
Departamento de Ingenieŕıa Informática

An Approach to the Visualization of

Adaptive Hypermedia Structures and

other Small-World Networks based on

Hierarchically Clustered Graphs

Dissertation written by Manuel Freire Morán

under the supervision of Pilar Rodŕıguez Maŕın

Madrid, 3rd July 2007

Contents

Contents i

Abstract ix

Resumen xi

Acknowledgements xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Theoretical Issues . 3

1.3 Approach and Clover Framework . 4

1.4 Overview . 6

I Preliminaries 7

2 Graphs and the Small-World Property 9

2.1 Graph Theory . 10

2.2 Small-World Networks and Real-World Graphs 13

2.3 Graph Clustering . 17

2.4 Hierarchical Clustering . 21

3 Information Visualization and HCI 25

3.1 Graph Drawing . 27

3.1.1 Force-Directed Layouts . 28

3.2 Graph Visualization and Human-Computer Interaction 31

3.2.1 Detail and Context . 32

3.2.2 Preserving the mental map . 35

3.2.3 Creativity Support . 38

4 Adaptive Hypermedia 41

4.1 Classification of AH Systems . 42

ii

4.1.1 Types of Adaptation . 42

4.1.2 Adaptation methods . 43

4.1.3 Adaptive Hypermedia Systems 44

4.2 Reuse, Metadata and Domain Representation 46

4.3 User modelling . 48

4.4 Authoring Adaptive Hypermedia . 51

II A Hierarchical Clustering Approach 57

5 Approaches to graph visualization 61

5.1 General Architecture . 61

5.2 Internal Representation . 64

5.2.1 Generating Clusterings . 65

5.2.2 Representing a Clustered Hierarchy 66

5.2.3 Filtering . 69

5.3 Layout . 70

5.3.1 Incremental Layout in Clustered Graphs 70

5.4 Presentation and Interaction . 73

5.4.1 Interaction . 75

5.4.2 Animation . 76

6 The Clover Framework 79

6.1 Architecture . 80

6.2 Model . 81

6.2.1 Creation and Filtering . 82

6.2.2 Cluster Hierarchies and Clustered Graphs 84

6.2.3 Clustered graphs . 87

6.2.4 Events and updates . 89

6.3 View . 91

6.3.1 Representation . 92

6.3.2 Layout . 92

6.3.3 Animation . 98

6.4 Control . 101

6.4.1 Application and Actions . 103

6.4.2 Interaction . 106

7 Application to Adaptive Hypermedia 109

7.1 Wotan and Tangow . 110

7.1.1 Tasks, rules and fragments . 110

7.1.2 User model . 111

iii

7.2 WotEd . 114
7.2.1 Mapping . 115
7.2.2 Interaction . 116
7.2.3 Monitoring . 119

7.3 Experimental results . 121
7.3.1 Experimental setup . 123
7.3.2 Results . 125
7.3.3 Comparison with original experiment 126

8 Application to Other Small-World Domains 129

8.1 Targeteam . 130
8.2 Comet . 133
8.3 AC . 134
8.4 Ulises . 140

III Conclusions and Future Work 143

9 Conclusions and Future Work 145

9.1 Conclusions . 145
9.2 Discussion . 146
9.3 Future Work . 150

IV Appendix 155

A Introducción 157

A.1 Motivación y objetivos . 157
A.2 Aspectos teóricos . 159
A.3 Arquitectura de Clover . 162
A.4 Estructura de la tesis . 164

B Implementation notes 165

B.1 General architecture . 165
B.1.1 Model . 165
B.1.2 View and control . 167
B.1.3 Animation and layout . 168

B.2 Clover API . 168
B.2.1 BaseGraph . 168
B.2.2 StructureChangeEvent . 169
B.2.3 FilteredGraph . 170
B.2.4 Filter . 171

iv

B.2.5 Cluster . 171
B.2.6 ClusterHierarchy . 173
B.2.7 ClusteringEngine . 175
B.2.8 SimpleRuleClusterer . 176
B.2.9 HierarchyChangeEvent . 177
B.2.10 ClusteredGraph . 178
B.2.11 Slice . 179
B.2.12 ClusteringChangeEvent . 180
B.2.13 ViewGraph . 181
B.2.14 BaseView . 182
B.2.15 ClusterView . 183
B.2.16 Animator . 185
B.2.17 ClusterAnimator . 186
B.2.18 AnimationPlan . 186
B.2.19 LayoutManager . 188
B.2.20 LayoutAlgorithm . 189
B.2.21 Node . 189
B.2.22 LayoutCache . 190

B.3 File formats . 191
B.3.1 Clover save file . 191
B.3.2 Wotan course description . 192
B.3.3 Wotan user model . 194

Bibliography 197

Index 209

List of Figures

1.1 A simplified Clover pipeline . 5

2.1 The seven bridges of Königsberg . 9
2.2 The connected cavemen graph . 14
2.3 Power-law distribution of in-degree and out-degree in vertices from the

WWW . 16
2.4 Self-similar natural networks . 18
2.5 Hierarchical clustering . 22
2.6 Clustered graph . 24

3.1 Information Visualization and interaction 27
3.2 Use of graph coarsening to reduce the time to perform force-directed layout 30
3.3 A 2.5D visualization of a scientific co-citation graph 33
3.4 Change of focus in a hyperbolic tree . 36

4.1 AHA’s domain model graph authoring tool 54

5.1 Pipelined architectures of two graph visualization frameworks 62
5.2 Navigation of a clustered graph without relayouts 71
5.3 Incremental layout based on the Sugiyama-Misue algorithm 72
5.4 A screenshot of T4ML, a TouchGraph-based topic map authoring tool 73
5.5 JGraphPad graph editor . 75
5.6 Animation of a graph layout change in the Marey tool 77

6.1 Pipeline used within Clover . 80
6.2 Detailed Clover pipeline . 81
6.3 Rules used in default clustering engine 86
6.4 Example of clustered graph representation in Clover 92
6.5 Layout in Clover . 94
6.6 Layout sequence when no previous layout is available 96
6.7 Incremental layout example . 97
6.8 Animation of a cluster collapse . 102
6.9 Focus change animation . 102

vi

6.10 Basic Clover interface . 103
6.11 Contextual popup menus . 106

7.1 Wotan interfaces . 110
7.2 Wotan course presentation . 112
7.3 WotEd interface . 114
7.4 Vertex tooltips in WotEd . 117
7.5 Forms in WotEd . 118
7.6 Context menus in WotEd . 119
7.7 Course monitoring setup . 121
7.8 Course monitoring in WotEd . 122
7.9 Details on demand during monitoring 123
7.10 Results of the second experiment . 125
7.11 Results of the original experiment . 127

8.1 Overview of the Targeteam course creation process 131
8.2 Symbols used in Targeteam course representation 132
8.3 Targeteam pool browser interface . 133
8.4 Comet interface and ontology used in Iccars 135
8.5 Ac extraction interface . 136
8.6 Test selection and raw results in Ac . 137
8.7 Visualization of results in Ac . 139
8.8 Simplified entity-relationship graph for the Odisea system 141
8.9 Ulises device network representation 142

A.1 Pipeline usado en Clover . 162

B.1 Architecture of Clover . 166

List of Tables

2.1 Examples of small world networks . 15

5.1 Complexity of different clustered graph update approaches 68

6.1 Space and time complexity of clustered graph update in Clover 85

7.1 Graph navigation time improvement . 127

Abstract ix

Abstract

Large graphs are difficult to represent and visualize in their fully expanded form.
Those that exhibit the small-world property are amenable to abstraction via hierarchical
clustering, allowing the user to select the desired degree of detail for each part of the
graph. However, performing this abstraction presents several problems, ranging from
the construction of the cluster hierarchy to the preservation of user orientation during
navigational actions. This work analyzes each problem in turn, and discusses strategies
to address them.

A domain-independent framework, the CLuster-Oriented Visualization EnviRon-
ment, or Clover for short, has been designed and developed based on the above-
mentioned strategies, and is available to any interested parties as an open-source library.
The WotEd course authoring tool, built on Clover, demonstrates the applicability
and use of the proposed visualization approach in the initial target domain, Adaptive
Hypermedia.

Applications based on Clover for other domains where small-world networks can
be found have also been developed: document repositories that support fragment reuse,
knowledge representation with ontologies, social networks underlying student assign-
ment similarities, and networked appliances in an intelligent home.

Resumen xi

Resumen

A medida que se incrementa el tamaño y la complejidad de un grafo, aumentan tam-
bién las dificultades para representarlo y visualizarlo. Si el grafo cumple la propiedad de
“mundo pequeño”, es posible resumirlo mediante clusterización (agregación) jerárquica.
Con una interfaz apropiada, un usuario podŕıa modificar, de forma interactiva, el nivel
de detalle usado en la representación de cada zona de un grafo aśı resumido. Llevar a
cabo esta propuesta presenta varios problemas, desde la construcción de la jerarqúıa de
clústeres a los problemas de orientación que acarrea la navegación a través de los distin-
tos niveles de detalle del grafo clusterizado. El presente trabajo analiza estos problemas,
y compara y propone estrategias para hacerles frente.

Como realización de las estrategias anteriores se ha desarrollado Clover, cuyas
siglas corresponden a la traducción al inglés de Entorno de Visualización Orientado a
CLústers. Este framework se puede usar para visualizar grafos provenientes de diversos
campos, y está a disposición de cualquier interesado como una libreŕıa de software libre.
Sobre Clover se ha implementado WotEd, una herramienta de autor para cursos
hipermedia adaptativos, demostrando la aplicabilidad y utilidad de la propuesta inicial
para este dominio en particular.

Se describen también varias otras aplicaciones basadas en Clover, desarrolladas
para campos que sólo tienen en común la existencia, en todos ellos, de redes de mundo
pequeño. Las aplicaciones desarrolladas abarcan un sistema de composición de docu-
mentos mediante fragmentos reutilizables, una aplicación para la representación de co-
nocimiento mediante ontoloǵıas, una visualización de orientada a detectar casos de copia
en prácticas de programación, y una herramienta para monitorizar la interconexión de
dispositivos dentro en una red domótica.

Acknowledgements xiii

Acknowledgements

This thesis is dedicated to Asun, for her guidance and support in so many ways.

Pilar, friend and tutor, deserves a special mention for her insightful comments,
constructive criticism, and sharp sense of humour. May we share many more coffees.

To José Manuel and Asun, my parents, for their patience and support, and to Laura,
my sister, for all those trips to Liverpool that I owe her. And to the rest of my wonderful
family, from uncles to cousins, in no particular order: Juan, Poe, Concha, José Luis,
Fran, Manuel, Pepa, Mari, Gary, José Mari, Mari, Laura, Antonio, Paco, Isabel, Hugo,
Aida, Jon, Xabi, David, Irene, Queco, Raqui, Quique, Javi, Lourdes, Uge, Sara, Luis,
Ana, Cati, Ryan and JP (what a bunch!), and to those that are no longer with us, Ana,
Francisco, Encarna and Manuel. And to my proud grandmother Maŕıa.

To friends from different walks of life, far and near. In no particular order, Mar,
César, Samu, Javi, Jaime, Ramón and Maca; Álvaro, Laura, Suso, Ignacio, Sebas, Rafa,
Rebeca, Eva and Ignacio (luck with those exams!); Jose, Marta, Luisma, Rosi, Alex,
Nuria, Miguel, Sandra, Jose, Nacho, Luis, Julio, Arkaitz, Joe, Tania, Laura, Carlos,
Claudia, Juan and Carmen; Diana, Maŕıa Isabel, Teodora, and Maŕıa Mart́ın; José and
Cristina; Emi and Ana; Isabel. May we always keep in touch.

To the colleages of the B-207 and B-406 labs, Leila Shafti, Estefańıa Mart́ın, Pedro
Paredes, Diana Pérez-Maŕın, Ismael Pascual, Javier Bravo, Francisco Pérez, Pablo Haya,
Abraham Esquivel and Manuel Herranz; and those that have since moved to higher
floors, Germán Montoro, Ruth Cobos, Álvaro Ortigosa, Rosa Carro and Miguel Mora;
or far-away lands, Enrique Alfonseca, Maŕıa Ruiz and Abdellatif Abu Dalhoum. To
my colleagues at the the EPS, too many to list, and to Juana Calle, our department
secretary, for her patience and efficiency. And to my students, who have taught me
much and suffered my teaching.

To the Institut für Informatik at the Freie Universität Berlin, and particularly to
Prof. Günter Rote, who first interested me in graph visualization, and Prof. Rojas
and the heroic FU-Fighters. To Lehrstuhl XI at the Technische Universität München,
and Prof. Johann Schlichter, who provided valuable comments during the first steps

xiv Acknowledgements

of Clover, and the great people I met there – Elena, Frank, Georg, Peter, Martin,
Rosmary, and Evelyn. To the LUSSI department at the ENST-Bretagne, and to Serge
Garlatti, to whom I still owe an article, and Cuong, Jean Louis, Jean Marie and all the
other colleagues I met during my stay in Brest.

To my colleagues in conferences abroad, for their input and ideas; Peter, Michael,
Sergei, Alexandra, Craig, Nora, Markku, Olga and Natasha. And to all those researchers
that I have not yet met, but whose ideas I have read and shared, and without which a
work like this would never have been possible.

And to José Antonio Maćıas for his valuable comments, and Günter Rote, Marcus
Raitner and Terry J. Anderson for their letters of support.

This research has been partially funded by a Third-Cycle Help from the Universidad
Autónoma de Madrid; an F.P.I. scholarship from the Ministry of Education and by CI-
CYT project grants TEL1999-9181 (Encitec), TIC2001-0685 (Ensenada) and TIN2004-
03140 (U-Cat).

Chapter 1

Introduction

This work presents an innovative approach to adaptive hypermedia authoring and small-
world graph visualization.

The first section of this introduction is concerned with the motivation for the present
work. The second section lists the theoretical issues that are encountered when analyzing
the problem. A short description of the chosen approach is then presented. Finally, the
overview section provides the reader with a bird’s view of the organization and contents
of the work itself.

1.1 Motivation

Graphs are a convenient way of representing information for many classical domains,
such as software programs, network topologies, or co-citation maps. In many of these
domains, graphs have an internal structure which a good representation should high-
light. For instance, in software call graphs or citation networks, clusters (groups) of
highly interrelated vertices that communicate only weakly with “outside” vertices can
be found. Interactive graph-based interfaces are desireable to browse and edit data for
these domains. However, as graphs increase in size, interactive interfaces are hampered
by information overload and low responsiveness.

Information overload is partially due to the difficulties of integrating both low-level
details and their overall context, a problem common to all interfaces. Graph represen-
tations also exhibit the additional problem of high sensitivity; addition or removal of
a few edges may have important effects on the overall structure of a graph, and call
for a very different representation. Updating a representation can easily result in low
responsiveness; and if the changes from the original to the updated representation are
not easy to follow, a user would be forced to “relearn” the graph.

The above issues were encountered while designing a new authoring tool for an ex-
isting hypermedia course system. The initial plan included a tree-based representation,
since courses had a mostly tree-like structure, with learning “tasks” divided into sub-

2 Chapter 1. Introduction

tasks, which could in turn have their own subtasks. However, a task could have more
than one “parent” task – and this was difficult to expose with a tree representation.
Although mostly tree-like, the system’s courses were actually directed acyclic graphs,
and this motivated the design of a second authoring tool that used a simple graph rep-
resentation. Graphs for most courses were large and difficult to layout; this contrasted
with the simplicity of trees, where the degree of detail is easy to adjust by expanding
and collapsing branches. However, since courses were “almost” trees, and trees are easy
to use, why not try to merge their advantages and the expressive power of graphs? How
could this be applied to graphs, substituting clusters (groups of highly related vertices)
for branches?

As in tree branches, which can be seen as children of the branches that contain them,
graph clusters can be used as children of new higher-level clusters, leading to a hierarchi-
cal clustering. Expansion and collapse operations of a hierarchically clustered graph can
then be defined, and the problem would be solved – except for certain important issues.
First, while the definition of a “branch” is unambiguous (all descendants of a given tree
node), that of a “cluster” is not, and good heuristics or user intervention are needed
to define and maintain the cluster hierarchy. Second, graphs are much more complex
to layout than trees (and indeed, the field of graph drawing has attracted considerable
attention during recent years). Manual layout is not a problem for small, static graphs;
but automatic layout is required if the visible portions of the graph can change over
time as a result of expand/collapse operations. Additional measures are also necessary
to avoid disorienting the user: after an expansion or collapse, the “same” graph will be
visible, but with a different level of detail; the updated layout must not be allowed to
vary too wildly, or the user would be forced to “relearn” the graph after each browsing
operation, which is clearly not desireable. Finally, due to the simple correspondence be-
tween tree structure and layout, updating a partially collapsed tree representation after
a change in its structure is relatively simple; updating the representation for a clustered
graph (which may also involve an update to the clustering itself) is much more complex.

However, these obstacles did not seem insurmountable, since there was abundant
prior art for most of the individual issues (clustering, graph drawing, disorientation,
and so on). After some initial work, the application-independent part of the previously
mentioned adaptive-hypermedia authoring tool was separated from the application-
dependent code, giving birth to a graph visualization framework based on hierarchical
clustering. Reading Watts and Strogatz’s[137] article on small-world graphs –graphs
that were highly structured (and therefore clusterable), but not entirely regular– and
their prevalence in many real-world domains further motivated the development of the
visualization framework, and the design and implementation of applications that could
exemplify its use in very different areas.

This was the motivation for the present work: an innovative approach to graph

1.2 Theoretical Issues 3

visualization, based on hierarchical clustering and dynamic graph browsing.

1.2 Theoretical Issues

The approach that has been outlined in the motivation section involves several fields of
knowledge. Part I, Preliminaries provides an introduction to each of these fields. This
section provides an overview of the contents of Part I, providing short descriptions of
each field and the motives that have lead to its inclusion.

Work on this approach began as an effort to provide better visualization for an ex-
isting Adaptive Hypermedia course system. The goal of Adaptive Hypermedia (AH) is
to adapt hypermedia spaces (covering any type of linked media, and including adapta-
tion of the links themselves) to individual users, instead of pursuing a one-size-fits-all
approach. This requires a user model (a representation of the user’s characteristics,
background and goals) to be built and updated by the AH system. The user model
is then used to decide what to show to each particular user, and how to tailor it for
presentation. AH systems differ in their goals (for instance, education, search or ref-
erence), and several important differences exist regarding the type of user model and
how it is represented, acquired and updated, the types of adaptation supported, and
the techniques applied to implement adaptation.

Furthermore, Adaptive Hypermedia requires the preparation of different views of the
contents of the system’s domain; the adapted contents are easier to create and manage
in the form of loosely-coupled modules. Given the high cost of preparing these modules,
it is important to allow reuse in other domains or contexts. Module reuse requires the
presence of machine-readable information on its contents and intended outcomes, the
context where it makes sense (for instance, knowledge prerequisites), and how it can be
adapted to fit into this context. These descriptions are usually provided as machine-
processable metadata. Standardized metadata can be achieved through well-defined
ontologies, a knowledge representation formalism that provides conceptualizations of
entities and their relationships, and can be backed up with support for reasoning. In
addition, ontologies themselves are amenable to representation as graphs.

Once created or retrieved, AH modules have to be authored into a coherent AH
space, which should then be tested and maintained. Authoring adaptation can be a
complex task, since these systems work by gathering information about each user in an
constantly-updated user model, and then use this information to select what to present,
and how it should be structured or highlighted. Authoring tools are needed to allow
domain experts to create these AH spaces. But these domain experts should not be
required learn computer science or become experts in the AH system itself. The initial
authoring tool intended to fill this gap for one such system, using a graph visualization
to represent the relevant information of the adaptive space being edited.

4 Chapter 1. Introduction

The use of a graph visualization for an AH authoring tool is natural, since graphs
have been used extensively to represent the link structure of classical hypermedia spaces.
These representations can be readily extended to visualize the structure of many AH
systems. Graphs themselves, as a mathematical construct, belong to the field of Graph
Theory, a part of Discrete Mathematics and Combinatorics. The related field of Graph
Drawing deals with their planar and spatial representation. But since large graphs are
difficult to render and interpret (specially on small areas such as screens), clustering
can be used to abstract away unnecessary detail, by collapsing groups of tightly related
vertices into single ’cluster’ vertices. The section on graph clustering includes a discus-
sion of graph grammars, which can be used to locate clusters based on pattern-matching
rules described in terms of local graph topology.

Clustering only works if the graph contains well-defined clusters to begin with; hi-
erarchical clustering further requires that this is also true for abstracted versions of the
graph. Many natural and artificial graphs exhibit the small-world property: a high
degree of clustering when compared to randomly generated graphs of similar size and
density, but similar average path lengths. This property is related to scale invariance
and self-similarity. The small-world property, scale invariance and self-similarity (in
the loose sense of “properties”) have been described, in different degrees, for graphs
obtained from computer programs, in friend-of-a-friend networks (FOAF), scientific ci-
tations, power grids, protein interaction networks, and the world-wide web. Therefore,
hierarchical clustering would seem to be an ideal solution to visualize a large family of
graphs.

Finally, when representing graphs or other types of abstract information, the field of
Information Visualization (IV) comes into play. Information Visualization is dedicated
to the study of the most effective ways to present abstract information to users, and
in this context, it is strongly related to Graph Drawing. IV can also be considered an
important part of Human-Computer Interaction (HCI), a field that studies interface
between humans and computers, but considering the whole process of representation
and user feedback required to perform tasks on a computer.

1.3 Approach and Clover Framework

The heart of the proposal is contained in the design and implementation of the Clover

(CLuster-Oriented Visualization EnviRonment) framework. This framework provides
a domain-independent base on which to create interactive hierarchical-clustering graph
visualizations. While Clover can be used to visualize any graph structure, hierarchical
clustering is specially well suited to graphs with the small-world property: low average
path lengths but high degree of clustering.

Clover is designed as a pipeline, illustrated in fig. 1.1. The initial data is trans-

1.3 Approach and Clover Framework 5

formed into a graph, which is then filtered and clustered, subject to selection of the
“most interesting” clusters, laid out, and rendered on screen. Each step of the pipeline
transforms the the previous steps’ output into something required by the next one,
until the resulting view is displayed to the user. However, it could also be thought of
as a loop, since the user can manipulate the view itself, browse the graph via expan-
sion and collapse of clusters (or indirectly by selecting different ’areas of interest’: the
black triangles in the far right of fig. 1.1), change the filtering, or even modify the
underlying graph, which would be translated into a change in the original data. Any
of these changes would trigger an update in the remaining “pipeline” steps, leading to
an updated view of the graph. Multiple views of the same graph, differing in any of
the intermediate stages, can be maintained simultaneously, supporting a multifaceted
visualization of the data.

Figure 1.1: A simplified Clover pipeline

Several issues which are commonly found with graph visualizations have been dealt
with in Clover. Layout is performed automatically, allowing users to start to work
with graphs without the need to do a manual layout first; but manual tuning is allowed
and preserved, allowing intuitive layout customization. During user browsing, automatic
incremental layout is used to make extra space for new vertices resulting from cluster
expansion or reabsorb space left by a collapse. The previous layout is changed as little
as possible. Any changes to the graph are highlighted and smoothly animated to focus
attention only on changes and keep the user oriented. And layout predictability is
enhanced by means of a “history” mechanism that reuses previous layouts whenever
possible.

The architecture of Clover is highly modular, and all steps of the default behavior
can be altered or extended to suit the needs of the application that is using the frame-
work. Only the initial graph generation step is needed to achieve a fully-functional visu-
alization. However, best results may require tuning graph filtering, clustering strategy,
layout parameters, vertex and edge representations, animations and feedback control to
match the application’s requirements. Clover’s modular architecture makes it easy to
customize for any domain, as the multiple Clover-based applications described in this
work can attest.

Compared to existing graph visualization approaches, the main contributions of

6 Chapter 1. Introduction

Clover are the use of hierarchically clustered graphs that allow the representation
of large graphs at arbitrary degrees of detail; and the fully automated nature of the
visualization pipeline, where changes at any step are propagated, without need of user
intervention, to all dependent views, trigerring animated incremental updates.

The main testbed for Clover is WotEd, a graph-based editor for the Wotan

Adaptive Hypermedia course system. Using Clover, WotEd represents AH courses
as clustered graphs, allowing large, complex courses to be displayed and modified – even
if they were created or modified outside WotEd. Additionally, WotEd introduces
innovative monitoring support, where student progress through a course can tracked on
the same interface with which the course was originally created. Monitoring relies on
the ability of Clover to automatically animate updates to a graph’s structure on any
view of this graph, which is one of its most distinctive features.

1.4 Overview

The work is organized into three parts:

Part I – Preliminaries Sets the groundwork for the approach presented in Part II,
with an introduction to each of the fields of knowledge touched by the present
work. Terms and concepts used in the approach are introduced and described.

Part II – Approach Presents the approach itself. First, a review of graph visualiza-
tion strategies is performed; then, the design of Clover is presented. The next
chapters introduce the application of Clover to Adaptive Hypermedia authoring
and other domains.

Part III – Conclussions and Future Work Contains the conclussions, a brief dis-
cussion of important aspects, and outlines future work.

Additionally, Appendix A contains a translation of this first chapter into Spanish.
Appendix B is dedicated to implementation notes and other technical information rel-
evant to Part II.

Part I

Preliminaries

Chapter 2

Graphs and the Small-World

Property

Graphs of different types are all around us. Road maps can be seen as collections of
towns and roads that link them. Computer networks can be analyzed as boxes and
cables. Hierarchies, flow diagrams and biological interactions can also be represented as
sets of items (vertices) connected to each other via edges. Although the use of graph-
like representations is much older, the formal characterization of graphs as abstract
mathematical entities can be dated back to the 18th century and Euler’s famous “Seven
Bridges of Königsberg” problem (depicted in fig. 2.1). Since then, graphs have found a
widespread use in many branches of mathematics, most importantly the field of Graph
Theory.

This chapter starts with a set of definitions for the basic graph-theoretic terms that
are used throughout the work. The second section examines the small-world property
and related phenomena, which are shown to exist in many interesting domains, including
the web, device networks, social networks and neural networks. These phenomena have
a direct impact on the possibility of using clustered graphs to generate meaningful graph
abstracts. The last two sections deal with graph clustering and the superposition of a
hierarchy on a graph, resulting in hierarchically clustered graphs.

Figure 2.1: Graph of the the “seven bridges of Königsberg” problem. Is it possible to
visit all vertices crossing each edge exactly once?

10 Chapter 2. Graphs and the Small-World Property

2.1 Graph Theory

Graph Theory is a subfield of Discrete Mathematics. It is related to the fields of Com-
binatorics, Group Theory, and Topology. This section presents the basic graph theory
needed to understand the remainder of this work; an interested reader is pointed to
[71] or [110]. It must be noted that each source uses a slightly different terminology,
and that certain definitions can also vary depending on their source. However, these
differences, when they arise, are of a minor nature: the underlying ideas can be easily
identified.

From a mathematical standpoint, a graph G is a collection of vertices V and edges E,
where each edge e = (u, v) connects two vertices u, v ∈ V : G = {V,E} with E ⊆ V ×V .
In e = (u, v), u is the source vertex of the edge, and v is the target. This can be written
as source(e) = u and target(e) = v, respectively.

Other authors prefer to use nodes and links instead of vertices and edges; in this
work, nodes are only used when referring to the vertices of trees (a special type of
graphs). Likewise, the term branches will be used to refer to tree edges. Also, in some
applications, the term network is preferred to that of graph, perhaps attaching slightly
different meanings, such as requiring edges to be labeled with weights (this is typical,
for instance, in biology and electrical engineering). In this work, “graph” and “network”
will be considered equivalent, and the choice of term will reflect common usage in the
area under discussion.

If the order of vertices on an edge is not considered important (and E is considered
a set of unordered pairs {u, v}), the graph is said to be undirected. Undirected graphs
are equivalent to directed graphs (also called digraphs) where, for each undirected edge
{u, v}, edges (u, v) and (v, u) can be found. A special case are loop edges, which include
a single vertex: {v, v} is considered equivalent to (v, v).

An undirected version of a directed graph can be built by substituting, for all pairs
of vertices u and v with at least one edge between them, any directed edges (u, v) or
(v, u) by a single undirected edge, {u, v}.

A graph is said to be a multigraph if there is more than one edge that connects
the same vertices. Graphs may have labels attached to edges or vertices; this is very
common when the graph is used, for instance, to represent knowledge: vertices could
represent concepts or concept classes, and would be labeled accordingly, while edges
typically represent relationships between concepts. Since it is frequent to have pairs
of vertices that can be related in more than one way, multigraphs are a natural fit for
these applications. Other cases where it may be desireable to have more than one edge
between a pair of vertices may arise; for instance, the “seven bridges of Königsberg”
graph of fig. 2.1 is an undirected multigraph.

If multiple edges between the same two vertices are not allowed, then there is an
upper bound to the number of possible edges in an undirected graph, |V | · (|V | − 1)/2.

2.1 Graph Theory 11

A graph with n vertices and all possible edges is said to be the complete graph of order
n, and can be written as Kn. This notion of “completeness” is linked to the density of
a graph: the number of edges as compared to the number of vertices. Graphs with n

vertices and ∼ n · (n− 1)/2 edges are dense, while graphs with ∼ 2n edges or fewer are
considered sparse.

A graph vertex v is said to have outgoing degree (or out-degree) n when there are
exactly n edges with v as source. In a similar way, the in-degree of v is defined as the
number of edges that have v as a target. In undirected graphs, the degree of a vertex v
is simply the number of (undirected) edges that contain v.

Subgraphs

If G = (V,E) is a graph, a graph G1 = (V1, E1) is a subgraph of G iff V1 is non-empty
and V1 ⊆ V . Since G1 is also a graph, it follows that E1 can only contain edges that
were present in E, and only those whose endpoints are still present in V1. It may,
however, include less edges than it could. If E1 includes all edges present in G for the
chosen subset of vertices V1, then G1 is said to be the induced subgraph of G. A special
notation exists for this case. If U is a subset of the vertices in V , then 〈U〉 represents
the subgraph of G induced by U .

Other important subgraphs result when a single vertex, or a single edge, is removed
from the original graph G. In the first case, G−v represents the subgraph of that results
when vertex v ∈ V is removed (together with all edges e ∈ E such that source(e) = v

or target(e) = v). Similarly, G − e is the subgraph of G that results after removing e
from the the set of edges, E.

When a subgraph retains all vertices found in the original graph G, it is called a
spanning subgraph. For instance, the subgraph G − e with e ∈ E is always a spanning
subgraph. Note that this does not imply connectedness of the graph, which will be
introduced in the following subsections.

Walks, paths and cycles

If x and y are two vertices (not necessarily distinct) in V , an x, y walk is a finite sequence
of vertices and edges such that each edge in the sequence takes off where the last one
left. Both edges and intermediate vertices may be repeated along the sequence:

x = x0, e1, x1, e2, x2, . . . , en−1, xn−1, en, xn = y

where ∀i ∈ [1, n], ei = (xi−1, xi). The length of the walk is n, the number of edges.

When a walk has no duplicate intermediate vertices, it is said to be a path. A closed
path is a cycle. Similar terms (trail and circuit) are used when there are no duplicate
edges. A directed acyclic graph, that is, a directed graph without any cycles, is often

12 Chapter 2. Graphs and the Small-World Property

termed DAG .
The set of vertices that are connected through a path of length 1 (“a short walk

away”) to a given vertex form the neighborhood of that vertex, and may be written as
kv. That is, if G = (V,E), and v ∈ V , then kv = {u| ∃ e = (v, u), e ∈ E}.

Connectivity

An undirected graph is connected if there is a path between any two distinct vertices.
For a directed graph, connectivity is defined in relation to an “associated undirected
graph”, obtained by discarding the directions of every edge, and considering multiple
edges between two vertices as a single edge. The original, directed graph is considered
connected if and only if the associated undirected graph is also connected.

A maximal set of connected vertices is said to be a connected component . The
number of connected components of a graph is denoted by κ(G). For example, since all
the vertices of a connected graph form a single connected component, if G is connected
then κ(G) = 1.

Let G = (E, V) and v ∈ V . If G was connected, but G − v (the graph that results
after removing v) is not, then v is an articulation point of G. More generally, v is an
articulation point iff κ(G − v) > κ(G). A similar concept can be applied to edges:
e ∈ E is termed a bridge of G = (E, V) iff κ(G − e) > κ(G). It can be seen that if e
is a bridge then both of its endpoints are bound to be articulation points. An intuitive
characterization of an articulation point or bridge is that of a “narrow pass” between
regions of a graph, such that any path that crosses from one region to the other must
include this vertex or edge.

The distance between any pair of vertices can be defined as the length of the shortest
path from one to another, if such a path exists, or infinity if there is no path between
them. In a connected graph, the graph’s diameter is the greatest distance between all
pairs of vertices, and the characteristic path length is the average distance between all
pairs of vertices. Note that, if the graph is not connected, diameter and characteristic
path length are not defined.

Trees

A special case of connected graph is the tree: a connected graph without cycles. In a
tree, there is a single path from each vertex to every other – that is, every edge is a
bridge, and all “inner” vertices are articulation points. Trees are interesting because
they have the minimum number of edges required to keep the graph connected (which
can be seen to be |E| = |V | − 1), and because they arise in many practical problems
and graph-related algorithms. It is customary to use T instead of G to represent a tree.
In cases where the graph has multiple components, but each of these components is a
tree, the graph is termed a forest .

2.2 Small-World Networks and Real-World Graphs 13

A directed tree T = (V,E) is said to be rooted if a vertex r ∈ V exists (the root
of the tree) such that r has no incoming edges and it is possible to reach all other
vertices through a path that starts in r. Additional terminology is used when dealing
with the edges of a rooted tree: in e = (u, v), e ∈ E, u is said to be the parent of v, and
conversely, v is termed the child of u. If two vertices u1 and u2 share the same parent,
they are called siblings. All vertices reachable through directed edges from a vertex v

are descendants of v, and conversely, the set of all vertices that can reach v through
directed edges form the ancestors of v (note that v = descendants(v)

⋂
ancestors(v)).

Rooted trees are frequently used to represent containment hierarchies, such as computer
filesystems or the table of contents used in this work.

Graphs and trees are very often used together. For instance, it is typical to use
spanning trees, a tree that is also a subgraph, and includes all of the original graph’s
vertices, as skeletons of a full graph.

Since during most of this work trees will be used alongside with graphs, and both will
have a degree of overlap in their vertices and possibly even edges, a different terminology
will be used to distinguish between both. Directed tree edges that are not in the graph
will be called branches, and tree vertices will sometimes be referred to as nodes.

2.2 Small-World Networks and Real-World Graphs

Many graphs that arise in Nature, such as the connections in an animal’s nervous system,
or the interactions between proteins, are neither entirely random nor do they adhere
to a strict structure. It turns out that a large number of human-made graphs, such as
friend-of-a-friend networks, power grid layouts, computer code dependency graphs and
author citation networks exhibit remarkably similar properties. This section introduces
several concepts and observations that characterize such real-world graphs, and which
should be taken into account when preparing to visualize them. An in-depth review of
the characteristics and generating models of complex real-world graphs can be found in
[28].

Small-world networks were first described by Watts and Strogatz in 1998 [137],
and were named after Milgram’s “small world problem” [96], who performed a well-
known experiment on the existence of surprisingly short chains of acquaintances between
random pairs of persons. They are characterized as connected graphs where the typical
degree k is 1 � k � |V |, and that are neither completely random nor completely
regular, but instead exhibit phenomena from both extremes: low graph average path
length and, at the same time, a high degree of clustering. Low average path length is
typical in random connected graphs – it can be intuitively explained by the low relative
probability of any vertex to become isolated from the rest through a random rewiring
procedure [137].

14 Chapter 2. Graphs and the Small-World Property

Figure 2.2: Connected cavemen graph, from [136]. This graph has a very high clustering
coefficient (see eq. 2.1), but does not satisfy requirements for small-world, since the
average path length increases linearly with the number of “caves”.

Watts and Strogatz define the clustering coefficient [137] of an undirected graph
G = (V,E) as

C(G) =
1
|V |

∑
v∈G

|edges(kv)|
|kv| · (|kv| − 1)/2

(2.1)

where kv is the set of neighbors of vertex v, and edges(kv) is the set of edges that exist
between those neighbors, that is

edges(kv) = {e ∈ E : source(e) ∈ kv ∧ target(e) ∈ kv} (2.2)

The interpretation is that |V | · (|V | − 1)/2 is the maximal number of edges that can
exist between a set of vertices V ; the degree of clustering is a measure of the ratio of
the “allowable” edges that actually exist between the neighbors of each vertex. A high
degree means that, for most vertices, their neighbors are also direct neighbors of each
other (an intuitive description of “cluster”). In graphs with low clustering coefficient,
however, vertices a and b with a common neighbor c are, generally speaking, not direct
neighbors themselves. Applied to social networks, the concept of “clustering coefficient”
has a natural mapping: your group of friends is tightly clustered if your friends are also
friends of each other. Figure 2.2 provides an example of a graph with a high clustering
coefficient.

Table 2.1 includes results on small-world characteristics of real-world graphs from
several sources. Average path lengths of small-world graphs are similar to those of
random graphs of the same size and density (edge-to-vertex ratio), but their clustering
coefficient is orders of magnitude higher than that of “equivalent” random graphs. The
surprise is that graphs from such different origins (including biological networks which
were clearly not of human design) all share the same property.

From the point of view of graph visualization, two interesting results arise from the
small-world property. First, the high clustering coefficient of many “natural” graphs
makes clustering an interesting approach. And secondly, the fact that average distances

2.2 Small-World Networks and Real-World Graphs 15

Row Source Lactual Lrandom Cactual Crandom
1 Film actors 3.65 2.99 0.79 0.00027
2 Power grid 18.7 12.4 0.080 0.005
3 C. Elegans 2.65 2.25 0.28 0.05
4 IMDB 3.2043 2.6694 0.9666 0.0243
5 Resyn assistant 3.2847 3.2847 0.9518 0.1942
6 Mac OS 9 2.8608 2.8608 0.3875 0.0179
7 .edu sites 4.062 4.062 0.156 0.0012

Table 2.1: Examples of small world networks, from [137] (rows 1–3) and [17] (rows
4–7). Rows 1 and 4 of this table represent graphs extracted from the Internet Movie
Database (IMDB). In both cases, film actors were used as vertices, and the differences
are due to how edges were created. Row 2 represents the layout of a power grid from
western states of the USA. Row 3 is the map of the neural network of Caernohabditis
Elegans, a nematode that has been extensively studied as a model organism. Rows 5
and 6 represent the dependencies within software applications, and the graph of row 7
was generated from a snapshot of the contents of the world-wide web’s “.edu” top-level
domain.

are low (O(ln(|V |))) makes direct navigation, as opposed to search, a viable option for
browsing small-world graphs – if the complexity due to the large graph size can somehow
be managed.

Scale Free Networks

In their discussion of small-world networks, Watts and Strogatz experimented using
graphs where the distribution of the number of neighbors of each vertex was narrowly
centered around a constant k (since the graphs were generated through random rewiring
of a lattice where each vertex was connected to its k nearest neighbors). However, in
most real-world graphs, including those presented in Table 2.1, this is not the case.
Indeed, it is very common to find an exponential decay of the probability of having k
neighbors. Networks with this property are said to be scale free networks. A particularly
large graph that has been shown to be scale-free is the subset of the WWW analyzed
in [33], numbering around 200 million vertices. The power-law distribution of vertex
degrees in this subset is illustrated in fig. 2.3.

In a scale free network, the probability of a vertex having degree k follows a power
law defined by P (k) = k−γ , where γ is a constant that must be determined for each
graph [23]. The power law may not hold through the whole range of vertex degrees,
because in many cases there exist upper bounds to the maximum degree of a vertex
(for instance, there are physical constraints to the number of movies that an actor can
participate in); therefore, small-world graphs can be classified as scale-free, broad-scale,
or single-scale [15], depending on the range of values of k where the power law is seen
to hold.

16 Chapter 2. Graphs and the Small-World Property

(a) In-degree distribution (b) Out-degree distribution

Figure 2.3: Power-law distribution of in-degree (a) and out-degree (b) within the
vertices of a sample of the WWW, from [33].

In [15], Amaral also notes that scale-free networks are many times also small-world
(although this need not be true; in particular regarding the “low average path length”
condition [28]), and that the example networks of [137] (rows 1-3 of Table 2.1) belong
to both categories. The prevalence of this property in networks from vastly differing
origins begs the question of a common pattern of creation.

Generation of Scale Free and Small World Networks

The following paragraph from Barabási and Albert [23] is illustrative in explaining the
prevalence of small-world and free-scale graphs in cases where the graph has evolved
through constant aggregation of additional nodes:

[...] the random network models assume that the probability that two
vertices are connected is random and uniform. In contrast, most real net-
works exhibit preferential connectivity. For example, a new actor is cast
most likely in a supporting role, with more established, well known actors.
Consequently, the probability that a new actor is cast with an established
one is much higher than casting with other less known actors. Similarly, a
newly created webpage will more likely include links to well known, popu-
lar documents with already high connectivity, or a new manuscript is more
likely to cite a well known and thus much cited paper than its less cited and
consequently less known peer. These examples indicate that the probability
with which a new vertex connects to the existing vertices is not uniform,
but there is a higher probability to be linked to a vertex that already has a
large number of connections.

2.3 Graph Clustering 17

The model of graph generation proposed in [23], the extensions suggested by [15],
and many alternatives that also seek to emulate observed natural networks properties
in artificially generated graphs, are reviewed in [28].

Scale free networks and hierarchical clustering

The relevance of the small world property to graph representations is that, in those
graphs where this property arises, it should be possible to exploit the high clustering
coefficient to substitute “clusters” of vertices for abstracted versions, yielding a mean-
ingful overview of the network. Local edges (edges that connect local cluster neighbors
together) can be abstracted with low information loss, while longer-range edges (span-
ning distant clusters) that determine the macro-structure of the graph are preserved
and uncluttered, enabling a better overview.

The idea of abstracting away the local neighborhoods of “clusters” to reduce the
complexity is certainly tempting. Another question arises: will the abstracted graph
have, in itself, a small-world topology? Intuitively, if the graph of friendships from
EU residents is considered, and an abridgment is made, it is likely to coincide with
geographical locations – and when “friendship” between the resulting groups is re-
considered, it is again likely to match larger geographical demarcations.

This idea has been explored by Song et al. in [116], where a remarkable self-similarity
was found in the successive coarsenings of certain graphs. Coarsenings were generated by
replacing groups of strongly connected “boxes” with individual vertices with equivalent
connections. Their experiments were performed on a very wide range of networks,
including classical examples of social networks (movie actors), natural networks (protein
interdependence), and the word-wide web. Auber and Chiricota [17] also point to this
self-similarity as a basis for their hierarchical clustering approach, which will be covered
in the next section.

Figure 2.4 illustrates the results of the coarsening procedure in [116], by tiling the
network into boxes of radii of at most lB. The problem of doing this in a minimal
number of boxes has been found to be NP-complete [20]; in this experiment, vertices
were assigned to boxes with a simple pseudo-random heuristic, and the results suggest
that self-similarity does not depend on an optimally efficient packing.

2.3 Graph Clustering

Clusters have been informally introduced earlier; however, there is an important dif-
ference between the “clustering coefficient”, a metric, and the idea of clustering as it
is used throughout the rest of this work. The existence of a high clustering coefficient
indicates that, for “natural” complex graphs, clustering should be effective, since there
are clusters to be found. This section deals with the task of finding them, and the

18 Chapter 2. Graphs and the Small-World Property

2 4 8 16 32

2-8

2-6

2-4

2-2

20

 (
)

2 4 8 16 32

2-15

2-12

2-9

2-6

2-3

20

(
)/

WWW
Actors

(a) World Wide Web and co-starring actors

2 4 8 16

2-4

2-3

2-2

2-1

 (
)

2 4 8 16

2-7

2-5

2-3

2-1

H. sapiens
E. coli

(
)/

PIN

(b) Protein interaction networks (PIN) from E.
Coli and H. Sapiens

Figure 2.4: Self-similar natural networks, from[116]; Two power laws are seen to be
in effect; in the top graphs, NB(lB)/N ∼ lB

dB , indicating a self-similar network with
fractal or “box” dimension dB. In the lower graphs, the power law is s(lB) ∼ lB

dk ,
where s < 1 is the scaling of the edge degrees at each level.

formal definition of a clustering hierarchy.

Clustering seeks to find groupings of elements into subsets based on similarity be-
tween elements. Cluster analysis is also referred to as grouping, clumping, classification,
and unsupervised pattern recognition. The goal is to find disjoint subsets, called clus-
ters, such that two criteria are satisfied: homogeneity (two vertices in the same cluster
should be closely related to each other) and separation (vertices in different clusters
should present low similarity) [74].

Formally, given a graph G = (V,E), a clustering is a set S of vertex subsets
{S1, . . . , Sk} which together cover the complete set of vertices, V . In the common case
where no overlap is allowed between the clusters (empty pairwise intersections of Si), the
clustering is also a partition. That is, S = {S1, . . . , Sk :

⋃i
i<k Si = V ∧

⋂i
i<k Si = ∅}.

In the optimization problem of graph partitioning, the goal is to minimize the num-
ber of inter-partition links in the graph (this is related to the minimal-cut problem).
Multiple variations exist, such as finding the best partitioning with k partitions, or
seeking answers where the size of partitions is kept constant. The problem is in general
NP-hard [131], but of great interest in such fields as design packaging (where the number
of connections between the components of a board must be minimized), or distributed
systems (where the minimization of the number of messages crossing machine bound-
aries is critical). In these applications, clustering is frequently applied as a preprocessing
step to reduce the number of nodes to be partitioned.

When presented with a graph, there are two main possibilities: to use only the
graph’s connectivity to generate the clustering (structure-based clustering), or to exploit

2.3 Graph Clustering 19

the semantic relations present in the graph’s content to improve the clustering (content-
based clustering). The former strategy can be applied to all graphs, while the latter
can provide better results in exchange for application-specific knowledge. For instance,
[30] describes a specific algorithm for clustering documents within a hypertext space.
Typical approaches are to refine a general-purpose algorithm with application-specific
heuristics, or to include application-specific heuristics into a general-purpose algorithm.

Examples of general-purpose graph-clustering approaches include classical pattern
recognition algorithms such as K-Means and Single-linkage, and more involved methods
such as HCS (Highly Connected Subgraphs) [74] and MCL (Markov Cluster aLgorithm)
[131].

Clustering to generate graph abstracts

When generating a clustering that is intended to be used as an abstract of the whole
graph, the minimization of a cost function is only a means, and should not be mistaken
with the actual goal. In many cases, a partitioning that is good from a graph-theoretical
point of view (minimizing extra-cluster connections and maximizing intra-cluster ones)
will also present a valuable insight into the graph structure and will make a good
abstract. But this need not be so, specially if the semantics of the graph do not closely
match its structure. For instance, not all vertices or edges may be equally important,
or important edges may have been omitted from the graph.

If a graph has a set of “natural” (from a semantic point of view) clusters that should
be located, several undesirable scenarios are possible:

• A cluster may be split up into several smaller clusters, losing the significance of
the larger, “natural” cluster.

• A cluster may be joined together with several other unrelated clusters, forming a
cluster that makes little semantical sense, that is, that fails to capture a “real”
common characteristic.

• The number of clusters may be too high or two low – and in this case, one or both
of the above problems is bound to occur.

Semantically motivated clusterings need not be unique; that is, there may be more
than one semantic criteria according to which the graph can be clustered. Imagine a
graph of biological species with edges whenever there is a “feeds-from” relationship;
this graph could have natural clusters corresponding to the biological families to which
each species belongs, or to the habitats in which they live, and depending on which is
chosen, a “dolphin” would be classified either as a mammal (which would be largely land-
based) or in the same cluster as other sea-based animals. General-purpose clustering

20 Chapter 2. Graphs and the Small-World Property

algorithms, by themselves, clearly do not suffice for “correct” human-oriented abstract
generation.

However, if the goal of clustering is only to ensure small-world and self-similarity
properties of the graph (in order to guarantee that further clusterings would be possible),
very simple approaches, such as the boxing algorithm described in [116], would suffice.

Interactive clustering

Some algorithms have tunable parameters, allowing the user to set this parameter at
the point that produces the “best” results for the particular application. For instance,
[17] presents an algorithm where k, the number of partitions, is a free parameter. By
default, it is set to a point where it is near to the maximal value of the partition cost
function, MQ, defined in eq. 2.3.

MQ(C;G) =
1
p

n∑
i=1

(s(Ci, Ci))︸ ︷︷ ︸
intra−cluster

− 1
p(p− 1)/2

∑
i<j

s(Ci, Cj)︸ ︷︷ ︸
inter−cluster

(2.3)

The cost function MQ (eq. 2.3) reflects the desireability of a high intra-cluster
similarity with simultaneous minimal inter-cluster similarity. In this function, the ratio
s(A,B) is used to quantify the clustering coefficient between two sets of vertices, A and
B, as defined in eq. 2.4. In other words, s(A,B) quantifies the ratio of all possible
edges between vertices of sets A and B that are present in G. Note that this ratio is
a generalization of the expression edges(kv) used in the calculation of the clustering
coefficient (see section 2.2). In equation 2.1, edges(kv) could have been written as
s(kv, kv).

s(A,B) =
|{(u, v) ∈ E : (u ∈ A ∧ v ∈ B) ∨ (u ∈ B ∧ v ∈ A)}|

|A| · |B|
(2.4)

However, there may be several points where k maximizes the value of MQ. By
letting the user adjust this parameter, cluster size can be adjusted, providing a better
fit to the application (in the case of [17], that of providing insight into computer code
dependency graphs).

Graph grammars

A graph grammar is similar to a traditional string grammar. Productions match a
right-hand side subgraph to a left-hand side subgraph (similar to type-0 unrestricted
Chomsky grammars); simpler variants only allow single edges or vertices to be matched
and substituted, but clustering via graph grammars requires entire subgraphs to be
matched and mapped into single clusters. A review of graph grammar theory and
applications can be found in [111].

2.4 Hierarchical Clustering 21

Graph grammars can be useful to generate clusterings, and present an interest-
ing framework in which to specify application-specific “clustering rules”. Additionally,
graph grammars are simple to understand, since the right-hand side and the left-hand
side can both be represented as graphs, and the matching process can be illustrated
directly on the graph. Multiple graph querying languages rely on representing both
queries and results as graphs [13, 44, 72, 73, 80, 87].

There are multiple formal specifications of graph grammars, with a corresponding
variety of pattern-matching constructions. Typically, vertices and edges can be queried
for their properties (each is assumed to contain a key-value map, and keys can be
queried for), and both can be queried for their local graph structure (with operators such
as degree-of(v) or target-of(e) resulting in a number and a vertex, respectively).
Key-value maps for edges and vertices can also be used to include information on the
“types” of edges and vertices. For instance, a type attribute may be defined for all graph
elements, so that the statement attribute-value(vdolphin, ‘type’, ‘mammal’) would
return “true”.

The use of rules that are to be matched to a graph introduces the question of
parsing alternatives: which rule should be executed if more than one can be applied at
a given moment? Between two rules, r1 and r2 that are both applicable, several types of
dependency may exist. It is possible that the outcome of applying any one of them still
allows the other to be applied, and the end outcome after applying both is idempotent.
It is also possible that each order of application, while possible, results in a different
graph, so that r1 and r2 are non conmutative at a given point (note that r1 and r2 may
be conmutative for one graph but not for another, since the parts of the graph that
match may be different in each case). Finally, the application of one rule may bar the
application of the other: the result of applying r1 could render a graph that would not
match r2’s left-hand side.

Predictability of rule outcomes may therefore be desireable to yield consistent clus-
terings. The order of application can be enforced by assigning a priority to each rule,
guaranteeing that if rules r1 and r2 can both be applied, then the match will be resolved
in favor of the highest-priority one.

2.4 Hierarchical Clustering

In hierarchical clustering, the clustering process is repeated on the graph resulting from
the initial clustering (the quotient graph) until a single cluster-vertex is left, the root.
Since each vertex from the original graph will be contained in exactly one cluster-vertex
of each successive quotient graph, recursive clustering results in an inclusion hierarchy
whose leaves are the vertices in the original graph. This process is depicted in fig. 2.5.

The definition of a hierarchy on top of a tree can be formalized in several ways. A

22 Chapter 2. Graphs and the Small-World Property

Figure 2.5: Hierarchical clustering

review of tree+graph structures can be found in [109]. In this work, we choose a simple
interpretation found in [17, 38, 52, 82], where a graph G = (E, V) is extended with a
rooted tree H = (N,B) such that V ⊂ N ; namely, V = {n ∈ N : desc(n) = ∅} – each
vertex of G is represented by a leaf vertex in the hierarchy H. Non-leaf vertices of H
represent cluster vertices, and at higher levels of the hierarchy, these cluster vertices
will contain other cluster vertices (and possibly zero or more “leaf vertices”)..

A clustered graph is a graph with an associated clustering hierarchy, of which only a
portion is currently visible. Formally, G′ = (G,H, S), where G = (V,E) is the original
graph, H = (N,B) is a hierarchy defined over this graph, and S is the slice – a subset
of the vertices of N that covers all the vertices in V . Therefore, S = {v1, . . . , vk :
vi ∈ N ∧

⋃i
i<k desc(vi) = V }. Unless a slice S of a hierarchy H is entirely composed

of the leaves of H, then it will also form a cut-set of H: the removal of the vertices
in the slice would render H disconnected. The slice is used to determine the visible
portion of the graph: abridgments of G can be generated from G′ by varying the set of
hierarchy vertices that are included in S. For a given slice S, the set of edges is defined
as E′ = {(u, v), u 6= v : ∃(x ∈ desc(u), y ∈ desc(v)) ∈ E}. Edges of E′ that are not
present in E are termed induced edges, and a single induced edge may represent more
than one “normal” edge.

A stronger requirement on the composition of a slice S, not enforced by [52] or [82], is
that there be no two vertices u, v ∈ S : u ∈ desc(v). This condition is equivalent to that
of forcing the cluster-vertices that form S to be non-overlapping, that is,

⋂i
i<k desc(vi) =

∅. That is, the leaves of the trees rooted in each of the vertices of S form a partition of
the entire graph G.

Creating a clustered graph G′ = (G,H, S) from a graph G = (V,E) relies first on

2.4 Hierarchical Clustering 23

the creation of a hierarchy, H = (N,B). The hierarchy can be initialized to N = V ,
and built incrementally by repeated application of the following operations:

create(v) v is added to N , with no children.

add(v, u) u ∈ N is added to children(v), and B is updated accordingly.

Since H is a hierarchy, there should be a single vertex r ∈ N , the root of the hierarchy,
such that all other vertices of N are descendants of r. The slice can be initialized to
any subset of N that fulfills the conditions for a clustered graph, but it is simplest to
initialize it to r.

Operations on a Clustered Graph

The concept of a clustered graph is more powerful than simple graph partitioning,
because the cluster hierarchy guides the operations of “zooming in” or “zooming out” in
the degree of abstraction of parts of the graph. Intuitively, a currently visible vertex can
be collapsed by subsuming it, together with all its siblings (as defined by the hierarchy),
in a single cluster-vertex. The reciprocal operation is an expansion, where a the cluster-
vertex is substituted for its descendants (again, as defined by the hierarchy). Formally,
these operations can be defined as:

collapse(v) The slice is updated as S′ = S − desc(v) + v, visible edges are recalcu-
lated accordingly. In other words, the descendants of v in the current slice S are
substituted for v itself, and all edges with a vertex u ∈ desc(v) as an endpoint
will be subsumed into induced edges with v as the new endpoint. Note that edges
with both endpoints within desc(v) do not induce new edges, and are removed in
the process.

expand(v) Vertex v, a vertex in the current slice S, is substituted for its immediate
children: S′ = S + children(v)− v. Visible edges are also updated, with induced
edges that had v as an endpoint rebuilt to use one (or more) of the children of v
instead; edges (t, u) : t, u ∈ children(v) must be re-introduced.

Refining Clusters

Graph abstracts hide multiple base vertices under higher-level cluster vertices. There-
fore, finding a good label for this representative that can preserve the “information
scent” [66] is an important goal; users browsing the graph should be able to predict,
from this label and any other clues present in the interface, what can be found beneath
the cluster vertex, and whether it will advance their current goal.

If the cluster hierarchy has been automatically generated, cluster-vertex labels must
also be generated automatically, for instance selecting a single “most important vertex”

24 Chapter 2. Graphs and the Small-World Property

(a) Clustered graph (b) A slice

Figure 2.6: On the left, the graph itself (solid lines) and the superimposed clustering tree
(dashed lines). On the right, the clustered graph, with the “slice” S set to {a, b, c, d, E}.

from each cluster’s children and using its label as the cluster’s label. This is a crude
approach, and much better results can be obtained if the user is willing to label each
cluster, or even better, to adjust its contents. This requires additional operations:

detach(v, u) Cluster-vertex u, with v = parent(u), is detached from its parent. It
can now be added to any other cluster, retaining its own children.

label(v, s) Labels cluster-vertex v with a string s, substituting the automatically-
assigned label with a better match to the semantics of the cluster vertex.

The detach operation can be used to delete a cluster u; once its children have been
detached and added to parent(u), u can be safely removed, as it will no longer be
referenced. label can be made more complex than a string, by referncing an icon or
any other visual hint that could somehow symbolize the cluster’s contents to a user.

The importance of making interaction with clustered graphs easy or intuitive is not
a concern of graph theory or graph clustering themselves. Instead, it belongs to the
field of human-computer interaction, which is introduced in the next chapter.

Chapter 3

Information Visualization and

Human-Computer Interaction

The field of Computer Science that seeks to provide an effective interface between mind
and computer is termed Human Computer Interaction, or HCI. The specific area of
HCI that deals with the presentation of information is Information Visualization [70],
or IV for short. Another definition is that of Chen [42]: “a computer aided process that
aims to reveal insights into an abstract phenomenon by transforming abstract data into
visual-spatial forms”. The field of Information Visualization has expanded greatly with
the advent of better graphic displays and computing capacity. An interested reader is
pointed to [135] or the readings in [39].

Information Visualization is heavily related to Scientific Visualization. The major
difference is that the latter focuses on data that reflects the physical world, such as
weather forecast or medical image diagnosis, and therefore has a more intuitive map-
ping into a visual format. Information Visualization deals with abstract data, with
non-obvious mappings to the real world. As such, it is also related to Information Re-
trieval, which is concerned with “the representation, storage, organization and access
to information items” [22].

Certain presentations of information can be processed much more effectively than
others. Tufte’s series of books on the visual presentation of information [127, 128, 129]
provides compelling examples. As a species, evolution has prepared us to respond
to certain presentations of information much more efficiently than to others; we are
more proficient dealing with visual representations than with abstract concepts [99].
Quoting R. W. Hamming, “the purpose of computing is insight – not numbers”. We
have an innate capability to filter out information according to “classes”, and to fall for
“outliers” that introduce noise, to react to colors and to movement[117], and to “see”
fast sequences of still images as continuous motion. We build mental models of the
world around us, but suffer from a limited buffer size.

The problem is not so much lack of information as an overabundance of data of which

26 Chapter 3. Information Visualization and HCI

to make sense of. When the amount of information surpasses our capacity to interpret
it, information overload is said to occur. By presenting information in a manner that is
more suited to its comprehension, Information Visualization seeks to provide a higher
“mental bandwidth” and hopefully avoid the problem of information overload.

Information representations need not be static. Indeed, one of the main characteris-
tics of IV as compared to traditional “visual presentation” is animation and interactivity:
a whole new axis involving time and user feedback. This does not directly increment
the quantity of information that can be presented; instead, it allows information that
is more relevant (to the user and task at hand) to be shown, at the expense of other
details.

As an example, in the field of educational hypermedia, a representation likely to
produce information overload could be a complete, unformatted listing of a course’s
structure, direct from the database. A better visualization of this data would hide irrel-
evant detail, while allowing a user to explore the course at various levels of abstraction,
gain insight into its structure and that of the underlying set of concepts, and support
the recognition of the pedagogical ideas that the course’s original author sought to
implement.

According to Chittaro[43], the goals of visualization can be briefly stated as follows:
• Allow users to explore data at different levels of abstraction
• Give a greater degree of understanding of the data
• Encourage the discovery of details and relations which would be difficult to notice

otherwise
• Support the recognition of relevant patterns by exploiting the visual recognition

capabilities of users
Shneiderman [115] presents the following mantra to achieve these goals:

Overview first, zoom and filter, and details on demand

The overview should present the larger picture and provide orientation for further
browsing. It should help the user choose those areas that may be of interest, but at
the same time present little or no detail. The user can then zoom in on those areas of
interest, to examine them more closely. Filtering implies abridging or not presenting
unnecessary details, so as to not incur in information overload. However, when required,
expanded, full information should be available. This is what Schneiderman refers to as
details on demand.

The remainder of this chapter concerns itself with Information Visualization and HCI
as applied to graphs and graph-based interfaces. The next section provides an overview
of the field of Graph Drawing (which would correspond to the “representation” step
of fig. 3.1), and the last section deals with the visualization of graph representations
(final step and feedback lines of fig. 3.1). Note that the distinction is somewhat artifi-
cial, as the application can perform changes in the representation (which may involve

3.1 Graph Drawing 27

Figure 3.1: Information Visualization and Interaction. Data is first selected and trans-
formed into a suitable abstract model (for instance, a graph). Then, it is totally or
partially (filtering) represented (graph drawing). Finally, the user interacts with the
representation (solid feedback line), or uses it to indirectly alter any part of the process,
which may include the original data (dashed feedback lines).

graph drawing) in response to user interaction, and the extent and nature of these
changes will necessarily depend on the graph drawing techniques used to generate the
representations.

3.1 Graph Drawing

When visualizing and interacting with graphs, the starting point is to display the tra-
ditional G = (E, V) mathematical construct on a surface or space. Performing this
task automatically is the subject matter of Graph Drawing. The goal of this discipline
can be stated in a deceivingly simple manner: given a graph, calculate the position of
the vertices and the curves to be drawn for each edge. The resulting representation is
frequently referred to as a layout.

Good graph layouts are powerful sources of information; humans are inherently good
at pattern-matching, and a layout that emphasizes patterns within a graph will result
much more informative than one that does not.

However simple the problem statement, the definition of a “good layout” is by no
means straightforward [25]. Common criteria are preventing node overlap, avoiding edge
crossings, keeping edge lengths constant, and preserving symmetry. Other criteria may
involve drawing only orthogonal edges, or making all edges point in the same direction,
or providing fast drawings for interactive use. In many cases, compromises must be
found. For instance, many graphs cannot be represented without edge crossing. In
this case, the number of crossing should be minimized. In other cases, conflicting goals
may be found, such as a desire for few crossings and constant-length edges: in many
cases, lowering the number of crossings involves complex edge routing. A classification
of graph drawing methods can be found in [79].

Tree-drawing methods, as their name implies, can only be used to draw trees. Their
main advantage is their speed (mostly linear with the number of nodes) and simplicity.
A list of commonly used tree layouts, from [79], follows:

28 Chapter 3. Information Visualization and HCI

Reingold-Tilford classical top-down layout, preserving symmetry.

H-Tree uses orthogonal lines to create a less root-centered layout.

Radial the root is located at the center, and branches fan out in a radial fashion.

Balloon radial layout is performed recursively on each of the branches

Cone adding a third dimension to a balloon layout produces a “cone tree”.

Tree-maps uses nested boxes to represent branches. Extra information can be encoded
in the area of the boxes, but the structure is harder to follow.

Planar representations are used when tree layouts are insufficient. The first question
to ask is whether the graph can be drawn without edge crossings (a graph that passes
this test is called planar) or not. If the graph is directed, it may also be desirable to
draw all edges in the same direction (“upwards planarity”). When the graph does not
directly fall into the intended categories, it is common to subdivide it into sub-graphs
that do, layout these “layers” independently (there will then be no crossings within
each layer), and finally join the layers together to form the drawing. The core of the
complexity in this process is that of edge-crossing minimization between layers. In fact,
it has been proven to be NP-hard [68]. Complex heuristics are used when subdividing
the graph into suitable layers. One of the best-known layouts in this category is the
Sugiyama algorithm, described in [123].

3.1.1 Force-Directed Layouts

A completely different approach to the layering strategy is that of force-directed lay-
outs, or spring layouts. These layouts make use of a physical model, such as modeling
vertices as ideal points and edges as springs that obey Hooke’s law (the original spring
layout, proposed by Eades[51]). Starting from an initially random layout, attractive and
repulsive forces in the model are repeatedly calculated, and gradient descent is used to
search for an energy minimum. Different physical models result in layouts with different
characteristics, and new aesthetical requirements can be reflected by carefully tuning
the model.

The approach of Kamada and Kawai [85] is similar in that, it too, considers graph
layout as an energy optimization problem. However, the only forces considered are
those of the “springs” corresponding to each edge (there is no universal repulsion), and
instead of calculating forces for every vertex on each iteration, only a single vertex is
allowed to move. The optimal displacement can be calculated in O(|V |).

3.1 Graph Drawing 29

In Eades’ original model, the following attractive and repulsive forces were defined:

fa(d) = kalog(d)

fr(d) =
k

d2

Where k is the “natural spring length” (the desired length of each edge), ka is a constant
used for attraction, and attractive forces were only applied between vertices directly
connected by an edge. The use of ka · log(d) instead of an ideal spring (ka · d)in the
calculation of the attractive force is designed to prevent very long edges from exerting
too great a force.

Reingold and Fruchterman [64] discuss the use of additional refinements, such as
walls to constrain the rendering size, and propose another set of forces, which are less
computationally intensive:

fa(d) =
d2

k

fr(d) =
−k
d

Reingold’s approach uses simulated annealing to control the layout process, constraining
the maximum displacement of vertices in each iteration by a temperature value t, which
is decreased with time. This results in large displacements during the initial iterations,
and small refinements during the later stages. Different policies can be applied to the
“cooling process” in an effort to obtain a better layout in less iterations.

Force-directed layouts share a set of common characteristics:

• Force-directed layouts are easy to implement and extend, and yield good results
for a large family of graphs. They tend to display symmetries in the original graph
and keep consistent edge lengths.

• A new layout is highly non-deterministic, since it is initialized with random po-
sitions and is the result of a high number of iterations where all vertices have
influenced all others.

• Existing vertex positions can be easily reused, rendering incremental layouts,
which can be substantially faster and of better quality than if a random lay-
out was initially chosen. However, unless convergence is very fast, it is difficult to
predict where any individual vertex will end.

• Complexity is O(|V |2) per iteration, since repulsive forces must be calculated for
each pair of vertices, of which there are (|V | · (|V | − 1))/2. If the graph is dense
and/or the initial layout is bad, a large number of iterations (in the order of |V |)
may be needed before a good drawing is generated.

30 Chapter 3. Information Visualization and HCI

• Layouts can be readily extended to 3 (or more) dimensions, by extending the set
of dimensions that vertices are allowed to move in. Forces acting on vertices do
not need to be modified.

Laying out large graphs

When the graph to layout is truly large, it is probably too expensive to generate a
conventional layout that minimizes all edge crossings, and a common technique is to
first lay out a spanning tree of the graph with a (fast) tree layout algorithm, and then
add the remaining edges. The key here is to choose a good spanning tree so as to min-
imize crossing in the complete graph, and many algorithms have been developed to do
just that, ranging from a depth-first search to a weight-based incremental construction
starting from a carefully chosen “root” node [79].

A similar method is to select a “coarsening” of the original graph, perform layout
with the coarsening, and then introduce the remaining vertices until the full graph is
completely laid out. This approach, followed by Walshaw [134] has achieved dramatic
speedups for force-directed methods in very large graphs. Again, the key is to use good
coarsenings. Walshaw uses a recursive coarsening with two properties: the algorithm
must be fast and efficient (the goal is to represent the whole graph, there is no require-
ment for intermediate graphs to make any sense) and clusters should be distributed
uniformly. The chosen algorithm is to perform edge-matchings, that is, in each coars-
ening step, a maximal set of independent edges (sharing no endpoints among them) is
sought and collapsed. Figure 3.2 illustrates the progress of the algorithm. First, a very
coarse version is laid out; progressive iterations add more vertices, until the full graph
has been drawn (fig. 3.2 (e)).

Figure 3.2: Use of graph coarsening to reduce the time to perform force-directed layout,
from [134]. Layouts (a), (b), (c) and (d) correspond to coarsened versions of the same
graph, which is shown fully laid out in (e). The last layout, (f), was generated in the
same amount of time, but without coarsening.

3.2 Graph Visualization and Human-Computer Interaction 31

3.2 Graph Visualization and Human-Computer Interac-

tion

This section deals with the visualization of graphs and the interaction with such visu-
alizations. Once layout has been performed, a representation (or view) of the graph is
shown. The user will now want to perform tasks on top of this display, and this will
require interaction.

Lee et al. [90] propose the following taxonomy of tasks for graph-related information
visualization. Of course, not all tasks are equally important for all applications:

Topology-based tasks

Adjacency: Find the set of vertices connected to a given vertex, or the vertex
with the most neighbors.

Accessibility: Find the set of vertices within a given radius (in edge hops) of
another vertex.

Common connection: Given a set of vertices, locate all their common neigh-
bors.

Connectivity: Locate the shortest path between two vertices, or identify con-
nected components, articulation points or bridges; locate clusters.

Attribute-based tasks

On vertices: Find vertices with specific attributes; gain an overview of the con-
tents of the list of vertices.

On links: Perform topology-based tasks, restricting the search to those edges
that fulfill a certain conditions on their attributes.

Browsing tasks

Follow path: Follow a given path through the graph.

Revisit: Return to a previously visited vertex.

General tasks

Overview: Gain an overview of the general layout and connectivity of the graph.

In order to perform these tasks, a user must first be provided with a view that
presents the necessary information. This requires the information to be visible and
distinguishable. Problems may arise due to occlusion (parts of the graph’s drawing
hiding other parts), ambiguous renderings (more than one possible interpretation; for
instance, edge intersection with very small inner angles) or not enough display space to
represent the whole graph at once while retaining necessary details.

32 Chapter 3. Information Visualization and HCI

3-D Representations

While most representations are planar, many of them can be easily carried over into the
third dimension: trees can be represented as conic trees, as a landscapes as in the Silicon
Graphics Inc. (SGI) File System Navigator (included with their operating system until
version 5), or as points on the surface of a sphere [79]. Many graph layout algorithms
(such as force-directed layouts) can be readily extended to a third dimension, with the
advantage that it is always possible to route edges to avoid undesired crossings (although
that does not prevent the crossing to reappear when the view is rendered in 2D).

The third dimension gives, literally, more “space”, but at the expense of requiring
the user to navigate the spatial representation to locate a suitable view. Due occlu-
sion, certain vertices or edges will be visible only from certain viewpoints – and if a
chosen viewpoint is inside the convex hull defined by the graph’s outermost vertices,
parts of the graph are bound to fall “behind” the user’s point of view. The user is
expected to navigate to discover the occluded portions, although it is frequent to use
other mechanisms such as transparency or perspective transformations to simplify this
task.

In addition, true 3D interfaces also present a wealth of navigational options, mak-
ing them more complex (and unfamiliar) to navigate in than conventional 2D. Some
measures can be taken to address this issue, such as providing an “ground” plane from
which “up” and “down” can be defined. Additionally, traditional 2D pointing devices
such as mice, touchscreens or trackpads are ill-suited for interaction in 3D spaces.

To avoid occlusion and difficulties associated with 3D interaction, many systems
use a “2.5D” approach instead (such as the one depicted in fig. 3.3) by performing
a 2D layout and superimposing additional information on the third dimension, before
rendering the results in 3D.

Another option within 3D graph visualization interfaces is to force particular parts
of the graph into 2D planes, and render these as a stack (particularly useful to display
different interactions between similar systems). Graph clusters can also be allowed to
have a 3D internal structure, while the graph composed of the clusters themselves is
rendered in a 2D plane that bissects all clusters. These approaches have been explored
in the WilmaScope graph visualization environment, described in [50].

3.2.1 Detail and Context

It does not make sense to try to represent a graph with thousands or even hundreds of
nodes on a small area, such as a computer screen: the nodes will be so tiny and there
will be so much edge clutter that it is naive to expect the user to make much of the
drawing, except perhaps to understand the general outline and estimate the graph’s
size.

Graphs share this problem with any other visual representations that are larger

3.2 Graph Visualization and Human-Computer Interaction 33

Figure 3.3: A 2.5D visualization of a scientific co-citation graph, from [29]. Vertical
bars indicate the number and importance of the citations.

than the available space. Parts of the data must be hidden, or made smaller, to allow
other parts to be examined in detail. When the user is seeking relations among this
data, it will usually not do to simply hide some parts: some measure of context may be
necessary to keep orientation and prevent loss of important relations.

In the case of graphs, context is more delicate than in other scenarios. A single edge
can make an important difference, connecting several otherwise distant areas – or it
may be almost irrelevant, if these areas were already well connected. Individual vertices
can fulfill similar roles (as in the case of articulation points). Context, understood as
“knowledge of important surroundings” is not only present in the connections between
major graph areas - some parts of a graph will generally be more relevant than others;
and the degree of relevance may vary depending on the current task. It is therefore
difficult to determine what context should be supported for a given detail operation.

Graph detail can be lowered by several techniques. The first is of course to shrink
a part of the layout; but this will likely result in a mess of edges and vertices and
their labels. Edges can be omitted from low detail areas, although some (possibly a
spanning tree of the area) may be preserved to show the connectedness. Labels from
low-detail vertices can be removed, vertex shapes can be substituted by points, and
multiple low-detail vertices can be merged into clusters, as is performed by [132].

Leung and Apperley [91] refer to techniques to accommodate both detail and con-
text as distortion-oriented, and distinguish between distortion applied to the graphical
representation (graphical data) or to the original, non-graphical data. In each case, the

34 Chapter 3. Information Visualization and HCI

classification distinguishes whether a mixture of high and low detail content is present
(“distortion”) or not. An abridged version of their classification follows:

• Graphical data – a result of either inherently graphical data or a graphical ab-
straction of non-graphical data

Distorted view: detail in context, via spatial transformation. This can be achieved
via polyfocal projections and graphical fisheye lens.

Non-distorted view: detail with little or no context, as in zooming and win-
dowing (ie.: overview+detail).

• Non-graphical data – “distortion” in an information-density sense.

Distorted view: abstracting and thresholding

Non-distorted: paging and clipping

Note that it is perfectly possible to mix several techniques; for instance, graphical
techniques such as zooming and windowing are often combined with non-graphical ones
such as abstracting and thresholding.

Overview+Detail

A typical case of non-distorted view is the overview+detail setup, where a small overview
window is used to represent the entire context and a large detail window to examine
the fine detail (generally with a variable degree of zoom). It is typical to place a marker
in the overview window signaling the portion that is currently being displayed in the
detailed view. This approach is most useful when distances and angles found in the
representation are meaningful, and is therefore typically found in image manipulation
programs, CAD tools, or geographical information systems. These interfaces are also
known as pan & zoom, in reference to the typical modes of interaction used to shift the
area of detail and vary the degree of zooming.

Many user interface toolkits provide multiple-document support with panning, and
even zooming, “for free”. This has made overview+detail interfaces very widespread.
Recently, fast hardware and application frameworks such as SHriMP [120] (1999) have
enabled zoom-based interfaces to speed up dramatically, giving birth to Zoomable User
Interfaces, or ZUIs [105]. The concept of ZUIs, however, also incorporates elements of
thresholding and abstracting.

Focus+Context

Focus+Context interfaces incorporate context surrounding a detailed “focus” (distortion
may be necessary to make the necessary space), and update the focus to follow the user’s

3.2 Graph Visualization and Human-Computer Interaction 35

actions, in such a way that when part of the context is operated on, it becomes focused,
while the old focus reverts back to a low degree of detail and merges into the surrounding
context.

Fisheye views are a technique of distorting the data, not the representation proposed
by Furnas in [65]. Information elements present in the display are assigned a degree
of interest (DoI), and those with importance below a certain cutoff value are then
abstracted. The DOI assigned to a given information element x given a current point
of interest (PoI) y is illustrated in eq. 3.1: it is the result of considering the a priori
importance (API) of x and its distance to the current point of interest, �. Refinements
on this technique assign multiple types of DOI to each element, so that different aspects
of the elements can be (un)highlighted independently.

DOIfisheye(x|� = y) = API(x)−D(x, y) (3.1)

Graphical distortions reprocess an image to enlarge or reduce certain areas. Multiple
areas can be smoothly enlarged, as in polyfocal projections, or only two levels of detail
used, as in the bifocal display. Another option is the perspective wall, that follows the
model of a flat wall with the context reduced as if by the effect of perspective. Polar
coordinates can be used to create fisheye views [112], and finally hyperbolic spaces allow
huge representations to be fit in a limited space by reducing detail exponentially fast at
the borders (see fig.3.4).

The term fisheye view itself stems from the wide-angle lenses used in photography,
and is also used in the context of visualization to refer to similar graphical distortions
involving smooth changes in zoom level, such as hyperbolic trees. An example of such
a graphical “fisheye” effect is presented in fig. 3.4 (from [89]). The figure depicts the
process of focus-change in a hyperbolic tree. In the first snapshot, the original point-of-
interest, labeled as A, is located at the center of the image. In the last snapshot of fig.
3.4, the new point-of-interest, labeled as B, has moved smoothly towards the center,
while A and its children nodes have been shifted towards the low-detail periphery.

3.2.2 Preserving the mental map

While interacting with a graph, a user will gather and maintain an idea of the general
structure of this graph and the general location and relations between parts of the whole:
a “mental map” [97]. When the interface relies heavily on changing the viewpoint (as
do all focus+context approaches), special care must be taken to prevent breaking the
user’s current mental map [97]. The degree of change depends heavily on whether the
graph layout is computed only once, at the start of the visualization, or incrementally,
after each navigational or editing step. This decision can be roughly assimilated to
geometric vs. informational distortion.

The “fixed layout” approach is followed by [113], [132] and others. For instance,

36 Chapter 3. Information Visualization and HCI

Figure 3.4: Change of focus in a hyperbolic tree, adapted from [89]. Images are ordered
left to right, top to bottom. The initial focus is A, and the desired focus is B.

in [132], the whole layout is precomputed in advance, using a layout algorithm where
proximity is closely related to cluster-belonging. When navigating, three areas are
defined around the cursor, which behaves as a “magnifying lens”: in the outermost
area, clusters are represented as large vertices, at a fixed maximum level of abstraction;
in the intermediate area, the degree of abstraction varies between this maximum level
and full detail; finally, in the central area there is no abstraction, and variable geometric
zoom is performed.

Fixed-graph approaches such as the above avoid recomputing layouts, because when
substituting high-level clusters for single cluster vertices, these are simply located at the
average position of the “leaf” vertices they represent. This minimizes change, and is
an effective means for preserving user orientation. However, a single full layout cannot

3.2 Graph Visualization and Human-Computer Interaction 37

be used if the graph is being edited instead of simply navigated (adding or deleting
edges from graphs can potentially alter the whole graph structure, and require a new
clustering and a full relayout). A second problem is that generating a good layout for
a large graph can require a long time, specially if the algorithm should output a result
that is similar to the currently presented layout.

On the other hand, incremental layout approaches (mainly [52] and [63]) do not
need to perform full layouts, make a better use of display space, and can accommodate
interactive graph editing. However, because layout is slow, the number of displayed
nodes must be relatively small to preserve interactive behavior. This favors semantical
zooming over geometrical distortion: the former lowers displayed node count, and the
latter is most useful when large amounts of nodes are visible.

A series of general “factors” that contribute to mental map preservation are identified
in [60]. Although they are general enough to be relevant to any focus+context navigation
schemes, this discussion will deal only with hierarchical graphs that undergo relayout
after an edit or navigational action.

Predictability

A first factor is to make the jump from one view to the next predictable. The user should
be aware of what changes are to be expected in the view before triggering them. This
goal can be furthered by providing visual feedback of actions before they take place,
educating the user as to the internal workings of navigational actions, and keeping these
simple to understand and use. As a side effect, any strategy that increases predictability
of navigational actions will also offer valuable insights about the graph structure. This
can lead to a better mental model. However, excessive navigational aids can also lead
to information overload.

Degree of change

A second factor is to minimize the jump itself. The new view will hide some nodes
by collapsing them into higher-level clusters, and will expand new clusters into their
components. Other sources of change include altering the underlying graph, or if the
graph is being filtered before presentation, changes to the filtering.

Keeping a low degree of change between views depends heavily on the chosen incre-
mental layout algorithm. Many factors determine the “goodness” of a layout. There is
agreement on some criteria, but no officially accepted “goodness” metric - which would,
in any case, depend heavily on the application. As discussed in section 3.1.1, force-
directed layout algorithms produce good layouts on a large range of graphs, and are
particularly well suited to incremental layout.

When minimizing change, a balance must be struck between keeping changes low
and finding a “better” layout (which will probably differ from the current one because

38 Chapter 3. Information Visualization and HCI

of the stochastic nature of force-directed layouts). This can be achieved during relayout
or by transforming the resulting layout “a posteriori” into a version that is more similar
to the original one. A posteriori transformations such as affine transforms (rotation,
shear, symmetry) do not modify the “energy” of the layout, but can result in a better
match to the previous one. However, weakly-connected subgraphs can undergo such
transforms independent of each other, and detecting and reverting each of them is a
difficult problem.

Traceability

The last factor is to evidence the changes as they take place, so that they can be tracked
and integrated into the user’s mental map. This is usually achieved via animation. A
simple approach is to interpolate a series of frames between the old and the new view,
and present them in quick succession. [62] presents a detailed study on the desireable
characteristics of graph animations. Better animation results if the intermediate frames
are individually correct graph drawings, avoiding such things as overlapping nodes and
overlapping or easily confused edges, which may result in display of non-existing struc-
tures. Another important property is the “structure” of movements – a rotation of
several nodes at once is much easier to follow than several independent movements.
However, all this can be expensive to calculate, and animation should be perceived as
continuous and smooth in order to be effective. If incremental layouts are performed
and changes are kept small, the animation structuring techniques used in Marey [62]
are probably overkill.

3.2.3 Creativity Support

As a part of better human-computer interaction guidelines, graph editing environments
for knowledge engineering tasks should actively support and encourage creativity. Long
development lifecycles from idea to testable prototype are counterproductive, since by
the time an approach is proved wrong, too much effort has been invested to start all
over again. To avoid this, according to [114], editors should provide

• Sketch capability – Partial efforts should yield partial results. If it is very expensive
to test out an idea, fewer ideas will be tested.

• Support for learners and experts – The tool should be shallow to learners, allowing
easy tasks to be performed easily; but with this should not preclude a deep end
for advanced swimmers.

• Wide walls – Support should be implemented for very general primitives that
can be combined in different contexts, yielding expectable results. “Artificial”
constraints should be avoided wherever possible. For instance, the Undo/Redo

3.2 Graph Visualization and Human-Computer Interaction 39

and Cut/Copy/Paste primitives can be reused in many different contexts. In
graphs, this list could include ”New/Delete/Connect” to achieve completeness.

Some of these issues will be encountered in the following chapter, when analyzing
the problems faced by adaptive hypermedia content authors.

Chapter 4

Adaptive Hypermedia

Hypermedia refers to the combination of contents of any type (any combination of video,
audio, static images and text, generically called media) and links to other contents. It
is a logical extension of the original hypertext concept, with textual documents linked
to each other enabling a non-linear reading. Hypermedia spaces are natural graphs,
where individual pieces of media can be considered vertices and the links between them
constitute the edges.

The field of Adaptive Hypermedia (AH) strives to develop hypermedia tailored to
each user’s needs and preferences. In a traditional hypermedia environment all users
are presented with the same media fragments and offered the same links to navigate
them. However, not all users share the same goals and preferences, or start out with
the same knowledge. Adaptive hypermedia changes the contents, their presentation or
their navigational organization based on information about the user as collected by the
system. The information that allows the tailoring to take place is called user model
(UM), and the process of tailoring is termed adaptation.

Adaptivity, Adaptability and Transparency

Opperman et al [102] distinguish between adaptivity and adaptability - the first is
system-initiated, while the second is requested explicitly by the user. For example,
a screen where the user could alter preferences in a straightforward manner would fall
under adaptability. If the same actions where taken by the system after inferring the
preferences from the user’s behavior, that would be adaptivity. Since many adaptive
behaviors do not fall cleanly into any of these categories (for instance, a questionnaire
where the answers are indirectly translated into different presentations, or a system
where the user has a measure of control over the adaptations suggested by the system),
this distinction will not be used in the remainder of the work. Adaptation is taken to
mean a mixture of both, excluding only the most simple forms of adaptability (such as
a menu that allows the user to change the application’s background picture).

42 Chapter 4. Adaptive Hypermedia

Before losing sight of this distinction, it must be noted that adaptability without
adaptivity is likely to be frustrating for users. Systems that perform adaptation should
be capable of explaining the decisions that they take on the user’s behalf. In an ideal
scenario, where the “correct adaptation” was always chosen over any alternatives, users
probably would not mind. But since performing the correct adaptations based on in-
complete data is bound to result in occasional mistakes, adaptive systems should always
provide some breadcrumb trail that allows users to check and/or correct wrong steps of
the process. This important property has been termed scrutability [86] or transparency
[81].

4.1 Classification of AH Systems

This overview of Adaptive Hypermedia starts out pointing the types of adaptation that
can be performed. Then, the main types of AH systems are briefly enumerated. Finally,
considerations on the nature of documents in a hypermedia space are offered.

4.1.1 Types of Adaptation

What types of adaptation can be performed in adaptive hypermedia systems? A well-
known taxonomy is that by Brusilovsky [34], revisited in [35]. According to this taxon-
omy, two main types of adaptivity can be distinguished. Adaptive presentation covers
changes in the way a given piece of information is presented, while adaptive navigation
support focuses on the hypermedia links that provide the structure. The term struc-
ture is used frequently throughout the present work to refer to the connections that are
available for navigation.

Adaptive Presentation Techniques

• Adaptive text presentation covers text adaptation, and can be further subdivided
into

– natural language processing of textual content.

– canned text, such as selection of alternative texts, changes in text detail
(stretchtext), conditional text inclusion or “dimming”, and changes in text
block order.

• Adaptive multimedia presentation, where non-text media such as images, sounds
or animations are modified to suit the user.

• Adaptation of modality, choosing the best media type (or combination thereof) for
a given concept.

4.1 Classification of AH Systems 43

Adaptive Navigation Support Techniques

• Direct guidance, where the system recommends the next step to take based on the
user’s profile

• Adaptive link sorting, where lists of links are sorted according to their predicted
degree of interest for the current user.

• Link hiding, which covers elimination, disabling and hiding of links not considered
relevant at a given moment.

• Link annotation, providing a short text to illustrate the link’s relevance to current
context. Color-coding is also included in this category.

• Link generation to potentially interesting resources, on-the-fly. For instance, ref-
erences to encyclopedia entries or web searches would fit into this category.

• In Map adaptation, an overview map is provided, with the map’s structure reflect-
ing the adaptations performed to the system’s link structure based on the user’s
profile.

As with many taxonomies, some categories overlap, and adaptation techniques that
fall into several categories are frequent. For instance, the [46] system could display
“uninteresting” links in a font that closely matched surrounding non-link text; this
could be considered both annotation (if the user does notice that it is, in fact, a non-
recommended link) and hiding (because the link has been disguised).

4.1.2 Adaptation methods

Adaptation techniques are only means to a goal, the goal being to provide a better fit to
the user’s needs than would be possible with a non-adaptive version. In Brusilovsky’s
classification, adaptation techniques are only the practical implementation of higher-
level methods that respond to the real adaptation needs. Methods can again be grouped
as either presentation- or navigation-related.

Presentation-related Adaptation Methods

• Additional explanations for certain topics, for instance to expand a topic for which
the user lacks background, or to provide extended information to advanced users.

• Prerequisite explanations and comparative explanations relate the current topic
with prerequisite or otherwise related ones. Prerequisite explanations can fill in
gaps arising from multiple possible paths through the hypermedia space.

44 Chapter 4. Adaptive Hypermedia

• Explanation variants can be employed when it is not possible to use a simple
modification (such as prepending a small ’glue’ fragment) to achieve the desired
adaptation, and a totally different approach is deemed more adequate.

Navigation-related Adaptation Methods

• Global guidance recommends, at each point, a series of steps that will lead users
along the path that “best” matches their knowledge and profile. A common
implementation makes use of a dynamic “next” button. Pressing this button
brings a user to the next step in the path.

• Local guidance is less ambitious, using only the local neighborhood to decide the
“next” step. If global guidance is available, this is not necessary.

• Local orientation helps the user make an informed decision in each point, by
annotating the available links, hiding irrelevant ones, etc.

• Global orientation support informs users of their absolute position within the
course, lessening the “lost in hyperspace” syndrome and helping them to make
better long-range decisions on the path to follow.

Presentational and navigational adaptivity are complementary; for example, if Su-
san and Angela are both using the same system, and one is recommended a different
path from another (navigation-related adaptation), it would only make sense to present
individual contents (presentation-related adaptation) according to the paths that have
been followed, and the data acquired by the system during past interaction.

Although both presentation- and navigation-related adaptivity present interesting
challenges, this work deals mostly with the latter. Without navigation- related adapta-
tion, there is a single link structure that is presented to all users – and complex graph
visualization, though useful, is not so necessary. The use of global navigational adapta-
tion, in contrast, requires multiple link structures to be created and maintained. Graph
visualization is very useful for these tasks. Since possible navigation paths will now
depend on link structure that the user is following, concepts can now change presen-
tation order, requiring content authors to ensure that such a viewing order is indeed
supported by their present adaptation. Global navigation support therefore significantly
raises the cognitive burden, not only for those in charge of creating and maintaining the
link structure, but also for content authors.

4.1.3 Adaptive Hypermedia Systems

This section provides an overview of the main types of Adaptive Hypermedia systems
that can be found in the real world. The classification is not clear-cut, but it is roughly
based on Brusilovsky [35], so it is more or less standard.

4.1 Classification of AH Systems 45

Much of the research on Adaptive Hypermedia has centered on its use in education:
the possibility of bringing adaptation to course material is certainly tempting, and
many existing textbooks already seek to adapt themselves to their users by providing a
“reading guide” as a part of the preface (eg.: if you are interested in such-and-such, skip
chapter 8 but make sure to read chapter 9). Also, since a large part of the AH research
community is composed of faculty members, it is natural to focus on the domain they
are most experienced with: education itself. Education also has certain advantages over
other domains for research purposes: it is easy to evaluate outcomes with exams and
questionnaires. The following is a non-exhaustive list, in alphabetical order: AHA [46],
DCG+GTE [133], ELM-ART [37], Hyperbook [78], Interbook [53], Tangow[41].
Many of these systems have gone through multiple revisions; only a single version is
listed for each.

Other important domains, according to [35] are online information systems, online
help systems, information retrieval systems, institutional hypermedia and personalized
views. In these systems, the goal is not so much to “educate” the user as to assist the
information gathering process. The differences between these categories can be found in
the domains where they are expected to be deployed. For instance, technical documents
intended for general browsing could be structured into an AH online information system,
whereas application-specific help would constitute an online help system, and documents
describing an institution would conform an institutional hypermedia system. In the last
example, faculty could be offered different views and links than enrolled students or
prospective postdoc researchers.

In very large hypermedia spaces such as the world-wide web, the task of structuring
information for efficient retrieval via hyperlinks is prohibitive. In an information re-
trieval system, there is no fixed link structure that encompasses the hypermedia space;
instead, each content fragment contains metadata (or can be mined for this metadata
on-demand) which allows it to be classified as “relevant” for a given set of queries. Mixed
approaches with both explicit and implicit (“results of a query”) links are also possible,
and have been demonstrated in systems such as Welkin[14] and SCARCE[69].

A distinction can also be made between open-corpus and closed-corpus systems,
where the former are designed to deal with very large result sets, and the latter are only
required to perform on a restricted set of chosen documents. Breadth and extensibility
favor open corpus, at the expense of predictability of results, since there is no guarantee
that the system will prove capable of choosing the most relevant contents in response
to a query, or indeed that any such contents will be available in the open corpus. In
a closed-corpus system contents are usually carefully classified and revised to avoid
these failure modes. As examples, Welkin uses an open corpus (google searches) as a
complementary information source, while SCARCE is entirely driven by closed-corpus
queries (structural “links” are actually queries over a well-annotated corpus).

46 Chapter 4. Adaptive Hypermedia

It is also possible to perform adaptation in information retrieval tasks; compared to
non-adaptive information retrieval, the difference is that the system fills in certain query
parameters for the user instead of having the user enter these parameters manually (if
such an option where available). For instance, the popular web search engine “Google”
offers Personalized Search[3] , which weighs the results for a query taking into account
past queries and the user’s selection of results from those queries.

The last category, personalized views, refers to views that retain only a subsets of
the total amount of available information. A non-adaptive offline example would be
researchers that keep themselves informed by means of periodic bibliographical queries
on certain keywords. An online example, which is also not adaptive because the “user
model” (the set of feeds) must be explicitly maintained by the user, is the use of RSS[9],
ATOM[32] or other syndication mechanisms to gather updated information on current
topics of interest. Existing AH systems in this category include PowerBookmarks[92]
and other adaptive bookmarking systems.

4.2 Reuse, Metadata and Domain Representation

Adaptive content provides added flexibility, since it is designed to adapt to different
users. Adaptation is generally designed only for the system for which each content
fragment was designed; however, once created, the potential for reuse in other systems
is much greater than for non-adaptive contents. And reuse is of course very interesting,
since the cost in time and labor of developing adaptive contents is greater than for
non-adaptive ones (see section 4.4 on authoring) – and in both cases, it is certainly an
important factor when developing any system.

An important question is what granularity of reuse makes sense. The computer-
assisted learning field has coined the term learning object (LO) to describe a reusable
e-learning course fragment (not necessarily adaptive). Multiple initiatives seek to stan-
dardize and promote LO interoperability; some efforts include the Learning Technolo-
gies Standarts Committee (LTSC) at the IEEE[4], the European-sponsored ARIADNE
project[2], the Instructional Management System (IMS)[5] initiative, or the MERLOT
learning object repository [7].

Different incompatible definitions of the idea of “Learning Object” can be found in
each of these sources. Some include sequencing, others don’t; some allow their LOs to
have complex internal organization (even referring to or including additional LOs in a
nested structure) or associated logic (which would be needed for AH), while others have
no support for anything other than a simple presentation. Choosing the lowest common
denominator leads to a definition of learning object that can include almost anything:
“learning resources which can be reused”. To avoid further confusion, reusable, adaptive
content fragments will be referred to as modules in the remainder of this section.

4.2 Reuse, Metadata and Domain Representation 47

It must be noted that reusing modules requires the importing system to be able to
display the reused module. If a system A wants to reuse a module developed for B, there
is an alternative approach to displaying it locally: request B to perform this service,
through a well-defined protocol, and return the results. This is the approach followed by
the Advanced Distributed Learning (ADL) initiative with its Sharable Content Object
Reference Model (SCORM) [10].

Metadata and Retrieval

Whatever the mechanism followed to reuse an existing module, the first step is to find it.
Retrieving a module from a repository requires some kind of description of the module
being sought; this description is then matched against the data on all available modules
in an effort to locate the best matches. Results from the field of information retrieval
(IR) [22] are applicable to this problem.

Matching a textual query against a document’s contents is only possible if the doc-
ument being sought is textual in nature, or if a plain-text description has been created
for this purpose. Furthermore, synonyms and other nuisances of natural language make
full-text matching imprecise unless the exact same wording is used in the query and
all relevant documents. A careful classification using a well-defined, constrained vocab-
ulary allows much higher recall and precision. The classification data is then added
to each document as metadata – data about data. While the use of such vocabularies
within a single repository is certainly beneficial, users wishing to query the repository
must be familiar with its classification scheme; this is a burden for local users, and
makes interoperation with external repositories using a different classification scheme
very difficult. This motivates the need to standardize metadata and its representation;
for instance, each of the Learning Object initiatives enumerated above defines its own
set of metadata.

Standardized metadata such as the well-known Dublin Core [138] has proven useful
to allow interoperation of general content repositories. It provides support for many
common fields, such as title, subject, author, rights, format and so on, with
standardized representations for each. However, it is a lowest-common-denominator
approach; higher-level descriptions are necessary, but they are bound to be domain-
specific. A decentralized approach requires interoperable, machine processable metadata
vocabularies with well-defined terms and relationships between terms. These ‘shared
conceptualizations’ have been called ontologies, borrowing the term from philosophy.
At the lower levels, technologies such as XML and RDF provide a common, machine-
readable format in which to express ontologies. At a higher level, languages such as
OWL, DAML and F-Logic allow designers to express complex relationships defined on
classes and instances, and provide support for limited reasoning.

These technologies can be pursued to varying extents. Interoperation of metadata

48 Chapter 4. Adaptive Hypermedia

vocabularies can be very simple, as with folksonomies (flexible, informal ontologies
built ad-hoc). On the other extreme, there is the vision of the semantic web [27], where
software ‘agents’ can retrieve data from the web and interoperate with each other,
opening internet to a host of exciting applications.

However, ontologies are complex to work with: the network of classes, relationships
and instances can grow to a considerable size, and is difficult to visualize without ade-
quate tool support. Because of their network-like nature, ontologies are commonly repre-
sented as graphs, and most authoring tools include a graph-based visualization. Perhaps
the best-known one is Jambalaya [119], a visualization plugin for the Protégé [100]
ontology editor. Indeed, ontology diagrams are proving so useful that the Object Man-
agement Group, known for the popular UML specification, is working on a specification
to standardize ontology representation [126].

A good visualization of the metadata vocabulary is not important only for those
actively involved in the vocabulary’s development; it is important for any user, since
users attempting to label or query a document’s labels also require good working knowl-
edge of the vocabulary to use. We are currently unaware of any graph-based annota-
tion/querying support.

Ontologies and Domain Models

Knowledge representation is not only useful in the context of metadata and reuse.
Formalisms such as Concept Maps [16] or Topic Maps [48] have been used to define the
conceptual structure of AH spaces. These conceptual structures are often referred to as
domain models. Beyond their use to relate each content with the concepts it belongs
to, these conceptualizations can convey prerequisites, examples, and a wealth of other
relationships, which can be given additional semantics by the AH system.

4.3 User modelling

Adaptive Hypermedia is based on the possibility of adapting a system to meet the user’s
preferences and needs. However, these needs and preferences must first be obtained and
represented. This section deals briefly with the contents, representation and update of
user models in AH.

User models (UMs) are usually organized into several different categories; User pref-
erences can be divided into dynamic and static, where dynamic ones change frequently
over time, such as current goal and accumulated domain knowledge, and static ones are
more stable, such as age, gender, geographical location, preferred language or perceived
personality. Exactly how the model is represented and what parts are used to alter
hypermedia presentation is highly system-dependant.

User models can start out blank and be filled during interaction. Alternatively,

4.3 User modelling 49

the user can be requested to select among a series of stereotypes, or fill in an initial
questionnaire to prime the model. Of course, care must be taken not to make the
adaptive system more cumbersome than a non-adaptive one, since the goal of adaptive
hypermedia is to provide a better user experience, and this is more likely to be the case
in an unobtrusive system than in one that requires heavy user intervention.

Representing User Models

This organization is reflected in the representation of the UM. A key-value pair can
be used for most straightforward pieces of information; hierarchies may be applied to
more complex types. For instance, when using the Felder-Silverman [55] model to
represent learning styles, values for five dimensions are characterized. It would make
sense to use a “learning-style” key with subkeys labeled “sensory-intuitive”, “visual-
verbal”, “inductive-deductive” and so on, instead of five independent keys.

An important part of the UM will be dedicated to data gathered about the user’s
accumulated knowledge of the domain model. Since the domain itself will be structured
as a network, the part of the UM that describes its coverage can be seen as an overlay
on top of this network, specifying for each vertex the degree to which it is known, or is
available to be presented, or is otherwise relevant to this user. Many AH systems use
overlays as an integral part of their user models.

Systems that allow users to examine their UMs represent them as hierarchically
organized key-value pairs, which are easy to generate. However, given that a large
part of a user model is comprised of an overlay on a network, it may be much more
interesting to represent the network instead. This approach would have to overcome the
same limitations as representing a conceptual network or an AH system’s navigational
structure – with added technical difficulties, since the delivery mechanism of choice is
the Web, and representing rich graphs on standard web browsers is currently not simple.
Online, interactive graph applications are only starting to be developed.

Updating the User Model

User models can be updated in a variety of ways, and the choice of update scheme
depends on the needs of each particular system. In an educational environment, for
instance, a test may be required to mark a given concept as “well-known”. In an
adaptive help system, the user’s indication that such a concept was known would be
enough for the system to update its model accordingly.

All UM updates are subject to a degree of noise and inaccuracy. These can have
multiple causes; if the system is web-based, there is usually no way to distinguish
between session discontinuation and a network problem. Users will probably not grant
their full attention to the adaptive system, multitasking instead among several open
applications; this makes it difficult to estimate such simple parameters as the amount of

50 Chapter 4. Adaptive Hypermedia

time a user has spent on a page. In an educational setting, users may communicate via
instant messaging or other technologies, which may taint test results. All these pitfalls
must be thought of in advance by the system designers, which should also safeguard the
user’s privacy in their effort to deliver adaptive contents

Updates to the UM can be triggered in a variety of ways: by simply visiting a certain
document, by demonstrating a degree of understanding, or by explicitly requesting the
change. However, updates are not usually of a local nature: knowledge of a subconcept
should somehow increase knowledge of higher-level ones, increased preference for one
option in a mutually exclusive set should decrease the value of the other options, and
so on. These cascaded updates can be constructed in different ways:

• Explicit rules – rules and associated triggers are defined. Triggered rules then
update the user model. This allows fine-grained control over the update process,
but may be cumbersome to author and maintain. This is the approach followed
in the first versions of AHA [46].

• Implicit domain-model rules – the domain model may be used as a template to
guide the update process. For instance, if the domain model defines a prerequisite
relationship, and one such prerequisite is fulfilled, previously-locked concepts could
be marked as “available”. Fine-tuning could be performed via explicit overrides
of this process, with the same benefits and pitfalls of using rules, but a more
restricted firing condition: the customized overrides would depend on the same
condition required to trigger the default behavior. This is the approach followed
in Wotan[57].

• Belief propagation over the domain model – this provides a more powerful ap-
proach than simple if-then rules, by leveraging knowledge engineering concepts
such as Bayesian networks. Bayesian Networks (BNs) use conditional probabil-
ities defined over the concepts of the domain model that describe, for instance,
how familiarity with “quicksort” (a sorting algorithm) is believed to be influenced
by familiarity with “sorting algorithms” in general. The KBS [78] system uses
BNs to update its user model.

• Adaptation grammar approaches – systems that use high-level adaptation gram-
mars, such as MOT with the LAG adaptation grammar [118], can define overall
strategies that can be later compiled into specific, local rules. This approach
is comparable to defining multiple transformations to be applied on the initial
concept network.

Regardless of how updates are performed, it is important for adaptive hypermedia
authors to be able to examine how the system is working, and if possible, provide a
measure of transparency to the system’s users. A good representation of the system’s

4.4 Authoring Adaptive Hypermedia 51

inner workings can provide a more accessible model, and allow system maintainers to
monitor user’s models during interaction in order to detect and fix possible undesired
behavior.

Bear in mind that the user model determines, for each user, the output that should
be generated to each request. The heart of an AH system is located in the update of
the user model; adapting the presentation from the resulting UM can be seen as just
another part of this update.

4.4 Authoring Adaptive Hypermedia

Authoring adaptive hypermedia is one of the main hurdles in AH adoption. Despite
its many advantages over traditional hypermedia, few AH systems have been widely
deployed. One of the reasons, perhaps the main one, is the fact that authoring adaptivity
is currently much more complex than doing without. This section is written with
Adaptive Educational Hypermedia in mind, since this is the field that the author is
most familiar with; however, results should be readily extendable to any other type of
AH.

When authoring traditional hypermedia, only one structure must be created and
maintained: the navigational structure, defined by hyperlinks among the contents. Even
this structure is non-trivial to create, and authoring tools and advanced content manage-
ment systems (CMSs) allow authors to abstract from the low-level tasks and concentrate
on the more knowledge-intensive aspects. Whatever the system, the following steps will
have to be taken (adapted from [36]):

• Design and structure the hyperspace – Decide the rough contents of the hyperme-
dia space.

• Create page content – Add content to each page.

• Define links between pages – Include hyperlinks to create the navigational struc-
ture defined during the first step.

In a sense, adaptive hypermedia systems can be considered CMSs, since they provide
simplified frontends for content creation and access (while tracking users and performing
updates to their UMs). However, where the simple databases of content management
systems suffice, AH systems have to deal with a much larger array of models, which
must first be authored. Again according to [36], authoring AH requires the following
additional tasks:

• Design of the domain model – Decide how the domain will be modelled, and cre-
ate a structure of that model that is both general enough to describe the initial
contents that will be added and concrete enough to begin adding content. The

52 Chapter 4. Adaptive Hypermedia

domain structure is more general and coarse-grained than the “hyperspace struc-
ture” that the user will see; it does not contain contents, it describes what role a
content can fulfill.

• Design of the user model – A description of the user-model characteristics that
will be considered, and at least a preliminary idea of how they will affect what
parts of the hypermedia space are made available and how they will be presented.

• Categorize contents – Added contents must be linked up to their role as defined in
the domain structure, and care must be taken to ensure that they meet the goals
set forth in the user model and adaptation logic.

• Adaptation and knowledge update – Define how the user model will affect the
hypermedia space, and how data gathered from the user’s activities in the hyper-
media space should be interpreted as updates to the user model.

Not only does authoring AH require a greater number of more complex steps than
developing traditional hypermedia; there is also a very strong coupling between tasks.
For example, changes to a section of a traditional website are generally localized to that
section, perhaps requiring minor updates to the main navigation tree. In an adaptive
hypermedia scenario, modifications to the domain model will inevitably have effects on
user model overlays (which are, by definition, reflections of the domain model), and
therefore adaptation and knowledge update will also require updates.

An incremental, iterative process would be best suited to AH authoring, since there
is a fair amount of trial and error involved in creating complex hypermedia spaces that
can be tailored to different users – but this requires authoring tools which can span
several tasks, and assist in dependency tracking between each of them. In the absense
of such authoring tools, adaptive hypermedia authors are restricted to a cascade-like
development process, where each step must be carefully considered before proceeding
with the next. This contrasts with the creativity support guidelines provided in section
3.2.3.

Graph-Based Authoring Tools

An important decision when designing an interface for a knowledge-intensive tool is
the type of visualization to use. Although almost any interface would be sufficient to
simply enter model data, this would require authors to have advance knowledge of each
model before entering it, placing too heavy a burden on authors. Adaptive hypermedia
authoring is a creative task, and requires visualization support to assist authors in the
analysis and understanding of each of the models and their relationships. Without good
visualization support, it is näıve to expect non-expert authors to create rich adaptive
hypermedia courses. However, most systems provide only textual lists or hierarchies of

4.4 Authoring Adaptive Hypermedia 53

the main models, with field-based editing of individual aspects such as adaptation for
a given domain concept.

Each of the component models that make up an AH space can be adequately rep-
resented as a graph. Concept maps, ontologies and other network-like knowledge rep-
resentation formalisms used to develop domain models are already graphs; most user
models dedicate a large space to an overlay of the domain model, and the link struc-
tures which will be presented to end users will, as in all hypermedia, reflect a graph.
Indees, in a review of hypermedia modelling frameworks by Dolog and Bieliková [124],
all of the proposed models could be depicted as graphs, both in the application domain
axis (which described contents and their relationships) and in the navigation domain
(which described how they were to be navigated). The most popular descriptions were
UML-like Class Diagrams, Entity-Relationship Descriptions, or variants thereof. This
must be taken with a grain of salt, because most AH systems are not built on top of
explicit modelling frameworks.

The need for graph visualization arises in different aspects. First, adaptive hyper-
media authors should be aware of the possible paths that may be followed through the
system; authors should make sure that the content “makes sense” from that partic-
ular point of view, or be ready to prepare extra “glue” contents that will smoothen
transitions. Another issue is that not only is representation in the authoring phase
poor, visualization during testing is arguably in the same state: maintainers must often
confront large user log files in an effort to understand what is right or wrong.

To quote a chapter on AH autoring written by Brusilovsky in 2002 [36]:

The first graphic authoring tool that we will see really soon is a graphic
editor of concept networks. With this editor the designer will be able to
design and author connections between concepts just by placing concepts
on a working window and connecting with a drag-and-drop interface. This
tool will support both the design and authoring stages. A number of similar
network editors exist currently in the field of concept-mapping and busi-
ness presentation design, but all these tools are useful only with relatively
small maps (under 50 nodes) and the main result of the work is the visual
presentation of the network. As a result, these tools now can only be used
during the design stage and for developing small networks. Future concept
network editing tools will be very similar, but their main product will be an
internal representation of the network in a database or XML markup form.
Gradually, they will also handle networks of 100 and more concepts. After
concept editors we may expect the appearance of similar graphic tools for
structuring the hyperspace and for indexing pages or fragments with domain
model concepts.

The Atlas tool [93] was an early realization of a graphical authoring tool for Tan-

54 Chapter 4. Adaptive Hypermedia

gow [41] AH courses. Additionally, Atlas could simulate the effect of a given user
model in a course, and show only the parts of the course that would be presented to
that user. A sophisticated filtering system was available to determine user model char-
acteristics, allowing the “user model template” to be easily established; this type of
filtering only used static properties, and did not take into account attributes that could
vary during course performance. In spite of these features, Atlas proved unwieldy as
courses grew in size, since only panning was available: there was no automatic layout,
and zooming was not supported. Even if these features had been present, authoring
large courses would still be difficult, due to the particular detail and context issues
presented by large graphs (see section 3.2.1.

Figure 4.1: AHA’s domain model graph authoring tool, from [45].

Another graph-based authoring tool can be found in AHA’s latest versions [45]; a
screenshot can be found in fig. 4.1. Since its presentation in AHA version 2, it has
become the recommended tool for AHA course creation. While the graph authoring
tool does support zooming and panning (it is based on the JGraph library), there is

4.4 Authoring Adaptive Hypermedia 55

again no support for automatic layout. Unlike Atlas, support for filtering is limited to
showing or hiding certain relationship types.

Both AHA’s graph authoring tool and Atlas lack support for round-trip editing:
graphs edited with these tools can be saved to an internal format and then exported
into their respective systems, but neither tool can perform the reverse operation. That
is, courses created (or simply modified) outside the authoring tools can not be opened
again from these tools. This is obviously a problem when dealing with legacy contents.

Since certain valid course structures for AHA courses cannot be represented in the
authoring tool, and the same can be said for Tangowcourses and Atlas, authors
using either of these systems are expected to avoid such unsupported structures, or to
postpone their introduction until all graph-based authoring is finished. This leads to
a “cascade” content development model, where revisiting early design decisions made
on the graph requires an author to forfeit all subsequent modifications. In complying
with the guidelines set forth in section 3.2.3, authoring should be incremental, avoiding
monolithic designs that may prove too large for initial requirements or, later on, fail to
scale as expected.

While graph-based interfaces for adaptive hypermedia course authoring do exist,
the examples that have been presented so far do not address the full complexity of the
problem. Large graphs cannot be efficiently dealt with, since the location of each vertex
has to be explicitly set by the user. Introducing a new edge may can therefore make
a layout require substantial manual effort by the author to make it reflect the graph’s
actual structure. Although AHA’s graph authoring tool includes support for zooming
and panning, these are unwieldy for large graphs. Support for user model filtering in
Atlas is interesting, but it is limited in scope. For instance, there is no way to filter
out an entire portion of the course deemed “not interesting”. A similar problem exists
within AHA’s tool: filtering is limited to showing or hiding edges, but entire areas of
the graph cannot be selectively shown or hidden. Lack of round-trip support in both
systems is also a drawback.

Adaptive hypermedia authoring (not only that of courses) is hard to do. The require-
ments involve multiple related models, and a creative setting where authors should be
allowed to experiment and retrace their steps if necessary. This is a knowledge-intensive
process, and authors can be expected to use tools to support reasoning and exploration
as much as to perform actual data entry. Graphs are ideally suited to represent and
visualize the complex structures involved in AH authoring and other domains; but there
are many design choices that can lead to better interfaces.

Part II

A Hierarchical Clustering

Approach

59

Introduction

Previous chapters have motivated the importance of visualization in Adaptive Hyperme-
dia and other areas where small-world networks can be found. Related knowledge fields,
such as Graph Theory, Clustering, Information Visualization and Human-Computer In-
teraction, Graph Layout, Adaptive Hypermedia, content and structure reuse, ontologies
and hypermedia authoring have been introduced. Part II brings these fields together,
and presents the approach proposed in this work, together with several applications
built on top of it.

Chapter 5 describes existing approaches to the general problem of graph visualiza-
tion. Clover, a cluster-oriented visualization environment and the main contribution
of this work, is presented next. The last two chapters describe applications built on top
of Clover for Adaptive Hypermedia editing and visualization and several other fields,
demonstrating the flexibility of the chosen approach.

Outline of Part II

• Chapter 5 analyzes different approaches to graph visualization, illustrating them
with examples.

• Chapter 6 presents the main design decisions behind the approach of the CLuster-
Oriented Visualization EnviRonment (Clover) framework. The first pages con-
tain an overview of the framework’s architecture. Later subsections provide greater
detail regarding the model, view and control issues involved.

• Chapter 7 introduces a Clover-based authoring tool for the Wotan adaptive
hypermedia course system, WotEd. WotEd allows course monitoring in addi-
tion to standard authoring. A final section compares WotEd’s clustered graph
interface to the traditional tree representation.

• Chapter 8 demonstrates the flexibility of the framework, describing a series of
Clover-based applications developed for series of different domains. Document
reuse, ontology and metadata representation, academic plagiarism detection, and
dynamic device networks are used as examples of the generality of the approach.

Chapter 5

Approaches to graph visualization

There are several approaches to interactive graph visualization. This section analyzes
existing tools and technologies and relates them with the theory found in previous
chapters.

All Information Visualization systems contain stages similar to those exposed in fig.
3.1: data is transformed into an internal model suitable for the chosen representation,
selected parts of this model are chosen for actual display, a graphical mapping is gener-
ated (for instance, in the case of graph visualization, layout is performed), the results
are displayed, and the user interacts with this display, altering one or more of the pre-
vious steps. In the discussion of possible approaches, each of these steps will be covered
in turn. A first section provides insight into the choice of general architecture.

5.1 General Architecture

The internal data model from which representations are derived will be referred to simply
as model ; and the graphical representations themselves as views. This distinction is
traditional in the user interface community, and reflects the importance of keeping both
layers clearly separated. A single model may be represented in many different ways, and
mixing the model with the view greatly complicates the use of several viewpoints. For
instance, when visualizing a graph, it may be illuminating to generate multiple views
with different degrees of detail. This would be impossible if the coordinates for each
vertex were to be stored in the graph model itself.

The approach of layering processing steps, so each step is as independent as possible
from later ones, has been successfully applied in a variety of scenarios. Network protocol
stacks, for instance, rely heavily on the independence and interchangeability of each layer
to simplify design and design changes.

There is, however, a great degree of freedom in the internal details of the pipeline of a
graph visualization application. The internal complexity of the constituent modules can
vary significantly, and it is generally possible to connect or configure modules in many

62 Chapter 5. Approaches to graph visualization

(a) Pipeline from Marshall, Herman and Melançon [95].

(b) Pipeline from Huang, Eades and Lai [82].

Figure 5.1: Pipelined architectures of two graph visualization frameworks

different ways. This is one of the advantages of a layered design. Figure 5.1 provides
two examples of the visualization pipelines of two graph visualization frameworks as
represented by their authors. The only real difference between both pipelines is the
inclusion of a clustering module between the filtering and layout steps of Huang, Eades
and Lai’s approach (subfigure (b)). Similar pipelines, for other information visualization
tasks, have been described in [39].

Both of the pipelines of fig. 5.1 omit the fact that the user can provide feedback to
each module (presumably mediated through the interface); this feedback would corre-
spond to the top lines of fig. 3.1.

However, such “pipeline” illustrations do not capture fundamental details on what is
communicated between the different layers, nor the sequencing of the operations. It may
seem apparent that, after a change in the graph representation, filtering will be updated,
then the clustering, and then the changes will be propagated to the layout and finally
reach the views. However, this propagation does not need to be immediate or automatic;
a step that is notified of changes upstream may decide that these changes are not relevant
downstream. For instance, a change in the base graph that does not alter the results
of filtering would not pass to the next step. Conversely, a single upstream change may
make a step generate multiple downstream notifications, covering different aspects of the
single change. The pipeline illustrates only the broad flow of communication between
steps, but does provide any information about the particular dialogues that can take
place.

Event-driven interfaces

A common paradigm when connecting modules to each other, and many possible con-
figurations must be supported, is to minimize the amount of information that modules
should share. This can be achieved via events, implementing the subscription pattern
described in [67].

5.1 General Architecture 63

Whenever a change occurs to the data in one portion of the visualization pipeline,
the change may require notifications to be sent to all downstream processing steps. If
the pipeline branches, for instace as a result of multiple views defined on the same model,
all branches need to be informed. Hard-coding within each module the list of further
modules to notified upon a change requires advance knowledge of the pipeline structure;
this is impractical if users are allowed to create new views and alter their processing
steps dynamically. In the subscription design pattern, the burden is shifted from the
source module to its “subscribers”, which must register themselves at the event source
during their intialization. The module acting as event source only needs to maitain a
list of generic subscribers.

These systems are termed “event driven”, since all changes can be traced back to
events acting on a given component and propagating throughout the rest. Most graphi-
cal user interfaces use this paradigm. Event-orientation has two important advantages:

Event sources are isolated from sinks – there is a list of sinks to deliver the event to.
Who they are or what they do with the message is none of the caller’s business.
This simplifies the design and development of modules which can launch events;
they only need to support a simple subscription mechanism, and it is up to the
subscribers to register themselves and process the message.

Event sinks are isolated from sources – the message can contain all the data needed to
act upon it; as long as the event is self-contained, the implementation details of
the source are not important. If events can be “undone”, implementing undo/redo
support is simply a matter of keeping a historical stack of received events, which
can then be unwound to return to previous states. Furthermore, having multiple
event types interpreted as the same logical event is a common behavior in many
GUIs; for instance, many graphical text processing actions can be launched via
the menu bar, using a button, or pressing a certain key shortcut.

The subscription mechanism allows data flow within an event-oriented application
to be a matter of plugging event sources to event sinks, none of which needs to agree
on anything other than the subscription mechanism to use and the contents of events.
In clustered graph terminology, the dependency graphs of event-driven programs have
a much higher clustering degree than would be attainable if modules were required to
have explicit knowledge of each other.

Libraries, Frameworks and APIs

Many of the systems referenced in this chapter are designed to provide a framework on
which to build user applications, sometimes spanning small parts of the entire graph
visualization process. This is achieved by providing a library that is designed not only

64 Chapter 5. Approaches to graph visualization

to be accessed (all libraries are), but actually built upon, extending its capabilities for
a particular application.

While frameworks can be built on any programming language, the concept of in-
heritance built into object-oriented languages such as Java or C++ makes them prime
candidates for framework development. Frameworks themselves may, in turn, rely on
yet other frameworks. For instance, the SHriMP [122] is a graph drawing framework
built on top of the Piccolo [26] information visualization framework.

The particular interface that a library exposes to “clients” (applications or libraries
that use it) is termed an Application Programming Interface, or API.

5.2 Internal Representation

The creation of a graph data structure is the first step of the pipeline. Graph vertices
within the internal representation should contain or reference the particular piece of
data from which they originate. Graph APIs take one of two possible routes: either to
leave the definition of a vertex entirely in the hands of the application, or to require
the use of predefined vertices where properties can easily be added and queried by label
(possibly including semantics for copy, clone and delete operations). A simple approach
is followed in the JGraphT library; the second route is undertaken, for instance, in the
Jung library [101].

Two main models are used to maintain graph data-structures. One option is to use
an adjacency matrix , a square matrix with one row per vertex, where a value of 1 for
cell Aij would represent an edge from vertex i to vertex j. The second model is to
maintain, for each graph vertex, a list of edges that are connected to it; this is termed
an adjacency list .

Adjacency matrices are only appropriate for small, dense graphs, since they require
O(|V |2) space, and this is very wasteful in the case of larger graphs. Furthermore, many
interesting graphs are sparse, and the matrix would contain mostly zeroes. Insertion
and deletion of vertices is also a problem, since removing a vertex requires entire rows
and columns to be copied and updated if the matrix is to remain compact (which could
be important, due to the quadratic size requirements).

Adjacency lists, on the other hand, are slow when searching for particular edges in
high-degree vertices. In a simple list, linear lookup in the adjacency list of vertex v would
be required to find all edges between v and w, an operation that would have required
a single matrix lookup using an adjacency matrix. A common solution is to perform a
space-memory tradeoff, by means of a data structure that supports fast lookups. For
instance, Jung [101] uses hash tables to speed up adjacency lookup to near O(1) time
complexity. The same can be said for other APIs such as JGraphT [98].

5.2 Internal Representation 65

5.2.1 Generating Clusterings

As discussed in section 2.3, there are many possible ways to generate clusterings. Al-
though the quality of the clustering is vital to generate meaningful graph abstracts,
the process of generation itself can be isolated into a separate module, with a clear-cut
interface: generate a clustering for a given graph, and update a clustering given a se-
ries of changes to a base graph. This subsection deals with the process of clustering
generation.

Huang, Eades and Lai [82] propose the use of a definition of vertex-to-vertex distance
on the base graph to generate a distance matrix, and the application of a general K-
means clustering algorithm on this matrix to yield the clusters themselves.

Raitner [109] does not expand on how the clusterings are generated, and it is under-
stood that they are are completely external to the framework; the framework can apply
them to the current graph, and can perform suitable updates on the clustered graph if
it is informed of the exact list of changes to the clustering, but does not generate or
update the clusterings themselves.

Van Ham and Van Wijk [132] use the result of a full-graph layout to identify groups
of nearby vertices, which are then treated as clusters.

Auber and Jourdan [19] propose the use of the metric described in equation 2.3
within section 2.3 to find suitable cutoff values at which to generate clusters according
to the graph’s connectivity (this interactive step could also be merged into the approach
of [82]).

Updating the Cluster Hierarchy

When changes are performed to the base graph, they should generally be reflected in
the hierarchy. A recently added edge, for instance, may force a series of clusters to be
recalculated. In a rule-based system, rules that were triggered before may no longer be
applicable; if a clustering metric is applied, threshold values may have been affected,
yielding a different clustering from the previous one. If clusters have been calculated
from the layout positions of vertices, vertices may have shifted due to a new layout.

The problem of updating the clustering is not that of re-running the original clus-
tering algorithm to generate a new hierarchy, but of informing the remaining steps of
the pipeline of exactly what changes have been performed. Not every change to the
cluster hierarchy need be reflected; for instance, a fully-expanded graph view would
never require updates due to the hierarchy change itself (structural changes to the base
graph would, however, require display). But, if a given view was displaying one of the
cluster-vertices that have been removed from the hierarchy, changes will be inevitable.

Existing hierarchically clustered graph visualization systems do not appear to have
support for automatically rebuilding their hierarchies after changes to the base graph.
An alternative is to require users to perform all such changes manually; but this is

66 Chapter 5. Approaches to graph visualization

cumbersome, and does not work well with changes to the base graph that were not
directly triggered by user actions (imagine a collaborative editor). Once a hierarchy
change has been decided on, it is important to animate its effects, specially if the user
is not aware of its location and extent.

In locating changes from one automatically generated cluster hierarchy to another,
two scenarios are possible:

• If the clustering algorithm has been designed with support for “incremental” clus-
tering, it may be able to supply a set of changes directly. Building such support
requires careful study of all possible incremental changes to the graph, and how
they can affect the final clustering, and is only possible for certain algorithms.

• Do not attempt to track clustering changes as they occur during the clustering
process; instead, compare the initial and final hierarchy and report back a minimal
set of changes from one to the other. An advantage of this approach is that it is
totally independent of the clustering algorithm.

The second approach requires the computation of the set of differences between two
trees. Algorithms to locate differences between rooted, labeled trees have been described
in the literature, most notably [141]. The run-time complexity of a general difference-
locating mechanism can be made proportional to the extent of the differences and the
size of the tree: O(kn) (where k is the number of changes).

5.2.2 Representing a Clustered Hierarchy

Few systems deal with clustered hierarchies in graphs. A good discussion of data struc-
ture efficiency in clustered hierarchies can be found in Raitner’s work [109], which
compares his own data structure to those of Buchsbaum and Westbrook [38]. In the
comparison, the following basic clustered graph operations are examined:

edgeQuery(e) Determines whether the induced edge e exists.

edgeReport(e) Determines the components of edge e, that is, if e is an induced edge,
the set of original graph edges that induce e.

expand(v) Expands cluster vertex v.

collapse(v) Collapses cluster vertex v.

newEdge(e) Add a new edge to the graph. Only edges between leaf vertices (those that
were present in the original graph) are allowed. This is different to [109], where
edges can be added between any two tree vertices.

deleteEdge(e) Delete a leaf edge.

5.2 Internal Representation 67

newLeaf(v) Add a new leaf vertex.

deleteLeaf(v) Delete a leaf vertex.

Table 5.1 contains a comparison of different internal representation approaches. The
Simple approach only requires additional storage for the current set of visible vertices.
Visibility has to be recomputed after every operation. It is therefore optimal in space,
but expensive in time. The Naive approach, described in [38], achieves much higher
efficiency. For every vertex w, N(w), the set of induced edges such that p(u) = p(v) = w

is precomputed. Additionally, each induced edge (u, v) ∈ EI stores the list of all the
edges that it subsumes in L(u, v) = {(u,w) ∈ EI : w ∈ children(u)} and R(u, v) =
{(u,w) ∈ EI : w ∈ children(v)} (L and R refer to depth-first numbering and a top-
down, left-to-right tree drawing). Edges to be shown during an expansion of vertex u

are found using equation 5.1; note that inc(u) refers to the set of all edges that are
incident to u in the currently-visible graph.

⋃
(u,v)∈inc(u)

L(u, v) ∪
⋃

(w,u)∈inc(u)

L(w, u) ∪ N(u) (5.1)

Once u is expanded, both u and all edges previously in inc(u) should also be re-
moved. Since for each of these incident edges there will be at least one edge added to
a descendant of u, the complexity is O(

∑
z∈children(u) |inc(z)|), which is optimal. This

optimal complexity will be referred to as OptGC
(u) and is applicable both in expansion

and collapse (which is symmetrical to expansion). However, in an expansion, OptGC
(u)

refers to the clustered graph existing prior to the expansion. In a collapse, complexity
would be expressed as OptG′

C
(u), referring instead to the clustered graph after the

collapse.
The space requirement for the Naive approach results from adding the requirements

for N(·), L(·) and R(·) for each edge. This is influenced by the number of edges and
the depth of the hierarchy tree, D, yielding O(|E|D2).

Buchsbaum and Westbrook also define more space-constrained methods, which will
not be explained in depth. They are included in table 5.1, together with Raitner’s
results using tree cross products, labeled under Raitner.

68 Chapter 5. Approaches to graph visualization

Si
m

pl
e

B
uc

hs
ba

um
-n

ai
ve

B
uc

hs
ba

um
-u

nc
om

pr
es

se
d

R
ai

tn
er

A
dd

it
io

na
l

sp
ac

e
O

(1
)

O
(|E
|D

lo
g

2
|V
|)

O
(|E
|D

lo
g

2
|V
|+

k
)

O
(|E
|D

)
e
d
g
e
Q
u
e
r
y
(u

,v
)

O
(|E
|D

)
O

(l
og

2
|V
|)

O
(|E
|D

lo
g

2
|V
|)

O
(l
og
|V
|+

k
)

e
d
g
e
R
e
p
o
r
t
(u

,v
)

O
(|E
|D

)
O

(l
og

2
|V
|)

O
(|E
|D

lo
g

2
|V
|)

O
(l
og
|V
|+

k
)

e
x
p
a
n
d
(v

)
O

(|V
|+
|E
|)

O
(O
p
t G

C
(v

))
O

(O
p
t G

C
(v

)
lo
g

2
|V
|)

O
(O
p
t G

C
(v

)
D
lo
g
|V
|)

c
o
l
l
a
p
s
e
(v

)
O

(|V
|+
|E
|)

O
(O
p
t G

′ C
(v

))
O

(O
p
t G

′ C
(v

))
O

(O
p
t G

′ C
(v

))
n
e
w
E
d
g
e
(u

,
v)

O
(1

)
O

(s
2
lo
g
|V
|)

O
(D

lo
g

2
|V
|)

O
(D

lo
g
|V
|)

d
e
l
e
t
e
E
d
g
e
(u

,
v)

O
(1

)
O

(s
2
lo
g
|V
|)

O
(D

lo
g

2
|V
|)

O
(D

)
n
e
w
L
e
a
f
(u

)
O

(1
)

n/
a

n/
a

O
(D

)
d
e
l
e
t
e
L
e
a
f
(u

)
O

(1
)

n/
a

n/
a

O
(D

)

T
ab

le
5.

1:
C

om
pa

ri
so

n
of

ti
m

e
an

d
sp

ac
e

co
m

pl
ex

it
ie

s
of

di
ffe

re
nt

ap
pr

oa
ch

es
to

cl
us

te
re

d
gr

ap
h

up
da

te
s,

fr
om

[1
09

].
D

is
th

e
de

pt
h

of
th

e
hi

er
ar

ch
y

tr
ee

,
s

=
m
in
{D

,l
og
|V
|}

,
an

d
k

is
th

e
si

ze
of

th
e

ou
tp

ut
fo

r
th

e
e
d
g
e
R
e
p
o
r
t

op
er

at
io

n.
T

he
S

im
p

le
ap

pr
oa

ch
co

rr
es

po
nd

s
to

us
in

g
no

au
xi

lia
ry

st
ru

ct
ur

es
.

T
he

B
u

ch
sb

au
m

-n
ai

ve
an

d
B

u
ch

sb
au

m
-u

n
co

m
p

re
ss

ed
ap

pr
oa

ch
es

ar
e

de
sc

ri
be

d
in

[3
8]

(c
om

pr
es

se
d

tr
ee

s
pr

ov
id

e
sl

ig
ht

ly
be

tt
er

sp
ac

e
effi

ci
en

cy
,

bu
t

ar
e

no
t

in
cl

ud
ed

in
th

e
co

m
pa

ri
so

n)
.

R
ai

tn
er

is
de

sc
ri

be
d

in
[1

09
].

5.2 Internal Representation 69

5.2.3 Filtering

The goal of filtering is to avoid presentation of certain parts of the data. Filtering can
be applied in different parts of the pipeline. Implicit filtering is performed when the
data is first transformed into a graph: parts of the data that are not mapped to vertices
or edges can be considered to have been “filtered out”. It is also common to apply
filtering once the initial graph has been built; in this case, the filter is queried with each
vertex and edge in the original graph - only those vertices and edges that pass the filter
will proceed to the next pipeline stage. Filtering can also be applied at later stages.

In the case of clustered graphs, filtering performed before clustering and layout is
the most natural approach, since from the point of view of generated representations,
these will be identical to representations which could have been generated from data
that did not include the “filtered out” portions. Filtering after clustering introduces
additional problems: should empty or nearly-empty clusters be represented? how?. It
may, however, prove useful in certain scenarios, most importantly when representations
generated with different filters are to be compared; in this case, performing filtering
as a last step allows easy mapping from one representation to another, by retaining a
common layout: same layout position, same vertices. This comparison is more difficult
in the case of early filtering: the clusters will probably not be the same, and nor will
the positions. Forcing a graph into a layout that is not well-suited to this graph can
result in aesthetical problems, which relate directly to how well it can be understood.

Filter chains

Filter chains are also a natural idea: combine several filtering operations into a larger
filter, so that only vertices and edges that manage to pass all filters are considered to
pass the overall filter. This allows simple filters to be reused and composed into more
complex entities. This type of advanced filtering is a hallmark of systems designed to
work with large datasets, such as Jung [101]. It is also possible to combine simple filters
in more complex configurations, such as boolean filter trees; but their use is considerably
more rare.

Jung further defines the term unassembled graph (a graph where some edges (u, v)
may reference endpoints that have been filtered out) for use with filters. The idea is to
allow simple vertex filters to be applied without worrying about possible disconnected
edges, achieving a greater performance. At the end of a chain of filters that work on
unassembled intermediate graphs, the graph would be rebuilt and processing would
continue as normal.

70 Chapter 5. Approaches to graph visualization

5.3 Layout

Many graph visualization systems include a set of layout algorithms that can be applied
to the current view. The set of layout tools spans tree layouts, force-directed layouts,
and more complex layouts such as Kamada-Kawai or Sugiyama. Complete applications
usually provide the user with a menu to choose the layout to apply; libraries provide
the layouts as a pipeline step to be applied where appropriate.

Graph layout algorithms accept a variety of parameters; these are provided when
the algorithm is run. Graph visualization systems such as JGraph [1] or yWorks [140]
include layout packages with associated configuration dialogs, which can be displayed
when the user decides to launch a particular algorithm. As with filters, layout algorithms
can be stacked to build more powerful layouts. For instance, many algorithms expect to
layout only single graph components. When multiple components must be laid out, a
simple approach is to layout each component individually, and then use another layout
to place the components together (avoiding overlaps). Other common layout steps
include vertex overlap removal, beautification of edge crossings, or edge routing.

Manual placement is also frequent in graph visualization, except for very large
datasets where it becomes impractical. All tools provide a user-interaction mecha-
nism for users to visually displace graph vertices, and most also make provisions for
manual edge routing. Both manual layout edits and automated layouts usually count
as “actions” that can later be undone through an undo/redo mechanism. It is also
typical for automated layouts to be able to “start” from the previous layout position
(force-directed layouts greatly benefit from good starting positions).

5.3.1 Incremental Layout in Clustered Graphs

Graph layouts provided by most visualization systems are “one-shot” affairs: at a given
moment, the user specifies the layout algorighm to be performed, the algorithm runs,
finishes, and vertices are moved to their new positions.

Clustered graphs, however, require frequent relayouts to accommodate changes in
displayed edges and vertices, either as a result of different degrees of abstraction due to
user navigation, or as a result of changes to the base graph. A layout will be termed
dynamic if it can successfully deal with these changes without breaking the user’s mental
map. The term dynamic graph is applied to graph visualizations that incorporate time
into their changes, creating animations; animation is necessary to provide a transition
from a previous to the updated version. This subsection deals only with the generation
of an incremental layout, and not with the animation mechanism itself.

Strictly speaking, it is possible to allow navigational changes in degree of detail
without changing the layout at all. This is the approach followed in Van Ham and
Van Wijk’s [132] system, illustrated in figure 5.2. A single, large layout of the whole

5.3 Layout 71

Figure 5.2: Navigation of a clustered graph without relayouts, from [132]. The trans-
parent ball represents the focus; vertices and edges within the focus are shown in their
real positions, those outside are represented by large cluster vertices or cluster edges.

graph is performed, using an algorithm where node proximity is closely related to cluster
belonging. Clusters are deduced from placement, and individual vertices that belong
to the same cluster are rendered as a single cluster vertex. Navigation is performed by
avoiding such substitutions in the neighborhood of a “focus”. This is useful when the
base graph does not change. Changes to the base graph would require an incremental
layout to be performed; and, with all probability, this would result in many layout-
derived clusters being lost.

The two groups that have published results on incremental layouts applied to hier-
archically clustered graphs are that of Peter Eades ([49, 52, 82]) and Marcus Raitner
([21, 103, 106, 107, 108, 109]). Layouts for clustered graphs must be incremental in or-
der to maintain the user’s mental map. Eades’ group proposes the use of force-directed
layouts, while Raitner’s proposes modifications to the Sugiyama-Misue algorithm to
account for incremental layouts. It must be noted that Eades has not described any
complete clustered graph visualization tool, and their articles only cover partial aspects.
Raitner’s work, in this respect, is more complete, with successive implementations of
HGV [107], Gravisto [21] and VisnaCom [103, 106]. A screenshot of VisnaCom in
action is presented in fig. 5.3.

An advantage of Raitner’s use of an approach based on the Sugiyama-Misue al-
gorithm is that it avoids some problems present in force-directed layouts: the high
sensitivity of the layouts to minute changes in starting positions, and the tendency of
layouts to “drift”. Since in force-directed algorithms all vertices affect all others (by
means of repulsive forces), chaotic effects similar to those of the n-bodies problem can
be observed. Raitner’s approach is depicted in fig. 5.3; more information is available at
the VisnaCom website [104].

Both these systems perform relayout as an independent step from animation. That
is, after a change is performed, layout is recomputed, and after the computation has
ended, layout changes are animated within the user interface.

72 Chapter 5. Approaches to graph visualization

(a) Before expansion of central cluster (b) After expansion of central cluster

Figure 5.3: Incremental layout based on the Sugiyama-Misue algorithm developed by
researchers in Raitner’s group [103, 106].

Interactive Update in TouchGraph

Another system that performs interactive, incremental layouts is TouchGraph (com-
mercial version available at [11], open version available at [12]). However, TouchGraph

does not operate on a true clustered graph, in the sense that all vertices more than k

hops away from the currently central vertex are elided, and their edges are not repre-
sented. Therefore, a snapshot of a visualization generated with Touchgraph is not an
abridgment of the graph, since any route that falls beyond the current display radius is
not represented. In a true clustered graph, this would result in induced edges.

TouchGraph is also unusual in performing layout automatically after any user
intervention; disturbing the layout results in an incremental, interactive force-directed
relayout being performed, until convergence is again reached. Interactive, in this con-
text, means that it is possible to perturb the layout even while relayout is under way. No
separation is performed between relayout and animation, unlike in the systems proposed
by Eades and Raitner.

Touchgraph is being actively used for adaptive hypermedia authoring by Darina
Dicheva’s group ([16, 47, 48]). A screenshot of Dicheva’s implementation is provided in
fig. 5.4.

5.4 Presentation and Interaction 73

Figure 5.4: A screenshot of T4ML, a TouchGraph-based topic map authoring tool,
from [47].

5.4 Presentation and Interaction

After layout has been performed, a rendering of the graph’s vertices and edges using the
generated layout is presented to the user. If the graph is large, it is unlikely that the full
layout will fit in a single window with full detail; therefore, the user will have to navigate
the display in order to access hidden portions of the graph with any degree of detail.
This issue was presented in section 3.2.1, together with techniques to overcome. In this
section, the application of these techniques to current applications and frameworks is
examined.

Many presentation and interaction features are provided directly by the window
toolkit (such as MFC, QT, GTK, Carbon or Java’s Swing); where not available, they
can generally be provided by the graph visualization framework. Many of the available
graph visualization frameworks ([11, 140, 130, 107, 80, 94, 21, 122, 104, 101, 98])
are programmed in Java which offers an easily extensible component model, runs in
several platforms, and supports feature-rich toolkits such as Swing or SWT. Notable
exceptions are Tulip [17, 18, 19], which is programmed in C++ and uses the QT

windowing system, and Pajek [24], which is also a C++ application.

All frameworks allow the generation of graphs that are larger than the available
space, and must deal with the detail and context issues described in section 3.2.1. This
is supported by rendering visual components (for instance, vertices and edges) into
“virtual canvases” which need only be partially displayed; again, these can be provided
either by the window toolkit or by the visualization framework. Client applications are
allowed to paint outside of the visible bounds, and by selecting which offsets within the

74 Chapter 5. Approaches to graph visualization

virtual canvas should be displayed, a viewport can be determined. Shifting the viewport,
or panning, is performed through interaction with scrollbars, or by a “grabbing” mouse
gesture where, having clicked on a given point of the graph, the point (and the whole
viewport) is shifted together with the mouse pointer until the mouse button is again
released. Other typical means to control panning involve a “center here” action.

Zooming is present in most toolkits and frameworks; under Java’s Swing toolkit,
zoom can be used when rendering almost any graphically displayed component, since
the rendering process can be configured to use an intermediate step where an affine
transformation (scaling, rotation or translation) of coordinates is performed. If this
step is missing in a different toolkit, it can be implemented without great hassle.

When zooming into a view, a portion of the view will be enlarged. If the zoom
gesture is invoked with the mouse (a typical binding is the scroll wheel found on most
recent mice), it makes sense to enlarge the area that is nearest to the mouse pointer.
This gives rise to the definition of center of zoom, which would be the point of the
display which, after the zooming operation, preserves its previous location on screen.

Other types of zoom may be provided. When a graphical object (for instance, a
vertex) becomes too small to make out the details, it is both more informative and
more efficient to substitute these details for an intelligible, abstracted representation –
or to elide the details completely. For instance, when presenting overviews of graphs
with hundreds or thousands of vertices, it is common to elide the vertices and show
only the edges; therefore, rendering can vary depending on the current zoom level. It is
also possible to zoom the layout itself, instead of its rendering; this would make edges
appear to shorten, while retaining the size of all vertices and text labels.

To speed up the rendering process, applications can avoid to render areas that are
outside the viewport that will be presented to the user, and rendering those areas
with a degree of detail that matches the current zoom level. While most toolkits and
frameworks perform this optimization to a certain degree, Zoomable User Interface
(ZUI) toolkits such as Piccolo or Jazz [26] take this to an extreme, providing extremely
fast and smooth zoom and pan interaction accross scale intervals that can cover several
orders of magnitude. For instance, SHriMP [122] is a graph drawing framework built
on top of Piccolo; it is used, among others, by the Jambalaya [121] graph-based
ontology visualization plugin used in the Protégé [100] system.

Multiple views of the same graph layout are also generally available on any frame-
work; by combining a zoomed-out view that shows the graph in its entirety (with very
low detail), and a more detailed view where details can be appreciated, it is possible to
build simple overview + detail interfaces. This can be seen, for instance, in Jambalaya,
or in the JGraph-based JGraphPad [6] graph editor, depicted in figure 5.5.

5.4 Presentation and Interaction 75

Figure 5.5: JGraphPad graph editor, displaying an overview (A) with the visible
portion within a red boundary, a library of subgraphs (B), scrollbars to perform pan
operations (C), a detail view (D), and a series of modal editing tools (E). JGraphPad is
based on the JGraph[1] graph visualization library; this library is also used by Clover
for graph representation.

5.4.1 Interaction

Interaction with graph interfaces is similar to that found in most graphical user inter-
faces: the view can be navigated with zooming and panning, displayed elements can
be selected, edited, removed, cut, copied or pasted, and new elements can be intro-
duced. Available operations on vertices vary depending on visualization framework and
application, but most are relatively standard.

Many graphical user interfaces support the notion of actions, which can be described
as an encapsulated user operation (actions correspond to the Command pattern de-
scribed in [67]). Any user command, be it zoom, edit, copy or paste, can be considered
as an action; the advantage of actions is that, once defined, they can be triggered in
many different ways; for instance, through a keybinding, or a mouse gesture, or a con-
textual popup menu. Additionally, if actions contain enough information to allow being
“undone”, it is trivial to implement “undo last action” and “redo last action” actions,
which are key in allowing users to explore the interface without fear of entering a blind

76 Chapter 5. Approaches to graph visualization

alley.

Whenever an application makes use of actions, it is very simple for developers to
alter the key bindings, or mouse actions, or contextual popup menus which trigger these
actions. Therefore, few if any scholarly publications describe the exact bindings which
are used in the systems they describe. Although a good selection of action triggers is
important from a usability point of view, it is trivial for an implementer to swap these
triggers for an entirely different set.

Actions are not all used with the same frequency, and their distribution depends on
the context. At times, a user may want to edit the graph itself, adding new vertices
and edges, and at other times, the goal will be to browse quickly in order to find a
certain data item. The available action triggers, however, are not all equal. It is much
more immediate to click on a vertex to edit it than to bring up a contextual menu
and select the “edit” option. Modal interfaces allow the user to alter the set of action
bindings (that is, the meaning of certain action triggers) according to the currently-
selected interaction mode. For instance, many photo editing applications allow the user
to enter “selection” mode, where a dragging mouse gesture over the photo will select a
portion of it, as opposed to a “pencil” mode, where the same gesture would cause a line
to be displayed.

Although no clustered graph visualization environment is known by the author to
implement a semantical fisheye lens on clustered graphs, equivalents can be found in
systems designed for large hierarchy visualization, for instance in the Prefuse [8] Tree-

View system [77].

5.4.2 Animation

Animation is a common topic when designing graph interfaces that seek to minimize
loss of mental map. Indeed, it is relevant to any system where changes are going to be
displayed but context (an specially mental context) must be preserved.

The general idea of an animation is to present many intermediate, continuous frames
over a span of time, instead of directly displaying the final state of a given view.
The brain has a tendency to see only what it concentrates on, and movement is very
concentration-worthy [117]. Animation can be used to create a sense of continuity, and
to direct attention to elements that are actually worthy of it.

Animation can also be used to explain a change to the user. In the case of the Marey

[62] graph animation tool, Friedrich and Eades propose the use of animation to convey
the structure of a layout change, by presenting it a set of structured, animated updates
to be performed on the previous layout, instead of performing direct interpolation. An
example of this process is provided in figure 5.6.

A simple animation infrastructure consists of a loop where a delay is introduced, a
new frame displayed, and the process is repeated until the last frame has been reached.

5.4 Presentation and Interaction 77

Figure 5.6: Animation of a graph layout change in the Marey tool, from [62]. An op-
timal three-dimensional rotation is first performed, and finally details are interpolated.
Direct interpolation would have been much harder to follow.

When multiple animations for different visual objects must be performed at the same
time, the existence of multiple loops is not efficient and can introduce race conditions.
A centralized approach can prevent this problems: each “animation plan” must be sent
to this module to be executed, where a single timer can request request each plan to
draw the next frame when appropriate, avoiding unnecessary duplication of timers. A
central approach also allows detection of conflicts between plans.

This is a rough outline of the animation process as present in the Piccolo [26] ZUI
toolkit. Another system with an animation framework is VisnaCom [104]; however,
Piccolo’s infrastructure is considerably more powerful.

Chapter 6

The Clover Framework

This chapter presents the actual design of the Clover framework. The main highlights
of Clover, when compared to alternative clustered graph visualization approaches, are
the following:

• Completely automated propagation of changes from any stage to all “downstream”,
dependent stages and views. This requires fully automated hierarchy generation
and (incremental) update, a key feature of Clover.

• All updates to graph views are smoothly animated and performed incrementally.
Graph layouts are incrementally updated with changes, striking a balance between
context preservation and overall layout quality.

• Powerful clustered graph navigation, with support for more than simple cluster
expansion and collapse. For instance, a semantical fisheye lens is available, and
cluster navigation history can be revisited.

The first pages contain an overview of the framework’s architecture, which is struc-
tured in a similar fashion to those discussed in section 5.1, with a pipeline that spans
from data acquisition to its final presentation in the graphical user interface.

After the architecture has been presented, the remaining sections provide greater
detail regarding the model, view and control issues, following the Model-View-Controller
(MVC) paradigm.

• The model section describes the successive transformations undergone by data
from its initial source to the graphs that are finally presented on the screen.

• The view section deals with the presentation of the graphs on-screen, including
graph layout, visual graph attributes, and the implementation of graph anima-
tions.

• The control section discusses the acquisition of user input and its effects on both
model and view.

80 Chapter 6. The Clover Framework

Clover is available for download under an open-source software license at
http://tangow.ii.uam.es/clover

6.1 Architecture

The Clover pipeline is illustrated in fig. 6.1; it is similar to other visualization pipelines
found in the literature, particularly to that of 5.1 (b). Distinctive features of Clover are
highlighted with thicker lines: clustering can be updated, and focus+context navigation
is supported. Top lines represent user interaction with the interface, and should be
understood to be mediated through the interface itself.

The whole framework is designed to accommodate multiple views of the same base
graph. Views may differ at any intermediate pipeline step, including filtering, superim-
posed clustering hierarchy, slice selection, and graphical properties such as zoom and
layout. Pipelines can therefore branch into several different views. However, for sim-
plicity, most diagrams, such as those of figs. 6.1 or 5.1 (b), show only one active view.

Figure 6.1: Pipeline used within Clover. Text in boldface and other highlighted ele-
ments correspond to distinctive features not found in other graph visualization frame-
works.

Expanded pipeline

A more detailed overview of Clover’s architecture is provided in fig. 6.2. The cluster-
ing hierarchy is separate from the base graph, which may be filtered prior to hierarchy
construction. Maintenance of multiple filters, cluster hierarchies, clustered graphs and
so on is possible. A clustered graph is constructed form the cluster hierarchy and the
filtered graph; only a cut-set (slice) of the hierarchy clusters can be visible at any given
moment. The operations of expanding or contracting clusters lead to changes in the
visible slice, which are animated. Animation may require incremental layout, but can
also be used to highlight specific graph elements (such as vertices or edges) without
altering their positions, varying other visual attributes (such as color or line width) to
draw the user’s attention.

http://tangow.ii.uam.es/clover

6.2 Model 81

Figure 6.2: Detailed Clover pipeline. The dashed arrows located at the bottom rep-
resent interaction. Note the location of animation and the use of a “view graph”.

The “view graph” component depicted in fig. 6.2 between “animation” and “inter-
face” customizes the representation of the vertices and edges of a particular graph as
required by the application. This allows base graphs to be independent from their visual
attributes, simplifying reuse. The view graph is closely coupled with the interface, but
changes to the clustered graph can reach it only after the animation component is ready
to display them. A delay in change representation is at the heart of animation, and is
greatly facilitated by this arrangement.

Interaction is also depicted in greater detail; all changes to other components are
mediated by the control part of the interface component, which in turn performs the
relevant changes to the interface itself, or to any prior step; these have been represented
with dashed lines and empty arrows near the bottom of fig. 6.2.

Since Clover follows the Model-View-Controller design pattern, figure 6.2 high-
lights which components fall into each category (see large, rounded rectangles). The
interface component combines responsibilities from both view and control ; this is an
approach found in many graphical toolkits.

6.2 Model

The model covers the creation of a graph from a data source, and the successive opera-
tions that are performed on this original graph in order to obtain the clustered graphs
that will be displayed. A subsection is dedicated entirely to the subject of graph updates
and how they are propagated to later stages, since Clover uses a fairly complex up-
date mechanism. Indeed, this update mechanism is one of the main distinctive features
of clover: any change to a model stage is automatically propagated to all dependent
stages, triggering an animated update to the corresponding views.

Model graphs are represented internally in a adjacency-list like datastructure, with
a small space tradeoff that provides nearly O(1) edge lookup time. This is the same
approach that is followed in graph libraries such as Jung. Clover’s internal represen-
tation is supplied by the JGraphT library, described in [98].

82 Chapter 6. The Clover Framework

6.2.1 Creation and Filtering

The base graph is the first step towards visualization: an abstract vertex-and-edge
representation of the data that will later be displayed. Base graphs are expected to
contain (or at least reference) all the information that will be somehow displayed further
in the pipeline; Clover does not place any restrictions on the datatype of vertices or
on the extra data that can be included within edges. At the very least, however, each
vertex and edge should include a label that will be used when displaying them, and each
vertex should have a unique ID. Vertex IDs are used in later stages when saving and
restoring hierarchies and views. Check appendix B.2.1 for further details.

Graph data can be acquired from a variety of data sources; depending on the source,
data acquisition can be a one-shot process (eg.: reading a file) or incremental changes
can be expected to arrive over time (eg.: monitoring an online device network). The
base graph is expected to perform the initial import, listen to any changes that may be
forthcoming, and in the case of editors, write back changes to storage as required.

Data sources are implementation-dependent. The following list of sources is for
illustrative purposes only.

Creating random graphs

During testing, generation of random graphs has been found to be useful. It is possible
to generate random graphs to a plethora of specifications: with or without small-world
properties, ensuring connectivity or not, or ranging from small to huge in size.

The random graph generator included in Clover for testing purposes uses a very
simple algorithm to creating “random”, connected graphs, taking only two parameters
|V | and |E|, with |V | < |E|.

createRandomConnectedGraph(vertexCount, edgeCount)

create vertexCount vertices

create a path through all those vertices

for each of the (edgeCount - vertexCount)+1 remaining edges,

choose a random start vertex

choose a random, different end vertex

if edge not repeated, establish the edge

These graphs do not exhibit small-world phenomena. Their main use has been
during testing, to ensure that layout and clustering can deal with large, chaotic graphs.

Creating a graph from a database

Relational databases are common sources of data. They are also relatively straightfor-
ward to convert into graphs, using the following strategy:

6.2 Model 83

createGraphFromDatabaseView(tables)

for each row r in each table t

create a vertex r of type t

for each foreign key included in each row r

create an edge from r to the destination row r2

Notice that, although this strategy will result in a graph that preserves all relation-
ships, tables used to represent N to N relationships will result in spurious vertex types.
For instance, if a doctor can attend several patients, and a patient can be attended by
several doctors, the “Attends” table is an artifact of the database to represent this fact,
but should not be included as a vertex in a graph generated from the database. Such
relationships with only two participants can be expressed as simple typed edges. The
transformation from “relationship tables” to typed edges can be easily automated.

Creating a graph from an XML or text file

A second common data format is XML documents. Although XML documents are
hierarchical in nature, they can describe graphs easily through the id/refid mechanism:
first, a sequence of XML elements is labeled with unique IDs (using the id datatype),
which can then be referenced as attributes of the refid type from other elements.
A common way of expressing graphs as XML (used for instance in the GXL graph-
representation dialect) is to first provide the list of vertices and further on reference
these vertices from a list of edges.

A very similar strategy is used in other textual graph representation formats. For
instance, the format used in GraphViz[54] relies on first enumerating vertices and
assigning a unique label to each, and then enumerating edges, including in each the pair
of labels that identify its endpoints.

Creating a graph from an online system

In general, all graphs can be created in a similar manner, first locating the “entities”
involved (which will be translated as vertices, or if they are actually reified relation-
ships, edges), and then locating the edges. In online systems, the set of entities and
relationships to be included is usually not known ahead of time; instead, it must be
discovered at creation time. This discovery can be performed in an efficient manner
using depth-first search. Once entities and relationships have been identified, graph
creation proceeds as normal.

Search may also be required for database or file datasources. If only a subset of
the file or database is to be included, the subset can usually be defined as the closure
obtained from a given starting point; and this closure can be determined through search.

84 Chapter 6. The Clover Framework

Filtering

Clover uses a simple filter model, with the filters located at the same pipeline position
as in Huang, Eades and Lai’s approach depicted in 5.1 (b), that is, before clustering
is performed. This placement makes filtering entirely invisible to steps further down
the pipeline; these steps will be unaware of wether filters, or filter chains, have been
applied..

Since hierarchies are built and rebuilt dynamically from the results of the filtering
stage, care must be exercised when sharing cluster hierarchies among graphs that have
been filtered differently. Therefore, Clover hierarchies are only shared as long as the
filter is the same. When a view switches to a different filter, the hierarchy is recreated,
and from then on will remain completely independent of any other hierarchies.

6.2.2 Cluster Hierarchies and Clustered Graphs

Clusters are nested collections of vertices from the base graph. Being nested, each
cluster forms the root of a tree, where the leaves of the tree are vertices from the base
graph, and the intermediate nodes are other clusters. At the root of the hierarchy is a
cluster which contains all leaf vertices. This cluster is referred to as the root cluster.

Section 5.2.2 includes a comparison of the performances of several clustered graph
internal representations. The use of additional data structures can dramatically in-
crease the efficiency of operations on such structures. Clover uses a variant of the
Buchsbaum-naive approach: each cluster vertex u keeps hashed lists N(u) of the real
(ie., not induced) edges between its direct children, and also lists IN(u) = {(v, w) :
w ∈ desc(u)} and OUT(u) = {(v, w) : v ∈ desc(u)} of all incoming and outgoing edges
where either target or source are descendants of u. Additionally, each cluster vertex u
keeps a hashed list of all its leaf vertex descendants. The value of this tradeoff from an
efficiency point of view not clear; it has been included only to facilitate implementation
(see Appendix B.2.5), since it can be used to provide very fast answers to containment
questions. The list of leaf vertices accounts for the factor |V | · D found in table 6.1,
which extends table 5.1 with the space and time complexity of this work.

The use of IN(u) and OUT(u) makes for extremely simple implementations of
edgeQuery and edgeReport(u, v): simply calculate the set intersection OUT(u)∩IN(v).
Since set intersection using hashes is almost linear, complexity does not suffer signif-
icantly. However,the implementation of clustered graphs has been chosen more for
simplicity than for efficiency, and the design is modular enough to allow a full replace-
ment of the structure should it prove too expensive. The time requirements of all other
operations are on par with more complex implementations.

6.2 Model 85

Raitner This work
Additional space O(|E| D) O((|E|+ |V |)D + log2|V |)
edgeQuery(u,v) O(log|V |+ k) O(|{(w, z) : w ∈ desc(u)}|)
edgeReport(u,v) O(log|V |+ k) O(|{(w, z) : w ∈ desc(u)}|)
expand(v) O(OptGC

(v) D log|V |) O(OptGC
(v))

collapse(v) O(OptG′
C

(v)) O(OptG′
C

(v))
newEdge(u, v) O(D log|V |) O(D)
deleteEdge(u, v) O(D) O(D)
newLeaf(u) O(D) O(D)
deleteLeaf(u) O(D) O(D)

Table 6.1: Space and time complexity of clustered graph update in Clover, compared
to that [109]. D is the depth of the hierarchy tree, s = min{D, log|V |}, and k is the
size of the output for the edgeReport operation. Raitner is described in [109]. This
table is an extension to table 5.1

Generating a Hierarchy

Since the domains where Clover has been used so far (particularly AH) did not require
sophisticated network analysis, the default clustering algorithm has been kept simple,
using a rule-based clusterer which can be either subclassed to refine the default rules,
or completely exchanged for any other algorithm. The main advantages of a rule-based
system are

• Simple design and easy to understand – Operates as a transformation grammar,
and particular rules can be easily described. In the default setting, Clover uses
only 4 rules to generate graph clusterings. They are designed to generate a tree-
like hierarchy if the input graph is a tree.

• Ease of customization – A particular application can easily define a set of rules
that will treat certain vertex types and edges in a domain-dependent way.

Hierarchy generation does not need to be monolithic; indeed, rule matching is per-
formed incrementally: rules are executed on partially clustered versions of the base
graph, and each successful rule execution results in a partial clustering with less ver-
tices, until finally the root of the hierarchy has been reaches. This incremental clustering
approach can also be used to chain several clustering algorithms one after another; for
instance, if a framework user decides to implement a more general clustering algorithm,
a rule-based clusterer could still be retained to be used as a first preprocessing step.

The default clustering algorithm itself uses the four rules illustrated in fig. 6.3. These
rules are expected to yield a tree-like clustering for tree-like graphs, because an initial
objective of Clover was to provide tree-like expansion and collapse for general graphs.
The algorithm executes each rule, starting from the highest-priority one (priority is
(a), (b), (c), (d), until no more matches can be found, and only then tries the next rule.

86 Chapter 6. The Clover Framework

Whenever a match is found, search is restarted from the highest-priority rules. This
algorithm is not efficient, and could be greatly accelerated by avoiding repeated tries to
match a rule against the same subgraph again and again. However, no such optimization
effort has been attempted. Implementation details can be found in B.2.8.

(a) Exclusive parent of terminals. (b) Exclusive parent of vertices with
shared child.

(c) Exclusive parent of some vertices. (d) Fallback rule.

Figure 6.3: Rules used in default clustering engine. Three small squares represent “zero
or more vertices”, and dashed arrows represent “zero or more edges”. If a rule matches,
vertex a will be used to label the cluster, composed of {a, b1, · · · , bn}. The order of
application is important, and strictly enforced.

Tree-like clustering for trees can be achieved using only rule (a). Further rules are
used to accommodate graphs that deviate from strict hierarchies: rule (b) collapses
chains and small forks that merge immediately, rule (c) allows clustering of “children”
vertices as long as they are exclusive children to the cluster representative, and rule (d)
is intended as a fallback if no other rule can be applied.

The end result of the clustering process is a tree superimposed on the original graph
(again, note that this “original” graph may instead be a filtered version of the true base
graph; clustering should not be concerned with this). The tree not only establishes a
hierarchy; cluster vertices can be as general as graph vertices, in the sense of represen-
tation flexibility, and can contain anything in the programmer’s fancy; most obviously,

6.2 Model 87

special labels to denote what children they contain.

Hierarchy update

Hierarchies may need to be updated after a change to the graph on which they were
built. Once notified of a change to the base graph, the clustering engine is requested to
generate an updated hierarchy, and to annotate the differences between the old hierarchy
and the new one in an “event”. This event will be used to notify components further
down the pipeline of the exact nature and extent of the change.

The default Clover clustering engine generates this hierarchy update event by
performing a tree difference between the old and new hierarchies. The tree matching
algorithm is presented in appendix B.2.6.

Some clustering algorithms can efficiently detect changes to their runtime behavior.
For instance, if the sequence of rule matches is stored, a rule-based clustering engine
could keep track of the rule matched in each moment, and locate deviations as they
occur. This approach has not been implemented.

6.2.3 Clustered graphs

Clustered graphs are built by combining a base graph, a clustering hierarchy built upon
this graph, and a slice. A slice is a cut-set set of hierarchy clusters; representing only
these clusters as vertices with all required induced edges results in an abstracted view
of the base graph.

Cluster vertices are assigned a distinctive color, a slightly larger size than normal
vertices, and a label. The label is that of the first child cluster that was included when
the cluster was originally created; this first child is the cluster’s representative. In each
the rules presented in fig. 6.3, vertices labelled as a were used as representatives. This
choice of labels is not always correct; therefore, clusters can be manually named, and
the name will persist when cluster hierarchies are saved and later restored.

An excellent discussion of the importance of correct hierarchy labelling when pro-
viding information scent and the problems that it brings up can be found in [66].

Visibility

Operations on a clustered graph include expansion of a cluster vertex (substituting a
non-leaf cluster vertex for its immediate children) and collapse (the reverse operation).
In Clover, both operations can be performed in optimal time (see 5.1).

Navigation through a clustered graph can be performed via expansion and collapse
of vertex clusters; but it is cumbersome to perform repeated expansions and collapses.
In addition, default cluster labelling may create serious difficulties when browsing for
graph vertices that have not been chosen as representatives.

88 Chapter 6. The Clover Framework

If a the name or id of a vertex is known, or retrieved in the application through
an appropriate query mechanism, clustered graphs support a “make visible” operation
that performs any required expansions and collapses to ensure that the selected vertex
is made visible.

Degree of Interest

Another method to navigate the graph is to expand a certain neighborhood around the
Point-of-Interest (PoI) selected by the user, and collapse clusters that are further away.
This semantical fisheye lens was first proposed by Furnas in [65].

The implementation found in Clover uses a simple distance metric (number of
hops in shortest path to the PoI) to calculate the Degree-of-Interest (DoI) for all visible
clusters. When counting hops, breadth-first graph traversal can be used. DoI for cluster
vertices is defined as the lowest DoI of any of their component vertices.

When the graph is displayed, clusters that are near enough to the current PoI will
be expanded. Those that are further away will be collapsed. The algorithm is the
following:

selectSlice PoI, frozen, focusSize, maxVisible

calculate distances to PoI (= DoI for all vertices)

collapse all clusters, excluding the PoI or frozen vertices

ensure that a radius of focusSize around the focus is visible

while the visibleVertices < maxVisible,

find the most important cluster

expand it

Where frozen vertices are those that have been marked by the user to not participate
in automated expansions or collapses. This is particularly handy when exploring a far-
away part of the graph without losing view of the current area: just “freeze” the vertices
that should be preserved, and return to them later.

The algorithm results in a new slice. This slice is compared with the previous one,
and the minimal set of differences is used to transform the previous slice into the new
one, animating the transformation so as to preserve the user’s mental map.

It is possible to speed up this algorithm, particularly the calculation of degrees of
interest, by estimating an upper bound for the size of the set of “important” clusters that
will need to be expanded. Calculating more degrees the degrees of interest of vertices
that will not be included in this set is clearly unnecessary, and can greatly speed up
execution for large graphs, and avoid the O(|E|) memory consumption associated with
breadth-first exploration.

6.2 Model 89

6.2.4 Events and updates

Clustered graphs can change over time. User navigation requires expansion and collapse
of clusters, which results in added or removed vertices and edges. Changes to a filter may
result in cascaded updates to the clustering hierarchy, that should in turn be reflected
in the final clustered graphs. Changes to the base graph, either due to user edits or
update events received from the data source will require filters to be reapplied, with
similar effects.

The Observer design pattern described in [67] is used throughout Clover to connect
pipeline components to each other, while maintaining a very low degree of coupling
between each component. The following events can be launched and received:

• Structure events reflect changes in the graph structure: vertices or edges may
have been added or deleted, or attributes requiring a visual refresh may have
occurred to one or more vertices or edges (for instance, vertex label may have
been updated). Structure events can be launched by all graphs, be they base
graphs, filtered graphs and clustered graphs alike.

• Hierarchy events reflect changes in the hierarchy. They may be triggered for lower-
level structure events (for instance, new graph vertices have been introduced, or
revealed by a different filtering), or may reflect user intervention on the cluster-
ing, or the application of a new clustering algorithm that changes the current
clustering. Hierarchy events are only launched by a cluster hierarchy.

• Clustering events are the final results of the above events, and can also be triggered
from the user interface during graph navigation. They reflect changes in the level
of visibility of the hierarchically clustered graph. A vertex expansion or collapse
would fall into this category. Clustering events are launched by clustered graphs.

If an edge were to be removed from a base graph, a structure event describing the
change would be generated. This event would be sent to all filters, which would process
it, and those with filtered graphs that were affected would launch the corresponding
structure events to their own listeners. Hierarchies defined on top of any of these
graphs would reevaluate their clusterings, and report any change as a hierarchy event
to each of the clustered graphs registered to receive them. A clustered graph receiving a
hierarchy change would evaluate it to check for any necessary changes (including, if the
focus was affected, focus changes). Finally, a clustered graph which had changed would
send a structure event describing the nature of the change, and one or more clustering
events describing the associated expansions and collapses, to any interested components
(probably animators in charge of maintaining the corresponding graph views).

90 Chapter 6. The Clover Framework

Expanding and collapsing clusters

Cluster expansion and collapse results in two types of events. As expected, a clustering
change event is delivered to observers. Furthermore, since a clustering change involves
addition and removal of edges and vertices, a structure change event is also generated.
However, this change does not correspond to alterations in the underlying base graph
– it is only due to clustering. Therefore, structure changes generated by a clustered
graph due to clustering changes are annotated as such, allowing observers that are only
interested in “real” changes to ignore them.

Clustering changes also include any possible updates to the point of interest. These
updates are frequent during navigational operations, even if the semantical fisheye lens
is not used. Expanding a cluster which was previously selected as PoI should pass the
PoI status to one of its descendants (currently, the “cluster representative” is selected
for the honour). Likewise, collapsing a cluster that contained the PoI results in the
newly-collapsed cluster becoming the new PoI.

Cluster expansion and collapse does not generally occur in isolation. It is common
for slice changes in a clustered graph to require several expansions and collapses. Clus-
tering events contain the whole sequence of expansions and collapses that have taken
place, enabling observers to “see” the whole slice change, instead of the piecemeal op-
erations that compose it. Keeping related changes together is important to help a user
understand the intent of the change.

Changing the hierarchy

The generation of hierarchy change events has already been explored. However, their
interpretation when received by a clustered graph using this hierarchy merits discussion
of its own. Since Clover’s clustered graphs observe only their hierarchies, and not the
graphs they are based upon, hierarchy changes contain information both on the changes
performed to the cluster hierarchy and the related graph changes.

A clustered graph must evaluate each of these changes to evaluate, given the current
visible slice, whether alterations to visible vertices and/or edges are required. These
alterations may involve a need to recalculate the whole slice. The algorithm used in
hierarchy change processing follows:

clusteredGraphUpdate(hierarchyChange)

for each vertex changed upstream

if it is visible, update it

for each removed cluster

if it was not added elsewhere,

remove it or any of its visible children

6.3 View 91

for each gap in the slice created by removals

plug the gap

for each newly added cluster

add the relevant descendants, if any, to the slice

for each added cluster,

locate any edges that may need to be added

for each visible edge,

if one or both endpoints is missing, remove it

for each newly introduced base edge,

if the induced edge should be visible, add it

create a structureChange event with all the above changes,

deliver this event to all registered observers

update the PoI // may cause other events to be launched

A gap in a slice corresponds to an illegal state, and may arise due to removal of
outdated clusters (clusters that belonged to the previous hierarchy, but not to the
updated one). Slices should always be cut-sets of the graph hierarchy; “plugging the
gaps” requires clusters without any representatives (neither ancestors nor descendants)
in the slice to be located, and appropriate representatives to be added.

The last line in of the algorithm calls for an update to the point of interest. This
can be required if, for instance, the previous PoI was removed from the graph. Since
the PoI must be visible at all times, changing the PoI may require several expansions
and collapses, triggering slice changes and the delivery of the corresponding events.

6.3 View

The final component in the view section of the Clover pipeline is a graphical com-
ponent that displays a graph. The JGraph [1] library for graph representation. Use
of this library provides a wide array of visualization choices, including the most usual
types of vertex and edge decoration.

In order to bridge the gap between the final representation and the clustered graph
model that is to be represented, each graph element (vertex or edge) must be provided
with a visual representation and a screen location. The visual representation of indi-
vidual elements is delegated to the view graph, while the screen location is determined
by the visible portion of the overall graph layout. Changes to a graph do not reach the

92 Chapter 6. The Clover Framework

view immediately. Instead, they are collected by the animation component, where they
are structured and gradually introduced.

The remainder of this section presents the main components of the view module:
visual representation of graph vertices and edges, layout algorithms and strategies, and
animation. Clover’s incremental layout strategies and the animation support for struc-
tured view changes are distinctive features, not found in comparable systems.

6.3.1 Representation

The JGraph library used for vertex rendering offers a very rich set of shapes, arrow
types, borders, label dispositions, and other element decorations. Support for curved
or orthogonal edge drawings with multiple control points is also available, although
Clover currently uses only straight-line edges. The view graph component can also
customize the label that is to be displayed along with each element, specify a tooltip
(which would be displayed when the mouse hovered over the relevant component), or
refrain from labels altogether and use icons or rich components instead (albeit at a
certain coding effort). However, this is generally not needed, since vertex and edge
labels and tooltips can display basic HTML, including styled text, images and tables.

The series of sequential screen captures of figure 6.4 illustrates the display of a simple
clustered graph with default settings. Intermediate animations have been omitted to
save space.

(a) A fully expanded view. (b) View after collapse of
{1, 2, 3}.

(c) After collapse of
{4, 5, 6}.

Figure 6.4: Example of clustered graph representation in Clover. Large, blue boxes
are cluster vertices. Clustered edges are highlighted using thick, green lines. A yellow
border marks the focus vertex.

Both clustered and unclustered vertex and edge representations are expected to be
adapted to each particular application (see appendix B.2.13 for details). However, the
default should allow easy distinction between clustered and “normal” edges and vertices,
and the use of a distinctive yellow border for the point of interest is expected.

6.3.2 Layout

Although Clover delegates large parts of abstract graph manipulation and visual graph
representation to external libraries, no appropriate libraries have been found for graph

6.3 View 93

layout. Fortunately, layout algorithms are generally well described in the literature,
and incremental layout can be achieved with force-directed layouts, which are simple to
tune and implement.

Graph layout is not a monolithic process; instead, several layout algorithms are
chained to achieve a visually pleasing final result. A small layout framework is included
in Clover, providing algorithms suitable for initial vertex placement, force-directed
placement from those initial positions, vertex overlap prevention, and connected-component
separation, among others. The layout framework supports pluggable algorithms (which
implement the Strategy design pattern described in [67]), making it easy to tune for
different requirements. Details can be found in appendixes B.1, B.2.19, B.2.20 and
B.2.22.

Users require a considerable time to come to grips with a completely new layout, but
can integrate small, incremental changes almost immediately. The surrounding layout
itself provides a powerful sense of context, referred to in section 3.2.2 as the mental map.
Mental map preservation is a key concern in a clustered graph interface. In addition to
incremental layout and animation, Clover also uses layout caches and a layout history
to assist in mental map preservation.

Layout is also a computationally-intensive process, and incorporating layout into an
interactive graph application makes it a potential bottleneck. Indeed, one of the main
benefits of using clustered graphs is that, if the number of simultaneously visible vertices
is kept low, layout can be performed within interactive time constraints. In order to
achieve fast layout speeds, Clover uses an alternative graph representation for layout
purposes, providing fast and simple access to vertex positions and boundaries. This
alternative layout-oriented representation presents a secondary benefit of decoupling
layout from representation. This allows layout changes to be introduced smoothly via
animation.

Interactive application time constraints can result in layouts that do not meet a user’s
aesthetic requirements. Users request additional layout to be performed, or perform
manual adjustments to the current layout. Clover attempts to preserve any manual
layout changes during further navigation.

Layout algorithms

Figure 6.5 provides an overview of the layout process used in Clover. Each solid,
rounded box represents a different layout algorithm. Layouts are chained together into
logical phases: overall vertex placement, compactification, and overlap removal. Initial
layout is performed only once, when the graph is first displayed. Incremental layouts
are performed afterwards, with emphasis on minimizing displacement of non-changed
vertices.

The following list provides a description of the layout algorithms used in Clover

94 Chapter 6. The Clover Framework

Figure 6.5: Layout in Clover. Incremental layout and initial layout undergo different
vertex placement. Compactification and overlap removal are common to both. Solid,
rounded rectangles represent algorithms.

and their purpose.

• Force-Tree Layout – Selects a spanning tree of the graph, and performs layout of
this tree using a simple one-pass force directed placement: once the root vertex
is placed, each additional vertex is placed at a fixed distance from its parent in
the spanning tree, away from the repulsive force exerted by other vertices. Each
previously-placed vertex at distance d exerts a force proportional to its distance:

fr(d) =
1
d2

This layout is designed to untangle the graph prior to force-directed layout. It
is particularly efficient when untangling tree-like graphs. Although the idea of
using a tree layout to seed further layouts is certainly not new, this particular
implementation is, to the best of the author’s knowledge, novel.

• Variable-Length Force-Directed Layout – a force-directed layout with support for
edges of variable length. This is achieved by annotating each edge with a “strength”,
and decrementing edge length according to this strength. The algorithm is a vari-
ation of the well-known Fruchterman-Reingold layout [64] described in section
3.1.1; edge attraction for an edge with strength se is computed as if the edge
length were d′ = d · se instead of d.

Simulated annealing is performed using an exponential decay formula, with a
constant kc chosen so that the minimum temperature tlo will be reached at the

6.3 View 95

last iteration, n:

kc(n) =
(
tlo
thi

)1/n

This algorithm is used to perform the brunt of the layout on graphs without
previous vertex positions. As most force-directed layouts, vertices are treated as
points, and no provision is made for possible overlaps. Resulting layouts for large
graphs also tend to be very sparse, with large, empty areas.

• Bound Variable-Length Force-Directed Layout – This is a variation of the previous
layout; a previous layout is available, and mental map preservation requires mini-
mal changes to vertices that have not “changed” (have not been recently added or
had edges added or removed). To keep vertices close to their previous positions,
an additional force, fp, has been added. This force is calculated as fp = kp d,
where kp is a constant. High values of kp can produce layouts that vary only
minimally; but mental map preservation must be offset against layout quality.

• Compact Force-Directed Layout – this layout attempts to compact the results a
previous layout, by using powerful attractive forces between edges. The vertex
repulsion formula from Eades’ original spring layout (refer to section 3.1.1) is
combined with a very powerful attractive force. Again, edge strengths are factored
into attractive forces, by using d′ = d · se instead of d in their calculation. Edges
with low strengths are allowed to stretch much further than those with higher
strengths. An additional constant kr is used to balance the repulsive force.

fa(d′) =

d′
2 − k2 if se ≥ 1,

d′ − k if se < 1

fr(d) =
kr
d2

This layout by itself would not be very effective, since repulsion is much too low
to untangle graphs. It is only effective when starting from an initial layout such
as those produced in the previous steps.

• Vertical Box Layout – All previous layouts avoid computing repulsive forces be-
tween vertices of different connected components. This layout separates all con-
nected components by first calculating their bounding boxes, and then placing all
components in a single vertical column. It is intended as a preparation step for
the next layout.

• Force-Transfer Algorithm – Described in [83], this is a fast algorithm that elim-
inates vertex overlaps. Despite its name, no force model is used. The effects,

96 Chapter 6. The Clover Framework

however, resemble those that would be obtained using a more computationally
intensive force-based overlap removal algorithm.

After this layout has ended, there will be no overlaps left in the graph. Run-time
depends heavily on the number of overlaps that must be resolved, and wether
or not resolving one overlap causes yet another one that will also require solv-
ing. Initial force-directed layouts should have eliminated most intra-component
vertex overlaps at this point, and inter-vertex overlaps should have been entirely
eliminated by a previous box layout.

• Simple Box Layout – Similar to the vertical box layout, bounding boxes are used
to displace entire graph components. However, the goal of this layout is to place
components next to each other, minimizing total graph layout space while avoiding
component overlaps. An initial component (or “box”) is first placed in the top-left
corner of the layout area. For each additional box, its top-left corner is matched
against the exposed corners of all previously-placed boxes, starting with those
corners nearest to the top-left corner of the layout area. The first position where
no overlap occurs is used.

Although more powerful algorithms have been described in the literature, it is
uncommon to work with multiple graph components at the same time, and filters
could be used to hide components that were not of immediate interest. Therefore,
a fast and simple approach has been preferred.

(a) Force-tree (b) Variable-Length FDL (c) Compact FDL (d) Force-Transfer

Figure 6.6: Layout sequence when no previous layout is available. Box layouts have
been omitted.

Figure 6.6 illustrates the layout sequence for a new graph. If a previous layout

6.3 View 97

had been available, the first two steps would have been substituted for an incremental
layout. Note that layout compaction constitutes a tradeoff between aesthetics and size.
Component overlap removal has been omitted from the sequence.

Incremental layout

If a previous layout is available, the layout sequence changes. Prior to the start of
the sequence, a set of free vertices is constructed. This set includes all vertices that
were not present in the previous version, and all vertices that have had edges added or
removed. The Bound Variable-length FDL (BVFDL) behaves exactly like the Variable-
length FDL regarding free vertices; but all vertices that are not free are considered
to be bound. Bound vertices are anchored to their previous positions using springs of
considerable strength, restricting their movement.

The use of springs to anchor vertices in-place has a secondary advantage; force-
directed layouts tend to present “layout drift”, where the whole components rotate
slowly around an axis. Anchored vertices prevent such broad movements, which would
otherwise require correction.

(a) Original graph (b) Added vertex 10 and
edge 2→10

(c) Added 0→9 and 9→1

Figure 6.7: Incremental layout example. Layout from (a) to (b) uses a single run of
the incremental force-directed layout algorithm; layout from (b) to (c) uses two, since
changes are of greater significance.

When incremental layout is performed, the number of runs of the BVFDL is tailored
to the extent of the changes. Small changes, such as adding a vertex connected to the
rest of the graph with a single edge, require only one run. Broader changes, such
as removing and adding several edges, require a greater number of runs to achieve a
pleasant layout. A simple heuristic is used to select the number of runs according to
the nature of changes. Figure 6.7 illustrates this behaviour with an example.

98 Chapter 6. The Clover Framework

Layout cache

A layout cache is used to store each layout as it is generated. Manual changes to a
layout overwrite the corresponding cache entry, allowing user changes to be preserved.
The existence of a layout cache allows a lookup to be performed prior to any layout;
if the destination graph already had a good layout in the cache, the stored version is
used. A cache hit has two important advantages: mental map is preserved, and speed
is greatly boosted, since lookup is much faster than actual layout.

A near miss can be almost as good as a cache hit; if the miss is close enough,
incremental layout starting from the “best” match can be used, yielding a result that
will be closer to the user’s mental map and require less computation than if no cache
had been used.

In order to compute sloppy matches, a text representation of a view graph is used.
This representation relies on a string representation that includes the unique identifiers
of all visible vertices and edges, in a canonical ordering. Sloppy matching counts how
many vertices and edges are common to both graphs. Exact key matches can be located
in O(1) time, using hashes from the keys. Sloppy matches are currently much slower,
requiring O(N ·M) time, where N is the number of keys stored in the cache and M

is the size of the keys to be compared, and therefore proportional to the number of
vertices and edges in the visible graph.

A least-recently used (LRU) replacement policy is used within the layout cache, with
the understanding that layouts that are seldom used are much less relevant towards
mental map preservation than those that are accessed with a greater frequency.

Note that graphs themselves can change, outdating large numbers of cached lay-
outs. Without sloppy matching, outdated layouts would be lost unless the changes
were reverted. Sloppy matching allows reuse of layouts when the amount of changes
is low. However, it is insufficient when dealing with more extensive changes. Possible
approaches to deal with this problem are listed in section 9.3, as future work.

6.3.3 Animation

Within the detailed clover pipeline displayed in fig. 6.2, animation acts as a bridge
between model and view. All changes to the model are animated prior to their repre-
sentation in the view, possibly after performing incremental layout to ensure that the
layout of the updated graph remains relevant.

Apart from this role within the main pipeline, animation is also a general mechanism
built into Clover, and can be used to highlight or animate any type of alteration to
a graph. The separation between these two roles can also be observed at the imple-
mentation level; refer to appendix B.2.16 and B.2.18 for details. Since pipeline-related
animation is based on the general animation framework, the framework will be de-
scribed first, and its use in mental map preservation via layout animation immediately

6.3 View 99

afterwards.
The animation framework built into Clover is very similar to that of Piccolo, and

partly inspired by it. Instead of Piccolo’s activities, Clover uses animation plans –
but the differences are not significant. In both systems, an animation is composed of a
series of steps, and every step lasts a certain time interval. During this interval, steps
are periodically requested to update themselves, affecting the display of one or more
graph elements.

Plans, Moves and Steps

More formally, animation plans are composed of a sequence of moves, and each move
contains one or more individual steps. All the steps within a single move are executed
simultaneously, and should not conflict with each other. Moves themselves are executed
in strict order, and last as long as their longest step.

Each step has a duration and a frequency (how often it is requested to alter the
graph). Steps may perform changes to the graph; this is very useful when representing
multilevel expansions and collapses, since the plan would encompass all transformations,
and the visible graph is bound to change during the steps – it would be impossible to
build a step to highlight vertex a vertex when this vertex is only visible for a few instants
in the middle of the plan. Additionally, steps need not be fully specified before being
added to a plan. Instead, they are configured before being called for the first time.
Configuration can also involve a short burst of layout, or propagation of model changes
to the view graph.

Typical animation steps include:

• Highlight: sets of vertices or edges are surrounded by a coloured border of in-
creasing intensity. This is intended to draw user attention towards the highlighted
items.

• Movement: shift a series of graph vertices from one position to another. Used
when animating layout updates due to graph structure changes, or navigational
expansions and collapses.

• Graph update: propagate sets of model changes to the view graph, and then per-
form incremental layout. The updated layout positions are used in an embedded
movement step to animate the changes.

Because the intended use of the application is interactive, certain plans may cease to
be necessary before they have finished executing: a plan may be a response to a situation
that is no longer present, or the user may have requested an operation that requires a
different animation to be presented. All plan steps can be immediately aborted when
such a situation arises. For instance, imagine a plan triggered by hovering the mouse

100 Chapter 6. The Clover Framework

pointer over a certain node, with the effect of slowly highlighting a set of related vertices.
Should the mouse move out of the area of influence, it would be expected that the
vertices now in mid-highlight be left in their original state. It could also be the case
that the user decides to click on this vertex, and this may trigger a totally different
plan, which should also bring about the demise of the previous one.

A simple priority mechanism is used to ensure that higher-priority plans (for in-
stance, user-initiated cluster expansion) displace lower-priority ones (for instance, a
mouse rollover), and conversely, that no low-priority plan will run until any high-priority
plans have finished execution. Plans with equal priority can either be appended to each
other or replace one another.

The priority mechanism is also intended to prevent plan conflicts – if one plan
expects to find a vertex, and another plan removes it first, one of them will fail. A more
complex mechanism could be implemented. For instance, Piccolo associates plans to
visual objects, and conflicts are therefore easier to manage. However, Clover’s present
priority system is sufficient for most animation tasks.

Animating structural graph changes

When structural changes are received by the animation module within the Clover

pipeline, the view graph is immediately updated, removing old vertices and edges, and
adding new ones. Initial layout of any new vertices requires them to be placed at a
starting position. If the new vertices are connected via edges to any prior vertex, the
position of one of these neighbors is selected as a starting position.

A short, incremental layout is then started. As described in section 6.3.2, the amount
of layout time and the degree to which existing vertex positions will be altered depends
on the extent of the changes to be introduced. This new layout is gradually introduced
by moving each vertex along an interpolated path, from its old position (previous to
incremental layout) to the destination as determined by layout results. Movement speed
is not constant; instead, vertices start movement slowly, accelerate, and decelerate to-
wards the end of the movement animation. Movements animations last 500 milliseconds;
this requires vertices that move a large distance to move much quicker than those that
move a shorter distance.

Friedrich and Eades [62] present arguments against the use of simple interpolation
in graph animation. Their arguments are strongest if layout changes are truly signifi-
cant. Incremental layout in Clover attempts to minimize changes, and therefore the
techniques proposed in [62] have not been considered a priority, and are currently not
included.

If further information had been available on the semantics of the change, additional
highlighting could have been performed, emphasizing the exact nature of the change.
Users of the Clover framework can easily define new behaviours for structural anima-

6.4 Control 101

tions.

Animating clustered graph navigation

In the case of cluster expansion and collapse, additional information is made available
through the use of cluster events (see section 6.2.4). This allows animation to highlight
the semantics of the change, instead of only the end results.

Cluster events include sequences of cluster expansions and collapses that, when
performed in order, lead to the same graph that would have been obtained through a
direct structure change. The animation of cluster events is performed stepwise, in two
phases:

• Collapse – Clusters that should be collapsed are collapsed in layers. Layering
reflects the fact that clusters can contain other clusters, and it is desireable to
allow collapse of a cluster only after all its children have been collapsed. Vertices
that will be affected by a collapse are highlighted in red. After each layer collapse,
a small incremental layout is performed.

• Expand – Cluster expansion is performed in layers. Again, layering obeys cluster
inclusion; a cluster that is child of another cannot be expanded until its parent has
been expanded. Clusters that are undergoing expasion are highlighted in green.
After each layer expansion, a small incremental layout is performed.

Vertices that are undergoing collapse receive a red border, and move towards the
point where their parent cluster vertex will be placed. Currently, collapsed clusters
appear at the center of masses of their children’s positions. Expansion is the reverse
operation; the expanded cluster vertex is first substituted for all its children vertices,
which are placed at the same position previously occupied by their parent. The newly-
placed vertices receive a green border, and radiate outwards until they reach their final
positions.

Figure 6.8 illustrates the progress of a layered cluster collapse. Figure 6.9 illustrates
the animation triggered by a focus change. In both examples, a sample graph with
artificial clustering settings has been used; in a real application, such a small graph
would be totally expanded.

6.4 Control

Within the Model-View-Controller design pattern, control refers to user interaction,
more specifically to how user input is obtained and processed. This section oversteps
these bounds, and also attempts to explain how the previous steps of the Clover

pipeline are integrated into the final interface presented to the user.

102 Chapter 6. The Clover Framework

Figure 6.8: Animation of a cluster collapse. Red borders mark vertices which will not
be visible once they are collapsed into their parent cluster vertex. Collapse proceeds in
layers: children of clusters scheduled for collapse are collapsed before their parents.

Figure 6.9: Focus change animation. Order is left to right and top to bottom. First,
the focus is made visible; this requires an expansion. Expanded vertices are highlighted
in green. Far-away vertices are then collapsed.

Figure 6.10 is a screenshot of this basic interface, using the same graph displayed
in figures 6.8 and 6.9. The default interface is composed of a series of graph views
and a single cluster tree, labelled as “Tree view” in fig. 6.10. All views are built upon
the same base graph model, but different filters and hierarchies can coexist, yielding
different graph and tree views.

The cluster tree displays an editable tree of the cluster containment hierarchy for
the current graph view. The tree is editable; dragging and dropping a cluster into
another, for instance, will result in a change to cluster containment for the current
view. Highlighted nodes within the cluster tree correspond to visible vertices in the
currently active graph. The tree can also be used to collapse or expand cluster vertices
within the graph; for instance, a “make vertex visible” action can be triggered on any
tree node.

6.4 Control 103

Figure 6.10: Basic Clover interface. Text in large, bold face is intended to guide this
caption and is not part of the interface. A tabbed panel is used to hold graph views;
the displayed view illustrates the aura that results when hovering the mouse over a
vertex. An editable cluster tree displays clustering structure. Buttons labelled A-F
correspond to actions; A: create view, B: change filtering, C: navigational undo/redo,
D: decrease/increase number of visible vertices, E: relayout/configure layout settings,
F: toggle automatic expansion. Coloured vertex borders and the bold edge connecting
vertex 3 to cluster {5 4 6} are described in section 6.4.2.

6.4.1 Application and Actions

Clover makes heavy use of actions, reusable objects that can trigger a specific change
to the model or view. As argumented in section 5.4.1, actions allow the same change to
be triggered in many different ways. For instance, “perform incremental layout” is an
action which can be invoked with a mouse-click on a toolbar icon, or by typing Ctrl+B.
Certain actions may require parameters; to trigger “edit vertex”, the particular vertex
to be edited must be specified beforehand.

Many actions need to share information. For instance, “paste” actions expect to
obtain their operands form previous executions of “copy” or “cut”. Clover uses the
base interface, depicted in fig. 6.10, to hold this shared data, which is common to
all views. The interface contaions two main types of shared data: clipboard (used for
cut/copy/paste operations) and editing history (enabling edit undo/redo). Navigation
history is particular to each view, as is the layout cache.

Basic actions

A number of actions implementing common used operations are included as part of the
framework. Applications built on top of the framework are expected to complement the
default set of actions with domain-dependent ones. Applications are also expected to
extend existing actions whenever possible. As argumented in section 3.2.3, extending

104 Chapter 6. The Clover Framework

the scope to which an operation can be applied results in enhanced usability. Therefore,
unless an operation really makes no sense with a particular set of operands, it should
be extended to accept those operands and yield expected results. This is particularly
true of the “edit” and “cut, copy, paste, delete” set of operations.

The default actions, grouped by category, are the following

• Cluster navigation – Actions intended to alter the clustering, allowing clustered
graph navigation.

Toggle cluster lock Enable or disable the use of automatic degree-of-interest
focus behaviour. When the cluster-lock is not active, changing the focus
leads to DoI recalculation as described in section 6.2.3.

Set focus Change the focus to the selected vertex. DoI recalculation will be
triggered unless the cluster-lock is enabled.

Make visible Expand or collapse clusters as needed to make the specified vertices
visible.

Toggle freeze Toggle the “frozen” status of a series of vertices. Frozen vertices
do not participate in DoI-triggered cluster expansion or collapse.

Visible vertex count increase / decrease Increase or decrease the maximum
number of simultaneously visible vertices after DoI recalculation. Vertices
exceeding this number and with low DoI will be collapsed into clusters.

Collapse / expand vertex Collapse or expand the selected vertex cluster. Only
cluster-vertices may be expanded, but collapse is interpreted as “collapse par-
ent cluster vertex”, and is therefore available for all vertices except the root
cluster vertex.

Undo / redo navigation Undo or redo navigation action; all navigational ac-
tions are triggered by clustering events. Storing these events in a navigation
history allows navigational actions to be undone or redone.

• View navigation – Actions intended to alter a view, excluding cluster navigation
and changes to the underlying graph structure.

New view Instantiate a new view, as a copy of the current one (that is, using
the same filter and clustering hierarchy). Changes to either cause an entirely
new filte and/or hierarchy to be created, making the new view independent
from the old one. All All views share the same base graph, and will update
themselves when notified of any changes.

Filter Alter the filter settings for the current view, causing the view and its
associated cluster hierarchy to be updated.

6.4 Control 105

Incremental layout Perform incremental layout on-demand, beautifying the
current view.

Alter layout settings Change layout settings. Many layouts contain a large
set of configurable parameters, including maximum layout iterations or total
layout time.

Zoom / Pan Change the zoom factor and/or pan to a different location within
the graph. For instance, center the view on a given vertex.

• Editing – actions that change the contents of the graph.

Edit Edit or view the properties of a vertex or edge; by default, only clusters are
“editable”, and editing is limited to renaming them.

Delete Delete a set of edges and/or vertices. Deleting a vertex also results in
removal of all edges that used the vertex as an endpoint.

Cut Copy a set of edges and/or vertices to the clipboard, storing any additional
information needed to enable future “paste” operations. Delete all cut items
from the graph.

Paste Re-introduce the contents of the clipboard into the graph. If old positions
had already been occupied, ask the user for remedial action, offering to create
clones of already-existing graph components.

Copy Similar to Cut, but do not delete copied items after introducing them to
the clipboard.

Undo / redo edit Undo or redo editing action; user-triggered (as opposed to
datasource-triggered) editing actions generate graph editing events that are
stored in an edit history, and can later be undone with these actions.

• External – actions that are external to the graph model and view.

Create new Create a new graph. The default implementation is to generate a
random test graph; applications are expected to change this behavior.

Save / Load Save or load the current graph, its views, and all associated hier-
archies, together with their layout caches. An XML dialect (see appendix
B.3.1) is used to store all Clover-related information; applications are ex-
pected to store and maintain their own graph model.

Print Print the current view in a printer or to a PDF file. This requires support
from the underlying operating system.

Not all available operations have been wrapped as actions. In particular, infrequent
operations and operations that are expected to be performed by direct manipulation,
such as selecting or moving a vertex, have no corresponding actions. They are described
in the “Interaction” subsection.

106 Chapter 6. The Clover Framework

6.4.2 Interaction

Interaction with the graph is common to many other graph-based interfaces. With
default settings, panning can be performed by using scrollbars, and zooming can be
controlled with the mouse wheel. Vertices and edges can be selected either by clicking
on them or by including them in the rectangle defined by a dragging gesture on top of
the graph. Once selected, they are eligible for actions that requires one or more vertices
or edges as operands, such as “copy” or “delete”. When a selection is active, any
other selection (including one that does not actually select anything) deselects previous
elements.

As mentioned in section 5.4, most graph visualization applications delegate common
interaction mechanisms such as zoom and pan to their underlying graph representation
libraries. In the case of Clover, zoom and pan are provided by the underlying JGraph

library. JGraph places greater emphasis on ease of use than on rendering performance,
and therefore zooming is not as smooth as in ZUIs such as SHriMP[122]. Complement-
ing JGraph’s default zoom behaviour (which enlarges or shrinks all graph elements,
including vertex bounds and contents), Clover includes an additional zoom setting,
which affects only the layout positions of vertices, increasing or decreasing edge lengths
without affecting any other graphical element. For zoom levels ≥ 1, layout zoom is used
instead of graphical zoom.

(a) Visible cluster vertex. (b) Visible, non-editable
leaf vertex.

(c) Hidden, non-editable
leaf vertex.

Figure 6.11: Contextual popup menus. The actions included in the popup depend on
the edge or vertex for which the popup menu has been requested. Popups for non-visible
vertices or can be launched through the cluster tree view.

Right-clicking on any element (edge, vertex or cluster-tree node) brings up a con-
textual popup menu, populated with suitable options as determined by the current
application. Figure 6.11 illustrates popups for different graph elements using the de-
fault test application.

All interface elements, from vertices and edges to menu items and action-invoking
elements, include tooltips. These small fragments of floating text appear after the mouse
pointer has hovered over an element for a few seconds, and provide helpful advice on the
the element’s use, or in the case of data elements, their contents. For instance, tooltips

6.4 Control 107

for cluster vertices include, by default, a list of their contents.

Hovering the mouse pointer over graph edges or vertices also triggers simple an-
imations. When hovering the mouse pointer over graph edges, the edge and its two
endpoints are highlighted. Hovering over vertices highlights the vertex itself, and all
outgoing and incoming edges. This type of highlighting is expected to be a useful visual
aid when dealing with large graphs with long edges, or in the presence of edges that
intersect non-endpoint vertices or other edges.

Clustered graph navigation

Clustered graph navigation has received special attention, since it is central to Clover.
Two navigational modes are available, automatic and manual. The user can toggle
between them by using the “cluster lock” action described above.

Manual navigation mode has the advantage of being straightforward: users must
left-double-click on a cluster vertex to expand it, and shift-double-click on any vertex to
collapse it into its parent cluster vertex. Both actions are also available from the corre-
sponding contextual popup menus. In a sense, this is equivalent to classical interaction
with tree interfaces: expansion and collapse must be triggered explicitly by the user.

Automatic navigation mode implements a semantical fisheye view as described in
section 6.2.3. In this mode, changing the focus to any vertex (by left-clicking it once)
causes visibility to be recalculated. Far-away vertices will be collapsed to make space
for nearby vertices which will undergo expansion. Multiple mechanisms are available
to control this operation; the user can set the desired number of simultaneously visible
vertices, and the radius around the current focus where full expansion should occur.
And, to prevent unwanted expansion and collapse of certain vertices, they can be ex-
plicitly marked as “frozen”. Frozen vertices are not expanded or collapsed as a result
of degree-of-interest recalculation.

To improve the predictability of automatic navigation mode, hovering the mouse
pointer over a vertex triggers an animation that explains the results of shifting the
focus to the hovered-over vertex (see fig. 6.10). Vertices that would be collapsed are
highlighted with a red border, and vertices that would undergo expansion are higlighted
in green – the same colours used for clustering collapse and expand animations. This
aura mechanism allows users to prevent unwanted view changes by alter clustering
settings or freeze vertices that should be unaffected before changing the focus.

During both manual and automatic clustered graph navigation, users can alway
retrace their steps. Undoing a focus change or a cluster collapse is simplified by the
existence of a navigational action history (its controls are labelled with a bold C in fig.
6.10). Requesting an “undo” of the last navigational action will revert any focus change
and related cluster collapses and/or expansions. Because of the existence of a layout
cache, no processing time will be required to recalculate old layouts; and the exact same

108 Chapter 6. The Clover Framework

layout will be used.
Recalling section 3.2.2, predictability, change minimization and traceability are all

important parts of mental map preservation. The Clover framework uses incremental
layout, animation, layout history, and predictable cluster navigation to deal with each
of these issues.

Chapter 7

Application to Adaptive

Hypermedia

This chapter presents WotEd, an adaptive hypermedia course authoring tool for the
Wotan system which has been implemented on top of Clover. Wotan [57] is an up-
grade to the Tangow (TAsk-Based learNer Guidance On-Web) adaptive hypermedia
course system described in [40, 41].

WotEd uses the facilities provided by Clover to address many of the problems
presented in section 4.4:

• Large course graphs can be visualized and manipulated, using Clover’s support
for clustered graph visualization. Clustering is performed automatically, and al-
lows authors to adjust the degree of detail to concentrate on the part of the course
they are currently working on.

• Full round-trip support is available. Legacy courses can be read and displayed,
even if they did not contain any information on graph layout. If layout, clustering
and filtering information is available, it can be used to restore all views to their
previous state.

• Monitoring is built into the tool, addressing the testing and maintenance stages.
Student progress can be tracked in real time, with full access to the contents of
each user model. This mechanism can also be used offline, allowing easy analysis
of log files-

The first section of this chapter describes the Wotan system, and the general struc-
ture of Tangow courses. WotEd, which stands for WOTan EDitor, is then presented.
A final section presents an experiment that compares WotEd’s clustered-graph in-
terface to a functionally equivalent tree-based interface, and tracks improvements in
WotEd’s support of clustered graph navigation tasks.

110 Chapter 7. Application to Adaptive Hypermedia

7.1 Wotan and Tangow

Wotan is a significant upgrade to the Tangow adaptive hypermedia course system.
It includes a superset of its functionality, and is designed to be extensible regarding
adaptation methods and techniques. However, the default behavior is to emulate the
previous Tangow version. Throughout this chapter, Tangow will be used to refer to
the adaptation scheme, and Wotan will be used to refer to the actual system.

Wotan is a server-side web application. Several interfaces are available to users,
depending on their role. A user with the learner role can take courses, whereas an
author can create and edit courses, enroll learners into these courses, and monitor their
progress. Users with the administrator role can add or remove users, and change their
roles.

Since Wotan is a web-based application, users are expected to interact with it using
a browser. However, a series of simplified HTTP-based interfaces have been opened to
allow automated (non-browser) HTTP clients to perform simple operations. Figure 7.1
illustrates both uses. A learner is depicted as using a web browser to access course
presentation, while an author can monitor the active course, or author a course using
WotEd’s internal HTTP client.

Figure 7.1: Wotan interfaces. Boxes with thick outlines represent some of Wotan’s
external interfaces, accessible via HTTP. Course delivery requires a course model, a user
model, and an adaptation engine.

7.1.1 Tasks, rules and fragments

A Tangow task represents a concept. If it cannot be decomposed into subtasks, it is
termed atomic. Atomic tasks only include an internal name, a user-visible title, a short
textual description, and a list of one or more fragments that should be concatenated

7.1 Wotan and Tangow 111

when presenting the task to a user. Non-atomic tasks, called composite tasks, also
include one or more rules describing how they can be decomposed into further tasks.
Since several composite tasks may use the same subtask in their decompositions, but
no cycles are allowed, a Tangow course can be seen as a directed acyclic graph.

A fragment represents a small, reusable content item. It can be referenced from
different tasks, and can be reused throughout the course. Fragments are not directly
representable. Instead, each fragment contains a list of alternative fragment versions,
one of which will be chosen at run-time to represent the whole fragment within its
task. Each version contains an expression to match against the user’s UM. The adap-
tation engine selects the version which provides the best match, implementing adaptive
presentation support.

Rules are used to decompose composite tasks. Each rule contains a list of subtasks
to be used in decomposing the current one, and information on their sequencing: how
many subtasks are required to consider the original composite finished? should users be
allowed to skip from one subtasks to another?. Rule sequencing can require all subtasks
to be visited in strict order (and sequencing), all subtasks to be visited, in any order
(any), at least one subtask to be visited (or), and one and only one subtask to be
completed (xor sequencing).

Additionally, rules can define conditions that must be met for the rule to be active.
At most one rule may be active for any given task, and once a rule is activated, it
can never be deactivated. Rule activation conditions are expressions on the user’s UM,
similar to those found in fragment versions, but of a boolean nature. Conditional rule
activation implements adaptive navigation support.

Figure 7.2 illustrates the course structures perceived by two users. Due to different
active rules, both structures are different.

7.1.2 User model

During course presentation, the adaptation engine annotates a copy of the course model
with data on what is accessible, how many times it has been visited, what grade did
a user achieve on a given exercise, and so on. The set of annotations form the course
overlay, which forms an important part of the user model (UM). The course overlay
and the rest of the UM are queried by the adaptation engine to decide on rule activa-
tion, parameter propagation (that is, modifications to the overlay itself), and any other
adaptation needs.

At the end of each course session, the corresponding overlay is saved back into the
UM. Several overlays can coexist, one per course. Whenever a user starts a new session
on a course, Wotan checks for a matching, previously saved course overlay. If an
overlay is found, it is used to restore the user’s session to the same state it had when
the user left the course.

112 Chapter 7. Application to Adaptive Hypermedia

Figure 7.2: Wotan course presentation. Each browser window contains a session, and
has been logged in with its own user. Differences in rule activation for each user model
result in differences in available tasks. The relevant portions of the task trees have been
highlighted with circles.

When a user visits a course for the first time, no course overlay is available. In
this case, a course-dependent questionnaire is used to prime the UM for that particular
course. For instance, the questionnaire may require the user to specify goals for the
current course or previous background in any of the course’s subject areas. Question-
naires are built from a list of features specified within the course: the user is asked to
set value for each feature, selecting among the possible answers.

Besides course-dependent overlays, user models also include a course-independent
section, termed global UM in fig. 7.1. The global UM covers contact information,
age, language preferences (multilingual courses are supported), and any other course-
independent data that may be required by an adaptation engine. It is easily extensible
through attribute-value pairs.

User model queries are constructed through the use of namespaces. For instance, to
refer to the grade achieved by the current user in a task identified as booleanAlgebra,
the user model would be queried using the key map.task.booleanAlgebra.grade. In
this query, the map namespace selects the course overlay (as opposed to the user names-
pace, which covers the user’s global UM), the map.task namespace refers to all task
attributes (and not rule or fragment attributes), the task ID specifies the task, and

7.1 Wotan and Tangow 113

the grade attribute name finally identifies the value to be returned. The exact set of at-
tributes used for each course component, their valid ranges, and their update procedures
are responsibilities of the adaptation engine.

In the default Tangow adaptation engine, user model queries for adaptation pur-
poses can be present in the following course elements:

• Rule activation conditions (boolean), to determine whether a given rule should be
activated or not. If not specified, the rule is considered active.

• Rule parameter propagation (real), used when a composite task has been com-
pleted, to calculate how each of the rule’s subtasks should contribute toward the
value of the parent tasks’ attributes. If not specified, averages values over all
subtasks are used. For example,

grade = map.task.s1.grade * .2 + map.task.s2.grade * .8

would calculate the final grade as 20% of the grade obtained in s1 and 80% of
grade of s2.

• Task termination conditions (boolean); a task is not considered complete unless
this condition is satisfied. The default is to consider a task complete as soon as
all of its subtasks have been completed, with an average grade of 50% or more.

• Version selection (real), specified for each version of a fragment. The higher the
result for a specific user model, the better the fit between that particular version
and the user model. The version with the highest value is chosen as representative
of that fragment when the fragment is presented as part of a task. The default is
0.5.

Several restrictions are imposed on Tangow’s user model. Assignment is only
possible within rule parameter propagation, and is limited to parameter which must
be propagated. Task termination and rule activation conditions are strictly monotonic:
once set, they cannot be unset. These restrictions are intended to simplify course design
and avoid possible “dead ends”, where a user with a given UM can never finish a course.
In spite of these measures, such courses can still be created. This concern is shared with
many other adaptive hypermedia course systems; complex formal verification would be
required to entirely avoid this risk.

Even after formal verification, a particular user may still encounter “weak” dead
ends: course locations where it is not at all clear what actions are required to advance
further. An effective approach to counter both types of dead ends is to use adequate
course structure visualization to inspect the course for defects before they arise; and
monitor the course during the first few runs to detect defects that may have been
overlooked during the authoring phase.

114 Chapter 7. Application to Adaptive Hypermedia

7.2 WotEd

The WotEd editor is based on a simple mapping from course description to graph.
WotEd can be used to open and edit any valid Wotan course, and provides full
roundtrip support, even after editing with external tools.

A screenshot of the WotEd interface can be found in fig. 7.3. It is built on top of
the basic Clover interface described in fig. 6.10, but has been extensively adapted to
Wotan course authoring. For instance, a “task hierarchy” tree has been included in
the right-hand pane.

Figure 7.3: WotEd interface. Vertex and edge roles are identified by labels. Besides the
default cluster tree, a second task containment tree has been included in the right-hand
pane.

The task hierarchy provides an alternative display of the course’s structure. It is
similar to the task trees found during course delivery (fig. 7.2), an interface that all
Wotan users are well acquainted with. Actions on vertices of the task hierarchy are
treated exactly in the same manner as actions on vertices of the cluster hierarchy or
on actual graph vertices. Users are free to mix and match interfaces according to the
current tasks. Notice that, in the task hierarchy, the same task may appear under
more than one branch; this was the initial problem that prompted work on a graph
representation.

7.2 WotEd 115

7.2.1 Mapping

The graph representation of a Wotan course includes a single vertex to represent the
course currently being edited, and vertices for all tasks, rules and fragments. Fragment
versions are currently not displayed as vertices, as they are not intended to be reused,
and would always result in terminal leaves. Fragment versions are, however, visible in
the task containment tree.

Graph construction is performed in two passes over the internal Wotan course
representation, referred to as the course model. In the first pass, the course vertex
and all task vertices and fragment are created. In the second pass, rules are added
and priority edges are introduced between tasks. Priority edges are an artifact used
to enforce consistent ordering of subtasks within a rule, since the order of subtasks is
important for sequencing purposes. Even if and sequencing is not used (which would
enforce strict ordering), subtasks will still be enumerated using their order-of-appearance
within their rule when presented to users. The use of priority edges results in layouts
that preserve this ordering.

Wotan course files are stored as (zip-) compressed archives. An XML file describing
the course structure is located at the root of the archive, and all necessary fragment ver-
sions are stored within subdirectories. Since source code for Wotan is readily available,
the course model to create the initial graph is loaded using Wotan itself.

The course model is kept during execution, and queried as needed to create forms
that allow editing of course, task, rule, fragment and version properties. Any changes
to the active course are first performed to the model. The model then triggers events
to any listeners, one which include WotEd’s task hierarchy tree and its Clover-based
graph. When the graph receives a model update event, a suitable structure change
event is generated, and the cluster hierarchy and all graph views are updated.

Clustering a Tangow course

Cluster hierarchy for a Tangow courses uses the same rule-based clustering engine
described in section 6.2.2. An additional rule has been added, with a priority higher
than all others. This rule ensures that each tasks will be head of a cluster that contains
all its exclusively-owned fragments and rules.

The custom clustering engine also ensures that only “structurally significant” edges
are considered during clustering. That is, only course→task, task→rule and rule→task
edges are considered. If the course graph is a tree when only these edge types are
considered, the resulting cluster hierarchy will be equivalent to the task containment
tree.

Cluster labels consist of the name of the first vertex in the cluster (another cluster, a
task vertex or the cluster vertex), followed by an indication of the cluster’s size. Cluster
size is shown as a fraction x/y, where x is the number of child vertices in the cluster,

116 Chapter 7. Application to Adaptive Hypermedia

and y is the total number of leaf vertices that are subsumed below this cluster. For
instance, the cluster vertex pointed to by an arrow in figure 7.3 is labelled as S Types

(6/122); the first task it contains is named S Types, there are 6 immediate children,
and 122 total leaf vertices underneath.

Cluster names (and contents) can be changed manually. Changing a cluster name
will affect the textual part of the label, but numbers will still be shown to provide an
idea of the size and depth of the cluster.

Vertex and edge types

All vertices have been assigned a color code and an icon, depending on their roles. The
course vertex is represented in a violet color, and uses a disk icon. Tasks are represented
by yellow folder icons, and are colored green. Fragments are represented by a document
icon, and are colored yellow. Clusters are colored dark blue, and use a blue-tinted task
icon, because their label usually corresponds to a task.

The same icons are used to represent each element in the task containment tree.
Fragment versions, not represented in the graph view, are given a darkened document
icon in the tree view. Rules receive an icon composed of a single letter and a colored
background. The letters used in the icon represent the rule’s sequencing type. Letters
for and, any, or and xor sequencing types are, respectively, A, a, X, and O. If an activation
condition has been defined, then the icon background will be colored red. Otherwise,
the background will be light blue.

Edges are also color-coded. Each edge receives a different color and arrow head
depending on its type, as determined by its two endpoints. When a cluster-to-cluster
or cluster-to-vertex edge contains several smaller, internal edges, a dark blue “cluster
edge” is used instead. Additionally, edge lengths are variable. For instance, task-to-rule
edge lengths have been made much shorter than others, forcing rules to stay close to
their parent tasks.

Custom edge and vertex type rendering is achieved by extending the default Clover

view graph, and specifying the decoration for all graphical elements. Tooltip support
is also provided at the same level; figure 7.4 illustrates tooltip support for each vertex
type.

7.2.2 Interaction

The file menu allows courses to be opened, saved and printed. Courses can be loaded
an saved from or to local files. Using the built-in HTTP client, it is also possible to
download and upload courses to and from a running Wotan server. This requires
authentication, and relies on the additional interfaces displayed in fig. 7.1.

Wotan files may or may not have been created with WotEd. If the file was created
with WotEd, it will contain a single clover.xml describing the last active workspace.

7.2 WotEd 117

(a) Course (b) Task (c) Rule

(d) Fragment vertex

Figure 7.4: Vertex tooltips in WotEd. An example tooltip for a cluster vertex can be
found in fig. 7.3.

This file is generated whenever a course is saved. If the course has been created with
another editor, or imported from the old Tangow course database format, clover.xml
will not exist. In this case, initial layout will be performed, and default cluster names
will be used.

All default Clover actions have been extended to deal with WotEd graphs, trig-
gering the corresponding events on the course model when launched. For instance,
removing a task vertex may result in several cascaded deletions, depending on overall
graph connectivity. This calculation is performed within the course model, and the
results are reflected in all views.

Editing vertices

Editing (invoking the “edit” action) on any vertex will launch the edit form that cor-
responds to the vertex type. Sample edit forms for different vertex types are shown in
fig. 7.5.

When an action on a form produces a change to the underlying model, this change
is immediately reflected on all views. For instance, adding a new subtask to a rule
using the a would result in the same model update that would be achieved if the same
operation were to be performed directly on the graph. Certain structural operations
can only be performed using forms. For instance, to change subtask order within a rule,
the corresponding form buttons can be used. No equivalent operation can be performed
directly on the graph, although drag&drop in the task tree would also work.

Forms are linked to each other. While editing a task with its associated form,
double-clicking on a rule name causes the corresponding rule form to be displayed. The
same is true fragment names, or for task names within rule forms. Double-clicking a
fragment version is equivalent to selecting the fragment and selecting “view fragment”:
a browser window is created, and the fragment version is displayed within this window.

118 Chapter 7. Application to Adaptive Hypermedia

(a) Editing task fragments (b) Editing fragment versions

(c) Editing rule conditions (d) Editing rule subtasks

Figure 7.5: Forms in WotEd. Tabbed forms are used to edit the properties of each
course element. Some of them also allow structural course changes to be performed;
these are immediately reflected in all views.

WotEd incorporates a very basic fragment version editor, which can be used to
generate simple HTML fragments that do not include images. More complex fragments
must be imported from an external editor. Import can modify image and other resource
paths to make them local, and bundle local resources together with the fragment version.
Import is also available for exercises, which can be created with Wotan’s online exercise
creation tool.

Contextual menus in WotEd

Contextual menus for all vertex types have also been extended to support common
editing tasks. Courses can be rapidly prototyped by inserting “default” tasks, rules and
fragments from contextual popup menus triggered through right-clicks. Edges can be
created by first selecting the edge destination, and then bringing up a context menu
on the edge source. Figure 7.6 contains screenshots of contextual menus for different
vertex types.

To simplify course prototyping via context menus (or even action shortcuts, which

7.2 WotEd 119

(a) Task vertex (b) Task vertex, frag-
ment selected

(c) Rule vertex (d) Rule vertex, task se-
lected

Figure 7.6: Context menus in WotEd for task and rule vertices. Menu contents vary
depending on what is selected.

could be easily implemented), users are not required to fill in complete forms. For tasks
and rules, the only the vertex name is required, as default values can filled in for all
other attributes. In the case of fragments, a default version is created, using a simple
HTML template; the user is then prompted to enter a fragment name and contents for
the template. Any default values introduced for vertices generated in this manner can
be modified by editing the vertices through their corresponding forms.

7.2.3 Monitoring

Authoring a an adaptive hypermedia course does not end when the first students log
in. In a large, complex course, initial versions are likely to contain errors and omissions.
Even when most errors are removed, requirements may change, and any update can
cause unintended consequences. In order to track down problems with an adaptive
hypermedia course, several approaches are possible. For instance, users may submit
problem reports to course authors, or authors may resort to logfile analysis. A more
proactive approach is to allow authors to examine student progress in real-time, with full
access to each individual student’s user model – ideally from within the same interface
that was used to author the courses themselves. This approach, not found in any other
AH system, has been integrated into WotEd.

During student monitoring, special vertices, representing monitored students, are
visible inside the graph. Each “student vertex” is connected to the task that the stu-
dent is currently visiting. Information on each user’s model is available on request, in
the form of tooltips. Other data, such as task availability and completion status for each
student, can be queried directly from the graph. Monitoring as performed by WotEd

has many applications, ranging from initial course debugging (authors can also mon-
itor themselves) to actual student monitoring during initial validation phases. Since
monitored sessions can be stored for later replay, this approach also allows a form of
graphical log analysis.

120 Chapter 7. Application to Adaptive Hypermedia

To perform monitoring, three elements are necessary: the original UM at the point
where the student begins the session, the course that is being visited, and the adaptation
engine used to deliver the course. User model and course can be downloaded directly
from a running instance of Wotan. The default Tangow-based adaptation engine is
included as part of WotEd, since it is needed to perform filtering.

A monitoring API has been built into Wotan. Authors can subscribe to user-
name + course + action combinations, and will receive events whenever a monitored
student performs an appropriate action on a monitored course. WotEd subscribes to
these events, which are delivered via an open HTTP connection. Using a single long
multipart/x-mixed-replace response, the server can keep the connection open for
asynchronous replies in a protocol-conformant manner. Whenever WotEd receives a
monitoring event, it is transferred to the active graph and simulated in the internal
adaptation engine. This allows WotEd to synchronize the user models of monitored
students with the actual UMs stored in the running Wotan instance.

Events contain only user actions that result in adaptation engine updates. User
models could have been sent and synchronized instead, but the chosen event-based
approach is simpler to implement, and offers the added benefits of requiring a very low
bandwidth and being easy to store for later playback. Figure 7.7 contains examples
of both types of event sources: a live Wotan connection on the left side, and a saved
series of events on the right one. Playback control is only available when events are
being read from a file.

Interface

Tracking user progress is as simple as watching student vertices move throughout
the graph, as depicted in 7.8, with further details available on demand. The graph is
automatically expanded to ensure that all monitored student vertices remain visible.
This is achieved by first ensuring that the vertices are visible, and then making them
“frozen” so that they are never collapsed (see section 6.4.2 for details on the these
operations).

Details on the monitored user models can be requested by hovering the mouse over
tasks, clusters or monitored student vertices. When the mouse is hovered over task or
cluster, monitored students are highlighted according to their current status regarding
that task or group of tasks. If the task has been successfully completed, the student
vertex is highlighted with a blue box. If the tasks are not available, red is used. If the
task is available, but has not yet been started, the box will be green. When the mouse
pointer is hovered over a student vertex, all tasks and clusters are highlighted using the
same color code. See figure 7.9 for an example.

7.3 Experimental results 121

(a) Wotan monitoring connection setup. (b) Live monitoring event log.

(c) Reading events from a file. (d) File event source controls.

Figure 7.7: Course monitoring setup. Events can be received live from online students,
or they can be stored in a file for later playback.

7.3 Experimental results

Two experiments have been performed on WotEd, targeted at comparing the ease of
use of the graph interface versus the more familiar tree interface used in earlier versions
of Tangow course editing tools. These experiments are described in detail in [59] and
[61].

In the first experiment, the graph authoring tool was based on an older version
of Clover, and did not contain a tree interface; indeed, the tree interface was built
with the purpose of testing it against the graph-based authoring tool. In the second
experiment, both interfaces were merged into WotEd (although users were only allowed
to use one interface at a time), and the graph interface was upgraded to use the latest
version of Clover. It is therefore interesting to compare the results of both experiments
in light of the changes between the old and new versions of Clover.

Between both experiments, Clover underwent a major rewrite. From the user-
interface point of view, the most salient changes are the addition of manual navigation
mode, and multiple improvements designed to help in mental map preservation:

122 Chapter 7. Application to Adaptive Hypermedia

(a) Users “Alice” and “Bob” at beginning of course.

(b) Users after several monitoring events have been received and processed.

Figure 7.8: Course monitoring in WotEd. Users Bob and Alice are represented as
vertices connected to their current tasks.

• Addition of manual navigation mode, to allow users fine-grained control on cluster
navigation. Point-of-interest navigation can be confusing to new users.

• Predictability of point-of-interest changes during manual navigation was enhanced,

7.3 Experimental results 123

(a) Hovering over task; users are highlighted (b) Hovering over user; tasks are highlighted

Figure 7.9: Details on demand during monitoring. A color code is used to highlight
task availability: blue represents “complete” tasks, red stands for “unavailable”, and
green is “available”. Red crosses mark the hovered-over vertex. Note that both screen
captures were performed with an old version of Clover’s layout algorithms, so it may
not be consistent with figures for chapter 6.

using the “aura” mechanism described in section 6.4.2.

• Incremental layout algorithms were changed, providing more compact layouts that
do a better job of preserving parts of the layout during navigation changes. Graph
layout cache and navigation history mechanisms were also introduced.

• Animation was totally reworked and made into a generic mechanism. Previously,
animation was hard-wired into graph navigation, which proved difficult to test or
improve. The new module allows non-navigational animations to be deployed.

The experimental setting and results for the second, most recent experiment (using
the current versions of WotEd and Clover) will be presented first. A comparison
with the old experiment will be performed at the end of the chapter.

7.3.1 Experimental setup

Since the tree and graph interfaces provide the exact same editing capabilities, the goal
of the experiment is to measure author speed, accuracy and satisfaction with each of
them. Before the experiment, participants received a brief primer to Wotan course
structure, an introduction to each of the tools, and a description of the tasks to be
performed. They were also presented with a printed page with the symbols used in
course representation and the list of requested tasks. The tasks were to be performed

124 Chapter 7. Application to Adaptive Hypermedia

first with one editor and then again with the other one, on a single example course.
The experiment was prepared so that half of the participants started with the tree-
based tool, and the other half started with the graph-based one. As the same tasks
are performed twice on the same course by users without previous experience with the
system (or AH in general), we expected to find the timings of the second run to be lower
than that those of the first run.

The 12 participants in the experiment were extracted from a relatively uniform pop-
ulation of computer science postgraduates, and had high familiarity with tree interfaces
(ubiquitous in today’s graphical user interfaces), and varying degrees of familiarity with
graph interfaces, mostly used to read or generate documentation (as in UML). None
had a background in information visualization or had worked with clustered graphs.

Tasks

All tasks were performed on the same example course depicted in figure 7.3. The tasks
were designed to be simple but representative of a typical editing session, and were
presented in order of increasing difficulty. For each task, the time required to complete
it successfully (as determined by the experimenter upon request) was recorded. After
all tasks for both tools had been completed, each user was requested to fill in a small
“difficulty survey” assessing the perceived difficulty of each task/tool combination if
he or she were asked to repeat it again on a different course. Difficulty for task/tool
combinations was to be graded on a scale from 1 (trivial) to 10 (very complex). The
task list was the following:

1. Find and change the name of a given fragment vertex, identified by a path that
leads to it. Subjects have to navigate using the corresponding tool, which is the
only problem presented by the task.

2. Locate all paths leading to a task vertex. One of the paths is provided in the
statement. The task is representative of a typical problem in AH courses, and
we expected users using the graph representation to perform better than those
working with the tree representation.

3. Add a rule to a given task vertex, making the rule available only for users with
a specific profile. Navigation to the task vertex is simple (it is located at the
beginning of the course). The goal is to familiarize the user with the form-based
editor used when editing rules; this familiarity should speed up Task 4.

4. Add a rule to a task vertex located deep within the course, and use this rule to
provide a shortcut to another existing task vertex. This tests the creation of a
variant in an AH course, and requires both navigation to the initial task vertex,
and use of the rule editor.

7.3 Experimental results 125

7.3.2 Results

Figure 7.10: Results of the second experiment. Charts in the top row represent time in
seconds; those in the lower row represent perceived difficulty (lower is easier). Column
names reflect the interface and task involved; for instance, column T3 contains results
using the Tree interface to perform task number 3.

Experiment results can be found in figure 7.11. Task difficulties have been adjusted
so that the least difficult task for each user begins at “difficulty level” 1. The greatest
differences when comparing average times between both groups of users can be found
during the first run, where users that started out with the tree interface were consistently
faster than those that started out with the graph. Comparing times for the leftmost
columns of t1 and g1 shows that users required 20.8 seconds less to navigate to the
required position using the tree as compared to using the graph. This is not a large
difference; and its significance is questioned by a high variance and the fact that, when
the same users tried out g1 and t1 later on, the difference changed signs; graph users
required 7.0 seconds less to navigate to the same point than tree users.

Learning effects can be found by counting how many individual users were faster in

126 Chapter 7. Application to Adaptive Hypermedia

their second run than in their first. No such effect is observed for tasks 1 and 2 – if
interface order is ignored. However, when taking the interface into account, 4 of 6 users
that started out with the tree were faster on their second run, while only 2 of 6 of those
that started out with the graph were faster when performing task 1 with the tree. This
suggests that it is easier to navigate a clustered graph as a tree than to apply clustered
graph navigation to a tree.

Times for task number 2 were somewhat surprising, as users were faster at locating
the number of alternative routes with the tree than with the graph. The difference is not
significant (only 10 seconds faster, on average, during the first run, and slightly faster
during the second one). However, for an experienced graph user it should be much
faster to analyze connectivity on a graph than on a tree. A possible explanation is that
users were indeed using the graph as a tree, expanding all possible vertices instead of
searching for connections.

For tasks 3 and 4, learning effects are clearly observable: all 12 users managed to
perform task 4 faster with the second interface than with the first. In task 3, the
difference is smaller, with 4 out of the 12 users still performing better with the first
interface. However, these 4 users are equally distributed among both interfaces.

Perceived difficulty

Times are roughly similar, and learning effects account for the greatest differences.
However, substantial information is available from an analysis of perceived difficulty.
For task 1, 7 out of 12 users considered the tree interface to be superior to the graph one
when navigating trough a well-defined path. Only one user considered the tree harder
to master. In task 2, preferences are reversed. 8 out of 12 (again, evenly distributed
between both groups) preferred using a graph interface to discover topology. 3 users
dissented. Opinions were divided almost evenly when assessing the difficulty of tasks 3
and 4.

7.3.3 Comparison with original experiment

In the original version of the experiment, only 3 tasks were required from the users,
and a smaller sample size (only 8 participants) was available. The test setup was exactly
the same: odd-numbered participants were asked to start out with the tree interface
(then a separate application), while even-numbered ones started with the graph-based
one.

All tasks were performed on the same example course as the new set of experiments.
Tasks 1 and 2 are identical; Task 3 was different in the previous experiment: it required
inserting a rule vertex, a task vertex, and a further fragment into the task vertex.
Since, from the interface point of view, inserting one vertex is as complex as inserting
any other, this task was simplified and subdivided in the new version of the experiment.

7.3 Experimental results 127

Figure 7.11: Results of the original experiment. Charts in the top row represent time
in seconds; those in the lower row represent perceived difficulty (lower is easier). As in
fig 7.10, column names reflect the interface and task involved.

Roughly, the old task 3 is equivalent to the new tasks 3 and 4. Results for the original
experiment can be found in figure 7.11.

Lower times were expected for tasks 1 and 2 (which required heavy navigation),
reflecting the improvements in graph navigation. Indeed, times for both tasks have
descended, as shown in table 7.1.

Improvement Started with graph Started with Tree
task 1 with graph 29.3 s 136.6 s
task 2 with graph 85.3 s 43.4 s

Table 7.1: Graph navigation time improvement comparing the old graph-based author-
ing tool with WotEd.

No significant improvements can be attributed to the use of the tree or graph inter-
faces for other tasks; however, average times have also descended for the equivalent of
task 3. Multiple interface glitches in the form-based interface used to edit rules were
detected during the first experiment and addressed prior to the second one, accounting
for this difference.

Chapter 8

Application to Other

Small-World Domains

This chapter demonstrates the flexibility of the Clover framework, describing its used
with a series applications developed for various domains:

• Targeteam is document preparation system. Its main strength is support for
multiple delivery formats and a strong emphasis on document reuse in different
contexts. A visualization tool based on an older version of Clover is described.

• Comet is a tool prototype intended to provide metadata annotation for ontology-
based systems. Ontologies, and knowledge engineering in general, are a prime
target for graph visualization.

• AC is a programming-assignment copy detection tool that uses graph represen-
tation to highlight cases of probable misconduct by students. Due to the col-
laborative nature of programming assignments, it doubles as a demonstration of
Clover’s applicability to friend-of-a-friend (FOAF) scenarios.

• Ulises is a real-time, graph-based monitor that represents the entities connected
to an ubiquitous computing network. Entities include devices that are managed
by the network and external objects ’known’ by the ubiquitous environment, such
as persons coming in and out of rooms.

Clover can be used to quickly develop clustered graph interfaces for many appli-
cation domains. Development of a new interface requires, at the bare minimum, the
implementation of a new base graph model capable of creating graphs for the target
application domain. Later refinements would include customized vertex and edge rep-
resentation, including labels and tooltips, customized actions, editing support, and a
customized cluster hierarchy engine.

130 Chapter 8. Application to Other Small-World Domains

If so desired, Clover applications can present traditional, non-clustered graphs
instead. Although this is not the intended purpose of Clover, the possibility certainly
exists, as illustrated by AC’s current use of non-clustered graphs.

8.1 Targeteam

Targeteam, developed at the Technische Universität München and described in [124],
is defined as “a system for supporting the preparation, use, and reuse of teaching ma-
terials”. The name is an acronym that stands for TArgeted Reuse and GEneration of
TEAching Materials. The project is available online at [125].

Targeteam allows multiple courses, in different formats, to be generated from a
single “content pool”. Each course can be built using different content blocks, structures,
levels of detail, and/or media types. A hypermedia output mode allows the creation
of web-based courses. These courses, however, are static; once generated, no further
adaptation is performed. Therefore, Targeteam can not be considered an adaptive
hypermedia system. However, it would be possible to build adaptive hypermedia courses
from Targeteam hyperlinked output; this approach has been briefly explored in [56].

Content reuse in Targeteam

Support for content reuse can be subdivided into metadata support, content abstract-
ness, and support for adaptability. Targeteam supports only metadata that is directly
related to the annotated content, such as language, author and format, or a predefined
set of semantic relations between chunks of content, such as motivation, illustration,
exercise, or summary. Metadata defined at one content level is inherited by lower levels
unless overwritten.

Content in Targeteam, with the exception of non-text media objects, does not make
any reference to presentation. The structure of content blocks is also abstract, in the
sense that contents do not specify “chapters” or “paragraphs”. The final structure of a
course is generated from that of its components upon creation. This level of abstractness
allows Targeteam to generate output in multiple formats, such as LATEX, PDF or HTML.

Content can be adapted and modified for inclusion into a course, by omitting, adding
or replacing parts. The author can provide a series of transformations to be applied to
the original content prior to inclusion. These transformations can be made at arbitrary
levels of granularity. A copy is made of the contents to be transformed prior to transfor-
mation; course preparation only transforms an internal copy, leaving original contents
intact.

8.1 Targeteam 131

Pools, modules and items

The basic unit of content is the module, a document written in the TeachML XML
dialect. Modules can contain many different types of content, ranging from simple
text to complex markup, tables, or mathematical formulas. All content is organized
into issues. Issues represent a small topic, and are organized into a thematic hierarchy
revolving around the kernel – the module’s central issue. Modules can reference other
modules for different purposes, the most common of which is direct inclusion (either of
the whole module, or only of particular sections). Cross-referencing is also supported.
Non-textual media items such as images constitute atoms, which can also be referenced
for inclusion within modules.

A pool is a set of modules, organized into a directed acyclic graph structure. There
can be multiple connected components within a Targeteam pool, since courses are
not required to share any contents. A part of the TeachML language deals with the
integration and adaptation of a module’s descendants into itself, by defining suitable
transformations in the XSLT transformation language. When these transformations are
processed, a module effectively constitutes a comprehensive “macro-module” composed
of its own contents mixed with those of its (transformed) descendants.

Figure 8.1: Overview of the Targeteam course creation process, from [125]. The course
is first integrated into a single TeachML file (1), presentations in different formats can
then be generated (2), and further processing can be performed (3) prior to delivery.

A course can be generated by specifying a root module. During generation, a single
TeachML file is created with a snapshot of the contents of the root module and all
its sub-modules. The creation of this intermediate file ensures that all presentations
created from a given course correspond to the same version of the pool contents. This
process is graphically depicted in fig. 8.1.

132 Chapter 8. Application to Other Small-World Domains

Graph creation

Targeteam pools can be stored inside databases, files, or distributed across the network
and accessed through “pool servers”. Targeteam’s API isolates a programmer from
the details of each location; this approach has been chosen for the implementation the
initial conversion from pool to graph.

Graph creation begins with the URL used to access the pool. The pool’s modules
and atoms are then downloaded, and individual modules are parsed to locate statements
that modify their submodules. Module inclusion can be also be determined directly from
the API, yielding a tree-like structure.

Figure 8.2: Symbols used in Targeteam course representation, from [56].

Figure 8.2 contains a description of the symbols used in Targeteam pool graphs.
Course “main module” arrows are used to link course vertices with modules, while
“part-of” edges are used for all types of inclusions. Although it would be possible to
create many other arrow types, depending on the exact type of inclusion taking place,
this would require a certain amount of heuristics to detect the intended type. Inclusion
type may not be evident actual XSLT inclusion statement.

Interaction and comments

Interaction Targeteampool graphs is very simplified in relation to that of WotEd’s
course graphs, as authoring is not required, and the only use of the interface is to allow
a user to browse pool structure. For instance, a very simple (regular expression) filter
is used, and clustering is performed by Clover’s default rule clustering engine.

Figure 8.3 illustrates the interface used when representing Targeteam pools. Note
that a previous version of Clover was used, which explains multiple changes in the
basic interface layout, toolbar icons, and so on. Cluster labels include a textual name
and the number of subsumed clusters, instead of the fraction notation used in WotEd.
Tooltips for all vertex types are also available. Basic statistics on the contents of the
vertex are displayed, as obtained by querying the Targeteam API.

8.2 Comet 133

Figure 8.3: Targeteam pool browser interface. Green boxes represent textual contents,
blue boxes are clusters, violet boxes stand for courses, and orange boxes represent
“atoms” (such as images or Java applets). Manual adjustment of graph layout has was
performed.

Although editing is disabled, double-clicking on any vertex triggers a (read-only)
dialog with the vertex contents to be displayed. In the case of modules, the contents
of this dialog will be a snippet of TeachML text. XML is pretty-printed to improve
legibility when displayed.

The use of Clover to explore large Targeteam repositories could readily be ex-
tended to other link structures. Many document repositories could benefit from similar
facilities; large websites and code repositories come to mind. A key feature of such
systems would be correct categorization of information; the default clustering engine
used for Targeteam repositories is clearly insufficient for these goals.

As commented in section 4.2, document reuse can greatly benefit from standarized
metadata anotation with a structured vocabulary geared towards classification, such as
an ontology. If sufficient classification terms were defined for each reusable document in
the repository, development of suitable automatic clustering engines would be greatly
simplified.

8.2 Comet

Comet is an acronym that stands for Cluster-Oriented Metadata Annotation Tool.
Metadata annotation indicating a list of related concepts is an important aspect of many

134 Chapter 8. Application to Other Small-World Domains

document reuse scenarios (see section 4.2). Ontologies are natural choices for metadata
annotation. However, a user must be familiarized with the ontology in order to choose
the most descriptive concepts. The Comet tool aims to visualize ontologies, allowing
users to browse, explore, and select these “most descriptive concepts” for each document
to be annotated.

At present, Comet is still in its initial stages of development. Ontology browsing
is possible, but metadata annotation itself has not yet been introduced. Therefore, this
section only presents the ontology visualization approach used in Clover. Ontology
visualization itself can be found in applications such as Jambalaya [121]; however, no
current ontology visualization tool supports clustered graph visualization.

The screenshot shown in fig. 8.4 of Comet’s interface displays the ontology used in
the Iccars project [84], developed at the École Nationale Supérieure des Télécommunications
de Bretagne. This ontology was used to annotate all documents within a large document
repository. The adaptive hypermedia system used within the Iccars project then uses
queries to locate the documents of the repository that best match each user’s current
user model.

Graph creation

The goal of Comet is to represent many types of ontologies to enable metadata an-
notation; therefore, and intermediate ontology representation format is used to isolate
the application from the details of each particular ontology representation. In the fu-
ture, Comet should read both OWL and F-Logic ontology formats, which would be
converted to the internal intermediate representation prior to graph visualization. Cur-
rently, only F-Logic is supported.

The intermediate representation format distinguishes the following elements:

• “Classifier” class – a class which is only used as a type for attributes.
• Normal class – a normal class.
• Instance – an instance of a class
• Relations – a relation between exactly two classes.

Hierarchical clustering is performed by following only “is-a” relationships. This
strategy works fine as long as multiple inheritance is not used; in the presence of multiple
inheritance, such as can be found in parts of the Iccars ontology, some clusters result
larger than would be expected. However, recall that users can manually modify cluster
hierarchies once generated.

8.3 AC

AC is an anti-plagiarism system for programming assignments. It helps to detect soft-
ware plagiarism within programming assignments written in C, C++ or Java. The

8.3 AC 135

Figure 8.4: Comet interface and ontology used in Iccars.

136 Chapter 8. Application to Other Small-World Domains

system includes multiple algorithms to detect software similarity, including many found
in the scientific literature on plagiarism detection and entirely original ones. A full
description can be found in [58].

Key features of AC include an extraction/filtering utility designed to ease the initial
task of preparing assignment submissions for analysis, simplifying an otherwise repet-
itive and error-prone task, support for pluggable source-code comparison algorithms,
and visualization of comparison results using multiple views, including a graph view
based on Clover.

Assignment extraction and similarity testing

Since the goal of plagiarism detection in an academic context is to assist a human
grader, it is important to make this assistance as extensive as possible. The first step
when performing any type of automated plagiarism detection is to prepare a set of
submissions for analysis. This task of converting assignment submissions to the internal,
standardized input format expected by the plagiarism detection tool can be referred to
as assignment filtering. If assignment filtering requires too much of the grader’s time
just to “feed the tool”, the grader may decide that using the tool is simply not worth
the effort. This section describes the assignment extraction utility included in AC to
ease this task, which can be divided into two main phases: assignment selection, and
assignment standardization.

Figure 8.5: AC extraction interface. Support for similar complex filtering rules will be
added to future versions WotEd.

The design of AC relies on a general framework for similarity measurement. This
framework is based on requiring all similarity distance algorithms (also referred to as

8.3 AC 137

similarity tests) to return, for each pair of assignments A and B, a single value to
represent the similarity distance between both, according to that algorithm. Values
are normalized between 0 (identical sources), and 1 (minimal similarity, no common
information). Therefore, this distance is also referred to as normalized similarity.

This standardization makes similarity distance algorithms interchangeable from the
point of view of further processing steps, and facilitates comparisons between them: data
sets can be examined using different similarity distance algorithms (or test), simplifying
the evaluation of the relative strengths and weaknesses of each. It is easy to add new
tests, and to compare them against the existing ones. Additionally, results from multiple
tests can be easily composed into higher-level tests. The dialog used for test selection
is displayed in fig. 8.6 (a).

The output of a test, or a composition of tests, is a distance matrix of N rows and
columns, containing a single value between 0 (exactly equal) and 1 (totally different) for
each pair of assignments. Extracting only the lowest distances of this matrix will hide
broader trends in their overall distribution, and the identification of possible plagiarism
patterns between assignments from this sea of numbers would require patient analysis.

AC allows the use of the raw similarity values (see fig. 8.6 (b)), but also provides
integrated statistical analysis and a set of visualizations to ease their interpretation (fig.
8.7). These visual aids are also critical in allowing users to assess the meaningfulness
of the outputs obtained from each test: plagiarism detection shares many characteris-
tics with outlier detection, and outliers are only such within the context of a broader
distribution.

(a) Test selection in Ac (b) Table view of test results

Figure 8.6: Test selection and raw results in AC.

Graph generation

The graph view is used to detect cliques of highly-related assignments. In the graph
view, represented in fig. 8.7 (a), vertices represent assignments and edges are used to

138 Chapter 8. Application to Other Small-World Domains

convey distances between assignments. As all vertices have a distance to all other ver-
tices, the graph is a complete graph. However, a huge majority of distances correspond
to pairs of assignments that bear very little similarity; representing these edges would
result in a great quantity of noise. Therefore, only a chosen subset of edges is repre-
sented, using a lower threshold (recall that low distance values indicate high assignment
similarity).

The threshold beyond which graphs edges are excluded can be manually set with
a slider (again, see 8.7 (a)), bound between 0 (only edges which correspond to “exact
copies” will be shown) to 1 (include all edges, regardless of similarity level). To aid
the teacher in selecting a good threshold, the slider is placed above a histogram of the
frequencies of each distance in the test’s distance matrix, and a value corresponding to
a statistically robust outlier identifier ([58]) is chosen as a starting point. The shaded
part of the histogram of fig. 8.7 (b) represents the portion of edges that are currently
being used in the graph.

Not all edges below the threshold are included, because this would still result in an
unnecessarily cluttered graph, specially for high cuttof values. Edges that do not belong
to each connected component’s minimum spanning tree (MST) can generally be removed
without much loss of information. This approach, suggested by Whale [139], results in
a drastic simplification of each connected component, and speeds layout considerably.
However, removing all edges not in the MST risks the loss of edges that have very high
relevance (but result unnecessary in the construction of the MST), while other edges
with lower relevance (but a role within the MST) are included. This can lead to a false
impression of the component’s structure. To characterize these edges that are important
but do not belong to the MST, the following approach has been adopted: if a component
has |V | vertices, the lowest-distance |V | edges are also retained, regardless of whether
they belong to the MST or not. This additional heuristic ensures that structures such
as triangles are not lost, with a minimal increase in graph complexity.

Histogram visualization

A third type of visualization is represented in fig. 8.7 (b). This view presents rows
of “individual histograms”, generated for each of the assignments. As in the general
histogram found in the graph visualization, each of this histograms represents the fre-
quency of each distance; unlike the general histogram, only distances between a single
assignment (the row header) and all other assignments are considered.

Histograms in the histogram visualization are condensed, and require a small amount
of training to get accustomed to: color coding, instead of bar height, is used to convey
frequency. These condensed, color-coded histograms have been termed hue histograms;
they are reminiscent of the colored bars found in chemical composition analysis [88]. In
AC’s hue histograms, blue is used to represent low frequency, red for high frequency,

8.3 AC 139

(a) Graph view of test results

(b) Histogram visualization in Ac

Figure 8.7: Visualization of results in AC. Clover is used to implement graph-based
result visualization.

140 Chapter 8. Application to Other Small-World Domains

and intermediate hues (in traditional visible spectrum order) are used for the remaining
values. Selecting any row of the hue histogram brings up the familiar bar representation
used in the graph visualization. Hue histograms are intended to save space, providing
informative overviews; bar histograms and tooltips over each value provide details on
demand.

Interaction and comments

Interacting with all three views (raw distances, graph and histogram) follows a similar
pattern; double-clicking a single vertex (or histogram row) displays the source code
for that vertex, and double-clicking an edge (or a distance value, in either table or
histogram) results brings up a side-by-side comparison of both of the assignments it is
connected to. Graders are expected to manually analyze suspects flagged by the system
to determine whether actual plagiarism is present.

AC’s use of Clover-based visualizations is interesting in several accounts. It illus-
trates Clover’s use in a broader application where the main interface is not necesarily
a graph, and demonstrates the use of Clover for simple automated graph visualization,
without using any of its clustering features.

Later versions of AC will probably include graph clustering, as a tool to analyze the
distribution of “assignments families” located with similarity tests. For instance, such
an analysis could distinguish between assigments programmed using response X, Y or Z
to problem P , where each answer could be characterized defining a filter and comparing
filtered assignments to archetypical implementations. Analysis of these trends could
provide insights beyond plagiarism detection, and constitutes an open research line.

8.4 Ulises

The Odisea system [76] is an ubiquitous computing environment developed at the
Universidad Autónoma de Madrid. A centralized blackboard is used to maintain the
system’s context, which environment-aware applications can access to query sensors and
affect changes on devices. Ulises is a proof-of-concept, Clover-based application that
monitors and displays the contents of the blackboard.

Odisea’s blackboard architecture stores information in a relationship graph, and
queries are modelled as graph traversal operations. A subcription mechanism is sup-
ported, allowing clients to request to be notified when certain conditions are triggered
(for instance, entities are added or removed). Figure 8.8 illustrates the structure of
the relationship graph, which is similar to that of an ontology. Recent work in the
system is oriented towards formalizing the schema used to classify entities (see [75]),
strengthening this similarity.

8.4 Ulises 141

Figure 8.8: Simplified entity-relationship graph for the Odisea system. Multiple re-
source subtypes (not shown above) have been defined.

Graph generation and Interaction

Since the blackboard structure is already a graph, blackboard vertices and edges have
been used for the graph representation. Access to the blackboard’s structure is per-
formed through Odisea’s external API, which supports queries for entities and their
relationships. Given an initial root vertex, the graph is explored in depth-first order
following “containment” edges, until all devices and relationships have been located.

Once Ulises has generated a copy of the graph, it proceeds to monitor graph
changes. Whenever it is notified of a change, the copy is updated, and the change
is graphically animated in the view. This view is represented in fig. 8.9; it is embedded
in the default Clover interface.

The cluster hierarchy is generated with a slightly modified rule clustering engine;
only containment edges are considered. Since these edges (almost) form a tree, the
result is a set of clusters that matches the physical containment relations present in the
network. Notice that certain clusters are too large (room lab b403, in the center of
fig. 8.9). A better approach would be to subdivide these “large clusters”, for instance
taking device types into account.

Hovering the mouse pointer over any vertex queries Odisea for a list of vertex prop-
erties. The results are displayed as tooltips. Other than vertex tooltips, no additional
interaction mechanisms have been added. However, dialogs from Odisea’s own device-
control interface could be easily merged in the future, allowing an “edit” action to be
enabled.

Observations

The Ulises application is only a prototype, and many enhancements could be performed
to increase its usability. In its current state, it demonstrates the use of Clover to
visualize graphs that are dynamically queried from an online system, and later monitor
graph changes over time. From this point of view, monitoring a device network very
similar to monitoring a student’s actions in WotEd; both applications require support

142 Chapter 8. Application to Other Small-World Domains

Figure 8.9: Ulises device network representation. A vertex tooltip for a computer
connected to the network is displayed in the lower-right corner of the graph.

for incrementally updating a graph representation when structural changes are notified.
This is one of Clover’s strong points.

Part III

Conclusions and Future Work

Chapter 9

Conclusions and Future Work

9.1 Conclusions

This work examines the use of hierarchically clustered graphs to interactively visualize
large graphs. Although the primary goal is to use the resulting visualization in the field
of adaptive hypermedia authoring, arguments are provided to support their use in any
other domain where the small-world property holds true.

The proposed approach covers the full visualization process, from graph creation to
its representation in a graphical user interface. Within this process, special emphasis
is made on the features that make this approach different to conventional graph visu-
alization: automatic generation and incremental update of the hierarchical clustering,
the use of semantical fisheye-assisted navigation within the clustered graph, and the
treatment of mental map preservation issues that result from navigational actions.

Clover, a framework that implements the proposed approach, is presented. The
design of Clover is highly modular, and can be extended to support visualization
for a wide range of applications. The framework itself is released as open source, and
applications built on top of it can benefit of any improvements that may be contributed.
The Clover framework is available for download at

http://tangow.ii.uam.es/clover

WotEd is a Clover-based authoring tool for the Wotan adaptive hypermedia
course system. Since Clover performs layout and clustering automatically, WotEd

can visualize externally created courses without any user intervention. However, users
are free to alter both; WotEd will retain any user modifications between authoring
sessions. Additionally, changes to any view of a course are propagated to all other
open views, and layouts are reused whenever possible in an attempt to preserve the
user’s mental map. Comparison of the WotEd clustered graph interface to traditional
trees shows that in simple tasks, clustered graphs are only slightly more difficult to use
than trees, although as expected, the graph interface presents important advantages in
connectivity-related tasks, and conveys the true course structure better.

http://tangow.ii.uam.es/clover

146 Chapter 9. Conclusions and Future Work

WotEd allows authors to monitor the actions of one or more students through an
adaptive hypermedia course in real time. Monitoring demonstrates the use of interactive
graph visualization on a dynamically changing. The use of a single conceptualization
for authoring and monitoring/tutoring is expected to have positive effects on the overall
ease of use of the Wotan course platform. Since a large number of existing AH systems
use domain overlays to represent a large part of their user models, the approach followed
in WotEd for user model visualization can easily be extended to other systems.

This work also presents several other applications that demonstrate the use of
Clover to visualize domains that are totally unrelated with adaptive hypermedia. This
underlines the generality of the approach. Each is also a novel tool in its own right; dy-
namically changing device networks, aggregated in real-time; complex document reuse
diagrams, source code similarity networks and clustered ontology visualization would
merit separate research in and of their own.

Some parts of Clover build upon well-understood areas, such as traditional graph
representation, graph drawing, or general interface design guidelines; others are more
innovative and can be considered true contributions. Throughought the following sec-
tion, key parts of the Clover framework are viewed from a distance, examining their
novelty and questioning how they differ from other approaches. The final section is
dedicated to future work.

9.2 Discussion

This work began as an effort to find an interface that retained the ease of use of trees,
while gaining the expressive capability of graphs. The approach was to “abstract away”
parts of the initial graph in a controllable, tree-like manner. The resulting interface was
to be used in an Adaptive Hypermedia course authoring tool; lack of good authoring and
maintenance tools is partly responsible for the limited use of AH systems, despite their
potential advantages regarding content relevance and reuse. Within an AH authoring
tool, the visual interface is responsible for helping authors to manage the complexity of
multiple, alternative navigation paths. Similar interface problems can be found in other
fields, which could also benefit from better graph visualization.

Tree-based interfaces are limited to representing structures where each element is
reachable only through one path. Within many traditional tree interfaces, branches can
be easily expanded or collapsed, and the displacement to surrounding nodes is localized
and simple to understand. On the ther hand, a graph interface can represent much
more complex structures; in particular, there can be any number of paths leading to
any given vertex. However, the concept of “branches” cannot be directly applied to
general graphs; the nearest equivalent are clusters. Once suitable clusters have been
located, cluster expansion and collapse requires careful incremental layout to preserve

9.2 Discussion 147

locality, and multiple other mental map preservation techniques are needed to make
navigational changes predictable and easy to follow.

Graph clustering and cluster hierarchies

Clusters are widely used in graph visualization. They are generally represented as
large, box-like vertices that hold subgraphs inside them. However, the substitution of
a cluster’s contents for a single (much smaller) cluster vertex is less frequent, because
unless the graph layout is recalculated, a vacant areas proportional to the size of the
old cluster will be left in its place. Recalculating the layout introduces mental map
preservation issues, while leaving a vacant area is sub-optimal, in the sense that no
space saving is achieved in exchange for a much less informative representation of the
cluster’s contents.

Besides the substitution of cluster contents for single vertices, Clover is different
from mainstream graph visualization interfaces in the use of deep cluster hierarchies.
Typical approaches that represent whole subgraphs within “cluster boxes” are inher-
ently limited to shallow hierarchies, because layout of large cluster boxes without over-
laps unnecessarily distorts the overall graph layout, and large clusters take too much
space to represent in fully expanded form. A deep cluster hierarchy implies relatively
large top-level clusters, which are unwieldy without true cluster collapse. This requires
automatic, incremental layout to economize graph layout area. The use of deep cluster
hierarchies (instead of simple one-level hierarchies) also allows abstracts of large graphs
to be generated at arbitrary levels of detail. Abstracting away unnecessary details has
an added advantage from the point of view of layout complexity: a lower number of
visible vertices and edges can result in a great increase to layout speed.

The use of clustered graphs requires meaningful clusters to exist, and ideally the
collapse of a given “layer” of clusters should yield a graph that can also be clustered.
The analysis of “natural” graphs provided at the start of the work shows that this is
indeed the case for many domains. A graph where the small-world property holds will
have a high clustering coefficient (and therefore well-defined clusters probably exist, and
can be located) and a low average path length. A low average path length is interesting
because abstracting away clusters results in a much more compact graph; however, it is
not truly necessary, since chains of related vertices can also be collapsed into clusters.
To ensure that the process can be repeated to generate a complete and meaningful
cluster hierarchy, the graph must also exhibit a degree of self-similarity. Again, this
property has been shown to be common in many domains.

The widespread existence of these properties supports the feasibility of using hierar-
chically clustered graph visualization for large graphs, with hundreds, thousands or even
millions of vertices. Clover has not been tested with more than hundreds of vertices,
and would probably require more efficient algorithms to reduce interface update delays

148 Chapter 9. Conclusions and Future Work

to the levels expected of an interactive application. Extending Clover in the direction
of truly large datasets is not a current goal. However, the representation of hundreds of
vertices in abstracted form is in itself very worthwhile. Even below the hundred-vertex
mark, many graphs currently prove unwieldy and difficult to understand.

Notice that the small-world property and related characteristics rely only on the
graph’s vertex-edge structure, not on its actual semantics (which is currently an in-
tractable problem). In a good graph representation, the graph’s structure will closely
follow its semantics; and in an ideal scenario, the clustering algorithm will be able to lo-
cate optimal vertex groupings based on this structure. This is by no means guaranteed,
and depends heavily on the clustering algorithm used. Many clustering algorithms have
been described to locate clusters based on graph connectivity and (for certain domains),
domain-specific information. Others place the burden of locating clusters directly on
the user. In Clover, the use of a fully automated clustering mechanism is an impor-
tant feature of the approach, even though the current rule-based clustering engine is
rather simplistic. More general connectivity-based clustering engines are expected to
be incorporated in the near future.

In many graph visualization systems that use clustering, visualization of domain
information requires at least minimal user intervention to create clusters, label them,
or even perform layout. Even if initial defaults can be found for all these operations,
changes to the base graph may not result in incremental update of existing graph views.
Clover makes a point of allowing users to represent a graph as a clustered graph
without any type of user intervention. The cluster hierarchy is automatically generated,
as are cluster vertex labels, initial level of detail, and the starting layout for graph
vertices. This allows Clover-derived applications to immediately visualize graph data
which was generated externally from the application. Furthermore, Clover supports
automatic propagation and animation of any update to the base graph (or indeed any
other pipeline stage).

Fully automatic generation of hierarchy and graph layout may result in suboptimal
results; specially so since both of these properties are somewhat subjective, and are
difficult to quantify. It is very frequent for systems that perform automatic layout
(and clustering) to allow users to manually adjust both clustering and layout, but it is
rare to find systems where manual adjustments are preserved after further automatic
operations. Clover allows both types of adjustments, and preserves user-modified
layouts to a certain point, but currently the default clustering engine loses track of user
adjustments to clustering. This is considered a serious issue, and will be addressed in
future versions.

From the point of view of a user developing an application on top of Clover, provid-
ing a graph model is enough to obtain a basic clustered graph visualization. In creativity
support terms (see section 3.2.3), the shallow end is shallow indeed. Correspondingly,

9.2 Discussion 149

there is also a deep end: all parts of the framework’s workings can be adapted, and even
basic tinkering can result in worthwhile improvements. The applications described in
chapter 8 validate this statement.

Adaptive hypermedia authoring

The initial goal was to apply clustered graph visualization to the domain of Adaptive
Hypermedia. Within AH, graph representations make sense for navigational structures,
domain models, and the parts of user models that represent domain model overlays.
Log files can also be seen as graphs, and this approach has already been followed for
“normal” WWW log analysis. From the point of view of content organization and reuse,
graph structures can also be used to represent metadata taxonomies or ontologies.

WotEd can represent adaptive hypermedia course structures found in Wotan

courses. Wotan courses currently follow the Tangow formalism of tasks, rules and
fragments, which certainly simplifies their representation when compared to more ex-
pressive adaptation formalisms such as, for instance, adaptation grammars. Also,
Wotan courses are “closed-corpus”, in the sense that all available content must be
present when the course starts, and run-time queries to select contents based on user
model are restricted to contents explicitly listed by the course author during course
design. In systems with complex adaptation mechanisms or open corpora, visualization
is still required; indeed, course authors may find outcomes even harder to model during
the course design phase. However, it is probable that, for such cases, attempting to
represent the whole course structure at once, as done in Clover, would be less ap-
propriate. Instead, it could be more useful to represent the domain model. A course,
from a particular user model’s point of view, would be like a filter on the domain model
graph.

WotEd also integrates a fully functional adaptation engine into the authoring tool.
This is judged as an interesting contribution to adaptive hypermedia content authoring,
since it allows an author to follow the behavior of students graphically on top of the
very same interface used to design the course in the first place. This approach avoids
having to interpret log files (a tedious process), and reuses the mental map that the
author built during course creation.

Other graph visualization approaches

Many lessons can be learned from alternative graph visualization approaches. Three
particularly interesting ones are the success of the comparably simpler TouchGraph

interface, the use of 3D in WilmaScope, and the ease of use zoomable user interfaces
(ZUIs).

Thresholded graph interfaces, such as those produced by TouchGraph (see section
5.3.1), present the disadvantage that the existence of significant paths beyond the cutoff

150 Chapter 9. Conclusions and Future Work

point may well have been elided, and the user has no way to determine the existence of
such paths without extensive navigation. In a clustered graph this cannot occur, since
complete (although maybe abstracted) connectivity information is available at all times.
On the other hand, thresholded graph interfaces are remarkably easy to use, and are
probably the most popular interactive graph visualization interfaces to be found online.
The lesson would be that ease of use can be much more important than theoretical
robustness.

The decision to limit the application to 2D could be revised. 3D hardware is becom-
ing ubiquitous, and graph visualization applications such as WilmaScope [50] demon-
strate that in spite of the traditional problems associated with 3D graph interfaces (see
section 3.2), they can yield very promising results. Although 3D graph layouts suffer
from occlusion, they also have advantages, such as reduced edge crossings and more
“space” in which to represent vertex clusters in expanded form, with lower distortion to
the surrounding layout than would be possible in 2D. Even implementing a 2D interface
on top of a 3D layer may be worthwhile. Accelerated 3D graphics hardware allows
complicated calculations and rendering operations to be offloaded from the main CPU
into the graphics card, providing an important boost to demanding 2D visualization
applications.

Paradigms such as Zoomable User Interfaces (ZUIs, introduced in section 5.4) are
also worth considering; ZUIs are extremely easy to grasp for novice users, and their
fast rendering times and built-in animation support are inherently well suited to large
graph visualization [121]. A problem with using ZUIs for this task is that of detail
versus context; if the context changes, the whole graph layout may need to be updated,
an issue that current implementations do not address. However, this can be seen as
a problem with current implementations rather than with the idea of using ZUIs for
graph visualization.

9.3 Future Work

It is said that in a work such as this one, development is never truly finished, it is only
halted. This is certainly true in this case; there are just too many things to test, to
polish, to add. But at some moment the line must be drawn. In the case of this work,
it has been drawn at the point in which the approach is beginning to prove effective:
a worthy competitor of trees for the particular case of AH authoring, and a promising
visualization approach.

Since the author was well aware of the changes that would need to be made, design
has been kept as modular as possible, allowing easy replacement of almost any part
of the process. The research lines and enhancements proposed in this version would
require a large investment of time an effort to be tested and refined. Even though only

9.3 Future Work 151

some of them will be actively pursued, they are all worth mentioning.

Graph clustering and cluster hierarchies

Clustering generation is at present very simplistic, and is only effective for relatively
regular graphs. In more complex or dense graphs, more general clustering engines would
need to be applied. Additional clustering rules could still be used as an initial step, as
hinted in section 6.2.2.

The resulting cluster hierarchy may still require user customization. A fully auto-
matic clustering engine can not expect to find the same clusters and cluster labels that a
human would find, if only because the algorithm can only work with the graph’s explicit
information, but cannot yet understand its (possibly subjective) semantics. User edits
are allowed in WotEd, but at present the default rule-based clustering engine does
not preserve these edits when automatic clustering is repeated. To preserve user edits,
the clustering engine would have to be “incremental”, in the sense that changes with a
lower degree of importance than a given threshold would not be allowed to affect user-
modified parts. When this threshold was crossed, user intervention could be requested,
or automatically derived changes could be directly applied.

The efficiency of the internal cluster hierarchy representation may also need to be
addressed. The graph hierarchy structure described in [109] is a prime candidate to re-
place the current ad-hoc implementation. Incremental clustering update could also be
significantly optimized, but any optimization (other than a better tree comparison algo-
rithm) would have to be integrated with the particular clustering generation algorithm,
and would have to accept and maintain possible user adjustments.

Graph hierarchies should not need not be unique. Different points of view are pos-
sible, and should be accepted by a clustered graph interface. At present, Clover has
no specific support for views of a single graph that have been clustered using different
hierarchies. It would be interesting to allow users to dynamically exchange the clus-
tering hierarchies used on a graph, enabling a visual comparison of the differences and
coincidences between multiple alternative cluster hierarchies. The problem of hierarchy
comparison is frequently encountered in many disciplines, such as biologists comparing
phylogenetic trees. In this case, the most common approach is to visually represent
both trees with similar layouts, and highlight differences and matches. The problem
of comparing graphs with different superimposed clustering hierarchies can be attacked
in a similar manner (comparing only the hierarchies themselves), but it would be even
better to enable comparison of graphs, using layouts as similar as possible in both.

Incremental layout

Support for user changes to graph layouts is implemented in the form of a layout cache.
Since the layout of a particular graph view is saved, and the saved version is updated

152 Chapter 9. Conclusions and Future Work

after manual adjustments, the adjustments will still be there when the same view is later
revisited. However, cache entries that were made prior to the adjustment are currently
unaffected. A cross-cache incremental layout would need to be performed to truly accept
user adjustments to automatic layout. As an added constraint, it must be noted that
adjustments to one view may conflict with adjustments to another view. Users would
therefore need to be aware of (at least some of) these cascaded layout updates, which
would be performed in the background to avoid lack of interface responsiveness.

Better layout techniques should be explored, since layout quality and speed are major
components of the user experience. A particular point that will need to be revised is
the vertex overlap removal strategy. The use of the Force-Transfer Algorithm described
in [83], while extremely fast, introduces a measure of noise into the drawing, since it is
not truly force-directed and therefore departs from the physical model used for other
layouts. Incremental extensions to the main layout algorithms could be investigated,
extending the very efficient force-directed layout algorithm described in [134], yielding
interactive update speeds even for large graphs.

Adaptive Hypermedia

Filtering is currently underused in WotEd. Only very simple filters have been tested,
but full user-model filters would be a very important addition for authors, allowing
them to explore course contents from a particular user’s point of view. A library of user
models could allow quick testing of the main facets of the course, allowing test cases
to be developed for particularly difficult areas. Addition of complex filters would not
substantially complicate the interface, except for the fact that there would be frequent
changes of hierarchies (recall that filtering is performed prior to automatic clustering);
such changes could be hard for users to follow.

Another extension would be to integrate tutoring into the WotEd application,
allowing tutors monitoring a course to open instant-messaging sessions with students
that appear to be stuck, maybe even presenting aid requests as small notes directly on
the interface. Student collaboration could also use a simplified monitoring interface to
stay aware of each other’s virtual location.

Monitoring and log file analysis currently requires actual user data. Extending
WotEd with quick artificial “log files” creation would allow authors to debug adaptive
courses without leaving the authoring interface. Better visualization of existing user
log files would, and support for the aggregation of several user navigation patterns in
the course graph would also be natural extensions. Several systems already display
web site usage as graphs, with links that are more frequently followed represented with
thicker edges than those that are less popular. Indeed, there is already work underway
to aggregate individual user histories and automatically generate populations of user
models and plausible navigation paths in Wotan [31], with the goal of discovering

9.3 Future Work 153

course weaknesses and stress-testing courses with a variety of different user models.

Interface enhancements

It would be convenient to allow users to explore vertex contents as cluster trees before
actually expanding them, and allow expansion to a particular level. A similar strategy
could be used to control cluster collapse operations. The interface would require two
small icons to be added to each cluster vertex, say a small upright triangle (for collapse)
and a downwards triangle (for expansion), with the following semantics:

• Collapse – the list of parents of the vertex would be shown as a temporary popup.
Hovering the mouse pointer over any of the displayed parents would highlight all
currently visible vertices that shared the same parent. Clicking on any of the
parents would initiate the collapse.

• Expand – (only visible for cluster vertices) the tree of children of the cluster vertex
would be shown, as a temporary popup. This would be a multilevel-popup, where
hovering over an item with subitems (a child with children of its own) would
display the next level of items. Clicking on a child would trigger the expansion.

One-click expansion on either of the two triangles would bring about the corresponding
default, single-level collapse or expand.

Another interesting visual aid would be to present cluster contents as small sub
graphs on demand. This could be achieved integrating Clover into a Zoomable User
Interface (ZUI) framework. Although in ZUIs interface elements are expected to keep a
constant degree of zoom overall, an “asymmetrical” graph ZUI would be very similar to
a clustered graph. For instance, if clustering expansion and collapse could be performed
fast enough, these operations could be implemented as a kind of “vertex zoom”, and
bound into a traditional zoom trigger such as the mouse wheel. To change the degree
of (semantical) detail of a part of a graph, one would only have to (semantically) zoom
in and out – triggering the necessary expansion and collapse of vertices. This could
exploit the idea of variable representations for different degrees of detail found in many
ZUIs; at a low degree of detail, only the vertex label would be shown. Zooming into
the cluster vertex, a miniature view of its contents would begin to unfold, until the
component vertices reached their full sizes.

Part IV

Appendix

Apéndice A

Introducción

Este trabajo describe una propuesta para la visualización y creación de Hipermedia
Adaptativa, basada su representación mediante grafos clusterizados (agregados) jerárqui-
camente. La propuesta es extensible a cualquier campo que se pueda representar me-
diante grafos con propiedades de “mundo pequeño”.

La introducción comienza con una descripción de la motivación inicial y los objetivos
buscados. En el siguiente apartado, se procede a enumerar y describir una serie de
áreas de conocimiento relacionadas con la propuesta, y, a continuación, se presenta la
propuesta en śı. En la última sección se describe, a grandes rasgos, la organización del
resto del trabajo.

A.1 Motivación y objetivos

La representación mediante grafos es una práctica habitual en un gran número de domi-
nios, tales como la programación, el diseño y mantenimiento de redes de comunicaciones
o la representación de mapas de correferencias. En muchos de estos casos, la estructu-
ra de los grafos resultantes contiene patrones que una buena representación debeŕıa
realzar. Por ejemplo, en grafos que representen llamadas a funciones dentro de una sec-
ción de código fuente, o en grafos que representen correferencias cient́ıficas, es habitual
encontrar grupos de vértices fuertemente interrelacionados. En inglés, estos grupos o
agregaciones se denominan clústers.

El uso de interfaces interactivas basadas en grafos resulta de evidente utilidad para
revisar y editar datos correspondientes a cualquiera de los dominios anteriormente men-
cionados. No obstante, a medida que el tamaño de los grafos aumenta, el uso de inter-
faces tradicionales conlleva una progresiva sobrecarga de información, asociada además
a tiempos de procesamiento cada vez más prolongados. La sobrecarga de información
está relacionada con la dificultad asociada a mostrar tanto detalles de bajo nivel como
una visión general “de conjunto” dentro de la misma interfaz. Aunque éste es un proble-
ma común a todas las interfaces de usuario, en el caso de la representación de grafos se

158 Caṕıtulo A. Introducción

ve exarcebado: añadir o quitar aristas individuales de un grafo puede ocasionar cambios
importantes en su estructura general; y en este caso, la representación gráfica tendŕıa
que actualizarse considerablemente para evidenciar la nueva estructura. Actualizar la
representación de un grafo de tamaño considerable es una operación costosa; y un cam-
bio de representación demasiado brusco puede causar desorientación en el usuario de la
interfaz.

En nuestro caso, las dificultades que se acaban de describir, habituales cuando se
trata de grafos particularmente complejos, o de tamaño relativamente grande, surgieron
mientras se diseñaba una nueva herramienta de autor para la creación de cursos hiper-
media adaptativos. Inicialmente, se intentó usar una representación en forma de árbol,
ya que la estructura de los cursos correspond́ıa, en gran medida, a tal representación:
en este sistema, los cursos estaban constituidos por tareas, cada una de las cuáles pod́ıa
descomponerse en subtareas, y aśı sucesivamente. Sin embargo, la estructura no era
realmente jerárquica, ya que algunas subtareas resultaban ser accesibles desde más de
una tarea o subtarea de nivel superior. Esto ocasionó grandes dificultades a la hora de
intentar representar la estructura de tareas, que obedećıa a una estructura de grafos
dirigido aćıclico, mediante árboles.

Los problemas que presentaba esta primera interfaz motivaron el desarrollo de una
nueva, en la cual se representaban los cursos mediante grafos “tradicionales”. No obs-
tante, los grafos eran relativamente grandes y complejos, dif́ıciles de presentar correcta-
mente en una pantalla de ordenador, y la interacción con esta segunda interfaz resultaba
mucho más compleja que el uso de los árboles de la interfaz anterior, donde, por ejemplo,
el nivel de detalle se pod́ıa modificar fácilmente mediante la expansión o contracción
de las ramas correspondientes. Entonces surgió la idea de tratar de combinar ambas
interfaces: ya que la estructura de los cursos era “casi” de árbol, y éstos son fáciles de
usar, ¿porqué no combinar sus ventajas con la capacidad expresiva de los grafos? ¿Seŕıa
factible realizar esta combinación, sustituyendo clústers (grupos de vértices fuertemente
relacionados) por ramas?

Una opción es la siguiente: al igual que en las ramas inferiores de los árboles, que se
pueden ver como descendientes de las ramas que las contienen, los clústers de un grafo
se pueden ver como descendientes de aquellos que, a su vez, los contienen. El resultado
de esta operación seŕıa una jerarqúıa de clústers. Las operaciones de expansión y con-
tracción de un clúster se podŕıan definir en función de lo anterior, y el problema estaŕıa
resuelto, excepto por algunos detalles muy importantes. En primer lugar, mientras la
definición de lo que es una “rama” de un árbol no presenta ninguna ambigüedad (todos
los descendientes de un nodo dado), la de un clúster no es tan evidente, siendo nece-
sario utilizar heuŕısticas adecuadas, e incluso la intervención directa del usuario, para
definir y mantener la jerarqúıa de clústers. En segundo lugar, es mucho más complicado
disponer gráficamente los vértices de un grafo (el problema de la “disposición”, tam-

A.2 Aspectos teóricos 159

bién llamado “dibujo de grafos”, ha atráıdo una atención considerable en los últimos
años) que los nodos de un árbol. La disposición gráfica en pantalla de grafos pequeños,
o estáticos aunque sean de gran tamaño, no es un problema, pero es necesario que la
disposición gráfica en pantalla sea automática si se requiere que las porciones visibles del
grafo puedan variar en dinámicamente como resultado de expansiones o contracciones
del mismo, tal y como sucedeŕıa con las ramas de una interfaz de tipo árbol. También,
en este último caso, es necesario tomar otras medidas adicionales sobre la representación
visual del grafo, encaminadas a evitar la desorientación del usuario, ya que, después de
una expansión o contracción, deberá poderse visualizar el “mismo” grafo, pero con un
nivel de detalle distinto. Es decir, la nueva disposición de los vértices y aristas no debe
variar demasiado con respecto a la anterior, o el usuario se verá forzado a “reaprender”
la estructura del grafo tras cada operación de navegación, lo cual seŕıa, desde el punto
de vista de la usabilida de la herramienta, desastroso. Finalmente, en una interfaz de
tipo árbol, debido a la correspondencia directa entre estructura y disposición gráfica,
la actualización de la representación visual tras un cambio estructural es relativamente
sencilla. Esto no se cumple para el caso de grafos agregados jerárquicamente, cuya ac-
tualización puede requerir también cambios en la estructura de los clústers que definen
su jerarqúıa.

Sin embargo, los obstáculos anteriores no parećıan insuperables, ya que existen abun-
dantes publicaciones acerca de la mayor parte de los problemas individuales (agregación,
disposición gráfica, desorientación, etcétera). En nuestro caso, tras una fase inicial de
análisis, se decidió separar claramente los módulos directamente asociados a la visualiza-
ción y edición de grafos agregados jerárquicamente de aquellos que estaban relacionados
con dominios concretos (como por ejemplo todo lo relacionado con la creación y edi-
ción de Hipermedia Adaptativa). Esta decisión dio lugar a un framework (entorno) de
visualización de grafos basado en la agregación jerárquica de los mismos. Poco después,
el diseño de dicho entorno para la visualización de grafos, aśı como su implementación,
se vieron fuertemente impulsados por la lectura del art́ıculo de Watts y Strogatz [137]
sobre grafos de mundo pequeño – grafos que son altamente estructurados (y, por tanto,
clusterizables), pero no enteramente regulares – y su prevalencia en muchos dominios
del mundo real. Igualmente, estas ideas motivaron la utilización del entorno previamente
diseñado en diversas áreas de aplicación, algunas de las cuales están muy alejadas de
los sistemas hipermedia adaptativos iniciales.

A.2 Aspectos teóricos

La propuesta que se esboza en la sección anterior tiene relación con varias áreas de cono-
cimiento. Los primeros caṕıtulos de este trabajo se incluyen en la Parte I, Preliminares,
donde se describen las principales áreas de conocimiento asociadas a la propuesta. A

160 Caṕıtulo A. Introducción

continuación se presentan brevemente los campos que se tratarán en la Parte I, aśı como
las razones que han sugerido incluirlos en dichos caṕıtulos.

Como hemos mencionado, este trabajo comenzó como un intento de conseguir una
mejor visualización para un sistema de cursos hipermedia adaptativos. El objetivo de la
Hipermedia Adaptativa (abreviada en inglés como AH) es adaptar espacios hipermedia
a usuarios individuales, en lugar de usar la misma versión del espacio para todos los
posibles usuarios. Esta adaptación puede abarcar tanto los contenidos en śı (ya se trate
de texto, imágenes, sonidos o animaciones, denominados colectivamente media) con
los posibles hiperenlaces que se puedan definir entre ellos. La hipermedia adaptativa
hace uso de un modelo de usuario (una representación de las caracteŕısticas, trasfondo
y objetivos del usuario) que debe ser construido y actualizado por el sistema AH. El
modelo se usuario se utiliza para decidir qué mostrar a cada usuario, y cómo presentarlo.
Aún compartiendo un objetivo general y el concepto de modelo de usuario, los sistemas
AH difieren en sus campos de aplicación (por ejemplo, educación, búsqueda o referencia),
y existen múltiples diferencias en torno al tipo de modelo de usuario y su representación,
adquisición y actualización, el tipo de adaptación que puede realizar el sistema, y las
técnicas usadas para implementarlas.

Por otra parte, el uso de Hipermedia Adaptativa requiere la preparación de distintas
vistas sobre el dominio utilizado por el sistema. Aśı, los materiales que han de adap-
tarse serán más fáciles de crear y mantener si se gestionan como módulos relativamente
independientes entre śı. Por otra parte, dado el alto coste de preparar estos materiales,
es muy importante que se facilite su reutilización en otros dominios o contextos. Sin em-
bargo, esta reutilización a gran escala requiere que se disponga de información adicional
accesible a sistemas automáticos de indexación. La información adicional, también lla-
mada metadatos, debeŕıa incluir información acerca de los contenidos y objetivos de cada
unidad, y el contexto dentro del cual tiene sentido usarla (por ejemplo, conocimientos
previos requeridos). El tratamiento automático require que los metadatos usen vocabu-
larios estandarizados, lo cual se puede conseguir usando ontoloǵıas. Las ontoloǵıas son
un formalismo para la representación del conocimiento mediante conceptualizaciones de
entidades y sus interrelaciones, que se puede ampliar con soporte para razonamiento
automático. Además, las ontoloǵıas son, en śı mismas, representables como grafos.

Una vez creados u obtenidos, los módulos correspondientes deben ser integrados
para formar un único espacio adaptativo. La autoŕıa de la estructura de adaptación
correspondiente puede ser una tarea compleja, ya que las decisiones de adaptación se
toman en función de un modelo de usuario que está siendo constantemente actualizado.
Sobre este modelo cambiante, el sistema hipermedia debe decidir qué presentar, y cómo
debe ser estructurado y realzado. El uso de herramientas de autor resulta imprescindible
para permitir a expertos en un área crear estos espacios hipermedia que representen sus
conocimientos – sin obligar a estos expertos a conocer en profundidad los entresijos del

A.2 Aspectos teóricos 161

sistema en śı. Éste era precisamente el objetivo que persegúıa la herramienta de autor
basada en grafos que dio pie a este trabajo.

Es común usar grafos para representar la estructura definida por los enlaces de
espacios hipermedia clásicos. Además, estas reresentaciones se pueden extender para
abarcar la estructura de muchos sistemas hipermedia adaptativos. El estudio de los
grafos en śı, como entidades matemáticas abstractas, pertenece al campo de la Teoŕıa de
Grafos, que a su vez forma parte del campo de la Matemática Discreta y Combinatoria.
El campo relacionado del Trazado o Dibujo de Grafos (Graph Drawing) trata de su
representación planar y espacial. En general, un grafo grande resulta dif́ıcil de dibujar e
interpretar, especialmente cuando se el área de dibujo es particularmente pequeña, como
por ejemplo una pantalla. En estos casos, la clusterización (agregación) se puede usar
para abstraer detalles innecesarios. La sección sobre clusterización incluye una discusión
acerca de gramáticas de grafos, un formalismo similar a las tradicionales gramáticas
independientes de contexto que puede ser utilizado para localizar clústers basándose en
reglas que describen patrones a buscar en la topoloǵıa local del grafo.

La agregación jerárquica sólo es aplicable si el grafo contiene clústers fácilmente
identificables. Para obtener una jerarqúıa es requisito, además, que esta propiedad tam-
bién se cumpla para cada una de las posibles versiones resumidas del grafo. Muchos
tipos de redes naturales y artificiales exhiben la llamada propiedad de mundo pequeño
(Small-World Property): un alto grado de clusterización cuando se comparan con gra-
fos generados al azar del mismo tamaño y densidad, pero una distancia media entre
vértices similar al caso aleatorio. Esta propiedad está relacionada con la existencia de
invarianza ante cambios de escala y autosimilaridad. La propiedad de mundo pequeño,
la invarianza a escala y la autosimilaridad han sido descritas, en diferentes grados, en
redes sociales (denominadas también Friend-of-a-friend en inglés), mapas de referen-
cias cient́ıficas, redes de distribución eléctrica, mapas de interacción entre protéınas, y
grandes secciones de la WWW. Por tanto, la agregación jerárquica puede constituir una
buena solución a la hora de visualizar un amplio espectro de grafos.

Cuando se representan grafos u otros tipos de información abstracta, es importante
mencionar el campo de la Visualización de Información. La visualización de información
se centra en el estudio de la forma más efectiva de representar información abstracta
a usuarios; y en este caso, está fuertemente relacionada con el Dibujo de Grafos. La
visualización de información también se puede considerar una parte importante del
campo de la Interacción Persona-Ordenador, que estudia la interfaz entre hombre y
máquina, considerando todo el proceso de interacción y realimentación necesario para
llevar a cabo tareas ante un ordenador.

162 Caṕıtulo A. Introducción

A.3 Arquitectura de Clover

El núcleo de la propuesta está contenido en el diseño del entorno Clover, cuyas si-
glas corresponden a la traducción al inglés de Entorno de Visualización Orientado a
CLústers. El framework resultante constituye una base independiente de dominio sobre
la cual construir visualizaciones interactivas basadas en grafos jerárquicamente agrega-
dos. Aunque Clover se puede usar para visualizar cualquier estructura de grafo, el uso
de agregación jerárquica lo hace especialmente indicado para grafos de mundo pequeño.

Clover ha sido diseñado como una serie de pasos encadenados de montaje (pipeli-
ne), ilustrada en la figura A.1. Los datos iniciales se transforman a un grafo, que luego
se filtra y clusteriza, se realiza una selección de los “clústers más importantes” (que se
usarán para representar al resto), se dispone gráficamente, y finalmente se representa
en la interfaz que ve el usuario. Cada etapa de esta cadena transforma el resultado de
la etapa anterior para su posterior transformación en la etapa siguiente, hasta que la
vista resultante se le muestra al usuario. También se puede ver todo el proceso como
un bucle, ya que el usuario puede manipular la vista final, ajustar el nivel de detalle
de zonas del grafo (mediante la expansión y colapso de clústeres, o indirectamente me-
diante la selección de distintas “puntos de interés”: ver triángulos negros a la derecha
de la figura A.1), cambiar el filtrado, o incluso modificar el grafo base, lo cual puede
ocasionar variaciones a los datos sobre los que originalmente fue construido. Cualquier
cambio en la configuración de una etapa puede puede ocasionar actualizaciones en eta-
pas posteriores, desembocando en una actualización de la interfaz presentada al usuario.
Es posible mantener múltiples vistas simultáneas sobre un mismo grafo, diferenciadas
entre śı sólo por cualquiera de los pasos intermedios; esto permite analizar un mismo
grafo desde varios puntos de vista.

Figura A.1: Pipeline usado en Clover

Clover se enfrenta a muchos problemas considerados clásicos dentro del campo de
la visualización de grafos. La disposición de vértices y aristas (el layout o trazado del
grafo) se realiza de forma totalmente automática, permitiendo a los usuarios empezar
a trabajar con el grafo sin necesidad de realizar una colocación manual; no obstante,
se permite la realización de ajustes manuales, los cuales se mantienen en lo posible
durante cambios posteriores. Cuando se producen cambios en el nivel de detalle, éstos

A.3 Arquitectura de Clover 163

se ven reflejados mediante modificaciones incrementales en el trazado del grafo, con
los objetivos complementarios de optimizar el uso del espacio disponible mientras se
minimizan, en lo posible, los cambios del trazado previo. Cualquier modificación de la
representación del grafo es resaltada y animada, centrando la atención del usuario sólo
en los cambios, pero manteniendo un contexto estable para evitar desorientarle. El uso
de un “histórico” de trazados permite la reutilización de representaciones previas para
las vistas más recientes, colaborando al mantenimiento de la sensación de contexto.

La arquitectura de Clover es altamente modular, y todas las etapas de su com-
portamiento pueden ser alteradas o extendidas para adaptarse a las necesidades de la
aplicación que está usando el entorno. Para desarrollar una nueva visualización basada
en agregación jerárquica para una aplicación dada, sólo es necesario proporcionar una
etapa inicial de generación del grafo apropiada. No obstante, es posible mejorar mucho
la interfaz aśı generada ajustando el mecanismo de filtrado, la estrategia de agregación,
los parámetros de disposición, la representación de vértices y aristas o el uso de ani-
maciones y los mecanismos de interacción para la aplicación concreta a desarrollar. Las
múltiples aplicaciones basadas en Clover que se describen en este trabajo proporcio-
nan ejemplos de lo que se puede conseguir adaptando el entorno base a diversos campos
concretos.

En comparación con otros sistemas de visualización de grafos, las principales contri-
buciones de Clover son el uso de agregación jerárquica para permitir la representación
de grafos grandes a niveles arbitrarios de detalle; la naturaleza completamente automa-
tizada del proceso de visualización, donde un cambio en cualquier fase del proceso se
propaga automáticamente, sin necesidad de intervención por parte del usuario, a todas
las vistas dependientes; y el uso de un mecanismo de disposición y animación que ase-
gura que todo cambio a una vista resulta en una actualización incremental y progresiva
que resulta fácil de seguir desde el punto de vista del usuario.

La aplicación de referencia para Clover es WotEd, una herramienta de autor para
el sistema de cursos hipermedia adaptativos Wotan. Usando Clover, WotEd mues-
tra cursos hipermedia adaptativos como grafos clusterizados. Esto permite editar cursos
de gran tamaño y complejidad – incluso si fueron creados por una tercera aplicación,
o retocados a mano. Además, WotEd introduce un novedoso soporte para monitori-
zar el progreso de estudiantes dentro del curso. El sistema de monitorización permite
a un autor o tutor realizar un seguimiento en tiempo real de las acciones de uno o
más estudiantes, usando la misma interfaz con la que se ha estado editando el curso.
Este mecanismo se basa en el soporte de Clover para propagar y animar de forma
automática cualquier actualizacion a una estructura de grafo.

164 Caṕıtulo A. Introducción

A.4 Estructura de la tesis

La tesis se organiza en tres partes:

Parte I – Preliminares Introduce los términos y conceptos usados en la propuesta
presentada en la Parte II, proporcionando, para cada uno, una breve descripción.

Parte II – Propuesta Presenta la propuesta en śı. En primer lugar realiza una revi-
sión de distintas estrategias de visualización de grafos. A continuación, describe
el diseño de Clover. Los siguientes caṕıtulos introducen aplicaciones basadas en
Clover orientadas a la Hipermedia Adaptativa y otros dominios.

Parte III – Conclusiones y trabajo futuro Contiene una breve discusión, las con-
clusiones, y un esbozo general de futuras ĺıneas de trabajo.

El apéndice A contiene la presente traducción al español del primer caṕıtulo. El
apéndice B está dedicado ı́ntegramente a aspectos de implementación, incluyendo deta-
lles sobre la arquitectura y los formatos de archivo usados en la Parte II.

Appendix B

Implementation notes

This appendix describes Clover’s architecture in a more technical fashion, first provid-
iong a general overview of the implementation, and then presenting commented APIs for
the main classes. It can be used as a reference while reading Chapter 6, which contains
as few actual implementation details as possible. A final section includes samples of the
main file formats used in Clover and WotEd.

B.1 General architecture

Figure B.1 is a UML class diagram of the actual implementation of Clover, including
only the most relevant classes. This diagram can be compared to fig. 6.2 to explore the
implementation of each pipeline stage.

A note on terminology: Since Clover is written in Java, an object-oriented lan-
guage, the framework has been modelled as a series of classes; in programming languages
such as C, a class would correspond roughly to a data structure with a well-defined in-
terface and the set of functions that implement that interface.

B.1.1 Model

The BaseGraph class represents a “base” graph, generated from some external data
source; it derives from JGraphT’s [98] DefaultDirectedWeightedGraph. A base graph
can be filtered through one or more FilterGraphs, which can be used as base graphs
themselves (although they do not need to store the whole graph model). BaseGraphs
can send StructureChangeEvents (SCEs) to any object that registers itself to receive
them. This mechanism is used, for instance, to notify filtered graphs of any change that
may occur to the graphs they were built upon.

A ClusterHierarchy represents a cluster hierarchy built upon a base graph. Hier-
archy construction and update are delegated to a ClusteringEngine. The default clus-
tering engine in Clover is the SimpleRuleClusteringEngine, based on a simplistic (ie.:

166 Chapter B. Implementation notes

Figure B.1: Architecture of Clover. Empty triangles represent inheritance (is-a),
diamonds represent aggregation or reference (has-a), and curved arrows represent event
flow. Events can represent changes to structure (SCE), hierarchy (HCE) or cluster
expansion/collapse (CCE).

suboptimal) graph grammar engine. A ClusterHierarchy registers itself to be notified
of any changes to the base graph; when such a change occurs, the engine is queried
for corresponding updates to the hierarchy itself, and a HierarchyChangeEvent (HCE)
describing all changes from the prior hierarchy to the current one is generated.

A ClusteredGraph represents an abstracted view of a certain BaseGraph, and the
abstracted representation itself can be queried as another BaseGraph. Abstraction is
performed by means of a ClusterHierarchy superimposed on the base graph that the
clustered graph was built upon; since the cluster hierarchy already has a reference to
the base graph, the clustered graph uses the reference found in the hierarchy. Clustered
graphs make use of a “visible slice” to keep track of what parts of their hierarchy
are currently expanded. In the above diagram, this role is fulfilled by the Slice class.
Whenever a change is performed to the base graph a given clustered graph was built
upon, the hierarchy will process the change and the ClusteredGraph will receive the
corresponding HCE. This will cause an update to visible vertices and/or degree of

B.1 General architecture 167

abstraction that will be immediately reflected in the clustered graph and its slice.

Changes to a ClusteredGraph, resulting either from normal navigation or cascaded
changes received from its hierarchy, can cause two types of events. Since a Clustered-
Graph is a BaseGraph, any changes to the edges or vertices currently displayed results
in the generation and delivery of StructureChangeEvents (SCEs) to any interested par-
ties. Additionally, changes corresponding to cluster expansion or collapse will cause a
ClusteringChangeEvent to be generated and delivered.

B.1.2 View and control

So far, the first steps of the pipeline, corresponding to the model, have been discussed.
The external representation of the model, however, requires layout, animation and a
component that can display the results in the corresponding window toolkit.

Clover runs on top of the Swing toolkit, using JGraph’s [1] Swing-compliant
JGraph class to actually display graphs. ViewGraphs are used instead of BaseGraphs
for this role. ViewGraphs are similar to BaseGraphs in the fact that they also extend
JGraphT’s DefaultDirectedWeightedGraph. Unlike BaseGraphs, which hold no infor-
mation on how a graph should be visually represented, the main responsibility of a
ViewGraph is to determine visual representation of graph elements (vertices or edges)
prior to display. Visual aspects include font selection, foreground and background col-
ors, icons to use, labels and tooltips, and many other options. This is possible through
the inclusion of a bidirectional JGraphT ↔ JGraph bridge within the ViewGraph,
which ensures that any change performed to the ViewGraph is represented in the associ-
ated BaseView, and conversely, any change to the graphical component is immediately
reflected in its model.

Although it is possible to use Clover with non-clustered graphs, the framework’s
main strength is the representation and manipulation of clustered graphs. ClusterView-
Graph and ClusterView extend their corresponding base classes with cluster-oriented
capabilities. A ClusterViewGraph can decorate and label graphs with cluster vertices
or edges; and a ClusterView adds the necessary interaction mechanisms to navigate
through a clustered graph.

Many of the high-level interface changes have been encapsulated within actions,
which can be triggered by different mechanisms (such as popup menus, key bindings,
or toolbar icons). Actions themselves can affect all components.

Separation between abstract, non-visual model and visual details is one reason to
distinguish between abstract graphs and their corresponding ViewGraphs. A second
reason is the need for animation. Due to the bidirectional nature of the bridge between
ViewGraph and BaseView, changes to the former are immediately visible within the
latter. However, some animations may require elements to be presented only after a
previous animation finishes execution. Separating the “true” model from the represented

168 Chapter B. Implementation notes

model allows views to lag behind as required, enabling such animations.
Clover includes a higher-level component designed for applications where the main

interface is a clustered graph; the BaseInterface displays toolbars that allow control of
this clustered graph, a main window with a set of tabs, each of them a ClusterView,
and a side pane with a ClusterTree. These classes will be explored in greater detail in
the control section.

B.1.3 Animation and layout

Animation of a BaseView is performed through its associated Animator. Animators
run AnimationPlans, which are composed of one or more sequential sets of simultaneous
AnimationSteps. A step may involve altering the representation of one or more edges
or vertices directly on the BaseView, or require structural changes to the graph, which
would be performed on the ViewGraph instead (recall that ViewGraphs and BaseViews
are tightly coupled: any change on one is reflected on the other). Animation plans can
be generated and launched as a result of changes to a BaseGraph or a ClusteredGraph,
but this need not bee the case. Highlights and other visual effects are very easily
accomplished through animations.

The ClusterAnimator class extends the default animator with support for Cluster-
ingChangeEvents. These events are animated differently than non-clustering related
changes to a graph. Animators make use of a LayoutManager to generate the layouts
that will be shown at the end of each intermediate step of their animation plans. Lay-
outs themselves are subclasses of LayoutAlgorithm (such as VarLengthFDL), and are
applied sequentially by the layout manager as requested by the animator. In order to
avoid recomputation of previous layouts, and to improve the consistency of navigation
operations on the graph, a LayoutCache is maintained.

B.2 Clover API

This is an abbreviated API of the Clover framework, covering the main classes found
in the previous section. Each class description includes a short overview the design deci-
sions involved, but detail is in general kept to a minimum. For instance, utility methods
that do not form part of the main interface of a class have not been included. Full details
can be found in the project’s website, available at http://tangow.ii.uam.es/clover.

B.2.1 BaseGraph

By extending JGraphT’s DefaultDirectedWeightedGraph, methods for efficient vertex
adition and removal, edge adition and removal, connectivity queries and so on are gained
for free. Use of generics, a mechanism similar to C++ templates, allows edges to be
created and returned in a typesafe manner as provided by the EdgeFactory.

B.2 Clover API 169

Vertices can be of any type (all Java classes are implicit subclasses of Object), but
type safety through the use of generics has not been ensured, since in clustered graphs
vertices can be either cluster-vertices or actual base graph vertices, and imposing a
common subclass for both would not yield any advantage.

The event mechanism offered in JGraphT was deemed insufficient (events did not
include enough information); this required the addition StructureChangedEvents and
associated management methods. Making the BaseGraph a listener to its own events
simplifies maintenance: to perform a structural change on a BaseGraph or any of its
subclasses, the subclasser need only be capable of creating an appropiate change event
and deliver it to the intended recipient. The same event can then be recast to all “down-
stream” listeners.

public class BaseGraph extends DefaultDirectedWeightedGraph

implements StructureChangeListener {

// build

public BaseGraph(DefaultEdgeFactory edgeFactory);

// structure change events

public void addStructureChangeListener(StructureChangeListener l)

public void removeStructureChangeListener(StructureChangeListener l)

public void structureChangePerformed(StructureChangeEvent evt)

// unique ID, and labels for vertices and edges

public String getId(Object vertex)

public String getVertexLabel(Object o);

public String getEdgeLabel(Edge e);

}

B.2.2 StructureChangeEvent

Events of this type encode changes to the vertices or edges of a graph, and their ap-
proximate cause. Events are of “Normal” cause if they involve true addition or removal
of vertices or edges, as opposed to the virtual addition or removal found in “Cluster-
ing” events. If nothing is added or removed at all, then the event is considered to be
“AttributeOnly”.

Vertices or edges that are marked as “Changed” require update. For example, if the
label of a vertex changes, dependent views would need to be notified in order to display
an updated label.

170 Chapter B. Implementation notes

public class StructureChangeEvent {

// change types; normal = base graph edges added/removed

public enum ChangeType { Normal, AttributeOnly, Clustering };

// construction

public StructureChangeEvent(BaseGraph source, ChangeType changeType);

// initialization & query

public ChangeType getChangeType();

public ArrayList getAddedVertices();

public ArrayList<Edge> getAddedEdges();

public ArrayList getRemovedVertices();

public ArrayList<Edge> getRemovedEdges();

public ArrayList getChangedVertices();

public ArrayList<Edge> getChangedEdges();

// query

public BaseGraph getSource();

public String getDescription();

}

B.2.3 FilteredGraph

A filtered graph listens to the events of its BaseGraph; however, since it is itself a
subclass of BaseGraph, it cannot use the default structureChangePerformed() method
for this task: updateFromUpstream() is invoked instead.

The JGraphT [98] library supports filters as Subgraphs, with the same semantics,
and automates their synchronization when changes are performed on the base graph
with a listener model. However, Clover’s event system was preferred to JGraphT’s
implementation, as it was perceived to be more consistent with the rest of the framework.

When the filtered graph is constructed, it is associated with a Filter that will be
used to decide which edges and vertices “make the cut”. The filter is also queried during
all subsequent updates.

public class FilteredGraph extends BaseGraph {

// creation and access

public FilteredGraph(BaseGraph base, Filter filter);

public BaseGraph getBase();

B.2 Clover API 171

public void setBase(BaseGraph base);
public Filter getFilter();
public void setFilter(Filter filter);

// triggered upon structure changes from upstream
protected void updateFromUpstream(StructureChangeEvent evt);

// trigger full refilter
protected void refilter();

}

B.2.4 Filter

A simple filter interface. The division between normal filters and efficient filters made in
Jung [101] was considered not necessary, although it could be incorporated into further
subclasses. Clover filters can be plugged into any FilteredGraph, implementing the
Strategy design pattern described in [67].

public interface Filter {

// save and restore
public void save(Element e);
public void restore(Element e);

// edge and vertex filtering logic
public boolean isEdgeValid(Edge e);
public boolean isVertexValid(Object v);

}

B.2.5 Cluster

The Cluster class contains clustering information. The implementation has not been
optimized for efficiency when querying edge (see performance concerns in section 6.2.3).

Since the Cluster class extends Swing’s DefaultMutableTreeNode class, cluster hi-
erarchies can be easily represented in any Swing component that displays trees. De-
faultMutableTreeNodes also include a complete API for tree node data and common
operations.

Listings of component vertex ids in canonical order are used in later stages when
loading and saving cluster hierarchies. Several other utility methods are provided for
frequently performed operations, such as hierarchy traversals.

172 Chapter B. Implementation notes

public class Cluster extends DefaultMutableTreeNode {

// creation of leaf and inner cluster vertices

public Cluster(BaseGraph g, Object v);

public Cluster();

// internal vertices wrap a cluster

public static class Vertex {
public Cluster getCluster();

}

// listing = sorted list of ids of all leaf vertices within the cluster

public String getListing(BaseGraph base);

public static ArrayList<String> parseListing(String l);

// insert and remove clusters into this one

public void insert(MutableTreeNode o, int);

public void remove(int);

// raw query

public HashSet<Edge> getOutgoing();

public HashSet<Edge> getIncoming();

public List<Cluster> localOutgoingNeighbors();

public static HashSet getVertices(Collection<Cluster> clusters);

// other queries

public Edge getLeafEdgeTo(Cluster c);

public boolean hasEdgesTo(Cluster c);

public Set<Edge> edgesTo(Cluster c);

public Object getVertex()

public Object getFirstLeafVertex();

public Cluster getLastClusterFor(Object v);

public Cluster clusterForVertex(Object v);

public boolean isLeafCluster();

public Cluster getRootCluster();

public Cluster getParentCluster();

public List<Cluster> getAncestors();

public List<Cluster> getDescendants();

public static List<Cluster> getAncestors(Collection<Cluster> clusters);

B.2 Clover API 173

public static List<Cluster> getDescendants(Collection<Cluster> clusters);

}

B.2.6 ClusterHierarchy

Cluster hierarchies delegate actual hierarchy creation and update to ClusteringEngines.
Their main responsibilities are to create and manage hierarchy changes, by registering
themselves to receive changes to a graph’s structure, creating the suitable hierarchy
change events, and delivering them to all associated listeners.

The createChangeEventFor() method is provided for use by clustering engines that
do not provide after-update difference tracking. This method creates the suitable hier-
archy change set from the old and new hierarchies.

Save and restore to and from XML snippets is also included; the engine-specific as-
pects of saving a restoring a given cluster hierarchy are delegated to the actual engine.

public class ClusterHierarchy implements

StructureChangeListener, HierarchyChangeListener {

// build new, or from saved state

public ClusterHierarchy(BaseGraph base, Object rootVertex,

ClusteringEngine engine);

public ClusterHierarchy(Element e, BaseGraph base,

ClusteringEngine engine);

// access

public ClusteringEngine getEngine();

public Cluster getRoot();

public BaseGraph getBase();

public void setBaseGraph(BaseGraph base, Object rootVertex);

// hierarchy change event management

public void addHierarchyChangeListener(HierarchyChangeListener l);

public void removeHierarchyChangeListener(HierarchyChangeListener l);

public void hierarchyChangePerformed(HierarchyChangeEvent evt);

// structure change reception; SCs may trigger hierarchy change events

public void structureChangePerformed(StructureChangeEvent evt);

// hierarchy change creation from a newClustering resulting from a SCE

174 Chapter B. Implementation notes

public void createChangeEventFor(Cluster newClustering,

StructureChangeEvent structureChange,

HierarchyChangeEvent hce);

// save and restore

public void save(Element e);

public void restore(Element e);

}

Tree Matching

The tree difference algorithm used within createChangeEventFor() when locating differ-
ences between old and new clusterings is presented in the following pseudocode listing:

findTreeChanges(root_o root_n delta_g delta_t) {

u_o = a new size_queue

u_n = a new size_queue with { x : x in delta_g.added }

s_o = { x : x in root_o.leaves AND NOT x in delta_g.removed }

s_n = { x : x in root_n.leaves }

delta_t.matched = { (x y) : x in root_n AND y in root_o }

outer: while NOT delta_t.matched.contains (root_o)

s_o = collapse_level(s_o)

s_n = collapse_level(s_n)

if (s_o.empty OR s_n.empty) break outer

u_o += s_o

u_n += s_n

inner: do

// matches smallest-to-smallest; a is from old, b is from new

for a in u_o, b in u_n

if NOT delta_t.matched.contains (b) AND matches (a b)

// remove unwanted children from old

for ca in children (a)

if u_o.contains (ca)

u_o -= ca

B.2 Clover API 175

// if unreferenced, remove (and subsume removed children)

if NOT delta_t.matched.contains_dest (ca)

delta_t.removed += (a ca)

delta_t.removed -= { (x y) : x in descendants (ca) }

else if exist cb in children (b) : matches (cb ca)

// discard if previously matched to another cluster

if delta_t.matched (cb) != ca

delta_t.removed += (a ca)

else

delta_t.removed += (a ca)

// add new children to old

for cb in children (b)

if delta_t.matched.contains (cb)

ca = delta_t.matched (cb)

delta_t.matched -= cb

// avoid duplicate introduction

if NOT children (a) contains (ca)

delta_t.added += (a ca)

else

if u_n.contains (cb)

u_n -= cb

delta_t.added += (a cb)

u_o.remove (a)

u_n.remove (b)

delta_t.matched += (b a)

continue inner

// loop ends when no more matches

break inner

end inner

end outer

B.2.7 ClusteringEngine

Clustering engines are required to create a clustering hierarchy from a given root vertex,
and to update that hierarchy after a given change in the base graph. The second
operation is only possible for certain clustering algorithms; if the chosen algorithm
does not support it, the operation can be performed by recreating the hierarchy from
scratch, and calling hce.getSource().createChangeEventFor() to locate the differences
between the old and new hierarchies.

The relation between clustering hierarchies and their clustering engines implements

176 Chapter B. Implementation notes

the Strategy design pattern described in [67].

public interface ClusteringEngine {

// save and restore settings

void save(Element e);

void restore(Element e);

// create or update hierarchy

Cluster createHierarchy(BaseGraph base, Object rootVertex);

Cluster updateHierarchy(Cluster root, BaseGraph base,

StructureChangeEvent sce, HierarchyChangeEvent hce);

}

B.2.8 SimpleRuleClusterer

Implements a graph gramar engine, where rules that are triggered result in new clus-
ters. Rule application can be controlled to ignore certain edge types or reverse their
directions. Priority is implicit in the order of rule execution; lower-priority rules are
only executed if higher-priority ones fail to trigger. Subclasses can easily tune the rules
that are evaluated by overriding the initRules() method.

public class SimpleRuleClusterer implements ClusteringEngine {

public SimpleRuleClusterer();

// hook for subclassers to use different rules

public void initRules();

// implementation of ClusteringEngine interface

public Cluster createHierarchy(BaseGraph base, Object rootVertex);

public Cluster recreateHierarchy(BaseGraph base, Object rootVertex,

StructureChangeEvent sce, HierarchyChangeEvent hce);

// save and restore

public void save(Element e);

public void restore(Element e);

// default set of rules, in order of priority

public static class SingleParentOfTerminals extends ClusteringRule {}

B.2 Clover API 177

public static class SingleParentOfAlmostTerminals

extends ClusteringRule {}
public static class SharedParentOfTerminals extends ClusteringRule {}
public static class ParentOfSomething extends ClusteringRule {}

// a clustering rule

public static abstract class ClusteringRule {
public abstract ArrayList applyTo(DirectedGraph g, Object v);

public abstract String getDescription();

// ’not valid’ edges are ignored within rule; edges can be reversed

public void setValidator(EdgeValidator validator) {
public void setReversed(boolean reversed);

// connectivity queries

public ArrayList outgoingNeighborsOf(DirectedGraph g, Object v);

public ArrayList incomingNeighborsOf(DirectedGraph g, Object v);

public int outDegreeOf(DirectedGraph g, Object v);

public int inDegreeOf(DirectedGraph g, Object v);

}

// edge validator used within rules

public interface EdgeValidator {
public boolean isEdgeValid(Edge e);

}
}

B.2.9 HierarchyChangeEvent

A change in a hierarchy. This event encapsulates changes both to graph and to its
superimposed cluster hierarchy; a single HierarchyChangeEvent should allow a clustered
graph built upon that hierarchy to update itself completly.

Since all events are delivered to listeners after being performed on their source, re-
moved clusters will no longer be attached to the current hierarchy. In order to match
“old” clusters to “new” ones, the getMatchedClusters() method is provided.

public class HierarchyChangeEvent {

// construction

public HierarchyChangeEvent(ClusterHierarchy source, String description);

178 Chapter B. Implementation notes

public void insertRemovedCluster(Cluster parent, Cluster removed);

public void insertAddedCluster(Cluster parent, Cluster added);

public void augmentChangesWithAddedAndRemoved();

// root changes (entire hierarchy is overhauled)

public void setRootChange(Cluster oldRoot);

public boolean isRootChange();

// initialization & query

public HashMap<Cluster,Cluster> getMatchedClusters();

public HashMap<Cluster,ArrayList<Cluster>> getAddedClusters();

public HashMap<Cluster,ArrayList<Cluster>> getRemovedClusters();

public HashSet<Cluster> getChangedClusters();

public HashSet<Edge> getAddedEdges();

public HashSet<Edge> getRemovedEdges();

// query

public ClusterHierarchy getSource();

public String getDescription();

public Object getVisibleRepresentativeFor(Object v, Slice s);

public Cluster getMatchedVersion(Cluster alien);

}

B.2.10 ClusteredGraph

Clustered graphs include numerous methods to create and manage cluster expansions
and collapses triggered by graph navigation. The degree-of-interest algorithm used for
implementing a Furnas-style semantical fisheye lens is also located within this class.

Special care must be given to update the graph after a change of hierarchy or graph
structure. This logic is encapsulated within the hierarchyChangePerformed() method.

public class ClusteredGraph extends BaseGraph

implements HierarchyChangeListener, ClusteringChangeListener {

// creation

public ClusteredGraph(ClusterHierarchy hierarchy);

// access

public void setHierarchy(ClusterHierarchy hierarchy);

B.2 Clover API 179

public ClusterHierarchy getHierarchy();

public BaseGraph getBase() {
public Slice getSlice() {

// clustering event management / hierarchy event reception

public void addClusteringChangeListener(ClusteringChangeListener l);

public void removeClusteringChangeListener(ClusteringChangeListener l);

public void clusteringChangePerformed(ClusteringChangeEvent evt);

public void hierarchyChangePerformed(HierarchyChangeEvent hce);

// query and set PoI; setting the PoI may trigger a clustering event

public Object getPointOfInterest();

public void setPointOfInterest(Object v);

// event creation

public ClusteringChangeEvent createCollapseEvent(Object v);

public ClusteringChangeEvent createExpandEvent(Object v);

public ClusteringChangeEvent createMakeVisibleEvent(Object v);

public ClusteringChangeEvent createPoIChangeEvent(Object nextPoI,

Set frozen, int focusSize, int maxClusters);

// extend behaviours from BaseGraph

public String getId(Object vertex);

public String getVertexLabel(Object v);

public String getEdgeLabel(Edge e);

}

B.2.11 Slice

A slice is the set of clusters which are currently visible within a clustered graph. As
such, it should be a cut-set of the graph hierarchy. During application of changes found
in a hierarchy change event, however, gaps may occur; the findHoles() returns a list of
such gaps.

Other important methods include expansion and collapse of clusters within the slice,
location of differences between two given slices, and location of the “visible representa-
tives” for any given cluster.

public class Slice extends HashSet<Cluster> {

// creation

180 Chapter B. Implementation notes

public Slice();

public Slice(Collection<Cluster> collection);

// check for malformed slices

public ArrayList<Cluster> findHoles(Cluster root);

// expand, collapse

public ArrayList<Cluster> expand(Cluster c);

public ArrayList<Cluster> collapse(Cluster c);

public void collapseAllExcept(Set<Cluster> toPreserve);

// find difference between two slices of same hierarchy

public int diff(Slice s2, ArrayList<Cluster>toExpand,

ArrayList<Cluster>toCollapse);

// query; mostly for visible ascendants and descendants

public ArrayList<Cluster> getDescendantsOf(Cluster c);

public Cluster getRepresentativeFor(Cluster c);

public boolean containsClusterOrAncestor(Cluster c);

public boolean isCovered(Cluster c);

public boolean isUncovered(Cluster c);

public ArrayList<Cluster> clustersWithEdgesFrom(Cluster c);

}

B.2.12 ClusteringChangeEvent

Cluster change events are issued to animators and trees to notify them of one or more
expansions and collapses within a slice. Once commit() has been called, the individual
changes will have been ordered so that their execution one after another is guaranteed
to succeed. This is important because, for instance, it is an error to try to expand a clus-
ter before it has been made visible; and this may require expanding another cluster first.

public class ClusteringChangeEvent {

// creation & construction

public ClusteringChangeEvent(ClusteredGraph source,

Object initialPoI, Object finalPoI,

String description);

public void addCollapsed(Cluster c);

public void addExpanded(Cluster c);

B.2 Clover API 181

// query

public Object getInitialPoI();

public Object getFinalPoI();

public ClusteredGraph getSource();

public String getDescription();

// undo support

public ClusteringChangeEvent getUndoEvent();

public boolean isUndoEvent();

// execution on top of clustered graph

public void commit(ClusteredGraph g);

// post-execution query; collapses and executions are ordered

public ArrayList<ClusteringAction> getExpanded();

public ArrayList<ClusteringAction> getCollapsed();

// individual expansion or collapse within the main event

public static class ClusteringAction {
public Cluster getCluster();

public StructureChangeEvent getStructureChange();

public int getLevel();

}
}

B.2.13 ViewGraph

View graphs act as bridges, including within them a JGraphModelAdapter which is used
by the BaseView or ClusterView to actually represent the graph.

Multiple methods for decorating vertices are defined; additionally, a “connectivity in-
spector” is provided, in charge of locating connected components within the graph. This
is specially important during layout, since vertices from different components should
usually not affect the fine placement of each other; and components themselves should
not overlap.

public class ViewGraph extends ListenableDirectedWeightedGraph

implements JGraphModelAdapter.CellFactory {

// constructor and base graph access

182 Chapter B. Implementation notes

public ViewGraph(BaseGraph base);

public BaseGraph getBase();

public void setBase(BaseGraph base);

// bridge to BaseView

public JGraphModelAdapter getModelAdapter(

AttributeMap vertexAttribs,

AttributeMap edgeAttribs);

public ArrayList getCells();

// interface vertex and edge creation and decoration

public void addVertex(Object v, Rectangle2D initialBounds);

public DefaultEdge createEdgeCell(Object o);

public DefaultGraphCell createVertexCell(Object o);

public void decorateVertexCell(DefaultGraphCell c);

public void decorateEdgeCell(DefaultEdge de);

// find connected components in displayed graph

public ConnectivityInspector getConnectivityInspector();

// labels and tooltips that will be shown in interface

public String getVertexLabel(Object o);

public String getEdgeLabel(Edge e);

public String getVertexToolTip(Object o);

public String getEdgeToolTip(Edge e);

}

B.2.14 BaseView

This class extends JGraph’s JGraph class. Additions include a “layout zoom”, used
to alter the distances between vertices without scaling the vertices or edges themselves,
and better support for panning and zooming.

An animator is used to execute animation plans, which can cover layout changes,
animations of changes to the graph’s structure, or simple rollover highlights.

public class BaseView extends JGraph implements Printable {

// creation and access

public BaseView(ViewGraph viewGraph);

public ViewGraph getViewGraph();

B.2 Clover API 183

public BaseGraph getBase();

public void setBase(BaseGraph base);

// ’layout zoom’ support

public double getLayoutZoom();

public void setLayoutZoom(double val);

// zoom and pan

public void setRelativeCenter(Point2D p, double zoomDiff);

public void setCenter(Point2D desiredCenter);

// vertex and edge labels and tooltips

public String convertValueToString(Object cell);

public String getToolTipText(MouseEvent event);

// animation

public Animator getAnimator();

public void setAnimator(Animator animator);

public AnimationPlan getCurrentPlan();

public void setCurrentPlan(AnimationPlan currentPlan);

// printing support

public int print(Graphics graphics,

PageFormat pageFormat, int pageIndex);

// save and restore

public void save(Element e);

public void restore(Element e);

}

B.2.15 ClusterView

Cluster views deal with a host of navigation issues encountered when representing clus-
tered graphs, and include a “point of interest” – the vertex around which degree of
interest will be calculated.

Besides the point of interest, other factors that affect automatic visibility recalcula-
tion include focus size, maximum concurrently displayed clusters, and “frozen” vertices,
which will not be expanded or collapsed due to automatic visibility recalculation. Visi-
bility recalculation can be toggled on or off using the setClusterLock() method.

184 Chapter B. Implementation notes

Cluster navigation is saved in a stack, allowing navigational actions to be undone
or redone. This lowers the negative effects of a “bad” navigational action. To prevent
users from taking such actions, the default behaviour when hovering the mouse over a
vertex displays an aura over vertices that will be affected by a change of focus to that
vertex; this uses the results of calling getPoIChangeEventFor().

public class ClusterView extends BaseView

implements ClusteringChangeListener {

// creation and basic access, including degree of interest parameters

public ClusterView(ViewGraph viewGraph);

public ClusterHierarchy geHierarchy();

public void setBase(BaseGraph base);

public Slice getSlice();

public int getFocusSize();

public void setFocusSize(int focusSize);

public int getMaxClusters();

public void setMaxClusters(int maxClusters);

// frozen vertices do not participate in cluster expand/collapse

public boolean isFrozen(Object v);

public void setFrozen(Object v, boolean b);

// when cluster-lock is active, no automatic DoI is performed

public void setClusterLock(boolean clusterLock);

public boolean isClusterLock();

// visibility, point of interest and cluster navigation history

public void makeVertexVisible(Object v);

public ClusteringChangeEvent getPoIChangeEventFor(Object vertex);

public Object getCurrentPoI();

public void setCurrentPoI(Object anotherPoI, boolean recalculateDoI)

public void nextNavAction();

public void prevNavAction();

public void clusteringChangePerformed(ClusteringChangeEvent evt);

// save and restore

public void save(Element e);

public void restore(Element e);

B.2 Clover API 185

}

B.2.16 Animator

Animators are in charge of responding to changes in the graph and animating them in a
view; this requires incremental layout, which is performed by calling a layout manager
with a specific algorithm.

Finished layouts are kept in a layout cache, allowing fast return to previous views,
and consistent results after changes are undone. Manual layout changes are also ac-
cepted via the resync() methods.

public class Animator implements StructureChangeListener {

// construction and access

public Animator(BaseView view);

public void setView(BaseView view);

public LayoutManager getLayoutManager();

public LayoutCache getLayoutCache();

public void setLayoutCache(LayoutCache layoutCache);

// initial layout (non-animated), incremental animated relayout

public void start();

public void doIncrementalLayout();

// animate a smooth transition to a layout that reflects this change

public void structureChangePerformed(StructureChangeEvent evt);

// synchronize with real layout, or with changes contained in event

public void resync();

public void resyncFromEvent(GraphModelEvent evt);

// save and restore

public void restore(Element e);

public void save(Element e);

// first calculates incremental layout, then animates

protected InterpolatedMovementStep incrementalLayoutStep(

HashSet freeViews, int n, boolean useOldPositions) { . . . }
}

186 Chapter B. Implementation notes

B.2.17 ClusterAnimator

Cluster animators extend normal animators with support for ClusteringChangedEvents;
since any clustering change event also involves addition and removal of vertices and
edges, their structure change events are ignored, to be animated as clustering changes
instead. Animation is performed using a host of dedicated steps.

public class ClusterAnimator extends Animator
implements ClusteringChangeListener {

// construction
public ClusterAnimator(ClusterView view);

public void setView(BaseView view);

// structure changes triggered by clustering changes get ignored. . .
public void structureChangePerformed(StructureChangeEvent evt);
// . . . since they will be received and processed here
public void clusteringChangePerformed(ClusteringChangeEvent evt);

// color hues used to highlight expanding and contracting vertices
public float getExpandHue();
public float getCollapseHue();

// special animation steps used in clustering change animation
private class SwitchAndUpdateLayoutStep

extends TwoPhaseStep { . . . }
private class WaitAndHighlightStep

extends AbstractStep { . . . }
private class ShiftFocusStep

implements AnimationStep { . . . }
private class WaitAndCollapseStep

extends InterpolatedMovementStep { . . .}
}

B.2.18 AnimationPlan

Animation plans are associated with actual views (subclasses of BaseView). At most
one plan can be in execution at any given moment, although it is possible to append
an additional plan to another one already in execution. A priority mechanism is used
to resolve ties: higher-priority plans replace lower-priority plans, while equal-priority
plans are appended.

B.2 Clover API 187

Plans execute individual steps, which can be performed either in sequence or in
parallel. Steps that are expected to execute in parallel are said to be merged, and the
duration of a merged step is that of its longest-running step.

public class AnimationPlan {

// priories for real changes, layout changes, and simple highlights

public static final int STRUCTURE PRIORITY = 10;

public static final int RELAYOUT PRIORITY = 2;

public static final int ROLLOVER PRIORITY = 1;

// creation and initalization

public AnimationPlan(BaseView view, int priority);

public void addStep(AnimationStep step);

public void mergeStep(AnimationStep step);

// query and access

public boolean isRunning();

public BaseView getView();

public void setView(BaseView view);

public int getPriority();

public void setPriority(int priority);

public String getDescription();

public ArrayList<ArrayList<AnimationStep>> getMoves();

// (try to) run; plans that must be stoped are terminated() first

public void run();

public void terminate();

// when running, timer calls actionPerformed, advancing through moves

private class PlanRunner implements Runnable, ActionListener {
public boolean isRunning();

public void finish();

public void run();

public void next();

public void actionPerformed(ActionEvent evt);

}
}

188 Chapter B. Implementation notes

B.2.19 LayoutManager

A layout manager acts as a bridge between the actual layout algorithms and the view
which they are in charge of laying out. Layout is performed on arrays of Nodes, which are
more efficient to access than the views themselves. Use of these arrays also decouples
layout from the view itself, allowing layout algorithms to run on “virtual” positions.
Recall that layout animation depends on interpolating between these final positions
and the current vertex positions.

Layout managers can also save and restore a layout to and from a layout cache,
enabling quick reuse of previous layouts when a match is found.

public class LayoutManager extends Observable implements Runnable {

// initialize with a set of vertices, or load them from a view

public LayoutManager(Node[] N);

public LayoutManager(BaseView view);

// run until finished or setCanContinue flag raised; then call commit

public synchronized void run();

public void setCanContinue(boolean b);

public void commit(String s);

// apply layout changes to view

public void applyChanges(BaseView view);

// set vertices to layout, time constraints and algorithms

public void setNodes(Node[] nodes);

public void setNodes(BaseView view, boolean useOldPositions);

public int getMaxTime();

public void setMaxTime(int maxTime);

public LayoutAlgorithm getAlgorithm();

public void setAlgorithm(LayoutAlgorithm algorithm);

// use cache to restore or save vertex positions

public double setNodesFromCache(LayoutCache cache,

BaseView view, double minScore);

public void addNodesToCache(LayoutCache cache, BaseView view);

// direct access to vertex layout

public Node[] getNodes();

B.2 Clover API 189

}

B.2.20 LayoutAlgorithm

This abstract class is simple and flexible enough to implement any layout algorithm.
The multiple move() methods apply the displacents of each node to the node itself. For
certain algorithms, the total amount of displacement is important to determine termi-
nation; in others, displacement must be bounded to avoid excessive jitter.

public abstract class LayoutAlgorithm {

// initialization, layout until layoutFinished or forced termination
public void init(Node[] N);

public abstract void layout();;
public boolean layoutFinished();

public void end();

// bounded movement, free movement, dry run (return total displacement)
public float move(double bound);

public float move();
public float simulateMove();

}

B.2.21 Node

This class is used to hold an alternative representation of the position and size of
a visible vertex. Use of this alternative representation decouples visible layout from
“layout-in-progress”. Additionally, JGraph does not provide easy access to bounding
boxes (arrays should be much more efficient), many algorithms are designed to operate
on “point” vertices where width and height is ignored, and it is often necessary to store
vertex displacements prior to actually performing them.

Multiple utility methods to synchronize layout parameters with the view or the view
with the layout parameters have been implemented.

public class Node {

// vertex data; includes connected component ID and interface vertex ‘peer’
public float x, y, x0, y0, w, h, dx, dy;

public int component;
public int[] edges;
public float[] strengths;

190 Chapter B. Implementation notes

public boolean frozen;

public Object peer;

// load values from a string or rectangle

public void sync(String s);

public void sync(Rectangle2D r, int comp, boolean frozen,

double layoutZoom);

// build

public Node(Object o, Rectangle2D bounds, int

component, boolean frozen, double layoutZoom);

public static Node[] loadNodes(Node[] N, Graph g,

BaseView view,

ConnectivityInspector ci,

Node[] oldBounds);

// query (but note public access to data)

public Rectangle2D getBounds()

public Rectangle2D getBounds(Rectangle2D r)

// get bounds

public static Point2D getCenterCoords(Map<Object,Rectangle2D> map,

Collection vertices);

public static Rectangle2D getBounds(Node[] N, double layoutZoom);

// get/set vertex positions

public static HashMap<Object,Rectangle2D> getPositions(

Node[] N, BaseView view, boolean copyBounds) {
public static Map getChangeMap(Node[] N, int x0, int y0,

double layoutZoom)

public static void setPositions(Map<Object,Rectangle2D> map,

Node[] N, BaseView view);

}

B.2.22 LayoutCache

This is a simple cache that allows retrieval of frequently-used layouts. Each layout can
be identified by a layout key. “Layout keys” are simple string representations of a graph.

Matching is sloppy; if no exact match can be found, all layouts are explored and the
next-best match is used. Although the time required to find a sloppy match may be

B.3 File formats 191

high, it will always be low compared to performing the actual layout.

public class LayoutCache {

// create, change size, clear
public LayoutCache(int maxSize);
public void setSize(int maxSize);
public void clear();

// representation of a hit: a score, and a set of rectangles
public static class CacheHit {

public HashMap<Object,Rectangle2D> getData();

public double getScore();
}

// lookup and add
public CacheHit get(CacheKey key, double minScore);
public void put(CacheKey key, HashMap<Object,Rectangle2D> layout);

// save and restore
public void save(Element e, BaseGraph g);

public void restore(Element e, BaseGraph g);

}

B.3 File formats

XML has been used for all saved files, due to the widespread availability of parsers
and manipulation tools, and its cross-platform nature. Redacted examples have been
included to illustrate file formats; these examples are easier to read than the actual
XML Schemas used for file format specification.

B.3.1 Clover save file

This format is used to save Clover-specific information on graph views, filters, clus-
tering hierarchies and layout cache. Cluster hierarchies and/or filters can be shared
between different views. The following example save-file contains a cluster hierarchy, a
filter, and a view definition with a single layout cache entry.

<?xml version="1.0" encoding="UTF-8"?>

<clover version="1.0c" requiresVersion="1.0b"

date="Tue Apr 01 13:56:23 CEST 2007">

192 Chapter B. Implementation notes

<shared>

<hierarchy id="1">

<cluster>

<vertex id="T_Traffic" />

<cluster>

<!-- ... rest of the cluster hierarchy -->

</cluster>

</cluster>

<engine engineClass="eps.woted.graph.WtRuleClusterer" />

</hierarchy>

<filter id="2" filterClass="eps.woted.graph.WtProfileFilter">

<!-- ...filter constraints -->

</filter>

<!-- ... more hierarchies or filters -->

</shared>

<view zoom="1.0"

topCorner="0.0,0.0"

poiVertex="T_EduVial" focusSize="1" maxClusters="16"

isClusterLock="false"

frozenVertices="" visibleSlice= [...]

hierarchyId="1">

<layoutCache maxSize="30">

<entry key= [...] >

<box id="T_EduVial"

x="227.69" y="235.15"

w="120.0" h="32.0" />

<!-- ... one box per visible vertex -->

</entry>

<!-- ... the rest of the layout cache entries -->

</layoutCache>

<animatorProps

maxInterpolationTime="2000" initialLayoutArea="300"

initialLayoutTime="4000" cacheSloppynessLimit="0.9"

incrementalRefinementPasses="10" />

</view>

<!-- ... more views-->

</clover>

B.3.2 Wotan course description

This format is used to store the description of a Wotan course structure. No actual
course contents are included; the contents themselves are only referenced by versions
within fragments. The course description file includes a series of tasks, which may

B.3 File formats 193

include rules that reference other tasks, and references to fragments; a series of frag-
ments, which include one or more versions; and a series of features, used to prime the
user models of new users with course-specific characteristics.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<twCourse maintask="EduVial" name="traffic" xmlns="http://tangow.ii.uam.es/tangowml">

<description lang="en">Traffic</description>

<description lang="es">Curso de trafico</description>

<task fragments="ea1 ea2 ea3 ea4 ea5" id="S_Ag_Exer" name="S_Ag_Exer" type="P">

<description lang="en">Exercises about signals by traffic agents</description>

<description lang="es">Ejercicios de se~nales de agentes</description>

<condition>map.task.S_Ag_Exer.grade >= .5</condition>

</task>

<task id="S_Prio" name="S_Prio" type="T">

<description lang="en">Sign priority</description>

<description lang="es">Prioridad de las se~nales</description>

<rule name="RP" seq="A" subtasks="S_Prio_Theo S_Prio_Exam">

<condition>map.course.age == "old"</condition>

</rule>

<rule name="RPPP" seq="A" subtasks="S_Prio_Theo S_Prio_Exam">

<condition>map.course.experience == "novice"</condition>

</rule>

<condition>true</condition>

</task>

<task id="S_Circ" name="S_Circ" type="T">

<description lang="en">Circumstantial signs</description>

<description lang="es">Se~nalizacion circunstancial</description>

<rule name="R1" seq="A" subtasks="S_Circ_Theo S_Circ_Exer">

<condition>(map.task.S_Vertical.grade >= .5)</condition>

</rule>

<condition>true</condition>

</task>

<!-- ... many other task descriptions here -->

<fragment id="ea5">

<version url="ea5/spanish-old-novice.txt">

<condition>0.5 * (map.course.language == "spanish")

+ 0.25 * (map.course.age == "old")

+ 0.125 * (map.course.experience == "novice")</condition>

</version>

<version url="ea5/english-old-novice.txt">

<condition>0.5 * (map.course.language == "english")

+ 0.25 * (map.course.age == "old")

+ 0.125 * (map.course.experience == "novice")</condition>

194 Chapter B. Implementation notes

</version>

</fragment>

<!-- ... many other fragment descriptions here -->

<feature name="language" type="enum">

<description lang="en">Course language</description>

<description lang="es">Idioma del curso</description>

<description lang="de">Kurssprache</description>

<description lang="it">Lingua di corso</description>

<range values="english,spanish,german,italian">

<description lang="en">English,Spanish,German,Italian</description>

<description lang="es">Inglés,Espa~nol,Alemán,Italiano</description>

<description lang="de">Englisch,Spanisch,Deutsch,Italienish</description>

<description lang="it">Inglese,Spagnolo,Tedesco,Italiano</description>

</range>

</feature>

<!-- ... many other course features here -->

</twCourse>

B.3.3 Wotan user model

This format is used to store a user model for a Wotan adaptive course, assuming the
use of the default Tangow-based adaptation engine. User models are divided into two
different files, the course independent or global UM, and course overlays. Overlays can
be used to restore a

Course-independent user model

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<user xmlns="http://tangow.ii.uam.es/userml">

<fullName>

<name>Fred</name>

<surname>Flintstone</surname>

</fullName>

<pAddress>

<address>C/Antonio Sancha, 66.</address>

<postalId>28042</postalId>

<region>Madrid</region>

<country>Espa~na</country>

</pAddress>

<eAddress>

<telephone>915554308</telephone>

<telephone>655579659</telephone>

<email>fred.flintstone@gmail.com</email>

<fax/>

B.3 File formats 195

<web>http://www.fredssite.com</web>

</eAddress>

<age>25</age>

<language>en</language>

<courses>

<course id="Traffic" location="file://./users/fred"/>

<!-- ... other individual course descriptions here -->

</courses>

<userAtt key="name" value="Fred"/>

<userAtt key="age" value="25"/>

<userAtt key="language" value="en"/>

</user>

Course Overlay

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<course course="Traffic"

created="2005-06-09T15:41:04.731+02:00" updated="2005-06-09T16:03:34.846+02:00"

xmlns="http://tangow.ii.uam.es/courseml">

<profile>

<feature name="age" value="old"/>

<feature name="language" value="spanish"/>

<feature name="experience" value="novice"/>

</profile>

<task name="EduVial">

<rule name="R00">

<attribute name="active" value="true"/>

</rule>

<attribute name="rule" value="R00"/>

<attribute name="current" value="false"/>

<attribute name="available" value="true"/>

<attribute name="grade" value="0"/>

<attribute name="complete" value="0.98"/>

<attribute name="interest" value="0.1"/>

<attribute name="visits" value="1"/>

</task>

<!-- ... many other task descriptions here -->

<task name="S_Vert_M_Exer">

<attribute name="current" value="false"/>

<attribute name="available" value="true"/>

<attribute name="grade" value="0.6"/>

<attribute name="complete" value="1.0"/>

<attribute name="interest" value="0.1"/>

<attribute name="visits" value="1"/>

<attribute name="parent" value="S_Vert_Mean"/>

196 Chapter B. Implementation notes

</task>

<fragment name="emergencias">

<version name="emergencias/spanish-old-novice.html"/>

<version name="emergencias/english-old-novice.html"/>

</fragment>

<fragment name="evs1">

<version name="evs1/spanish-old-novice.txt"/>

<version name="evs1/english-old-novice.txt"/>

<attribute name="grade" value="1.0"/>

</fragment>

<!-- ... many other fragments here -->

<fragment name="vrapida">

<version name="vrapida/spanish-old-novice.html"/>

<version name="vrapida/english-old-novice.html"/>

</fragment>

<log>

<entry message="First go at course"

timestamp="2005-06-09T15:41:04.732+02:00" type="SESSION-START"/>

<entry message="Leaving session"

timestamp="2005-06-09T16:03:34.936+02:00" type="SESSION-END"/>

<!-- ... many other log entries here -->

</log>

</course>

Bibliography

[1] JGraph and JGraph Layout Pro user manual.
http://www.jgraph.com/pub/jgraphmanual.pdf. Last visited, Dec. 2006. 70,
75, 91, 167

[2] Ariadne Foundation website.
http://www.ariadne-eu.org/. Last visited, Jan. 2007. 46

[3] Google Personalized Search.
http://www.google.com/psearch. Last visited, Jan. 2007. 46

[4] IEEE Standard for Learning Object Metadata.
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf.
Last visited, Jan. 2007. 46

[5] Instructional Management System (IMS) website.
http://www.imsglobal.org/. Last visited, Jan. 2007. 46

[6] JGraphPad user manual.
http://www.jgraph.com/pub/jgraphpadmanual.pdf. Last visited, Apr. 2007. 74

[7] MERLOT website.
http://www.merlot.org/merlot/index.htm. Last visited, Jan. 2007. 46

[8] Prefuse website.
http://prefuse.org. Last visited, Apr. 2007. 76

[9] RSS 2.0 Specification.
http://www.rssboard.org/rss-specification. Last visited, Jan. 2007. 46

[10] Sharable Content Object Reference Model (SCORM) specification, v3.
http://www.adlnet.gov/scorm/20043ED/Documentation.cfm. Last visited,
Jan. 2007. 47

[11] TouchGraph, commercial website.
http://touchgraph.com. Last visited, Apr. 2007. 72, 73

http://www.jgraph.com/pub/jgraphmanual.pdf
http://www.ariadne-eu.org/
http://www.google.com/psearch
http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_Final_Draft.pdf
http://www.imsglobal.org/
http://www.jgraph.com/pub/jgraphpadmanual.pdf
http://www.merlot.org/merlot/index.htm
http://prefuse.org
http://www.rssboard.org/rss-specification
http://www.adlnet.gov/scorm/20043ED/Documentation.cfm
http://touchgraph.com

198 BIBLIOGRAPHY

[12] TouchGraph, open source website.
http://sourceforge.net/projects/touchgraph. Last visited, Apr. 2007. 72

[13] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The lorel query
language for semistructured data. International Journal on Digital Libraries,
1:68–88, Apr. 1997. 21

[14] E. Alfonseca, D. Perez, and P. Rodrıguez. Welkin: automatic generation of adap-
tive hypermedia sites with NLP techniques. Lecture Notes in Computer Science,
3140:617–618, 2004. 45

[15] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley. Classes of small-
world networks. Proceedings of the National Academy of Sciences, 97(21):11149–
11152, 2000. 15, 16, 17

[16] L. Aroyo, D. Dicheva, and A. Cristea. Ontological Support for Web Courseware
Authoring. In Proc. Int. Conf. On Intelligent Tutoring Systems (ITS’02), pages
270–280. Springer, 2002. 48, 72

[17] D. . Auber, Y. Chiricota, F. Jourdan, and G. Melancon. Multiscale visualization
of small world networks. In Proceedings of the IEEE Symposium on Information
Visualization, InfoVis’03, pages 75–81, 2003. 15, 17, 20, 22, 73

[18] D. Auber, M. Delest, and Y. Chiricota. Strahler based graph clustering using
convolution. In Proceedings of the Eighth International Conference on Information
Visualisation, InfoVis’04, pages 44–51, 2004. 73

[19] D. Auber and F. Jourdan. Interactive Refinement of Multi-scale Network Clus-
terings. In Proceedings of the Ninth International Conference on Information
Visualisation, InfoVis’05, pages 703–709, 2005. 65, 73

[20] P. Auillans and O. Baudon. Graph clustering for very large topic maps. In
P. Gennusa, editor, Proceedings of XML-Europe 2001, May 2001 2001. 17

[21] C. Bachmaier, F. J. Brandenburg, M. Forster, P. Holleis, and M. Raitner. Grav-
isto: Graph visualization toolkit. In J. Pach, editor, Proc. Graph Drawing, GD
2004, volume 3383 of Lecture Notes in Computer Science, pages 502–503. Springer,
2005. 71, 73

[22] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. ACM
Press / Addison-Wesley, 1999. 25, 47

[23] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286:509–512, 1999. 15, 16, 17

http://sourceforge.net/projects/touchgraph

BIBLIOGRAPHY 199

[24] V. Batagelj and A. Mrvar. Pajek-Program for Large Network Analysis. Connec-
tions, 21(2):47–57, 1998. 73

[25] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algo-
rithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River, New
Jersey 07458, U.S.A, July 1998. 27

[26] B. B. Bederson, J. Grosjean, and J. Meyer. Toolkit design for interactive struc-
tured graphics. IEEE Trans. Software Eng, 30(8):535–546, 2004. 64, 74, 77

[27] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific Amer-
ican, 284(5):28–37, 2001. 48

[28] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang. Complex net-
works: Structure and dynamics. Physics Reports, 424(4-5):175–308, 2006. 13, 16,
17

[29] K. Boerner, C. Chen, and K. W. Boyack. Visualizing knowledge domains. Annual
Review of Information Science and Technology, 37(1):179–255, 2003. 33

[30] R. A. Botafogo. Cluster analysis for hypertext systems. In Proceedings of the
16th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 116–125. ACM Press, 1993. 19

[31] J. Bravo and A. Ortigosa. Validating the evaluation of adaptive systems by user
profile simulation. Proceedings of Workshop Held at the Fourth International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH2006),
pages 479–483, June 2006. 152

[32] T. Bray, M. Pilgrim, S. Ruby, and et al. The atom syndication format. IETF
Request for Comments, 4287:1–43, Dec. 2005. 46

[33] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the Web. Computer Networks,
33(1-6):309–320, 2000. 15, 16

[34] P. Brusilovsky. Methods and techniques of adaptive hypermedia. User Modeling
and User-Adapted Interaction, 6(2-3):87–129, 1996. 42

[35] P. Brusilovsky. Adaptive Hypermedia. In User Modeling and User-Adapted Inter-
action, volume 11, pages 87–110. Kluwer Academic Publishers, The Netherlands,
2001. 42, 44, 45

200 BIBLIOGRAPHY

[36] P. Brusilovsky. Developing adaptive educational hypermedia systems: From de-
sign models to authoring tools. In Authoring Tools for Advanced Technology Learn-
ing Environment. Dordrecht: Kluwer Academic Publishers, pages 377–409, 2003.
51, 53

[37] P. Brusilovsky, E. W. Schwarz, and G. Weber. ELM-ART: An intelligent tutoring
system on world wide web. In ITS ’96: Proceedings of the Third International
Conference on Intelligent Tutoring Systems, pages 261–269, London, UK, 1996.
Springer-Verlag. 45

[38] A. L. Buchsbaum and J. R. Westbrook. Maintaining hierarchical graph views. In
Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms,
pages 566–575. Society for Industrial and Applied Mathematics, 2000. 22, 66, 67,
68

[39] S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors. Readings in Infor-
mation Visualization — Using Vision to Think. Morgan Kaufmann, 1999. 25,
62

[40] R. M. Carro. Un mecanismo basado en tareas y reglas para la creación de sistemas
adaptativos: aplicación a la educación a través de Internet. PhD thesis, Escuela
Politécnica Superior de la Universidad Autónoma de Madrid, Sept. 2001. 109

[41] R. M. Carro, E. Pulido, and P. Rodriguez. TANGOW: a Model for Internet
Based Learning. International Journal on Continuing Education and Life-Long
Learning, 11(1–2):25–34, 2001. 45, 54, 109

[42] C. Chen. Editorial. Information Visualization, 1:1–4, 2002. 25

[43] L. Chittaro. Information visualization and its application to medicine. Artificial
Intelligence in Medicine, 22(2):81–88, 2001. 26

[44] M. Consens and A. Mendelzon. Hy+: a hygraph-based query and visualization
system. In SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD international
conference on Management of data, pages 511–516, New York, NY, USA, 1993.
ACM Press. 21

[45] P. de Bra, A. Aerts, D. Smits, and N. Stash. AHA! Version 2.0, More Adaptation
Flexibility for Authors. In Proceedings of the AACE ELearn’2002 conference,
pages 240–246, Oct. 2002. 54

[46] P. de Bra and L. Calvi. Aha! an open adaptive hypermedia architecture. New
Review of Hypermedia and Multimedia, 4:115–140, 1998. 43, 45, 50

BIBLIOGRAPHY 201

[47] C. Dichev, D. Dicheva, and L. Aroyo. Using Topic Maps for Web-based Education.
Advanced Technology for Learning, 1(1):1–7, 2004. 72, 73

[48] D. Dicheva and C. Dichev. Authoring educational topic maps: Can we make it
easier? In ICALT, pages 216–218. IEEE Computer Society, 2005. 48, 72

[49] H. A. do Nascimento and P. Eades. User Hints for Directed Graph Drawing.
Lecture Notes in Computer Science, 2265:205, Jan. 2002. 71

[50] Dwyer and Eckersley. Wilmascope – an interactive 3D graph visualisation system.
In GDRAWING: Conference on Graph Drawing (GD), 2001. 32, 150

[51] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,
1984. 28

[52] P. Eades and M. L. Huang. Navigating clustered graphs using force-directed meth-
ods. JGAA: Special Issue on Selected Papers from 1998 Symp. Graph Drawing,
4(3):157–181, 2000. 22, 37, 71

[53] J. Eklund and P. Brusilovsky. InterBook: An adaptive tutoring system. UniServe
Science News, 12:8–13, 1999. 45

[54] J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. Graphviz-open
source graph drawing tools. Graph Drawing, 2265:483–485, 2001. 83

[55] R. Felder and L. Silverman. Learning and Teaching Styles in Engineering Educa-
tion. Engineering Education, 78(7):674–681, 1988. 49

[56] M. Freire. Visualization of hypermedia course structures. Master’s thesis, Escuela
Politécnica Superior, Universidad Autónoma de Madrid, Sept. 2003. 130, 132

[57] M. Freire. WOTAN documentation.
http://tangow.ii.uam.es/wotan. Last visited, jan 2007. 50, 109

[58] M. Freire, M. Cebrian, and E. del Rosal. Ac: An integrated source code
plagiarism detection environment. Pre-print manuscript, available at
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0703136, May
2007. 136, 138

[59] M. Freire and P. Rodŕıguez. Comparing graphs and trees for adaptive hypermedia
authoring. In 3rd International Workshop on Authoring of Adaptive and Adaptable
Educational Hypermedia (A3EH) at the12th International Conference on Artificial
Intelligence in Education (AIED), pages 4–12. AIED’05, 18 July 2005. 121

[60] M. Freire and P. Rodŕıguez. Preserving the mental map in interactive graph
interfaces. In Proceedings of Advanced Visual Interfaces (AVI), pages 270–273,
New York, NY, USA, May 2006. ACM Press. 37

http://tangow.ii.uam.es/wotan
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0703136

202 BIBLIOGRAPHY

[61] M. Freire and P. Rodŕıguez. Graphs versus trees in adaptive hypermedia author-
ing. Submitted to the Journal of Digital Information, April 2007. 121

[62] C. Friedrich and P. Eades. Graph drawing in motion. Journal of Graph Algorithms
and Applications, 6(3):353–370, 2002. 38, 76, 77, 100

[63] C. Friedrich and P. Eades. Navigating clustered graphs using force-directed meth-
ods. In journal of graph algorithms and applications, volume 6, pages 353–370,
2002. 37

[64] T. Fruchterman and E. Reingold. Graph Drawing by Force-directed Placement.
Software- Practice and Experience, 21(11):1129–1164, 1991. 29, 94

[65] G. W. Furnas. Generalized fisheye views. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 16–23. ACM Press, 1986. 35, 88

[66] G. W. Furnas. Effective view navigation. In CHI ’97: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 367–374, New York,
NY, USA, 1997. ACM Press. 23, 87

[67] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Massachusetts, 1994. 62, 75,
89, 93, 171, 176

[68] Garey and Johnson. Crossing number is NP-complete. SIJADM: SIAM Journal
on Algebraic and Discrete Methods, 4:312–316, 1983. 28

[69] S. Garlatti and S. Iksal. A Semantic Web Approach for Adaptive Hypermedia. In
Workshop on Adaptive Hypermedia and Adaptive Web-Based Systems. AH2003.
Twelfth International World Wide Web Conference, 2003. 45

[70] N. Gershon, S. G. Eick, and S. Card. Design: Information visualization. interac-
tions, 5(2):9–15, 1998. 25

[71] R. Grimaldi. Discrete and combinatorial mathematics. Addison-Wesley Reading,
Mass, 1994. 10

[72] A. Gutierrez, P. Pucheral, H. Steffen, and J. Thévenin. Database Graph Views: A
Practical Model to Manage Persistent Graphs. In 20th International Conference
on Very Large Data Bases, pages 391–402. 21

[73] F. V. Harmelen, J. Broekstra, C. Fluit, H. ter Horst, A. Kampman, J. van der
Meer, and M. Sabou. Ontology-based information visualisation. In 5th Interna-
tional Conference on Information Visualization (IV ’01), pages 546–554, Wash-
ington - Brussels - Tokyo, July 2001. IEEE. 21

BIBLIOGRAPHY 203

[74] E. Hartuv and R. Shamir. A clustering algorithm based on graph connectivity.
Inf. Process. Lett., 76(4-6):175–181, 2000. 18, 19

[75] P. A. Haya and G. Montoro. A spoken interface based on the contextual modelling
of smart homes, pages 147–154. Springer Verlag, January 2006. 140

[76] P. A. Haya, G. Montoro, and X. Alamán. A prototype of a context-based ar-
chitecture for intelligent home environments. In R. Meersman and Z. Tari, edi-
tors, CoopIS/DOA/ODBASE, volume 3290 of Lecture Notes in Computer Science,
pages 477–491. Springer, 2004. 140

[77] J. Heer and S. K. Card. DOITrees revisited: scalable, space-constrained visual-
ization of hierarchical data. In M. F. Costabile, editor, AVI, pages 421–424. ACM
Press, 2004. 76

[78] N. Henze and W. Nejdl. Adaptivity in the KBS Hyperbook System. In Proceedings
of the 2nd Workshop on Adaptive Systems and User Modeling on the WWW, 1999.
45, 50

[79] I. Herman, G. Melançon, and M. S. Marshall. Graph Visualization and Navigation
in Information Visualization: A Survey. IEEE Transactions on Visualization and
Computer Graphics, 6(1):24–43, 2000. 27, 30, 32

[80] P. Holleis and F.-J. Brandenburg. QUOGGLES: Query on graphs - A graphical
largely extensible system. In J. Pach, editor, Graph Drawing, 12th International
Symposium, GD ’ 04, volume 3383 of Lecture Notes in Computer Science, pages
465–470. Springer, Sept. 2004. 21, 73

[81] K. Höök, J. Karlgren, A. Wærn, N. Dahlbäck, C. Jansson, K. Karlgren, and
B. Lemaire. A glass box approach to adaptive hypermedia. User Modeling and
User-Adapted Interaction, 6(2):157–184, 1996. 42

[82] X. Huang, P. Eades, and W. Lai. A framework of filtering, clustering and dy-
namic layout graphs for visualization. In V. Estivill-Castro, editor, Proceedings
of the Twenty-Eighth Australasian Computer Science Conference (ACSC2005),
volume 38 of CRPIT, pages 87–96. Australian Computer Society, January 2005.
22, 62, 65, 71

[83] X. Huang and W. Lai. Force-transfer: a new approach to removing overlapping
nodes in graph layout. In CRIPTS ’03: Proceedings of the twenty-sixth Aus-
tralasian computer science conference on Conference in research and practice in
information technology, pages 349–358, Darlinghurst, Australia, Australia, 2003.
Australian Computer Society, Inc. 95, 152

204 BIBLIOGRAPHY

[84] S. Iksal and S. Garlatti. Revisiting and Versioning in Virtual Special Reports.
Third Workshop on Adaptive Hypertext and Hypermedia, 12th ACM Conference
on Hypertext and Hypermedia, Arhus, Denmark, August, 2001. 134

[85] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Inf. Process. Lett., 31(1):7–15, 1989. 28

[86] J. Kay. Learner control. User Modeling and User-Adapted Interaction, 11(1-
2):111–127, 2001. 42

[87] N. Kiesel, A. Schurr, and B. Westfechtel. GRAS, a graph-oriented (software)
engineering database system. Information Systems, 20(1):21–52, 1995. 21

[88] R. Kincaid and H. Lam. Line graph explorer: scalable display of line graphs using
focus+context. In A. Celentano, editor, AVI, pages 404–411. ACM Press, 2006.
138

[89] J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyperbolic
geometry for visualizing large hierarchies. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 401–408. ACM Press/Addison-
Wesley Publishing Co., 1995. 35, 36

[90] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task taxonomy for
graph visualization. In BELIV ’06: Proceedings of the 2006 AVI workshop on
BEyond time and errors, pages 1–5, New York, NY, USA, 2006. ACM Press. 31

[91] Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-oriented
presentation techniques. ACM Trans. Comput.-Hum. Interact., 1(2):126–160,
1994. 33

[92] W. Li, Y. Hara, R. Ito, Y. Kimura, K. Shimazu, Y. Saito, Q. Vu, E. Chang,
D. Agrawal, K. Hirata, et al. PowerBookmarks: a system for personalizable Web
information organization, sharing, and management. In Proceedings of the 1999
ACM SIGMOD international conference on Management of data, pages 565–567.
ACM Press New York, NY, USA, 1999. 46

[93] J. A. Maćıas and P. Castells. Interactive Design of Adaptive Courses, pages 235–
242. Kluwer Academic Publishers, 2001. 53

[94] J. Marks, editor. The Marey Graph Animation Tool Demo, volume 1984 of Lecture
Notes in Computer Science. Springer, 2000. 73

[95] M. S. Marshall, I. Herman, and G. Melançon. An object-oriented design for graph
visualization. Software, Practice and Experience, 31(8):739–756, 2001. 62

BIBLIOGRAPHY 205

[96] S. Milgram. The small world problem. Psychology Today, 1:61, 1967. 13

[97] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental
map. Journal of Visisual Languages and Computing, 6(2):183–210, 1995. 35

[98] B. Naveh and contributors. JGraphT project website.
http://jgrapht.org/. Last visited, Jan. 2007. 64, 73, 81, 165, 170

[99] A. Newell. Unified theories of cognition. Harvard University Press, Cambridge,
MA, USA, 1990. 25

[100] N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, and M. Musen. Creating
Semantic Web contents with Protege-2000. Intelligent Systems, IEEE [see also
IEEE Intelligent Systems and Their Applications], 16(2):60–71, 2001. 48, 74

[101] J. O’Madadhain, D. Fisher, S. White, and Y. Boey. The JUNG (Java Universal
Network/Graph) Framework. Technical report, Technical Report UCI-ICS 03-17.
School of Information and Computer Science, UC Irvine. Irvine, California, 2003.
64, 69, 73, 171

[102] R. Oppermann, R. Rashev, and Kinshuk. Adaptability and adaptivity in learning
systems. In A. Behrooz, editor, Knowledge Transfer (volume II), pages 173–179,
1997. 41

[103] F. Pfeiffer. Implementation eines editors für compound graphen. Diplomarbeit,
University of Passau, 2005. 71, 72

[104] F. Pfeiffer and M. Pröpster. VisnaCom.
http://www.infosun.fim.uni-passau.de/VisnaCom/. Last visited, Apr. 2007.
71, 73, 77

[105] S. Pook, E. Lecolinet, G. Vaysseix, and E. Barillot. Context and interaction
in zoomable user interfaces. In AVI ’00: Proceedings of the working conference
on Advanced visual interfaces, pages 227–231, New York, NY, USA, 2000. ACM
Press. 34

[106] M. Pröpster. Visuelle navigation in compound graphen. Diplomarbeit, University
of Passau, 2005. 71, 72

[107] M. Raitner. HGV: A library for hierarchies, graphs, and views. In S. G. Kobourov
and M. T. Goodrich, editors, Graph Drawing, volume 2528 of Lecture Notes in
Computer Science, pages 236–243. Springer, 2002. 71, 73

[108] M. Raitner. Maintaining hierarchical graph views for dynamic graphs. Technical
report, University of Passau, Feb. 13 2004. 71

http://jgrapht.org/
http://www.infosun.fim.uni-passau.de/VisnaCom/

206 BIBLIOGRAPHY

[109] M. Raitner. Efficient Visual Navigation of Hierarchically Structured Graphs. PhD
thesis, Fakultät für Mathematik und Informatik, Universität Passau, Feb 2006.
22, 65, 66, 68, 71, 85, 151

[110] K. Rosen and J. Michaels. Handbook of discrete and combinatorial mathematics.
CRC Press Boca Raton, Fla, 2000. 10

[111] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997. 20

[112] M. Sarkar, S. S. Snibbe, O. J. Tversky, and S. P. Reiss. Stretching the rubber
sheet: A metaphor for viewing large layouts on small screens. In Proceedings of the
6th Annual Symposium on User Interface Software and Technology, pages 81–92,
New York, NY, USA, Nov. 1993. ACM Press. 35

[113] D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, S. Dubs, and M. Rose-
man. Navigating hierarchically clustered networks through fisheye and full-zoom
methods. ACM Trans. Comput.-Hum. Interact., 3(2):162–188, 1996. 35

[114] B. Schneiderman, G. Fischer, M. Czerwinski, B. Myers, and M. Resnick, editors.
Creativity Support Tools Workshop. National Science Foundation, sep 2005. 38

[115] B. Shneiderman. The eyes have it: a task by data type taxonomy for invormation
visualization. In Proceedings of the IEEE Workshop on Visual Language, pages
336–343, 1996. 26

[116] Song, Havlin, and Makse. Self-similarity of complex networks. NATURE: Nature,
433:392–395, 2005. 17, 18, 20

[117] T. Stafford and M. Webb. Mind Hacks: Tips & Tools for Using Your Brain.
O’Reilly Media, Nov. 2004. 25, 76

[118] N. Stash, A. Cristea, and P. De Bra. Explicit Intelligence in Adaptive Hyper-
media: Generic Adaptation Languages for Learning Preferences and Styles. In
International Workshop on Combining Intelligent and Adaptive Hypermedia Meth-
ods/Techniques in Web-Based Education Systems, HT, volume 5, pages 6–9, 2005.
50

[119] M. Storey, M. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, and N. Noy. Jam-
balaya: Interactive visualization to enhance ontology authoring and knowledge
acquisition in Protege. Workshop on Interactive Tools for Knowledge Capture,
K-CAP-2001, 2001. 48

[120] M.-A. D. Storey, F. D. Fracchia, and H. A. Müller. Customizing a Fisheye View
Algorithm to Preserve the Mental Map. Journal of Visual Languages & Comput-
ing, 10(3):245–267, 1999. 34

BIBLIOGRAPHY 207

[121] M.-A. D. Storey, N. F. Noy, M. A. Musen, C. Best, R. W. Fergerson, and N. Ernst.
Jambalaya: an interactive environment for exploring ontologies. In IUI, pages
239–239, 2002. 74, 134, 150

[122] Storey, Margaret-Anne, C. Best, J. Michaud, D. Rayside, M. Litoiu, and
M. Musen. SHriMP views: an interactive environment for information visual-
ization and navigation. In Proceedings of ACM CHI 2002 Conference on Human
Factors in Computing Systems, volume 2 of Demonstrations, pages 520–521, 2002.
64, 73, 74, 106

[123] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical system structures. IEEE Transactions On Systems, Man, And Cy-
bernetics, SMC-11(2):109–125, Feb. 1981. 28

[124] G. Teege. Reuse of teaching materials in Targeteam. In International Workshop
on Interactive Computer aided Learning ICL 2002, 2002. 53, 130

[125] G. Teege. Targeteam website.
http://www.targeteam.net/. Last visited, May 2007. 130, 131

[126] The Object Management Group. Ontology Definition Metamodel,.
http://www.omg.org/docs/ad/05-08-01.pdf Last visited, june 2005. 48

[127] E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, CT, USA, 1983. 25

[128] E. R. Tufte. Envisioning Information. Graphics Press, 1990. 25

[129] E. R. Tufte. Visual Explanations. Graphics Press, 1997. 25

[130] D. Tunkelang. JIGGLE: Java interactive graph layout environment. In S. White-
sides, editor, Graph Drawing, volume 1547 of Lecture Notes in Computer Science,
pages 412–422. Springer, 1998. 73

[131] S. Van Dongen. Graph clustering by flow simulation. Master’s thesis, Center for
Mathematics and Computer Science (CWI), 2000. 18, 19

[132] F. van Ham and J. J. van Wijk. Interactive visualization of small world graphs. In
Proceedings of the IEEE Symposium on Information Visualization (INFOVIS’04),
pages 199–206, Washington, DC, USA, 2004. IEEE Computer Society. 33, 35, 36,
65, 70, 71

[133] J. Vassileva. DCG+GTE: Dynamic Courseware Generation with teaching exper-
tise. Instructional Science, 26(3–4):317–332, July 1998. 45

http://www.targeteam.net/
http://www.omg.org/docs/ad/05-08-01.pdf

208 BIBLIOGRAPHY

[134] C. Walshaw. A multilevel algorithm for force-directed graph drawing. In J. Marks,
editor, Proc. 8th Int. Symp. Graph Drawing, GD, volume 1984 of Lecture Notes
in Computer Science, LNCS, pages 171–182. Springer-Verlag, 20–23 Sept. 2000.
30, 152

[135] C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann
Publishers, San Francisco, 2000. 25

[136] D. J. Watts. Networks, dynamics, and the small-world phenomenon. The Amer-
ican Journal of Sociology, 105:493, Sept. 1999. 14

[137] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393:440–442, 4 June 1998. 2, 13, 14, 15, 16, 159

[138] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin Core Metadata for Resource
Discovery. IETF Request for Comments, 2413:1–8, sep 1998. 47

[139] G. Whale. Identification of Program Similarity in Large Populations. The Com-
puter Journal, 33(2):140, 1990. 138

[140] R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles: Visualization and automatic
layout of graphs. In Proceedings of the 9th International Symposium on Graph
Drawing (GD’01), pages 453–454. Springer, 2001. 70, 73

[141] K. Zhang, R. Statman, and D. Sasha. On the editing distance between unordered
labeled trees. Inf. Proc. Lett., 42:133–139, May 1992. 66

Index

Systems

AC, 129, 130, 134, 136–140

AHA, 45, 50, 54, 55

Atlas, 53–55

C++, 64

Carbon, 73

Clover, ix, xi, xiv, 4–6, 59, 75, 79–109,
114–117, 121, 123, 129, 130, 132–
134, 136, 139–142, 145–149, 151,
153, 162–168, 170, 171, 191

Comet, 129, 133–135

DCG+GTE, 45

ELM-ART, 45

F-Logic, 134

GTK, 73

GraphViz, 83

Gravisto, 71

Hyperbook, 45

Iccars, 134, 135

Interbook, 45

JGraphPad, 74, 75

JGraphT, 64, 81

JGraph, 54, 70, 74, 75, 91, 92, 106

Jambalaya, 48, 74, 134

Java, 64, 73, 74, 134

Jazz, 74

Jung, 64, 69, 81

KBS, 50

LAG, 50

MFC, 73

MOT, 50

Marey, 76, 77

Odisea, 140, 141
Pajek, 73
Piccolo, 64, 74, 77, 99, 100
PowerBookmarks, 46
Prefuse, 76
Protégé, 48, 74
QT, 73
SCARCE, 45
SHriMP, 34, 64, 74, 106
SWT, 73
Swing, 73, 74
Tangow, 45, 54, 55, 109–111, 113, 115,

117, 120, 121, 149, 194
Targeteam, 129–133
TeachML, 131, 133
TouchGraph, 72, 73, 149
TreeView, 76
Tulip, 73
Ulises, 129, 140–142
VisnaCom, 71, 77
Welkin, 45
WilmaScope, 32, 149, 150
WotEd, ix, xi, 6, 59, 109, 110, 114–123,

127, 132, 136, 141, 145, 146, 149,
151, 152, 163, 165

Wotan, 6, 50, 59, 109–112, 114–116, 118,
120, 123, 145, 146, 149, 152, 163,
192, 194

yWorks, 70

A

action, 75
adaptability, 41

210 INDEX

adaptation, 41
adaptive hypermedia, 41–55

authoring, 51–55
systems, 44

adaptivity, 41
of navigation, 42
of presentation, 42

adjacency list, 64
adjacency matrix, 64
AH, see Adaptive Hypermedia
animation, 76–77, 98–101
API, see Application Programming Inter-

face
application programming interface, 64
articulation point, 12

B

bridge, 12

C

center of zoom, 74
cluster vertex, 22
clustered graph, 22, 87–88

cluster refinement, 23
internal representation, 66–67, 84
operations, 23

clustering, 17–21
definition of, 18
from layout positions, 71
hierarchical, 21
hierarchy generation, 65, 85–87, 151
hierarchy update, 65–66, 87
interactive, 20
rule, 21
structure and content based, 18
undesireable scenarios, 19
using graph grammars, 21

clustering coefficient of a graph, 14
CMS, see Content Managment Systems

command design pattern, 75

concept maps, 48

connected component, 12

connected graph, 12

content managmenet systems, 51

creativity support, 52–53

cycle, 11

D

DAG, see directed acyclic graph

degree of interest, 35, 88

diameter of a graph, 12

directed acyclic graph, 11

distance between vertices, 12

DoI, see Degree of interest

domain model, 48, 149

overlay, 49, 149

dynamic graph layout, 70

E

edge, 10

induced, 22

event, 62

clustering, 89

hierarchy, 89

sinks and sources, 63

structure, 89

F

FDL, see force-directed layout

filter, 69

user model, 152

fisheye view, 35

focus+context, 34

folksonomy, 48

force-directed layout, 28, 71, 94–95

Force-Transfer Algorithm, 95–96, 152

framework, 63

INDEX 211

G

graph, 9–24
branch, see tree branch
connectivity, 12
definition of, 10
density and sparseness, 11
directed and undirected, 10
dynamic, 70
filtering, 69, 84
planar, 28
real world, 13–17
self-similarity, 17
unassembled, 69

graph drawing, 27–30, 70, 92–97
applied to trees, 27
for very large graphs, 30
in 3 dimensions, 32
incremental, 70–72

graph grammar, 20–21
graph layout

seegraph drawing, 70
Graph Theory, 10–13
graph visualization, 31

tasks, 31
graphical distortion, 35

H

HCI, see Human-Computer Interaction
hierarchical clustering, 21–23
human-computer interaction, 25

definition of, 25
hyperbolic trees, 35

I

incremental layout, 97, 151–152
information overload, 26
information retrieval, 45–47
information visualization

definition of, 25
in adaptive hypermedia, 53
mantra, 26

IR, see Information Retrieval
IV, see Information Visualization

K

Kamada-Kawai algorithm, 28, 70

L

layout cache, 98
learning object, 46–47
learning style, 49
library, 63
link, see edge
LO, see Learning Object

M

mental map, 35
metadata, 47–48
modal interfaces, 76
Model-View-Controller, 79
MVC, see Model-View-Controller

N

neighborhood of a vertex, 12
network, see graph
node, see vertex or tree node

O

observer design pattern, 89
ontology, 47
overview+detail, 34, 74

P

path, 11
pipeline, 62, 80
PoI, see Point of interest

212 INDEX

point of interest, 35, 88

R

Reingold and Fruchterman algorithm, 29,
94

S

scale free network, 15–16
and hierarchical clustering, 17
generation of, 16

slice, 80
gap, 91

slice of a clustered graph, 22
small-world network, 13–15

generation of, 16
spanning tree, 13, 30, 33
strategy design pattern, 93
subgraph, 11
subscription design pattern, 62
Sugiyama algorithm, 28, 70, 71

T

topic map, 73
topic maps, 48
transparency of user modelling, 42, 50
tree, 12–13, 22

branch, 13
descendants and ancestors, 13
forest, 12
node, 13
parent and child vertices, 13
rooted, 13
sibling vertices, 13

U

UM, see User Model
user model, 41, 48–51

as overlay of domain model, 49
dynamic and static, 48

updating, 49–51

V

vertex, 10
degree, 11
frozen, 88

Z

Zoomable User Interface, 74, 150, 153
asymmetrical, 153

zooming, 34, 74
ZUI, see Zoomable User Interface

	Contents
	Abstract
	Resumen
	Acknowledgements
	Introduction
	Motivation
	Theoretical Issues
	Approach and Clover Framework
	Overview

	I Preliminaries
	Graphs and the Small-World Property
	Graph Theory
	Small-World Networks and Real-World Graphs
	Graph Clustering
	Hierarchical Clustering

	Information Visualization and HCI
	Graph Drawing
	Force-Directed Layouts

	Graph Visualization and Human-Computer Interaction
	Detail and Context
	Preserving the mental map
	Creativity Support

	Adaptive Hypermedia
	Classification of AH Systems
	Types of Adaptation
	Adaptation methods
	Adaptive Hypermedia Systems

	Reuse, Metadata and Domain Representation
	User modelling
	Authoring Adaptive Hypermedia

	II A Hierarchical Clustering Approach
	Approaches to graph visualization
	General Architecture
	Internal Representation
	Generating Clusterings
	Representing a Clustered Hierarchy
	Filtering

	Layout
	Incremental Layout in Clustered Graphs

	Presentation and Interaction
	Interaction
	Animation

	The Clover Framework
	Architecture
	Model
	Creation and Filtering
	Cluster Hierarchies and Clustered Graphs
	Clustered graphs
	Events and updates

	View
	Representation
	Layout
	Animation

	Control
	Application and Actions
	Interaction

	Application to Adaptive Hypermedia
	Wotan and Tangow
	Tasks, rules and fragments
	User model

	WotEd
	Mapping
	Interaction
	Monitoring

	Experimental results
	Experimental setup
	Results
	Comparison with original experiment

	Application to Other Small-World Domains
	Targeteam
	Comet
	AC
	Ulises

	III Conclusions and Future Work
	Conclusions and Future Work
	Conclusions
	Discussion
	Future Work

	IV Appendix
	Introducción
	Motivación y objetivos
	Aspectos teóricos
	Arquitectura de Clover
	Estructura de la tesis

	Implementation notes
	General architecture
	Model
	View and control
	Animation and layout

	Clover API
	BaseGraph
	StructureChangeEvent
	FilteredGraph
	Filter
	Cluster
	ClusterHierarchy
	ClusteringEngine
	SimpleRuleClusterer
	HierarchyChangeEvent
	ClusteredGraph
	Slice
	ClusteringChangeEvent
	ViewGraph
	BaseView
	ClusterView
	Animator
	ClusterAnimator
	AnimationPlan
	LayoutManager
	LayoutAlgorithm
	Node
	LayoutCache

	File formats
	Clover save file
	Wotan course description
	Wotan user model

	Bibliography
	Index

