: Introduction and summary 6

etc.) and, in general, to address the research challenges summarized in [Papazoglou et al., 2006].

The vision of a semantic SOA is attracting the attention of both researchers and industry.

This increasing interest in applying formal semantics to service-oriented architectures has resulted

in e.g. the creation of the OASIS Semantic Execution Environment (SEE) technical committee2,

the creation of the semantic annotations for web service description language working group3 at the

W3C, and the submission of several proposals for semantically describing Web services to the W3C

[Martin et al., 2004; de Bruijn et al., 2005a; de Bruijn et al., 2005c; Battle et al., 2005c; Battle et al.,

2005b; Akkiraju et al., 2005].

1.2 Motivation and main objectives

The exposition of functionalities provided by heterogeneous and possibly distributed sys-

tems as reusable, platform-independent, interoperable, and meaningful (from a business point of

view) services is the pillar of SOA; existing and new pieces of functionality are given visibility and

exposed so that they can be seamlessly accessed by other parties.

SOA can enable a higher reuse of IT assets and their better integration into more complex

services. However, for services to be used, they must be first located. As SOA adoption increases

and more services are available, the difficulty of locating an appropriate service for solving some

particular need can become a bottleneck for the effective exploitation of services unless appropriate

location mechanisms are in place. The need for such mechanisms arises in different types of usage

scenarios, namely: a) location of services at design-time for their composition or integration into

more complex systems or processes, b) run-time location and usage of services, and c) location and

usage of services by end human users.

For example, a telecommunications provider might define a new business process for in-

forming their customers about special offers and promotions. This business process might involve

activities realizable by using available services such as notifying customers by different means (SMS,

e-mail, etc.) or registering what offers and promotions each customer was informed of. The pro-

fessionals in charge of the definition and implementation of this process will want to locate, at

design-time, appropriate services that can be statically incorporated into the process for performing

these activities -case a) above-. Furthermore, if any of the services statically bound to the process

fails at run-time, it is desirable to dynamically locate a new service which can replace the failed

service -case b)-. Finally, end human users will want to locate services which can be used to fulfill

their objectives -case c)- e.g. if a user wants to contract some of the promotions offered by the

telecommunications provider, he will want to locate a service which can be used to perform the
2http://www.oasis-open.org/
3http://www.w3.org/2002/ws/sawsdl/

Chapter 1: Introduction and summary 7

desired contracting.

Current service technologies rely on purely syntactic descriptions, which makes service lo-

cation mechanisms operating over such descriptions imprecise; as a result, they demand a strong

manual intervention from users, which hampers an agile usage of services and, especially, the dynamic

location of services at run-time. Therefore, an enhancement of current service location practices in

order to enable the effective location of available services for their usage, either with the interven-

tion of a human user or in a fully automatic manner, either inside an organization or specially if

organizational boundaries are crossed to extend the possibilities of cooperation, is required.

Works exist trying to address the increasing need for efficiently and effectively locating

services based on the semantic (formal) description of services and goals. However, most existing

proposals are based on the input-output signature of services and not on the description of their

value and, furthermore, they are limited to the usage of a single type of formal description of services

and goals and they lack a comprehensive model for the location of services which grants flexibility

to service providers and consumers in the type of descriptions used and in the mechanisms employed

for locating services. Furthermore, existing works lack an analysis of the usage scenarios that must

be covered by the proposed service location model, of the practical considerations which must be

considered in such usage scenarios, of usability issues that might arise, and, in general, they lack a

global view on the service location problem.

In this setting, we perceive the need for a model which enables the semi-automatic location

of services based on the value they provide and on the value required by consumers, which is

flexible enough to cover different usage scenarios, and which pays attention to the usability of the

model by users with different profiles and needs. The elaboration of such a model, contributing

to the enhancement of current service location practices, is one of the main objectives of the work

presented in this document.

The model which will be elaborated has the purpose of providing general guidelines and

design decisions for the location of services, but it will be kept abstract and particular instantiations

must concretize aspects which are left open, such as the particular types of descriptions of goals and

services considered and the matching mechanisms applied to them. It is also a major objective of

our work to provide such an instantiation, as well as a prototype implementation, of the abstract

model proposed. This instantiation will serve as a proof of concept of our proposal, will enable an

evaluation of the abstract model based on this particular instantiation, and will demonstrate the

feasibility of enhancing current service location practices.

Chapter 1: Introduction and summary 8

1.3 Reader’s guide

The necessary background for situating the work presented in this document and making

a proper understanding of it possible is given in Chapter 2. Section 2.1 focuses on providing an

overview of the SOA paradigm, of its main principles, of web service technologies, and of the research

challenges in the SOA field which remain unsolved. In Section 2.2, the logical foundations necessary

for understanding the work which will be presented in the document are provided. Furthermore,

the basics of ontologies and the semantic web, as well as of the languages currently proposed for the

formal description of domain knowledge, are given in this Section.

In Chapter 3 we provide a conceptual view of the core elements of an SOA that are particu-

larly relevant to our work, such as services and goals (Section 3.2). This Chapter, besides introducing

a (partial) reference model for SOA, investigates further the nature of the elements introduced in

the conceptual model. In particular, a deeper insight into the type of artifacts we aim at describing

for their semi-automatic location is provided by means of a formal characterization of them based on

Transaction Logic (Section 3.3), as it is crucial to provide a clear and explicit model of these artifacts

so that we can properly understand what types of descriptions can be provided, what aspects they

capture, and what level of confidence can be expected from the results of the location process based

on the different types of descriptions. Finally, in Section 3.4, we briefly introduce the frameworks

proposed so far for the description of services and goals, and discuss how our conceptual model

relates to the model of services and goals used by these frameworks.

In Chapter 4 we summarize the work we carried out to automate the location of services

based on Transaction Logic, the results obtained, and the limitations found. This work was a

first attempt we made for enhancing service discovery; limitations were found which motivated the

initiation of our efforts to find a more comprehensive model which can properly work in different

situations and which grants users more flexibility, but still the work has some interesting features

which worth looking at.

Chapter 5 introduces our proposed abstract model for the location of services, driven

by practical requirements and considerations. In Section 5.2, we characterize the main groups of

applications we envision for the partially or fully automated location of services and discuss its key

characteristics. Our proposal for an abstract model for the location of services will be described

in Section 5.3, placing special emphasis on the principles and practical observations which have

motivated the design of the model. The first part of the model proposed, which covers the description

of services and the publication of these descriptions, will be discussed in Section 5.3.1; the second

part of the model concentrates on the description of goals, and it will be presented in Section 5.3.2;

the last part of the model, which covers the actual location and selection of services which can

achieve an explicitly described goal, will be presented in Section 5.3.3.

Chapter 1: Introduction and summary 9

In Chapter 6, the proposed instantiation of the first part of the abstract model presented

in the previous Chapter, dealing with the description and publication of services, is detailed, as

well as an associated prototype implementation (the SETA service location platform). Section 6.2

introduces the types of descriptions of services admitted by the model instantiation, while Section

6.3 will be devoted to the presentation of how service providers are supported in describing their

services and how such descriptions are published.

Chapter 7 describes how, and following the guidelines provided by the abstract model in

Chapter 5, we articulate the discovery of services based on their value, i.e., how we instantiate the

second part of such abstract model in the SETA platform. In Section 7.2 we discuss how consumers

can describe their goals in our model instantiation, how consumer knowledge is expected to be

described, as it might play a role in deciding what services can be used to achieve a consumer’s goal,

and what type of support is offered to consumers for describing their goals. Once the consumer

goal has been described, we will initiate the service discovery process, which is split into two phases

presented in Sections 7.3 and 7.4.

Chapter 8 provides in Section 8.1 an evaluation of the model instantiation and the prototype

implementation proposed, and an overview of related work in Section 8.2.

Finally, Chapter 9 concludes our work with a summary of major contributions and future

work.

Chapter 2

Background

2.1 The SOA paradigm

Software reuse has been for years a research topic in computer science, as the need for

exploiting existing pieces of functionality and capitalizing existing IT investments has soon arose in

the brief history of this science.

First, the concept of modular development and structured programming emerged [w. Di-

jkstra, 1972], enabling the reuse of functions and routines previously developed with languages such

as Pascal, Ada or C. However, and while improvements in the development of new systems and

functionalities were achieved, maintainability remained an issue. The next paradigm which emerged

to try to address the problems and limitations of structured programming was object-orientation

[Dahl, 1987]. With languages such as C++, Java or C#, this paradigm brought a much more ef-

fective way of composing applications. Later, the challenge was to go beyond reusing code, and the

reuse of components [Brad J. Cox, 1991] was sought. Proposals like DCOM, CORBA, J2EE or the

.NET Framework contributed to this goal, but the use of components still left some issues unsolve

like platform heterogeneity, protocol heterogeneity, and device heterogeneity.

In this context, the paradigm of service-orientation (or Service-Oriented Architectures -

SOA-) [Erl, 2005; Newcomer and Lomow, 2004; Wikipedia, 2005] is gaining momentum as an archi-

tectural paradigm which can enable the engineering of new applications in terms of loosely-coupled,

reusable and interoperable services, thereby overcoming the limitations of existing paradigms and

practices. In the following, we will summarize the principles of SOA design, what web services are

and how they relate to SOA, and the main open challenges in SOA development.

10

Chapter 2: Background 11

2.1.1 Principles

A number of similar and sometimes complementary definitions of SOA can be found; in

our opinion, some of the most relevant definitions of SOA are:

1. ”A paradigm for organizing and utilizing distributed capabilities that may be under the control

of different ownership domains. It provides a uniform means to offer, discover, interact with

and use capabilities to produce desired effects consistent with measurable preconditions and

expectations [MacKenzie et al., 2006].

2. ”A software architecture that uses loosely coupled software services to support the requirements

of business processes and software users” [Wikipedia, 2005].

3. ”The policies, practices, frameworks that enable application functionality to be provided and

consumed as sets of services published at granularity relevant to the service consumer. Services

can be invoked, published and discovered, and are abstracted away from the implementation

using a simple, standards-based form of interface” [Sprott and Wilkes, 2004].

4. ”Information technology approach or strategy in which applications make use of (perhaps more

accurately, rely on) services available in a network such as the World Wide Web” [Ort, 2005].

From these definitions we can extract the defining principles of SOA: reuse, interoperability,

abstraction, loose coupling, and different ownership domains. A more detailed summary of the

specific architectural principles of SOA can be found in [Wikipedia, 2005]:

1. Service encapsulation: services encapsulate a given piece of functionality or, more generally, a

value.

2. Service loose coupling: services maintain a relationship that minimizes dependencies and only

requires that they maintain an awareness of each other.

3. Service contract: services adhere to a communications agreement, as defined collectively by

one or more service description documents.

4. Service abstraction: beyond what is described in the service contract, services hide business

logic from the outside world.

5. Service reusability; logic is divided into services with the intention of promoting reuse.

6. Service composability: collections of services can be coordinated and assembled to form com-

posite services.

7. Service autonomy: services have control over the logic they encapsulate.

Chapter 2: Background 12

Figure 2.1: Services lifecycle

8. Service statelessness: services minimize retaining information specific to an activity.

9. Service discoverability: services are designed to be outwardly descriptive so that they can be

found and accessed via discovery mechanisms.

The principles summarized above enable the development and exposition of services which

can be reused across platforms, ownership domains, and protocols, and which can be composed in

order to build complex functionalities from available services, that is, they enable the exposition of

functionalities provided by heterogeneous and possibly distributed systems as reusable, platform-

independent, interoperable, and meaningful (from a business point of view) services, thereby improv-

ing the reuse of IT assets and their principled integration into more complex services, both within

and across organizational boundaries. In this way, previously isolated and heterogeneous pieces of

functionality are given visibility and exposed so that they can be seamlessly located and accessed by

other parties (see Figure 2.1). In this document, we will focus on the enhancement of the location

(discovery) task depicted in the Figure, necessary for an efficient composition and exploitation of

services.

SOA is receiving considerable attention and its adoption is spreading (see [Cearley et al.,

2005] and [Heffner et al., 2006]). The wide-spread adoption of SOA principles is, though, still in

progress, and the level of application and exploitation of this kind of architectures is at different

stages in different organizations (see Figure 2.2).

2.1.2 Web services

SOA, or service-oriented computing, is an architectural paradigm and, as such, it is technol-

ogy independent. However, there exist languages, technologies and infrastructure which can be used

to realize a service-oriented architecture. Popular technologies for the realization of SOA include

Chapter 2: Background 13

Figure 2.2: SOA maturity pyramid

web services [Alonso et al., 2003], which allow for the exposition of functionalities in an explicit,

interoperable way, Business Process Modelling (BPM) [Smith and Fingar, 2003], which allows for

the principled combination of services into business processes, and Enterprise Service Buses (ESBs)

[Chappell, 2004], which aim at providing a middleware layer with features such as (reference and

temporal) decoupling, data mediation, or intelligent routing of messages. This middleware layer can

be convenient in different scenarios for actually building a service-oriented architecture.

From these key technologies, we will in the following focus on the description of what web

services are and on the languages and interfaces they commonly rely on.

2.1.2.1 Definition of web services

Several definitions of what a web service is can be found in the literature. As a starting

point, three definitions can be used:

1. ”A software system designed to support interoperable machine-to-machine interaction over a

network. It has an interface described in a format that machines can process (specifically

WSDL). Other systems interact with the web service in a manner prescribed by its description

using SOAP messages, typically conveyed using HTTP with XML serialization in conjunction

with other web-related standards” [Haas and Brown, 2004].

2. ”Loosely coupled, reusable software components that semantically encapsulate discrete func-

tionality and are distributed and programmatically accessible over standard Internet protocols

[Sleeper, 2001].

Chapter 2: Background 14

3. ”Self-contained, self-describing, modular applications that can be published, located and in-

voked across the Web. Web services perform functions, which can be anything from simple

requests to complicated business processes” [Tidwell, 2000].

What these definitions have in common is their characterization of Web Services as compo-

nents providing functionality, distributed and accessible using Web-related standards. No restriction

is given about the kind of functionality a Web Service can provide. It can provide static or dynamic

information or perform real changes in the world, but what is essential in web services is their capa-

bility of providing functionality in a distributed manner within or across organizational boundaries

using widely accepted technologies.

Web services provide access to some component or functionality, but in an interopera-

ble manner and without revealing how this component and functionality is actually implemented.

Furthermore, they describe, in a stardard way, how to access this functionality using platform-

independent, interoperable protocols. In general, they provide loose coupling, interoperability,

reusability and encapsulation. However, keep in mind that SOA is not equivalent to the use of

web services. While this is a common misconception, web services are only a particular means to

describe and make accessible interoperable, loosely-coupled services.

As example web services, we can imagine a web service which encapsulates the functionality

of providing a list of available flights with certain constraints e.g. origin, destination and date, or

a web service enabling the purchase and shipping of a book given its title, a payment method,

and a shipping address. These web services can internally use other web services to perform their

functionality. For example, the book purchase web service may use another web service to get the

ISBN given the book title, and a shipping web service offered by a third party to order the shipping

of the book to the buyer.

2.1.2.2 SOAP, WSDL and UDDI

Web services encapsulate functionality and enable access to any component in an inter-

operable way. For this purpose, web services make use of three main specifications which enable

the description of web services, the exchange of messages with web services, and the location of

web services, namely: WSDL, SOAP and UDDI (see Figure 2.3). These specifications are briefly

introduced in the following.

SOAP The Simple Object Access Protocol (SOAP) [W3C, 2003] is a message layout specification

that defines a uniform way of passing XML-encoded data. It also defines a way to bind to HTTP

as the underlying communication protocol for passing SOAP messages between two endpoints. It

overcomes the problems with techniques such as DCOM, RMI and CORBA, which are successful on

Chapter 2: Background 15

Figure 2.3: Relation among SOAP, WSDL and UDDI

the local network, while failing when transposed to a web environment. These techniques require

a tight coupling between components and present security problems; firewalls and proxy serves will

normally block RPCs between DCOM, RMI and CORBA components. Replacing this by a simple,

lightweight RPC-like mechanism is the aim of SOAP. SOAP uses XML messaging over plain HTTP,

thus avoiding firewall problems (asynchronous communication can also be accomplished via SMTP).

SOAP is platform and language independent, as well as simple and extensible, providing

a way of communication between applications running on different operating systems with different

technologies and programming languages. These features make SOAP a powerful way of exchanging

messages in distributed and heterogeneous environments. In a nutshell, SOAP enables the exchange

of messages in a platform and language-independent fashion. For more details on SOAP, we refer

the reader to [W3C, 2003] and [Alonso et al., 2003].

WSDL The Web Services Description Language (WSDL) [Christensen et al., 2001] is an XML-

based language for describing web services and how to access them. The description of services is

written in XML, and it specifies the operations the service exposes. It provides a communication

level description of the messages and protocols used by a web service. WSDL enables to separate

the description of the abstract functionality offered by a service from concrete details of a service

description such as ”how” and ”where” that functionality is offered.

The first component of a WSDL definition is the message component (see Figure 2.4). It

describes the abstract format of a particular message that a web service sends or receives. The

format of a message is typically described in terms of XML element information items and attribute

information items. A message binding describes how the abstract content is mapped into a concrete

format. A message consists of parts that describe a portion of the message that a web service sends

Chapter 2: Background 16

Figure 2.4: Graphical representation of a WSDL service.

or receives.

Once the messages to be interchanged by the service have been defined, they have to be

related into operations the service is exposing, and these operations have to be grouped together.

Operations are a set of message references to messages this operation accepts (input messages), or

messages this operation sends (output or fault messages). A port type component groups operation

together, thus grouping related operations into a wider message exchange.

The messages and port types defined, with their corresponding parts and operations, are

kept abstract. A binding component describes a concrete binding of a port type component and

associated operations to a particular concrete message format and transmission protocol. No concrete

binding details are given in the WSDL specification, and a different specification defines such bindings

for SOAP 1.1, SOAP 1.2, HTTP and MIME. A port component defines the particulars of a specific

end-point at which a given service is available, that is, it defines the association of a port type with

a binding. In this way, the operations exposed can be programmatically accessed.

The upper component WSDL defines is the service component, which describes the set of

ports a service provides, thus exposing what operations can be invoked over the service and what

messages must be exchanged.

The WSDL specification defines mechanisms to allow the separation of these components

and thus their modularization. In addition, WSDL allows the inclusion of human readable docu-

mentation of any element.

UDDI Universal Description, Discovery and Integration (UDDI) [Bellwood et al., 2002] provides a

mechanism for clients to find web services. Using a UDDI interface, businesses can dynamically look

up as well as discover services provided by external business partners. A UDDI registry is similar

Chapter 2: Background 17

to a CORBA trader, or it can be thought of as a DNS service for business applications.

Central to UDDIs purpose is the representation of data and metadata about web services.

A UDDI registry offers a standard mechanism to classify, catalogue and manage web services, so

that they can be discovered and consumed. Businesses and providers can use UDDI to represent

information about web services in a standard way, and queries can be issued to a UDDI Registry at

design-time or run-time for finding web services which meet criteria of the following types: a) the

web service has a given abstract interface definition, b) it is classified in a given way according to

a known classification scheme or identification system, c) it supports certain security and transport

protocols, or d) it contains certain keywords.

A UDDI registry has two kinds of clients: businesses that want to publish a service descrip-

tion (and its usage interfaces), and clients who want to obtain services descriptions of a certain kind

and bind programmatically to them (using SOAP). UDDI itself is layered over SOAP and assumes

that requests and responses are UDDI objects sent around as SOAP messages.

UDDI information contains three levels: the top level element is the Business entity, which

provides general data about a company such as its address, a short description, contact information

and other general identifiers. This information can be seen as the white pages of UDDI. Associated

with each business entity is a list of Business services. These contain a description of the service and

a list of categories that describe the service, e.g. purchasing, shipping etc. This can be considered

as the yellow pages of UDDI. Within a business service, one or more Binding templates define the

green pages: they provide the technical information about a web service.

An additional element involved in the general UDDI architecture is Technical Models, or

tModels for short. They are used to represent unique concepts or constructs, providing a structure

that allows reuse and, thus, standardization within a software framework. The UDDI information

model is based on this notion of shared specifications and uses tModels to engender this behavior.

For this reason, tModels exist outside the parent-child containment relationships between the busi-

nessEntity, businessService and bindingTemplate structures. Each distinct specification, transport,

protocol or namespace is represented by a tModel. Examples of tModels that enable the interop-

erability of web services include those based on WSDL, XML Schema Definition (XSD), and other

documents that outline and specify the contract and behavior, i.e., the interface that a web Service

may choose to comply with.

To describe a web service that conforms to a particular set of specifications, transports, and

protocols, references to the tModels that represent these concepts are placed in the bindingTemplate.

In this way, tModels can be reused by multiple bindingTemplates. The bindingTemplates that refer

to precisely the same set of tModels are said to have the same technical fingerprint and are of the

same type. In this way, tModels can be used to promote the interoperability between software

systems.

Chapter 2: Background 18

With this basic architecture, UDDI enables the publication and location of web services.

Together, WSDL, SOAP and UDDI provide the basic infrastructure to describe, publish, locate and

use web services in the way depicted by Figure 2.4.

Web services are widely supported by existing frameworks such as .NET1 and J2EE2,

and interoperability between web services regardless of how they were created and their underlying

technology is being enforced by organizations such as the Web Services Interoperability organizaion

(WS-I)3, which defines profiles interoperable web services must comply with.

Besides the core web service specifications presented above, other specifications aiming

at covering aspects of web services not addressed by WSDL, SOAP and UDDI exist or are under

development, such as WS-Security [Nadalin et al., 2004] or WS-Policy [WSP, 2006]. However, we

will not cover them here; we refer the reader to the correspondent specification documents for details

on these efforts.

2.1.3 Challenges

While service-orientation is widely regarded as the way IT systems must be conceived in

order to improve reusability, interoperability and integration, there are challenges that still remain

unsolved in order to fully exploit the potential benefits of the SOA paradigm. The service-oriented

computing research roadmap elaborated by Papazoglou et al. in [Papazoglou et al., 2006] gives a

very good overview of these challenges and discusses their implications and future steps. Research in

service-oriented computing is subdivided into several areas or planes, namely: i) service foundations,

ii) service composition, iii) service management, and iv) service engineering (Table 2.1).

Open challenges include an increase in the dynamics of service-oriented systems, in partic-

ular their dynamic reconfiguration and enhanced service discovery. These challenges are included as

part of research in service foundations, and [Papazoglou et al., 2006] establishes that:

• The run-time service infrastructure should be able to configure itself and be optimized automat-

ically in accordance with specific application requirements and high-level policies representing

business-level objectives, for example that specify what is desired (such as particular security

and privacy requirements) and not how it is to be accomplished.

• The main challenge of service discovery is the use of automated means for accurate discovery

of services in a manner that demands minimal user involvement. Improving service discov-

ery requires explicating the semantics of both the service provider and the service requester.

Improving service discovery involves adding semantic annotations and including descriptions
1http://en.wikipedia.org/wiki/Microsoft .NET Framework
2http://en.wikipedia.org/wiki/Java Platform%2C Enterprise Edition
3http://www.ws-i.org/

Chapter 2: Background 19

Table 2.1: Overview of state of the art and grand challenges in service-oriented computing research
[Papazoglou et al., 2006].

of QoS characteristics to service definitions in WSDL and then registering these descriptions

in registries. The use of standard ontologies that support shared vocabularies and domain

models for use in the service description also facilitates service discovery by making the se-

mantics implied by structures in service descriptions explicit. To achieve automated discovery

of services, the needs of service requesters have to be explicitly stated. We expect such needs

to be expressed as goals, which correspond to the description of what services are sought, in

some formal request language.

We can thus see that the location of services which can fulfill a given need is recognized

as a key research challenge to be addressed in order to increase the dynamics of service-oriented

architectures. Contributing to the resolution of this challenge is precisely the aim of the work we

present in this document.

2.2 Logical Foundations and the Semantic Web

In [Papazoglou et al., 2006] and other works e.g. [Lara et al., 2003], the semantic description

of services and of consumer needs using ontologies is identified as a promising path towards enhancing

service discovery. In this Section, we will present what ontologies are and their logical foundations, as

well as particular languages proposed for the description of ontologies. We will also briefly introduce

the semantic web vision, as this vision has led to the establishment of an important research area

in the engineering and use of ontologies, and it has been the origin of the developments in the

definition of ontology languages and in the practical application of ontologies to the resolution of

Chapter 2: Background 20

different problems.

2.2.1 Ontologies and the semantic Web

The World Wide Web has made a huge amount of information electronically available,

being an impressive success story in terms of both available information and the growth rate of

human users [Fensel and Musen, 2001]. The Web has evolved from an in-house solution for around

1000 users in 1990 to more than 1 billion users (16.9% of the world’s population)4 and over 11.5

billion web pages in the publicly indexable Web as of the end of January 20055, not only world-wide

but device-wide. This success has been based mainly on its simplicity, giving software developers,

information providers and users easy access to new content. Nevertheless, the same simplicity that

made the impressive expansion of the Web possible has brought important, and in some cases critical,

drawbacks that are hampering a further development of the Web. These problems are experienced

by users in their daily use of available contents. As an example, if we try to use any search engine to

find on the Web airlines which offer flights from Munich to Madrid and we introduce a text query like

”Airlines Munich Madrid”, we will get thousands of results and we will be forced to navigate through

some of the links to figure out whether the web sites listed are providing any useful information for

our purpose.

The limitations of the current Web are summarized in [Ding et al., 2002]: searches are

imprecise, often yielding matches to many thousands of pages; moreover, users face the task of

reading the documents retrieved in order to extract the information desired. A related problem is

that the maintenance of web sources has become very difficult. The burden on users to maintain

consistency is often overwhelming. This has resulted in a vast number of sites containing inconsistent

and/or contradictory information.

The problem current Web is suffering from is, as highlighted before, its simplicity. When an

agent (either a human user or a machine) requests a web page, it only receives textual information

together with some rendering (visualization) tags. The information received has neither structure

nor explicit meaning, and the result is just a visualized version of the textual information based on

the accompanying tags. Thus, it is not surprising that in a distributed source of information of such

a big size and heterogeneity as the Web, finding and exploiting information becomes extremely hard.

In response to this problem, many new research initiatives have been set up in order to

enrich available information with machine processable semantics. Tim Berners-Lee, Director of the

World Wide Web Consortium6, referred to the future of the current Web as the Semantic Web, ”an

extension of the current Web in which information is given well-defined meaning, better enabling
4http://www.internetworldstats.com/stats.htm
5http://www.cs.uiowa.edu/ asignori/web-size/
6http://www.w3.org/

Chapter 2: Background 21

computers and people to work in cooperation. It is based on the idea of having data on the Web

defined and linked such that it can be used for more effective discovery, automation, integration, and

reuse across various applications” [Berners-Lee et al., 2001].

The explicit representation of the semantics underlying information and other web re-

sources can enable a knowledge-based web that provides a new level of service. Automated services

will improve in their capacity to assist humans in achieving their goals by understanding more of the

content on the Web and thus provide more accurate filtering, categorization, and search of informa-

tion sources. This process will ultimately lead to an extremely knowledgeable system with various

specialized reasoning services that will support us in our access to information on the Web [Ding

et al., 2002].

To achieve the goal of the Semantic Web vision, means to provide explicit meaning to

the information on the Web are required. Ontologies are introduced for this purpose, being a key

enabling technology for the Semantic Web. They provide a source of shared and precisely defined

terms that can be understood and processed by machines. An ontology is defined [Gruber, 1993] as

a formal, explicit specification of a shared conceptualization, that is, an understanding that can be

communicated across people and application systems [Fensel and Bussler, 2002]. A typical ontology

consists of a hierarchical description of important concepts and their relations in a domain, task or

service. Ontologies interweave human understanding of symbols with their machine-processability.

They were developed in Artificial Intelligence to facilitate knowledge sharing and reuse. An example

of a simple ontology of wines is given in Figure 2.5.

Ontologies have the following main components [de Bruijn et al., 2005a]:

• Concepts constitute the basic elements of the agreed terminology for some problem domain.

From a high-level perspective, a concept, described by a concept definition, provides attributes

with names and types. Furthermore, a concept can be a subconcept of several (possibly none)

direct superconcepts. An example of concept is Winery in Figure 2.5.

• Relations are used in order to model interdependencies between several concepts (respectively

instances of these concepts). An example is the Maker relation in Figure 2.5, which links wines

to wineries that produce such wines.

• Functions are special cases of relations in which the n-th element of the relationship is unique

for the n-1 preceding elements, e.g. the price of a wine can be defined as the price given by

the maker plus a profit percentage for the deliverer.

• Instances represent specific elements of the concepts, in contrast with general concepts or

classes. An example is the wine Chateau Lafite Rothschild Pauillac which is a Pauillac made

by Chateau Lafite Rothschild (see Figure 2.5).

Chapter 2: Background 22

Figure 2.5: Sample ontology of wines (io means instance-of, concepts are in black and instances in
red) [Noy and McGuinness, 2001].

• Axioms model sentences which must hold. For example, if a wine is produced by a maker

from a given country e.g. Spain, then the wine is from the same country as the maker e.g. a

Spanish wine.

If ontologies are defined and shared, and if information is described according to such

ontologies, information on the Web is given an explicit, formal meaning which can be exploited to

overcome the problems information on the Web currently has.

The use of ontologies has been and is being also investigated with other purposes besides

the description of information on the Web. Real examples in which the PhD candidate has been in-

volved include the integration of information based on ontologies in the automotive industry [Alexiev

et al., 2005], the modelling and management of financial information [Castells et al., 2004], and the

modelling of financial information for its automatic processing, analysis and exchange [Lara et al.,

2006a].

The formal semantics of ontologies is what enables machine processability of information

described in terms of these ontologies, as well as the derivation of new knowledge from existing

knowledge [de Bruijn, 2007]. Similarly, the formal description of different aspects of services and

of consumer’s goals in service-oriented architectures can enable the automatic resolution of certain

problems such as the dynamic location of services that can solve a given goal, the dynamic compo-

sition of services for accomplishing a given task, or the automated mediation of heterogeneous data

exchanged by interacting parties, among others [Lara et al., 2003].

For the formal description of any artifact, either an information resource or a service,

a language with formal semantics that allows for the use of associated formal rules of deduction

has to be used, so that automated reasoning can be applied. Different (families of) languages exist,

with different semantics, different expressivity, different computational complexity, and better suited

for particular reasoning tasks. In the following sections, we introduce the main families of logical

Chapter 2: Background 23

languages that provide the foundations for the semantic Web and the semantic annotation of services

in an SOA, and which have been used in our work.

First, the family of class-based knowledge representation formalisms known as description

logics is presented partially based on the introduction given in [Volz, 2004]. We provide an introduc-

tion to the syntax and semantics of these languages, as well as to the most commonly used languages

of the family. For an extended account of the core aspects of description logics we refer the reader

to [Nardi et al., 2003].

Second, and based on the introductions to the matter provided by de Bruijn and Volz in

[de Bruijn, 2007] and [Volz, 2004], respectively, we introduce logic programs, which are based on

a subset of first-order logic [Fitting, 1996] but with different semantics (see [Lloyd, 1987] for an

extended discussion).

Finally, Transaction Logic is introduced, as it will be used for formally characterizing

services and goals, and we have made a limited use of it in our first attempt of semi-automating the

location of relevant services (see Chapter 4). For a complete account of Transaction Logic, we refer

the reader to [Bonner and Kifer, 1998; Bonner and Kifer, 1995].

2.2.2 Description Logics

Description Logics (DL) [Baader and Nutt, 2003] are a family of class-based knowledge

representation formalisms based on first-order logic [Fitting, 1996]. They were first developed to

provide formal, declarative meaning to semantic networks [Quillian, 1967] and frames [Minsky, 1981],

and to show how such structured representations can be equipped with efficient reasoning tools.

Three main ideas have guided the development of DL:

• The basic syntactic building blocks are atomic concepts (first-order unary predicates), atomic

roles (first-order binary predicates), and individuals (first-order constants). The cumbersome

syntax of first-order logic is simplified, and a variable-free notation is used in DL.

• The expressive power of the language is restricted. In particular, most description logics are

subsets or variants of C2, the fragment of first-order logic (without function-symbols) in which

formulas may contain at most two variables, but with counting quantifiers allowed, and which

is known to be decidable [Graedel et al., 1997].

• As a consequence of the restriction in expressivity imposed, the major reasoning tasks envi-

sioned for description logics are kept decidable.

In the following, we introduce the syntax and semantics of most common description logics.

Chapter 2: Background 24

2.2.2.1 Syntax

Description Logics provide a set of atomic concepts and roles that, together with individ-

uals, constitute the basic building blocks for constructing more complex concepts and roles.

Example 2.1 The following are examples of the basic building blocks of a DL:

• Atomic Concepts (Classes): flight, flightSeat, city

• Atomic Roles (Properties): hasOrigin, hasDestination, hasDate, onF light

• Individuals: flightA, myF lightSeat, rome, paris

¤

Intuitively, concepts represent sets of objects, i.e., a concept C corresponds to a first-order

unary predicate C(x) that is true for all objects x in the domain of discourse belonging to the set.

Individuals are named elements belonging to some concepts [Colucci et al., 2005], i.e., elements of

certain sets. Roles are binary relations, i.e., a role R corresponds to a first-order binary predicate

R(x, y) that is true for objects x and y in the domain of discourse that are related by R.

The basic description logic AL and common extensions. Complex concepts and roles are

built inductively using a set of constructors which depends on the particular description logic at

hand. In fact, description languages are distinguished by the constructors the provide. In Table 2.2,

the constructors used by most common description logics are shown.

The description logic AL is considered to be the basic description logic, and it allows for

the use of the constructors shown in the upper part of Table 2.2. Extensions of this basic description

logic with additional constructors exist, and Table 2.2 shows in its lower part the most common

extensions and how they are named according to the naming scheme proposed in [Schmidt-Schauss

and Smolka, 1991]. According to this naming scheme, a letter or symbol is assigned to each extension

of AL and written after the starting AL, shown in the last column of the Table. For example, the

extension of AL with full existential restriction is denoted with ALE . Even though functionality

(functional properties) is a special case of unqualified number restrictions, some description logics

only allow for this limited form of number restrictions and, therefore, it is assigned the F symbol,

which we list it explicitly in Table 2.2.

The ALCR+ logic and its extensions, i.e., AL extended with full complement and transitive

properties constitute a common base for prominent description languages, and is often abbreviated as

S. It has to be noted that such logic is equivalent to ALUE , since both disjunction and full existential

quantification can be expressed with the full complement in combination with other constructors in

Chapter 2: Background 25

Name Syntax Semantics Symbol
Atomic named class A AI AL(S)
Universal class (Top) > ∆I AL(S)
Empty class (Bottom) ⊥ ∅ AL(S)
Atomic complement ¬A ∆I\AI AL(S)
Conjunction (And) C uD CI ∩DI AL(S)
Value restriction ∀R.C {a ∈ ∆I | ∀b((a, b) ∈ RI → b ∈ CI)} AL(S)

Limited existential restr. ∃R.> {a ∈ ∆I | ∃b((a, b) ∈ RI)} AL(S)
Disjunction C tD CI ∪DI U(S)

Full complement ¬C ∆I\CI C(S)
Full existential restr. ∃R.C {a ∈ ∆I | ∃b((a, b) ∈ RI ∧ b ∈ CI)} E(S)

Unqualified number restr. ≥ nR {a ∈ ∆I ‖ {b ∈ ∆I | (a, b) ∈ RI} ≥ n} N
≤ nR {a ∈ ∆I ‖ {b ∈ ∆I | (a, b) ∈ RI} ≤ n}

Functionality ≤ 1R {a ∈ ∆I ‖ {b ∈ ∆I | (a, b) ∈ RI} ≤ 1} F
Qualified number restr. ≥ nR.C {a ∈ ∆I ‖ {b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI} ≥ n} Q

≤ nR.C {a ∈ ∆I ‖ {b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI} ≤ n}
Enumeration {i1, . . . , in} {i1I , . . . , inI} O

Inverse property R− {(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI} I
Transitive property R+

⋃
n≥1 (RI)n R+(S)

Table 2.2: DL common constructors [Volz, 2004]

AL and viceversa. In Table 2.2, the constructors included in the S logic are identified by the S in

brackets in the symbol column.

Example 2.2 Given the atomic concepts, atomic roles and individuals from the previous example,

the following expression denotes flights between Rome and Paris:

flight u hasOrigin.{rome} u hasDestination.{paris}
The following expression denotes all flights for which all origins and destinations are cities,

and that have some origin and destination:

flight u ∀hasOrigin.city u ∀hasDestination.city u ∃hasOrigin.> u ∃hasDestination.>
The latter expression can be built with the constructors in AL, while the former expression

makes use of enumeration and, therefore, it cannot be expressed in the AL logic but only in ALO
and its extensions.

¤

DL Knowledge Bases. A DL knowledge base (KB) comprises two components: the TBox and

the ABox:

• TBox. The TBox introduces the terminology of the application domain. It is constituted by a

finite set of terminological axioms (see the upper part of Table 2.3) which define subsumption

and equivalence relations on classes and properties, possibly built using the constructors of

Chapter 2: Background 26

the particular description logic. Terminological axioms make statements about how concepts

or roles (properties) are related to each other, and they can be of the following types:

1. Equivalence axioms: They are of the form C ≡ D(R ≡ S), where C and D are classes

and R and S are properties, establishing the equivalence of certain classes or properties.

If the left-hand side of the equality is an atomic concept (property), we call this axiom

a concept (property) definition, and the atomic concept (property) on the left-hand side

is interpreted as the complex description on the right-hand side. This allows for the

introduction of symbolic names for complex descriptions.

2. Inclusion axioms: They are of the form C v D(R v S), where C and D are classes and R

and S are properties, meaning that a class (property) is more specific than (is subsumed

by) another one. Furthermore, the set of axioms of the form A v B, where both A and

B are atomic classes (properties) is called a class (property) hierarchy. If the particular

description logic allows for the definition of property hierarchies, i.e., property inclusions,

a letter H is appended to the name of the particular description logic, as indicated in

Table 2.3.

• ABox. In the ABox, individuals are introduced, given names, and properties of these individ-

uals are asserted. Given individuals a, b, and c, a concept C, and a role R, assertions of the

following kinds can be made in the ABox:

1. Class (concept) assertions: They are of the form C(a), denoting that a belongs to (the

interpretation of) C, i.e., that the individual is member of a given class or set.

2. Property fillers (role assertions): They are of the form R(a, b), denoting that a is a filler

of the role R for b, i.e., that individuals a and b are related to each other through property

R.

3. Individual equivalence: They are of the form a = b, denoting that both individuals are

the same.

4. Individual inequivalence: They are of the form a 6= b, denoting that the individuals are

not the same one.

Concepts and Datatypes. Datatypes and predicates (such as =, ≥, +) defined over them can

be used in the construction of concepts. Unlike concepts, datatypes and datatype predicates have

obvious (fixed) extensions; e.g., the extension of ≥ 20 is all the integers that are greater or equal

to 20. Due to the differences between classes and datatypes, there are two kinds of roles: (i) object

properties, which relate objects to objects, and (ii) datatype properties, which relate objects to data

Chapter 2: Background 27

Name Syntax Semantics Symbol
TBox

Class equivalence C ≡ D CI = DI

Class subsumption C v D CI ⊆ DI

Property equivalence R ≡ S RI = SI

Property subsumption R v S RI ⊆ SI H
ABox

Individual assertion C(a) aI ∈ CI

Property filler R(a, b) (aI , bI) ∈ RI

Individual equivalence a = b aI = bI

Individual inequivalence a 6= b aI 6= bI

Table 2.3: TBox and ABox axioms and assertions [Volz, 2004]

Name Syntax Semantics
Datatype property T T I ⊆ ∆I ×∆I

D

Datatype d dD ⊆ ∆D

Datatype negation ¬d ∆D\dD

Datatype existential ∃T.d {x | ∃y.(x, y) ∈ T I ∧ y ∈ dD}
Datatype universal ∀T.d {x | ∀y.(x, y) ∈ T I → y ∈ dD}

Table 2.4: Datatypes in DL [Volz, 2004]

values, which are instances of datatypes [Lara et al., 2004a]. In Table 2.4, the class constructors

introduced for the use of datatypes are introduced.

Example 2.3 The following are examples of terminological axioms in a TBox:

flightFromRomeToParis ≡ flight u hasOrigin.{rome} u hasDestination.{paris}
flightFromItalyToFrance ≡ flightu∃hasOriginu∀hasOrigin.(cityuinCountry.{italy})u

∃hasDestination u ∀hasDestination.(city u inCountry.{france})
flightFromItalyToFrance v transportationMeansFromItalyToFrance

Examples of Abox assertions are the following:

city(rome)

city(paris)

inCountry(rome, italy)

inCountry(paris, france)

flight(flightA)

hasOrigin(flightA, rome)

hasDestination(flightA, paris)

Assuming we have a concrete domain ∆D that provides natural numbers, a unary predicate

≤10, a datatype property hasDuration, we can define in the TBox flights whose duration is less

Chapter 2: Background 28

than 10 hours as follows:

flightsOfLessThanTenHours ≡ flight u ∃hasDuration. ≤10

¤

2.2.2.2 Semantics.

The formal semantics of Description Logics are given by considering interpretations I =

(∆I , ·I) with an interpretation function ·I assigning to every atomic concept A a set AI ⊆ ∆I and

to every atomic role R a binary relation RI ⊆ ∆I × ∆I . The interpretation function is extended

to constructors by inductive definition, following the constructor semantics shown in Table 2.2.

Interpretations are extended so that an interpretation I not only maps atomic concepts and roles

to sets and relations, but also maps each individual name a to an element aI ∈ ∆I .

Terminological axioms. The semantics of axioms is defined via set relationships, as shown in

the upper part of Table 2.3. An interpretation is a model of a TBox T if it satisfies each axiom in

T .

Assertions. The semantics of assertions are defined in the lower part of Table 2.3 via set mem-

bership and (in)equivalence of objects. An interpretation I satisfies (is a model of) an ABox A if it

satisfies each assertion in A. I satisfies an assertion α or an ABox A with respect to a TBox T if in

addition to being a model of α or of A it is a model of T . A model of A and T is an abstraction of a

concrete world where the concepts are interpreted as subsets of the domain as required by the TBox

and where the membership of the individuals to concepts and their relationships with one another

in terms of roles respect the assertions in the ABox.

Concrete domains. A possible way to give semantics to datatypes is described in [Horrocks and

Sattler, 2001]. A DL is extended with a set D of concrete datatypes, and with each d ∈ D, a set

dD ⊆ ∆D is associated, where ∆D is the domain of all datatypes. Additionally, datatype properties

are introduced and the datatype existential and universal constructors in Table 2.4, and given the

semantics shown in this Table.

2.2.2.3 Reasoning services

A DL system not only stores axioms and assertions, but also offers services that reason

about them. Typically, reasoning with a DL knowledge base is the process of discovering implicit

knowledge entailed by the knowledge base. Reasoning services can be roughly categorized as basic

services, which involve checking the truth value for a statement, and complex services, which can be

built upon basic ones. Let K be a knowledge base with a TBox T and an ABox A, L a Description

Chapter 2: Background 29

Logic, C, D concepts in L, R a property in L, and a and b individual names. In the following, we

briefly describe the main TBox and ABox reasoning services:

• TBox services

1. Concept Satisfiability:. Given a concept C, is the problem of checking whether there

exists a model I of T in which CI 6= ∅.
2. Satisfiability: is the problem of checking whether there exists a model I of T . The

satisfiability of the complete TBox can be reduced to checking whether > is satisfiable.

3. Subsumption: Given concepts C and D, is the problem of verifying whether in every

model I of T we have CI ⊆ DI . In this case, we write T |= C v D.

4. Equivalence: Given concepts C and D, is the problem of verifying whether in every model

I of T we have CI = DI . In this case, we write T |= C ≡ D, which is equivalent to

T |= C v D and T |= D v C.

5. Disjointness: Given concepts C and D, they are disjoint with respect to T if CI∩DI = ∅
for all models I of T .

6. Classification: Given a new concept C, classification is the problem of putting the new

concept in the proper place in a taxonomic hierarchy of concept names; this can be

done by subsumption checking between each named concept in the hierarchy and the

new concept. The location of the new concept C in the hierarchy will be between the

most specific named concepts that subsume C and the most general named concepts that

C subsumes. TBox classification, which computes the taxonomic hierarchy of concept

names mentioned in a TBox, is a special case of classification, where > is chosen as the

‘new’ concept.

• ABox services

1. Consistency: A is consistent with respect to T if there is an interpretation I that is a

model of both A and T . We say that A is consistent if it is consistent with respect to

the empty TBox.

2. Instance Checking: Given an individual a and a concept C is the problem of verifying

whether in every model I of A we have that aI ∈ CI . In this case we write A |= C(a).

3. Retrieval: Given a concept C, it is the problem of finding all individuals a such that

A |= C(a); this can be done naively by instance checking between each named individual

and the given concept [Lara et al., 2004a]. Similarly, we can find all named classes C for

an individual a for which A |= C(a).

Chapter 2: Background 30

Description Logic Complexity
ALC PSpace-complete
S PSpace-complete
SI PSpace-complete
SH ExpTime-complete

SHIF ExpTime-complete
SHIQ ExpTime-complete
SHOIN NExpTime-complete
SHOIQ NExpTime-complete

Table 2.5: Complexity of satisfiability for relevant description logics

4. Property fillers: Given a property R and an individual a, it is the problem of retrieving,

with respect to TBox T and ABox A, all individuals x which are related with a via R,

viz. {x | (T ,A) |= R(a, x)}. Similarly, we can retrieve all named properties R between

individuals a and b, ask whether the pair (a, b) is a filler of R, or ask for all pairs (a, b)

that are a filler of R.

It is important to notice that for description logics without full negation, all inference

problems above can be reduced to subsumption. If the particular description logic allows both

full complement and intersection as constructors, then all reasoning services can be reduced to

satisfiability.

2.2.2.4 Complexity

The reasoning services introduced in the previous subsection have different complexity

depending on the particular description logic. While decidability is kept by most common description

logics, the complexity of reasoning depends on the constructors allowed by the particular logic.

In Table 2.5, the complexity of checking satisfiability for relevant description logics is

summarized7. It can be seen how the addition of certain new constructors or the combination of

certain constructors leads to higher complexity classes. For a discussion on the sources of complexity

of different description logics we refer the reader to [Donini, 2003].

2.2.2.5 Reasoners

Modern DL reasoners have demonstrated that, even with expressive DL, highly optimized

implementations can provide acceptable performance in realistic applications. In other words,

thoughtful optimization techniques ([Horrocks, 1997; Horrocks and Patel-Schneider, 1998a; Hor-

rocks and Sattler, 2002; Horrocks, 2003]) have moved the boundaries of tractability to somewhere
7It has to be noted that the complexity shown forALC only holds for an empty or acyclic TBox, and the complexities

shown for S and SI only hold for an empty TBox

Chapter 2: Background 31

very close to EXP-TIME-hard, or worse [Donini, 2003]. In the following, we will introduce the most

prominent Description Logics reasoners available at the time of writing.

RacerPro RacerPro8 is a commercial DL system which has its roots in the Racer system [Haarslev

and Möller, 2001]. It implements the Description Logic SHIQ, corresponding to the basic Descrip-

tion Logic ALC augmented with qualified number restrictions, role hierarchies, inverse roles, and

transitive roles. It also includes limited support for concrete domains.

RacerPro has two limitations to deal with the SHOIQ(D) DL: individuals in class expres-

sions (the so-called nominals) are only approximated, and user-defined datatypes given as external

XML Schema specifications are not supported. RacerPro provides the reasoning services introduced

in Section 2.2.2.3, and supports the specification of multiple TBoxes and ABoxes. For a complete

account of the inference services provided by RacerPro, we refer the reader to [RAC, 2006].

RacerPro provides four different interfaces: the file interface, the TCP socket interface, the

web service interface, and the HTTP Interface. The file interface allows the user for specifying the

files where the TBox, the ABox, or both are described when starting the RacerPro server. The

TCP socket interface allows for the communication with RacerPro using TCP sockets. There exists

a Java API acting as a layer for accessing RacerPro services that makes use of the TCP sockets

interface. The web service interface allows for the communication with RacerPro using web services,

although such interface is not documented in [RAC, 2006]. Last, the HTTP interface uses HTTP as

the communication protocol with RacerPro, in particular using the POST method. This interface

supports the use of the Description Logics Implementation Group (DIG) standard [Bechhofer, 2003].

Such standard has been developed in order to provide a uniform way of communicating with DL

systems. However, it lacks a number of features that are required by some applications e.g. on-

demand classification of TBoxes which, as will be shown in Chapters 6 and 7, is a feature of great

importance for the realization of our proposal for the location of services. The features supported

by RacerPro but not included in the DIG standard are not available through the HTTP interface.

FaCT and FaCT++ FaCT [Horrocks, 1998] is a DL classifier also usable for modal logic satisfia-

bility testing. FaCT includes two reasoners, one for the logic SHF (ALC augmented with transitive

roles, functional roles and a role hierarchy) and the other for the logic SHIQ (SHF augmented

with inverse roles and qualified number restrictions), both of which use sound and complete tableaux

algorithms. FaCT is intended as a tool for conceptual schema design and ontological engineering

and, therefore, does not provide an ABox but only a TBox; the use of an Instance Store [Bechhofer

et al., 2005] has been proposed for enabling ABox reasoning.

FaCT++ [Tsarkov and Horrocks, 2003] is the new generation of the FaCT system, with

8http://www.racer-systems.com/

Chapter 2: Background 32

a new architecture and new optimizations. FaCT++ can handle SHOIQ, and its last version can

also handle the SROIQ Description Logic. FaCT comes in two flavours: a CORBA-FaCT system

and a FaCT DIG servlet. The former, an OMG’s Common Object Request Broker (CORBA) [COR,

1998] based client-server architecture, offers an Object Request Broker (ORB)9 interface, while the

latter offers an HTTP interface.

Pellet Pellet10 [Sirin et al., 2006b] is an open-source DL reasoner based on the tableaux algorithms

developed for expressive DL. As of version 1.4, Pellet supports the SROIQ(D) DL.

Pellet provides the different reasoning services introduced in Section 2.2.2.3. It also incor-

porates various optimization techniques described in the DL literature and contains several novel

optimizations for nominals [Sirin et al., 2006a], conjunctive query answering [Sirin and Parsia, 2006],

and incremental reasoning [Christian Halaschek-Wiener and Sirin, 2006]. Pellet offers different ways

to access its reasoning capabilities, namely: a) a command line program, b) a programmatic API

that can be used standalone or in conjunction with Jena11 and the Manchester OWL-API12 library,

c) a DIG server that allows Pellet to be used with different clients, and d) integrated into the ontology

editor SWOOP13.

DLP The Description Logic Prover (DLP)14 is an experimental description logic system, designed

to investigate various options for checking satisfiability in expressive description logics and proposi-

tional modal logics. DLP is designed to allow various optimisations for description logic reasoning

to be easily investigated. According to the project page, DLP is experimental because: 1) there

are only minimal interfaces; 2) there is little optimization of the taxonomy code; and 3) the code

is written in ML in a mostly-functional style. The biggest lack of DLP is that it does not handle

individuals.

KAON2 KAON215 provides reasoning support for the SHIQ(D) DL, i.e., it cannot handle nom-

inals. Contrary to the other DL reasoners introduced, KAON2 does not implement the tableaux

calculus. Rather, reasoning in KAON2 is implemented by novel algorithms which reduce a SHIQ(D)

knowledge base to a disjunctive Datalog program [Hustadt et al., 2004].

KAON2 provides an API for programmatic management of ontologies, a stand-alone server

providing access to ontologies in a distributed manner using RMI16, an inference engine for answering
9http://www.omg.org/gettingstarted/orb basics.htm

10http://pellet.owldl.com/
11http://jena.sourceforge.net/
12http://sourceforge.net/projects/owlapi
13http://code.google.com/p/swoop/
14http://www.bell-labs.com/user/pfps/dlp/
15http://kaon2.semanticweb.org/
16http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

Chapter 2: Background 33

conjunctive queries (expressed using SPARQL [Prud’hommeaux and Seaborne, 2006] syntax), a DIG

interface, and a module for extracting ontology instances from relational databases.

2.2.3 Logic Programming

Logic Programming (or LP for short) is based on a subset of FOL, called Horn Logic, but it

has a semantics that is slightly different from first-order semantics (see [Fitting, 1996]); the semantics

of logic programs is based on minimal Herbrand models [Lloyd, 1987], rather than first-order models.

In the following, we define the syntax and semantics of logic programs, briefly introduce

the prominent Datalog language, discuss the extension of logic programs with negation, and present

common reasoning tasks and the complexity of these tasks.

2.2.3.1 Syntax

Logic Programming makes use of the Horn logic fragment of FOL. Formulas in the Horn

fragment of FOL are defined as follows:

Definition 2.1 (Horn formula) A first-order formula is in the Horn fragment of first-order logic,

called horn formula, if it is a disjunction of literals with at most one positive literal, in which all

variables are universally quantified:

(∀)h ∨ ¬b1 ∨ . . . ∨ ¬bn

which can be rewritten as:

(∀)h ← b1 ∧ . . . ∧ bn

A Horn formula with one positive literal and at least one negative literal is called a rule.

The positive literal h is called the head of the rule, and the conjunction of negative literals b1∧. . .∧bn

is called the body of the rule. A rule without a body is called a fact, and a rule without a head is

called a query.

A different notation is usual for rules, being a rule written as:

h1 : −b1, . . . , bn.

A fact is written as:

h1.

A query is written as:

?− b1, . . . , bn.

Definition 2.2 (Logic program) A logic program P is a set of rules, facts, and queries.

Chapter 2: Background 34

2.2.3.2 Semantics

Different style of semantics can be given to logic programs. Among these styles, we will

in the following concentrate in semantics based on minimal Herbrand models. An example of an

alternative semantics for logic programs is fixpoint semantics, based on the use of an immediate

consequence operator TP . Remarkably, both semantics are equivalent [Lloyd, 1987].

Herbrand theory imposes a syntactic restriction on the admissible structures that can be

a model. In the following we introduce the domain of Herbrand interpretations, Herbrand interpre-

tations, Herbrand bases and Herbrand models.

Definition 2.3 (Herbrand universe) The Herbrand universe is the domain ∆H of Herbrand inter-

pretations, and for a first-order signature Σ = (C, F, P, V) it is inductively defined as follows:

• c ∈ ∆H for all c ∈ C;

• f(t1, . . . , tn) ∈ ∆H if f ∈ F and each ti ∈ ∆H .

Therefore, the Herbrand universe of a logic program P is the set of all ground terms which

can be formed using the constant and function symbols in the signature Σ of P (in case P has no

constants, some constant c is added).

Definition 2.4 (Herbrand base) The Herbrand base BH of a logic program P is the set of all ground

atomic formulae which can be formed with the predicate symbols in Σ of P and terms in ∆H , i.e.,

all formulae of the form:

p(t1, . . . , tn)

With p an n-ary predicate symbol and t1, . . . , tn ∈ ∆H .

Definition 2.5 (Herbrand interpretation) A Herbrand interpretation H of a logic program P is a

subset of the Herbrand base BH , and it corresponds to a first-order interpretation I = (∆H , ·I) such

that ·I satisfies the following conditions:

• cI = c for every constant symbol c ∈ C,

• (f(t1, . . . , tn))I = f(t1, . . . , tn) for every function symbol f ∈ F , and

• (p(t1, . . . , tn))I is true for p(t1, . . . , tn) ∈ H.

Example 2.4 Given the logic program P :

p(a).

q(b).

p(X) : −q(X).

Chapter 2: Background 35

p(X) : −p(f(X)).

where p, q are predicate symbols, f is a function symbol, and a, b are constants, the Her-

brand universe is ∆H = {a, b, f(a), f(b), f(f(a)), f(f(b)), f(f(f(a))), . . .}.
The Herbrand base is BH = {p(a), p(b), q(a), q(b), p(f(a)), q(f(a)), p(f(b)), . . .}.
Examples of Herbrand interpretations areH1 = {p(f(a)), q(b), q(f(b))},H2 = {p(a), p(b), q(b)},

H3 = {p(a), p(b), q(a), q(b), p(f(a))}.
¤

It must be noted that the Herbrand universe becomes infinite as soon as function symbols

are used in a logic program, as it happens in the example above. This implies an also infinite

Herbrand base.

The grounding of a program P , denoted Ground(P), is the union of all possible ground

instantiations of P , obtained by, for each rule r ∈ P , replacing each variable with a term in the

Herbrand universe ∆H . Next, we define herbrand models.

Definition 2.6 (-Minimal- Herbrand model) Let P be a positive logic program i.e. a program with-

out negation. A Herbrand interpretation H of P is a model of P if, for every rule r ∈ Ground(P),

if b1, . . . , bn ∈ H then h ∈ H.

The intersection of all Herbrand models of P is also a model of P and is called the minimal

Herbrand model.

Example 2.5 Among the interpretations given in the previous example, only H2 and H3 are Her-

brand models of P . Furthermore, H2 is the minimal Herbrand model of P .

¤

Definition 2.7 (Ground entailment) A logic program P entails a ground atomic formula φ, denoted

P |= φ, iff φ is included in the minimal Herbrand model of P .

A conjunction of ground formulae φ1, . . . , φn is entailed by a program P iff P |= φ1 for 1

≤ i ≤ n.

2.2.3.3 Datalog

Datalog [Ullman, 1988] is a prominent LP language that introduces certain restrictions on

the signature and on the type of rules used in programs. In particular, function symbols are not

included in the signature and therefore they cannot appear in Datalog programs, and all rules must

be safe, as defined in the following.

Definition 2.8 (Safe rule) A safe rule is a rule in which all variables that appear in the rule head

must also appear in the rule body.

Chapter 2: Background 36

By introducing these restrictions, it is ensured that all models of Datalog programs are

finite.

2.2.3.4 Negation in logic programs

In order to discuss the extension of logic programs with negation, we start by introducing

the concept of the dependency graph of a logic program and the notion of recursive program.

Definition 2.9 (Dependency graph) A dependency graph is a directed graph where the predicates in

the logic program are represented as nodes in the graph, and there is an arc from (the node of) some

predicate p to (the node of) some predicate q if they occur in a rule with p in the body and q in the

head.

Definition 2.10 A logic program is recursive iff there is a cycle in its dependency graph.

Now, we are ready for discussing the extension of logic programs with negation. We start

by defining normal logic programs.

Definition 2.11 (Normal logic program) A normal logic program P consists of a set of rules of the

form:

h : −b1, . . . , bk, notn1, . . . , notnm

where h, b1, . . . , bk, n1, . . . , nm are atomic formulae. b1, . . . , bk are said to occur positively

in the body of the rule, and n1, . . . , nm to occur negatively.

As we can see, normal logic programs allow negation in the body of rules, denoted not as it

differs from first-order (classical) negation, denoted with ¬. Negation in logic programs is also called

default negation, as facts are assumed to be false (by default) unless we can infer otherwise, while

under first-order semantics the negation of a formula is only true if it can be explicitly inferred.

The safety rule introduced for Datalog is extended, and all variables which occur in negative

literals in the body of a rule must also occur in some positive literal.

We extend de definition of Herbrand models to logic programs with negation.

Definition 2.12 (Herbrand model of normal logic programs) A Herbrand interpretation H of a

normal logic program P is a model of P if for every rule r ∈ Ground(P), we have that h ∈ H if:

• b1, . . . , bi ∈ H, i.e., all literals that occur positively in the rule body are in H, and

• bi+1, . . . , bn /∈ H, that is, all literals that occur negatively in the rule body are not in H.

Chapter 2: Background 37

A normal logic program may have more than one minimal model. However, there is a

class of normal logic programs with only one minimal model, called stratified logic programs. The

predicates in a stratified program can be divided into a number of strata such that there is no

negative dependency between predicates in the same stratum. Stratifications fulfill the following

conditions:

• If some predicate q is at stratum i and depends positively on some predicate p, then p must

also be in stratum i, and

• if some predicate q is at stratum i and depends negatively on some predicate p, then p must

be in stratum i-1.

We can extend the dependency graph of a program P so that if there is a rule with head h

and with a negative body literal not p, there there is an arc between p and q and this arc is marked

with ”not”. If P is a recursive program, and there are cycles in the graph which include a negative

arc, then the program is not stratifiable.

For stratified logic programs, a single minimal Herbrand model can be computed by the

intersection of all Herbrand models of the program. Therefore, their semantics can be defined based

on minimal Herbrand models. For logic programs which are not stratifiable, other semantics exist,

such as stable model semantics (also called answer set semantics) [Gelfond and Lifschitz, 1988] and

well-founded semantics [Gelder et al., 1991].

2.2.3.5 Reasoning tasks

By the Definition 2.7 of ground entailment above, used in logic programming, it is possible

to check whether particular facts follows from a logic program, but not whether some rule or formula

follows from the program. However, the most prominent reasoning task for logic programs is query

answering, which can be formulated in terms of ground entailment.

Definition 2.13 (Query) A query q is a rule without a head, i.e., a conjunction of atomic formulae

with a finite number of free variables (including 0). A query is written as:

?− φ1, . . . , φn.

Answering a query q is the problem of determining all substitutions for all variables in q,

and each such substitution is an answer to the query. If query q has no variables, we have a special

case of query answering which boils down to checking whether P |= q, i.e., whether q is included in

the minimal Herbrand model of P .

Other reasoning tasks for logic programs exist, such as query containment [Calvanese et al.,

1998], but they will not be discussed here.

Chapter 2: Background 38

2.2.3.6 Complexity of reasoning

The complexity of logic programming naturally depends on the particular variants and

extensions considered (see [Dantsin et al., 2001]). In general, three main kinds of complexity can be

distinguished:

1. Data complexity. It is the complexity of checking whether EDB∪P |= A when logic programs

P are fixed whereas input databases EDB and ground atoms A are an input.

2. Program complexity. It is the complexity of checking whether EDB ∪ P |= A when input

databases EDB are fixed whereas P and A are an input.

3. Combined complexity. It is the complexity of checking whether EDB ∪ P |= A when all

elements (EDB, P, A) are inputs.

Plain Datalog, i.e., without extensions, is data complete for the complexity class P and

program complete for ExpTime. Its combined complexity is also ExpTime. If we add negation, and

since the stratification algorithm is a polynomial algorithm, stratified Datalog with negation has the

same complexity as plain Datalog. For a full account of the complexity of logic programming we

refer the reader to [Dantsin et al., 2001].

2.2.3.7 Reasoners

In the following, we introduce a number of Logic Programming implementations presented

in [de Bruijn et al., 2005b]. In general, these implementations deal very well with query answering

or instance retrieval, but they are not meant to be used as subsumption reasoners. Still, as shown

in [Grosof et al., 2003], subsumption reasoning can be reduced to query answering for the subset of

DL that intersects LP, named DLP (Description Logic Programs). Thus, LP reasoners can be used

for performing subsumption with DLP, although they are not specially designed and optimized for

this reasoning task.

SWI-Prolog Prolog is a logical programming language based on first-order predicate calculus,

restricted to allow only Horn clauses. The execution of a Prolog program is an application of theorem

proving by first-order resolution. SWI-Prolog17 [Wielemaker, 2003] is a free Prolog environment,

licensed under the Lesser GNU Public License.

Among the advantages of SWI-Prolog are that it is portable to many platforms. Binary

distributions for most popular platforms (Windows, Linux and MacOS X) are regularly released.

One of its advantages over other LP reasoning engines is that it offers fast and flexible libraries for
17http://www.swi-prolog.org

Chapter 2: Background 39

parsing SGML (HTML) and XML, RDF, store and query RDF, RDFS, and OWL, and an extended

DIG interface which can be used for performing DL reasoning by calling external DL reasoners. As

a disadvantage it can be mentioned the fact that it does not deal with non-stratified negation.

XSB XSB18 is a Logic Programming and Deductive Database system with support for different

kinds of negation such as stratified negation and negation under the well-founded semantics [Gelder

et al., 1991]. It also provides packages for evaluating F-Logic [Kifer et al., 1995] or a HiLog [Chen

et al., 1993] implementation. The developers of XSB regard it as beyond Prolog because of the

availability of SLG resolution [Chen and Warren, 1996] and the introduction of HiLog terms. SLG

resolution enables the resolution of recursive queries that SLD resolution cannot deal with, and it

also enables the use of well-founded semantics for non-stratified negation.

XSB also offers interfaces to other software systems, such as C, Java, Perl, ODBC, SModels,

and Oracle. These interfaces also allow easy integration of new built-in predicates.

FLORA-2 FLORA-219 is a rule-based knowledge representation formalism and a reasoner for this

formalism. It is based on F-Logic [Kifer et al., 1995], HiLog [Chen et al., 1993], and Transaction Logic

[Bonner and Kifer, 1995], unifying these languages in a formalism which inherits important features

from each of them: object-oriented features from F-Logic, and reification and meta-information

processing capabilities from HiLog, and declarative programming of procedural knowledge from

Transaction Logic20.

The underlying inference engine of the reasoner is XSB Prolog. In fact, FLORA-2 is often

viewed as syntactic sugar on top of XSB. For more details on FLORA-2 we refer the reader to the

FLORA-2 manual21.

TRIPLE TRIPLE22 is the name of both a language and the corresponding reasoning system.

The language TRIPLE is a layered and modular language for the Semantic Web (especially for the

querying and transformation of RDF [Brickley and Guha, 2004a] models) which bases on Horn Logic

extended by F-Logic features and RDF constructs. Because these extensions are only syntactical,

the language can be translated to Prolog and processed by a Prolog system. Correspondingly, the

TRIPLE inferencing engine bases on the XSB Prolog system.

OntoBroker, SILRI AND MINS Ontobroker is a reasoner for reasoning with ontologies for-

malized in F-Logic or in Datalog/Prolog. It can be described as a main memory deductive, object
18http://xsb.sourceforge.org/
19http://flora.sourceforge.net/
20However, notice that it has features of Transaction Logic but it cannot be regarded as a full Transaction Logic

reasoner.
21http://flora.sourceforge.net/docs/floramanual.pdf
22http://triple.semanticweb.org/

Chapter 2: Background 40

oriented database system. The Ontobroker system is developed and distributed by the company

Ontoprise23.

SILRI24 is a less efficient version of OntoBroker with less features, which has been made

public by Ontoprise.

MINS25 is a reasoner for Datalog programs with negation and function symbols, which

supports the well-founded Semantics. MINS is a re-implementation of SILRI tailored for the WSML

family of languages, in particular for WSML-Rule and WSML-Flight [de Bruijn et al., 2005e] (see

Section 2.2.5.3).

DLV The DLV system26 (as well as the SMODELS system which will be discussed next) dis-

tinguishes from the above-mentioned Prolog-Based systems in that these systems implement fully

declarative logic programming in a purer sense than PROLOG-like systems. These systems compute

models rather than answering queries in a top-down fashion [de Bruijn et al., 2005b].

The DLV system is an efficient engine for computing answer sets (i.e. stable models for

logic programs with negation under the extension with classical negation and disjunction [Gelfond

and Lifschitz, 1988]. DLV uses as core input language safe Datalog programs (cf. [Ullman, 1988])

with disjunction in rule heads and default negation in rule bodies. Programs are safe if every variable

occurring in head literals or default negated body literals also occurs in at least one non-default-

negated body literal. Note that in DLV head and body literals may be classically negated. A logic

Program is safe if all of its rules are safe. Note that the safety restriction is only syntactical but

does not really affect the expressive power of the language in any way. DLV computes answer sets,

i.e. it follows the stable model semantics but not the well-founded semantics.

DLV provides some preliminary APIs such as a wrapper for using DLV from Java and

ongoing work on an ODBC interface connecting to relational databases.

SMODELS and GNT SMODELS27 allows for the computation of stable models and well-

founded models for normal logic programs, that is, for Datalog programs with non-disjunctive heads.

However, there is an extended prototype version for the evaluation of disjunctive logic programs as

well, called GNT28. Syntactically, SMODELS imposes an even stronger restriction than rule safety

in DLV by demanding that any variable in a rule is bounded to a so-called domain predicate in the

rule body which is, intuitively, a predicate which is defined only positively. Again, this restriction

does not affect the expressive power of the language itself, but in some cases the weaker safety
23http://www.ontoprise.de/home en
24http://ontobroker.semanticweb.org/silri/
25http://tools.deri.org/mins/
26http://www.dlvsystem.com/
27http://www.tcs.hut.fi/Software/smodels/
28http://www.tcs.hut.fi/Software/gnt/

Chapter 2: Background 41

restriction of DLV allows for more concise problem encodings.

KAON2 The KAON2 reasoner introduced in Section 2.2.2.5 can deal with Disjunctive Datalog

with stratified negation, along with basic built-in predicates to deal with integers and strings.

Summarizing, all the Logic Programming implementations above agree on Datalog with

stratified negation. In addition, XSB, FLORA-2, and OntoBroker all support function symbols

and support unstratified negation under the well-founded semantics. Furthermore, Frame-based

modelling is supported by FLORA-2 and OntoBroker.

2.2.4 Transaction Logic

Transaction Logic (or T R for short) accounts in a declarative fashion for the phenomenon

of state change. It has a model theory and a sound and complete proof theory, as well as a Horn

version which has a procedural as well as a declarative semantics. In the Horn fragment, transaction

programs can be specified and executed, and in the full logic users can express properties of programs

and reason about them.

The most salient features of T R are that it supports both hypothetical and committed

updates, dynamic constraints on transaction execution, nondeterminism, and bulk updates. Fur-

thermore, T R separates the specification of elementary operations from the logic of combining them,

which has two benefits [Bonner and Kifer, 1998]: a) it allows to develop a language for state-changing

procedures without committing to a particular theory of elementary updates, and b) it allows T R
to accommodate a wide variety of state semantics, from classical to non-monotonic to various other

non-standard logics.

2.2.4.1 Elementary updates, the state data oracle, and the state transition oracle

The emphasis of T R is on the logical combination of elementary updates, not on the

definition of elementary updates themselves. In fact, the set of elementary updates is orthogonal

to Transaction Logic, which can accommodate any such set. Therefore, T R is not committed to a

particular theory of elementary updates.

Transaction Logic theories are not only parameterized by a language for constructing well-

formed formulas, but also by a state data oracle and a state transition oracle. The data oracle

specifies a set of primitive queries, i.e., the static semantics of states, while the transition oracle

specifies a set of primitive updates, i.e., the dynamic semantics of states. Together, they encapsulate

elementary operations, and separate the specification of elementary operations from the logic of

combining them.

Chapter 2: Background 42

State data oracles. A state data oracle species the semantics of states, i.e., the formal meaning of

states. Such an oracle, assuming a countable set of symbols serving as state identifiers, is a mapping

Od, from state identifiers to sets of closed first-order formulas; if i is a state identifier, then Od(i) is

the set of formulas considered to be the truths about that state [Bonner and Kifer, 1995]. Therefore,

the state data oracle can be intuitively regarded as an oracle that tells what is true at a particular

state.

Example 2.6 Let us consider a classical state data oracle. In this case, a state s can be defined

by a consistent set of variable-free first-order formula. For example, a possible state can be s1 =

person(john)∧inCity(john, london). The mapping defined by the state data oracle is the following:

Od(s) = {φ | s |= φ}
That means that the state data oracle maps a state (a variable-free first-order formula) to

its set of entailments, i.e., Od(s) = Ent(s), where Ent(s) denotes the set of classical entailments of

a formula.

For example, we have that Od(s1) = {person(john), inCity(john, london)}.
¤

State transition oracles. The specification of elementary state transitions is a parameter of T R,

and is given by a state transition oracle. Such an oracle is a function Ot that maps pairs of states

into sets of ground atomic formulas, being these ground atomic formulas the elementary transitions

or elementary updates. Intuitively, for an initial state s1 and a final state s2, Ot(s1, s2) gives the set

of elementary transitions that can perform the transition from the initial to the final state.

Example 2.7 Let us consider a classical state transition oracle. In this case, the oracle defines

primitives for adding and removing formulas from the database, i.e., for changing states, resolving

any conflicts between the new formulas and existing ones.

For example, the state transition oracle can define thatOt(s1, s2) = inCity(john, london).del,

where s1 is the state from the previous example and s2 = person(john), i.e., we can go from

state s1 to state s2 by applying the elementary transition inCity(john, london).del, which removes

inCity(john, london).del from the current state.

¤

2.2.4.2 Execution paths, transaction bases and executional entailment

In T R a transaction execution is not only characterized by the initial and final states

of the transaction, but also by a sequence of intermediate states. As Transaction Logic supports

non-deterministic transactions, the final state and the intermediate states may not be uniquely

determined at the start of the execution.

Chapter 2: Background 43

The sequence of states a given transaction execution passes through is called the execution

path of the transaction, and it is represented explicitly. This allows to express constraints on such

paths, such as forbidding certain initial, intermediate, or final states.

Example 2.8 An example of an execution path is the following:

P, s1, s2 |= inCity(john, london).del

where P is a transaction base, introduced in the following, and s1, s2 are the states from

the previous example.

¤

Elementary updates are combined into more complex transactions. A transaction base

defines transactions and, as a special case, queries by combining elementary updates using the set

of allowed T R operators which will be introduced later in this section. Formulas in a transaction

base may use the full syntax of T R, while formulas defining the semantics of states are limited to

the syntax of first-order logic, a subset of T R. Transactions are combinations of queries, which do

not change the state and can be expressed in classical logic, and updates, which do change the state

and are expressed in an extension of classical logic.

Example 2.9 We can define a transaction base P for financial transactions as follows [Bonner and

Kifer, 1998]:

transfer(Amt,Act, Act′) ← withdraw(Amt,Act)⊗ deposit(Amt,Act′)

withdraw(Amt,Act) ← balance(Act,B)⊗B ≥ Amt⊗ balance.change(Act, B,B −Amt)

deposit(Amt,Act) ← balance(Act,B)⊗ balance.change(Act,B, B + Amt)

balance.change(Act, B,B′) ← balance.del(Act,B)⊗ balance.ins(Act,B′)

where balance(Act,B) and B ≥ Amt are queries, and the rest are considered elementary up-

dates; balance.del(Act,B) means that we remove the formula balance(Act,B), balance.ins(Act,B′)

means that the we add the formula balance(Act,B′) to the current state, and balance.change(Act,B, B−
Amt) means that we update formula balance(Act,B) to balance(Act,B − Amt). The symbol ⊗ is

called serial conjunction and, as we will see later in this section, an expression a⊗b can be intuitively

read as ”do a and then b”

¤

A T R can be regarded as having two parts: a transaction base P provided by the pro-

grammer, and a single current database s or state, which he wishes to access and possibly modify.

While the transaction base cannot be changed by other transactions, the database is updated when

the user executes transactions defined in P .

Chapter 2: Background 44

The formal description of transactions is given in terms of the initial, intermediate, and

final states of the transaction, relative to a transaction base that defines a set of complex state

transitions. Such formalization is a form of logical entailment, called executional entailment :

P, s0, . . . , sn |= ψ

where P is a transaction base, ψ is a transaction invocation, and s0, . . . , sn is a sequence

of states representing all the states of the transaction execution. The formula above means, given

P , that s0, . . . , sn is an execution path of ψ, i.e., if the current state is s0, and if the user issues

the transaction ψ, then the database will go from state s0 to state sn, passing through a set of

intermediate states which may be s1, . . . , sn−1. The proof theory of Transaction Logic can derive

each possible execution path of ψ, but only one of them will be (non-deterministically) selected as

the actual execution path, and the final state sn will become the new state.

It is important to notice that T R treats transactions and queries uniformly: any transaction

that does not cause a state change can be viewed as a query. P, s0 |= ψ is a special case of the

statement above in which n = 0. In fact, all formulas in T R can have both a truth value and a

side effect on the database; pure queries and pure updates are extreme cases of formulas with no

side-effect or no truth value, respectively.

2.2.4.3 Syntax

The alphabet of a language of T R consists of the following symbols [Bonner and Kifer,

1995]:

• A signature Σ = (C,F, P, V). As in first-order languages, C, F , P , and V are countable sets

of constant, function, predicate and variable symbols, respectively, and function and predicate

symbols have associated an arity n, which is a non-negative natural number.

• Logical connectives, ∧, ∨ (classical disjunction and conjunction), ⊗, ⊕ (serial disjunction and

conjunction), ¬ (classical negation). Additional connectives can be defined in terms of these.

• Quantifiers ∀, ∃.

• Auxiliary symbols, such as ”(”, ”)”, and ”,”.

Terms are defined as usual in first-order logic.

As it can be seen, T R extends the syntax of first-order logic with two binary connectives,

⊗ and ⊕. The resulting logical formulas are called transaction formulas.

Transaction formulas are defined recursively as follows [Bonner and Kifer, 1995]. First, an

atomic transaction formula is an expression of the form p(t1, . . . , tn), where p ∈ P is a predicate

symbol, and t1, . . . , tn are terms. Second, if φ and ψ are transaction formulas, them so are the

following expressions:

Chapter 2: Background 45

• φ ∨ ψ, φ ∧ ψ, φ⊕ ψ, φ⊗ ψ, and ¬φ.

• (∀X)φ and (∃X)φ, where X is a variable.

2.2.4.4 Serial conjunction and serial disjunction

As presented before, T R extends classical predicate logic with two new connectives, ⊗
(serial conjunction), and ⊕ (serial disjunction).

A formula φ⊗ ψ intuitively means ”Do φ and then do ψ” [Bonner and Kifer, 1995], and a

formula φ⊗ ψ means ”Do φ now or do ψ later”. Formally, they are dual i.e. ¬(φ⊕ ψ) is equivalent

to ¬φ⊗ ¬ψ. As in classical logic, φ ← ψ is an abbreviation for φ ∨ ¬ψ.

2.2.4.5 Hypothetical reasoning

Transaction Logic supports both committed and hypothetical updates i.e. it can both

execute programs (like e.g. Prolog) and reason about them (like e.g. logics of action).

To express hypothetical updates, T R introduces a modal operator ¦ and a related operator

¤. ¦φ means that execution of φ is possible starting at the present state, and ¤φ means that the

execution of φ is necessary at the present state. Necessary means that φ is the only transaction that

can succeed from the present state. Formally, it means that φ is executable along every path leaving

the current state s. Possibility means that φ is executable along some path leaving the current state

[Bonner and Kifer, 1995].

For example, the execution of p⊗ ¦q ⊗ r means that first p is executed, then q is executed

hypothetically, and finally r is executed. That q is executed hypothetically means that all its updates

are rolled back before r starts executing. Therefore, ¦q acts as a test that have to be satisfied before

r is executed, while p and r are committed and have a permanent effect on the state.

2.2.4.6 Semantics

The semantics of Transaction Logic is given by its model theory, which is based on execution

paths and states. Truth is defined on execution paths, not on states, as we will see in the following.

We first define path structures. Satisfaction on paths will then be defined, followed by the

definition of models of transaction formulas and of execution as entailment.

Definition 2.14 (Path structures) Let L be a language of T R with its signature containing a set

F of function symbols and a set P of predicate symbols. A path structure, M, over L is a triple

(U, IF , Ipath), where

• U is a set, called the domain of M.

Chapter 2: Background 46

• IF is an interpretation of function symbols in L. It assigns a function Un → U to every n-ary

function symbol in F .

Given U and IF , let Struct(U, IF) denote the set of all classical first-order semantic structures

over L of the form (U, IF , IP), where U is the domain of the structure, IP is a mapping that

interprets predicate symbols in P by relations on U of appropriate arity, and U and IF are

the same as in M. We also assume that Struct(U, IF) contains the special structure >, which

satisfies every first-order formula.

• Ipath is a total mapping that assigns to every path a first-order semantic structure in Struct(U, IF),

such that:

– Ipath(< s >) |=c φ for every formula φ ∈ Od(s), where < s > denotes a path of length 1

(Compliance with the data oracle).

– Ipath(< s1, s2 >) |=c b for every atom b ∈ Ot(s1, s2) (Compliance with the transition

oracle).

As discussed in [Bonner and Kifer, 1995; Bonner and Kifer, 1998], Ipath is the semantic link

between transactions and paths: given a path and a transaction formula, Ipath determines whether

the formula is true on the path, as we will see in the definition below.

Intuitively, the compliance with the data oracle restriction says that path < s > is a window

over state (database) s. The second restriction says that elementary updates do what the transition

oracle claims they do.

We now define a path split: given a path < s1, . . . , sn >, any state si on the path defines a

split of the path into two parts, < s1, . . . , si > and < si, . . . , sn >. If path π is split into two parts

γ and δ, then we write π = γ ◦ δ. Using the notion of path split, we define satisfaction as follows.

Definition 2.15 (Satisfaction) Let M = (U, IF , Ipath) be a path structure, let π be a path in M,

and let v a variable assignment. Then,

1. M, π |=v b iff Ipath(π) |=c
v b, where b is an atomic formula.

2. M, π |=v ¬φ iff M, π 2v φ.

3. M, π |=v φ ∧ ψ iff M, π |=v φ and M, π |=v ψ.

4. M, π |=v φ ∨ ψ iff M, π |=v φ or M, π |=v ψ.

5. M, π |=v φ⊗ ψ iff M, γ |=v φ and M, δ |=v ψ for some split γ ◦ δ of path π.

6. M, π |=v φ⊕ ψ iff M, γ |=v φ or M, δ |=v ψ for every split γ ◦ δ of path π.

Chapter 2: Background 47

7. M, π |=v ∀x.φ iff M, π |=u φ for every variable assignment, u, that agrees with v on all

variables except x.

8. M, π |=v ∃x.φ iff M, π |=u φ for some variable assignment, u, that agrees with v on all

variables except x.

Given the definition above, we can now define models of transaction formulas.

Definition 2.16 (Models of Transaction Formulas) A path structure M is a model of a T R-formula

φ, denoted M |= φ, iff M, π |= φ for every path π in M. A path structure is a model of a set of

formulas if and only if it is a model of every formula in the set.

We now define executional entailment.

Definition 2.17 (Executional entailment) Let P be a transaction base, φ a transaction formula,

and s0, s1, . . . , sn a sequence of databases. Then, the following statement

P, s0, s1, . . . , sn |= φ

is true iff M, < s0, s1, . . . , sn >|= φ for every model M of P . Related to this is the following

statement:

P, s0 −− |= φ

which is true iff there is a database sequence s1, . . . , sn that makes P, s0, s1, . . . , sn |= φ

true.

Intuitively, the first statement means that a successful execution of transaction φ can change

the database from state s0 to s1 . . . to sn. Formally, it means that every model of P satisfies φ along

the path s0, s1, . . . , sn. The second statement means that transaction φ can execute successfully

starting from database s0.

2.2.4.7 Reasoners

We are not aware of any Transaction Logic reasoner available. However, Prolog is very

close in spirit to T R [Bonner and Kifer, 1995]. Although Prolog is not a logic of action or time,

transactions can be defined in Prolog by using the operators assert and retract, which assert some

new statement or retract some existing statement from the database.

Prolog transactions are close to Transaction Logic transactions in the following ways: a)

updates are real, b) named procedures can be composed from simpler procedures, c) all predicates

have both a truth value and a side effect on the database, and d) the frame problem is not an issue.

However, updates in Prolog are not logical operators, and are always committed and they are not

rolled back. For example, it is not possible in Prolog to perform an update tentatively, test its

outcome, and then commit the update only if some condition is met.

Chapter 2: Background 48

In addition, updates in Prolog are not integrated into a complete logical system, and it is

not clear how assert and retract interact with other logical operators. For example, it is not clear

what assert(X) ∨ assert(Y) means.

However, FLORA-2, a Prolog-based inference system which supports part of Transaction

Logic (see Section 2.2.3.7), can be used to simulate the evaluation of some limited proof obligations

expressed in Transaction Logic. How FLORA-2 is used to automate the location of services based

on Transaction Logic is presented in [Kifer et al., 2004] and it will be described in Chapter 4.

2.2.5 Languages and layering

We have introduced above logical formalisms which are related in different ways. We will

discuss in the following how the formalisms introduced relate and, afterwards, we will present the

most salient languages proposed for DL and LP and how they are layered.

2.2.5.1 Relation among formalisms

Description Logics are based on first-order logic and they have identical semantics. They

restrict the expressivity of first-order languages so that the resulting language has desirable compu-

tational properties. In particular, most description logics are subsets or variants of C2, the fragment

of first-order logic (without function symbols) in which formulas may contain at most two variables,

but with counting quantifiers allowed, and which is known to be decidable [Graedel et al., 1997]. As

a consequence of the restriction in expressivity imposed, the major reasoning tasks envisioned for

description logics are kept decidable, which is a distinguishing property of Description Logics with

respect to general first-order languages. Syntactically, Description Logics introduce simplifications

in order to avoid the often cumbersome syntax of first-order logic. However, this does not have any

impact on the expressivity and semantics of the language.

Logic Programming, as discussed in Section 2.2.3, is based on the Horn subset of first-order

logic, and it has a semantics that is different from first-order semantics. In particular, the semantics

of logic programs is based on minimal Herbrand models [Lloyd, 1987], rather than first-order models.

Furthermore, the Closed-World Assumption (CWA), that is, assuming that what is not currently

known to be true is false, is always made in Logic Programming and the type of negation used is

negation as failure, i.e., facts are assumed to be false (by default) unless we can infer otherwise.

On the contrary, under first-order semantics both the CWA or the Open World Assumption (OWA)

(lack of knowledge does not imply falsity) can be made, although the OWA is usually made and the

negation of a formula is only true if it can be explicitly inferred.

While the semantics of classic first-order logic and logic programming are not compatible

in general, there is a fragment, which corresponds to the intersection of first-order logic and Horn

Chapter 2: Background 49

logic, for which ground entailment coincides under both semantics, i.e., the set of ground facts

entailed under both first-order and LP semantics are equivalent. This fragment, studied in [Grosof

et al., 2003] and [Volz, 2004], is called Description Logic Programs (DLP) or Description Horn Logic

(DHL)29, and it can also be as the intersection of the SHOIN description logic and Datalog.

Finally, Transaction Logic is complementary to both Logic Programs and Description Log-

ics, as it is concerned with state change and it does not fix any state semantics. In fact, different

fragments of Logic Programs and Description Logics could be used to establish the semantics of

states, i.e., for the state data oracle.

2.2.5.2 OWL

The Web Ontology Language (OWL) [Bechhofer et al., 2004] is a World Wide Web Con-

sortium (W3C) recommendation for a semantic web language, based on Description Logics. OWL

consists of three species with increasing expressiveness, namely: OWL Lite, OWL DL, and OWL

Full. All OWL species have different syntaxes, being their RDF/XML syntax the most prominent

and, in fact, used in the language reference. However, the normative syntax for OWL is its abstract

syntax, described in [Patel-Schneider et al., 2004]. In the following, we summarize the features of

each of these sublanguages.

OWL Lite is a notational variant of the Description Logic SHIF(D). This Description Logic

corresponds to ALC augmented with transitive roles, inverse roles, functional roles, a role hierarchy,

and concrete domains. According to the OWL Language Overview [McGuinness and van Harme-

len, 2004], OWL Lite supports those users primarily needing a classification hierarchy and simple

constraints.

OWL DL is a notational variant of the Description Logic SHOIN (D) [Horrocks et al., 2003].

This Description Logic corresponds to ALC augmented with transitive roles, inverse roles, functional

roles, a role hierarchy, nominals, arbitrary number restrictions, and concrete domains. According to

the OWL Language Overview, OWL DL supports those users who want the maximum expressiveness

while retaining computational completeness (all conclusions are guaranteed to be computed) and

decidability (all computations will finish in finite time).

OWL DL includes all OWL language constructs, but they can be used only under certain

restrictions. However, it turns out that OWL DL adds very little expressiveness to OWL Lite

[Horrocks et al., 2003]. In fact, the only feature really added to OWL Lite by OWL DL is the use
29The term DLP was introduced in [Grosof et al., 2003] to denote Logic Programs based on DHL ontologies. In

fact, the difference between DHL and DLP is that DLP as a Logic Program only allows for the entailment of ground
facts and not the entailment of formulae. Horn Logic, as a subset of First-Order Logic, does allow the entailment of
formulae. However, with respect to the entailment of ground facts, DHL and DLP are equivalent. [Volz, 2004] further
develops DHL and DLP, but just uses the acronym DLP to indicate both [de Bruijn et al., 2004].

Chapter 2: Background 50

of nominals, i.e., the use of individuals in class descriptions; all other features added by OWL DL

are only syntactic sugar, and they can be written down in OWL Lite using relatively complicated

syntactic constructions.

It is important to notice that both OWL Lite and OWL DL pose several restrictions on

the use of RDF and redefine the semantics of the RDFS primitives [Brickley and Guha, 2004b].

Therefore, OWL Lite and OWL DL are not properly layered on top of RDFS (see [de Bruijn et al.,

2005f] for details).

OWL Full is the most expressive OWL species. It does not have a direct correspondence with any

Description Logic. According to the OWL Language Overview, OWL Full is meant for users who

want maximum expressiveness and the syntactic freedom of RDF with no computational guarantees.

OWL Full allows an ontology to augment the meaning of the pre-defined (RDF or OWL)

vocabulary. It is unlikely that any reasoning software will be able to support complete reasoning for

every feature of OWL Full. When compared with OWL DL, OWL Full does not pose any restriction

on the use of OWL and RDFS constructs. While OWL DL requires a separation of types (a class

cannot be an individual or property, and a property cannot be an individual or class), and requires

that properties are either ObjectProperties or DatatypeProperties, OWL Full does not pose any of

these restrictions. This results on an important increase on the complexity of reasoning with OWL

Full. In fact, OWL Full does not offer computational guarantees.

OWL Full layers on top of RDFS and OWL DL and, because these languages are so

different, the semantics of OWL Full is not straightforward and is not a proper extension of the

OWL DL semantics [de Bruijn et al., 2005f]. In particular, entailment under OWL DL semantics

is not equivalent to entailment under OWL Full semantics for the same ontology: OWL Full allows

additional inferences. This discrepancy is caused by the incompatibility between the model-theoretic

semantics of OWL DL and the axiomatic semantics of and syntactical freedom of RDFS. This raises

doubts about the level of interoperability between the different species of OWL.

Reasoning support exists for OWL Lite and OWL DL, but not for OWL Full. In particular,

all DL reasoners introduced in Section 2.2.2.5 support reasoning with OWL Lite ontologies, and

Pellet and FaCT++ can handle OWL DL (the other reasoners do not provide complete and correct

reasoning for nominals).

2.2.5.3 WSML

WSML [de Bruijn et al., 2005e; de Bruijn et al., 2005c] is a family of representation lan-

guages based on Description Logics, Logic Programming, and First-Order Logic, and with influences

from F-Logic and frame-based representation systems. The motivation for WSML is to provide a

Chapter 2: Background 51

Figure 2.6: WSML Layering

family of languages not restricted to Description Logics, incorporating the benefits of Logic Pro-

gramming and providing a core language that allows for a certain degree of interoperability among

the different languages of the family.

WSML has five variants, namely: WSML-Core, WSML-Flight, WSML-Rule, WSML-DL,

and WSML-Full. WSML has two alternative layerings, namely, WSML-Core → WSML-DL →
WSML-Full and WSML-Core → WSML-Flight → WSML-Rule → WSML-Full. In both layerings,

WSML-Core is the least expressive and WSML-Full is the most expressive language (see Figure 2.6).

All WSML variants are specified in terms of a human-readable syntax with keywords similar

to the elements of the WSMO conceptual model [de Bruijn et al., 2005a]. Furthermore, WSML pro-

vides XML and RDF exchange syntaxes, as well as a mapping between WSML ontologies and OWL

ontologies for interoperability with OWL-based applications. In the following we briefly introduce

each of the WSML variants.

The two layerings are to a certain extent disjoint in the sense that interoperation between

the Description Logic variant (WSML-DL) on the one hand and the Logic Programming variants

(WSML-Flight and WSML-Rule) on the other, is only possible through a common core (WSML-

Core) or through a very expressive (undecidable) superset (WSML-Full) [de Bruijn et al., 2005e].

WSML-Core is defined by the intersection of Description Logic and Horn Logic, based on De-

scription Logic Programs (DLP), which is that subset of the Description Logic logic SHIQ(D) which

falls inside the Horn logic fragment of First-Order Logic without equality and without existential

quantification.

Two different types of reasoning can be done with WSML-Core, namely: a) subsumption

reasoning and b) query answering. Subsumption reasoning is equivalent to checking entailment of

Chapter 2: Background 52

non-ground formulae and can thus be reduced to checking satisfiability using a First-Order style or

a Description Logic-style calculus. Query answering is equivalent to checking entailment of ground

facts. Thus query answering can be reduced to satisfiability checking. However, using a First-

Order or Description Logic calculus for query answering is not very efficient [de Bruijn et al., 2004].

Fortunately, there are well-known techniques for query answering in the area of logic programming

and deductive databases [Ullman, 1988]. Furthermore, WSML-Core is extended with datatype

support in order to be useful in practical applications.

WSML-Core is fully compliant with a subset of OWL. As WSML-Core is based on plain

(function- and negation-free) Datalog, thus, the decidability and complexity results of Datalog apply

to WSML-Core as well. The most important result is that Datalog is data complete for P, which

means that query answering can be done in polynomial time (see Section 2.2.3.6).

WSML-Flight extends WSML-Core with the full expressive power of Datalog rules, default nega-

tion, the full-blown use of integrity constraints (constraints are already in WSML-Core; however,

they are only used for datatype predicates), (in)equality for abstract individuals, and meta-modeling.

WSML-Flight allows to write down any Datalog rule, extended with inequality and (locally) stratified

negation, and the semantics of WSML-Flight is grounded in Logic Programming. Since there exist

no efficient implementation of query containment and since this problem is undecidable in general,

the only reasoning task envisioned for WSML-Flight is query answering (i.e. entailment of ground

facts). Still, subsumption reasoning can be done for the WSML-Core subset of a WSML-Flight

ontology.

WSML-Rule extends WSML-Flight to a fully-fledged Logic Programming language, including

function symbols and unsafe rules. WSML-Rule no longer restricts the use of variables in logical

expressions.

WSML-DL (+). WSML-DL extends WSML-Core to an expressive Description Logic, namely,

SHIQ. The motivation for restricting this variant to SHIQ was that it was the Description Logic

which could be efficiently handled by existing reasoners. However, there now exist effcient implemen-

tations which can deal with nominals, as we have discussed in Section 2.2.2.5, and, furthermore, it is

desirable to be compatible with OWL DL. Therefore, we will consider a new variant of WSML, de-

noted WSML-DL+, which is semantically equivalent to the SHOIN (D) Description Logic, adding

nominals to and disallowing number restrictions in WSML-DL.

WSML-Full unifies WSML-DL and WSML-Rule under a First-Order umbrella with extensions

to support the nonmonotonic negation of WSML-Rule. It is yet to be investigated which kind of

Chapter 2: Background 53

formalisms are required to achieve this. Possible formalisms are Default Logic, Circumscription and

Autoepistemic Logic.

Reasoning support for the DL part of WSML (WSML-Core and WSML-DL) is available,

as it is provided by reasoners such as Pellet and FaCT++. Regarding WSML-Flight, it is supported

by any of the LP reasoners introduced in Section 2.2.3.7. Support for WSML-Rule is provided by

XSB, FLORA-2, OntoBroker, SILRI and MINS.

Syntax In the following, we briefly introduce the human-readable syntax of WSML logical expres-

sions, as it will be used later in this document. For details on the conceptual syntax of WSML e.g.

namespace declarations, importation of ontologies, or declaration of ontology elements, we refer the

reader to the WSML specification [de Bruijn et al., 2005e]. This conceptual syntax can be mapped

to the logical expression syntax, as presented in the specification.

It has to be noticed that the syntax which will be presented is the syntax of WSML-Full

logical expressions; other variants define certain syntactic restrictions derived from their restrictions

in the expressivity of the language (see the WSML specification for details).

Variables. Variable names start with a question mark (?) e.g. ?myVar. The scope of a

variable is always defined by its quantification. If a variable is not quantified inside a formula, the

variable is implicitly universally quantified outside the formula30.

Vocabulary. A vocabulary V of a WSML language L(V) consists of:

• A set of identifiers VID.

• A set of object constructors VO ⊆ VID.

• A set of function symbols VF ⊆ VO.

• A set of datatype wrappers VD ⊆ V O.

• A set of data values VDV ⊆ VO which encompasses all string, integer and decimal values.

• A set of anonymous identifiers VA ⊆ VO of the form #, #1, #2, . . .

• A set of relation identifiers VR ⊆ VID.

• A set of variable identifiers VV ⊆ VID.

Terms. Given a vocabulary V , the set of terms Term(V) in WSML is defined as follows:

30Unless the formula is part of a capability description and the variable is explicitly mentioned in the sharedVariables
block (see Chapter 3, Section 3.4.1).

Chapter 2: Background 54

• Any f ∈ VO is a term.

• Any v ∈ VV is a term.

• If f ∈ VF and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

• If f ∈ VD and dv1, . . . , dvn are in VDV ∪ VV , then f(dv1, . . . , dvn) is a term.

Atomic formulae. Given a set of terms Term(V), the set of atomic formulae in L(V) is

defined by:

• If α, β ∈ Term(V) and γ ∈ Term(V) or γ is of the form {γ1, . . . , γn}, with γ1, . . . , γn ∈
Term(V), then:

– α subConceptOf γ is an atomic formula in L(V). Here, α and γ both identify concepts

(unary predicates), and this expression states that α is a subconcept of γ, i.e., that

α(x) → γ(x).

– α memberOf γ is an atomic formula in L(V). Here, α identifies an instance (constant)

and γ identifies (a) concept(s), meaning that α is an instance of γ, i.e., that γ(α) holds.

– α[β ofType γ] is an atomic formula in L(V). Here, α identifies an instance, β identifies an

attribute (binary predicate) and γ identifies (a) concept(s). The expression means that

α has a property β whose type is constraint to γ.

– α[β impliesType γ] is an atomic formula in L(V). Here, α identifies an instance, β

identifies an attribute and γ identifies (a) concept(s). This expression means that α has

a property β whose type is restricted to γ31.

– α[β hasValue γ] is an atomic formula in L(V). Here, α identifies an instance, β identifies

an attribute and γ identifies (an) instance(s). This expression means that the property

β of instance α has value γ.

These atomic formulae are also called molecules.

• If r ∈ VR (r is an n-ary predicate with n > 1) and t1, . . . , tn are terms, then r(t1, . . . , tn) is an

atomic formula in L(V).

• If α, β ∈ Term(V) then α = β, α :=: β and α! = β are atomic formulae in L(V).

Formulae. The set of formulae in L(V) is defined by:

• Every atomic formula in L(V) is a formula in L(V).
31See [de Bruijn et al., 2005g] for a discussion on restrictions and constraints.

Chapter 2: Background 55

• Let α, β be formulae which do not contain the symbols : − and !−, and let ?x1, . . . , ?xn be

variables, then:

– α and β is a formula in L(V).

– α or β is a formula in L(V).

– neg α is a formula in L(V).

– naf α is a formula in L(V).

– forall ?x1, . . . , ?xn(α) is a formula in L(V).

– exists ?x1, . . . , ?xn(α) is a formula in L(V).

– α implies β is a formula in L(V).

– α impliedBy β is a formula in L(V).

– α equivalent β is a formula in L(V).

– α :- β is a formula in L(V). This formula is called an LP (Logic Programming) rule. α

is called the head and β is called the body of the rule.

– !− α is a formula in L(V). This formula is called a constraint. We say α is a constraint

of the knowledge base.

Examples of logical expressions in WSML human-readable syntax, taken from [de Bruijn

et al., 2005e], are:

”No human can be both a male and a female”

!− ?x[gender hasValue {?y, ?z}] memberOf Human and ?y = Male and ?z = Female.

”A human who is not a man is a woman”

?x[gender hasValue Woman] impliedBy neg ?x[gender hasValue Man].

”The brother of a parent is an uncle”

?x[uncle hasValue ?z] impliedBy ?x[parent hasValue ?y] and ?y[brother hasValue ?z].

”Do not trust strangers:”

?x[distrust hasValue ?y] :− naf ?x[knows hasValue ?y].

Please remember that the syntax presented above is just a way of writing formulas which

will have the expressive power and semantics defined for each variant. For example, logical expres-

sions within WSML-DL are a syntactical variant of the SHIQ(D) Description Logic presented in

Section 2.2.2. Details of mappings from WSML human-readable syntax to other syntaxes, as well

as the detailed definition of the semantics of each variant can be found in [de Bruijn et al., 2005e].

Chapter 2: Background 56

2.3 Summary

The SOA paradigm is gaining increasing acceptance, and its uptake is already underway.

Basic technologies for the design, description and exposition of services, such as web service tech-

nologies, are also available and widely supported, and languages for complementary aspects such

as security and policies have been developed. Furthermore, infrastructure such as that provided by

Enterprise Service Buses can facilitate building real service-oriented architectures.

However, some challenges remain unsolve for the effective exploitation of the potential

benefits of the SOA paradigm, mainly related to the limited dynamics of service-oriented computing.

One of these challenges is the increase in the level of automation of service discovery, i.e., of the task

of locating appropriate services for solving a given goal.

Describing services and goals using ontologies and languages with formal semantics is iden-

tified as a promising path towards achieving an enhancement in current service discover practices;

using formal ontologies and formal languages, the precise semantics of the value of services and of

consumer goals can be captured and exploited for enhancing service discovery. For this reason, we

have introduced not only what SOA is, what technologies are mainly used for designing and exposing

services, and what challenges remain open, but also the relevant field of semantic web research, which

aims at describing information on the web based on explicit, shared and formal models (ontologies)

so that information is given a well-defined meaning and current limitations of the web are overcome.

Besides presenting introducing the semantic web vision, we have presented in more detail

the logical foundations of semantic languages, which will be used in our work on enhancing the

location of services, and we have discussed what these languages offer, what reasoning support

already exists, and how different formalisms relate. We have also introduced transaction logic,

which can be used to model and deal with state change and which has been used in one of our

attempts to automate the location of services, as it will be presented in Chapter 4.

In the next Chapter, we concentrate on clearly defining the core conceptual elements in-

volved in the location of services. For this purpose, we will provide an explicit model of services and

goals which will be used as a basis for the discussion in the following Chapters on the design and

realization of an approach for enhancing the location of services. Furthermore, we will formally char-

acterize core elements of this model using Transaction Logic, as it enables capturing the dynamics

of states and services.

Chapter 3

Conceptual model of services and

goals

3.1 Introduction

The relatively early stage of SOA development and adoption has created some terminology

confusion. While terms like ”SOA” and ”service”, among others, are increasingly used in all kinds of

written publications and product descriptions, certain ambiguity exists around the core conceptual

elements that interplay in a service-oriented architecture and the terms used to refer to them.

For example, services are often assimilated to Web services, while some authors also use the term

”service” in the sense of a business value e.g. [Baida et al., 2004; Preist, 2004].

A remarkable step towards reaching a consensus on the definition of core elements in an

SOA, as well as on the terminology used for referring to such elements, has been the recent def-

inition of a reference model for service oriented architecture by OASIS [MacKenzie et al., 2006],

aiming at providing an abstract framework which consists of a minimal set of unifying concepts,

axioms and relationships within the SOA domain, and which is independent of specific standards,

technologies, implementations, or other concrete details, thereby reducing the confusion created by

the proliferation of conflicting terminologies.

In this Chapter, and heavily based on the reference model defined by OASIS, we provide a

conceptual view of the core elements of an SOA that are particularly relevant to our work, such as

services and goals. We further elaborate the reference model where we deem necessary, and briefly

explore the relationship between the concepts and terminology introduced by such model and those

used by existing frameworks for modelling services such as WSMO [Roman et al., 2005] or OWL-S

[Martin et al., 2004]. The conceptual model is presented in Section 3.2.

57

Chapter 3: Conceptual model of services and goals 58

Besides introducing a (partial) reference model for SOA, we investigate further in this

Chapter the nature of elements such as services and goals. In particular, we provide a deeper insight

into the type of artifacts we aim at describing for their semi-automatic location, and formally

characterize them based on Transaction Logic in Section 3.3, as it is crucial to provide a clear and

explicit model of these artifacts so that we can properly understand what types of descriptions can

be provided, what aspects they capture, and what level of confidence can be expected from the

results of the location process based on the different types of descriptions.

In Section 3.4 we briefly introduce the frameworks proposed so far for the description of

services and goals, and discuss how our model relates to the model of services and goals used by

these frameworks. We will pay special attention to the WSMO framework [Roman et al., 2005;

de Bruijn et al., 2005a] and to how the WSMO model of services and goals relates to our model.

Finally, in Section 3.5, we provide a summary of the contents of this Chapter.

3.2 Conceptual model

In [MacKenzie et al., 2006], a reference model for SOA is presented with the purpose

of defining core elements of SOA in a technology-independent manner. This model defines SOA

as a paradigm for organizing and utilizing distributed capabilities that may be under the control of

different ownership domains, and attributes the value of SOA to the fact that it provides a powerful

framework for matching needs and capabilities and for combining capabilities to address those needs.

The central concepts introduced by the model are: service, real world effect, capability1,

service description, visibility, interaction, contract and policy, and execution context. We will focus

in the following on those concepts that are particularly relevant to the process of locating appropriate

services and refine some of the concepts defined by the OASIS reference model.

3.2.1 Capabilities

Definition 3.1 (Capability) A capability is the ability of performing some action or actions with a

perceived value, in the sense that they can constitute a (perhaps partial) solution to some problem.

Capabilities are associated to entities (either people or organizations), who can offer their

capabilities to interested parties. The actual way such capabilities are brought to bear is independent

of the capability itself.

Example 3.1 Let us imagine a travel agency which can book seats on flights operated by airlines

which are not low-cost airlines. In this case, the capability offered by the travel agency is the booking
1Although this concept is not explicitly enumerated in [MacKenzie et al., 2006] as a core element, it is repeatedly

used and we consider it central for the automatic location of services.

Chapter 3: Conceptual model of services and goals 59

of this type of flights. This capability is independent of how it is put at disposal of interested

customers. For example, customers can visit one of the offices of the travel agency network, or use

the travel agency web site to actually get a seat booked on a given flight, i.e., there exist alternative

ways to bring the capability to bear.

¤

A capability has associated certain effects, which we define below; the purpose of using a

capability is to realize all or part of such effects [MacKenzie et al., 2006].

Definition 3.2 (Effect) An effect is a result of using a capability, and it can be of one of the

following two types:

1. Some information is made visible to the party using the capability, or

2. There is a change to some state shared by (at least) the party providing the capability and the

party using the capability.

We call the former type of effect information effect or information provision, and the latter

real world effect.

A capability must have associated at least one effect, and there is no upper bound for the

number of effects that can be associated to a capability. From these effects, zero or more can be

information effects, and zero or more can be real world effects. The perceived value of a capability

actually corresponds to its effects, and the decision of a party of using a certain capability will

depend on these effects.

General effects, independently of their type, are called real world effects in [MacKenzie

et al., 2006]. However, we change this terminology in order to emphasize the distinction between

the different types of effects and in order to align it more with the terminology used by proposals

such as [de Bruijn et al., 2005a] or [Martin et al., 2004]. The name real wold effect given to the

latter type of effects is used to reflect that it corresponds to some change beyond the provision of

information, i.e., it refers to an effect on a ”real world” e.g. the actual booking of some seat on a

flight, as opposed to an ”information world”, where only the information known by the consumer

changes but this does not affect any state shared with other parties.

How the information associated to an information provision is made visible to the interested

party is not part of the definition of the effect.

Example 3.2 Let us consider the capability introduced in the previous example, and let us suppose

the payment of the booking must be done with a credit card. The effects associated to such capability

are:

Chapter 3: Conceptual model of services and goals 60

• Seats are booked on some flight operated by an airline which is not a low-cost airline,

• the customer credit card is charged by the price of the seats, and

• a confirmation of the booking is provided to the customer.

From the effects above, the first two are real world effects, while the last one is an infor-

mation effect.

¤

3.2.2 Services

Different means can be available for using a capability and thus, for achieving its associated

effects. This leads to the concept of service, which is defined in the following.

Definition 3.3 (Service) A service is a mechanism by which capabilities are brought to bear, en-

abling access to them.

A service is thus the means by which a certain capability is accessed and its effects achieved;

there is no constraint on how this access is actually implemented. The capability a service enables

access to is called the service capability.

Example 3.3 The capability of example 3.1 can be accessed in different ways. One such way could

be to enable a network endpoint to which a SOAP message can be sent over secure HTTP with

information about the desired booking and credit card details for the payment of the booking. This

will cause the actual booking of a seat on the desired flight and the charge of the credit card provided,

as well as a SOAP message being returned to the sender of the first message, containing the booking

locator. This particular mechanism of providing the capability is a service.

¤

As it can be seen from the example, the service is only a means to access a capability, but

not the capability itself. Furthermore, a capability can be made simultaneously accessible in different

ways, i.e., through different services. In this document, we will focus on electronic services, i.e., on

services that provide electronic access to capabilities such as Web (WSDL) services (see Chapter 2).

Every service is provided by a particular party which we call the service provider, and

it is used by a service consumer. It must be noted that service providers can also act as service

consumers and vice versa. For example, the service above might make use of other services provided

by different airlines in order to provide the booking of flights, acting as a service consumer for the

airlines and as a service provider for some end user.

Chapter 3: Conceptual model of services and goals 61

Providers of a service often require certain information to be provided by the consumer

and certain conditions to hold on some shared state for enabling access to the underlying capability

associated to a particular service. We call these requirements preconditions for service provision,

and they are defined next.

Definition 3.4 (Precondition) A precondition for service provision is a condition imposed by a

given service for actually enabling access to its underlying capability, i.e., for bringing its capability

to bear. It can be of one of the following two types:

1. Some information is required to be provided by the consumer of the service, or

2. Some conditions must hold on some state shared by (at least) the service consumer and the

service provider.

We call the former type of precondition information precondition, and the latter real world

precondition.

A service can have associated zero or more preconditions, and there is no upper bound

for the number of preconditions for the provision of the service. From these, zero or more can be

information preconditions, and zero or more can be real world preconditions.

Example 3.4 The service from the previous example requires information about the desired book-

ing for enabling access to the capability of booking seats on flights not operated by low-cost airlines.

This is an example of an information precondition.

The service provider also requires a seat to be available on the flight requested in order to

actually provide the booking. This is an example of a real world precondition.

¤

We can see, therefore, that a service enables access to a certain capability only under

certain conditions. Furthermore, different services might impose different conditions for enabling

access to the same capability, i.e., they might require different information to be provided by the

service consumer and different conditions to hold on some shared state.

For the service consumer to use any service in order to access its underlying capability, some

interaction must take place. If such interaction succeeds, which will happen if the preconditions of

the service are fulfilled, some effects associated to the capability exposed by the service are achieved.

This leads to the concept of service execution.

Definition 3.5 (Service execution) A service execution is a particular interaction between a con-

sumer and the service, in which the preconditions of the service are fulfilled, and which leads to the

achievement of some effects of the service capability.

Chapter 3: Conceptual model of services and goals 62

Notice that the above definition refers to successful executions of the service. However, the

interaction will fail if the preconditions of the service are not fulfilled. Furthermore, other reasons

might also lead to failed interactions, such as technical problems, although we will generally ignore

these other possible sources of failure of an execution.

The effects achieved after a particular service execution are usually only a subset of the

effects of the underlying capability, as illustrated by the following example.

Example 3.5 Let us consider the service in Example 3.3, and let us assume the real world precon-

dition mentioned in Example 3.4 is fulfilled. Now, let us imagine that information about credit card

myCC is sent to the service, and that the flight to be booked is a flight flight4321 from Madrid to

La Havana, on August 1st, 2007, and the name of the passenger Ruben Lara. The effects achieved

will be that a seat is booked for the passenger and on the flight given by the service consumer, that

credit card myCC will be charged by the price of such seat, and that a confirmation of the booking

of this particular seat will be sent to the service consumer.

¤

It can be seen that, from all possible effects of the capability related in Example 3.2 (booking

of seats on flights which are operated by a non-low-cost airline), only the booking of a particular seat

on a particular flight is achieved from the set of all possible bookings associated to the capability.

In this sense, we can see the effects of the capability as abstract or potential effects, which refer

to general effects associated to the capability, and the effects achieved after a service execution as

realized or concrete effects. It has to be noted that realized effects will always be part of the abstract

effects of the capability the service enables access to, and that realized effects constitute the real

value obtained by the service consumer from service usage.

Moreover, the fulfillment of preconditions is not only a pre-requisite for a service execution,

but how they are fulfilled also conditions what concrete effects will be achieved. The relation between

the information provided by the service consumer, some state shared by the service consumer and

provider, and the effects achieved by using the service is what we call the service functionality.

Definition 3.6 (Service functionality) The service functionality is the (possibly non-deterministic)

relation between how service preconditions are fulfilled and the particular effects that will be achieved

by its usage.

If we consider deterministic services, the service functionality can be defined as a function

that maps particular information provided by the service consumer and some shared state to partic-

ular realized effects, i.e., it defines possible service executions. Therefore, we can see the capability

associated to a service as the general effects that can be achieved by using the service, while the

Chapter 3: Conceptual model of services and goals 63

service functionality defines what particular effects associated to the capability will be achieved un-

der different situations that fulfill the service preconditions. As a consequence, different services can

enable access to the same capability but with a different functionality, i.e., the same set of effects is

achievable by using the services but under different conditions.

Example 3.6 Let us consider the service from Example 3.3. The function it provides is the booking

of seats on a flight that fulfills the criteria given by the service consumer, paid with the credit card

given, and the provision of a confirmation of the booking for the flight, passenger and credit card

given.

Another service might enable access to the same capability, but requiring the name of a

registered user of the service and always assuming that the passenger is the person associated to

such user. It can be seen, thus, that the capability associated to both services is the same, but

they provide a different mapping from initial information and real-world conditions to the effects

associated to such capability.

¤

It must be noted that the effects achieved by a service execution will be those dictated by

the service functionality, i.e., the service functionality describes the general mapping of preconditions

to effects, while the service execution is the realization of a particular mapping.

As introduced before, for a service to be executed some interaction must take place between

the service consumer and the service provider, and such interaction can only be carried out in some

explicitly ways prescribed by the service provider. The service interface defines how interaction with

the service must take place.

Definition 3.7 (Service interface) The service interface is the means for interacting with a service.

It defines the specific protocols, commands, and information exchange by which a service is executed.

Information required by the service is represented by interface inputs, and information provided by

the service is represented by interface outputs.

The service interface includes the definition of how information will be provided to the

service, how the service will return information to the consumer, in which order this interaction will

happen, what particular information will be exchanged (via message exchange or in any other way)

and, in general, how the interaction with the service must take place. This interaction model can

be arbitrarily complex. However, we will assume, unless stated otherwise, that interactions with

services are always in one shot, i.e., some information is provided to the service, and some effects

will be realized as a consequence of the service execution (possibly including some information being

returned in response), abstracting from multi-step interactions and from technical details associated

to this interaction such as communication protocols used. In this way, we generally see interfaces

Chapter 3: Conceptual model of services and goals 64

as the definition of a one-shot information exchange between the service consumer and the service

provider, i.e., the interface only defines the inputs and outputs of the service.

Interface inputs and outputs only represent information elements, but do not define the

conditions such information elements must fulfill. As we will see in Section 3.3, they are treated as

names that identify information elements that have to be provided by the consumer and fulfill the

service preconditions (inputs), or information elements that are provided by the service as part of

the effects of the execution.

Example 3.7 A given service can have an interface with inputs i1, i2 and output o1. Information

preconditions of the service constrain possible values assigned to these inputs e.g. establishing that

i1 must be the description of a flight between European countries, and that i2 must be a user name.

The information effect of the service is e.g. that a booking locator is provided to the consumer, and

such information will be identified by the output o1.

¤

In a nutshell, the interface is seen as only a declaration of information elements required

and provided. However, real interfaces will generally incorporate details on how inputs and outputs

have to be provided, in what order, etc.

3.2.3 Visibility

Before a service consumer can interact with a service in order to achieve some effects

associated to its capability, such service must be located, i.e., the service consumer and the service

provider must be able to see each other and to interact via the service interface. This leads to the

concept of visibility.

Definition 3.8 (Visibility) Visibility is the relationship between service consumers and providers

that is satisfied when they are able to interact with each other.

As detailed in [MacKenzie et al., 2006], requisites for visibility are that the service consumer

and provider must be aware of each other’s existence, they must be willing to interact, and they

must be mutually reachable, i.e., they must be able to communicate with each other. Actually,

this document focuses on how visibility is resolved, assuming the willingness of the parties involved

to interact and their mutual reachability, and concentrating on how service consumers can become

aware of the existence of services, offered by some service providers, that enable access to certain

capabilities.

Chapter 3: Conceptual model of services and goals 65

3.2.4 Goals

Service consumers are willing to use a certain service because it provides access to a certain

capability that in turn has associated some effects fulfilling some consumers’ needs. This means that

a service consumer is actually not interested in using or consuming a service per se, but in using

a service to consume a certain capability associated to the service because it fulfills some particular

consumer’s needs. This leads to the introduction of the concept of goal.

Definition 3.9 (Goal) A goal is a set of needs a service consumer expects to resolve by using a

service.

Goals correspond to the objectives consumers have when using services, and they thus

drive the decision on what services to use. The concept of goal is symmetric to the concept of

capability: while capabilities express offers, goals express requirements that can be potentially met

by such offers. In fact, goals can be also defined as a set of effects required, and they can include

both information effects and real world effects. Therefore, the decision on what services to use will

depend on the capabilities different services offer, particularly on whether their effects can resolve

the needs defined by a goal, i.e., whether their effects can fulfill the requirements defined by such

goal.

Example 3.8 An example of a goal is the desire of booking a seat on a flight from Madrid to

Manchester, on a given date, and paid with a particular credit card.

¤

In the example above, the consumer has the need of booking a seat on a flight with the char-

acteristics given, and he expects to solve it by using some services that enable access to capabilities

whose effects fulfill such need.

We have discussed above how there can be some preconditions for the usage of a given

service, and how the concrete effects achieved by using the service will depend on the way these

conditions are fulfilled. In particular, information preconditions refer to information the consumer

must provide to the service. Therefore, it is not only relevant to know what effects the consumer

expects from using a service, but also consumer knowledge and what particular knowledge the

consumer is able and willing to provide to the service. This leads to the concept of consumer

knowledge and consumer knowledge available for a given service.

Definition 3.10 (Consumer knowledge -available-) Consumer knowledge is the set of all informa-

tion known by a certain consumer at a given point in time. Given a service serv, the consumer

knowledge available for serv is the set of information the customer is willing to disclose to this

particular service from the set of information it knows.

Chapter 3: Conceptual model of services and goals 66

Consumer knowledge will determine whether a consumer will be able at all to satisfy the

information preconditions of a service which can be used for fulfilling a given goal. Furthermore,

consumers might be willing to disclose certain information only to certain services. For example, a

consumer might be willing to disclose credit card details only to services certified by a given set of

authorities.

Finally, we define the global state of the world as follows:

Definition 3.11 (-Global- state of the world) The (global) state of the world is a state shared by all

parties in a given system. This state determines what is true in the real world.

It must be noted that the state of the world, unlike consumer knowledge, is not dependent

on the service consumer; it does not depend on the service provider either, but it is a global state

shared by all parties. Service real-world preconditions and real-world effects actually refer to this

state of the world or to some subset of it.

3.3 Formal Characterization

In the previous Section, the core conceptual elements used in our model have been defined.

In this section, we provide a deeper insight into these concepts and a formal characterization of

them. This formal characterization will allow us to better understand what types of descriptions of

these elements can be provided, what aspects they capture, and how they can be used to achieve

visibility between consumers and appropriate services for solving a goal.

The formal characterization given is based on Transaction Logic (see Chapter 2, Section

2.2.4), which accounts in a declarative fashion for the phenomenon of state change, central in the

formalization of services and related concepts. The major reason for using T R in the formal charac-

terization of the elements previously introduced is that T R separates the specification of elementary

operations from the logic of combining them, which makes T R a language for specifying and pos-

sibly executing state-changing procedures without committing to a particular theory of elementary

updates, and allows T R to accommodate a wide variety of state semantics, from classical to non-

monotonic to various other non-standard logics.

Other logics such as Process Logic [Harel et al., 1982], Dynamic Logic [Harel, 1979; Harel

et al., 2000] or Temporal Logic [Emerson, 1990], are also candidates for formally characterizing the

core concepts of our model, as they verse over states, dynamics and time. An approach as the one

presented by Keller et al. in [Keller and Lausen, 2006; Keller et al., 2006b] could also be followed,

defining a formalism-independent model for characterizing these artifacts. However, we have chosen

to use Transaction Logic as it is a well-defined logic for specifying state-changing procedures which

grants us the flexibility of being able to accommodate alternative state semantics. Furthermore, in

Chapter 3: Conceptual model of services and goals 67

[Kifer et al., 2004] we have presented a first attempt to automate the location of services based on

Transaction Logic reasoning which is described in Chapter 4.

In the following, we will start by presenting some initial choices we make for formally char-

acterizing the concepts in our model. Then, we formally characterize services and related concepts.

Capabilities are then characterized, and we end with the formal characterization of goals.

It has to be kept in mind, though, that the formalization which will be introduced in this

Section is meant to precisely capture the nature of the artifacts we will deal with for enhancing the

discovery of services, not to be directly usable for automating discovery. The reason is that there is

no sufficient reasoning infrastructure for Transaction Logic (see Chapter 2, Section 2.2.4) and that

the types of descriptions required are often too complex to be manageable by most users. In this

setting, the formalization below is useful to comprehend what services, goals, capabilities, etc. are

and how they can be modelled, but simplifications will be introduced in future Chapters in order to

obtain manageable descriptions of relevant artifacts which can be efficiently and flexibly exploited

for enhancing the discovery of services.

3.3.1 Language

As mentioned before, we will use Transaction Logic to formally characterize the core con-

cepts used in our model of services and goals. In particular, we will use a T R language L, with

signature Σ = (C, F, P, V). Formulae will be interpreted over a universe U .

We will assume in the following the existence of a set O of domain ontologies which define

the domain vocabulary and provide knowledge about such domain. The set F of function symbols

and the set P of predicate symbols of signature Σ will be given by this set O of domain ontologies,

i.e., domain ontologies introduce the function and predicate symbols that can be used.

3.3.1.1 State data oracle

We will assume that a state is defined by a set of ground atoms, i.e., by a set of first-order,

variable-free atomic formulas. This means that the state database contains a set of ground atoms.

Remember from Chapter 2, Section 2.2.4 that a state data oracle was defined as a mapping

from state identifiers to closed first-order formulas stating what is true at those particular states; if

s is a state identifier, then Od(s) is the set of formulas considered to be true about that state. In

our setting, this mapping simply returns all the ground atoms in the database, i.e., Od(s) = s. This

corresponds to a relational oracle as described in [Bonner and Kifer, 1995; Bonner and Kifer, 1998].

However, notice that the state data oracle and, thus, the semantics of states could be changed if

necessary. In this way, we are formally characterizing the nature of the artifacts introduced, but we

leave open the possibility of changing the semantics of states.

Chapter 3: Conceptual model of services and goals 68

Different parties involved in a service interaction might have different knowledge of what

is true at a given state, as shown in the following example.

Example 3.9 Let us imagine a state s and a relational oracle. Let us further imagine that

{inCity(john, london)} ∈ Od(s), i.e., this ground atom is contained in the state database, as told

by the state data oracle, at current state s.

Still, there can be a party which does not know that incity(john, london) holds at the

current state. Precisely, one of the reasons of a service consumer for using a service can be to have

access to some knowledge about the current state. ¤

For this reason, we will consider not only a single, global state and its corresponding

database, as described in [Bonner and Kifer, 1995; Bonner and Kifer, 1998]; besides this global

database, we will assume the existence of a database defining a state sp for every party p in a given

system. A state sp is defined by a set of ground atoms corresponding to what is known about the

current state by party p, i.e., the party database is a partial view of the global state database.

Intuitively, we have a single current, global state s, and we have different partial views, one

per party, of such state. What holds at the current state is given by Od(s), and what is known to

hold by party p is given by Od(sp). In this way, we can see that we have a global database which

stores what holds at the current state, and a database per party which stores a partial view of the

global database. We assume these partial views are always consistent with the global database.

In a transaction formula, we will denote [q]p the evaluation of ground atom q at the database

of party p, i.e., the evaluation of whether q ∈ Od(sp), where sp is the current state as viewed by

party p. We will simply write q when we evaluate predicate q at the global database, i.e., when we

evaluate whether q ∈ Od(s), where s is the current global state.

3.3.1.2 State transition oracle

Remember from Section 2.2.4 that a state transition oracle is a function Ot that maps pairs

of states into sets of ground atomic formulas, being these ground atomic formulas the elementary

transitions or elementary updates. Intuitively, for an initial state s1 and a final state s2, Ot(s1, s2)

gives the set of elementary transitions that can perform the transition from the initial to the final

state

We will use a state transition oracle which defines, for each predicate p, two new predicates

p.ins and p.del, as described in [Bonner and Kifer, 1995], representing the insertion or deletion of

single atoms, respectively. Formally,

Chapter 3: Conceptual model of services and goals 69

p.ins(a) ∈ Ot(s1, s2)iffs2 = s1 ∪ {p(a)}
p.del(a) ∈ Ot(s1, s2)iffs2 = s1 − {p(a)}

where p is some predicate in Σ of arity n and a is an array of n constants.

Example 3.10 If we consider state s in the previous example, a possible elementary operation would

be inCity.del(john, london), which will go from state s to a state s′ where inCity(john, london)

does not hold anymore, i.e.,

Od(s′) = Od(s)− {inCity(john, london)}

Another possible elementary operation would be inCity.add(john, lisbon), which, if exe-

cuted at state s′ would lead to a state s′′ such that

Od(s′′) = Od(s′) ∪ {inCity(john, lisbon)}

¤

Notice that, as with the state data oracle, we leave open the possibility of replacing this

oracle by a different type of oracle. The reason for using this pair of state data and state transition

oracles is two-fold: a) we believe it suffices for representing the state of most service-oriented systems,

and b) it avoids the creation of inconsistencies when updating states (see [Bonner and Kifer, 1995]

for a more detailed discussion).

Elementary transitions, as defined in [Bonner and Kifer, 1998; Bonner and Kifer, 1995],

refer to the update of a single, global current state. However, and as we have discussed above, we

consider partial views of this state, i.e., partial databases for each party. We will therefore extend

the primitives defined by the state transition oracle to primitives that add or delete formulas from a

particular party database. These primitives will not cause a change of the global state, but a change

of the knowledge of a party about the current state. We write [q.del]p and [q.ins]p for deleting

(adding) a ground atom q to the database of party p.

Example 3.11 Let us assume the current state is the state s′′ described in the previous example,

and let us consider a party p and its associated current state sp such that {inCity(john, lisbon)} /∈
Od(sp). The execution of the elementary transition [inCity.ins(john, lisbon)]p will make party p

know that this atom holds at the current state, i.e., it will cause a change in the current knowledge

of party p, given by state sp, to a new state s′p where p knows that inCity(john, lisbon) holds:

Chapter 3: Conceptual model of services and goals 70

Od(s′p) = Od(sp) ∪ {inCity(john, lisbon)}

Notice that the execution of this primitive will not cause any change in the global state s′′,

but only in the knowledge of party p of the current state.

¤

3.3.1.3 Domain ontologies and the state data oracle

Remember we assume the existence of a set O of domain ontologies which provide domain

knowledge. This knowledge can include the definition of axioms that can enable the derivation of

new knowledge (including restrictions), and we assume these axioms are bound first-order formulas

without negative literals.

In the following example, we show how the consideration of axioms defined by domain

ontologies enables the derivation of new knowledge not captured by the set of ground atoms which

define a state.

Example 3.12 If we consider an ontology containing the following formulas:

∀x.∃y.inCity(x, y) → inWorld(x)

∀x, y, z.inCity(x, y) ∧ inCity(x, z) → y = z

city(london)

and consider the states from the previous examples, we can derive that inWorld(john) ∈
Od(s) and that city(london) ∈ Od(s). If we would also have that inCity(john, ukCapital) ∈ Od(s),

we could also infer that london = ukCapital, i.e., that both constants refer to the same domain

object.

¤

We will therefore extend the definition of the mapping function of our relational state data

oracle in the following way:

Od(s) = {φ | s,O |=c φ}

where O is the set of domain ontologies considered, |=c denotes classical entailment, and φ

is some bound first-order formula with only positive literals. Intuitively, this means that the set of

truths at a given state will not only be the set of truths stored in the state database, but also the

Chapter 3: Conceptual model of services and goals 71

set of truths that can be entailed from the combination of the knowledge contained in such database

and in the domain ontologies used.

3.3.2 Services

In the following, we will formally characterize services, their execution, and other related

concepts using Transaction Logic.

Definition 3.12 (Formal characterization of service execution)

A particular execution of a service by a service consumer c is defined by a pair of execution

paths (χ, χc), where:

1. χ = s0, . . . , si, . . . , sf is an execution path which corresponds to the transition from a global

state s0 to a global state sf , passing through any number of intermediate states, and

2. χc = s0
c, . . . , sj

c, . . . , sg
c is an execution path which corresponds to the transition from state

s0
c to state sg

c passing through any number of intermediate states, i.e., to a change in the

knowledge of the service consumer of the global state.

It can be the case that either s0 = sf or s0
c = sg

c, but not both. The former case means

that there is no change in the global state, and the latter that there is no change in the knowledge of

the service consumer caused by the service execution.

We remind from Section 3.2.2 that for a service execution to happen certain conditions

called preconditions must be fulfilled. In particular, a precondition for service provision was defined

as a condition imposed by the service for actually enabling access to its underlying capability. This

condition can be a condition over the shared state (real world precondition), or a requirement of

information that must be satisfied by the service consumer (information precondition).

Regarding the provision of information by the consumer to the service, the selection of

what information will be provided to the service will be defined through an input binding. Given a

service serv, whose interface defines a set of input variables i1, . . . , in, an input binding is a total

function, defined by the service consumer, β : {i1, . . . , in} → U . This function assigns objects in the

universe U to every input variable of the service [Keller et al., 2006b].

Considering the formal characterization of a service execution, the definition of precon-

ditions in Section 3.2.2, and the definition of input binding above, we can formally characterize

preconditions as follows:

Definition 3.13 (Formal characterization of service preconditions)

Given a service serv with input variables i1, . . . , in:

Chapter 3: Conceptual model of services and goals 72

• Information preconditions of a service serv are formalized by an n-ary first-order predicate

preinf
serv(i1, . . . , in) in L, where n is the number of input variables of the service interface.

• Real world preconditions of a service serv are also formalized by an n-ary first-order predicate

prerw
serv(ii, . . . , in) in L.

Given a service consumer c, an input binding β : {i1, . . . , in} → U defined by c, and a pair

of execution paths (χ, χc) of service serv, with χ = s0, . . . , si, . . . , sf and χc = sc
0, . . . , s

c
j , . . . , s

c
g, we

have that

Od(s0) |= prerw
serv(β(ii), . . . , β(in))

Od(sc
o) |= preinf

serv(β(ii), . . . , β(in))

Intuitively, preconditions define conditions that must hold at the initial state of a service

execution so that the service can be actually executed. Real world preconditions are conditions

on the current, global state, and they must be fulfilled at the initial state of an execution path in

order to be a valid execution path. Information preconditions are conditions on the knowledge of

the service consumer, and they must be satisfied by the consumer database when service execution

starts.

Preconditions will, therefore, constraint the set of possible initial states of the pair of

execution paths that define a service execution; if service preconditions are not satisfied at the

current global and consumer states for the input binding given, the service cannot be executed.

The evaluation of information preconditions at the consumer database, i.e., relative to

the consumer knowledge of the current state, reflects the fact that the service consumer must not

only assign some objects to the service input variables through an input binding, but also provide

certain information about these objects. This information must be obviously known by the service

consumer, which is what is evaluated by the formalization of information preconditions.

Example 3.13 Let us imagine a service has input variables f, d, p, cc and its information precon-

ditions are formalized as follows (in the following, free variables are assumed to be universally

quantified outside the formula):

preinf (f, d, p, cc) ↔ ∃co, cd, name, id, h, n, ed.flight(f) ∧ hasOrigin(f, co) ∧ city(co) ∧
inContinent(co, europe) ∧ hasDestination(f, cd) ∧ city(cd) ∧ inContinent(cd, europe) ∧

date(d) ∧ person(p) ∧ hasName(p, name) ∧ hasId(p, id) ∧ dummyCard(cc)

∧hasHolder(cc, h) ∧ hasNumber(cc, n) ∧ hasExpirationDate(cc, ed)

Chapter 3: Conceptual model of services and goals 73

meaning that the objects from universe U assigned to f, d, p, and cc must be a flight

between European cities, a date, a person, and a dummyCard credit card, respectively, and that

the consumer must know the origin and destination of f , the name and id of p, and the holder,

number and expiration date of cc, as this knowledge will have to be provided to the service in some

way.

Now, let us imagine the following real world preconditions are defined by the service:

prerw(f, d, p, cc) ↔ ∃s, c.freeSeat(s) ∧ onF light(s, f) ∧ onDate(s, d) ∧ valid(cc)

∧hasCredit(cc, c) ∧ c > 0

meaning that there must be a free seat on the flight and on the date given, and that the

credit card given must be valid and have credit.

The service will only be executable if the consumer defines a binding for input variables

f, d, p, cc such that preinf (f, d, p, cc) is satisfied by current consumer knowledge, and such that

prerw(f, d, cc) holds at the current global state.

¤

After formalizing preconditions, we continue with the formal characterization of a service.

Definition 3.14 (Formal characterization of a service) A service serv is defined by a transaction

formula of the following form, where i1, . . . , in denote the input variables defined by the service

interface, o1, . . . , om its output variables, and c denotes a service consumer:

serv(i1, . . . , in) ← [preinf
serv(i1, . . . , in)]c ∧ prerw

serv(ii, . . . , in)⊗
Υ(i1, . . . , in, o1, . . . , om)⊗

Υc(i1, . . . , in, o1, . . . , om)

where Υ(i1, . . . , in, o1, . . . , om) and Υc(i1, . . . , in, o1, . . . , om) are transaction formulas in

a transaction base P which might depend on the values assigned to input variables i1, . . . , in. In

particular, Υ(i1, . . . , in, o1, . . . , om) defines a transaction formula which will cause a transition in

the global state and which assigns some objects to output variables, and Υc(i1, . . . , in, o1, . . . , om)

defines a transaction formula which will cause a transition in the service consumer knowledge.

From the definition above, we can see that a service defines a transaction, in the global

state, in the service consumer state, or in both, which always imposes preconditions to be fulfilled

at the initial state. Either Υ(i1, . . . , in, o1, . . . , om) or Υc(i1, . . . , in, o1, . . . , om) can consist only of

queries or be empty, not causing any state transition, but not both. In the former case, the execution

Chapter 3: Conceptual model of services and goals 74

of the service will not cause any update on the global state. In the latter case, no change in the

service consumer knowledge will take place as a consequence of executing the service.

Example 3.14 Let us consider the service from the previous example, and let us suppose it defines

two output variables s and n. The service could be defined as follows:

serv(f, d, p, cc) ← [preinf (f, d, p, cc)]c ∧ prerw(f, d, p, cc)⊗Υ(f, d, p, cc, s, n)⊗Υc(f, d, p, cc, s, n)

where

Υ(f, d, p, cc, s, n) ← booking(f, d, p, cc, s)⊗ hasNumber(s, n),

booking(f, d, p, cc, s) ← freeSeat(s) ∧ onflight(s, f) ∧ onDate(s, d) ∧ price(s, pr)⊗
freeSeat.del(s)⊗ bookedSeat.ins(s)⊗ forPerson.ins(s, p)⊗ charge(cc, pr)

and

Υc(f, d, p, cc, s, n) ← [bookedSeat.ins(s)]c ⊗ [onF light.ins(s, f)]c ⊗
[onDate.ins(s, d)]c ⊗ [forPerson.ins(s, p)]c ⊗ [hasNumber.ins(s, n)]c

The transaction Υ(f, d, p, cc, s, n) books a free seat, for the passenger given, on the flight

and on the date requested, and charges the credit card provided. The output variable s is assigned

the particular seat booked when the transaction is executed, and the output variable n is assigned the

number of such seat. The transaction Υc(f, d, p, cc, s, n) inserts into the service consumer database

some information relative to input and output variables, in this case, relative to the seat booked.

Let us imagine an input binding which makes the service execute as follows:

serv(flight123, tomorrow, me,myCC)

First, the precondition preinf (flight123, tomorrow, me,myCC) is evaluated on the service

consumer database, and the precondition prerw(flight123, tomorrow,me, myCC) is evaluated on

the global database. If both preconditions are fulfilled, the transaction

Υ(flight123, tomorrow,me, myCC, s, n)

will be executed, which will query the global database for some seat e.g. mySeat on the

flight and date given, will query for its price e.g. mySeatPrice, will delete from the global database

the ground atom freeSeat(mySeat), will insert into the global database the atoms bookedSeat(mySeat)

and forPerson(s, p), and will issue the transaction charge(myCC,mySeatPrice). This transaction

has to be defined in the transaction base, but it is not shown here for simplicity. Furthermore,

Chapter 3: Conceptual model of services and goals 75

the number of mySeat e.g. mySeatNumber will be retrieved from the global database. Then, the

transaction

Υc(flight123, tomorrow, me, myCC, mySeat, mySeatNumber)

will be executed, which will insert into the consumer database the ground atoms

bookedSeat(mySeat), onF light(mySeat, flight123), onDate(mySeat, tomorrow), forPerson(mySeat, me),

and hasNumber(mySeat, mySeatNumber).

¤

Example 3.15 Let us consider now a service which gives the current temperature of European

cities. It can be defined as:

serv(ci) ← [preinf (ci)]c ⊗Υ(ci, t, dg)⊗Υc(ci, t, dg)

where

preinf (ci) ↔ city(ci) ∧ inContinent(ci, europe)

that is, a city in continent Europe is required from the service consumer,

Υ(ci, t, dg) ← temperature(t) ∧ inCity(t, ci) ∧ forMoment(t, now) ∧ degreesCelsius(t, dg)

and

Υc(ci, t, dg) ← [temperature.ins(t)]c ⊗ [inCity.ins(t, ci)]c ⊗ [forMoment.ins(t, now)]c ⊗
[degreesCelsius.ins(t, dg)]c

As it can be seen, the service will not cause any state transition in the global database, i.e.,

if the current global state is s0 then the execution path of the service will be P, s0 |= serv(city) for

any city given. However, the consumer database will change from an initial state e.g. sc
0 to a state

sc
f where some ground atoms, relative to the current temperature of a city given to the service, have

been inserted.

¤

Given the definition of a service as a transaction formula, which is part of a transaction base

P , this formula will have associated certain possible execution paths. In particular, the form of the

transaction formula constraints what input bindings are valid input bindings for the service and what

Chapter 3: Conceptual model of services and goals 76

initial (global and service consumer) states are valid for service execution. Given a valid input binding

and initial states, the transaction formulas Υ(i1, . . . , in, o1, . . . , om) and Υc(i1, . . . , in, o1, . . . , om) will

be executed, and this execution will have associated (possibly non-deterministically) a given pair of

execution paths.

We can now formally define possible service executions.

Definition 3.15 (Possible service execution) Given a transaction base P , a pair of execution paths

(χ = s0, . . . , si, . . . , sf , χc = sc
0, . . . , s

c
j , . . . , s

c
g) is a possible execution of a service serv, denoted

(χ, χc) ∈ Ξserv, if and only if

1. P, sc
0 |= preinf

serv(β(i1), . . . , β(in)),

2. P, s0, . . . , sf |= prerw
serv(β(i1), . . . , β(in))⊗Υ(β(i1), . . . , β(in), γ(o1), . . . , γ(om)), and

3. P, sc
0, . . . , s

c
f |= Υc(β(i1), . . . , β(in), γ(o1), . . . , γ(om))

for some input binding β : {i1, . . . , in} → U and some assignment of objects to output

variables γ : {o1, . . . , om} → U .

This means that the initial state of the consumer satisfies information preconditions, the

initial global state satisfies real world preconditions and the execution of transaction

Υ(β(i1), . . . , β(in), γ(o1), . . . , γ(om)) causes the state transitions specified by the execution path χ,

and the execution of transaction Υc(β(i1), . . . , β(in), γ(o1), . . . , γ(om)) causes the state transitions

specified by the execution path χc.

The functionality of a service is given by its definition as a transaction formula; this trans-

action formula defines what pair of execution paths will take place given a particular input binding

and a particular pair of initial states, thus establishing a (possibly non-deterministic) mapping of

input bindings and initial states to final states. If the transaction formulas Υ(i1, . . . , in, o1, . . . , om)

and Υc(i1, . . . , in, o1, . . . , om) are deterministic and the service has n input variables, this mapping

can be expressed as a function:

F : SxSxUn → SxS
where S denotes the set of all possible states, i.e., possible sets of ground atoms in language

L(Σ) and consistent with domain ontologies O. Therefore, the function maps a pair of states (global

and consumer initial states) and of n objects from the domain of discourse (the objects assigned

to input variables of the service), to a pair of states (the final global state and the final consumer

state).

Finally, we can define effects of a service execution, both real world and information effects.

Definition 3.16 (Formal characterization of effects) Given an execution of a service by a consumer

c, defined by the pair of execution paths (χ = s0, . . . , si, . . . , sf , χc = sc
0, . . . , s

c
j , . . . , s

c
g),

Chapter 3: Conceptual model of services and goals 77

• real world effects are given by the transition from state s0 to state sf , i.e., by the change of

the global state caused by the service execution, and

• information effects are given by the transition from state sc
0 to state sc

g, i.e., by the change of

the service consumer knowledge caused by the service execution.

Intuitively, real world effects correspond to the global state change caused by the service

execution, and information effects correspond to some change in the knowledge of the consumer

about such global state.

3.3.3 Capabilities

A capability is the ability to perform some action with some value; this value can be a state

change or the provision of some information. We have seen that a service enables access to a certain

capability, i.e., that the service is a means to access a capability and, furthermore, it enables such

access in a particular way: requiring some information from the consumer and some conditions to

hold in a shared state, and defining a particular mapping from the information provided to effects.

In this setting, we can define a capability as actions, i.e., as a transaction formula which

will be incorporated in different ways to the definition of services enabling access to this capability.

Definition 3.17 (Formal characterization of a capability) A capability is defined by a transaction

formula of the form:

C(x1, . . . , xn, y1, . . . , ym) ← Υ′(x1, . . . , xn, y1, . . . , ym)⊗Υ′c(x1, . . . , xn, y1, . . . , ym)

where Υ′(x1, . . . , xn, y1, . . . , ym) is a transaction formula which causes some change in the

global state, and Υ′c(x1, . . . , xn, y1, . . . , ym) is a transaction formula which causes some change in the

knowledge of party c accessing the capability. x1, . . . , xn are parameters of the transaction formula,

and y1, . . . , ym are output parameters of the formula, i.e., some objects are assigned to y1, . . . , ym

when the transaction is executed.

Let us illustrate the definition above with an example.

Example 3.16 Let us consider the service from example 3.14. The capability this service enables

access to would be defined as:

C(x1, x2, x3, x4, y1, y2) ← Υ′(x1, x2, x3, x4, y1, y2)⊗Υ′c(x1, x2, x3, x4, y1, y2)

where

Chapter 3: Conceptual model of services and goals 78

Υ′(x1, x2, x3, x4, y1, y2) ← preinf (x1, x2, x3, x4)⊗ booking(x1, x2, x3, x4, y1)⊗ hasNumber(y1, y2),

preinf (x1, x2, x3, x4) ↔ ∃co, cd.flight(x1) ∧ hasOrigin(x1, co) ∧ city(co) ∧
inContinent(co, europe) ∧ hasDestination(x1, cd) ∧ city(cd) ∧

inContinent(cd, europe) ∧ date(x2) ∧ person(x3) ∧ dummyCard(x4)

and

Υ′c(x1, x2, x3, x4, y1, y2) ← [bookedSeat.ins(y1)]c ⊗ [onF light.ins(y1, x1)]c ⊗
[onDate.ins(y1, x2)]c ⊗ [forPerson.ins(y1, x3)]c ⊗ [hasNumber.ins(y1, y2)]c

The capability is thus given by a transaction formula that consists of the action booking,

for which some restrictions on the parameters to which the action can be applied have been defined,

and by a transaction formula which describes the insertion of certain ground atoms in the database

of the party accessing the capability, i.e., the provision of some information.

As it can be seen, the capability definition does not refer to input and output variables of a

service interface, but to general parameters of the action associated to the capability whose possible

values are constrained by predicate preinf .

A service like the one in Example 3.14 enables access to this capability by linking the

parameters of the capability to input and output variables of the service, thereby defining how

the input binding provided when executing the service will condition what effects are obtained.

Furthermore, the service defines particular information requirements (input values) and conditions

to hold in the global state in order to enable access to the capability. In particular, the service in

example 3.14 can be defined in terms of the capability formalized above in the following way:

serv(f, d, p, cc) ← [preinf (f, d, p, cc)]c ∧ prerw(f, d, p, cc)⊗ C(f, d, p, cc, s)

¤

Intuitively, a capability is given by a transaction formula which defines what actions are

associated to the capability, and possibly for what parameters (if any) they can be applied. Particular

services enabling access to this capability will impose real world and information preconditions for

the execution of the service. Furthermore, services will determine what values are given to the

parameters of the capability, either by linking these parameters to input and output variables or in

any other way e.g. assigning some fixed value to them.

Therefore, a capability is defined by a transaction formula which can result, if executed, in

the realization of a particular set of effects.

Chapter 3: Conceptual model of services and goals 79

3.3.4 Goals

Goals define the needs consumers have, which they expect to get resolved by using some

service. Therefore, given the current state, goals define what final state has to be reached and what

information has to be known by the consumer, which leads to the following definition.

Definition 3.18 (Formal characterization of a goal) A goal of a party c is defined as a pair (sf , sc
g)

where:

• sf is a global state which has to be reached, and

• sc
g is a state of party c which has to be reached.

We give an illustrative example in the following.

Example 3.17 Let us consider the goal in Example 3.8. Given a current global state s0 and a

current party state sc
0, this goal can be defined by a pair of states (sf , sc

g) such that:

• sf = s0 + {bookedSeat(se), forPassenger(se, rubenLara)}

• sc
g = sc

0

for some seat se such that:

sf |= seat(seat) ∧ onF light(se, flight4321)

This means that the existence of a booked seat for the person desired and on the flight

given must be entailed at state sf reached after the execution of a service, and that no change in

the knowledge of party c is required.

¤

Example 3.18 Let us now consider the same party as in the previous example, from the same

current states, wants to know the current temperature in Madrid. In this case, his goal is defined

by a pair of states (s′f , s′cg) such that:

• s′f = s0

• s′cg = sc
0 + {temperature(t), inCity(t,madrid), forMoment(t, now)}

for some temperature t such that:

s0 |= temperature(t) ∧ inCity(t, madrid) ∧ forMoment(t, now)

¤

Chapter 3: Conceptual model of services and goals 80

3.4 Frameworks for the description of services

Different frameworks exist for the modelling of services, namely: WSMO [de Bruijn et al.,

2005a], OWL-S [Martin et al., 2004], SWSO [Battle et al., 2005d], and WSDL-S [Akkiraju et al.,

2005]. All these frameworks have been submitted to the W3C for their consideration as a standard

for the semantic (formal) description of services. Furthermore, the Semantic Annotations for Web

Services Description Language Working Group of the W3C 2 have worked on building the SAWSDL

[Farrell and (editors), 2007] specification, which defines mechanisms for adding semantic annotations

to WSDL 2.0 descriptions.

From these frameworks and specifications, we will focus in the next section on WSMO,

of which the PhD candidate is a co-author. Afterwards, we will more briefly summarize other

frameworks and how they differ from WSMO.

3.4.1 The WSMO Framework

The Web Service Modeling Ontology (WSMO) aims at describing all relevant aspects re-

lated to general services which are accessible through a Web service interface with the ultimate goal

of enabling the (total or partial) automation of the tasks (e.g., discovery, selection, composition,

mediation, execution, monitoring, etc.) involved in both intra- and inter-enterprise integration of

services. It must be noted, though, that WSMO can be used for the description of general services

in the sense introduced in Section 3.2, as its underlying model is not in general influenced by the

particular technology used, i.e., WSMO, despite its name, does not have a strong bias towards Web

service technologies, but it can be used to describe general services.

WSMO has its conceptual basis in the Web Service Modeling Framework (WSMF) [Fensel

and Bussler, 2002], refining and extending this framework and developing a formal ontology and set

of languages. In the following, we describe the core elements of the WSMO framework; WSML,

which serves both as a general purpose ontology language and as the language for providing WSMO

descriptions, has been introduced in Chapter 2, Section 2.2.5.3.

3.4.1.1 Core elements

The core, top-level elements of WSMO are: ontologies, (web) services, goals and mediators

(see Figure 3.1), which we introduce next. The WSML [de Bruijn et al., 2005c] family of languages,

introduced in the previous Chapter, is used for writing down WSMO descriptions of Web services,

goals, ontologies, and to some extent mediators.
2http://www.w3.org/2002/ws/sawsdl/

Chapter 3: Conceptual model of services and goals 81

Goals

Mediators

Ontologies Web Services

Figure 3.1: WSMO core elements

Ontologies provide the terminology used by other WSMO elements to describe the relevant as-

pects of the domain of discourse, and they constitute an agreed common terminology. This use of

ontologies coincides with the use of the set O of domain ontologies our descriptions refer to in the

formal characterization of our conceptual model (see Section 3.3.1).

Ontologies in WSMO include non-functional properties, used to describe non-functional

aspects such as creator, creation date, natural language descriptions, etc. The elements defined by

the Dublin Core Metadata Initiative [Weibel et al., 1998] are used as a starting point, and other

properties such as the version of the ontology are added. Furthermore, ontologies imported for the

definition of a particular ontology following a modular approach [Roman et al., 2005] are declared,

as well as mediators necessary for the alignment of imported ontologies (mediators will be later

explained in more detail).

Ontologies, as described in Chapter 2, Section 2.2.1, define concepts, relations, functions,

instances and axioms. For details on how these elements are modelled in WSMO see [Roman et al.,

2005]. An excerpt of an example ontology definition is shown in Listing 3.1.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−rule”

namespace { ”http://www.example.org/ontologies/example#”,

dc ”http://purl .org/dc/elements/1.1#”,

foaf ”http://xmlns.com/foaf/0.1/”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#”,

loc ”http://www.wsmo.org/ontologies/location#”,

oo ”http://example.org/ooMediator#” }

ontology ”http://www.example.org/ontologies/example”

nfp

dc#description hasValue ”fragments of a family ontology to provide WSML examples”

dc#language hasValue ”en−US”

endnfp

usesMediator ”http://example.org/ooMediator”

importsOntology { ”http://www.wsmo.org/ontologies/location”,

”http://xmlns.com/foaf/0.1” }

Chapter 3: Conceptual model of services and goals 82

concept Human

nonFunctionalProperties

dc#description hasValue ”concept of a human being”

endNonFunctionalProperties

hasName ofType foaf#name

hasParent inverseOf(hasChild) impliesType Human

hasChild impliesType Human

hasAncestor transitive impliesType Human

relation ageOfHuman (ofType Human, ofType integer)

nfp

dc#relation hasValue {FunctionalDependencyAge}
endnfp

concept Man subConceptOf Human

nfp

dc#relation hasValue ManDisjointWoman

endnfp

concept Woman subConceptOf Human

nfp

dc#relation hasValue ManDisjointWoman

endnfp

axiom ManDisjointWoman

definedBy

!− ?x memberOf Man and ?x memberOf Woman.

concept Parent subConceptOf Human

nfp

dc#description hasValue ”Human with at least one child”

endnfp

hasChild impliesType (1 ∗) Human

concept Girl subConceptOf Woman

nfp

dc#relation hasValue CompletenessOfChildren

endnfp

concept Boy

nfp

dc#relation hasValue {ABoy,CompletenessOfChildren}
endnfp

/∗
∗ Boy is a Man and a Child, and every Man which is also a Child is a Boy

∗/
axiom ABoy

definedBy

?x memberOf Boy equivalent ?x memberOf Man and ?x memberOf Child.

/∗
∗ Every child has to be either a boy or a girl (or both).

Chapter 3: Conceptual model of services and goals 83

∗/
axiom CompletenessOfChildren

definedBy

!− ?x memberOf Child and naf (?x memberOf Girl or ?x memberOf Boy) .

instance Mary memberOf {Parent, Woman}
nfp

dc#description hasValue ”Mary is parent of the twins Paul and Susan”

endnfp

hasName hasValue ”Maria Smith”

hasChild hasValue { Paul, Susan }

instance Paul memberOf { Parent, Man }
hasName hasValue ”Paul Smith”

hasChild hasValue George

Listing 3.1: Example ontology [de Bruijn et al., 2005e]

(Web) services are defined in WSMO as computational entities which are able (by invocation)

to achieve users’ goals. Services are understood in WSMO as the actual value provided by the

invocation of a Web service. Thereby, a Web service might provide different services, such as for

example Amazon can be used for acquiring books as well as to find out an ISBN number of a book.

webService ”http://example.org/Germany/BirthRegistration”

nfp

dc#title hasValue ”Birth registration service for Germany”

dc#type hasValue ”http://www.wsmo.org/TR/d2/v1.2/#services”

wsml#version hasValue ”Revision : 1.9”

endnfp

usesMediator { ”http://example.org/ooMediator” }

importsOntology { ”http://www.example.org/ontologies/example”,

”http://www.wsmo.org/ontologies/location” }

capability

sharedVariables ?child

precondition

nonFunctionalProperties

dc#description hasValue ”The input has to be boy or a girl

with birthdate in the past and be born in Germany.”

endNonFunctionalProperties

definedBy

?child memberOf Child

and ?child [hasBirthdate hasValue ?brithdate]

and wsml#dateLessThan(?birthdate,wsml#currentDate())

and ?child [hasBirthplace hasValue ?location]

and ?location [locatedIn hasValue oo#de]

or (?child [hasParent hasValue ?parent]

and?parent[hasCitizenship hasValue oo#de]) .

Chapter 3: Conceptual model of services and goals 84

assumption

nonFunctionalProperties

dc#description hasValue ”The child is not dead”

endNonFunctionalProperties

definedBy

?child memberOf Child

and naf ?child [hasObit hasValue ?x].

effect

nonFunctionalProperties

dc#description hasValue ”After the registration the child

is a German citizen”

endNonFunctionalProperties

definedBy

?child memberOf Child

and ?child [hasCitizenship hasValue oo#de].

interface

choreography ”http://example.org/tobedone”

orchestration ”http://example.org/tobedone”

Listing 3.2: Example WSMO Web service [de Bruijn et al., 2005e]

An example service description can be seen in Listing 3.2. The main elements of a WSMO

Web service are:

• Non-functional properties, which are aspects of the Web service that are not directly related

to its functionality e.g. network-related Quality of Service (QoS), the owner of the web service,

etc. (see [Toma and Foxvog, 2006] for details).

• Imported ontologies and mediators. This element is a declaration of what particular ontologies

are imported, providing the domain terminology used in the description of the Web service.

When mediation is needed, the mediators used for resolving the alignment of ontologies are

also declared.

• Capability, which in WSMO describes the functionality offered by a given Web service; it is

expressed by the state of the world before the Web service is executed and the state of the

world after successful Web service provision. The description of a capability is given in WSMO

in terms of the following elements:

– Non-functional properties, imported ontologies and mediators specific for the capability.

– Preconditions specify the required state of the information space before the Web service

execution; i.e., they specify what information a Web service requires, in order to provide

its value. Preconditions constrain the set of states of the information space such that each

Chapter 3: Conceptual model of services and goals 85

state satisfying these constraints can serve as a valid starting state (in the information

space) for executing the Web service in a defined manner.

– Assumptions describe the state of the world which is assumed before the execution of the

Web service. Otherwise, the successful provision of the Web service is not guaranteed.

Unlike preconditions, assumptions are not necessarily checked by the Web service. This

distinction is made in order to allow an explicit notion of conditions which exist in the

real world, but which exist outside the information space.

– Postconditions describe the state of the information space that is guaranteed to be reached

after the successful execution of the Web service; it also describes the relation between

the information that is provided to the Web service and the information results of its

execution.

– Effects describe the state of the world that is guaranteed to be reached after the successful

execution of the Web service i.e., if the preconditions and the assumptions of the Web

service are satisfied.

– Shared variables represent the variables that are shared between the logical expressions

describing preconditions, postconditons, assumptions and effects.

• Interfaces. An interface describes how the functionality of the Web service can be achieved

(i.e., how the capability of a Web service can be fulfilled) by providing a twofold view of the

operational competence of the Web service: a) the choreography, which decomposes a capabil-

ity in terms of interaction with the Web service, and b) the orchestration, which decomposes a

capability in terms of functionality required from other Web services. This distinction reflects

the difference between communication and cooperation. The choreography defines how to com-

municate with the Web service in order to consume its functionality. The orchestration defines

how the overall functionality is achieved by the cooperation of more elementary Web service

providers. The Web service interface is meant primarily for behavioral description purposes of

Web services and is presented in a way that is suitable for software agents to determine the

behavior of the Web service

It can be seen that the conceptual elements used by WSMO do not always coincide with

the conceptual model presented in this Chapter. However, we can establish the following relations:

• A WSMO web service corresponds to a service in our model, which is in agreement with the

SOA reference model defined by OASIS [MacKenzie et al., 2006]. What the WSMO models

calls a service actually corresponds to the concept of realized effects in our model, i.e., to the

different effects that can be realized by service execution.

Chapter 3: Conceptual model of services and goals 86

• The definition of a general WSMO capability actually corresponds to the service functionality

in our model; a capability, as understood in our model, can be seen as equivalent to what

WSMO calls a capability but without references to the state of the world and the information

state before a particular service is executed. Therefore, WSMO does not explicitly distinguishes

between the functionality of a service and the underlying service capability (see Section 3.2).

• The elements that are introduced by WSMO for defining a capability can be mapped to

concepts in our model. In particular: a) WSMO preconditions correspond to information pre-

conditions, b) WSMO assumptions correspond to real world preconditions, c) WSMO post-

conditions correspond to information effects, and d) WSMO effects correspond to real-world

effects.

Goals are representations of objectives for which fulfillment is sought through the execution of

Web services; they can be descriptions of Web services that would potentially satisfy user desires.

goal ”http://example.org/Germany/RegisterGeorge”

nfp

dc#title hasValue ”Goal of getting a Registration for Paul’s son George”

dc#type hasValue ”http://www.wsmo.org/TR/d2/v1.2/#goals”

wsml#version hasValue ”Revision : 1.9”

endnfp

usesMediator { ”http://example.org/ooMediator” }

importsOntology { ”http://www.example.org/ontologies/example”,

”http://www.wsmo.org/ontologies/location” }

capability

effect havingRegistrationForGeorge

nfp

dc#description hasValue ”This goal expresses Paul’s desire

to register his son with the German birth registration board.”

endnfp

definedBy

George[hasCitizenship hasValue oo#de] .

Listing 3.3: Example goal [de Bruijn et al., 2005e]

An example goal is given in Listing 3.3. The elements that constitute a goal are:

• Non-functional properties, similar to the ones used for Web services.

• Imported ontologies, which provide the domain vocabulary for describing the goal.

• A declaration of the mediators used. They can be ooMediators or ggMediators; we will explain

below what exactly these mediators are.

Chapter 3: Conceptual model of services and goals 87

• A capability, which is a description of the capability the sought service must offer.

• An interface, which represents the interface sought.

WSMO goals are essentially the same conceptual element introduced by our model.

Mediators. Mediation is concerned with handling heterogeneity, i.e., resolving possibly occur-

ring mismatches between resources that ought to be interoperable [Roman et al., 2005]. WSMO

mediators aim at resolving data-level mediation, protocol-level mediation, i.e, mediation between

heterogeneous communication protocols, and process-level mediation, i.e., mediation between het-

erogeneous business processes.

The main elements of a mediator are the source and target resources mediated, non-

functional properties of the mediator, and the mediation service, which defines the mediation facility

applied for resolving mismatches. A mediation service is comprised of mediation definitions that

resolve mismatches, and a facility of executing this mappings.

Four types of mediators are used in WSMO: i) ooMediators, which resolve mismatches

between ontologies and provide mediated domain knowledge specifications to the target component,

ii) ggMediators, which connect goals allowing the creation of a new goal from existing goals and thus

defining goal ontologies, iii) wgMediators, which link a Web service to a goal, resolve terminological

mismatches, and states the functional difference (if any) between both, and iv) wwMediators, which

establish interoperability between Web services that are not interoperable a priori.

The concept of mediators is not introduced in our conceptual model, as we assume het-

erogeneity problems are transparently resolved. While in a real setting the definition and usage of

mediators are necessary, we do not explicitly include them in our model as resolving data, protocol

and process-level heterogeneity is beyond the scope of our work.

In general, the model of services and goals used by WSMO is quite in line with our con-

ceptual model. However, there are some differences which have to be kept in mind when WSMO

is used, as it will be the case, for describing services following the conceptual model elaborated in

this Chapter. We can summarize as follows how elements in our conceptual model can be mapped

to WSMO elements, keeping in mind the differences outlined above:

• A capability can be mapped to a WSMO capability without preconditions and assumptions.

• Information effects can be mapped to WSMO postconditions, and real-world effects to WSMO

effects.

• A service can be mapped to a WSMO Web service.

Chapter 3: Conceptual model of services and goals 88

ServiceProfile ServiceGrounding
ServiceModel

Resource Service

presents

describedBy

supports

provides

How it works...
What the service does... How to access it...

Figure 3.2: OWL-S upper ontology

• Information preconditions can be mapped to WSMO preconditions, and real-world precondi-

tions to WSMO assumptions.

• A service execution can be mapped to a WSMO web service execution, and realized effects to

the understanding of a (concrete) service in WSMO.

• A service functionality can be mapped to a general WSMO capability.

• A service interface can be mapped to a WSMO interface.

• A goal can be mapped to a WSMO goal whose capability does not have preconditions or

assumptions.

• Consumer knowledge available cannot be directly mapped to any WSMO element. However,

preconditions in WSMO goals can be seen as a declaration of consumer knowledge available

for achieving this particular goal.

• The global state of the world is not captured by any WSMO elements. However, this was

expected as such global state is external to services and goals.

3.4.2 Other frameworks for the semantic description of services

3.4.2.1 OWL-S

OWL-S [Martin et al., 2004] is an effort to define an ontology for the semantic markup of

services, intended to enable automation of service discovery, invocation, composition, interoperation

and execution monitoring by providing appropriate semantic descriptions of services. The upper

ontology for services defined by OWL-S can be seen in Figure 3.2. In the following, we briefly

outline the core elements of OWL-S.

Chapter 3: Conceptual model of services and goals 89

Service. The concept of service serves as an organizational point of reference for declaring services;

every service is declared by creating an instance of the service concept that links the profile, service

model and grounding of a given service through the properties presents, describedBy, and supports,

respectively.

Service profile. The profile describes what the service does at a high level, describing its function-

ality and other non-functional properties that are used for locating services based on their semantic

description. A service profile is used both to describe the service offered by the provider and the

service desired by the requester.

The profile of a service can be positioned in a hierarchy of profiles. However, this is optional,

and a concrete profile can be directly defined as an instance of the profile class.

The OWL-S service profile includes human-readable information, contained in the prop-

erties serviceName, textDescription and contactInformation. A service categorization can also be

given.

The value of a service is given by the service profile in terms of the information transfor-

mation performed by the service and the state change as a consequence of the service execution.

The former is captured by defining the inputs and outputs of the service, and the latter is defined in

terms of preconditions and effects. Inputs, outputs, preconditions and effects are normally referred

to as IOPEs.

Service model. The model of a service describes how the service achieves its functionality, in-

cluding the detailed description of its constituent processes (see [Martin et al., 2004] for further

details).

Service grounding. The grounding describes how to use the service, i.e. how a client can actually

invoke the service (see [Martin et al., 2004] for further details).

The OWL-S model roughly coincides with the conceptual model introduced in this Chapter

with respect to services. In particular, the concept of service used by OWL-S basically coincides

with our notion of service (see [Martin et al., 2004]), inputs with information preconditions, outputs

with information effects, preconditions with real-world preconditions, and effects with real-world

effects. However, the service profile can coincide with either the service capability (if no inputs and

preconditions are defined) or the service functionality, if IOPEs are fully defined.

As for goals, OWL-S does not have a separate notion of goal, but a service profile can be

used to describe services or consumer’s goals. However, if a service profile is used to describe a goal,

the outputs and effects of such profile coincide with the information and real-world effects of our

model, respectively.

Chapter 3: Conceptual model of services and goals 90

Regarding the language used by OWL-S descriptions, it must be noted that OWL-S is an

ontology specified in OWL. Actual OWL-S service specifications are created by sub-classing and

instantiating the classes of OWL-S. Thus, one can say that the OWL language together with the

OWL-S vocabulary makes up the OWL-S Web Service specification language.

Furthermore, OWL-S allows the user a choice of different languages for the specification

of preconditions and effects for the specification of preconditions and effects e.g. SWRL [Horrocks

et al., 2004], KIF3 or DRS [McDermott, 2004].

A detailed comparison of the differences and similarities between WSMO and OWL-S can

be found in [Lara et al., 2004c] and [Lara et al., 2005].

3.4.2.2 SWSF

The Semantic Web Services Framework (SWSF) [Battle et al., 2005a] is a relatively recent

attempt towards a Semantic Web Service annotation framework that greatly benefits from previous

work with its roots in OWL-S and the Process Specification Language (PSL), standardised by ISO

18269. This framework is a joint proposal by the Semantic Web Services Language Committee

and was submitted to the W3C [Battle et al., 2005d]. SWSF includes the Semantic Web Services

Language (SWSL) [Battle et al., 2005b] and the Semantic Web Services Ontology (SWSO) [Battle

et al., 2005d]. SWSO4 can be seen as an extension or refinement of OWL-S. There are many

similarities with the OWL-S ontologies, but the important difference is the expressiveness of the

underlying language which is, instead of OWL, a richer language called the Semantic Web Service

Language (SWSL).

Conceptually SWSF can be seen similar to OWL-S and thus we will not discuss it in more

detail but refer the reader to the correspondent W3C submission [Battle et al., 2005a]. We will

only note here that SWSO is the only approach which explicitly allows for giving different views of

the value of the same service, which is an interesting feature but elaborated in little detail in the

specification.

3.4.2.3 WSDL-S and SAWSDL

WSDL-S [Akkiraju et al., 2005] is a rather minimalist approach which aims at a direct

extension of existing traditional Web Service descriptions in WSDL with Semantics (indicated by the

last letter of the acronym). WSDL-S augments Web Service descriptions in WSDL with semantics by

adding respective annotation tags to the XML schema of WSDL, the proposal picks aspects similar

to those in WSMO capability definitions or OWL-S profiles, such as pre-condition and effects. This

method keeps the semantic model outside WSDL, making the approach impartial to any ontology
3http://logic.stanford.edu/kif/kif.html
4The PhD candidate has been a reviewer of the SWSO submission to the W3C.

Chapter 3: Conceptual model of services and goals 91

representation language. Hence WSDL-S does not fix a specific formalism for semantic descriptions

and accordingly also does not claim to be a fully-fledged description framework/ontology, but rather

simply adds some useful attributes to WSDLs XML tags in order to reference semantic annotations.

SAWSDL [Farrell and (editors), 2007] follows a very similar approach to (and has a consid-

erable part of its roots in) WSDL-S, defining mechanisms for adding semantic annotations to WSDL

2.0 descriptions.

Both approaches do not aim at providing a model of services, but rather to semantically

annotate certain aspects of a service, most of which are syntactically described by WSDL. Therefore,

a mapping to our conceptual model cannot be established.

3.5 Summary

SOA is an increasingly used concept, and both the meaning of the term itself and of

the concepts involved in this paradigm are sometimes unclear as different works and articles use

them differently. In this Chapter, we have, based on the SOA reference model defined by OASIS,

presented a conceptual model of the main elements and concepts which will be relevant for the

location of services based on the value they provide. This model has the purpose of clarifying and

assigning an unambiguous meaning to the concepts we will refer to in the following Chapters.

We have both introduced the concepts that compose our conceptual model, and formally

characterized using Transaction Logic the nature of the artifacts relevant to our work. This formal-

ization is not meant to be directly usable for automating the location of services, but to serve as a

consistent basis for understanding what services, capabilities, goal, etc. are, which will help us to

comprehend the problem we are facing and how we resolve it. We will in the following Chapters in-

troduce simplifications over the formalization of the model introduced in this Chapter, so that we can

explicitly describe the relevant concepts of the model necessary for (semi)automating the location

of services in a way that is manageable and exploitable using existing reasoning infrastructure.

Finally, we have briefly introduced the major frameworks and efforts for adding formal

semantics to services and related concepts, and we have outlined how the model underlying these

frameworks relates to our conceptual model.

Chapter 4

A framework for service discovery

based on F-Logic and Transaction

Logic

4.1 Introduction

The nature of services and goals, presented in Chapter 3 and formally characterized using

Transaction Logic, suggests the exploitation of Transaction Logic reasoning for the location of ap-

propriate services for a goal at hand. In particular, a modelling and description of services amenable

to their hypothetical execution (see Chapter 2, Section 2.2.4) can enable the hypothetical obtention

of the effects of the execution of a given service and their evaluation with respect to the effects and

the final state expected by the consumer as described by his goal.

In this Chapter, we summarize the work we carried out to automate the location of services

based on Transaction Logic1, the results obtained, and the limitations found. This work has been

presented in [Kifer et al., 2004] and later adapted by Michael Kifer in [Kifer, 2005] to illustrate the

possible use of the SWSL-Rules language [Battle et al., 2005b] for automating service discovery. It

must be kept in mind that this work was a first attempt we made for enhancing service discovery;

limitations were found which motivated the initiation of our efforts to find a more comprehensive

model which can properly work in different situations and which grants users more flexibility. How-

ever, we think it is interesting to present this first work here, as it has some interesting features and

it has served to motivate the work which will be presented in the following chapters.
1This work has been done in cooperation with Michael Kifer, Axel Polleres, Chang Zhao, Uwe Keller, Holger

Lausen and Dieter Fensel.

92

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 93

The original work published in [Kifer et al., 2004] uses the model of services and goals

given by WSMO, which is slightly different from our conceptual model (see the previous Chapter).

Furthermore, the use of Transaction Logic was limited to the reasoning capabilities provided by

FLORA-2, which is not a real Transaction Logic reasoning engine and could only be used to

simulate hypothetical executions. In this Chapter, we summarize the original work presented in

[Kifer et al., 2004], which refers to WSMO concepts, and later relate it to the conceptual model (and

its formal characterization) presented in Chapter 3.

While the work presented has been based on the conceptual model provided by WSMO

of goals, services, mediators, and ontologies (see Chapter 3, Section 3.4.1), we have relied not on

WSML but on F-Logic for describing these elements. The reason was that, by the time this work

was accomplished, WSML was still under development and, furthermore, there existed reasoning

infrastructure which enabled the (limited) simulation of Transaction Logic reasoning for F-Logic.

F-Logic is a frame-based logic that provides higher-order features based on HiLog [Chen et al., 1993],

and whose Horn version has been used.

FLORA-2 has been used as an F-Logic reasoner which, furthermore, supports enough

of Transaction Logic reasoning to realize the approach studied. An additional reason for using

FLORA-2 has been its support for the reification of complex formulas and rules, which allows us to

treat descriptions of preconditions and of effects as values of some attribute of a service. Although

reification (or self-reference) is capable of producing logical paradoxes, it is shown in [Yang and

Kifer, 2003] that reification of queries does not cause paradoxes in FLORA-2, and [Kifer et al.,

2004] shows that the reification of rules is also free of paradoxes in FLORA-2.

We start by introducing the formalization and proof obligations used in [Kifer et al., 2004],

followed by a prototype realization of the framework proposed based on the FLORA-2 reasoner (see

Chapter 2, Section 2.2.4, and http://flora.sourceforge.net/). Finally, our conclusions, with special

emphasis on discussing: a) how this work relates to the model presented in the previous Chapter,

and b) the limitations of this approach which motivated the general model which will be presented

in the next chapters, are presented.

4.2 Proof obligations and formalization

Logic has long been used for precise representation of statements about real-world objects

or abstract artifacts. A suitable logic can be used to formalize WSMO goals, capabilities, mediators,

as well as the proof obligations that must be established in order to determine whether a match

exists between a user request and the value of available services, i.e., to determine whether a given

service can be used to achieve a particular goal. However, there exist problems with the usability

of logical descriptions and, therefore, with the scalability in terms of available human resources of

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 94

Figure 4.1: Categories of actors in contact with the logical mechanism for discovery

using this type of descriptions, as described next.

4.2.1 Formalization and scalability issues

Dealing with logical expressions is beyond the skills of most users and, therefore, in our work

we envisioned three categories of people who would be in direct contact with the logical mechanisms

used for automatically locating suitable services (see Figure 4.1):

1. Consumers who have no training in knowledge representation. These users will have access to

pre-selected service discovery queries, which they can choose from a menu or construct using

simple graphical tools. Such queries are the main components of consumer’s goals.

In general, this type of users is not expected to have a direct contact with logical descriptions,

but they will instead make use of an ontology, specially suited for these users, which defines

what goals can be expressed abstracting users from the underlying logical apparatus. This

ontology is called the goal ontology, and we will see some examples of the type of goals it can

define in Section 4.3.

2. Service providers. These users might not necessarily be more skilled logicians than the rest

of the public, but they can hire skilled knowledge engineers. Still, the number of businesses

who might want to share in the Semantic Web infrastructure can be potentially large, and

it is unlikely that sufficient number of highly skilled engineers will be available to meet the

demand. Therefore, in our work we tried to impose only modest requirements to the degree

of sophistication of the engineers who might turn up in this type of labor market. The upshot

of this is that the value of services should be written to relatively simple ontologies and use

relatively simple types of rules.

In general, service providers will make a limited direct use of logical descriptions, and also

pre-defined ontologies will be used to ease the task of service providers of describing the value

of their services. More details will be provided in Section 4.3.

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 95

3. Mediation providers. The bulk of logical expertise is expected to reside with companies whose

business will be to provide ontology mediation. Mediators will bridge the gap between the

ultimate simplicity of goal ontologies used by the clients of semantically described services and

the relative simplicity of the service descriptions supplied by service providers. Since mediators

link ontologies rather than customers and businesses, the number of skilled workers required

to support such an infrastructure can be low enough to make the infrastructure scalable in

terms of human resources.

In general, service providers and specially service consumers are not expected to have the

skills to directly deal with complex logical descriptions. Thus, pre-defined and reusable concepts

that capture common needs of consumers and common providers’ offers will be used, defined by

appropriate ontologies. Mediation providers will act as middle agents which will link common needs

and common offers defined by such ontologies, as depicted in Figure 4.1. More detailed examples

will be provided in Section 4.3.

4.2.2 Proof obligations

A proof obligation is a logical entailment that needs to be established in order for a service to

be considered a match for a discovery goal, i.e., to be considered a candidate to fulfill the consumer’s

goal. A proof obligation is defined in terms of a set of imported ontologies O, a goal G, a service

capability C, and a wgMediator wg, as defined by WSMO. Here, G and C are logical formulas for

the goal and the service capability, respectively.

The effects and the precondition parts of the capability C are denoted as Ceff and Cprec.

Ceff is a logical formula that states what the service guarantees to be true after the execution. Cprec

is a formula that must be true before the service execution; typically it contains predicates on the

input provided by the requester and predicates on the state of the world right before the execution.

Notice that conditions over the information space, i.e., over the consumer knowledge and conditions

over the state of the world has not been separated, for simplicity, in the descriptions of WSMO

service capabilities. In this setting, Cprec can refer to both WSMO assumptions and preconditions,

and Ceff can refer to both WSMO postconditions and effects.

A wgMediator wg performs two main functions:

• It takes a goal, G, and constructs a request, Inwg(G), suitable for the services that are mediated

by this particular mediator. This is needed because the goal ontology and the service ontologies

might be very different.

• A mediator also needs to convert the goal into a postcondition expressed in the service ontology,

which is to be tested in the after-state of the service against the effects of the service. This

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 96

expression is denoted as Postwg(G).

This means that the mediator will be responsible for the translation from the terminology

used by the consumer into the terminology used by the provider. We will see particular examples

of this type of translation in the following Section, in which a particular realization of mediators in

FLORA-2 is presented.

Translations performed by wgMediators can be quite complex, because goals can be ex-

pressed in a very high-level syntax in order to make them palatable to naive users and service

capabilities can be rather simple in order to make it inexpensive to specify them by a knowledge

engineer.

We consider two different notions of a match. In one, which we call service discovery, the

user supplies a general goal G and wants to check if a service can execute in a way such that the

requester goal will be achieved. This means that (after the appropriate translations) the goal is

guaranteed to be true in the after-state of the service. This is formally stated as the following proof

obligation:

O, Inwg(G), Ceff |= Postwg(G) (4.1)

The formula above means that, given the request expressed by the goal and translated into

a terminology the service can understand, Inwg(G), and given the value offered by the service, Ceff ,

the effects expected by the service consumer and translated into the service terminology, Postwg(G),

hold.

Service contracting comes into play after a potentially suitable service has been discovered.

In contracting, given an actual input to a specific service, we want to guarantee that this input does

indeed lead to the results expected by the requester.

This goes beyond the proof obligation for discovery. First, at this stage concrete input

may be required (e.g., a credit card number). Second, this input needs to be checked against the

precondition specified in the service capability. Third, the specification of the effects of the service

and the requester’s goal might be more complex. Therefore, the following proof obligation has to be

checked:

O, Inwg(G′), Ceff ′ |= Cprec ∧ Postwg(G′) (4.2)

The difference between (4.2) and (4.1) is that more complex versions of the goal and effects

might be used for contracting (denoted G′ and Ceff ′) and that the precondition is checked. The

proof obligation (4.2) can also be used for more precise discovery, which takes precondition into

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 97

account. This may be appropriate in situations where the user is willing to provide complete input

during the discovery process.

In general, the difference between discovery and contracting is that, at discovery time, we

only check whether different services can in general provide the value required by the goal, while at

contracting time we select a particular service and want to check whether the usage of this service

with particular inputs will yield the desired results.

The discovery and contracting queries. In proof obligations (4.1) and (4.2) it is assumed that

we are dealing with a particular service and just need to test if it matches the goal. In practice, we

need to go over all the services and test which ones match. The problem with this is that neither

Inwg(G) nor Ceff are part of a global knowledge base, and Ceff is different for different services.

Since the effects in (4.1) and (4.2) are different for different services being tested, we need to find a

general discovery query that could yield all the matching services.

In this work, the answer has been provided by Transaction Logic and, in particular, by

hypothetical assertions. This enables us to look at each service separately and hypothetically insert

the effects into the knowledge base. The goal can then be tested in the new hypothetical state.

If it is true, the service is declared a match. To be able to refer to different services in the same

proof obligation, we change our notation to make service effects and goal postconditions relative to

a service. Therefore, we will write Ceff (Serv) and Postwg(G,Serv), where Serv is a variable that

represents a service. This idea is logically expressed as follows, where ♦ is the hypothetical operator

in Transaction Logic (see Chapter 2, Section 2.2.4):

O |= ∃Serv ♦(insert{Inwg(G), Ceff (Serv)} ⊗ Postwg(G,Serv)) (4.3)

The above query is looking for services such that ♦(insert{Inwg(G), Ceff (Serv)}⊗Postwg(G,Serv))

holds in the models of the imported ontologies O. The symbol ⊗ is a sequence operator, which says

that first the effects and the input must be (hypothetically) asserted and then the goal must be

tested. Since the assertion is hypothetical, it is rolled back after the test is done. Query (4.3) is the

basis of the prototype realization of the framework, described in the next section.

A similar query can be constructed for (4.2), considering that the service we test is a

particular service serv and the contracting goal to be resolved is G′:

O |= ♦(insert{Inwg(G′)} ⊗ Cprec(serv)⊗ insert{Ceff (serv)} ⊗ Postwg(G′, serv)) (4.4)

In the formula above, we first insert the request associated to G′, then check whether the

preconditions of service serv are fulfilled, and only then assume the effects of the service hold and

evaluate whether the consumer goal has been fulfilled.

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 98

4.3 Prototype realization

This Section shows fragments of a larger running example that illustrates the FLORA-2

implementation of the proof obligations defined in the previous section. The complete example is

given in Appendix A.

A geographic ontology. We start with a simple domain ontology that represents geographic

regions and cities. In FLORA-2, the symbols that begin with a lowercase letter are constants that

represent objects, and capitalized symbols (and symbols beginning with a “ ” are variables. In our

taxonomy, europe, germany, usa, america, etc., denote classes of cities. Thus, europe is a class

whose members are all the cities in Europe, usa is a class whose members are U.S. cities, and so

on. The subclass relationship is denoted using “::”, i.e., austria :: europe states that austria is a

subclass of europe (which implies that all Austrian cities are also European cities). To specify that

an object is a member of a class, we use the symbol “:”. For instance, paris : france states that

Paris is a city in France. A fragment of such a geographic taxonomy is shown below:

germany :: europe. stonybrook : nystate. frankfurt : germany.

austria :: europe. innsbruck : tyrol. paris : france.

france :: europe. lienz : tyrol. nancy : france.

tyrol :: austria. vienna : austria. usa :: america.

bonn : germany. nystate :: usa

F-logic classes are also viewed as objects and therefore they can be members of other classes. For

instance, europe is a region, and so is america. In the above statements these two symbols played

the role of classes, but in the following statements they play the role of objects that are members of

class region.

europe : region. america : region.

USA, Austria, and Germany are also regions and so is Tyrol. Rather than listing all of them explicitly

as members of class region, we use a rule to define all regions:

Region : region : − AnotherRegion : region and Region :: AnotherRegion.

The rule above means that, if a given constant a is a subclass of another constant b and

this constant b is a member of the region class, then a is also a member of the region class. For

example, as we have that:

europe : region. germany :: europe.

we can infer that:

germany : region.

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 99

4.3.1 Goals

We assume that goals have the form

goalId [requestId -> someId, query -> someQuery]

This means that goals are represented as objects with certain properties. In F-logic, a

statement of the above form means that goalId is a symbol that represents the object Id of a goal (it

can look, for example, like g123) and that goal-objects have attributes requestId and query. The

attribute requestId represents the Id of the request in case it is desirable to have it separate from

the Id of the goal (for instance, if goals are intended to be reused). The attribute query represents

the query that corresponds to the goal. The symbol -> means that these attributes are functional;

the symbol ->> (used in service descriptions below) means that the attribute is set-valued.

Our use case assumes four types of queries:

searchTrip(from, to) tripContract(servId, from, to, date, crCard)

searchCitipass(loc) citipassContract(servId, city, date, crCard)

The queries above are part of a goal ontology, i.e., they correspond to pre-defined and

reusable objectives consumers might have, and service consumers will describe their goals in terms of

such pre-defined queries, thus abstracting users from direct contact with complex logical expressions.

The two queries on the left-hand side are used to discover services that can sell tickets from

one location to another and citipasses for various cities. The two queries on the right-hand side are

used to make a contract with a specific service for purchase of a ticket or a citipass. This is why the

Id of a concrete service is part of the query.

Some examples of goals, defined in terms of the pre-defined queries or requests shown above,

are:

goal3[requestId->g123, query->searchTrip(france, austria)].

goal2[requestId->g321,

query->tripContract(serv1, bonn, innsbruck, ’1/1/2008’, 12345)].

It can be seen that the query part of the goals above is defined by instantiation of the

pre-defined queries in the example goal ontology given. Therefore, consumers will only have to

instantiate pre-defined queries in order to define their goals.

The first goal is quite interesting, because none of the services expects regions as input.

Thus, without mediation, goal3 cannot be answered. Specifying mediators between this kind of

queries and the input expected by services is quite nontrivial and cannot be expected of a common

user. For this reason, this task will be accomplished by mediators.

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 100

4.3.2 Service descriptions

In accordance with the conceptual framework of WSMO, a service description includes a

specification of the service capability and of the mediators used by the service. In our example, each

service uses only one wgMediator to tell how to convert the goal ontology into the ontology used

by the service. We also assume that there is a single goal ontology and two service ontologies (see

Appendix A).

Descriptions of services serv1 and serv3 are shown below. Preconditions and effects are

specified as reified formulas, which is indicated with ${...} in FLORA-2. In addition, the effects

of services are specified via rules, which tell how the particular input supplied at service invocation

affects what will be true in the after-state of the service.

serv1[capability->

// Request for a ticket from somewhere in Germany to somewhere

// in Austria OR a request for a citipass for a city in Tyrol

cap1[precondition(Input)->${
(Input = contract(, From : germany, To : austria, Date, Card)

or Input = contract(, City : tyrol, Date,))

and validDate(Date) and validCard(Card) }
effects(Input)->${

(itinerary(Req)[from->From, to->To] : −
Input = search(Req, From : germany, To : austria))

and

(passinfo(Req)[city->City] : −Input = search(Req, City : tyrol))

and

(ticket(Req)[confirmation->Num, from->From, to->To, date->Date] : −
Input = contract(Req, From, To, Date, CCard),

generateConfNumber(Num))

and

(pass(Req)[confirmation->Num, city->City, date->Date] : −
Input = contract(Req, City, Date, CCard),

generateConfNumber(Num)) }
],

usedMediators->>med1].

serv3[capability->

// request for a citipass for a French city

cap3[precondition(Input)->${

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 101

Input = pay(, City : france, Date, Card)

and validDate(Date) and validCard(Card) },
effects(Input)->${

(Req[location->City] : −Input = discover(Req, City : france))

and

(Req[confirmation->(Num, City, Date)] : −
Input = pay(Req, City, Date, Card) and

generateConfNumber(Num)) }
],

usedMediators->>med2].

Notice the differences in the input the two services expect and in the form of their output, which

is due to the fact that the two services use different ontologies. For instance, serv1 expects

search(Req, City : tyrol) as one of the possible inputs, while serv3 wants discover(Req, City : france).

Likewise, serv1 yields objects of the form passinfo(Req)[city->City] in response, while serv3

yields objects of the form Req[location->City]. Due to the differences in the ontologies, serv1 and

serv2 tell the world that different mediators must be used to talk to them. In the first case, this

is mediator med1 and in the second it is med2. Mediators are represented as objects that possess

methods for performing the mediation tasks. The first mediator is shown in some detail next.

It must also be noted that both inputs (requests) required by services and their re-

sults are described in terms of particular predicates and concepts like search(Req, From, To) and

discover(Req, City) for requests, and ticket or passInfo for results, i.e., the description of re-

quests and offers is eased by making use of predicates and concepts in appropriate domain ontologies

which are usable for consumers and service providers.

4.3.3 Mediators, discovery and contracting

Mediators. The job of a mediator in our scenario is to bridge between goals and services. More

specifically, a wgMediator performs two functions:

1. It takes a goal and constructs the input to the service, which is appropriate for that goal; and

2. It takes the result produced by the service and converts it to the format specified by the goal

ontology.

Part of the mediator med1 is shown below.

med1[constructInput(Goal)->Input] : −
Goal[requestId->ReqId, query->Query] and

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 102

if Query = searchTrip(From, To)

then (generalizeArg(From, From1), generalizeArg(To, To1),

Input = search(ReqId, From1, To1))

else if Query = searchCitipass(City)

then (generalizeArg(City, City1), Input = search(ReqId, City1))

else if

else fail.

med1[reportResult(Goal, Serv, Result)] : −
Goal[query->searchTrip(From : region, To : region)] and

not med1[doesNotServeCity(From, To)]

and Result = ${Goal[result->>Serv]}.

The above rules define methods to perform the two main tasks mentioned above: constructing the

input and converting the service results into the format suitable for the goal ontology. The definition

of the method constructInput checks the form of the user goal and yields appropriate input for

the service. The predicate generalizeArg (not shown here, but defined in the full example in

Appendix A) replaces the arguments that are objects corresponding to geographical regions with

universal variables, because the mediator “knows” that this corresponds to the query with the

quantifier “for all cities in the region.” The method reportResult is defined by several rules of

which we show only the one that corresponds to region-level requests, i.e., requests for services that

sell tickets from/to every city in a pair of regions. If the user query is a region-level request, the rule

checks if the service serves every city in the specified regions and then constructs the result expected

by the service ontology. This result is then inserted into the knowledge base by the discovery query

— see next.

Discovery and contracting. The discovery query is shown below. It examines each available

service one by one. For each service, it obtains the mediator specified by the service and uses that

mediator to construct the input appropriate for the service. Next we can use the input to obtain

the effects of the service. Then the effects are hypothetically assumed and the goal is tested in the

resulting state. If the goal is true in that state, the result (which contains the identification for the

service) is inserted into the knowledge base.

find service(Goal) : −
Serv[usedMediators->>Mediator[constructInput(Goal)->Input]],

Serv.capability[effects(Input)->Effects],

insertrule{Effects}, // hypothetically assume the effects

if Mediator[reportResult(Goal, Serv, Result)] then insert{Result},

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 103

deleterule{Effects}. // Remove the hypothetical effects

The query for verifying a service contract is essentially similar except that it also tests the precon-

dition:

contract service(Goal) : −
// get the service to invoke: contracting queries have 4 or 5 args

(Goal.query = (Serv, , , ,)orGoal.query = (Serv,, ,)),

Serv[usedMediators− >> Mediator[constructInput(Goal)->Input]],

Serv.capability.precondition(Input) = Precond,

Precond,

Serv.capability[effects(Input)->Effects],

insertrule{Effects}, // hypothetically assume the effects

// Check if the goal is satisfied by the service and report result

ifMediator[reportResult(Goal, Result)]theninsertResult,

// Remove the hypothetically added facts and rules

deleteruleEffects.

4.4 Conclusions

Summary and achievements. The work presented in this Chapter has been our first effort

in the direction of enhancing current service discovery practices. In this work, we have explored

the combined use of F-Logic and Transaction Logic to, with the help of the FLORA-2 reasoner,

automate not only discovery but also contracting of services, i.e., also the evaluation of particular

services for particular inputs.

One of the distinguishing features of this work is its attention to the usability of the

discovery and contracting model for users who might not have the sufficient proficiency in the use

of logics to deal with the logical apparatus used to automate the location of services. In particular,

the contact of service providers and specially of service consumers with logical expressions is limited

thanks to the use of appropriate goal ontologies and appropriate domain ontologies for describing

the effects of services.

The separation of discovery and contracting, i.e., the separation of a general evaluation of

services which can potentially fulfill the goal and the evaluation of particular services with particular

inputs has also been a novelty introduced by this work with respect to other existing works. The

incorporation of mediation has also been a key feature of this work which cannot be found in other

works, enabling the use of heterogeneous terminologies.

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 104

Furthermore, the description and consideration of the dependency between the inputs that

can be provided by the service consumer and the effects that can be expected from service usage

is novel, as most existing works, which rely on Description Logics reasoning, did not consider this

relation. Some posterior works such as [Hull et al., 2006] have introduced this type of description,

although in this particular case its realization was left open.

Finally, it must be stressed that the approach presented is realizable using existing reasoning

infrastructure, in particular FLORA-2. This reasoner can be used to hypothetically assume the

effects of service usage and then evaluate whether the consumer goal has been fulfilled.

Relation to the conceptual model. In the work presented, the WSMO conceptual model has

been used, which as discussed in the previous Chapter slightly differs from our conceptual model.

Still, a mapping can be established between the concepts used by this work and the elements in our

conceptual model:

1. The description of service capabilities include rules which describe the effects that can be

obtained for particular discovery queries, and rules which correspond to contracting queries.

From these, the former type, in which preconditions of any type are not considered, can be

mapped to the concept of service capability introduced in Chapter 3. The latter type, in

which the preconditions of the service (only input preconditions in the examples studied) are

considered, as well as how service effects depend on how such preconditions are fulfilled, i.e.,

on the particular input values provided by the consumer, corresponds to the description of

the service functionality in our conceptual model. Therefore, this work also considers the

functionality of services and not only their capabilities.

2. Preconditions in this work correspond to real-world and information preconditions in our

model, although real-world preconditions are not considered in the examples studied. Effects

correspond to information and real-world effects in our model; however, their type is not

explicitly distinguished in the work presented.

3. Consumer knowledge is not directly modelled, but it is assumed to be contained in the consumer

goal, i.e, only knowledge explicitly given with the goal is considered as a source of possible

input values to the service.

4. The queries included in goals roughly correspond to the concept of goal introduced in the

previous Chapter, as they express the objectives sought by consumers. These objectives are

described using goal ontologies which capture what ”action” the service is expected to perform

e.g. sell city passes. This means that the change in the current state expected, encoded in

terms of a goal ontology, is described. The id of the request is not an essential part of the goal,

but it is only required due to the particular implementation of the framework proposed.

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 105

5. The resolution of visibility is organized in two phases: in a first phase, relevant services in terms

of their discovery capability are located, without considering their preconditions and particular

input values; in a second phase, individual services are evaluated for particular input values,

determining whether these values fulfill information preconditions of the service and how they

condition the effects that will be obtained from the service.

If we consider the formalization of our conceptual model given in Chapter 3, Section 3.3 (the

work presented was previous to this formalization) we can establish the following (rough) mapping:

1. Both the state data oracle and the state transition oracle are given by FLORA-2 seman-

tics. Only one global state is considered, reflected by the current FLORA-2 knowledge base,

without differentiating the consumer knowledge state from the global state. In fact, possi-

ble consumer knowledge is encoded in the description of goals, and no additional consumer

knowledge is explicitly considered.

2. The rules that describe effects of a service for different consumer requests or queries can be seen

as contained in the transaction formulas introduced in the previous Chapter, which capture

what change in the state of the world and in consumer knowledge the service will produce for

particular input values. However, these rules only describe what elements or truths will be

added to the current state for particular inputs, but the real insertion of these effects into the

FLORA-2 knowledge base is performed by the discovery and contracting queries. Therefore,

the combination of these queries and the rule describing service effects can be roughly seen as

equivalent to the transaction formulas which describe the changes that will be operated to the

current state, as described in the formal characterization of our conceptual model.

3. If we look at the contracting query proposed (4.4), and if we remove the hypothetical operator

and the check of the goal at the end of the query, it can be seen that this query is very

similar to the formalization of the service functionality given in the previous chapter: first,

the preconditions of the service are checked against consumer knowledge, which in this case is

limited to the knowledge contained in the goal definition, and if this check succeeds then the

effects of the service for this input will be realized, which in the work presented in this Chapter

means inserting certain elements in the reasoner knowledge base representing the current state.

4. The discovery query and rules that describe the effects obtained for discovery requests cannot

be mapped to the formalization of our conceptual model, but they can be roughly seen as a

simplified version of the service functionality in which preconditions are not checked and the

dependency of effects on particular inputs values is not modelled in complete detail.

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 106

Limitations While the work presented has some interesting features, it also presents some limi-

tations which are discussed next.

First, and while using a goal ontology greatly enhances usability, it also limits the type

of goals that can be expressed and thus turns out to be a too rigid solution for general use cases.

As the complete framework and proof obligations are articulated around the pre-defined goals given

by these ontologies, the overall framework lacks flexibility. Therefore, and while the fundamental

idea is of considerable interest, support to users must be provided while keeping flexibility so that

skilled users (both consumers and providers) can refine their goals and make them more precise and

complex than those given by goal ontologies.

Second, the usage of the Horn version of F-Logic and of FLORA-2 implies using closed-

world reasoning. While this type of reasoning is very appropriate when complete information can be

assumed, it does not suffice in general scenarios with missing information. For example, a consumer

might state that he wants to find a flight from Madrid to Paris for a maximum price of 150 euros.

A service might provide flights with the required departure and arrival cities, but with different

possible prices which will furthermore change over time. Therefore, the description of the expected

effects of service usage will most likely not say anything about the price of offered flights. In this

setting, if we assume service effects hold, which will not say anything about the price, and compare

the consumer goal to the achieved effects using closed-world reasoning, the service will not be a

match. However, in this case missing information in effects does not mean flights with an acceptable

price cannot be obtained.

While this might not a problem if goals are restricted to pre-defined forms and mediators

properly handle missing information, it will indeed become problematic if we want to grant more

flexibility to users and, furthermore, it requires mediators to handle incomplete information in a

different way the semantics of the formalism and reasoner used dictate. In fact, notice that the use

of universal quantifications to say, for example, that we want a service which can sell city passes in

a given region, is hard-coded in mediators, as the formalism used presents difficulties to deal with

explicit universal quantification of variables in rule bodies which do not appear in rule heads, and

Lloyd-Topor extensions are required [Lloyd, 1987], which are not fully supported by FLORA-2.

In general, the restriction of this work to a single type of descriptions based on F-Logic and

Transaction Logic, the restriction to closed-world reasoning, and the use of goal ontologies, does not

grant enough flexibility for covering general use cases. Depending on the usage scenario, users might

want to express more complex needs beyond a fixed goal ontology, and service descriptions might

be incomplete and might require open-world reasoning. Therefore, a more general model, which can

accommodate alternative types of descriptions (with different level of detail and possibly different

semantics) as well as users with different profiles is needed.

Finally, the efficiency obtained when a big number of services is available might not be

Chapter 4: A framework for service discovery based on F-Logic and Transaction Logic 107

sufficient, as FLORA-2 does not support parallelism. This means that available services must be

evaluated one by one at discovery time, as the hypothetical insertion of effects when evaluating one

service might interfere with the evaluation of other services.

For all these reasons, we believe a comprehensive model for the location of services, which is

not limited to a single way of describing services and of matching descriptions, and which can cover

a wider range of usage scenarios and needs is required. In the next chapter, we present a general,

abstract model for the location of services, for which a realization and a prototype implementation

will be proposed in Chapters 6 and 7. This model is partially inspired by the limitations found in

the work presented in this Chapter, as well as by the analysis of the discovery problem we have

presented in [Keller et al., 2005] and [Lara and Olmedilla, 2005].

Chapter 5

Abstract model for the location of

services

5.1 Introduction

In a service-oriented environment, parties can offer services whose execution results in

some valuable effects (service providers), or they can have certain goals that might be resolved

by using available services (service consumers). Parties can thus cooperate so that the goal of a

a party is resolved by consuming a service offered by another party. However, for some party to

act as a consumer of some available service in order to get some goal resolved, a suitable service

must be first located, i.e., visibility among potentially cooperating parties (consumer and provider)

must be resolved. The resolution of the service location (or discovery) problem is included in the

Service-Oriented Computing research roadmap presented in [Papazoglou et al., 2006], especially the

achievement of a higher level of automation so that an increased dynamics e.g. runtime system

(re)configuration is possible, as discussed in Chapter 2, Section 2.1.3.

The value, i.e., the capability offered by a service or, more specifically, its functionality

might not be the only criterion to decide the suitability of such service for solving a certain goal;

other criteria such as the interaction model of the service, its technical details (e.g. protocols used for

communication), or other general properties of the service provision or of the service provider such as

reliability, cost, trust, etc. might also be considered for deciding upon the use of a particular service.

In general, and as discussed by the OASIS reference model [MacKenzie et al., 2006], visibility not

only requires parties to be able to see each other, which can be solved based on the description of

the value offered by the service and of the goal at hand, but also on the possibility of communication

between cooperating parties (interaction model, technical details) and on the willingness to interact,

108

Chapter 5: Abstract model for the location of services 109

possibly determined by factors such as cost of the service provision, QoS, etc.

In our work, we focus on the location of services based on to what extent the value they

provide can solve a particular goal. While a number of works exist which try to address this problem

(e.g. [Paolucci et al., 2002; Li and Horrocks, 2003; Benatallah et al., 2003; Grimm et al., 2004] or

the work presented in Chapter 4), they almost exclusively concentrate on the matching of goals and

services (requests and offers [Colucci et al., 2005]) assuming a single, particular way of describing

these artifacts.

However, we believe the (automatic) location of services requires a comprehensive model

which is not limited to the definition of how particular types of service and goal descriptions are

matched, but also: a) identifies and covers different types of application scenarios for the location

of services, offering a flexible solution in terms of the type of descriptions of services and goals

expected and in terms of how efficient and precise the location process is, and b) addresses the

complete location process, including how services and goals are described, how users are supported for

accomplishing this task, how service descriptions are published, and how service and goal descriptions

are matched. We believe such a model must be based on the analysis of its envisioned application

scenarios, and on the consideration of requirements and practical aspects for its exploitation in

a real-world setting. This includes, for example, setting realistic expectations on the accuracy of

descriptions or considering information privacy issues during the location process.

Along these lines, we propose in this Chapter a flexible and general model for the location of

services which is driven by practical requirements and considerations. In Section 5.2, we characterize

the main groups of applications we envision for the partially or fully automated location of services

and discuss their key characteristics. Our proposal for an abstract model for the semi-automatic

location of services, of which an instantiation will be proposed in the following Chapters, will be

described in Section 5.3, placing special emphasis on the principles and practical observations which

have motivated the design of the model. The first part of the model proposed, which covers the

description of services and the publication of these descriptions, will be discussed in Section 5.3.1;

the second part of the model concentrates on the description of goals, and it will be presented in

Section 5.3.2; the last part of the model, which covers the actual location and selection of services

which can achieve an explicitly described goal, will be presented in Section 5.3.3. Finally, Section

5.4 summarizes the content of this Chapter and conducts a brief discussion on the model presented.

5.2 Applications

In this Section, we identify and illustrate with examples the main families of use cases which

can benefit from an enhanced model for the location of services based on the value they provide.

We will discuss what key features are common to applications within the same family, which will be

Chapter 5: Abstract model for the location of services 110

an important input for the design of our abstract model for the location of services.

5.2.1 Design-time location of services for their composition or integration

into complex systems or processes

The paradigm of service orientation introduces changes on how systems are designed: the

consumption of services in an standardized way is possible, so it is their composition and integration

into more complex systems or business processes, as illustrated by the following examples:

Example 5.1 Let us imagine a pricing system for bank offices. This pricing system offers to bank

office agents, given a customer, a product to be sold e.g. a mortgage, and the conditions of the oper-

ation e.g. what interest rate is applied to the mortgage: a) the expected profitability of selling this

particular product under these conditions, b) possibilities for cross-selling, i.e., what other products

can be proposed to the customer depending on his segment e.g. young person with average incomes,

c) the global profitability of the operation including cross-selling, and d) the global profitability of

the customer considering not only the current operation but also products he has already contracted.

This information helps the employee of the bank office to properly adapt the operation offered to

the customer so that a given profitability can be obtained.

The pricing system requires information about the customer (customer segment, products

already contracted), the type, volume, and profitability of the products contracted by the average

customer in a given segment, market interest rates, the product catalogue of the bank, or bank

policies (solvency goal, Return on Equity (ROE), etc.). Furthermore, functionalities like profitability

calculation or actual contracting of products (if the system allows for this possibility) are required.

Usually, the information and functionalities required by the pricing solution are already

available at the bank (in data warehouses and existing systems) and, therefore, the solution must

integrate these existing information and functionalities. If access to the bank information and

systems is enabled by meaningful services, the pricing system can be designed and implemented in

terms of goals which can be resolved by such services. This considerably eases the adaptation of the

pricing system to different banks: parts of the pricing process are defined in terms of goals formulated

by business experts, which have to be resolved by services of the bank adopting the pricing solution.

Such services are located by IT professionals at design time, i.e., services that can resolve the goals

defined are located and hard-wired into the pricing system so that a (static) instance of the system

is obtained which uses the appropriate services of the bank and thus can be run at bank offices.

In this example, support for the location of appropriate services is desirable in order to

ease the adaptation of the pricing system to different banks by IT professionals, especially when a

big number of different services exists at the bank. The design of the system in terms of goals that

can be solved by interoperable services offered by the bank adopting the system, together with the

Chapter 5: Abstract model for the location of services 111

existence of appropriate support for locating relevant services, can considerably reduce the effort

required to adopt the system, thereby increasing the profitability of the product as well as reducing

the cost of ownership.

¤

Example 5.2 Let us imagine a telecommunications provider defines a new business process for

informing their customers about special offers and promotions. This business process, defined by

business experts at the corporation, might include activities such as notifying customers by different

means (SMS, e-mail, etc.) or registering what offers and promotions each customer was informed

of. These activities can be defined as general goals that will be resolved at design-time in order to

obtain a business process that can be run to actually manage this marketing activity.

Goals will most likely be defined by business experts as part of the business process. How-

ever, the location and wiring of services into the process will be accomplished by IT professionals,

who will make sure the selected services can be properly executed when an instance of the process

has to perform the corresponding activity. In this way, the process can be defined in terms of busi-

ness goals that can be used by IT professionals to locate appropriate services and incorporate them

to the process so that it can be instantiated at run-time.

In this situation, support to IT professionals for locating services which can achieve the

goals defined by business experts is desirable, especially if these services must be found among a big

number of available services.

¤

Example 5.3 [Hull et al., 2006] describes how, in the context of genome sequencing projects, many

of the tools and databases for analyzing data are available as services, thereby allowing biomedical

scientists to perform so-called in silico experiments. Large number of these experiments are carried

out by choosing some of these services, composing them into a workflow, and running them.

In this application area, the structure of workflows is given by the biologist designing the

experiment, who also knows the kind of services necessary at each step. Therefore, workflows can

be defined in terms of goals given by the scientist designing an experiment, and these goals can be

used to, at design-time, locate appropriate services and incorporate them into the workflow. Here,

we assume this workflow can be defined once and executed multiple times, i.e., appropriate services

are located once, incorporated into the workflow, and this workflow might be run any number of

times.

As discussed in [Hull et al., 2006], there is a growing number of publicly available biomedical

services (3000 as of February 2006). This motivates the need for appropriate support for the location

of services that can solve a goal which is part of an experiment workflow.

¤

Chapter 5: Abstract model for the location of services 112

The examples above illustrate a general type of application scenario we envision for the

automatic location of services: the location at design time of services that can solve a given goal and

their static incorporation into a system or process. This family of applications can be characterized

by the following features:

1. There is human intervention in the location of services which can solve a given goal, i.e., a

human user will participate in the location process. This means that no dynamism is required

and/or desired in the resolution of goals, but only support for a more efficient location of

services which will be statically incorporated to a process or system. This usually corresponds

to cases where there are no strong reasons to change the service used to perform a certain

activity on-the-fly, or where efficiency is a key factor and, thus, the time required to dynamically

locate appropriate services cannot be afforded.

2. There might or might not be human intervention in the execution of the services incorporated

to the system or process. This means that in some cases the particular activity of the process

or system performed by the service located will be accomplished without human intervention,

but in some other cases a human user will participate in the execution e.g. for choosing some

particular input values for service execution.

3. We expect the location of services at design-time for their incorporation into a system or

business process to be accomplished by IT professionals using the goals defined by domain

experts. If goals are explicitly and properly defined by business experts, and if appropriate

support for the location of services that can solve such goals is in place, IT professionals can

concentrate on resolving the wiring of these services into the system or process, i.e., they

will focus on resolving the technical details of the integration of services into the process or

system. In this way, the communication of requirements from business experts to IT experts is

improved, and both can concentrate on the tasks they are better prepared for: the definition

of processes and systems from a business point of view, and the technical realization of these

processes and systems, respectively. Of course, we do not exclude the possibility of business

experts taking care of the location and/or wiring of services e.g. a biologist can design an

experimental workflow, define different goals at different steps, find appropriate services, and

finally execute the workflow. However, we believe that, especially in an industrial setting,

this case will be less common than a separation of concerns in the definition and resolution of

business goals.

4. The location of services is not a time-critical task, as it is done at design time and, thus, it does

not directly affect the execution times of the process or system. Furthermore, the precision

required from the results of the location process will not be especially high, as the participation

Chapter 5: Abstract model for the location of services 113

of a human user in this process implies that he can further filter the results obtained. Therefore,

the majority of application scenarios in this family will require a moderate trade-off between

efficiency of the location process and accuracy of results, i.e., moderately precise results will be

acceptable if they are given in moderately low times. Still, we do not exclude the possibility of

applications demanding a higher precision and tolerating higher response times, and viceversa.

In general, this family of applications demands support to IT professionals for the resolution

of goals, and support to business experts in defining these goals. Therefore, the location process will

have to ease the task of IT professionals of finding appropriate services, but no full automation is

required, i.e., a human user will be involved in the location and selection of a particular service.

5.2.2 Location and execution of services by end human users

An improvement in how services are located will not only enable the resolution of goals for

performing activities of a system or process. End human users, who usually have goals they want to

get resolved, will naturally benefit from improved mechanisms for the location of services: they will

formulate their objectives, and services which can be used to fulfill such objectives will be located.

In the following, we give some illustrative examples of this type of scenarios for the application of a

comprehensive service location model.

Example 5.4 Let us imagine an Austrian citizen moves to Madrid, Spain, to work as a researcher

at one of the universities of the city. He will have to go through some bureaucratic work, such as

registering at the city hall, applying for a city center parking permit, where he lives, registering

with the Spanish Tax Agency, and changing the license plates of his car. Different tasks will require

communicating with different public entities such as the city hall or different agencies of the regional

or central government.

Currently, many of these processes cannot be done on-line. Furthermore, from the ones

which can be done on-line, it is not always easy to figure out what particular agency offers what

services. In this context, if e-Government services would be properly described and made available

as interoperable services, new and old citizens could formulate the goals they want to achieve e.g.

obtaining tax information and an appropriate service would be found. Found services could be then

executed in order to carry out the desired task.

In general, if e-Government is further developed at different levels of public administration

and interoperable services are properly defined, described and made public, the goals of citizens can

be formulated and appropriate services for achieving these goals can be located and used.

¤

Chapter 5: Abstract model for the location of services 114

Example 5.5 The field of e-tourism has considerably developed in the last years, and an increas-

ingly number of users book their holiday or business trips on-line. Web sites such as Expedia1 or

Hotel Reservation Service2 aggregate information from different flight, car rental or hotel providers

and offer a centralized entry point to users for solving their needs. However, these sites only offer

information from a fixed set of providers and, thus, users still have to use different sites and compare

the options offered by each site in order to get more complete information about available options

for solving their goals. Furthermore, users do not always know all sites which can offer this kind of

information and, thus, they will usually have a partial view of available options.

If e-tourism providers would define, describe and publish services to obtain information

about their offers and to request the provision of such offers, users could define their goals e.g.

booking a seat on a flight from Madrid to Manchester on 30th June 2007, and services which can

fulfill these goals could be located and executed.

As it can be seen, the publication of e-tourism offers as services would enable users to find,

without any intermediary, the offer which best suits their needs from the set of available providers.

However, this would require all e-Tourism providers to make their offers available as explicitly

described services. An intermediate solution, in the presence of sites which aggregate information

from different e-tourism providers such as Expedia, would be the publication of the functionalities of

these sites as interoperable services and their explicit and proper description. In this way, users will

formulate their goals and services from different e-tourism aggregators which can be used to achieve

these goals will be located; e-tourism aggregators would act as e-tourism brokers, enabling access

to a partial set of available e-Tourism offers. This type of brokers, such as Virtual Travel Agencies

(VTAs) have been considered in [Lara et al., 2004b; Stollber et al., 2004; He et al., 2004] (see Figure

5.1). A similar type of broker, but limited to the location of offers part of a frequent flyer program,

has been presented in [Lopez et al., 2005].

¤

Similar examples to the ones above can be found in the literature e.g. purchasing furniture

[Stollberg et al., 2004] or buying a bike [Haller, 2004]. All these examples, as well as the two examples

above, refer to scenarios where an end user wants to locate services to achieve some goal, and can be

regarded as a step beyond searching information on the Web: services offering some value are made

public and can be located by end users for their consumption. We summarize the characteristics

common to these application scenarios as follows:

1. Human users will be available during the process of locating appropriate services for the goal at

hand, i.e., end users will be available for filtering services found, selecting the most appropriate
1www.expedia.com
2www.hrs.de

Chapter 5: Abstract model for the location of services 115

Figure 5.1: A Virtual Travel Agency which dynamically aggregates e-Tourism providers

one, and possibly revising their goals if necessary.

2. End users will participate in the execution of the services found. Therefore, support for such

execution will be required e.g. some kind of automatic generation of user interfaces from

service descriptions.

3. The definition of goals will be also accomplished by end users. Therefore, the end user will be

participating in all the service location and execution life-cycle, starting from the definition of

the goal to be achieved.

4. Once end user goal has been described, most scenarios will require the location of relevant

services to be accomplished on-line, i.e., results must be returned to the user in relatively

short times so that we can consider the location process an on-line process. That means that

moderately low response times will be usually required, but we will hardly find any really

time-critical use case. As the end user will be available for further filtering and selecting the

most appropriate services from the set found, a moderate trade-off between efficiency of the

location process and accuracy of results will be generally demanded.

In a nutshell, an end user will define some goal to be achieved and will be available during

the process of locating appropriate services for the goal at hand, i.e., the end user will be available

for filtering services found, selecting the most appropriate one, possibly revising his goal and, finally,

executing the service.

5.2.3 Run-time location and usage of services

In the types of applications presented in the previous Sections, there is a human user

involved in the service location process; appropriate services are located, an a human actor will then

select the most appropriate service and either statically wire it into some system or process (Section

Chapter 5: Abstract model for the location of services 116

Figure 5.2: Generic supply chain

5.2.1) or directly execute it to get some goal resolved (Section 5.2.2). However, there are cases in

which it is valuable to get some goal resolved without human intervention, as it will be illustrated

by the following examples.

Example 5.6 Supply chains are common to a number of fields, and they can be defined as a

coordinated system of organizations, people, activities, information and resources involved in moving

a product or service in a physical or virtual manner from supplier to customer. Supply chain activities

(aka value chains or life cycle processes) transform raw materials and components into a finished

product that is delivered to the end customer3 (see Figure 5.24).

With current technologies, supply chains are completely determined when they are de-

signed, i.e., the activities and providers involved are manually selected, probably as a result of prior

agreements, and interactions among different actors hard-wired. In this context, the interaction

with pre-selected providers to complete the supply chain is fixed, and the supply chain cannot be

dynamically reconfigured to react to changes e.g. new providers entering the market or pre-selected

providers going off-line [Lara et al., 2004b].

Dynamic, reconfigurable supply chains are a step beyond traditional supply chains. Instead

of having a rigid configuration, they introduce dynamics by automatically locating the best providers
3http://en.wikipedia.org/wiki/Supply chain
4Available at http://www.soa.com/index.php/section/solutions/supply chain management

Chapter 5: Abstract model for the location of services 117

Figure 5.3: Supply chain application scenario [Lara et al., 2004b]

for a given need e.g. a certain raw material. This considerably decreases the effort required for

configuring the supply chain and optimizes the supply process by always selecting an available

provider which can solve some explicitly defined goals at different steps of the supply chain.

If a supply chain is defined in terms of explicit goals and appropriate facilities for the

automatic location of services are in place, services which can fulfill these goals will be located

and executed at run-time, without any human intervention. This yields a dynamic supply chain,

where supply needs are dynamically resolved by selecting the most appropriate services of existing

providers among available ones, thereby increasing the robustness of the supply chain; the supply

chain is more hardly affected by some particular provider being unavailable as another provider can

be dynamically found and incorporated to the supply chain.

In Figure 5.3, a given business has a supply request the supply chain configuration process

will resolve by locating, aggregating and using appropriate services. In this case, the set of services

considered is limited to those services offered by providers registered at the marketplace.

¤

While the example above illustrates the run-time determination of the service to be used

for performing a given activity, described by a goal, it must be noted that hybrid applications might

also be found. For example, a service might be fixed in a business process, performing some activity

of the process. However, an error-recovery strategy might be defined requiring the run-time location

and execution of an alternative service: if the execution of the fixed service fails during the execution

of the process, a service fulfilling a previously defined goal must be automatically located so that

the process does not fail to execute, as illustrated by the following example.

Example 5.7 Let us come back to the pricing solution of Example 5.1. Configuring an operation

so that a given profitability is obtained requires information about e.g. the product catalogue of the

bank, the customer, or market conditions such as current interest rates. While information about

the product catalogue of the bank or about the customer can usually only be provided by systems

Chapter 5: Abstract model for the location of services 118

controlled by the bank, information like market conditions is offered by a number of providers

world-wide.

Now, let us imagine a bank adopting the pricing solution works with a given market infor-

mation provider and, thus, the service offered by this provider will be used by the pricing solution for

measuring the profitability expected from the operation. If the service or services of this provider go

off-line for some reason, the pricing system will stop working and, thus, the possible simulations of

operations being carried out for different customers at different bank offices will fail, which is not a

desirable situation as attention to customers will be affected. In such a situation, the pricing system

can try to dynamically find an alternative provider of market information required for performing

the current simulation so that the system keeps working, i.e., the system can dynamically adapt so

that a failure does not occur and bank offices can keep operating normally.

¤

The examples above illustrate a type of application in which some activities in a system

or process are accomplished by services located at run-time. In this way, the system or process can

react to changes in the environment by dynamically, i.e., at run time selecting the service which can

best fulfill the goal defined.

The main characteristics of this type of application scenarios can be summarized as follows:

1. No human user will participate in the location process, i.e., given a goal, the location of services

which can achieve this goal will be completely automatic.

2. Human users might be involved in the execution of automatically located services. If this is

not the case, we must be able not only to automatically locate an appropriate service, but also

to automatically carry out the interaction with a dynamically found service.

3. We expect goals to be defined by domain experts, but there exists also the possibility of goals

being automatically generated or parameterized at run-time. For example, the goal of shipping

some goods to a given location might have to be achieved at some point during the execution

of a business process, and this goal might be automatically generated by previous activities of

the process or parameterized by these e.g. the location where the goods must be shipped to,

as well as what particular goods must be shipped, might be dynamically bound as the result

of previous activities, i.e., a generic goal can be parameterized at run-time.

4. The precision required from the results returned by the service location process will be usually

higher than in other types of applications. The reason is that the selection of the service to

interact with have to be accomplished automatically and, thus, the set of relevant services must

be more accurately determined in order to avoid interactions with inappropriate services; failed

interactions with services are expected to be generally more costly than a better selection of

Chapter 5: Abstract model for the location of services 119

Phases of
human inter-
vention

User profile
(definition of
goals)

Precision re-
quirements

Efficiency re-
quirements

Design-time lo-
cation

Location and
possibly execu-
tion

Business ex-
perts

Moderate Low

Location by end
human users

Location and
execution

End users Moderate Moderate

Run-time loca-
tion

Possibly execu-
tion

Business ex-
perts or au-
tomatically
generated

High Moderate-High

Table 5.1: Main families of application scenarios and their main features

results. However, the particular trade-off between accuracy of results and response times will

be chosen depending on the particular use case.

The run-time resolution of goals yields much more dynamic systems and processes, and

dramatically increases their fault-tolerance, as they can reconfigure at run time if any problem is

encountered. As discussed in [Trastour et al., 2002], in an e-commerce setting this means that

relationships between businesses can be established dynamically and any possible lock-in in the

relationships among trading partners is avoided.

The different types of application scenarios introduced above have different characteristics,

thereby posing diverse requirements on the process of locating services for solving a given goal. We

believe a comprehensive model for the location of services based on the value they provide must be

designed in a way such that it can be applied to all these types of use cases. Therefore, the model

must be flexible enough so that it can be adapted to the diversity of application scenarios envisioned.

The main dimensions used to characterize the families of application scenarios identified are

the phases of intervention of human users in the location and execution of services, the kind of user

defining the goal, and the precision and efficiency required (see Table 5.1). It must be noted, though,

that while the families of application scenarios presented share some common features, there can be

some degree of variance among particular application scenarios of the same type. A comprehensive

model must, therefore, not only cover different types of application scenarios, but also the variety

of scenarios within the same family.

In the next Section, and taking into account these factors, we propose an abstract model

which is flexible in its conception and provides a basis for building concrete models for the location

of services.

Chapter 5: Abstract model for the location of services 120

5.3 An abstract model for the location of services

The location of appropriate services for achieving a particular goal is not limited to the

matching of a particular type of description of goals and services, but involves other tasks such as

the description of these artifacts and their publication. In Figure 5.4, the usage of explicit (WSMO)

descriptions of services for accomplishing the different tasks required to consume services achieving

a certain goal is depicted. As it can be seen in the figure, the description of services and the

advertisement of these descriptions is a key task for the service provider, so it is the description of

goals by prospective service consumers.

When the descriptions of services and goals are provided and accessible (public), appropri-

ate services can be located (discovered) for achieving the goal at hand. Once a number of services

offering the desired functionality have been discovered, the actual service to interact with must be

selected and Service Level Agreements (SLAs) must be established. This step often requires interac-

tion with the service provider, being its outcome the selection of the actual service(s) to interoperate

with, SLAs regarding the service being offered, and possibly a set of mediators required for seamless

interoperation [de Bruijn et al., 2005d]. Finally, the service(s) selected can be used and the consumer

and provider can interoperate to actually bring the capability the service offers to bear.

Besides the fact that the location of services involves a number of tasks or steps which

together configure the service location process, we have seen in the previous Section that there exist

usage scenarios with different characteristics in which support for the location of services which can

fulfill a given goal is required. In this context, an abstract model which appropriately covers the

different aspects of the service location process, and which is flexible enough to be applicable to

different cases with different characteristics and requirements, is needed. In this Section, we present

our proposal for such a model, covering the description of services and goals, the publication of

service descriptions, the discovery of appropriate services for achieving a goal described, and the

selection of the service(s) to interoperate with. The model has been designed having flexibility as a

key principle, as it must adapt to different application settings.

In the following, we introduce the model and also discuss what practical considerations

have motivated particular design decisions. An instantiation of the abstract model (excluding service

selection), as well as a prototype implementation of this instantiation, will be presented in Chapters

6 and 7.

5.3.1 Description and publication of services

A service is a means to access a certain capability, where a capability is understood as the

ability to perform some action with a perceived value, and this value can achieve a certain goal.

Furthermore, different services can enable access to the same capability but presenting a different

Chapter 5: Abstract model for the location of services 121

Figure 5.4: Service description and execution [de Bruijn et al., 2005d]

functionality, i.e., they can pose different conditions for service execution and provide a different

mapping between valid initial conditions and the effects of the associated capability actually achieved

(see Chapter 3).

For services to be located based on the capability and/or functionality they offer, these

must be explicitly described. Otherwise, only by executing the service and observing the effects of

its execution, we can have some knowledge of what value the service provides. However, a number

of executions of different services, some of them perhaps failed, might be required for finding an

appropriate service, which is expensive. Furthermore, there might be problems to roll back real

world effects of executions which do not fulfill the consumer goal, and some of these real world

effects might even not be directly visible to the service consumer.

Current practices in the description of services focus on the usage of WSDL, which de-

scribes the operations and input/output parameters of a service, and possibly give some textual

documentation of what the service does (see Chapter 2, Section 2.1.2). While these types of descrip-

tions usually suffice for the execution of services, they enable little degree of automation for their

location. In general, current descriptions of services are mostly oriented to the execution of these

services and to their manual inspection by technical users.

A number of frameworks have been proposed for enhancing how services are described,

from which the most prominent ones have been presented in Chapter 3, Section 3.4. However, these

frameworks do not completely determine how the value of services and goals has to be described;

they only provide a general framework for describing services, but how to properly describe the value

Chapter 5: Abstract model for the location of services 122

of services for enhancing their location is left open.

Works such as [Li and Horrocks, 2003; Paolucci et al., 2002; Keller et al., 2004b; Verma

et al., 2005; Grimm et al., 2004] have proposed different ways of describing the value of services,

usually incorporating these descriptions into existing frameworks. However, they mostly concentrate

on a single way of describing services and, furthermore, they do not discuss how these descriptions

fit to different usage scenarios, how usable these descriptions are for different user profiles, and how

users can be supported for providing these descriptions. The purpose of the first part of our model,

covering the description of services and the publication of these descriptions, is to describe how the

aspects not considered by most existing proposals can be solved.

5.3.1.1 Diversity of descriptions

The relevant aspects of a service which have to be taken into account for its location are its

capability and, possibly, its functionality, as they define what value the service can provide and how

this value is provided, respectively. Alternative types of descriptions of both a service capability and

functionality might be provided. Furthermore, alternative views of these artifacts, with different

accuracy, are possible, as illustrated by the following example.

Example 5.8 Let us imagine an international airline IntAir offers a service which enables the

retrieval of information about flights operated by the airline. The service requires the main char-

acteristics of the flight sought (origin, destination and date) and returns the departure time, flight

number and seat availability on flights operated by IntAir matching these characteristics.

The capability of the service (the provision of information about flights operated by IntAir)

can be described in alternative ways e.g. textually, by a first-order logic expression formalizing the

set of flights about which the service can provide information, by explicitly listing the set of flights

operated by the airline, or by categorizing the service using an e-Tourism services taxonomy. All

these descriptions are alternative ways of describing the service capability, each being possibly of

interest in different contexts. Furthermore, multiple descriptions of the same type are also possible,

offering different views of the service capability with different degrees of detail. For example, one

textual description of the service capability might say that information about flights operated by

IntAir is provided by the service, while another textual description might list, in addition, all the

itineraries operated by the airline. Both textual descriptions are possible views of the same service

capability, given using the same type of description (a textual type).

Similarly, the functionality of the service can be described in different ways e.g. the trans-

action the service offers can be formalized using Transaction Logic, or a textual description of the

service functionality can be given. Also different levels of detail are possible in these descriptions.

¤

Chapter 5: Abstract model for the location of services 123

One may think that, from all the possible ways of describing a service we can find, we

should choose the one which provides the highest accuracy and which has formal semantics. Or

one may alternatively think that we should choose the type of description which is more usable by

service providers while being accurate enough to unambiguously capturing the value of the service.

We believe the answer to what type of description of services is better is not unique, as it

will strongly depend on the following factors:

1. User profile/Usability. Some service providers will be able to facilitate certain types of de-

scriptions of their service capabilities and/or functionalities but not others, depending on their

particular skills and resources. Furthermore, each possible type of description of services will

usually require a similar type of description of goals to be provided by consumers so that the

matching of services to goals is possible, which will pose certain requirements on consumers

possibly with different profiles depending on the particular usage scenario.

2. Supported matching. The type of matching of services to goals which can be performed based

on the description of these artifacts will obviously depend on the particular type of descriptions

used. For example, textual descriptions can be very efficiently matched, but the accuracy of

the results obtained is limited. On the contrary, matching of e.g. first-order descriptions

might yield results with high accuracy, but the matching process can be time-consuming or

even undecidable [Keller et al., 2004b]. In general, the type of description chosen will condition

what matching mechanisms can be applied and, therefore, the trade-off between efficiency and

accuracy of results.

Given these factors, which vary depending on the usage scenario considered, the type

of description that can be provided by users (both providers and consumers) and the particular

efficiency and accuracy expected from the location process cannot be completely anticipated. For

this reason, in our model we enable the simultaneous usage of alternative types of descriptions of the

capability and functionality of services, possibly with different accuracy, and we give the possibility

of describing either the capability of the service, its functionality, or both (see Figure 5.5). In this

way, we increase the coverage of different scenarios and we keep an appropriate level of flexibility.

In the abstract model, we do not impose the types of descriptions usable, and we leave

open the possibility of incorporating any type of description. However, a particular instantiation of

the model must define what types of descriptions are admitted, how they can be matched to goal

descriptions, and what properties matching mechanisms over these descriptions present. One such

instantiation will be presented in Chapter 6.

Chapter 5: Abstract model for the location of services 124

Figure 5.5: Diversity of descriptions of services

5.3.1.2 Nature of descriptions

The types of descriptions of a service we are interested in must reflect the value offered by

the service, i.e., they must describe the capability and/or the functionality of the service. In principle,

we could expect these descriptions to capture the value of a service with complete accuracy. However,

some observations make this expectation rather unrealistic [Lara and Olmedilla, 2005; Keller et al.,

2006a]:

1. Dynamics: while the capability a service enables access to might be static, there exist cases

in which such capability has a dynamic component, i.e., the effects which can be realized by

accessing the capability via a given service might vary over time. Similarly, what initial con-

ditions are valid for using a service and how these initial conditions determine what capability

effects will be realized after service usage, might also be dynamic. This is illustrated by the

following example:

Example 5.9 Let us imagine the airline from Example 5.8 also offers a service for booking

flights it operates. The capability of the service can be textually described as: ”booking of

seats on flights operated by IntAir”. Furthermore, the service requires as an input value a

particular flight on which a seat must be booked, and a seat on that flight will be booked if

available. However, what particular seat is booked will depend on seat availability, as well

as the price charged for the booking, dependent on other factors such as the current level of

occupation of the flight and the distance to the departure date.

As we can see, what particular seat can be booked using this service, at what price, and even

whether a seat on a particular flight can be booked at all, will change over time, i.e., both the

service capability and functionality are dynamic.

¤

Chapter 5: Abstract model for the location of services 125

In situations like the one illustrated in the previous example, either direct communication

with the service or the update of the service description every time some dynamic condition

affecting the service capability and/or functionality changes would be required in order to have

an accurate view of the service value.

2. Description effort: even if a service capability and/or functionality is static, the effort required

to describe it with total accuracy can be too high. In fact, accurately describing the function-

ality of a service will imply making explicit the function implemented by the service, which

generally requires translating the procedural function implemented into some declarative lan-

guage. If we consider the example above, we must accurately and explicitly describe how the

particular seat booked and the price of such seat depend on some conditions.

3. Sensitive information: accurately describing the functionality of a service might require making

some strategic or sensitive information public. For example, accurately describing the func-

tionality of the service in Example 5.9 would require making explicit and public the pricing

strategy followed by the airline.

Given these observations, we can only realistically expect limited accuracy in the description

of services. In fact, if we require descriptions to completely mimic the capability and functionality of

the service, the descriptions used and the location process would actually make the service no longer

necessary, at least in the case of information provision services: the description of the functionality

itself could be used to determine the actual effects of using the service. Furthermore, we wonder

whether, if formal descriptions are used, logical reasoning would scale under conditions where the

execution of a service is replaced by reasoning over its semantic annotation [Keller et al., 2006a].

As a consequence, in our model we do not expect service descriptions to capture the value of

services with complete accuracy, but we expect service descriptions to be complete but not necessarily

correct [Preist, 2004; Keller et al., 2004a; Lara et al., 2004a; de Bruijn et al., 2005a; Keller et al.,

2006a]. This means that all the effects achievable by using a service will be captured by a service

description, but some effects might be described as achievable even though they might not be

achievable by using the service (at a given point in time or permanently).

Example 5.10 Let us consider again the service in Example 5.9. We require any description of the

service value, for example the description of its capability, to include all the possible effects of the

usage of the service. This means that a description saying that seats on all flights operated by IntAir

can be booked using this service is acceptable, even though some flights cannot be booked at certain

points in time due to e.g. problems with seat availability or flight cancellations. This description is

complete, as it includes all possible effects of service usage, but not correct, as it describes effects

which might not be achievable.

Chapter 5: Abstract model for the location of services 126

On the contrary, a description declaring that the service can only book flights between

Madrid and Manchester will not be acceptable as, if the airline operates flights between other

destinations, it leaves out possible effects of the capability the service enables access to.

¤

In general, our model requires descriptions of a service value to be complete but not neces-

sarily correct. The maximum possible accuracy in the description while keeping it manageable and

without disclosing sensitive information will be expected, but still correctness of descriptions will

not be a requirement. In this setting, we expect service descriptions to be a static, and as accurate

as possible, characterization of the service value [Lara and Olmedilla, 2005].

5.3.1.3 User support

Multiple descriptions of the value of a service, of different types, can be accepted by a

particular instantiation of this abstract model, and the service provider is free to choose, from

these types of descriptions, which ones will be provided for its service. However, it must be noted

that a service can be matched only using the types of descriptions given, and that different types

of descriptions enable different matching mechanisms with different properties, better suited for

different usage scenarios. Therefore, it is desirable that a description of the service of each type

admitted by the model instantiation is given so that the service can be matched in different ways

and, therefore, in different scenarios.

In our model, we require two types of support for users describing services:

1. Support for providing alternative types of descriptions of the service.

2. Support for providing as accurate as possible descriptions of each type.

Different users, with different profiles and skills, might be able to provide more easily

some types of descriptions but not others. The first type of support required by our model is

oriented towards facilitating the provision of other types of descriptions of a service starting from

the types of descriptions the user is comfortable with. For example, if the user is familiar with textual

descriptions but has strong difficulties to provide formal descriptions, support must be provided for,

from a textual description, obtaining a formal description of the service value.

This type of support must be based on the relation between the different types of descrip-

tions considered by the particular instantiation of the abstract model. However, we acknowledge

that, in some cases, it is a big challenge to establish a detailed relation among certain types of

descriptions. For example, attempts to obtain a formal description from a textual description exist

in the context of service discovery e.g. [Gomez et al., 2004], but this is a challenging task as the

formalization of natural language, i.e., the definition of the relation between natural language and

Chapter 5: Abstract model for the location of services 127

formal languages is an open problem. In these cases, intermediate solutions such as establishing

explicit links between the textual and formal description of pre-defined, reusable capabilities are

possible, as it will be presented in Chapter 6.

Example 5.11 Let us consider the service in Example 5.9 and an instantiation of the service loca-

tion model which admits textual descriptions and first-order descriptions of service capabilities. As

the relation between textual and first-order descriptions is hard to establish, pre-defined, reusable

capabilities can be introduced to link textual and fist-order descriptions. For example, a prede-

fined capability CflightBooking, corresponding to the booking of seats on flights can be defined and

described both textually (”booking of seats on flights”) and formally.

When a user textually describes the service in Example 5.9 (”booking of seats on flights

operated by IntAir”), this textual description can be used to match pre-defined capabilities. In this

case, capability CflightBooking will be matched using e.g. keyword matching and, thus, the formal

description of CflightBooking can be proposed to the user for formally describing his service. The user

can directly associate the proposed description to his service or use this description as a starting

point and refine it. This process is depicted in Figure 5.6.

¤

In general, support must be provided to users for giving different types of descriptions of

their services based on the relation between these alternative types. When such relation is difficult

to establish, pre-defined capabilities can be used to relate different types of descriptions.

Support must also be provided to users for elaborating as accurate as possible descriptions

of each type. This will generally be achieved through appropriate tool support e.g. user-friendly

interfaces that ease the construction of service descriptions.

5.3.1.4 Publication of descriptions

Once services have been described, possibly in alternative ways, their descriptions must be

made public so that prospective service consumers can have access to them. Currently, a widely

accepted practice is to publish syntactic WSDL descriptions of services at UDDI repositories, which

act as a common entry point for the location of services and provide keyword-based search facilities

as well as search based on categories in taxonomies such as UNSPC through the UDDI inquiry API

(see Chapter 2, Section 2.1.2).

In general, we require the publication of service descriptions at some registry accessible by

the service location process. Such registry must enable the retrieval of services based on the different

types of descriptions of services admitted by the instantiation of the abstract model, and using the

matching mechanisms associated by the instantiation to such types of descriptions. In this sense, a

Chapter 5: Abstract model for the location of services 128

Figure 5.6: Usage of pre-defined capabilities

UDDI repository covers the requirements of an instantiation of the abstract model if the only types

of descriptions of the value of services considered are textual descriptions and the classification of

services in categories. However if, for example, formal descriptions of services are used, a UDDI

repository will not fulfill the requirements we pose on the service registry, as such a repository does

not enable per se the retrieval of services based on formal descriptions5.

Our abstract model does not impose the architecture of the registry used. In fact, instan-

tiations of the model can choose the particular architecture of the registry, as different architectures

have different features which make them better suited for certain scenarios. Therefore, the archi-

tecture of the registry can range from a centralized registry e.g. [Lara et al., 2006b; Lara et al.,

2007b] to a peer-to-peer registry e.g. [Toma et al., 2005], including hybrid approaches such as those

described in [Verma et al., 2005; Sivashanmugam et al., 2004].

Finally, we require service registries to apply, at the time service descriptions are published,

all possible pre-processing techniques over such descriptions which can speed up service retrieval.

The reason is that our model does not consider service publication a time-critical task and, thus, it

gives preference to an efficient service retrieval over an efficient publication.
5Strictly speaking, the registry is only required to enable the retrieval of services based on descriptions whose

evaluation does not require direct access to consumer knowledge, i.e., the registry must enable the application of
registry-side filters, as we will discuss in Section 5.3.3

Chapter 5: Abstract model for the location of services 129

In a nutshell, our model requires for service publication:

1. The existence of service registries which can store service descriptions and make them acces-

sible to interested parties either directly or indirectly through a service location process. No

particular registry architecture is assumed.

2. Service registries must enable the retrieval of services based on all different types of descriptions

of a service admitted by the model instantiation.

3. Service registries must apply all possible pre-processing techniques at publication time so that

retrieval times can be reduced to the minimum possible.

5.3.2 Description of goals

Goals correspond to the objectives prospective service consumers have, and they thus drive

the decision on what services to use. In the same way the value of services must be described for

enabling their location, the description of the value sought for achieving a goal must be described.

Similarly to the description of services, current approaches to enhance the location of

services only consider a single way of describing goals. However, we have seen in Section 5.2 that

different (families of) application scenarios pose different requirements on the location process and

involve the definition of goals by users with different profiles. For this reason, in our model we will

consider alternative descriptions of goals which can be used to match services in different ways, with

different properties, and which can thus fit to different application scenarios.

In this Section, we will discuss not only the diversity of descriptions of goals expected, but

also to what extent the knowledge of the prospective service consumer, which plays a role in the

resolution of goals, can be expected to be disclosed and what assumptions our model makes to this

respect. Finally, we will discuss the type of user support required for the description of goals. As

we will see, this includes not only support for describing the objectives sought, but also in selecting

what type of description of such objectives is required for achieving a given efficiency and accuracy

of results.

5.3.2.1 Sought capability or functionality

The description of goals is the description of the value sought by a prospective service

consumer. In our model, we require this description to capture the capability and/or functionality

required, i.e., a goal description is a description of what value is required (the capability sought)

and, possibly, of how this value must be provided (the functionality sought).

A goal can be described in different ways. In fact, as goal descriptions will be used to match

service descriptions, the possible types of goal descriptions usually coincide or are closely related

Chapter 5: Abstract model for the location of services 130

Figure 5.7: Different types of service and goal descriptions are linked by at least one matching
mechanism with particular properties

to the types of service descriptions admitted. Furthermore, particular types of goal and service

descriptions must have associated at least a matching mechanism with well-defined properties, i.e.,

goal and service descriptions are linked by at least one mechanism to establish a match between

them which will depend on the particular type of description used, as depicted in Figure 5.7, and

the properties (accuracy and efficiency) of each such matching mechanism must be made explicit by

the instantiation of this abstract model.

Example 5.12 Let us imagine an instantiation of our abstract model admits, among others, the

textual description of the value of services and of the value sought by consumers. In this case,

at least a mechanism for matching textual descriptions of services and goals must be defined, but

multiple mechanisms are also possible. For example, a simple keyword matching might be available,

as well as a matching mechanism which also takes into account relations in WordNet [Fellbaum,

1998]. The former will probably be more efficient but less accurate, while the latter will offer better

accuracy but higher response times.

In addition, at least one matching mechanism for all other types of descriptions admitted

by the model instantiation must be defined, and their properties in terms of accuracy of results and

efficiency of the matching process must be explicitly given.

¤

Chapter 5: Abstract model for the location of services 131

Whether a goal will describe the capability or the functionality sought will mainly depend

on the type of application scenario. We believe only the capability sought will be described when

services are located either dynamically or by end human users (see Section 5.2); the description

of the functionality of a service will be used to determine whether this particular service can be

currently used to enable access to the desired capability, but it is unlikely that the goal will fix what

particular functionality is sought. In these cases, the service consumer wants to locate a service

offering a given capability, and will obviously require that the service can be used to access such

capability, but no particular relation between current conditions and achieved effects will be generally

required. However, if a service is located at design-time for its incorporation into a complex system

or process, it might be the case that a particular functionality is required, as the system or process

might expect a particular relation between current information and state-of-the-world conditions

and the effects achieved. This is due to the fact that the service used will be always the same, i.e.,

the service is repeatedly used and, thus, its functionality must meet certain requirements.

Example 5.13 Let us consider the application scenario described in Example 5.1, in which parts

of a pricing system are defined in terms of business goals for whose resolution appropriate services

must be found at design-time and hard-wired to the system. In particular, let us consider the goal of

retrieving information about products contracted by a given customer of the bank. In this case, the

goal will be described by the particular functionality sought, as the system will have some particular

constraints on what information can be provided to the service when the system executes and what

information is expected in response. Therefore, the goal will describe the functionality expected: the

provision of information about the products contracted by a bank customer, including the volume

contracted and possibly other details, given the id of the customer.

However, if we consider the application scenario described in Example 5.5, the situation

is slightly different. An end user wants to e.g. book a hotel in Madrid on a given date and in a

particular price range, and he will describe the capability sought: booking of a hotel in Madrid with

the user constraints given. However, the user will not require neither that the service accepts some

particular information nor that the service establishes a particular relation between this information

and the effects achieved; the user will require a service enabling access to a particular capability, and

will only require that he can use the service to achieve the effects associated to such capability. In

this situation, no particular functionality is sought, but only a capability; any service functionality

will be fine for the user as long as there are valid initial conditions for the usage of the service and,

given these conditions, the service realizes the effects required.

¤

In a nutshell, a goal will describe the capability and/or functionality sought, and alter-

native types of descriptions of such capability and/or functionality are possible. These types of

Chapter 5: Abstract model for the location of services 132

descriptions will coincide or will be closely related to the types of service descriptions admitted by

the instantiation of the model, and at least one mechanism for matching each type of description

must be defined and its properties made explicit. As for services, the accuracy of goal descriptions is

expected to be as high as possible. However, different users will be able to provide descriptions with

different accuracy. As we will discuss later in this Section, user support will be required, and the

particular type of description expected for goals will depend on the requirements on the accuracy of

results and response times of the location process posed by the particular application scenario.

5.3.2.2 Consumer knowledge

In Chapter 3 we discussed how consumer knowledge plays a role in deciding whether a given

service can be used to achieve a goal. In particular, services might define information preconditions,

i.e., conditions over the knowledge the consumer must have and make available to the service for its

execution.

In this context, the service location process must have access to consumer knowledge if we

want to evaluate whether a particular service can be used to achieve the goal defined. However,

there are privacy issues which might hamper the disclosure of consumer knowledge to the service

location process. In general, consumers might be willing to disclose certain parts of their knowledge

easily e.g. an end-user will generally disclose the country he lives in without much problem, but

might be reluctant to disclose other parts unless some trust relation is established with the other

party e.g. if a credit card or a passport number has to be provided. Furthermore, the description of

goals might itself include some information deemed as private by the potential service consumer, as

illustrated by the following example.

Example 5.14 Let us imagine an end, human user wants to book a particular flight and to pay

such booking with his credit card. If the goal of this user is described in detail, it will include

not only the information of the flight the user wants, but will also include the details of the credit

card with which the payment must be made, such as the credit card type, holder, expiry date and

number. For example, a quite detailed textual description of the goal will state: ”Booking of a seat

on the flight 123, flying from Madrid to New York on July 7th 2007, and payment with the Visa

credit card with number 1234567”.

However, and even though using this credit card to pay the booking is part of the consumer

goal, credit card details should not be disclosed to third parties unless some trust relation has been

previously established.

¤

In this context, our model assumes that access to consumer knowledge for determining

whether information preconditions are fulfilled will be limited. In particular, it is assumed that

Chapter 5: Abstract model for the location of services 133

consumer knowledge will be kept private by the consumer; its disclosure to third parties will be se-

lective, and such disclosure will be guided by the definition of policies which define what information

can be disclosed and under what circumstances, as proposed in the work we presented in [Olmedilla

et al., 2004]. This corresponds to the concept of consumer knowledge available defined in Chapter

3.

Example 5.15 A business process might require at a given point in time the shipping of a book to

a given address. This business goal will be described as part of the process and will be resolved at

run-time by locating an appropriate service.

The process has access to some corporate databases, and there is no human intervention

in the process, i.e., consumer knowledge corresponds to knowledge contained in the databases the

process has access to. Furthermore, these databases contain some sensitive information such as

payment methods generally used by the company running the process and employees information.

Therefore, policies for the disclosure of this knowledge will be defined.

In this situation, the service location process will have limited access to consumer knowl-

edge, as its disclosure is subject to certain policies. Therefore, the evaluation of whether a particular

service can fulfill the goal defined by the process and, in particular, the evaluation of whether infor-

mation preconditions of a candidate service are fulfilled, must take into account these factors.

¤

As we can see, consumer knowledge is an important element for deciding upon the usability

of a given service for achieving a goal. However, this consumer knowledge will only be selectively

disclosed. For this reason, our model assumes consumer knowledge will be kept private by the

consumer, and only disclosed to third parties under certain circumstances. Therefore, and as we

will see in Section 5.3.3, we cannot assume the location process has access to the complete consumer

knowledge unless the evaluation of information preconditions of candidate services is performed by

the consumer itself, i.e, at the consumer side without disclosing any information.

Finally, it must be noted that if a human user participates in the execution of the service,

he might provide information which actually increases the consumer knowledge which was available

during the location phase.

5.3.2.3 User support

Our model requires support to prospective service consumers for describing their goals.

While services were required to be described in multiple ways, ideally in as many ways as types of

service descriptions were admitted by the instantiation of the abstract model, consumer goals are

expected to be described only using the types of descriptions for which matching mechanisms with

the desired efficiency and accuracy are available.

Chapter 5: Abstract model for the location of services 134

Example 5.16 Let us imagine that an instantiation of our abstract model for the location of services

admits formal, first-order descriptions of the effects associated to a service capability, and textual

descriptions of such effects. For the first type of description, a matching mechanism based on formal

reasoning is available with high accuracy but very low efficiency e.g. the mechanism proposed in

[Keller et al., 2004b], while for the second type of description a simple keyword matching mechanism

is available, with high efficiency but low accuracy e.g. the keyword matching provided by UDDI

repositories [Bellwood et al., 2002].

Now, let us imagine an end-user wants to quickly find services which might fulfill his goal of

renting a car. In this case, the usage of textual descriptions and the application of keyword matching

is more appropriate, as low response times are required and manual filter of candidate services by

the end-user is possible. Therefore, the type of description of the consumer goal required will be a

textual description, not a formal description.

¤

In general, we require support to be provided to users for deciding what type of description

of their goals must be given depending on their requirements. Such requirements will be generally

described in terms of the efficiency of the location process and the accuracy of results desired, and

suitable matching mechanisms (filters) with their associated types of descriptions will be proposed

to consumers. This proposal might include not a single filter but combinations of them.

Once the type of description of the goal required for achieving the efficiency and accuracy

expected has been determined, consumers must also be supported for providing such type of descrip-

tion with as much accuracy as possible. This type of support will be based on the same elements

as the support offered to service providers for describing their services: the relation between the

different types of descriptions will be exploited, possibly through the definition and matching of

pre-defined goals, and appropriate tool support will be available for helping consumers in enhancing

the accuracy of their descriptions.

In this way, consumers will be guided in choosing the matching mechanisms and goal

descriptions better suited for their requirements. If the type of description required cannot be

directly provided by the consumer, he will be required to provide another type of description he is

familiar with, and the relation between different types of descriptions will be exploited to extract a

description of the required type from the description of the type the consumer has provided. This

can possibly be done through the definition of pre-defined goals, which will describe general goals

in different ways and will be matched using the description provided by the consumer in order to

obtain related descriptions of other types6.
6This mechanism is similar to the concept of goal discovery proposed in [Lara et al., 2004a; Keller et al., 2004a;

Keller et al., 2006a].

Chapter 5: Abstract model for the location of services 135

5.3.3 Discovery and selection of services

Once service descriptions have been published at one or more registries and a goal has been

described, the location or discovery of services which can fulfill the goal given starts. This process

is exclusively based on descriptions of goals and services, and there is no direct interaction between

potential service consumers and available services. As we will see, interaction is possible and often

necessary for the selection of services, but it is not allowed during the location of relevant services

for achieving the goal. The reason is that the blind execution of services is much more expensive

than working over descriptions, as it involves communication with each service considered.

In this Section, we present how the discovery and selection of services is organized in our

model, what assumptions are made, and what principles guide the model. The discovery of services

will be based on the application of different matching mechanisms to goal and service descriptions,

called filters, and the application of these filters will be organized in two phases, namely: a) retrieval

of relevant services from registries, and b) evaluation at the consumer side, where consumer knowl-

edge is accessible, of the retrieved descriptions of services [Lara, 2006]. These two phases will be

explained in the following, as well as the general type of filters considered in each case.

5.3.3.1 Registry-side filters

As discussed in Section 5.3.1, services can be and will ideally be described in multiple ways,

as many as admitted by the particular instantiation of this abstract model, and these descriptions

will be published at appropriate registries. The first phase in our discovery model is to retrieve

service descriptions from these repositories. However, not all descriptions will be retrieved, but only

descriptions of services which are relevant to a given goal.

The relevance of a service for achieving a particular goal is determined based on the de-

scription of the goal and the service. Furthermore, different mechanisms, with different properties

and based on different types of descriptions of goals and services, can be used to determine this

relevance. Therefore, and given that the potential service consumer can decide to provide different

types of descriptions of his goal and that different matching mechanisms can be chosen by such

consumer to find appropriate service descriptions, we want to retrieve from registries those services

whose description is deemed as relevant under the matchmaking mechanism selected by the po-

tential consumer and using the type of description of goals and services required for applying this

mechanism.

In this context, we require service registries to implement all matching mechanisms defined

by the instantiation of the model over the types of descriptions admitted. We will call these matching

mechanisms filters, and they will be applied, given a particular goal, over all service descriptions

published in the registry in order to filter which ones correspond to services relevant for the goal

Chapter 5: Abstract model for the location of services 136

at hand. These filters are registry-side filters as they are applied by the registry itself based on the

goal description given and on the service descriptions available.

It must be noted that we allow for the application of multiple registry-side filters, i.e.,

for the usage of more than one matching mechanism for determining relevant service descriptions

for the goal at hand. The possible benefits of combining multiple registry-side filters will depend

fundamentally on the type of filters defined and whether they are to some extent complementary.

Still, potential consumers can decide to apply multiple filters to obtain the description of relevant

service for achieving their goal and, furthermore, some registry-side filters can be actually defined

as combinations of other types of filters.

As different filters operate over different types of service descriptions, these filters will only

be applicable to services for which the necessary type of description has been provided. This is an

extremely important reason for service providers to describe their services in all admitted ways so

that their services can be found when applying different types of filters.

In our model, registry-side filters operate exclusively over service and goal descriptions, i.e.,

they will not have access to consumer knowledge. Thus, this type of filters will not evaluate whether

the potential service consumer has the required knowledge and/or will be willing to provide it to

the service for execution.

After the application of filters, those services deemed relevant for achieving the goal pro-

vided will be known. Furthermore, the application of filters to service descriptions might not yield a

boolean answer, but might distinguish among different degrees of relevance of available services for

solving the goal at hand. In this case, not only what services are relevant, but also to what extent,

will be obtained.

In a nutshell, a goal will be described and sent to the registry or registries where service

descriptions are stored, together with the filters that must be applied. The selected filters will be

applied by the registry to available service descriptions to determine which of them are relevant

for achieving the goal received, and will return relevant service descriptions to the potential service

consumer (or to an agent acting on behalf of the consumer) (step 1 in Figure 5.8). In this way, rele-

vant services will be retrieved from repositories only based on goal and service descriptions, without

access to consumer knowledge and without any actual communication with available services.

5.3.3.2 Consumer-side filters

After the application of registry-side filters, the descriptions of relevant services according

to the filters applied are available at the service consumer side, where access to consumer knowledge

is possible. This enables the application of filters which can evaluate whether the consumer has

the necessary knowledge for using the service, and whether this knowledge can result on the effects

required.

Chapter 5: Abstract model for the location of services 137

Figure 5.8: Discovery in two steps

Furthermore, filters which are not provided by service registries but which are of interest for

a particular application can also be locally applied by the service consumer, thus offering flexibility

on the set of filters available, as this set can be freely extended by the service consumer if new filters

are required for covering his needs and as long as the descriptions of goals and services necessary for

applying these filters are in place. Therefore, we can have two types of consumer-side filters:

1. Filters which perform a matching of services and goals taking into account consumer knowledge,

accessible only on the consumer side.

2. Consumer-provided filters which are not implemented by service registries but which are of

interest for the service consumer; these filters might also access consumer knowledge.

More than one consumer-side filter can be applied, as depicted in Figure 5.8 (step 2). The

particular consumer-side filters to be applied will also be selected by the potential service consumer,

so registry-side filters were.

Consumer-side filters will be applied only over the set of service descriptions retrieved from

service registries, i.e., only over relevant services, and the application of these filters will result on a

reduction of this set, yielding the final set of discovered services. The descriptions of these services

can be then used for our next step: the selection of services.

Chapter 5: Abstract model for the location of services 138

Evaluation of real-world preconditions. It must be noted that at this step we have access to

consumer knowledge, but we will in general not have a complete view of the state of the world. Our

model assumes that the overall location process, either when registry-side or consumer-side filters are

applied, will have only partial visibility over the state of the world. Therefore, whether the service can

be used at the present moment cannot be generally assessed, i.e., only information preconditions

can be evaluated by consumer-side filters, but not real-world preconditions, as illustrated by the

following example.

Example 5.17 Let us imagine a consumer wants to book, with his credit card, a seat on a flight

from Paris to London on a given date. He will describe this goal e.g. textually, will remove sensitive

information from it e.g. his credit card details, and will send it to available repositories for retrieving

the description of relevant services based on a keyword-based filter which also exploits WordNet

relations [Fellbaum, 1998]. The selected filter will be applied at the registry, which will result on a

set of service descriptions deemed relevant for achieving the goal described, possibly with different

degree of relevance based on some scoring mechanism.

Relevant services will be returned to the potential consumer. From these services, some of

them might require a particular type of credit card to be used or the name of a registered user of the

service to be provided. A consumer-side filter can be applied to determine whether the consumer

has the necessary knowledge to fulfill the preconditions of the retrieved services. Furthermore, the

consumer might want to apply a custom filter for matching his goal to the description of the services

retrieved.

After consumer-side filters have been applied, we have a set of services which are relevant

to the goal given and usable by the service consumer in terms of the fulfillment of their information

preconditions. However, there will most likely be services which define real-world preconditions

stating that a seat on a flight will only be booked if such a is seat available, i.e., not already booked.

For evaluating a condition like seat availability, we would need to have access to this information

at discovery time, which will generally not be the case unless a service providing this information

is in turn located and used to retrieve this particular knowledge of the state of the world. Even if

such a service is available, which might not be the case, it can turn out that the service providing

this knowledge also defines some real-world preconditions we have to evaluate; for this evaluation,

we might need to again locate a service providing the required knowledge and execute it.

Summarizing, we can see that, for evaluating this type of real-world precondition, we need

knowledge which might not be known by the service location process or by the consumer. This

results in the need for locating services offering this knowledge, which requires the execution of

services during discovery and can imply a recursive location problem [Lara, 2006].

¤

Chapter 5: Abstract model for the location of services 139

In our model, we will not assume real-world preconditions of relevant services can be

evaluated. In fact, we do not expect instantiations of this abstract model to include this evaluation

as part of the discovery process, but they will instead leave it to the service selection step briefly

described below.

5.3.3.3 Service selection

After the application of the two types of filters described above, we will have a set of

service descriptions corresponding to services which might fulfill the goal defined. However, we

must remember that: i) these descriptions have been retrieved based on the application of filters

to complete but not necessarily correct descriptions of services (see Section 5.3.1), ii) real world

preconditions of services were not evaluated as access to real-world knowledge is incomplete and,

iii) the result of applying these filters might not be completely accurate depending on the efficiency

requirements of the consumer and on the accuracy of filters themselves.

In this situation, and also considering that more than one service might be deemed relevant

after the application of the selected filters, we have to go through a selection step where the actual

service to be used is determined. If we want to have a full guarantee that the selected service

can actually be used for achieving the consumer goal, the selection step will generally involve direct

communication with discovered services in order to determine whether the required effects will result

from service usage. After this selection, a particular value provision will be contracted [Preist, 2004],

i.e., agreed between consumer and provider, SLAs will be established [de Bruijn et al., 2005d], and

the service will be finally executed.

Regarding the communication with services to determine whether they can provide the

value expected, it can be carried out by executing the service and evaluating whether the effects

achieved are the ones sought. However, this is problematic for services having real world effects,

as they might not be always visible and, if the effects achieved are not the ones expected, it might

not always be possible to roll back these effects. Therefore, we expect the existence of a service

contracting interface used to negotiate what effects will be provided by the service, and only after

this negotiation succeeds actual execution will happen.

In the case of services which are fixed into a system or business process (see Section 5.2.1),

this selection can be slightly different, as not only a guarantee that the service will provide now the

value required is needed, but a guarantee that the service will provide this value for a given period of

time. In this case, the selection step will sometimes require the establishment of long-lasting service

provision contracts between consumer and provider.

In a nutshell, our model assumes the existence of a service selection process so that con-

sumers can have a guarantee that a given candidate service will be actually able to offer a value

satisfying his goal. This step will generally involve direct communication with candidate services,

Chapter 5: Abstract model for the location of services 140

which will be done through a service contracting interface at least for services whose usage results

in real-word effects. After a service is selected, it will be actually used to achieve the effects which

will resolve the goal defined.

5.4 Summary

The adoption of the SOA paradigm can expand different domains and application scenarios

with different requirements. Therefore, the location of services which can achieve a given goal might

be necessary in different scenarios and a comprehensive solution must take into account this diversity

and offer an appropriate level of flexibility so that this variety of scenarios can be covered.

In this Section, we have presented an abstract model for the location of services which, based

on an analysis of the main families of use cases which must be covered and of practical considerations

which affect how the model can be articulated, keeps flexibility as a key principle. The model tries to

be comprehensive and cover all aspects of service location, not only the matchmaking of a particular

type of description of goals and services.

The abstract model presented is intended to provide general guidelines and design decisions

for the location of services. However, particular instantiations of the model must concretize aspects

which are left open by the abstract model, such as the particular types of descriptions of goals and

services considered and the matching mechanisms applied to them. Such an instantiation, together

with a prototype implementation, will be presented in the next two Chapters.

In the following, we briefly summarize the main aspects of our abstract model.

Description and publication of services. In our model, the way the value of services is de-

scribed is not unique, but alternative types of descriptions of a service value can be provided in order

to make the model usable for users with different profiles and in order to enable the application of

matching mechanisms with different properties; particular instantiations of the abstract model will

decide and make explicit what types of descriptions are admitted and how they are matched.

Alternative descriptions of services are possible, but none of them is expected to capture

with complete accuracy the value of the service, as this is unrealistic in most cases. In this setting,

we will assume service descriptions are complete but not necessarily correct, and that they are static

in the sense that they will not be altered every time some dynamic condition which affects the set

of effects achievable by using the service changes.

Providers must be supported for providing the types of descriptions of their services ad-

mitted by the model instantiation, both in improving the accuracy of their descriptions and in

providing different types of descriptions. We believe strategies for providing this type of support are

an important part of a model for the location of services and, thus, of instantiations of our abstract

Chapter 5: Abstract model for the location of services 141

model.

Finally, we require the existence of registries which store the descriptions of available ser-

vices and enable their location based on the different types of descriptions admitted by the model

instantiation and the associated matching mechanisms. Whether a single centralized registry, a

completely distributed architecture in which any peer can register services, or a hybrid model is

used is not dictated by our model, but it is up to particular instantiations to concretize it.

Description of goals Goals describe the capability or functionality sought, and alternative types

of descriptions of such capability or functionality are possible. The types of descriptions admitted

by a model instantiation will coincide or will be very closely related to the types of descriptions of

the value of services admitted, and links must be established between types of goal descriptions and

types of service descriptions, including the matching mechanisms available and their properties.

Consumer knowledge will also be relevant for the location of services, as it determines

whether appropriate information can be provided to a candidate service. Therefore, this knowledge

will be made explicit, but it will not be disclosed to other parties during the location of services;

only after some service has been selected and a trust relation has been established such knowledge

might be disclosed.

Finally, support must be provided to users for describing their goals, in the same way

support was given to service providers for describing the value of their services. Support will be

provided to service consumers not only for providing different types of descriptions of their goals,

but also for choosing what type of description of their goals and matching mechanisms are better

suited for their efficiency and accuracy requirements.

Discovery and selection of services The discovery of services is based on the possibly succes-

sive application of matching mechanisms, called filters. This application is split into two phases:

the application of filters on the registry where service descriptions are stored and the retrieval of

descriptions which can potentially resolve the goal, and the application of filters over the retrieved

descriptions on the consumer side, where consumer knowledge is accessible. Consumer-side filters

are filters which require access to consumer knowledge, or which are custom-defined by consumers.

By splitting the discovery process in this way, we avoid the disclosure of consumer knowledge to the

registry or registries, and we allow consumers to define custom filters over the descriptions retrieved.

After appropriate services have been discovered, a selection phase will be necessary as the

results obtained from the discovery step might not be completely accurate. This selection requires

communication with candidate services so that a full guarantee that the service will provide the

effects required is obtained. For that purpose, the existence of a contracting interface which enables

the establishment of provision contracts between service consumers and service providers, prior to

Chapter 5: Abstract model for the location of services 142

actual service execution, is assumed.

The model presented has been inspired by the work we have presented in [Kifer et al.,

2004; Lara et al., 2004a; Keller et al., 2005; Lara and Olmedilla, 2005; Keller et al., 2006a], and

by LARKS [Sycara et al., 2002], where also alternative descriptions of agents and alternative filters

are considered. Posterior works such as OWLS-MX [Klusch et al., 2006] have followed a similar

approach. A detailed discussion of these related works will be presented in Chapter 8.

Chapter 6

Model Instantiation and Prototype

Implementation I: Description and

Publication of Services

6.1 Introduction

In the previous Chapter, we have presented an abstract model for the location of services

which can provide a certain value defined by a consumer goal. Such model was kept abstract, as it

only defined a master line for the location process, leaving many aspects open for instantiations of the

model to concretize them. This Chapter and the next one present a proposal for an instantiation of

the abstract model and an associated prototype implementation, developed in the course of the SETA

project1, called the SETA service location platform after the name of the project (SETA platform

for short), and whose core aspects have been published in [Lara et al., 2007b; Lara et al., 2006b].

In particular, this Chapter presents the instantiation of the first part of the abstract model, dealing

with the description and publication of services. The next Chapter will present the instantiation of

the part of the abstract model concerned with the process of actually locating services which can

potentially fulfill a goal given, organized in two phases as described in Chapter 5.

The instantiation presented is not meant to be the only possible one, but it serves as a

proof of concept of the abstract model proposed, enables an evaluation of the abstract model based

on a particular instantiation, and demonstrates the feasibility of enhancing current service location

practices. The instantiation proposed has the following salient features:
1http://www.tifbrewery.com/tifBrewery/writing.htm

143

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 144

1. It admits both formal and non-formal descriptions of services and goals, and of different types.

2. The descriptions used are integrated into an existing framework for the description of services

(WSMO) and formal descriptions are expressed using existing languages with formal semantics

(the WSML family of languages). Still, portability of descriptions to other frameworks is

possible.

3. It admits formal descriptions with different semantics. In particular, it enables the combined

use of descriptions with first-order and logic programming semantics for matching services and

goals.

4. The reasoning support required over formal descriptions is mostly provided by existing rea-

soning infrastructure. In particular, the reasoning capabilities required are provided by the

RACERPro [RAC, 2006; Haarslev and Möller, 2001] and Flora-2 [Yang et al., 2005] reasoners,

among others.

5. The alternative types of descriptions proposed and their associated filters keep a balance

between simplicity and coverage of application needs for different application types.

6. Support to users for describing their services and goals is included in the instantiation proposed.

7. A prototype implementation, as well as an evaluation of the model based on this implementa-

tion, has been accomplished.

In the following, we will present the first part of the instantiation of the abstract model,

which will make concrete how services and goals are described (Section 6.2), how users are supported

for providing these descriptions, and how service descriptions are published (Section 6.3). This will

include a presentation of the parts of our prototype implementation concerned with these tasks.

6.2 Types of descriptions of services

In this Section, we present the types of descriptions of services considered by the SETA

platform, as well as how they are integrated into the WSMO framework, i.e., how our service descrip-

tions are encoded as part of a WSMO service description. The types of descriptions considered are

split into two categories: syntactic or non-formal descriptions, and semantic or formal descriptions.

Within each category, the details of the different types of descriptions considered will be introduced.

In general, our instantiation tries to, with a relatively small set of alternative descriptions,

cover a wide range of user profiles and application scenarios; usability has been a criterium for choos-

ing the types of descriptions of services and goals admitted, as well as fulfillment of heterogeneous

requirements in terms of efficiency and accuracy.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 145

6.2.1 Syntactic descriptions

Syntactic descriptions have no explicit formal semantics and, therefore, they are not amenable

to the application of formal reasoning. While the lack of formal semantics will in general reduce

the accuracy of matching this type of descriptions, they have other important features which makes

their consideration worthwhile, namely: a) they are easy to provide by users with different profiles,

and b) highly efficient filters can be applied to them.

In the following, we present the different types of syntactic descriptions we have included in

the SETA platform. We will discuss the motivation for the use of each of these types of descriptions,

as well as what user profiles they are targeted at, what part of the service value they capture, what

type of filters are applicable to them, and how they are incorporated into WSMO service descriptions.

It must be noticed that we will only outline the kind of filters applicable to each type of description

and summarize their general properties; particular filters included in the SETA platform and their

implementation will not be presented in detail until the next Chapter.

6.2.1.1 WSDL description

The most prominent and widely supported specification for describing the technical in-

terface of a service for its actual provision or execution is the Web Service Description Language

(WSDL) [Christensen et al., 2001; Alonso et al., 2003] (see Chapter 2, Section 2.1.2).

Beyond describing how a service can be technically accessed, WSDL descriptions capture

information of services which can be used for their location. In particular, WSDL port types [Chris-

tensen et al., 2001] provide a signature view of the operations which can be accessed by consumers

using the service, which in some cases gives information to prospective consumers of the actual value

of the service. Furthermore, technical service users currently make use of this type of description to

make a first decision on the suitability of a service for achieving a given task. This means that this is

a type of description users with a technical profile are familiar with and which has proven somehow

useful in the past. Last, but not least, current mechanisms for service location considerably rely

on this type of description. In fact, a method for mapping WSDL descriptions to the UDDI model

[Bellwood et al., 2002] has been defined, which in turn enables the location of services in UDDI

repositories based on their WSDL descriptions [Colgrave and Rogers, 2004]2.

Summarizing, the WSDL description of a service sometimes offers information (although

often imprecise) of what the service does, and it is currently widely accepted and used by technical

users and service platforms, including registries. Therefore, if we want to ensure that our model is

compatible with current practices so that a progressive enhancement of the service location process is
2However, the granularity allowed for querying for services based on their WSDL descriptions is limited if we only

use core UDDI tModels. This issue will be discussed in more detail in the next Chapter.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 146

possible, we must consider WSDL descriptions not only as a description of how to programmatically

access a service but also as a possible description of the value of such service.

Modelling and aspects of the service captured. The modelling of services given by WSDL

descriptions has been presented in Chapter 2, Section 2.1.2. WSDL port types and their operations

are given names which might be descriptive, i.e., which might to some extent reflect the value

associated to the port type and its operations, and operations define input and output messages

whose names and syntactic structure might also reflect to some extent the service value. Furthermore,

WSDL allows for the use of documentation elements which enable the incorporation of textual

descriptions of any aspect of the service.

Listing 6.1 shows the WSDL description of a service offering the search of investment funds.

As it can be seen, both in the syntactic description of the messages received and returned by the port

type operation and in the description of the port type and its operation there is some information

about what the service actually does.

Listing 6.1: WSDL description of a service for the search of investment funds
<?xml version=” 1.0 ” encoding=”utf−8”?>

<wsd l : d e f i n i t i o n s xmlns:http=” ht tp : // schemas . xmlsoap . org /wsdl /http /”

xmlns:soap=” ht tp : // schemas . xmlsoap . org /wsdl / soap/”

xmlns :s=” ht tp : //www.w3 . org /2001/XMLSchema”

xmlns:soapenc=” ht tp : // schemas . xmlsoap . org / soap/ encoding /”

xmlns : tns=” ht tp : //www. a f i . es /WSFundSearchEngine”

xmlns:tm=” ht tp : // mic ro so f t . com/wsdl /mime/ textMatching /”

xmlns:mime=” ht tp : // schemas . xmlsoap . org /wsdl /mime/”

targetNamespace=” ht tp : //www. a f i . es /WSFundSearchEngine”

xmlns:wsdl=” ht tp : // schemas . xmlsoap . org /wsdl /”>

<wsd l : types>

<s:schema elementFormDefault=” qu a l i f i e d ” targetNamespace=” ht tp : //www. a f i . es /WSFundSearchEngine”>

<s : e l ement name=”FundSearch”>

<s:complexType>

<s : s equence>

<s : e l ement minOccurs=”0” maxOccurs=”1” name=”user ” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=”password” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”1” maxOccurs=”1” name=”companyId” type=” s : i n t ” />

<s : e l ement minOccurs=”1” maxOccurs=”1” name=” categoryId ” type=” s : i n t ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=”fundName” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=”ISIN” type=” s : s t r i n g ” />

</ s : s equence>

</ s:complexType>

</ s : e l ement>

<s : e l ement name=”FundSearchResponse”>

<s:complexType>

<s : s equence>

<s : e l ement minOccurs=”0” maxOccurs=”1” name=”FundSearchResult ”

type=”tns:ArrayOfWSFund” />

</ s : s equence>

</ s:complexType>

</ s : e l ement>

<s:complexType name=”ArrayOfWSFund”>

<s : s equence>

<s : e l ement minOccurs=”0” maxOccurs=”unbounded” name=”WSFund”

n i l l a b l e=” true ” type=”tns:WSFund” />

</ s : s equence>

</ s:complexType>

<s:complexType name=”WSFund”>

<s : s equence>

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 147

<s : e l ement minOccurs=”0” maxOccurs=”1” name=”name” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=”companyName” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=” f inanc ia lGroup ” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=” depos i tEnt i ty ” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=”categoryAFI” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=”categoryCNMV” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=” currency ” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=” ratingAFI ” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”1” maxOccurs=”1” name=” r eg i s t r a t i onDa t e ” type=” s:dateTime” />

<s : e l ement minOccurs=”1” maxOccurs=”1” name=” rank ingPos i t i on ” type=” s : i n t ” />

<s : e l ement minOccurs=”1” maxOccurs=”1” name=” rankingTotal ” type=” s : i n t ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=” investmentPol icy ” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=” r en t ab i l i t yR i s k ” type=” s : s t r i n g ” />

<s : e l ement minOccurs=”0” maxOccurs=”1” name=” la s tVa lue s ” type=” tns:ArrayOfValueForDate ” />

</ s : s equence>

</ s:complexType>

<s:complexType name=”ArrayOfValueForDate”>

<s : s equence>

<s : e l ement minOccurs=”0” maxOccurs=”unbounded” name=”ValueForDate” n i l l a b l e=” true ”

type=” tns:ValueForDate ” />

</ s : s equence>

</ s:complexType>

<s:complexType name=”ValueForDate”>

<s : s equence>

<s : e l ement minOccurs=”1” maxOccurs=”1” name=”date ” type=” s:dateTime” />

<s : e l ement minOccurs=”1” maxOccurs=”1” name=”value ” type=” s :dec ima l ” />

<s : e l ement minOccurs=”1” maxOccurs=”1” name=” rentab i l i ty12M ” type=” s :dec ima l ” />

</ s : s equence>

</ s:complexType>

</ s:schema>

</ wsd l : types>

<wsdl :message name=”FundSearchSoapIn”>

<wsd l :par t name=”parameters ” element=” tns:FundSearch ” />

</wsdl :message>

<wsdl :message name=”FundSearchSoapOut”>

<wsd l :par t name=”parameters ” element=” tns:FundSearchResponse ” />

</wsdl :message>

<wsdl:portType name=”WSFundSearchEngineSoap”>

<wsd l : ope ra t i on name=”FundSearch”>

<documentation xmlns=” ht tp : // schemas . xmlsoap . org /wsdl /”> Rece ives a user and password plus

search c r i t e r i a and r e tu r s investment funds meeting the c r i t e r i a given

</documentation>

<wsdl : input message=” tns:FundSearchSoapIn ” />

<wsdl :output message=”tns:FundSearchSoapOut” />

</ wsd l : ope ra t i on>

</wsdl:portType>

<wsdl :b ind ing name=”WSFundSearchEngineSoap” type=”tns:WSFundSearchEngineSoap”>

<soap :b ind ing t ranspor t=” ht tp : // schemas . xmlsoap . org / soap/http ” s t y l e=”document” />

<wsd l : ope ra t i on name=”FundSearch”>

<soap :ope ra t i on soapAction=” ht tp : //www. a f i . es /WSFundSearchEngine/FundSearch”

s t y l e=”document” />

<wsdl : input>

<soap:body use=” l i t e r a l ” />

</ wsd l : input>

<wsdl :output>

<soap:body use=” l i t e r a l ” />

</wsdl :output>

</ wsd l : ope ra t i on>

</ wsd l :b ind ing>

<wsd l : s e r v i c e name=”WSFundSearchEngine”>

<documentation xmlns=” ht tp : // schemas . xmlsoap . org /wsdl /”> Search o f investment funds

commercia l ized in the Spanish market .

</documentation>

<wsd l :por t name=”WSFundSearchEngineSoap” binding=”tns:WSFundSearchEngineSoap”>

<soap :addre s s l o c a t i on=” h t tp s : //www. a f i . es /Financia lWebService /WSFundSearchEngine . asmx” />

</ wsd l :por t>

</ w sd l : s e r v i c e>

</ w s d l : d e f i n i t i o n s>

While the XML-based description of port types, operations and messages is purely syntac-

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 148

tic, the following correspondence can be established between the elements of this description and

the elements of the conceptual model introduced in Chapter 5:

• Inputs and outputs of a port type correspond to input and output variables of a service

interface. Actually, a WSDL description is primarily intended to describe the interface of the

service in terms of operations and messages exchanged.

• The description of messages, their names and their structure can be seen as a syntactic version

of domain models (ontologies). While no formal semantics is given to the messages used in

WSDL descriptions, their structure and textual description can be used to identify the meaning

of these messages.

• Operations can be seen as a syntactic description of the service functionality. However, it must

be noted that the relation between initial conditions (before service usage) and final conditions

(after service usage) can only be captured textually using WSDL documentation elements as

shown in Listing 6.1, and that real world preconditions and effects can only be incorporated to

the description of the operation in the same way, that is, as a textual documentation element.

Furthermore, the description of input and output messages of an operation only contains the

data type or syntactic structure of information preconditions and effects, not their precise

semantics.

• Documentation elements can contain textual descriptions of any service element. While doc-

umentation elements can be placed anywhere in a WSDL description, the place in the WSDL

description where documentation elements are found can be guide us in knowing what aspect

of the service value they might capture. In particular, documentation elements associated to

messages can be expected to be textual descriptions of the domain model used, documentation

elements associated to port types, operations and input/outputs as textual descriptions of the

service functionality, and documentation elements associated to the service element as descrip-

tions of the service capability. However, note that this separation is not strict and it depends

on the intention of the service provider when describing his service. Therefore, it serves as

a guide but by no means as a robust rule for interpreting documentation elements in WSDL

descriptions.

In a nutshell, WSDL descriptions capture the signature of services, i.e., their interface

assuming a one-shot interaction and, to some extent, their functionality and/or capability.

Target user profile. The creation of WSDL descriptions is usually reserved to technical users,

who can create them manually or generate them using existing development tools such as Eclipse3,
3http://www.eclipse.org/

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 149

NetBeans4 or Visual Studio .NET5. Non-technical users are not expected to deal with this type of

description.

Encoding in WSMO. Services offered via a WSDL interface are expected to incorporate their

WSDL description as part of a WSMO service grounding, so that a WSMO execution environment,

following the choreography of the service, will be able to know which actual messages to send

and/or expect to receive. The WSDL description will provide the networking details, for example

that the data should be serialized as SOAP XML messages and sent over HTTP [Kopecky et al.,

2005]. However, a stable and well-defined mechanism for incorporating WSDL descriptions for the

grounding of WSMO services is still lacking. Therefore, and as a temporary solution until such a

mechanism is available, we incorporate into WSMO service descriptions a non-functional property

of the service capability with name wsdlDescription and whose value is a URI pointing to a location

where the service WSDL description can be found. Listing 6.2 shows an example WSMO description

of a service offering the search of investment funds commercialized in the Spanish market. The

wsdlDescription property points in the example to a location where a WSDL file containing the

description in Listing 6.1 can be found.

namespace { ”http://www.afi.es/services/finance#”,

loc ”http://www.afi.es/ontologies / geopolitical /locations#”,

action ”http://www.afi.es/ontologies /general/actions#”,

funds ”http://www.afi.es/ontologies /finance/investmentFunds#”,

dc ”http://purl .org/dc/elements/1.1#”,

afi ”http://www.afi.es/WSDiscovery/Description#” }

webService ”http://www.afi.es/ services /FundSearch1”

importsOntology { ”http://www.afi.es/ontologies/ geopolitical / locations ”,

”http://www.afi.es/ontologies /general/actions”,

”http://www.afi.es/ontologies /finance/investmentFunds” }

capability FundSearch1Capability

nonFunctionalProperties

afi#wsdlDescription hasValue ”http://www.afi.es/FinancialWebService/WSFundSearchEngine.asmx?wsdl”

dc#description hasValue ”Search of investment funds commercialized in the Spanish market”

dc#language hasValue ”en−GB”

afi#category hasValue ”http://www.afi.es/Taxonomy1#InvestmentFundSearch”

endNonFunctionalProperties

sharedVariables {?c}

postcondition

nonFunctionalProperties

afi#descriptionType hasValue ”setBasedCapability”

afi#intention hasValue ”all”

4http://www.netbeans.org/
5http://en.wikipedia.org/wiki/Visual Studio .NET

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 150

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/services/FundSearch1” equivalent

?x memberOf action#InfoProvision and

exists ?y(?x[action#ofInfoItem hasValue ?y]) and

forall ?y(

?x[action#ofInfoItem hasValue ?y] implies ?y memberOf funds#InvestmentFund[funds#commercializedIn

hasValue loc#Spain]).

precondition

nonFunctionalProperties

afi#descriptionType hasValue ”LPInfoPreconditions”

endNonFunctionalProperties

definedBy

?c memberOf funds#FundsCategory and ?c[funds#definedByEntity hasValue funds#CNMV].

postcondition

nonFunctionalProperties

afi#postconditionType hasValue ”inputDependentEffects”

afi#intention hasValue ”all”

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/services/FundSearch1” equivalent

?x memberOf action#InfoProvision and

exists ?y(

?x[action#ofInfoItem hasValue ?y]) and

forall ?y(

?x[action#ofInfoItem hasValue ?y] implies ?y memberOf funds#InvestmentFund[funds#commercializedIn

hasValue loc#Spain, funds#hasCategory hasValue ?c]).

Listing 6.2: WSMO description of a service offering the search of investment funds

Applicable filters. The nature of WSDL descriptions does not enable the application of formal

reasoning to the location of services providing a given value. We envision the application of the

following types of heuristic filters to this type of description:

1. Filters which, given some particular elements of a WSDL description e.g. the name of a port

type, find services with these characteristics. This type of filter is provided by the UDDI

inquiry API [Bellwood et al., 2002], which, based on predefined tModels, enables querying for

services based on elements of their WSDL descriptions, i.e., constraints can be expressed based

on the elements and structure of WSDL descriptions and services fulfilling such constraints

are matched.

2. Textual filters, which interpret WSDL descriptions as textual descriptions of the service and

match textual requirements to these descriptions using different text matching techniques.

This type of filter can be obtained e.g. if a WSDL description of a service is made public and

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 151

indexed by current search engines such as Yahoo!6 or Google7.

3. Filters which perform keyword or textual matching but also take into account the structure of

WSDL descriptions, i.e,. they take into account where the textual description appears e.g. as

the name of an operation or as the name of an input message. A filter or matching mechanism

which can be classified into this type is Woogle [Dong et al., 2004].

The type of filters enumerated above are expected to have a moderate precision, i.e., they

will not be very accurate in finding services which can offer the value desired. However, they are

expected to be quite efficient. The particular filters included in the SETA platform will be discussed

in the next Chapter.

6.2.1.2 Textual description

Human users easily deal with information in natural language. Therefore, the textual

description of the value of services, while sometimes imprecise due to the intrinsic characteristics of

natural language and to the possible mistakes or limitations in the use of the language by users, is

a useful and valuable type of description.

Textual descriptions incorporated into WSDL are coupled to a technical description, which

we might want to avoid if we want different users to provide different types of descriptions they are

more familiar with. For example, a business user might provide a textual description of the business

value of a service, while textual descriptions included in a WSDL description of such service, provided

by technical users, might have a technical bias and might lack the business point of view offered by

a business user. Therefore, we consider a separate textual description of a service value, separate

from textual descriptions encoded as WSDL documentation elements. However, this does not imply

that these two types of textual descriptions are completely different. They will be usually related,

and one type might be extracted, at least partially, from the other, as we will see in Section 6.3.

Besides the usability of textual descriptions by average users, there are other factors which

motivate the usage of this type of description in the SETA platform: its suitability for manual

filtering of discovered services, and the maturity and variety of text matching techniques. Depending

on the application scenario, there might be a manual selection step over the services discovered

(see Chapter 5, Section 5.3.3.3); textual descriptions of services are convenient for this task, as

they help human users to perform a quick filtering of services before inspecting more complex

descriptions. Additionally, there exists a wide range of mature techniques for the matching of textual

descriptions, ranging from simple keyword matching to more complex techniques involving word

stemming, sentence structure, etc. Furthermore, many of these techniques are built-in in common
6http://www.yahoo.com/
7http://www.google.com/

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 152

systems such as databases, and they have been successfully used by e.g. Web search engines. This

enables the possibility of choosing among alternative, tested filters with different properties.

Modelling style and aspects of the service captured. We assume a single textual description

of the value of the service is given. This description can capture the service capability and/or its

functionality. We note that separate textual descriptions of the capability and the functionality of

the service could be given, and even of its preconditions and effects. However, and for simplicity of

usage, we will provide only one textual description element and leave the separation of these aspects

of the service value to more complex, formal descriptions. The main reason is that we want to keep

this type of description simple and highly usable for average users.

Support for textual descriptions in different languages e.g. English and Spanish is currently

not supported by the SETA platform. This possibility is foreseen as an extension when the anno-

tation extensions introduced in [Toma and Foxvog, 2006], and which easily allows for incorporating

multilingual non-functional properties in WSMO descriptions, become supported by current WSMO

parsers and tools.

Target user profile. Any user profile is expected to be able to provide a textual description of the

value of a service. However, this type of description is specially well suited for business users, who

can easily provide a description of the service value from a business point of view. On the contrary,

technical users will most likely incorporate their textual descriptions into WSDL descriptions.

Encoding in WSMO. Textual descriptions are encoded in WSMO services as the value of the

Dublin Core description non-functional property8 of the capability, as shown in Listings 6.2 and 6.3.

Additionally, the Dublin Core language non-functional property is used to indicate the language in

which this description is provided.

namespace { ”http://www.afi.es/services/eTourism#”,

loc ”http://www.afi.es/ontologies / geopolitical /locations#”,

action ”http://www.afi.es/ontologies /general/actions#”,

flights ”http://www.afi.es/ontologies /eTourism/flightsExample#”,

dc ”http://purl .org/dc/elements/1.1#”,

g ”http://www.afi.es/ontologies /general#”,

afi ”http://www.afi.es/WSDiscovery/Description#” }

webService ”http://www.afi.es/ services /LowCostFlightSearch1”

importsOntology { ”http://www.afi.es/ontologies/ geopolitical / locations ”,

”http://www.afi.es/ontologies /general/actions”,

”http://www.afi.es/ontologies /general”,

”http://www.afi.es/ontologies /eTourism/flightsExample” }

8http://www.dublincore.org/

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 153

capability LowCostFlightSearch1Capability

nonFunctionalProperties

afi#wsdlDescription hasValue ”http://www.afi.es/eTourism/LowCostFlightSearch1.asmx?wsdl”

dc#description hasValue ”Search of flights operated by low−cost airlines ”

dc#language hasValue ”en−GB”

afi#category hasValue ”http://www.afi.es/Taxonomy1#LowCostFlightSearch”

endNonFunctionalProperties

sharedVariables {?co, ?cd, ?d}

postcondition

nonFunctionalProperties

afi#descriptionType hasValue ”setBasedCapability”

afi#intention hasValue ”some”

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/services/LowCostFlightSearch1” equivalent

?x memberOf action#InfoProvision and

exists ?y(?x[action#ofInfoItem hasValue ?y]) and

forall ?y(

?x[action#ofInfoItem hasValue ?y] implies (?y memberOf flights#Flight and

exists ?z(?y[flights#operatedBy hasValue ?z]) and

forall ?z(

?y[flights#operatedBy hasValue ?z] implies ?z memberOf flights#LowCostAirline))).

precondition

nonFunctionalProperties

afi#descriptionType hasValue ”LPInfoPreconditions”

endNonFunctionalProperties

definedBy

?co memberOf loc#City and ?cd memberOf loc#City and ?d memberOf date.

postcondition

nonFunctionalProperties

afi#postconditionType hasValue ”inputDependentPostcondition”

afi#intention hasValue ”some”

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/services/LowCostFlightSearch1” equivalent

?x memberOf action#InfoProvision and

exists ?y(?x[action#ofInfoItem hasValue ?y]) and

forall ?y(

?x[action#ofInfoItem hasValue ?y] implies ?(y memberOf flights#Flight and

exists ?z(?y[flights#operatedBy hasValue ?z]) and

forall ?z(

?y[flights#operatedBy hasValue ?z] implies (?z memberOf flights#LowCostAirline and

?y[flights#hasOrigin hasValue ?co] and ?y[flights#hasDestination hasValue ?cd] and

?y[flights#hasDate hasValue ?d])))) .

Listing 6.3: WSMO description of a service offering the search of low-cost flights

namespace { ”http://www.afi.es/services/eTourism#”,

loc ”http://www.afi.es/ontologies / geopolitical /locations#”,

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 154

action ”http://www.afi.es/ontologies /general/ETourismActions#”,

flights ”http://www.afi.es/ontologies /eTourism/flightsExample#”,

fc ”http://www.afi.es/ontologies /finance/common#”,

dc ”http://purl .org/dc/elements/1.1#”,

g ”http://www.afi.es/ontologies /general#”,

afi ”http://www.afi.es/WSDiscovery/Description#” }

webService ”http://www.afi.es/ services /BookIntAirFlight1”

importsOntology { ”http://www.afi.es/ontologies/ geopolitical / locations ”,

”http://www.afi.es/ontologies /general/ETourismActions”,

”http://www.afi.es/ontologies /finance/common”,

”http://www.afi.es/ontologies /general”,

”http://www.afi.es/ontologies /eTourism/flightsExample” }

capability BookIntAirFlight1Capability

nonFunctionalProperties

afi#wsdlDescription hasValue ”http://www.afi.es/eTourism/BookIntAirFlight1.asmx?wsdl”

dc#description hasValue ”Booking of flights operated by IntAir ”

dc#language hasValue ”en−GB”

afi#category hasValue ”http://www.afi.es/Taxonomy1#FlightBooking”

endNonFunctionalProperties

sharedVariables {?f, ?p, ?cc}

postcondition

nonFunctionalProperties

afi#descriptionType hasValue ”setBasedCapability”

afi#intention hasValue ”some”

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/services/BookIntAirFlight1” equivalent

?x memberOf action#FlightBooking and

exists ?s(?x[action#ofItem hasValue ?s]) and

forall ?s(

?x[action#ofItem hasValue ?s] implies (?s memberOf flights#FlightSeat and

exists ?f(?s[flights#onFlight hasValue ?f]) and

forall ?f(

?s[flights#onFlight hasValue ?f] implies ?f [flights#operatedBy hasValue flights#IntAir]))) and

exists ?cc(?x[action#withPaymentMethod hasValue ?cc]) and

forall ?cc(

?x[action#withPaymentMethod hasValue ?cc] implies ?cc memberOf fc#CreditCard).

precondition

nonFunctionalProperties

afi#descriptionType hasValue ”LPInfoPreconditions”

endNonFunctionalProperties

definedBy

?f memberOf flights#Flight and ?f[flights#operatedBy hasValue flights#IntAir] and

?cc memberOf fc#CreditCard and ?cc[fc#hasNumber hasValue ?n]

and ?cc[fc#hasHolder hasValue ?h] and ?cc[fc#hasExpiryDate hasValue ?e] and

?p memberOf g#Person and ?p[g#hasId hasValue ?id] and ?p[g#hasName hasValue ?name].

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 155

postcondition

nonFunctionalProperties

afi#postconditionType hasValue ”inputDependentEffects”

afi#intention hasValue ”some”

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/services/BookIntAirFlight1” equivalent

?x memberOf action#FlightBooking and

exists ?s(?x[action#ofItem hasValue ?s]) and

forall ?s(

?x[action#ofItem hasValue ?s] implies (?s memberOf flights#FlightSeat and

?s[flights#onFlight hasValue ?f] and ?s[flights#forPerson hasValue ?p])) and

?x[action#withPaymentMethod hasValue ?cc].

Listing 6.4: WSMO description of a service offering booking of flights operated by airline IntAir

Applicable filters. We have already mentioned the availability of a wide variety of mature tech-

niques and tools for text matching. While they might differ in the precision and recall levels offered,

as well as on their response times, they are expected to offer matches with limited precision due

to the inherent ambiguity of natural language and to the possible lack of precision of the textual

descriptions given by users. However, these filters are expected to offer low response times, as shown

by current database systems supporting textual matching and by current Web search engines. In

the next Chapter, we will discuss what particular type of filter we apply to textual descriptions in

the SETA platform.

6.2.1.3 Categorization

Textual descriptions are easy to provide by consumers and they allow great freedom: users

can textually describe in any level of detail any aspect of a service value. However, the accuracy

of such descriptions might be often limited and, furthermore, the precision of matching arbitrarily

complex textual descriptions is limited itself. For these reasons, we have incorporated to our platform

the categorization of services as it is a type of description which, while being convenient for average

users, leaves less freedom to such users, supports more accurate matching mechanisms, and can serve

to articulate mechanisms to support service providers for describing the value of the services they

offer.

Taxonomies of categories are widely used in different settings. Examples of systems mak-

ing use of this type of taxonomies are knowledge management systems, B2C sites such as Amazon9,

eBay10, or Yahoo11, and widely used information sources such as Yellow Pages. By browsing tax-

onomies and selecting particular categories, users can unambiguously and in a controlled manner
9http://www.amazon.com/

10http://www.ebay.com/
11http://www.yahoo.com/

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 156

narrow down their searches or contributions. In general, taxonomies of categories, if properly de-

fined, are easy to understand by and convenient for average users, as they offer a close set of choices

thus guiding users through the huge number of contents or services a given system might offer.

In this context, we find the categorization of services an interesting type of non-formal

description of their value. If taxonomies of categories reflecting the capability of services are defined,

these can be used to categorize available services in terms of the value they offer, to guide service

providers in describing their services by first selecting general, predefined categories of services and,

as we will see in Section 6.3, to link different types of descriptions referring to services which offer

a similar value. In fact, the categorization of services is possible in the UDDI model and in existing

UDDI repositories, either by using standardized taxonomies such as the United Nations Standard

Product and Services Classification (UNSPSC)12 or custom taxonomies of categories.

Modelling style and aspects of the service captured. We make use of taxonomies of cat-

egories which capture general capabilities different services can enable access to, i.e., we make use

of categories which capture the value different services might offer, independently of the specifics

of how such value is offered by particular services. Service categorization can be seen, thus, as the

association of a service to a general, pre-defined capability this and possibly other services can offer

e.g. flight booking.

Figure 6.1 shows some (partial) examples of taxonomies of categories which can be used

to categorize services. As we can observe in the figure, there can be alternative taxonomies for

categorizing services, but all of them are expected to contain categories which can be mapped to a

certain service capability. For example, under the Travel category, the Yahoo! taxonomy contains

more specific nodes for flight search, hotel search, etc., which can be used to capture the capability

of a service.

While taxonomies of categories can in principle be arbitrarily complex, this complexity

must be kept in levels that are compatible with simplicity of use and reusability. In general, we will

assume that categories in taxonomies correspond to relatively general capabilities, i.e., categories in

taxonomies have to keep a balance between accuracy and ease of use and they must be applicable

to a wide set of services. For example, the UNSPSC taxonomy is, if considered in its entirety, too

complex to be usable by an average user. Furthermore, we do not expect a taxonomy to define a too-

specific category such as ”Booking of flights in business class between Madrid and Rome operated by

IntAir”, as such a category is most likely only applicable to a single service and, if this level of detail

is allowed, the size of taxonomies will hamper their use. More general categories such as ”Flight

booking” or even ”Low-cost flight booking” are the types of categories expected to be defined by

taxonomies.
12http://www.unspsc.org/

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 157

Figure 6.1: From left to right: 1. a custom defined taxonomy, 2. first level of the eBay taxonomy,
and 3. first level of the Yahoo! taxonomy.

Finally, we assume that services are categorized using the most specific categories which fit

the actual service capability. For example, if a service offers the booking of seats on flights operated

by low-cost airlines, it will be categorized under a low-cost flight booking category, and not under a

flight booking category, if both exist.

Summarizing, the categorization of a service is expected to capture the general type of

capability offered by the service, probably without completely fitting the exact capability such

service offers but providing a coarse-grained view of it.

Target user profile. This type of description, due to its ease of use, is well suited for any type

of user. However, and like textual descriptions, the categorization of services is expected to be used

especially by business users or users having a good understanding of the value of the service, without

requiring technical skills.

Encoding in WSMO. We encode the categorization of a service using a category non-functional

property in the WSMO capability element, as shown in Listings 6.2 and 6.3. If more than one

value is given for this property, it means that the service belongs to all the categories given, i.e., we

interpret this case as a logical conjunction of categories.

A category is identified by a URI. As we can see in Listings 6.2 and 6.3, the URIs used

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 158

are built by appending, with a # symbol, the id of the category to the URI of the taxonomy the

category belongs to. Therefore, all taxonomies of categories must be referrable by a URI, and all

categories in a taxonomy must have a unique identifier.

Applicable filters. The filters applicable to this type of description are expected to offer low

response times and return results as precise as the granularity of the categories defined by available

taxonomies allow. These will in general be simple filters which, given one or more categories, find

services categorized under such categories. Optionally, filters can also exploit the structure of the

taxonomy and consider parent-child relations for matching services given a set of categories. In the

next Chapter, the filter implemented in the SETA platform for service categories will be presented.

In this Section, we have presented three alternative types of non-formal descriptions of

the value of services. These types of descriptions are close to the types of descriptions users are

currently familiar with and, therefore, we can achieve a smooth transition from current practices to

more advanced descriptions and achieve certain backwards compatibility with widely spread systems

and techniques such as web service registries, text matching techniques, or taxonomies of categories.

Furthermore, and as we will see in Section 6.3, non-formal descriptions serve as an entry point to

users for the provision of formal descriptions, as they can serve to suggest to users some pre-defined,

formal descriptions related to their non-formal descriptions.

6.2.2 Semantic descriptions

While syntactic or non-formal descriptions provide us with features such as ease of use

and efficient matching of descriptions, their lack of formal semantics does not allow for automated

reasoning, which can improve the precision of search results. In this Section, we introduce seman-

tic or formal descriptions, which will be exploitable by filters which, based on standard inference

mechanisms, can help to locate results with a considerably high precision.

6.2.2.1 Ontologies

Formal descriptions of the value of services will refer to a set O of ontologies which provide

the domain vocabulary such descriptions refer to. Furthermore, ontologies are themselves equipped

with formal semantics and their shared nature can ensure usability of descriptions across systems

and organizations13. Two main types of ontologies can be distinguished in our approach, namely:

(application) domain ontologies, and ontologies of actions. They are explained in the following.

13To what extent the ontologies used are shared will of course determine whether they can be used across particular
systems or organizations.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 159

Domain ontologies. Services offer some value in a given application domain e.g. finance, eTourism,

or eGovernment and, more particularly, they might be limited to a given sub-domain e.g. investment

funds, transport means, or local eGovernment. These application domains and sub-domains will be

modelled by one or more ontologies, and formal descriptions of the value of services will refer to

them.

In Listing 6.5, a very simple eTourism ontology is described using WSML human readable

syntax [de Bruijn et al., 2005e]. This ontology only defines some simple eTourism concepts for

illustrative purposes and it imports, among others, an ontology of geographic locations shown in

Listing 6.6. The other ontologies imported are not shown for simplicity. A simple ontology of

investment funds is given in Listing 6.7, which will also be used for illustrative purposes14.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−core”

namespace {
”http://www.afi.es/ontologies /eTourism/flightsExample#”,

dc ”http://purl .org/dc/elements/1.1#”,

foaf ”http://xmlns.com/foaf/0.1/”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#”,

loc ”http://www.afi.es/ontologies / geopolitical /locations#”,

fc ”http://www.afi.es/ontologies /finance/common#”,

g ”http://www.afi.es/ontologies /general#”}

ontology ”http://www.afi.es/ontologies /eTourism/flightsExample”

nfp

dc#title hasValue ”Simple ontology of eTourism”

dc#subject hasValue {”eTourism”, ”flights”}
dc#description hasValue ”Simple eTourism ontology for illustrating the formal description of services ”

dc#contributor hasValue ”http://nets . ii .uam.es/˜rlara/foaf . rdf”

dc#date hasValue date(2007,01,29)

dc#format hasValue ”text/html”

dc#language hasValue ”en−GB”

endnfp

importsOntology { ”http://www.afi.es/ontologies/ geopolitical / locations ”,

”http://xmlns.com/foaf/0.1”,

”http://www.afi.es/ontologies /finance/common”,

”http://www.afi.es/ontologies /general” }

concept Flight

hasNumber ofType string

hasOrigin impliesType loc#City

hasDestination impliesType loc#City

hasDate ofType date

operatedBy impliesType Airline

concept FlightSeat

hasNumber ofType string

14A much more complete ontology of investment funds has been defined in [Lara et al., 2006a] as part of our work
in modelling this domain and comparing the use of XBRL and formal ontologies in finance.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 160

onFlight impliesType Flight

onDate ofType date

price impliesType fc#Price

forPerson impliesType g#Person

concept ETourismOperator

hasName ofType string

concept Carrier subConceptOf ETourismOperator

concept Airline subConceptOf Carrier

fromCountry impliesType loc#Country

concept LowCostAirline subConceptOf Airline

concept RegularAirline subConceptOf Airline

instance IntAir memberOf RegularAirline

fromCountry hasValue loc#Spain

instance Vueling memberOf LowCostAirline

fromCountry hasValue loc#Spain

instance EasyJet memberOf LowCostAirline

fromCountry hasValue loc#UK

...

Listing 6.5: Excerpt of a simple eTourism ontology

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−core”

namespace {
”http://www.afi.es/ontologies / geopolitical /locations#”,

dc ”http://purl .org/dc/elements/1.1#”,

foaf ”http://xmlns.com/foaf/0.1/”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#”}

ontology ”http://www.afi.es/ontologies / geopolitical / locations ”

nfp

dc#title hasValue ”Simple ontology of locations ”

dc#subject hasValue {” geopolitical ”, ” locations ”}
dc#description hasValue ”Simple locations ontology for illustrating the formal description of services ”

dc#contributor hasValue ”http://nets . ii .uam.es/˜rlara/foaf . rdf”

dc#date hasValue date(2007,01,29)

dc#format hasValue ”text/html”

dc#language hasValue ”en−GB”

endnfp

importsOntology ”http://xmlns.com/foaf/0.1”

concept Location

hasName ofType string

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 161

concept Continent subConceptOf Location

concept Country subConceptOf Location

inContinent impliesType Continent

concept City subConceptOf Location

inCountry impliesType Country

instance Europe memberOf Continent

hasName hasValue ”Europe”

instance America memberOf Continent

hasName hasValue ”America”

instance Africa memberOf Continent

hasName hasValue ”Africa”

instance Asia memberOf Continent

hasName hasValue ”Asia”

instance Antarctica memberOf Continent

hasName hasValue ”Antarctica”

instance Australia memberOf Continent

hasName hasValue ”Australia”

instance Spain memberOf Country

hasName hasValue ”Spain”

inContinent hasValue Europe

instance UK memberOf Country

hasName hasValue ”United Kingdom”

inContinent hasValue Europe

instance Madrid memberOf City

hasName hasValue ”Madrid”

inCountry hasValue Spain

instance London memberOf City

hasName hasValue ”London”

inCountry hasValue UK

...

Listing 6.6: Excerpt of a simple ontology of locations

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−core”

namespace {
”http://www.afi.es/ontologies /finance/investmentFunds#”,

dc ”http://purl .org/dc/elements/1.1#”,

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 162

foaf ”http://xmlns.com/foaf/0.1/”,

loc ”http://www.afi.es/ontologies / geopolitical / locations ”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#”}

ontology ”http://www.afi.es/ontologies /finance/investmentFunds”

nfp

dc#title hasValue ”Simple ontology of investment funds”

dc#subject hasValue {”finance”, ”investment funds”}
dc#description hasValue ”Simple ontology of investment funds for illustrating the formal description of

services ”

dc#contributor hasValue ”http://nets . ii .uam.es/˜rlara/foaf . rdf”

dc#date hasValue date(2007,01,29)

dc#format hasValue ”text/html”

dc#language hasValue ”en−GB”

endnfp

importsOntology { ”http://www.afi.es/ontologies/ geopolitical / locations ”,

”http://xmlns.com/foaf/0.1”}

concept InvestmentFund

hasName ofType string

commercializedBy impliesType FinancialEntity

managedBy impliesType ManagementEntity

commercializedIn impliesType loc#Country

hasCategory impliesType FundsCategory

concept FinancialEntity

hasName ofType string

hasLegalName ofType string

fromCountry impliesType loc#Country

concept ManagementEntity subconceptOf FinancialEntity

hasName ofType string

hasLegalName ofType string

fromCountry impliesType loc#Country

concept FinancialMarketSupervisor subconceptOf FinancialEntity

hasName ofType string

fromCountry impliesType loc#Country

concept FundsCategory

hasName ofType string

definedBy impliesType FinancialEntity

instance CNMV memberOf FinancialMarketSupervisor

hasName hasValue ”CNMV”

fromCountry hasValue loc#Spain

instance FIAMM−CNMV memberOf FundsCategory

hasName hasValue ”FIAMM−CNMV”

definedBy hasValue CNMV

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 163

...

Listing 6.7: Simple ontology of investment funds

Ontologies of actions. In Chapter 3, Section 3.3, we provided a formal characterization of services

and goals with the purpose of capturing the nature of these artifacts. In this formal characterization,

domain ontologies were used and both services and goals were defined as transactions over a real

world state, a consumer knowledge state, or both. These transactions were defined as transaction

formulas in the framework provided by Transaction Logic, which enabled the definition of services in

terms of elementary transitions or updates, as well as the definition of arbitrarily complex transaction

formulas modelling actions such as the booking of seats on a flight. In fact, a capability was captured

by a transaction formula or action whose performance resulted in changes to the current state. The

definition of this transaction formula can be in general given in terms of more simple transaction

formulas, which can be in turn defined in terms of other transaction formulas until we reach the

level of elementary transitions or updates.

While the definition of transaction formulas capturing service capabilities and/or function-

alities is feasible, carrying out this task from scratch is rather cumbersome even for a relatively

skilled user. Furthermore, and although transaction logic is a valuable framework for modelling

services and goals, there is no sufficient reasoning infrastructure for conveniently reasoning over T R
descriptions. For these reasons, we use the formal characterization of services and goals based on

transaction logic given in Chapter 3 exclusively as a solid basis for understanding the nature of ser-

vices and goals, but we pursue an additional abstraction layer over this formalization which makes

descriptions usable and practically exploitable using existing reasoning infrastructure.

A step towards making descriptions usable and abstracting from the formalization in Chap-

ter 3 is the introduction of ontologies of actions, i.e., of reusable terms which refer to common

transaction formulas and which can be used in the description of services and goals to, with relative

simplicity, express what value a service offers or what value is requested, respectively. In this way,

usability is increased as the description burden is reduced. A mapping can be established if required

between the actions defined in these ontologies and the definition of the transaction formula provid-

ing the accurate meaning of the action. However, transaction formulas will not be directly used in

our platform, as illustrated by the example below.

Example 6.1 In Example 3.16, the capability of booking seats on flights between European cities is

given by a transaction formula which defined what actions are associated to the capability, and possi-

bly to what parameters (if any) they could be applied. This transaction formula was split into a trans-

action formula Υ′(x1, x2, x3, x4, y1, y2), which produced some changes in the global state, and a trans-

action formula Υ′c(x1, x2, x3, x4, y1, y2), which produced some changes to the consumer knowledge

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 164

state. The former made reference to a generic action (transaction formula) booking(x1, x2, x3, x4, y1),

and some constraints were placed over the values of variables x1, x2, x3, x4 to which the action could

be applied. The latter defined what formulas were inserted into the consumer knowledge base.

The action of booking something is a common action which can be reused across capabil-

ities and whose intuitive meaning is understood by users. Therefore, the action booking is a good

candidate for being defined in an ontology of actions. Furthermore, the action of providing knowl-

edge to a consumer, i.e., of providing some information is also common and can be incorporated to

ontologies of actions.

¤

Listing 6.8 presents a simple ontology of general actions or transactions which will be used

for illustrating the different types of formal descriptions supported by the SETA platform. In this

ontology, an action InfoProvision is defined representing the provision of information, i.e., a trans-

action which has an effect on consumer knowledge. Other actions, sub-concepts of RealWorldEffect,

correspond to actions having an impact on the real world state., such as the action Booking.

Multiple ontologies of actions, and ontologies of refined actions applicable to a given domain

might be defined. For example, Listing 6.9 shows a brief excerpt of a simple ontology of eTourism

actions which refine some of the actions defined in the general ontology of actions.

In general, ontologies of actions define concepts which are an abstraction of commonly used

transactions such as booking, purchasing, etc. These actions are intended to be reusable across ca-

pabilities, and the properties they define model those aspects of the effects obtained from performing

the action which serve to characterize the value offered by the capability. Such properties roughly

correspond to the output values of the transaction formulas introduced in Chapter 3. For example,

action FlightBooking in Listing 6.9 defines two properties ofItem and withPaymentMethod, and

ofItem can only be a flight seat. Particular capabilities can refine this definition and constraint

the kind of flight seat which can be booked e.g. on flights operated by only some airlines or with

certain restrictions on the itinerary. Similarly, the type of payment method used could be restricted

by particular capabilities offering the booking of flight seats.

In a nutshell, ontologies of actions provide an abstracted view of commonly used actions

which correspond to transactions having an effect on the real world state or on consumer knowl-

edge, and which are usable to concisely, and without requiring a full formalization of state change,

characterize the value associated to capabilities and services. They provide a vocabulary of actions

with some value that can be used by service consumers and providers to describe their needs and

offers, respectively.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−core”

namespace {

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 165

”http://www.afi.es/ontologies /eTourism/ActionsExample#”,

dc ”http://purl .org/dc/elements/1.1#”,

foaf ”http://xmlns.com/foaf/0.1/”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#”,

fc ”http://www.afi.es/ontologies /finance/common”}

ontology ”http://www.afi.es/ontologies /general/actions”

nfp

dc#title hasValue ”Simple ontology of actions”

dc#subject hasValue ”actions”

dc#description hasValue ”Simple actions ontology for illustrating the formal description of services ”

dc#contributor hasValue ”http://nets . ii .uam.es/˜rlara/foaf . rdf”

dc#date hasValue date(2007,01,29)

dc#format hasValue ”text/html”

dc#language hasValue ”en−GB”

endnfp

importsOntology { ”http://xmlns.com/foaf/0.1”,

”http://www.afi.es/ontologies /finance/common”}

concept InfoProvision

concept RealWorldEffect

concept Booking subConceptOf RealWorldEffect

concept Rental subConceptOf RealWorldEffect

concept Purchase subConceptOf RealWorldEffect

concept Charge subConceptOf RealWorldEffect

...

Listing 6.8: Excerpt of a simple ontology of actions

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−core”

namespace {
”http://www.afi.es/ontologies /eTourism/ETourismActionsExample#”,

dc ”http://purl .org/dc/elements/1.1#”,

foaf ”http://xmlns.com/foaf/0.1/”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#”,

fc ”http://www.afi.es/ontologies /finance/common”,

ac ”http://www.afi.es/ontologies /general/actions”,

pe ”http://www.afi.es/ontologies /general/persons”}

ontology ”http://www.afi.es/ontologies /general/ETourismActions”

nfp

dc#title hasValue ”Simple ontology of eTourism actions”

dc#subject hasValue {”eTourism”, ”actions”}
dc#description hasValue ”Simple eTourism actions ontology for illustrating the formal description of services ”

dc#contributor hasValue ”http://nets . ii .uam.es/˜rlara/foaf . rdf”

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 166

dc#date hasValue date(2007,01,29)

dc#format hasValue ”text/html”

dc#language hasValue ”en−GB”

endnfp

importsOntology { ”http://xmlns.com/foaf/0.1”,

”http://www.afi.es/ontologies /finance/common”,

”http://www.afi.es/ontologies /general/actions”}

concept FlightBooking subConceptOf ac#Booking

ofItem impliesType FlightSeat

withPaymentMethod impliesType fc#PaymentMethod

concept CarRental subConceptOf ac#Rental

...

Listing 6.9: Excerpt of a simple ontology of eTourism specific actions

Logical language. Both domain and action ontologies must be defined using a given logical

formalism, with a given semantics and expressivity. The choice of the logical formalism is highly

relevant, as it will condition what kind of formal descriptions of the value of services can use these

ontologies.

In Chapter 2, Section 2.2.5, we introduced the most salient languages proposed for se-

mantic modelling. OWL is the W3C recommendation for an ontology language, and the Lite and

DL species of OWL are probably the most widely used languages. They are given a first-order

semantics; in particular, the Lite and DL species are equivalent to certain Description Logics, as

summarized in Chapter 2. However, using first-order logic semantics usually implies making the

Open World Assumption (OWA), and restrictions are used instead of constraints, which might be

counterintuitive for users and inconvenient in certain applications (see [de Bruijn et al., 2005f]).

Furthermore, alternative types of descriptions and matching mechanisms might require and exploit

different semantics, such as First-Order and Logic Programming semantics, as we will see in the

next Chapter. For these reasons, it is desirable to make the minimum possible commitment to a

particular formalism when choosing the semantics of domain and action ontologies in order to enable

the usability of the same ontologies by different descriptions with different semantics and proper-

ties. Along this line, we find the use of WSML-Core [de Bruijn et al., 2005e] the most convenient

choice, as it corresponds with the intersection of Description Logic and Horn Logic (without function

symbols and without equality), based on Description Logic Programs (DLP) [Grosof et al., 2003]

and extended with datatype support in order to be useful in practical applications; as discussed in

Chapter 2, Section 2.2.5.3, in this fragment ground entailments coincide both under LP and DL

semantics, which makes WSML-Core a basic interoperability layer.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 167

Figure 6.2: Expressivity allowed for domain ontologies

Therefore, by using WSML-Core we can make use of the same ontologies in descriptions of

services both with DL semantics and LP semantics and, if required, we can extend these ontologies

in either direction; as stated in [de Bruijn et al., 2005e], it is possible that definitions in WSML-Core

are extended with definitions in a more expressive language such as WSML-DL (with first-order

semantics) or WSML-Flight (with logic programming semantics).

The example ontologies discussed so far are WSML-Core ontologies. However, in Listing

6.10, the example ontology of locations given is extended in the direction of first-order logic to state

that: a) members of the concept Country must have a value, instance of the concept Continent, for

the property inContinent (CountryHasAContinent axiom), b) members of the concept City must

have a value, instance of the concept Country, for the property inCountry (CityHasACountry ax-

iom), c) the concept City is disjoint from the concept Country (DisjointnessCountryCity axiom),

and d) concepts Country and Continent are disjoint (DisjointnessCountryContinent axiom). This

extension will only be consistently usable in descriptions of services with first-order semantics, as all

these axioms are beyond the intersection of first-order and horn logic.

In general, certain types of descriptions of services and goals we will use might require

domain ontologies to formalize aspects which are beyond the expressivity of WSML-Core and which

can be only captured if extensions of WSML-Core in the direction of Description Logics are used,

such as disjunction axioms or certain restrictions on concept roles. In this setting, we will consider

a set O of domain ontologies which contain that part of the domain vocabulary expressible in

WSML-Core, and a set ODL of domain ontologies which are an extension of the basic set O in the

direction of Description Logics and for which the allowed expressivity is that of WSML-DL+, i.e.,

the SHOIN (D) Description Logic (see Chapter 2, Section 2.2.5.3). This is illustrated in Figure

6.2, where ODL - O denotes that part of domain ontologies expressible in WSML-DL+ but not in

WSML-Core.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−dl”

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 168

namespace {
”http://www.afi.es/ontologies / geopolitical /locations#”,

dc ”http://purl .org/dc/elements/1.1#”,

foaf ”http://xmlns.com/foaf/0.1/”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#”}

ontology ”http://www.afi.es/ontologies / geopolitical /locationsExtended”

nfp

dc#title hasValue ”Extended ontology of locations ”

dc#subject hasValue {” geopolitical ”, ” locations ”}
dc#description hasValue ”Extended locations ontology in the direction of first order logic ”

dc#contributor hasValue ”http://nets . ii .uam.es/˜rlara/foaf . rdf”

dc#date hasValue date(2007,01,29)

dc#format hasValue ”text/html”

dc#language hasValue ”en−GB”

endnfp

importsOntology { ”http://xmlns.com/foaf/0.1”, ”http://www.afi.es/ontologies / geopolitical / locations ”}

axiom CountryHasAContinent

definedBy

?x memberOf Country implies

exists ?y (?x[inContinent hasValue ?y]) and

forall ?y (?x[inContinent hasValue ?y] implies ?y memberOf Continent).

axiom CityHasACountry

definedBy

?x memberOf City implies

exists ?y (?x[inCountry hasValue ?y]) and

forall ?y (?x[inCountry hasValue ?y] implies ?y memberOf Country).

axiom DisjointnessCountryCity

definedBy

?x memberOf Country implies neg ?x memberOf City.

axiom DisjointnessCountryContinent

definedBy

?x memberOf Country implies neg ?x memberOf Continent.

Listing 6.10: Simple extension of the ontology of locations in the direction of first-order logic

6.2.2.2 Set-based modelling of service capabilities

In the following, we present the first type of description of the value of services with formal

semantics we consider in our platform: the set-based modelling of the capability of services. This

type of description is the result of the work we have presented in [Keller et al., 2004a; Lara et al.,

2004a; Keller et al., 2005; Keller et al., 2006a] and it is based on modelling the possible effects

of accessing a capability as a set, independently of the conditions the service poses to access such

capability and of how initial conditions, i.e., conditions that hold before service usage, affect the

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 169

particular effects obtained from using the service.

The interest of the set-based modelling of service capabilities can be summarized by the

following main points:

1. It enables the evaluation of the suitability of a service in cases where initial conditions can-

not be known, as access to the state of the world is limited for the evaluation of real world

preconditions and we might not have access to consumer knowledge to evaluate information

preconditions.

2. In situations where the prospective consumer is interested in locating a service which enables

access to a particular capability, without having particular requirements (at least that he can

describe) on initial conditions and on how they affect the results obtained, it enables to skip

or to delay the definition and evaluation of these requirements.

3. If the expressivity of the language used to describe the set of possible effects of the service is

limited to a certain subset of first-order logic, this type of description enables classification of

services in terms of the capability they provide at publication time and, as a consequence, an

efficient matching of descriptions at discovery time.

4. Descriptions will be given in terms of pre-defined actions defined in ontologies of actions,

for which restrictions on what kind of objects these actions apply to are introduced. This

modelling style makes it relatively easy for users with basic skills in knowledge representation

to provide this type of description.

5. General capabilities can be pre-defined and used as a starting point for users to describe

their service capabilities by selecting appropriate pre-defined capabilities and refining them.

Furthermore, these general capabilities can be naturally mapped to categories in taxonomies,

which will be an important feature for being able to propose different types of descriptions to

users. Details on how this is done will be presented in Section 6.3

Modelling style and aspects of the service captured. The set-based modelling of a service

capability aims at formally describing, at an appropriate abstraction level so that descriptions can

be relatively easily provided by users and so that an efficient matching of descriptions is possible,

what capability a service enables access to regardless of initial conditions and of their influence on

the particular effects of using the capability, i.e., we aim at modelling the set of abstract effects that

can be achieved by using a service.

For this purpose, we will use the ontologies of actions introduced in the previous section

and describe what actions can be performed when the capability is used, and what kind of objects

these actions apply to. In particular, the set of abstract effects associated to a capability C service

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 170

serv enables access to will be modelled by a DL concept Effserv with the following form in DL

syntax:

Effserv ≡ (Action1 uRestrictions1) t (6.1)

(Action2 uRestrictions2) t
. . . t

(Actionn uRestrictionsn)

where Action1, . . . , Actionn are actions defined in ontologies of actions and

Restrictions1, . . . , Restrictionsn are concepts denoting restrictions introduced over the properties of

such actions, and which will refer to the setODL of domain ontologies. In a nutshell, concept Effserv

defines the set of potential effects which can be achieved by accessing the capability, described in

terms of the actions associated to the capability and the restrictions applied over such actions. This

is illustrated by the examples below.

Example 6.2 If we consider the service in Listing 6.2, offering the search of investment funds

commercialized in the Spanish market, the set of effects offered by its underlying capability can be

formalized as15:

EffFundSearch1 ≡ InfoProvision u
∃ofInfoItem u ∀ofInfoItem.(InvestmentFund u commercializedIn.{Spain})

where Infoprovision is the concept defined by the ontology of actions in Listing 6.8,

concept InvestmentFund and property commecializedIn are defined by the ontology shown in

Listing 6.7, and Spain corresponds to the instance defined by the ontology in Listing 6.6.

Intuitively, the formalization above can be read as: possible effects of using the service are

the provision of information about any investment fund commercialized in Spain. This description

includes only one action InfoProvision, as there is no real-world effect of accessing this capability

but only information effects. The restriction over this action says that the objects about which

information will be provided are investment funds commercialized in Spain. If we consider the

general form descriptions of capabilities take, given by Formula (6.3), we have that:

Action1 ≡ InfoProvision

Restriction1 ≡ ∃ofInfoItem u ∀ofInfoItem.(InvestmentFund u commercializedIn.{Spain})
15In the remainder of this document, and for reasons of readability, we will omit namespaces in formalizations, and

we will not use full URIs in the names of services, goals and categories. Only descriptions in WSML human-readable
syntax will include these details.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 171

¤

Example 6.3 If we now consider the service in Listing 6.3, which offers the search of flights operated

by low-cost airlines, the set of effects offered by its underlying capability can be formalized as:

EffLowCostF lightSearch1 ≡ InfoProvision u
∃ofInfoItem u ∀ofInfoItem.(Flight u ∃operatedBy u ∀operatedBy.LowCostAirline)

¤

Example 6.4 Now, let us consider the service in Listing 6.4, whose underlying capability is the

booking of seats on flights operated by the airline IntAir, and payable with credit card. This

capability can be formalized as:

EffBookIntAirF light1 ≡ FlightBooking u
∃ofItem u

∀ofItem.(FlightSeat u ∃onF light u ∀onF light.(Flight u operatedBy.{IntAir}) u
∃withPaymentMethod u ∀withPaymentMethod.CreditCard

Intuitively, the formalization above states that the service has the capability of booking

seats on flights operated by IntAir, and that such bookings are payable with credit card, i.e., that

the set of possible effects of using the service (abstract effects) are the result of booking with credit

card any seat on flights operated by IntAir. ¤

In general, we model the abstract effects associated to a capability by concepts which

state what action or actions, from the set of pre-defined actions defined by available ontologies,

are associated to the capability, and what restrictions apply to the performance of such actions.

The disjunction of actions means that all the actions given by the disjunction can be performed, as

illustrated by the following example.

Example 6.5 Let us imagine a service which enables access to the capability of both searching

flights provided by IntAir and booking such flights. This capability would be described as:

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 172

EffSearchAndBookIntAirF light1 ≡
(FlightBooking u

∃ofItem u ∀ofItem.(FlightSeat u ∃onF light u ∀onF light.(operatedBy.{IntAir}) u
∃withPaymentMethod u ∀withPaymentMethod.CreditCard)

t
(InfoProvision u

∃ofInfoItem u ∀ofInfoItem.(Flight u operatedBy.{IntAir}))

The formalization above can be seen as the union of two sets of abstract effects: the set

of effects corresponding to the booking of seats on flight operated by IntAir, and the set of effects

corresponding to the provision of information about flights operated by IntAir.

¤

This modelling style corresponds to the formal characterization of a capability presented

in Chapter 3, where a capability was defined by a possible action or actions, given by transaction

formulas, which could be performed, and some restrictions over the parameters of these actions were

defined. Notice that the modelling style used does not establish any connection to the input and

output variables of the service interface, as a capability is independent of how a particular service

enables access to it. However, if compared to the formalization of capabilities presented in Chapter

3, our modelling style introduces variations, namely: i) an abstraction layer is added and actions

already defined by appropriate ontologies are used; this is expected to improve usability, and ii) we

describe capabilities by a concept so that the resulting description can be viewed as a set, which will

enable efficient classification and matching of services based on their capabilities.

In [Keller et al., 2004a; Keller et al., 2005; Keller et al., 2006a], we considered the use of

meta-annotations describing the intention of the description given, with the purpose of differentiating

cases where a service can provide all the effects in the set of abstract effects described by the

capability, from the cases where a service can provide only some of the effects in this set. For example,

a service can exist which provides information about any flight operated by low-cost airlines, i.e,

which enables full access to the capability in Example 6.3, while another service can exist which

enables only partial access to this capability, not being able to provide information about certain

low-cost flights. The latter case would correspond to situations in which the description of the exact

capability the service enables access to is too complicated to be provided by the user, and a simplified

version, not exact, is used.

In this setting, a service capability will be defined not only by a concept Effserv formalizing

the set of effects achievable, but also the intention of this set, denoted Iserv, must be given. Therefore,

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 173

we model a service capability as a pair Cserv = (Effserv, Iserv), where Effserv is a WSML-DL+

concept defined in terms of the set ODL of domain ontologies and with the form presented above,

and Iserv ∈ {some, all}, where some denotes an existential intention (only some of the effects in the

set defined by Effserv are offered), and all denotes a universal intention (all the effects in the set

defined by Effserv are offered).

Logical language So far, we have not restricted the expressivity allowed for describing the set of

effects achievable by accessing a capability. However, in our platform we will restrict this expressivity

to WSML-DL+, i.e., to the SHOIN (D) Description Logic. The reasons behind this choice can be

summarized in the following main points:

1. The use of first-order semantics is convenient for the description of the abstract effects of

capabilities, as it enables dealing with incomplete descriptions or missing information, as it

will be demonstrated by the filters we will introduce in Chapter 7.

2. This fragment of First-Order logic is decidable, while full FOL is undecidable.

3. This fragment is the DL fragment underlying the DL species of OWL, as shown in [Horrocks

et al., 2003], and it is very close to WSML-DL, which corresponds in expressivity and semantics

to the SHIQ(D) description logic [de Bruijn et al., 2005e]. Therefore, we can benefit from the

research done in the making of these languages, as well as from tools developed for them.

4. There exist reasoners, as presented in Chapter 2, Section 2.2, which can efficiently handle this

subset of first-order logic, especially offering efficient subsumption reasoning. This enables

the classification of services based on their capabilities at publication time and the efficient

matching of services, already classified, at discovery time.

Target user profile. The abstract effects associated to a capability are expected to be formalized,

in the way introduced above, by users with minimum skills in knowledge representation. This profile

will most likely correspond to technical users but, if appropriate support is provided, we can make

this type of description accessible also to business users, who will in most cases have a better view

of the business capability offered. The type of support provided by our platform for the set-based

modelling of service capabilities will be described in the next Section.

Encoding in WSMO. The set-based modelling of the service capability is encoded as a post-

condition of the WSMO capability element. However, and as different types of descriptions will be

encoded in our platform as WSMO postconditions, we differentiate this particular type of postcon-

dition by the setBasedCapability value of the descriptionType non-functional property associated to

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 174

it, as shown in Listings 6.2 and 6.3. Notice that in these listings, WSML human readable syntax is

used instead of common DL syntax. The concept formalizing the set of abstract effects offered will

take the full name of the service it is associated to, i.e., the URI identifying the service. Whether a

universal or existential intention is associated to this concept will be indicated by the values all or

some, respectively, of the intention non-functional property of the WSMO postcondition.

Applicable filters. The type of filters expected to be applied to this type of description are filters

that, based on the set-theoretic relations between the set of effects associated to the capability and

the set of effects required by a consumer [Keller et al., 2006a], determine what services enable access

to a capability which can provide the set of effects requested. Filters applicable to these descriptions

will not take into account how a particular service enables access to the capability described, i.e.,

what initial conditions must be fulfilled for the service to be used and how they affect what abstract

effects from the set described will be realized will not be considered.

These filters are expected to offer a considerably degree of accuracy, of course dependent

on the accuracy of the descriptions given. Furthermore, and as they can benefit from off-line classi-

fication of services using subsumption reasoning, as we will see in Section 6.3, they are expected to

be relatively efficient. For details, see Chapter 7.

6.2.2.3 Description of information preconditions with LP semantics

The second type of formal description of aspects of the value offered by a service focuses on

the description of information preconditions, with the purpose of explicitly and formally describing

what knowledge the potential consumer of a service must posses and make available to the service

in order to access its underlying capability. The type of description of information preconditions we

will use, and unlike most existing proposals in the area e.g. [Paolucci et al., 2002; Li and Horrocks,

2003; Colucci et al., 2005], will describe what knowledge the consumer has to provide to the service

but under Logic Programming semantics, and it is motivated by the following main considerations:

1. We want this description to be usable to determine, from the actual information the consumer

has available, whether valid input values can be provided for the execution of the service, and

what particular combinations of valid input values can be provided from consumer knowledge

(possibly more than one).

2. The evaluation of the availability of knowledge which satisfies information preconditions of

candidate services must be performed efficiently, and using existing reasoning infrastructure.

3. In most situations, we do not expect consumers to explicitly describe what information they

have available and willing to disclose for achieving a particular goal. Instead, we want to

evaluate information preconditions on general consumer knowledge.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 175

The type of description of information preconditions we will present in the following is

different from most existing proposals, where the description of information preconditions is given

first-order semantics, and where matching mechanisms implicitly expect potential consumers to

describe, for each goal, what particular information can be expected by candidate services. In this

sense, the type of description introduced by our framework is novel and we believe it complements

existing proposals based on description logics and, consequently, on first-order semantics. We will

discuss related work in further detail in Chapter 8.

Modelling style and aspects of the service captured. Information preconditions define con-

ditions on the knowledge a potential consumer of the service must possess and disclose to the service

for its execution. In particular, what knowledge will be disclosed by the consumer to the service

is defined through a binding of certain objects known by the consumer to a set of input variables

i1, . . . , in defined by the service interface (see Chapter 3).

In this setting, and besides requiring some objects to be assigned to input variables, we

will formalize what particular conditions these objects must fulfill to be a valid input binding.

This formalization, given a service with input variables i1, . . . , in, will take the form of a Logic

Programming query with at least n free variables:

?− conditions(i1, . . . , in) (6.2)

where predicate conditions(i1, . . . , in) is a (possibly complex) predicate which captures the

conditions values assigned to input variables i1, . . . , in must fulfill.

Example 6.6 The service enabling access to the capability of providing information about invest-

ment funds commercialized in Spain (see Listing 6.2), requires the consumer to provide information

about a category of investment funds defined by the CNMV (the Spanish market supervisor), and

only information about funds in this category will be provided. This is formalized by the following

LP query, where C is an input variable:

?− fundsCategory(C), definedBy(C, cnmv).

Another service might enable access to the same capability, but requiring the consumer to

provide information about a management entity and providing information about funds managed

by this entity. This would be formalized by the LP query:

?−managementEntity(M).

where M is an input variable.

We can imagine yet another service which enables access to the same capability as the

previous services, but requiring not only a management entity to be provided but also information

about a user account (user name and password) for the fundsOnline service:

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 176

?−managementEntity(M), userAccount(A), hasUserName(A,U),

hasPassword(A, P), forService(A, fundsOnline).

where both M and A are input variables. U and P do not correspond to input variables,

as their values will be part of the information provided to the service through the binding of a user

account to input variable A. Their presence means that possible substitutions for them must be

known by the consumer, but they will actually be provided as part of a complete user account given

through input variable A.

¤

Given the examples above, answers to the queries must be found given the knowledge the

consumer has available, so that the services defining these preconditions can be used. The LP queries

described are intended to be evaluated over consumer knowledge, i.e., substitutions of variables in

these queries by objects (constants) known by the consumer are sought. Intuitively, this means the

following:

• The potential consumer of a service must have information available which is a possible answer

to the query defining information preconditions.

• Substitutions of variables found in consumer knowledge will conform possible input bindings

for using the service, i.e., will correspond to possible combinations of information which, if

provided to the service, enables its execution.

This type of description on the one hand captures the conditions an input binding β(i1, . . . , in)

defined by a service consumer must fulfill, which correspond to the predicate preinf
serv(β(i1), . . . , β(in))

introduced in Chapter 3, and on the other hand it is usable to automatically determine possible in-

put bindings. If a particular input binding is defined by the consumer, variables i1, . . . , in in the

description of information preconditions can be substituted by the values given by the binding and

the query evaluated. Otherwise, the query can be used to automatically determine possible valid

bindings of objects known by the consumer to input variables defined by the service interface. Of

course, consumer knowledge must be available for performing this evaluation; how this knowledge

is described will be presented in the next Chapter.

We give now one more example of the description of information preconditions as LP

queries:

Example 6.7 Let us consider again the service used in example 6.4, whose underlying capability

was the booking of flights operated by IntAir. This service might require the consumer to know

what flight has to be booked, a credit card for the payment, and some details of the passenger for

which the seat will be booked, which is formalized by the following query:

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 177

?− flight(F), operatedBy(F, IntAir), creditCard(CC), hasNumber(CC,N),

hasHolder(CC, H), hasExpiryDate(CC, E), person(P), hasId(P, ID),

hasName(P, Name).

where F , CC and P are input variables. Now, let us imagine the consumer declares he has

the following knowledge (besides shared domain knowledge defined by ontologies):

Flight(myFlight), operatedBy(myFlight, IntAir).

CreditCard(myCC1), hasNumber(myCC1, 123), hasHolder(myCC1, me),

hasExpiryDate(myCC1,myCCExpiryDate).

Person(me), hasId(me, 321), hasName(me, ruben).

If we evaluate the query over this knowledge, an answer β = {F = myFlight, CC =

myCC1, P = me} will be found, which will constitute a valid input binding for the service.

¤

Logical language. The formalization of information preconditions, as presented above, is given

by a Logic Programming query. The purpose is to benefit from efficient query answering so that

possible input bindings for the service can be automatically found from potentially big consumer

knowledge bases. As the purpose of this description is to determine possible input bindings which

can be provided by the potential consumer and which fulfill the conditions necessary to be valid

input bindings for the service, or checking whether particular input bindings fulfill certain condi-

tions, the Closed-World Assumption made in Logic Programs perfectly fits our purpose; only the

information explicitly known by the consumer and accessible for the evaluation of preconditions will

be considered, as we will see in Chapter 7.

Regarding the expressivity allowed for the LP queries described, we currently restrict it

to WSML-Flight, i.e., to Datalog queries (Datalog rules with an empty head) with inequality and

default negation. This choice is made for two main reasons:

1. WSML-Flight queries can consistently refer to the domain and action ontologies introduced

before, as WSML-Flight is properly layered on top of WSML-Core [de Bruijn et al., 2005e].

2. There is reasoning infrastructure available which provides very efficient query answering for

Datalog with inequality and default negation.

It must be noticed that, in our setting, extending the expressivity allowed from WSML-

Flight to WSML-Rule has no effect. This becomes clear if we consider the extensions introduced

by WSML-Rule and the type of description we consider: first, WSML-Rule allows unsafe rules,

but this extension has no effect on the expressivity allowed for queries (rules with an empty head),

which is the only type of rules we use; second, WSML-Rule allows the use of function symbols but,

as our descriptions only refer to ontologies restricted to WSML-Core, which cannot define function

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 178

symbols, it turns out that there are no function symbols which can be used in the description of

information preconditions. Therefore, in our setting there is no difference between using WSML-

Flight or WSML-Rule.

Target user profile. We expect this type of description to be provided by technical users without

much difficulties. Technical users are familiar with database systems and, therefore, they will not

find difficult to provide a query with LP semantics as it is very close, especially in semantics, to the

type of descriptions they commonly use for querying relational databases.

Business users are not expected to necessarily deal with this type of description, as it refers

to the way the service must be accessed and not to the business value of the service. However, in

some cases, this type of descriptions can have a business ingredient. For example, requiring the

service consumer to be a registered user or not is a business decision reflected in the description of

information preconditions. Still, we do not expect business users to give the complete description of

information preconditions, but only to guide it.

Encoding in WSMO. This type of description of the information preconditions of a service will

be encoded by a WSMO precondition, part of the WSMO capability element, as illustrated in Listings

6.2, 6.3 and 6.4 (where queries are described using WSML human-readable syntax). As other types

of descriptions of information preconditions might be added in the future, we will distinguish this

particular type of description of information preconditions by the LPInfoPreconditions value of the

descriptionType non-functional property.

There might exist services which accept input bindings fulfilling different conditions. For

example, a service might accept the user name and password associated to a valid user account

or, alternatively, require a set of data about the (unregistered) user of the service such as name,

e-mail address, etc. In these cases, we could allow for the description of alternative information

preconditions, encoded by multiple WSMO precondition elements. However, we believe this case

actually corresponds to two different services, offered by the same provider, which enable access

to the same capability in different ways. This interpretation is coherent with the conceptual model

presented in Chapter 3 and much in the line of common practices in the development of web services,

which assume a web service has a single operation.

Finally, notice that if a service has no information preconditions, its WSMO capability

should still include a precondition element but defined by a true value, i.e., defined by a query

which is always fulfilled. This will serve to differentiate cases where the service has no information

preconditions from cases where such information preconditions have not been described.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 179

Applicable filters. The type of filter these descriptions are well suited for are filters which de-

termine whether the consumer has knowledge which can be used to define a valid input binding for

the service, and what particular input bindings can be defined.

Due to the LP semantics of this type of description and the existence of reasoners which

provide very efficient query answering for the expressivity allowed, applicable filters are expected

to be efficient even when knowledge the consumer has available is big in volume. Furthermore, the

results of this filtering are expected to be quite accurate, as they can precisely and automatically

determine whether the consumer can fulfill the information preconditions of a candidate service.

6.2.2.4 Set-based modelling of input-dependent effects

The last type of formal description of the value of a service we will use aims at capturing,

from the set of abstract effects associated to the capability of the service, what subset of effects

can be realized for a particular input binding, i.e., this type of description will capture how the

provision of a particular input binding restricts the set of effects achievable by using the service.

The modelling style used builds upon the set-based modelling of service capabilities presented above,

but it introduces the dependency of the set of achievable effects on the values bound to input variables

of the service.

Initial conditions include the particular shared state which holds at the moment a service

is used, and what knowledge the consumer has of this state and provides to the service via an in-

put binding. However, describing how the effects achievable by using a service depends on initial

conditions will be of little use for the location of a service unless the location process has complete

knowledge of this state. For this reason, we concentrate on the dependency of effects on the in-

put binding provided by a consumer, as we can much more easily know, and even in some cases

automatically determine, what input bindings can be provided by the consumer to the service.

The main reasons behind the choice of the modelling which will be presented in the following

are:

1. It captures what effects can be realizable, from the set of abstract effects of the service capabil-

ity, for a particular input binding. This enables the evaluation of, not only whether the service

can provide the effects sought by a consumer, but also of whether the service can provide these

effects given the input bindings the consumer can provide.

2. The modelling style used can be easily linked to the description of information preconditions

so that we can use the formalization of preconditions to determine, given the knowledge the

consumer has available, valid input bindings and what set of effects can be realized for such

bindings.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 180

3. The restriction in expressivity to a decidable subset of first-order logic, for which reasoning

infrastructure exists, will guarantee that we can exploit this type of description for discovery

using state-of-the-art systems.

In general, this type of description provides a more fine-grained view of the set of effects

which can be provided by a service than the set-based modelling of capabilities, thereby enabling a

more accurate filtering of candidate services.

Modelling style and aspects of the service captured. The functionality of a service was

defined in Chapter 3 as the relation between how service preconditions are fulfilled and the particular

effects, from the set of abstract effects of the service capability, that will be achieved by the usage of

the service. In fact, the formal characterization given, based on transaction logic, defined a service

(functionality) as a transaction formula which caused, given valid initial conditions, a transition in

the consumer knowledge state and in the real-world state; the particular transition caused commonly

depends on how initial conditions are fulfilled. However, and while transaction formulas like the ones

given in Chapter 3 can accurately capture how transactions depend on initial conditions, this type

of description is difficult to provide and difficult to handle, as no Transaction Logic reasoner is

currently available and only approximations are possible.

In this setting, we will describe, in a simple and intuitive way, how the set of effects

associated to a service capability is restricted when a particular (valid) input binding is given. In

particular, we will revise the definition of the concept which was used for describing the abstract

effects associated to a capability, yielding a concept of the form:

InputEffserv ≡ (Action1 uRestrictions1(i1, . . . , in)) t (6.3)

(Action2 uRestrictions2(i1, . . . , in)) t
. . . t

(Actionm uRestrictionsm(i1, . . . , in))

where i1, . . . , in are input variables of the service, and Restrictionsi(i1, . . . , in) denote

restrictions over the actions associated to the capability which depend on the values assigned to

input variables of the service. Therefore, the set of effects modelled by the concept above and,

more specifically, the restrictions over the actions associated to the service, are parameterized by

the particular values bound to input variables.

Example 6.8 If we consider the service in Listing 6.2, which requires a category of investment

funds as an input and provides information about investment funds commercialized in Spain and

categorized under the category given, its input-dependent effects would be formalized by:

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 181

InputEffFundSearch1 ≡ InfoProvision u
∃ofInfoItem u

∀ofInfoItem.(InvestmentFund u commercializedIn.{Spain} u hasCategory.{c})

where c is the input variable of the service, which will be bound a particular investment

funds category. If a particular input binding β = {c = Category1} is given, variable c in the

formalization above will be replaced by its value yielding the concept:

InputEffFundSearch1,β ≡ InfoProvision u
∃ofInfoItem u

∀ofInfoItem.(InvestmentFund u commercializedIn.{Spain} u hasCategory.{Category1})

The formalization above describes the set of effects that can be provided by the service for

input binding β = {c = Category1}.
¤

Example 6.9 If we now consider the service in Listing 6.4, which requires a flight (input variable

f), a credit card (input variable cc) and a person (input variable p) as inputs, and books a seat on

the flight given, with the credit card given, and for the person given, its input-dependent effects can

be formalized as:

InputEffBookIntAirF light1 ≡ FlightBooking u
∃ofItem u ∀ofItem.(FlightSeat u onF light.{f} u forPerson.{p}) u withPaymentMethod.{cc}

¤

In these examples, we can see how the concept defined to describe the set of abstract effects

of the service capability is redefined including the input variables of the service (serv), yielding a

concept InputEffserv. These variables, when bound to particular values given by an input binding

β, will restrict the global set of effects of the capability to the set of effects achievable for these

values. This restricted set is described by the concept InputEffserv,β resulting from substituting

input variables by their values as defined by β.

Notice that in the formalizations above it is assumed that the values bound to input

variables are valid input bindings for the service, i.e., the conditions the values assigned to variables

i1, . . . , in must fulfill are not formalized here again, but they are only formalized by information

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 182

preconditions. It is also important to notice that the input variables that appear in the predicate

above are the same input variables used in the description of information preconditions, and they

will have the same name. However, only input variables that have an effect on the set of effects

achievable by using the service will appear in the formalization of input-dependent effects. For

example, the service in Example 6.8 might have an input variable u and require that a valid user

account is bound to it. While this will be a precondition for the usage of the service, what particular

value is bound to this variable will not affect the set of abstract effects achievable and, therefore, it

will not appear in the formalization of input-dependent effects.

The intention of the modeler must also be made explicit, i.e., a meta-annotation declaring

the (existential or universal) intention of the concept described will be given in the same way it was

given for the set-based modelling of the service capability. In this way, providers will indicate whether

all the effects in the set of input-dependent effects modelled will be achievable for a particular input

binding or only some of them.

Therefore, input-dependent effects will be modelled as a pair C′serv = (InputEffserv, I ′serv),

where InputEffserv is a WSML-DL+ concept defined in terms of the set ODL of domain ontologies

describing input-dependent effects, and I ′serv ∈ {some, all} is the meta-annotation which captures

the (existential or universal) intention of such concept.

Logical language. We will use first-order semantics for the description of the restricted set of

effects of a service for a particular input binding. In particular, we will require that the formaliza-

tion of input-dependent effects corresponds in expressivity and semantics to the formalization of a

SHOIN (D) concept after replacing input variables by instances in domain ontologies, i.e., we will

restrict the expressivity of this type of descriptions to WSML-DL+ after input variables has been

replaced by instances in O.

Target user profile. We expect this type of description to be provided by technical users, as it

is related to how the service enables access to a capability, which is more at the service than at the

capabiliy level. However, this type of description can also have a business ingredient. For example,

restricting the set of effects in different ways depending of, for example, the type of subscription of

the user given as an input, is a business decision. For this reason, there is not a sharp distinction

between what type of profile is expected to provide this type of description, and in many cases it is

expected to result from the cooperation of business and technical users.

Encoding in WSMO. These descriptions will be encoded as a postcondition of the WSMO

capability element, and distinguished from the set-based modelling of the service capability by

the inputDependentEffects value of the descriptionType non-functional property associated to it, as

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 183

shown in Listings 6.2, 6.3 and 6.3 (where the description is given in WSML human-readable syntax).

The name given to the concept formalizing the set of input-dependent effects will be the URI of the

service, and the intention of this concept will be encoded by the intention non-functional property

of the WSMO postcondition.

Finally, the input variables of the service the formalization of input-dependent effects refer

to will be declared as shared variables, using the sharedVariables element of WSMO, as illustrated in

the Listings referenced above. This means, according to the WSMO model [Roman et al., 2005], that

variables with the same name appearing in the description of different preconditions and postcon-

ditions and declared as shared variables actually correspond to the same variable, and their values

will be shared. Therefore, input variables used in both the description of information preconditions

and input-dependent effects, and declared as shared variables, are actually the same variables.

Applicable filters. Once input variables in the description of service effects are replaced by

particular input values, and based on the set-theoretic relations between the set of effects obtained

and the set of effect required by a consumer [Keller et al., 2006a], filters can be applied which

determine whether the service, for the input binding given, can provide the set of effects requested.

These filters are expected to be applicable only after possible input bindings have been

found, either manually or automatically, and they will offer quite accurate results. However, they

are not expected to be very efficient, as classification of descriptions using subsumption reasoning

is not possible before particular input bindings have been determined, which will be most likely

done at discovery time. Taking into account that classification is an expensive task, this will yield

relatively high response times. For details, see Chapter 7.

6.3 Description and publication of services

For services to be located, they must be first described and such descriptions must be

made accessible to prospective consumers. We will see in the next Chapter that different types of

descriptions of services enable the application of different types of filters and, furthermore, they

require different types of descriptions of goals to be provided so that the matching of descriptions

is possible. Therefore, for a service to be locatable no matter what kind of description of his

goal a prospective consumer can provide, and no matter what particular filter(s) are selected by

the consumer, service providers must describe the value of their services in all the possible ways

introduced in the previous Section.

While describing a service in all the ways introduced above is desirable, this might require

a considerable effort from service providers. In this Section, we will discuss how users are supported

by our platform for providing different types of descriptions of their services so that the difficulties

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 184

derived from the complexity of descriptions and from the possible lack of appropriate skills of the

provider are mitigated.

We will also present in this Section the registry designed (and prototypically implemented)

for the publication of service descriptions and taxonomies of categories. The architecture of this

registry is depicted in Figure 6.3. The registry is partly based on [Srinivasan et al., 2004], and it is

conceived as an extension of a UDDI repository with improved service location capabilities based on

the types of descriptions introduced before. Still, we allow for the direct usage of the UDDI API of

the UDDI repository [Bellwood et al., 2002] in order to keep backwards compatibility with current

service infrastructure and practices. In this way, consumers can choose between locating services

directly using the UDDI API, and using the new location interface and the enhanced capabilities

added on top of the UDDI repository.

The main components of the registry, corresponding to green boxes in the Figure, are:

• The taxonomy manager, which enables defining, storing and managing taxonomies of cate-

gories, and accessible via a set of web (WSDL) services depicted by a blue box next to the

taxonomy manager in Figure 6.3.

• The publication manager, in charge of handling requests for the publication of service descrip-

tions and also accessible via web services.

• The location manger, which will receive a consumer goal and retrieve from the registry relevant

the descriptions of services deemed relevant for achieving the goal.

Details on the taxonomy and publication managers and on how they are used for the

description and publication of services will be given in this Section, while the location manager of

the registry will be presented in detail in the next Chapter.

6.3.1 Pre-defined descriptions

The abstract model for the location of services presented in Chapter 5 required support

for the provision of other types of descriptions of a service starting from the types of descriptions

particular users are comfortable with. In particular, the relation between the different types of

descriptions considered by the particular instantiation of the abstract model was proposed as the

basis for offering this type of support. In our instantiation, we will exploit the relation among the

types of descriptions of services presented in Section 6.2 in order to propose to service providers

types of descriptions of their services they have not provided. For this purpose, we will make use

of pre-defined service descriptions, corresponding to common capabilities and functionalities, which

will link different types of descriptions.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 185

Figure 6.3: Registry architecture

In the following, we will briefly describe the relation among the types of descriptions of

services considered in the SETA platform and then describe how pre-defined service descriptions,

associated to categories, are built and published to the service registry.

6.3.1.1 Relation among descriptions.

All the types of descriptions introduced in Section 6.2 are related in some way, as they

all try to capture the value offered by a service. We will briefly precise in the next paragraphs

interesting relations among these types of descriptions:

WSDL - textual. The WSDL description of services can incorporate documentation elements

which contain textual descriptions of different aspects of the service. These documentation elements

can contain information which is common to the textual description of the value of services intro-

duced in the previous Section; however, it is likely that WSDL documentation elements will have a

technical bias as they are expected to be provided by technical users.

Category - textual. Taxonomies of categories are used to provide a coarse-grained view of the

capability of services. These categories can be associated a textual description, which will actually

be the description, using natural language, of common capabilities different services might enable

access to.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 186

Category - set-based modelling of capabilities. Categories in taxonomies represent common,

pre-defined capabilities of services. In this setting, capabilities represented by categories can be given

a formal meaning by providing a set-based description of them, i.e., categories can be associated the

formal description of the abstract set of effects corresponding to the capability they represent. In

this way, categories are given a precise meaning, yielding a taxonomy of common, pre-defined, and

formally described capabilities.

Example 6.10 Let us imagine a category LowCostFlightBooking is defined at a given taxonomy.

This category can be associated a textual description of the capability it represents: ”Booking of

seats on flights operated by low-cost airlines”.

Furthermore, a formal description of the capability this category represents can be given:

EffLowCostF lightBooking ≡ FlightBooking u
∃ofItem u

∀ofItem.(FlightSeat u ∃onF light u ∀onF light.(Flight u ∃operatedBy u
∀operatedBy.LowCostAirline))

The formula above formalizes the set of abstract effects associated to the category, thereby

providing it with a precise meaning.

¤

Please note that, while most categories will have associated a formal meaning, some cat-

egories are only introduced in order to give an appropriate structure to the taxonomy, such as

categories Travel or Transportation given in the custom taxonomy of Figure 6.1. These categories

will not have a formal meaning, as they do not correspond to real capabilities but only to topics

which serve to organize other categories.

Set-based modelling - input-dependent effects. The set-based modelling of a capability and

the description of input-dependent effects of a service are related in that the former describes the

complete set of effects that can be potentially obtained by accessing the capability, and the latter

describes how this set of effects is parameterized by the values bound to certain input variables.

The following relation must hold between these two types of descriptions for any service

serv and any valid input binding β assigning values to the input variables of the service:

InputEffserv,β v Effserv

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 187

The formula above means that the set of effects achievable by executing, with particular

input values, a service which enables access to a certain capability, will be a (not necessarily strict)

subset of the set of abstract effects associated to such capability.

LP information preconditions - input-dependent effects. The modelling of information

preconditions we use will validate and possibly find input bindings for a given service. Such input

bindings will be used to replace input variables in the description of input-dependent effects, thereby

obtaining the restricted set of effects that can be achieved for such input binding. Therefore, these

two types of descriptions will in many cases work together to offer a simplified view of the service

functionality.

Category - LP information preconditions + input-dependent effects. The description of

information preconditions and of input-dependent effects is particular of a service, while categories

refer to general capabilities to which access can be enabled by multiple services. Still, we can

associate to a category (and to its represented capability) a prototypical way of accessing it, i.e.,

we can associate to a category prototypical descriptions of information preconditions and input-

dependent effects.

Example 6.11 It is usual for the booking of flights that the details of the flight to be booked

must be given, as well as the details of the person for which a seat must be booked and a payment

method. The effect will generally be the booking of a seat on the flight given, for the person given,

and paid with the payment method specified. In this setting, we can associate to the category

LowCostFlightBooking the following prototypical information preconditions (where F , P and CC

are input variables):

?− flight(F), person(P), paymentMethod(CC)

and the following prototypical description of input-dependent effects:

InputEffLowCostF lightBooking ≡ FlightBooking u
∃ofItem u ∀ofItem.(FlightSeat u onF light.{f} u forPerson.{p}) u withPaymentMethod.{cc}

¤

6.3.1.2 Definition and management of taxonomies of categories

From the relations previously presented, those relations between categories pre-defined in

taxonomies and other types of descriptions will be central in our platform for supporting providers

for describing their services. The reason is many-fold:

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 188

1. Categories are expected to have an appropriate granularity for representing common, pre-

defined capabilities providers can reuse for describing their services.

2. Given the relations above, different types of descriptions of categories can be statically as-

sociated to them, yielding a set of pre-defined descriptions, of alternative types, of reusable

capabilities.

3. Taxonomies of categories are expected to be highly usable by service providers and, thus,

they can serve as a good entry point to service providers for obtaining alternative types of

descriptions of their services; once a service is assigned to a category, the alternative types of

descriptions associated to this category can be also associated to such service.

In general, categories will act as common, pre-defined capabilities providers can use to easily

provide a coarse-grained description of their services, and alternative types of descriptions of the

capability categories represent will be associated to them. This scheme will be later exploitable for

supporting providers for describing their services. For this purpose, taxonomies of categories must

be defined, alternative descriptions of their categories appropriately linked, and such taxonomies and

their associated descriptions published. In our platform we have included, as part of the registry for

the publication of service descriptions, a taxonomy manager for the definition and management of

categories, depicted in Figure 6.3. This manager allows for the following main operations, accessible

as WSDL web services:

Taxonomy creation. For creating a new taxonomy of categories, a URI which identifies such

taxonomy must be given and, optionally, a brief textual description of the taxonomy. Given this

information, the taxonomy manager will store in the relational database used for persistency of

the registry the taxonomy data. Furthermore, a new UDDI tModel [Bellwood et al., 2002] will be

created representing the taxonomy at the UDDI repository of the registry; this tModel will have

the value categorization for the uddi-org:types key [Bellwood et al., 2002]. In the current prototype

implementation, the UDDI repository used is jUDDI16, as it is open source, it integrates well with

different relational databases, and it implements the UDDI API.

In Figure 6.4, the creation of a taxonomy using a simple user interface we have implemented

for the management of taxonomies, is depicted. This user interface will also support other tasks

such as the publication of service descriptions and the location of services, as we will see in this

and the following Chapters. After the information of the taxonomy shown in the Figure is given, a

request for the creation of the taxonomy will be submitted to the taxonomy manager of the registry

using the WSDL service defined for this purpose.
16http://www.juddi.org/

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 189

Figure 6.4: Creation of an example taxonomy

Category creation. For the creation of a category, a name for this category must be given, as

well as what taxonomy the category belongs. Furthermore, the parent category of the newly created

category must be provided, unless it is a root category. For reasons of simplicity and usability of

taxonomies, we do not allow a category for having multiple parents.

We have discussed above that a category can be associated a set of alternative descriptions

of the capability it represents, as well as a description of prototypical information preconditions

and input-dependent effects for accessing such capability. In particular, when a category is created,

we can associate to it a description of a prototypical service enabling access to the capability such

category represents. The description of such prototypical service will include the textual description

of the capability, its set-based modelling, and prototypical information preconditions and input-

dependent effects.

In Listing 6.11, the prototypical description of a category FlightSearch defined at a tax-

onomy http : //www.afi.es/Taxonomy1 is shown. The prototypical service is identified by the full

URI of the category, and all types of descriptions considered in our platform but a WSDL description

are given.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 190

namespace { ”http://www.afi.es/services/eTourism#”,

loc ”http://www.afi.es/ontologies / geopolitical /locations#”,

action ”http://www.afi.es/ontologies /general/actions#”,

flights ”http://www.afi.es/ontologies /eTourism/flightsExample#”,

dc ”http://purl .org/dc/elements/1.1#”,

g ”http://www.afi.es/ontologies /general#”,

afi ”http://www.afi.es/WSDiscovery/Description#” }

webService ”http://www.afi.es/Taxonomy1#FlightSearch”

importsOntology { ”http://www.afi.es/ontologies/ geopolitical / locations ”,

”http://www.afi.es/ontologies /general/actions”,

”http://www.afi.es/ontologies /general”,

”http://www.afi.es/ontologies /eTourism/flightsExample” }

capability FlightSearchCapability

nonFunctionalProperties

dc#description hasValue ”Search of flights ”

dc#language hasValue ”en−GB”

afi#category hasValue ”http://www.afi.es/Taxonomy1#FlightSearch”

endNonFunctionalProperties

sharedVariables {?co, ?cd, ?d}

postcondition

nonFunctionalProperties

afi#descriptionType hasValue ”setBasedCapability”

afi#intention hasValue ”all”

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/Taxonomy1#FlightSearch” equivalent

?x memberOf action#InfoProvision and

exists ?y(?x[action#ofInfoItem hasValue ?y]) and

forall ?y(

?x[action#ofInfoItem hasValue ?y] implies ?y memberOf flights#Flight).

precondition

nonFunctionalProperties

afi#descriptionType hasValue ”LPInfoPreconditions”

endNonFunctionalProperties

definedBy

?co memberOf loc#City and ?cd memberOf loc#City and ?d memberOf date.

postcondition

nonFunctionalProperties

afi#postconditionType hasValue ”inputDependentPostcondition”

afi#intention hasValue ”all”

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/Taxonomy1#FlightSearch” equivalent

?x memberOf action#InfoProvision and

exists ?y(?x[action#ofInfoItem hasValue ?y]) and

forall ?y(

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 191

Figure 6.5: Creation of an example category

?x[action#ofInfoItem hasValue ?y] implies (?y memberOf flights#Flight[flights#hasOrigin hasValue ?co,

flights#hasDestination hasValue ?cd,

flights#hasDate hasValue ?d])) .

Listing 6.11: Description of a prototypical service associated to a FlightSearch category

Categories are expected to be created by skilled users, and then reused by any service

provider (or consumer, as we will see). Therefore, categories are expected to always have associated

complete prototypical descriptions, i.e., all types of descriptions of services discussed in the previous

Section will be included in the description of the prototypical service. In Figure 6.5, the creation of

the FlightSearch category mentioned above is depicted.

When the creation of a category is requested, including in such request the name of the

category, the taxonomy it belongs to, its parent category, and the complete description of a proto-

typical service enabling access to the capability the category represents, as depicted in Figure 6.5,

the taxonomy manager will do the following:

1. First, the satisfiability of the concept defining the set of abstract effects of the service ca-

pability, encoded by the postcondition with value setBasedCapability for the descriptionType

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 192

non-functional property in Listing 6.11, will be checked. The DL reasoner of the registry, de-

picted in Figure 6.3, will be used to check the satisfiability of this concept wrt. a Categories

TBox created when the registry is started. When the registry is started, the set ODL of domain

ontologies formal descriptions can refer to has also been loaded into this TBox and the TBox

has been classified.

If the concept is not satisfiable, the creation of the category will fail and the user will have to

correct this type of description of the category. Otherwise, we will proceed to the next step.

2. The details of the category will be stored at the relational database of the registry. In par-

ticular, we will store the name of the category, its parent category, the taxonomy it belongs

to, the complete prototypical description given for the category and, for convenience, we will

also store separately each type of description of the prototypical service given. Additionally,

we will load in memory the new structure of the taxonomy the category belongs to, i.e., the

parent-child relations of the taxonomy; in this way we will be able to explore the taxonomy

tree faster at service location time (see the next Chapter).

3. The concept defining the set of abstract effects of the service capability, i.e., the set-based

modelling of the capability the category represents, will be published to the Categories TBox

of the DL reasoner.

4. After the concept is published to the appropriate TBox, this TBox will be classified, i.e., the

subsumption relation between the categories of the taxonomy, in terms of their associated

formal capabilities, will be computed.

Of course, the WSMO description of the prototypical service associated to the category

must be valid. This will be checked using WSMO4J17, which also enables the parsing of the WSMO

description. Otherwise, an error will be returned.

The DL reasoner used is RacerPro [RAC, 2006], even though it does not provide complete

and correct reasoning for nominals. Still, it has certain features, such as support for multiple TBoxes,

a good efficiency, and especially a rich and well documented interface, which motivates its usage.

The interface used to communicate with RacerPro is the TCP interface, which we use through the

jRacer Java library18. While the DIG interface supported by RacerPro would enable the seamless

replacement of RacerPro by other DL reasoner, it does not support certain operations, such as the

on-demand classification of the TBox, which we require in our prototype. However, the possible use

of other DL reasoners is envisioned as part of our future work (see Chapter 9).

17http://wsmo4j.sourceforge.net/
18http://www.racer-systems.com/products/download/nativelibraries.phtml

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 193

Example 6.12 Let us imagine we create the category FlightSearch mentioned above at a taxonomy

http://www.afi.es/Taxonomy1. This category has associated the prototypical description in Listing

6.11, and its parent category is a Travel category.

We will first check the satisfiability of concept http://www.afi.es/Taxonomy1#FlightSearch

wrt. the Categories TBox. The definition of this concept is given by the setBasedCapability post-

condition of the prototypical service description. Given that this concept is consistent, we will store

the category data into the relational database, publish such concept definition to the Categories

TBox, and then classify this TBox.

Now, let us imagine we create a category LowCostFlightSearch at the same taxonomy,

defining that its parent category is the FligtSearch category created before, and whose set-based

modelling of its associated capability is given by:

?x memberOf ”http://www.afi.es/Taxonomy1#LowCostFlightSearch” equivalent

?x memberOf InfoProvision and

exists ?y(?x[ofInfoItem hasValue ?y]) and

forall ?y(

?x[ofInfoItem hasValue ?y] implies (?y memberOf Flight and

exists ?z(?y[operatedBy hasValue ?z]) and

forall ?z(

?y[operatedBy hasValue ?z] implies ?z memberOf LowCostAirline))).

We will create this category, and after checking the satisfiability of the concept above, we

will also publish this concept to the Categories TBox and classify this TBox. The classification

of the TBox will yield that category LowCostFlightSearch, according to the set-based modelling of

its associated capability and given the example domain ontologies shown at the beginning of this

Chapter, where concept LowCostAirline was defined as a subconcept of Airline, is more specific than

category FlightSearch, i.e., concept http://www.afi.es/Taxonomy1#FlightSearch subsumes concept

http://www.afi.es/Taxonomy1#LowCostFlightSearch.

¤

In Chapter 8, we will discuss in detail the complexity of this process and the experimental

times measured. For the moment, we can anticipate that the complexity of creating a category is

high, as the TBox of the DL reasoner corresponding the taxonomy the category belongs to must be

classified. Still, as this task is done off-line, i.e., without affecting service location times, it is not

time-critical. Furthermore, modern DL reasoners are highly optimized, which enables the obtention

of results in relatively low times.

Category search. Once taxonomies and their categories are created and available at the registry,

we will enable searching for categories and retrieving their details in the following ways:

1. Textual: given a textual description, we will provide categories (with their details) which

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 194

match this description, no matter the taxonomy they belong to. In our prototype, we use

simple keyword matching over the textual description associated to the category and stored

separately in the relational database. In particular, we first remove from the textual description

given words considered noise words. For this purpose, we use the stop-list given by Oracle

Text19 (descriptions in English are always assumed and, thus, the set of noise words defined

for the English language is used). After noise words have been removed, we will simply match

categories whose textual description contains any of the keywords remaining in the textual

description given.

2. Set-based modelling of a capability: given a WSML-DL+ concept defining a set of abstract

effects, we will retrieve categories whose associated set-based capability: a) is equivalent to, b)

is subsumed by, c) subsumes, or d) intersects (but is neither equivalent to, nor subsumed by,

nor subsumes) such concept. For this purpose, we will query the Categories TBox of the DL

reasoner for concepts corresponding to categories for which these relations with the concept

given hold. These categories and their details will be returned, grouped into four sets in terms

of the relation between their formalized set of effects and the set of effects given: a) equivalent

categories, b) more specific categories, c) more general categories, and d) categories with some

effects in common.

It must be noted, though, that existing DL reasoners, including RacerPro, do not allow for

directly querying for all concepts which intersect a given concept, but we have to check the

satisfiability of the intersection of such concept and each concept published one by one. In

this setting, and in order to obtain intersecting concepts without requiring so many queries,

we will query RacerPro for concepts which do not intersect the concept given, i.e., which are

equivalent to or subsumed by the negated concept. Intersecting concepts will be obtained by

taking all concepts in the TBox corresponding to categories but those which do not intersect,

are equivalent to, subsumed by, or subsume the concept given. In other words, we will query for

the set of concepts which are equivalent to (denoted C≡), subsumed by (denoted C@), subsume

(denoted CA), or have an empty intersection with the concept given (denoted C∅ and obtained

as the union of concepts equivalent to -Cnot(≡)- or subsumed by -Cnot(A)- the negated concept,

i.e., C∅ = Cnot(≡) ∪Cnot(A)). The set of categories which have some effects in common with the

set given by the input concept, but are neither equivalent, nor more general, nor more specific

than such concept, are those categories whose formalization of capability effects is in the set:

Cu ≡ C − C≡ − C@ − CA − C∅
19http://www.oracle.com/technology/products/text/pdf/9ir2text features overview.pdf

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 195

where C denotes all categories part of the taxonomy being checked, and the minus sign denotes

set difference.

3. Direct: given a taxonomy URI and a category name, we will return the details of this category.

The retrieval of categories information, either by directly selecting one category or by pro-

viding a textual description, is efficient. Extracting the details of a given category only requires

executing a simple query against the relational database of the registry. Furthermore, in our pro-

totype implementation the search of categories matching a textual description is reduced to finding

categories whose textual description has some keyword in common with the text given, which is also

efficient especially given that the number of available categories is not expected to be very high.

The set-based retrieval of categories is more complex. However, Modern DL reasoners in-

corporate important optimizations and, once a TBox has been classified, the response times obtained

when checking subsumption are remarkably low despite the high complexity of this reasoning task.

We will evaluate in more detail the theoretical complexity of this search and response times obtained

from experimental evaluation in Chapter 8

Example 6.13 Let us consider the categories in the previous example, and let us imagine that only

one taxonomy with these two categories exists and that we search categories based on the following

set of abstract effects, defined by concept SoughtCapability :
?x memberOf SoughtCapability equivalent

?x memberOf InfoProvision and

exists ?y(?x[ofInfoItem hasValue ?y]) and

forall ?y(

?x[ofInfoItem hasValue ?y] implies ?y memberOf Flight[hasOrigin hasValue Madrid, hasDestination hasValue

Barcelona]) .

The concept above formalizes the provision of information about flights from Madrid to

Barcelona. If this concept is given, we will query the Categories TBox for:

1. Concepts representing categories equivalent to SoughtCapability : no concept is found.

2. Concepts representing categories subsumed by SoughtCapability : no concept is found.

3. Concepts representing categories which subsume SoughtCapability : concept

”http://www.afi.es/Taxonomy1#FlightSearch” is found, corresponding to the FlightSearch cat-

egory. Notice that concept

”http://www.afi.es/Taxonomy1#LowCostFlightSearch” will not be found, as it refers to flights

operated by airlines which are LowCostAirline and not to general flights.

4. Concepts representing categories which are equivalent to or subsumed by the negation of

SoughtCapability : no concept is found and, therefore, we can determine that concept

”http://www.afi.es/Taxonomy1#LowCostFlightSearch” intersects the concept given.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 196

Therefore, the sets of equivalent and more specific categories will be empty. The set of

more general categories consists of the FlightSearch category, and the set of categories with effects

in common with the concept given consists of the LowCostFlightSearch category. The details of

these two categories will be returned.

¤

Category update. When a category is updated, its new details must be given. If the set-based

modelling of the category it represents does not change, we will only update its details on the

relational database. Otherwise, we will check the satisfiability of the set-based modelling given by

its prototypical service description, retract the previous concept associated to this category from

the Categories TBox, publish the new concept, and reclassify the TBox. Furthermore, if the parent

category of the updated category changes, we will also update the structure of the taxonomy loaded

in memory.

Category deletion. For the deletion of a category, its name and the taxonomy it belongs to must

be given, i.e., its complete URI is required. We will check whether any published service is associated

to this category (we will see below how services are published and associated to categories) and, if

this is the case, we will not allow for the deletion of this category as services associated to it must

be reassigned first. Otherwise, we will delete the category information from the relational database,

update the structure of the taxonomy loaded in memory, retract this concept from the Categories

TBox, and reclassify this TBox.

Taxonomy deletion. For requesting the deletion of a taxonomy, its URI must be given. We will

recursively delete the categories contained in this taxonomy (if any) using the operation above, and

then delete the taxonomy information from the relational database and its structure from memory.

It must be noted that the deletion of a taxonomy will only be possible if all its categories can be

deleted, i.e., if no service is assigned to categories in the taxonomy.

Taxonomy retrieval. The taxonomy manager can be queried for all taxonomies published and

their categories. This operation will return the list of all published taxonomies, together with the

names and parents of all categories in such taxonomies.

6.3.2 Supporting users in the description of services.

Based on the relations among different types of descriptions of the value of a service pre-

sented above and, especially, on taxonomies of pre-defined categories to which a prototypical service

description is associated, we will offer support to providers for describing their services.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 197

Figure 6.6: Client architecture (publication component)

We have implemented a publication component, part of the SETA client, which enables the

description and publication of services to the registry depicted in Figure 6.3, and which supports

users for providing different types of descriptions of their services. In Figure 6.6, the architecture of

the client used in the SETA platform for publishing and locating services is shown. The publication

component consists of a publication coordinator and of a service description assistant; the former

will be presented in the next Section, while the latter is presented in this Section.

A service provider will use the user interface depicted in Figure 6.6 to provide the descrip-

tion of its service for publication. This user interface also includes tabs for the management of

taxonomies as presented above, and for the location of services as we will see in the next Chapter.

The user interface, in the current prototype implementation, offers two options to the

provider for describing his service:

1. Loading an existing WSMO description of the service from a file (Figure 6.7).

2. Creating a new description. In this case, the URI which identifies the service must be given and,

optionally, the URL where a WSDL description of the service can be found can be provided.

These data will be used to build a template WSMO description of the service (Figure 6.8).

In both cases, the description loaded or built can be updated to modify or to complete the

description of the service, and support will be offered to users for providing types of descriptions of

the service not yet available.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 198

Example 6.14 Let us consider the service given in Listing 6.4, which offers the booking of flights

operated by IntAir, and let us imagine we want to create now from scratch the description of this

service. We will provide to the service description assistant the URI of the service

(http://www.afi.es/services/BookIntAirFlight1), and the location of the WSDL description of the

service (http://www.afi.es/eTourism/BookIntAirFlight1.asmx?wsdl). With this input, the assistant

will build the following WSMO template description (see Figure 6.8):
namespace { dc ”http://purl.org/dc/elements/1.1#”,

afi ”http://www.afi.es/WSDiscovery/Description#” }

webService ”http://www.afi.es/ services /BookIntAirFlight1”

importsOntology { ”TO BE COMPLETED” }

capability BookIntAirFlight1Capability

nonFunctionalProperties

afi#wsdlDescription hasValue ”http://www.afi.es/eTourism/BookIntAirFlight1.asmx?wsdl”

dc#description hasValue ”TO BE COMPLETED”

dc#language hasValue ”en−GB”

afi#category hasValue ”TO BE COMPLETED”

endNonFunctionalProperties

sharedVariables {?toBeCompleted}

postcondition

nonFunctionalProperties

afi#descriptionType hasValue ”setBasedCapability”

afi#intention hasValue ”TO BE COMPLETED”

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/services/BookIntAirFlight1” equivalent

?x memberOf ToBeCompleted.

precondition

nonFunctionalProperties

afi#descriptionType hasValue ”LPInfoPreconditions”

endNonFunctionalProperties

definedBy

ToBeCompleted.

postcondition

nonFunctionalProperties

afi#postconditionType hasValue ”inputDependentEffects”

afi#intention hasValue ”TO BE COMPLETED”

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/services/BookIntAirFlight1” equivalent

?x memberOf ToBeCompleted.

¤

Either after loading an existing description from a file or after obtaining the template

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 199

Figure 6.7: Loading a service description

description shown in the example above, we will support users for completing such descriptions,

helping them in providing the types of descriptions of the service not yet available starting from the

types of descriptions already known. In particular, if the user clicks the Complete button shown in

Figures 6.7 and 6.8, he will receive proposals for completing missing descriptions of the service, in

the order and following the mechanisms detailed in the following. In particular, at each step we will

submit to the service description assistant the current service description and specify for what type

of description we require a proposal, and the assistant will return its proposal (if any). Based on

this proposal, the consumer will ultimately choose the description of each type to be incorporated

to its service description.

6.3.2.1 Proposal for a textual description

If a textual description of the service has not been provided, we will submit the current

service description to the description assistant. The assistant will have two possible proposals for a

textual description:

• If a WSDL description of the service is available, i.e., the location of a WSDL description has

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 200

Figure 6.8: Creating a new service description

been provided with the WSMO description of the service, documentation elements present in

the WSDL description will be concatenated to build a proposal for the textual description of

the service.

• If the service has been categorized, i.e., if some category has been given as a value for the

category non-functional property of the WSMO description, the assistant will communicate

with the taxonomy manager of the registry in order to retrieve the details of these categories

and the textual descriptions associated to such categories will be concatenated to build a

proposal for the textual description of the service.

If both a WSDL description of the service and a categorization are available, both proposals

of textual descriptions to the user will be given by the service description assistant, and we will

provide both proposals to the user so that he can use them to build his own combined textual

description. In any case, these proposals will only help the user in providing this type of description,

but the user will have to ultimately choose what textual description is given to the service. After

the user has provided the textual description based on the proposal given (an empty description is

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 201

Figure 6.9: Proposal for a textual description

possible), we will add this textual description to the WSMO service description and continue to the

next step.

In Figure 6.9, we show the proposal for a textual description if we load an incomplete

description of the service in Listing 6.4, for which only the location of a WSDL description of it and

its categorization under category http://www.afi.es/Taxonomy1/FlightBooking have been given.

6.3.2.2 Proposal for categorization

If the service has not been categorized, we will require a proposal from the service descrip-

tion assistant, which will distinguish two cases:

• If a set-based modelling of the service capability is available, the assistant will communicate

with the taxonomy manager of the registry to search, given the concept formalizing the service

capability, related categories. These categories will constitute the proposal for categoriza-

tion and returned by the assistant, grouped into equivalent, more general, more specific, and

intersecting categories.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 202

Figure 6.10: Proposal for categorization of a service

• If no set-based modelling of the service capability is available but a textual description of the

service is available, the assistant will communicate with the taxonomy manager of the registry

to search, given the textual description of the service, related categories.

Notice that, if both a set-based modelling of the service capability and a textual description

of the service are available, the service description assistant will only use the first type of description

to search related categories, as search results will be more accurate than those obtained using a

textual description.

Proposed categories will serve to guide the user in categorizing his service. Still, the user

will have to choose what categories the service will be assigned to and, for this purpose, he will be

able to browse categories in all available taxonomies and choose which ones his service belongs to.

After categories have been chosen by the user possibly based on the proposal given (if any), we will

add these categories to the complete description of the service and continue. Choosing an empty

categorization is also possible.

In Figure 6.10, we show an example proposal for the categorization of an incomplete version

of the service in Listing 6.4, for which the set-based modelling of its capability but not a category

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 203

Figure 6.11: Proposal for the set-based modelling of the service capability

has been given.

In [Lara et al., 2006b] we used an alternative way of proposing categories to users. This

method heuristically, and based on the semantic description of information preconditions and on

the set-based modelling of capabilities, proposed the categories from existing taxonomies that best

fit the service. This was done by measuring the similarity between the semantic description of

the service preconditions and effects, and the preconditions and effects of services published at

the registry and already assigned to a given category, using the method presented in [Corella and

Castells, 2006b; Corella and Castells, 2006a]; however, only named concepts in domain ontologies

used in the description of preconditions and effects were used.

We consider the method we have proposed more precise than the method presented in [Lara

et al., 2006b], as it does not depend on how users have categorized so far their services, which might

not always be correct, and as it uses the precise description of the effects associated to the service

capability and not only what concepts in domain ontologies appear in the description of information

preconditions and effects.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 204

6.3.2.3 Proposal for the set-based modelling of capabilities

If the set-based modelling of its capability has not been provided, we will require from the

assistant a set-based modelling of the service. The assistant, if the service has been categorized

will propose to the user the capability formalizations associated to the categories the service has

been assigned to. In particular, if the n categories a service serv has been assigned to are denoted

c1, . . . , cn, and their associated capabilities are given by concepts Effc1 , . . . , Effcn
, the concept

proposed for the formalization of the abstract effects of the service will be:

Effserv ≡ Effc1 t . . . t Effcn

The definition above means that the abstract effects proposed will be the union of the

effects associated to each category the service has been assigned to.

This proposal will be given to the user, who has the possibility of modifying it. If no

categorization of the service has been given, no proposal can be built and we will simply ask the

user to provide from scratch the set-based modelling of his service. In any case, the user can choose

not to provide any set-based modelling of his service capability.

Finally, the consumer also has to choose what intention is associated to the description

given. The set-based modelling and the intention provided will be added (if any) to the WSMO

description of the service and we will proceed to the next step.

In Figure 6.11, we show the proposal for the set-based modelling of a service categorized

under http://www.afi.es/Taxonomy1/FlightSearch for which a set-based modelling of its capability

has not been given. The user can, taking this proposal as a basis, provide a more accurate formal

description of the service capability.

6.3.2.4 Proposal for information preconditions

If the description of information preconditions of the service is not available, we will ask the

description assistant for a proposal. The assistant, if the service has been categorized but neither the

description of its information preconditions nor the description of its input-dependent effects have

been provided, will propose the prototypical information preconditions associated to the categories

the service has been assigned to.

If the n categories a service serv has been assigned to are denoted c1, . . . , cn, and their

associated information preconditions are given by queries qc1 , . . . , qcn , the information preconditions

proposed for the service will be:

?− qc1 , . . . , qcn

This means that we will require all information preconditions of all categories to be fulfilled

in our proposed description of information preconditions. This proposal (if any) will be given to the

user, who will possibly modify it (see Figure 6.12) or leave it empty. After the description has been

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 205

Figure 6.12: Proposal for information preconditions

completed, we will add it to the WSMO description of the service (if it is not empty) and continue

with the description completion process.

6.3.2.5 Proposal for input-dependent effects

If input-dependent effects of the service have not been describe, the service description

assistant will be asked for a proposal. If the service has been categorized but neither the descrip-

tion of its information preconditions nor the description of its input-dependent effects have been

provided, the assistant will propose the prototypical input-dependent effects associated to the cat-

egories the service has been assigned to. In particular, if the n categories a service serv has been

assigned to are denoted c1, . . . , cn, and their associated input-dependent effects are given by concepts

InputEffc1 , . . . , InputEffcn , the concept proposed to the user for the formalization of the abstract

effects of the service will be:

InputEffserv ≡ InputEffc1 t . . . t InputEffcn

Furthermore, categories c1, . . . , cn declare shared variables used in the description of input-

dependent effects. The union of the shared variables associated to each category will be proposed

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 206

Figure 6.13: Proposal for input-dependent effects

as the set of shared variables of the service (see Figure 6.13). Based on this proposal, the user will

provide the description of input-dependent effects of his service and of shared variables (or leave

them empty), and will choose the intention of this description.

Helped by the proposals presented above, users will have the possibility of completing the

description of their services. As presented above, these proposals will act as a guide for providers

to describe their services, but they will have the final responsibility for selecting and modifying the

different descriptions proposed. This description completion procedure can be executed any number

of times.

6.3.3 Publication of descriptions

Once the user has available, possibly with the help of our service description assistant, the

description of a service he wants to publish, we will initiate the process of publishing this description

to the SETA registry. In particular, the description will be sent to the publication manager of the

registry depicted in Figure 6.3 by the publication coordinator of the publication component in Figure

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 207

6.6, and this publication manager will: a) check the consistency of the service description provided,

b) store the description of the service, and c) process the description so that its matching to a

consumer goal can be evaluated at location time as efficiently as possible.

In the following, we will describe in more detail the main phases of the publication process.

6.3.3.1 Checking the validity of a description

When the user decides to initiate the actual publication of a service description to the

registry, after completing missing types of descriptions of such service using the assistance provided

by the platform, the publication coordinator of the SETA publication component will, as its name

suggests, coordinate the submission of the description to the registry and the communication with

the user if his intervention is required at some point for correcting the description provided.

The description of the service will be submitted to the publication manager of the service

registry, which will first check the validity of the description provided. This validation will be two-

fold: i) the WSMO service description will be parsed and its validity evaluated using WSMO4J,

and ii) the validity and the consistency of the set-based modelling and the categorization of the

service, encoded by the WSMO service, will be evaluated; how this second validation is performed

is presented in the following.

Consistency of categories and set-based modelling of the service capability. If a set-based

modelling of the service capability has been given, and possibly a categorization of the service, we

will evaluate the consistency of these descriptions. In particular we will evaluate whether the effects

given by the formal descriptions associated to service categories are compatible with the effects given

by the set-based modelling of the service capability. For this purpose, the publication manager will

communicate with the taxonomy manager to obtain the set-based modelling of the categories given,

and use the DL reasoner to determine the satisfiability of the concept defined as the conjunction of:

a) the concept which formalizes the service capability, and b) the union of the concepts formalizing

the set of effects associated to the categories the service has been assigned to. However, if the service

has not been categorized, we will only check the satisfiability of the concept formalizing the service

capability.

Given a service serv, assigned to categories c1, . . . , cn and whose formalized effects are

given by a concept Effserv, we will check the satisfiability of a concept EffT
serv defined as:

EffT
serv ≡ Effserv u EffC

where EffC ≡ Effc1 t . . . t Effcn if the service has been categorized, and EffC ≡ >
otherwise.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 208

This is illustrated by the following example:

Example 6.15 Let us imagine we want to publish the description given in Listing 6.4 of a service

which has the capability of booking seats on flights operated by IntAir. Now, let us imagine a

category LowCostF lightBooking whose set-based modelling of the capability it represents is given

by:

EffLowCostF lightBooking ≡ FlightBooking u
∃ofItem u

∀ofItem.(FlightSeat u ∃onF light u
∀onF light.(Flight u ∃operatedBy u ∀operatedBy.(LowCostAirline)))

If the service is assigned to category LowCostF lightBooking, and if in domain ontologies

ODL we have a disjunction axiom stating that an airline cannot be both a low-cost airline and

a regular airline, i.e., that LowCostAirline u RegularAirline v ⊥, we will have that concept

EffT
BookIntAirF lightCapability defined as:

EffT
BookIntAirF light1 ≡ EffBookIntAirF light1 u EffLowCostF lightBooking

is not satisfiable and, thus, the categorization of the service is not consistent with the

set-based modelling of its capability. ¤

If the result of this test is negative, i.e., if concept EffT
serv defined as explained above is

not satisfiable, the publication manager will return an error to the publication coordinator of the

publication component. In this case, we will ask the user to revise the description of the service.

Checking the satisfiability of concepts for the SHOIN description logic can be time-

consuming. While the response times obtained for this task can be relatively high, publication

is not a time-critical task and, therefore, we consider these times acceptable. We will discuss in

more detail the complexity and response times expected in Chapter 8.

Validity of information preconditions and of input-dependent effects. As discussed in

Section 6.3.1, the following relation must hold for any capability C and any valid input binding βi

assigning values to the input variables of a service serv enabling access to C:

InputEffserv,βi v EffC

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 209

However, as we cannot determine at publication time all possible valid input bindings βi,

we cannot evaluate whether this relation holds for the description provided. Still, we must keep in

mind that this relation must hold. In this setting, we will only evaluate whether the description of

information preconditions (if given) is a valid WSML-Flight query, and whether the description of

input-dependent effects (if given) is a valid WSML-DL+ concept.

The consistency of other types of descriptions cannot be checked, in the sense that our

platform cannot detect contradictory information in the remaining types of descriptions.

6.3.3.2 Storing and processing descriptions

Once the publication manager has checked the validity of the description of the service and

no problem has been encountered, the description of the service will be stored and processed for its

posterior retrieval.

UDDI storage The service description will be stored in the UDDI repository part of the registry.

In particular, the publication manager will create a UDDI business service [Bellwood et al., 2002],

whose name will be the service identifier extracted from the WSMO description. This business

service will be associated:

• using a UDDI category bag [Bellwood et al., 2002], the categories the service belongs to. In

particular, we will reference the tModel created for the taxonomy of the category using a UDDI

keyed reference, and the value given to this category will be the name of the category;

• using keyed references, each to a particular tModel created for this purpose, the textual de-

scription, information preconditions, set-based modelling, and input-dependent effects of the

service;

• using a keyed reference to a UDDI pre-defined tModel, the WSDL description of the service

retrieved by the taxononomy manager from the URL given. This pre-defined tModel will be

of type (uddi-org:types) wsdlSpec.

Description processing. In order to speed up the location of services based on their descriptions,

we will process the categorization of the service and the set-based modelling of the service capability

at publication time, as described next.

First, the publication manager will associate to categories the service belongs to (if any),

in the structure of taxonomies we keep loaded in memory (see Section 6.3.1), the service identifier.

In this way, each category c will have associated in memory the set Sc of published services which

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 210

have been categorized under it. If a service has been categorized under several categories, it will be

a member of the set of services associated to each such category.

Second, the publication manager will publish the concept which provides the set-based

modelling of the service capability (if available) to a TBox named Services of the DL reasoner, and

this TBox will be classified. Published services are thus arranged in a subsumption hierarchy in

terms of the effects they can provide. We will at location time be able to efficiently query this

subsumption hierarchy, as we will see in Chapter 7. It must be noted that the Services TBox is

created when the registry is started and the set ODL of domain ontologies service descriptions can

refer to loaded into this taxonomy. Furthermore, the TBox is loaded at this time.

The times required for computing the subsumption hierarchy of services based on the set-

based modelling of their capabilities can be high. However, this task will be done only once for

each service and at publication time and, therefore, it will not interfere with the times required for

locating services. More details will be provided in Chapter 8.

After the publication of the concept formalizing the capability of the service and the clas-

sification of the Services TBox, and if no error occurred, we consider the publication of the service

finished, and the publication manager will inform of the successful publication to the publication

coordinator of the SETA client, which will in turn notify it to the user.

It must be noted that the publication manager of the registry is accessible via two WSDL

services:

1. A service which, given a WSMO service description for publication checks its consistency, stores

the description, and completely process it in order to make it ready for efficient matchmaking.

2. A service which does the same tasks as the previous service but the classification of the Services

TBox. This service has been used for bulk publications, where we want to publish a (possibly

big) set of n service descriptions but we do not want to classify n times the TBox, i.e., after

the publication of each individual description. Instead, we want to save the classification time

required by each individual publication and only classify the TBox when the last description

is published and, therefore, all the concepts formalizing the capability of the different services

have been already published to the TBox.

Furthermore, users can choose to directly use the UDDI publication API. However, services

published in this way will only be locatable using the UDDI inquiry API, as they will only be handled

by the UDDI repository.

Chapter 6: Model Instantiation and Prototype Implementation I: Description and Publication of
Services 211

6.4 Summary

In this Chapter, we have presented the first part of our proposed instantiation of the

abstract model presented in Chapter 5.

First, we have introduced the types of syntactic and semantic descriptions of the value of

services considered; this set of description types has been chosen with the purpose of covering the

needs of different use cases while keeping the set as reduced as possible and, what is more, keeping

compatibility with current practices in service-oriented computing.

Second, we have presented how users can describe their services using a publication com-

ponent we have prototypically implemented, as well as how such descriptions are published to a

prototype registry, conceived as an extension of a UDDI repository, which is able to store and

process all the types of descriptions proposed. In particular, we provide support to users for pro-

viding alternative types of descriptions of their services based on associating formal and non-formal

descriptions to categories, which can be seen as coarse-grained, pre-defined capabilities.

It must be noted that, although a centralized registry is assumed in our discussion, i.e.,

all service descriptions are published to a single registry, this is not imposed by our model and

alternative architectures e.g. peer-to-peer or hybrid architectures could be used. This will, though,

have implications on how the location process is articulated.

With the types of descriptions used and the support offered to users for describing their

services, we believe we have achieved a flexible and usable basis for publishing the value of available

services, which will be later exploitable for locating services with different accuracy and efficiency

requirements. How the location process makes use of such descriptions and of the registry presented

will be presented in the next Chapter, as well as how consumer goals are described.

Chapter 7

Model Instantiation and Prototype

Implementation II: Description of

goals and discovery of services

7.1 Introduction

In Chapter 6, we have presented alternative types of descriptions of the value of services,

how users (service providers or other agents acting on their behalf) are supported for providing

different types of descriptions of a particular service, and how the complete description of a service

is published to a registry. Given that services have been described and their descriptions accessible

to prospective consumers or to systems acting on their behalf, we will in this Chapter describe how,

and following the guidelines provided by the abstract model in Chapter 5, we articulate the discovery

of services based on their value, i.e., how we instantiate the second part of such abstract model in

the SETA platform.

In Section 7.2 we discuss how consumers can describe their goals in our model instantiation,

i.e., how consumers can describe the value they expect to obtain from using a service, which will

guide what services are potential solutions (to different extents) for the consumer goal. In this

Section we will also discuss how consumer knowledge is expected to be described, as it might play

a role in deciding what services can be used to achieve the consumer goal. Finally, this Section will

describe what type of support is offered to consumers for describing their goals; this support will

be very similar to the type of support offered to service providers for describing their services, as

the types of descriptions of goals considered are basically symmetric to the types of descriptions of

212

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 213

services presented in Chapter 6, Section 6.2.

Once the consumer goal has been described, we will initiate the service discovery process

which, as dictated by the abstract model in Chapter 5, will be split into two phases: a first phase

where filters are applied in order to retrieve from the registry relevant services but without having

access to consumer knowledge, and a second phase where obtained service descriptions are evaluated

at the consumer side, where access to consumer knowledge is possible and where custom filters can

be defined by consumers. The first phase of the discovery process and the filters applied will be

presented in Section 7.3, and the second phase and its filters will be presented in Section 7.4.

Finally, Section 7.5 provides a summary of the contents of the Chapter. An evaluation of

our complete model instantiation will be presented in Chapter 8, where known limitations of this

instantiation will also be discussed, related work analyzed, and possible extensions outlined.

7.2 Description of goals

Consumers are interested in locating and using certain services because they can provide

effects that solve a given consumer’s need. For example, a consumer might need to fly from Madrid

to Munich, and he will be interested in locating a service that can provide the booking of a seat on

an appropriate flight. For locating services, consumers’ objectives must be explicitly described, as

presented in this Section.

Two families of descriptions of the effects expected by consumers are distinguished: syntac-

tic descriptions and semantic (formal) descriptions. The particular types of syntactic and semantic

descriptions considered, which are mainly symmetric to the types of descriptions of services al-

lowed, are presented in the following. Additionally, consumer knowledge available will be explicitly

described, but not necessarily once per goal, as we will see.

7.2.1 Syntactic descriptions

7.2.1.1 Textual description

Consumers can describe the effects they expect from using a service using natural language.

This type of description is symmetric to the textual description of the service value, and it has the

following main properties:

• It describes, using natural language, what a service is expected to do for the consumer e.g.

the purchase of books or investment funds.

• It is easy to provide by an average user.

• It often has limited precision, and it suffers from the ambiguity of natural language.

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 214

Goals in our platform will be encoded as WSMO goals (see Chapter 3, Section 3.4.1), and

the textual description of the goal will be encoded as the value of the Dublin Core description non-

functional property of the capability, as shown in Listings 7.1, 7.2, and 7.3. Additionally, the Dublin

Core language non-functional property is used to indicate the language in which this description is

provided.

namespace { ”http://www.afi.es/services/finance#”,

loc ”http://www.afi.es/ontologies / geopolitical /locations#”,

action ”http://www.afi.es/ontologies /general/actions#”,

funds ”http://www.afi.es/ontologies /finance/investmentFunds#”,

dc ”http://purl .org/dc/elements/1.1#”,

afi ”http://www.afi.es/WSDiscovery/Description#”,

ck ” file ://consumerknowledge/myKnowledge”}

goal ”http://www.afi.es/goals/FundSearch1”

importsOntology { ”http://www.afi.es/ontologies/ geopolitical / locations ”,

”http://www.afi.es/ontologies /general/actions”,

”http://www.afi.es/ontologies /finance/investmentFunds”,

” file ://consumerknowledge/myKnowledge”}

capability FundSearch1Capability

nonFunctionalProperties

dc#description hasValue ”Search of investment funds commercialized in the Spanish market by MyEntity”

dc#language hasValue ”en−GB”

afi#category hasValue ”http://www.afi.es/Taxonomy1#InvestmentFundSearch”

afi#filter hasValue {”Capability”, ” InputAvailability ”, ”InputDependentEffects”}
endNonFunctionalProperties

postcondition

nonFunctionalProperties

afi#intention hasValue ”all”

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/services/FundSearch1” equivalent

?x memberOf action#InfoProvision and

exists ?y(?x[action#ofInfoItem hasValue ?y]) and

forall ?y(

?x[action#ofInfoItem hasValue ?y] implies ?y memberOf funds#InvestmentFund[funds#commercializedIn

hasValue loc#Spain, funds#commercializedBy hasValue ck#MyEntity]).

Listing 7.1: WSMO description of the goal of searching investment funds commercialized in Spain
by entity MyEntity

namespace { ”http://www.afi.es/services/eTourism#”,

loc ”http://www.afi.es/ontologies / geopolitical /locations#”,

action ”http://www.afi.es/ontologies /general/ETourismActions#”,

flights ”http://www.afi.es/ontologies /eTourism/flightsExample#”,

fc ”http://www.afi.es/ontologies /finance/common#”,

dc ”http://purl .org/dc/elements/1.1#”,

g ”http://www.afi.es/ontologies /general#”,

afi ”http://www.afi.es/WSDiscovery/Description#”,

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 215

ck ” file ://consumerknowledge/myKnowledge” }

goal ”http://www.afi.es/goals/BookAFlight1”

importsOntology { ”http://www.afi.es/ontologies/ geopolitical / locations ”,

”http://www.afi.es/ontologies /general/ETourismActions”,

”http://www.afi.es/ontologies /finance/common”,

”http://www.afi.es/ontologies /general”,

”http://www.afi.es/ontologies /eTourism/flightsExample”,

” file ://consumerknowledge/myKnowledge” }

capability BookAFlight1Capability

nonFunctionalProperties

dc#description hasValue ”Booking a seat on flight flight1234 from Madrid to Munich, paid with a credit card

DummyCard”

dc#language hasValue ”en−GB”

afi#category hasValue ”http://www.afi.es/Taxonomy1#FlightBooking”

afi#filter hasValue ”Category”

endNonFunctionalProperties

postcondition

nonFunctionalProperties

afi#intention hasValue ”some”

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/goals/BookAFlight1” equivalent

?x memberOf action#FlightBooking and

exists ?s(?x[action#ofItem hasValue ?s]) and

forall ?s(

?x[action#ofItem hasValue ?s] implies

?s memberOf flights#FlightSeat[flights#onFlight hasValue ck#flight1234, flights#forPerson hasValue

ck#rubenLara]) and

?x[action#withPaymentMethod hasValue ck#myDummyCreditCard].

Listing 7.2: WSMO description of the goal of booking a particular flight and paid with a particular
type of credit card

namespace { ”http://www.afi.es/services/eTourism#”,

loc ”http://www.afi.es/ontologies / geopolitical /locations#”,

action ”http://www.afi.es/ontologies /general/ETourismActions#”,

flights ”http://www.afi.es/ontologies /eTourism/flightsExample#”,

dc ”http://purl .org/dc/elements/1.1#”,

afi ”http://www.afi.es/WSDiscovery/Description#” }

goal ”http://www.afi.es/goals/SearchFlights1”

importsOntology { ”http://www.afi.es/ontologies/ geopolitical / locations ”,

”http://www.afi.es/ontologies /general/ETourismActions”,

”http://www.afi.es/ontologies /eTourism/flightsExample” }

capability SearchFlights1

nonFunctionalProperties

dc#description hasValue ”Search of flights from Madrid to Crete”

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 216

dc#language hasValue ”en−GB”

afi#category hasValue {”http://www.afi.es/Taxonomy1#FlightSearch”}
afi#filter hasValue {”Capability”, ” InputAvailability ”}

endNonFunctionalProperties

postcondition SearchFlights

nonFunctionalProperties

afi#intention hasValue ”all”

endNonFunctionalProperties

definedBy

?x memberOf ”http://www.afi.es/goals/SearchFlights1” equivalent

?x memberOf action#InfoProvision and

exists ?y(?x[action#ofInfoItem hasValue ?y]) and

forall ?y(

?x[action#ofInfoItem hasValue ?y] implies ?y memberOf flights#Flight[flights#hasOrigin hasValue loc#Madrid,

flights#hasDestination hasValue loc#Crete]).

Listing 7.3: WSMO description of the goal of searching flights from Madrid to Crete

7.2.1.2 Categorization

The second (and last) type of syntactic description of the value expected from using a

service is the provision of the categories sought services must belong to, which is symmetric to

the categorization of services discussed in Chapter 6. This type of description has the following

properties:

• It describes what categories relevant services must belong to. Alternatively, we can see this

description as a coarse-grained description of what capability sought services must enable

access to.

• The usage of categories is intuitive for users, which makes this type of description of the value

expected from services easy to provide.

• Categories enable a more precise matching than textual descriptions, as we avoid the inherent

ambiguity of natural language.

More than one category can be provided, meaning that candidate services must ideally

belong to all the categories provided. Such list of categories will be encoded using a category non-

functional property in the WSMO capability element, as shown in Listings 7.1, 7.2, and 7.3.

Finally, notice that the categories used for describing goals will be the same ones used

for describing the value of services, published as described in Chapter 6 and part of pre-defined

taxonomies. Therefore, taxonomies of categories constitute a vocabulary shared by service consumers

and providers, which will enable comparing the categorization of a service to the categories given

by a goal in order to locate relevant services.

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 217

The textual description and the description based on pre-defined categories of the value

expected by prospective service consumers are symmetric to the same types of descriptions of the

value of services presented in the previous Chapter. One type of syntactic description considered for

services has not been included in the WSMO description of goals: the WSDL description. However,

this does not mean the WSDL description of a service cannot be used by a consumer to decide

on the suitability of a service for resolving his goal; we simply do not encode any details of the

WSDL description of a sought service in the WSMO goal, but we will allow for the direct usage by

consumers of the UDDI inquiry API and, therefore, for the retrieval of services from the registry

based on their WSDL description. We will see how this is done in Section 7.3.

7.2.2 Semantic descriptions

In a similar way we formally described the value of services, we will now formally describe

what value is expected by consumers; this expected value will drive the process of locating relevant

services. The formal description of the value a consumer expects will be provided in terms of the

same set O of domain ontologies introduced in Chapter 6 and to which formal service descriptions

referred. Furthermore, if necessary, they will also refer to existing extensions of these ontologies in

the direction of WSML-DL+, i.e., to the set ODL of extended domain ontologies.

In the following, we briefly explain how expected effects are modelled as a DL concept and

encoded into WSMO goal descriptions, and how consumer knowledge is declared for its posterior

use in the second phase of the service location process.

7.2.2.1 Set-based modelling of effects

Consumers can specify the goal they want to achieve by describing the capability they want

to access. This description will be provided, as for services, by a DL concept EffG which will have

the following form in DL syntax:

EffG ≡ (Action1 uRestrictions1) t
(Action2 uRestrictions2) t

. . . t
(Actionn uRestrictionsn)

where Action1, . . . , Actionn are actions defined in ontologies of actions and

Restrictions1, . . . , Restrictionsn are concepts denoting restrictions introduced over the properties

of such actions, and which will refer to the set ODL of domain ontologies. In a nutshell, concept

EffG defines the set of effects which the consumer wants to achieve by using a service, described in

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 218

terms of actions pre-defined in ontologies of actions and restrictions over such actions which define

with more precision what particular action candidate services must be able to perform.

The expressivity allowed for describing the concept above is, as for services, the SHOIN (D)

Description Logic underlying WSML-DL+.

Example 7.1 If a consumer wants to book a flight flight1234, which is a flight from Madrid to Mu-

nich operated by IntAir and about which the consumer has previously obtained information by using

a flight search service, for passenger rubenLara, and paid with a credit card of type DummyCard,

the concept formalizing the set of effects required will be defined as:

EffBookAFlight1 ≡ FlightBooking u
∃ofItem u

∀ofItem.(FlightSeat u onF light.{flight1234}) u forPerson.{rubenLara} u
withPaymentMethod.{myDummyCreditCard}

Intuitively, the formalization above can be read as: a service which can provide the booking

of a seat on flight flight1234, for person rubenLara, and paid with myDummyCreditCard is sought.

If we consider the general form descriptions of capabilities take, given by Formula (7.1), we

have that:

Action1 ≡ FlightBooking

Restriction1 ≡ ∃ofItem u
∀ofItem.(FlightSeat u onF light.{flight1234}) u forPerson.{rubenLara} u

withPaymentMethod.{myDummyCreditCard}

This formalization corresponds to the goal in Listing 7.2, where the formalization is written

in WSML human-readable syntax.

¤

In general, the concept which formalizes the capability sought services must enable access

to is encoded by the WSMO postcondition of the goal capability, as shown in Listings 7.1, 7.2, and

7.3. This type of description has the following main properties:

• It formally describes the capability the consumer wants to access, which will enable the match-

ing of services with a considerable precision based on explicit domain models and exploiting

formal reasoning. Furthermore, and given the expressivity allowed, precise results will be

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 219

obtained in relatively low times using state-of-the-art reasoners, as we will see in the next

Section.

• It only refers to the capability the consumer wants to access, without requiring a particular

way of accessing it by the service. This makes this type of description value-driven, in the

sense that it concentrates on the value sought and not on how it will be accessed.

• Given the form these descriptions take, in terms of pre-defined actions in appropriate ontolo-

gies for which restrictions on what kind of objects these actions apply to are introduced, we

expect users with basic skills in knowledge representation to be able to provide this type of

descriptions. Still, users will be supported for providing this type of description in the way we

will present in Section 7.2.4.

Intention. The type of description introduced above defines the set of effects, associated to a

capability, candidate services must enable access to. However, as introduced in [Keller et al., 2004a;

Keller et al., 2005; Keller et al., 2006a], the description of the set of expected effects can be interpreted

in different ways and, thus, the description by means of a set is not semantically unique. In this

setting, the intention of users when modelling their goals must be explicitly stated as a meta-

annotation of the concept describing sought effects. The purpose is to differentiate cases where the

consumer seeks a service which can provide all the effects in the set described, from cases where

the consumer goal can be satisfied by a service which can provide only some of the effects in this

set. This meta-annotation is encoded by the intention non-functional property associated to the

goal postcondition; a value all of this property means that all the effects in the set are required (see

Listings 7.1 and 7.3), while a value some means that only some of these effects are required (see

Listing 7.2). We will denote EffG the concept formalizing the set of effects required for achieving

a goal G, and IG ∈ {∃, ∀} its associated intention.

7.2.2.2 Description of consumer knowledge

We have seen how a consumer can describe the capability he wants to access in different

ways, without placing any specific requirement on the preconditions and functionality of the service

enabling access to such capability. However, information preconditions must be fulfilled in order to

use a service and, thus, they can play a role in deciding whether a service can be used to fulfill a

given goal or not.

One may think that a consumer goal should not only describe the capability sought, but

also what information the consumer has available and is willing to disclose for achieving the required

effects. However, the input required by available services, some of which might solve the consumer’s

goal, is not known by the consumer before-hand, and it can greatly vary among them. For example,

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 220

any service might require authentication (user name), and a consumer defining a goal cannot antici-

pate whether his user details will be necessary for achieving this goal. In the best case the customer

can only guess, when defining his goal, what input values will be required by services satisfying such

goal.

In addition, the consumer might have a considerable volume of information from which

input values to services can be obtained. As an example, consider a business process which acts as

a service consumer and which has access to information in corporate databases: input values for a

service can be extracted from these databases if this is required for achieving a goal of the process.

Furthermore, part of this information might be sensitive and, therefore, it should not be disclosed

to third parties before establishing some trust relation. For example, and even though a consumer

trying to achieve a particular goal might be willing to disclose his credit card details, he will probably

not do so before the specific service that can be used for this purpose has been identified and a trust

relation has been established with it.

Finally, and while most existing works e.g. [Li and Horrocks, 2003] and [Benatallah et al.,

2003] expect consumers to explicitly describe, for each goal they want to achieve, the type of input

values they can provide for achieving this particular goal, this requires consumers to anticipate

what type of input values might be required by relevant services. We believe, though, that in

most cases consumers will want to find services which can provide the effects required and which

can be executed, i.e., the primary concern of a consumer is to realize some effects by executing a

service, which requires having appropriate input values for this execution; consumers will not require

particular information preconditions to be defined by the service, as long as they can execute the

service with the information they have available.

In this setting, following considerations above and the abstract model defined in Chapter

5, we assume in our model instantiation that a knowledge base KBc exists containing consumers’s

knowledge, and that possible input values for candidate services enabling access to a sought capability

can be obtained from it.

Definition of the knowledge base containing consumer knowledge. Consumer’s knowledge

will be described in terms of the set O of domain ontologies. In particular, consumer knowledge will

correspond to instances of concepts in these ontologies and, therefore, this knowledge will be kept

within the expressivity of WSML-Core.

In our prototype implementation, KBc is realized by a FLORA-2 knowledge base (see

Chapter 2, Section 2.2.3.7), as depicted in Figure 7.1. Users will indicate to the platform what

consumer knowledge is available by providing the location of a file containing all instances which

conform consumer’s knowledge and this file, together with domain ontologies in O which provide the

domain vocabulary, will be loaded to FLORA-2. Notice that this knowledge can be reused across

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 221

Figure 7.1: Client architecture (location component)

different requests to locate candidate services.

Furthermore, consumer knowledge will be loaded together with the set O of domain on-

tologies to a knowledge base, called CandidateServices, of the DL reasoner depicted in Figure 7.1

(RacerPro is used). This domain and consumer knowledge will be necessary for the matching of

candidate services using one of the filters provided by our platform, as we will see in Section 7.4.2.

In Listing 7.4, an example set of instances modelling consumer knowledge such as a par-

ticular flight, personal details, a user registered for www.intair.com, or credit card details, is given.

These instances are modelled as an ontology which imports the domain ontologies in O providing the

necessary domain vocabulary. In addition, this knowledge base will also contain domain knowledge

given by the set O of domain ontologies.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−core”

namespace {
”http://www.afi.es/KBExample#”,

dc ”http://purl .org/dc/elements/1.1#”,

foaf ”http://xmlns.com/foaf/0.1/”,

wsml ”http://www.wsmo.org/wsml/wsml−syntax#”,

loc ”http://www.afi.es/ontologies / geopolitical /locations#”,

flights ”http://www.afi.es/ontologies /eTourism/flightsExample#”,

fc ”http://www.afi.es/ontologies /finance/common#”,

g ”http://www.afi.es/ontologies /general#”,

users ”http://www.afi.es/ontologies /users#”}

ontology ” file ://consumerknowledge/myKnowledge”

nfp

dc#title hasValue ”Example consumer knowledge base”

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 222

dc#contributor hasValue ”http://nets . ii .uam.es/˜rlara/foaf . rdf”

dc#date hasValue date(2007,01,29)

dc#format hasValue ”text/html”

dc#language hasValue ”en−GB”

endnfp

importsOntology { ”http://www.afi.es/ontologies/ geopolitical / locations ”,

”http://xmlns.com/foaf/0.1”,

”http://www.afi.es/ontologies /eTourism/flightsExample”,

”http://www.afi.es/ontologies /finance/common”,

”http://www.afi.es/ontologies /general”,

”http://www.afi.es/ontologies /users” }

instance flight1234 memberOf flights#Flight

hasNumber hasValue ”1234”

hasOrigin hasValue flights#Madrid

hasDestination hasValue flights#Munich

hasDate hasValue date(2007,10,01)

operatedBy hasValue flights#IntAir

instance rubenLara memberOf g#person

hasName hasValue ”Ruben”

hasSurname hasValue ”Lara”

hasBirthDate hasValue date(1979,09,03)

hasId hasValue ”4321”

instance myIntAirUser memberOf users#User

hasUserName hasValue ”ruben lara”

hasPassword hasValue ”∗∗∗∗∗∗∗∗”
forAccessOf hasValue ”www.intair.com”

instance myDummyCreditCard memberOf fc#DummyCard

hasHolder hasValue rubenLara

hasNumber hasValue ”8987887”

hasValidity hasValue date(2010,01,01)

...

Listing 7.4: An example set of instances modelling consumer knowledge

7.2.3 Selection of filters

The last ingredient in the description of a goal is the level of accuracy expected from the

results of the location process, i.e., we do not only describe the capability sought and possibly

consumer’s knowledge, but also requirements on the accuracy and efficiency of the location process.

In particular, the consumer can choose to apply different filters to obtain services that can provide

the effects required.

Applicable filters are split into two groups, following the abstract model in Chapter 5: 1) fil-

ters which are applied by the service registry, without considering what input values can be provided

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 223

Applied filter Type of description of goal re-
quired

Type of description of service re-
quired

Textual Textual description Textual description
Category Categorization Categorization
Capability Formalization of effects Formal capability
Input availabil-
ity

Consumer KB Information preconditions

Input-
dependent
effects

Formalization of effects + Con-
sumer KB

Input-dependent effects

Table 7.1: Descriptions required for the application of different filters

by the consumer and, therefore, without evaluating information preconditions and input-dependent

effects, and 2) filters whose application must be done once service descriptions are retrieved from

the registry, i.e., at the consumer side and considering what information the consumer has available

for providing input values to the service.

Consumers will select what filters must be applied for determining candidate services for

achieving a goal, and selected filters will be part of the goal and encoded by the filter non-functional

property of the goal capability (see Listings 7.1, 7.2 and 7.3). In the current platform, the following

filters can be applied: a) a textual filter, corresponding to the Textual value of the filter non-

functional property, b) a category filter, indicated by the value Category of the filter non-functional

property, c) a Capability filter, d) an InputAvailability filter, and e) an InputDependentEffects filter.

Details of these filters can be found in Sections 7.3 and 7.4.

Different filters will be applied over different types of descriptions of services and goals and,

thus, will require the provision of a particular type of description of the goal. These correspondences

between filters and types of descriptions required, summarized in Table 7.1, will limit what filters

can be applied depending on the type of description of the goal provided and, at the same time, will

guide the assistance provided to users for describing their goals, as we will see in the next Section.

7.2.4 Support for the description of goals

Properly describing goals is a necessary task for locating services which provide a given

value and, in our platform, we try to ease this task by proposing, when possible, descriptions of

the appropriate type to users. The location component of the SETA client, depicted in Figure

7.1, includes a goal description assistant similar to the service description assistant introduced in

Chapter 6, Section 6.3.2. The task of the goal description assistant is to support users for describing

their goals. Similarly to the service description assistant presented in the previous Chapter, the goal

description assistant will receive a WSMO goal description and the type of description required and,

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 224

Figure 7.2: Loading a goal description

if possible, return a proposal for this type of description.

A consumer will use the user interface included in the client architecture of Figure 7.1 to

provide the description of a goal for whose resolution appropriate services must be located. This

user interface, in the current prototype implementation, offers two options to users:

1. Loading an existing WSMO description of the goal from a file (Figure 7.2).

2. Given a URI, creating a new goal description identified by such URI (Figure 7.3). In this case,

a template goal description will be built, to be completed by the user.

In both cases, the filters which will be applied for locating relevant services must be selected.

If a goal has been loaded from a file, we will check whether this goal includes the selection of filters

to be applied and, if so, automatically check the appropriate filters in the user interface shown in

Figure 7.2. If filters have not been selected, either because they are not included in the loaded

description or because the goal description is created from scratch, the user will have to select what

filters will be applied for locating services.

Once we know the filters to be applied, we will evaluate for each selected filter whether a

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 225

Figure 7.3: Creating a new goal description

description of the goal of the appropriate type for the application of this filter is available and, if

not, we will try to assist the user for providing it in the order described below.

Textual filter. If the textual filter has been selected, we need a textual description of the sought

capability. If such textual description has not been provided, we will ask the goal description assistant

for a proposal for this type of description.

The assistant, if the categories sought services must belong to have been given, will commu-

nicate with the taxonomy manager of the registry in order to retrieve the details of these categories

and the textual descriptions associated to such categories will be concatenated to build a proposal

for the textual description of the goal. Possibly helped by this proposal, the consumer will have to,

in any case, provide a textual description of his goal (see Figure 7.4).

After the textual description of the goal has been given, we will add it to the WSMO goal

description and continue to the next step.

Category filter. If this filter has been selected, we require the specification of what categories

sought services must belong to. If these categories have not been provided, we will ask the assistant

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 226

for a proposal, and the assistant will will distinguish two cases:

• If a set-based modelling of the sought capability is available, the assistant will communicate

with the taxonomy manager of the registry to search, given the concept formalizing this sought

capability, related categories (see Chapter 6, Section 6.3.1). These categories will be proposed

to the user as the categories sought services must belong to, grouped into equivalent, more

general, more specific, and intersecting categories. It must be noted, though, that this will

only be possible if the set-based modelling given only refers to instances in the set O of

domain ontologies shared with the registry, not to instances only in the knowledge base defining

consumer knowledge. Otherwise, a pre-processing of the goal is necessary, as it will be discussed

in Section 7.3.1, so that this formalization can be correctly interpreted by the taxonomy

manager to retrieve relevant categories.

• If no set-based modelling of the sought capability is available but we have a textual description

of the goal, we will communicate with the taxonomy manager of the registry to search, given

this textual description, related categories.

If both a set-based modelling of the sought capability and a textual description of it are

available, the assistant will only use the first type of description to search related categories, as

search results will be more accurate than those obtained using a textual description.

Proposed categories will help users in specifying what categories sought services must belong

to, but it also might be the case that no category can be proposed as we have no textual or formal

description of the goal. Users will have to ultimately choose what categories will describe their goal

and, for this purpose, they will be able to browse categories in all available taxonomies and choose

the ones which better fit their goals (see Figure 7.5).

After categories have been selected by the consumer, we will update the WSMO goal

description and continue to the next step.

Capability filter. If the capability filter has been selected, we require the consumer to provide a

set-based modelling of the capability sought. If such formal description has not been provided, we

will ask the assistant for a proposal.

If the categories sought services must belong to are described by the WSMO goal, the

assistant can propose to the user the capability formalizations associated to the categories selected.

If such categories are not provided, but at least a textual description of the goal is available, we will

ask the assistant for a proposal of categories as described above so that the user can provide a set

of categories for guiding the formal description of the capability required. Still, if categories cannot

be proposed, we will enable the manual browsing of categories by users, i.e., for the proposal of the

set-based modelling we will always give the chance to users to first select categories (if not given) so

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 227

Figure 7.4: Proposal for a textual description of the goal

that we can use these categories, easy to provide by users, to guide the set-based modelling of the

sought capability.

Once categories are given, we will eventually ask the assistant for a proposal for the set-

based modelling of the effects sought by the consumer. The proposal for the formal description of

the capability sought by a consumer will follow the same mechanism used in the previous Chapter

for proposing formal capabilities of services starting from their categorization. In particular, if the

n categories provided are denoted c1, . . . , cn, and their associated capabilities are given by concepts

Effc1 , . . . , Effcn (obtained after communication of the goal description assistant with the taxonomy

manager), the concept proposed for the formalization of the capability sought will be:

EffG ≡ Effc1 t . . . t Effcn

This means that the abstract effects required will be the union of the effects associated to

each category sought services must belong to.

Furthermore, users can decide to use the input-dependent effects associated to selected cat-

egories and to parameterize them with particular values. In this way, users can constrain the general

capability associated to a selected category by providing assignments of values to shared variables

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 228

Figure 7.5: Proposal for categories of the goal

defined in the prototypical description of input-dependent effects of such category. Therefore, for

any category ci in the expression proposed above, the formalized capability Effci associated to the

category can be replaced by input-dependent effects InputEffci,βi of the category, where βi is a

particular input binding defined by the user which assigns values to the shared variables appearing

in InputEffci (see Figure 7.6).

It can be seen, thus, that prototypical input-dependent effects associated to a category can

also serve to help users in further constraining the set-based modelling of their services based on

their categorization in a similar way goal ontologies were used in Chapter 4, where users referred

to predicates such as searchTrip(from, to) for expressing goals, giving values to the from and to

variables. However, in our model instantiation we use this option only as a help to users who might

have difficulties in describing their goals, but flexibility for freely providing a set-based modelling of

the set of effects achievable by using a service is granted.

Input availability filter. The input availability filter requires the location of a file containing

the instances that define available consumer knowledge. This knowledge base will be the source of

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 229

Figure 7.6: Proposal for the set-based modelling of expected effects

possible input values for candidate services and, thus, will be used to determine whether information

preconditions of candidate services are fulfilled. In this setting, we will ask users to provide the

location of a file defining consumer knowledge.

Input-dependent effects filter. This filter requires the provision of a formal description of the

sought capability. Therefore, if this type of description is not available, we will propose a description

in the same way we do when the capability filter is selected. Furthermore, if the knowledge base

containing consumer knowledge has not been defined yet, we will require the user the location of a

file providing such knowledge.

We have seen how consumers will be guided in what type of descriptions they must provide

depending on the filters selected and, furthermore, we propose in some cases the description of the

goal based on available descriptions of other types. The final result of this phase will be a properly

defined goal, for which the types of description provided correspond to the types of descriptions

required for the application of selected filters. In the following Sections, we present how this goal,

and possibly consumer knowledge, will be used to locate relevant services.

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 230

7.3 Registry-side filters

Once a consumer’s goal has been described, the filters to be applied selected, and the

necessary types of descriptions of the goal for the application of such filters are available, we will

start the service discovery process. This process, as described in Chapter 5, will be based on the

application of filters to determine which available services, from those whose descriptions have been

published, can be used to fulfill the consumer’s goal, and it will be split into two phases: a) a

first phase in which filters are applied at the registry where service descriptions are stored, and the

descriptions of services which can potentially resolve the goal are retrieved, and b) the application

of filters over the retrieved service descriptions on the consumer side, where consumer knowledge is

accessible. We call the former type of filters registry-side filters, and they will be presented in this

Section; the latter type of filters are consumer-side filters, and they will be described in the next

Section.

The application of registry-side filters will be the responsibility of the location manager of

the registry, depicted in Figure 6.3. In particular, we can communicate with this location manager

via a WSDL service which receives the WSMO description of a goal and returns relevant services,

grouped according to their degree of relevance as we will see below.

Note, though, that consumers can locate candidate services published to the registry by

directly using the inquiry API offered by the UDDI repository used in the registry. This option will

not require the consumer to provide a description of his goal in the way we have discussed above,

but only the input required by the UDDI API will be required (see [Bellwood et al., 2002]). The

purpose of enabling the direct use of the UDDI API is to keep backwards compatibility with current

practices, as developers often use this means to search for suitable services in UDDI repositories in

their organizations. This is possible as we have published service descriptions to the UDDI repository

in a way which enables their retrieval in this way (see Chapter 6, Section 6.3.3). However, the

granularity of the search using the UDDI inquiry API will be limited if only UDDI core tModels are

used, i.e., conditions over only some parts of the WSDL description of a service can be posed (see

[Brittenham et al., 2001] for an overview).

In the following, we concentrate on the retrieval of service descriptions from the registry

using the mechanisms designed and implemented on top of the UDDI repository.

7.3.1 Pre-processing of goals and submission to the registry

The location coordinator of the SETA client (see Figure 7.1) is the component in charge of

coordinating the service location process. This coordinator will submit the consumer’s goal to the

location manager of the registry in order to retrieve descriptions of candidate services.

However, if the capability filter has been selected, the goal description must be pre-

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 231

processed before it is sent to the registry. In particular, if the concept (or concepts) formalizing

the capability sought refer to instances not in the set ODL of domain ontologies, they must be

substituted by their definitions in terms of concepts, relations and instances in domain ontologies.

Otherwise, the description will not be processable by the registry, as the registry does not have

access to consumer knowledge but only to instances in ODL.

Given a goal G with a concept EffG formalizing a sought capability, we will actually have

two concepts for this capability, namely: EffG and EffO
DL

G . The former is the original concept

given by the service consumer, which might refer to instances in KBc, while the latter is the result of

eliminating any instance in KBc and replacing it by its definition using only instances instances in

ODL. If the capability filter is selected, the goal submitted to the registry will contain the description

of concept EffO
DL

G , not of EffG . It will be the input-dependent effects filter, if selected, the one

which will operate over concept EffG at the consumer side, where the location process can access

consumer knowledge.

Example 7.2 Let us consider the goal in Listing 7.2, whose formalization of the sought capability

is given by:

EffBookAFlight1 ≡ FlightBooking u
∃ofItem u

∀ofItem.(FlightSeat u onF light.{flight1234}) u forPerson.{rubenLara} u
withPaymentMethod.{myDummyCreditCard}

This formalization has details of a flight (flight1234), of a person (rubenLara), and of a

credit card (myDummyCreditCard) which are not in domain ontologies ODL. Therefore, we will

translate this concept into the following concept, following the definitions of instances flight1234,

rubenLara and myDummyCreditCard given in Listing 7.4:

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 232

EffO
DL

BookAFlight1 ≡ FlightBooking u
∃ofItem u

∀ofItem.(FlightSeat u ∃onF light u
∀onF light.(Flight u hasNumber.{1234} u hasOrigin.{Madrid} u hasDestination.{Munich} u

hasDate.{20071001} u operatedBy.{IntAir}) u ∃forPerson u
∀forPerson.(Person u hasName.{Ruben} u hasSurname.{Lara} u hasBirthDate.{19790903}) u

∃withPaymentMethod u
∀withPaymentMethod.DummyCard

In the translated concept we have substituted instances flight1234, rubenLara and

myDummyCreditCard, acting as nominals, by restrictions using their definitions so that only

datatype values and instances in ODL are used. In this case, we have not included neither the

id of person rubenLara nor the details of myDummyCreditCard as this is considered sensitive

information. The identification of sensitive information and the translation shown is currently done

manually. We will discuss in Chapter 8 possible extensions to automate this task.

The goal in Listing 7.1 will also require the substitution of instance MyEntity, while the

goal in Listing 7.3 only refers to instances in ODL.

¤

7.3.2 Textual filter

The first filter available for deciding what services published to the registry are relevant for

the goal at hand is the textual filter. The application of this filter will be indicated by the textual

value of the filter non-functional property of the WSMO goal submitted to the location manager

of the registry. If this filter has been selected, the location manager will perform a simple keyword

matching of the textual description of consumer objectives against the textual descriptions of services

published to the registry. In particular, we first remove from the textual description of the goal,

given by the Dublin Core description non-functional property of the capability (see Listings 7.1,

7.2 and 7.3), words considered noise words. For this purpose, we use the stop-list given by Oracle

Text1 (descriptions in English are always assumed and, thus, the set of noise words defined for the

English language is used). After noise words have been removed, we will simply match services

whose textual description contains any of the keywords remaining in the textual description of the
1http://www.oracle.com/technology/products/text/pdf/9ir2text features overview.pdf

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 233

goal. Therefore, those services whose textual description have some keyword in common with the

textual description of the goal will pass the filter.

It must be noted that services for which a textual description is not available will not be

matched. Therefore, these services will not pass this filter and they will not be retrieved from the

registry as services relevant for the goal at hand. However, we expect most services to incorporate

a textual description, as it is easy to provide by users and, furthermore, support for providing it is

offered by the service description assistant presented in the previous Chapter.

As it can be seen, the textual matching used has been kept very simple. The reason

is that having an elaborated textual matching has not been the main concern of our prototype

implementation, as specific tools which can facilitate this task already exist. Tools such as Zettair2,

the text matching capabilities provided by major RDBMSs such as Oracle, SQL Server or MySQL,

or textual matching mechanisms such as those proposed by [Klusch et al., 2006] could be used.

Its incorporation to our registry in order to provide enhanced textual matching, will be part of

our future work. Furthermore, we currently do not use the Dublin Core language non-functional

property in our textual matching mechanism. Explicitly dealing with goal and service descriptions

in different languages will be part of our future work.

The application of this filter will provide results in very short times, as only simple queries

over the registry database will suffice to find relevant services (see Chapter 8 for further details).

Furthermore, this filter only requires a type of description of services and goals which is easy to

provide by users. However, the precision of the results provided is limited, and we currently do not

distinguish different levels of match (all services that pass the filter are considered a perfect match).

We will, therefore, have a single set of filters which pass the filter for a goal G, denoted Stextual
G , as

this filter currently works as a boolean filter.

Example 7.3 If we consider the goal in Listing 7.2, whose textual description is ”Booking of a seat

on flight fight1234 from Madrid to Munich, paid with a DummyCard”, and the service given in the

previous Chapter in Listing 6.4, whose textual description is ”Booking of flights operated by IntAir”,

we will have a match, as the keyword ”booking” appears on both descriptions.

However, notice that with our simple keyword matching, we can have problems with singu-

lar and plural (e.g. ”flight” vs ”flights” in the above description), as we only match exact keywords.

Furthermore, we equally match a service containing the keyword ”booking” than a service containing

this keyword and the keyword ”flight”. The future incorporation of more powerful text matching

tools to our platform will yield a more accurate textual matching.

¤
2http://www.seg.rmit.edu.au/zettair/

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 234

7.3.3 Category filter

If the category filter is selected, indicated by the value category of the filter non-functional

property of the WSMO goal capability, the location manager will extract the categories sought

services must belong to and will search services which have been categorized under all these categories

or parents of these taxonomies.

Given a goal G for which the set of categories CG = {c1, . . . , cn} have been given as the

value of the category non-functional property of the WSMO goal capability, we will use the structure

of taxonomies loaded in memory (see Chapter 6, Section 6.3.3) to, for each category ci ∈ CG , find

the set:

S⊆ci
= {(serv | serv ∈ Sci) ∪ (serv | serv ∈ Scj , ci ⊂ cj)}

where Sci denotes the set of services categorized under category ci, and ci ⊂ cj means that

cj is an ancestor category of ci in the taxonomy T they both belong to. Intuitively, the set S⊆ci

contains all published services which have been categorized under category ci or under any category

which is an ancestor of such category.

We will also find, for each category ci ∈ CG , the set:

S⊃ci
= {serv | serv ∈ Scj , ci ⊃ cj}

Intuitively, the set S⊃ci
contains those services which are categorized under a category which

is a descendant of category ci.

Once we have find the sets S⊆ci
and S⊃ci

for each category ci ∈ CG by exploring the tax-

onomies of categories loaded in memory, which contain for each category ci the set Sci
of services

associated to such category, we will define the set of perfect matches for the goal, denoted ScatMatch
G ,

as follows:

ScatMatch
G =

⋂
ci∈CG S⊆ci

Intuitively, the expression above means that we will consider perfect matches under the

category filter those services which have been categorized under all the categories given by the

goal, or under ancestors of such categories. We also consider ancestors of such categories under

the assumption that categories which are ancestors of a given category correspond to more general

capabilities, and services categorized under a more general category will provide a capability which

encompass the capability associated to a more specific category. For example, if we have a category

FlightBooking, defined as more general than a category LowCostFlightBooking, services under the

former category are assumed to be able to offer the booking of seats on flights operated by both

regular and low-cost airlines.

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 235

We now define the set of partial matches for the goal G above, denoted ScatPMatch
G , as

follows:

ScatPMatch
G = (

⋃
ci∈CG S⊆ci

∪ S⊃ci
)− ScatMatch

G
where the - symbol denotes set difference. Intuitively, this means that we consider a partial

match all services which are categorized under at least one of the categories given by the goal, or

under ancestors or descendants of such categories, but those services which are a perfect match.

Therefore, two types of services will pass this filter: services to which all the categories

given by the goal apply, and services to which only some of these categories apply. Services not

categorized will not pass the filter, as we cannot determine whether they are relevant or not for

solving the goal.

Response times for the application of this filter will be low, as we only have to explore the

taxonomies of categories loaded in memory by our registry, which already contain the set of services

categorized under each category. While results will be provided in short times, and based on the use

of categories intuitive for end-users, they will be coarse-grained, as the granularity of results will be

limited by the granularity of the categories published to the registry and managed by the taxonomy

manager.

Example 7.4 Let us consider the goal in Listing 7.3, for which the category

http://www.afi.es/Taxonomy1#FlightSearch has been given, and service

http://www.afi.es/services/LowCostFlightSearch1 in Listing 6.3, categorized under

http://www.afi.es/Taxonomy1#LowCostFlightSearch.

This service belongs to the set S⊃http://www.afi.es/Taxonomy1#FlightSearch, as category

http://www.afi.es/Taxonomy1#LowCostFlightSearch is a descendant of category

http://www.afi.es/Taxonomy1#FlightSearch. Therefore, this service will be a partial match for the

goal.

Let us now consider the goal in Listing 7.1, for which the category

http://www.afi.es/Taxonomy1#InvestmentFundSearch is given, and the service in Listing 6.2, cat-

egorized under the same category. In this case, we have a perfect match, as the service belongs to

the set S⊆http://www.afi.es/Taxonomy1#InvestmentFundSearch for the only category given by the goal. ¤

7.3.4 Capability filter

If the capability filter is selected, the concept formalizing the set of effects required by the

consumer, encoded by the capability postcondition of the WSMO goal, will be used for matching

services whose set-based modelling of their capability relates in some way to such concept. In the

following, we discuss the types of match identified and how services are actually matched.

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 236

Intention
of G / serv

Iserv = all Iserv = some

IG = all

EffG = Effserv Match
EffG ⊂ Effserv Match
EffG ⊃ Effserv PMatch

EffG ∩ Effserv 6= ∅ PMatch
EffG ∩ Effserv = ∅ Nomatch

EffG = Effserv PMatch
EffG ⊂ Effserv poMatch

EffG ⊃ Effserv PMatch
EffG ∩ Effserv 6= ∅ pPMatch

EffG ∩ Effserv = ∅ Nomatch

IG = some

EffG = Effserv Match
EffG ⊂ Effserv Match
EffG ⊃ Effserv Match

EffG ∩ Effserv 6= ∅ Match
EffG ∩ Effserv = ∅ Nomatch

EffG = Effserv Match
EffG ⊂ Effserv poMatch

EffG ⊃ Effserv Match
EffG ∩ Effserv 6= ∅ poMatch

EffG ∩ Effserv = ∅ Nomatch

Table 7.2: Types of match in terms of the set-theoretic relations and intentions

7.3.4.1 Types of match

Given a service serv and a goal G, we consider this service and this goal to match to some

extent if there is some relation between the set Effserv of effects offered by the service and the set

EffG3 of effects required by the goal. We therefore expect that some set-theoretic relations between

the set formalized by Effserv and the set formalized by EffG exists. The most basic set-theoretic

relationships that might be considered are the following: Effserv = EffG , Effserv ⊂ EffG ,

Effserv ⊃ EffG , Effserv ∩ EffG 6= ∅, and Effserv ∩ EffG = ∅.
What set-theoretic relation holds between the sets of offered and required effects will con-

dition whether a goal and a service match, and to what extent. However, the intentions of these sets

(Iserv for service serv and IG for goal G) also play a role in deciding the type of match between the

service and the goal [Keller et al., 2006a]. Table 7.2 summarizes what type of match we will consider

to hold between a service and a goal depending on the set-theoretic relation between the formalized

sets of effects and the respective intentions of these sets. The explanation of each particular type of

match and the cases where it occurs is given in the following.

Perfect match. A perfect match (Match) means that all the effects required by the consumer

can be provided by the service. We explain below the entries in the Table where this match holds:

• (IG = all, Iserv = all) If all the effects in the set provided by the goal are required, and the

service offers all the effects described, we will have a guarantee that all the effects requested

3In order to improve readability, in the following we will write EffG but we actually refer to EffO
DL

G , i.e., to the

pre-processed concept which only refers to instances in the set ODL of domain ontologies.

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 237

by the goal can be achieved only if the set of effects offered by the service is equivalent to

(EffG = Effserv) or a superset of (EffG ⊂ Effserv) the set of effects required.

• (IG = some, Iserv = all) In this case, as the requester goal is satisfied if some of the effects in

the set given can be provided by the service, and as the service declares it can provide all the

effects in the set described, the service will satisfy the goal if it offers some effects in the set

described by the goal, i.e., if both sets intersect.

• (IG = some, Iserv = some) If the consumer requires some effects (at least one) in the set

described, and the service only offers some of the effects associated to its capability, we will

have a perfect match only if both sets are equivalent or the set of offered effects is a superset

of the set required effects. In all other cases, and even though these sets intersect, it can

happen that the service actually offers only effects outside this intersection and, thus, we

cannot consider them a perfect match.

Partial match. A partial match (PMatch) means that only part of the effects required by the

consumer are offered by the service:

• (IG = all, Iserv = all) In this situation, we will have a partial match if the set of effects offered

by the service intersects but is neither a superset not an equivalent set to the set of effects

requested. The reason is that, in these cases, the service can provide only part of all the effects

required by the consumer.

• (IG = all, Iserv = some) In this case, if the set of offered effects is equivalent to or a subset of

the set of required effects, we will have a partial match as we can guarantee that the service

can provide some of the effects required, but not all of them. The case in which the set of

offered effects is a superset of the set of required effects is not a partial match, as the effects

actually offered by the service might be in the difference between the set of offered effects and

the set of requested effects.

Possible match. A possible match (poMatch) means that there might be a perfect match, but

we cannot guarantee it:

• (IG = all, Iserv = some) If the set of required effects is a subset of the set of offered effects,

there might happen that the part of the effects actually offered by the service is equivalent to

or a superset of the set of required effects, but we cannot guarantee it as we only know that

some of the effects in Effserv, i.e., a subset of Effserv, will be provided, but we do not know

what exact subset this will be.

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 238

• (IG = some, Iserv = some) In this situation, we will have a possible match if the set of required

and offered effects intersect, but the latter is neither equivalent to nor a superset of the former.

If this happens, it might be the case that the actual set of effects the service can provided, a

subset of Effserv, have elements in common with the set EffG from which some effects are

required, but we have no guarantee of it.

Possible partial match. A possible partial match (pPMatch) refers to the situation where there

might be a partial match between the set of effects required by the goal and offered by the service,

but we have no guarantee of it and it can turn out to be a non-match:

• (IG = all, Iserv = some) In this setting, if we only have that the sets of relevant effects for

the consumer and the provider intersect, there can be a partial match if the subset of Effserv

actually offered by the service contains elements in EffG . Otherwise, we will have a non-

match, i.e., the service will not be able to provide any effect from the set required by the

consumer.

Non-match. A non-match (Nomatch) refers to cases in which the service does not offer any

of the effects required by the goal, i.e., in which the service cannot contribute at all to solve the

consumer’s goal.

We can establish a partial ordering between the different notions of match as follows:

Match ¹ poMatch ¹ PMatch ¹ pPMatch ¹ Nomatch

where a perfect match (Match) is the most preferred notion by users. We rank a possible

match (poMatch) better than a partial match (PMatch) as, in the best case, a possible match

will correspond to cases in which the goal is completely fulfilled (a perfect match) and, in the worst

case, to cases in which only part of the effects required can be provided (a partial match).

7.3.4.2 Matching services

Given the notions of match introduced above and the criteria for deciding when we have

each particular type of match between a service and a goal, we will now discuss some aspects of

using existential intentions for service capabilities, and we will present how we use DL reasoning in

our platform for finding published services which are relevant for a given goal.

Existential intentions for services. If we look at the first and second columns of Table 7.2,

which correspond to service descriptions with a universal and existential intention, respectively, we

can see how, for the same set-theoretic relation between the goal’s set of effects and the service’s

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 239

set of effects, services with a universal intention are always an equal or better match for the goal

following the partial ordering of matching notions given above.

Furthermore, remember from Chapter 5 that due to different reasons such as the dynamics

of services, the excessive description effort required, and the reticence to disclose sensitive infor-

mation, we expect service descriptions to be complete but not necessarily correct, i.e., we expect

services to declare all the effects they can actually provide, but there might declare extra effects

they cannot actually provide at a given point in time.

Given these observations, let us now consider the following example:

Example 7.5 Let us imagine two different services which enable access to the same capability

described for the service in Listing 6.4, i.e., they both offer the booking of flights operated by IntAir.

However, strictly speaking they will not offer the booking of all flights, but only of those flights for

which there are still seats available.

In this setting, if one of the services associates an existential intention to its capability, and

the other one a universal intention, for the same goal the service with the universal intention will

always be considered an equal or better match than the service with an existential intention.

¤

We can see from the example above that service providers might tend to associate a univer-

sal intention to their descriptions in order to increase the chances of their services of being considered

a better match for a goal than other published services. However, and while we admit descriptions

of the set of effects offered by a service which declare effects they might not actually provide, we

expect providers who cannot guarantee the correctness of such descriptions to declare an existential

intention so that this lack of guarantee is made explicit.

In addition, it is important to notice that service providers will not gain anything but

failed interactions from declaring on purpose effects they know they can never provide or from

associating a false universal intention to their capabilities, as during service contracting the consumer

will determine that the service is actually not able to provide the required effects. Furthermore,

reputation mechanisms could be used for detecting providers which systematically ”inflate” the

description of effects their services can provide. However, this is subject of future work.

Matching published services. The set-theoretic relations used in Table 7.2 over the set of effects

requested and offered by goals and services, respectively, actually boil down to satisfiability relations

between the DL concepts formalizing such sets.

Therefore, given a goal G which formalizes a capability sought, the location manager of the

registry will query the Services TBox of the DL reasoner for concepts:

• synonyms of (equivalent to) concept EffG formalizing the set of effects required, denoted S≡,

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 240

• ancestors of (subsuming) concept EffG , denoted S@,

• descendants of (subsumed by) concept EffG , denoted SA,

• synonyms of (equivalent to) concept not(EffG), denoted Snot(≡),

• descendants of (subsumed by) concept not(EffG), denoted Snot(A).

Given these sets of retrieved concepts, we will retrieve the intention which was associated

to the services whose capability they formalize. With these data, we define the following sets:

S≡∀ = {serv | serv ∈ S≡, Iserv = all}

S≡∃ = {serv | serv ∈ S≡, Iserv = exists}

S@
∀ = {serv | serv ∈ S@, Iserv = all}

S@
∃ = {serv | serv ∈ S@, Iserv = exists}

SA
∀ = {serv | serv ∈ SA, Iserv = all}

SA
∃ = {serv | serv ∈ SA, Iserv = exists}

Su∀ = {serv | serv ∈ (S − (Snot(≡) ∪ Snot(A)), Iserv = all}

Su∃ = {serv | serv ∈ (S − (Snot(≡) ∪ Snot(A)), Iserv = exists}

where S denotes the complete set of published services and the - sign denotes set difference.

It must be noted that the last two queries retrieve concepts not intersecting EffG , so that we can

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 241

find intersecting concepts (Su∀ and Su∃) by taking the difference between all published services and

the concepts returned by these queries.

With the sets above defined, we will be able to determine what services are: a) a perfect

match, b) a possible match, c) a partial match, or d) a possible partial match for the goal. Perfect

matches for goal G are defined by:

ScapMatch
G = Su∀ ∪ S≡∃ ∪ SA

∃

if IG = some, and

ScapMatch
G = S≡∀ ∪ S@

∀

if IG = all.

Possible matches are defined by:

ScappoMatch
G = Su∃ − (S≡∃ ∪ SA

∃)

if IG = some, and

ScappoMatch
G = S@

∃

if IG = all.

Partial matches are defined by:

ScapPMatch
G = (Su∀ − (S≡∀ ∪ S@

∀)) ∪ S≡∃ ∪ SA
∃

if IG = all.

Possible partial matches are defined by:

ScappPMatch
G = Su∃ − (S≡∃ ∪ S@

∃ ∪ SA
∃)

if IG = all.

Example 7.6 Let us consider the goal in Listing 7.2 of booking a seat on flight flight1234 from

Madrid to Munich, paid with a credit card myDummyCreditCard, let us suppose a capability filter

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 242

would have been selected, and let us further suppose the translation presented in Example 7.2 to

remove instances not in domain ontologies from the capability formalization has been done.

Let us now consider service http://www.afi.es/services/BookIntAirFlight1, described in

Listing 6.4 have been previously published to the registry.

In this setting, if we use concept EffO
DL

BookAFlight1 to query for related concepts, we will

obtain that concept EffBookIntAirF light1 corresponding to service

http://www.afi.es/services/BookIntAirFlight1 will be returned as a concept more general than con-

cept EffOBookAFlight1. Given that the goal considered has an existential intention, as well as the

formalization of the service capability, service http://www.afi.es/services/BookIntAirFlight1 will be

a possible match for it, as we do not have a guarantee that the service will be able to provide the

particular flight sought. However, if the service would have associated a universal intention, it would

be a perfect match for the goal.

¤

Example 7.7 Let us now consider the goal defined in Listing 7.3. If service

http://www.afi.es/services/LowCostFlightSearch1 given in Listing 6.3 has been published to the reg-

istry and we query for concepts related to EffSearchF lights1, we will have that concept

EffLowCostF lightSearch1 is a concept intersecting, but not a superconcept or a subconcept, of

EffSearchF lights1. Therefore, and given that the sought capability has a universal intention and

the service an existential intention, this service is only a possible partial match for the goal. If the

service would have a universal intention associated to its capability formalization, it would still be

only a partial match, as only information about part of the flights required by the consumer can be

provided.

¤

As the TBox queried for retrieving matching services has been already classified when

publishing services, and as the definition of service capabilities and required effects is restricted

to the SHOIN DL, existing DL reasoners can provide responses to the queries over the TBox in

relatively low times. More details on the complexity of applying this filter and experimental response

times measured can be found in Chapter 8.

In general, the application of the capability filter will be more time-consuming than the

other registry-side filters previously presented. Furthermore, it relies on formal descriptions of both

services and goals which are more difficult to provide by users, although this difficulty is reduced

by the use of the description assistants presented. However, the set-based modelling, with formal

semantics, of the capabilities offered by services and sought by consumers, can be much more accurate

than the textual description or the categorization of a service or goal, and the results obtained from

the application of this filter will be thus more accurate.

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 243

7.3.5 Combination of registry-side filters

The three filters presented above operate over different types of descriptions of services

and goals, whose provision presents different levels of difficulty for users, and they have different

properties in terms of the expected accuracy of goal and service matching and the efficiency of this

matching. In principle, any combination of these filters can be selected by consumers to be applied

over published service descriptions for determining what services are relevant for achieving the goal

given. In general, the location manager will combine the results of applying the different filters.

Given a goal G, perfect matches will be given by:

SMatch
G = Stextual

G ∩ ScatMatch
G ∩ ScapMatch

G

Possible matches will be given by:

SpoMatch
G = Stextual

G ∩ ScatMatch
G ∩ ScappoMatch

G

Possible partial matches are given by:

SpPMatch
G = ScappPMatch

G

Partial matches are given by:

SPMatch
G = (Stextual

G ∪ ScatMatch
G ∪ ScatPMatch

G ∪ ScapMatch
G ∪ ScappoMatch

G ∪ ScapPMatch
G)−

(SMatch
G ∪ SpoMatch

G)

In all the expressions above, if a particular filter has not been selected for application, the

set of services being a match under this filter will not be considered, i.e., it will be removed from

the expression.

Intuitively, perfect matches will be those services which perfectly match the goal under

all filters, and possible matches those services which perfectly match the goal under the textual

and category filters but a possible match under the capability filter (if applied). Possible partial

matches will only be those services which are a possible partial match under the capability filter

and, therefore, this set can contain services only if the capability filter is applied. Finally, partial

will be all services matching in some way the goal but those perfectly matching it and those which

are a possible perfect match.

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 244

While nothing prevents consumers from selecting any combination of the registry-side filters

offered, we believe only one combination, besides the stand-alone application of each of the filters,

makes sense from a practical perspective, namely: the combination of the textual and the category

filter. The reason is that categories are coarse-grained and leave little flexibility to users for further

narrowing down the description of their goals. By selecting categories sought services must belong

to and, at the same time, specifying relevant keywords, users can express with more detail their

needs.

The combination of a category filter and a capability filter is not expected to be used, as

if the user is able to formally describe the capability sought, which enables considerable accuracy in

reflecting user’s needs, it is unlikely he will also want to filter services using coarse-grained categories.

We only envision practical reasons for combining these two filters if we would have a distributed

registry, and each peer registry would only contain services categorized under a given category, in

a similar way [Verma et al., 2005] proposes. In this setting, we would use categories to decide on

what registries to query, and we would then query these registries for services related to the goal in

terms of their formalized capability.

Finally, the combination of a textual and a capability filter is unlikely, as it means combining

an imprecise type of description and matching with a formal and precise type of description and

filter. In practice, given that partial matches must be obtained, it does not matter in what order

filters are applied when more than one is selected, as we will have to explore the results of the

stand-alone application of each filter, i.e., we cannot reduce the number of services to which a given

filter is applied by applying before another filter.

After the application of the filters selected, we will have the set of services which are

a (perfect, possible perfect, partial, or possible partial) match for the goal given. The location

manager of the registry will retrieve from the UDDI repository the complete descriptions of these

services and return the service descriptions, grouped according to their degree of match, to the

SETA client, which will possibly apply other filters over these descriptions as we describe in the

next Section.

7.4 Consumer-side filters

After applying registry-side filters, the description of services that are candidates for (totally

or partially) fulfilling a consumer goal are retrieved from the registry and available to the SETA

client. In particular, four sets of descriptions are retrieved, corresponding to perfect, possible perfect,

partial, and possible partial matches for the goal.

If no consumer-side filter is selected, the location coordinator will directly provide these

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 245

service descriptions to the consumer for their selection. Otherwise, selected consumer-side filters

will be applied in order to further filter what services are considered a match. In the following, we

present the two consumer-side filters available in the current platform, namely: the input availability

filter (Section 7.4.1), and the input-dependent effects filter (Section 7.4.2). However, notice that new

filters could be introduced and that the consumer can also choose to apply custom filters defined

outside the platform, as he already has available the full description of relevant services. Envisioned

extensions and modifications of these filters will be outlined in Chapter 8.

7.4.1 Input availability filter

Besides checking whether a service is relevant for solving a consumer’s goal in terms of

the capability it offers, the consumer might want to know whether the information preconditions of

the service can be fulfilled, i.e., whether the consumer has appropriate information available to be

submitted to the service as valid input values. For this evaluation, we will make use of information

preconditions defined by services retrieved from the registry and of consumer knowledge given by a

knowledge base KBc as defined in Section 7.2.2.

7.4.1.1 Querying for valid input values

Remember from Chapter 6 that information preconditions were described as WSML-Flight

queries, i.e., as Datalog queries possibly with inequality and negation (see Chapter 2, Section 2.2.5.3),

and that knowledge base KBc contains instances of WSML-Core ontologies. In this setting, the

location coordinator of the SETA client will, for each service retrieved from the registry, use its

preconditions as queries to the knowledge base containing consumer knowledge, i.e., we query for

valid input values for the service.

If serv is a service retrieved from the registry with input variables i1, . . . , in, we will issue the

WSML-Flight query conditionsserv(i1, . . . , in) defining the information preconditions of the service

to knowledge base KBc. Answers to this query correspond to valid input bindings for the service

given the consumer knowledge contained in KBc, i.e., answers to the query correspond to assignments

of instances in KBc to the input variables of the service that fulfill the conditions posed by the service.

In particular, issuing query conditionsserv(i1, . . . , in) to KBc will yield a set of valid input

bindings Σserv = {β1
serv(i1, . . . , in), . . . , βm

serv(i1, . . . , in)} for the service. A service will pass the filter

if the answer to the query is positive, i.e., if we find at least an answer to the query (Σ 6= ∅) or if

the service has no information preconditions, i.e., conditionsserv : −true.

Remember from Section 7.2.2 that KBc is implemented as a FLORA-2 knowledge base

and, therefore, FLORA-2 provides the reasoning support for answering the query given by infor-

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 246

mation preconditions of candidate services. The Java2Flora utility4 has been used to interact with

FLORA-2.

Example 7.8 Let us come back to Example 7.6, in which service

http://www.afi.es/services/BookIntAirFlight1 described in the previous Chapter, was a possible

match for the goal described in Listing 7.2 of booking a seat on flight1234 with a DummyCard

credit card.

Let us now suppose consumer knowledge is defined by the knowledge base given in List-

ing 7.4, i.e., that consumer knowledge contains an instance flight1234 representing the flight to

be booked, an instance of person rubenLara, a user account myIntAirUser, and a credit card

myDummyCreditCard instance of DummyCard.

Given that information preconditions of service http://www.afi.es/services/BookIntAirFlight1

are defined by the query:

?f memberOf flights#Flight and ?f[flights#operatedBy hasValue flights#IntAir] and

?cc memberOf fc#CreditCard and ?cc[fc#hasNumber hasValue ?n]

and ?cc[fc#hasHolder hasValue ?h] and ?cc[fc#hasExpiryDate hasValue ?e] and

?p memberOf g#Person and ?p[g#hasId hasValue ?id] and ?p[g#hasName hasValue ?name].

if we issue this query to FLORA-2, which will contain the instances enumerated above

plus domain knowledge, there will be a positive answer to the query and the following input binding,

defined by variable substitutions which are an answer to the query, will be obtained:

βBookIntAirF light1(f, cc, p) = {f = flight1234, cc = myDummyCreditCard, p = rubenLara}
In fact, this will the only input binding obtained, which means:

ΣBookIntAirF light1 = {βBookIntAirF light1(f, cc, p)}
Therefore, this service will pass the input availability filter.

¤

Example 7.9 Let us now consider goal http://www.afi.es/goals/FundSearch1 in Listing 7.1 of

searching investment funds commercialized in the Spanish market by entity MyEntity. Given

this goal, and after the application at the registry of a capability filter, service

http://www.afi.es/services/FundSearch1, described in the previous Chapter in Listing 6.2, will be

retrieved as a perfect match.

Information preconditions of the service retrieved are given by:

?c memberOf funds#FundsCategory and ?c[funds#definedByEntity hasValue funds#CNMV].

This means that the knowledge base KBc given by the consumer must contain at least an

instance of a funds category defined by entity CNMV . Otherwise, the consumer will not be able
4http://www.ontotext.com/java2flora/

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 247

to provide an appropriate input value to the service and, thus, the service will not pass the input

availability filter given current consumer knowledge and domain knowledge. ¤

Input availability will act as a boolean filter, i.e., the information requirements of a service

will be either fulfilled or not. However, as we allow providers to publish services with different

levels of detail in their descriptions, there might be services retrieved from the registry which do not

describe their information preconditions. Therefore, the application of this filter for a goal G will

yield: 1) a set of services which pass the filter, denoted S+input
G , and 2) a set of services to which

the filter could not be applied, denoted S−input
G .

Given that we restrict the expressivity of information preconditions to WSML-Flight, query

answering for the information preconditions described can be done in polynomial time. Furthermore,

we will see in the next Chapter that the experimental evaluation of query answering in FLORA-2

yields low response times for relatively big knowledge bases.

The usage of LP semantics for finding valid input bindings is appropriate as: i) possible

input values must only come from consumer and domain knowledge, both of which are deemed closed

and, therefore, making the CWA is correct, and ii) we only require checking ground entailment and

not general entailment; furthermore, LP reasoners are optimized for query answering. On the

contrary, for reasoning with the DL concepts describing the set of effects requested and offered

during the application of a capapability filter, the OWA must be made, as the details of effects

not specified should not be deemed to be false. That is the reason why we use classical first-order

semantics in that case.

7.4.2 Input-dependent effects filter

As discussed in Chapter 3, there is a dependency between what effects of the service

capability will be realized and the input values provided by the consumer for the execution of the

service. In this setting, we will consider a second consumer-side filter which will obtain a restricted

set of abstract effects which can be realized by the service given particular input bindings, and will

also evaluate how this subset of the capability effects relates to the capability sought by the consumer.

In the following, we present how this filter is applied, if selected, by the location coordinator.

7.4.2.1 Restricting the set of abstract effects

Given a set of possible input bindings Σserv = {β1
serv(i1, . . . , in), . . . , βm

serv(i1, . . . , in)} for

a service serv obtained by querying the knowledge base KBc defined by the consumer , we will

determine what set of effects, from the abstract set of effects associated to the service capability,

can be actually obtained.

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 248

An input binding βi
serv(i1, . . . , in) defines an assignment of values to input variables of a

service serv, and these values will be given to the service at execution time, thereby conditioning

the effects which will be realized from the set of abstract effects of the capability the service enables

access to. The description of input-dependent effects of a service introduced in the previous Chapter

had the aim of defining how the set of effects achievable by using a service was restricted depending

on the input values given. With this purpose, input variables were introduced in the description

of the service effects, yielding a concept InputEffserv. These variables, when bound to particular

values given by an input binding β, will restrict the global set of effects of the capability to the set

of effects achievable for these values. This restricted set is described by the concept InputEffserv,β

resulting from substituting input variables by their values as defined by β.

Therefore, if we have a service serv for which input bindings

Σserv = {β1
serv(i1, . . . , in), . . . , βm

serv(i1, . . . , in)} are possible, the set of effects which can be obtained

from using the service is defined by:

InputEffserv,Σserv ≡
⊔

∀βi
serv∈Σserv

InputEffserv,βi
serv

Intuitively, the set of effects which can be potentially realized by using the service is com-

posed by the union of the sets of effects obtainable from using the service with each available input

binding. Given that a service can executed with only one input binding at a time, this means that,

as discussed in [Keller et al., 2005], we consider that a goal can be fulfilled by executing the same

service multiple times, i.e., we consider multiple possible executions of the same service for obtaining

all the effects sought.

Of course, and given that InputEffserv,βi
serv

v EffC for any service serv enabling access

to a capability C and any valid input binding βi
serv for the service, we also have that

InputEffserv,Σserv v EffC

for any set of valid input bindings Σserv for the service.

Example 7.10 Let us take example 7.8, in which an input binding βBookIntAirF light1(f, cc, p) =

{f = flight1234, cc = myDummyCreditCard, p = rubenLara} was obtained, a step further. If the

input-dependent effects filter is selected for application, we will now parameterize the set of effects

offered by service http://www.afi.es/services/BookIntAirFlight1, given (in DL syntax) by:

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 249

InputEffBookIntAirF light1 ≡ FlightBooking u
∃ofItem u ∀ofItem.(FlightSeat u onF light.{f} u forPerson.{p}) u

withPaymentMethod.{cc}

with the input binding obtained. This parametrization will yield the concept:

InputEffBookIntAirF light1,βBookIntAirF light1 ≡ FlightBooking u
∃ofItem∀ofItem.(FlightSeat u onF light.{flight1234} u forPerson.{rubenLara}) u

withPaymentMethod.{myDummyCreditCard}

The concept above formalizes the set of effects potentially achievable by using the service

with the input binding given, which is now restricted to the booking of seats on flight flight1234

for passenger rubenLara and paid with the particular credit card myDummyCreditCard.

Now, let us imagine the consumer would have another credit card myDummyCreditCard2

included in KBc, and that an additional input binding β2
BookIntAirF light1(f, cc, p) = {f = flight1234, cc =

myDummyCreditCard2, p = rubenLara} would therefore had been obtained by the application of

the input availability filter, i.e., ΣBookIntAirF light1 = {βBookIntAirF light1, β
2
BookIntAirF light1}. In this

setting, the set of effects obtainable by using the service would be formalized by:

InputEffBookIntAirF light1,ΣBookIntAirF light1 ≡
(FlightBooking u

∃ofItem u
∀ofItem.(FlightSeat u onF light.{flight1234} u forPerson.{rubenLara}) u

withPaymentMethod.{myDummyCreditCard}) t
(FlightBooking u

∃ofItem u
∀ofItem.(FlightSeat u onF light.{flight1234} u forPerson.{rubenLara}) u

withPaymentMethod.{myDummyCreditCard2})
(7.1)

which means that, if executed with the input bindings given, we would be able to book

seats on flight flight1234 for passenger rubenLara and paid with either the myDummyCreditCard

or the myDummyCreditCard2 credit cards.

¤

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 250

7.4.2.2 Filtering services based on the restricted set of abstract effects

For each service for which valid input bindings were found, i.e., for each service serv ∈
S+input
G , we will parameterize its input-dependent effects (if described) and define the concepts

which describe the restricted set of effects that can be obtained for the input bindings available, as

described above. This will yield, for each serv ∈ S+input
G , a concept InputEffserv,Σserv

to which the

intention given with the description of the input-dependent capability of the service is associated.

In order to match, based on the restricted set of effects obtained, services to the goal G at

hand, we will publish, for each serv ∈ S+input
G , concept InputEffserv,Σserv

to the TBox of the DL

reasoner included in the service location component (see Figure 7.1 in the previous Chapter). The

location coordinator will then query this TBox for concepts:

• synonyms of (equivalent to) concept EffG5 formalizing the set of effects required, denoted S≡,

• ancestors of (subsuming) concept EffG , denoted S ′@,

• descendants of (subsumed by) concept EffG , denoted S ′A,

• synonyms of (equivalent to) concept not(EffG), denoted S ′not(≡),

• descendants of (subsumed by) concept not(EffG), denoted S ′not(A).

Given these sets of retrieved concepts, corresponding to the formalization of possible service

effects for the input bindings available, we will obtain the following sets taking into account the

intention associated to the different concepts obtained:

S ′≡∀ = {serv | serv ∈ S ′≡, Iserv = all}

S ′≡∃ = {serv | serv ∈ S ′≡, Iserv = exists}

S ′@∀ = {serv | serv ∈ S ′@, Iserv = all}

S ′@∃ = {serv | serv ∈ S ′@, Iserv = exists}
5In this Section, we refer to the original concept given, possibly including instances not in ODL.

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 251

S ′A∀ = {serv | serv ∈ S ′A, Iserv = all}

S ′A∃ = {serv | serv ∈ S ′A, Iserv = exists}

S ′u∀ = {serv | serv ∈ (S+input
G − (S ′not(≡) ∪ S ′not(A))), Iserv = all}

S ′u∃ = {serv | serv ∈ (S+input
G − (S ′not(≡) ∪ S ′not(A))), Iserv = exists}

where S+input
G is the set of services which passed the input availability filter and the - sign

denotes set difference. Given these sets, we will evaluate what services are a perfect, possible perfect,

partial, or possible partial match using the criteria given in Table 7.2, as we did for the application

of the capability filter.

In particular, perfect matches for goal G are defined by:

SieMatch
G = S ′u∀ ∪ S ′≡∃ ∪ S ′A∃

if IG = some, and

SieMatch
G = S ′≡∀ ∪ S ′@∀

if IG = all.

Possible matches are defined by:

SiepoMatch
G = S ′u∃ − (S ′≡∃ ∪ S ′A∃)

if IG = some, and

SiepoMatch
G = S ′@∃

if IG = all.

Partial matches are defined by:

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 252

SiePMatch
G = (S ′u∀ − (S ′≡∀ ∪ S ′@∀)) ∪ S ′≡∃ ∪ S ′A∃

if IG = all.

Possible partial matches are defined by:

SiepPMatch
G = S ′u∃ − (S ′≡∃ ∪ S ′@∃ ∪ S ′A∃)

if IG = all.

In a nutshell, we obtain services that offer, for the input bindings available, the effects

expected by the consumer, considering how these effects depend on such input bindings. As some

services might not describe input-dependent effects or the input availability filter might not be

applicable to them, the service location coordinator will split the results of applying this filter

into: a) services to which the filter could be applied and were a perfect (SieMatch
G), possible perfect

(SiepoMatch
G), partial (SPMatch

G), or possible partial match (SpPMatch
G), and b) services to which the

filter could not be applied, denoted S−ie
G .

Example 7.11 In Example 7.10 we obtained the following concept formalizing the restricted set

of effects obtainable from executing service http://www.afi.es/services/BookIntAirFlight1 with input

binding βBookIntAirF light1(f, cc, p) = {f = flight1234, cc = myDummyCreditCard, p = rubenLara}:

InputEffBookIntAirF light1,βBookIntAirF light1 ≡
FlightBooking u ofItem u

∀ofItem.(FlightSeat u onF light.{flight1234} u forPerson.{rubenLara}) u
withPaymentMethod.{myDummyCreditCard}

Given this concept, to which an existential intention was associated, and the goal described

in Listing 7.2 of booking a seat on flight1234 with a DummyCard credit card, formalized by concept

(also with an existential intention):

EffBookAFlight1 ≡ FlightBooking u
∃ofItem u

∀ofItem.(FlightSeat u onF light.{flight1234}) u forPerson.{rubenLara} u
withPaymentMethod.{myDummyCreditCard}

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 253

We will have that InputEffBookIntAirF light1,βBookIntAirF light1 ≡ EffBookAFlight1. There-

fore, the service is a perfect match for the goal given the respective intentions associated to the

service capability description and to the goal capability description, i.e., the set of effects offered by

the service for the input binding available completely satisfy the consumer’s goal.

¤

In a nutshell, the input-dependent effects filter will restrict the set of effects a service offers

based on the particular input bindings that can be provided by the consumer, and will evaluate to

what extent this restricted set fulfills the consumer’s goal. The application of this filter requires

the formalization of sought capabilities in the goal description, the description of input-dependent

effects of the service, and the availability of a set of input bindings for the service, which is obtained

automatically from consumer knowledge.

We will discuss in the next Chapter the complexity of applying this filter and the response

times obtained in our experimental evaluation. We anticipate that these times are relatively high,

as the concepts describing the restricted set of effects offered by candidate services are obtained at

discovery time and, therefore, they cannot be pre-classified in the TBox of the DL reasoner.

7.4.3 Combination of filters

There are two only possible combinations of consumer-side filters: the only application

of the input availability filter, or the joint application of both the input availability filter and the

input-dependent effects filter. Notice that the stand-alone application of the input-dependent effects

filter is not allowed, as we necessarily need to have the input bindings to be tested defined and

validated, which will always require the application of the input availability filter.

In this setting, and given the sets of perfect (SMatch
G), possible perfect (SpoMatch

G), partial

(SPMatch
G), and possible partial matches (SpPMatch

G) retrieved from the service registry for a goal G,

the final sets of results of the location process will be:

• If no consumer-side filter is selected, the same sets of services SMatch
G , SpoMatch

G , SPMatch
G , and

SpPMatch
G retrieved from the registry,

• If the input-availability filter is selected, sets:

1. SMatch+input
G = SMatch

G ∩ S+input
G of services which are a perfect match and which pass

the input availability filter,

2. SpoMatch+input
G = SpoMatch

G ∩ S+input
G of services which are a possible match and which

pass the input availability filter,

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 254

3. SPMatch+input
G = SPMatch

G ∩S+input
G of services which are a partial match and which pass

the input availability filter,

4. SpPMatch+input
G = SpPMatch

G ∩ S+input
G of services which are a possible partial match and

which pass the input availability filter,

5. SMatch−input
G = SMatch

G ∩ S−input
G of services which are a perfect match and to which the

input availability filter cannot be applied as their preconditions are not defined,

6. SpoMatch−input
G = SpoMatch

G ∩S−input
G of services which are a possible match and to which

the input availability filter cannot be applied as their preconditions are not defined,

7. SPMatch−input
G = SPMatch

G ∩ S−input
G of services which are a partial match and to which

the input availability filter cannot be applied as their preconditions are not defined, and

8. SpPMatch−input
G = SpPMatch

G ∩ S−input
G of services which are a possible partial match and

to which the input availability filter cannot be applied as their preconditions are not

defined.

• If the input-dependent effects filter is selected, services in sets SMatch+input
G , SpoMatch+input

G ,

SPMatch+input
G , SpPMatch+input

G will be further refined into sets:

1. SieMatch
G of services which passed the input-availability and which are a perfect match

under the input-dependent effects filter,

2. SiepoMatch
G of services which passed the input-availability and which are a possible match

under the input-dependent effects filter,

3. SiePMatch
G of services which passed the input-availability and which are a partial match

under the input-dependent effects filter,

4. SiepPMatch
G of services which passed the input-availability and which are a possible partial

match under the input-dependent effects filter,

5. SMatch−ie
G = SMatch+input

G ∩ S−ie
G of services which were a perfect match, which passed

the input-availability filter, but to which the input-dependent effects filter could not be

applied,

6. SpoMatch−ie
G = SpoMatch+input

G ∩ S−ie
G of services which were a possible perfect match,

which passed the input-availability filter, but to which the input-dependent effects filter

could not be applied,

7. SPMatch−ie
G = SPMatch+input

G ∩S−ie
G of services which were a partial match, which passed

the input-availability filter, but to which the input-dependent effects filter could not be

applied, and

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 255

8. SpPMatch−ie
G = SpPMatch+input

G ∩ S−ie
G of services which were a possible partial match,

which passed the input-availability filter, but to which the input-dependent effects filter

could not be applied.

In principle, any combination of registry-side and consumer-side filters can be selected by a

consumer. However, we expect that if the input-dependent effects filter is selected, also the capability

filter is selected. The reason is two-fold: a) for the application of the input-dependent effects filter

the goal description must incorporate the set-based modelling of sought capabilities, so it is already

available for the application of the capability filter, and b) if the accuracy of the input-dependent

effects filter is required, it is likely that accuracy for the retrieval of relevant services from the registry

is also desired.

Besides using the consumer-side filters provided by our prototype platform, consumers can

choose to locally apply custom filters not provided by the platform to the results obtained from

applying available filters. This grants flexibility to consumers, who can freely extend the filtering

done over the results obtained. However, the implementation of this type of extensions is completely

up to consumers.

7.5 Summary

In this Chapter, we have presented a particular instantiation of the second part of the

abstract model given in Chapter 5, which deals with the description of goals and the actual discovery

of services.

In Section 7.2, we have presented the alternative types of descriptions of consumers’ goals

considered in our platform, which are very closely related to the types of descriptions of services

presented in the previous Chapter. By allowing for the provision of different types of descriptions

of goals, we enable the application of alternative filters with different properties and we facilitate

the task of describing goals; different consumers will provide the types of descriptions they are com-

fortable with. Furthermore, consumers can select what particular filters must be applied for the

location of relevant services for solving the goal, thereby customizing the accuracy of the results ob-

tained and the response times of the process. The application of different filters will require, though,

different types of descriptions of goals to be available. In this setting, support will be provided to

consumers for providing the necessary types of descriptions of their goals for the application of the

filters selected.

In the next two Sections, we have presented the filters currently included in our model

instantiation and prototype implementation, split into filters applied at the registry side and filters

applied at the consumer side, where consumer knowledge is accessible. The first group of filters

Chapter 7: Model Instantiation and Prototype Implementation II: Description of goals and
discovery of services 256

focuses on the capability offered by published services, disregarding what conditions such services

pose for their usage and the particular functionality of the service. Depending on the filters selected,

the matching of services to the consumer’s goal will be more or less efficient, and the accuracy

which can be expected from such matching will also vary. Whatever filter or combination of filters

is applied, the result of the application of registry-side filters is the matching of available services

and the provision of the complete descriptions of matched services to the service location client at

the consumer side.

Consumer-side filters operate over services retrieved from the registry after the application

of registry-side filters. These filters have access to consumer knowledge, kept locally, and focus on

evaluating whether information preconditions of retrieved services are fulfilled, and what particular

effects can be potentially achieved from using these services for the input bindings a consumer can

provide.

Overall, our model instantiation enables the flexible combination of filters with the purpose

of covering as many usage scenarios as possible while keeping a relative simplicity which guarantees

usability and the possibility of supporting consumers for describing their goals. However, we have

not addressed the selection of services once they have been located based on their static descriptions,

as such selection will require direct communication with services, which is beyond the scope of our

work.

In the next Chapter, we will provide an evaluation of our overall model instantiation, a

summary of the known limitations of our proposal, work related to the contents of this thesis, and

extensions envisioned.

Chapter 8

Evaluation and related work

In the previous Chapters we have presented an abstract model for the location of services

which can provide a given value fulfilling a consumer’s goal, as well as an instantiation of this model

prototypically implemented. The motivation for the proposal of such an abstract model has been the

need for an effective location of services in different usage scenarios, which demands flexibility and

usability. Furthermore, a particular instantiation of the abstract model has been proposed with the

purpose of making concrete certain aspects of the service location process left open by the abstract

model so that a proof of concept of the model is available and an evaluation is possible.

In this Chapter, we will present in Section 8.1 an evaluation of the model instantiation and

prototype implementation proposed. In particular, we analyze the complexity of the service location

process and provide an experimental evaluation of our proposal (Section 8.1.1), discuss to what

extent the families of usages scenarios identified in Chapter 5 are covered by the model instantiation

proposed in Chapters 6 and 7 (Section 8.1.2), and outline the known limitations of our work (Section

8.1.3). Section 8.2 is devoted to providing an overview of relevant related work.

8.1 Evaluation

8.1.1 Complexity and experimental evaluation

In this Section, we discuss the complexity of the main tasks involved in the management

of taxonomies, the publication of service descriptions, and the location of services using different

filters. In addition, some experimental results will be given in order to have an estimation of the

response times we can obtain when applying the model.

257

Chapter 8: Evaluation and related work 258

8.1.1.1 Publication of service descriptions

We will start with the publication of service descriptions to the registry as described in

Chapter 6.

Parsing. The first thing done by the publication manager of the registry when receiving a WSMO

description of a service for publication will be parsing and validating the WSMO description using

WSMO4J. The time required for this parsing is marginal as only the syntactic structure of the

description is checked and, therefore, we will obviate this cost.

Checking consistency. Once the WSMO description has been parsed, the publication manager

will have available the description of the categories the service belongs to, as well as the set-based

formalization of the service capability.

If the service capability has been formalized, the publication manager will then request

from the taxonomy manager the set-based modelling associated to the categories of the service (if

any). As the taxonomy manager has stored each type of description of the capability associated to a

category in the relational database of the registry, retrieving this type of description will only imply

a simple query, given the complete URI of the category, on the relational database. The cost of this

operation is again marginal, and we will obviate it.

Once the set-based modelling of categories given with the service has been obtained, we

will build concept EffT
serv as described in Chapter 6 and we will check the satisfiability of such

concept with respect to the Services TBox of the registry DL reasoner. As discussed in Chapter 2,

Section 2.2.2.4, checking the satisfiability of a SHOIN concept, which is the expressivity allowed

for the set-based modelling of capabilities, is NExpTime-complete. While the complexity of this

reasoning task, necessary for guaranteeing that the description of the service given is consistent, is

high, modern DL reasoners are highly optimized, enabling the obtention of results in relatively low

times.

Storing the description. If the satisfiability check succeeds, we will proceed to store the descrip-

tion of the service in the UDDI repository of the registry. The time required for accomplishing this

task will be low, and it will not depend on the number of service descriptions already published.

Processing the description for posterior retrieval. Afterwards, if the service has been cate-

gorized, it will be associated to the categories in the copy of published taxonomies kept in memory

by the registry. This task will have a very low cost and we can obviate it.

Finally, if the set-based modelling of the service capability is available, the concept for-

malizing such capability will be submitted to the DL reasoner of the registry for its addition to

Chapter 8: Evaluation and related work 259

Figure 8.1: Classification times with different DL reasoners [Sirin et al., 2006b]

the Services TBox, and this TBox will be classified. The classification of a TBox can be reduced

to the reasoning task of checking satisfiability. Therefore, the classification of the TBox will be

NExpTime-complete. Still, modern DL reasoners will in most cases offer times we can admit as the

publication of service descriptions is not a time-critical task.

Summarizing, the publication of a service description involves two NExpTime-complete

tasks, to be performed by the DL reasoner of the registry. However, as discussed in [Gardiner et al.,

2006], the hope/claim is that modern highly optimised systems perform well in ”realistic” ontology

applications. We show in Figure 8.1, the results of evaluating the performance of different DL

reasoners (including RacerPro) for classification, obtained by Sirin et al. in [Sirin et al., 2006b]. A

logarithmic scale is used in the Figure, and ontologies, taken from the standard DL benchmark test

suite [Horrocks and Patel-Schneider, 1998b], are shown in the x axis with the number of concepts

they contain between brackets. A Pentium Centrino 1.6GHz computer with 1.5GB memory was used

for obtaining these times, the maximum memory amount allowed to Java was set to 256MB for each

experiment, and all the timings were computed as the average of 10 independent runs. Pan has also

presented in [Pan, 2005] a benchmark of DL reasoners which has shown that (version 1.7 of) Racer

was able to classify 135 realistic ontologies in 15 minutes, including not only TBox classification but

also ABox consistency checks.

Gardiner et al. argue in [Gardiner et al., 2006] that, to check the validity of the claim

that DL reasoners will perform well in realistic applications, it is necessary to test the performance

of these systems with (the widest possible range of) ontologies derived from applications, and they

Chapter 8: Evaluation and related work 260

present a system that allows, among other things, to compare the performance of DL reasoners for

the classification of ontologies. In particular, in this work real OWL ontologies have been collected

and translated into DIG, and the following steps have been followed for each ontology: 1. Load the

ontology into the reasoner; 2. Query the reasoner for all the named (atomic) classes in the ontology;

3. Query the reasoner for the consistency of the ontology by checking the satisfiability of the Top

concept; 4. Query the reasoner for the satisfiability of each of the named classes in the ontology; 5.

Query the reasoner for the ontology taxonomy (i.e., the parents and children of all named classes).

In this way, the evaluation has forced each reasoner to fully classify the ontology independently of

the evaluation strategies they follow. The tests were performed using an Intel Pentium-M processor

1.60 GHz and 1Gb of main memory on Windows XP, and a time-out of 10 minutes was set. In

this setting, the tests showed that only very few cases the reasoners could not perform all the tasks

within the time limit set; in Figure 8.2, the response times obtained for the 10 ontologies considered

to be the most challenging ones are shown, from which ontology number 1 has 27652 concepts and

ontology number 2 has 20526 concepts (see [Gardiner et al., 2006] for further details).

In general, existing evaluations show that the times required for TBox classification (and,

thus, for checking satisfiability) depend not only on the size of the ontology classified, but also on

the characteristics of such ontology. Therefore, we can only regard these times as an estimate of

the times which will be obtained; the exact times will vary depending on the size and complexity of

the domain ontologies used in each particular use case. Still, we can realistically expect our model

to publish services descriptions in acceptable times, as the main cost of publication comes from the

reasoning services provided by the DL reasoner of the registry and experimental results show that

this cost is kept within acceptable limits.

We have run our own experiments in order to obtain an estimate of response times of our

prototype for the publication of services. For this purpose, we have published service descriptions

with capabilities obtained as random variations of a set of 10 base services referring to a domain

ontology of around 850 concepts. This set of base services includes services offering the booking of

flights operated by different airlines, for different itineraries (restricted to certain cities, countries

or continents), and with different payment methods, and other services which offer capabilities not

related to flight booking such as search of investment funds, contracting of investment funds, or

obtention of credit scoring details for public institutions, with which we have worked in the SETA

project. We have measured the times necessary for publishing a new service description when a

given number of services have been already published and the Services TBox has been classified,

i.e., we have measured the times for the addition of a single service to the registry as a function of

the number of services already published.

In Figure 8.3, we show the total time for the publication of a new service, as well as what

portion of this time is required for checking the satisfiability of the intersection of the formalization

Chapter 8: Evaluation and related work 261

Figure 8.2: Comparison of DL reasoners on 10 challenging ontologies [Gardiner et al., 2006]

of the service capability and of the set-based modelling of capabilities associated to service categories

(if any); the difference between total publication time and satisfiability time is almost completely

used for the classification of the TBox after the concept formalizing the new service capability has

been added. A computer with an AMD Turion 64x2 Mobile 1.61 GHz processor and 1 GB RAM on

Windows XP has been used for these and other tests we will present later in this Section.

In a nutshell, we can see that response times for the publication of descriptions can be

expected to be kept within limits we find acceptable, considering that the publication of service

descriptions is not a time-critical task, as it is done without affecting service location times and no

strong efficiency requirements are expected to be posed on this task.

8.1.1.2 Location of services

For the location of services, we allow for the application of the alternative filters introduced

in the previous Chapter. In the following, we summarize the complexity of applying such filters and

the experimental results obtained.

Textual filter. For the location of services using this filter, we query the relational database of the

registry for services which contain any of the keywords in the textual description of the consumer’s

goal without noise words, as presented in Chapter 7, Section 7.3.2. This is a simple query existing

relational database management systems will resolve very efficiently.

In our prototype, we have used Oracle 9i as the relational database of the registry, and

Chapter 8: Evaluation and related work 262

Figure 8.3: Times for the publication of service descriptions

we have issued queries with up to 20 keywords on textual fields of tables with over 400000 rows;

our experiments have shown that response times remain almost constant and below 50 milliseconds.

The experimental application of this filter over 2000 randomly generated services as discussed above

yields times of around 100 milliseconds, including the removal of noise words and the retrieval of

descriptions of matching services from the (database of the) UDDI repository.

Category filter. The application of the category filter will imply inspecting the structure of the

taxonomies of categories loaded in memory in order to obtain ancestors and descendants of the

categories given with the goal. In particular, for each category ci given with the goal, we will

traverse the taxonomy tree from the node corresponding to this category until we reach the root of

the tree, and we will also traverse the tree until we reach all the leaves on paths starting from the

node corresponding to ci. In the worst case (ci is a child of the root of the tree) we will have to

traverse n− 1 tree nodes, where n is the number of categories of the taxonomy.

In this setting, we can see that the number of operations we will have to perform for finding

matches for a given category is linear on the size of the taxonomy of categories. If m is the number

of categories given with the goal, in the worst case we will have to traverse (n− 1) ∗m categories in

order to obtain all matches for the goal, considering that n is the average number of categories in the

taxonomies used. However, given that the number m of categories sought services must belong to

will be generally low, that the size of taxonomies of categories is also expected to be relatively small

in order to keep taxonomies usable, and that we have the structure of taxonomies of categories, as

well as a record of what services are associated to each category, loaded in memory, response times

Chapter 8: Evaluation and related work 263

will be low.

Our experimental results show that the response times obtained are kept almost constant,

and that for 2000 randomly generated services published, for three test taxonomies with 30 categories

each, and for goals with up to 5 categories, we obtain perfect and partial matches from the application

of the category filter in around 150 milliseconds. This time includes the time required to retrieve

the complete description of matching services from the (database of the) UDDI repository.

Capability filter. For the application of the capability filter, we query for (see Chapter 7, Section

7.3.4): a) synonyms, b) ancestors, and c) descendants of the concept formalizing required effects,

and for d) synonyms, and e) descendants of the negation of such concept. As subsumption reasoning

can be reduced to satisfiability in the SHOIN DL (see Chapter 2, Section 2.2.2.3), we have that an-

swering these queries is NExpTime-complete. However, DL reasoners are optimized so that querying

for the subsumption relation between concepts over a classified TBox can be done efficiently. We

have measured the response times of applying the capability filter for retrieving services which are

candidates for achieving randomly generated goals, and we show in Figure 8.4 the results obtained1.

It must be noted that the times required for obtaining synonyms, ancestors and descendants

of the concept given by the goal remain low (less than 20 milliseconds per query in average) [Lara,

2006; Li and Horrocks, 2003], but higher times are necessary for obtaining concepts not intersecting

the goal. The reason is that the algorithms used by DL reasoners to classify the TBox are optimized

to compute hierarchical relations, but they do not pre-compute disjoint classes. Therefore, the time

necessary for applying the capability filter is mainly used for obtaining services which intersect the

goal given, as shown in the Figure.

Other tasks required for the application of the capability filter, such as the obtention of

complete descriptions of the service given, and the consideration of intentions in order to build the

different groups of services we identify according to their degree of match, have a marginal cost

compared to querying the DL reasoner for related concepts; this task is actually the main source of

complexity of this filter.

Input-availability filter. The application of the input-availability filter will require, for each

service retrieved from the registry for which information preconditions are described, to query a

FLORA-2 knowledge base kept within the expressivity of WSML-Core.

In Chapter 2, Section 2.2.3.6, we have seen that plain Datalog is data complete for the

complexity class P. Furthermore, if we add negation and since the stratification algorithm is a poly-

nomial algorithm, stratified Datalog with negation has the same complexity as plain Datalog. As
1These times are lower than the times given in [Lara et al., 2007b] as a different computer has been used and,

furthermore, we have reduced some unnecessary costs we had for the retrieval of the complete descriptions of matched
services from the UDDI repository of the registry.

Chapter 8: Evaluation and related work 264

Figure 8.4: Times for the application of the capability filter

WSML-Flight (function-free Datalog) queries are used for the description of information precon-

ditions, which might possibly include negation, and these queries will be issued over WSML-Core

(function-free and negation-free) knowledge bases, we will have that query answering can be done

in polynomial time.

Our experiments show that querying a plain Datalog knowledge base using FLORA-2 is

very efficient. In particular, and once the knowledge base has been loaded to the reasoner, we have

seen that answering queries over a knowledge base with 14000 facts can be done in less than 50

milliseconds. The input-availability filter is expected to be generally applied in conjunction with the

capability filter and, thus, it will not be applied to a big number of services, as the application of the

capability filter will yield accurate results. In this setting, the application of the input-availability

filter will be efficient as only a limited number of queries will have to be issued to the FLORA-2

knowledge base. In our prototype, the knowledge base containing consumer knowledge is defined

before the goal is issued to the service location component, and it is already compiled and loaded

when a goal has to be resolved, which makes querying for valid input values using the definition of

information preconditions of the service efficient.

In our tests, and using a smaller knowledge base (of around 1000 facts), the average time

measured to answer a single query described by information preconditions of a service has been of

around 20 milliseconds. Therefore, applying this filter to e.g. 100 candidate services, and assuming

all of them define information preconditions, requires around two seconds.

Chapter 8: Evaluation and related work 265

Figure 8.5: Times for the application of the input-dependent effects filter

Input-dependent effects filter. The input-dependent effects filter first requires the parametriza-

tion, for each service which has passed the previous filters, of the concept describing achievable effects

with the input bindings obtained, although this task has a marginal cost.

Afterwards, the concepts obtained will be sent to the TBox of the DL reasoner of the service

location client, to which the domain ontologies used have been already loaded and classified, and

we will query for a) synonyms, b) ancestors, and c) descendants of the concept formalizing required

effects, and for d) synonyms, and e) descendants of the negation of such concept, as we did for the

application of the capability filter. As we have seen before, the complexity of this reasoning service

is NExpTime-complete.

In this case, and unlike for the application of the capability filter, we will not have the TBox

of the reasoner fully classified, as new concepts formalizing input-dependent effects of candidate

services have been added to the TBox. Therefore, the response times obtained will not be as low

as those obtained for the application of the capability filter. However, the number of new concepts

published is expected to be relatively low and, thus, response times are not expected to be extremely

high.

In Figure 8.5, we show the experimental results obtained for the application of this filter,

as a function of the number of candidate services considered. We can see that most of the time

required for the application of this filter is used to answer the first query (for synonyms of the

concept formalizing the capability sought). The reason is that RacerPro classifies the TBox when

this first query is issued, and it is already classified for the next queries.

Chapter 8: Evaluation and related work 266

Filter Efficiency Accuracy
Textual Very low response times Low precision but flexibility in de-

scriptions
Category Very low response times Coarse-grained but precise results
Capability Low response times Accurate filtering of services with

relevant capabilities
Input availability Relatively low response

times
Accurate filtering of candidate ser-
vices based on information precon-
ditions

Input-dependent effects Relatively high response
times

Accurate filtering of candidate ser-
vices based on input-dependent ef-
fects

Table 8.1: Properties of filters

We have seen above the complexity and the experimental cost of applying the filters cur-

rently offered by our instantiation of the abstract model presented in Chapter 5. The general

properties of these filters, which should drive the decision of which filters to apply in each scenario,

are summarized in Table 8.1. It must be noted that, if multiple filters are applied, the times required

for the location of services will correspond to the sum of the times required for the application of

each selected filter.

8.1.1.3 Management of taxonomies

The tasks involved in the management of taxonomies will in general not be time-critical,

but searching categories in taxonomies will be often required for the assisted description of goals

and services and, thus, their complexity and the estimation of response times which will be obtained

in practice is relevant.

Creation of taxonomies. The creation of a taxonomy will require storing in the relational

database the taxonomy data and creating a new UDDI tModel, and all these tasks have a marginal

cost.

Creation of categories. When a new category is created, the satisfiability of the concept formal-

izing its associated capability will be checked and, if this check succeeds, we will store the category

details in the relational database of the registry, add the concept to the Categories TBox, and

classify this TBox.

Therefore, the creation of categories is NExpTime-complete, as satisfiability of a concept

has to be checked and a TBox classified. In Figure 8.6 we show the times measured for the creation

of a new category once a given number of categories (x axis) has been created and the Services TBox

Chapter 8: Evaluation and related work 267

Figure 8.6: Times for the creation of categories

has been classified. It can be seen that most of the time required for creating the category is devoted

to checking the satisfiability of the concept formalizing the capability such category represents.

The response times expected are similar to the times necessary for the publication of service

descriptions, as the tasks involved are basically the same. However, the times obtained will depend

on the number of categories published and not on the number of services. Given that the number

of categories available is expected to be generally lower than the number of services published to

the registry, response times will also be generally lower. Furthermore, we only have to check the

satisfiability of the formalization of the capability associated to the new category, while for the

publication of service descriptions we have to check the satisfiability of a more complex concept if

the service has been categorized. For this reason, the times necessary for the creation of categories

are generally lower than the times for the publication of service descriptions, but their dependency

on the number of published categories and services, respectively, will be similar.

Category search In Chapter 6 we have seen three types of category search. From these, direct

category search boils down to a simple lookup over the relational database of the registry, which will

have a very reduced cost. The textual search of categories has approximately the same cost as the

textual filter for the location of services, and it is expected to yield even lower response times as the

number of categories which will be available will be generally lower than the number of published

services.

Category search based on the set-based modelling of capabilities will be NExpTime-Complete,

as it requires subsumption reasoning over published categories. The response times obtained are

Chapter 8: Evaluation and related work 268

Figure 8.7: Set-based category search

basically equal to the times for the application of the capability filter, as the queries issued will be of

the same type. However, they depend on the number of published categories, which is expected to

be lower than the number of published services, i.e., the Categories TBox is expected to be smaller

than the Services TBox and, therefore, results will be obtained in lower times. Some experimental

results are shown in Figure 8.7.

Category update. Updating a category requires updating the taxonomy structure loaded in

memory, whose cost will be marginal. Only if the set-based modelling of the category changes this

update be costly, as it requires retracting the old concept from the Categories TBox, adding the

new concept, and re-classifying the TBox. Therefore, this task will be NExpTime-complete.

The times obtained will correspond to the times required for classifying a TBox, as the

addition and retraction of concepts to RacerPro is immediate.

Category deletion. This task will also be NExpTime-complete, as we have to retract the concept

corresponding to the category from the Categories TBox and then re-classify such TBox. The

response times expected are those estimated for the classification of a TBox.

Taxonomy deletion and retrieval. These tasks have a very reduced cost. In particular, taxon-

omy deletion only requires deleting an entry from our relational database and deleting the tModel

defined at the UDDI repository, which will be done almost instantaneously. The retrieval of a tax-

onomy will only imply returning the structure loaded in memory, which will have a cost close to

Chapter 8: Evaluation and related work 269

zero.

Lower (or higher) response times might be obtained depending on the size and complexity

of the domain ontologies these concepts refer to. Therefore, the times measured above must be

regarded as an estimate which gives a hint on what time ranges we might obtain, but the real times

required will ultimately depend on the performance of the DL reasoner for the particular ontologies

used.

8.1.2 Coverage of applications

In this Section, we discuss to what extent the families of applications identified in the design

of our abstract model can benefit from the particular model instantiation proposed and prototypically

implemented. This discussion will try to determine whether the particular service location model

provided can cover the needs of different applications and, if some application requirements are not

completely met, what is missing.

We will focus on the location of services already available and whose descriptions have been

published, but not on the process of describing services and publishing such descriptions; these tasks

will be independent of the particular application scenario, as the same services will be available for

different applications and in different usage scenarios. Still, it must be noted that the description

of services in alternative ways as presented in Chapter 6 and the appropriate publication of these

descriptions is what enables the correct location of services in different scenarios, and that this

consideration has been an integral part of our model design.

8.1.2.1 Design-time location of services for their composition or integration into com-

plex systems or processes

In Chapter 5, the location at design time of services that can solve a given goal and their

static incorporation into a system or process was identified as a prominent family of applications

which could benefit from enhance capabilities for the location of services. Scenarios such as the

incorporation at design-time to a pricing system of services which could offer information about

different aspects of the customer, about the product catalogue of a bank, or about market interest

rates was used to illustrate the benefits of service-oriented system design and of the effective locating

services providing a given value for their incorporation into a system or process.

This family of applications was characterized by the following features: a) human users

(typically system or process designers) participate in the location of services; no dynamism is required

and/or desired in the resolution of goals, but only support for a more efficient location of services

which will be statically incorporated into a process or system, b) human users might or might not

participate in the execution of the services located, c) the location of services at design-time for their

Chapter 8: Evaluation and related work 270

incorporation into a system or business process will generally be accomplished by IT professionals

using the goals defined by domain experts, and d) the majority of application scenarios in this family

are expected to require a moderate trade-off between efficiency of the location process and accuracy

of results, i.e., moderately precise results will be acceptable if they are given in moderately low

times.

Given the defining properties of this type of applications, we believe the instantiation of

the abstract service location model proposed will generally cover the needs of such applications.

Description of goals by domain experts. Domain experts will be able to describe their goals

in alternative ways according to their skills. Furthermore, they will be supported in this task in

the way presented in the previous Chapter. However, domain experts might not have a precise idea

of what trade-off between precision and efficiency of the location process should be chosen, as they

will leave the actual location of appropriate services fulfilling their goals to other users, typically

IT professionals. In this situation, the type of description required from domain experts should

be as precise as possible, as this description will have to be used by IT professionals for locating

services and, thus, represents the channel for communicating requirements from business experts to

IT experts. Therefore, we expect in these cases all registry-side filters to be marked for application so

that the business expert is supported in providing all possible types of descriptions of the capability

sought.

Selection of filters and location of services. Once a goal has been described by domain

experts, it will be usable for guiding the location of services which can provide a given value. IT

experts, who will have more precise requirements on the trade-off between accuracy of location

results and response times of the location process, will decide what filters will be actually applied

for the location of services. This might imply completing some descriptions not provided by the

domain expert with the support of the goal description assistant.

As a moderate trade-off between accuracy of results and efficiency is expected in most

applications of this type, we expect users to use the capability filter for retrieving services from the

registry. The reason is that the set-based modelling of the capability sought enables an accurate

filtering of candidate services from a possibly big set of candidates and, as we have seen in the

previous Section, the response times obtained experimentally are kept in limits we believe will

suffice in most cases.

If lower response times would be required, users can choose to use the textual or capability

filters, or both. This might happen in cases in which the set of available services is relatively

small and, therefore, this simpler filters will yield a moderate number of results users can manually

select. Furthermore, IT professionals can choose to directly use the UDDI inquiry API of the UDDI

Chapter 8: Evaluation and related work 271

repository included in our registry, keeping compatibility with old practices.

Regarding the application of consumer-side filters, we believe input availability and input-

dependent effects filters will only be used in a few cases. The reason is that in most cases we do not

expect the concrete knowledge the system, process or human user can provide when executing the

service to be completely defined, as it will depend on the conditions which hold when the system

or process is actually running, i.e., the knowledge of the service consumer (in this case, a system or

process possibly with the intervention of a human user at run time) is not completely known at design

time and, therefore, the knowledge base containing this knowledge is not defined or incomplete.

In this setting, we believe IT experts will in most cases find more convenient to apply

registry-side filters which retrieve relevant services in terms of their capabilities with the precision

chosen, and then manually select the service to be used possibly taking into account what type of

knowledge is expected to be available at execution time. Notice that the retrieval of services from

the registry can have considerable precision if a capability filter is applied, thereby easing the manual

selection of an appropriate service from a (usually small) set of candidate services. Furthermore,

different notions of match are distinguished with a partial ordering, which can guide the selection

of services retrieved.

Still, there can be cases in which IT professionals or even domain experts demand a par-

ticular functionality from the service sought, i.e., they demand not only a particular value from

a service, but a general relation between the initial conditions expected and what effects will be

realized after service execution. If what particular knowledge will be available at run time is not

fixed, our model does not enable the resolution of this type of goal.

We will see in Section 8.2 that there exist some works which try to address this issue but,

unfortunately, they require an expressivity for which decidability is not guaranteed or they require

the resolution of reasoning tasks not supported by state-of-the-art reasoners. We will also see that

other works declare the general type of input values that can be provided by the consumer but they

do not evaluate the relation between these values and the effects of service execution. Therefore, this

type of matching is more similar to an input signature matching than to a functionality matching.

Still, extending our model with this type of matching is part of our future work, as it might be useful

in certain situations.

We can see that the location of services at design time is generally covered by our proposal,

especially the retrieval of relevant services from the service registry, with enough flexibility for

choosing a trade-off between accuracy and efficiency appropriate for the particular application.

Furthermore, users with different profiles are supported for the provision of goal descriptions, which

is expected to ease the communication of requirements between domain experts and IT experts.

Limitations can arise, though, if the designer wants to locate services providing a given functionality.

Chapter 8: Evaluation and related work 272

While we expect this need not to be present in the majority of applications, resolving this issue will

be subject of future study and extensions of our model.

Another limitation we will discuss in Section 8.1.3, and whose resolution will be part of

our future work, is that a more fine-grained ranking of candidate services might be desirable so that

filters do not only offer a grouping of relevant services according to their degree of match, but also

a ranking of services within each set.

Finally, it must be noted that the separation of the roles played by business experts and

IT professionals is not strict, and there might be cases in which the IT professional defines goals to

be resolved, locates appropriate services, and wires them into the system or process, and cases in

which business experts not only define a goal but also accomplish the location of a service achieving

the goal defined. The support provided for describing goals and for locating appropriate services is

expected to considerably help both type of users to successfully accomplish these tasks.

8.1.2.2 Location and execution of services by end human users

The second family of applications envisioned in Chapter 5 was the location of services by

end human users. These users will formulate their objectives, and services which can be used to

fulfill such objectives have to be located.

These applications, which include examples such as the location of eTourism services which

can provide e.g. the booking of flights or seats on a train, were characterized by: a) human users will

be available during all the service location process, b) human users will participate in the execution

of services, c) human users will also describe their goals, and d) in most cases, the on-line locations

of services is expected, i.e., results must be returned to the user in relatively short times so that we

can consider the location process an on-line process, but only a moderate trade-off between efficiency

of the location process and accuracy of results will be generally demanded.

We expect our model to appropriately cover most applications in this group, as we discuss

in the following.

Description of goals. Users will be supported so that they can appropriately describe their

goals. In particular, they will be able to select the level of precision and efficiency they require and,

depending on these requirements, they will be guided in the provision of those types of descriptions

of their goals needed for obtaining results with the general properties required.

Certain types of descriptions included in the model are highly usable by average users, such

as the textual description of goals and the selection of categories sought services are expected to

belong to. Given that we will support the provision of more complex types of descriptions based on

descriptions most users feel comfortable with, we achieve an interesting level of usability.

Chapter 8: Evaluation and related work 273

In general, the task of describing goals is considerably eased to end users, and they are

granted flexibility in that they can express their particular requirements on the location process and

obtain candidate services under these requirements.

Consumer knowledge. Users might select the application of consumer-side filters which require

access to consumer knowledge. This will require the definition of a knowledge base which contains

consumer knowledge or, at least, that part of consumer knowledge usable for achieving the goal at

hand. It must be kept in mind, though, that the user will be involved in the location process and

might be able to provide, to some candidate service, extra information not contained in the knowledge

base defined. While this knowledge base is expected to be provided by the consumer from scratch in

our current prototype, we envision the existence of agents which keep track of consumer knowledge

and keep the knowledge base updated so that it reflects at each point in time what knowledge the

consumer has available for fulfilling his goals. These agents might also include policies for deciding

what knowledge to add to this knowledge base and what knowledge to disclose. Although the usage

of these types of agents and policies is not covered by our current prototype, it is envisioned as a

possible extension. In addition, special purpose tools for some domains such as eTourism can be

defined which keep that consumer knowledge which is commonly needed for resolving eTourism goals

e.g. passport details, payment methods, travel preferences, details of planned holiday trips, etc.

Consumers can in any case choose not to apply filters which require access to consumer

knowledge. In fact, we believe in some cases users might want to apply only registry-side filters

and individually study services retrieved from the registry in order to evaluate their information

requirements and decide on their use.

Location of services. Users will be able to select filters with different properties, which offers a

certain guarantee that they will be able to locate relevant services in the times and with the accuracy

chosen.

The model used for the location of services is centered on the value these services provide

compared to the value required by a consumer. This means that we will find services which can

provide a certain value and which can be used by the user to realize such value. This is in contrast

with other proposals which are centered in matching the input-output signature of services (see

Section 8.2). We believe end users will have objectives of type ”Find a service which can book a

seat on a given flight (and make sure that I can use this service for achieving the effects which fulfill

my goal)”, not objectives like ”Find a service which accepts a flight, a passenger and a credit card

as inputs, and which returns a flight reservation as output”. For this reason, we believe our model

is closer to the intuition of end users than most existing proposals.

In our model, the location of services truly driven by the value sought and the value

Chapter 8: Evaluation and related work 274

offered, with different trade-offs between accuracy and efficiency, and using filters which range from

a textual or category matching to a complete evaluation of the service capability, of the satisfiability

of information preconditions of the service, and of what effects can be obtained for available input

bindings, is possible. In addition, different levels of match are identified, which can help users to

perform the selection of services from those filtered as candidates for achieving the consumer’s goal.

Some limitations exist in our model, though, like the lack of a more elaborated matching

of textual descriptions, the lack of a more fine-grained ranking of the services located, or the lack

of support to users for revising their goals if no perfect matches for their goals were found. These

limitations will be discussed in more detail in Section 8.1.3, and solutions to address them will be

an important part of our future work.

8.1.2.3 Run-time location and usage of services

The last group of applications we identified in Chapter 5 was the run-time location and

usage of services, i.e., the resolution of goals without human intervention. This type of usage

scenarios appears when a system has to dynamically react to changes such as a given service going

off-line, or when the service to be used has to be dynamically chosen at run time e.g. for the dynamic

configuration of a supply chain.

The main characteristics of this type of usage scenarios are: a) no human user will par-

ticipate in the location process, b) human users might or might not be involved in the execution

of the service located, c) goals will be defined by domain experts or automatically generated or

parameterized at run-time, and d) the precision required from the location process will be higher

than in the other types of applications we have discussed, as the selection of the service to interact

with have to be accomplished automatically and, thus, the set of relevant services must be more

accurately determined in order to avoid interactions with inappropriate services.

In the following, we summarize to what extent our model fulfills the needs of this type of

scenarios.

Description of goals. Domain experts will be supported in describing their goals, which will be

incorporated into a given system or process for their run-time resolution. The type of filters we

expect to be selected will all be based on the formal description of services and goals (capability,

input-availability and input-dependent effects filter), as a considerable degree of accuracy will be

demanded. Therefore, users will have to describe the capability they pursue formally, and they

will be supported in this task. However, it will often be the case that IT professionals revise these

goals and/or complete their description before it is incorporated to the system or process which will

require a particular value to be provided by a service dynamically selected at run time.

It must be noted that the goals defined might not be fixed at design time, but changed

Chapter 8: Evaluation and related work 275

during the system or process execution. In this setting, sometimes only a basic goal will be defined

at design time, and it will be changed depending on some dynamic conditions. While support for

providing the basic description of the goal is provided by our model, its dynamic parametrization

is outside the scope of our proposal and it will be the responsibility of the system or process into

which the goal is integrated.

Consumer knowledge. Consumer-side filters are expected to be used in this type of scenarios.

Therefore, a knowledge base which contains available knowledge for resolving the goal has to be

defined. However, this knowledge base does not have to be necessarily fixed at design time.

We expect cases in which the decision of what knowledge base will be considered for resolv-

ing the goal will be defined at design time, but this knowledge will evolve and its contents will not

be fixed. Furthermore, cases in which even the complete knowledge base to be used is determined at

run time depending on dynamic conditions are also possible. In any case, what particular knowledge

is available at the precise moment the goal has to be resolved will be known and, therefore, we will

be able to apply input-availability and input-dependent effects filters over the services retrieved from

the registry.

As the service to be used has to be determined without user involvement, only knowledge

available when the location process starts will be considered for the location of services, no matter

whether a human user will be involved in the execution of the selected service or not.

Location of services. Filters based on the formal description of goals and services, and which

take into account not only what capability is offered by available services and sought by consumers,

but which also evaluate information preconditions of candidate services with respect to consumer

knowledge and what effects might be obtained from using a service given available knowledge, can be

applied. Therefore, we believe our model offers a considerably high precision level for the location

of services, which makes it usable for the run-time location of services. This precision will help

to restrict candidate services for resolving a goal to a relatively small set, which will make the

direct negotiation with candidate services in order to establish a service contract achievable with a

reasonable cost.

Still, what filters will be applied can be chosen and, therefore, users can decide on different

levels of precision depending on factors such as how big is the set of available services. In general,

users will be able to choose the filters they want to apply for resolving at run-time a goal and, there-

fore, to adjust the precision and accuracy of the location process to their particular requirements.

However, a higher precision comes at a cost and we cannot offer a certain degree of precision if the

location process has to offer results in low times.

Once services are located, a selection step will follow. However, this selection must be

Chapter 8: Evaluation and related work 276

fully automatic in this type of scenarios, which is not yet covered by our model. Furthermore, and

while different notions of match of services are distinguished, a more fine-grained ranking of services

located would be desirable in order to better guide the automatic selection of services.

In general, we believe the run-time location of services is sufficiently covered by our model,

but not the usage of such services, as an automated selection step and the automatic execution of

selected services is missing in this model. These tasks have been left outside the scope of the model,

but they are an interesting path for future work.

8.1.3 Known limitations

Our proposal appropriately covers many aspects of the service location process in different

scenarios. However, some limitations have been found and they are summarized in the following.

WSML and reasoners. The usage of the WSML family of languages is one of the key advantages

of our proposal for different reasons: a) it provides a basic inter-operability layer (WSML-Core) in

which major parts of domain ontologies can be described and used under different semantics, b) it

allows for the usage of extensions of WSML-Core both in the direction of Description Logics and

Logic Programming, which enables the description of different aspects of services based on the same

domain ontologies but with different semantics, appropriate for different purposes, and c) it provides

a unified syntax for all the languages used.

However, the efforts to provide an integrated WSML reasoner are still ongoing. The

WSML2Reasoner framework2 provides functionalities for translating WSML descriptions into the

syntax used by different reasoners. Wrappers for KAON2, MINS, and Pellet are currently available,

but these wrappers do not support tasks such as adding a new concept, described in WSML, to a

Pellet TBox, or querying for ancestors of a concept described in WSML.

In this setting, we have not been able to use the WSML2Reasoner framework to interact,

using descriptions in WSML syntax, with reasoners that provide the reasoning support our model

requires. As a consequence, in the current implementation we require a translation into RacerPro

and FLORA-2 syntaxes of descriptions (domain ontologies, service descriptions and goals). This

translation is currently obtained manually and encoded using custom non-functional properties of

services and goals, and it requires duplicating domain ontologies in different syntaxes.

In addition, RacerPro only approximates nominals, whose use is permitted in the descrip-

tions of sought and offered capabilities. In the current implementation, we have encoded nominals as

pair-wise disjoint concepts and used this encoding in the version of descriptions and ontologies given

in RacerPro syntax. Some incorrect inferences can be drawn from the resulting translation [Horrocks

2http://tools.deri.org/wsml2reasoner/

Chapter 8: Evaluation and related work 277

and Sattler, 2002], but in most cases the subsumption and satisfiability relations computed will be

correct.

In general, we expect the WSML2Reasoner Framework to evolve in the near future so that

it can be directly used to provide access to existing reasoners so that we can directly work with

descriptions given in WSML syntax and, furthermore, if the wrapper to Pellet is extended so that

certain functionalities we require from the reasoner can be properly accessed, we will be able to

count with a reasoner which provides efficient and correct reasoning for SHOIN . In addition, if a

wrapper to FLORA-2 is not provided, we will most likely use MINS as the WSML-Flight reasoner.

Domain ontologies. In our prototype we assume that all formal descriptions refer to a set of

domain ontologies which is fixed when the registry and the client are started. However, in real

applications new services might refer to new domain ontologies, which have to be incorporated to

the registry, i.e., the set of domain ontologies used will evolve over time. Therefore, we expect in

the future to extend the current implementation so that new ontologies can be loaded if published

services refer to them, and so that consumers can also use them to formally describe their goals.

User support. The user support currently implemented has been conceived as a proof-of-concept

of our approach. However, we believe a more elaborated version which includes support to users in

working with WSML descriptions, isolating them from the WSML syntax, should be added in the

future.

Expressivity. The expressivity allowed for the formalization of capabilities is restricted to the

SHOIN DL. While this guarantees the decidability of the reasoning tasks required, it limits what

can be described. In particular, it does not allow for chaining variables over predicates, which might

be a limitation in certain cases. For example, a service whose capability is offering information about

flights between any two cities as well as information about hotels at the destination city cannot be

described in the SHOIN DL, as it would require chaining a variable over predicates.

In the description of input-dependent effects two predicates can refer to the same shared

variable, which can be seen as a work-around this limitation. However, this is done outside the logic

and, furthermore, it can only be used if the input-availability and input-dependent effects filters are

applied.

Goal pre-processing. We have seen in Chapter 7 that the formal description of sought capabilities

given by consumers must be pre-processed so that it does not include instances not in domain

ontologies. In particular, these instances must be replaced by restrictions built using their definitions.

Furthermore, including sensitive data in the goal description e.g. a credit card number

should be avoided, unless a trust relation with the registry is assumed. In this setting, we must

Chapter 8: Evaluation and related work 278

either require all clients to trust the service registry or, otherwise, include trust policies which

describe what information can be disclosed to what parties and under what circumstances (see

[Olmedilla et al., 2004], where a preliminary work on adding semantic trust policies to services and

considering them for service discovery has been presented).

In our current implementation, the processing of goal descriptions for substituting instances

not in domain ontologies has to be done manually if required, and we assume that the service registry

is trusted. However, automating this processing and incorporating trust policies for deciding to what

extent a registry is trusted and what information can be included in the goal description should be

added in the future.

Textual filter. The textual filter currently implemented is very simple. In particular, it only offers

search capabilities based on the exact occurrence of keywords, and it does not handle descriptions

in (possibly multiple) different languages. The main reason is that performing an accurate textual

search of services has not been among the main objectives of our prototype, but to demonstrate the

feasibility of other filters and of the general model. Still, we believe move elaborated textual search

capabilities and handling of descriptions in different languages should be added to the platform

proposed. The support for multilingual descriptions will be possible when the annotation extensions

introduced in [Toma and Foxvog, 2006], and which easily allows for incorporating multilingual non-

functional properties in WSMO descriptions, become supported by current WSMO parsers and

tools.

Real-world preconditions. Our model does not handle real-world preconditions due to the prac-

tical difficulties presented in Chapter 5.

Reputation. Our model completely relies on the description of services given by users, and it

does not include reputation mechanisms in order to detect users who provide false descriptions of

their services. However, we believe reputation mechanisms will be required if such a model is used

in relatively open environments.

Ranking of results. While our model instantiation distinguishes different match degrees, a more

fine-grained ranking of matches within sets of services all having the same match degree is desirable

and it should be added to the model.

Explanations. We do not currently offer explanations of why a service is not a perfect match,

which can guide the revision of goals by consumers in order to adjust their requirements to available

offers. This is an interesting feature our model lacks and which would be of interest for future

developments.

Chapter 8: Evaluation and related work 279

Availability of services and domain ontologies for evaluation. The model instantiation

proposed has been empirically evaluated in order to have an estimation of the times required for

the application of different filters and for the publication of service descriptions. However, this

evaluation has been mostly based on randomly generated services, as there is a lack of an adequate

set of real services described in terms of real ontologies which can be used to evaluate with more

guarantees proposals for the location of services.

The only test collection we have knowledge of is the OWL-S Service Retrieval Text Collec-

tion (OWL-S TC)3. However, this test collection is based on OWL-S and, what is more important,

it only describes the type of inputs and outputs required by a service, but not the real value it

provides. Therefore, we find this test collection inadequate for the evaluation of a service location

model based on the value sought by consumers and offered by services.

In this setting, we can have a good estimate of the efficiency of our model as it depends

on the efficiency of well-known reasoners for which benchmarks exist, but we do not have a proper

benchmark of our model which could improve our level of confidence in the evaluation results ob-

tained.

Automatic selection and wiring of services. Neither the automatic selection of services from

the set of services located by our prototype nor the automatic wiring of selected services to existing

systems or processes has been addressed. However, these tasks have to be automatically accom-

plished for the run-time usage of dynamically located services and, thus, they will be part of our

future research.

8.2 Related work

8.2.1 Software component retrieval

During the 90’s, the computer science research community devoted some efforts to improve

the state of the art on reuse of software components. The motivation for this work was to support

the reuse of already existing and tested software components as one of the key factors for successful

software engineering projects [Schumann and Ficher, 1997].

The efficient reuse of reliable software components providing a given functionality required

efficient means to locate such components. A manual approach, in which the software engineer has

to browse (possibly a big number of) libraries of components to locate a suitable one, was not found

appropriate and, for this reason, research efforts were oriented towards the formal specification of

the components functionality and the formal description of the sought component in order to enable
3http://projects.semwebcentral.org/projects/owls-tc/

Chapter 8: Evaluation and related work 280

semi-automatic retrieval of appropriate components.

8.2.1.1 Specification matching

Specification matching has been proposed in several works e.g. [Jeng and Cheng, 1992;

Jeng and Cheng, 1993; Jeng and Cheng, 1995; Rollings and Wing, 1991; Zaremski and Wing, 1995]

to evaluate how software components relate to a given query, i.e., user’s need. Specification matching

relies on the axiomatization of software components and user queries. A formal (logical) relation

is then defined and whether a given query and component satisfy this relation is checked. Such

a relation must capture the notion of reusability, i.e., if the relation holds for formally specified

components and queries, it means that the component can be reused to solve the problem captured

by the query.

At the formalization level, the following questions must be answered: a) How the compo-

nents and queries are specified, and b) What is the relation to be checked for determining reusability.

As related in [Chen and Cheng, 2000], a widely used axiomatization of components and queries is

based on [Hoare, 1969]. [Hoare, 1969] provides a logical basis to prove some properties of a pro-

gram, including determining whether a given program provides a certain functionality. The intended

functionality of a program (C) is specified in terms of initial preconditions (Cpre), i.e., assertions

about certain properties of the values taken by the relevant variables before the program initiation

and the relations among them, and postconditions (Cpost) i.e. the same kind of assertions as for

preconditions but about the values after execution. The relation between the preconditions and

postconditions of a given program is formulated as follows:

Cpre{Q}Cpost

interpreted as ”If the assertion Cpre is true before initiation of a program Q, then the

assertion Cpost will be true on its completion.” [Hoare, 1969]

Based on this type of axiomatization, most works in specification matching specify a com-

ponent C as a 2-tuple of predicates (Cpre, Cpost), being Cpre the precondition of the component

and Cpost its postcondition. Similarly, a query Q is specified as (Qpre, Qpost). Preconditions of the

component are logical formulas that must hold prior to the use of the component4, and postcondi-

tions are logical formulas that are guaranteed to be true after the execution of the component. The

preconditions and postconditions of the query give a characterization of the desired component in

terms of its preconditions and postconditions. Query preconditions can be interpreted as a descrip-

tion of the initial states for which the sought component must guarantee the fulfillment of the query

postconditions.
4If the preconditions do not hold, the behaviour of the component is undefined.

Chapter 8: Evaluation and related work 281

Notion of match Definition
Mexact−pre/post (Qpre ↔ Cpre) ∧ (Cpost ↔ Qpost)
Mplug−in (Qpre → Cpre) ∧ (Cpost → Qpost)
Mplug−in−post Cpost → Qpost

Mguarded−plug−in (Qpre → Cpre) ∧ ((Cpre ∧ Cpost) → Qpost)
Mrelaxed−plug−in (Qpre → Cpre) ∧ ((Qpre ∧ Cpost) → Qpost)
Mguarded−post (Cpre ∧ Cpost) → Qpost

Mpartial−comp Cpre ∧Qpre ∧ Cpost → Qpost

Mexact−pred (Cpre → Cpost) ↔ (Qpre → Qpost)
Mgen−pred (Cpre → Cpost) → (Qpre → Qpost)
Mspe−pred (Qpre → Qpost) → (Cpre → Cpost)
Mexact−pred−2 (Cpre ∧ Cpost) ↔ (Qpre ∧Qpost)
Mgen−pred−2 (Cpre ∧ Cpost) → (Qpre ∧Qpost)
Mguarded−gen−pred (Qpre → Cpre) ∧ ((Cpre → Cpost) → (Qpre → Qpost))

Table 8.2: Summary of specification matches

[Zaremski and Wing, 1997] explores different notions of match for retrieving formally-

specified software components. A software component C is described in terms of their signature,

Csig, and their behaviour specification, Cspec. The former describes statically checkable information

(component’s type information), while the latter describes the component dynamic behaviour (func-

tionality), defined in terms of preconditions and postconditions. Similarly, a query Q is described

by its preconditions and postconditions. All the preconditions and postconditions are first-order

formulas.

Table 8.2, adapted and extended from [Chen and Cheng, 2000], provides a summary of

different notions of match presented in [Jeng and Cheng, 1995; Zaremski and Wing, 1995; Penix and

Alexander, 1997; Schumann and Ficher, 1997; America, 1991; Liskov and Wing, 1994; Dhara and

Leavens, 1996] (see [Lara et al., 2004a] for an explanation of each notion of match).

8.2.1.2 Relation to the location of services based on their value

Services are described using a similar approach to Hoare’s axiomatization of software com-

ponents, being the major difference that services can also have real-world effects and pose conditions

on the real-world for service provision. Queries in software component retrieval are described sim-

ilarly to goals. Therefore, it is not surprising that some of the notions of match discussed in the

context of software component retrieval have been used by works trying to solve the service location

problem, as we will see below.

However, most of the notions of match proposed for the retrieval of software components

focus on locating a software component that can be used in the place where the software compo-

nent represented by the query could, while for the location of services we focus on finding services

Chapter 8: Evaluation and related work 282

which can provide a given value. For example, the plug-in matching notion in Table 8.2, and which

corresponds to cases in which the postconditions of the component are more specific than the post-

conditions of the query and preconditions of the component are more general than preconditions of

the query, is interpreted as ”the component C can be used can be used for obtaining the behaviour

specified in Q, but not the other way around”. This means that preconditions of a component

are interpreted as the description of a set of initial states acceptable by the component, and the

preconditions of the query as the description of the set of states which might hold before using

the component. Similarly, component postconditions are interpreted as a description possible final

states reached after using the component, and query postconditions are interpreted as a description

of acceptable final states.

Furthermore, descriptions of information preconditions and postconditions are usually not

restricted in expressivity, and full-first order logic is allowed. While this enables the accurate de-

scription of preconditions and postconditions, reasoning in full first-order logic is undecidable.

In general, service-orientation places its focus not only on reusability, but also on a new form

of designing systems in which services providing a meaningful value, and which can be seamlessly

accessed, are available. In this context, consumers will have the objective of finding services which

provide a given value and which can be used given current conditions and, furthermore, results will

be required in relatively low times. This will imply setting limits on the expressivity of descriptions

and adjusting the type of modelling used for describing consumer’s goals and service capabilities so

that the value required and offered can be expressed while keeping the expressivity of descriptions

and the complexity of reasoning under certain limits. Still, some of the notions used for specification

matching have been reused by works on service discovery, and they can be used to define additional

filters which complement the filters proposed in our model instantiation.

8.2.2 DL-based matching

In the following, we summarize existing works on matching services and consumer’s needs

based on DL descriptions and DL reasoners.

Castillo et al. present in [Gonzalez-Castillo et al., 2001] one of the first proposals for using

DL descriptions of services and goals and exploiting DL reasoning for matchmaking of services. A

DAML+OIL [Connolly et al., 2001]5 (SHOQ(D)) concept is used to represent an offered service.

Similarly, a request is represented by a DAML+OIL concept, and matches for this request are

services represented by concepts equivalent to, sub-concepts of, super-concepts of, or sub-concepts

of any direct super-concept of the query whose intersection with the query is satisfiable. Racer has

been used for reasoning over DL descriptions.
5DAML+OIL is the predecessor of the OWL language.

Chapter 8: Evaluation and related work 283

We can see that the proposal by Castillo et al. is similar to our capability filter. However,

we introduce actions in the description of capabilities offered and sought and intentions for these

descriptions, thereby enabling a more precise modelling of the value of services; Castillo et al. only

use concepts such as Serv ≡ Computeru = 1hasPrinter to represent services and requests, which

is insufficient for really capturing what value is required or offered.

Paolucci et al. have also been pioneers in using DL reasoning for the matchmaking of

services. In [Paolucci et al., 2002], they propose the matching of inputs and outputs in OWL-S

profiles6, which were described by concepts in DL ontologies over which subsumption relations can

be computed. In particular, given a request, modelled as an OWL-S profile, and an OWL-S service,

each output concept in the request must be matched by an output concept in the service, and each

input concept in the service profile must be matched by an input concept in the request.

Different degrees of match between output concepts are distinguished, namely (degrees

of match are presented starting with the most preferred one and ending with the least preferred

one): a) an exact match, if the concepts are equivalent, b) a plug-in match, if the concept in

the advertisement is more general than the concept in the request, c) a subsumes match, if the

concept in the advertisement is more specific than the concept in the request, or d) a fail, if no

subsumption relation is identified. The same degrees of match apply to inputs, but the direction of

the subsumption relations is reversed. The degree of match of a service to a request will be given

by the score obtained for each of the outputs and, in case of a tie, by the score obtained for each of

the inputs.

We can see that this work focuses on matching inputs and outputs of a service and of a

request, requiring the prospective consumer to specify what inputs and outputs are desired. This

can be seen, thus, as an interface matching using, instead of input and output datatypes, input

and output concepts; the real value provided by the service or required by the consumer is not

modelled by only semantically annotating the inputs and the outputs of the service. Regarding the

matching notions used, they are derived from previous works in the retrieval of software components

introduced above, and they are used to measure the degree of satisfaction of input requirements of

the service by the inputs declared by the consumer, as well as to measure to what extent the outputs

required and outputs offered are compatible. If we assume a universal intention of both descriptions,

an exact match and a plug-in match both correspond to a perfect match in our platform, a subsumes

match corresponds to a partial match, and a failed match to a non-match only when both concepts

do not intersect; otherwise, we consider this case a partial match.

In a nutshell, this work is interesting for matching the input-output signature of available
6Strictly speaking, DAML-S, the predecessor of OWL-S which used DAML+OIL instead of OWL, was used, but

the same discussion can be applied to OWL-S descriptions and we will assume in the following OWL and OWL-S
were used.

Chapter 8: Evaluation and related work 284

services to a signature required by a consumer, but does not really match services based on the

value provided and offered. Still, it can serve as a basis for incorporating a new filter to our platform

which takes this type of signature into account.

Li and Horrocks propose in [Li and Horrocks, 2003] the matching of inputs and outputs of

services and requests in a similar way [Paolucci et al., 2002] does, but with two major differences:

a) OWL-S service profiles and service requests are modelled by a single concept, therefore enabling

the classification of the complete profiles of published services in a subsumption hierarchy prior to

issuing any request, and b) the degrees of match used are applied to the complete service and request

profiles, and intersecting concepts are also considered a match (a new degree of match, intersection,

is introduced).

This work has inspired our modelling of service capabilities and of sought capabilities of

goals by a single DL concept, enabling the pre-classification of services at publication time and the

posterior efficient querying of the DL reasoner TBox. However, the work by Li and Horrocks is

limited to the matching of inputs and outputs, without taking into account neither the real value

offered by the service, and modelled by pre-defined actions in our platform, nor the intention of the

modeler of the service profile or request.

In [Noia et al., 2003; Noia et al., 2004], Di Noia et al. present a proposal for matchmaking

demands and supplies in an electronic marketplace based on Description Logics. In particular, three

notions of match are distinguished: a) an exact match, meaning that the demand can be completely

satisfied by the supply, and which corresponds to the equivalence of the DL concepts formalizing

the demand and the supply considered, b) a potential match, meaning that some requests in the

demand are not specified in the supply, and corresponding to the satisfiability of the intersection

of the demand and supply concepts, and c) a partial match, meaning that some requests are in

conflict with the supply, and corresponding to the unsatisfiability of the intersection of the supply

and demand concepts. In the case of a potential match, this work gives the possibility of asking

the supplier whether some features although not advertised are anyway available and, in the case of

a partial match, it allows for the revision of the demand by relaxing (retracting) some restriction.

Furthermore, potential and partial matches are ranked so that users have an estimation of how far

a supply was from being an exact match (potential matches) or of how big the conflict between the

demand and the supply is (partial matches).

Compared to our work, the proposal by Di Noia et al. focuses on the matching of concrete

supplies and demands e.g. a set of hotel rooms or a particular flight modelled as DL concepts, not on

the matching of the capabilities of services and of their abstract effects. The matching mechanism

in [Noia et al., 2003; Noia et al., 2004] focuses on whether supplies and demands are in conflict

or not and on how different they are, while our capability filter, which would be the filter most

Chapter 8: Evaluation and related work 285

closely related to the algorithm proposed, focuses on whether the capability offered by a service

can potentially provide all the effects required by a consumer, taking into account whether all the

effects described are required or only some of them. In particular, an existential intention seems to

be implicitly assumed by Di Noia et al. for demands, and a universal intention for supplies, but this

is not completely clear. In general, an exact match corresponds to a perfect match in our framework

independently of intentions; a potential match can correspond to a perfect match, a possible match,

a partial match, or a possible partial match in our platform depending on the intentions associated

to the concepts evaluated and on the particular subsumption relation which may hold; and a partial

match corresponds to a non-match in our platform.

In [Colucci et al., 2005], Colucci et al. propose an approach for the matching of offers and

requests in an E-Marketplace which includes negotiation. In particular, demands and supplies are

modelled as two sets of constraints: non-negotiable (strict) constraints ST and negotiable constraints

NG. If the intersection of offers and supplies is not satisfiable (a partial match in [Noia et al.,

2003; Noia et al., 2004]), possibilities for negotiation are detected. Using concept contraction and

abduction [Colucci et al., 2003], what constraints are causing the unsatisfiability of the intersection

are found and, if such constraints are negotiable, users can consider retracting them; otherwise, the

only possibility is that the user turns some strict constraints into negotiable constraints. In this way,

negotiable constraints can be introduced and the matching mechanism can find negotiation spaces

thus guiding users in such negotiation.

Benatallah et al. present in [Benatallah et al., 2003; Benatallah et al., 2005] an approach

to service discovery in which a DL for which the difference operator7 is semantically unique8 is used

to express the service profile inputs and outputs of an OWL-S (DAML-S) description (preconditions

and effects are not considered). Service discovery is not formulated as a subsumption reasoning

problem but as a rewriting problem, i.e., as the problem of how to rewrite the request in terms of

available services. Given a service request and a service profile, a combination of services that satisfy

as much as possible the outputs requested and that require as few as possible inputs not provided

in the request is selected. Such combination is the so-called best profile cover of the request using

the set of available (advertised) services.

Using the difference operator, the services whose outputs satisfy at least one of the outputs

in the request, i.e., the difference between the outputs of the request and the outputs of the service is

not the whole set of outputs in the request, are identified. The same operation (using the difference

operator in reverse order) is performed for the inputs. The set of services that have the smallest

set of outputs in the request and inputs of the service not satisfied is selected. In this way, the best
7Given concepts C and D, C-D is the information expressed in C and not in D.
8Please refer to [Teege, 1994] for details.

Chapter 8: Evaluation and related work 286

combination of services that provide the higher number of requester outputs and requires less inputs

not given in the request is selected. The problem of determining such set of services is reduced to

the problem of computing minimal traversals with minimal costs in an hypergraph.

This approach has the advantage of enhancing the discovery process using a simple type

of service composition. In addition, incomplete matches can be found and information about what

outputs or inputs are missing for a complete match is given, serving as an explanation that the

requester can use to refine his request. However, this work is restricted to matching input/output

signatures, without truly reflecting the value offered by a service. Furthermore, and as noted in

[Colucci et al., 2005], performing a difference operation needs a subsumption relation between de-

scriptions to be found. This condition may make this approach hard to use for matchmaking, as

descriptions which overlap might also be considered. Finally, there is no algorithm able to compute

an exact concept difference in a DL endowed of the negation constructor.

Baader et al. present in [Baader et al., 2005] an action formalism based on Description

Logics and analyze how the choice of the DL influences the complexity of reasoning about services.

In particular, projection and executability are analyzed; projection is defined as the problem of

checking whether a certain condition always holds after the successful execution of a service, given

our knowledge of the current state of the world, and executability is defined as the problem of

checking whether, given our current and possibly incomplete knowledge of the world, we can be sure

that the service is executable, i.e., all preconditions are satisfied.

This work is of interest as it discusses problems related to the current and future state of

the world, of which we will usually have an incomplete knowledge, and it discusses the complexity

of reasoning tasks which might be of interest if real-world preconditions and an explicit knowledge

of the state of the world are considered. However, this work lacks an analysis of how the state of the

world will be known and maintained, which is a pre-requisite for applying the reasoning procedures

proposed. In general, the paper focuses on the complexity of the reasoning tasks that would be used

for deciding executability and projection of services, but mostly ignores the practical problems for

keeping an account of the current state of the world.

In [Grimm et al., 2004; Grimm et al., 2006], Grimm et al. discuss the correspondence

between the DL modelling of requests and offers by users and their intuition. Remarkably, in

[Grimm et al., 2006] they introduce the autoepistemic knowledge operator K [Donini et al., 1998]

in the description of services and goals, thereby allowing for local closed-world reasoning [Etzioni

et al., 1994]. In this way, the user can choose to use closed-world reasoning in particular parts of

descriptions. This is a possibly interesting feature, as it grants users control over when the OWA

must be made over descriptions and when the world must be locally closed.

Chapter 8: Evaluation and related work 287

In [Hull et al., 2006], Hull et al. propose a method for matching stateless (information

providing) services which takes into account the relation between inputs and outputs of the service

(its functionality) and not only its input/output signature. The descriptions used are based on

Description Logics, and it performs both an input-output signature matching in the way [Paolucci

et al., 2002] does, and a matching of the relation between inputs and outputs; the latter check

is reduced to the reasoning task checking containment between two conjunctive queries wrt. a

TBox. This reasoning task is proved to be decidable, but neither tight complexity bounds nor an

implementation are currently available. Therefore, and while a step beyond input/output signature

matching performed by most DL-based proposals, the realizability of the proposal by Hull et al. is

still to be demonstrated.

In general, most existing proposals for the location of services based on DL descriptions

and reasoning are limited to the matching of input and output signatures, and they concentrate

on matching a single type of description without taking into account the diversity of application

scenarios to which these proposals might be applied. Some of these works have inspired our capability

filter, and to some extent our input-dependent effects filter. However, we have added the usage of

pre-defined actions and intentions to descriptions, and we have focused on describing and matching

the value offered by services and requested by consumers. Furthermore, we have introduced the

parameterization of the set of achievable effects with the input bindings a consumer can provide,

and we have proposed a comprehensive model which tries to address the service location problem

as a whole.

Some existing proposals introduce features not present in our model, such as the identifi-

cation of negotiation spaces, the possibility of locally closing the world in descriptions, or ranking of

results according to user preferences (see [Lukasiewicz and Schellhase, 2006]). Some of these features

have been identified as possible extensions to our model, and their incorporation to our platform

will be part of our future work.

8.2.3 Extension of UDDI registries

While the works introduced above focus on how to describe services and goals and on how

to match such descriptions, works exist which aim at extending the capabilities of UDDI registries

for the location of services. The most relevant works of this type are summarized in the following.

Srinivasan et al. present in [Srinivasan et al., 2004] an approach for adding semantic search

capabilities to UDDI. In particular, OWL-S is used to semantically describe services and goals, and

the matching method used is an optimized version of the method presented in [Paolucci et al., 2002]

and described above. In this work, a UDDI registry is used for storing descriptions. For this purpose

Chapter 8: Evaluation and related work 288

a mapping of the profile of OWL-S services to UDDI is proposed, so that an OWL-S service profile

can be stored in the UDDI repository using category bags and appropriate tModels. Furthermore,

the UDDI publication and inquiry ports are kept accessible and a new port is defined so that users

can choose whether they want to use regular UDDI publish and search capabilities, or whether

search capabilities added on top of the UDDI registry will be used. A similar approach has been

presented in [Pokraev et al., 2003].

This work has inspired the architecture of our registry, as we pointed out in Chapter 6.

However, we do not only store the service capability but the full service description is stored, we

use WSMO for encoding our descriptions, we use a different semantic matching algorithm in our

capability filter and a different kind of formal description of the service value, and we allow for the

usage of other types of descriptions of the capability offered and sought, respectively, and of filters.

In [Luo et al., 2005], an approach which also tries to add semantic matching to UDDI is

presented. Semantic markups are stored in the UDDI data model and used for processing queries,

but no modification of the UDDI interface is done. This is achieved by resolving and indexing

ontology relationships at publishing time, so that queries can be answered by UDDI using syntactic

descriptions which have the behaviour of a semantic matchmaking. However, not the full expressivity

of OWL is allowed and, actually, the expressivity descriptions can use is very limited (intersection

and negation are not permitted).

In [Akkiraju et al., 2003], the UDDI inquiry API is extended in order to incorporate the

semantic description of a sought profile, described by its inputs and outputs. A matchmaking

method similar to the method proposed by in [Srinivasan et al., 2004] is followed. However, this

work also enables the exact matching of the categories given besides the matching of inputs and

outputs. In this sense, this work already introduces multiple registry-side filters in a similar way

we do. However, the category matching is done by the UDDI registry and, thus, only services

categorized exactly under the categories given are matched, and the type of semantic matching used

is limited to the input/output signature of the service.

Finally, [Colgrave et al., 2004] proposes an approach in which users can integrate multiple

external matching services with a UDDI registry to support multiple external service description

languages. In particular, service providers and requesters can publish the location of external de-

scriptions of service capabilities and requirements, respectively, in a UDDI registry, requesters can

indicate whether a external description matching has to be performed by the UDDI registry, third-

party service providers can publish their matching engines as services in a UDDI registry, and a

UDDI registry can select suitable external matching services and dynamically invoke the selected

matching service to carry out external description matching of services. This grants flexibility in the

Chapter 8: Evaluation and related work 289

incorporation of new matching methods to be performed for retrieving relevant descriptions from

the registry.

8.2.4 Approaches with multiple filters

In the following, we introduce some works which allow for the application of multiple filters

for the matchmaking of services (or agents).

Sycara et al. define in [Sycara et al., 2002] the so-called Language for Advertisement

and Request for Knowledge Sharing (LARKS), used to describe agent capabilities9, and which has

inspired our model for the location of services based on the application of filters. A capability

specification in LARKS defines the context of the specification, the input and output variables,

constraints on these variables, the ontological descriptions used, and a textual description. As in

OWL-S, a capability specification can be treated as a request or as an advertisement. Given a request

and an advertisement, the matchmaking process can apply five different filters, namely [Sycara et al.,

2002]: 1) Context matching, 2) Profile comparison, 3) Similarity matching, 4) Signature matching,

and 5) Constraint matching. The combination of filters that will be actually applied can be selected

by the requester, although some combinations of filters are pre-defined. In this way, the trade-off

between accuracy and efficiency of the discovery can be selected.

The context in LARKS is defined as a set of keywords that describe the domain of the

agent. Context matching computes the distance [Rosenfield, 1994] between the keywords of the

request and the advertisement, and the subsumption relation between the concepts corresponding

to the pairs of most similar words. The computed similarity, using a given threshold, will determine

if there exists a match.

Profile comparison treats the request and advertisements as documents and determines the

degree of similarity between them based on frequency and relevance of words in a document. If the

similarity exceeds a given threshold, there is a match.

The profile comparison does not consider the structure of the specification, while similar-

ity matching does. Such similarity is computed combining distance values for the pairs of input

and output declarations, including their constraints. Again, if the computed similarity exceeds a

threshold, the result will be a match.

Signature matching check if the input and output declarations of the request and the

advertisement match. This is done using subtype inference rules and subsumption reasoning.

Constraint matching uses the notion of plug-in match. The logical implications are checked

using subsumption reasoning for Horn clauses. Constraint matching uses the signature filter and,

therefore, these two filters work together.
9Although LARKS is a language for describing agent capabilities, it can equally be applied to services.

Chapter 8: Evaluation and related work 290

The application of different filters for discovery in LARKS has the advantage of customizing

the trade-off between accuracy and efficiency by deciding the filters that will be applied. In addi-

tion, the input and output constraints can include the relation between the input and the output,

capturing more accurately the functionality of the agent. However, and while the work in LARKS

has been provided us with the conceptual basis for using different filters in our model and enabling

the selection of filters by consumers, the types of filters used by LARKS were not found the most

appropriate ones in a service-oriented model. As the focus of consumers when searching services will

be placed on the value provided by such services, the types of descriptions used have to concentrate

on this aspect of services. Furthermore, LARKS does not differentiate between registry-side and

consumer-side filters, and filters which make use of the knowledge a consumer has actually available

are not considered. Last, but not least, our model includes support to users in describing their ser-

vices and goals; while it is stated in [Sycara et al., 2002] that usability is a requirement, no particular

strategy is used to ensure it.

Inspired by LARKS, Kawamura et al. present in [Kawamura et al., 2004] a service match-

maker which allows for the application of alternative filters and which enhance the capabilities of

UDDI registries. In this work, the API used has the same format as the UDDI API, although a

layer is inserted between this API and the UDDI registry which provides new capabilities.

Services and requests can semantically describe their inputs and outputs and constraints

on such inputs and outputs. The matching process is organized as a series of the following filters: a)

a namespace filter, which only checks whether a request and a candidate filter have some namespace

in common, i.e., whether they have some terminology in common, b) a text filter, which applies a

Term Frequency Inverse Document Frequency method for deciding relevant services, c) a domain

filter, which checks whether each registered service and the requested one belong to an ontology

domain, i.e., to a given subtree in an ontology tree, d) an I/O type filter, which checks to see if

the definitions of the input and output parameters, defined by ontology concepts, match (where a

match is determined similarly to the proposal in [Paolucci et al., 2002]), and e) a constraint filter,

which compares the constraints to determine if the registered service is less constrained than the

request. From these filters, Kawamura et al. state that the first three are only meant to reduce the

computation time of the last two filters.

Semantic descriptions are encoded in WSDL descriptions using a structure similar to an

OWL-S profile, and tools for the description of services and requests are built which try to provide

an appropriate graphical interface for the creation of descriptions.

This proposal is the most similar one to our work, but the following major differences can

be identified: a) [Kawamura et al., 2004] expects all filters to be applied at the registry side, while

we organize our location process in two stages where the second one is applied at the consumer-side

Chapter 8: Evaluation and related work 291

where actual consumer knowledge is available and, thus, it can be used for deciding on the usability

of candidate services, b) we apply filters which rely on descriptions we believe are more usable for

business experts, who will have in many cases the responsibility of defining goals, c) the type of

filters we introduce are oriented towards detecting services which are usable for fulfilling a goal in

terms of the value they offer, and some of the filters introduced in [Kawamura et al., 2004] are

oriented towards input/output signature matching or are too vague as they only determine whether

the services refer to some common vocabulary, c) while our prototype is less elaborated in graphically

describing services or goals, we help users to provide types of descriptions they are not familiar with

by using pre-defined, reusable capabilities, d) an evaluation of the system presented in [Kawamura

et al., 2004] is not available, and e) it remains unclear to what extent constraints on inputs and

outputs capture the value offered by services and required by consumers in an appropriate way, and

how efficient the determination of a plug-in match between offers and requests using these constraints

can be performed in acceptable times.

In [Jaeger et al., 2005], the usage of custom-defined matching methods is introduced. In

particular, this proposal allows for: a) the matching of service categories, which are assumed to be

semantically described and subsumption reasoning is used for their matching, b) the matching of

service outputs, c) the matching of service inputs, and d) the application of custom-defined matching

methods. Each matching is regarded as a stage to which weights can be assigned, therefore giving

more importance to any of the matching methods applied. Furthermore, matching is assumed to be

performed at the client-side so that clients can incorporate custom-defined matching methods.

Compared to this proposal, our works enables the application of both registry-side and

consumer-side filters. Furthermore, we believe the types of filters we use and their custom combi-

nation grants more flexibility to users than the filters proposed by Jaeger et al. in [Jaeger et al.,

2005]. However, the application of weights to different filters is an interesting feature of the model

proposed by Jaeger et al., and it will be considered for future extensions of our model.

OWLS-MX is a hybrid matchmaker for OWL-S services proposed by Klusch et al. in

[Klusch et al., 2006]. The distinguishing feature of this work is that it combines a semantic matching

based on the input/output signature described by an OWL-S profile, with a set of alternative filters

which use different IR similarity metrics for performing a non logic-based matching of services but,

instead, these filters compute the syntactic similarity between requests and offers. These alternative

filters and the results obtained from the experimental evaluation presented in [Klusch et al., 2006]

are of great interest, and they are firm candidates for future incorporation to our model.

Based on OWLS-MX and on some aspects of the work we have presented in [Keller et al.,

2004a], a similar matchmaker, called WSMO-MX [Kaufer and Klusch, 2006], has been developed.

The filters applied in this case compare the types of inputs and outputs declared by services and

Chapter 8: Evaluation and related work 292

requests, more detailed constraints on these types, the relation between inputs and outputs, and

syntactic similarity.

8.2.5 Other related works

The works presented by Klein et al. in [Klein and König-Ries, 2004; Kuester et al., 2007]

recognize the problem of signature matching, as services with different signature might provide the

same value, and propose a method for describing offers and requests which tries to capture the

actual functionality offered and requested, respectively. In these works, the authors do not use any

logical formalism but propose a type of description they call DSD (Diane Service Description) based

on its own light-weight ontology language. An advantage of this approach is that it also enables

composition of services when a single service cannot solve the request.

In [Valle and Cerizza, 2005; Valle et al., 2005], Della Valle et al. present a discovery engine

for WSMO based on the idea of having pre-defined generic goals and services and using mediators to

resolve heterogeneity and to explicitly link generic goals and services, of which particular instances

will be available. This work is partly based on the work we have presented in Chapter 4 and on the

ideas presented in [Keller et al., 2004a; Keller et al., 2005], but while it might work well in closed

domains it is a too rigid proposal for solving general service location problems.

In [Zein and Kermarrec, 2004], an F-Logic-based approach for the description of services

is presented. The service concept describes the service in terms of non-functional properties such as

provider, location, service type, etc., its behaviour (inputs, outputs, and the relation between them),

and its operations (including the inputs and outputs for each operation). A requester expresses its

goal as a query in terms of the service non-functional properties, behaviour, and operations. However,

the service description cannot model world-altering services i.e. services with effects on the world.

Furthermore, as it uses simple query answering, the description of the services is limited to ground

facts, which considerably reduces the expressivity allowed for describing the service value and does

not allow the description of capabilities as sets of abstract effects.

METEOR-S WSDI [Verma et al., 2005; Sivashanmugam et al., 2004] is a P2P infrastructure

for matching services. It relies on adding semantic annotation to WSDL operations, inputs and

outputs, as well as on adding preconditions and effects to the description of operations in WSDL

using the extensibility elements of WSDL. The matching process uses subsumption reasoning to

match operations, inputs, outputs, preconditions and effects of the annotated services against the

ones of a service template describing the request.

While the matching of WSDL operations, inputs, outputs, preconditions and effects is

limited to a simple exact match, an innovative element introduced by this work is the annotation

Chapter 8: Evaluation and related work 293

of registries and its specialization in domains in order to distribute the load for the matching of a

potentially big number of available services. In this way, particular registries will be specialized in a

given domain and an appropriate annotation describing this domain will be made available so that

the service location process can first determine in what registries relevant services might be found.

Other related works include [Dong et al., 2004], in which similarity search for services

based on IR techniques but taking into account the structure of WSDL documents is proposed,

[Fernandez et al., 2006], in which a service discovery mechanism which takes into account the types

of interactions services can be used in and the roles they play in such interactions is presented,

[Spanoudakis et al., 2005], in which a framework for the run-time replacement of services based on

the syntactic description of the services structure and behaviour is described, [Lynch et al., 2006],

in which a proactive, subscription-based discovery mechanism is proposed, [Toma et al., 2005], in

which a P2P approach to service discovery using keyword matching is described, and works such as

[Mokhtar et al., 2006] and [Constantinescu and Faltings, 2003], where techniques for preprocessing

the semantic relation between concepts and for indexing services are proposed in order to speed up

the service location process.

Chapter 9

Conclusion

Service-orientation has rapidly gained acceptance in the last years as an architectural

paradigm which can enable a true reuse of IT assets and an increase of the cooperation possibili-

ties among systems, processes and businesses by reducing the integration burden. The progressive

but relatively fast adoption of this paradigm has meant the adoption of (all or some of) its core

design principles (service encapsulation, loose coupling, explicit contracts, abstraction, reusability,

composability, autonomy, statelessness and discoverability), facilitated by a set of new languages,

technologies and, in some occasions, middleware.

A growing number of business have started to embrace service-orientation, creating initial

services, evolving these services to be truly meaningful and reusable pieces of value, composing

services, and monitoring and governing their services infrastructure. Progress in the SOA adoption

curve (or maturity pyramid), has raised greater awareness of some challenges whose resolution is

highly desirable for taking the positive impact of service-orientation a step further; most of these

challenges have been summarized in the service-oriented computing research roadmap presented by

Papazoglou et al. in [Papazoglou et al., 2006].

Among these challenges, we can find a more effective, efficient and dynamic location of ser-

vices. As SOA adoption increases and reusable services are made available, the need for mechanisms

which can support service-oriented system design, run-time location and replacement of services, and

even the location and usage of services by end-users, has naturally arose. Not surprisingly, as re-

search challenges become apparent, and under an incipient industry demand for solutions, proposals

have also appeared which try to go beyond what current technologies offer.

In this context, and given the state-of-the-art on the (semi)automatic location of services,

we have perceived paths of improvement we have worked in and which have been presented in this

document. Our work has focused on the design of an abstract and comprehensive model for the

294

Chapter 9: Conclusion 295

location of services based on the analysis of the diversity of application scenarios where an effective

location of services is required, and where flexibility is demanded, and on the concrete instantiation

of this abstract model to offer a tangible proposal for the location of services which includes a

prototypical implementation. A brief account of the major contributions of our work is presented

next.

9.1 Major contributions

Conceptual model of services and goals. Based on the OASIS reference model for SOA, we

have described a conceptual model of those elements relevant for the location of services. We have

also discussed the alignment of this model to WSMO (to whose definition the PhD candidate has

contributed) and to other frameworks and, furthermore, we have provided a formal characterization

of services and goals based on Transaction Logic which constitutes a precise account for different

aspects of services and goals.

Identification and general analysis of families of applications. We have provided a general

analysis of application scenarios which helps to realize the diversity of situations, with different

requirements and involving different user profiles, which can benefit from better service location

capabilities. Furthermore, three main groups of applications have been identified.

Design of a comprehensive and flexible abstract model for the location of services. We

have presented a model which is comprehensive as it identifies and discusses the various tasks involved

in the location of services, which is flexible as it recognizes that requirements might vary and that

diverse application scenarios must be covered, which has usability as a central concern, and which

pays special attention to practical considerations trying to guarantee the practical applicability of

the model.

Particular instantiation of the abstract model. We have described a particular instantiation

of the abstract model designed which concretizes aspects left open by the abstract model, and which

has the following major features:

• It admits alternative types of descriptions of services and goals, both formal and non-formal.

These alternative views of the value offered and required by services and goals, respectively, will

improve the usability of the model by users with different profiles and will enable the application

of alternative matchmaking methods with different properties which might fit better to different

scenarios.

Chapter 9: Conclusion 296

• The types of descriptions used are integrated into an existing framework for the description

of services (WSMO) and formal descriptions are expressed using existing languages with for-

mal semantics (the WSML family of languages). Still, portability of descriptions to other

frameworks is possible.

• It admits formal descriptions with different semantics. In particular, it enables the combined

use of descriptions with first-order and logic programming semantics for matching services and

goals, and demonstrates that different semantics are interesting for evaluating different aspects

of a service, that all types of descriptions can be integrated into a coherent service location

model, and that the usage of certain languages of the WSML family can be an interesting

option.

• Descriptions centered in the value offered by services and sought by consumers have been

proposed, which is consistent with the principles of SOA design; signature matching, used by

most existing works, has been identified as a type of matching relevant for the wiring of services

but not for deciding on their relevance for achieving certain effects or on their usability given

current conditions.

• Alternative matchmaking mechanisms (filters), with different efficiency and accuracy proper-

ties, can be applied in a stand-alone or combined fashion in order to find relevant services

for a goal; what filters are to be applied can be freely chosen by the user, who has therefore

control over these aspects so that they can be adapted to the particular requirements of his

usage scenario.

• Novel matchmaking mechanisms (filters), applied in two phases, are presented, namely: a

capability filter which relies on a set-based modelling of offered and sought capabilities with

associated user intentions and which enables an effective and value-driven matchmaking, an

input-availability filter which operates over actual consumer knowledge to evaluate information

preconditions of services, and an input-dependent effects filter which evaluates what effects are

potentially offered by a service for available input bindings. These formal filters are comple-

mented by syntactic filters based on taxonomies of categories and on textual descriptions.

• The reasoning support required over formal descriptions for the application of formal filters is

provided by existing reasoning infrastructure.

• The alternative types of descriptions proposed and their associated filters keep a balance

between simplicity and coverage of application needs for different application types.

• Support to users for describing their services and goals is included in the instantiation proposed.

In particular, pre-defined descriptions are associated to service categories so that, starting from

Chapter 9: Conclusion 297

the types of descriptions a user is comfortable with and which he can therefore provide, we

can support users for providing other types of descriptions of higher complexity.

• A prototype implementation, as well as an evaluation of the model based on this implemen-

tation, has been presented. This prototype demonstrates the feasibility of enhancing current

service location practices in a flexible way, of applying formal filters to different types of de-

scriptions with a reasonable efficiency, and of offering support to users for the description of

their services and goals.

In general, we have contributed an analysis of the service location problem based on an

explicit conceptual model, and a proposal for its resolution which addresses a number of key aspects

we believe of great importance for achieving a practical solution to this open challenge in service-

oriented computing.

9.2 Future work

Paths for further work have been identified, and they are summarized in the following.

Evolution of prototype implementation. Future work will focus on the evolution of the pro-

totype implementation, with especial emphasis on some of the limitations outlined in the previous

Chapter, such as: using reasoners or wrappers which accept WSML syntax without manual trans-

lations, dynamically loading domain ontologies, automatically pre-processing goals to eliminate in-

stances not in domain ontologies and sensitive information (if required), improving the user interface

of our client, or including strategies for the delayed classification of TBoxes of the DL reasoner of

the registry. In general, work will be required in the future for evolving our current implementation

from a prototype to a professional service location platform.

Exploring the incorporation of new filters. Adding new filters to our model will be one of

the key works we will accomplish in the future. These filter can include: a better filter over textual

(syntactic) descriptions such as those incorporated by OWLS-MX, filters over the input-output

signature of services, descriptions and filters which enable local-closed world reasoning, or filter over

properties not related to the value offered by a service but over other aspects such as QoS or cost.

In this sense, we find of particular interest the design of a common API any filter must adhere to so

that filters are pluggable and guarantee certain common behaviour.

Ranking, explanations, negotiations and user preferences and constraints. We find of

great interest the incorporation of a more fine-grained ranking of location results, the incorporation

Chapter 9: Conclusion 298

of explanations which can better guide users, and the description of users preferences and constraints

[Arroyo et al., 2004] which can serve for the identification of negotiation spaces and also contribute

to the custom ranking of results (possibly by also weighting the filters to be applied).

Registry architectures. Alternative registry architectures can be investigated. Of special inter-

est can be the specialization of registries in certain domains and the description of this aspect of

registries, as proposed by [Verma et al., 2005], and the usage of matching services external to the

registry as proposed by [Colgrave et al., 2004].

Automatic selection and automatic wiring. The automatic selection of services, including

the definition of contracting or negotiation interfaces, is an interesting path of future work, as well

as the automatic wiring and usage of services.

Composition. The integration of composition approaches and our service location model is of

considerable interest. In particular, we envision the usage of new filters which can serve to select

services also based on criteria appropriate for composition problems.

Reputation. Given that the explicit description of the value of services and of goals is central to

our approach, the incorporation of reputation mechanisms to our platform is of interest.

Test collections. The creation of test collections which include real services, and which describe

the value of services and not only their input-output signature, will receive our attention in the future.

This will of course depend on the availability of complete and truly shared domain ontologies. In

this sense, we already actively work on the creation of ontologies in the field of finance, especially on

benefitting from the advances in the definition of shared models achieved by the XBRL community

(see [Lara et al., 2006a; Lara et al., 2007a] and http://wiki.xbrlontology.com/).

9.3 Concluding remarks

The increasing adoption of the SOA paradigm will require advances in the degree of au-

tomation and effectiveness of certain tasks. In particular, we believe the enhanced location of services

based on the value they provide and possibly on other aspects (service discovery) will be one of the

first tasks for which adopters will require new solutions sooner, as it is, after service creation, the

first step for the usage of services in a service-oriented environment.

In this setting, the usage and exploitation of formal descriptions can constitute a more than

interesting path for improvement on service discovery. However, not only heavy-weight descriptions

and matchmaking mechanisms will be required, but a flexible combination of light-weight (possibly

Chapter 9: Conclusion 299

syntactic), mid-weight and heavy-weight mechanisms will be the choice so that users can cover

their own service location requirements in the most appropriate way. Furthermore, a substantial

improvement of the usability of new location mechanisms, especially of the descriptions required,

can mark an inflexion point for the practical adoption of any solution in this field; users have to be

abstracted from underlying complexity, which can be achieved using appropriate tools and support.

Given that the maturity of SOA adoption varies, that shared vocabularies are (or start

to be) only available in very few domains, and that the construction of custom domain models for

internal use will only be achievable by entities with important resources, we expect the adoption of

semantic descriptions of services and of service location mechanisms which rely on such descriptions

to be slowly incorporated by early adopters which have already reached a suficient level of maturity

in SOA design, and which have considerable resources or focus their business in particular sub-

domains. The outreach of this kind of solutions to end users can only be expected in particular

domains and based on simple, lightweight solutions which will progressively gain in complexity and

capabilities as more domain models are available and tools which guarantee the usability of these

complex models are ready for commercial use.

Bibliography

[COR, 1998] (1998). The Common Object Request Broker: Architecture and specification. Tech-
nical report, The Object Management Group.

[RAC, 2006] (2006). RacerPro user’s guide. version 1.9. Technical report, RACER Systems GmbH
& Co. KG.

[WSP, 2006] (2006). Web Services Policy Framework (WS-Policy). Technical report, OASIS.

[Akkiraju et al., 2005] Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth,
A., and Verma, K. (2005). Web service semantics - WSDL-S. W3C submission.

[Akkiraju et al., 2003] Akkiraju, R., Goodwin, R., Doshi, P., and Roeder, S. (2003). A method
for semantically enhancing the service discovery capabilities of UDDI. In Kambhampati, S. and
Knoblock, C. A., editors, Proceedings of the IJCAI-03 Workshop on Information Integration on
the Web (IIWeb-03), pages 87–92.

[Alexiev et al., 2005] Alexiev, V., Breu, M., de Bruijn, J., Fensel, D., Lara, R., and Lausen, H.
(2005). Information Integration With Ontologies. Experiences from an Industrial Showcase. John
Wiley and Sons.

[Alonso et al., 2003] Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2003). Web Services.
Springer-Verlag.

[America, 1991] America, P. (1991). Designing an object-oriented programming language with be-
havioural subtyping, volume 489 of Lecture Notes in Computer Science, pages 60–90. Springer-
Verlag.

[Arroyo et al., 2004] Arroyo, S., Bussler, C., Kopecky, J., Lara, R., Polleres, A., and Zaremba, M.
(2004). Web service capabilities and constraints in wsmo. In W3C Workshop on Constraints and
Capabilities for Web Services.

[Baader et al., 2005] Baader, F., Lutz, C., Milicic, M., Sattler, U., and Wolter, F. (2005). A
description logic based approach to reasoning about web services. In Proceedings of the WWW
2005 Workshop on Web Service Semantics (WSS2005).

[Baader and Nutt, 2003] Baader, F. and Nutt, W. (2003). Basic description logics. In Baader, F.,
Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. F., editors, The Description
Logic Handbook: Theory, Implementation, and Applications, pages 43–95. Cambridge University
Press.

[Baida et al., 2004] Baida, Z., Gordijn, J., Omelayenko, B., and Akkermans, H. (2004). A Shared
Service Terminology for Online Service Provisioning. In ICEC04, Delft, The Netherlands.

300

Bibliography 301

[Battle et al., 2005a] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R.,
Kifer, M., Martin, D., McIlraith, S., McGuinness, D., Su, J., and Tabet, S. (2005a). Semantic
Web Services Framework (SWSF) overview. W3C submission, W3C.

[Battle et al., 2005b] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R.,
Kifer, M., Martin, D., McIlraith, S., McGuinness, D., Su, J., and Tabet, S. (2005b). Semantic
web services language (SWSL). W3C submission.

[Battle et al., 2005c] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R.,
Kifer, M., Martin, D., McIlraith, S., McGuinness, D., Su, J., and Tabet, S. (2005c). Semantic
Web Services Ontology (SWSO). Technical report, SWSI.

[Battle et al., 2005d] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R.,
Kifer, M., Martin, D., McIlraith, S., McGuinness, D., Su, J., and Tabet, S. (2005d). Semantic
web services ontology (SWSO). W3C submission.

[Bechhofer, 2003] Bechhofer, S. (2003). The DIG Description Logic Interface: DIG/1.1. URL
http://dl-web.man.ac.uk/dig/2003/02/interface.pdf.

[Bechhofer et al., 2005] Bechhofer, S., Horrocks, I., and Turi, D. (2005). The OWL instance store:
System description. In Proceedings CADE-20, Lecture Notes in Computer Science. Springer-
Verlag.

[Bechhofer et al., 2004] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness,
D. L., Patel-Schneider, P. F., and Stein, L. A. (2004). OWL Web Ontology Language Reference.
W3c recommendation, W3C.

[Bellwood et al., 2002] Bellwood, T., Clement, L., Ehnebuske, D., Hately, A., Hondo, M., Husband,
Y., Januszewski, K., Lee, S., McKee, B., Munter, J., and von Riegen, C. (2002). UDDI version
3.0. http://uddi.org/pubs/uddi-v3.00-published-20020719.htm.

[Benatallah et al., 2005] Benatallah, B., Hacid, M.-S., Leger, A., Rey, C., and Toumani, F. (2005).
On automating web services discovery. The VLDB Journal, 14(1):84–96.

[Benatallah et al., 2003] Benatallah, B., Hacid, M.-S., Rey, C., and Toumani, F. (2003). Request
rewriting-based Web service discovery. In The Semantic Web - ISWC 2003, pages 242–257.

[Berners-Lee et al., 2001] Berners-Lee, T., Handler, J., and Lassila, O. (2001). The semantic web.
Scientific American.

[Bonner and Kifer, 1998] Bonner, A. and Kifer, M. (1998). A logic for programming database
transactions. In Chomicki, J. and Saake, G., editors, Logics for Databases and Information Sys-
tems, chapter 5, pages 117–166. Kluwer Academic Publishers.

[Bonner and Kifer, 1995] Bonner, A. J. and Kifer, M. (1995). Transaction Logic Programming (or,
A Logic of Procedural and Declarative Knowledge. Technical report, University of Toronto.

[Brad J. Cox, 1991] Brad J. Cox, A. J. N. (1991). Object-Oriented Programming: An Evolutionary
Approach. Addison-Wesley, 2nd edition.

[Brickley and Guha, 2004a] Brickley, D. and Guha, R. (2004a). RDF Vocabulary Description
Language 1.0: RDF Schema. URL http://www.w3.org/TR/rdf-schema/. Series Editor: Brian
McBride.

Bibliography 302

[Brickley and Guha, 2004b] Brickley, D. and Guha, R. V. (2004b). RDF Schema. Technical report,
W3C Recommendation.

[Brittenham et al., 2001] Brittenham, P., Curbera, F., Ehnebuske, D., and Graham, S. (2001).
Understanding WSDL in a UDDI registry, part 1: How to publish and find WSDL service de-
scriptions. Technical report, IBM.

[Brodie et al., 2005] Brodie, M. L., Bussler, C., de Bruijn, J., Fahringer, T., Fensel, D., Hepp, M.,
Lausen, H., Roman, D., Strang, T., Werthner, H., and Zaremba, M. (2005). Semantically enabled
service-oriented architectures: A manifesto and a paradigm shift in computer science. Technical
report, DERI.

[Calvanese et al., 1998] Calvanese, D., Giacomo, G. D., and Lenzerini, M. (1998). On the decid-
ability of query containment under constraints. In ACM Symposium on Principles of Database
Systems, pages 149–158.

[Castells et al., 2004] Castells, P., Foncillas, B., Lara, R., Rico, M., and Alonso, J. L. (2004).
Semantic web technologies for economic and financial information management. In European
Semantic Web Symposium (ESWS 2004).

[Cearley et al., 2005] Cearley, D. W., Fenn, J., and Plummer, D. C. (2005). Gartner’s positions on
the five hottest IT topics and trends in 2005. Technical report, Gartner Research.

[Chappell, 2004] Chappell, D. (2004). Enterprise Service Bus: Theory in Practice. O’Reilly Media.

[Chen et al., 1993] Chen, W., Kifer, M., and Warren, D. S. (1993). HILOG: A foundation for
higher-order logic programming. Journal of Logic Programming, 15(3):187–230.

[Chen and Warren, 1996] Chen, W. and Warren, D. S. (1996). Tabled evaluation with delaying for
general logic programs. Journal of the ACM, 43(1):20–74.

[Chen and Cheng, 2000] Chen, Y. and Cheng, B. (2000). A Semantic Foundation for Specification
Matching. Cambridge University Press.

[Christensen et al., 2001] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001).
Web Services Description Language (WSDL) 1.1. Note, W3C.

[Christian Halaschek-Wiener and Sirin, 2006] Christian Halaschek-Wiener, B. P. and Sirin, E.
(2006). Description Logic Reasoning with Syntactic Updates. In Proceedings of the 5th Inter-
national Conference on Ontologies, Databases, and Applications of Semantics (ODBASE-2006).

[Colgrave et al., 2004] Colgrave, J., Akkiraju, R., and Goodwin, R. (2004). External matching in
UDDI. In ICWS ’04: Proceedings of the IEEE International Conference on Web Services.

[Colgrave and Rogers, 2004] Colgrave, J. and Rogers, T. (2004). Using WSDL in a UDDI registry,
version 2.0.2. Technical note uddi-spec-tc-tn-wsdl-v2, OASIS.

[Colucci et al., 2003] Colucci, S., Noia, T. D., Sciascio, E. D., Donini, F., and Mongiello, M. (2003).
Concept abduction and contraction in description logics. In Proceedings of the 16th International
Workshop on Description Logics (DL’98).

[Colucci et al., 2005] Colucci, S., Noia, T. D., Sciascio, E. D., Donini, F. M., and Mongiello, M.
(2005). Concept abduction and contraction for semantic-based discovery of matches and negoti-
ation spaces in a E-marketplace. Electronic Commerce Research and Applications, 4(4):345–361.

Bibliography 303

[Connolly et al., 2001] Connolly, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., Patel-
Schneider, P. F., and Stein, L. A. (2001). DAML+OIL (March 2001) Reference Description.
Note, W3C.

[Constantinescu and Faltings, 2003] Constantinescu, I. and Faltings, B. (2003). Efficient match-
making and directory services. In Proceedings of the IEEE International Conference on Web
Intelligence (WI03).

[Corella and Castells, 2006a] Corella, M. A. and Castells, P. (2006a). A heuristic approach to
semantic web services classification. In KES-2006.

[Corella and Castells, 2006b] Corella, M. A. and Castells, P. (2006b). Semi-automatic semantic-
based web service classification. In semantics4ws’06 workshop at BPM 2006.

[Dahl, 1987] Dahl, O.-J. (1987). Research directions in object-oriented programming, chapter
Object-Oriented Specifications, pages 561–576. MIT Press.

[Dantsin et al., 2001] Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. (2001). Complexity
and expressive power of logic programming. ACM Computing Surveys, 33(3):374–425.

[de Bruijn, 2007] de Bruijn, J. (2007). Semantic Web Services: Theory, Tools and Applications,
chapter Logigs for the Semantic Web. IDEA Publishing. In Production.

[de Bruijn et al., 2005a] de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U.,
Kifer, M., Koenig-Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman,
D., Scicluna, J., and Stollberg, M. (2005a). Web Service Modeling Ontology (WSMO). W3C
submission.

[de Bruijn et al., 2005b] de Bruijn, J., Feier, C., Keller, U., Lara, R., Polleres, A., and Predoiu, L.
(2005b). D16.2v0.2 WSML Reasoner Survey. Working draft D16.2, WSML working group.

[de Bruijn et al., 2005c] de Bruijn, J., Fensel, D., Keller, U., Kifer, M., Lausen, H., Krummenacher,
R., Polleres, A., and Predoiu, L. (2005c). Web Service Modeling Language (WSML). W3C
submission.

[de Bruijn et al., 2005d] de Bruijn, J., Fensel, D., Keller, U., and Lara, R. (2005d). Using the Web
Service Modeling Ontology to enable Semantic eBusiness. Communications of the ACM (CACM),
48(12):43–47.

[de Bruijn et al., 2005e] de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L.,
Kifer, M., and Fensel, D. (2005e). The Web Service Modeling Language WSML. WSML Final
Draft D16.1v0.2, DERI.

[de Bruijn et al., 2004] de Bruijn, J., Polleres, A., Lara, R., and Fensel, D. (2004). OWL-. Deliv-
erable d20.1v0.2, WSML.

[de Bruijn et al., 2005f] de Bruijn, J., Polleres, A., Lara, R., and Fensel, D. (2005f). OWL DL vs.
OWL Flight: Conceptual Modeling and Reasoning for the semantic Web. In Proceedings of the
World Wide Web Conference 2005. Springer-Verlag.

[de Bruijn et al., 2005g] de Bruijn, J., Polleres, A., Lara, R., and Fensel, D. (2005g). OWL DL vs.
OWL Flight: Conceptual modelling and reasoning for the semantic web. In Proceedings of the
World Wide Web Conference 2005 (WWW2005).

Bibliography 304

[Dhara and Leavens, 1996] Dhara, K. and Leavens, G. (1996). Forcing behavioral subtyping
through specification inheritance. In Proceedings of the 18th International Conference on Software
Engineering (ICSE’18).

[Ding et al., 2004] Ding, Y., Fensel, D., Lara, R., Lausen, H., Stollberg, M., and Han, S.-K., editors
(2004). Application of Semantic Web Technologies to Web Communities 2004. Proc. 1st Intl.
Workshop SWWC 2004 at ECAI 2004. CEUR Workshop Proceedings.

[Ding et al., 2002] Ding, Y., Korotkiy, M., Omelayenko, B., Kartseva, V., Zykov, V., Klein, M.,
Schulten, E., and Fensel, D. (2002). Goldenbullet: Automated classification of product data in
e-commerce. In Proceedings of Business Information Systems Conference (BIS 2002), Poznan,
Poland.

[Dong et al., 2004] Dong, X., Halevy, A. Y., Madhavan, J., Nemes, E., and Zhang, J. (2004).
Similarity search for web services. In VLDB 2004.

[Donini, 2003] Donini, F. M. (2003). Complexity of Reasoning. In Baader, F., Calvanese, D.,
McGuinness, D., Nardi, D., and Patel-Schneider, P. F., editors, The Description Logic Handbook:
Theory, Implementation, and Applications, pages 96–136. Cambridge University Press.

[Donini et al., 1998] Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W., and Schaerf, A. (1998). An
epistemic operator for description logics. Artificial Intelligence, 100(1-2):225–274.

[Emerson, 1990] Emerson, E. A. (1990). Handbook of Theoretical Computer Science, chapter Tem-
poral and modal logic. MIT Press.

[Erl, 2005] Erl, T. (2005). Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice Hall PTR.

[Etzioni et al., 1994] Etzioni, O., Golden, K., and Weld, D. (1994). Tractable closed world reason-
ing with updates. In Proceedings of the 4th International Conference on Knowledge Representation
and Reasoning (KR1994), pages 178–189.

[Farrell and (editors), 2007] Farrell, J. and (editors), H. L. (2007). Semantic Annotations for
WSDL and XML Schema. Candidate recommendation, W3C.

[Fellbaum, 1998] Fellbaum, C., editor (1998). WordNet: An Electronic Lexical Database. MIT
Press.

[Fensel and Bussler, 2002] Fensel, D. and Bussler, C. (2002). The Web Service Modeling Frame-
work WSMF. Electronic Commerce Research and Applications, 1(2).

[Fensel and Musen, 2001] Fensel, D. and Musen, M. (2001). The semantic web: A brain for hu-
mankind. IEEE Intelligent Systems, pages 24–25.

[Fernandez et al., 2006] Fernandez, A., Vasirani, M., Caceres, C., and Ossowski, S. (2006). Role-
based service description and discovery. In Service-Oriented Computing and Agent-Based Engi-
neering (SOCABE’06).

[Fitting, 1996] Fitting, M. (1996). First order logic and automated theorem proving. Springer
Verlag, 2nd edition.

Bibliography 305

[Gardiner et al., 2006] Gardiner, T., Tsarkov, D., and Horrocks, I. (2006). Framework for an
automated comparison of description logic reasoners. In Proc. of the 2006 International Semantic
Web Conference (ISWC 2006), volume 4273 of Lecture Notes in Computer Science, pages 654–667.
Springer.

[Gelder et al., 1991] Gelder, A. V., Ross, K., and Schlipf, J. S. (1991). The well-founded semantics
for general logic programs. Journal of the ACM, 38(3):620–650.

[Gelfond and Lifschitz, 1988] Gelfond, M. and Lifschitz, V. (1988). The stable model semantics for
logic programming. In Fifth international conference on logic programming, pages 1070–1080.

[Gomez et al., 2004] Gomez, J. M., Rico, M., Bejar, R. M., and Bussler, C. (2004). GODO: Goal
Driven Orchestration for semantic web services. In WSMO Implementation Workshop 2004 (WIW
2004).

[Gonzalez-Castillo et al., 2001] Gonzalez-Castillo, J., Trastour, D., and Bartolini, C. (2001). De-
scription logics for matchmaking of services. In KI-2001 Workshop on Applications of Description
Logics.

[Graedel et al., 1997] Graedel, E., Otto, M., and Rosen, E. (1997). Two-variable logic with counting
is decidable. In 2th Annual IEEE Symposium on Logic in Computer Science.

[Grimm et al., 2004] Grimm, S., Motik, B., and Preist, C. (2004). Variance in e-business service
discovery. Semantic Web Services: Preparing to Meet the World of Business Applications, Work-
shop at ISWC 2004.

[Grimm et al., 2006] Grimm, S., Motik, B., and Preist, C. (2006). Matching semantic service
descriptions with local closed-world reasoning. In ESWC, pages 575–589.

[Grosof et al., 2003] Grosof, B., Horrocks, I., Volz, R., and Decker, S. (2003). Description logic
programs: Combining logic programs with description logic. In Proc. Intl. Conf. on the World
Wide Web (WWW-2003), Budapest, Hungary.

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology specification.
Knowledge Acquisition, 5(2):199–220.

[Haarslev and Möller, 2001] Haarslev, V. and Möller, R. (2001). RACER System Description.
volume 2083.

[Haas and Brown, 2004] Haas, H. and Brown, A. (2004). Web Services Glosary. Note, W3C.
http://www.w3.org/TR/ws-gloss/.

[Haller, 2004] Haller, A. (2004). D13.6 WSMX use cases. Technical report, WSMX working group.

[Harel, 1979] Harel, D. (1979). First-order dynamic logic. In Springer-Verlag, editor, Lecture Notes
in Computer Science, volume 68.

[Harel et al., 1982] Harel, D., Kozen, D., and Parikh, R. (1982). Process logic: Expressiveness,
decidability, completeness. Journal of Computer and System Sciences, 25(2):144–170.

[Harel et al., 2000] Harel, D., Kozen, D., and Tiuryn, J. (2000). Dynamic Logic. MIT Press.

[He et al., 2004] He, H., Haas, H., and Orchard, D. (2004). Web services architecture usage sce-
narios. W3C working group note, W3C.

Bibliography 306

[Heffner et al., 2006] Heffner, R., Zetie, C., and Hogan, L. (2006). Survey data says: The time for
SOA is now. Technical report, Forrester Research.

[Hoare, 1969] Hoare, C. (1969). An axiomatic basis for computer programming. Communications
of the ACM, 12(10).

[Horrocks, 1997] Horrocks, I. (1997). Optimising Tableaux Decision Procedures
for Description Logics. PhD thesis, The University of Manchester. URL
http://www.cs.man.ac.uk/ horrocks/Publications/download/1997/phd-2sss.ps.gz.

[Horrocks, 1998] Horrocks, I. (1998). Using an Expressive Description Logic: FaCT or Fiction? In
KR-98, pages 636–647.

[Horrocks, 2003] Horrocks, I. (2003). Implementation and Optimisation Techniques. In Baader, F.,
Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. F., editors, The Description
Logic Handbook: Theory, Implementation, and Applications, pages 306–346. Cambridge University
Press.

[Horrocks et al., 2004] Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., and Dean,
M. (2004). SWRL: A semantic web rule language combining OWL and RuleML. Available at
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

[Horrocks and Patel-Schneider, 1998a] Horrocks, I. and Patel-Schneider, P. F. (1998a). Comparing
subsumption optimizations. In Proc. of the Int. Description Logics Workshop (DL98).

[Horrocks and Patel-Schneider, 1998b] Horrocks, I. and Patel-Schneider, P. F. (1998b). DL systems
comparison. In Proc. of the Int. Description Logics Workshop (DL98), pages 55–57.

[Horrocks et al., 2003] Horrocks, I., Patel-Schneider, P. F., and van Harmelen, F. (2003). From
SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26.

[Horrocks and Sattler, 2001] Horrocks, I. and Sattler, U. (2001). Ontology reasoning in the
SHOQ(D) description logic. In IJCAI 2001, pages 199–204.

[Horrocks and Sattler, 2002] Horrocks, I. and Sattler, U. (2002). Optimised Reasoning for SHIQ.
In Proc. of the 15th Eur. Conf. on Artificial Intelligence (ECAI 2002), pages 277–281.

[Hull et al., 2006] Hull, D., Zolin, E., Bovykin, A., Horrocks, I., Sattler, U., and Stevens, R. (2006).
Deciding semantic matching of stateless services. In Proceedings of the Twenty-First National Con-
ference on Artificial Intelligence (AAAI-06) and Eighteenth Innovative Applications of Artificial
Intelligence (IAAI-06) Conference, pages 1319–1324.

[Hustadt et al., 2004] Hustadt, U., Motik, B., and Sattler, U. (2004). Reducing SHIQ Description
Logic to Disjunctive Datalog Programs. In Proceedings of the 9th International Conference on
Knowledge Representation and Reasoning (KR2004), pages 152–162.

[Jaeger et al., 2005] Jaeger, M. C., Rojec-Goldmann, G., Liebetruth, C., Muehl, G., and Geihs, K.
(2005). Ranked matching for service descriptions using OWL-S. In KiVS 2005, pages 91–102.

[Jeng and Cheng, 1992] Jeng, J. and Cheng, B. (1992). Using automated reasoning techniques to
determine software reuse. International Journal of Software Engineering and Knowledge Engi-
neering, 2(4).

Bibliography 307

[Jeng and Cheng, 1993] Jeng, J. and Cheng, B. (1993). Using Formal Methods to Construct a
Software Component Library, volume 717 of Lecture Notes in Computer Science, pages 397–417.
Springer Verlag.

[Jeng and Cheng, 1995] Jeng, J. and Cheng, B. (1995). Specification matching for software reuse:
A foundation. In SSR’95. ACM SIGSOFT. ACM Press.

[Kaufer and Klusch, 2006] Kaufer, F. and Klusch, M. (2006). Wsmo-mx: A logic programming
based hybrid service matchmaker. In ECOWS ’06: Proceedings of the European Conference on
Web Services, pages 161–170.

[Kawamura et al., 2004] Kawamura, T., Blasio, J. A. D., Hasegawa, T., Paolucci, M., and Sycara,
K. P. (2004). Public Deployment of Semantic Service Matchmaker with UDDI Business Registry.
In International Semantic Web Conference 2004 (ISWC 2004), pages 752–766.

[Keller et al., 2004a] Keller, U., Lara, R., and (editors), A. P. (2004a). WSMO web service discov-
ery. Technical report, DERI.

[Keller et al., 2006a] Keller, U., Lara, R., Lausen, H., and Fensel, D. (2006a). Semantic Web: The-
ory, Tools and Applications, chapter Semantic Web Service Discovery in the WSMO Framework.
IDEA Publishing Group.

[Keller et al., 2005] Keller, U., Lara, R., Lausen, H., Polleres, A., and Fensel, D. (2005). Automatic
location of services. In ESWC 2005, Heraklion, Greece.

[Keller and Lausen, 2006] Keller, U. and Lausen, H. (2006). Functional description of web services.
Deliverable, WSML working group.

[Keller et al., 2006b] Keller, U., Lausen, H., and Stollberg, M. (2006b). On the semantics of func-
tional descriptions of web services. In 3rd European Semantic Web Conference (ESWC2006).

[Keller et al., 2004b] Keller, U., Stollberg, M., and Fensel, D. (2004b). WOOGLE meets Semantic
Web Fred. In Proceedings of the Workshop on WSMO Implementations (WIW 2004), CEUR-
WS.org/Vol-113/.

[Kifer, 2005] Kifer, M. (2005). Service discovery with SWSL-rules. In W3C Workshop on Frame-
works for Semantics in Web Services.

[Kifer et al., 2004] Kifer, M., Lara, R., Polleres, A., Zhao, C., Keller, U., Lausen, H., and Fensel,
D. (2004). A logical framework for web service discovery. In ”Semantic Web Services: Preparing
to Meet the World of Business Applications” worshop at ISWC 2004.

[Kifer et al., 1995] Kifer, M., Lausen, G., and Wu, J. (1995). Logical foundations of object-oriented
and frame-based languages. Journal of the ACM, 42:741–843.

[Klein and König-Ries, 2004] Klein, M. and König-Ries, B. (2004). Coupled signature and spec-
ification matching for automatic service binding. In Proc. of the European Conference on Web
Services (ECOWS 2004), Erfurt, Germany.

[Klusch et al., 2006] Klusch, M., Fries, B., and Sycara, K. (2006). Automated semantic web service
discovery with OWLS-MX. In AAMAS 2006.

[Kopecky, 2005] Kopecky, J. (2005). WSMO Use Case: Amazon e-commerce service. Technical
report, WSMO working group.

Bibliography 308

[Kopecky et al., 2005] Kopecky, J., Moran, M., Roman, D., and Mocan, A. (2005). D24.2v0.1.
WSMO grounding. Working draft 24.2, WSMO working group.

[Kuester et al., 2007] Kuester, U., Koenig-Ries, B., Stern, M., and Klein, M. (2007). Diane: an
integrated approach to automated service discovery, matchmaking and composition. In WWW
’07: Proceedings of the 16th international conference on World Wide Web, pages 1033–1042, New
York, NY, USA. ACM Press.

[Lara, 2006] Lara, R. (2006). Two-phased web service discovery. In AI-driven Service Oriented
Computing workshop at AAAI 2006.

[Lara et al., 2004a] Lara, R., Binder, W., Constantinescu, I., Fensel, D., Keller, U., Pan, J., Pistore,
M., Polleres, A., Toma, I., Traverso, P., and Zaremba, M. (2004a). Semantics for Web Service
Discovery and Composition. Technical report, Knowledge Web.

[Lara et al., 2004b] Lara, R., Binder, W., Pistore, M., Traverso, P., Constantinescu, I., Pan, J.,
Nixon, L., Haller, A., and Vitvar, T. (2004b). Semantic requirements for web service description.
Project Deliverable 2.4.1, Knowledge Web.

[Lara et al., 2006a] Lara, R., Cantador, I., and Castells, P. (2006a). XBRL taxonomies and OWL
ontologies for investment funds. In 1st International Workshop on Ontologizing Industry Standards
(OIS 2006).

[Lara et al., 2007a] Lara, R., Cantador, I., and Castells, P. (2007a). Semantic web technologies for
the financial domain. In Cardoso, J., editor, Real-world Applications of Semantic Web Technology
and Ontologies. IDEA Group Publishing.

[Lara et al., 2007b] Lara, R., Corella, M., and Castells, P. (2007b). A flexible model for the location
of services. International Journal of Electronic Commerce, Special Issue on Semantic Matchmaking
and Resource Retrieval. Accepted for publication.

[Lara et al., 2006b] Lara, R., Corella, M. A., and Castells, P. (2006b). A flexible model for web
service discovery. In SMR@VLDB 2006.

[Lara et al., 2003] Lara, R., Lausen, H., Arroyo, S., de Bruijn, J., and Fensel, D. (2003). Semantic
web services: description requirements and current technologies. In Semantic Web Services for
Enterprise Application Integration and e-Commerce (SWSEE03) workshop at ICEC 2003.

[Lara and Olmedilla, 2005] Lara, R. and Olmedilla, D. (2005). Discovery and contracting of se-
mantic web services. In W3C Workshop on Frameworks for Semantics in Web Services.

[Lara et al., 2005] Lara, R., Polleres, A., Lausen, H., Roman, D., de Bruijn, J., and Fensel, D.
(2005). A conceptual comparison between WSMO and OWL-S. Final draft, WSMO Working
Group.

[Lara et al., 2004c] Lara, R., Roman, D., Polleres, A., and Fensel, D. (2004c). A conceptual com-
parison of WSMO and OWL-S. In Proceedings of the European Conference on Web Services
(ECOWS 2004), Erfurt, Germany.

[Lausen et al., 2005] Lausen, H., Ding, Y., Stollberg, M., Fensel, D., Lara, R., and Han, S.-
K. (2005). Semantic web portals: state-of-the-art survey. Journal of Knowledge Management,
9(5):40–49.

Bibliography 309

[Li and Horrocks, 2003] Li, L. and Horrocks, I. (2003). A software framework for matchmaking
based on semantic web technology. In Proceedings of the 12th International Conference on the
World Wide Web, Budapest, Hungary.

[Liskov and Wing, 1994] Liskov, B. and Wing, J. (1994). A behavioral notion of subtyping. ACM
Transactions on Programming Languages, 16(10).

[Lloyd, 1987] Lloyd, J. W. (1987). Foundations of logic programming (second, extended edition).
Springer series in symbolic computation. Springer-Verlag.

[Lopez et al., 2005] Lopez, A., Lopez, O., Pezuela, C., and Scicluna, J. (2005). D3.6 WSMO use
case STREAM flows! system. Technical report, WSMO working group.

[Lukasiewicz and Schellhase, 2006] Lukasiewicz, T. and Schellhase, J. (2006). Variable-strength
conditional preferences for ranking objects in ontologies. In ESWC 2006, pages 288–302.

[Luo et al., 2005] Luo, J., Montrose, B., and Kang, M. (2005). An Approach for Semantic Query
Processing with UDDI. In Agents, Web Services and Ontologies Merging.

[Lynch et al., 2006] Lynch, D., Keeney, J., Lewis, D., and O’Sullivan, D. (2006). A proactive
approach to semantically oriented service discovery. In 2nd Workshop on Innovations in Web
Infrastructure at WWW 2006.

[MacKenzie et al., 2006] MacKenzie, C. M., Laskey, K., McCabe, Brown, P. F., and Metz, R.
(2006). Reference model for service oriented architecture 1.0. Committee Specification 1, OASIS.

[Martin et al., 2004] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith,
S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and Sycara, K.
(2004). OWL-S: Semantic markup for web services. W3C submission.

[McDermott, 2004] McDermott, D. (2004). DRS: A set of conventions for representing logical
languages in RDF. Available at http://www.daml.org/services/owl-s/1.1B/DRSguide.pdf.

[McGuinness and van Harmelen, 2004] McGuinness, D. L. and van Harmelen, F. (2004). OWL
Web Ontology Language Overview. Recommendation, W3C.

[Minsky, 1981] Minsky, M. (1981). A Framework for Representing Knoledge. In Haugeland, J.,
editor, Mind Design. The MIT Press.

[Mokhtar et al., 2006] Mokhtar, S. B., Kaul, A., Georgantas, N., and Issarny, V. (2006). Efficient
semantic service discovery in pervasive computing environments. In Proceedings of the ACM/I-
FIP/USENIX 7th International Middleware Conference (Middleware’06).

[Monson-Haefel and Chappell, 2000] Monson-Haefel, R. and Chappell, D. (2000). Java Message
Service. O’Reilly Java Series.

[Nadalin et al., 2004] Nadalin, A., Kaler, C., Hallam-Baker, P., and (editors), R. M. (2004). Web
Services Security: SOAP Message Security 1.0 (WS-Security 2004). Technical report, OASIS.

[Nardi et al., 2003] Nardi, D., Brachmanand, R. J., Baaderand, F., Nutt, W., Donini, F. M., Sat-
tler, U., Calvanese, D., Moelitor, R., Giacomo, G. D., Ksters, R., Wolter, F., McGuinness, D. L.,
Patel-Schneider, P. F., Moeller, R., Haarslev, V., Horrocks, I., Borgida, A., Welty, C., Rector,
A., Franconi, E., Lenzerini, M., and Rosati, R. (2003). The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge.

Bibliography 310

[Newcomer and Lomow, 2004] Newcomer, E. and Lomow, G. (2004). Understanding SOA with
Web Services. Addison-Wesley Professional.

[Noia et al., 2004] Noia, T. D., Sciascio, E. D., Donini, F. M., and Mogiello, M. (2004). A system
for principled matchmaking in an electronic marketplace. International Journal of Electronic
Commerce, 8(4):9–37.

[Noia et al., 2003] Noia, T. D., Sciascio, E. D., Donini, F. M., and Mongiello, M. (2003). A system
for principled matchmaking in an electronic marketplace. In Proc. Intl. Conf. on the World Wide
Web 2003 (WWW2003).

[Noy and McGuinness, 2001] Noy, N. F. and McGuinness, D. L. (2001). Ontology development
101: A guide to creating your first ontology. Technical report, Stanford University.

[Olmedilla et al., 2004] Olmedilla, D., lara, R., Polleres, A., and Lausen, H. (2004). Trust negoti-
ation for semantic web services. In First International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC 2004) at ICWS 2004.

[Ort, 2005] Ort, E. (2005). Service-oriented architecture and web services: Concepts, technologies
and tools. Technical report, Sun Developer Network.

[Pan, 2005] Pan, Z. (2005). Benchmarking dl reasoners using realistic ontologies. In Proc. of the
International workshop on OWL: Experience and Directions (OWL-ED2005).

[Paolucci et al., 2002] Paolucci, M., Kawamura, T., Payne, T., and Sycara, K. (2002). Semantic
matching of web services capabilities. In Horrocks, I. and Handler, J., editors, 1st Int. Semantic
Web Conference (ISWC), pages 333–347. Springer Verlag.

[Papazoglou et al., 2006] Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. (2006).
Service-oriented computing research roadmap. Technical report.

[Patel-Schneider et al., 2004] Patel-Schneider, P. F., Hayes, P., and Horrocks, I. (2004). OWL web
ontology language semantics and abstract syntax. Recommendation 10 February 2004, W3C.

[Penix and Alexander, 1997] Penix, J. and Alexander, P. (1997). Towards automated component
adaptation. In Proceedings of the 9th International Conference on Software Engineering and
Knowledge Engineering.

[Pokraev et al., 2003] Pokraev, S., Koolwaaij, J., and Wibbels, M. (2003). Extending UDDI with
Context-Aware Features Based on Semantic Service Descriptions. In Proceedings of the 2003
International Conference on Web Services (ICWS’03), pages 184–190.

[Preist, 2004] Preist, C. (2004). A conceptual architecture for semantic web services. In Proceedings
of the International Semantic Web Conference 2004 (ISWC 2004).

[Prud’hommeaux and Seaborne, 2006] Prud’hommeaux, E. and Seaborne, A. (2006). SPARQL
Query Language for RDF. Working draft, W3C.

[Quillian, 1967] Quillian, M. R. (1967). Word Concepts: A Theory and Simulation of Some Basic
Capabilities. Behavioral Science, 12:410–430.

[Rollings and Wing, 1991] Rollings, E. and Wing, J. (1991). Specifications as search keys for soft-
ware libraries. In Proceedings of the Eighth International Conference on Logic Programming.

Bibliography 311

[Roman et al., 2005] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M.,
Polleres, A., Fensel, D., and Bussler, C. (2005). Web Service Modeling Ontology. Applied Ontology
Journal, 1(1):77–106.

[Rosenfield, 1994] Rosenfield, R. (1994). Adaptive statistic language model. PhD thesis, Carnegie
Mellon University.

[Schmidt-Schauss and Smolka, 1991] Schmidt-Schauss, M. and Smolka, G. (1991). Attributive con-
cept descriptions with complements. Artificial Intelligence, 48(1):1–26.

[Schumann and Ficher, 1997] Schumann, J. and Ficher, B. (1997). Nora/hammr: Making
deduction-based software component retrieval practical. In Proceedings of the 12th IEEE In-
ternational Automated Software Engineering Conference (ASE97).

[Sirin et al., 2006a] Sirin, E., Grau, B. C., and Parsia, B. (2006a). From wine to water: Optimizing
description logic reasoning for nominals. In Proceedings of the International Conference on the
Principles of Knowledge Representation and Reasoning (KR-2006).

[Sirin and Parsia, 2006] Sirin, E. and Parsia, B. (2006). Optimizations for Answering Conjunctive
ABox Queries. In Proceedings of the International Workshop on Description Logic (DL-2006).

[Sirin et al., 2006b] Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., and Katz, Y. (2006b).
Pellet: A practical OWL-DL reasoner. Journal of Web Semantics.

[Sivashanmugam et al., 2004] Sivashanmugam, K., Verma, K., and Sheth, A. (2004). Discovery of
web services in a federated registry environment. In Proceedings of IEEE Second International
Conference on Web Services.

[Sleeper, 2001] Sleeper, B. (2001). Defining web services. Technical report, The Stencil Group.

[Smith and Fingar, 2003] Smith, H. and Fingar, P. (2003). Business Process Management (BPM):
The Third Wave. Meghan-Kiffer Press.

[Spanoudakis et al., 2005] Spanoudakis, G., Zisman, A., and Kozlenkov, A. (2005). A service dis-
covery framework for service centric systems. In SCC ’05: Proceedings of the 2005 IEEE Inter-
national Conference on Services Computing, pages 251–259.

[Sprott and Wilkes, 2004] Sprott, D. and Wilkes, L. (2004). Understanding service - oriented arhci-
tecture. The Architecture Journal.

[Srinivasan et al., 2004] Srinivasan, N., Paolucci, M., and Sycara, K. (2004). Adding OWL-S to
UDDI, implementation and throughput. In SWSWPC Workshop at ICWS 2004.

[Stollber et al., 2004] Stollber, M., Lausen, H., Lara, R., Keller, U., Zaremba, M., Haller, A.,
Fensel, D., and Kifer, M. (2004). D3.3 WSMO use case virtual travel agency. Technical report,
WSMO working group.

[Stollberg et al., 2004] Stollberg, M., Toma, I., Keller, U., Keimel, B., and Zugmann, P. (2004).
D3.5 SWF use case - final version 1.2. Technical report, WSMO working group.

[Sycara et al., 2002] Sycara, K., Widoff, S., Klusch, M., and Lu, J. (2002). LARKS: Dynamic
matchmaking among heterogeneous software agents in cyberspace. Autonomous Agents and Multi-
Agent Systems, pages 173–203.

Bibliography 312

[Teege, 1994] Teege, G. (1994). Making the difference: A substraction operation for description
logics. In KR’94.

[Tidwell, 2000] Tidwell, D. (2000). Web services: the web’s next revolution. Technical report, IBM
developerWorks.

[Toma and Foxvog, 2006] Toma, I. and Foxvog, D. (2006). D28.4 v0.1 non-functional properties in
web services. Working draft 28.4, WSMO working group.

[Toma et al., 2005] Toma, I., Sapkota, B., Scicluna, J., Gomez, J. M., Roman, D., and Fensel, D.
(2005). A P2P discovery mechanism for web service execution environment. In Proceedings of the
2nd International WSMO Implementation Workshop (WIW 2005).

[Trastour et al., 2002] Trastour, D., Bartolini, C., and Preist, C. (2002). Semantic web support
for the business-to-business e-commerce lifecycle. In World Wide Web Conference (WWW202).
ACM.

[Tsarkov and Horrocks, 2003] Tsarkov, D. and Horrocks, I. (2003). Reasoner prototype. imple-
menting new reasoner with datatypes support. Technical report, WonderWeb project.

[Ullman, 1988] Ullman, J. D. (1988). Principles of Database and Knowledge-Base Systems, vol-
ume I. Computer Science Press.

[Valle and Cerizza, 2005] Valle, E. D. and Cerizza, D. (2005). COCOON Glue: a prototype of
WSMO Discovery engine for the healthcare field. In 2nd WSMO Implementation Workshop.

[Valle et al., 2005] Valle, E. D., Cerizza, D., and Celino, I. (2005). The mediators centric approach
to automatic web service discovery of glue. In First International Workshop on Mediation in
Semantic Web Services: MEDIATE 2005.

[Verma et al., 2005] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., and
Miller, J. (2005). METEOR-S WSDI: A scalable infrastructure of registries for semantic publica-
tion and discovery of web services. Journal of Information Technology and Management, Special
Issue on Universal Global Integration, 6(1):17–39.

[Volz, 2004] Volz, R. (2004). Web Ontology Reasoning with Logic Databases. PhD thesis, AIFB,
Karlsruhe.

[w. Dijkstra, 1972] w. Dijkstra, E. (1972). Structured programming, chapter Notes on structured
programming. Academic Press.

[W3C, 2003] W3C (2003). SOAP version 1.2 part 0: Primer. http://www.w3.org/TR/2003/REC-
soap12-part0-20030624/.

[Weibel et al., 1998] Weibel, S., Kunze, J., Lagoze, C., and Wolf, M. (1998). Dublin core metadata
for resource discovery. RFC 2413, IETF.

[Wielemaker, 2003] Wielemaker, J. (2003). An overview of the SWI-Prolog programming environ-
ment. In Mesnard, F. and Serebenik, A., editors, Proceedings of the 13th International Workshop
on Logic Programming Environments.

[Wikipedia, 2005] Wikipedia (2005). Service-oriented architecture.
http://en.wikipedia.org/wiki/Service-oriented architecture.

Bibliography 313

[Yang and Kifer, 2003] Yang, G. and Kifer, M. (2003). Reasoning about anonymous resources and
meta statements on the semantic web. Journal of Data Semantics, 1:69–97.

[Yang et al., 2005] Yang, G., Kifer, M., Zhao, C., and Chowdhary, V. (2005). Flora-2: User’s man-
ual (version 0.94). Technical report, SRI International, State University of New York, Microsoft.

[Zaremski and Wing, 1995] Zaremski, A. and Wing, J. (1995). Specification matching of software
components. In 3rd ACM SIGSOFT Symposium on the Foundations of Software Engineering.

[Zaremski and Wing, 1997] Zaremski, A. and Wing, J. (1997). Specification matching of software
components. ACM Transactions on Software Engineering and Methodology (TOSEM), 6:333–369.

[Zein and Kermarrec, 2004] Zein, O. and Kermarrec, Y. (2004). An approach for describing/dis-
covering services and for adapting them to the needs of users in distributed systems. In Semantic
Web Services. Papers from 2004 AAAI Spring Symposium.

Appendix A

Complete example of discovery

based on Transaction Logic

Below is the complete example used in [Kifer et al., 2004], which can be run using FLORA-

2.

/*
** Title: SERVICE DISCOVERY WITH MEDIATORS
**
** Features: - WG-mediators
** - complex goals
** - rules in effects and goals
** - service effects can depend on input
*/

//?- debug[#check_undefined(on)]@flora(sys). // use debug mode

/*
** A taxonomy of cities.
** europe means European Cities
** france - French cities, etc.
** tyrol - Tyrolean cities, etc.
*/
usa::america.
germany::europe.
austria::europe.
france::europe.
tyrol::austria.
nystate::usa.
stonybrook:nystate.
innsbruck:tyrol.

314

Appendix A: Complete example of discovery based on Transaction Logic 315

lienz:tyrol.
vienna:austria.
bonn:germany.
frankfurt:germany.
paris:france.
nancy:france.
// regions - things like europe, germany, tyrol
europe:region.
america:region.
// any subregion of a region is also a region
Reg:region :- Reg1:region and Reg::Reg1.
// A location is any city or town that belongs to any region
Loc:location :- Reg:region and Loc : Reg.

/*
Services/clients write their descriptions/queries to conform to specific
ontologies. Most of the intelligence lies in the mediators, which are
assumed to be written by skilled professionals.
Client goals are assumed to be written by naive users and thus are the
simplest.
Service descriptions are written by knowledge engineers. They can be
more complex, but shouldn’’t require a Ph.D. in knowledge representation.

Goal ontology:
Clients’ goals use the Goal Ontology, which provides primitives for
discovering and contracting services.
The primitives support a range of discovery tasks, from least specific
to more specific.

Discovery goals:

searchTrip(from,to) - from/to can be cities or regions; if a
region then it means the requested service
must serve every city in that region that
is known to the KB. Assume either both are
cities or both are regions.

searchCitipass(loc) - citipass search; loc can be a city or a region

Contracting goals:
tripContract(serviceId,fromCity,toCity,date,creditCard)
citipassContract(serviceId,city,date,creditCard)

Goals have the form:

goalId[requestId->someId, query->queryType]

where
someId - the request Id,
goalId - goal Id

Appendix A: Complete example of discovery based on Transaction Logic 316

queryType - a discovery/contracting primitive described above

Results of a search are stored in the attribute result, e.g.,

goal1[result ->> {serv1,serv2}]

The result of a contract execution is stored in the attribute
confirmation, e.g.,

goal2[confirmation -> info(service,confNumber,from,to,date)]
or
goal2[confirmation -> info(service,confNumber,city,date)]

Service ontologies:
Services represent their inputs and outputs using ontologies that can
possibly be different from the ontology used by the users.
In our examples, services use two different ontologies. The ontology
mismatch is resolved using the Web service-to-goal mediators
(wg-mediators). The wg-mediators for the Request ontology and the
two service ontologies are defined separately below.

Service Ontology #1
Inputs have the following form:

search(requestId,fromLocation,toLocation)
search(requestId,city)
contract(requestId,fromLocation,toLocation,date,ccard)
contract(requestId,city,date,ccard)

Input is constructed from the client’s goal by the mediator and
passed to the service.

The output produced by the service has the form

for searches:
itinerary(reqNumber)[from->fromCity, to->toCity]
passinfo(reqNumber)[city->City]

Note: for searches, services assume that the input provides
a specific pair of cities. Services know nothing about
searches by regions, so the descriptions of their
capabilities are relatively simple. Region-based
queries are constructed by mediators. This is what we
mean when we say that most of the intelligence is
in the mediators.

for contracting:
ticket(reqNumber)[confirmation->confNumber,

from->fromCity, to->toCity, date->someDate]
pass(reqNumber)[confirmation->confNumber,

Appendix A: Complete example of discovery based on Transaction Logic 317

city->City, date->someDate]

Service Ontology #2
Provides basically the same information, but uses different
representation (to illustrate the idea of different mediators).
Services that use this ontology only sell citipasses.

Inputs have the following form:
discover(requestId,city)
pay(requestId,city,date,ccard)

The output looks like this:
reqNumber[location->city)] for searches
reqNumber[confirmation->(number,city,date)] for purchases

**/

/************************ Available services *********************************
Assume precondition/effects to be mandatory and have uniform representation
for all services. In general, we could use mediators that the discovery and
contracting query could invoke to reconcile the different representations.

***/

// This service uses Ontology #1 and mediator1 to map client ontology
// to Ontology #1
serv1[

// Input must be a request for ticket from somewhere in Germany to somewhere
// in Austria OR a request for a city pass for a city in Tyrol
capability->

_#[
precondition(Input) ->

${
(Input = contract(_, From:germany, To:austria, Date, Card)
or Input = contract(_, City:tyrol, Date, _))
and validDate(Date) and validCard(Card)

},
effects(Input) ->

${
// Note: repeating some preconditions, like From:germany,
// because precondition(Input) is not checked
// during discovery, but From:germany, To:austria
// can be relevant to discovery. However, not all
// of the precondition is copied here -- only what
// is relevant for discovery.
(itinerary(Req)[from->From,to->To] :-

Input = search(Req, From:germany, To:austria))
and
(passinfo(Req)[city->City] :-

Input = search(Req,City:tyrol))
and

Appendix A: Complete example of discovery based on Transaction Logic 318

// Note: precondition is checked at invocation, so
// no need to repeat those tests here.
(ticket(Req)[confirmation->Num,

from->From, to->To, date->Date] :-
Input = contract(Req,From,To,Date,_CCard),

generateConfNumber(Num))
and
(pass(Req)[confirmation->Num, city->City, date->Date] :-

Input = contract(Req,City,Date,_CCard),
generateConfNumber(Num))

}
],

usedMediators ->> med1
].

// Another Ontology #1 service
serv2[

capability->
_#[

precondition(Input) -> ${
// Input must be a request for a ticket from a

// city in France or Germany to a city in Austria
Input = contract(_, From:(france or germany),

To:austria, Date, Card)
and validDate(Date) and validCard(Card)
},

effects(Input)-> ${
(itinerary(Req)[from->From, to->To] :-
Input = search(Req,

From:(france or germany), To:austria))
and
(ticket(Req)[confirmation->Num,

from->From, to->To, date->Date] :-
Input = contract(Req,From,To,Date,_CCard) and
generateConfNumber(Num))

}
],

usedMediators ->> med1

].

// An Ontology #2 service
serv3[

capability->
_#[

precondition(Input) ->
${

Appendix A: Complete example of discovery based on Transaction Logic 319

// request for a pass for a French city
Input = pay(_,City:france,Date,Card)

and validDate(Date) and validCard(Card)
},

effects(Input)->
${
(Req[location->City] :-

Input = discover(Req,City:france))
and
(Req[confirmation->(Num,City,Date)] :-
Input = pay(Req,City,Date,_Card) and
generateConfNumber(Num))

}
],

usedMediators ->> med2
].

// Another Ontology #2 service
serv4[

capability->
_#[

precondition(Input) ->
${

// can do passes in any city except Paris
Input = pay(_,City:france,Date,Card)

and City \= paris
and validDate(Date) and validCard(Card)

},
effects(Input)->

${
(Req[location->City] :-
Input = discover(Req,City:france)

and City \= paris)
and
(Req[confirmation->(Num,City,Date)] :-
Input = pay(Req,City,Date,_Card) and
generateConfNumber(Num))

}
],

usedMediators ->> med2
].

/******************************** GOALS ***************************************
Goals are objects that have queries written to the Goal ontology spec

**/

Appendix A: Complete example of discovery based on Transaction Logic 320

goal1[
requestId -> _#,
query -> searchTrip(bonn,innsbruck),
result->>{}

].

goal2[
requestId -> _#,
query -> tripContract(serv1,bonn,innsbruck,’1/1/2007’,1234567890),
result->>{}

].

goal2b[
requestId -> _#,
query -> tripContract(serv2,stonybrook,innsbruck,’1/1/2007’,1234567890),
result->>{}

].

// need services that serve all cities in France and Austria
// WG-mediators will generate the appropriate queries to the services
goal3[

requestId -> _#,
query -> searchTrip(france,austria),
result->>{}

].

goal4[
requestId -> _#,
query-> searchCitipass(frankfurt),
result->>{}

].

goal5[
requestId -> _#,
query-> searchCitipass(innsbruck),
result->>{}

].

goal6[
requestId -> _#,
query -> searchCitipass(france),
result->>{}

].

goal7[
requestId -> _#,
query -> citipassContract(serv4,nancy,’22/2/2005’,0987654321),

Appendix A: Complete example of discovery based on Transaction Logic 321

result->>{}
].

/************************** Mediators ***************************************
A mediator needs to:

1. Convert input - <mediatorId>[constructInput(Goal)->Input]
2. Construct the query to be used for testing the after-state of service

This is done by <mediatorId>[reportResult(Goal,Result)]

This method tests that, after the appropriate translation,
the goal is satisfied in the after-state of the service.
Result gets bound to a formula that is appropriate for the
representation of results in the goal ontology. That is,
it looks like goal[result->>...] or goal[confirmation->...].
See the header of this file for the explanations of how the goal
ontology looks like.

**/

// ********************* MEDIATOR 1 **********************
med1[constructInput(Goal)->Input] :-

Goal[requestId->ReqId, query->Query] and
if Query = searchTrip(From,To)
then (

generalizeArg(From, From1), generalizeArg(To, To1),
Input = search(ReqId,From1,To1)

) else if Query = searchCitipass(City)
then (

generalizeArg(City, City1),
Input = search(ReqId,City1)

) else if Query = tripContract(ServiceId,From,To,Date,CCard)
then (

generalizeArg(From, From1), generalizeArg(To, To1),
Input = contract(ReqId,From1,To1,Date,CCard)

) else if Query = citipassContract(ServiceId,City,Date,CCard)
then (

generalizeArg(City, City1),
Input = contract(ReqId,City1,Date,CCard)

) else fail.

med1[reportResult(Goal,Serv,Result)] :-
Goal[query->searchTrip(From:location,To:location)] and

itinerary(_)[from->From, to->To],
Result = ${Goal[result->>Serv]}.

med1[reportResult(Goal,Serv,Result)] :-
Goal[query->searchTrip(From:region,To:region)] and

refresh{_[doesNotServeCity(_,_)]},
not med1[doesNotServeCity(From,To)],

Result = ${Goal[result->>Serv]}.

Appendix A: Complete example of discovery based on Transaction Logic 322

med1[reportResult(Goal,Serv,Result)] :-
Goal[query->searchCitipass(City:location)] and

passinfo(_)[city->City],
Result = ${Goal[result->>Serv]}.

med1[reportResult(Goal,Serv,Result)] :-
Goal[query->searchCitipass(Region:region)] and

refresh{_[doesNotServeCity(_)]},
not med1[doesNotServeCity(Region)],
Result = ${Goal[result->>Serv]}.

// contracting requests
med1[reportResult(Goal,Result)] :-

Goal[query->tripContract(Serv,From,To,Date,_CCard)] and
ticket(_)[confirmation->Num, from->From, to->To, date->Date],
Result = ${Goal[confirmation->info(Serv,Num,From,To,Date)]}.

med1[reportResult(Goal,Result)] :-
Goal[query->citipassContract(Serv,City,Date,_CCard)] and
pass(_)[confirmation->Num, city->City, date->Date],
Result = ${Goal[confirmation->info(Serv,Num,City,Date)]}.

// for region-level queries check if there is a city that is not served
med1[doesNotServeCity(FromReg,ToReg)] :-

City1:FromReg and City2:ToReg and
not itinerary(_)[from->City1, to->City2].

med1[doesNotServeCity(Region)] :-
City:Region and

not passinfo(_)[city->City].

// ********************* MEDIATOR 2 **********************
med2[constructInput(Goal)->Input] :-

Goal[requestId->ReqId, query->Query] and
if Query = searchCitipass(City)
then (

generalizeArg(City, City1),
Input = discover(ReqId,City1)

) else if Query = citipassContract(_ServiceId,City,Date,CCard)
then (

generalizeArg(City, City1),
Input = pay(ReqId,City1,Date,CCard)

) else fail.

med2[reportResult(Goal,Serv,Result)] :-
Goal[query->searchCitipass(City:location)] and

_[location->City],
Result = ${Goal[result->>Serv]}.

med2[reportResult(Goal,Serv,Result)] :-
Goal[query->searchCitipass(Region:region)] and

refresh{_[doesNotServeCity(_)]},

Appendix A: Complete example of discovery based on Transaction Logic 323

not med2[doesNotServeCity(Region)],
Result = ${Goal[result->>Serv]}.

// for region-level queries check if there is a city that is not served
med2[doesNotServeCity(Region)] :-

City:Region and
not _[location->City].

// contracting request
med2[reportResult(Goal,Result)] :-

Goal[query->citipassContract(Serv,City,Date,_CCard)] and
_[confirmation->(Num,City,Date)],
Result = ${Goal[confirmation->info(Serv,Num,City,Date)]}.

/****************** A generic service discovery query ***********************
Given a goal, find all services that match and print out their Ids.
Represented as a transaction because it uses hypothetical updates.
Hypothetical updates are simulated by insert/delete because Flora-2
doesn’’t support the hypotheticals.

***/
#find_service(Goal) :-

Serv[usedMediators ->> Mediator[constructInput(Goal) -> Input]],
Serv.capability[effects(Input) -> Effects],

insertrule{Effects}, // hypothetically assume the effects

// Check if the goal is satisfied by the service and report result
if Mediator[reportResult(Goal,Serv,Result)] then insert{Result},
// Remove the hypothetically added rules
deleterule{Effects},
fail.

#find_service(_Goal) :- true.

/************************ Service contracting ****************************
Similar to discovery, but also checks precondition

***/
#contract_service(Goal) :-

// get the service to invoke: contracting queries have 4 or 5 args
(Goal.query = _(Serv,_,_,_,_) or Goal.query = _(Serv,_,_,_)),
Serv[usedMediators ->> Mediator[constructInput(Goal) -> Input]],
Serv.capability.precondition(Input)=Precond,
Precond,
Serv.capability[effects(Input) -> Effects],

insertrule{Effects}, // hypothetically assume effects
// Check if the goal is satisfied by the service and report result
if Mediator[reportResult(Goal,Result)] then insert{Result},

// Remove the hypothetically added facts and rules
deleterule{Effects},

Appendix A: Complete example of discovery based on Transaction Logic 324

fail.
#contract_service(_Goal) :- true.

// %%%%%%%%%%%%%%% MISC DEFINITIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

// use Prolog’’s gensym/2 to generate a new conf number
generateConfNumber(Num) :- gensym(conf,Num)@prolog(gensym).

validDate(_). // pretending that we check dates

validCard(_). // pretending that we check credit cards

// if an arg is a region - replace with new variable
generalizeArg(In,_Out) :- nonvar(In), In:region, !.
generalizeArg(_In,_In) :- true.

// %%%%%%%%%%%%%%% Sample service discovery requests %%%%%%%%%%%%%%%%%%%%%%%%%%
/*

// serv1, serv2
?- #find_service(goal1), goal1[result->>Serv].

// should succeed for service 1
?- #contract_service(goal2), goal2[confirmation->Info].

// should fail
?- #contract_service(goal2b), goal2b[confirmation->Info].

// serv2
?- #find_service(goal3), goal3[result->>Serv].

// none
?- #find_service(goal4), goal4[result->>Serv].

// serv1
?- #find_service(goal5), goal5[result->>Serv].

// serv3 only. serv4 does not match because it does not serve Paris
?- #find_service(goal6), goal6[result->>Serv].

// should succeed for serv4
?- #contract_service(goal7), goal7[confirmation->Info].

*/

