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Chapter 1

Introducción.

1.1 El paradigma actual de la f́ısica teórica.

El gran progreso tecnológico del último siglo ha permitido acceder a rangos de enerǵıas y longi-

tudes inusuales, poniendo de manifiesto la extrema complejidad de la Naturaleza. El concepto

de simetŕıa ha adquirido especial relevancia, dando sustento a la antigua idea de unificación.

Producto de ello ha sido el Modelo Estándar de la f́ısica de altas enerǵıas, formulado a la luz de

los complejos patrones de resonancias observados en los aceleradores entre los años cincuenta

y setenta. A través de su simetŕıa SU(3)× SU(2)L × U(1), el Modelo Estándar proporciona

aśı un entorno unificado para las interacciones fuerte, débil y electromagnética, habiendo sido

probado en aceleradores hasta enerǵıas de varios cientos de GeV’s sin que se haya encontrado

desviación significativa alguna.

Todav́ıa hay sin embargo todav́ıa algunos puntos débiles que constituyen el paradigma

actual de la f́ısica teórica. Entre éstos se encuentran la exclusión de la interacción gravitatoria

de este marco unificado y el denominado problema de las jerarqúıas, en el que la masa del

Higgs recibe correcciones cuadráticas provenientes de la escala ultravioleta, convirtiendo la

teoŕıa en innatural frente a los experimentos de precisión electrodébil que revelan una masa

del orden de mH ∼ 100 GeV.

En este contexto, simultáneamente al desarrollo del Modelo Estándar, se consideró la posi-

bilidad de combinar las populares simetŕıas internas con el grupo de Poincaré. Aśı, Coleman

y Mandula [1] mostraron que cualquier grupo de Lie que contenga el grupo de Poincaré y una

simetŕıa interna es siempre producto directo de ambos grupos y por tanto da pie a una f́ısica

trivial. Este teorema fue pronto superado con la formulación de teoŕıas supersimétricas, en

las que un subconjunto {Qα} de los generadores del álgebra satisface relaciones de anticon-

mutación.

1



2 1. Introducción.

Sorprendentemente, las propiedades de renormalizabilidad de las teoŕıas supersimétricas

resultaron excepcionales, dando pie al espectro necesario para mantener bajo control las co-

rrecciones cuánticas. En particular, constituyó una solución potencial al problema de las

jerarqúıas, pues las correcciones cuadráticas a la masa del Higgs eran canceladas gracias a

contribuciones de bucles de squarks y sleptones.

Por otro lado, la otra caracteŕıstica atractiva de las teoŕıas supersimétricas resultó ser la

interrelación entre geometŕıa y simetŕıas internas. Las álgebras extendidas de supersimetŕıa

fueron interpretadas en términos de la reducción dimensional de teoŕıas supersimétricas en

dimensiones extra, de modo que el grupo de isometŕıas de la variedad compacta pasaba a for-

mar parte del grupo de simetŕıa R de la teoŕıa reducida. Además, las teoŕıas supersimétricas

locales dan pie a teoŕıas supersimétricas con gravedad, unificando de este modo las cuatro

interacciones de la Naturaleza.

Sin embargo, lejos de ser el último paso, este esquema sufre todav́ıa de importantes pro-

blemas. La supersimetŕıa ha de ser rota espontáneamente en un sector oculto de la teoŕıa que

se comunique con el visible a través de interacciones mensajeras, p.ej. interacciones super-

gravitatorias. Aqúı existe gran arbitrariedad en la configuración espećıfica del sector oculto,

habiendo muy pocas restricciones experimentales, a parte de la ausencia de corrientes neutras

en el sector visible que violen sabor (FCNC). Por otro lado, las teoŕıas de supergravedad no

son teoŕıas renormalizables, pues el acoplo gravitatorio tiene dimensiones de (masa)−2. De

este modo, éstas han de ser consideradas simplemente como teoŕıas efectivas en el infrarrojo.

1.2 Teoŕıa de Supercuerdas.

Hoy en d́ıa, la Teoŕıa de Supercuerdas es el mejor candidato que tenemos a Teoŕıa del Todo,

representando una complección natural en el ultravioleta de las teoŕıas de supergravedad. Las

part́ıculas ya no son puntuales, sino unidimensionales, de modo que cuando se propagan en el

tiempo describen una sábana bidimensional, generalizando de este modo el concepto clásico

de ’ĺınea de mundo’. La manera en que esta sábana queda embebida en el espacio-tiempo

ordinario puede ser descrita mediante una teoŕıa conforme (CFT) N = 1 supersimétrica en

dos dimensiones, cuya acción efectiva para los modos no masivos viene dada por un modelo

sigma no lineal

S =
1

4πα′

∫

Σ

dσdτ{(gabGµν + εab(Bµν)− 2πα′Fµν)∂aX
µ∂bX

ν + α′φR+ (fermiones)}, (1.1)

valido en el régimen en que α′1/2R−1
c � 1, con α′ la constante de la cuerda y Rc el radio de

curvatura del espacio-tiempo ordinario.

En efecto, cuando uno requiere la ausencia de anomaĺıas de traza de modo que la teoŕıa
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tenga buenas propiedades de cuantización, o lo que es equivalente, cuando uno requiere que

las funciones beta de la teoŕıa sean nulas, las ecuaciones de movimiento de supergravedad son

sorprendentemente recuperadas [2]

βG
µν = α′

(
Rµν + 2∇µ∇νφ−

1

4
HµκσHν

κσ

)
+O(α′2) = 0, (1.2)

βB
µν = α′

(
−1

2
∇κHκµν +∇κφHκµν

)
+O(α′2) = 0, (1.3)

βφ = α′

(
−1

2
∇2φ+∇κφ∇κφ− 1

24
HκµνH

κµν

)
+O(α′2) = 0. (1.4)

Por otro lado, la ausencia de anomaĺıas conformes, es decir, la ausencia de cargas cen-

trales en la CFT, fija el contenido de supercampos de la sábana, de manera análoga a cómo

la ausencia de anomaĺıas gauge fija el espectro de materia en el Modelo Estándar. De este

modo, el número de dimensiones del espacio-tiempo ordinario queda fijado. Las teoŕıas de

supercuerdas vivirán en 10 dimensiones, requiriendo de este modo la compactificación de seis

dimensiones extra y dando pie a una interpretación geométrica (o más bien, topológica) de la

teoŕıa efectiva a bajas enerǵıas.

Dependiendo de la manera concreta en que las anomaĺıas de la teoŕıa son canceladas en diez

dimensiones, existen cinco Teoŕıas de Supercuerdas: dos de ellas (Tipo IIA y Tipo IIB) son

N = 2 supersimétricas, mientras que las otras tres (Tipo I, Heterótica E8 × E8 y Heterótica

SO(32)) son solamente N = 1 supersimétricas. Todas ellas están sin embargo relacionadas

por una abundante red de dualidades, como se observó durante la segunda revolución de su-

percuerdas, a mediados de los noventa. Éstas consisten en transformaciones de la teoŕıa de

acoplo débil a acoplo débil (T-dualidad) o de acoplo débil a acoplo fuerte (S-dualidad). En

particular, la presencia de dualidades débil-fuerte permitió acceder a objetos no perturbativos

de la teoŕıa tales como D-branas, NS-branas, etc., protegidos frente a correcciones cuánticas

gracias a cotas BPS [3].

La compleja red de dualidades de Teoŕıa de Supercuerdas parece indicar por tanto que

estas cinco teoŕıas a acoplo débil corresponden simplemente a diferentes ĺımites de una misma

teoŕıa no-perturbativa (Teoŕıa M), que todav́ıa no sabemos como formular.

1.3 Camino del Modelo Estándar.

Si la Teoŕıa de Supercuerdas representa una teoŕıa unificada de todas las part́ıculas e inter-

acciones presentes en la Naturaleza, en algún punto debeŕıa contener al Modelo Estándar.

Los esfuerzos por encontrar modelos reslistas en Teoŕıa de Supercuerdas comenzaron en los

ochenta, considerando compactificaciones de la Heterótica E8×E8 y SO(32) sobre variedades

de seis dimensiones con holonomı́a SU(3) (ver p.ej. [4]). La supersimetŕıa era rota a N = 1 en



4 1. Introducción.

cuatro dimensiones a través de la holonomı́a de la variedad compacta, mientras que el grupo

gauge de la teoŕıa en diez dimensiones era roto a SU(3)×SU(2)L×U(1), o a alguna Teoŕıa de

Gran Unificación (GUT), mediante su inclusión en el grupo de holonomı́a o la incorporación

de ĺıneas de Wilson.

Todos estos modelos heteróticos ya revelaron las principales patoloǵıas de Teoŕıa de Su-

percuerdas para reproducir el Modelo Estándar en su ĺımite de bajas enerǵıas. En primer

lugar, era manifiesta la gran arbitrariedad en la elección de la variedad interna. La estructura

perturbativa de Teoŕıa de Supercuerdas permit́ıa una gran diversidad de vaćıos consistentes a

bajas enerǵıas, en lo que hoy en d́ıa se denomina el “paisaje de vaćıos” de Teoŕıa de Cuerdas.

Surgió entonces la cuestión sobre la existencia de un principio de selección de vaćıos, con dos

tendencias principales: unos creyendo que un principio de selección será dado una vez que la

parte no perturbativa de la teoŕıa se conozca; y otros pensando en el principio antrópico como

mecanismo que selecciona el vaćıo de la Naturaleza.

La arbitrariedad en la compactificación de Teoŕıa de Supercuerdas es parametrizada t́ıpi-

camente en términos de un amplio espacio de moduli. Por supuesto, debido a que todav́ıa

desconocemos la formulación completa de la teoŕıa, sólo sabemos cómo trabajar en pequeñas

regiones del espacio de moduli. Por ejemplo, una vez fijada la topoloǵıa de la variedad in-

terna, queda todav́ıa cierta libertad en la elección de la estructura compleja y el tamaño de

los diferentes ciclos, parametrizada respectivamente por los moduli de estructura compleja y

los moduli de Kähler. Estos moduli en principio permanecen sin estabilizar, constituyendo un

conjunto no deseado de escalares no masivos en el espectro de la teoŕıa a bajas enerǵıas.

El otro gran reto de Teoŕıa de Supercuerdas para reproducir el Modelo Estándar es la

consecución de un mecanismo controlable de ruptura de supersimetŕıa. Los primeros in-

tentos de entender la estructura de los términos soft en compactificaciones perturbativas de

Teoŕıa de Supercuerdas se realizaron en los tempranos d́ıas de la fenomenoloǵıa de las cuerdas

heteróticas [5]. Una aproximación bastante general fue sugerida en [6, 7, 8], donde se asumı́a

que algunos de los campos auxiliares asociados a los moduli de la compactificación adquiŕıan

un valor esperado en el vaćıo (vev), reduciendo de este modo la supersimetŕıa. Se haćıa patente

por tanto la relación entre ruptura de supersimetŕıa y estabilización de moduli: encontrar una

fuente microscópica para la ruptura de supersimetŕıa probablemente correspond́ıa a encontrar

un mecanismo para la estabilización de los moduli de la compactificación.

Con el descubrimiento de las D-branas a mediados de los noventa, aparecieron nuevas for-

mas de obtener teoŕıas gauge quirales en el contexto de Teoŕıa de Supercuerdas. Surgieron aśı

modelos de Tipo IIA y Tipo IIB donde el Modelo Estándar vive en el volumen de D-branas,

en configuraciones tales como branas intersecantes [9, 10, 11, 12, 13] o branas en singulari-

dades [14, 15, 16]. Estos modelos, sin embargo, presentaban el mismo tipo de patoloǵıas que

los modelos heteróticos.
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Durante los últimos años se han estudiado intensivamente compactificaciones con flujos

de los campos antisimétricos (ver p.ej. [17]), proporcionando un nuevo ingrediente para la

construcción de modelos realistas. Uno de los aspectos más interesantes de los flujos es que

pueden generar acoplos en el superpotencial para los moduli de la compactificación [18],

estabilizando al menos parte de ellos. Además, los moduli pueden ser agrupados en su-

permultipletes quirales N = 1 cuyas componentes auxiliares F están asociadas a los flu-

jos [19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. De este modo, la presencia de flujos de cuerda

cerrada constituye además una fuente microscópica para la ruptura de supersimetŕıa en Teoŕıa

de Supercuerdas.

Las primeras configuraciones estudiadas intensivamente fueron orientifolds de Tipo IIB

con flujos constantes de los campos RR y NSNS [59, 37, 101]. Estos dan pie a potenciales

sin escala independientes de los moduli de Kähler, en los que el dilatón y parte, o incluso

todos los moduli de estructura compleja, son estabilizados por los flujos. Las ecuaciones de

movimiento de supergravedad requieren que los flujos de 3-forma sean imaginarios auto-duales

(ISD), y en el caso particular de (0,3) formas, la supersimetŕıa se rompe a N = 0∗ en el espacio

cuadridimensional.

En [20, 24] calculamos los términos de ruptura de supersimetŕıa que surǵıan en el volumen

de configuraciones de D3 y D7-branas debidos al efecto de los flujos de 3-forma, mostrando

cmo los flujos ISD dan pie a términos soft de relevancia fenomenológica en el volumen de

las D7-branas. Además, los moduli geométricos de las D7-branas son generalmente estabi-

lizados también por los flujos, permitiendo de este modo la generación de superpotenciales

no-perturbativos relevantes en escenarios de KKLT [29].

En el último par de años, los orientifolds de Tipo IIA con flujos han empezado a recibir

también atención [30, 31, 32, 33, 34, 35, 36]. Contrariamente a lo que ocurre con los orientifolds

de Tipo IIB, en este caso es posible encender flujos tanto de formas RR pares como de formas

NSNS impares. Esto da lugar al importante resultado según el cual los superpotenciales de

Tipo IIA generalmente dependen de todos los moduli geométricos aśı como del dilatón. En

este caso además resulta natural incorporar flujos métricos [32, 33], correspondientes a reduc-

ciones generalizadas de Scherk-Schwarz [38, 39, 40, 41, 42]. Aśı, en [43] estudiamos los efectos

de añadir flujos RR, NSNS y métricos a un orientifold T 6/ΩP (−1)FLσ, mostrando la existen-

cia de vaćıos AdS con todos los moduli estabilizados sin la necesidad de considerar efectos

no-perturbativos. Además, en presencia de flujos métricos, la contribución de los flujos a los

tadpoles RR pueden tener cualquier signo o incluso desaparecer. Esto representa una novedad

frente a las compactificaciones de Tipo IIB con flujos de 3-forma, donde las ecuaciones de

movimiento de supergravedad obligan a los flujos a contribuir a los tadpoles RR siempre con

el mismo signo que las D3-branas. Aśı, en orientifolds de Tipo IIB con flujos de 3-forma uno

se ve t́ıpicamente forzado a considerar variedades con un número de Euler grande de modo
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que se satisfagan las condiciones de cancelación de tadpoles y al mismo tiempo se estabilizen

los moduli en valores grandes, donde las correcciones en α′ y gs permanecen bajo control.

De este modo, los orientifolds de Tipo IIA con flujos métricos abren nuevas posibilidades

para la construcción de modelos realistas. Como ejemplo de ello, en [43] presentamos por

primera vez un modelo N = 1 supersimétrico con espectro quiral cercano al del MSSM, todos

los moduli estabilizados en AdS y los tadpoles RR cancelados sin ayuda de una acción orbifold.

Una cuestión lógica es si los superpotenciales de Tipo IIB inducidos por flujos pueden

también depender de todos los moduli. Se ha mostrado recientemente [44] que para recu-

perar invarianza bajo T-dualidad entre las versiones de Tipo IIA y Tipo IIB de una misma

compactificación en presencia de flujos RR, NSNS y métricos es necesario introducir una

nueva clase no geométrica de flujos. Éstos han sido estudiados en la literatura por varios

autores [45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. Además, S-dualidad requiere la introducción

de otro conjunto de flujos adicional, dando pie a nuevos términos en el superpotencial. Si-

guiendo estas ĺıneas, en [55] generalizamos la propuesta de [44] a orientifolds con varios moduli

geométricos y calculamos el superpotencial invariante bajo S-dualidad aśı como las identidades

de Bianchi y tadpoles. La riqueza de flujos que surge permite construir nuevas clases de vaćıos

Minkowski supersimétricos en los que no sólo el dilatón y los moduli de estructura compleja

se encuentran fijados sino también los moduli de Kähler.

En esta memoria resumimos los resultados de nuestro trabajo desarrollado a lo largo de

los últimos tres años sobre estos temas [20, 24, 56, 43, 57, 55].

1.4 Plan de la tesis.

El plan de la tesis es el siguiente:

- En el Caṕıtulo 3 discutiremos algunas de las caracteŕısticas de Teoŕıa de Supercuerdas

que permiten introducir teoŕıas gauge quirales. Aśı, en la Sección 3.1 discutimos la

topoloǵıa y espacio de moduli asociados a orientifolds de Tipo IIA y IIB, y cómo la

simetŕıa “mirror” se ve realizada en ausencia de flujos. En las Secciones 3.2 y 3.3

revisaremos dos tipos de configuraciones que dan lugar a fermiones quirales en cuatro

dimensiones: configuraciones de D3 y D7-branas situadas en singularidades orbifold y

D6-branas intersecándose en el espacio compacto. La cancelación de anomaĺıas en estas

configuraciones a través del intercambio de modos de cuerda cerrada se discutirá en la

Sección 3.4, mientras que en la Sección 3.5 mostraremos un par de modelos semirealistas

concretos.

- El Caṕıtulo 4 está dedicado al ĺımite de supergravedad de orientifolds de Tipo IIA

con O6-planos y orientifolds de Tipo IIB con O3 y O7-planos. Aśı, tras revisar en las
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Secciones 4.1 y 4.2 las supergravedades de Tipo IIB y IIA, en la Sección 4.3 discutiremos

las soluciones de Tipo B(ecker) de [58, 59, 60, 101] y los monopolos holomórficos de [61],

correspondientes a la descripción en el ĺımite de supegravedad de algunos orientifolds de

Tipo IIB/O3 y de Tipo IIA/O6 con flujos.

- La estabilización de moduli será el tema del Caṕıtulo 5. En la Sección 5.1.1 revisaremos

la estructura de los orientifolds de Tipo IIB con flujos RR y NSNS constantes, mientras

que las Secciones 5.1.2 y 5.2 resumiremos los resultados de [43] sobre orientifolds de Tipo

IIA con O6-planos y flujos constantes NSNS, RR y métricos. Entonces generalizaremos

estas configuraciones para incluir flujos no geométricos y S-duales, siguiendo [55]. Esto

será en las Secciones 5.3 y 5.4. Finalmente, en la Sección 5.5 abordaremos la posibilidad

de tener superpotenciales generalizados invariantes bajo todo el grupo de dualidad.

- Los resultados de [20, 24] sobre ruptura de supersimetŕıa inducida por flujos en configu-

raciones de D3 y D7-branas constituirán el contenido del Caṕıtulo 6. Tras calcular en

la Sección 6.2 la acción efectiva a bajas enerǵıas para las teoŕıas gauge que viven en el

volumen de las D3/D7-branas, analizaremos, en la Sección 6.3, los patrones de ruptura

de supersimetŕıa que surgen y los compararemos, en la Sección 6.4, con las predicciones

de supergravedad efectiva. Finalmente, la viabilidad fenomenológica de estos patrones

será discutida en la Sección 6.5.

- En el Caṕıtulo 7 reproduciremos algunos de los modelos de [43] y [20, 24] que sirven

para ilustrar las ideas de los caṕıtulos previos.

- Finalmente, algunos últimos comentarios serán realizados en el Caṕıtulo 8.
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Chapter 2

Introduction.

2.1 The present paradigm of theoretical physics.

The great technological progress of the last century has allowed to access unusual ranges of

energies and lengths, revealing the extreme complexity of Nature. The concept of symmetry

has acquired special relevance, giving support to the ancient idea of unification. Product

of this has been the Standard Model of high energy physics, formulated in the light of the

complex patterns of resonances measured at accelerators between the fifties and the seventies.

Through its SU(3)× SU(2)L × U(1) gauge symmetry, the Standard Model thus provides an

unifying framework for the strong, weak and electromagnetic interactions, having been tested

at accelerators up to energies of several hundreds of GeV’s without any significative deviation.

There are however still some weak points which constitute the present paradigm of theoret-

ical physics. Among these are the exclusion of the gravitational interaction from this unified

framework and the so called hierarchy problem, on which the Higgs mass receives quadratic

loop corrections from the ultraviolet cutoff, rendering the theory unnatural against the elec-

troweak precision tests, which reveal a mass of the order mH ∼ 100 GeV.

Within this context, simultaneously to the development of the Standard Model, the possi-

bility of combining the popular internal symmetries with the Poincaré group was considered.

Thus, Coleman and Mandula [1] showed that any Lie group which contains the Poincaré group

and an internal symmetry is always a direct product of both groups and therefore it leads to

trivial physics. This no-go theorem was soon overcome with the formulation of supersymme-

try, on which a subset {Qα} of generators of the algebra satisfy anticommutation relations.

Surprisingly, the renormalizable properties of supersymmetry resulted to be exceptional,

leading to the necessary spectrum in order to keep the quantum corrections under control. In

9
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particular, it constituted a potential solution to the hierarchy problem, cancelling the quadratic

corrections to the Higgs mass through loop contributions of the squarks and sleptons.

On the other hand, the interplay between geometry and internal symmetries was the other

attractive feature of supersymmetric theories. Extended algebras of supersymmetry were able

to be interpreted as the dimensional reduction of supersymmetric theories in extra dimen-

sions, with the isometry group of the compact manifold being part of the R-symmetry group

of the reduced theory. Moreover, gauging supersymmetry led to supersymmetric theories with

gravity, thus unifying the four interactions in Nature.

However, far from being the last step, this scheme still suffers from important problems.

Supersymmetry must be spontaneously broken in a hidden sector which communicates with

the visible sector through some messenger interactions, such as supergravity interactions. Here

there is great arbitrariness in the specific configuration of the hidden sector, having only few

experimental constraints such as the absence of Flavor Changing Neutral Currents (FCNC)

in the visible sector. In addition, supergravity theories are not renormalizable theories, as

the gravitational coupling has dimensions of (mass)
−2

. Thus, they should be considered as

infrared effective theories.

2.2 Superstring Theory.

Nowadays, Superstring Theory is the best candidate that we have to the Theory of Everything,

representing a natural ultraviolet completion of the supergravity theories. Particles are no

longer point-like but one dimensional, so when they propagate on time they render a two

dimensional worldsheet, generalizing the classical concept of worldline. The embedding of the

worldsheet into the target space can be described by a two dimensional N = 1 conformal

field theory (CFT), whose effective action for the massless modes is given by the non-linear

σ-model

S =
1

4πα′

∫

Σ

dσdτ{(gabGµν + εab(Bµν)− 2πα′Fµν)∂aX
µ∂bX

ν + α′φR + (fermions)}, (2.1)

valid in the α′1/2R−1
c � 1 regime, being α′ the string constant and Rc the curvature radius

of the target space.

Indeed, when one requires the absence of the trace anomaly in order to have for the theory

good quantization properties, or what is equivalent, when one requires the beta functions of
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the theory to vanish, the supergravity equations of motion are surprisingly recovered [2]

βG
µν = α′

(
Rµν + 2∇µ∇νφ−

1

4
HµκσHν

κσ

)
+O(α′2) = 0, (2.2)

βB
µν = α′

(
−1

2
∇κHκµν +∇κφHκµν

)
+O(α′2) = 0, (2.3)

βφ = α′

(
−1

2
∇2φ+∇κφ∇κφ− 1

24
HκµνH

κµν

)
+O(α′2) = 0. (2.4)

On the other hand, the absence of conformal anomalies, that is, the absence of central

charges in the CFT, fixes the superfield content of the worldsheet, in a similar fashion to what

the absence of gauge anomalies fixes the matter spectrum of the Standard Model. Thus, the

number of dimensions of the target space is fixed. Superstring theories will live in 10 dimen-

sions, requiring therefore the compactification of the 6 extra dimensions and providing with a

geometrical (or rather, topological) interpretation to the low energy effective theory.

Depending on the concrete way on which the anomalies of the theory are cancelled, there

are five consistent Superstring Theories in ten dimensions: two of them (Type IIA and Type

IIB) are N = 2 supersymmetric, whereas the other three (Type I, E8 × E8 Heterotic and

SO(32) Heterotic) are just N = 1 supersymmetric. All of them are however related by a

rich network of dualities, as it was realized during the second Superstring revolution, in the

mid nineties. These consist on weak-weak (T-duality) and weak-strong (S-duality) transfor-

mations of the theory. In particular, the presence of weak-strong dualities allowed to access

non-perturbative objects, such as D-branes, NS-branes, etc., protected against quantum cor-

rections by BPS bounds [3].

The complex duality network of Superstring Theory therefore seems to be indicating that

the above five theories at weak coupling would simply correspond to different limits of a same

non-perturbative theory (M-theory), which we still do not know how to formulate.

2.3 On the road to the Standard Model.

If Superstring Theory represents the unified theory of all particle and interactions in Na-

ture, at some point it should contain the Standard Model. The efforts for finding realistic

models in Superstring Theory, began in the eighties, by considering compactifications of the

E8 × E8 and the SO(32) Heterotic in six dimensional manifolds with SU(3) holonomy (see

e.g. [4]). Supersymmetry was broken to four dimensional N = 1 through the holonomy of

the compact manifold, whereas the gauge group of the ten dimensional theory was broken to

SU(3) × SU(2)L × U(1), or to some Grand Unified Theory (GUT), through its embedding

into the holonomy group or the inclusion of Wilson lines.
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All these heterotic models already revealed the main pathologies of Superstring Theory for

reproducing the Standard Model in its low energy limit. First of all, it was manifest the great

arbitrariness in the choice of the internal manifold. The structure of perturbative Superstring

Theory allowed for a great complexity of consistent vacua with different low energy physics,

in what nowadays is called the String Theory landscape of vacua. The question of a vacuum

selection rule arose, with two main tendencies: the ones believing that a selection principle

will be given once the non-perturbative part of the theory is known; and the ones thinking on

the anthropic principle as the mechanism for selecting the vacuum of Nature.

The arbitrariness in the compactification of Superstring Theory is usually parametrized by

a broad moduli space. Of course, since a complete description of the theory is still lacking, we

only know how to work at small regions of the moduli space. For example, once the topology

of the internal manifold is fixed, there is still some freedom in the choice of the complex struc-

ture and the size of the different cycles, parametrized respectively by the complex structure

moduli and the Kähler moduli. These moduli in principle remain unstabilized, constituting

an undesirable set of massless scalars in the low energy spectrum of the theory.

The other big difficulty of Superstring Theory for reproducing the Standard Model is the

addressing of a controllable supersymmetry breaking mechanism. Attempts to understand

the structure of soft terms in perturbative heterotic compactifications were done since the

early days of heterotic string phenomenology [5]. A rather model-independent approach was

suggested in [6, 7, 8], where it was assumed that the auxiliary fields associated to the cor-

responding moduli of the compactification get a vev, thus breaking supersymmetry. Thus it

was patent a relationship between supersymmetry breaking and moduli stabilization: find-

ing a microscopic source for supersymmetry breaking would probably correspond to finding a

mechanism for stabilizing the moduli of the compactification.

With the discovery of D-branes in the mid nineties, new ways to obtain chiral gauge the-

ories in the context of Superstring Theory arose. Type IIA and Type IIB models where the

Standard Model lives in the worldvolume of D-branes appeared on the light of constructions

such as intersecting branes [9, 10, 11, 12, 13] or D-branes at singularities [14, 15, 16]. These

models, however, present the same above pathologies of the heterotic models.

During the last few years, fluxes of antisymmetric fields in string compactifications have

been studied intensively (see e.g. [17]), thus providing us with new ingredients for model

building. One of the most interesting aspects of the presence of fluxes is that they may

generate superpotential couplings for the moduli of the compactification [18], thus poten-

tially stabilizing some of them. Moreover, the compactification moduli may be arranged into

N = 1 chiral supermultiplets with F auxiliary components associated to the background

fluxes [19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. In this way, the presence of closed string

background fluxes constitutes too a microscopical source for supersymmetry breaking in Su-
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perstring Theory.

The first setups extensively studied were Type IIB orientifolds with constant RR and NSNS

fluxes [59, 37, 101]. These resulted in no-scale potentials independent of the Kähler moduli,

on which the dialton and part, or even all, of the complex structure moduli were stabilized by

the fluxes. The supergravity equations of motion required the 3-form fluxes to be imaginary

self-dual (ISD) forms, and in the particular case of these being a (0, 3) form, supersymmetry

was broken to N = 0∗ in four dimensional Minkowski space.

In [20, 24] we computed the soft supersymmetry breaking terms arising in the worldvol-

ume of setups of D3 and D7-branes due to the effect of the 3-form fluxes, showing that ISD

fluxes lead to non-trivial soft terms of phenomenological relevance in the worldvolume of the

D7-branes. Moreover, the fluxes generically stabilize the geometric moduli of the D7-branes,

thus allowing for the generation of non-perturbative superpotentials, relevant in KKLT [29]

scenarios.

In the last couple of years, Type IIA orientifolds with fluxes have started to receive some

attention too [30, 31, 32, 33, 34, 35, 36]. Contrary to what occurs in Type IIB orientifolds

with 3-form fluxes, in this case it is possible to switch on backgrounds of both even RR and

odd NSNS forms. This in turn implies the important result that the Type IIA flux induced

superpotentials depend on all the geometrical moduli as well as on the dilaton. In addition,

in this case it is natural to incorporate metric fluxes [32, 33] corresponding to generalized

Scherk-Schwarz reductions [38, 39, 40, 41, 42]. In this sense, in [43] we studied the effects of

adding RR, NSNS and metric fluxes on a T 6/ΩP (−1)FLσ orientifold, showing how one may

find AdS vacua with all moduli stabilized without considering extra non-perturbative effects.

In addition, in presence of metric backgrounds, the flux contribution to the RR tadpoles can

have either sign or even vanish. This represents a novelty with respect to the Type IIB com-

pactifications with 3-form fluxes, where the supergravity equations of motion imply that the

flux background always contributes to the RR tadpoles with the same sign as D3-branes do.

Thus, for Type IIB orientifolds with 3-form fluxes one is usually enforced to take manifolds

with large Euler number in order to fulfill the tadpole conditions and at the same time sta-

bilize the moduli at large values, where the α′ and gs corrections are under control. In this

way, Type IIA orientifolds with metric fluxes open new possibilities for model building. As

an example of it, in [43] we presented for the first time a N = 1 supersymmetric model with

a chiral spectrum close to the one of the MSSM, all the moduli stabilized in AdS and the RR

tadpoles cancelled without the aid of an orbifold twist.

A logical question is whether Type IIB flux induced superpotentials can also depend on all

moduli. It has been recently shown [44] that in order to recover T-duality invariance between

the Type IIA and Type IIB versions of the same compactification in the presence of RR, NS

and metric backgrounds, new non-geometric fluxes have to be introduced. Such fluxes has
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been already studied by several authors [45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. Moreover, Type

IIB S-duality requires the introduction of a new set of fluxes, leading to further superpotential

terms. Along these lines, in [55] we generalized the proposal of [44] to orientifolds with several

diagonal geometrical moduli and computed the S-duality invariant superpotential, tadpoles

and Bianchi identities. The arising richness of fluxes allows to construct new classes of N = 1

supersymmetric Minkowski vacua on which not only the dilaton and complex structure but

also the Kähler moduli are fixed.

In this report we will summarize the results of our work in these topics along the last three

years [20, 24, 56, 43, 57, 55].

2.4 Outline of the thesis.

The outline of the thesis is as follows:

- In Chapter 3 we will discuss some of the features of Superstring Theory allowing the

embedding of semirealistic chiral gauge theories. Thus, in Section 3.1 we will discuss

the topology and moduli space of Type IIA and Type IIB Calabi-Yau orientifolds, and

how mirror symmetry is accomplished in absence of background. In Sections 3.2 and 3.3

we will review two setups leading to chiral fermions in four dimensions: D3/D7-brane

configurations placed at orbifold singularities and D6-branes intersecting at angles in

the compact space. The cancellation of anomalies in these setups through the exchange

of closed string modes will be discussed in Section 3.4, whereas we will reproduce in

Section 3.5 a couple of concrete semirealistic models.

- Chapter 4 is devoted to the supergravity limit of Type IIA orientifolds with O6-planes

and Type IIB orientifolds with O3 and O7-planes. Thus, after reviewing Type IIB

and Type IIA supergravity in Sections 4.1 and 4.2, we will discuss the Type B(ecker)

solutions of [58, 59, 60, 101] and the mirror holomorphic monopole Type IIA solutions

of [61], corresponding respectively to the supergravity description of some Type IIB/O3

and Type IIA/O6 orientifolds with background fluxes.

- The issue of moduli stabilization will be the topic of Chapter 5. In Section 5.1.1 we

will review the structure of Type IIB orientifolds with constant RR and NSNS fluxes,

whereas Sections 5.1.2 and 5.2 will summarize the results of [43] on Type IIA orientifolds

with O6-planes and constant NSNS, RR and metric fluxes. Then we will generalize our

backgrounds to include non-geometric and S-dual fluxes, following [55]. This will be

done in Sections 5.3 and 5.4. Finally, in Section 5.5 we will discuss the possibility of

having generalized duality invariant superpotentials.

- The results of [20, 24] on the soft supersymmetry breaking terms induced by fluxes in the

worldvolume of D3/D7-branes will constitute the content of Chapter 6. After computing,
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in Section 6.2, the low energy effective actions for the gauge theories in the worldvolume

of the D3/D7-branes, we will analyze, in Section 6.3, the soft supersymmetry breaking

patterns which arise and will compare them, Section 6.4, with the effective supergravity

predictions. Finally, the phenomenological viability of these patterns will be discussed

in Section 6.5.

- In Chapter 7 we will reproduce some of the models of [43] and [20, 24] which illustrate

the ideas of the previous chapters.

- Finally, some last comments will be made in Chapter 8.



16 2. Introduction.



Chapter 3

Embedding the Standard Model

in String Theory

If String Theory really represents a unified theory of all particles and interactions present in

Nature, at some point it should reproduce in its low energy limit the Standard Model or any of

its phenomenologically viable extensions. In this sense, String Theory has revealed to possess

appealing mathematical properties, containing almost every tool employed to build up the

Standard Model or General Relativity.

Along this chapter we will go through some of these features which allow us to embed

semi-realistic chiral gauge theories in String Theory. At the end this will lead us to two major

problems which constitute the main topic of this thesis: moduli stabilization and supersym-

metry breaking.

3.1 Toroidal orientifolds and mirror symmetry.

The first difficulty when trying to embed the Standard Model in String Theory is an excess

of supersymmetry. Indeed, the known ten dimensional String Theories have N = 1 or N = 2

supersymmetry and therefore, upon naive dimensional reduction, will lead to N = 4 or N = 8

supersymmetric effective theories in four dimensions. As extended supersymmetry do not al-

low for chiral fermions, it is patent the necessity of a source of supersymmetry breaking.

Generally, the required breaking to N = 1 is achieved through the holonomy of the com-

pactification manifold, typically a Calabi-Yau orientifold with special holonomy [62, 63, 64, 65,

66, 67, 68, 69]. On this section we will introduce the topology, moduli space and symmetries of

Calabi-Yau orientifolds, putting special emphasis on the particular case of toroidal orientifolds.

17
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Calabi-Yau orientifolds are constructed by modding out an ordinary Calabi-Yau threefold

(CY3) with the worldsheet parity reversal operator Ωp, the space-time fermion number pro-

jector for the left-movers (−1)FL , and an internal involution σ which is required to be an

isometry of the CY3.

The fixed points of the orientifold involution σ, usually denoted O-planes, are charged

under the RR forms of String Theory, so in order to guarantee the cancellation of the global

charge one is enforced to include a twisted sector of open strings supported by D-branes. Thus,

Type II String Theories in Calabi-Yau orientifolds are theories with open strings1.

Depending on how the involution σ acts on the Kähler form J and on the holomorphic

3-form Ω, there will be three kinds of CY3 orientifolds [72]

Type IIB with O3/O7-planes: σ∗J = J σ∗Ω = −Ω

Type IIB with O5/O9-planes: σ∗J = J σ∗Ω = Ω

Type IIA with O6-planes: σ∗J = −J σ∗Ω = e2iθΩ

Here, σ∗ denotes the pullback of σ and θ is a constant phase related to the calibration of the

3-cycles Λn supporting the O6-planes. In fact, in the case of Type IIA orientifolds, the fixed

points Λn correspond to special Lagrangian 3-cycles with calibrating phase θ (see e.g. [73])

J |Λn
= 0, Im(e−iθΩ)|Λn

= 0. (3.1)

In what follows we will take the conventions on which θ = 0.

The cohomological structure of a CY3 can be summarized in the following hodge diamond

1

0 0

0 h(2,2) 0

1 h(1,2) h(2,1) 1

0 h(1,1) 0

0 0

1

with h(1,1) = h(2,2) and h(1,2) = h(2,1) thanks to the Poincaré lemma. In particular, note that

no isometry is allowed.

1Actually we will see that very often in this kind of compactifications the D-brane charge is no longer a

conserved quantity and can be traded by closed string backgrounds which contribute to the RR tadpoles as

D-branes do [70, 71].
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Upon orientifolding the above cohomological structure will split between σ-odd and σ-even

forms (h = h− + h+) [74, 31]. Thus, it is convenient to define a basis of (1,1)-forms ωi (ωı̂)

odd (even) under the orientifold involution and a dual basis of (2,2)-forms ω̃i (ω̃ ı̂) such that

∫
ωi ∧ ω̃j = δj

i ,

∫
ωı̂ ∧ ω̃̂ = δ̂ı̂ . (3.2)

Analogously, it is possible to define a symplectic basis (αA, β
B) for the 3-forms so that

∫
αA ∧ βB = δB

A . (3.3)

Under the orientifold involution these again split among even and odd forms. In particular, for

Type IIA orientifolds one can take the basis in such a way that αA are σ-even forms whereas

βB are σ-odd forms [31]. For Type IIB orientifolds however this cannot be done and the basis

is split by the internal involution accordingly to [74]

(αA, β
B) = (αa, β

b)⊕ (αâ, β
b̂), (3.4)

with (αa, β
b) σ-odd and (αâ, β

b̂) σ-even forms.

On this thesis we mainly center on Type IIA orientifolds with O6-planes and Type IIB

orientifolds with O3/O7-planes. The moduli space of these manifolds has been extensively

studied in [74, 31]. Determining the structure of the possible allowed geometrical deforma-

tions is crucial for establishing a dynamics over the compact manifold.

For Type IIA orientifolds, the moduli space is given by a set of h
(1,1)
− Kähler moduli Ti,

h(1,2) complex structure moduli Ua and one axiodilaton S. These are concisely defined in

terms of the complexified forms [31]

Jc = B2 + iJ = i

h
(1,1)
−∑

i=1

Tiωi, (3.5)

Ωc = C3 + iRe(CΩ) = iSα0 − i
h(1,2)∑

i=1

Uaαa, (3.6)

where B2 is the NSNS 2-form, C3 is the σ-even RR 3-form and C is a compensator field

specified by

C = e−φ4eKcs/2, Kcs = −log[− i
8

∫

T 6

Ω ∧ Ω∗],

with φ4 the four dimensional dilaton given by eφ4 = eφ/
√

Vol(CY3). Then one can define a

metric in the moduli space through the Kähler potential

KIIA = −log

[
4

3

∫
J ∧ J ∧ J

]
− 2log

[
2

∫
Re(CΩ) ∧ ∗Re(CΩ)

]
. (3.7)
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On the other hand, for Type IIB orientifolds with O3/O7-planes the moduli space is

constituted by h
(1,1)
+ Kähler moduli Ti, h

(1,2) complex structure moduli Ua and one axiodilaton

S. These are defined through [74]

S = e−φ + iC0, (3.8)

Ua = i

∫
Ω ∧ αa a = 1, . . . , h

(1,2)
+ , (3.9)

Jc = C4 +
i

2
e−φJ ∧ J + (C2 − iSB2) ∧ B2 = i

h(1,1)+∑

i=1

Tiω̃i, (3.10)

with C0, C2 and C4 the RR scalar (σ-even), 2-form (σ-odd) and 4-form (σ-even) respectively.

Ω is normalized in such a way that

∫
Ω ∧ β0 = 1. (3.11)

Then, the corresponding Kähler potential is given by

KIIB = −log

[
−i
∫

Ω ∧ Ω

]
− log(S + S∗)− 2log(Vol[CY3]). (3.12)

The fact that the metric in the moduli space can be codified through the Kähler potentials

(3.7) or (3.12) is reminiscent of the N = 2 special geometry of the CY3 moduli space. Indeed,

before applying the orientifold projection, the moduli space has a local product structure [75,

76, 77, 78]

MK ×MQ,

being MK a special Kähler manifold spanned by the Kähler moduli in Type IIA or by the

complex structure moduli in Type IIB, and MQ a quaternionic manifold defined by the dilaton

and the complex structure moduli in Type IIA, or by the dilaton and the Kähler moduli in

Type IIB.

One of the most relevant advances in String Theory since its origins has been the discovery

of mirror symmetry (see e.g. [79]). Dualities in String Theory very often have a geometrical

counterpart, and such is the case of mirror symmetry. Indeed, the submanifold M K̃ ⊂ MQ

engendered by the complex structure moduli in Type IIA, or by the Kähler moduli in Type

IIB, may be dressed as well with a special Kähler structure. This allows for a strict equivalence

between Type IIA String Theory compactified on a CY3 and Type IIB compactified on the

mirror manifold C̃Y3 constructed by exchanging h(1,2) ↔ h(1,1) and M K̃ ↔MK . In order to

facilitate the visualization of the mirror map, we have summarized in Table 3.1 the structure

of MK and M K̃ .

For orientifold compactifications, MK and M K̃ are truncated to the invariant elements

under the orientifold projection, however mirror symmetry is still expected to hold [72]. In-

deed, in order to make explicit the mapping between mirror orientifolds it results useful to
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M K̃ ⊂MQ MK

Type IIA 3-cycles→ {Ui} 2-cycles→ {Ti}
Type IIB 4-cycles→ {Ti} 3-cycles→ {Ui}

Table 3.1: Structure of MK and M K̃ for Type IIA and Type IIB CY3.

expand the holomorphic 3-form in periods (τi,Fi) as

Ω = α0 − iF0β0 + i
∑

j=1

(τjβj + iFjαj), (3.13)

where we have already imposed the normalization of eq.(3.11) and the Fi are holomorphic

functions depending on τi.

In terms of the periods, then the Type IIA complex structure moduli and axiodilaton

defined in eqs.(3.6) read

S = 2e−φ

( ∏
j Re Tj

Re [F0 +
∑

k Fk τ̄k]

)1/2

+ i

∫
C3 ∧ β0, (3.14)

Ua = 2e−φ

( ∏
j Re Tj

Re [F0 +
∑

k Fk τ̄k]

)1/2

(Re Fa)− i
∫
C3 ∧ βa, (3.15)

whereas the Type IIB complex structure moduli (3.9) reduce to

Ui = τi. (3.16)

Mirror symmetry between Type IIA orientifolds with O6-planes and Type IIB orientifolds

with O3/O7-planes then corresponds to the mapping represented in Table 3.1.

Type IIB with O3/O7-planes Type IIA with O6-planes

S ←→ S

Ti ←→ Ui

Ui ←→ Ti

Table 3.2: Realization of mirror symmetry between MK and M K̃ .

To illustrate these ideas we will consider the simplest example of CY3 given by a factorable

6-torus ⊗3
n=1(T

2) modded by a Z2 ×Z2 orbifold symmetry so the holonomy belongs to a dis-

crete subgroup of SU(3).

The metric of the factorized torus is given by

ds2 =

3∑

j=1

Aj

Re τj
[(dxj)2 + |τj |2(dxj+3)2 − 2(Im τj)dx

jdxj+3], (3.17)
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being Aj the area of the j-th 2-torus.

The Z2 × Z2 symmetry acts on the internal coordinates according to

Z2 : x1 → −x1 x2 → −x2 x3 → x3 x4 → −x4 x5 → −x5 x6 → x6,

Z ′
2 : x1 → x1 x2 → −x2 x3 → −x3 x4 → x4 x5 → −x5 x6 → −x6,

whereas the orientifold involution σ is acting as

Type IIB with O3/O7-planes: σ(xi) = −xi, (3.18)

Type IIB with O5/O9-planes: σ(xi) = xi, (3.19)

Type IIA with O6-planes: σ(xi) =





xi if i = 1, 2, 3

−xi if i = 4, 5, 6
. (3.20)

The complex structure parameters τi are given in terms of the holomorphic 3-form by

Ω = (dx1 + iτ1dx
4) ∧ (dx2 + iτ2dx

5) ∧ (dx3 + iτ3dx
6). (3.21)

Then, a suitable cohomology basis is given by

α0 = dx1 ∧ dx2 ∧ dx3 β0 = dx4 ∧ dx5 ∧ dx6

α1 = dx1 ∧ dx5 ∧ dx6 β1 = dx4 ∧ dx2 ∧ dx3

α2 = dx4 ∧ dx2 ∧ dx6 β2 = dx1 ∧ dx5 ∧ dx3

α3 = dx4 ∧ dx5 ∧ dx3 β3 = dx1 ∧ dx2 ∧ dx6

ω1 = −dx1 ∧ dx4 ω̃1 = dx2 ∧ dx5 ∧ dx3 ∧ dx6

ω2 = −dx2 ∧ dx5 ω̃2 = dx3 ∧ dx6 ∧ dx1 ∧ dx4

ω3 = −dx3 ∧ dx6 ω̃3 = dx2 ∧ dx5 ∧ dx1 ∧ dx4

and the holomorphic functions Fi read

F0 = τ1τ2τ3, Fi = τjτk, (3.22)

with i 6= j 6= k. Note that F0 acts as a prepotential for the Fi. This is again reminiscent of

the N = 2 special geometry.

Note that for Type IIA orientifolds, consistency of the metric (3.17) with the orientifold

involution implies

(Im τi)IIA = 0, (3.23)

and each sub-torus has a square lattice with τj = Rj
y/R

j
x and Aj = Rj

xR
j
y, being Rj

x and Rj
y

the size of the lattice vectors. Thus, in this case eqs. (3.5), (3.14) and (3.15) become

S = e−φR1
yR

2
yR

3
y + iC123, (3.24)

Ui = e−φRi
xR

j
yR

k
y − i

∫
C3 ∧ βi i 6= j 6= k, (3.25)

Ti = Rj
xR

j
y + i

∫
B2 ∧ ω̃i. (3.26)
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On the other hand, for Type IIB one has that h
(1,1)
− = h

(2,2)
− = 0 and

(B2)IIB = (C2)IIB = 0, (3.27)

and eqs.(3.8)-(3.10) become

S = −iτ = e−φ + iC, (3.28)

Ti = e−φAjAk − i
∫
C4 ∧ ωi i 6= j 6= k, (3.29)

Ui = τi. (3.30)

With this, the Kähler potentials for Type IIA and Type IIB orientifolds, eqs. (3.7) and

(3.12), take exactly the same expression

KIIA = KIIB = −log (S + S∗)−
3∑

i=1

log (Ui + U∗
i )−

3∑

i=1

log (Ti + T ∗
i ). (3.31)

For toroidal orientifolds, mirror symmetry has a very simple realization through T-duality [80].

Indeed, one can construct the operators M1 ≡ T1T2T3 and M2 ≡ T1T2T3T4T5T6 consisting

respectively on T-dualizing along the x1, x2, x3 or along the x1, x2, x3, x4, x5, x6 directions2.

The action of the T-duality operators is given by the Buscher rules [81, 82], which for the

metric (3.17) imply

Cxα1...αp

Tx←→ Cα1...αp
, (3.32)

√
Re Tj

Re τj
e−φ T

xj−→ e−φ. (3.33)

Thus, the mapping of Table 3.1 between MK and M K̃ is automatically accomplished by

M1. More concretely, the following picture arises

Type IIB with O3/O7-planes
M1−−−−→ Type IIA with O6-planes

M−1
2

x
yM2

Type IIB with O5/O9-planes
M−1

1←−−−− Type IIA with O6’-planes

(3.34)

where we have denoted by ’Type IIA with O6’-planes’, the toroidal orientifold with involution

σ such that the O6-planes wrap the directions x4, x5, x6 (that is, θ = ±π/2 in eq. (3.1)). The

2Since the different T-duality operators do not commute, one has to take some care with the order on

which the T-dualities are performed. In particular, performing three T-dualities with a given ordering or

with the opposite one exchanges the sign of the RR fields, so the same results are obtained up to a (−1)FL

transformation. Since the action is invariant under (−1)FL this do not introduce new physics. In other words,

one can equally act with M−1

1
, instead of M1, to go from Type IIB with O3/O7-planes to Type IIA with

O6-planes, however we find M1 more suitable for our conventions since it leaves invariant the axiodilaton S.
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inverse operatorsM−1
1 andM−1

2 are defined in the same way thanM1 andM2 but with the

opposite ordering for the T-dualities.

Up to here we have not considered the possibility of having background fluxes for the

RR and NSNS field strengths. Indeed, having such backgrounds in general will modify the

topology of the original manifold in such a way that some of the original moduli are lifted

from the massless spectrum. The precise realization of the moduli stabilization in the effective

low energy limit will be described in Chapter 5. However, before moving to this point, let

us continue reviewing the necessary tools for embedding the Standard Model in String Theory.

3.2 D3/D7-branes at orbifold singularities.

Once supersymmetry is reduced by the special holonomy of the internal manifold to N = 1,

the following step towards embedding the Standard Model into String Theory is to achieve

chirality in four dimensions. The literature on the topic is extensive: intersecting D-branes [9,

10, 11, 12, 13], heterotic and Type I compactifications [4, 83], magnetized D-branes [84, 85, 86],

D-branes at singularities [14, 15, 16]... all of them related among themselves by a rich network

of dualities.

Here we will briefly overview the natural setup arising on Type IIB orientifolds with O3/O7-

planes, i.e. configurations of D3 and D7-branes placed at orbifold singularities; whereas in the

next section we will describe the corresponding mirror configurations of intersecting D6-branes

arising in Type IIA orientifolds.

We will consider stacks of N3 D3-branes and N7 D7-branes in flat space filling respectively

the directions 0 to 3 and 0 to 7. From the point of view of the worldvolume, open strings

whose ends rest in the D3-branes will induce a N = 4 U(N3) Super Yang Mills theory, whereas

strings placed between the D7-branes will induce a N = 2 U(N7) Super Yang Mills in the

eight dimensional worldvolume. There will be in addition a crossed sector made of open strings

laying between the D3 and the D7-branes and preserving N = 2 in four dimensions. Thus

the complete setup in flat space constitutes a 1/4 BPS configuration with several 1/2 BPS

subsectors.

An easy way to check the field content of the worldvolume theory is by solving the open

string quantization equations derived from the non-linear σ-model. In fact, varying eq. (2.1)

with respect Xµ gives rise to3

∇2Xµ = 0 (3.35)

3Analogous equations for the fermions could be obtained by the same procedure or by supersymmetry

arguments.
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and, corresponding to the surface term of the variation, the boundary condition

[Gµν∂σX
µ + (Fµν −Bµν)∂τX

µ]|σ=π
σ=0 = 0, (3.36)

with Fµν = ∂aAb − ∂bAa + i[Aa, Ab] the gauge field strength.

Note that D-branes are non-perturbative BPS configurations so its classical mass spec-

trum do not receive quantum corrections [3]. Thus, although we will solve the spectrum in

the α′1/2R−1
c � 1 limit, this will remain untouched when one takes into account the complete

String Theory.

For the particular case of open strings whose extremes are laying in the D3-branes, the

boundary conditions (3.36) become

σ = 0, π




Xµ = 0 µ > 3

∂σX
µ = 0 µ = 0 . . . 3

, (3.37)

and the solution is given by the mode expansion (at zero momentum) [87]

Xµ =
∞∑

n=−∞

n−1/2αµ
ne

−inτ cosnσ µ = 0 . . . 3,

Xm =
∞∑

n=−∞

n−1/2αm
n e

−inτ sinnσ + Y mσ

π
m = 4 . . . 9,

with Y m parametrizing a possible separation between the branes in the transverse direction.

By N = 1 worldsheet supersymmetry we expect for the fermionic fields the expansion

Ψµ
± =

∞∑

n=−∞

dµ
ne

−in(τ±σ) µ = 0 . . . 3,

Ψm
± = ±

∞∑

n=−∞

dm
n e

−in(τ±σ) m = 4 . . . 9,

for the R sector, and an analogous expansion for the NS sector with the modding shifted by 1/2.

Acting with the ladder operators α and d, we can construct the different target space fields,

with masses given by the mass operator

α′M2 =
Y 2

4π2α′
+N − ν,

N =
∑

n>0

nα−nαn +
∑

n+ν>0

(n+ ν)d−n−νdn+ν .

Here ν = 0 for the R sector, whereas ν = 1/2 for the NS sector.
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After applying the GSO projection, the massless states in the worldvolume of a stack

of D3-branes are hence given by a U(N) gauge boson Aµ = dµ
−1/2|0 >NS with R-symmetry

charges (0, 0, 0), six adjoint real scalars φm = di
−1/2|0 >NS with R-symmetry charges (±1, 0, 0),

(0,±1, 0) and (0, 0,±1) and four adjoint fermions ψi, i = 1 . . . 4 with charges 1
2 (−,−,−),

1
2 (−,+,+), 1

2 (+,−,+) and 1
2 (+,+,−), which conform an N = 4 U(N) SYM vector multiplet

in 4 dimensions, as previously advanced. Note the nice interpretation of the 6 scalars of N = 4

SYM as moduli fields with vevs parametrizing the position of the D3-branes in the transverse

space. For further reading about the moduli structure of N = 4 SYM, we refer the reader to

Appendix B.

Similar arguments can be applied in order to find the rest of the low energy spectrum,

being given by a N = 2 U(N7) SYM vector multiplet in the eight dimensional worldvolume

of the D7-branes and a N = 2 hypermultiplet transforming in the (N2, N7) + (N3, N7) of

U(N3)×U(N7) for the crossed sector. Here, however, a new ingredient emerges in the scene.

Since we are only requiring SO(3, 1) Poincaré invariance, in principle there is no reason to

avoid the presence of a non trivial background for the antisymmetric tensor Bµν −Fµν in the

worldvolume coordinates transverse to Minkowski4. Having a background for B2 or F2 in the

worldvolume of a D-brane modifies the boundary conditions for the open strings accordingly

to eq. (3.36), inducing in this way a non trivial potential for the fermions and scalars living in

the worldvolume of the branes. Details about the shape of the flux induced effective potentials

will be found in Chapter 6

To illustrate the effect of the B2−F2 background in the low energy spectrum for the crossed

sector, let us consider a factorable background with components (B − F )45 and (B − F )56.
5

The boundary conditions for the D3-D7 strings are then given by

σ = 0




Xµ = 0 µ > 3

∂σX
µ = 0 µ = 0 . . . 3

,

σ = π





Xµ = Y µ µ = 8, 9

∂σXa + iBa∂τXa = 0 a = 1̃, 2̃

∂σX
µ = 0 µ = 0 . . . 3

,

where B1̃ ≡ (B − F )45, B
2̃ ≡ (B − F )67 and the complex structure is fixed through X1̃ ≡

X4 + iX5 and X2̃ ≡ X6 + iX7.

4Actually something similar happens for the metric, being the most general allowed background given by a

warped metric.
5Note that the T-dual picture of this configuration is analogous to a configuration of D7-branes with an

additional 1/2 twist corresponding to the D3-branes, which can be interpreted as coming from an infinite

magnetic background in the directions 4 to 7 of the worldvolume of some of the D7-branes.
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Proceeding as before, we construct a mass operator

α′M2 =
Y 2

4π2α′
+N +

ν

π
(arctanB1̃ + arctanB2̃), (3.38)

with

N =
∑

n>0

nα−nαn +
∑

n+ν>0

(n+ ν)d−n−νdn+ν+

+
∑

a=1̃,2̃

[
∑

r>0

(ra
+α

a
−r+

αa
r+

+ ra
−α

a
−r−

αa
r−

) +
1

π
arctanBaαa

−(1/π) arctanBaαa
(1/π) arctan Ba

]
+

+
∑

a=1̃,2̃

[
∑

r>0

((ra
+ + ν)da

−r+−νd
a
r++ν + (ra

− + ν)da
−r−−νd

a
r−+ν)+

+δν,0(
1

π
arctanBa)da

−(1/π) arctanBada
(1/π) arctan Ba

]

and

ra
± = n±

(
− 1

π
arctanBa +

1

2

)
.

Hence, in absence of flux there is a degenerate ground state generated by the ladder

operators d1̃
0 and d2̃

0. The degeneration then can be broken by the background fluxes. In that

case the lightest excitations of the NS sector are given by the massive complex scalars

(−−) M2 =
1

2α′π
(arctan iB22̄ + arctan iB11̄) +

Y 2

4π2(α′)2
,

(+−) M2 =
1

2α′π
(arctan iB22̄ − arctan iB11̄) +

Y 2

4π2(α′)2
,

(−+) M2 =
1

2α′π
(arctan iB11̄ − arctan iB22̄) +

Y 2

4π2(α′)2
,

(++) M2 = − 1

2α′π
(arctan iB11̄ + arctan iB22̄) +

Y 2

4π2(α′)2
, (3.39)

although only the states (++) and (−−) survive to the GSO projection6. Note that for Y = 0

and non-supersymmetric fluxes one of the NS scalars is always tachyonic. Finally, in the R

sector two non-chiral fermions of mass M 2 = Y 2

4π2(α′)2 are found.

Up to here we have performed an analysis in flat space. Now one would like to impose the

orbifold and orientifold projections in order to reduce the supersymmetry to four dimensional

N = 1 and to obtain chiral fermions. With this aim, we will consider the above setup to be

placed at a R6/Γ singularity in a toroidal orientifold, with Γ ⊂ SU(3) acting as a discrete

group of holonomy. For easiness here we will restrict ourselves to the case Γ = ZN . The

generalization to more involved orbifold groups will be immediate [14, 15].

6In the same way, one could select the states (−+) and (+−) by considering D3 or D7-branes.
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The ZN action can be fixed through its effect on the fermions living inside the D3-branes

ψk −−→
ZN

e2πiak/Nψk,

with k = 1 . . . 3 and
∑

k ak = 0 mod N so Γ ⊂ SU(3) and the setup is N = 1 supersymmetric.

By worldsheet supersymmetry one can obtain the induced transformations in the remaining

worldvolume fields. In particular, for the three complex scalars living in the D3-branes one

finds

Φm −−→
ZN

e2πibm/NΦm,

with m = 1 . . . 3 and b1 = a2 + a3, b2 = a1 + a3, b3 = a1 + a2. One could proceed analogously

for the rest of the worldvolume fields.

The ZN group will act as well on the Chan-Paton indices. The embedding is usually fixed

by the matrices

γθ,3 = diag(In0 , e
2πi/N In1 , . . . , e

2πi(N−1)/N InN−1),

γθ,7 = diag(Iu0 , e
2πi/NIu1 , . . . , e

2πi(N−1)/NIuN−1) for b3 = even,

γθ,7 = diag(eπi/NIu0 , e
6πi/NIu1 , . . . , e

2πi(2N−1)/N IuN−1) for b3 = odd,

with θ the ZN generator. Thus, the Chan-Paton factors in the different sectors of the setup

transform as

λ33 −−→
ZN

γθ,3λ33γ
−1
θ,3 ,

λ77 −−→
ZN

γθ,7λ77γ
−1
θ,7 ,

λ37 −−→
ZN

γθ,3λ37γ
−1
θ,7 ,

λ73 −−→
ZN

γθ,7λ73γ
−1
θ,3 ,

and the gauge groups of the field theories in the worldvolume of the D3 and the D7-branes are

broken respectively to
∏N3−1

i=0 U(ni) and
∏N7−1

i=0 U(ui). The invariant states of the spectrum

are given in Table 3.2. This provides us with a basic local setup to build up chiral N = 1

gauge theories in the context of Type IIB String Theory.

It only rests to apply the orientifold projection. This can be naively done for setups of

branes placed outside the locus of the O-planes. In that case, the orientifold projection simply

imposes a Z2 identification of the fields due to σ, and for each brane there will be a set of

mirror branes obtained under the action of σ and σθ.

Concerning the setups of branes coincident with the O-planes, the projected states in addi-

tion have to be invariant under the action γΩP ,3 and γΩP ,7 of the orientifold on the Chan-Paton
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Sector Multiplet Representation

33 Vector mult.
∏

i U(ni)

Chiral mult.
∑

i

∑3
r=1(ni, n̄i+ar

)

77 Vector mult.
∏

i U(ui)
Chiral mult.

∑
i(ui, ūi+a3)

37, 73 Chiral mult.
∑

i[(ni, ūi− 1
2 a3

) + (ui, n̄i− 1
2 a3

)] a3 even∑
i[(ni, ūi− 1

2 (a3+1)) + (ui, n̄i− 1
2 (a3+1))] a3 odd

Table 3.3: Spectrum of the D3-D7 setup at a ZN singularity.

factors. The U(N) gauge groups are then projected down to SO(N) with two-index antisym-

metric representations, or to USp(N) with two-index symmetric representations, depending

on the orientifold prescription. We refer the reader to [88, 89] for further details.

3.3 Intersecting D6-branes.

The second construction giving rise to four dimensional N = 1 chiral field theories which we

would like to review here is the case of intersecting D6a-branes wrapping 3-cycles Πa on a

factorized 6-torus. The 3-cycles are specified in terms of the wrapping numbers as

Πa = (n1
a,m

1
a)⊗ (n2

a,m
2
a)⊗ (n3

a,m
3
a). (3.40)

Alternatively, one may use the angles of the branes with respect to the xi axis (i = 1, 2, 3)

tan θi
a =

mi
aR

i
y

ni
aR

i
x

. (3.41)

Note in particular that the cycles ΠD3 = (1, 0) ⊗ (1, 0) ⊗ (1, 0) and/or ΠD7 = (0, 1) ⊗
(0,−1) ⊗ (1, 0) are associated to the Type IIB mirror configurations of D3 and D7-branes

discussed in the previous section.

The massless spectrum can be computed in the same way as we did for the D3/D7-brane

system [90]. Each stack of D6a-branes will engender a N = 4 U(Na) SYM theory in four

dimensions. In addition, at the intersection between two stacks of D6a-branes and D6b-branes

there will be open strings satisfying the boundary conditions

sin θi
a∂σX

i − cos ∂σX
i+3 = 0,

sin θi
a∂tX

i+3 − cos ∂tX
i = 0,
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for σ = 0, and similar for σ = π with a→ b. Such conditions lead to twisted states analogous

to the ones encountered in the previous section for the D3-D7 strings in presence of B2 − F2

flux. In particular, the mass of the GSO projected states can be recast as [90, 91, 92]

α′M2
ab = Nbos(θ) +

(r + v)2

2
− 1

2
+

1

2

3∑

i=1

|θi|(1− |θi|), (3.42)

being Nbos(θ) the contribution from the bosonic oscillators, irrelevant for our discussion here,

and v a 4-dimensional vector whose i-th entry corresponds to θi
ab = (θi

b−θi
a)/π (and the fourth

one equals to 0). The components of the vector r then takes values in Z or Z + 1
2 , labelling

the states of the NS sector or the R sector respectively.

The lowest states of the spectrum are thus given by a chiral left-handed fermion in the

bifundamental representation (Na, N b) of U(Na) × U(Nb), and four real scalars with masses

given in Table 3.4.

v + r α′M2

(θ1 − 1, θ2, θ3, 0) 1
2 (−θ1 + θ2 + θ3)

(θ1, θ2 − 1, θ3, 0) 1
2 (θ1 − θ2 + θ3)

(θ1, θ2, θ3 − 1, 0) 1
2 (θ1 + θ2 − θ3)

(θ1 − 1, θ2 − 1, θ3 − 1, 0) 1− 1
2 (θ1 + θ2 + θ3)

Table 3.4: Lowest scalar states for the D6a-D6b intersection.

Note that for certain angles the scalars may become tachyonic, signaling an instability

against recombination of the branes into a single one. In other cases, the angles may be such

that some of the scalars become massless and part of the supersymmetry is preserved by the

intersections. More concretely, when just one of the scalars is massless the brane intersec-

tion will preserve N = 1 supersymmetry in four dimensions and the scalar will be arranged

together with the chiral fermion to form a N = 1 chiral multiplet. Thus, a priori no extra

orbifold twist is required in this case to reduce the supersymmetry.

In general, the cycles Πa and Πb will intersect several times, as given by the intersection

number

Iab =
∏

i

(ni
am

i
b −mi

an
i
b), (3.43)

and hence there will be Iab replicas of the spectrum.

With respect to the orientifold projection, one has something similar to what we saw in

the previous section for the setups of D3/D7-branes. Thus, for D6-branes outside the locus of

the O6-planes the effect of the orientifold is exclusively due to the σ involution and for each
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brane wrapping a cycle Πa, there will be a mirror brane wrapping the cycle

Π∗
a = (n1

a,−m1
a)⊗ (n2

a,−m2
a)⊗ (n3

a,−m3
a). (3.44)

Open strings in the ab∗ and aa∗ intersections will lead respectively to Iab∗ chiral fermions

in the (Na, Nb) of U(Na)×U(Nb) and to Iaa∗ fermions in symmetric or antisymmetric repre-

sentations [86, 84].

Concerning the branes at the locus of the O6-planes one has in addition to impose the

orientifold projection on the Chan-Paton factors, as occurred in the previous section. In that

case, the gauge groups again get reduced to SO(N) or USp(N), depending on the prescription

for the O-planes.

3.4 Anomalies and Tadpole Cancellation.

One of the very attractive features of String Theory for describing our real world is that con-

sistency of the theory in ten dimensions usually guarantees the absence of pathologies for the

field theories living inside the D-branes. More concretely, the cancellation of the non-abelian

anomalies is automatically ensured once the tadpole cancellation conditions for the RR closed

string modes are satisfied [89, 92]. On the other hand, the mixed U(1) anomalies are cancelled

thanks to a combination of the RR tadpole cancellation conditions and the Green-Schwarz

mechanism [93]. The explicit realization of these mechanisms is model dependent. Here we

will overview how the cancellation is achieved in the setups of the previous sections.

In a quiver theory, the cancellation of cubic non-abelian anomalies for the a-th node reads

∑

b

IabNb = 0, (3.45)

with Iab the number of bifundamentals (Na, N b) of U(Na)× U(Nb).

For configurations of D6a-branes this condition has a direct interpretation, being Iab the

intersection number defined in eq. (3.43). In that case, eq. (3.45) is automatically satisfied

once cancellation of the global charge associated to the RR 7-form in the compact manifold

is imposed. This is equivalent to require the condition

∑

a

Na[Πa] = 0, (3.46)

with [Πa] the homology class corresponding to the 3-cycle Πa. Then, one may check that in
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terms of the wrapping numbers eq. (3.46) reads

∑

a

Nan
1
an

2
an

3
a = 0,

∑
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1
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2
am

3
a = 0,

∑
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2
an

3
a = 0,

∑

a

Nam
1
an

2
am

3
a = 0,

∑

a
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2
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3
a = 0,

∑
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1
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2
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3
a = 0,

∑

a

Nan
1
an

2
am

3
a = 0,

∑

a

Nam
1
am

2
am

3
a = 0,

and the left hand side of eq. (3.45) automatically vanishes.

For D3/D7-branes placed on top of orbifold singularities the mechanism is analogous, but

the role played by the untwisted RR 7-form is now played by twisted fields. Indeed, for the

chiral spectrum of a D3/D7 configuration, eq. (3.45) reads

∑

α

(ni+aα
+ ni−aα

) +
∑

r

(ui+ 1
2 br
− ui− 1

2 br
) = 0, (3.47)

where we have generalized the configurations of Section 3.2 to consider all the three possi-

ble kinds ofD7r-branes, filling everything but the r-th complex plane transverse to Minkowski.

The twisted tadpole cancellation conditions for D3/D7-brane configurations are given

by [89]

[

3∏

r=1

2 sin(πkbr/N)Trγθk,3] + 2

3∑

r=1

sin(πkbr/N)Trγθk,7r
= 0. (3.48)

Then, substituting

nj =
1

N

N∑

k=1

e−2πikj/N Trγθk,3,

uj =
1

N

N∑

k=1

e−2πikj/N Trγθk,7,

into (3.48) and performing some algebra, the cancellation condition (3.47) is trivially satisfied.

Concerning the cancellation of U(1) mixed anomalies, there are some subtleties. Indeed,

the amplitude for the U(1)a − [SU(Nb)]
2 triangle diagram is given by

Aab =
1

2
δab

∑

c

NcIbc +
1

2
NbIab, (3.49)

so just the first piece will vanish due to the tadpole conditions. In order to ensure a complete

cancellation of the mixed gauge anomaly a generalized Green-Schwarz mechanism is required
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in the game. Diagrams not cancelled through the tadpole conditions are cancelled by stringy

diagrams on which there is an exchange of closed string untwisted modes for D6-branes, or

twisted modes for D3/D7-branes. For the sake of clarity, here we will describe only the ex-

change of untwisted closed string modes by intersecting D6-branes. Something analogous

should be expected for configurations of D3 and D7-branes.

The D6-brane action contains the following relevant piece [92]
∫

D6

(C3 ∧ Fa ∧ Fa + C5 ∧ Fa) =
∑

I

∫

M4

[
pa

I (Im UI)Fa ∧ Fa +Nac
a
IC

(2)
I ∧ F a

]
, (3.50)

where U0 = −S corresponds to the axiodilaton, Ui are the complex structure moduli and

C
(2)
I =

∫
[ΠI ]

C5. The coefficients (caI , p
a
I ) are defined as

ca0 = m1
am

2
am

3
a, ca1 = m1

an
2
an

3
a, ca2 = n1

am
2
an

3
a, ca3 = n1

an
2
am

3
a, (3.51)

pa
0 = n1

an
2
an

3
a, pa

1 = n1
am

2
am

3
a, pa

2 = m1
an

2
am

3
a, pa

3 = m1
am

2
an

3
a. (3.52)

The Green-Schwarz mechanism guarantees then that the residual U(1) mixed anomaly is

cancelled through the exchange of closed string geometric moduli due to the couplings (3.50),

i.e.

F 1
a

F 2
a

F 3
a ⊕

Im UI CI

F 1
a

F 2
a

F 3
a = 0

Indeed, the amplitude for the second diagram is

Na

∑

I

pa
I c

a
I = NaIab, (3.53)

which precisely cancels the residual mixed U(1) anomaly of eq. (3.49).

The potentially anomalous U(1) becomes massive and remains as a global symmetry of

the low energy effective theory [94, 95, 96]. In fact, rewriting the coupling C
(2)
I ∧ F a as

−Nac
a
I

6
εµνρσ(dC

(2)
I )µνρA

a
σ −

Nac
a
I

6
(Im UI)ε

µνρσ∂µ(dC
(2)
I )νρσ , (3.54)

and making use of the equation of motion for dC
(2)
I

(dC
(2)
I )µνρ = −Nac

a
I ε

µνρσ(Aσ + ∂σ(Im UI)),

one arrives to a Stückelberg’s mass term for the vector boson Aa

− (Nac
a
I )2

2
(Aa

σ + ∂σ(Im UI))
2.
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Taking a basis {Qa/Na} for the generators of the different U(1)’s, then the linear combi-

nations of gauge bosons which remain massless after the Green-Schwarz mechanism are given

by the solutions to the equation [92]

∑

a

IabQa

Na
= 0. (3.55)

3.5 Model building without fluxes.

Based on the above ideas, and on other possibilities not discussed here, a lot of semirealistic

models with chiral content and gauge group similar to the ones of the MSSM have been pre-

sented in the last years. Although the models are clearly on the road of the Standard Model,

they usually involve some extra U(1)’s or hidden sectors, and in particular a fully realistic

model still has not been achieved.

Here we will present a couple of examples based on the ideas of this chapter and which are

representative of the effort done during the ’pre-fluxed’ era of the model building. All these

models have in common two major pathologies: the lack of a non trivial scalar potential for

the closed string moduli, giving rise to a whole set of massless scalars in the spectrum; and

the absence of a non-trivial scalar potential for the open string moduli, in particular for the

Higgs(es), thus lacking a (controllable) supersymmetry breaking mechanism. The addressing

of these two problems by considering backgrounds for the closed string modes will constitute

the bulk of this thesis.

3.5.1 Model 1: D3/D7-branes on a Z3 singularity.

We will reproduce here one of the models of [15].The basic idea to get the Standard Model

group is to consider a stack of D3-branes placed on a Z3 singularity plus three stacks of

D7-branes, each one wrapping two different complex planes in the transverse directions to

Minkowski, as illustrated in Figure 3.1.

The twisted tadpole conditions (3.48) for this configuration read

Trγθ,73 − Trγθ,71 − Trγθ,72 + 3Trγθ,3 = 0, (3.56)
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Figure 3.1: Local Type IIB Z3 singularity yielding the SM spectrum. Six D3-branes sit on

top of the Z3 singularity. Twisted tadpoles are cancelled by intersecting D7-branes with their

worldvolume transverse to different complex planes.

which can be solved through the Chan-Paton embedding

γθ,3 =



I3

αI2

α2I1


 ,

γθ,73 = −γθ,71 = −γθ,72 =




0

αI1

α2I2


 ,

with α = e2πi/3.

This gives rise to a SU(3)× SU(2)× U(1) gauge theory living in the worldvolume of the

D3-branes, plus three U(1) × U(2) hidden sectors in the D7-branes. The matter content is

depicted in Table 3.5. Note the remarkable similarity to the Standard Model spectrum.

The only anomaly free combination of U(1)′s

Y = −(
1

3
Q3 +

1

2
Q2 +Q1) (3.57)

corresponds to the hypercharge, which arises from the 33 sector.

One may embed this local setup into a T 6/Ωp(−1)FLσZ3 toroidal orientifold. This has

27 orbifold fixed points labelled by (m,n, p), m,n, p = 0,±1. Among these, only the origin

(0, 0, 0) corresponds to a fixed point of the orientifold involution σ and holds 64 O3-planes.

Thus, in order to cancel the untwisted tadpoles, it is required the presence of 32 D3-branes

accommodated among the different orbifold and orientifold points. Some of these branes in

the orbifold points will correspond to the D3-branes of the above local setup containing the
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Matter fields Q3 Q2 Q1 Qur
1

Qur
2

Y

33 sector

3(3, 2) 1 -1 0 0 0 1/6

3(3̄, 1) -1 0 1 0 0 -2/3

3(1, 2) 0 1 -1 0 0 1/2

37r sector

(3, 1) 1 0 0 -1 0 -1/3

(3̄, 1; 2′) -1 0 0 0 1 1/3

(1, 2; 2′) 0 1 0 0 -1 -1/2

(1, 1; 1′) 0 0 -1 1 0 1

7r7r sector

3(1; 2)′ 0 0 0 1 -1 0

Table 3.5: Spectrum of the SU(3) × SU(2)× U(1) model.

Standard Model sector. On the other hand, to cancel the global charge of D7, one has to

add the same number of D7-branes as D7-branes. Unfortunately, the presence of D7-branes

leads to instabilities such as non vanishing NS tadpoles or partial annihilation against the

D7-branes. These are always difficult to manage and rest attractiveness to the model. We

refer the reader to [15] for a concrete example of global embedding along these lines.

3.5.2 Model 2: Four-stacks model of intersecting D6-branes.

The simplest models of intersecting D6-branes containing the same chiral content than the

Standard Model are made of four stacks of branes. These may be conveniently labelled as

baryonic, leptonic, left and right stacks, with respective multiplicities Na = 3, Nd = 1, Nb = 2

and Nc = 1 [95, 97, 98]. The disposition of the Standard Model fields at the different inter-

sections is depicted in Figure 3.2. In some cases, as in the model presented here, the baryonic

and leptonic branes have the same wrapping numbers, thus giving rise to a very symmetrical

configuration.

We will consider here the setup of D6-branes of Table 3.6 placed in a simple Type IIA

toroidal orientifold T 6/ΩP (−1)FLσ. In addition, there will be some mirror branes under the

σ involution accordingly to eq. (3.44). The left brane will be considered to be coincident

with the orientifold plane so, due to the orientifold projection of the Chan-Paton factors, it

will engender a SU(2) group instead of the usual U(1).7 This model was first presented in [98].

7Another flat direction of this model consists on making the right brane to overlap as well with the orientifold

plane thus giving rise to a left-right SU(2)L × SU(2)R supersymmetric model.
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Figure 3.2: Schematics of the SM fields at the intersections in a model of four stacks of

D6-branes.

Ni (n1
i ,m

1
i ) (n2

i ,m
2
i ) (n2

i ,m
2
i )

Na +Nd = 4 (1, 0) (3, 1) (3,−1)

Nb = 1 (0, 1) (1, 0) (0,−1)

Nc = 1 (0, 1) (0,−1) (1, 0)

Table 3.6: Wrapping numbers of a four stack model of D6-branes holding the same chiral

spectrum than the MSSM.

Each intersection preserves a N = 1 supersymmetry, and thus one of the scalars of Table

3.4 remains massless at each intersection. The condition for all the intersections to preserve

the same N = 1 supersymmetry than the orientifold planes is then

∑

i

arctan

(
mi

aR
i
y

ni
aR

i
x

)
= 0, (3.58)

which leads to τ1 = τ2 = τ3.

The gauge group, after splitting the baryonic and leptonic branes, is given by U(3) ×
SU(2)L × [U(1)]2. Now, by making use of eq. (3.55), one observes that one of the U(1)’s

becomes massive through the Green-Schwarz mechanism and the final group at low energies

becomes by SU(3)× SU(2)L × U(1)R × U(1)B−L.

The chiral content of the model can be easily computed, resulting to be the same than

in the MSSM: three generations of quarks and leptons with right-handed neutrinos and two

doublets of Higgsses living between the left and right branes.

One may embed this local setup into a global Type IIA toroidal orientifold. Naively, in or-
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der to cancel the D6-brane tadpoles along the nmm directions without introducing D6-branes,

one is enforced to consider an extra orbifold symmetry, such as in the Z2 × Z2 example dis-

cussed in Section 3.1. We will see however in Section 7.2.3 a different approach which makes

use of closed string backgrounds in order to cancel the tadpoles and at the same time stabilize

all the moduli of the compactification.



Chapter 4

Type II Supergravity and Flux

Compactifications.

A good understanding of the low energy limit is required in order to gain some insight into the

structure of String Theory. Thus, on this chapter we turn into the task of describing the two

ten dimensional N = 2 supergravities which arise in the low energy limit of Type II String

Theory. These are usually denoted as Type IIA and Type IIB Supergravity, depending on

whether the two supercharges have different or the same chirality.

New degrees of freedom in the compactifications of Chapter 3 will appear, consisting on

non-trivial backgrounds for the RR and NSNS field strengths along the cycles of the internal

manifold. These background fluxes will determine the low energy dynamics of the theory

through changes in the topology of the internal manifold, thus revealing interesting properties

for addressing some of the pathologies described in the previous chapter.

4.1 Type IIB Supergravity.

As mentioned, in this case the two supercharges have the same chirality. The field content

can be obtained by decomposing the product of them in terms of irreducible representations

of the little group SO(8)

(8v + 8c)⊗ (8v + 8c) = (1 + 28 + 35v + 28 + 35c)B + (8s + 8s + 56s + 56s)F .

This corresponds to a graviton hµν , a complex axiodilaton τ = C+ie−φ, a complex three-form

F3 = dA2, a self-dual 5-form F5 = dA4 − (κ/8)Im(A2 ∧ F ∗
3 ), a complex Weyl gravitino ψM

(γψM = −ψM ) and a complex Weyl dilatino λ (γλ = λ). Note that we have taken a different

definition for the axiodilaton than in eq. (3.8). Both conventions may be related through

39
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S = −iτ plus an extra (−1)FL transformation. On this thesis we will use τ when talking

about the ten dimensional supergravity, and S when doing about the moduli space of the

compactification.

The equations of motion and supersymmetry variations of Type IIB supergravity were

deduced by Schwarz et al. in [99, 100] by a different method to the Noether’s procedure

described in Appendix A. Basically the method consists on deriving one of the equations of

motion making use of the SU(1, 1) non-perturbative symmetry of the theory. Then, applying

the supersymmetry transformations and imposing the closure of the algebra, the rest of the

equations can be obtained.

The supersymmetric variations for the fermions are given by

δλ∗ = − i
κ
γmP ∗

mε+
i

4
G∗ε∗, (4.1)

δψr =
1

κ

(
Dr −

i

2
Qr

)
ε+

i

480
γmnopqFmnopqγrε−

1

16
γrGε

∗ − 1

8
Gγmε

∗, (4.2)

with G = 1
6Gmnpγ

mnp, G3 = f(F3 − BF ∗
3 ), ε = ε1 + iε2 the complex Weyl supersymmetry

parameter (Γε = −ε) and

Pm = f2∂mB, Qm = f2Im(B∂mB
∗),

B =
1 + iτ

1− iτ , f−2 = 1−BB ∗ .

In order to relate these quantities with the ones which usually appear in String Theory it

is common to make the redefinitions [82, 101]

G3 → i
gs

κ
√
Im τ

(
1 + iτ∗

1− iτ

)1/2

G3, (4.3)

4κF5 → gF5, (4.4)

2κ2 = (2π)7g2
sα

′4, (4.5)

and to work in SL(2,R) ' SU(1, 1) covariant variables. In that case ε =

(
ε1

ε2

)
. The SL(2,R)

group is generated by

S1 =

(
1 1

0 1

)
, S2 =

(
0 −1

1 0

)
, S3 =

(
−1 0

0 −1

)
.

Thus, in general an element Λ =

(
a b

c d

)
∈ SL(2,R) with ad − bc = 1 will act non-

perturbatively on the Type IIB fields as

S → aS − ib
icS + d

, B2 → dB2 + cC2 , C2 → bB2 + aC2 , C4 → C4. (4.6)
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In particular, S1 will correspond to Peccei-Quinn symmetries S → S − i, S2 to S-duality

transformations

S → 1

S
, C2 → −B2 , B2 → C2 , C4 → C4, (4.7)

and S3 will be associated to the generator of the R-symmetry group U(1) ⊂ SL(2,R). At the

quantum level, the fields in general will be quantized over the cycles of the internal manifold,

and only a subgroup SL(2,Z) ⊂ SL(2,R) will survive [102].

Making use of the redefinitions (4.3)-(4.5) and working in the Einstein’s frame1 on which

the Einstein’s term has the canonical normalization, it is possible to rewrite the equations of

motion of [100] as2

dF5 =
i

2
gsG3 ∧G∗

3, (4.8)

5m

(
i

2
eφ∂mτ

)
− 1

2
e2φ∂mC∂mτ =

gs

24
GmnpG

mnp, (4.9)

Rmn =
1

4
e2φ∂mτ∂nτ

∗ +
1

4
e2φ∂mτ

∗∂nτ +
g2

s

96
FmqrstFn

qrst

+
gs

8

(
Gm

pqG∗
npq +Gn

pqG∗
mpq −

1

6
gmnG

∗
pqrG

pqr

)
, (4.10)

d ∗ReG3 = F5 ∧H3, (4.11)

with

F3 = dC2, H3 = dB2,

F5 = dC4 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3, G3 = F3 − τH3,

and where the prescription for the hodge dual operation * is the common one used in super-

gravity

∗Aµ1...µd−p
≡ 1

p!
εµ1...µd−p

ν1...νpAν1...νp
. (4.12)

Although a manifest Lorentz covariant action for these equations cannot be written, one

can always write an action supplemented by the on-shell condition F5 = ∗F5 for the five-form

field strength [103, 104]

SIIB =
1

2κ2

∫
d10x (−G)1/2 [R− e2φ

2
∂mτ∂

mτ∗ − 1

12
eφG3 ·G∗

3 −
1

480
F 2

5 ] +

+
1

8iκ2

∫
eφC4 ∧G3 ∧G∗

3. (4.13)

1The Einstein and the string frames are related by a re-scaling of the metric as (gst)mn = g
1/2
s (gE)mn.

This induces as well a re-scaling of the Dirac algebra γm
st = g

−1/4
s γm

E through the relation {γm , γn} = 2gmn.
2We only present here the equations more involved with our work.
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Then one can apply the usual Euler-Lagrange procedure3 to recover the equations (4.8)-

(4.11).

The theory as well can be formulated in terms of the dual field strengths F5, ∗F3 and ∗F1,

exchanging in this way the equations of motion and the Bianchi identities with respect to the

ordinary formulation. In that case, one defines the potentials C6 and C8 through the relations

− ∗Re G3 = dC6 −H3 ∧
(
C4 +

1

2
B2 ∧ C2

)
, (4.14)

− ∗Re dτ = dC8 −H3 ∧ C6, (4.15)

which result useful in the context of D-brane actions, as we will see in Chapter 6. In addition,

in order to recover the SL(2,R) symmetry in the dual formulation one has to include new

potentials C ′
8 and C̃8 [105, 106, 107]. Indeed, it happens that C8 comes in a SL(2,R) triplet

of 8-forms (C8, C
′
8, C̃8) transforming as

(
C ′

8 C̃8

C8 −C ′
8

)
→ Λ ·

(
C ′

8 C̃8

C8 −C ′
8

)
· Λ−1, (4.16)

with Λ ∈ SL(2,R). Since these potentials correspond to the dual of the axiodilaton τ in th

ordinary formulation of the theory, it will be required a constraint among the field strengths

so that there are only two propagating degrees of freedom.

4.2 Type IIA Supergravity and Romans Supergravity

We can proceed as in the previous section with Type IIA supergravity. On this case the

two supercharges have different chirality and the product of them in terms of irreducible

representations of the little group becomes

(8v + 8c)⊗ (8v + 8c
′) = (1 + 28 + 35v + 8v + 56v)B + (8s + 8s

′ + 56s + 56s
′)F .

This corresponds to a graviton hµν , a real scalar φ, a real three-formH3 = dB2, a real two-form

F2 = dA1, a real four-form F4 = dC3−H3∧A1, a complex Weyl gravitino ψM (γψM = −ψ∗
M )

3It results useful to derive a symbolic procedure in order to take the Euler-Lagrange equations of a expression

written in language of forms. The rule consists in taking

∂L

∂Cn
= d

∂L

∂(dCn)
,

where L is expressed in such a way that on each wedge product of forms Cn and dCn are on the left hand side

of the product. The partial derivatives are then symbolically defined through

∂

∂Cn
(Cn ∧ Ap) = Ap,

d
∂

∂(dCn)
(dCn ∧ Ap) = (−1)ndAp.
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and a complex Weyl dilatino λ (γλ = λ∗). The decomposition admits as well a cosmological

constant term m. In that case, the field B2 eats the vector field A1 and acquires a mass, in

a similar fashion to the Higgs mechanism. The arising supergravity is usually called massive

Type IIA supergravity or Romans supergravity [108].

Contrary to what happens in Type IIB supergravity, it is possible to write a complete

manifest Lorentz covariant action for Type IIA supergravity. This can be done by different

methods. The simplest one is through Kaluza-Klein reduction of the maximal supergravity in

eleven dimensions. However, doing so it is not possible to obtain the massive version of Type

IIA supergravity.

Here we will start with the results of Romans [108], written in the Einstein frame

SIIA =
1

2κ2

∫
d10x(−G)1/2[R− 1

2
∂mφ∂

mφ− e−φ

12
(H3)

2 − e3φ/2m2

4
(B2)

2−

− eφ/2

48
(F4)

2 − e5φ/2

2
m2] +

1

4κ2

∫
[B2 ∧ dC3 ∧ dC3 +

m

3
B2 ∧B2 ∧ B2 ∧ dC3+

+
m2

20
B2 ∧ B2 ∧ B2 ∧ B2 ∧B2], (4.17)

with H3 = dB2 and F4 = dC3 + m
2 B2 ∧ B2. Note that in this picture B2 is massive. Then,

one can jump to the frame on which the degrees of freedom associated to the vector field A1

decouple from the ones of B2 by performing the gauge transformation

B2 → B2 +
1

m
dA1 ≡

F2

m
, (4.18)

C3 → C3 +B2 ∧ A1 −
1

2m
A1 ∧ A1. (4.19)

With this, the action (4.17) becomes, up to a total derivative,

SIIA =
1

2κ2

∫
d10x(−G)1/2[R− 1

2
∂mφ∂

mφ− e−φ

12
(H3)

2 − e3φ/2

4
(F2)

2−

− eφ/2

48
(F4)

2 − e5φ/2

2
m2] +

1

4κ2

∫
[B2 ∧ dC3 ∧ dC3 +

m

3
B2 ∧B2 ∧ B2 ∧ dC3+

+
m2

20
B2 ∧ B2 ∧ B2 ∧ B2 ∧B2], (4.20)

where

H3 = dB2, (4.21)

F2 = dA1 +mB2, (4.22)

F4 = dC3 −H3 ∧ A1 +
m

2
B2 ∧ B2. (4.23)

Ordinary Type IIA supergravity then corresponds to setting m = 0.
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From (4.21)-(4.23) one obtains the sourceless Bianchi identities

dH3 = dm = 0 , dF2 = mH3 , dF4 = F2 ∧H3, (4.24)

whereas the rest of the equations of motion may be obtained by applying the usual Euler-

Lagrange procedure to eq. (4.20)

0 = Rmn −
1

2
∂mφ∂nφ−

1

12
eφ/2FmpqrFn

pqr +
1

128
eφ/2gmn(F4)

2

− 1

4
e−φHmpqHn

pq +
1

48
e−φgmn(H3)

2 (4.25)

− 1

2
e3φ/2FmpFn

p +
1

32
e3φ/2gmn(F2)

2 − m2

16
e5φ/2gmn,

0 = ∇2φ− 1

96
eφ/2(F4)

2 +
1

12
e−φ(H3)

2 − 3

8
e3φ/2(F2)

2 − 5

4
m2e5φ/2, (4.26)

0 = d(e−φ ∗H3)−
1

2
F4 ∧ F4 + eφ/2F2 ∧ ∗F4 +me3φ/2 ∗ F2, (4.27)

0 = d(eφ/2 ∗ F4)−H3 ∧ F4, (4.28)

0 = eφ/2H3 ∧ ∗F4 + d(e3φ/2 ∗ F2). (4.29)

Finally, as for Type IIB supergravity, it may result useful to reformulate the theory in

terms of the dual field-strengths ∗F4, ∗F2 and ∗m. Then, one defines the dual potentials C5,

C7 and C9 appearing in the D-brane effective actions through the relations

eφ/2 ∗ F4 = dC5 +H3 ∧ C3 −
m

6
B2 ∧ B2 ∧ B2, (4.30)

−e3φ/2 ∗ F2 = dC7 +H3 ∧ C5 +
m

24
B2 ∧ B2 ∧B2 ∧ B2, (4.31)

−e5φ/2 ∗m = dC9 +H3 ∧ C7 −
m

120
B2 ∧B2 ∧ B2 ∧B2 ∧ B2. (4.32)

4.3 Some representative solutions.

Numerous solutions to the equations of motion of Type IIA and Type IIB supergravity have

been worked out in the literature. On this thesis we will be mainly interested in the so called

Type B(ecker) solutions of Type IIB supergravity [58, 59, 60, 101] and the corresponding holo-

morphic monopole mirror solutions of Type IIA supergravity [61]. These represent respectively

the low energy behavior of the supersymmetric Type IIB orientifolds with O3/O7-planes and

Type IIA orientifolds with O6-planes described in Chapter 3.1. From the analysis of the

supergravity limit we will realize about the existence of new degrees of freedom on these ori-

entifolds, consisting on backgrounds for the RR and NS field-strengths along the cycles of the

compact manifold. These deform the geometry of the internal Calabi-Yau into more general

manifolds with SU(3) structure. Some of these deformations will break spontaneously the

supersymmetry to N = 0∗, thus providing us with a controllable source for supersymmetry

breaking.
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4.3.1 Type B(ecker) solutions.

A general Type IIB background respecting SO(3, 1) Poincaré invariance can be written as

ds2 = Z(xm)−1/2ηµν dx
µdxν + Z(xm)1/2 ds2CY , (4.33)

τ = τ(xm), (4.34)

G3 =
1

3!
Glmn(xm) dxldxmdxn, (4.35)

χ4 = χ(xm) dx0dx1dx2dx3, (4.36)

F5 = dχ4 + ∗10 dχ4. (4.37)

The ten dimensional complex supersymmetry parameter is then decomposed accordingly

to SO(9, 1)→ SO(3, 1)⊗ SO(6) as

ε = ξ ⊗ χ1 + ξ∗ ⊗ χ∗
2, (4.38)

so the N = 1 supersymmetry preserved by a Type IIB orientifold with O3/O7-planes is given

by

ε = ξ ⊗ χ1. (4.39)

Note that through the breaking of N = 4 to N = 1 the orientifold is implicitly selecting a

preferred complex structure for the internal manifold.

Due to eq. (4.39), the terms proportional to ε and ε∗ in eqs. (4.1) and (4.2) will be linearly

independent and in particular, will vanish separately for SUSY preserving solutions. Moreover,

the absence of a fermionic background, which would spoil Poincaré invariance, guarantees the

vanishing of the supersymmetric variations for the bosonic fields.

Let us start analyzing the conditions derived from the vanishing of the terms proportional

to ε in (4.1) and (4.2) [101]. From δλ = 0 one obtains

γmP ∗
mχ1 = 0, (4.40)

and thus the axiodilaton τ is an holomorphic function in the complex structure selected by

the orientifold projection.

On the other hand, the vanishing of δψµ implies

∂µε = 0, χ4 = Z−1. (4.41)

The first of these conditions is trivially satisfied since Poincaré supersymmetries are always

independent of xµ, whereas the second equation establishes a relation between the warping

and the 5-form field strength.
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Finally, from the vanishing of δψm one gets

(
D̃m −

i

2
Qm

)
(Z1/8χ1) = 0, (4.42)

where D̃m is the covariant derivative for ds2CY . This is indeed a generalization of the condition

for existing a covariantly constant spinor χ1 in the internal Calabi-Yau manifold. Now the

covariant derivative contains an extra piece proportional to Qm, which is not other but the

gauge field associated to the compact U(1) in the SL(2,R) non-perturbative group. With

this, the covariantly constant spinor is now given by Z1/8χ1 and thus the deformed manifold

is no longer Calabi-Yau but rather an SU(3) structure manifold with non-trivial torsion.

In fact, due to the effect of the warping, the complex structure J and the holomorphic

3-form Ω are no longer closed forms

dJ =
1

2
Z−1dZ ∧ J, (4.43)

dΩ =
3

4
Z−1dZ ∧ Ω. (4.44)

One may then read the torsion classes from (see e.g. [109, 110, 111])

dJ =
3

2
Im (W1Ω

∗) +W4 ∧ J +W3 , (4.45)

dΩ =W1J ∧ J +W2 ∧ J +W∗
5 ∧ Ω , (4.46)

with W1 a complex 0-form, W2 a primitive (W2 ∧ J ∧ J = 0) complex 2-form, W3 a primitive

(W3 ∧ J = 0) real (2, 1)⊕ (1, 2)-form, W4 a real 1-form and W5 a complex (1,0)-form.

Comparing with (4.43) and (4.44) it is easy to see that W1 = W2 = W3 = 0 and 2W∗
5 =

3W4 = (3/2)Z−1dZ so the backreacted manifold actually corresponds to a conformal Calabi-

Yau. The amount of torsion is proportional to the fluxes and, in particular, making use of the

relation (4.41) it is possible to re-express F5 in terms of the torsion as

F5 = 2g−1
s Z−1(1 + ∗)W4 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4, (4.47)

in agreement with the results of [112, 113].

Concerning the vanishing of the terms proportional to ε∗, one has the conditions

Gχ1 = Gijk = Gj
ij = 0, (4.48)

Gχ∗
1 = Gīj̄k̄ = Gj̄

īj̄ = 0, (4.49)

Gγ īχ∗
1 = Gīj̄k = 0, (4.50)

implying that G3 is a primitive (2,1)-form (G3 ∧ J = 0).
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Up to here, we have analyzed the vanishing of (4.1) and (4.2). This guarantees that the

conditions (4.40)-(4.42) and (4.48)-(4.50) correspond to a N = 1 solution of the Type IIB

supergravity equations of motion. Note that in particular the backreaction of a system of D3

and D7-branes satisfies these conditions. Indeed, this is given by a background of the form

(4.33)-(4.37) with [114, 115]

ds2CY = 2(dz1dz̄1 + dz2dz̄2 + e−φdzdz̄), (4.51)

τ =
i

gs
+

1

2πi

N7∑

i

ln(z − zi), (4.52)

Z = 1− 1

2π2

N3∑

i

1

|~x− ~xi|4
, (4.53)

G3 = 0, (4.54)

and F5 determined through eq. (4.41). Here, ~xi are the position vectors for the D3-branes and

zi the positions of the D7-branes. As one would expect, the D7-branes source the axiodilaton

τ , whereas the D3-branes source F5 and Z giving rise to an AdS5 × S5 geometry near the

D3-branes.

It may happen that the complete family of solutions is still more general than the con-

ditions (4.40)-(4.42) and (4.48)-(4.50) and thus involves some possible non-supersymmetric

deformations. With this aim, we will analyze in what follows the Type IIB equations of mo-

tion [37].

Inserting the metric background (4.33) into the sourced version of eq. (4.10)

∇̃2Z−1 = Z−1/2GmnpḠ
mnp

12 Im τ
+ Z3/2

[
∂mχ∂

mχ+ ∂mZ
−1∂mZ−1

]
+
κ2

2
Z−1/2(Tm

m − T µ
µ )loc,

(4.55)

and integrating over the compact Calabi-Yau, we arrive to a no-go theorem: the left hand side

vanishes whereas the flux and warp factor terms on the right hand side are positive definite,

so there cannot be consistent solutions with fluxes unless there are localized sources with ad-

equate tension.

Indeed, one can compute the stress tensor for a Dp-brane from its Dirac-Born-Infeld (DBI)

action. To leading order in α′ it results to be

(Tm
m − T µ

µ )loc = (7− p)Tpδ(Σ), (4.56)

with Tp the tension of the brane and δ(Σ) a delta function Poicaré dual to the (p − 3)-cycle

Σ which the brane wraps. Note how for p < 7, in order to avoid the above no-go theorem, it

is necessary to include localized sources with negative tensions such as orientifold planes. For

D7-branes the condition is apparently satisfied without negative sources, however when one

computes higher orders in α′, one realizes that there are actually instantonic D3-brane charges
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induced in the worldvolume of the D7-branes by the fluxes. As it will be shown in Section

6.2.2, these charges are precisely the ones which determine the dynamics of the D7-branes on

these orientifold compactifications.

Let us work out now the eq. (4.8). Plugging in our background ansatz one gets

∇̃2χ = iZ−1/2Gmnp(∗6G∗
3)

mnp

12 Im τ
+ 2Z3/2∂mχ∂

mZ−1 + 2κ2Z−1/2T3ρ
loc
3 , (4.57)

and subtracting from eq. (4.55),

∇̃2(Z−1 − χ) =
Z−1/2

6 Im τ

∣∣∣iG(3) − ∗6G(3)

∣∣∣
2

+ Z3/2|∂(Z−1 − χ)|2+

+ 2κ2Z−1/2

[
1

4
(Tm

m − T µ
µ )loc − T3ρ

loc
3

]
. (4.58)

Therefore, making use of eqs. (4.41) and (4.56), we see that G3 is required to be an imaginary

self-dual (ISD) 3-form

∗6G3 = iG3. (4.59)

This allows for the primitive (2,1)-form of eqs. (4.48)-(4.50), plus a (3,0)-form and a

non-primitive (1,2)-form

GISD = G(2,1)P
⊕G(3,0) ⊕G(1,2)NP

. (4.60)

The G(1,2)NP
piece is actually of the form J ∧ η, with η a non-trivial closed (0,1)-form. This

component thus will be absent in a compact Calabi-Yau orientifold since, as we saw in Section

3.1, there are not such (0,1)-forms in its cohomology. The G(3,0) component on the other hand

will be proportional to Ω and in general will be present. Therefore, apart from the N = 1

supersymmetric deformations due to G(2,1)P
, Type IIB orientifolds with O3/O7-planes always

admit a supersymmetry breaking deformation through G(3,0).

Let us finally remark that the 3-form flux carries charge of D3-brane which enters in the

untwisted tadpole conditions. Indeed, integrating the sourced Bianchi identity for F5, we ob-

tain

dF(5) = H(3) ∧ F(3) + 2κ2T3ρ
loc
3 ⇒ 1

2κ2T3

∫

M6

H(3) ∧ F(3) + Qloc
3 = 0. (4.61)

Since Qloc
3 is an integer, the integral of the fluxes over the 3-cycles of the internal manifold

must be integer as well [116]. This is consistent with the Dirac quantization conditions

1

2πα′

∫
F(3) ∈ 2πZ ,

1

2πα′

∫
H(3) ∈ 2πZ . (4.62)

Here the flux density depends on the characteristic radius R of compactification as

G3 ∝
α′

R3
, (4.63)
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and thus, for sufficiently large radius or diluted fluxes, the tower of Kaluza-Klein states, which

goes as 1/R, will be much higher than the scale of G3 and it will be possible to discuss the

physics of fluxes by looking at the four dimensional effective theory. This will be the approach

of Chapter 5 for getting a deeper understanding of the structure of Type II toroidal orientifolds

with non vanishing fluxes.

4.3.2 Monopole solutions.

We have described in Section 3.1 mirror symmetry between Calabi-Yau orientifolds. Now

we have seen that the inclusion of background fluxes deforms the internal manifold and the

Calabi-Yau condition no longer holds. However, as we will see in next chapter, mirror sym-

metry is still expected to hold.

On this section we would like to study the mirror Type IIA supergravity configurations

dual to the Type B(ecker) solutions described in the previous section. These are related to

holomorphic monopole configurations describing the low energy behavior of Type IIA orien-

tifolds with O6-planes and D6-branes. This kind of solutions has been much less studied than

their Type IIB counterpart and in particular, a detailed study of its non-supersymmetric de-

formations is still lacking.

Here we will describe the supersymmetric monopole solutions related to purely geometric

backgrounds of M-theory on manifolds with G2 holonomy [61]. From the point of view of Type

IIA String Theory these correspond to non-trivial backgrounds for the metric, the dilaton and

the RR 2-form.

A 7-dimensional manifold with G2 holonomy can be characterized by an invariant 3-

form [117]

Φ =
1

6
φABCη

A ∧ ηB ∧ ηC , (4.64)

with {ηA} the set of tangent 1-forms. From the ten dimensional perspective, this decomposes

into the Kähler 2-form J and the holomorphic 3-form Ω as

Ω = ψ3 − i ∗6 ψ3 , Jab = φab7, (4.65)

with ψabc = φabc, and a, b, c running from 1 to 6.

Requiring N = 1 supersymmetry in four dimensions imposes the existence of a covariantly

constant spinor ε on the seven dimensional internal manifold, which can be shown to be
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equivalent in ten dimensions to the conditions [61]

1

4
eφFabJ

abγε+

(
1

4
eφFabψ

ab
c −

2

3
(∂aφ)Ja

c

)
γcε = 0, (4.66)

(
Da +

i

6
(∂bφ)Jb

aγ

)
ε+ i

(
1

6
(∂bφ)ψb

ac −
1

4
eφFabJ

b
c

)
γcε = 0, (4.67)

with Da the covariant derivative in the corresponding Type IIA internal manifold.

The first of these conditions gives rise to

F abJab = 0 , (∂aφ)Ja
c =

3

8
eφF ab(Re Ω)abc, (4.68)

which correspond to some generalized monopole equations. The condition (4.67) then re-

duces to the condition for the existence of a generalized covariantly constant spinor in the

6-dimensional backreacted manifold
(
Da +

i

6
(∂bφ)Jb

aγ −
i

8
eφ(FabJ

b
c + FcbJ

b
a)γc

)
ε = 0. (4.69)

More generally, it is possible to show that

dJ = 0, dΩ =W2 ∧ J +W5 ∧ Ω, (4.70)

with

W5 =
dφ

3
, W2 = −eφF (1,1), (4.71)

so the backreacted manifold is a symplectic manifold, and in the particular case on which

F (1,1) = 0, Kähler.

The simplest example of solution to the constraints (4.68) and (4.69) is given by the

backreaction of a stack of D6-branes. This can be written as [114, 115]

ds2 = Z−1/2ηµνdx
µdxν + Z1/2dxqdxq , (4.72)

eφ = Z3/4,

Fjk = −εijk∂
iZ,

with µ, ν along the worldvolume coordinates and q along the transverse directions.

Note that these are in general configurations with non constant dilaton and therefore

there can appear additional dependencies on the transverse coordinates when moving to the

Einstein’s frame. Thus for example, in terms of the dual potential C7, the background (4.72)

becomes in the Einstein’s frame

ds2 = Z−1/8ηµνdx
µdxν + Z7/8dxqdxq , (4.73)

eφ = Z3/4,

C7 = −g3/4
s Z−1dVol7,
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so the powers of the warp factor in the metric are indeed very different to the ones appearing

in the string frame.

In the next chapter we will study the low energy effective theory of Type II orientifold

compactifications, performing a more systematic analysis of the structure of these solutions

and how mirror symmetry is realized among them. As commented in view of eq. (4.63), such

approach will be justified in the limit of large compactification radius, on which the topological

information of the deformed internal manifold is captured by the effective superpotential.
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Chapter 5

Moduli stabilization and N = 1

Superpotentials.

We have revealed along the previous chapter how new degrees of freedom consisting on back-

ground fluxes for the RR and NSNS field strengths arise in Type II orientifold compactifica-

tions. The fluxes deform the geometry and topology of the internal manifold stabilizing some

of the moduli of the compactification and, in some cases, breaking the supersymmetry to

N = 0∗. In this way, flux compactifications address some of the major pathologies described

in Chapter 3.

A systematic analysis of the solutions to the supergravity equations of motion associated

to these orientifold compactifications is not viable due to its complexity. On this chapter

however we will adopt a different approach by performing a systematic analysis of the four

dimensional effective theory. Indeed, in the limit of diluted fluxes the Kaluza-Klein replicas

are much heavier than the flux induced masses, and thus it is expected that the four dimen-

sional N = 1 effective superpotentials will properly describe the low energy physics in terms

of the topology of the internal manifold. This will allow us in particular to get some insight

into how mirror symmetry is realized in presence of background fluxes.

5.1 Type II toroidal orientifolds with fluxes.

We will start describing the four dimensional effective theories associated to Type IIA and

Type IIB String Theory compactified in the toroidal orientifolds of Section 3.1, with constant

RR and NSNS background fluxes. The analysis of the induced superpotentials will reveal that

new backgrounds have to be taken into account in order to match the vacuum structure of

mirror Type IIA and Type IIB orientifolds. By studying this vacuum structure we will be

53
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able to get a deeper insight into the nature of the supergravity solutions of Section 4.3 and

into the shape of the moduli spaces associated to the backreacted non Calabi-Yau manifolds.

5.1.1 Type IIB orientifolds with O3/O7-planes.

For Type IIB orientifolds with O3/O7-planes, the RR and NSNS 3-forms are odd under the

orientifold involution σ. Thus, the most general constant background for H3 and F3 in the

internal manifold is given by

F 3 = −mα0 − e0β0 +
3∑

i=1

(eiαi − qiβi), (5.1)

H3 = h0β0 −
3∑

i=1

aiαi + h0α0 −
3∑

i=1

aiβi. (5.2)

As already mentioned in Section 4.3.1, this kind of backgrounds induce C4 tadpoles through

the coupling [37] ∫
C4 ∧H3 ∧ F 3. (5.3)

In terms of the background parameters, then the tadpole cancellation conditions (4.61) read

ND3 +
1

2
[mh0 − e0h̄0 +

∑

i

(qiai + eiāi)] = 16, (5.4)

where we have assumed the possibility of having ND3 D3-branes filling the non compact di-

rections.

The effective four dimensional N = 1 physics can be suitably described in terms of the

Gukov-Vafa-Witten (GVW) superpotential [18]

W =

∫

T 6

(F 3 − iSH3) ∧ Ω, (5.5)

whose vacua correspond to the dimensional reduction of the Type B(ecker) solutions discussed

in Section 4.3.1. Indeed, requiring DUi
W = DSW = 0 is equivalent to imposing G3 to be an

ISD 3-form, as in eq. (4.59), whereas taking in addition W = 0 restricts G3 to a (2,1) primitive

form, as depicted in eqs. (4.48) and (4.50) from the vanishing of the supersymmetry variations.

Substituting (5.1) and (5.2) into (5.5) we obtain

W = e0 + i
3∑

i=1

eiUi − q1U2U3 − q2U1U3 − q3U1U2 + imU1U2U3+

+ S[ih0 −
3∑

i=1

aiUi + iā1U2U3 + iā2U1U3 + iā3U1U2 − h̄0U1U2U3]. (5.6)
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Note that the superpotential is independent of the Kähler moduli Ti, so these remain

undetermined unless additional contributions such as non-perturbative effects are considered

(see Appendix D). This particular structure gives rise to no-scale scalar potentials [118]

V = eK




∑

Φ=S,Ti,Ui

(Φ + Φ∗)2|DΦW |2 − 3|W |2

 = eK

∑

Φ=S,Ui

(Φ + Φ∗)2|DΦW |2. (5.7)

Indeed, due to the particular form of the Kähler potential (3.31), the F-terms associated to

the Ti moduli exactly cancel the negative contribution in the scalar potential and hence the

cosmological constant is zero at tree level, even for non-supersymmetric vacua with 〈FTi
〉 6= 0.

The vacuum structure of the GVW superpotential has been extensively studied in [119]

(see as well [120, 121, 122, 123, 124]). There, it was shown that finding supersymmetric vacua

for this superpotential is equivalent to solving the attractor equations [125]

e0 + imF0 −
∑

j

(qjFj − iejτj) = 0, (5.8)

h0 + ih̄0F0 +
∑

j

(ājFj + iaiτj) = 0, (5.9)

(m+ φh̄0)Fj + i
∑

i,k

εijk(qi + φāi)τk + (ej + φaj) = 0. (5.10)

Here we will present just a simple example given by [43]

W = e0 + ih0S + i
∑

i

eiTi − S(a2T2 + a3T3)− T1(q2T3 + q3T2). (5.11)

Then, the existence of supersymmetric Minkowski vacua requires a2q2−a3q3 = 0, e2a3−e3a2 =

0, h0q2 − a3e1 = 0 and h0e2 − e0a2 = 0. And neither the imaginary nor the real parts of the

moduli are fully determined, only

ih0 = a2U2 + a3U3, ie2 = a2S + a3U1. (5.12)

For Re S > 0 and Re Ui > 0 one must have q2q3 < 0 and a2q2 > 0 so the contribution to

the RR tadpoles is positive. Indeed, this is a general feature for all these vacua.

The other kind of vacua in (5.7) are non-supersymmetric vacua with vanishing cosmological

constant. In that case G3 has at the minimum a non trivial (3,0) component, as outlined in

Section 4.3.1. Let us consider for example (5.6) with h̄0 = āi = a1 = m = 0. Then Re U2 6= 0

and Re U3 6= 0 requires q1 = 0 and from DSW = DUi
W = 0 one finds that the axions are

fully determined to be

Im S =
e2q2 − e3q3
q2a2 − q3a3

, Im U1 =
e3a2 − e2a3

q2a2 − q3a3
, (5.13)

Im U2 =
h0q2 − e1a3

q2a2 − q3a3
, Im U3 =

e1a3 − h0q3
q2a2 − q3a3

.
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There is a further relation

e0 = h0Im S + e1Im U1. (5.14)

Concerning the real parts, these verify q2u1u3 = a2su2 and q3u1u2 = a3su3, with s ≡ Re S

and ui ≡ Re Ui. Thus we must have a2q2 > 0 and a3q3 > 0, indicating again a positive

contribution to the RR tadpoles. On the other hand, only pairwise ratios of real moduli are

fixed, namely

s2 =
q2q3
a2a3

(u1)
2, (u3)

2 =
a2q3
a3q2

(u2)
2 . (5.15)

In a variant of this model one can further set a2 = 0 and for consistency q2 = 0. The

imaginary parts are obtained substituting these values in (5.13). For the real parts it follows

that a3su3 = q3u1u2.

A second example of no-scale vacuum can be given by eq. (5.6) with m 6= 0, but still

h̄0 = āi = a1 = 0. In that case one finds that in order to have a solution the fluxes must verify

γ2 =
a2γ3

a3
, h0γ3 = a3(e1q1 +me0), (5.16)

with γi ≡ mei + qjqk (i 6= j 6= k).

For the imaginary parts we obtain

Im S =
me0 + q1e1

mh0
, Im U1 = −q1

m
, (5.17)

Im U2 = −q2
m

+
a2su2

mu1u3
, Im U3 = −q3

m
+

a3su3

mu1u2
.

The real parts instead satisfy

a2a3s
2 = γ1(u1)

2, (mu1u2u3)
2+(a2su2)

2+(a3su3)
2 = (h0m+a2q2+a3q3)su1u2u3. (5.18)

This shows that (h0m+ a2q2 + a3q3) > 0 and hence the flux contribution to tadpoles is again

positive. Notice that the above solution simplifies upon taking a2 = 0 which is consistent if

γ1 = γ2 = 0. In this case

u3 =
(h0m+ q3a3)su1u2

(a3s)2 + (mu1u2)2
. (5.19)

We also find that at the minimum

W0 = −2(h0m+ q3a3)su1u2

a3s+ imu1u2
, (5.20)

and the gravitino mass turns out to be

m2
3/2 =

(h0m+ q3a3)

32t1t2t3
(5.21)

which, as expected for a no-scale model, only depends on ti ≡ Re Ti.
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5.1.2 Type IIA orientifolds with O6-planes.

Type IIA orientifolds in presence of fluxes has not been considered until recently [30, 31, 32,

33, 34, 43, 57, 36]. In this case H3, F2 and F6 are odd under the orientifold involution σ,

whereas m and F4 are even. Thus, the most general constant background in the internal

manifold will be

H3 =

3∑

L=0

hLβL ; (5.22)

F 0 = −m ; F 2 =

3∑

i=1

qiωi ; F 4 =

4∑

i=1

eiω̃i ; F 6 = e0α0 ∧ β0 .

The integrals of the fluxes over the corresponding p-cycles are quantized [116], in a similar

fashion to (4.62) for Type IIB fluxes. More concretely,

`3µ1

2π

∫

Π3

H3 ∈ Z,
`pµp−2

2π

∫

Πp

F p ∈ Z, (5.23)

with ` = 2π
√
α′ and µp = 1/(2π)pα′(p+1)/2 [68, 126]. Thus, we will take the cohomology

basis to be an integer basis, so that in units of 2π/µp−2`
p = 1/` the coefficients in the above

expansions are integers. With this, all the forms have dimensions of (length)
−1

and the moduli

fields are dimensionless. To avoid subtleties with exotic orientifold planes [37, 119], in addition

we will take the flux integers to be even.

Due to the piece of the Type IIA action
∫
C7 ∧mH3, (5.24)

the H3 fluxes will induce a non-trivial tadpole for C7 in massive supergravity [127, 30, 33, 34].

Allowing for the presence of D6-branes wrapping 3-cycles Πa, the cancellation conditions read

∑

a

Nan
1
an

2
an

3
a +

1

2
mh0 = 16, (5.25)

∑

a

Nan
1
am

2
am

3
a +

1

2
mh1 = 0, (5.26)

∑

a

Nam
1
an

2
am

3
a +

1

2
mh2 = 0, (5.27)

∑

a

Nam
1
am

2
an

3
a +

1

2
mh3 = 0. (5.28)

In an orbifold setup there would be additional O6-planes contributing negatively to the right

hand side of (5.26)-(5.28).

The four dimensional effective action has been computed in [31] by dimensional reduc-

tion of Type IIA supergravity. More concretely, for setups of D6-branes preserving N = 1
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supersymmetry in four dimensions, it can be recast in terms of the effective superpotential

W =

∫

T 6

(Ωc ∧H3 + eJc ∧ FRR), (5.29)

where FRR represents a formal sum of the even RR fluxes. In terms of the flux parameters,

this reads

W = e0 + ih0S + i

3∑

i=1

(eiTi − hiUi)− q1T2T3 − q2T1T3 − q3T1T2 + imT1T2T3. (5.30)

Note that there is dependence on both the Kähler and the complex structure moduli. This

is actually not very surprising, since for this case the background involves both the even and

the odd dimensional cycles of the internal manifold.

In [43] we extensively explored the vacuum structure of (5.30). For simplicity, here we will

consider isotropic fluxes with q1 = q2 = q3 ≡ −c2 and e1 = e2 = e3 ≡ c1, so T1 = T2 = T3 = T

is a solution to the supergravity equations of motion.

We will look first for supersymmetric vacua with DiW = 0. Consistent vacua with Re Ui 6=
0, Re T 6= 0 and Re S 6= 0 requires W 6= 0. Thus, the only supersymmetric vacua for this

superpotential are AdS4 vacua. These were recently addressed in [34]. We obtain similar

results. Indeed, in that case, the extremum only fixes one linear combination of the imaginary

parts of the dilaton and complex structure moduli, given by

h0Im S −
3∑

k=1

hkIm Uk = e0 − 3c1v − 3c2v
2 +mv3, (5.31)

with v ≡ Im T . This can be taken as part of a theorem: if a superpotential has only a linear

dependence in a subset of moduli, then the supersymmetric minima are such that in AdS the

corresponding axions remain undetermined but a linear combination, whereas in Minkowski

both the real and imaginary parts are undetermined but a linear combination. The proof is

immediate once one considers the dependence of W , K and Di on the moduli. In Section 7.1

we will see that the presence of flat directions for the axions is related with the absence of flux

induced anomalies in the worldvolume of the D6-branes.

Concerning v, one finds v = c2/m and the real parts are fixed to

m2t2 = −5

3
γ, h0s = −hkuk =

2

5
mt3 k = 1, 2, 3. (5.32)

To go beyond supersymmetric minima, let us look for solutions to ∂iV [43]. Then one finds

two branches for v

vs =
c2
m
, vns =

c2 ±
√
γ −m2t2/2

m
, (5.33)
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with t ≡ Re T and γ ≡ mc1 + c22. For each value of v there are various sub-branches according

to the relation among the real parts of S and Uk. We will concentrate on the simplest case

with h1u1 = h2u2 = h3u3. In this case there are two sub-branches characterized by

(I) : hkuk = −h0s k = 1, 2, 3,

(II) : hkuk = h0 −mt3. (5.34)

In the vs sub-branch I,

m2t2 = ±5

3
γ , h0s =

2

5
mt3, (5.35)

and the cosmological constant is

Λs = − γ2

24m2su1u2u3t
. (5.36)

For γ < 0 this is the AdS supersymmetric vacuum, whereas for γ > 0 it is a non-supersymmetric

AdS extremum with same data for the moduli and the cosmological constant. The flux con-

tribution to the tadpoles has opposite sign to the one of the orientifold planes, since mh0 > 0

and mhk < 0.

In the vs sub-branch II

m2t2 = ± 5√
6
γ ; h0s =

4

5
mt3 ;

Λ

Λs
=

32

27

(
6

9

)1/4

∼ 1.071.

Both γ < 0 and γ > 0 are allowed. In either case it is a non-supersymmetric AdS extremum.

The vns branch can occur only if γ > 0. In that case there are two non-supersymmetric

AdS sub-branches according to (5.34). Their data are

(I) : m2t2 =
4

3
γ, h0s =

2γt

3m
,

Λ

Λs
=

25
√

5

48
∼ 1.165

(II) : m2t2 =
196

99
γ, h0s =

14γt

9m
,

Λ

Λs
=

1145232
√

55

2477
√

3
∼ 1.070

Note that in all these examples the fixed moduli scale with respect to the RR 4-form and

2-form fluxes c1 and c2 as

t ' s1/3 ' u
1/3
k ' γ1/2 ' c

1/2
1 , c2 , (5.37)

for large fluxes. Thus the compactification volume can be made arbitrarily large for large c1

and/or c2. Concerning the four- and ten-dimensional dilatons, one has

eφ4 ' c
−3/2
1 , c−3

2 ; eφ ' c
−3/4
1 , c

−3/2
2 (5.38)

and the vacua lie in a perturbative regime for sufficiently large RR 4-form and/or 2-form

fluxes. Finally, for the cosmological constant one can check that for large c1 and c2 it scales

as

Λ ' − γ−9/2 ' −c−9/2
1 , −c−9

2 . (5.39)
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Thus, for large fluxes the cosmological constant goes with the string dilaton like e6φ. The

density of RR fluxes is also suppressed. As pointed out in [34], to compute this density a

factor of gs = eφ must be included. Then, the flux density of F 4 (F 2) behaves like c
−3/2
1 (c−3

2 )

for large c1 (c2) fluxes.

Apart from the supersymmetric AdS vacua, the superpotential (5.30) as well contains some

no-scale models dual to the ones discussed in the previous section for the Gukov-Vafa-Witten

superpotential. Indeed, taking hi = 0 the superpotential (5.30) becomes independent of the

complex structure moduli Ui. In that case, the axions are determined by

Im T =
c2
m
, h0Im S = e0 +

c32
m2

, (5.40)

whereas for the real parts

h0s = mt3.

Moreover, it is required the conditions γ = 0 and h0m > 0, so the flux contribution to the

tadpoles is positive.

Note that the superpotentials (5.6) and (5.30) do not completely match under mirror

symmetry, finding in this way a different landscape of vacua for each one and revealing the

existence of new possible deformations of the Type B(ecker) and monopole solutions discussed

in Section 4.3. The underlying reason is that up to here we have only considered constant

backgrounds for the vielbeins and the RR and NSNS forms. In the following section we will

slightly generalize this to include some new geometric deformations consisting on non constant

backgrounds for the metric. This will be a first step into matching the Type IIA and Type

IIB superpotentials.

5.2 Metric fluxes and twisted tori.

5.2.1 Geometry and topology of the twisted torus.

Let us consider here the possible metric deformations of the factorized torus giving rise to

parallelizable manifolds with a globally well defined basis of tangent 1-forms ηi

ηi = Nn
m(x)dxn ; dxn = Nn

m(x)ηm. (5.41)

Such kind of backgrounds appear naturally in the context of Scherk-Schwarz dimensional

reductions [38] and can be shown to be equivalent to compactification on a twisted torus [39]

with

dηp = −1

2
ωp

mnη
m ∧ ηn, (5.42)
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where ωp
mn are the metric fluxes we are interested in. These are constant coefficients antisym-

metric in the lower indices.

Defining the isometry generators as

Zm = Nn
m∂n, (5.43)

the metric fluxes can be visualized as the gauging of some of the isometries of the original

torus. Indeed, the Lie algebra generated by {Zm} is given by

[Zm, Zn] = ωp
mnZp, (5.44)

so eq. (5.42) corresponds to the Maurer-Cartan equation of the algebra.

Either from the Jacobi identity of the algebra or from the Bianchi identity of (5.42) one

then finds the constraint

ωp
[mnω

s
r]p = 0, (5.45)

which guarantees the nilpotency of d2 = 0 in the cohomology of the twisted torus. In addi-

tion, it can be further shown that ωp
pn = 0 [38] and Poincaré lemma continues to be valid [128].

Twisted tori are manifolds with torsion. Indeed, defining a general p-form (a p-cochain) as

A[p] =
1

p!
Ai1i2...ip

ηi1 ∧ ηi2 ∧ . . . ∧ ηip , (5.46)

one has that

dA[p] =
1

(p+ 1)!
[(p+ 1)∂[ii

Ai2...ip+1] + ωk
[i1i2

Ai3 ...ip+1]k]ηi1 ∧ ηi2 ∧ . . . ∧ ηip+1 . (5.47)

This can be expressed as

dA[p] ≡ d̃A[p] + ωA[p], (5.48)

where d̃A[p] is the exterior derivative of A[p] in an ordinary torus, without metric fluxes,

and ωA[p] is a torsional piece coming from the gauging of the isometries. Due to this, for-

mally one can work in a twisted torus as being in an ordinary torus with some extra fluxes ωi
jk.

In general, the (co)homology of the twisted torus will be smaller than the one of the

ordinary torus, since some of the original cycles become homologically trivial in order the

tangent 1-forms to continue being globally well defined [47, 128]. More concretely, the space

Cp of A[p] forms with constant coefficients can be split into1

Cp = Γp ⊕ ∂Ξp−1 ⊕ Ξp, (5.49)

1The cohomological classification of the harmonic forms on a twisted torus is known by the mathematicians

as Chevalley’s cohomology.
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where Γp are closed p-forms which are not exact, Ξp are non-closed p-forms and ∂Ξp−1 are

closed p-forms which are exact and which are associated to the torsional cycles of the twisted

torus. Due to eq. (5.47) there will exist a one to one mapping between the elements of Cp and

the harmonic p-forms in an ordinary torus. Thus,

dim Cp = dim Γp + dim ∂Ξp−1 + dim Ξp = bp,

dim ∂Ξp = dim Ξp,

dim Γ6−p = dim Γp,

dim Γp ≤ bp,

with bp the Betti numbers for an ordinary torus and the last equation being saturated in the

case of vanishing metric fluxes.

In what follows, let us consider the factorized toroidal orientifold of Section 3.1. For

Type IIB orientifolds with O3/O7-planes, the metric fluxes do not survive to the orientifold

projection so we will concentrate exclusively on the Type IIA picture with O6-planes. In

that case, the ωi
jk parameters are even under the orientifold projection and there are twelve

parameters surviving and respecting the factorability of the torus

M≡




−a1 −a2 −a3

b11 b21 b31

b12 b22 b32

b13 b23 b33


 =




−ω1
56 −ω2

64 −ω3
45

−ω1
23 ω5

34 ω6
42

ω4
53 −ω2

31 ω6
15

ω4
26 ω5

61 −ω3
12


 . (5.50)

The Jacobi identities (5.45) then imply the constraints

bijaj + bjjai = 0 i 6= j, (5.51)

bikbkj + bkkbij = 0 i 6= j 6= k. (5.52)

There are some obvious solutions to these constraints. For instance [43], (1): bij = 0, ∀i, j;
(2): ai = 0, bij = biδij ; (3): ai = a, bij = b, i 6= j, bii = −b.

This kind of geometric deformations very often survive to the action of an orbifold group,

such as the Z2×Z2 example of Section 3.1, even though this kills all the original isometries of

the torus. Thus, it is not surprising to have similar deformations in more generic manifolds.

The cohomology of the twisted torus can be easily computed by acting with the exterior

derivative (5.48). Thus, a (1,1)-form Θ =
∑3

i Θiωi belonging to Γ2 will satisfy

(dΘ)lmn = ωp
[lmΘn]p = 0. (5.53)

Substituting eq. (5.50) and operating one has

M·




Θ1

Θ2

Θ3


 = 0. (5.54)
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Similarly, for C3 = Γ3 ⊕ Ξ3 ⊕ ∂Ξ2 one has that a generic 3-form Π =
∑3

i=0(Πiαi + Π̃iβi)

in Γ3 ⊕ ∂Ξ2 satisfies

(dΠ)lmno = ωp
[lmΠno]p = 0, (5.55)

which can be shown to be equivalent to

M·




Π0

Π1

Π2

Π3


 = 0, (5.56)

with Π̃i unconstrained. Now, since we have computed Ξ2 in the previous paragraph, it is

immediate to distinguish Γ3 from ∂Ξ2. In particular, it happens that Poincaré duality always

relate elements of Ξp with the corresponding symplectic partners in ∂Ξ5−p. This reveals the

importance of having the geometric deformations preserving the symplectic structure of the

3-cycles.

Γp Ξp ∂Ξp−1

p = 2 (KerM){ωi} (KerM)⊥{ωi}
0

p = 3 (KerMT ){αi,βi} (KerMT )⊥{αi}
(KerMT )⊥{βi}

p = 4 (KerM){ω̃i} 0 (KerM)⊥{ω̃i}

Table 5.1: Reduced cohomology of a factorized twisted 6-torus.

We have summarized in Table 5.1 the reduced cohomology of a factorized twisted torus.

For the dimensions of the cohomology groups one has

dim Ξ2 = dim Ξ3 = dim ∂Ξ2 = dim ∂Ξ3 = 3− dim Γ2 = 4− (dim Γ3/2) = rankM. (5.57)

The cohomology of the twisted tori will play a crucial role in the understanding of which are

the moduli stabilized by the metric fluxes and the consistency conditions for D6-branes in

presence of fluxes, as revealed in [129].

The torsion of the factorized twisted torus can be suitably described in terms of the exterior

derivative of the holomorphic and the Kähler forms [43]

dΩ =
1

Re S

∑

i

(aiRe S +
∑

j

bijRe Uj)ω̃i, (5.58)

dJ =
∑

i

(aiβ0 −
∑

j

bijβj)Re Ti. (5.59)

Clearly, d(J ∧ J) = d(Im Ω) = 0 so the twisted torus is a particular case of half-flat manifold.

Moreover, comparing with eqs. (4.45) and (4.46) one easily reads W4 =W5 = 0.
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It is enlightening to see how the twisted torus structure arises by mirror symmetry of Type

IIB O3/O7 orientifolds with non vanishing NSNS 3-form flux [109, 47]. Concretely, one can

start from a Type IIB background

ds2 =
6∑

i=1

(dxi)2, H3 = −
3∑

i=1

aiαi, (5.60)

and perform three T-dualities in x1, x2, x3, accordingly to what we saw in Chapter 3.1. Taking

B2 = −a1x
6dx1 ∧ dx5 − a2x

4dx2 ∧ dx6 − a3x
5dx3 ∧ dx4, (5.61)

and using the Buscher rules [81, 82], gives the Type IIA metric

ds2 = (dx1 + a1x
6dx5)2 + (dx2 + a2x

4dx6)2 + (dx3 + a3x
5dx4)2 + (dx4)2 + (dx5)2 + (dx6)2,

from where we read off the following tangent 1-forms

η1 = dx1 + a1x
6dx5, η4 = dx4,

η2 = dx2 + a2x
4dx6, η5 = dx5,

η3 = dx3 + a3x
5dx4, η6 = dx6,

and ω1
56 = a1, ω

2
64 = a2 and ω3

45 = a3. Thus, we can formally write the following T-duality

rule for the integrated fluxes

Hmnp
Tm←→ −ωm

np, (5.62)

which complement eqs. (3.32) and (3.33).

Note that metric fluxes are also quantized. For the ai fluxes this is obvious from the mirror

symmetry argument we have just seen. For a more general argument, we refer the reader to

[130].

5.2.2 Effective superpotential and vacuum structure.

Having described the geometry and topology of the twisted torus, now let us turn into the

analysis of the corresponding four dimensional N = 1 effective superpotential. This will pro-

vide us with the low energy dynamics associated to the deformations of the ordinary torus

into a twisted torus. Along this section, we will follow our work in [43].

The superpotential has been computed by different methods in [33] and [32], resulting to

be

W =

∫
(eJc ∧ FRR + Ωc ∧ (H3 + dJc)), (5.63)
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which in terms of the background parameters reads

W = e0 + ih0S + i

3∑

i=1

(eiTi − hiUi)− q1T2T3 − q2T1T3 − q3T1T2 + imT1T2T3−

−
3∑

i=1

(aiS +

3∑

j=1

bijUj)Ti, (5.64)

where the last row corresponds to the terms induced by the metric fluxes. Note that the

ai terms were already present in the Type IIB superpotential (5.6), as expected from mirror

symmetry.

Integrability of the H3 Bianchi identity (4.24) gives rise to the additional constraint [33]

ωH3 = 0, (5.65)

which is trivially satisfied by the fluxes (5.22) and (5.50).

The metric fluxes will contribute to the C7 tadpoles through [33, 43]
∫
C7 ∧ (mH3 + dF 2), (5.66)

so the tadpole cancellation conditions (5.25)-(5.28) in the presence of metric fluxes will become

∑

a

Nan
1
an

2
an

3
a +

1

2
(mh0 + a1q1 + a2q2 + a3q3) = 16, (5.67)

∑

a

Nan
1
am

2
am

3
a +

1

2
(mh1 − q1b11 − q2b21 − q3b31) = 0, (5.68)

∑

a

Nam
1
an

2
am

3
a +

1

2
(mh2 − q1b12 − q2b22 − q3b32) = 0, (5.69)

∑

a

Nam
1
am

2
an

3
a +

1

2
(mh3 − q1b13 − q2b23 − q3b33) = 0. (5.70)

We extensively studied the vacuum structure of the low energy scalar potential induced

by (5.64) in [43], revealing the existence of additional branches in the mirror Type B(ecker)

solutions of Section 4.3.1.

Supersymmetric Minkowski vacua.

Considering the presence of non trivial metric fluxes, it turns out that it is possible to find

consistent supersymmetric Minkowski vacua for Type IIA orientifolds with O6-planes. In that

case, the superpotential is required to be dependent on four or more moduli. With four fields,

it is enough to study in detail W = W (S, T1, T2, T3) independent of the Ui. Note that this is

exactly the piece of the superpotential dual to the Gukov-Vafa-Witten superpotential discussed
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in Section 5.1.1, and thus the vacuum structure will be the same, after the exchanging Ui ↔ Ti.

In this context, the vacua will correspond to the holomorphic monopole solutions of Section

4.3.2. Thus for example, for the case of (5.11) one can easily compute the vacuum expectation

value for H3 and dJ at the minimum in the mirror Type IIA picture, resulting to be

〈H3〉 = H3 − (a2Im T2 + a3Im T3)β0 = 0, (5.71)

〈dJ〉 = (a2Re T2 + a3Re T3)β0 = 0, (5.72)

in agreement with the results of [112, 113] for holomorphic monopole solutions. Moreover,

part of the moduli stabilization process can be understood in terms of the topology of the

induced twisted torus. Thus, for this particular example a suitable cohomology basis for the

twisted torus engendered by a2 and a3 is given by

Γp Ξp ∂Ξp−1

p = 2 {ω1, a2ω3 − a3ω2} {a3ω2 + a2ω3} 0

p = 3 {α1, α2, α3, β1β2, β3} {α0} {β0}
p = 4 {ω̃1, a2ω̃3 − a3ω̃2} 0 {a3ω̃2 + a2ω̃3}

and therefore, T ≡ a3T3 + a2T2 and S are no longer moduli fields in presence of the metric

fluxes a2, a3, in agreement with the Type IIB results (c.f. eq. (5.12)).

However, not every supersymmetric Minkowski vacua of (5.64) corresponds to the dual

of a Minkowski vacua engendered by the Gukov-Vafa-Witten superpotential, signaling in this

way the existence of additional branches in the Type B(ecker) solutions of Section 4.3.1. For

example, one can consider the case by

W = −T2(a2S + b21U1)− T3(a3S + b31U1) + e0 + ih0S − ih1U1 + ie2T2 + ie3T3. (5.73)

This is clearly equivalent to (5.11) after renaming U2 → T2, U3 → T3, e1 → −h1, q2 → b31

and q3 → b21. The physics is however different. In particular, since all qi = 0 and m = 0, the

fluxes do not contribute at all to the RR tadpoles. Therefore, this is an example in which one

can fix moduli without affecting tadpoles.

Finally, one can consider cases on which the superpotential depends on five moduli. For

example, consider the superpotential

W = −(q3T2 + q2T3)T1 − (b22T2 + b32T3)U2 − (b23T2 + b33T3)U3. (5.74)

Observe that the non-zero bij trivially satisfy the constraints (5.52). If the fluxes satisfy

q2b22 = q3b32, q2b23 = q3b33 and q2q3 < 0, there is a solution with |q2|t3 = |q3|t2. There is also

a relation −q3t1 = b22u2 + b23u3. To have t1 > 0 for any u2, u3 > 0, we need q2b22 > 0 and

q2b23 > 0. Hence, the flux piece in (5.69) and (5.70) is negative (same as D6-branes).

As already commented, there cannot be supersymmetric Minkowski solutions when W de-

pends on more than five fields. To see this, first observe that without loss of generality we
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can always take the three Ti to be among the fields in W . Next, ∂Ui
W = ∂SW = 0 implies

{Re Ti} = KerM, in agreement with Table 5.1. Thus, to have solutions with Re Ti 6= 0 it is

required rankM≤ 2. After using the Jacobi identities one is left with rankM = 1. One can

check then that the number of fields in W is at most five.

No-scale models.

Something similar occurs for the no-scale vacua. Some of these correspond to the mirrors

of no-scale vacua engendered by the Gukov-Vafa-Witten superpotential. For example, the

no-scale models discussed in Section 5.1.1 are as well contained in (5.64) upon simply taking

Ui → Ti. Thus, there are non-supersymmetric branches for the holomorphic monopole solu-

tions of Section 4.3.2 consisting on the inclusion of geometric backgrounds.

Apart from the no-scale vacua dual to the ones engendered by the GVW superpoten-

tial, there are additional no-scale vacua for superpotentials depending on the moduli sets

{Ui, T1, T2, T3}, {S,Ui, Tk, Tl} or {Ui, Uj , Tk, Tl}. These can be directly computed from the

no-scale examples of Section 5.1.1 by replacing S or one or two Ui’s by Ti’s and exchanging the

appropriate fluxes. As for Minkowski vacua, this reveals the existence of additional branches

in the Type B(ecker) solutions. The nature of these deformations will be studied in the next

section.

AdS vacua.

There are two classes of models depending on whether m = 0 or not. In the former case

one finds that fluxes in general contribute to all RR tadpole directions with a sign which is

opposite to that of D6-branes. This is important since it offers an alternative to orientifold

planes to cancel RR tadpoles. In the second case with m 6= 0 one finds the interesting result

that, depending on different flux choices the sign of the contribution to the RR tadpoles may

be arbitrary and the net contribution may vanish. In the latter case one has a cancellation of

a positive RR-NS contribution h0m with a RR-metric flux contribution of type aiqi. This is

interesting because in this class of backgrounds all real moduli are determined but the fluxes

are unconstrained by RR tadpole cancellation conditions.

We will examine the case Tk = T and look for supersymmetric minima for any m. The

superpotential then becomes

W = e0 + 3ic1T + 3c2T
2 + imT 3 + ih0S − 3aST −

3∑

k=1

(ihk + bkT )Uk. (5.75)
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From DUk
W = 0 and DSW = 0, we find

3as = bkuk . (5.76)

Hence, a and bk must be both non-zero and of the same sign. Moreover, there are consistency

conditions

3hka+ h0bk = 0 ; k = 1, 2, 3 . (5.77)

Therefore, either both h0 and hk vanish or both are non-zero and of opposite sign. These

conditions do not involve the moduli so at most we will have five equations for six unknowns,

i.e. there will be at least one flat direction for the supersymmetric minima. In fact, only a

combination of complex structure axions is fixed as

3aIm S +

3∑

k=1

bkIm Uk = 3c1 +
3c2
a

(3h0 − 7av)− 3m

a
v(3h0 − 8av) , (5.78)

with v = Im T .

If h0, hk 6= 0, using (5.77) we can write the fixed axion combination as h0Im S−∑k hkIm Uk.

We also find

aRe S = 2(c2 −mv)Re T . (5.79)

Except for some axion directions, we have thus determined all the moduli in terms of T which

is found from the remaining equations. The solution depends on whether m is different from

zero or not. We now specify to these two possibilities.

i) m = 0.

When m = 0 one finds the simple results

v =
h0

3a
; 9c2(Re T )2 = e0 −

h0c1
a
− h2

0c2
3a2

. (5.80)

At the minimum, W0 = −12c2(Re T )2 and the cosmological constant turns out to be

Λ = − ab1b2b3
128 c22 (Re T )3

, (5.81)

where Re T is given in (5.80). It is important to notice that (5.79) fixes c2a > 0 so that in the

supersymmetric minima with m = 0 the metric fluxes give a negative contribution to the nnn

RR tadpoles. Similarly, c2bk > 0 and the flux contribution to the nmm tadpoles (5.68)-(5.70)

is positive.

Let us now check whether we have enough freedom to locate all moduli at large volume

and small dilaton so that one can trust the effective 4-dimensional field theory approximation

being used. The fluxes of type a, bk and c2 are constrained by the RR tadpole cancellation
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conditions and by the extra conditions (5.77). The values of h0 and hk are constrained by

the latter but in principle both may be large as long as h0/hk = −3a/bk. On the other hand,

the fluxes of the RR 6-form e0 and 4-form c1 are unconstrained and may be arbitrarily large.

Note then that for large e0 and c1 the moduli fields behave all like

Re T ' Re S ' Re Uk ' e1/2
0 , c

1/2
1 . (5.82)

In order our vacuum to remain in a perturbative regime we would like to have small values

for the 4-dimensional coupling eφ4 and the 10-dimensional string coupling eφ. They are found

to be

eφ4 = (su1u2u3)
−1/4 = (Re T )−1 (ab1b2b3)

1/4

2 · 33/4c2
,

eφ = eφ4(Re T )3/2 = (Re T )1/2 (ab1b2b3)
1/4

2 · 33/4c2
. (5.83)

We thus see that for large Re T (which may be obtained e.g. with a large 6-form flux

e0) the 4-dimensional dilaton is small. However the string dilaton grows with Re T . Only by

appropriately choosing the fluxes, i.e. with large c2 one can perhaps maintain it under con-

trol. On the other hand such fluxes are in general very much constrained by the RR tadpole

conditions so it seems difficult having small string dilaton and large volume at the same time.

We will see however that in the case with m 6= 0 one can easily stabilize the moduli in the

perturbative regime.

ii) m 6= 0.

To deal with m 6= 0 it is convenient to introduce a new variable for Im T . If h0 6= 0 we use

v = (λ+ λ0)
h0

3a
; λ0 =

3c2a

mh0
. (5.84)

The value of λ follows from the cubic equation

160λ3 + 186(λ0 − 1)λ2 + 27(λ0 − 1)2λ+ λ2
0(λ0 − 3) +

27a2

mh3
0

(e0a− c1h0) = 0. (5.85)

Clearly, we need a real solution for λ such that λ(λ+λ0−1) > 0 since now Re T is determined

from

3a2(Re T )2 = 5h2
0λ(λ + λ0 − 1). (5.86)

Notice also that (5.79) takes the form 3a2Re S = −2h0mλRe T . For the cosmological constant

we find

Λ = −ab1b2b3λ
2
0(16λ+ λ0 − 1)

1920 c22 (Re T )3λ3
, (5.87)

where λ is the appropriate solution of (5.85) and Re T is given in (5.86).

There is a variety of cases depending on the values of the different fluxes. One of the

interesting features when m 6= 0 is that the contribution to the RR tadpoles may have either
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sign and even vanish. In fact, the flux-induced nnn and nmm tadpoles in (5.67)-(5.70) are

respectively 1
2h0m(1 − λ0) and 1

2hkm(1 − λ0). Thus, the flux tadpoles vanish at the special

value λ0 = 1. This is important, as we mentioned above, since it allows to fix the moduli

without any constraint from RR tadpole cancellations.

To analyze the equations that determine λ and Re T we can proceed in various ways.

We could choose for example e0 and c1 and study the allowed values of λ0. For instance,

with e0 = c1 = 0, one finds that to have solutions for λ with acceptable Re T necessarily
1
3 < λ0 < 3. We also need mh0 < 0 and mhk > 0 so that Re S > 0 and Re Uk > 0. The

special value λ0 = 1 at which tadpoles vanish is allowed and leads in turn to

Re T =

√
5

3
λ

∣∣∣∣
h0

a

∣∣∣∣ , Re S = −2mh0λ

3a2
Re T, Re Uk = −2mh0λ

abk
Re T. (5.88)

From the cubic equation we find the value λ = (10)2/3/20.

With m 6= 0 one can locate the minima in perturbative regions. Consider for instance the

case e0 = c1 = 0 and λ0 = 1 so that the real moduli are given in (5.88). Note that one can

have h0, hk and c2 arbitrarily large as long as λ0 = 1 and eq.(5.77) is respected. Then one

can check that

eφ4 ' h−2
0 ; eφ ' h

−1/2
0 , (5.89)

so that for sufficiently large h0 the minima will be perturbative. Note also that the NS flux

density is diluted for large fluxes since it goes like h0/(Re T )3/2 ' h−1/2
0 . Concerning the RR

flux F 2, one has that taking the factor of gs into account [34], its density also goes like h
−1/2
0

for large fluxes. The cosmological constant eq. (5.87) scales like

Λ ' − h−5
0 ' −(eφ)10 (5.90)

and hence is substantially suppressed for large h0. Similar results may be obtained for values

of λ0 sufficiently close to 1, which would allow for contributions to RR tadpoles with either

sign and of arbitrary size. In Section 7.2.3 we will consider this possibility to construct a

semi-realistic intersecting D6-brane model with all diagonal closed string moduli stabilized.

Finally, let us mention for completeness other solutions within this class of AdS minima

with m 6= 0. We may start by choosing a preferred value for some of the moduli. For ex-

ample, we can set v = 0, and h0Im S −∑k hkIm Uk = 0. Then, necessarily c1 = −3h0c2/a

and, from the cubic equation with λ = −λ0, e0 = 45h0c
2
2/ma. This is the solution found in [33].

Another way to proceed with the analysis is to fix λ0. For example, we can take c2 = 0

so that λ0 = 0. Obviously, (Re T )2 > 0 then requires either λ < 0 or λ > 1. If λ < 0, then

Re S > 0 and Re Uk > 0 demand h0m > 0 and hkm < 0, and the flux contribution to the

tadpoles is like that of D6-branes. It is more interesting to consider λ > 1 so that h0m < 0 and

hkm > 0. Furthermore, to satisfy (5.85), it must be (e0a− c1h0) > 0. Were it not for the fact
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that the fluxes are integers, we could always find solutions for some chosen λ. But still there

is room to adjust the fluxes. For example, for λ = 3/2 we just need (e0a− c1h0) = −6h3
0m/a

2

and this could be verified say for e0 = 0, c1 = 24m and h0 = 2a.

We can also set h0 = hk = 0, but to this end a different parametrization of v, amounting

to λ → λ0λ̂, must be employed. Now the interesting case is λ̂ < −1 because Re S > 0 and

Re Uk > 0 require c2a > 0 and c2bk < 0 so that the flux contribution to tadpoles could cancel

that of D6-branes. Again we can choose some λ̂ and find values of e0 to satisfy the cubic

equation for v. For instance, for λ̂ = −3/2 we need e0m
2 = −161c32. One can check however

that in this and the previous solution it is again hard to achieve at the same time a large

value for the volume and a small value for the 10-dimensional dilaton, the reason being that

now the value of fluxes h0, c2 and hk will be constrained by RR tadpole cancellation conditions.

One can also easily find non-susy AdS vacua. We will just show a particularly simple

example. In general, there are solutions in which (5.76) and (5.77) are still satisfied. To go

further let us set m = 0. Then there are solutions with a(Re S) = 2c2(Re T ) and v = h0/3a,

but with the novelty that

±9c2(Re T )2 = e0 −
h0c1
a
− h2

0c2
3a2

. (5.91)

With plus sign this is the supersymmetric minimum, but we can also choose the minus sign

depending on the fluxes. For instance, if e0 = c1 = 0, only the non-supersymmetric choice

is available. In this case the minimum is AdS and it is typically stable because the eigenval-

ues of the Hessian are positive or negative but above the Breitenlohner-Freedman bound [131].

5.3 Non-geometric fluxes.

We have seen in Section 5.1 that the superpotentials induced by constant NSNS and RR back-

grounds do not completely match for Type IIA/O6 and Type IIB/O3 orientifolds. Considering

metric fluxes in Type IIA orientifolds slightly improves the situation, but as commented in the

previous section, there are still branches of vacua in (5.64) which are not contained in (5.6)

and viceversa, thus signaling the existence of new kinds of backgrounds.

If mirror symmetry is truly a symmetry of String Theory, the complete four dimensional

effective theory should be universal and independent of whether it comes from a Type IIA or a

Type IIB compactification. The low energy four dimensional physics should be thus described

by a duality invariant superpotential. In this section we will analyze the degrees of freedom

necessary to completely match the landscape of vacua for Type IIA orientifolds with O6-planes

and the one for Type IIB orientifolds with O3/O7-planes. We will follow our work in [55].
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5.3.1 T-duality and non-geometric fluxes.

We want to analyze how a generic Type IIB/O3 H3 background as the one given in eq. (5.2)

transforms under mirror symmetry. We have seen that the h0 component remains invariant,

whereas the ai components become metric fluxes in the Type IIA picture. Thus, let us con-

centrate in the āi and h̄0 components.

Let us start considering the following background

ds2 =
6∑

i=1

(dxi)2 , H3 = −
3∑

i=1

āiβi. (5.92)

A suitable gauge for H3 is then

B2 = −ā1x
4dx2 ∧ dx3 + ā2x

5dx1 ∧ dx3 − ā3x
6dx1 ∧ dx2, (5.93)

and implementing mirror symmetry by performing three T-dualities along x1, x2, x3, we arrive

to the non-geometric background

ds2 =
C

2
(

3∑

i,j,l,k=1

εijlQ
ij
k+3x

k+3dxl)2 +

6∑

k=4

(dxk)2, (5.94)

B2 = C

3∑

i,j,k=1

Qij
k+3x

k+3dxi ∧ dxj , (5.95)

with

C = (1 +Q23
4 x

4 +Q31
5 x

5 +Q12
6 x

6)−1 (5.96)

and Q23
4 = ā1, Q

31
5 = ā2 and Q12

6 = ā3. Therefore, this kind of backgrounds can be still

parametrized by a finite set of constant parameters {Qij
k }, extending (5.62) to

Hmnp
Tm←→ −ωm

np
Tn←→ −Qmn

p . (5.97)

Non-geometric fluxes were first introduced in [44].

Note that the monodromies for these backgrounds mix the metric and the B2 field

1

Ti
→ 1

Ti
−Qjk

i+3 as xi+3 → xi+3 + 1 i 6= j 6= k, (5.98)

with Ti the Kähler moduli, thus signaling the non-geometrical character of the induced man-

ifold.

Concerning the h̄0 component, one has that Buscher rules are no longer applicable to

this case. Indeed, now B2 depends linearly on x1, x2 and/or x3 and therefore the directions

on which we T-dualize are not isometries of the background. However, although we do not

know the concrete expression of the ten dimensional background, by counting the degrees of
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freedom in the four dimensional effective theory, one can introduce a new set of fluxes Rmnp

and complete the formal rule (5.97) to [44]

Hmnp
Tm←→ −ωm

np
Tn←→ −Qmn

p

Tp←→ Rmnp. (5.99)

We have summarized in Table 5.2 the transformation of the Type IIB/O3 3-form H3 under

mirror symmetry. For completeness we have included as well the corresponding dictionary for

Type I String Theory, i.e. Type IIB with O9/O5-planes.

IIB/O3 IIA/O6 IIB/O9 flux

H123 R123 R123 h̄0

H423 −Q23
4

R423 −ā1

H153 −Q31
5

R153 −ā2

H126 −Q12
6 R126 −ā3

H156 −ω1
56 R156 −a1

H426 −ω2
64

R426 −a2

H453 −ω3
45

R453 −a3

H456 H456 R456 h0

Table 5.2: NS IIB/O3 fluxes and their T-duals.

A similar procedure could be followed starting with the NSNS 3-form H3 and metric

fluxes ωi
jk in the Type IIA picture. The results are summarized in Table 5.3, where again

the corresponding Type I fluxes are represented. Note that the two last sets of non-geometric

fluxes are not obtained by mirror symmetry, but by SO(6) rotations of the other fluxes. For

completeness, in Table 5.4 we have represented the corresponding dictionary for the RR flux

parameters in the different Type II orientifolds.

IIB/O3 IIA/O6 IIB/O9 flux
“

Q23
4 Q31

5 Q12
6

”

−
“

H423 H153 H126

” “

ω4
23 ω5

31 ω6
12

”

−
“

h1 h2 h3

”

0

B

B

B

@

−Q23
1 Q34

5 Q42
6

Q53
4

−Q31
2

Q15
6

Q26
4

Q61
5

−Q12
3

1

C

C

C

A

0

B

B

B

@

−ω1
23 ω4

53 ω4
26

ω5
34

−ω2
31

ω5
61

ω6
42

ω6
15

−ω3
12

1

C

C

C

A

0

B

B

B

@

−ω1
23 ω5

34 ω6
42

ω4
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−ω2
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ω6
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ω4
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ω5
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−ω3
12

1

C

C

C

A

0

B

B

B

@

b11 b12 b13

b21 b22 b23

b31 b32 b33

1

C

C

C

A

“

Q56
1

Q64
2

Q45
3

”

−
“

R156 R426 R453
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56

ω2
64

ω3
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”

−
“

h̄1 h̄2 h̄3

”

0

B

B

B

@

−Q56
4

Q61
2

Q15
3

Q26
1

−Q64
5

Q42
3

Q53
1 Q34

2 −Q45
6

1

C

C

C

A

0

B

B

B

@

−Q56
4

Q26
1

Q53
1

Q61
2

−Q64
5

Q34
2

Q15
3 Q42

3 −Q45
6

1

C

C

C

A

0

B

B

B

@

−ω4
56

ω2
61

ω3
15

ω1
26

−ω5
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ω3
42

ω1
53 ω2

34 −ω6
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1

C

C

C

A

0

B

B

B
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b̄11 b̄12 b̄13

b̄21 b̄22 b̄23

b̄31 b̄32 b̄33

1

C

C

C

A

Table 5.3: Non-geometric IIB/O3 fluxes and their T-duals.
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IIB/O3 IIA/O6 IIB/O9 flux

F 123 F 0 −F 456 −m

F 423 F 14 F 156 −q1

F 153 F 25 F 426 −q2

F 126 F 36 F 453 −q3

F 156 F 2536 −F 423 e1

F 426 F 1436 −F 153 e2

F 453 F 1425 −F 126 e3

F 456 F 142536 F 123 −e0

Table 5.4: RR IIB/O3 fluxes and their T-duals.

An alternative view of the non-geometric fluxes can be given in terms of the algebra of

isometries [44, 53]. We saw in Section 5.2.1 how the metric fluxes can be interpreted as the

gauging of some of the isometries of the corresponding Lie algebra. Extending the algebra

(5.44) to include the generators Xm, m = 1, . . . , 6, corresponding to the gauge symmetries

arising from the reduction of the B-field [39], one has

[Zm, Zn] = −HmnpX
p + ωp

mnZp, (5.100)

[Zm, X
p] = −ωp

mnX
n +Qpr

mZr, (5.101)

[Xm, Xn] = Qmn
p Xp −RmnpZp. (5.102)

Using eq. (5.99) and

Zm
Tm←→ Xm,

we see that the proposed algebra is invariant under T-duality. Thus, it actually applies to

any of the IIA and IIB orientifolds, provided that all the fluxes allowed by the orientifold

projection are kept in each case.

The Jacobi identities of the algebra give constraints on the fluxes, analogously to what we

saw in the case with only metric fluxes. Written in terms of the various tensors, the identities

take a different form in each case. However, in terms of the individual flux parameters ap-

pearing in the T-dual superpotential there is just one set of constraints valid on all orientifolds.

It is convenient to work in the Type IIB with O3-planes picture in which only NSNS H3

and non-geometric Qij
k fluxes appear [55]. The ZZZ Jacobi identity leads to

Qrp
[l Hmn]p = 0 . (5.103)
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Substituting the fluxes of Tables 5.3 and 5.2 then yields

h̄0hj + āibij + ājbjj − akb̄kj = 0, (5.104)

h0h̄j + aib̄ij + aj b̄jj − ākbkj = 0, (5.105)

h̄0bkj + āib̄jj + āj b̄ij − akh̄j = 0, (5.106)

h0b̄kj + aibjj + ajbij − ākhj = 0. (5.107)

In all cases i 6= j 6= k. The XXX Jacobi identity simply gives

Q[mn
p Ql]p

r = 0, (5.108)

and in terms of the explicit fluxes

−biibjk + b̄kihk + hib̄kk − bjibik = 0, (5.109)

−b̄iib̄jk + bkih̄k + h̄ibkk − b̄jib̄ik = 0, (5.110)

−biib̄ij + b̄jibjj + hih̄j − bkib̄kj = 0, (5.111)

b̄iibij − bjib̄jj + hih̄j − bkib̄kj = 0. (5.112)

There are no further constraints from other Jacobi identities.

It is easy to work out some simple solutions to these constraints in the case of isotropic

fluxes. Indeed, taking

ei = e , qi = q , ai = a , āi = ā , hi = h , h̄i = h̄i,

bij = b (i 6= j) , bii = β , b̄ij = b̄ (i 6= j) , b̄ii = β̄, (5.113)

one has that the following configurations solve the constraints

1. h = h̄ = b = β = b̄ = β̄ = 0 (Qij
k = 0) ; a, ā, h0, h̄0 6= 0 (H3 6= 0), (5.114)

2. a = ā = h0 = h̄0 = 0 (H3 = 0) ; hh̄ = bb̄ ; h(b̄+ β̄) = b(b+ β), (5.115)

3. a = ā = h = h̄ = b = b̄ = 0 ; h0, h̄0, β, β̄ 6= 0, (5.116)

4. β = −b ; β̄ = −b̄ ; hh̄ = bb̄ ; h̄0h = ab̄ ; h0h̄ = āb. (5.117)

5.3.2 Superpotential and tadpoles in IIB with O3-planes.

We want to determine the superpotential and tadpoles induced by the Qab
c fluxes [55]. An

useful fact is that we can contract a p-form X with Q to obtain a (p − 1)-form QX with

components

(QX)lm1···mp−2 =
1

2
Qab

[l Xm1···mp−2]ab . (5.118)
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This is analogous to the ω contraction defined in eq. (5.48).

Observing the IIA superpotential (5.64) it is clear that the Qab
c fluxes must induce new

terms linear in the Ti and up to cubic order in the Ui. Such terms can be generated by adding

to W a piece
∫
QJc ∧ Ω, where Jc is the 4-form encoding the Type IIB Kähler moduli, c.f.

(3.10), and QJc is a 3-form according to (5.118). The complete IIB superpotential is then

W =

∫

T 6

(F 3 − iSH3 +QJc) ∧ Ω . (5.119)

Substituting the fluxes yields

W = e0 + i

3∑

i=1

eiUi − q1U2U3 − q2U1U3 − q3U1U2 + imU1U2U3

+ S
[
ih0 −

3∑

i=1

aiUi + iā1U2U3 + iā2U1U3 + iā3U1U2 − h̄0U1U2U3

]
(5.120)

+
3∑

i=1

Ti

[
− ihi −

3∑

j=1

Ujbji + iU2U3b̄1i + iU1U3b̄2i + iU1U2b̄3i + U1U2U3h̄i

]
,

where the Q-induced terms are in the last row. This general superpotential agrees with the

proposal of [44] if we assume a symmetry under exchange of the three sub-tori.

As already discussed in Section 5.1.1, there is a C4 tadpole in this orientifold. From T-

duality, then we also expect C8 tadpoles that can receive contributions from D7-branes and

O7-planes. A natural candidate is QF 3, where the 2-form is computed according to (5.118).

The proposal then is just

∫

M4×T 6

(C4 ∧H3 ∧ F 3 − C8 ∧QF 3) . (5.121)

The minus sign in front of the second term is needed to match the known IIA results when

only NS and metric fluxes are present. There are three different tadpoles according to the

components of C8 that can couple to the D7i-branes. Taking into account a number ND7i
of

D7i-branes and the flux tadpoles arising from (5.121), one has the cancellation conditions

ND3 +
1

2
[mh0 − e0h̄0 +

∑

i

(qiai + eiai)] = 16, (5.122)

−ND7i
+

1

2
[mhi − e0h̄i −

∑

j

(qjbji + ej b̄ji)
]

= 0 . (5.123)

A new interesting feature is the dependence of the tadpoles on all RR fluxes.
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5.3.3 Superpotential and tadpoles in IIA with O6-planes.

In this case there are non-geometric Q and R fluxes. As in (5.118), we can contract Q with a p-

form X to obtain a (p−1)-form QX . Analogously, contracting with R we obtain a (p−3)-form

with components

(RX)m1···mp−3 =
1

6
RabcX[m1···mp−3]abc . (5.124)

The Q and R fluxes are expected to induce superpotential terms quadratic and cubic in the

IIA Kähler moduli. There are appropriate 2 and 3-forms that encode the required combination

of the Ti, namely

J (2)
c ≡ 1

2
Jc ∧ Jc = −T2T3 ω̃1 − T1T3 ω̃2 − T1T2 ω̃3,

J (3)
c ≡ 1

6
Jc ∧ Jc ∧ Jc = −iT1T2T3 α0 ∧ β0 . (5.125)

Then, the Type IIA superpotential mirror to (5.119) can be written as [55]

W =

∫

T 6

[
eJc ∧ FRR + Ωc ∧ (H3 + ωJc +QJ (2)

c +RJ (3)
c )
]
. (5.126)

Substituting the fluxes precisely reproduces (5.120) upon exchanging Ti ↔ Ui.

The idea behind the general formula for W is to wedge Ωc with all available 3-forms. An

analogous reasoning suggests that the C7 tadpoles induced by the fluxes follow from
∫

M4×T 6

C7 ∧ (−H3F 0 + ωF 2 −QF 4 +RF 6) . (5.127)

The signs have been chosen to match the results in Type IIB. Including tadpoles due to

O6-planes and stacks of intersecting D6-branes leads to the general cancellation conditions

∑

a

Nan
1
an

2
an

3
a +

1

2
[mh0 − e0h̄0 +

∑

i

(qiai + eiāi)] = 16, (5.128)

∑

a

Nan
1
am

2
am

3
a +

1

2
[mh1 − e0h̄1 −

∑

i

(qibi1 + eib̄i1)] = 0, (5.129)

∑

a

Nam
1
an

2
am

3
a +

1

2
[mh2 − e0h̄2 −

∑

i

(qibi2 + eib̄i2)] = 0, (5.130)

∑

a

Nam
1
am

2
an

3
a +

1

2
[mh3 − e0h̄3 −

∑

i

(qibi3 + eib̄i3)] = 0. (5.131)

These agree with (5.122) and (5.123).

5.3.4 Superpotential and tadpoles in IIB with O9-planes.

For completeness we will include as well the effective superpotential for the case of Type IIB

orientifolds with O9-planes. Since on this case the orientifold involution is the identity, only
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even fluxes are allowed. There are eight RR F lmn, twenty-four metric ωl
mn, and eight non-

geometric Rlmn. The components are displayed in Tables 5.2, 5.3 and 5.4.

The superpotential can be derived from the Type IIB/O3 results by implementing T-

dualities in each of the six internal coordinates [55]. The moduli then transform as S ↔ S,

Ti ↔ Ti, but Ui ↔ 1/Ui. The Kähler potential transforms as

K → K + log |U1U2U3|2. (5.132)

Invariance of the Kähler function, G = K + log |W |2, then requires

WO9 =
−iW
U1U2U3

, (5.133)

where we have chosen a convenient phase. Therefore, in terms of the Type IIB/O9 moduli,

the superpotential reads

WO9 = m+ i

3∑

i=1

qiUi + e1U2U3 + e2U1U3 + e3U1U2 − ie0U1U2U3

+ S
[
ih̄0 +

3∑

i=1

āiUi + ia1U2U3 + ia2U1U3 + ia3U1U2 + h0U1U2U3

]
(5.134)

+

3∑

i=1

Ti

[
− ih̄i +

3∑

j=1

b̄jiUj + ib1iU2U3 + ib2iU1U3 + ib3iU1U2 − hiU1U2U3

]
.

In absence of metric ω and non-geometric R fluxes WO9 depends only on the complex structure

moduli. Linear terms in Ti and S are induced by ω and R respectively.

Fluxes contribute to C10 and C6 tadpoles. Indeed, there is a candidate tadpole term

∫

M4×T 6

C6 ∧ ωF 3 + C10 ∧ RF 3 , (5.135)

where RF 3 is a 0-form according to (5.124) and ωF 3 is a 4-form according to (5.48). Substi-

tuting the fluxes and including the corresponding sources gives

ND9 +
1

2
[mh0 − e0h̄0 +

∑

i

(qiai + eiāi)] = 16 , (5.136)

ND5i
+

1

2
[mhi − e0h̄i −

∑

j

(qjbji + ej b̄ji)] = 0 . (5.137)

5.4 Type IIB S-duality and fluxes

By considering some new non-geometric backgrounds, we have built up in the previous section

a T-duality invariant superpotential. However, in the language of Type IIB String Theory,
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this new kind of background fluxes spoils the Type IIB SL(2,Z) symmetry described in Sec-

tion 4.1. As we saw, this is a symmetry of the full Type IIB theory, and therefore it should

be inherited by the four dimensional effective superpotential. In fact, when only standard

RR and NS backgrounds are switched on, the effective potential is invariant under S-duality

transformations.

In order to recover a S-dual superpotential in presence of non-geometric fluxes, one is then

advocated to consider new kinds of non-geometric deformations, parametrized by a set of

constants {Pmn
o } defined by (

Q

P

)
→
(
a b

c d

)(
Q

P

)
, (5.138)

for

(
a b

c d

)
∈ SL(2,Z). These new objects are thus some sort of RR non-geometric fluxes

with the same tensor structure and number of components than the Q fluxes.

We conjecture then that the effective superpotential for Type IIB orientifolds with O3/O7-

planes is given by

W =

∫

T 6

[(F 3 − iSH3) + (Q− iSP )Jc] ∧ Ω , (5.139)

or in terms of the background parameters

W = e0 + i

3∑

i=1

eiUi − q1U2U3 − q2U1U3 − q3U1U2 + imU1U2U3

+ S
[
ih0 −

3∑

i=1

aiUi + iā1U2U3 + iā2U1U3 + iā3U1U2 − h̄0U1U2U3

]

+
3∑

i=1

Ti

[
− ihi −

3∑

j=1

Ujbji + iU2U3b̄1i + iU1U3b̄2i + iU1U2b̄3i + U1U2U3h̄i

]
−

− S

3∑

i=1

fiTi + iS

3∑

i,j=1

UjgjiTi + SU2U3

3∑

i=1

ḡ1iTi + SU1U3

3∑

i=1

ḡ2iTi

+ SU1U2

3∑

i=1

ḡ3iTi − iSU1U2U3

3∑

i=1

f̄iTi , (5.140)

being the last two rows the generated by the P fluxes. Here we have defined


P 23

4

P 31
5

P 12
6


 =



−f1
−f2
−f3


 ,



−P 23

1 P 34
5 P 42

6

P 53
4 −P 31

2 P 15
6

P 26
4 P 61

5 −P 12
3


 =



g11 g12 g13

g21 g22 g23

g31 g32 g33


 , (5.141)



P 56

1

P 64
2

P 45
3


 =



−f̄1
−f̄2
−f̄3


 ,



−P 56

4 P 61
2 P 15

3

P 26
1 −P 64

5 P 42
3

P 53
1 P 34

2 −P 45
6


 =



ḡ11 ḡ12 ḡ13

ḡ21 ḡ22 ḡ23

ḡ31 ḡ32 ḡ33


 . (5.142)
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Imposing closure under SL(2,Z)S for the Bianchi identities (5.103) and (5.108) now re-

quires the conditions

Q[mn
p Ql]p

r = 0, (5.143)

P [mn
p P l]p

r = 0, (5.144)

Q[mn
p P l]p

r + P [mn
p Ql]p

r = 0, (5.145)

Qrp
[l Hmn]p − P rp

[l Fmn]p = 0. (5.146)

In terms of the background parameters, the new constraints (5.144) and (5.145) read

respectively

−giigjk + ḡkifk + fiḡkk − gjigik = 0, (5.147)

−ḡiiḡjk + gkif̄k + f̄igkk − ḡjiḡik = 0, (5.148)

−giiḡij + ḡjigjj + fif̄j − gkiḡkj = 0, (5.149)

ḡiigij − gjiḡjj + fif̄j − gkiḡkj = 0, (5.150)

and

bkkḡkj − hkf̄j − b̄jkgjj + bikḡij + gkk b̄kj − fkh̄j − ḡjkbjj + gik b̄ij = 0, (5.151)

bkkgij − hkḡjj − b̄jkfj + bikgkj + gkkbij − fkb̄jj − ḡjkhj + gikbkj = 0, (5.152)

b̄kkḡij − h̄kgjj − bjkf̄j + b̄ikḡkj + ḡkk b̄ij − f̄kbjj − gjkh̄j + ḡik b̄kj = 0, (5.153)

b̄kkgkj − h̄kfj − bjk ḡjj + b̄ikgij + ḡkkbkj − f̄khj − gjk b̄jj + ḡikbij = 0, (5.154)

whereas eq. (5.146) reads

h̄0hj + āibij + ājbjj − ak b̄kj +mfj − qigij − qjgjj − ekḡkj = 0, (5.155)

h0h̄j + aib̄ij + aj b̄jj − ākbkj − e0f̄j − eiḡij − ej ḡjj − qkgkj = 0, (5.156)

h̄0bkj + āib̄jj + āj b̄ij − akh̄j +mgkj − qiḡjj − qj ḡij − ekf̄j = 0, (5.157)

h0b̄kj + aibjj + ajbij − ākhj − e0ḡkj − eigjj − ejgij − qkfj = 0. (5.158)

Concerning the flux induced tadpoles, we already mentioned in Section 4.1 that C8 is part

of a SL(2,Z) triplet. Thus, starting from eq. (5.121) and imposing SL(2,Z)S invariance, one

gets

∫

M4×T 6

C4 ∧H3 ∧ F 3 − C8 ∧QF 3 + C̃8 ∧ PH3 + C ′
8 ∧ (QH3 + PF 3) , (5.159)
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which gives rise to the cancellation conditions

ND3 +
1

2
[mh0 − e0h̄0 +

∑

i

(qiai + eiai)] = 16, (5.160)

−ND7i
+

1

2
[mhi − e0h̄i −

∑

j

(qjbji + ej b̄ji)
]

= 0, (5.161)

−NNS7i
+

1

2
[h0f̄i − h̄0fi −

∑

j

(āgji − aj ḡji) = 0, (5.162)

NI7i
+

1

2
[e0f̄i −mfi +

∑

j

(qjgji + ej ḡji)] = 0. (5.163)

We have made use of eq. (5.146) in order to simplify the last equation. Moreover, we have

considered the possibility of having NS7i and I7i-branes [132] sourcing respectively C̃8 and C ′
8.

To analyze systematically the vacuum structure of the scalar potential induced by (5.140)

is a difficult task due to its great complexity. Here we will concentrate on a couple of examples

of N = 1 Minkowski vacua on which the dilaton, the complex structure and the overall Kähler

moduli are fixed [55]. This is a novelty with respect to the Minkowski vacua discussed up to

here, since in those cases there were always numerous flat directions.

Thus, let us consider the isotropic background of eq. (5.113) together with

fi = f , f̄i = f̄ , (5.164)

gij = g (i 6= j) , gii = γ , ḡij = ḡ (i 6= j) , ḡii = γ̄.

Then the superpotential (5.140) becomes

W = E1 + σE2 + τE3 + στE4 , (5.165)

with

U = −iρ , S = −iσ , T = −iτ, (5.166)

and

E1 = E0 + 3eρ+ 3qρ2 −mρ3 , (5.167)

E2 = h0 + 3aρ− 3āρ2 − h̄0ρ
3 , (5.168)

E3 = 3[−h+ (2b+ β)ρ− (2b̄+ β̄)ρ2 + h̄ρ3] , (5.169)

E4 = 3[f − (2gγ)ρ+ (2ḡ + γ̄)ρ2 − f̄ρ3] . (5.170)

The problem consists on finding solutions of

W =
∂W

∂ρ
=
∂W

∂σ
=
∂W

∂τ
= 0. (5.171)

From ∂W/∂σ = 0 and ∂W/∂τ one gets

τ = −E2

E4
, σ = −E3

E4
, (5.172)



82 5. Moduli stabilization and N = 1 Superpotentials.

and substituting back in W = 0 and ∂W/∂ρ = 0 then gives rise to

E = E1E4 −E2E3 = 0, E′ = 0. (5.173)

Thus, E must have a double root ρ0 necessarily complex

E = 3(ρ− ρ0)
2(ρ− ρ∗0)2(αρ2 + δρ+ ε) (5.174)

with α, δ, ε and ρ0 depending on the fluxes.

We will consider two particular solutions to the Bianchi identities (5.143)-(5.146), summa-

rized in Table 5.5.

Case P · P = 0 Q ·Q = 0 Q · P + P ·Q = 0 Q ·H3 − P · F 3 = 0

β = −b, β̄ = −b̄ h0 b̄ = eγ + āh
1 f = f̄ = g = ḡ = 0

hh̄ = bb̄
bγ = hγ̄

h̄0h = qγ + ab̄

γ = −g, γ̄ = −ḡ mg = ef̄ − āβ̄
2

ff̄ = gḡ
h = h̄ = b = b̄ = 0 fβ̄ = gβ

qg = aβ̄ − e0f̄

Table 5.5: Some solutions to the identities (5.143)-(5.146) for isotropic fluxes.

Case 1

We find a class of minima with fluxes satisfying the relations

q = 0 , e0γ = 4ah , mh0hγ = (eγ + 4hā)(eγ + hā). (5.175)

Besides, q = 0 implies hh̄0 = ab̄, with b̄ given in Table 5.5. As free parameters we can then

take a, ā, b, h0, h, γ and e. They must be such that the remaining dependent fluxes come out

integers as well. Furthermore, there are sign relations required for consistency. For example,

one finds

ρ0 = i|ρ0| , |ρ0|2 = − h0h

eγ + hā
. (5.176)

This needs h0h(eγ + hā) < 0, then U =
√
−h0h/(eγ + hā).

The remaining moduli turn out to be

S =
2h

γU
, T =

h
[
h0(2āh− eγ)− 2iaU(eγ + āh)

]

3γU(eγ + āh)(h− ibU)
. (5.177)

To guarantee Re S > 0 and Re T > 0 we need

hγ > 0 , (2ab− 2āh+ eγ) > 0. (5.178)

For example, choosing

a = −8 , b = −4 , h = −4 , γ = −4 , ā = 12 , h0 = 8 , e = −16 , (5.179)
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we find that all dependent fluxes are also even integers. The moduli are determined to be

U = S =
√

2 , T =
1

9
(14
√

2 + 16i). (5.180)

It is also interesting to compute the tadpoles. In particular one finds

ND3 − 288 = 16 , −ND7 + 80 = 0 , −NNS7 + 40 = 0 , NI7 + 32 = 0. (5.181)

Observe the peculiar result that fluxes contribute to the C4 tadpole as O3-planes instead of

D3-branes. This is again a novelty with respect to the vacua involving just Q-fluxes. However,

this is not generic. One can easily find other examples on which the C4 flux tadpole comes

out positive. The 8-form tadpoles can have either sign, or even cancel, depending on the

parameters.

Within the above class of vacua we can set e = 0, implying h0b̄ = āh. The I7 tadpole then

cancels, since now q = e = 0. On the other hand, from the condition Re S > 0 we conclude

that in this case fluxes always contribute to the C4 tadpole as D3-branes. Concerning the

flux contributions to the C8 and C̃8 tadpoles, one has that both are positive (opposite sign

as D7/NS7-branes) and proportional to Re T . To give a numerical example, we can take

ā = −h0 = 2, U = 1, and

a = −8 , b = −2 , h = −2 , γ = −2 , S = 2 , T =
5

3
− i. (5.182)

It is easy to verify that the dependent fluxes are all even integers.

Case 2

The second example we would like to present consists on a set of solutions with free parameters

β, β̄, e0, e, f̄ , g and a, and remaining fluxes determined by

ā = 0 , h0β̄ = 4eg , h̄0β̄ =
f̄(4e0f̄ − 3aβ̄)

g
. (5.183)

Notice that then m = ef̄/g and q is given in Table 5.5. Then

U =

√
− g
f̄

, S =
β̄

2f̄U
, T =

U

3g

[
2ef̄U + i(2e0f̄ − 3aβ̄)

]

(β̄U + iβ)
. (5.184)

It is easy to check that Re S > 0, Re U > 0 and Re T > 0 as long as

gf̄ < 0 , gβ̄ < 0 ,

(
2eg + 3aβ − 2e0βf̄

β̄

)
> 0. (5.185)

For an illustrative example, consider the parameters

f̄ = 2 , β = 8 , β̄ = 8 , g = −2 , a = 28 , e0 = 16 , e = 96. (5.186)

The moduli are then fixed as

U = 1 , S = 2 , T =
1

3
(7 + 31i), (5.187)
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whereas for the flux-induced tadpoles we obtain

ND3 + 32 = 16 , NI7 + 112 = 0. (5.188)

The flux contribution to C8 and C̃8 tadpoles is zero.

The I7 tadpoles cancel when a = 0. Then it is simple to show that the free parameters can

be chosen so that all other fluxes are integers while Re S and Re T are large and positive. The

sign relations among the parameters imply that the C4, C8 and C̃8 flux tadpoles are positive.

The latter two are proportional to Re T .

Other solutions of the Bianchi identities can be obtained by combining the building blocks

of Table 5.5. For example, P ·P = 0 can be fulfilled as in case 2, and Q·Q = 0 as in case 1.

Then the solution of Q·P +P ·Q = 0 can be written as (bf−gh)(hf̄−gb̄) = 0. Now, if hf̄ = gb̄,

E3 and E4 have a common quadratic factor but the polynomial E cannot be factorized as

needed. When bf = gh, to avoid Re S = 0 it must be that U is necessarily complex. In this

more complicated case we were not able to find supersymmetric Minkowski minima.

In summary, some differences compared to the type IIB results [119] without non-geometric

nor S-dual fluxes are evident. The situation now is rather more involved but still we have

found some concrete results. For simplicity we have analyzed the case with isotropic fluxes

and moduli Ti = T , Ui = U . We find Minkowski N = 1 vacua in which not only the dilaton

and complex structure fields are fixed but also the Kähler modulus T is fixed. However, if we

analyze the more general case with independent Ti and Ui fields, generically only one linear

combination of the Kähler moduli Ti is fixed. This is due to the fact that the superpoten-

tial is only linear in the Ti and essentially only depends on a linear combination of these moduli.

When S-dual backgrounds are switched on, the contribution from fluxes to the tadpole of

the RR C4 form can have either sign depending on the flux values. This is a surprising result.

We know that in absence of S-dual fluxes the C4 tadpole due to H3 and F 3 fluxes consistent

with the imaginary self-dual condition needed for supersymmetry is always positive [37, 119].

Concerning the C8 tadpole, if only non-geometric fluxes are present the flux tadpole is negative

(same sign as D7-branes). However, in presence of S-dual backgrounds the flux contribution

can be positive (same sign as O7-planes), negative, or even vanish. This is similar to what

occurs in Type IIA AdS vacua with metric fluxes [43]. The fact that fluxes may contribute to

tadpoles as orientifold planes may be useful for model-building as we will show in Section 7.2.3.

The value of the real parts for the dilaton S and the overall Kähler modulus T may be

made large by appropriately choosing the fluxes. This is in general required to maintain per-

turbative values for the couplings and the validity of the supergravity approximation. On the

other hand, in our supersymmetric Minkowski vacua Re S and Re T cannot be made arbitrar-

ily large because in general they are tied to RR tadpoles induced by the fluxes. We assume
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that localized sources of different kinds may be added to the theory rendering it tadpole free.

In this connection, notice that if we want to add D3 and/or D7-branes to vacua like these, the

existence of undetermined Kähler Ti moduli may in fact be necessary, as it will be emphasized

in Section 7.1.

5.5 Generalized duality invariant superpotentials.

The approach followed up to here has been to implement the ten dimensional dualities of Type

II orientifolds in the low energy effective theory. Before the orbifold truncation, this low energy

effective theory corresponds to four dimensional N = 4 supergravity, spontaneously broken to

N ≤ 4 by the background fluxes. In terms of this, the dualities of the ten dimensional theory

appear as elements of the duality group of N = 4 supergravity, given by O(6, 6; Z)×SL(2,Z),

although only a subgroup SL(2,Z)7 is realized for factorized toroidal orientifolds.

The kind backgrounds considered along the previous chapters are invariant under a sub-

group SL(2,Z)4 ⊂ SL(2,Z)7, corresponding to T-duality and Type IIB S-duality. The re-

maining elements in SL(2,Z)7, correspond in ten dimensions to Type I/Heterotic S-duality

and Heterotic T-duality. Here we would like to generalize the superpotentials of previous

chapters to a fully invariant superpotential under the whole SL(2,Z)7 duality group of the

effective theory. This will require the addition of new background fluxes. In order to give

support and to show the nature of these new degrees of freedom, we will first present some

results from M-theory and Heterotic compactifications revealing the necessity of new terms

in the superpotential. Then we will systematize the action of the duality group on the back-

ground parameters and will derive a fully invariant superpotential.

5.5.1 M-theory on a twisted 7-tori.

We will consider here the G2-holonomy manifolds X7 obtained as certain Z2×Z2×Z2 orbifolds

of the 7-torus, X7 = T7/Z2 × Z2 × Z2 [117]. We will follow the results and notation used in

ref.[133]. One has seven complex moduli fields MI(x), I = 1, ..., 7. They may be defined in

terms of the complexified G2-form

Φc = C3 + iΦ = iMI(x) φ
I (y), (5.189)

where φI ∈ H3(X7), C3 is the M-theory 3-form and Φ = Re MI(x)φ
I (y) is given by eq. (4.64),

with Re MI(x) parameterizing the volume of the 7 invariant 3-cycles in X7 = T 7/Z2×Z2×Z2.

We will consider the addition of metric fluxes in this toroidal model. This is a Scherk-Schwarz

reduction which proceeds in an analogous way to that described for Type IIA orientifold

compactifications. In particular we replace the differentials dyP , P = 1, · · · , 7, by twisted
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forms ηP satisfying

dηP = −1

2
ωP

MNη
M ∧ ηN , ωP

[MNω
S
R]P = 0 , (5.190)

where one also has ωP
PN = 0 [38]. Among these metric fluxes ωP

MN , only twenty-one are

invariant under the twists. In addition we consider the presence of seven 4-form backgrounds

gIJKL corresponding to fluxes of the M-theory 3-form. The presence of these two types of

fluxes gives rise to a superpotential [134, 135, 133]

W7 =
1

4

∫

X7

(C + iΦ) ∧ [g +
1

2
d(C + iΦ)] +

1

4

∫

X7

G7. (5.191)

Here G7 is the flux of the 3-form dual. Expanding this superpotential in terms of the seven

moduli in Type IIA notation [133] one obtains:

W7 = g567891011 + i(g78910T1 + g56910T2 + g5678T3) + (5.192)

+ i(g57911S − g581011U1 − g671011U2 − g68911U3)

+ (ω11
910T1T2 + ω11

56T2T3 + ω11
78T1T3)− S(ω6

79T1 + ω8
95T2 + ω10

57T3)

+ (ω6
810T1U1 + ω8

106T2U2 + ω10
68T3U3) − (ω5

710T1U2 + ω5
89T1U3 + ω7

105T2U1)

+ (ω7
96T2U3 + ω9

58T3U1 + ω9
67T3U2)

− S(ω6
511U1 + ω8

711U2 + ω10
911U3) + ω9

1011U1U2 + ω5
611U2U3 + ω7

811U1U3.

All terms in this superpotential, except for those in the last line, may be understood in terms of

ordinary RR and NS backgrounds in the Type IIA orientifold supplemented by metric fluxes.

Indeed, all those terms correspond to the fluxes e0, ei, h0, hi, qi, ai, and bij , described in

Section 5.2.2. The absence of a T1T2T3 term (type IIA mass parameter m) is expected since

in the M-theory scheme considered massive IIA supergravity does not arise.

The new terms appearing in the last line are interesting. The first three correspond to the

S-dual fluxes fi introduced before in order to maintain S-duality in the IIB orientifold version

of this model. Thus one has the interesting result that the fi fluxes introduced before may be

understood as certain ordinary metric fluxes

fi = ωK+1
K11 , K = 5, 7, 9, (5.193)

in an M-theory version of the same model. On the other hand the last three terms, bilinear in

the Ui (Ti) in the IIA (IIB) version, are new and are absent even in the extended set of flux-

induced superpotential terms discussed in Section 5.4. This suggests, as commented before,

that there is an even bigger set of flux degrees of freedom to be considered. We will see now

that the presence of new terms bilinear and cubic in the Ui’s are also expected if we consider

fluxes in the heterotic version of the same class of models.
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5.5.2 Heterotic fluxes.

Type IIA orientifolds with O6-planes are mirror to Type IIB orientifolds with O9-planes, i.e.

Type I String Theory, through the M2 operator in the diagram 3.34. On the other hand

we know that Type I is related by S-duality to the SO(32) heterotic string. Therefore, it is

interesting to compare the induced superpotentials in both theories. Flux-induced heterotic

superpotentials have been analyzed in [136, 137, 138, 139]. It has been argued that heterotic

H-flux forces the internal manifold X6 to be non-Kähler with dJ 6= 0. Both effects produce a

superpotential

Whet =

∫

X6

Ω ∧ (Hhet + dJc). (5.194)

It is interesting to evaluate Whet in the case of compactification on a factorized T6 with

arbitrary metric fluxes on top. The H-flux is a generic 3-form, namely

Hhet = −e0α0 +mβ0 −
3∑

i=1

(qiαi + eiβi) . (5.195)

Our choice of parameters is dictated by the fact that by S-duality Hhet is equal to the RR

flux, given in Table 5.4, of IIB with O9-planes, alias Type I. Moreover, the heterotic metric

fluxes are the same as those as in IIB/O9 shown in Table 5.3. We also need to use that in the

toroidal compactification the heterotic complex structure moduli coincide with the geometric

parameters, i.e. Ui = τi. The Kähler moduli arise from Jc = i
∑

j Tjωj . Putting all pieces

together we find

Whet = m+ i

3∑

i=1

qiUi + e1U2U3 + e2U1U3 + e3U1U2 − ie0U1U2U3 (5.196)

+

3∑

i=1

Ti

[
− ih̄i +

3∑

j=1

b̄jiUj + ib1iU2U3 + ib2iU1U3 + ib3iU1U2 − hiU1U2U3

]
.

Superpotentials of this kind have been recently considered in [140]. With isotropic choice of

fluxes Whet agrees with results of [32].

Comparing with (5.134) shows that Whet matches WO9 except for the terms linear in S

that are due to non-geometric fluxes Rmno in IIB/O9. Additional S-dependent terms in WO9

will appear if S-dual fluxes are included (T-dual to the Pmn
o ). Thus, we conjecture that anal-

ogous dilaton-dependent superpotential terms will emerge in the heterotic side from new flux

degrees of freedom Rhet and Phet.

Moreover, we know that the 4-dimensional compactified heterotic strings are self T-duality

invariant [141]. As a consequence, the complete Kähler function G = K + log|W |2 should be

invariant under the SL(2,Z)3 heterotic T-duality symmetries. It is easy to convince oneself

that this demands additional terms quadratic and cubic in the Kähler moduli Ti [142], thus
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realizing the complete SL(2,Z)7 duality group. In the following section we will construct

systematically the SL(2,Z)7 invariant superpotential, along the lines of our work in [55].

5.5.3 Fluxes and SL(2, Z)7 invariance.

The general flux superpotential will be a polynomial of degree up to seven on the moduli MI =

(S, T1, T2, T3, U1, U2, U3) and at most linear on any of them. One can write this superpotential

in the form

W =

7∑

n=0

D
(n)
i1...in

Mi1 ...Min
, (5.197)

where the D(n) are integer coefficients associated to generalized fluxes2.

Each of the seven SL(2,Z)X factors consists of two generators

SX,1 =

(
1 1

0 1

)
; SX,2 =

(
0 −1

1 0

)
. (5.198)

The action of a general element ΛX =

(
kX `X

mX nx

)
∈ SL(2,Z) on the modulus MX is

given by

MX →
(kXMX − i`XMX)

(imXMX + nX)
; kXnX − `XmX = 1 ; kX , `X , mX , nX ∈ Z. (5.199)

The toroidal Kähler potential transforms like

K → K + log|imXMX + nX |2, (5.200)

and the complete Kähler function is invariant as long as the fluxes D(n) transform like

(D
(n)
ijk.., D

(n+1)
xijk.. ) −→ (D

(n)
ijk.., D

(n+1)
xijk.. )

(
nX mX

`X kX

)
. (5.201)

The fluxes D(n) may be viewed as symmetric tensors of n indices, with all diagonal com-

ponents vanishing, thus with binomial coefficient
(
7
n

)
independent components. Hence, the

total number of generalized fluxes is
∑7

n=0

(
7
n

)
= 27 = 2(h21+h11+1). They provide the 128

components of a representation (2, 2, 2, 2, 2, 2, 2) under SL(2,Z)7. As explained in Appendix

C, this in turn may be embedded into the spinorial 128 of SO(7, 7; Z). One can decompose

the two Weyl spinors of fluxes accordingly to its SU(7) tensorial structure

64 = 1 ⊕ 7 ⊕ 21 ⊕ 35

64′ = 1′ ⊕ 7′ ⊕ 21′ ⊕ 35′ (5.202)

The components of each representation are then given by

2General superpotentials of this type were considered previously in [32] from the point of view of gauged

N = 4 supergravity.
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Rep. Flux Components

1 e0

7′ ei h0 hi

21 qi ai bij fi h′i
35′ m āi b̄ij gij b′ij f ′

i e′0
35 h̄0 h̄i ḡij b̄′ij g′ij e′i h′0
21′ f̄i h̄′i ḡ′ij q′i a′i
7 f̄ ′

i m′ ā′i
1′ h̄′0

Note that in the M-theory setting described above, only the representations 1, 7′ and 21

appear explicitly [133].

In terms of component fluxes the full duality covariant superpotential (5.197) may be

written as

W = e0 − i
3∑

i=1

hiTi +
1

2

∑

l6=m6=n

h′lTmTn + ie′0T1T2T3 (5.203)

+

(
ih0 −

3∑

i=1

fiTi −
i

2

∑

l6=m6=n

f ′
lTmTn − h′0T1T2T3

)
S

+

3∑

i=1



(
− ai + i

3∑

j=1

gijTj −
1

2

∑

l6=m6=n

g′ilTmTn + ia′iT1T2T3

)
S

+ iei −
3∑

j=1

bijTj −
i

2

∑

l6=m6=n

b′ilTmTn − e′iT1T2T3


Ui

+
1

2

∑

r 6=s6=t



(
iār +

3∑

j=1

ḡrjTj +
i

2

∑

l6=m6=n

ḡ′rlTmTn − ā′rT1T2T3

)
S

− qr + i

3∑

j=1

b̄rjTj −
1

2

∑

l6=m6=n

b̄′rlTmTn + iq′rT1T2T3


UsUt

+



−
(
h̄0 + i

3∑

j=1

f̄jTj −
1

2

∑

l6=m6=n

f̄ ′
lTmTn + ih̄′0T1T2T3

)
S

+ im+

3∑

j=1

h̄jTj +
i

2

∑

l6=m6=n

h̄′lTmTn −m′T1T2T3



U1U2U3.

The complexity of this superpotential makes its analysis difficult, except in particular cases

like those we have discussed in previous sections. In any event it is clear that there are many

parameters which should allow for new possibilities in fixing moduli. It is important to remark

that these 128 flux degrees of freedom are not independent. We already saw how Bianchi iden-

tities and RR tadpoles strongly restrict the possible fluxes in the simpler case with 64 degrees
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of freedom. In the most general case analogous constraints should be fulfilled. It would be

interesting to have close expressions for these constraints in the more general case.

Note that the above discussion does not imply that the effective action has full SL(2,Z)7

duality invariance. Rather, the above discussion shows how the presence of each particular

flux explicitly breaks the duality symmetries. As we have seen, some of these flux degrees

of freedom have a simple interpretation as metric fluxes or explicit RR or NS backgrounds

in some particular version (Type IIA or IIB orientifolds, heterotic, M-theory orbifold, ...) of

compactified string theory. Some other fluxes do not admit a simple geometric interpretation

and yet others are implied by Type IIB S-duality and/or Heterotic self-T-dualities. Yet all of

the 128 fluxes may in general be present in the complete underlying theory.



Chapter 6

Flux induced SUSY-breaking in

D-brane configurations.

We have described in Chapter 5 how compactifications of String Theory in presence of back-

ground fluxes give rise to non-trivial superpotentials in the four dimensional N = 1 effective

theory. These lead to a large landscape of vacua on which some, or even all, of the closed

string moduli are stabilized. From the ten dimensional point of view, the lifting of some of

the moduli from the massless spectrum is signaling changes in the topology of the internal

manifold due to the backreaction of the fluxes. It is therefore expected that the dynamics of

the D-branes, required to cancel the RR tadpoles and to embed the Standard Model, will be

as well affected by these changes.

On this chapter we would like study how the background fluxes affect the D-branes, or

more concretely, the gauge theories living inside them. In particular, we will compute the flux

induced superpotentials for the open string moduli parametrizing the location and Wilson

lines of the D-branes. In terms of the MSSM, this is equivalent to compute the potentials

for the squarks, sleptons and Higgsses, or in other words, the soft supersymmetry breaking

lagrangian. This has been our task in [20, 24].

6.1 Supersymmetry breaking and Soft-terms.

The algebra of N = 1 supersymmetry appears as a natural mathematical construction pro-

viding us with a solution to the hierarchy problem. Moreover, having the setup of branes pre-

serving N = 1 in four dimensions avoids inconsistencies such as non-vanishing NSNS tadpoles.

However, the present constraints coming from LEP situates the lowest masses for the sleptons,

stop and sbottom above the 100 GeVs, so definitively we live in a non-supersymmetric vacuum.

91
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The vacuum expectation value for the supersymmetry variations are of the form (see

e.g. [143])

〈δψ〉 =
√

2ε〈F 〉, (6.1)

〈δλ〉 = ε〈D〉. (6.2)

Thus, there are two different ways to break spontaneously N = 1 supersymmetry while pre-

serving Lorentz invariance: by means of a F-term vev in the scalar potential (O’Raifeartaigh

mechanism) or by means of a D-term vev (Fayet-Illiopoulos mechanism).

The F and D auxiliary fields can be determined from their own equations of motion. More

concretely, one has

Fi = eG/2(G−1)j
iGj −

1

4
fabk(G−1)k

i λ
aλb − (G−1)k

iG
jl
k ψjψl +

1

2
ψiGjψ

j , (6.3)

Da = i(Re f−1
ab )(gGiT bj

i φj) +
i

2
f i

cbψiλ
c − i

2
f∗

i
bcψiλc +

1

2
λaG

iψi, (6.4)

so non-vanishing vevs for δψ and/or δλ can be generated by both, perturbative or non-

perturbative effects.

F-breaking nicely does not spoil the cancellation of quadratic divergences, giving rise to

a soft breaking of the supersymmetry. This is related with the so called non-renormalization

theorems, which ensure that the superpotential does not receive radiative corrections, i.e. to

each order in perturbation theory only D-terms are generated.

On the other hand, supersymmetry breaking through D-terms in principle produces quadratic

divergences. However, imposing the additional constraint Tr Y = 0, Y being the generator

of the U(1) gauge group under which φ transforms, it is possible to guarantee that only log-

arithmic divergences are generated. In that case, Fayet-Illiopoulos terms [144] 〈D〉 appear in

the scalar potential of the theory, e.g.

V =
1

2
|〈D〉+ eφ∗φ|2. (6.5)

Then, if (1/e)〈D〉 < 0 the effect of the D-term can be compensated by a vev of the mass term

〈φ∗φ〉 > 0 so V = 0 and supersymmetry remains unbroken, although the gauge symmetry is

being broken. Contrary, if (1/e)〈D〉 > 0 the effect cannot be compensated, 〈φ〉 = 0, V 6= 0 and

supersymmetry is being broken. In the MSSM some of the sleptons and squarks do not have

superpotential mass terms. Thus, D-breaking in the MSSM must be clearly subdominant or

absent, as it could induce a disastrous color breaking, electromagnetism breaking or violation

of the lepton number.
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In any case, when local supersymmetry is broken, the super-Higgs effect takes place and a

spin 1/2 Goldstino is generated

η = 〈eG/2Gi〉ψi. (6.6)

This gets combined with the gravitino so it becomes massive

m3/2 =
1

κ
〈eG/2〉. (6.7)

From the point of view of the effective theory, there is a limited number of supersymmetry

breaking couplings which can be added to the low-energy effective action without spoiling the

cancellation of quadratic divergences. In particular,

Lsoft = −(m2)ijφiφ
∗
j −

1

3!
Aijkφiφjφk +

1

2
Bijφiφj −

1

2
Maλaλa + h.c. (6.8)

In addition, one can consider the following extra piece [145]

L(2)
soft = −1

2
µijψiψj +

1

2
Cijkφiφ

∗
jφ

∗
k +M ia

g ψiλa + h.c. (6.9)

The terms of L(2)
soft in principle may lead to quadratic divergences. However, in the case on

which the chiral multiplets are not singlet under the gauge group these are absent and one

should consider them.

Note that there are still regions of the parameter space for which supersymmetry remains

unbroken. Indeed, it is possible to prove that when

(m2)ij = |µij |2, (6.10)

Cijk = −(hjkl)∗µil,

with the rest of the soft terms vanishing, the theory becomes supersymmetric and is described

by a trilinear superpotential plus a supersymmetric mass term 1
2µijφiφj .

Other interesting situations are given by

Aijk = −Mhijk , (6.11)

Tr (m2) = |M |2,

with the other soft terms vanishing and a superpotential of the form

W (φ) =
1

3!
hijkφiφjφk . (6.12)

These conditions in a N = 4 theory ensure that the theory remains ultraviolet finite to all

orders in perturbation theory [146, 147, 148, 161] and in particular the soft parameters do not

run under the renormalization group flow, although supersymmetry is being broken toN = 0∗.
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In superstring and supergravity theories the patterns (6.8) and (6.9) arise naturally when

supersymmetry is being broken spontaneously in a hidden sector communicating with the ob-

servable sector through some messenger interactions, such as gravity. In fact, supersymmetry

cannot be broken spontaneously in the observable sector since a D-term vev for the hyper-

charge group U(1)Y does not lead to an acceptable spectrum, and on the other hand, there is

no gauge singlet whose F-term could develop a vev.

Thus, it results convenient to expand the superpotential and the Kähler potential in terms

of the chiral superfields of the observable sector as

W = Ŵ (hm) +
1

2
µij(hm)ΦiΦj +

1

3!
Yijk(hm)ΦiΦjΦk . . . , (6.13)

K = K̂(hm, h
∗
m) + K̃īj(hm, h

∗
m)Φ

ī
Φj +

1

2
Zij(hm, h

∗
m)ΦiΦj + h.c.+ . . . , (6.14)

where hm are the chiral superfields of the hidden sector. In some specific models the µ and

Z terms can be forbidden by gauge invariance. This is not the case of the MSSM, where the

two Higgs doublets have opposite hypercharges.

When supersymmetry is broken in the hidden sector, the auxiliary fields of some hm super-

fields get a vev through eq. (6.3) and soft-susy breaking terms are generated in the observable

sector due to the gravitational couplings between the hm fields and the Φ fields. These can

be explicitly computed in the so called flat-limit, on which MP → ∞ with m3/2 fixed. In

that case the non-renormalizable gravity corrections decouple and one has a globally super-

symmetric lagrangian with soft susy-breaking terms which are functions of the above Fm, K̂,

K̃, etc. Explicit expressions can be found in [149].

In the particular case of String Theory compactifications, the role of the hidden sector is

played by the closed string moduli of Section 3.1. More concretely, these are grouped into

N = 1 chiral multiplets with F auxiliary components associated to the background fluxes [74].

A non trivial background flux in the internal manifold will correspond to a non-vanishing

vev for the F auxiliary fields associated to the axiodilaton, complex structure and/or Kähler

moduli. In this sense, the N = 1 chiral multiplets are acting as spurion superfields [22, 23],

i.e. chiral fields to which the coupling constants of the theory are promoted. For example,

promoting the gauge coupling to a superfield

S = g +Mεε, (6.15)

one has ∫
d2εSFαFα =

∫
d2εgFαFα +Mλλ, (6.16)

so the gaugino masses are given by the vacuum expectation value of the auxiliary field M ,

which is related to closed string backgrounds of String Theory.
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6.2 D-brane low energy effective actions.

The idea is to compute the low energy effective actions for the field theories living inside the

D-branes in the flux compactifications described in Chapter 5. Unfortunately, a complete

analysis of the soft-supersymmetry breaking parameters induced by the above whole set of

backgrounds is still missing. Here we will instead concentrate in the Type B(ecker) scenarios

described in Section 4.3.1, i.e. on Type IIB configurations of D3 and D7 branes with constant

NSNS and RR fluxes and vanishing magnetic fluxes. This was done in [20, 24]. Alternative

approaches can be found in [19, 21, 25, 26, 27, 28].

We will adopt a microscopic local point of view by expanding directly the non-abelian

Dirac-Born-Infeld (DBI) and Chern-Simons (CS) actions associated to the D3 and D7-branes.

Our results will be thus generic in the sense that the only input is the local supergravity

configuration around the brane. All the global information will be in some sense contained

there by consistency with the supergravity equations of motion. The difficulty is then, given a

global configuration which solves the supergravity equations of motion, to compute the local

background around the brane.

6.2.1 Low energy effective action for D3-branes.

The non-abelian extension of the DBI and CS actions for a Dp-brane was worked by Myers [150]

based on T-duality arguments. For the particular case of a D3-brane it is given by

S = −µ3

∫
d4ξ T r

[
e−φ

√
− det(P [Eµν +Eµi(Q−1 − δ)ijEjν ] + σFµν ) det(Qij)

]

+µ3

∫
Tr
(
P
[
eiσiφiφ (

∑
n Cn + 1

2B2 ∧ C2 ) e−B
]
eσF

)
, (6.17)

where P [M ] denotes the pullback of the ten dimensional background fieldM onto the D3-brane

worldvolume and

Emn = Gmn −Bmn ,

Qm
n = δm

n + iσ [φm, φp]Epn , (6.18)

σ = 2πα′ .

We will perform a local expansion around the position of the D3-brane, parametrized by the

vevs of the six transverse scalars φm of N = 4 Super Yang-Mills. Then, we will make the

identification

xm = 2πα′φm , (6.19)

where φm, from now on, makes reference to 〈φm〉.
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Thus, let us expand (4.33)-(4.37) as1

(Z1(x
m))−1/2 = Z

−1/2
1 +

1

2
Kmn x

mxn + . . . , (6.20)

(Z2(x
m))1/2 = Z

1/2
2 + . . . ,

τ = τ0 +
1

2
τmn x

mxn ,

χ4 = (const.+
1

2
χmn x

mxn + . . .) dx0dx1dx2dx3 ,

Glmn(xm) = Glmn + . . . ,

where the coefficients in the right hand side are constant. Plugging this into eq. (6.17) and

expanding will give us the low energy effective action of the gauge theory living in the world-

volume of the D3-branes. This is a generalization of the expansion carried out in [19]. Note

that, for stability reasons, we have not included linear terms in the above expansion, as they

usually lead to linear contributions in the scalar potential.

In order to plug (6.20) into (6.17) we need first to integrate the RR and NSNS field-

strengths

Bmn =
1

6
σigs(G3 −G∗

3)lmnφ
l , (6.21)

(C4)0123 =
σ2

2
χmnφ

mφn ,

(C6)0123mn = −σ
6
Z−1

1 [∗6(G3 +G∗
3)]mnpφ

p ,

where we have made use of eq. (4.14) and ∗6 is taken with respect to the metric without taking

into account the warp factor. The gauge choice actually contains global information about

the internal manifold. We have taken here a symmetric gauge which puts on equal footing

the six transverse coordinates. This is somehow natural for a toroidal reduction, since in that

case there is no difference among the six internal coordinates.

In principle, one could think that the gauge choice should not affect the physics, and in

some sense this is true, but there are some subtleties about it. On one hand, the CS action

is a topological action and thus directly involves the gauge potentials. However, here we are

expanding it perturbatively. This gives some unexpected behavior. One has to consider all

the terms in the series expansion in order to have a gauge invariant physics. Since we are

taking a truncation to the lowest orders in the expansion, i.e. to the soft terms, apparently

our low energy effective action will depend on the gauge choice of the RR fields. On the other

hand, B2 is not invariant under ordinary gauge transformations δB2 = dΛ but rather under

modified gauge transformation of the form [151]

δB2 = dΛ , δA = 2πΛ. (6.22)

1Actually, we have considered a slightly more general background than in (4.33)-(4.37), with a metric of

the form ds2 = Z
−1/2

1
ηµνdx

µdxν + Z
1/2

2
ds2CY .



6. Flux induced SUSY-breaking in D-brane configurations. 97

Thus, the DBI-CS action is completely gauge invariant only after one considers the possibility

of having non trivial magnetic backgrounds. Different gauges for B2 will differ in non-trivial

backgrounds for F2.

Making use of eqs. (6.21) and plugging

Im τ = Im τ0 +
σ2

2
Im τmn φ

mφn , (6.23)

det(Q)1/2 = 1− iσ

2
Bmn [φn, φm] − σ2

4
Z2 [φm, φn] [φm, φn] , (6.24)

[− det(P [Eµν ])]1/2 = Z−1
1 (1− σ2

2
Z

1/2
1 Z

1/2
2 ∂µφ

m ∂µφ
m + σ2Z

1/2
1 Kmn φ

mφn) , (6.25)

(iφiφC6)0123 =
σ

2
(C6)0123mn[φn, φm] , (6.26)

into (6.17) we get the relevant terms of the bosonic low energy action for the gauge theory

inside the D3-branes

LDBI =
µ3σ

2

gs
Z−1

1 Tr [
1

2
Z

1/2
1 Z

1/2
2 ∂µ φ

m∂µφ
m − Z2

4
[φm, φn] [φn, φm]−

− (Z
1/2
1 Kmn +

gs

2
Im τmn)φmφn − gs

12
(G3 −G∗

3)lmn φ
l [φn, φm] ] ,

LCS = µ3σ
2 Tr

[
1

2
(Re τ)Fµν F̃

µν +
1

2
χmn φ

mφn − iZ−1
1

12
∗6 (G3 +G∗

3)lmn φ
l[φn, φm]

]
.

A similar expansion can be carried out for the fermionic action by considering the fermionic

completion of the ten dimensional supersymmetric DBI-CS action [152]. This expansion in

powers of the fermionic fields has been worked out in the literature by different methods (see

e.g. [153, 154]). In particular, here we are interested in the piece giving rise to fermionic

masses and kinetic terms

Lferm. =
σ2µ3

gs

(
−1

2
Θ̄ ΓµDµ Θ +

1

48
gs Θ̄ Γpqr ΘRe(∗6G− iG)pqr

)
, (6.27)

where the different terms are understood in the superspace formalism.

The coordinates of the N = 2 IIB superspace are given by (xµ, θα), with θα a pair of real

16 component Majorana-Weyl spinors which parametrize the supersymmetry transformations.

Arranging the open string Ramond states into a ten dimensional Majorana-Weyl spinor Θ,

in the same way as we can arrange the NS states into a 10 dimensional vector field Aµ, and

decomposing it accordingly to SO(9, 1) → SO(3, 1)× SO(6), we get the fermionic analogous

to eq. (6.19) (
θ1

θ2

)
= 2πα′

(
a

b

)
Θ (6.28)

with a2 +b2 = 1. The SO(2) vector is used to fix the embedding of the D3-brane supersymme-

try in the 10d N = 2 IIB supersymmetry, reflecting the κ-symmetry freedom. We will work
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in the choice (a, b) = (1, 0).

Performing the dimensional reduction of (6.27) accordingly to

Γµ = Z
1/4
1 γµ ⊗ 1 , Γm = Z

−1/4
2 γ(5) ⊗ γm , (6.29)

we get the fermionic soft term lagrangian

Lferm. =
µ3σ

2Z
1/4
1

gs

(
−1

2
ψ̄a γµDµψ

a+
gs

96
Z

−1/4
1 Z

−3/4
2 (∗6G3−iG3)mnp ψ

a (γmnp)ab ψ
b+h.c.

)
.

Thus, putting everything together, going to the Einstein frame and rescaling all the fields in

order to get rid of the warping and the global µ3σ
2 = 1

2π factors, we get the complete soft

term lagrangian

Lsoft = Tr

[
− (Z

−1/2
2 Kmn −

1

2
Z

1/2
1 Z

−1/2
2 χmn +

gs

2
Z

−1/2
1 Z

−1/2
2 Imτmn )φmφn +

+
igs

√
2π

6
Z

−1/4
1 Z

−3/4
2 (∗6G3 − iG3)lmn φ

lφmφn +

+
ig

1/2
s

96
Z

−1/4
1 Z

−3/4
2 (∗6G3 − iG3)lmn ψ γ

lmn ψ

]
. (6.30)

It is interesting to express this result in terms of the local SO(6) → SU(3) × U(1) local

symmetry irreducible representations. Thus, taking

zl =
1√
2
(x2l+2 + ix2l+3) , z̄l =

1√
2
(x2l+2 − ix2l+3) , (6.31)

and decomposing the N = 4 vector supermultiplet in terms of N = 1 supermultiplets ac-

cordingly to eq. (B.3), we obtain three complex chiral N = 1 multiplets (Φi,Ψi) and a vector

multiplet (Aµ, λ). Note that although we are assuming a concrete complex structure, the

expressions thus obtained will remain valid for whatever other complex structure selected by

the supergravity equations of motion.

The flux tensor Gmnp transforms as a reducible 20 = 10 + 10 representation of SO(6).

The 10 and 10 correspond respectively to the imaginary self-dual (ISD) G+
3 and imaginary

anti self-dual (IASD) G−
3 parts, defined as

G±
3 =

1

2
(G3 ∓ i ∗6 G3) , ∗6G±

3 = ±iG±
3 .

Under the SO(6)→ SU(3)×U(1) decomposition the 10 decomposes in SU(3) irreducible

representations as 10 = 6 + 3 + 1. Thus, it is convenient to introduce the tensors [59]

Sij =
1

2
(εiklGjk̄l̄ + εjklGik̄l̄) ,

Aīj̄ =
1

2
(εīk̄l̄Gklj̄ − εj̄k̄l̄Gkl̄i) ,
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ISD IASD
SU(3) rep. Form Tensor SU(3) rep. Form Tensor

1 (0, 3) G1̄2̄3̄ 1 (3, 0) G123

6 (2, 1)P Sīj̄ 6 (1, 2)P Sij

3 (1, 2)NP Aij 3 (2, 1)NP Aīj̄

Table 6.1: SU(3) decomposition of antisymmetric G(3) fluxes.

corresponding respectively to the 6 and the 3 of SU(3). An analogous decomposition could

be done for the ISD fluxes. We summarize the different flux representations in Table 6.1.

Using these definitions, the above soft term lagrangian can be rewritten as

L = Tr

[
− ( 2Z

−1/2
2 Kī − Z1/2

1 Z
−1/2
2 χī + gsZ

−1/2
1 Z

−1/2
2 (Imτ)ī ) ΦiΦ̄−

− 1

2
( 2Z

−1/2
2 Kij − Z1/2

1 Z
−1/2
2 χij + gsZ

−1/2
1 Z

−1/2
2 (Imτ)ij ) ΦiΦj + h.c.+

+ gs

√
2πZ

−1/4
1 Z

−3/4
2

[
1

3
G123 εijk ΦiΦjΦk +

1

2
εīj̄ l̄ (Slk − (Al̄k̄)∗) ΦīΦj̄Φk + h.c.

]
+

+
g
1/2
s

2
√

2
Z

−1/4
1 Z

−3/4
2

[
G123 λλ +

1

2
εijkAj̄k̄ Ψiλ +

1

2
Sij ΨiΨj + h.c.

] ]
, (6.32)

where we have defined

(Imτ)ī =
1

2i
(τī − (τjī)

∗) , (6.33)

(Imτ)ij =
1

2i
(τij − (τ̄̄i)

∗) . (6.34)

Comparing this with equations (6.8) and (6.9) we identify the soft parameters as

m2
ij = 2Z

−1/2
2 Kī − Z1/2

1 Z
−1/2
2 χī + gsZ

−1/2
1 Z

−1/2
2 (Imτ)ī ,

Bij = 2Z
−1/2
2 Kij − Z1/2

1 Z
−1/2
2 χij + gsZ

−1/2
1 Z

−1/2
2 (Imτ)ij ,

Aijk = −hijkZ
−1/4
1 Z

−3/4
2

g
1/2
s√
2
G123 ,

Cijk = +hijlZ
−1/4
1 Z

−3/4
2

g
1/2
s

2
√

2
(Slk − (Al̄k̄)∗) ,

Ma =
g
1/2
s√
2
Z

−1/4
1 Z

−3/4
2 G123

µij = − g
1/2
s

2
√

2
Z

−1/4
1 Z

−3/4
2 Sij ,

M ia
g =

g
1/2
s

4
√

2
Z

−1/4
1 Z

−3/4
2 εijkAj̄k̄ , (6.35)

and the Yukawa coupling hijk

hijk = 2
√

2gY M,33εijk , (6.36)

gY M,33 =
√

2πgs . (6.37)
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It only rests to check the constraints imposed by the supergravity equations of motion. As

we saw in Section 4.3.1, these establish relations between the warping, the five-form flux, the

complex dilaton and the three form fluxes. We should expect something similar from the local

point of view. Indeed, plugging (6.20) into the eqs. (4.8)-(4.10), one gets, to lowest order, the

following constraints

i
∑

τll̄ =
Z−1

2

2

(
G123G1̄2̄3̄ +

1

4
SlkSl̄k̄ +

1

4
AlkAl̄k̄

)
,

4Z
1/2
1

∑
Kll̄ =

gs

2
Z−1

2


|G123|2 + |G1̄2̄3̄|2 +

1

4

∑

ij

(|Sij |2 + |Sīj̄ |2 + |Aij |2 + |Aīj̄ |2)


 ,

−2Z1

∑
χll̄ =

gs

2
Z−1

2


 |G123|2 − |G1̄2̄3̄|2 +

1

4

∑

ij

( |Sij |2 − |Sīj̄ |2 − |Aij |2 + |Aīj̄ |2 )


 ,

so the 3-form fluxes determine through the equations of motion the trace of the scalar mass

matrix

m2
1 + m2

2 + m2
3 =

gs

2
Z

−3/2
2 Z

−1/2
1


 |G123|2 +

1

4

∑

ij

( |Sij |2 + |Aīj̄ |2 )−

−Re (G123G1̄2̄3̄ +
1

4
SlkSl̄k̄ +

1

4
AlkAl̄k̄)

]
. (6.38)

Hence, the masses are not fully determined by the fluxes and one is enforced to consider the

complete configuration in order to fully determine them. This was already observed in [155].

6.2.2 Low energy effective action for D7-branes.

The case of D7-branes is rather more complicated than the one of D3-branes. Thus, we will

take some additional simplifying assumptions. The D7-branes in general will be wrapping a

4-cycle Σ4 on the compact space. Therefore an expansion on all the coordinates transverse to

Minkowski has no longer any sense. Instead, we will consider a tubular neighborhood around

the 4-cycle and will expand the background in the normal coordinate around this neighbor-

hood. For simplicity we will center on the case on which the fibration is trivial. This allows

only for the cases on which the 4-cycle is Calabi-Yau, i.e. T 4 × C and K3× C.

The geometric symmetry is now reduced to SU(2)×SU(2)′×U(1), in agreement with the

considerations of Appendix B. Therefore, it will result useful to decompose the flux under the

breaking SU(3)× U(1)→ SU(2)× SU(2)′ × U(1), i.e.

10 = (3, 1)− + (1, 3′)+ + (2, 2′)0 , 10 = (3, 1)+ + (1, 3′)− + (2, 2′)0 ,

where the subindex refers to the ±1 U(1) charge. Choosing our 4-cycle to be parametrized by

z1 and z2, and localized in the transverse direction z3, the triplets of SU(2) and SU(2)′ are
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related with the fluxes in SU(3) notation by

(1, 3′)+ = {G′0 =
−1√

2
A1̄2̄, G′x =

−1√
2
(
1

2
S33 −G123), G′y =

−i√
2
(
1

2
S33 +G123)} ,

(3, 1)− = {G0 =
1√
2
S12, Gx =

−1√
2
(
1

2
S11 −

1

2
S22), Gy =

−i√
2
(
1

2
S11 +

1

2
S22)} ,

(1, 3′)− = {G′
0 =
−1√

2
A12, G

′
x =
−1√

2
(
1

2
S3̄3̄ −G1̄2̄3̄), G

′
y =

−i√
2
(
1

2
S3̄3̄ +G1̄2̄3̄)} ,

(3, 1)+ = {G0 =
1√
2
S1̄2̄, Gx =

−1√
2
(
1

2
S1̄1̄ −

1

2
S2̄2̄), Gy =

−i
2

(
1

2
S1̄1̄ +

1

2
S2̄2̄)} .

Regarding the triplets of SU(2) as vectors of SO(3), one can identify then the SU(2) invariant

scalar product as

A ·B = A0B0 +AxBx +AyBy. (6.39)

The Gmnp components transforming like (2, 2)0 correspond to the SU(3) components

Si3, Ai3, Sī3̄, Aī3̄ with i = 1, 2. These fluxes are special in several aspects and will not be

considered here. In particular, if Σ4 contains 3-cycles C3 , the (2, 2)0 multiplet contains fluxes

such that ∫

C3

F3 6= 0 ;

∫

C3

H3 6= 0. (6.40)

This is for instance the case for T 4, on which much of our analysis centers. This is problematic

because, as we will see in Section 7.1, non-zero integrals of H3 on a D-brane cycle generate a

world-volume tadpole for the gauge potential
∫

D7
H3 ∧A5, rendering the configuration incon-

sistent [156] 2. Moreover, in general, such fluxes along world-volume directions are quantized,

and cannot be diluted away keeping the D7-brane physics four-dimensional. Thus, their pres-

ence can lead to qualitatively large changes in the four dimensional physics, which may not

be well described with our perturbative techniques.

Still, the remaining fluxes transforming like (3, 1) + (1, 3′) contains the most interesting

cases, and will lead to non-trivial effects. Those fluxes have always two legs in Σ4, allowing

us to associate to each of the above SO(4) × SO(2) representations a different 2-form in Σ4.

Thus, G3 can be decomposed as

G3 = β ∧ dz3 + β′ ∧ dz̄3 + γ ∧ dz3 + γ′ ∧ dz̄3 , (6.41)

where β, β′ and γ, γ′ are self-dual and anti self-dual 2-forms in Σ4, namely

∗4β = β ; ∗4γ = −γ (6.42)

(and similarly for the primed forms), corresponding respectively to the (1, 3′)+, (1, 3′)−, (3, 1)+

and (3, 1)− pieces of G3. Then, the scalar product (6.39) between SU(2) triplets will induce a

positive definite product in Σ4 given by

ω1 · ω2 =

∫

Σ4

ω1 ∧ ∗Σ4ω2 . (6.43)

2This can be solved by introducing additional branes ending on the D7-branes [157], but this is outside the

kind of configurations here considered.
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For clarity we summarize in Table 6.2 the main properties of the induced 2-forms. These

will be associated with the charge of D3-brane induced in the worldvolume of the D7-branes

through Chern-Simons couplings and it will be on the root of the D7-brane soft terms.

Form SD/ASD in Σ4 Corresponding G3 rep. ISD/IASD flux

β SD (1, 3)+ IASD
β′ SD (1, 3)− ISD
γ ASD (3, 1)+ ISD
γ′ ASD (3, 1)− IASD

Table 6.2: Properties of the 2-forms induced by the flux in Σ4.

With all of this, and assuming that our background is independent of the coordinates on

the 4-cycle, the part of B2 laying completely in Σ4 is given by

B2|Σ4 = −gs

6i

(
(β − β∗)z3 + (β′ − β′ ∗)z3̄ + (γ − γ∗)z3 + (γ′ − γ′ ∗)z3̄

)
, (6.44)

with (β∗)mn = (β′
m̄n̄)∗, etc. In particular, notice the explicit dependence of the components

of B2 on the transverse coordinates. Actually, these will be the only components relevant in

the computation of the soft terms.

The Myers’ action for a D7-brane is given by3

S = −µ7

∫
d8ξ STr

[
e−φ

√
− det(P [Eµν +Eµi(Q−1 − δ)ijEjν ] + σFµν ) det(Qij)

]

+µ7gs

∫
STr (P [σC6F2 + C8 − C6B2]) ,

with the definitions of the above section and where we will assume that the flux background is

purely ISD or AISD, guaranteeing in this way that the dilaton background remains constant

over the internal manifold4 (c.f. eq. (4.9)).

For our particular background P [Eµν +Eµi(Q
−1 − δ)ijEjν ] and Qi

j are given by

P [Eµν +Eµi(Q
−1 − δ)ijEjν ] = P [gµνg

1/2
s −Babδ

a
µδ

b
ν + δa

µBam(Q−1 − δ)mnBnbδ
b
ν ] ,

Qi
j = δi

j + iσ[Φi,Φk](Gkjg
1/2
s −Bkj) .

We will start by computing the first determinant in the DBI piece of the action. Neglecting

derivative couplings, it can be factorized between the Minkowski and the 4-cycle pieces as

det(P [Eµν +Eµi(Q
−1 − δ)ijEjν ] + Fµν) =

= det(gµνg
1/2
s + 2g1/2

s σ2Z
1/2
2 DµΦ3DνΦ3̄ + σFµν ) · det(g1/2

s Z
1/2
2 + σFab −Bab +

+2g1/2
s σ2Z

1/2
2 DaΦ3DbΦ

3̄ +Bam(Q−1 − δ)mnBnb − σB3(aDb)Φ
3 − σB3̄(aDb)Φ

3̄) ,

3On this case we will work directly in the Einstein’s frame. In the CS action we only show the pieces giving

possible contributions to the soft terms.
4We saw in eq. (4.52) the dilaton background generated by a D7-brane is not constant. However, at lowest

order in our expansion the supergravity equations of motion becomes linear and the backreaction decouples

from the effect of the fluxes. This is the probe limit.
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with a, b running over the internal coordinates of Σ4 and

DaΦm = ∂aΦm + i[Aa,Φ
m] = i[Aa,Φ

m] (6.45)

so there can be still possible contributions to the soft-terms coming from the covariant deriva-

tive in the non-abelian case.

We can expand now the determinants with the aid of the formula

det(1 +M) = 1 + Tr M − 1

2
Tr M2 +

1

2
(Tr M)2 + . . . , (6.46)

where the dots in this and in further expressions refer to contributions giving rise to derivative

couplings or couplings with dimension higher than four in the low energy effective action. In-

deed, in the two cases we are centering on, namely T 4×C and K3×C, the derivative couplings

do not give rise to contributions to the soft-terms, as the relevant fields have constant profiles

in the 4-cycle.

Therefore,

det(P [Eµν +Eµi(Q
−1 − δ)ijEjν ] + σFµν) =

= −g4
s [Z

−1
1 (Φ3,Φ3̄)Z2(Φ

3,Φ3̄)]2 + 2g4
sσ

2Z
−3/2
1 Z

5/2
2 ∂µΦ3∂µΦ3̄−

− g3
s

2
Z−2

1 Z2(B − σF )ab(B − σF )āb̄ − g4
sZ

−3/2
1 Z

3/2
2 σ2FµaF

µa+

+ σ2g9/2
s Z−2

1 Z2
2 [Aa,Φ

3][Aa,Φ3̄] + ig4
sZ

−2
1 Z2σ(B3a[Aa,Φ3] +B3̄a[Aa,Φ3̄]) + . . . (6.47)

The last term of this expression will survive to the KK reduction only in cases on which the

Wilson line moduli and Φ3 have profiles with different parity. This is not the case of compact-

ifications on 4-cycles trivially fibered in the normal direction. Therefore, in what follows, we

will include as well these terms in the final dots.

The second determinant of the DBI piece is much simpler to compute

det(Qi
j) = 1 + σ2Z2([Φ

3,Φ3̄])2gs . (6.48)

Putting everything together and Taylor expanding the square root, we have the following

eight dimensional action

L = µ7gsSTr Z
−1
1 (Φ3,Φ3̄)Z2(Φ

3,Φ3̄)
(
1 + σ2Z

1/2
1 Z

1/2
2 ∂µΦ3∂µΦ3̄−

−Z
−1
2

2
(B2|Σ4 − σF2) ∧ ∗4(B2|Σ4 − σF2) +

σ2g−1
s

2
Z

1/2
1 Z

−1/2
2 FµaFµa−

−gs

2
Z2σ

2([Φ3,Φ3̄])2 − gs

2
Z−1

2 σ2[Aa,Φ3][Φ3̄, Aā] +

+Z1Z
−1
2 (σC6 ∧ F2 + C8 − C6 ∧B2)|Σ4 + . . .

)
. (6.49)
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Concerning the CS piece, we can make use of eqs. (4.14), (4.15) and (6.41) to integrate the

relevant RR and NS field strengths

C6|M4×Σ4 = −Z
−1
1

6i
((β − β∗)z3 − (β′ − β′∗)z̄3 − (γ − γ∗)z3 + (γ′ − γ′∗)z̄3) ∧ dV ol4d + . . . ,

C8|M4×Σ4 = −gsZ
−1
1

36

[
(βz3 + γ′z̄3 − β′∗z̄3 − γ∗z3) ∧ (βz3 + γ′z̄3 − β′∗z̄3 − γ∗z3)−

−(β′z̄3 + γz3 − β∗z3 − γ′∗z̄3) ∧ (β′z̄3 + γz3 − β∗z3 − γ′∗z̄3)
]
∧ dV ol4d .

Plugging these expressions into (6.49) we finally get

L = µ7gsσ
2STrZ−1

1 (Φ3,Φ3̄)Z2(Φ
3,Φ3̄)

(
1

σ2
+ Z

1/2
1 Z

1/2
2 ∂µΦ3∂µΦ3̄+

− gs

36
Z−1

2 (2γ∗ ∧ ∗4γ′Φ3̄Φ3 + 2β∗ ∧ ∗4β′Φ3̄Φ3 − γ′ ∧ ∗4γ′Φ3̄Φ3̄−

− β′ ∧ ∗4β′Φ3̄Φ3̄ + h.c.)|Σ4 −
gs

3
(β′

abΦ
3̄AaAb + γ′abΦ

3̄AaAb + h.c.)−

g−1
s Z−1

2

4
FabFāb̄ +

1

2
g−1

s Z
−1/2
2 Z

1/2
1 FµaFµā −

1

2
gsZ2([Φ

3,Φ3̄])2−

− 1

2
gsZ

−1
2 [Aa,Φ3][Φ3̄, Aā] + . . .

)
, (6.50)

which in terms of SU(3) irreducible representations can be rewritten as

L = µ7gsσ
2STrZ−1

1 (Φ3,Φ3̄)Z2(Φ
3,Φ3̄)

( 1

σ2
+ Z

1/2
1 Z

1/2
2 ∂µΦ3∂µΦ3̄−

− gs

18
Z−1

2

(1
4
(S12)

2 +
1

4
(A12)

2 − 1

2
G1̄2̄3̄S3̄3̄ −

1

4
S22S11

)
Φ3̄Φ3̄ + h.c.−

− gs

18
Z−1

2

(
|G1̄2̄3̄|2 +

1

4
|S3̄3̄|2 +

1

4

∑

i,j=1,2

(|Sij |2 + |Aij |2)
)
Φ3̄Φ3+

+
∑

j,k,p=1,2

gs

3
ε3jk((Skp)

∗ + (Akp)∗)Φ3A[jAp̄] + h.c.−

− gs

6
εij3S3̄3̄A

iAjΦ3̄ + h.c.− 2gs

3
G1̄2̄3̄Φ

3̄A[1̄A2̄] + h.c.+ Z
1/2
2 Z

−1/2
1 ∂µA

a∂µA
ā−

− gsZ2[A
a, A(b][Ab̄), Aā]− gs

2
Z2([Φ

3,Φ3̄])2−

− gs

2
Z2[A

a,Φ3][Aā,Φ3̄]
)

+ ... (6.51)

Note the cancellation of the contributions coming from the warping for backgrounds of black-

brane type [114], where Z1 = Z2. Since, we are restricting here to Type B(ecker) solutions,

from now on we will assume for simplicity Z1 = Z2 ≡ Z.

It is interesting as well to express (6.50) in SU(2) × SU(2)′ × U(1) manifest invariant
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variables. Then one has

L = µ7 gs σ
2STr

[
1

σ2
+ Z∂µΦ3∂µΦ3̄−

− gs

36
Z−1 [G∗ · G∗ + (G′)∗ · (G′)∗] Φ3Φ3 + h.c.− gs

18
Z−1 ( G · G∗ +G′ · (G′)∗) Φ3̄Φ3−

− gs

√
2

3
Φ3

[(
A1̄ A2̄

)
(G∗ · ~σ)

(
A1

A2

)
+
(
A1̄ A2

)
(G′∗ · ~σ)

(
A1

A2̄

)
+ h.c.

]
−

− gsZ [Aa, A(b][Ab̄), Aā] + Z∂µA
a∂µA

ā − gs

2
Z([Φ3,Φ3̄])2 − gs

2
Z[Aa,Φ3][Φ3̄, Aā] ] , (6.52)

where ~σ is the vector of Pauli matrices given by

~σ = {σ0 =

(
1 0

0 −1

)
, σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
} . (6.53)

In this language, the effective action only depends on backgrounds of type G and G′, and not on

G′ and G. In terms of the local R-symmetries this means that only backgrounds with negative

U(1) charge (i.e. (3, 1)− + (1, 3)−) appear in the effective action. In other words, only fluxes

with a particular correlation between their self-duality properties in the threefold and their

duality properties on the 4-cycle give rise to soft terms, while fluxes with the opposite corre-

lation lead to cancellation between the DBI and the CS contributions. This is not surprising.

As already commented, the fluxes, apart from the D3/D3-brane charge induced on the bulk,

lead to instantonic D3/D3-brane charges on the worldvolume of the D7-branes accordingly to

the duality properties of the induced 2-form in Σ4. It is exclusively the confrontation between

the charge in the bulk and the charge in the brane worldvolume what dictates the dynamics

of the D7-branes, and thus the vanishing or non-vanishing of the soft-terms.

The action we have obtained is an eight dimensional action, and therefore it is still nec-

essary to perform its reduction over Σ4. This requires an exact knowledge of the topology

of Σ4. As usual, the number of scalars in four dimensions is determined by the number of

zero modes of the eight dimensional scalars and the number of internal components of the

gauge fields, counted by h2,0(Σ4) and h1,0(Σ4) respectively. Thus, in cases where the normal

bundle is trivial, there will be only a four dimensional complex scalar arising from Φ3. We will

explicitly solve the simplest case of Σ4 = T 4. In that case, h2,0(Σ4) = 2. The results however

can be easily extended to more involved compactifications.

To perform the dimensional reduction over the 4-torus is easy, as the derivative couplings

will not give contributions to the four dimensional action and the integration over T 4 is trivial.
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The resulting four dimensional action is given by5

L = Tr
{
∂µΦm∂µΦm̄−

− gs

18
Z−2

(
1

4
[(S12)

∗]2 +
1

4
[(A12)

∗]2 − 1

2
(G1̄2̄3̄)

∗(S3̄3̄)
∗ − 1

4
(S22)

∗(S11)
∗

)
Φ3Φ3+

+ h.c.− gs

18
Z−2


 |G1̄2̄3̄|2 +

1

4
|S3̄3̄|2 +

1

4

∑

i,j=1,2

(|Sij |2 + |Aij |2)


Φ3̄Φ3+

+
∑

k,p=1,2

g
1/2
s gY M

6
Z−1εijk((Skp)∗ + (Akp)

∗)ΦiΦjΦp̄ + h.c.−

− g
1/2
s gY M

6
Z−1εij3S3̄3̄Φ

iΦjΦ3̄ + h.c.− g
1/2
s gY M

9
Z−1G1̄2̄3̄εīj̄k̄ΦīΦj̄Φk̄ + h.c.−

− g2
Y M [Φi,Φ(j ][Φj̄),Φī] } , (6.54)

with gY M,77 defined by

g2
Y M,77 = gs(2π)5(α′)2V−1Z−1 (6.55)

and V the volume of the 4-torus. Note that on this case the gauge coupling depends inversely

on the warp factor. And thus, very warp-suppressed soft-terms will give rise to too small

gauge couplings.

The fermionic action can be obtained from dimensional reduction of the supersymmetric

extension of the DBI-CS action [152]. The SO(3, 1) × SO(4) × SO(2) invariant bilinears

involving the 3-form flux are given by

CΘ̄ΓmnpΘ[2ab(ReG3)mnp − (a2 − b2)(ImG3)mnp]+

+ C ′Θ̄Γ(7)Γ
mnpΘ[(a2 − b2)(ReG3)mnp − 2ab(ImG3)mnp] , (6.56)

where C and C ′ are two constants, and Γ(7) = −(i/8!)εijklmnpqΓ
iΓjΓkΓlΓmΓnΓpΓq , with i . . . p

running from 0 to 7 and a, b fixing the embedding of the D7-brane supersymmetry in the 10d

N = 2 IIB supersymmetry through eq. (6.28). We will work in the choice (a, b) = (1, 0) as in

the last section. The first term in (6.56) arises from contributions from the DBI piece of the

eight dimensional supersymmetric action, whereas the second term comes from CS contribu-

tions.

Then, the fermionic masses in the four-dimensional action are given in terms of the four

adjoint N = 1 fermions λ, Ψi, i = 1, 2, 3, by

Lferm. = 6
√

2i(C ′ + C)[(G1̄2̄3̄)
∗λλ +

1

2
(S3̄3̄)

∗Ψ3Ψ3 + (A12)
∗Ψ3λ+

1

2

∑

ij=1,2

SijΨ
iΨj ]+

+ 6
√

2i(C ′ − C)[G123λλ+
1

2
S33Ψ

3Ψ3 +A1̄2̄Ψ
3λ+

1

2

∑

īj̄=1̄,2̄

(Sīj̄)
∗ΨiΨj ] + h.c. (6.57)

5We have rescaled all the fields by Z−1/2(2π)5/2α′V−1/2 in order to have canonically normalized kinetic

terms.
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The coefficients C and C ′ can be determined easily by supersymmetry arguments. Indeed, an

S3̄3̄ background is ISD and primitive, and thus preserves an unbroken N = 1 supersymmetry.

On the other hand, from (6.54), the scalar Φ3 gets a mass term for such a background and hence

the fermion Ψ3 should get an equal mass. From this one has that C + C ′ = −ig1/2
s Z−1/72.

Moreover, one may show from an analogous argument applied to S1̄2̄, etc. that the second

term in (6.57) is absent and hence C = C ′. Thus, the final four dimensional fermion masses

are

Lferm. =
g
1/2
s Z−1

6
√

2
Tr[(G1̄2̄3̄)

∗λλ+
1

2
(S3̄3̄)

∗Ψ3Ψ3 + (A12)
∗Ψ3λ+

1

2

∑

ij=1,2

SijΨ
iΨj ] + h.c.

or in terms of SO(4)× SO(2) irreducible representations

Lferm. =
g
1/2
s Z−1

12
Tr[

(
λ , Ψ3

)
iσy(G′∗ · ~σ)

(
λ

Ψ3

)
+
(
Ψ1 Ψ2

)
iσy(G∗ · ~σ)

(
Ψ1

Ψ2

)
] + h.c.

Again, note that only fluxes transforming like (3, 1)− and (1, 3′)− appear, with the SU(2)×
SU(2)′ × U(1) R-symmetry relating independently λ with Ψ3, and Ψ1 with Ψ2.

Comparing to eqs. (6.8) and (6.9) we extract the soft parameters

m2
11̄ = m2

22̄ = 0 ; Bij = 0 , i, j 6= 3 ,

m2
33̄ =

gsZ
−2

18


|G1̄2̄3̄|2 +

1

4
|S3̄3̄|2 +

1

4

∑

i,j=1,2

(|Sij |2 + |Aij |2)


 ,

B33 =
gsZ

−2

9

(
1

4
(S12)

∗2 +
1

4
(A12)

∗2 − 1

2
(G1̄2̄3̄)

∗(S3̄3̄)
∗ − 1

4
(S22)

∗(S11)
∗

)
,

Aijk = −hijk g
1/2
s Z−1

3
√

2
(G1̄2̄3̄)

∗ ,

Cijk = −g
1/2
s Z−1

6
√

2



∑

l=1,2

hjkl(Sli +Ali)− hjk3(S3̄3̄)
∗


 ,

Ma =
g
1/2
s Z−1

3
√

2
(G1̄2̄3̄)

∗ ,

µ33 = −g
1/2
s Z−1

6
√

2
(S3̄3̄)

∗

µij = −g
1/2
s Z−1

6
√

2
Sij , i, j = 1, 2 ,

M3a
g =

g
1/2
s Z−1

6
√

2
(A12)

∗ , (6.58)

with

hijk = 2εijk

√
2gY M,77 (6.59)

the Yukawa coupling.
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It only would rest to compute the constraints from the supergravity equations of motion

(4.8)-(4.11). However, since the action does not depend explicitly on the warping or the 5-form

field strength, one can easily check that in this case the equations of motion do not give any

extra condition.

Note that there is no soft masses for the Wilson line scalars. This is expected as they

are forbidden by gauge invariance in the eight dimensional action. One could think of more

involved situations where they arise from derivative couplings. However, the number of four

dimensional zero modes is a topological quantity corresponding to the first Betti number of

the internal 4-cycle and thus it cannot be changed by topologically trivial backgrounds.

As commented, these results can be easily extended to more general situations. In particu-

lar, in a realistic compactification, due to the backreaction of distant D-branes and O-planes,

one would expect the background to vary along the 4-cycle. The computation is however

very similar, differing just in the appearance of new derivative couplings. The KK reduction

would proceed as well in the same way, but now the backgrounds are not pulled out from the

integrals over the 4-cycle and the soft parameters have the same structure than in (6.58) with

coefficients being integral convolutions of the background with the internal wavefunctions of

the four dimensional zero modes. Thus, in the particular case of a T 4, as the internal profiles

are constant, the structure of the soft parameters would be exactly the same but with the

fluxes replaced by its average values over the 4-torus.

The case K3× C can be solved as well with very little modification. In fact, the expres-

sion (6.50) is still valid, but now the 2-homology is different. There is one (2,0)-form, one

(0,2)-form and 20 (1,1)-forms. The internal product (6.43) endows a 22-dimensional space

with signature (3,19), namely there are 3 selfdual and 19 anti-selfdual 2-forms. So the above

forms β, β′, γ and γ′ are linear combinations of these. The other difference concerns the KK

reduction. Since K3 has no harmonic 1-forms, the KK reduction of the internal components of

the eight dimensional gauge field leads to no massless scalars. Therefore, this system provides

the simplest realization of a D7-brane system where all the D7-brane moduli are fixed, being

specially relevant for KKLT scenarios [29], as discussed in Appendix D. The stabilization of

all D7-brane moduli for this kind of system was already discussed in [158]. For an alternative

approach based on the formalism of calibrations, the reader may as well consult [159].

The stabilization of the D7-brane moduli by the flux background is a generic feature which

can be extended to situations where the normal bundle is no longer trivial and there are

multiple geometric moduli coming from the KK reduction of Φ3. In that case, one would

expect additional terms in the eight dimensional action coming from the metric background.

However, the mass term for Φ3 would be still present thus eliminating all the possible zero

modes of the KK reduction.
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A similar situation occurs when there are several stacks of D7-branes warping different 4-

cycles in the transverse space. The fields of the 7i7j sector can be understood as parametrizing

a possible brane recombination and, in particular, they are mapped to the geometric moduli

of the recombined brane. Thus, one expects as well the 7i7j moduli to be stabilized by the flux.

6.2.3 Low energy effective action for the 37 sector.

In this case there is no analogue of the DBI+CS action, so one is enforced to take a different

approach. In order to seed some light, one may look at the quantization of the open strings

laying between the D3 and the D7-branes, as we did in Section 3.2. There we saw (c.f.

eq. (3.39)) that the effect of the flux is to give non vanishing masses to the complex scalars of

the twisted sector
i

2πα′
(B11̄ +B22̄ ) (Φ73 Φ∗

73 − Φ37Φ
∗
37) + h.c. (6.60)

Looking at eq. (6.21), one has that

B11̄ + B22̄ = −gs

6i

(
A12z̄

3 − A1̄2̄z
3 + (A12)

∗z3 − (A1̄2̄)
∗z̄3
)
, (6.61)

and the above terms lead to the trilinear couplings

gs

6
[(A12)

∗ −A1̄2̄]Φ
3
77Φ73Φ

∗
73 + h.c (6.62)

All the terms obtained in this way correspond exclusively to a would be DBI action.

However, there should be still additional contributions coming from the RR fields. In order to

obtain the full soft lagrangian for the twisted sector one may instead exploit the symmetries

of the system. In fact, we saw in eq. (6.58) that a N = 1 SUSY preserving S3̄3̄ flux gives rise

to a superpotential mass term of the form

W (77)
µ = −1

2
µ(77)Φ

3
77Φ

3
77 =

g
1/2
s Z−1

12
√

2
(S3̄3̄)

∗Φ3
77Φ

3
77 . (6.63)

This, together with the superpotential of the 37 sector,

W37 = Φ3
77Φ73Φ37 − Φ3

33Φ37Φ73 , (6.64)

yields the scalar potential

V = |µ(77)Φ
3
77 − Φ73Φ37|2 , (6.65)

whose crossed term leads to the coupling

g
1/2
s Z−1

6
√

2
(S3̄3̄)

∗Φ3
77Φ

∗
73Φ

∗
37 + h.c. (6.66)

Covariantizing now by the geometric SU(2)× SU(2)′ × U(1) symmetry, then gives rise to

g
1/2
s Z−1

6
(Φ∗

37 Φ73)(G
′∗ · ~σ)

(
Φ37

Φ∗
73

)
Φ3

77 =
g
1/2
s Z−1

6
√

2

[
(S3̄3̄)

∗Φ3
77Φ

∗
73Φ

∗
37+

+ 2(G1̄2̄3̄)
∗Φ3

77Φ73Φ37 + (A12)
∗Φ3

77Φ37Φ
∗
37 + (A12)

∗Φ3
77Φ73Φ

∗
73 + h.c.

]
. (6.67)



110 6. Flux induced SUSY-breaking in D-brane configurations.

Note how indeed the first trilinear scalar coupling of (6.62) reappears here from a completely

different argumentation, while the second has been cancelled presumably by RR flux contri-

butions.

Analogously, one can apply the same argument to backgrounds in the (1, 3′)+ represen-

tation. By looking at (6.35), one observes that there is a superpotential mass term in of the

form

W (33)
µ = −1

2
µ(33)Φ

3
33Φ

3
33 =

g
1/2
s Z−1

4
√

2
S33Φ

3
33Φ

3
33 . (6.68)

Thus, proceeding as before one obtains

g
1/2
s Z−1

2
(Φ37 Φ∗

73)(G′ · ~σ)

(
Φ∗

37

Φ73

)
Φ3

33 = −g
1/2
s Z−1

2
√

2

[
S33Φ

3
33Φ

∗
37Φ

∗
73 +

+ 2G123Φ
3
33Φ37Φ73 + A1̄2̄Φ

3
33Φ73Φ

∗
73 + A1̄2̄Φ

3
33Φ37Φ

∗
37 + h.c.

]
. (6.69)

6.3 Soft supersymmetry breaking patterns in D3/D7 con-

figurations.

Now that we have computed the low energy effective action for the setups of D3 and D7-

branes in Type IIB/O3 orientifolds without non-geometric fluxes, let us discuss the different

supersymmetry breaking patterns arising. We will not discuss the case of non-primitive fluxes,

since as commented in Section 4.3.1, the corresponding forms do not exist in the cohomology

of a Calabi-Yau orientifold.

ISD backgrounds.

As we saw in Section 4.3.1, these are the only allowed 3-form backgrounds by the supergravity

equations of motion for Type IIB orientifolds with O3/O7-planes. Thus, in that case the soft

supersymmetry breaking pattern depends on the two possible kinds of ISD fluxes allowed by

the cohomology of the orientifold, i.e. (0,3) forms and (2,1) primitive forms.

i) ISD (0,3) backgrounds.

They correspond to the SU(3) singlet G1̄2̄3̄. As we saw in Section 4.3.1, ISD (0,3) fluxes

break supersymmetry to N = 0∗, giving rise to no-scale models. A consequence of the no-scale

structure of the scalar potential is that, as occurs with the contributions of the Kähler mod-

uli, the contributions of the D3-brane geometric moduli to the potential are as well cancelled.

Due to this, it does not appear soft supersymmetry breaking terms in the worldvolume of the

D3-branes at tree level, even though supersymmetry is being broken. The situation resem-

bles the sequestered scenarios of [160], where the soft-masses are acquired through quantum
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effects: radiative loop corrections of the order of the warp suppressed Planck scale, due to

the exchange of T and S fields, and Weyl-anomaly contributions of the order of the gravitino

mass m3/2. However, in this case the dynamics is clearly dominated by the exchange of moduli

fields and thus the sequestering actually does not take place, at least in the sense of [160].

Things are different in the worldvolume of D7-branes. The confrontation between the

instantonic D3-brane charges in the worldvolume of the D7-branes and the bulk D3-brane

charges, gives rise to a non-trivial potential for the geometric moduli of the D7-branes. In this

way, there appear non-trivial soft-terms given by

m2
Φ3

77
=

gs

18
Z−2 |G1̄2̄3̄|2 ; M (77) =

g
1/2
s Z−1

3
√

2
(G1̄2̄3̄)

∗ ; Aijk (77) = −hijk g
1/2
s Z−1

3
√

2
(G1̄2̄3̄)

∗

(6.70)

and

AΦ3
77(73)(37) = −g

1/2
s Z−1

3
√

2
(G1̄2̄3̄)

∗ . (6.71)

Note that in particular the relations (6.11) are satisfied and the theory remains finite to all

orders in perturbation theory. This can be understood from the point of view of holography.

Indeed, the dependence of the complex dilaton τ on the internal coordinates corresponds in

the CFT side to the running of the gauge coupling with the renormalization group scale. Since

here we are considering constant dilaton solutions, the beta function vanishes and the theory

remains finite. Actually, it was shown in [161, 148] that the finiteness conditions for a softly

broken N = 4 theory are in fact more general, allowing for

m2
1 +m2

2 +m2
3 = M2 . (6.72)

This is indeed what we obtained in eq. (6.38) for the D3-branes: only the trace of the scalar

mass matrix is determined through the supergravity equations of motion.

ii) ISD (2,1) primitive backgrounds.

As discussed in Section 4.3.1, these components of the flux preserve N = 1 supersymmetry

in four dimensions. For the rest, the situation is analogous to the one for (0,3) fluxes: vanishing

soft-terms in the worldvolume of the D3-branes and non-trivial ones in the worldvolume of

the D7-branes, although N = 1 supersymmetric. Indeed, by looking at (6.58) one observes

µ(77) = −g
1/2
s Z−1

6
√

2
(S3̄3̄)

∗ , Cijk (77) =
g
1/2
s Z−1

6
√

2
hjk3(S3̄3̄)

∗ , (6.73)

so the relation (6.10) is satisfied. In addition, there is a trilinear coupling in the twisted sector

AΦ3
77(73)∗(37)∗ = −g

1/2
s Z−1

6
√

2
(S3̄3̄)

∗ . (6.74)

When a G1̄2̄3̄ flux is switched on, a non-supersymmetric B-term is as well generated for the

scalars Φ3
77

B33 = − gs

18
Z−2 (G1̄2̄3̄)

∗(S3̄3̄)
∗ = 2Mµ(77) . (6.75)
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IASD backgrounds.

The reader my wonder why we have computed the soft supersymmetry breaking patterns in-

duced by IASD fluxes, even though these do not satisfy the supergravity equations of motion

for the Type B(ecker) solutions discussed in Section 4.3.1. The reason is twofold. First of all,

our local approach is in some sense more general than Type B(ecker) solutions, and remains

valid for other possible globally consistent backgrounds. For example, non-perturbative effects

such as Euclidean D3-branes or gaugino condensation in distant D7-branes could backreact

the geometry around our local setup, inducing non vanishing IASD components of the flux.

In other cases, the supergravity equations of motion allow for IASD components. We refer

the reader to [162] for a concrete example.

The second reason is to take into account the possibility of having the MSSM in the

worldvolume of antibranes. Indeed, to compute the worldvolume action for an antibrane one

has to take the opposite GSO projection than for a brane. This selects the opposite DBI-CS

cancellation, and thus exchanges ISD and IASD fluxes. I.e. the soft supersymmetry breaking

pattern induced in anD3-brane by ISD fluxes is exactly the same than the soft-supersymmetry

breaking induced in a D3-branes upon exchanging ISD by IASD. Concerning the 37 sector,

one can directly obtain from eqs. (6.67) and (6.69) the corresponding trilinear couplings by

making the replacements

(A12, S3̄3̄, 2G1̄2̄3̄) −→ (−S12, S11, S22) , (6.76)

(A1̄2̄, S33, 2G123) −→ (−S1̄2̄, S1̄1̄, S2̄2̄) .

i) IASD (3,0) backgrounds.

These somehow gives rise to the opposite DBI-CS cancellation than the (0,3) ISD fluxes.

Indeed, these backgrounds do not lead to soft terms in the worldvolume of the D7-branes,

however, they produce a dilaton dominated SUSY breaking pattern in the worldvolume of the

D3-branes

m2
Φ3

33
=

gs

2
Z−2 |G123|2 ; M (33) =

g
1/2
s Z−1

√
2

G123 ; Aijk (33) = −hijk g
1/2
s Z−1

√
2

G123 (6.77)

with the corresponding trilinear coupling in the 37 sector

AΦ3
33(37)(73) =

g
1/2
s Z−1

√
2

G123 . (6.78)

ii) IASD (1,2) primitive backgrounds.

These backgrounds produce a great variety of soft terms. On one hand in the D7-branes
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we have

B33 =
gsZ

−2

36

(
(S12)

∗2 − (S22)
∗(S11)

∗
)
, (6.79)

Cijk
(77) = −g

1/2
s Z−1

6
√

2

∑

l=1,2

hjklSli , (6.80)

µij = −g
1/2
s Z−1

6
√

2
Sij i, j = 1, 2 . (6.81)

Excepting S33 which does not appear in the action, these are all non-supersymmetric soft

terms. On the other hand, in the D3-branes

m2
1 +m2

2 +m2
3 =

gs

8
Z−2

∑

ij

|Sij |2 ; Cijk = −hijl µkl ; µij = −g
1/2
s Z−1

2
√

2
Sij . (6.82)

which are compatible with N = 1 supersymmetry6.

And finally, for the twisted sector we have the trilinear coupling

AΦ3
33(37)∗(73)∗ =

g
1/2
s Z−1

2
√

2
S33 . (6.83)

6.4 Comparison to effective supergravity predictions.

The above scheme of soft-terms can be nicely interpreted in terms ofN = 1 effective supergrav-

ity [163, 74, 27]. In this sense, the background fluxes induce non-trivial vacuum expectation

values for the F auxiliary fields in (6.1) associated to the axiodilaton and the Kähler moduli

of the compactification. Indeed, the perturbative piece of eq. (6.3) can be recast as

Fm = eG/2Kmn̄G
n̄ . (6.84)

Making use of eqs. (3.31) and (5.5), then one has

FS =
1

M2
p

(S + S∗)1/2 (T + T ∗)−3/2 κ−2

∫
G3 ∧ Ω , (6.85)

FT = − 1

M2
p

(S + S∗)−1/2 (T + T ∗)−1/2 κ−2

∫
G3 ∧ Ω , (6.86)

where, for simplicity, we have considered just a single overall Kähler modulus T . Thus, we

observe that ISD (0, 3) backgrounds actually corresponds to 〈FS〉 = 0 and 〈FT 〉 6= 0, whereas

AISD (3, 0) backgrounds lead to dilaton dominated scenarios with 〈FS〉 6= 0 and 〈FT 〉 = 0.

On the other hand, the gravitino mass (c.f. eq. (6.7)) is given by

m2
3/2 =

1

M4
p

(S + S∗)−1 (T + T ∗)−3 κ−4 |
∫
G3 ∧ Ω |2 , (6.87)

6The underlying reason to this N = 1 structure is presumably the relation of these backgrounds with the

N = 1 supersymmetric backgrounds of Polchinski-Strassler [155].
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and the cosmological constant becomes

Λ =
κ−4|

∫
G3 ∧ Ω|2

M2
p (S + S∗)(T + T ∗)3

, (6.88)

in analogy with eq. (5.21).

Now we would like to marginally deform this picture to include the open string moduli.

It was found in [163] (see also [27]) that the gauge kinetic function f7 (f3) and the Kähler

potential K for the D7 (D3) worldvolume action are

f3 = S , f7 = T3 ,

K = − log(S + S∗ − |Φ3
77|2)− log(T3 + T ∗

3 − |Φ3
33|2)

− log(T2 + T ∗
2 − |Φ2

33|2 − |Φ1
77|2)− log(T1 + T ∗

1 − |Φ1
33|2 − |Φ2

77|2)

+
|Φ37|2 + |Φ73|2

(T1 + T ∗
1 )1/2(T2 + T ∗

2 )1/2
,

which for large overall Kähler modulus T becomes

f3 = S , f7 = T ,

K = − log(S + S∗)− 3 log(T + T ∗) (6.89)

+
|Φ3

77|2
(S + S∗)

+
1

(T + T ∗)

[
(

3∑

a=1

|Φa
33|2) + (

2∑

b=1

|Φb
77|2) + (|Φ37|2 + |Φ73|2)

]
.

The soft terms then can be extracted from the scalar potential generated by (5.5) and

(6.89). Thus, for ISD 3-form fluxes one correctly recovers the expressions (6.70), (6.71) and

(6.73)-(6.75). In fact, in that case the scalar potential becomes positive definite

VISD = eK
(
g33̄(D3W )(D3̄W )

)
, (6.90)

and, after rescaling the matter fields to its canonical value, one has

VISD = | −M∗
77Φ

3
77

∗
+ ∂φ3W |2 =

= −M∗
77Φ

3
77

∗ − µ(77)Φ
3
77 + Φ1

77Φ
2
77 + Φ73Φ37 |2 . (6.91)

Thus, for Type B(ecker) solutions, the soft supersymmetry breaking pattern in the D7-branes

depends on just two parameters, which correspond to the two possible ISD components of the

3-form flux in the neighborhood of the D7-brane.

Concerning the IASD fluxes, one can proceed in the same way. However, on this case on

finds some differences with respect to the results of the previous section. Thus for example,

for the dilaton dominated scenarios engendered by the IASD (3,0) components one has

m2
Φ3

33
=

gs

2
|G123|2, M (33) =

g
1/2
s√
2
G123, Aijk

(33) = −hijk g
1/2
s√
2
G123, (6.92)
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so the values for the scalar masses do not agree with the ones obtained in eq. (6.77). This is

not surprising, as the local background configuration (4.33)-(4.37) assumed Poicaré invariance

in the four longitudinal directions. However, we are seeing now that AISD fluxes generate

through eq. (6.88) a non-vanishing vacuum energy, incompatible with Poincaré invariance.

Indeed, eqs. (6.92) describe the soft-terms obtained for D3-branes in a modified background

which allows for deviations from Poincaré invariance. In this sense, it is interesting to note

the symmetry of the soft-terms under the exchange D3↔ D7 and G1̄2̄3̄ ↔ G123. This can be

understood from the point of view of T-duality along Σ4. Under this, one has

D73 ←→ D3 , (6.93)

S ←→ T3 .

Thus, T-duality is on the root of this apparent symmetry.

Finally, let us comment on the effective supergravity description of various stacks of D7r-

branes wrapping 4-cycles transverse to different r-th complex planes. The four dimensional

superpotential for the open string moduli on this case has the form

WD7iD7j
= φijφjiφ

k
ii − φijφjiφ

k
jj + φijφ37i

φ37j
, (6.94)

where k 6= i, j and there is no sum over the i, j indices. For ISD fluxes, from the general

no-scale property described above, only the auxiliary fields of matter fields on the D7-branes

will contribute to the scalar potential and therefore

VD7iD7j
= | −M∗

77Φij
∗ + ∂φij

W |2 = |−M∗
77Φij

∗ + φjiφ
k
ii + φjiφ

k
jj + φ37i

φ37j
|2 . (6.95)

Thus, the scalars at the 7i7j intersections become massive, as was advanced at the end of

Section 6.2.2 from brane recombination arguments.

6.5 Phenomenological issues.

The soft supersymmetry breaking lagrangian for the MSSM is highly unconstrained, repre-

senting the addition of more than one hundred extra parameters in the model. Few empiri-

cal constraints exist, mainly coming from CP violation experiments, the absence of Flavour

Changing Neutral Currents (FCNC) or cosmological arguments. On the other hand, we have

seen that the supersymmetry breaking patterns which naturally arise in the worldvolume of

the D3/D7-brane configurations depend only on the very few free components of the fluxes

around the branes. On this section we would like to go a step further and to wonder about

the phenomenological viability of these induced patterns. For a more detailed study than the

one presented here, the reader may consult [164, 165].

First of all, we would like to analyze the naturalness of the different scales involved

in the compactification [20]. Although supersymmetry guarantees the cancellation of the
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quadratic divergences in the worldvolume of the branes, it does not explain the large ratio

MPlanck/Mweak. In other words, since the Higgs mass still receives quadratic corrections

from the soft scalar masses msoft, these cannot be too large compared with Mweak in order

supersymmetry to be an efficient mechanism. Here we took the flux as the only source of

supersymmetry breaking to N = 0∗, as it does not lead to NSNS tadpoles, in the theory. As

pointed out in eq. (4.63), the flux density goes like α′/R3, so the typical scale for the soft

terms will be given by

msoft =
g
1/2
s Z−1

√
2

G3 =
fg

1/2
s√
2

α′

R3
=
fM2

s

MP
. (6.96)

The suppression of the localized masses by powers of the warping in scenarios with highly

warped extra dimensions was already noted by Randall and Sundrum in [166]. Basically, the

idea consists in generating an exponential hierarchy of masses by means of the gravitational

redshift generated by a warped metric in the extra dimensions. Indeed, having a metric

background as the one of eq. (4.33), with exponential warping

Z1/2(xm) = e−2A(xm) (6.97)

induced by the backreaction of the fluxes through eq. (4.55), imply the four dimensional

Planck mass M4 and the Higgs mass scale M0 of a Standard Model embedded in a Dp-brane

are [166, 167]

M2
4 = M8

p (2π)−6

∫

M6

√
g6e

2A , (6.98)

M2
0 ∼M2

p

∫
dp−3z

√
gDpe

2A , (6.99)

with gDp the determinant of the induced metric in the worldvolume of the brane. Thus, if

we place the branes containing the observable sector at the bottom of the AdS throat, where

eA � 1, the four dimensional masses will be suppressed relative to the fundamental Planck

scale Mp.

In this sense, flux compactifications provide a microscopical implementation of the Randall-

Sundrum scenario [168, 37]. Moreover, they put on an equal footing both supersymmetry and

warped compactifications: on one hand the fluxes backreact the spacetime to AdS5 × S5,

whereas on the other they provide a mechanism to softly break the supersymmetry.

For the case of D7-branes there are however some subtleties. In fact, we saw in (6.55) that

the gauge coupling in the worldvolume of the D7-brane is suppressed by the same power of

the warping than the soft masses. Thus, placing a D7-brane in a highly warped region could

lead to too small gauge couplings.

The other relevant scale in Type II orientifold compactifications, apart from msoft and

MPlanck, is the Kaluza Klein scale. In order the effective supergravity approach to be valid,
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we must ensure that the tower of Kaluza Klein replicas decouples from the masses induced by

the fluxes. This can be easily done in the large radius limit. Indeed, in that case

g1/2
s Z−1 α

′

R3
(fluxes) � 1

R
(KK) � Ms , (6.100)

and there appear another hierarchy of masses from the radius of the compactification. Thus,

neglecting the warping, if one wants to identify msoft with the electroweak scale, the string

scale Ms = α′−1/2 must be at an intermediate scale ∼ 1010 GeV and the compact radii be

of the order R = 103α′1/2. This is consistent with an F auxiliary field getting a vacuum

expectation value of order M 2
s . However, one could consider still non-homogeneous situations

on which the D-branes are located in regions of the internal space with hierarchically diluted

fluxes compared to other regions.

Let us analyze now how the flux induced soft parameters fit into the region of parameter

space allowed by the experiments. We will restrict to the Type B(ecker) compactifications

discussed in Section 4.3.1. In this context, the four dimensional theory is described by a

positive definite scalar potential

VSB =
∑

i

|∂iW −M∗
i Φ∗

i |2 , (6.101)

with i running over the chiral multiplets of the theory. Thus, if the ultraviolet completion

of the MSSM corresponds to a D3/D7-configuration in Type IIB String Theory without non-

geometric fluxes, one must replace the globally N = 1 SUSY scalar potential

VSUSY =
∑

i

|∂iW |2 (6.102)

by the soft SUSY breaking potential (6.101). Here W is the MSSM superpotential

W = −hij
UHuQiUj + hij

DHdQiDj + hij
LHdLiEj − µHdHu , (6.103)

with Q the left-handed quark supermultiplets, U and D the right handed quark supermulti-

plets, L and E the left and right handed leptons, and i, j running over the three generations.

Hence, the 105 extra parameters describing the soft supersymmetry breaking pattern of the

MSSM are reduced to a set of gaugino masses Mi and µi-parameters corresponding, through

eqs. (6.70) and (6.73), to the amount of flux G1̄2̄3̄ and Sr̄r̄ in the neighborhood of the D7r-

branes in the observable sector. Thus, even if we do not know the explicit ultraviolet setup

describing the embedding of the MSSM, this is an important improvement of the situation.

The phenomenology of (6.101) is such that could address some of the empirical constraints

for the soft breaking lagrangian. Indeed, these can be summarized as [143]:

1. Lack of flavor universality. Experiments at accelerators reveal that FCNC are

strongly suppressed. The prediction of this phenomena is one of the biggest successes

of the Standard Model. Accordingly to this, FCNC does not exist at tree-level due to
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the particular form of the couplings of the fermions to the neutral currents. In addi-

tion, higher order charged contributions to the FCNC processes are strongly suppressed

through the GIM mechanism, associated to 1-loop box diagrams.

In the MSSM however there appear many extra contributions to the FCNC, both at

tree-level, through explicit flavour changing couplings, and at 1-loop level, through the

failure of the super-GIM mechanism. In particular, a trivial flavor structure of the scalar

mass matrix is required, being the off-diagonal components highly suppressed by exper-

imental FCNC constrains such as ∆mK , ∆mB , ∆mD, b→ sγ, µ→ eγ, etc.

In this sense, universality is somehow natural in (6.101). Indeed, all the gaugino masses,

scalar masses and holomorphic trilinear couplings come from the same component G1̄2̄3̄

of the flux, so a homogeneous background in the neighborhood of the visible sector will

lead to Mi 'M , Aijk ' hijkA, etc.

2. CP-violating electric dipole moments. Among the great number of parameters

involved in the soft supersymmetry breaking pattern, there are some CP violating phases.

As in the Standard Model, some of them are associated directly to the flavor changing

couplings, i.e. to the off-diagonal entries of the trilinear parameters and the scalar

mass matrix, and thus do not represent a problem in universal scenarios. However,

additional flavor conserving phases may appear through the complex gaugino masses

M , the µ-parameters, the B-terms and the trilinears. Of these, actually only a subset

constitutes the physical phases. Indeed, the MSSM lagrangian in the limit µ,Lsoft → 0

has two global U(1) symmetries: the N = 1 R-symmetry and an additional Peccei-Quinn

symmetry, under which the above soft parameters transform non-trivially. From the ten

dimensional perspective, this is simply due to the fact that the background fluxes are

charged under them. Due to this, the phases invariant under reparametrization by these

symmetries are given by the linear combinations

φ1 = φµ + φA − φB , (6.104)

φ2 = φµ + φM − φB ,

with µ = |µ|eiφµ , M = |M |eiφM , A = |A|eiφA and B = |B|eiφB . The present empirical

upper bound for the phases situates in φ1,2 . 10−2, from electric dipole moment exper-

iments.

For the particular case of (6.101) however, the relations (6.70) and (6.75), imply

φA = φM , (6.105)

φB = φµ + φM , (6.106)

thus guaranteeing the vanishing of the physical phases (6.104).
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3. Electroweak breaking constrains and the µ problem. The scalar potential of the

two Higgs doublets is completely determined by the soft supersymmetry breaking la-

grangian. A potential leading to the correct electroweak symmetry breaking will involve

thus a constrained range of the soft parameters.

The analysis can be simplified by making use of the SU(2)L gauge freedom to rotate

away a possible vev of one of the weak isospin components in one of the Higgs doublets

Hu = (H+
u , H

0
u) and Hd = (H0

d , H
−
d ). We will take for example H+

u = 0. Then, it is

possible to show that the minimizing condition ∂V/∂H+
u = 0 implies also H−

d = 0, and

the potential gets simplified to

V = (|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 − (BH0
uH

0
d + c.c.)+

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2 , (6.107)

with g and g′ respectively the weak and hypercharge couplings.

Since the minimum of the potential must break SU(2)L × U(1)Y , it should not occur

for 〈H0
u,d〉 = 0. This leads to

(2|µ|2 +m2
Hd

)(2|µ|2 +m2
Hu

) < B2 . (6.108)

On the other hand, the quartic terms of the scalar potential come from D-terms. Thus,

for D-flat directions (〈H0
u〉 = 〈H0

d〉) the potential could be unbounded from below,

leading to potential stability problems7. This requires

2|µ|2 +m2
Hd

+m2
Hu

> 2B . (6.109)

This condition is automatically satisfied by (6.101), since on this case B = 2Mµ. Thus,

the scalar potential (6.101) is positively definite even for D-flat directions and does not

represent a problem for the electroweak symmetry breaking mechanism.

Note however that, since m2
Hu

= m2
Hd

= |M |2, the constrains (6.108) and (6.109) cannot

be both satisfied. One is enforced then to consider the renormalization group equations

and expect that at the electroweak scale the condition m2
Hu

< m2
Hd

is verified, so radia-

tive electroweak symmetry breaking takes place. For further details on the behavior of

(6.101) under the renormalization group one may consult [165].

Finally, observing eqs. (6.108) and (6.109), we expect the µ-parameter to be of the same

order than the soft parameters. This however does not represent a problem for the kind

of scenarios we are discussing here. As the M and µ parameters are associated to differ-

ent components of the 3-form flux it is therefore natural to have µ ∼ msoft ∼ mZ . Thus,

7Actually, radiative corrections could make the potential bounded from below, getting a large unphysical

minima, with possible exotic phenomena such as charge or color breaking.
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the µ-problem finds a natural solution in the context of String Theory compactifications

with background fluxes.



Chapter 7

Applications to model building.

On this chapter we present some examples which serve to illustrate how the ideas discussed

along the previous chapters are applied the building of semirealistic models. In particular, we

present in Section 7.2 two N = 1 models and a no-scale one with chiral spectrum very close

to the one of the MSSM and part or all the closed string moduli stabilized in dS or AdS. In

Section 7.3, on the other hand, we show some examples of the flux induced soft supersymmetry

breaking patterns arising in Type IIB orientifolds with O3-planes.

None of these models pretend to be The Model of all particles and interactions, but rather

to illustrate how such a model could be realized in the context of String Theory. Of course, a

lot of work still have to be done in order to obtain a fully realistic setup. In particular, much

effort is needed to address the long-standing problem of the cosmological constant or to find

selection rules for the huge landscape of vacua.

7.1 D-branes in presence of fluxes and the Freed-Witten

anomaly.

Before discussing the models, we would like to give some words about the consistency con-

ditions for D-branes in presence of fluxes. We saw in Section 6.2.2 that fluxes in the (2, 2)0

representation of the geometric SU(2)×SU(2)′×U(1) symmetry induce Freed-Witten anoma-

lies [169, 70, 71] in the worldvolume of the D7-branes, i.e. non-trivial tadpoles for the gauge

fields living inside them. Something similar is expected to occur for the mirror Type IIA

orientifolds. Indeed, consider a D3-brane wrapping a 3-cycle Πa through which there is some

quantized NS flux H3. On the world-volume of the D3-brane there is a CS coupling of the

form
∫
C2 ∧ F2, C2 being the RR 2-form and F2 the open string gauge field strength. After

121
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performing a IIB S-duality transformation one gets a coupling [71]
∫

Πa×R

H3 ∧ Ã1 , (7.1)

where Ã1 is the gauge field dual to the A1 form living on the D3-brane. This shows that

a background for H3 gives rise to a tadpole for Ã1 and hence to an inconsistency. Now,

performing three T-dualities one expects for D6-branes the analogous term
∫

D6

H3 ∧ Ã4 (7.2)

and thus, the resulting tadpole is avoided only if
∫

Πa

H3 = 0 . (7.3)

Moreover, under mirror symmetry part of the Type IIB H3 flux transforms to Type IIA

metric and non-geometric fluxes. As we saw in Section 5.2.1, these induce changes in the

topology of the original torus, so that some of the original cycles are no longer cycles in pres-

ence of metric fluxes. Thus, it is expected that some of the Freed-Witten anomalies of Type

IIB orientifolds with O3-planes will map to topological inconsistencies induced by the metric

fluxes in Type IIA orientifolds with O6-planes [129]. On this section we would like to explore

these inconsistencies from the point of view of the gauge theory living in the worldvolume of

the D6-branes. We will mainly follow our work in [43].

As described in Section 3.4, for setups of intersecting D6-branes wrapping 3-cycles Πa of

the internal manifold, there is an exchange of complex structure and dilaton axions between

the corresponding gauge bosons and the potentially anomalous U(1)’s become massive through

a generalized Green-Schwarz mechanism. In this sense, the linear combinations

Φa ≡ ca0Im S −
∑

i

cai Im Ui , (7.4)

with caI given by eq. (3.51), act as Goldstone bosons, transforming with a shift under U(1)a

gauge transformations. However, we have seen on the other hand that NSNS, metric and non-

geometric fluxes induce terms in the superpotential linear in Im Ui and Im S, and therefore not

invariant under the shifts induced by U(1)a gauge transformations. The condition to restore

consistency and gauge invariance is then to impose the constraint
∫

Πa

(H3 + ωJc +QJ (2)
c +RJ (3)

c ) = 0 . (7.5)

This is a strong constraint on the possible 3-cycles which the D6-branes may wrap. Note that

in absence of metric and non-geometric fluxes, this equation can be understood in terms of

the Freed-Witten anomaly (7.3). In that case, the condition (7.5) becomes

3∑

I=0

caI hI = 0 , (7.6)



7. Applications to model building. 123

guaranteing that the combinations of axions getting masses by mixing with vector bosons

are orthogonal to those becoming massive from fluxes, the latter being typically of the form

h0Im S −∑k hkIm Uk.

An interesting particular case is given by the N = 1 AdS vacua of Section 5.2.2, with all

the moduli stabilized but some linear combinations of axions. There, one finds that at the

minima hi/h0 = −Re S/Re Ui. Substituting this into eq. (7.6) and multiplying by the torus

volume one arrives at

m1
am

2
am

3
a(R1

yR
2
yR

3
y) − m1

an
2
an

3
a(R1

yR
2
xR

3
x) − n1

am
2
an

3
a(R1

xR
2
yR

3
x) − n1

an
2
am

3
a(R1

xR
2
xR

3
y) = 0

(7.7)

This condition means that the D6-brane wraps a special Lagrangian cycle (sLag). From the

point of view of the low energy effective action, this is proportional to a Fayet-Iliopoulos

(FI) term [170] and hence it dynamically imposes that the D6-brane configuration should

be supersymmetric (i.e. all FI terms should vanish). Notice that, due to the relations (5.77),

including metric fluxes in this class of minima does not add any extra constraint to be satisfied.

In turn, this is also found in a more general analysis of Type IIA supersymmetric AdS

vacua [171, 172], for which

H3 + dJc ∝ Im Ω , (7.8)

so, in absence of non-geometric fluxes, eq. (7.5) becomes the special lagrangian condition

Im Ω|Πa
= 0 . (7.9)

Therefore, even if the NS fluxes vanish, in these models there is still a Freed-Witten constraint

of the form

3aca0 − b1ca1 − b2ca2 − b3ca3 = 0 . (7.10)

For instance, in the models of Section 5.2.2 this can be deduced using (5.76).

The vanishing of the FI-terms in the supersymmetric vacua has been observed as well in

[173] from the point of view of the N = 1 effective supergravity. Indeed, due to the relation

Da = iGiN
i

a , (7.11)

with N i
a given in terms of the isometry generators by eq. (5.43), the D-terms at the minimum

of the scalar potential are proportional to the F-terms, Fi = eG/2Gi. Since in a supersymmet-

ric minimum the F-terms vanish, it is thus expected for consistency that as well the D-terms

will be zero. More concretely, the constraint (7.5) can be shown in this language to be equiv-

alent to the integrability condition for the Bianchi identity of F2.

Analogous conditions could be obtained for other vacua. In particular, for Minkowski

vacua with vanishing non-geometric fluxes one can check that the condition (7.5) is equivalent
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to impose the 3-cycle Πa to be an element of Γ3 ⊕ ∂Ξ2 (c.f. Section 5.2.1), being the Freed-

Witten anomalies associated to the 3-cycles in Ξ3. For further details, we refer the reader to

[129].

7.2 MSSM-like vacua.

Now that we know more about the consistency conditions for D-branes in presence of fluxes,

let us describe some explicit examples. We will consider here three Type IIA orientifold mod-

els with semirealistic spectrum and vanishing non-geometric fluxes, all of them based on the

intersecting D6-brane model of Section 3.5.2. The first two examples correspond to Minkowski

vacua and thus present several flat directions, as commented in Section 5.2.2. The third one

is a N = 1 AdS vacua with all closed string moduli stabilized and tadpoles cancelled without

the aid of an orbifold symmetry. These models were first presented in [43].

Of course, one could think of more elaborated models with non-geometric and S-dual fluxes.

In particular, the results we saw in Section 5.4 seem to indicate that considering S-dual fluxes

it is possible to build models with all the moduli stabilized in Minkowski. However, a better

understanding of these fluxes is still needed.

7.2.1 Model 1: N = 1 Minkowski model.

Consider a Z2 × Z2 extension [174, 175] of the model of Section 3.5.2 ([98, 176]), consisting

on six stacks of branes with wrapping numbers given as in Table 7.1. This corresponds to the

same brane content than the models of [177].

Ni (n1
i ,m

1
i ) (n2

i ,m
2
i ) (n3

i ,m
3
i )

Na = 8 (1, 0) (3, 1) (3,−1)

Nb = 2 (0, 1) (1, 0) (0,−1)

Nc = 2 (0, 1) (0,−1) (1, 0)

Nh1
= 2 (−2, 1) (−3, 1) (−4, 1)

Nh2
= 2 (−2, 1) (−4, 1) (−3, 1)

8Nf (1, 0) (1, 0) (1, 0)

Table 7.1: Wrapping numbers giving rise to a MSSM-like spectrum. Branes h1, h2 and o are added

in order to cancel RR tadpoles.

We will assume [176] that the branes b and c sit on top of the orientifold plane so the

corresponding gauge symmetries are enhanced to SU(2)L and SU(2)R respectively. Thus, the

full initial gauge group is U(4)× SU(2)L × SU(2)R × [U(1)1 × U(1)2]. Separating one of the

a-branes from the other three produces the breaking U(4)→ U(3)× U(1). Furthermore, two
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out of the three U(1)’s get a Stückelberg mass by combining with RR axion fields. We are

thus left with a gauge group SU(3)c×SU(2)L×SU(2)R ×U(1)B−L× [U(1)], which contains

the left-right symmetric extension of the Standard Model plus an extra U(1). The branes

a, b, c, give rise to a 3-generation MSSM-like spectrum whereas the additional branes h1,2 in

Table 7.1 are used to help in cancelling the RR tadpoles.

Note that for this Z2 ×Z2 Type IIA orientifold the RR tadpole cancellation conditions in

the presence of fluxes have the form

∑

a

Nan
1
an

2
an

3
a +

1

2
(h0m+ a1q1 + a2q2 + a3q3) = 16 , (7.12)

∑

a

Nan
1
am

2
am

3
a +

1

2
(mh1 − q1b11 − q2b21 − q3b31) = −16 , (7.13)

∑

a

Nam
1
an

2
am

3
a +

1

2
(mh2 − q1b12 − q2b22 − q3b32) = −16 , (7.14)

∑

a

Nam
1
am

2
an

3
a +

1

2
(mh3 − q1b13 − q2b23 − q3b33) = −16 , (7.15)

where the −16 in the last three conditions is the RR tadpole contribution of the other 3 orien-

tifold planes existing in the Z2 × Z2 case.

We will turn on non-vanishing fluxes as in the supersymmetric Minkowski example of

eq. (5.73) with non-vanishing b31, b21, a2, a3. The addition of NS fluxes h0 and h1 and RR fluxes

e0, e2 and e3 is optional, but we set all the remaining backgrounds to zero. The superpotential

has then the form

W = −T2(a2S + b21U1)− T3(a3S + b31U1) + e0 + ih0S − ih1U1 + ie2T2 + ie3T3 . (7.16)

As explained in Section 5.2.2 this leads to a Minkowski supersymmetric minimum with

h0 = a2v2 + a3v3 , e2 = a2Im S + b21Im U1 , t3 = −b21t2
b31

, s = −b21u1

a2
(7.17)

as long as e2a3 = e3a2, h0b31 = −a3h1, h0b21 = −a2h1 and h0e2 = e0a2. Thus in this super-

symmetric Minkowski background two complex linear combinations of moduli are stabilized

at the minimum.

Note that, since m = qi = 0, the fluxes do not contribute to the RR tadpoles. Hence one

can consider the addition of D6-branes as in Table 7.1 with Nf = 5. As pointed out in [177],

with this choice all the RR tadpoles cancel without the addition of fluxes in Type IIB theory.

In the present Type IIA case we can rather add the background considered here and the RR

tadpoles are not modified and thus cancel. However the moduli are partially fixed through

eq. (7.17).
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It is easy to check that the a, b and c branes, where the Standard Model lives, trivially

satisfy the Freed-Witten constraint. However the branes of type h1,2 may be problematic

unless

a2(m
1
am

2
am

3
a)− b21(m1

an
2
an

3
a) = a2 − 12b21 = 0 , (7.18)

which, on the other hand, may be easily satisfied by appropriately choosing a2, b21. Note

that this condition guarantees that the linear combination of Im S and Im U1 getting masses

through fluxes (c.f. eq. (7.17)) is orthogonal to the linear combination which becomes massive

by mixing with the U(1)’s of the branes h1,2.

7.2.2 Model 2: No-scale model.

One can also consider one of the no-scale backgrounds discussed in Section 5.2.2 and include

a set of D6-branes as in Table 7.1. A simple example is as follows. Take non-vanishing a3 and

q3 with the remaining qi = ai = 0. In addition, one may include non-vanishing h0, e0 and ei

but set the remaining backgrounds to zero. The superpotential has then the form

W (S, Ti) = −a3ST3 − q3T1T2 + e0 + ih0S + i
∑

i

eiTi . (7.19)

The imaginary part of S and the Ti are fixed as in eq. (5.13) whereas for the real parts one has

the relationship a3st3 = q3t1t2. In addition one has the constraint e0 = h0Im S+ e1v1. There

is only a contribution equal to 1
2a3q3 to the first RR tadpole. We consider fluxes quantized in

units of 8 to avoid problems with flux quantization [178, 71]. One can then cancel the tadpoles

in a Z2 × Z2 orientifold with branes as in Table 7.1 with Nf = 1 and a3 = q3 = 8.

One may instead consider a no-scale model with non-vanishing mass parameter m and

with no metric fluxes, as described in Section 5.1.2 . Indeed, taking non-vanishing m and h0

and ei and qj verifying γi = mei + qjqk = 0 (i 6= j 6= k) one has a non-supersymmetric vacua

with no-scale structure. Then setting h0 = m = 8 and Nf = 1 one cancels all tadpoles. Note

that this model, which has no metric fluxes, is the Type IIA mirror of a similar no-scale model

considered in [177].

Both these no-scale models however have FW anomalies. The danger comes from the h1,2

branes which have a non-vanishing product m1
am

2
am

3
a 6= 0. One possibility which might cure

the problem is that, as suggested in [177], the brane h1 recombines with the mirror of h2 into a

single non-factorizable D6-brane h1 +h′2. In this case, since h1 and h′2 have equal and opposite

m1
am

2
am

3
a, the FW would cancel on the recombined brane. However it is not clear whether

after the addition of fluxes a flat direction in the effective potential exists corresponding to

the recombination of those branes.
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7.2.3 Model 3: N = 1 AdS model with all closed string moduli sta-

bilized.

The previous intersecting brane models were able to combine a semi-realistic spectrum with

a partial determination of some of the closed string moduli. We now present an AdS model

with all such moduli stabilized, thus providing a semi-realistic string model with all closed

string moduli stabilized at weak coupling. Note first that in the past it has been argued

that it is impossible to construct semi-realistic N = 1 supersymmetric intersecting D6-brane

models wrapping the IIA orientifold T 6/(Ω(−1)FLσ). The reason for this was essentially the

impossibility to cancel the four RR tadpole conditions simultaneously while maintaining su-

persymmetry. To obtain N = 1 supersymmetric models, extra orbifold twisting (e.g. Z2×Z2,

as in previous examples) had to be added, giving rise to additional orientifold planes which

help in the cancellation of RR tadpoles [174]. We will show here that one can build N = 1

supersymmetric configurations in the purely toroidal orientifold in which the RR tadpoles are

cancelled by the addition of NS/RR and metric fluxes. The role played by the additional

orientifold planes in orbifold models is here played by the fluxes contributing like orientifold

planes. At the same time, those fluxes stabilize all closed string moduli in AdS space. More-

over the complex structure moduli are fixed at values which render the D6-brane configuration

supersymmetric. Notice that in the N = 1 supersymmetric models previously considered in

the literature those moduli where not determined by the dynamics.

We will consider the set of D6-branes wrapping factorizable cycles in the orientifold as in

Table 7.2. Note that this set only differs from the previous examples in the branes h1 and h2.

Ni (n1
i ,m

1
i ) (n2

i ,m
2
i ) (n3

i ,m
3
i )

Na = 4 (1, 0) (3, 1) (3,−1)

Nb = 1 (0, 1) (1, 0) (0,−1)

Nc = 1 (0, 1) (0,−1) (1, 0)

Nh1
= 3 (2, 1) (1, 0) (2,−1)

Nh2
= 3 (2, 1) (2,−1) (1, 0)

No = 4 (1, 0) (1, 0) (1, 0)

Table 7.2: A MSSM-like model with tadpoles cancelled by fluxes. Branes h1, h2 and o are added in

order to cancel RR tadpoles.

The other difference is that now we have a purely toroidal (no Z2 × Z2) orientifold without

further twisting. The corresponding chiral spectrum at the intersections is given in Table 7.3.

The gauge group after separating branes and after two of the U(1)’s get Stückelberg masses

is SU(3) × SU(2)L × U(1)R × U(1)B−L × [U(1) × SU(3)2]. Note that, unlike the case of

the Z2 × Z2 models above, one can make the breaking SU(2)R → U(1)R by brane splitting,

and hence the gauge group is that of the MSSM supplemented by some extra U(1)’s. We

have three generations of quarks and leptons, one Higgs multiplet H and extra matter fields
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Intersection Matter fields Rep. Q3B+L Q1 Q2

a− b FL 3(4, 2L) 1 0 0

a− c FR 3(4̄, 2R) -1 0 0

b− c H (2L, 2R) 0 0 0

a − h1 T1 (4, 3̄1) 1 -1 0

a − h′
1

T ′

1
5(4, 31) 1 1 0

a − h2 T2 5(4̄, 3̄2) -1 0 1

a − h′
2

T ′

2
(4̄, 3̄2) -1 0 -1

b− h2 D2 2(2L, 3̄2) 0 0 -1

c− h1 D1 2(2R, 3̄1) 0 -1 0

h1 − h′
2

X 4(3̄1, 32) 0 -1 1

Table 7.3: Chiral spectrum of the MSSM-like model. A prime indicates the mirror brane.

involving the auxiliary branes h1, h2 and o.1

With this brane content (plus the mirrors) the RR tadpole cancellation conditions are

64 +
1

2
(h0m+ a1q1 + a2q2 + a3q3) = 16 , (7.20)

−4 +
1

2
(h1m− q1b11 − q2b21 − q3b31) = 0 , (7.21)

−4 +
1

2
(h2m− q1b12 − q2b22 − q3b32) = 0 , (7.22)

−4 +
1

2
(h3m− q1b13 − q2b23 − q3b33) = 0 . (7.23)

We see that to cancel the tadpoles the sign of the flux contribution must be opposite to that of

D6-branes. We will now consider the AdS background with metric fluxes and m 6= 0 discussed

in Section 5.2.2. The reader can check that choosing the fluxes as

qi = q = hi − 2 , ai = 16 , m = bij = −bii = 4 , (7.24)

all the RR tadpoles are cancelled. Note that eq. (5.77) fixes h0 = −12hi, otherwise the values

of q, h0 and hi may be arbitrarily large, still cancelling the tadpoles.

The above type of flux backgrounds does give rise to supersymmetric AdS vacua with all

real moduli fixed. In fact, the fluxes in (7.24) are isotropic so that the superpotential is of the

form (5.75). Then, one can easily check that with the above fluxes λ0 = 1 + (24/h0), which is

arbitrarily close to 1 for large h0. Substituting these fluxes yields for the real moduli

s = −h0λ

96
t , uk = −h0λ

8
t , t =

√
5

3

|h0|
16

λ1/2(λ+
24

h0
)1/2 , (7.25)

1One can check that if the branes h1 and h′
2

recombine, most of the extra matter beyond the SM disappears

from the massless spectrum, with only additional SU(2)L,R doublets remaining.
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where λ is the appropriate solution to eq. (5.85) for the λ0 indicated above. For large h0,

λ0 is close to 1 so that, when e0 = c1 = 0, λ ' (10)2/3/20. In this case one needs h0 < 0.

The imaginary part of the Kähler moduli are fixed as in eq. (5.84) whereas only the linear

combination of dilaton and complex structure axions 12Im S +
∑3

k=1 Im Uk is fixed, as in

eq. (5.78). As discussed in Section 5.2.2, for large h0 (which also implies large hk and q) all

the moduli are stabilized in a regime on which perturbation theory in four dimensions is a

good approximation.

Note that the Freed-Witten conditions (7.6) for the branes a, h1 and h2 read respectively

h2 = h3 , h1 = h3 , h1 = h2 , (7.26)

which are automatically satisfied, since h1 = h2 = h3 = −h0/12. As we mentioned, this

guarantees that the N = 1 conditions at the brane intersections (c.f. eq. (3.58))

atan
(τ2

3

)
− atan

(τ3
3

)
= 0 , (7.27)

atan
(τ1

2

)
− atan

(τ2
2

)
= 0 , (7.28)

atan
(τ1

2

)
− atan

(τ3
2

)
= 0 , (7.29)

are satisfied, since u1 = u2 = u3, in agreement with the results of the previous section. Here,

τi = Ri
y/R

i
x.

It is also interesting to look at the structure of U(1)’s and the Im UI RR fields. One may

check that the couplings (3.50) give masses to two linear combinations of U(1)’s by combin-

ing with certain linear combinations of Im UI fields. Only the generator Qa − 3
2 (Q1 − Q2)

remains massless at this level. On the other hand, the fields Im S and
∑

k Im Uk do not mix

with the U(1)’s at all, as expected, since FW anomalies cancel. Note that the combination

12Im S +
∑

k Im Uk is the one which gets a mass from fluxes. Thus, the orthogonal linear

combination is massless and may be identified with an axion which may be of relevance for

the strong CP problem.

Although here we have studied only the diagonal closed string moduli of the orientifold,

setting all the off-diagonal moduli to zero solves the extremum conditions. Furthermore, since

we are in a N = 1 supersymmetric AdS background, this guarantees that these off-diagonal

moduli are also stable. Thus, the closed string background discussed is completely stable. We

have succeeded in building a semi-realistic N = 1 supersymmetric model with all closed string

moduli stabilized in a consistent perturbative regime.
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7.3 Models of SUSY-breaking.

The consistent models presented in the previous section were all N = 1 supersymmetric (ex-

cepting the N = 0∗ no-scale models which suffered from Freed-Witten anomalies). We would

like to present now three N = 0∗ examples, in order to provide some semi-realistic models of

soft supersymmetry breaking patterns. Regarding moduli stabilization and chiral spectrum,

these models are however less involved than the ones presented in the previous section. More

concretely, for the first two examples we will consider just the local configuration of D3 and

D7-branes holding the observable sector, whereas the third example involves the presence of

antibranes, which may induce NSNS tadpoles. These models were presented in [20, 24]. Of

course, one could think of more elaborated models, by considering setups like the ones of the

previous section but placed in non-supersymmetric vacua. However, the computation of the

soft-supersymmetry breaking patterns in presence of non-trivial metric fluxes becomes sub-

stantially more complicated. We refer the reader to [177, 179, 180] for some more involved

N = 0∗ models.

7.3.1 Model 1: D7-branes on a Z3 singularity.

Let us consider a local Z3 singularity with twist given by

θ : (z1, z2, z3) −→ (e2πi/3z1, e
2πi/3z2, e

−4πi/3z3) , (7.30)

and a stack of nine D7-branes transverse to the third complex plane and with Chan-Paton

embedding

γθ,7 = diag
(
I3, α I2, α

2 I2, I2
)
, (7.31)

with α ≡ exp(i2π/3). Additionally, we will consider a Wilson line, around the second 2-torus,

with

γW,7 = diag
(
I7, α, α

2
)
, (7.32)

so the U(9) group in the stack of D7-branes is broken to U(3)× U(2)× U(2)× U(1)2.

The twisted cancellation conditions (3.48) on this case read

Trγθ,7 + 3Trγθ,3 = 0 , (7.33)

where γθ,3 refers to the possible D3-branes at the orbifold singularities. More concretely,

there are nine fixed points (n, 0), (n, 1) and (n,−1) in Σ4 = T 2 × T 2, with n = 0,±1, which

feel respectively the twists γθ,7, γθ,7γW,7 and γθ,7γ
−1
W,7. Thus, the condition (7.33) is satisfied

automatically at the six fixed points (n,±1), without the need of adding any D3-brane on

them. On the other hand, one has to add two D3-branes at each of the (n, 0) fixed points with

γθ,3n
= diag

(
α, α2

)
, n = 0,±1 , (7.34)
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in order to satisfy the twisted tadpole conditions on them.

Due to the Green-Schwarz mechanism, most of the U(1)’s becomes massive and the total

gauge group is reduced to the left-right SU(3) × SU(2)L × SU(2)R × U(1)B−L symmetric

extension of the Standard Model, plus some additional U(1)’s.

From the 77 sector one gets chiral multiplets transforming with respect to SU(3)×SU(2)L×
SU(2)R × U(1)B−L like

Qi
L = (3, 2, 1)1/3 , Qi

R = (3̄, 1, 2)−1/3 , H i = (1, 2, 2)0 , (7.35)

with i = 1, 2, 3. We thus get three generations of quarks together with three sets of Higgs

multiplets. From each of the 3n7 sectors one gets chiral multiplets

Ln = (1, 2, 1)−1, Rn = (1, 1, 2)1 , (7.36)

Dn = (3, 1, 1)−2/3, D
n

= (3̄, 1, 1)2/3 ,

plus four additional gauge singlets. Finally, from each 33 sector one has three more singlets.

In total the spectrum is that of a Standard Model with three generations of quarks, lepton

and Higgsses, and three sets of vector-like colored particles Dn and D
n
, which may in fact

become massive if one of the singlets from the 33 sector gets a vev.

The relevant superpotential terms for this model are

W77 = εijkQ
i
LQ

j
RH

k , (7.37)

W37 = Q3
L(
∑

n

LnD̄n) + Q3
R(
∑

n

RnDn) . (7.38)

Now, let us assume we add a (0,3) ISD flux background G1̄2̄3̄. From the results of Sec-

tion 6.3, the following soft-terms are obtained for gaugino masses, scalar masses and trilinear

terms

M3 = ML = MR = MB−L = M =
g
1/2
s

3
√

2
(G1̄2̄3̄)

∗ ,

m2
Q3

L
= m2

Q3
R

= m2
H3 = M2 ,

A77 = A37 = −h M .

Note that all soft terms are determined by a single parameter M and that only one generation

of quarks gets soft scalar masses. This is not however a serious problem, since, once gaugino

masses are present, the rest of the scalars will get a mass from one-loop diagrams with gaugi-

nos in the loop.

However, in this particular model, the masses of the squarks are not universal, which in

fully realistic models may lead to phenomenological problems with too much FCNC, as we
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described in Section 6.5. Furthermore, the Z3 projection does not allow for explicit supersym-

metric masses (µ terms), which is one of the ingredients of the MSSM. However, as we will

see in the following example, these are not generic properties of the flux-induced soft-terms,

but rather peculiarities of this model.

7.3.2 Model 2: D7-branes on a Z4 singularity.

For the following model we will consider a Z4 singularity with twist

θ : (z1, z2, z3) −→ (e2πi/4z1, e
2πi/4z2, e

πiz3) , (7.39)

and a stack of twelve D7-branes transverse to the third complex plane with

γθ,7 = diag
(
I4, α

3 I2, α I2, I2,−I2
)

(7.40)

and α = exp(i2π/4).

The Z4 action leaves 2 × 2 = 4 fixed points in Σ4 = T 2 × T 2, which we will denote by

(n,m), with n,m = 0, 1. We add now one Wilson line with Chan-Paton matrix

γW,7 = diag (I8,−I2, I2) (7.41)

around (say) the second torus. The local tadpole cancellation conditions have now the general

form Tr γθ,7 + 2Tr γθ,3 = 0 for each θ-twisted sector. It is easy to check that all local

tadpoles are cancelled if we locate four D3-branes at each of the two fixed points (n, 0) with

γθ,3n
= diag

(
α, α3,−I2

)
for n = 0, 1. The D7 gauge group is U(4)×U(2)L×U(2)R×U(2)2

and there are chiral multiplets from the 77 sector as follows

F i
L = (4, 2̄, 1) , FR = (4̄, 1, 2) , i = 1, 2 , (7.42)

H = (1, 2̄, 2) , H̄ = (1, 2, 2̄) .

Thus, there are two standard quark/lepton generations corresponding to the first two complex

planes. From the third (transverse) complex plane, we get Higgs doublets able to trigger elec-

troweak symmetry breaking, and with Yukawa couplings εijH̄F
i
LF

j
R to quarks and leptons.

We will not display the spectrum from the 37 sectors which just give vector-like multiplets

with respect to the Pati-Salam symmetry.

Turning on now ISD backgrounds corresponding to G1̄2̄3̄ and S3̄3̄, one obtains the following

non-vanishing soft terms

M4 = ML = MR = M =
g
1/2
s

3
√

2
(G1̄2̄3̄)

∗ ,

m2
H,H̄ = M2 , µ = − g

1/2
s

6
√

2
(S3̄3̄)

∗ ,

A77 = −h M , B = M µ , (7.43)
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where µ is a SUSY mass forH, H̄ . Although this Z4 model has only two generations, the above

set of soft terms is quite simple and predictive and have a number of interesting properties.

All soft terms are determined by the fluxes G1̄2̄3̄ and S3̄3̄ or, alternative by the parameters M

and µ. The squark/slepton masses are universal and equal to zero. This poses no phenomeno-

logical problem since they all get large masses at the one-loop level, as has been abundantly

analyzed in the SUSY literature. On the other hand, due to its universality, FCNC transitions

are suppressed. As we said, one of the interesting aspects is that both a µ and a B-term are

obtained, which are important ingredients in the MSSM, with the simple prediction B = Mµ.

7.3.3 Model 3: D3-branes on a Z3 singularity.

Let us illustrate finally a slightly different case on which the MSSM is embedded in the world-

volume D3-branes, giving rise to a dilaton dominated soft supersymmetry breaking scenario.

We will consider a Type IIB Z3 orientifold, where the orbifold action is generated by the

twist

θ : (z1, z2, z3) −→ (e2πi/3z1, e
2πi/3z2, e

−4πi/3z3) . (7.44)

Let us mod out by the orientifold action ΩPσ(−1)FL , where σ : zi → −zi, and introduce a G3

flux of the form

G3 = Adz1dz2dz3 , (7.45)

which fixes the dilaton vev to τ = iS = e2πi/3. The coefficient A is an even number to ensure

proper quantization over toroidal 3-cycles. The flux is purely (0, 3) and breaks supersymme-

try, but is ISD and obeys the equations of motion. Its contribution to the 4-form tadpole is

Nflux = 3|A|2.

There are 27 fixed points, which we label by (m,n, p), where m,n, p = 0,±1, as shorthand

for the three possible positions of the fixed points in each complex plane. At the fixed point

(0, 1, 0) (and its orientifold mirror (0,−1, 0)) we locate 7 D3’s (see Figure 7.1) with Chan-Paton

matrices

γθ,3̄ = diag
(
I3, α I2, α

2 I2
)
. (7.46)

In order to cancel twisted tadpoles at the fixed points (0, n, p) we add 6 anti-D7-branes passing

through them, with Chan-Paton matrix

γθ,7̄ = diag
(
I2, α I2, α

2 I2
)
. (7.47)

We furthermore add a Wilson line γW on the second complex plane, given by

γW,7̄ = diag
(
α, α2, I2, I2

)
. (7.48)

In this way the gauge group coming from the D7’s is broken to U(2)×U(1) and the different

fixed points have now different D7-brane CP matrices. We complete a consistent configuration,



134 7. Applications to model building.

3 D7 3 D76 D7*
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X  = −11 X1 = 0 X1 = + 1

0

0

0

0
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0

X3

X2

X1

27 fixed points

Figure 7.1: A compact Type IIB T 6/σ(−1)FLΩPZ3 orientifold model with a three generation

SU(3) × SU(2)L × SU(2)R × U(1)B−L gauge theory. Here Xi represent the three complex

compact dimensions. The gauge theory lives on the worldvolume of 7 D3’s located at the fixed

point marked LR (and its orientifold mirror). The rest of the black dots represent one D3.

Upon switching on a self-dual (0, 3) flux RR-tadpoles cancel and SUSY-breaking soft terms

appear on the worldvolume of the LR branes.

cancelling all the RR twisted tadpoles, as follows (see Figure 7.1). We locate one D3-brane

at each of the four fixed points (0,±1,±1) with CP matrix γθ,3̄ = 1, and 8 D3-branes at the

origin, with CP matrix γθ,3 = diag
(
αI4, α

2I4
)
. Finally, in order to cancel global RR tadpoles,

we add 3 D3’s as well as 3 parallel D7-branes (and their orientifold mirrors) passing respec-

tively through the fixed points of type (1, n, p) and (−1, n, p) (see [15] for details). One can

easily check that all twisted tadpoles cancel in this configuration.

The total untwisted RR 4-form charge in the configuration is

QRR = −32(O3)− 24(D3∗) + 8(D3) = −48 . (7.49)

This charge is neatly cancelled if we add ISD (0, 3) flux with A = 4, which contributes to the

RR-charge 3× (4)2 = 48 units.

This brane configuration is (meta)stable. The D7 and D7’s are stabilized on the planes

passing through the orbifold points. They are forced to remain there in order to maintain

twisted RR tadpole cancellation. Equivalently, the orbifold projection removes the scalar as-

sociated to flat directions describing brane motion. This will avoid D7- D7 annihilation. The

addition of fluxes will not destabilize them, since their only effect would be to generate a

potential for those scalars, if they were present.
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The same happens for the D3’s whose scalars get masses of the dilaton dominated type.

The D3-branes at the origin do not get masses from fluxes, since they feel the ISD flux which

gives no soft terms (to leading order) for them. They are however stuck at the origin again by

the twisted RR tadpole conditions, which would be violated if any of those branes travelled to

the bulk (equivalently, their worldvolume field theory does not contain scalars parametrizing

the possibility of moving away the D3-branes). In fact the four D3’s at the four (0,±1,±1)

fixed points are also stuck by twisted tadpole conditions. All in all, the whole brane configu-

ration is (meta)stable due to a combination of trapping at the fixed points and flux-induced

scalar potentials.

The gauge group is U(3)×U(2)×U(2), with two anomalous U(1)’s being actually massive,

and the diagonal combination giving B − L. In the 33 sector, we obtain matter fields

33 sector : 3 [(3, 2̄, 1) + (3̄, 1, 2) + (1, 2, 2̄)] , (7.50)

corresponding to three left(right)-handed quarks Qa
L(Qa

R), a = 1, 2, 3, and three sets of stan-

dard Higgs multiplets Ha. From the 37 and 73 sectors, one gets

37 sector : (3, 1, 1; 1)−1 + (3, 1, 1; 2)0 + (1, 2, 1; 1)1 + (1, 2, 1; 2)0 ,

73 sector : (3̄, 1, 1; 1)1 + (3̄, 1, 1; 2)0 + (1, 1, 2; 1)1 + (1, 1, 2; 2)0 . (7.51)

These contains three left(right)-handed leptons La(Ra). There are also some extra vector-like

pairs of color triplets which in general become massive once some 7i7i states get vevs (see

[15]). The orientifold projection map the sets of branes at (0, 1, 0) and (0,−1, 0) fixed points

to each other, so only one copy of the LR model is obtained.

The quarks in this model have a superpotential

WY = g
√

2εabcQ
a
LQ

b
RH

c . (7.52)

On the other hand there are no renormalizable lepton Yukawas which may only appear after

a blowing up of the singularity [15]. We will thus concentrate here on the quarks. The

flux background is of ISD (0, 3) type, hence it leads to dilaton dominated soft terms on the

worldvolume of the anti-D3-branes. As discussed in Section 6.3, these are

m2
Qa

L
= m2

Qa
R

= m2
Ha = m2

a a = 1, 2, 3 ,

m2
1 +m2

2 +m2
3 =

gs

6
|G1̄2̄3̄|2 ,

M3 = ML = MR = MB−L = M =
g
1/2
s√
2
G1̄2̄3̄ ,

Aabc = −habcM , (7.53)

with the rest of the soft terms vanishing. This kind of SUSY-breaking soft terms applied to

the MSSM have been abundantly studied in the literature, and provides a phenomenologically

interesting and viable soft term pattern [181, 8, 182, 183, 184].
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Chapter 8

Final comments.

Flux compactifications introduce a canonical mechanism to address the long-standing problem

of moduli stabilization in Superstring Theory compactifications. Besides this, they constitute

a tractable source for supersymmetry breaking in a computable regime. Thus, fluxes are ad-

vocated to play a prominent role in embedding the Standard Model into Superstring Theory.

In this thesis we have reviewed some of our contributions to these topics. In particular,

we have analyzed the vacuum structure of the flux induced potential for a simple Type IIA

T 6/ΩP (−1)FLσ orientifold with constant NSNS, RR and metric fluxes. Compared to Type

IIB orientifolds with ordinary fluxes, Type IIA orientifolds possess a richness of flux options,

leading to vacua with all the closed string moduli stabilized in AdS without the need of non-

perturbative effects.

Moreover, Type IIA metric fluxes lead to new possibilities for cancelling the RR tadpoles.

Indeed, one may find situations on which the fluxes do not contribute to the RR tadpoles

or contribute negatively, i.e. as O-planes do, thereby providing the interesting possibility of

disposing of orientifold planes in some cases. This represents a breakthrough with respect

to the Type IIB compactifications, where the ISD condition enforces the flux to contribute

positively to the RR tadpoles, so in order to fulfill the tadpole conditions and at the same

time stabilize the moduli at large regions, one usually has to take manifolds with large Euler

numbers.

In this sense, our approach has been to consider the metric fluxes as a deformation added

to the original torus. The resulting twisted torus is a half-flat manifold with reduced cohomol-

ogy. Thus, metric fluxes are somehow enlarging the region of the moduli space to which we

may access, taking into account not only the possible geometrical deformations of the torus,

but as well some topological deformations.
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It is enlightening to view the twisted torus structure as arising from mirror symmetry of

Type IIB orientifolds with non-vanishing NSNS 3-form flux. Then, one may identify among

the different vacua of Type IIA orientifolds, the mirrors of some of the Type IIB no-scale

vacua. Inspired by this fact, one may wonder whether Type IIB flux induced potentials can

also depend on all moduli. The addition of non-geometric fluxes in Type IIB orientifolds re-

stores T-duality between Type IIA and Type IIB theories, but on this case monodromies in the

internal manifold mix the metric with the B field, therefore removing its geometrical character.

The inclusion of non-geometric fluxes spoils the Type IIB S-duality inherited by the ef-

fective potential in presence of standard RR and NS backgrounds. In order to recover the

symmetry in presence of non-geometric fluxes one has to introduce an extra set of S-dual

fluxes. The new and old fluxes are subject to a number of Bianchi and RR tadpole cancella-

tion conditions. These can be obtained by making use of SL(2,Z)S transformations. We have

seen that the arising structure is rich enough to hold some Minkowski vacua with not only the

dilaton and complex structure moduli stabilized, but as well the Kähler moduli.

Generalizing this picture, one may impose in the superpotential invariance under the full

duality group. This idea finds support in the results from heterotic and M-theory compacti-

fications. In our toroidal examples we have seen this requires the presence of 27 parameters

(fluxes) describing the complete SL(2,Z)7-invariant set of backgrounds. Some of these flux

degrees of freedom have a simple interpretation as metric fluxes or explicit RR or NS back-

grounds in some particular version of Superstring Theory. Some others do not admit a simple

interpretation and their origin is still to be understood. Yet, all of these fluxes may in general

be present in the complete underlying theory.

A natural question in all these models, is the interplay between D-branes and fluxes. We

have seen that NSNS 3-form fluxes may induce tadpoles for the gauge potentials in the D6

and in the D7-branes. On the other hand, and related to this, metric and non-geometric

fluxes parametrize topological changes in the internal manifold so that some of the original

cycles disappear from the homology and the corresponding moduli are lifted from the massless

spectrum. Wrapping D-branes on these submanifolds may induce inconsistencies in the theory

inside the brane. Here we have analyzed the example of D6-branes in Type IIA orientifolds.

In this case, fluxes may induce masses for the RR axions mediating the cancellation of U(1)

anomalies through the Green-Schwarz mechanism. Such terms do not respect the U(1) trans-

formation properties for the axions. Imposing consistency, then requires some constraints on

the 3-cycles which the D6-brane may wrap. These conditions can be viewed as a generalization

of the Freed-Witten anomaly cancellation. In particular, in the case of N = 1 supersymmetric

AdS vacua, they force the different sets of D6-branes to be calibrated, thus preserving N = 1

supersymmetry in four dimensions. In this way, one may construct explicit models with chiral

spectrum close to that of the MSSM with three generations and with all the closed string

moduli stabilized in AdS, where the N = 1 supersymmetry is dynamically imposed by the



8. Final comments. 139

background fluxes. We have constructed an example of such a model on which we make use

of the fluxes in order to cancel the RR tadpoles, without the aid of an extra orbifold twist.

From the point of view of the four dimensional effective action, the dynamics of the D-

branes in presence of closed string fluxes is determined through the flux induced potential

for the open string moduli. In terms of the MSSM, this one may be identified with the

soft supersymmetry breaking potential, with the open string moduli corresponding to the

squarks/sleptons and Higgsses. We have computed from a microscopical local point of view

the soft supersymmetry breaking lagrangian induced by RR and NSNS 3-form fluxes in the

worldvolume of D3 and D7-brane configurations. For ISD fluxes, the soft terms in the world-

volume of D3-branes vanish, in agreement with the no-scale structure of the potential. On

D7-branes however, there appear non-null soft supersymmetry breaking patterns even for

N = 1 supersymmetric fluxes. This is interesting, since such fluxes lead to consistent string

compactifications to four dimensional Minkowski space without any runway potential for the

Kähler moduli. Hence, these models constitute four dimensional string vacua with zero cos-

mological constant and non-trivial soft terms for the gauge sector on D7-branes. Moreover,

the D7 geometric moduli are generically stabilized, being this fact particularly relevant for

KKLT scenarios.

The richness of the flux induced soft supersymmetry breaking patterns is such that allows

for a variety of phenomenological scenarios. In particular, ISD fluxes induce a positive defi-

nite potential in the worldvolume of the D7-branes, parametrized by the gaugino masses and

the µ-terms. The interesting properties for this potential could address some of the present

empirical constraints for the soft supersymmetry breaking lagrangian. On the other hand, in

the worldvolume of D3-branes, ISD fluxes induce dilaton domination patterns, on which the

breaking of the supersymmetry can be understood as coming from the vev of the F auxiliary

field associated to the axiodilaton S.

Thus, based on all these ideas, we can affirm that the prospects of flux compactifications

are promising. Still a lot of work has to be done, both in the direction of analyzing the flux

induced soft SUSY breaking patterns as of understanding the possible flux degrees of freedom

in general orientifold compactifications and constructing the corresponding ten dimensional

supergravity solutions behind them. We hope to come back to all these issues in the near

future.
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Chapter 9

Comentarios finales.

Las compactificaciones en presencia de flujos introducen un mecanismo canónico para la reso-

lución del problema de la estabilización de moduli en compactificaciones de Teoŕıa de Super-

cuerdas. Por otro lado, constituyen una fuente tratable para la ruptura de supersimetŕıa en un

régimen computacional. De este modo, los flujos juegan necesariamente un papel prominente

en la inclusión del Modelo Estándar en Teoŕıa de Supercuerdas.

Aqúı hemos revisado algunas de nuestras contribuciones a estos temas. En particular,

hemos analizado la estructura de vaćıos del potencial inducido por los flujos en un sencillo

orientifold T 6/ΩP (−1)FLσ de Tipo IIA con flujos constantes NSNS, RR y métricos. Com-

parado a los orientifolds de Tipo IIB, los orientifolds de Tipo IIA poseen una riqueza de flujos

que da pie a vaćıos con todos los moduli de cuerda cerrada estabilizados en AdS sin la necesi-

dad de efectos no perturbativos.

Además, los flujos métricos abren nuevas posibilidades para la cancelación de los tadpoles

RR. Aśı, uno puede encontrar situaciones en las que los flujos no contribuyen a los tadpoles

RR o contribuyen negativamente, es decir, del mismo modo que los O-planos, proporcionando

en algunos casos la interesante posibilidad de suprimir O-planos. Esto constituye un notable

avance respecto a las compactificaciones de Tipo IIB, donde la condición de ISD fuerza al flujo

a contribuir positivamente a los tadpoles RR de modo que, para satisfacer las condiciones de

tadpole y al mismo tiempo estabilizar los moduli en valores grandes, uno t́ıpicamente se ve

obligado a considerar variedades con números de Euler grandes.

Nuestra aproximación al problema ha sido considerar los flujos métricos como una defor-

mación añadida al toro original. El toro con torsión resultante es una variedad semi-plana con

cohomoloǵıa reducida. De este manera, los flujos métricos en cierto modo están extendiendo la

región del espacio de moduli a la cual podemos acceder, tomando en consideración no solo las

posibles deformaciones geométricas del toro, sino también algunas deformaciones topológicas.
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Resulta iluminador el visualizar la estructura del toro con torsión como la resultante de

hacer T-dualidad en orientifolds de Tipo IIB con flujos de 3-forma NSNS no nulos. En este

caso, uno puede identificar entre los diferentes vaćıos de los orientifolds de Tipo IIA, los vaćıos

especulares de algunos de los modelos sin escala de Tipo IIB. Inspirados por este hecho, cabe

preguntarse si los potenciales de Tipo IIB inducidos por los flujos pueden también depender

de todos los moduli. La inclusión de flujos no geométricos en orientifolds de Tipo IIB restaura

la T-dualidad entre teoŕıas efectivas de Tipo IIA y de Tipo IIB, pero en este caso las mono-

dromı́as en la variedad interna mezclan la métrica con el campo B, desapareciendo de este

modo el carácter geométrico de la compactificación.

La inclusión de flujos no geométricos elimina la S-dualidad heredada por el potencial efec-

tivo en presencia de flujos RR y NSNS ordinarios. Para recuperar esta simetŕıa uno ha de

introducir un nuevo conjunto de flujos S-duales. Tanto los flujos nuevos como los antiguos

están sujetos a una serie de condiciones de Bianchi y de cancelación de tadpoles. Éstas pueden

ser obtenidas mediante uso de transformaciones de SL(2,Z)S . Hemos visto que la estructura

resultante es suficientemente rica como para contener vaćıos Minkowski con no solo el dilatón

y los moduli de estructura compleja estabilizados, sino también los moduli de Kähler.

Generalizando este esquema, uno puede imponer en el superpotencial invarianza bajo el

grupo de dualidad completo. La idea se sustenta en los resultados provenientes de compac-

tificaciones de la heterótica y de teoŕıa M. En nuestros ejemplos toroidales hemos visto que

esto requiere la presencia de 27 parámetros (flujos) para describir el conjunto completo de

configuraciones invariantes bajo SL(2,Z)7. Algunos de estos grados de libertad poseen una

interpretación simple como flujos métricos, RR o NSNS expĺıcitos en alguna de las versiones

particulares de Teoŕıa de Supercuerdas. Otras por contra no admiten tal interpretación y su

origen todav́ıa está a expensas de ser comprendido. A pesar de todo, es muy posible que todos

estos flujos estén de alguna manera presentes en una formulación completa de la teoŕıa.

Una cuestión natural en todos estos modelos, es la interrelación entre D-branas y flujos.

Hemos visto que los flujos de 3-forma NSNS pueden inducir tadpoles para los potenciales gauge

que viven en las D6 y en las D7-branas. Por otro lado, y directamente relacionado con esto, los

flujos métricos y no geométricos parametrizan cambios topológicos en la variedad interna de

modo que algunos de los ciclos originales desaparecen de la homoloǵıa y los moduli correspon-

dientes son desplazados del espectro no masivo. El enrollar D-branas en estas sub-variedades

podŕıa inducir inconsistencias en la teoŕıa dentro de la brana. Aqúı hemos analizado el caso

particular de las D6-branas en orientifolds de Tipo IIA. En este caso, los flujos pueden inducir

masas para los axiones que median la cancelación de anomaĺıas U(1) a través del mecanismo de

Green-Schwarz. Tales términos no respetan las propiedades de transformación de los axiones

bajo rotaciones U(1). El imponer consistencia requiere entonces ciertas restricciones en los

3-ciclos que las D6-branas pueden enrollar. Estas condiciones pueden ser visualizadas como
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una generalización de la cancelación de anomaĺıas de Freed-Witten. En particular, en el caso

de vaćıos AdS N = 1 supersimétricos, estas condiciones fuerzan a los diferentes conjuntos de

D6-branas a estar calibrados, es decir, a preservar la misma supersimetŕıa N = 1 en cuatro di-

mensiones. De este modo, uno puede construir modelos expĺıcitos con espectro quiral cercano

al del MSSM con tres generaciones y con todos los moduli de cuerda cerrada estabilizados en

AdS, dónde además la supersimetŕıa N = 1 es impuesta dinámicamente por los flujos. Aqúı

hemos mostrado un ejemplo concreto en el que además se hace uso de los flujos para cancelar

los tadpoles RR sin la ayuda de una acción orbifold.

Desde el punto de vista de la teoŕıa efectiva en cuatro dimensiones, la dinámica de las

D-branas en presencia de flujos de cuerda cerrada está determinada a través del potencial

para los moduli de cuerda abierta inducido por los flujos. En términos del MSSM, éste puede

ser identificado con el potencial de ruptura de supersimetŕıa, estando los moduli de cuerda

abierta asociados a los squarks/sleptones y Higgsses. Aqúı hemos calculado, desde un punto

de vista microscópico, el lagrangiano de ruptura de supersimetŕıa inducido por los flujos de las

3-formas NSNS y RR en el volumen de las D3 y D7-branas. Para flujos ISD, los términos soft

en el volumen de las D3-branas se hacen nulos, en concordancia con la estructura sin escalas

del potencial. En las D7-branas sin embargo aparecen patrones de ruptura de supersimetŕıa

no nulos incluso para flujos N = 1 supersimétricos. Esto resulta interesante puesto que tales

flujos dan pie a compactificaciones de cuerdas consistentes con espacios cuadridimensionales

de tipo Minkowski. De este modo, estos modelos constituyen vaćıos de cuerdas con constante

cosmológica nula y términos soft no nulos en el sector gauge de las D7-branas. Además, los

moduli geométricos de las D7-branas son generalmente estabilizados, siendo este hecho par-

ticularmente relevante para escenarios KKLT.

La riqueza de los patrones de ruptura de supersimetŕıa inducidos por los flujos es tal que

permite una gran variedad de escenarios fenomenológicamente viables. En particular, los flu-

jos ISD inducen un potencial definido positivo en el volumen de las D7-branas, que puede ser

parametrizado simplemente por las masas de los gauginos y los términos µ. Las interesantes

propiedades de este potencial podŕıan arrojar luz sobre algunas de las restricciones experi-

mentales observadas para el lagrangiano de ruptura de supersimetŕıa. Por otro lado, en el

volumen de las D3-branas, los flujos ISD inducen patrones dominados por el dilatón, en los

cuales la ruptura de la supersimetŕıa se puede entender como proveniente del vev adquirido

por el campo auxiliar F asociado al axiodilatón S.

Basándonos en todas estas ideas, podemos afirmar por tanto que los prospectos de las

compactificaciones con flujos son prometedores. Todav́ıa mucho trabajo ha de ser realizado,

tanto en la dirección del análisis de los patrones de ruptura de supersimetŕıa inducidos por

los flujos, como de la comprensión de los posibles grados de libertad asociados a los flujos en

compactificaciones orientifold generales y de la construcción de soluciones de supergravedad

en diez dimensiones. Esperamos volver sobre todos estos temas en un futuro cercano.
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Appendix A

N = 1 Supersymmetry in 4

dimensions revisited.

Most of the content of this thesis is related to four dimensional N = 1 supersymmetry. Su-

persymmetry has played indeed a crucial role, addressing stability issues for the D-brane

configurations and the low energy limit of Type II orientifolds. In this appendix we would like

thus to summarize some of the main features of four dimensional N = 1 supersymmetry.

As it is well known, supersymmetry provides an efficient solution to the hierarchy problem

by associating to every fermion a scalar super-partner whose contribution to the quadratic

divergences is the same but with opposite sign. From the mathematical point of view, the

algebra of supersymmetry arises as a natural extension of the Poincaré group. In fact, during

the late 60’s, Coleman and Mandula [1] showed that any Lie group which contains the Poincaré

group and an internal symmetry group is always a direct product of both groups and therefore

it leads to trivial physics. Therefore, it was necessary to consider more general structures. This

was done by Gol’fand and Likhtman [185] who considered a subset {Qα} of generators of the

algebra as satisfying anti-commutation relations, in what is called a ‘Z2 graded structure’.

Taking a minimal set of these anticommuting generators in the spinorial representation1 of

the Lorentz group, starting with the Poincaré group and applying the generalized Jacobi

1Actually, this is the only choice giving rise to the generators of the translations in the vectorial represen-

tation.
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identities for graded algebras one obtains the N = 1 supersymmetry algebra (see e.g. [186])2

{Qα, Qβ̇} = 2Pµ(σµ)αβ̇ , (A.1)

[Qα, P
µ] = 0 , (A.2)

[Qα,Mµν ] = i(σµν)β
αQβ , (A.3)

[Qα, R] = −iQα , (A.4)

where we have decomposed the Majorana supercharge Q into its two Weyl components Qα,

so the indices α and α̇ belong respectively to the first and the second SU(2) of SO(3, 1) '
SU(2)L × SU(2)R, with metrics εαβ = εα̇β̇ = iσ2 and related among themselves by the

conjugation operation Qα̇ = (Qα)∗. Pµ is the generator of translations, i.e. the space-time

momentum, Mµν the Lorentz generators given by

Mµν = − i
4
[γµ, γν ] (A.5)

and σµν = σ[µσν]. R is the only allowed internal generator for this case, the so called R-

symmetry, which here represents a chiral rotation.

We observe thus how the internal U(1) symmetry gets combined in a non trivial fashion

with the supersymmetry generators, avoiding on this way the no-go theorem of Coleman and

Mandula pointed out above.

Let us review briefly the construction of N = 1 supersymmetric theories [187]. The

possible particle content of the theory is given by the different irreducible representations of

the algebra. The easiest way to construct them is by means of the superspace formalism on

which the supercharges are considered as generators of translations in the fermionic coordinates

ε and ε̄, which now are Grassmann numbers. The action of the SUSY generators on a given

superfield S(xµ, ε, ε̄) is then given by

−iPµ = ∂µ , (A.6)

iQα = ∂εα − iσµ
αα̇ε̄

α̇∂µ ≡ Dα , (A.7)

−iQ̄α̇ = ∂ε̄α̇ − iεασµ
αα̇∂µ ≡ D̄α̇ . (A.8)

Hence, the left chiral irreducible representations will correspond to superfields Φ satisfying

the condition D̄α̇Φ = 0. Expanding now in the fermionic coordinates we get the following

components

Φ(y, ε) = φ(y) +
√

2εψ(y) + εεF (y) , (A.9)

with yµ = xµ + iεσµε̄. So a left chiral supermultiplet is a (0, 1/2) multiplet, whereas its CPT

conjugate, a right chiral supermultiplet, is a (0,−1/2) multiplet.

2Here we will adopt the mostly minus signature for the metric in four dimensional N = 1, as it is usual

in field theory. Therefore, there will be an additional minus sign in the contractions of the Minkowski indices

when these come from a higher dimensional metrics, as noticed in the Appendix of [20].
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The F-field, as usual, is not a physical field but an auxiliary field. In fact, the closure of

the supersymmetry algebra is given by

[δε, δε′ ]ψ = −2(εσµε̄′ − ε′σµε̄)i∂µψ = 0 , (A.10)

which is equivalent to impose the system to be on-shell

σµ∂µσ = 0 , (A.11)

with σ̄µ = (I2,−~σ). The F-field extends this relation to off-shell situations, introducing ad-

ditional bosonic degrees of freedom which vanish on-shell, so we have in general the same

amount of fermionic and bosonic components.

The vector supermultiplet is constructed imposing the reality condition

S(x, ε, ε̄)+ = S(x, ε, ε̄) , (A.12)

which gives rise to the expansion

V (x, ε, ε̄) = c(x) + iεχ(x)− iε̄χ̄(x) + (iεεε̄[λ̄(x) +
i

2
σ̄µ∂µχ] + h.c.)+

+
1

2
εεε̄ε̄[D(x) − 1

2
∂µ∂

µ] (A.13)

with C, χ and D auxiliary fields. But since a U(1) gauge transformation is given now by

V → V + i(Λ− Λ+) , (A.14)

with Λ a chiral superfield, we have extra degrees of freedom in the gauge parameter that we

can fix. The usual choice is the so called Wess-Zumino gauge on which we use this to eliminate

C, M , N and χ, so the gauge transformation becomes the usual one

Vµ → Vµ − ∂µ(η + η+) , (A.15)

η being the lowest component of the chiral superfield, and the superfield expansion reduces to

V a = εσµε̄V a
µ (x) + (iεεε̄λ̄a(x)− iε̄ε̄ελa(x)) +

1

2
εεε̄ε̄Da(x) . (A.16)

Therefore, the vector multiplet is a (1/2, 1) multiplet.

Up to now we have been talking about global supersymmetry. However, by making it

local, it is possible to couple supersymmetry to gravity and set up N = 1 supergravity. The

way to do it is by means of the usual Noether procedure [187, 186]. Let us illustrate it for

the simplest case, the Wess-Zumino model, with just one free chiral multiplet. The globally

invariant action is given by3

L = (∂µφ)+(∂µφ) +
i

2
ψ̄γµ∂µψ , (A.17)

3Here ψ is in the Majorana form.
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with supersymmetry transformations

δε(Re φ) = ε̄ψ , (A.18)

δε(Im φ) = −iε̄γ(5)ψ , (A.19)

δεψ = −iγµ[∂µ((Re φ) − iγ(5)(Im φ))]ε . (A.20)

Now, making ε = ε(x) we have

δεL = ∂µε̄J
µ(x) , (A.21)

with

Jµ(x) = γµ[γnu∂ν((Re φ)− iγ(5)(Im φ))]ψ . (A.22)

So we introduce a new superfield, the supergravity multiplet, a (3/2,2) multiplet composed

by the gravitino Ψµ
α and the graviton hµν , and we add the following terms in the lagrangian

density

LN = −κ
2
ΨµJ

µ − κhµνT
µν +O(κ2) , (A.23)

with T µν the energy-momentum tensor. The supergravity multiplet therefore plays the role

of a vector superfield for the local supersymmetry. Now, L + LN is invariant under local

supersymmetry transformations, although the action is not renormalizable anymore. It only

rests to add the kinetic terms for the new superfield. These are given by the Hilbert action

for the metric, and the Rarita-Schwinger action for the gravitino

Lkin = − 1

2κ2
eR− 1

2
εµνρσ ψ̄µγ(5)γνDρψσ , (A.24)

with em
µ the vielbein and Dµ the covariant derivative with respect to gravity

Dµ = ∂µ +
1

2
ωµ

mnσmn . (A.25)

It is possible to show that the most general N = 1 SUSY invariant non-renormalizable

action can be written as [188, 189]

L =

∫
d2εd2ε̄K(Φ+e2gV ,Φ) +

∫
d2εW (Φ) + h.c.+

∫
d2εfab(Φ)Fα

a Fαb + h.c. , (A.26)

where K is the Kähler potential, which determines the kinetic terms and derivative couplings

(D-terms); W is the superpotential, an holomorphic function which contains the mass terms

and interaction terms (F-terms); fab is the gauge kinetic holomorphic function, which deter-

mines the gauge couplings; and F a
α is the gauge field strength superfield given by

F a
α = D̄2DαV

a + igfabcD̄2(DαV
b)V c . (A.27)

In the particular case of renormalizable theories these functions take the form

K(Φ+e2gV ,Φ) = Φ+e2gV Φ , (A.28)

W (Φ) =
1

2
mijΦ

iΦj +
1

3
λijkΦiΦjΦk ,

fab = g−2
a δab ,
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which holds the bosonic lagrangian

e−1LB = −eG(Gi(G−1)j
iGj − 3)− g2

2
Re f−1

ab G
i(T a)j

iφjG
k(T b)l

kφl−

− 1

4
(Re fab)F

a
µνF

µνb +
i

4
(Im fab)F

a
µν F̃

µνb +Gi
jDµφiD

µφj∗ − 1

2
R (A.29)

with the Kähler metric G defined by

G = K(φ, φ̄) + log|W (φ)|2 , (A.30)

Gi =
∂G

∂φi
, etc. (A.31)

The fermionic piece is however much more complicated. Here we will show just the mass terms

e−1LF =
1

2
eG/2[−Gij −GiGj +Gl(G−1)l

kGk
ij ]ψ̄iψj +

1

4
eG/2Gl(G−1)k

l f
∗
ab,kλ

aλb . (A.32)

The first line of eq. (A.29) corresponds to the scalar potential V (φ, φ̄). The first term contains

the F-terms whereas the second the D-terms. Very often it results useful to rewrite the F-term

of the scalar potential as

VF = eK
(
gij̄DiWDj̄W − 3|W |2

)
, (A.33)

with the Kähler derivative given by

DiW = ∂iW +W∂iK . (A.34)

With all of this, the Minimal Supersymmetric extension of the Standard Model (MSSM)

is built by taking the following steps

1. Promote every field of the Standard Model to its corresponding superfield.

2. Consider two Higgs doublets, instead of just one, with opposite supercharges, so the

theory remains anomaly free and the superpotential is holomorphic.

3. Add a supersymmetry breaking pattern.
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Appendix B

N = 4 Super Yang-Mills and its

decompositions.

Apart from the N = 1 supersymmetry algebra summarized in Appendix A, it is possible

to construct algebras with extended supersymmetry. These naturally arise in the context of

String Theory, as we have seen. In particular, we will devote this appendix to the algebra of

four dimensional N = 4 supersymmetry, or what is the same, N = 1 in ten dimensions. This

is the maximal supersymmetry algebra that can be built inside a D-brane in String Theory

and thus, the other supersymmetric theories appearing in the worldvolume of the D-branes

can be understood as truncations of this theory.

We can build the N = 4 algebra by direct procedures, like the ones we schematically

mentioned in Appendix A, or by dimensional reduction of the ten dimensional N = 1 super-

symmetry [190]. From this last point of view, the R-symmetry acquires a nice geometrical

interpretation as the product of the R-symmetry of the original theory before performing

the dimensional reduction and the isometry group of the manifold on which we reduce. On

this case, we have a single Majorana-Weyl supercharge in the 16 of SO(9, 1), so there is no

R-symmetry.1 Hence, the whole internal symmetry of N = 4 in four dimensions can be un-

derstood as entirely coming from the isometry group of a 6 torus, i.e. SO(6).

The four dimensional N = 4 algebra is given by

{QA
α , Q̄

b
β} = −2Pµδ

ABΓµ
αβ − 2PRmΓmABδαβ , (B.1)

and the only irreducible representation of the global algebra is the vector supermultiplet, given

by a non-chiral multiplet (−1,−(1/2)4, 06, (1/2)4, 1). Hence, we have a pure Super Yang-Mills

1In N = 1 in four dimensions we have as well a single supercharge in the 4 of SO(3, 1) but, as it is in the

Weyl (or the Majorana) representation, chiral rotations are allowed.
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theory with lagrangian density

L = − 1

4g2
Tr(FµνF

µν +2DµφmD
µφm− [φm, φn]2)− i

2g2
Tr(ψ̄ΓµDµψ+ iψ̄Γm[φm, ψ]). (B.2)

The effect of the SO(6) R-symmetry is to rotate components of equal spin inside the vector

multiplet. In particular, the six scalars transform in a vectorial 6v of SO(6) whereas the four

spinors transform in the spinorial representation 4s. Its CPT conjugates transform therefore

in the 4c.

It is interesting to note that the four-dimensional N = 4 theory can be rearranged in terms

of N = 1 supermultiplets. Obviously, since the symmetry of N = 4 is much bigger than the

one of N = 1, there are multiple ways to choose an N = 1 subset inside the N = 4 theory.

This freedom is parametrized by the choice of the N = 1 R-symmetry group. Indeed, for a

given decomposition (see e.g. [87])

SO(6)→ SU(3)× U(1) , (B.3)

4s → 13 + 3−1 ,

4c → 1−3 + 3̄1 ,

6v → 3−1 + 3̄1 ,

the U(1) corresponds to the R-symmetry of N = 1 whereas the SU(3) remains as an extra

global symmetry of the theory. It is possible now to rearrange the gaugino 13 together with

the gauge boson in a N = 1 vector supermultiplet and its CPT conjugate; and the six different

scalars 3±1 in three chiral supermultiplets and its CPT conjugates.

Other interesting decomposition is in terms of N = 2 multiplets. This supersymmetry usu-

ally appears in 1/4 BPS systems in String Theory, such as in the twisted sector of a D3/D7

system in flat space. From the geometrical point of view it can be understood as coming from

dimensional reduction of the six dimensional N = 1 supersymmetry algebra, where there is a

single self-conjugated Weyl supercharge. The R-symmetry group of N = 2 in four dimensions

is SU(2) whereas the possible irreducible representations of the global algebra are then the

hypermultiplet, given by the non-chiral multiplet (−1/2, 02, 1/2) + (−1/2, 02, 1/2), and the

vector supermultiplet, given by (−1, (−1/2)2, 0) + (0, (1/2)2, 1).

The way to decompose N = 4 SYM in terms of N = 2 representations is through the

splitting of the R-symmetry group accordingly to

SO(6)→ SO(4)× SO(2) ' SU(2)× SU(2)× U(1) , (B.4)

4s = (2, 1)+ + (1, 2)− ,

4c = (1, 2)+ + (2, 1)− ,

6v = (2, 2) + (1, 1)± ,
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so the three possible ways to factorize SO(4) in SU(2)× SU(2) correspond to the three pos-

sible orthogonal choices of the complex structure in the internal hyper-Kähler manifold of

holonomy SO(4) ' SU(2) × SU(2). One of the SU(2) of SO(4) will act as the R-symmetry

of the N = 2 theory, whereas the remaining SU(2)× U(1) will be an extra global symmetry.

Once we fix the complex structure in the internal manifold, it is possible to rearrange the

N = 4 vector multiplet in a N = 2 vector multiplet, composed by the gauge boson Aµ, the

gaugino λ, Ψ3 and Φ3; and an hypermultiplet, composed by Ψ1, Φ2, Φ3 and Ψ2. The effect of

the R-symmetry will be then to rotate Φ1 into Φ2 and Ψ3 into λ.

In the case of N = 2 supersymmetry, the Kähler potential can be derived from an holo-

morphic prepotential F(Φ), Φ representing the hypermultiplets of the theory,

K(Φ,Φ∗) = Im

(
∑

a

Φa∗∂aF(Φ)

)
, (B.5)

so the Kähler metric is given by

Gab̄ = Im(∂a∂bF ) , (B.6)

which is also known as ’rigid special Kähler metric’. It is important to notice however that

this hyper-Kähler structure of the moduli space of N = 2 is spoiled when we couple it to

gravity, although this will not affect us since, as we already commented, we will work in the

flat-limit.
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Appendix C

Spinorial embedding of

background fluxes.

We have seen in Section 5.5 how the generalized duality invariant superpotential presents a

SL(2,Z)7 symmetry. In this appendix we will describe how the background fluxes are arranged

into this structure and their embedding into the spinorial representation of SO(7, 7; Z). This

was done [55].

Each of the seven SL(2,Z)X factors consists of two generators SX,1 and SX,2

SX,1 =

(
1 1

0 1

)
, SX,2 =

(
0 −1

1 0

)
, (C.1)

acting on the modulus MX . From eq. (5.199) one can see that SX,1 corresponds to shifts on

the corresponding axion and SX,2 to M-duality transformations MX → 1/MX .

The set of fluxes, denoted G, contains 128 weights of the form (±,±,±,±,±,±,±), where

± stands for ± 1
2 . The transformation MX → 1/MX is then simply given by

SX,2(n1, . . . , nX , . . . , n7) = Sign(nX)(n1, . . . ,−nX , . . . , n7) . (C.2)

Thus, eq. (5.203) transforms in such a way that the full supergravity scalar potential is in-

variant under the SX,2 generators. The resulting map between weights and flux components

is presented in Table C.1. We see, for instance, that F 3 fluxes (Table 5.4) correspond to

(+,+,+,+,±,±,±) whileH3 fluxes (Table 5.2) are represented by (−,+,+,+,±,±,±) spino-

rial weights.

From Table C.1 we can easily read the action of the duality group in the different fluxes.

Notice also that the duality transformations can be easily obtained by expressing the SL(2,Z)
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generators in terms of lowering and raising operators. Namely, SX,2 = SX,+ − SX,− and

SX,1 = I + SX,−. Thus, for instance, S1,2F 3 = −H3 corresponds to Type IIB S-duality.

It is interesting to note how half of the degrees of freedom of each of the two Weyl spinors

on which G = 64⊕ 64′ can be decomposed correspond to RR fluxes, whereas the other half

are generalized NS fluxes. Of these, half are heterotic and half are ordinary fluxes, thus giving

a very symmetric structure.

Flux parameter Weight Flux parameter Weight

h̄′0 (−,−,−,−,−,−,−) e0 (+,+,+,+,+,+,+)

h0 (−,+,+,+,+,+,+) m′ (+,−,−,−,−,−,−)

−hi (+,

i︷ ︸︸ ︷
−,+,+,+,+,+) −f̄ ′

i (−,
i︷ ︸︸ ︷

+,−,−,−,−,−)

ej (+,+,+,+,

j︷ ︸︸ ︷
−,+,+) ā′j (−,−,−,−,

j︷ ︸︸ ︷
+,−,−)

h̄′i (+,

i︷ ︸︸ ︷
+,−,−,−,−,−) fi (−,

i︷ ︸︸ ︷
−,+,+,+,+,+)

q′j (+,−,−,−,
j︷ ︸︸ ︷

+,−,−) aj (−,+,+,+,
j︷ ︸︸ ︷

−,+,+)

ḡ′ji (−,
i︷ ︸︸ ︷

+,−,−,
j︷ ︸︸ ︷

+,−,−) bji (+,

i︷ ︸︸ ︷
−,+,+,

j︷ ︸︸ ︷
−,+,+)

a′j (−,−,−,−,
j︷ ︸︸ ︷

−,+,+) qj (+,+,+,+,

j︷ ︸︸ ︷
+,−,−)

−gji (−,
i︷ ︸︸ ︷

−,+,+,
j︷ ︸︸ ︷

−,+,+) −b̄′ji (+,

i︷ ︸︸ ︷
+,−,−,

j︷ ︸︸ ︷
+,−,−)

−āj (−,+,+,+,
j︷ ︸︸ ︷

+,−,−) −e′j (+,−,−,−,
j︷ ︸︸ ︷

−,+,+)

−b̄ji (+,

i︷ ︸︸ ︷
−,+,+,

j︷ ︸︸ ︷
+,−,−) −g′ji (−,

i︷ ︸︸ ︷
+,−,−,

j︷ ︸︸ ︷
−,+,+)

−m (+,+,+,+,−,−,−) −h′0 (−,−,−,−,+,+,+)

b′ji (+,

i︷ ︸︸ ︷
+,−,−,

j︷ ︸︸ ︷
−,+,+) ḡji (−,

i︷ ︸︸ ︷
−,+,+,

j︷ ︸︸ ︷
+,−,−)

f ′
i (−,

i︷ ︸︸ ︷
+,−,−,+,+,+) h̄i (+,

i︷ ︸︸ ︷
−,+,+,−,−,−)

−e′0 (+,−,−,−,+,+,+) −h̄0 (−,+,+,+,−,−,−)

−f̄i (−,
i︷ ︸︸ ︷

−,+,+,−,−,−) −h′i (+,

i︷ ︸︸ ︷
+,−,−,+,+,+)

Table C.1: Spinorial embedding of the background fluxes. The weights in each column corre-

spond to one of the two Weyl spinors on which the set of fluxes G can be decomposed.

One can proceed analogously with the set of moduli T. In this case they transform as a

vectorial 7 of SL(2,Z)7, as shown in Table C.2. Let us define

eiT ≡ 1 + iT− T⊗ T + . . . . (C.3)
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In this language, the superpotential (5.203) then takes the very compact form

W = G⊗ eiT|(+,+,+,+,+,+,+) , (C.4)

which is reminiscent of the typical expressions for flux induced superpotentials.

Moduli Weight

S (1, 0, 0, 0, 0, 0, 0)

Ti (0,

i︷ ︸︸ ︷
1, 0, 0, 0, 0, 0)

Ui (0, 0, 0, 0,

i︷ ︸︸ ︷
1, 0, 0)

Table C.2: Embedding of the moduli in a 7 of SL(2,Z)7.

Moreover, the Bianchi identities now correspond to constraints in the components of the

bispinor of fluxes

G⊗G = G ·G ⊕ GΓI1G ⊕ . . . ⊕ GΓI1I2I3I4I5I6I7G , (C.5)

where ΓI1...In ≡ Γ[I1 · . . . · ΓIn] and ΓI are the complexified gamma matrices of the relevant

Clifford algebra, and Ia = 1, 1̄, . . . , 7, 7̄.



158 C. Spinorial embedding of background fluxes.



Appendix D

Supersymmetry breaking in

KKLT scenarios.

The bulk of this thesis has dealt with stabilization of the moduli by perturbative back-

ground fluxes. However, other effects such as quantum corrections [191, 192, 193] or non-

perturbative [194] contributions can play as well a role in the stabilization of the moduli.

Indeed, before introducing the non-geometric fluxes, this was the best available mechanism

to stabilize the Kähler moduli in Type IIB orientifolds with O3-planes and constant RR and

NSNS background fluxes. Indeed, as we saw in Section 5.1.1, these are suitably described

at low energies by the Gukov-Vafa-Witten superpotential (5.5), which is independent of the

Kähler moduli and thus leads to no-scale models.

In this context, Kachru, Kallosh, Linde and Trivedi (KKLT) [29] provided a construction

on which to break the no-scale structure by making use of non-perturbative effects, thus

stabilizing the Kähler moduli and at the same time lifting the vacua to dS. The construction

consists on the following steps. First of all one chooses a non-supersymmetric vacuum of the

Gukov-Vafa-Witten superpotential [18], on which the dilaton and complex structure moduli

are fixed. Then, at the minimum, one has W = W0. The second step then consists on

adding a non-perturbative superpotential generated by Euclidean D3-branes [194] or gaugino

condensation in the worldvolume of D7-branes. In this sense, the stabilization of the open

string moduli for the D7-branes is crucial, leaving below the flux induced mass scale, a pure

N = 1 Super Yang Mills theory with gauge coupling related to the Kähler moduli through

eq. (6.55). Then, for a single overall Kähler modulus T , the total effective superpotential after

the second step becomes

W = W0 +Ae−aT , (D.1)

which has a non-trivial minimum corresponding to a supersymmetric AdS vacuum.

The last step is then to add a source of D-terms contributing positively to the cosmological
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constant. In particular, they considered the inclusion ofD3-branes. This induces an additional

energy density of the form

∆V ∝ 1

(Im T 3)
, (D.2)

which lifts the vacuum to dS, although still some fine-tuning is needed to achieve small values

for the cosmological constant. Alternative mechanisms, such as magnetic fluxes in the world-

volume of the D7-branes [195], has been proposed. We refer the reader to [196, 197, 198, 202]

for some other proposals.

Although the KKLT construction seems very promising at a first sight, it has been re-

vealed that building explicit consistent models is not a simple task. In particular, ideally one

should minimize the full scalar potential in one step instead of two. This makes the problem

of finding minima far more difficult because, once a T dependent superpotential is considered,

the no-scale structure disappears, the potential is no longer positive definite and the minimum

does not necessarily correspond to the solution of the supersymmetric conditions DiW = 0.

Moreover, in many cases there are actually no minima at all, the potential is unbounded from

below and all extrema are saddle points [199, 200, 201]. In these cases, one is enforced to

consider additional effects such as gaugino condensation in the worldvolume of D3-branes or

corrections to the gauge coupling constant on D7-branes due to magnetic fluxes.

In any case, the quantum and non-perturbative effects modify the general picture that

we found in Chapter 6 for the flux induced soft supersymmetry breaking. A microscopical

analysis now becomes almost impossible to be carried out, and one is enforced to take an

effective supergravity approach to the problem.

Here we will consider a Kähler potential and gauge kinetic function slightly more general

than (6.89), given by

K = −log (S + S∗)− 3log (T + T ∗) +
|φ|2

(S + S∗)ξS (T + T ∗)ξT
, f = αS + βT . (D.3)

Note that this potential includes the above kind of open string deformations, corresponding

to (ξS , ξT ) = (1, 0) and (ξS , ξT ) = (0, 1), plus new cases such as the scalars arising at brane

intersections or branes wrapping different two torus ((ξS , ξT ) = (1/2, 1/2)).

Then one can compute the scalar potential in terms of the superpotential W and extract

the following soft supersymmetry breaking terms [201, 56]

m2
φ = m2

3/2 − ξS
|FS |2

(S + S∗)2
− ξT

|FT |2
3(T + T ∗)2

+ V0 , (D.4)

M1/2 =
FT

α(S + S∗) + β(T + T ∗)
, (D.5)
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A123 =
−FS

(S + S∗)
(1− ξ1S − ξ2S − ξ3S) +

−FT

(T + T ∗)
(1− ξ1T − ξ2T − ξ3T ) , (D.6)

B = FS(
2ξS − 1

(S + S∗)
+ ∂Slogµ(S)) +

FT

(T + T ∗)
(2ξT − 3) − m3/2 , (D.7)

with m3/2 = W exp(K/2) and

FS = eK/2(S + S∗)2(WS −
W

(S + S∗)
) , (D.8)

FT = eK/2 (T + T ∗)2

3
(WT −

3W

(T + T ∗)
) . (D.9)

Now W include non-perturbative effects, the Gukov-Vafa-Witten piece and the open string

perturbative terms discussed in Chapter 6.

Note that the relations (6.10) and (6.11) are in general no longer satisfied for arbitrary

FS , FT , ξS and ξT . Thus, the presence of non-perturbative effects or D3-branes lead to very

model dependent soft supersymmetry breaking patterns, determined by the concrete values of

both FS and FT and allowing in principle for a rich structure of soft supersymmetry breaking

scenarios. We refer the reader to [201] for further details.
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las partidas de frontón con el Astur, las idas y venidas de Sergio Montero, las visitas a Madrid

de Diego (además de la lectura previa de una parte de esta memoria)...

Ya en el mundo de las cuatro dimensiones... perdon, quise decir tres... les quiero agradecer

muy especialmente a Fernando, a Guillermo y a Jose la amistad de estos años, aśı como a
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